# **European Commission**



Combined Draft Renewal Assessment Report prepared according to Regulation (EC) N° 1107/2009 and Proposal for Harmonised Classification and Labelling (CLH Report) according to Regulation (EC) N° 1272/2008

Clethodim (ISO); (5RS)-2-{(1EZ)-1-[(2E)-3-chloroallyloxyimino] propyl}-5-[(2RS)-2-ethylthio)propyl]-3 hydroxycyclohex-2-en-1-one

Volume 1

Rapporteur Member State: Sweden Co-Rapporteur Member State: Lithuania

### **Versions History**

| When    | What        |
|---------|-------------|
| 2023/08 | Initial RAR |
|         |             |
|         |             |
|         |             |
|         |             |
|         |             |
|         |             |

The RMS is the author of the Assessment Report. The Assessment Report is based on the validation by the RMS, and the verification during the EFSA peer-review process, of the information submitted by the Applicant in the dossier, including the Applicant's assessments provided in the summary dossier. As a consequence, data and information including assessments and conclusions, validated and verified by the RMS experts, may be taken from the applicant's (summary) dossier and included as such or adapted/modified by the RMS in the Assessment Report. For reasons of efficiency, the Assessment Report includes the information validated/verified by the RMS, without detailing which elements have been taken or modified from the Applicant's assessment. As the Applicant's summary dossier is published, the experts, interested parties, and the public may compare both documents for getting details on which elements of the Applicant's dossier have been validated/verified and which ones have been modified by the RMS. Nevertheless, the views and conclusions of the RMS should always be clearly and transparently reported; the conclusions from the applicant should be included as an Applicant's statement for every single study reported at study level; and the RMS should justify the final assessment for each endpoint in all cases, indicating in a clear way the Applicant's assessment and the RMS reasons for supporting or not the view of the Applicant.

### **Table of contents**

| LEVE                | L 1                                                                                                                                                        | 8   |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|                     | STATEMENT OF SUBJECT MATTER AND PURPOSE FOR WHICH THIS REPORT HAS<br>BEEN PREPARED AND BACKGROUND INFORMATION ON THE APPLICATION                           | 8   |
| 1.1                 | CONTEXT IN WHICH THE RENEWAL ASSESSMENT REPORT WAS PREPARED                                                                                                | 8   |
| 1.1.1               | Purpose for which the renewal assessment report was prepared                                                                                               | 8   |
| 1.1.2               | 2 Arrangements between rapporteur Member State and co-rapporteur Member State                                                                              | 8   |
| 1.1.3               |                                                                                                                                                            |     |
| 1.1.4               | Evaluations carried out under other regulatory contexts                                                                                                    | 9   |
| 1.2                 | APPLICANT(S) INFORMATION                                                                                                                                   |     |
| 1.2.1               |                                                                                                                                                            |     |
| 1.2.2               |                                                                                                                                                            |     |
| 1.2.3               | 3 Information relating to the collective provision of dossiers                                                                                             | 10  |
| 1.3                 | IDENTITY OF THE ACTIVE SUBSTANCE                                                                                                                           | 10  |
| 1.3.1               |                                                                                                                                                            | 10  |
| 1.3.2               |                                                                                                                                                            |     |
| 1.3.3               | 1                                                                                                                                                          |     |
| 1.3.4               | ,                                                                                                                                                          |     |
| 1.3.5               |                                                                                                                                                            |     |
| 1.3.0               |                                                                                                                                                            |     |
| 1.3.                |                                                                                                                                                            |     |
| 1.3.8               |                                                                                                                                                            |     |
| 1.3.9<br><b>1.4</b> | Analytical profile of batches INFORMATION ON THE PLANT PROTECTION PRODUCT                                                                                  |     |
|                     |                                                                                                                                                            |     |
| 1.4.1               |                                                                                                                                                            |     |
| 1.4.2               |                                                                                                                                                            | 11  |
| 1.4.3               |                                                                                                                                                            | 1.1 |
| 14                  | protection product                                                                                                                                         |     |
| 1.4.4               | 4 Detailed quantitative and qualitative information on the composition of the plant protection produ-                                                      |     |
| 1.4.5               |                                                                                                                                                            |     |
| 1.4.                |                                                                                                                                                            |     |
| 1.4.3               |                                                                                                                                                            |     |
| 1.4.8               |                                                                                                                                                            |     |
| 1.5                 | DETAILED USES OF THE PLANT PROTECTION PRODUCT                                                                                                              | 13  |
|                     |                                                                                                                                                            |     |
| 1.5.1               |                                                                                                                                                            |     |
| 1.5.2               |                                                                                                                                                            |     |
| 1.5.3               | 3 Details of other uses applied for to support the setting of MRLs for uses beyond the representativ<br>uses                                               |     |
| 1.5.4               |                                                                                                                                                            |     |
| LEVE                | L 2                                                                                                                                                        | 17  |
|                     | SUMMARY OF ACTIVE SUBSTANCE HAZARD AND OF PRODUCT RISK ASSESSMENT                                                                                          |     |
| 2.1                 | Identity                                                                                                                                                   |     |
| 2.1.1               |                                                                                                                                                            |     |
| 2.2                 | PHYSICAL AND CHEMICAL PROPERTIES [EQUIVALENT TO SECTION 7 OF THE CLH REPORT                                                                                |     |
| 2.2                 | PHYSICAL AND CHEMICAL PROPERTIES [EQUIVALENT TO SECTION 7 OF THE CLH REPORT<br>TEMPLATE]                                                                   | 18  |
| <b>1</b> 1          | -                                                                                                                                                          |     |
| 2.2.1<br>2.2        | Summary of physical and chemical properties of the active substance<br>Evaluation of physical hazards [equivalent to section 8 of the CLH report template] |     |

| 2.2.2          | Summary of physical and chemical properties of the plant protection product                                              | 28   |
|----------------|--------------------------------------------------------------------------------------------------------------------------|------|
| 2.3            | DATA ON APPLICATION AND EFFICACY                                                                                         | 30   |
| 2.3.1          | Summary of effectiveness                                                                                                 | 30   |
| 2.3.2          | Summary of information on the development of resistance                                                                  | 30   |
| 2.3.3          | Summary of adverse effects on treated crops                                                                              |      |
| 2.3.4          | Summary of observations on other undesirable or unintended side-effects                                                  |      |
| 2.4            | FURTHER INFORMATION                                                                                                      | 31   |
| 2.4.1          | Summary of methods and precautions concerning handling, storage, transport or fire                                       | 31   |
| 2.4.2          | Summary of procedures for destruction or decontamination                                                                 |      |
| 2.4.3          | Summary of emergency measures in case of an accident                                                                     |      |
| 2.5            | Methods of analysis                                                                                                      |      |
|                | Methods used for the generation of pre-authorisation data                                                                |      |
| 2.5.1<br>2.5.2 |                                                                                                                          |      |
| 2.5.2          | Methods for post control and monitoring purposes<br>Extraction efficiency                                                |      |
| 2.3.3          | -                                                                                                                        |      |
| 2.6            | EFFECTS ON HUMAN AND ANIMAL HEALTH                                                                                       | 35   |
| 2.6.1          | Summary of absorption, distribution, metabolism and excretion in mammals [equivalent to sect of the CLH report template] |      |
| 2.6.1          |                                                                                                                          | osed |
| 2.6.2          | Summary of acute toxicity                                                                                                |      |
| 2.6.2          |                                                                                                                          |      |
| 2.6.2          |                                                                                                                          |      |
| 2.6.2          |                                                                                                                          |      |
| 2.6.2          |                                                                                                                          |      |
| 2.6.2          | - 1 1 -                                                                                                                  |      |
| 2.6.2          |                                                                                                                          |      |
| 2.6.2          |                                                                                                                          |      |
| 2.6.2          |                                                                                                                          |      |
| 2.6.2          |                                                                                                                          |      |
| 2.6.2          |                                                                                                                          | e    |
| 2.6.3          | Summary of repeated dose toxicity (short-term and long-term toxicity) [section 10.12 of the CL                           |      |
|                | report]                                                                                                                  |      |
| 2.6.3          | .1 Specific target organ toxicity-repeated exposure (STOT RE)                                                            | 63   |
| 2.6.4          | Summary of genotoxicity / germ cell mutagenicity [equivalent to section 10.8 of the CLH reported]                        |      |
| 2.6.4          | 1 -                                                                                                                      |      |
|                | mutagenicity                                                                                                             |      |
| 2.6.4          | .2 Comparison with the CLP criteria regarding genotoxicity / germ cell mutagenicity                                      | 112  |
| 2.6.4          |                                                                                                                          |      |
| 2.6.5          | Summary of long-term toxicity and carcinogenicity [equivalent to section 10.9 of the CLH repo                            |      |
|                | template]                                                                                                                |      |
| 2.6.5          | carcinogenicity                                                                                                          | 114  |
| 2.6.5          |                                                                                                                          | 118  |
| 2.6.5          | .3 Conclusion on classification and labelling for carcinogenicity                                                        | 118  |
| 2.6.6          | Summary of reproductive toxicity [equivalent to section 10.10 of the CLH report template]                                | 119  |
| 2.6.6          | , , , , , , , , , , , , , , , , , , ,                                                                                    |      |
| 2.6.6          |                                                                                                                          |      |
| 2.6.6          |                                                                                                                          |      |
| 2.6.6          |                                                                                                                          |      |
| 2.6.7          | Summary of neurotoxicity                                                                                                 |      |
| 2.6.8          | Summary of other toxicological studies                                                                                   |      |
| 2.6.8          |                                                                                                                          |      |
| 2.6.8          |                                                                                                                          |      |
| 2.6.9          | Summary of medical data and information                                                                                  | 201  |

| 2.6.10<br>2.6.10.1 | Toxicological end points for risk assessment (reference values)<br>Toxicological end point for assessment of risk following long-term dietary exposure – A | ADI    |  |  |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|--|
| 2.6.10.2           | (acceptable daily intake)<br>Toxicological end point for assessment of risk following acute dietary exposure - ARfD                                        | (acute |  |  |
| 2.6.10.3           | reference dose)<br>Toxicological end point for assessment of occupational, bystander and resident risks – A                                                | AOEL   |  |  |
| 2 < 10 4           | (acceptable operator exposure level)                                                                                                                       |        |  |  |
| 2.6.10.4           | Toxicological end point for assessment of occupational, bystander and residents risks – (acute acceptable operator exposure level)                         |        |  |  |
| 2.6.10.5           | Drinking water limit                                                                                                                                       |        |  |  |
| 2.6.11             | Summary of product exposure and risk assessment                                                                                                            |        |  |  |
| 2.7 RH             | ESIDUES                                                                                                                                                    |        |  |  |
| 2.7.1              | Summary of storage stability of residues                                                                                                                   |        |  |  |
| 2.7.2              | Summary of metabolism, distribution and expression of residues in plants, poultry, lactating                                                               |        |  |  |
|                    | ruminants, pigs and fish                                                                                                                                   |        |  |  |
| 2.7.2.1            | Plants                                                                                                                                                     |        |  |  |
| 2.7.2.2            | Animals                                                                                                                                                    |        |  |  |
| 2.7.3              | Definition of the residue                                                                                                                                  |        |  |  |
| 2.7.4              | Summary of residue trials in plants and identification of critical GAP                                                                                     |        |  |  |
| 2.7.5              | Summary of feeding studies in poultry, ruminants, pigs and fish                                                                                            |        |  |  |
| 2.7.6<br>2.7.6.1   | Summary of effects of processing<br>Nature of residues                                                                                                     |        |  |  |
| 2.7.6.1            | Distribution of residues in peel and pulp                                                                                                                  |        |  |  |
| 2.7.6.3            | Magnitude of residues in processed commodities                                                                                                             |        |  |  |
| 2.7.0.5            | Summary of residues in rotational crops                                                                                                                    |        |  |  |
| 2.7.8              | Summary of other studies                                                                                                                                   |        |  |  |
| 2.7.8.1            | Effects on the residue level in pollen and bee products                                                                                                    |        |  |  |
| 2.7.8.2            | Extraction efficiency                                                                                                                                      |        |  |  |
| 2.7.9              | Estimation of the potential and actual exposure through diet and other sources                                                                             |        |  |  |
| 2.7.10             | Proposed MRLs and compliance with existing MRLs                                                                                                            |        |  |  |
| 2.7.11             | Proposed import tolerances and compliance with existing import tolerances                                                                                  |        |  |  |
| 2.8 FA             | TE AND BEHAVIOUR IN THE ENVIRONMENT                                                                                                                        |        |  |  |
| 2.8.1              | Summary of fate and behaviour in soil                                                                                                                      |        |  |  |
| 2.8.1.1            | Route of degradation in soil                                                                                                                               |        |  |  |
| 2.8.1.2            | Rate of degradation in soil                                                                                                                                |        |  |  |
| 2.8.1.3            | Assessment in relation to the P-criteria for soil                                                                                                          |        |  |  |
| 2.8.1.4            | Adsorption to soil                                                                                                                                         |        |  |  |
| 2.8.2              | Summary of fate and behaviour in water and sediment [equivalent to section 11.1 of the CL                                                                  | -      |  |  |
| 2 9 2 1            | template]                                                                                                                                                  |        |  |  |
| 2.8.2.1            | Rapid degradability of organic substances<br>Other convincing scientific evidence                                                                          |        |  |  |
| 2.8.2.2<br>2.8.2.3 | Assessment in relation to the P-criteria for water and sediment                                                                                            |        |  |  |
| 2.8.2.5            | Summary of fate and behaviour in air                                                                                                                       |        |  |  |
| 2.8.3.1            | Hazardous to the ozone layer                                                                                                                               |        |  |  |
| 2.8.4              | Summary of monitoring data concerning fate and behaviour of the active substance, metabo                                                                   |        |  |  |
|                    | degradation and reaction products                                                                                                                          |        |  |  |
| 2.8.5              | Definition of the residues in the environment requiring further assessment                                                                                 |        |  |  |
| 2.8.6              | Summary of exposure calculations and product assessment                                                                                                    |        |  |  |
| 2.8.6.1            | PEC soil                                                                                                                                                   |        |  |  |
| 2.8.6.2            | PEC groundwater                                                                                                                                            |        |  |  |
| 2.8.6.3            | PEC surface water and sediment                                                                                                                             |        |  |  |
| 2.8.6.4            | PEC air                                                                                                                                                    |        |  |  |
| 2.8.6.5            | Other routes of exposure                                                                                                                                   |        |  |  |
| 2.9 EF             | FECTS ON NON-TARGET SPECIES                                                                                                                                |        |  |  |
| 2.9.1              | Summary of effects on birds and other terrestrial vertebrates                                                                                              |        |  |  |
| 2.9.2              | Summary of effects on aquatic organisms                                                                                                                    |        |  |  |
| 2.9.2.1            |                                                                                                                                                            |        |  |  |

| 2.9.2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Acute aquatic hazard [equivalent to section 11.5 of the CLH report template]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| 2.9.2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Long-term aquatic hazard [equivalent to section 11.6 of the CLH report template]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                       |
| 2.9.2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Comparison with the CLP criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                       |
| 2.9.2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Conclusion on classification and labelling for environmental hazards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                       |
| 2.9.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Summary of effects on arthropods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                       |
| 2.9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Summary of effects on non-target soil meso- and macrofauna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       |
| 2.9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Summary of effects on soil nitrogen transformation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                       |
| 2.9.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Summary of effects on terrestrial non-target higher plants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       |
| 2.9.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Summary of effects on other terrestrial organisms (flora and fauna)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                       |
| 2.9.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Summary of effects on biological methods for sewage treatment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                       |
| 2.9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Summary of product exposure and risk assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                       |
| 2.9.9.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Risk assessment for birds and other terrestrial vertebrates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                       |
| 2.9.9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Risk assessment for aquatic organisms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                       |
| 2.9.9.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Risk assessment for bees and other non-target arthropods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                       |
| 2.9.9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Risk assessment for earthworms and other non-target soil meso- and macrofauna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                       |
| 2.9.9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Risk assessment for terrestrial non-target higher plants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                       |
| 2.9.9.6<br>2.9.9.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Risk assessment for soil microorganisms<br>Risk assessment for biological methods for sewage treatment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                       |
| 2.10 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NDOCRINE DISRUPTING PROPERTIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                       |
| 2.10.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Gather all relevant information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                       |
| 2.10.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ED assessment for humans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                       |
| 2.10.2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                       |
| 2.10.2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ED assessment for EAS-modality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                       |
| 2.10.2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Overall conclusion on the ED assessment for humans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                       |
| 2.10.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ED assessment for non-target organisms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                       |
| 2.10.3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ED assessment for T-modality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                       |
| 2.10.3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ED assessment for EAS-modality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                       |
| 2.10.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Overall conclusion on the ED assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                       |
| 2.11 P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ROPOSED HARMONISED CLASSIFICATION AND LABELLING ACCORDING TO THE CLP CRIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ERIA                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                       |
| [\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SECTIONS 1-6 OF THE CLH REPORT]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                       |
| 2.11.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Identity of the substance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                       |
| 2.11.1<br>2.11.1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Identity of the substance<br>Name and other identifiers of the substance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 479<br>479                                                                                            |
| 2.11.1<br>2.11.1.1<br>2.11.1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Identity of the substance<br>Name and other identifiers of the substance<br>Composition of the substance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                       |
| 2.11.1<br>2.11.1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Identity of the substance<br>Name and other identifiers of the substance<br>Composition of the substance<br>Proposed harmonized classification and labelling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                       |
| 2.11.1<br>2.11.1.1<br>2.11.1.2<br>2.11.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Identity of the substance<br>Name and other identifiers of the substance<br>Composition of the substance<br>Proposed harmonized classification and labelling<br>Proposed harmonised classification and labelling according to the CLP criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                       |
| 2.11.1<br>2.11.1.1<br>2.11.1.2<br>2.11.2<br>2.11.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Identity of the substance<br>Name and other identifiers of the substance<br>Composition of the substance<br>Proposed harmonized classification and labelling<br>Proposed harmonised classification and labelling according to the CLP criteria<br>Additional hazard statements / labelling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       |
| 2.11.1<br>2.11.1.1<br>2.11.1.2<br>2.11.2<br>2.11.2.1<br>2.11.2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Identity of the substance<br>Name and other identifiers of the substance<br>Composition of the substance<br>Proposed harmonized classification and labelling<br>Proposed harmonised classification and labelling according to the CLP criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 479<br>479<br>479<br>486<br>486<br>486<br>487<br>487                                                  |
| 2.11.1<br>2.11.1.1<br>2.11.1.2<br>2.11.2<br>2.11.2.1<br>2.11.2.2<br>2.11.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Identity of the substance<br>Name and other identifiers of the substance<br>Composition of the substance<br>Proposed harmonized classification and labelling<br>Proposed harmonised classification and labelling according to the CLP criteria<br>Additional hazard statements / labelling<br>History of the previous classification and labelling                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 479<br>479<br>479<br>486<br>486<br>486<br>487<br>487<br>487                                           |
| 2.11.1<br>2.11.1.1<br>2.11.1.2<br>2.11.2<br>2.11.2.1<br>2.11.2.2<br>2.11.3<br>2.11.4<br>2.11.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Identity of the substance<br>Name and other identifiers of the substance<br>Composition of the substance<br>Proposed harmonized classification and labelling<br>Proposed harmonised classification and labelling according to the CLP criteria<br>Additional hazard statements / labelling<br>History of the previous classification and labelling<br>Identified uses<br>Data sources                                                                                                                                                                                                                                                                                                                                                                                                                     | 479<br>479<br>479<br>486<br>486<br>487<br>487<br>487<br>487                                           |
| 2.11.1<br>2.11.1.1<br>2.11.1.2<br>2.11.2<br>2.11.2.1<br>2.11.2.2<br>2.11.3<br>2.11.4<br>2.11.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Identity of the substance<br>Name and other identifiers of the substance<br>Composition of the substance<br>Proposed harmonized classification and labelling<br>Proposed harmonised classification and labelling according to the CLP criteria<br>Additional hazard statements / labelling<br>History of the previous classification and labelling<br>Identified uses<br>Data sources                                                                                                                                                                                                                                                                                                                                                                                                                     | 479<br>479<br>479<br>486<br>486<br>486<br>487<br>487<br>487<br>487<br>487<br>487<br>488               |
| 2.11.1<br>2.11.1.1<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.3<br>2.11.4<br>2.11.5<br><b>2.12 R</b><br>2.12.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Identity of the substance<br>Name and other identifiers of the substance<br>Composition of the substance<br>Proposed harmonized classification and labelling<br>Proposed harmonised classification and labelling according to the CLP criteria<br>Additional hazard statements / labelling<br>History of the previous classification and labelling<br>Identified uses<br>Data sources<br>ELEVANCE OF METABOLITES IN GROUNDWATER<br>STEP 1: Exclusion of degradation products of no concern                                                                                                                                                                                                                                                                                                                | 479<br>479<br>479<br>486<br>486<br>487<br>487<br>487<br>487<br>487<br>487<br>488<br>488               |
| 2.11.1<br>2.11.1.1<br>2.11.1.2<br>2.11.2.1<br>2.11.2.1<br>2.11.2.2<br>2.11.3<br>2.11.4<br>2.11.5<br><b>2.12 R</b><br>2.12.1<br>2.12.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Identity of the substance<br>Name and other identifiers of the substance<br>Composition of the substance<br>Proposed harmonized classification and labelling according to the CLP criteria<br>Additional hazard statements / labelling<br>History of the previous classification and labelling<br>Identified uses<br>Data sources<br>ELEVANCE OF METABOLITES IN GROUNDWATER<br>STEP 1: Exclusion of degradation products of no concern<br>STEP 2: Quantification of potential groundwater contamination                                                                                                                                                                                                                                                                                                   | 479<br>479<br>479<br>486<br>486<br>487<br>487<br>487<br>487<br>487<br>487<br>487<br>488<br>488<br>488 |
| 2.11.1<br>2.11.1.1<br>2.11.2<br>2.11.2<br>2.11.2.1<br>2.11.2.2<br>2.11.3<br>2.11.4<br>2.11.5<br><b>2.12 R</b><br>2.12.1<br>2.12.2<br>2.12.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Identity of the substance<br>Name and other identifiers of the substance<br>Composition of the substance<br>Proposed harmonized classification and labelling according to the CLP criteria<br>Additional hazard statements / labelling<br>History of the previous classification and labelling<br>Identified uses<br>Data sources<br>ELEVANCE OF METABOLITES IN GROUNDWATER<br>STEP 1: Exclusion of degradation products of no concern<br>STEP 2: Quantification of potential groundwater contamination<br>STEP 3: Hazard assessment – identification of relevant metabolites                                                                                                                                                                                                                             | 479<br>479<br>479<br>486<br>486<br>487<br>487<br>487<br>487<br>487<br>487<br>488<br>488<br>488<br>488 |
| 2.11.1<br>2.11.1.1<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.3<br>2.11.4<br>2.11.5<br><b>2.12 R</b><br>2.12.1<br>2.12.2<br>2.12.3<br>2.12.3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Identity of the substance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 479<br>479<br>479<br>486<br>486<br>487<br>487<br>487<br>487<br>487<br>487<br>488<br>488<br>488<br>488 |
| 2.11.1<br>2.11.1.1<br>2.11.2<br>2.11.2<br>2.11.2.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.3<br>2.11.4<br>2.11.5<br><b>2.12 R</b><br>2.12.1<br>2.12.2<br>2.12.3<br>2.12.3.1<br>2.12.3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Identity of the substance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 479<br>479<br>479<br>486<br>486<br>487<br>487<br>487<br>487<br>487<br>487<br>488<br>488<br>488<br>488 |
| 2.11.1<br>2.11.1.1<br>2.11.2<br>2.11.2<br>2.11.2.2<br>2.11.2.1<br>2.11.2.2<br>2.11.3<br>2.11.4<br>2.11.5<br><b>2.12 R</b><br>2.12.1<br>2.12.3<br>2.12.3.1<br>2.12.3.2<br>2.12.3.2<br>2.12.3.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Identity of the substance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 479<br>479<br>479<br>486<br>486<br>487<br>487<br>487<br>487<br>487<br>487<br>488<br>488<br>488<br>488 |
| 2.11.1<br>2.11.1.1<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.12.1<br>2.12.2<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.4                                                                                                                                                                                                                                                                                                                                           | Identity of the substance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 479<br>479<br>479<br>486<br>486<br>487<br>487<br>487<br>487<br>487<br>487<br>488<br>488<br>488<br>488 |
| 2.11.1<br>2.11.1.1<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.3<br>2.11.4<br>2.11.5<br><b>2.12 R</b><br>2.12.1<br>2.12.3<br>2.12.3<br>2.12.3.1<br>2.12.3.2<br>2.12.3.3<br>2.12.4<br>2.12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Identity of the substance<br>Name and other identifiers of the substance<br>Composition of the substance<br>Proposed harmonized classification and labelling according to the CLP criteria<br>Additional hazard statements / labelling<br>History of the previous classification and labelling<br>Identified uses<br>Data sources<br>ELEVANCE OF METABOLITES IN GROUNDWATER<br>STEP 1: Exclusion of degradation products of no concern<br>STEP 2: Quantification of potential groundwater contamination<br>STEP 3: Hazard assessment – identification of relevant metabolites<br>STEP 3, Stage 1: screening for biological activity<br>STEP 3, Stage 2: screening for genotoxicity<br>STEP 4: Exposure assessment – threshold of concern approach<br>STEP 5: Refined risk assessment                      | 479<br>479<br>479<br>486<br>486<br>487<br>487<br>487<br>487<br>487<br>487<br>488<br>488<br>488<br>488 |
| 2.11.1<br>2.11.1.1<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.12.1<br>2.12.2<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.4                                                                                                                                                                                                                                                                                                                                           | Identity of the substance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 479<br>479<br>479<br>486<br>486<br>487<br>487<br>487<br>487<br>487<br>487<br>488<br>488<br>488<br>488 |
| 2.11.1<br>2.11.1.1<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.3<br>2.11.4<br>2.11.5<br><b>2.12 R</b><br>2.12.1<br>2.12.3<br>2.12.3<br>2.12.3.1<br>2.12.3.2<br>2.12.3.3<br>2.12.4<br>2.12.5<br>2.12.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Identity of the substance<br>Name and other identifiers of the substance<br>Composition of the substance<br>Proposed harmonized classification and labelling according to the CLP criteria<br>Additional hazard statements / labelling<br>History of the previous classification and labelling<br>Identified uses<br>Data sources<br>ELEVANCE OF METABOLITES IN GROUNDWATER<br>STEP 1: Exclusion of degradation products of no concern<br>STEP 2: Quantification of potential groundwater contamination<br>STEP 3: Hazard assessment – identification of relevant metabolites<br>STEP 3, Stage 1: screening for biological activity<br>STEP 3, Stage 2: screening for genotoxicity<br>STEP 4: Exposure assessment – threshold of concern approach<br>STEP 5: Refined risk assessment                      | 479<br>479<br>479<br>486<br>486<br>487<br>487<br>487<br>487<br>487<br>487<br>488<br>488<br>488<br>488 |
| 2.11.1<br>2.11.1.1<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.3<br>2.11.4<br>2.11.5<br><b>2.12 R</b><br>2.12.1<br>2.12.3<br>2.12.3<br>2.12.3.1<br>2.12.3.2<br>2.12.3.3<br>2.12.4<br>2.12.5<br>2.12.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Identity of the substance<br>Name and other identifiers of the substance<br>Composition of the substance<br>Proposed harmonized classification and labelling according to the CLP criteria<br>Additional hazard statements / labelling<br>History of the previous classification and labelling<br>dentified uses<br>Data sources<br>ELEVANCE OF METABOLITES IN GROUNDWATER<br>STEP 1: Exclusion of degradation products of no concern<br>STEP 2: Quantification of potential groundwater contamination<br>STEP 3: Hazard assessment – identification of relevant metabolites<br>STEP 3, Stage 1: screening for biological activity<br>STEP 3, Stage 2: screening for genotoxicity<br>STEP 4: Exposure assessment – threshold of concern approach<br>STEP 5: Refined risk assessment<br>Overall conclusion | 479<br>479<br>479<br>486<br>486<br>487<br>487<br>487<br>487<br>487<br>488<br>488<br>488<br>488<br>488 |
| 2.11.1<br>2.11.1.1<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.3<br>2.11.4<br>2.11.5<br><b>2.12 R</b><br>2.12.1<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.4<br>2.12.5<br>2.12.6<br><b>2.13 C</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Identity of the substance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 479<br>479<br>479<br>486<br>486<br>487<br>487<br>487<br>487<br>487<br>487<br>488<br>488<br>488<br>488 |
| 2.11.1<br>2.11.1.1<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.3<br>2.11.4<br>2.11.5<br><b>2.12 R</b><br>2.12.1<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.4<br>2.12.5<br>2.12.6<br><b>2.13 C</b><br>2.13.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Identity of the substance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 479<br>479<br>479<br>486<br>486<br>487<br>487<br>487<br>487<br>487<br>487<br>488<br>488<br>488<br>488 |
| 2.11.1<br>2.11.1.1<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.12.2<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.4<br>2.13.1<br>2.13.2 | Identity of the substance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 479<br>479<br>479<br>486<br>486<br>487<br>487<br>487<br>487<br>487<br>487<br>488<br>488<br>488<br>488 |
| 2.11.1<br>2.11.1.1<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.5<br>2.12.6<br>2.12.6<br>2.12.6<br>2.12.6<br>2.12.6<br>2.12.7<br>2.12.5<br>2.12.6<br>2.12.6<br>2.12.6<br>2.12.7<br>2.12.5<br>2.12.6<br>2.12.6<br>2.12.7<br>2.12.5<br>2.12.6<br>2.13.1<br>2.13.2<br>2.13.3                                                                                                                                                                                                                   | Identity of the substance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 479<br>479<br>479<br>486<br>486<br>487<br>487<br>487<br>487<br>487<br>487<br>488<br>488<br>488<br>488 |
| 2.11.1<br>2.11.1.1<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.2<br>2.11.3<br>2.11.4<br>2.11.5<br><b>2.12 R</b><br>2.12.1<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.3<br>2.12.4<br>2.12.5<br>2.12.6<br><b>2.13 C</b><br>2.13.1<br>2.13.2<br>2.13.3<br>2.13.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Identity of the substance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 479<br>479<br>479<br>486<br>486<br>487<br>487<br>487<br>487<br>487<br>487<br>488<br>488<br>488<br>488 |

| 2.13.7 | Ecotoxicology                                                                                |         |
|--------|----------------------------------------------------------------------------------------------|---------|
| 2.14   | Residue definition                                                                           | 498     |
| 2.14.1 | Definition of residues for exposure/risk assessment                                          |         |
| 2.14.2 | Definition of residues for monitoring                                                        | 498     |
| 2.15   | EFFECT OF WATER TREATMENT PROCESSES ON THE NATURE OF RESIDUES PRESENT IN SURF<br>WATER       |         |
| 2.16   | SUBSTANCES AND METABOLITES; STRUCTURES, CODES, SYNONYMS                                      | 501     |
| LEVEL  | 3                                                                                            |         |
|        | ROPOSED DECISION WITH RESPECT TO THE APPLICATION                                             |         |
| 3.1    | BACKGROUND TO THE PROPOSED DECISION                                                          | 509     |
| 3.1.1  | Proposal on acceptability against the approval criteria – Article 4 and Annex II of Regulati | on (EC) |
| - · ·  | No 1107/2009                                                                                 |         |
| 3.1.2  | Proposal - Candidate for substitution                                                        |         |
| 3.1.3  | Proposal – Low risk active substance                                                         |         |
| 3.1.4  | List of studies to be generated, still ongoing or available but not evaluated                |         |
| 3.1.5  | Issues that could not be finalised                                                           |         |
| 3.1.6  | Critical areas of concern                                                                    |         |
| 3.1.7  | Overview table of the concerns identified for each representative use considered             |         |
| 3.1.8  | Area(s) where expert consultation is considered necessary                                    | 520     |
| 3.1.9  | Critical issues on which the Co-RMS did not agree with the assessment by the RMS             | 520     |
| 3.2    | PROPOSED DECISION                                                                            | 520     |
| 3.3    | RATIONAL FOR THE CONDITIONS AND RESTRICTIONS TO BE ASSOCIATED WITH ANY APPROV                |         |
|        | AUTHORISATION(S), AS APPROPRIATE                                                             |         |
| 3.3.1  | Particular conditions proposed to be taken into account to manage the risks identified       |         |
| APPENI | DIX 1 GUIDANCE DOCUMENTS USED IN THIS ASSESSMENT                                             | 522     |
| APPENI | DIX 2 REFERENCE LIST                                                                         |         |
| ANNEX  |                                                                                              |         |

### **LEVEL 1**

### **<u>1</u>** STATEMENT OF SUBJECT MATTER AND PURPOSE FOR WHICH THIS REPORT HAS BEEN PREPARED AND BACKGROUND INFORMATION ON THE APPLICATION

#### 1.1 CONTEXT IN WHICH THE RENEWAL ASSESSMENT REPORT WAS PREPARED

#### **1.1.1** Purpose for which the renewal assessment report was prepared

Clethodim is an active substance currently approved until the 31<sup>st</sup> of May 2023 under Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market.

This dossier is submitted to support the renewal of the approval of clethodim under Regulation (EC) 1107/2009. The submission is made in accordance with Commission Regulation (EU) No 844/2012 of 18 September 2012, setting out the provisions necessary for the implementation of the renewal procedure for active substances.

This Volume follows the combined RAR/CLH template according to SANCO/12592/2012. rev 1.1, October 2017. Thus, this document also serves as a proposal for classification under Regulation (EC) No 1272/2008.

#### 1.1.2 Arrangements between rapporteur Member State and co-rapporteur Member State

Sweden, acting as the rapporteur member state (RMS) evaluated all aspects of the application and the supplementary dossier, in accordance with the procedures specified in Commission Implementing Regulation (EU) No. 844/2012 of 18 September 2012.

Lithuania, acting as the Co-RMS, agreed to review the RAR before the submission to EFSA and the Commission.

#### **1.1.3 EU Regulatory history for use in Plant Protection Products**

In the EU-regulatory context, Clethodim was first evaluated within the programme for review of existing active substances provided for in Article 8(2) of EU Council Directive 91/414/EEC. Following the Commission Decision of 5 December 2008 (2008/934/EC) concerning the non-inclusion of clethodim in Annex I to Council Directive 91/414/EEC and the withdrawal of authorisations for plant protection products containing that substance, the applicant Arysta LifeScience S.A.S. made a resubmission application for the inclusion of clethodim in Annex I in accordance with the provisions laid down in Chapter III of Commission Regulation (EC) No. 33/2008. The resubmission dossier included further data in response to the issues identified in the DAR. In accordance with Article 18 of Commission Regulation (EC) No. 33/2008, The Netherlands, being the designated RMS, submitted an

evaluation of the additional data in the format of an Additional Report. The Additional Report was received by the EFSA on 1 December 2009. Addenda were also produced for some of the sections of the DAR in 2010.

To support the discussions that preceded the Annex I inclusion, EFSA was given mandate to perform a peer-review and the authority delivered its final conclusion on the 21<sup>st</sup> of October 2011 (EFSA Journal 2011;9(10):2417). The Commission then presented a Review Report (SANCO/13456/2010 final). There was a request for confirmatory data on the i) soil and groundwater exposure assessments and ii) the residue definition for risk assessment to be submitted to the Commission by the 31<sup>st</sup> of May 2013. The Review report was then updated in 2015, after evaluation of confirmatory data.

Clethodim was included in Annex I of EU Council Directive 91/414/EEC on 2 March 2011 and was subsequently approved under Regulation (EC) No. 1107/2009 (repealing Council Directive 91/414/EEC) via Commission Implementing Regulation (EU) No. 540/2011 of 25<sup>th</sup> May 2011. The current expiry date for this approval is 31/05/2023.

The existing EU MRLs for clethodim are specified in Regulation (EC) No 839/2008. EFSA has published a Reasoned opinion on the review of the existing maximum residue levels (MRLs) for Clethodim according to Article 12 of Regulation (EC) No 396/2005 (EFSA Journal 2019;17(5): 5706). However, the EFSA opinion concluded that a decision on the residue definition for risk assessment could not be made, and new residue definitions and new MRLs have not been established.

#### **1.1.4** Evaluations carried out under other regulatory contexts

The RMS is not aware of any EU-evaluations of Clethodim carried out in the framework of other relevant EU-legislation (e.g. biocides, flavourings, food additives, cosmetics).

Clethodim was included in the Inventory of Evaluations performed by the Joint Meeting on Pesticide Residues (JMPR) <u>http://www.fao.org/agriculture/crops/thematic-sitemap/theme/pests/lpe/lpe-c/en/</u>

No information has been provided by the applicant on whether Clethodim has been evaluated or registered in any country outside the EU and UK.

#### **1.2** APPLICANT(S) INFORMATION

#### **1.2.1** Name and address of applicant(s) for approval of the active substance

Name: Arysta LifeScience S.A.S.,

Address: Route d'Artix, BP 80, 64150 Noguères, France

Contact:

Telephone number:

#### **1.2.2 Producer or producers of the active substance**

Confidential information provided in Volume 4.

#### **1.2.3** Information relating to the collective provision of dossiers

The RMS received an application for renewal of the approval of Clethodim only from Arysta LifeScience SAS., the main data holder for the dossier supporting the current approval. Besides Arysta LifeScience SAS, there were two other applications submitted for the renewal of approval of clethodim, but they were not followed-up by provision of dossiers.

#### **1.3 IDENTITY OF THE ACTIVE SUBSTANCE**

| 1.3.1 Common name proposed or ISO-              | Clethodim                                             |
|-------------------------------------------------|-------------------------------------------------------|
| accepted and synonyms                           |                                                       |
| 1.3.2 Chemical name (IUPAC and CA nome          |                                                       |
| <b>1.3.2</b> Chemical name (IUPAC and CA nome   | nciature)                                             |
| IUPAC                                           | (5RS)-2-{(1EZ)-1-[(2E)-3-chloroallyloxyimino]         |
|                                                 | propyl}-5-[(2RS)-2-ethylthio)propyl]-3                |
|                                                 | hydroxycyclohex-2-en-1-one                            |
| CA                                              | 2-[1-[[[(2E)-3-chloro-2-propen-1-yl]oxy]imino]propyl] |
|                                                 | -5-[2-(ethylthio)propyl]-3-hydroxy-2-cyclohexen-1-    |
|                                                 | one                                                   |
| <b>1.3.3</b> Producer's development code number | RE 45601                                              |
|                                                 | RE-45601                                              |
| <b>1.3.4</b> CAS, EEC and CIPAC numbers         |                                                       |
| CAS                                             | 99129-21-2                                            |
| EEC                                             | Not assigned <sup>1</sup>                             |
| CIPAC                                           | 508                                                   |
| 1.3.5 Molecular and structural formula, mol     | ecular mass                                           |
| Molecular formula                               | C <sub>17</sub> H <sub>26</sub> ClNO <sub>3</sub> S   |
| Structural formula                              | S CI                                                  |
| Molecular mass                                  | 359.92 g/mol                                          |

| <b>1.3.6</b> Method of manufacture (synthesis pathway) of the active substance | Confidential information available in Volume 4.                    |
|--------------------------------------------------------------------------------|--------------------------------------------------------------------|
| <b>1.3.7</b> Specification of purity of the active substance in g/kg           | Min 930 g/kg (Commission Implementing Regulation (EU) No 87/2012). |
| <b>1.3.8</b> Identity and content of additives (such                           | as stabilisers) and impurities                                     |
| 1.3.8.1 Additives                                                              | Confidential information available in Volume 4.                    |
| 1.3.8.2 Significant impurities                                                 | Confidential information available in Volume 4.                    |
| 1.3.8.3 Relevant impurities                                                    | Toluene max 4 g/kg.                                                |
| <b>1.3.9</b> Analytical profile of batches                                     | Confidential information available in Volume 4.                    |

<sup>1</sup>The applicant provided a list number in the dossier that has not been included in the RAR.

#### **1.4** INFORMATION ON THE PLANT PROTECTION PRODUCT

| 1.4.1 Applicant                                                                                                             | Arysta Life                                          | Science S.A.S          |                              |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------|------------------------------|--|--|--|--|--|
| 1.4.2 Producer of the plant protection product                                                                              | Confidentia                                          | al information availab | le in Volume 4.              |  |  |  |  |  |
| <b>1.4.3</b> Trade name or proposed trade<br>name and producer's development code<br>number of the plant protection product | Trade name: Clethodim 120 EC<br>Code number: H1231bc |                        |                              |  |  |  |  |  |
| 1.4.4 Detailed quantitative and qualitati<br>protection product                                                             | ve informat                                          | tion on the compos     | ition of the plant           |  |  |  |  |  |
| 1.4.4.1 Composition of the plant protection                                                                                 | Pure active                                          | substance              |                              |  |  |  |  |  |
| product                                                                                                                     | content                                              | 120 g/L                | 13.0 % w/w                   |  |  |  |  |  |
|                                                                                                                             | limits                                               | 112.8 – 127.2 g/L      | 12.22 - 13.78% w/w           |  |  |  |  |  |
|                                                                                                                             | Technical active substance                           |                        |                              |  |  |  |  |  |
|                                                                                                                             | content                                              | 125 g/L                | 13.5 % w/w                   |  |  |  |  |  |
|                                                                                                                             | limits                                               | 117.5 – 132.5 g/L      | 12.69 – 14.31 % w/w          |  |  |  |  |  |
|                                                                                                                             | At a minim %.                                        | um purity of the tech  | nical active substance of 96 |  |  |  |  |  |
| 1.4.4.2 Information on the active substances                                                                                | ISO commo<br>CAS: 9912<br>EC: Not ass<br>CIPAC: 50   | signed                 |                              |  |  |  |  |  |
| 1.4.4.3 Information on safeners, synergists and                                                                             |                                                      | al information availab | le in Volume 4.              |  |  |  |  |  |
| co-formulants                                                                                                               |                                                      |                        |                              |  |  |  |  |  |
| 1.4.5 Type and code of the plant protection product                                                                         | Emulsifiabl                                          | le Concentrate [Code   | : EC]                        |  |  |  |  |  |

| 1.4.6 | Function                     | Herbicide                                                                                                           |
|-------|------------------------------|---------------------------------------------------------------------------------------------------------------------|
| 1.4.7 | Field of use envisaged       | Crops (sugar beet, onion, garlic)                                                                                   |
| 1.4.8 | Effects on harmful organisms | Systemic, selective herbicide (graminicide) for the post-<br>emergence control of annual and perennial grass weeds. |

### 1.5 DETAILED USES OF THE PLANT PROTECTION PRODUCT

### **1.5.1** Details of representative uses

| Crop                                                                                  | Member<br>State<br>or<br>Country | Product                          | F  | Pests or             | Prepa | ration              | Application                            |               |                               |                         | Applicati                                       | on rate per tr                   | eatment                                         | PHI                             | Remarks                                                                  |                              |               |
|---------------------------------------------------------------------------------------|----------------------------------|----------------------------------|----|----------------------|-------|---------------------|----------------------------------------|---------------|-------------------------------|-------------------------|-------------------------------------------------|----------------------------------|-------------------------------------------------|---------------------------------|--------------------------------------------------------------------------|------------------------------|---------------|
| and/or<br>situation<br>(a)                                                            |                                  | or                               | or | or                   | name  | G<br>or<br>I<br>(b) | Group of<br>pests<br>controlled<br>(c) | Type<br>(d-f) | Conc<br>a.s.<br>g/L<br>(i)    | method<br>kind<br>(f-h) | Range of<br>growth<br>stages<br>& season<br>(j) | Num<br>ber<br>min-<br>max<br>(k) | Interval<br>between<br>applicati<br>on<br>(min) | kg a.s<br>/hL<br>min-max<br>(l) | Water<br>L/ha<br>min-max                                                 | kg a.s./ha<br>min-max<br>(l) | (days)<br>(m) |
| Sugar beet<br>( <i>Beta vulgaris</i><br>subsp. vulgaris<br>var. altissima)<br>(BEAVA) | N, C<br>and S<br>EU              | Clethodim<br>120 EC<br>(H1231bc) | F  | Annuals<br>grasses   | EC    | 120                 | Spraying /<br>Overall                  | BBCH<br>12-33 | 1                             | N/A                     | 0.03-<br>0.06                                   | 200-400                          | 0.12                                            | BBCH33                          |                                                                          |                              |               |
| Sugar beet<br>( <i>Beta vulgaris</i><br>subsp. vulgaris<br>var. altissima)<br>(BEAVA) | N, C<br>and S<br>EU              | Clethodim<br>120 EC<br>(H1231bc) | F  | Perennial<br>grasses | EC    | 120                 | Spraying /<br>Overall                  | BBCH<br>12-33 | 1                             | N/A                     | 0.075-<br>0.15                                  | 200-400                          | 0.3                                             | BBCH33                          |                                                                          |                              |               |
| Onions ( <i>Allium cepa</i> ) (ALLCE)                                                 | N, C<br>and S<br>EU              | Clethodim<br>120 EC<br>(H1231bc) | F  | Annuals<br>grasses   | EC    | 120                 | Spraying /<br>Overall                  | BBCH<br>12-19 | 1                             | N/A                     | 0.03-<br>0.06                                   | 200-400                          | 0.12                                            | BBCH19                          |                                                                          |                              |               |
| Onions ( <i>Allium cepa</i> ) (ALLCE)                                                 | N, C<br>and S<br>EU              | Clethodim<br>120 EC<br>(H1231bc) | F  | Perennial<br>grasses | EC    | 120                 | Spraying /<br>Overall                  | BBCH<br>12-19 | 1                             | N/A                     | 0.06-<br>0.12                                   | 200-400                          | 0.24                                            | BBCH19                          |                                                                          |                              |               |
| Garlic ( <i>Allium</i><br>sativum)<br>(ALLSA)                                         | N, C<br>and S<br>EU              | Clethodim<br>120 EC<br>(H1231bc) | F  | Annuals<br>grasses   | EC    | 120                 | Spraying /<br>Overall                  | BBCH<br>12-19 | 1                             | N/A                     | 0.03-<br>0.06                                   | 200-400                          | 0.12                                            | BBCH19                          |                                                                          |                              |               |
| Garlic (Allium<br>sativum)<br>(ALLSA)                                                 | N, C<br>and S<br>EU              | Clethodim<br>120 EC<br>(H1231bc) | F  | Perennial<br>grasses | EC    | 120                 | Spraying /<br>Overall                  | BBCH<br>12-19 | 1                             | N/A                     | 0.06-<br>0.12                                   | 200-400                          | 0.24                                            | BBCH19                          |                                                                          |                              |               |
| Sugar beet<br>( <i>Beta vulgaris</i><br>subsp. vulgaris<br>var. altissima)<br>(BEAVA  | N, C<br>and S<br>EU              | Clethodim<br>120 EC<br>(H1231bc) | F  | Annuals<br>grasses   | EC    | 120                 | Spraying /<br>Overall                  | BBCH<br>12-33 | 1<br>ever<br>y 3<br>year<br>s | N/A                     | 0.03-<br>0.06                                   | 200-400                          | 0.12<br>(every 3<br>years)                      | BBCH33                          | triennial<br>application<br>(one<br>application<br>every three<br>years) |                              |               |

| Crop                      | Member      | Product            | F      | Pests or         | Prepa    | ration   | Application |                                                                                                    |      |           | Application | on rate per tre | atment     | PHI          | Remarks               |
|---------------------------|-------------|--------------------|--------|------------------|----------|----------|-------------|----------------------------------------------------------------------------------------------------|------|-----------|-------------|-----------------|------------|--------------|-----------------------|
| and/or                    | State       | name               | G      | Group of         | Type     | Conc     | method      | Range of                                                                                           | Num  | Interval  | kg a.s      | Water           | kg a.s./ha | (days)       |                       |
| situation                 | or          |                    | or     | pests            | (d-f)    | a.s.     | kind        | growth                                                                                             | ber  | between   | /hL         | L/ha            | min-max    | ( <b>m</b> ) |                       |
| (a)                       | Country     |                    | I      | controlled       |          | g/L      | (f-h)       | stages                                                                                             | min- | applicati | min-max     | min-max         | (1)        |              |                       |
|                           |             |                    | (b)    | ( <b>c</b> )     |          | (i)      |             | & season                                                                                           | max  | on        | (1)         |                 |            |              |                       |
|                           |             |                    |        |                  |          |          |             | (j)                                                                                                | (k)  | (min)     |             |                 |            |              |                       |
| Sugar beet                | N, C        | Clethodim          | F      | Perennial        | EC       | 120      | Spraying /  | BBCH                                                                                               | 1    | N/A       | 0.075-      | 200-400         | 0.3        | BBCH33       | triennial             |
| (Beta vulgaris            | and S       | 120 EC             |        | grasses          |          |          | Overall     | 12-33                                                                                              | ever |           | 0.15        |                 | (every 3   |              | application           |
| subsp. vulgaris           | EU          | (H1231bc)          |        |                  |          |          |             |                                                                                                    | у З  |           |             |                 | years)     |              | (one                  |
| var. altissima)<br>(BEAVA |             |                    |        |                  |          |          |             |                                                                                                    | year |           |             |                 |            |              | application           |
| (DEAVA                    |             |                    |        |                  |          |          |             |                                                                                                    | s    |           |             |                 |            |              | every three<br>years) |
| (a) For crops, the        | EU and Coo  | lex classification | ns (bo | th) should be    | taken in | to accou | int; where  | (i) g/kg or g/L. Normally the rate should be given for the active substance (according to ISO)     |      |           |             |                 |            |              |                       |
| relevant, the use s       |             |                    |        |                  |          |          | ,           | and not for the variant in order to compare the rate for same active substances used in            |      |           |             |                 |            |              |                       |
| (b) Outdoor or fie        |             |                    |        |                  |          |          |             | different variants (e.g. fluoroxypyr). In certain cases, where only one variant is synthesised, it |      |           |             |                 |            |              |                       |
| (c) e.g. biting and       |             |                    |        |                  |          |          |             | is more appropriate to give the rate for the variant (e.g. benthiavalicarb-isopropyl).             |      |           |             |                 |            |              |                       |
| (d) e.g. wettable p       |             |                    |        |                  |          |          |             | (j) Growth stage range from first to last treatment (BBCH Monograph, Growth Stages of              |      |           |             |                 |            |              |                       |
| (e) CropLife Inter        |             | chnical Monogr     | aph no | o 2, 6th Edition | n. Revis | ed May   | 2008.       | Plants, 1997, Blackwell, ISBN 3-8263-3152-4), including where relevant, information on             |      |           |             |                 |            |              |                       |
| Catalogue of pesti        |             |                    |        |                  |          |          |             | season at time of application                                                                      |      |           |             |                 |            |              |                       |
| (f) All abbreviatio       |             |                    |        |                  |          |          |             | (k) Indicate the minimum and maximum number of applications possible under practical               |      |           |             |                 |            |              | ractical              |
| (g) Method, e.g. h        |             |                    |        |                  |          |          |             | conditions of use                                                                                  |      |           |             |                 |            |              |                       |
|                           |             |                    |        |                  |          |          |             | (l) The values should be given in g or kg whatever gives the more manageable number (e.g.          |      |           |             |                 |            |              |                       |
| type of equipment         | t used must | be indicated       |        |                  |          |          |             | 200 kg/ha instead of 200 000 g/ha or 12.5 g/ha instead of 0.0125 kg/ha                             |      |           |             |                 |            |              |                       |
|                           |             |                    |        |                  |          |          |             | (m) PHI - minimum pre-harvest interval                                                             |      |           |             |                 |            |              |                       |

#### **1.5.2** Further information on representative uses

Clethodim 120 EC (H1231bc) will be applied in a volume of 200 - 400 L water/ha giving a maximum concentration range of 0.75 - 1.5 g a.s./L in the diluted spray solution when used at the maximum proposed application rate of 2.5 L/ha. The method of application is by field crop sprayer.

The maximum proposed application rate of Clethodim 120 EC (H1231bc) to control annual grass weeds is 1.0 L/ha, equivalent to 120 g a.s./ha, whereas for perennial grass weeds the maximum application rate is 2.5 L/ha, equivalent to 300 g a.s./ha.

Maximum number of applications and their timings:

- One application at BBCH 12-33 for sugar beet.
- One application at BBCH 12-19 for onions and garlic.

Duration of protection afforded by each application: Clethodim 120 EC (H1231bc) is a post-emergence graminicide for control of weeds present at time of application.

No minimum time restriction or special cultivation is necessary before drilling or sowing succeeding or replacement crops.

Instructions for use are provided on the product labels included in Vol 3 CP, section 3.

## **1.5.3** Details of other uses applied for to support the setting of MRLs for uses beyond the representative uses

Not applicable.

#### **1.5.4** Overview on authorisations in EU Member States

| Country        | Reg. No.              | Product tradename   | Crops                                  |
|----------------|-----------------------|---------------------|----------------------------------------|
| Austria        | -                     | -                   |                                        |
| Belgium        | 9334P/B               | Select Prim         |                                        |
| Bulgaria       | 0348-PPP-4/25.07.2018 | Select Super 120 EC |                                        |
| Croatia        | UP/I-320-20/01-01/266 | Select Super        |                                        |
| Cyprus         | 3552                  | CENTURION 12 EC     |                                        |
| Czech Republic | 4903-0                | Select Super        |                                        |
| Denmark        | -                     | -                   |                                        |
| Estonia        | 0592/10.02.16         | Centurion Plus      | A range of broad-                      |
| Finland        | 3231                  | Select Plus         | leaved field crops                     |
| France         | 9900115               | Centurion R         | including sugar beet,                  |
| Germany        | -                     | -                   | onions, potatoes,<br>oilseed rape, dry |
| Greece         | 70276                 | SELECT 12 EC        | peas, carrot and                       |
| Hungary        | 04.2/3077-2/2018      | Select Super        | sunflower                              |
| Ireland        | PCS04948              | Centurion Max       | sunnower                               |
| Italy          | 15868                 | Centurion Pro       |                                        |
| Latvia         | 0509                  | Centurion Plus      |                                        |
| Lithuania      | AS2-22H/2015          | Centurion Plus      |                                        |
| Luxemburg      | L01898-071            | Select Prim         |                                        |
| Netherlands    | 14300                 | Centurion Plus      |                                        |
| Poland         | R-75/2013             | Select Super 120 EC |                                        |

| Country  | Reg. No.   | Product tradename | Crops |
|----------|------------|-------------------|-------|
| Portugal | 00911      | Centurion Pro     |       |
| Romania  | 1817       | Select Super      |       |
| Slovakia | 14-11-1419 | Centurion Plus    |       |
| Slovenia | -          | -                 |       |
| Spain    | 22.225     | Centurion Plus    |       |
| Sweden   | 5293       | Select Plus       |       |
| UK       | MAPP 17911 | Centurion Max     |       |

## LEVEL 2

### 2 SUMMARY OF ACTIVE SUBSTANCE HAZARD AND OF PRODUCT RISK ASSESSMENT

#### Summary of methodology proposed by the applicant for literature review, for all sections

A literature search was conducted by the applicant in November 2017 and updated in May 2020. The time window for the search was 2010 – 2020. A total of 41 bibliographic databases were searched (i.e., 18 from STN Toxicology Database Cluster and 23 from Dialog, see complete list in Vol 3 CA, B.9.11.1.2.3). Further details on the methodology and outcome of the literature search are presented in the respective parts of Vol 3.

#### 2.1 **IDENTITY**

#### 2.1.1 Summary of identity

The identity of clethodim is summarized in Level 1, section 1.3 above.

The minimum content of the active substance in technical clethodim is 930 g/kg and remains the same as for the previous approval. There are proposals for revision of the reference specification for impurities, and there is a proposal to consider an impurity as a relevant impurity, which was previously considered a significant impurity. It should be noted that further information is required in order to assess the toxicological, ecotoxicological and environmental relevance of the impurities (please refer to Volume 4 for further information).

## **2.2** Physical and chemical properties [equivalent to section 7 of the CLH report template]

#### 2.2.1 Summary of physical and chemical properties of the active substance

| Property                                 | Value                                                                                               |                                |           | Reference      | Comment (e.g.<br>measured or<br>estimated) |                                 |
|------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------|-----------|----------------|--------------------------------------------|---------------------------------|
| Physical state at<br>20°C and 101,3 kPa  | Liquid. Amber Munsel<br>6/12                                                                        | l Colour Desi                  | gnation   | : 7.5 YR       | Ashworth, 1988                             | Visual                          |
|                                          | Liquid. Green/yellow M<br>2.5 GY 9/2                                                                | Munsell Colou                  | ır Desiş  | nation:        | Lezberg, 2003a                             |                                 |
| Melting/freezing point                   | - 80 °C                                                                                             |                                |           |                | Mak, 2003                                  | Measured                        |
| Boiling point                            | Decomposition starts a                                                                              | t 133°C at 10                  | 0.52 kP   | a              | Butler &<br>O'Connor, 2009                 | Measured                        |
| Vapour pressure                          | 2.68 x 10 <sup>-5</sup> Pa at 20°C<br>6.71 x 10 <sup>-5</sup> Pa at 25°C                            |                                |           |                | Wöhr, 2022                                 | Extrapolated from measured data |
| Surface tension                          | 49.9 mN/m at 20.1 °C                                                                                | (90 % saturate                 | ed solut  | ion)           | Gould, 2019                                | Measured                        |
| Water solubility                         | Potassium biphtalate bu<br>53.0 mg/L at 20 °C<br>Monopotassium phosph<br>5.45 g/L at 20 °C          | 1                              | pH 7:     |                | Li and Baldwin,<br>2003                    | Measured                        |
|                                          | pH adjusted to 10 using 30.0 g/L at 20 °C                                                           | g 1M NaOH:                     |           |                | Weissenfeld,<br>2006                       | Measured                        |
| Partition coefficient<br>n-octanol/water | 4.21 (estimated by the considered supportive l                                                      |                                | ogram     | _              | Beltran, 2005a                             | Estimated                       |
|                                          | Deionized water at pH<br>1.87 (at 19.2 °C) (cons<br>Potassium dihydrogen<br>0.394 (at 18.4 °C) (con | idered suppor<br>phosphate but | ffer at p | Н              | Skopec, 2014                               | Measured                        |
|                                          | At 20 °C:<br>3.3 (pH 5)<br>1.5 (pH 7)<br>0.908 (pH 9)                                               |                                |           |                | Sydney, 2021                               | Measured                        |
| Partition coefficient                    |                                                                                                     | Log Pow                        |           |                | Bendig and                                 | Measured                        |
| n-octanol/water for                      |                                                                                                     |                                | H 7       | pH 9           | Paschke, 2020                              |                                 |
| metabolites                              | Clethodim sulfoxide                                                                                 |                                | .4        | < 0.3          |                                            |                                 |
|                                          | Clethodim sulfone                                                                                   |                                | .0<br>.3  | < 0.3<br>< 0.3 | -                                          |                                 |

 Table 1: Summary of physicochemical properties of the active substance.

| Property                              | Value                                                        |                                         |                    |       | Reference                      | Comment (e.g.<br>measured or<br>estimated) |
|---------------------------------------|--------------------------------------------------------------|-----------------------------------------|--------------------|-------|--------------------------------|--------------------------------------------|
|                                       |                                                              |                                         |                    | < 0.3 |                                |                                            |
|                                       |                                                              |                                         |                    | < 0.3 | 1                              |                                            |
|                                       |                                                              | 2.6                                     | 0.9                | < 0.3 | 1                              |                                            |
|                                       |                                                              |                                         |                    | < 0.3 | -                              |                                            |
|                                       | Clethodim imine                                              | 2.8                                     | 2.8                | 2.8   | _                              |                                            |
|                                       | Clethodim oxazole                                            | 0.5                                     | 0.5                | 0.6   |                                |                                            |
|                                       | sulfoxide                                                    | 0.7                                     | 0.5                | 0.5   |                                |                                            |
|                                       | Clethodim oxazole                                            | 0.5                                     | 0.5                | 0.5   | -                              |                                            |
|                                       | sulfone<br>Clethodim imine                                   | 0.6                                     | 0.6                | 0.6   | -                              |                                            |
|                                       | sulfoxide                                                    | 0.5                                     | 0.5                | 0.4   |                                |                                            |
|                                       | M14R                                                         | < 0.3                                   | < 0.3              | < 0.3 |                                |                                            |
|                                       | WI14K                                                        | < 0.5                                   | < 0.5              | < 0.3 |                                |                                            |
|                                       | M17R                                                         | < 0.3                                   | < 0.3              | < 0.3 | _                              |                                            |
|                                       | M17R<br>M18R                                                 | < 0.3                                   | < 0.3              | < 0.3 | -                              |                                            |
|                                       | WITOK                                                        | < 0.5                                   | < 0.5              | < 0.3 | -                              |                                            |
|                                       | Clethodim imine                                              | 0.4                                     | 0.4                | 0.4   |                                |                                            |
|                                       | ketone                                                       | 0.4                                     | 0.4                | 0.4   |                                |                                            |
|                                       | CBA ((2-[3-                                                  | 2.2                                     | 2.1                | 0.5   | 1                              |                                            |
|                                       | chloroallyloxyimino]-                                        |                                         |                    |       |                                |                                            |
|                                       | butanoic acid))                                              |                                         | 1                  |       |                                |                                            |
|                                       | CAA (trans-3-                                                | 1.0                                     | < 0.3              | < 0.3 | ]                              |                                            |
|                                       | chloroacrylic acid)                                          |                                         |                    | < 0.3 |                                |                                            |
|                                       | trans-3-                                                     | 1.4                                     | 1.4                | 1.5   |                                |                                            |
|                                       | chloropropenal                                               |                                         |                    |       |                                |                                            |
|                                       | 3-chloroallyl alcohol                                        | 0.7                                     | 0.6                | 0.6   |                                |                                            |
| Henry's law constant                  | 1.8 x 10 <sup>-6</sup> Pa m <sup>3</sup> mol <sup>-1</sup> a | at 20°C ar                              | nd pH 7            |       | Green, 2022                    | Calculated                                 |
| Flash point                           | 108.5 °C                                                     |                                         |                    |       | Winkler, 2020                  | Measured                                   |
| Flammability                          | Not applicable (i.e liqu                                     |                                         |                    | ıre). |                                |                                            |
| Explosive properties                  | Mechanical Sensitivity                                       | : No explo                              | osion              |       | Franke, 2005                   | Measured and visual                        |
|                                       |                                                              |                                         |                    |       |                                |                                            |
|                                       | Thermal Sensitivity: No                                      |                                         |                    |       |                                |                                            |
| Self-ignition                         | Self-ignition temperatu                                      | re 280 °C                               |                    |       | Lezberg, 2003b                 | Measured                                   |
| temperature                           | Net estidiate a                                              |                                         |                    |       | and Mak, 2004<br>Kuchta, 2022b | Manageral                                  |
| Oxidising properties                  | Not oxidising                                                | im is a lie                             | mid                |       | Kuchta, 2022b                  | Measured                                   |
| Granulometry<br>Solubility in organic | Not applicable, clethod<br>Solubility at 25 °C (g/L          |                                         | luid.              |       | Ashworth, 1988                 | Measured                                   |
| solvents and identity                 | Solubility at 25 °C (g/L                                     | _),                                     |                    |       | Ashworth, 1988                 | Measured                                   |
| of relevant                           | Acetone:                                                     | >0                                      | 00                 |       | Baldwin, 2003                  |                                            |
| degradation products                  | Hexane:                                                      |                                         | 00                 |       | Dulu ( III, 2005               |                                            |
| 8                                     | Ethyl acetate:                                               |                                         | 00                 |       | Patel, 2019                    |                                            |
|                                       | Dimethyl formamide:                                          | >9                                      | 00                 |       |                                |                                            |
|                                       |                                                              |                                         |                    |       |                                |                                            |
|                                       | Methanol:                                                    |                                         | 00                 |       |                                |                                            |
|                                       | 1,2-Dichloroethane:                                          |                                         | 00                 |       |                                |                                            |
|                                       | Xylene:                                                      | >1                                      | 00 (93 %)          |       |                                |                                            |
|                                       | 4.00.100                                                     |                                         |                    |       |                                |                                            |
|                                       | At $20 \pm 1$ °C:                                            |                                         | 50 - /             |       |                                |                                            |
|                                       | Acetone:<br>Methanol:                                        |                                         | 250 g/L<br>250 g/L |       |                                |                                            |
|                                       | 1,2 dichloroethane:                                          |                                         | 250 g/L<br>250 g/L |       |                                |                                            |
|                                       | Ethyl acetate:                                               |                                         | 250 g/L<br>250 g/L |       |                                |                                            |
|                                       | n-Heptane:                                                   |                                         | 250 g/L            |       |                                |                                            |
|                                       | p-Xylene:                                                    |                                         | 250 g/L            |       |                                |                                            |
| Dissociation                          | $pKa = 4.47 \text{ at } 20 ^{\circ}\text{C}$                 |                                         | <u>U</u>           |       | Ashworth, 1988                 | Measured                                   |
| constant                              | Species formed followi                                       | ing dissoc                              | iation:            |       |                                |                                            |
|                                       | н                                                            | <sup>3C</sup>                           |                    |       |                                |                                            |
|                                       | l I                                                          |                                         | 0 .                | CI    |                                |                                            |
|                                       | CH3                                                          | ¥ N N N N N N N N N N N N N N N N N N N |                    |       |                                |                                            |
|                                       |                                                              | Ļ                                       |                    |       |                                |                                            |
|                                       | H <sub>3</sub> C S                                           | <u>`0</u> -                             |                    |       |                                |                                            |

| Property                                                                                               | Value                                                                                                                                    | Reference                                                                                                                  | Comment (e.g.<br>measured or<br>estimated) |
|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| Viscosity                                                                                              | Dynamic viscosity<br>689.4 mm <sup>2</sup> /s at 23.0 °C<br>127.9 mm <sup>2</sup> /s a 40 °C<br>Kinematic viscosity<br>768 cP at 21.5 °C | Skopec, 2014                                                                                                               | Measured                                   |
| Spectra (UV/VIS,<br>IR, NMR, MS),<br>molar extinction at<br>relevant<br>wavelengths, optical<br>purity | Spectral data consistent with the structure of clethodim.                                                                                | Möller, 2006<br>(UV/VIS)<br>Bondarenko,<br>2010 (UV/VIS)<br>Lezberg and<br>Mahabir 2003<br>(IR and NMR)<br>Reed, 2003 (MS) | Measured                                   |

### 2.2.1.1 Evaluation of physical hazards [equivalent to section 8 of the CLH report template]

### 2.2.1.1.1 Explosives

| Method                  | Results                                             | Remarks                                                            | Reference                     |
|-------------------------|-----------------------------------------------------|--------------------------------------------------------------------|-------------------------------|
| UN Test C.1             | No (pressure rise to 2070                           |                                                                    | Gledhill, 2022                |
| (time/pressure test)    | kPa not achieved)                                   |                                                                    | (GLP3016011271R1/2022)        |
| UN Test E.1             | No (no effect in all tests –                        | The test was scheduled for a QA audit,                             | Gledhill, 2022                |
| (Koenen tube test)      | limiting diameter < 1 mm)                           | which was overseen by an operator.                                 | (GLP3016011271R1/2022)        |
|                         |                                                     | The missed audit does not have any                                 |                               |
|                         |                                                     | impact on the test result but is a                                 |                               |
|                         |                                                     | deviation from GLP.                                                |                               |
| UN Test A.6 (UN         | No (average fragmentation                           | Not GLP since the report stated that                               | Gledhill, 2022                |
| detonation test)        | length less than 1.5 times                          | the test would be conducted in                                     | (GLP3016011271R1/2022)        |
|                         | the fragmentation time of a                         | compliance with Commission                                         |                               |
|                         | reference (water))                                  | Directive 2004/10/EC, and following                                |                               |
|                         |                                                     | Brexit this directive is no longer                                 |                               |
|                         |                                                     | applicable in the UK. This has no                                  |                               |
| <u> </u>                |                                                     | impact on the test result.                                         |                               |
| Structural argument     | Clethodim contains nitrogen                         |                                                                    |                               |
|                         | bonded to oxygen and                                |                                                                    |                               |
|                         | waiving testing based on the                        |                                                                    |                               |
| EEC A 2 (DCC            | structure is not possible.<br>Thermal decomposition | DSC mothed also and mother and in                                  | Employ 2006                   |
| EEC A.2 (DSC<br>Method) | onset at $\sim 110$ °C. Thermal                     | DSC methodology not performed in<br>accordance with recent WG APCP | Franke, 2006<br>(20050645.01) |
| Wiethou)                | decomposition energy 1078                           | discussions. Low test material purity                              | (20030043.01)                 |
|                         | J/g (measured with DSC)                             | (93 %).                                                            |                               |
| EEC A.14                | Mechanical Sensitivity:                             | DSC methodology not performed in                                   | Franke, 2005                  |
| OECD 113                | No explosion                                        | accordance with recent WG APCP                                     | (20050374.01)                 |
| OLCD III5               | rto explosion                                       | discussions (see below). The test                                  | (20030374.01)                 |
|                         | Thermal Sensitivity:                                | material purity is slightly below the                              |                               |
|                         | No explosion                                        | specification (92.4 %)                                             |                               |
|                         | The emproprise                                      | specification (s 211 /v)                                           |                               |
|                         | Thermal decomposition                               |                                                                    |                               |
|                         | energy:                                             |                                                                    |                               |
|                         | 1089 J/g (measured with                             |                                                                    |                               |
|                         | DSC)                                                |                                                                    |                               |
| EEC A.2 (DSC            | Thermal decomposition                               | DSC methodology not performed in                                   | Butler & O'Connor, 2009       |
| Method)                 | onset at 133±0.5°C at                               | accordance with recent WG APCP                                     | (2699/0001)                   |
|                         | 100.52 kPa. Thermal                                 | discussions.                                                       |                               |

Table 2: Summary table of studies on explosive properties.

| Method         | Results                  | Remarks                                | Reference |
|----------------|--------------------------|----------------------------------------|-----------|
|                | decomposition energy 315 |                                        |           |
|                | J/g.                     |                                        |           |
| Calculation of | -195.6                   | Too high for waiving of testing (above |           |
| oxygen balance |                          | -200).                                 |           |

## **2.2.1.1.1.1** Short summary and overall relevance of the provided information on explosive properties

Clethodim was tested for mechanical and thermal explosivity and determined not to be explosive in accordance with test method EEC A.14/OECD 113. No explosion was observed in the mechanical or thermal test; however, it should be noted that there was evolution of smoke without ignition during the mechanical test. This test is however not sufficient for harmonized classification purposes according to the CLP guidance.

Two methodologies based on DSC are available in the dossier that have been used in separate studies to investigate the thermal decomposition (directly or indirectly when testing for boiling point) of clethodim technical (performed in accordance with EEC A.2 – DSC Method). The onset of thermal decomposition was below 500 °C in both cases. In the older studies (20050374.01 and 20050645.01), thermal decomposition onset was found at 110 °C and the thermal decomposition energy per gram was determined to 1089 and 1078 J/g; however, a very wide section of the thermogram was used to determine the integral (~80 - 340°C). Furthermore, the test material in this study was of low purity (93 %), and a heating rate of 3 K/min and closed glass crucibles were used in the study, which is not in alignment of requirements agreed on in recent WG APCP discussions. In the newer study (2699/0001), thermal decomposition onset was found at 133 °C. The average thermal decomposition energy per gram of two DSC runs was 315 J/g. The test material was of higher purity (98.5 %), but the intent of the study was to determine the boiling point and not parameters of the exothermic degradation – perforated aluminium crucibles and a heating rate of 20 K/min was used. Thus, it has not been acceptably demonstrated that the exothermic degradation energy is below 500 J/g. Furthermore, clethodim contains an N-O bond and the oxygen balance is above -200.

UN tests C.1, E.1 and A.6 were performed since performing the test series for self-reactive properties could not be waived based on the SADT (see 2.2.1.1.7) for further information. These tests were all negative, indicating no explosive properties.

#### 2.2.1.1.1.2 Comparison with the CLP criteria

Test method EEC A.14 is not sufficient for classification purposes under the CLP Regulation. Clethodim contains an N-O bond, the oxygen balance is above -200 and it has not been demonstrated that the exothermic decomposition energy is below 500 J/g. In conclusion, none of the available waivers for not performing further testing to determine the explosive hazard in accordance with the CLP Regulation are met, and further testing needs to be carried out for explosive hazards.

UN tests C.1, E.1 and A.6 were submitted for testing the self-reactive properties of clethodim, and match the three tests in test series 2 of the UN MTC that should be used for classification purposes for explosive hazards in accordance with the decision tree in CLP annex I figure 2.1.2. The UN MTC specifies the UN gap test (A.5) and not the detonation test (A.6); however, section 2.8.3 (Relation to other physical hazards) of the CLP guidance states that "The explosive properties do not have to be determined according to the CLP Annex I, Chapter 2.1, because

explosive properties are incorporated in the decision logic for self-reactive substances and mixtures.". The test series/decision logic for self-reactive properties did not indicate any explosive properties for clethodim.

#### 2.2.1.1.1.3 Conclusion on classification and labelling for explosive properties

No classification is proposed. Data conclusive but not sufficient for classification.

#### 2.2.1.1.2 Flammable gases (including chemically instable gases)

| Fable 3: Summary table of studies on flammable gases (including chemically unstable gases). |  |  |  |  |  |
|---------------------------------------------------------------------------------------------|--|--|--|--|--|
| Method Results Remarks Reference                                                            |  |  |  |  |  |
| Not applicable, clethodim is not a liquid.                                                  |  |  |  |  |  |

## **2.2.1.1.2.1** Short summary and overall relevance of the provided information on flammable gases (including chemically unstable gases)

Not relevant.

#### 2.2.1.1.2.2 Comparison with the CLP criteria

Not relevant.

#### 2.2.1.1.2.3 Conclusion on classification and labelling for flammable gases

Hazard class not applicable.

#### 2.2.1.1.3 Oxidising gases

| Table 4: Summary table of studies on oxidising gases. |         |         |           |  |  |
|-------------------------------------------------------|---------|---------|-----------|--|--|
| Method                                                | Results | Remarks | Reference |  |  |
| Not applicable, clethodim is not a ga                 | s.      |         |           |  |  |

#### 2.2.1.1.3.1 Short summary and overall relevance of the provided information on oxidising gases

Not relevant.

#### 2.2.1.1.3.2 Comparison with the CLP criteria

Not relevant.

#### 2.2.1.1.3.3 Conclusion on classification and labelling for oxidising gases

Hazard class not applicable.

#### 2.2.1.1.4 Gases under pressure

| Table 5: Summary table of studies on gases under pressure. |         |         |           |  |  |
|------------------------------------------------------------|---------|---------|-----------|--|--|
| Method                                                     | Results | Remarks | Reference |  |  |
| Not applicable, clethodim is not a gas.                    |         |         |           |  |  |

### 2.2.1.1.4.1 Short summary and overall relevance of the provided information on gases under pressure

Not relevant.

#### 2.2.1.1.4.2 Comparison with the CLP criteria

Not relevant.

#### 2.2.1.1.4.3 Conclusion on classification and labelling for gases under pressure

Hazard class not applicable.

#### 2.2.1.1.5 Flammable liquids

#### Table 6: Summary table of studies on flammable liquids.

| Method        | Results  | Remarks                           | Reference      |
|---------------|----------|-----------------------------------|----------------|
| EC Method A.9 | 108.5 °C | Flash point $> 60 ^{\circ}$ C and | Winkler, 2020  |
|               |          | explosive vapour/air              | (PS20190380-1) |
|               |          | mixture not possible.             |                |

## 2.2.1.1.5.1 Short summary and overall relevance of the provided information on flammable liquids

The flash point of clethodim was determined to be 108.5 °C under atmospheric conditions. The provided information is of relevance for classification purposes.

#### 2.2.1.1.5.2 Comparison with the CLP criteria

The flash point is > 60 °C, which is adequate to conclude on the classification in accordance with the CLP criteria.

#### 2.2.1.1.5.3 Conclusion on classification and labelling for flammable liquids

No classification is proposed. Data conclusive but not sufficient for classification.

#### 2.2.1.1.6 Flammable solids

#### Table 7: Summary table of studies on flammable solids.

| Method                                | Results                                          | Remarks | Reference |  |  |
|---------------------------------------|--------------------------------------------------|---------|-----------|--|--|
| Hazard not applicable, clethodim is r | Hazard not applicable, clethodim is not a solid. |         |           |  |  |

#### 2.2.1.1.6.1 Short summary and overall relevance of the provided information on flammable solids

Not relevant.

#### 2.2.1.1.6.2 Comparison with the CLP criteria

Not relevant.

#### 2.2.1.1.6.3 Conclusion on classification and labelling for flammable solids

Hazard class not applicable.

#### 2.2.1.1.7 Self-reactive substances

Table 8: Summary table of studies on self-reactivity.

| Method      | Results                             | Remarks                  | Reference              |
|-------------|-------------------------------------|--------------------------|------------------------|
| UN Test H.4 | The SADT is $\leq$ 75°C for a 50 kg | The study was considered | Arif, 2022             |
|             | package.                            | acceptable.              | (GLP3016010712R1/2022) |
| UN Test A.6 | Does not propagate a detonation.    | Non-GLP                  | Gledhill, 2022         |
|             |                                     |                          | (GLP3016011271R1/2022) |
| UN Test C.1 | Does not propagate a deflagration   |                          | Gledhill, 2022         |
|             |                                     |                          | (GLP3016011271R1/2022) |
| UN Test C.2 | Does not propagate a deflagration   |                          | Gledhill, 2022         |
|             |                                     |                          | (GLP3016011271R1/2022) |
| UN Test E.2 | No effect of heating under defined  |                          | Gledhill, 2022         |
|             | confinement.                        |                          | (GLP3016011271R1/2022) |
| UN Test E.1 | No effect of heating under defined  | Non-GLP                  | Gledhill, 2022         |
|             | confinement.                        |                          | (GLP3016011271R1/2022) |
| UN Test F.4 | Explosive power is none             | Non-GLP                  | Gledhill, 2022         |
|             |                                     |                          | (GLP3016011271R1/2022) |
| UN Test H.2 | SADT for a 50 kg package is 65 °C   |                          | Gledhill, 2022         |
|             |                                     |                          | (GLP3016011271R1/2022) |

## 2.2.1.1.7.1 Short summary and overall relevance of the provided information on self-reactive substances

The self-accelerating decomposition temperature (SADT) was shown to be equal to or below 75°C, and thus classification as a self-reactive substance cannot be excluded. Therefore, the series of tests (UN tests A.6, C.1, C.2, E.2, E.1, F.4 and H.2) required for self-reactive properties in accordance with the CLP regulation was performed. The test series concluded that clethodim does not detonate in the cavitated state or deflagrates and shows on effect when heated under confinement nor any explosive power and that the SADT is between 60 °C to 75 °C. Clethodim is not mixed with any diluents (see CLP criteria below).

#### 2.2.1.1.7.2 Comparison with the CLP criteria

Annex I: 2.8.2.3 of the CLP regulation states that any self-reactive substance or mixture which, in laboratory testing, neither detonates in the cavitated state nor deflagrates at all and shows no effect when heated under confinement nor any explosive power, provided that it is thermally stable (SADT is 60 °C to 75 °C for a 50 kg package), and, for liquid mixtures, a diluent having a boiling point not less than 150 °C is used for desensitisation shall be defined as self-reactive substance TYPE G.

#### 2.2.1.1.7.3 Conclusion on classification and labelling for self-reactive substances

Harmonized classification proposed (Self-Reactive Type G).

#### 2.2.1.1.8 Pyrophoric liquids

 Method
 Results
 Remarks
 Reference

 Experience in manufacture and handling shows that clethodim does not ignite spontaneously when coming into contact with air at normal temperatures.
 Image: Comparison of Comparison

## **2.2.1.1.8.1** Short summary and overall relevance of the provided information on pyrophoric liquids

The information is of relevance for classification purposes.

#### 2.2.1.1.8.2 Comparison with the CLP criteria

The provided information is sufficient to conclude on the classification in accordance with Annex I: 2.9.4 of the CLP regulation.

#### 2.2.1.1.8.3 Conclusion on classification and labelling for pyrophoric liquids

No classification is proposed. Data (experience in handling) conclusive but not sufficient for classification.

#### 2.2.1.1.9 Pyrophoric solids

| Table 10: Summary table of studies on pyrophoric solids. |         |         |           |  |  |
|----------------------------------------------------------|---------|---------|-----------|--|--|
| Method                                                   | Results | Remarks | Reference |  |  |
| Hazard not applicable, clethodim is not a solid.         |         |         |           |  |  |

#### 2.2.1.1.9.1 Short summary and overall relevance of the provided information on pyrophoric solids

Not relevant.

#### 2.2.1.1.9.2 Comparison with the CLP criteria

Not relevant.

#### 2.2.1.1.9.3 Conclusion on classification and labelling for pyrophoric solids

Hazard class not applicable.

#### 2.2.1.1.10 Self-heating substances

| Table 11: Summary table of studies on self-heating substances.                            |  |  |  |  |  |
|-------------------------------------------------------------------------------------------|--|--|--|--|--|
| Method Results Remarks Reference                                                          |  |  |  |  |  |
| Clethodim is a liquid. In general, the phenomenon of self-heating applies only to solids. |  |  |  |  |  |

## 2.2.1.1.10.1 Short summary and overall relevance of the provided information on self-heating substances

The information is of relevance for classification purposes – no further testing should be required for liquids.

#### 2.2.1.1.10.2 Comparison with the CLP criteria

The Guidance on the Application of the CLP Criteria (ver. 5) states that the phenomenon of self-heating in general only applies to solids since the surface of liquids is not large enough for reaction with air.

#### 2.2.1.1.10.3 Conclusion on classification and labelling for self-heating substances

No classification is proposed. Data is conclusive but not sufficient for classification.

#### 2.2.1.1.11 Substances which in contact with water emit flammable gases

Table 12: Summary table of studies on substances which in contact with water emit flammable gases.MethodResultsRemarksReferenceClethodim does contain metals or metalloids, does not react with water and forms a stable mixture with water.

## **2.2.1.1.11.1** Short summary and overall relevance of the provided information on substances which in contact with water emit flammable gases

The waiver is of relevance for classification.

#### 2.2.1.1.11.2 Comparison with the CLP criteria

The waiver is acceptable in accordance with Annex I: 2.12.4.1 of the CLP regulation.

## **2.2.1.1.11.3** Conclusion on classification and labelling for substances which in contact with water emit flammable gases

No classification proposed. Data conclusive but not sufficient for classification.

#### 2.2.1.1.12 Oxidising liquids

| Method         | Results                           | Remarks           | Reference        |
|----------------|-----------------------------------|-------------------|------------------|
| EC Method A.21 | The mean pressure rise time for a | The study is      | Kuchta, 2022b    |
| UN Test O.2    | clethodim/cellulose mixture was   | acceptable and    | (CSL-21-1644.01) |
|                | higher than that of the reference | demonstrates that |                  |
|                | mixture.                          | clethodim is not  |                  |
|                |                                   | oxidising.        |                  |

#### Table 13: Summary table of studies on oxidising liquids.

#### 2.2.1.1.12.1 Short summary and overall relevance of the provided information on oxidising liquids

In the test, the pressure reached 2070 kPa from 670 kPa within 60 seconds in only 2 of the 5 tests and the time taken was significantly longer than for the reference item (35.85 seconds and 16.52 seconds compared to a mean time of 2.27 seconds for the reference item). This study is of relevance for classification purposes and demonstrates that clethodim is not oxidising.

#### 2.2.1.1.12.2 Comparison with the CLP criteria

The used test method in the study by Kuchta (2022b) is the method prescribed by the CLP regulation (UN Test O.2).

#### 2.2.1.1.12.3 Conclusion on classification and labelling for oxidising liquids

No classification is proposed. Data is conclusive but not sufficient for classification.

#### 2.2.1.1.13 Oxidising solids

| Table 14: Summary table of studies on oxidising solids. |         |         |           |  |  |  |
|---------------------------------------------------------|---------|---------|-----------|--|--|--|
| Method                                                  | Results | Remarks | Reference |  |  |  |
| Hazard not applicable, clethodim is not a solid.        |         |         |           |  |  |  |

#### 2.2.1.1.13.1 Short summary and overall relevance of the provided information on oxidising solids

Not relevant.

#### 2.2.1.1.13.2 Comparison with the CLP criteria

Not relevant.

#### 2.2.1.1.13.3 Conclusion on classification and labelling for oxidising solids

Hazard class not applicable.

#### 2.2.1.1.14 Organic peroxides

#### Table 15: Summary table of studies on organic peroxides.

| Method                                                                                                                | Results | Remarks | Reference |  |
|-----------------------------------------------------------------------------------------------------------------------|---------|---------|-----------|--|
| Hazard class not applicable – clethodim does not contain the bivalent -O-O- structure and is not an organic peroxide. |         |         |           |  |

#### 2.2.1.1.14.1 Short summary and overall relevance of the provided information on organic peroxides

Not relevant.

#### 2.2.1.1.14.2 Comparison with the CLP criteria

Not relevant.

#### 2.2.1.1.14.3 Conclusion on classification and labelling for organic peroxides

Hazard class not applicable.

#### 2.2.1.1.15 Corrosive to metals

| Table 16: Summary table of studies on the hazard class corrosive to metals. |         |         |  |
|-----------------------------------------------------------------------------|---------|---------|--|
| Method                                                                      | Results | Remarks |  |
|                                                                             |         |         |  |

|                                                                           | Reference |
|---------------------------------------------------------------------------|-----------|
| y is acceptable and<br>es that clethodim should<br>onsidered corrosive to | ,         |
|                                                                           |           |

#### 2.2.1.1.15.1 Short summary and overall relevance of the provided information on the hazard class corrosive to metals

No weight loss of steel or aluminium plates above 13.5% was observed in the test. No localized corrosive resulting in an intrusion greater than 120 µm was observed. The study is of relevance for the classification and demonstrates that clethodim should not be considered corrosive to metals.

#### 2.2.1.1.15.2 Comparison with the CLP criteria

The test method is the prescribed test method for this hazard class in accordance with the Guidance on the Application of the CLP Criteria (ver. 5).

#### 2.2.1.1.15.3 Conclusion on classification and labelling for corrosive to metals

No classification is proposed. Data is conclusive but not sufficient for classification.

#### 2.2.2 Summary of physical and chemical properties of the plant protection product

Clethodim 120 EC is an emulsifiable concentrate (EC) formulation containing 120 g/L clethodim. The appearance of the product is that of a clear brown or golden orange homogeneous free flowing liquid of low viscosity. It is not explosive, has no oxidising properties and is not highly flammable. It has a self-ignition temperature of 275°C. The relative density is 0.9247. A 1% aqueous dilution has a pH of 4.1. The stability data indicate a shelf-life of at least 18 months at ambient temperature. The product has acceptable foaming and emulsion characteristics.

#### 2.3 DATA ON APPLICATION AND EFFICACY

#### 2.3.1 Summary of effectiveness

No data available and not required.

#### 2.3.2 Summary of information on the development of resistance

Resistance among populations of ALOMY, APESV and LOLSS have recently been reported in Europe.

There is known to be cross-resistance between cyclohexanediones (CHDs, including clethodim) and aryloxyphenoxy propionates (APPs), which possess the same mode of action through ACCase enzyme target site, as well as a more general cross-resistance to other modes of action through enhanced metabolism. Clethodim poses the lowest resistance risk of all the ACCase inhibitors due to the small number of target site mutations that confer resistance to this active substance.

The overall risk of resistance when using an Integrated Pest Management strategy is **Low** (0.125-2.25), and therefore acceptable, for all grass weed targets.

If relying on only one herbicide mode of action, there is a moderate to very high risk of resistance arising (3-9), which is unacceptable. Relying only on different modes of action is estimated to result in a low to moderate risk (1.5-4.5), which is not acceptable for the medium to high risk target weeds.

Standardised statements relating to resistance risks and best practice management strategies are included on product labels. More details on the development of resistance are given in Vol 3 CA, Section B.3.7.

#### 2.3.3 Summary of adverse effects on treated crops

No data available.

#### 2.3.4 Summary of observations on other undesirable or unintended side-effects

No data available.

#### 2.4 FURTHER INFORMATION

#### 2.4.1 Summary of methods and precautions concerning handling, storage, transport or fire

Ensure good ventilation of the workstation to prevent formation of vapour and avoid breathing dust/vapours/ spray. Avoid contact with skin and eyes. Wear personal protective equipment and do not eat, drink or smoke when using this product.

Keep container closed when not in use, and store in a cool, well-ventilated place away from sources of ignition, including direct sunlight. Transport measures are not regulated.

In case of fire, do not use a heavy water stream; use foam, dry powder, carbon dioxide, water spray or sand. Toxic fumes may be released, complete protective equipment is needed.

#### 2.4.2 Summary of procedures for destruction or decontamination

Dispose of product packaging or contents in a safe manner in accordance with local/national regulations. Soak up spills with inert solids, such as clay or diatomaceous earth as soon as possible. Collect spillage. Store away from other materials.

#### 2.4.3 Summary of emergency measures in case of an accident

Ventilate spillage area. Evacuate unnecessary personnel. Avoid contact with skin and eyes. Avoid breathing dust/fume/gas/mist/vapours/spray.

Prevent entry to sewers and public waters. Notify authorities if liquid enters sewers or public waters. Avoid release into the environment.

#### 2.5 METHODS OF ANALYSIS

#### 2.5.1 Methods used for the generation of pre-authorisation data

#### Table 2.5.1-1. Summary of analytical methods for technical active substance.

| Matrix         | Analyte       | Type of method | Validation                                                                                                                                                                                            | References                                                                                      |
|----------------|---------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Technical a.s. | Clethodim     | HPLC-UV        | The analytical procedure<br>has been successfully<br>validated in terms of<br>specificity, linearity,<br>accuracy and precision in<br>accordance with the<br>requirements of<br>SANCO/3030/99 rev. 5. | Desai, H (2019a, b)<br>and Desai, H<br>(2020a, b)<br>(228-2-12-23783<br>and 227-2-12-<br>23329) |
|                | Impurities a) |                |                                                                                                                                                                                                       |                                                                                                 |

a) Details are reported in Volume 4 confidential part.

#### Table 2.5.1-2. Summary of analytical methods for formulation analysis.

| Matrix   | Analyte   | Type of method             | Validation                                                                                                                                                         | References                             |
|----------|-----------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| TM 20015 | Clethodim | HPLC-UV                    | See below                                                                                                                                                          | Walker, A F<br>(2015)                  |
|          |           |                            |                                                                                                                                                                    | (TM150171)                             |
| H1231bc  | Clethodim | HPLC-UV and HPLC-<br>MS/MS | See below                                                                                                                                                          | Heermann, A<br>(2017)<br>(S16-07105)   |
| TM-20011 | Clethodim | HPLC-UV                    | See below                                                                                                                                                          | (A30453)                               |
| H1231bc  | Toluene   | GC-FID                     | The method has been<br>validated in accordance<br>with SANCO $3030/99$ rev.<br>5. Note that recoveries are<br>only measured at $n = 3$ per<br>fortification level. | Nikoloska, I.<br>(2020)<br>(GRL-13758) |

Table 2.5.1-3. Summary of analytical methods used for data generation in toxicology studies, ecotoxicology studies, e-fate studies, residue studies and phys-chem. studies in Volume 3, B.5 (CA).

| Matrix                                                                                                       | Analyte                   | Type of method           | Validation                  | References |  |
|--------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------|-----------------------------|------------|--|
| A large number of analytical methods were used in toxicology studies, ecotoxicology studies, e-fate studies, |                           |                          |                             |            |  |
| residue studies and                                                                                          | d phys.chem. studies. Ple | ase refer to Volume 3 B. | 5 (CA) for further informat | tion.      |  |

### Table 2.5.1-4. Summary of analytical methods used for data generation in toxicology studies, ecotoxicology studies, e-fate studies, residue studies and phys-chem. studies in Volume 3, B.5 (CP).

| Matrix         | Analyte   | Type of method | Validation               | References        |
|----------------|-----------|----------------|--------------------------|-------------------|
| Reconstituted  | Clethodim | HPLC-UV        | Acceptable despite minor | Vinken, R. and    |
| water          |           |                | deviations (see Volume 3 | Wydra, V.         |
|                |           |                | B.5 (CP))                | 2006b (30703220)  |
| 20X AAP growth | Clethodim | HPLC-UV        | Acceptable despite minor | Vinken, R. and    |
| medium         |           |                | deviations (see Volume 3 | Wydra, V.         |
|                |           |                | B.5 (CP))                | 2006c (30702210)  |
| 20X AAP growth | Clethodim | HPLC-UV        | Acceptable despite minor | Vinken, R. and    |
| medium         |           |                | deviations (see Volume 3 | Wydra, V.         |
|                |           |                | B.5 (CP))                | 2007 (35071240)   |
| 20X AAP growth | Clethodim | HPLC-UV        | Acceptable despite minor | Kuhl R. and Wydra |
| medium         |           |                | deviations (see Volume 3 | V., 2011          |
|                |           |                | B.5 (CP))                | (62161221)        |

### 2.5.2 Methods for post control and monitoring purposes

| Matrix / crop group                                                                        | Analyte                                                 | LOQ           | Residue limit                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Food of plant origin:<br>High water content<br>commodities                                 | clethodim, clethodim sulfoxide<br>and clethodim sulfone | 0.005 mg/kg   | Calculated MRL is 0.03 mg/kg for the sum of clethodim, clethodim sulfoxide and clethodim sulfone. Method suitable.                                                                            |
| Food of plant origin:<br>High acid content<br>commodities                                  | clethodim, clethodim sulfoxide<br>and clethodim sulfone | 0.005 mg/kg   | No new MRL proposal<br>Method considered suitable for analytes<br>in the proposed residue definition                                                                                          |
| Food of plant origin:<br>High starch content<br>commodities                                | clethodim, clethodim sulfoxide<br>and clethodim sulfone | 0.005 mg/kg   | Calculated MRL is 0.015* mg/kg for the sum of clethodim, clethodim sulfoxide and clethodim sulfone. Method suitable.                                                                          |
| Food of plant origin:<br>Dry commodities                                                   | clethodim, clethodim sulfoxide<br>and clethodim sulfone | 0.005 mg/kg   | No new MRL proposal<br>Method considered suitable for analytes<br>in the proposed residue definition                                                                                          |
| Food of plant origin:<br>High oil content<br>commodities                                   | clethodim, clethodim sulfoxide<br>and clethodim sulfone | 0.005 mg/kg   | No new MRL proposal<br>Method considered suitable for analytes<br>in the proposed residue definition                                                                                          |
| Food of animal origin<br>bovine whole milk, poultry<br>eggs, bovine meat, liver and<br>fat | clethodim, clethodim sulfoxide<br>and clethodim sulfone | 0.01 mg/kg    | Calculated MRL is 0.03 mg/kg, LOQ for<br>the sum of clethodim, clethodim<br>sulfoxide and clethodim sulfone.<br>Method considered suitable for analytes<br>in the proposed residue definition |
| Soil                                                                                       | clethodim                                               | 0.005 mg/kg   | NOEC 47.6 mg a.s./kg soil dw                                                                                                                                                                  |
| Drinking water                                                                             | clethodim                                               | 0.1 µg/L      | 0.1 µg/L EU drinking water limit                                                                                                                                                              |
| Surface water                                                                              | clethodim                                               | 0.1 µg/L      | $E_rC_{50} = 0.0190 \text{ mg a.s./L}$ (twa)                                                                                                                                                  |
| Surface water                                                                              | clethodim imine and clethodim imine sulfoxide           | 0.051 µg/L    | C. imine: NOEC = $10 \text{ mg/L}$<br>C. imine sulfoxide: $E_yC_{50} = 32.1 \text{ mg/L}$                                                                                                     |
| Air                                                                                        | clethodim                                               | $1 \mu g/m^3$ | 60 µg/m <sup>3</sup> *                                                                                                                                                                        |
| Body fluids and tissues                                                                    | clethodim                                               | 0.05 mg/L     | -                                                                                                                                                                                             |

\*Calculated from the systemic ADI in accordance with SANCO/825/00 rev. 8.1.

#### Table 2.5.2-2. Overview of accepted residue analytical methods.

| Matrix / crop group                                                                                           | Primary method                                            | Analyte                                                          | Confirmatory<br>method                                       | Independent Lab<br>Validation (if appropriate)                                                     |
|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Food of plant origin:<br>High water crops (sugarbeet<br>roots and leaves, soybeans<br>and proteagineous peas) | CA 4.2/01Tribolet, R<br>(2005a)<br>LC-MS/MS               | clethodim,<br>clethodim<br>sulfoxide and<br>clethodim<br>sulfone | CA 4.2/01<br>Tribolet, R<br>(2005a)<br>LC-MS/MS              | Mende, P. (2006)<br>CA 4.2/02<br>Holzer, S (2012)<br>CA 4.2/03<br>Wiesner, F., Breyer, N<br>(2014) |
| Food of plant origin:<br>High oil crops and high water<br>crops (oilseed rape and sugar<br>beet leaves)       | CA 4.2/05<br>Wiesner, F., Breyer, N<br>(2016)<br>LC-MS/MS | clethodim<br>sulfone                                             | CA 4.2/05<br>Wiesner, F.,<br>Breyer, N<br>(2016)<br>LC-MS/MS | CA 4.2/04                                                                                          |
| Food of animal origin                                                                                         | CA 4.2/06<br>Lindner, M. Giesau, A.<br>(2013)<br>LC-MS/MS | clethodim,<br>clethodim<br>sulfoxide and<br>clethodim<br>sulfone | CA 4.2/06<br>Lindner, M.<br>Giesau, A.<br>(2013)<br>LC-MS/MS | Mewis, A. (2013)<br>CA 4.2/07                                                                      |
| Soil                                                                                                          | CA 4.2/08<br>Stahl, F (2019)<br>LC-MS/MS                  | clethodim                                                        | CA 4.2/08<br>Stahl, F (2019)<br>LC-MS/MS                     |                                                                                                    |
| Drinking water                                                                                                | (LC-MS/MS)                                                | Clethodim*                                                       |                                                              | Garrigue, P (2020)<br>CA 4.2/10                                                                    |
| Surface water                                                                                                 | CA 4.2/09<br>Stahl, F (2019)<br>LC-MS/MS                  | clethodim                                                        | CA 4.2/09<br>Stahl, F (2019)<br>LC-MS/MS                     | Garrigue, P (2020)<br>CA 4.2/10                                                                    |

| Matrix / crop group     | Primary method                               | Analyte                                                   | Confirmatory method                             | Independent Lab<br>Validation (if appropriate) |
|-------------------------|----------------------------------------------|-----------------------------------------------------------|-------------------------------------------------|------------------------------------------------|
| Surface water           | CA 4.2/11<br>Stahl, F (2019)<br>LC-MS/MS     | clethodim<br>imine and<br>clethodim<br>imine<br>sulfoxide | CA 4.2/11<br>Stahl, F (2019)<br>LC-MS/MS        |                                                |
| Air                     | CA 4.2/12<br>Garrigue, P. (2019)<br>LC-MS/MS | Clethodim                                                 | CA 4.2/12<br>Garrigue, P.<br>(2019)<br>LC-MS/MS |                                                |
| Body fluids and tissues | CA 4.2/13<br>Carle, F. (2019)<br>LC-MS/MS    | clethodim                                                 | CA 4.2/13<br>Carle, F. (2019)<br>LC-MS/MS       |                                                |

\* The method for groundwater monitoring is only validated for parent, but metabolites clethodim sulfone and clethodim oxazole sulfone are tentatively included in the residue definition for monitoring in groundwater pending submission of further data on the relevance assessment of these metabolites.

#### 2.5.3 Extraction efficiency

The extraction efficiency study S19-00144 (Wiesner, Xu, 2020) is evaluated in Vol.3, B.5.2.1 in accordance with the current guideline SANTE 2017/10632 rev. 3 and was therefore scientifically valid with respect to Commission Regulation (EU) No 283/2013.

The extraction efficiency of the residue analytical methods Holzer, 2012 and Lindner/Giesau, 2012 is considered as being sufficiently proven for high-water content commodities as the residue levels for the sum of all analytes of the residue definitions for monitoring and risk assessment differs by no more than 30% (for residues >0.01 mg/kg) compared to the results obtained with the solvent of the metabolism study. The high-water content commodity group is applicable to the crops under consideration (sugar beet roots and tops with leaves and onion bulb).

#### 2.6 EFFECTS ON HUMAN AND ANIMAL HEALTH

More detailed results of the studies are presented in Volume 3, section B.6.

## 2.6.1 Summary of absorption, distribution, metabolism and excretion in mammals [equivalent to section 9 of the CLH report template]

Information from two reports on the metabolism of clethodim have been provided to support the application for the renewal of the regulatory approval of clethodim.

| Method                                              | Results                                                                              | Remarks                   | Reference           |
|-----------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------|---------------------|
| <i>In vivo</i> metabolism in rats.                  | Clethodim appears to be rapidly absorbed                                             | -                         | and                 |
|                                                     | with no change in distribution of clethodim                                          |                           | 1988;               |
| Test substance:                                     | or its metabolites between single dose and                                           |                           | Vol.3, B.6.1.1/01   |
| - clethodim:                                        | repeated dose administration or between                                              |                           | <i>,</i>            |
| Lot/Batch:RE-45601-31                               | sexes. Higher tissue concentrations were                                             |                           | Report No.: MEF-    |
| Purity: 99%                                         | observed in the 468 mg/kg group in both                                              |                           | 0086                |
| ,                                                   | sexes. Tissue residues were seen primarily in                                        |                           |                     |
| And                                                 | the adrenals, liver and kidneys.                                                     |                           | New data for        |
|                                                     | A total of ten metabolites were identified of                                        |                           | renewal: No         |
| - [propyl-1- <sup>14</sup> C]-clethodim             | which nine metabolites and the parent were                                           |                           |                     |
| Purity >96%.                                        | identified in the urine. Urinary metabolites                                         |                           |                     |
|                                                     | in the repeated dose group which each                                                |                           |                     |
| 5 Male and 5 female Sprague-                        | accounted for more than 5% of the                                                    |                           |                     |
| Dawley rats.                                        | administered dose were clethodim sulfoxide                                           |                           |                     |
| 2 4 10 1 140                                        | (46-61%), S-methyl sulfoxide (6-11%),                                                |                           |                     |
| Single dose oral gavage of 4.4                      | imine sulfoxide (5-9%) and 5-OH sulfoxide                                            |                           |                     |
| mg/kg (low dose), 468 mg/kg                         | (2-5%). Clethodim sulfoxide $(2-5%)$ was the                                         |                           |                     |
| (high dose) or 4.8 mg/kg repeated                   | only faecal metabolite, which accounted for                                          |                           |                     |
| dose for 14 days.                                   | more than 5% of the administered dose.                                               |                           |                     |
| uose ior 14 uuys.                                   | Clethodim is proposed to either be oxidized                                          |                           |                     |
| Conducted under GLP                                 | to clethodim sulfoxide (dominant process),                                           |                           |                     |
| Conducted under OLI                                 | converted to S-methyl via a sulfonium                                                |                           |                     |
| Deviations from OECD TG 417                         | cation intermediate, cleavage of the oxime                                           |                           |                     |
| (2010):                                             | N-O bond to generate the imine or                                                    |                           |                     |
| - tissue-plasma ratio was not                       | hydroxylated at the five position.                                                   |                           |                     |
| reported                                            | Clethodim was rapidly excreted with                                                  |                           |                     |
| - Temperature and humidity were                     | majority of the administered dose (87.2-                                             |                           |                     |
| not reported                                        | 93.2%) recovered in the urine. There was no                                          |                           |                     |
| not reported                                        | difference in excretion pattern between                                              |                           |                     |
|                                                     | females and males within a treatment group                                           |                           |                     |
| Acceptable                                          | or between treatment groups. A smaller                                               |                           |                     |
| Acceptable                                          | amount (9.3-17.0%) of the administered                                               |                           |                     |
|                                                     | dose was recovered in the faeces. Expired                                            |                           |                     |
|                                                     | $CO_2$ , accounted for <1% of the administered                                       |                           |                     |
|                                                     | dose. The majority of the recovered dose                                             |                           |                     |
|                                                     | (93.5-98.2%) in all treatment groups was                                             |                           |                     |
|                                                     | eliminated within 48 h without any signs of                                          |                           |                     |
|                                                     | accumulation in tissue.                                                              |                           |                     |
| Interspecies comparison of in vitro                 | The extent of conversion of $[^{14}C]$ -clethodim                                    | There were no             | Krebbers, S., 2020; |
| metabolism of $[^{14}C]$ -Clethodim in              | was on average 39% in rat hepatocytes, 22%                                           | human                     | Vol.3,.6.1.2/01     |
| rat, dog and human hepatocytes.                     | in dog hepatocytes and 66% in human                                                  | specific                  | v 01.3,.0.1.2/01    |
| rat, dog and numan nepatocytes.                     | hepatocytes after $120 \pm 1$ minutes of                                             | metabolites,              | Report No.          |
| Test substance:                                     | incubation. The calculated averaged in vitro                                         | although M5               | 20182210            |
| - [ <sup>14</sup> C]-clethodim                      | t1/2 values were $>120$ min in dog, 99 min in                                        | may be                    | 20102210            |
| Lot/Batch: 10079RXB001-4                            | rat and 52 minutes in human hepatocyte                                               | formed at                 | New data for        |
|                                                     |                                                                                      |                           | renewal: Yes        |
| Radiochemical purity: 98.3%, chemical purity: 98.4% | In total five metabolites of [ <sup>14</sup> C]-clethodim                            | higher levels<br>in human | renewal. Les        |
| chennear purity. 98.4%                              |                                                                                      |                           |                     |
| Test material (reference item)                      | were found in the hepatocyte incubations of<br>the three different species. No human | hepatocytes               |                     |
| - Test material (reference item).                   | the three different species. No human                                                | compared                  |                     |
| Lot/Batch: 4478                                     | specific metabolites were detected. The                                              | with                      |                     |
| Purity: 95.98%                                      | metabolites representing more than 5% of                                             | hepatocytes               | 1                   |

Table 17: Summary table of toxicokinetic studies.

| Method                                                                                                                  | Results                                                                                                                                                                                                | Remarks            | Reference |
|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------|
| freshly prepared solution.<br>Incubations in triplicates with 1<br>and 10 $\mu$ M for 1, 15, 30, 60, 90<br>and 120 min. | the total radioactivity (M3, M4 and M5)<br>were selected for identification purposes.<br>Metabolic reactions observed included S-<br>oxidation and demethylation (S-Ethyl $\rightarrow$ S-<br>Methyl). | from rat and dogs. |           |
| Conducted under GLP.                                                                                                    |                                                                                                                                                                                                        |                    |           |

## **2.6.1.1** Short summary and overall relevance of the provided toxicokinetic information on the proposed classification(s)

Two studies are available for this section, one ADME study and one *in vitro* comparable metabolism study. Both studies were conducted in accordance with the OECD Principles of Good Laboratory Practice (1981) and considered acceptable. The *in vitro* comparable metabolism study is new data for the renewal of active substance.

#### ADME study:

The absorption, distribution, metabolism and excretion of  $[^{14}C]$ -clethodim in rat was investigated after a single oral dose of 4.4 and 468 mg/kg bw, and a single oral dose of 4.5 mg/kg bw for 14 daily pre-treatments at the same dose with unlabelled clethodim, and by interspecies comparison of *in vitro* metabolism of  $[^{14}C]$ -clethodim in mixed gender rat, dog and human hepatocytes. Both studies were conducted under GLP and acceptable, although it could be noted that the ADME study was restricted since no blood samples were taken for pharmacokinetic analysis.

Clethodim appears to be rapidly absorbed with no change in distribution of clethodim or its metabolites between single dose with repeated dose administration. Higher tissue concentrations were observed in the high dose group relative to the low dose group in both sexes. As a proportion of the dose administered, however, the tissue concentration in the high dose group was similar to or less than the low dose. Highest tissue concentration was observed in the adrenal, followed by the liver and kidneys. No tissue accumulation was observed.

Clethodim was rapidly excreted with majority of the administered dose in the urine (87.2-93.2%). No difference in excretion pattern between females and males within a treatment group or between treatment groups was observed. A smaller amount (< 17%) was recovered in the faeces. Expired  $CO_2$  accounted < 1% of the administered dose. The majority of the recovered dose in all treatment groups was eliminated within 48 h (93.5-98.2%).

In rat urine a total of nine metabolites and the parent were identified. Urinary metabolites in the repeated dose group which each accounted for more than 5% of the administered dose were clethodim sulfoxide (46-61%), S-methyl sulfoxide (6-11%), imine sulfoxide (5-9%) and 5-OH sulfoxide (2-5%). Clethodim sulfoxide (2-5%) was the only faecal metabolite, which accounted for more than 5% of the administered dose.

Clethodim is proposed to either be oxidized to clethodim sulfoxide (dominant process), converted to S-methyl via a sulfonium cation intermediate, cleavage of the oxime N-O bond to generate the imine or hydroxylated at the five position.

#### In vitro comparable metabolism study:

The *in vitro* metabolic profile of clethodim was investigated in human, Sprague-Dawley rat and Beagle dog by incubating hepatocytes with 1  $\mu$ M of [<sup>14</sup>C]-clethodim, to determine the metabolic stability. The extent of conversion of [<sup>14</sup>C]-clethodim was on average 39% in rat hepatocytes, 22% in dog hepatocytes and 66% in human hepatocytes after 120 ± 1 minutes of incubation. The calculated averaged in vitro t1/2 values were >120 min in dog, 99 min in rat and 52 min in human hepatocyte incubations.

In hepatocyte incubations a total five metabolites of [<sup>14</sup>C]-clethodim were found. Metabolites representing more than 5% of the total radioactivity (M3, M4 and M5) were identified and included S-oxidation and demethylation (S-Ethyl  $\rightarrow$  S-Methyl). There were no human specific metabolites, although M5 (unidentified, see proposed structure below) may be formed at higher levels in human hepatocytes compared with hepatocytes from rat and dogs.

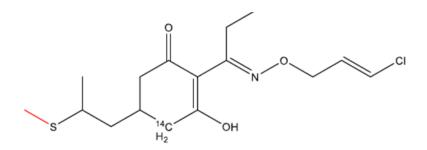



Fig. 2.6.1.1-1: proposed structure for M5

Both studies were conducted under GLP. The rat in vivo study was performed with only basic compliance of OECD TG 417 and no blood samples were taken for pharmacokinetic analysis. The studies are acceptable.

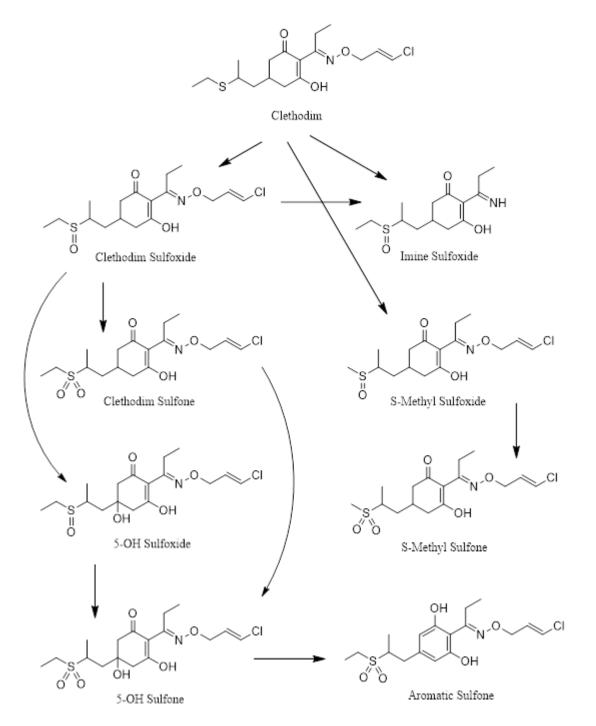



Fig. 2.6.1.1-2: Proposed metabolic pathway of clethodim in rats.

# 2.6.2 Summary of acute toxicity

# 2.6.2.1 Acute toxicity - oral route [equivalent to section 10.1 of the CLH report template]

| Method,<br>guideline,<br>deviations<br>if any                                                            | Species,<br>strain, sex,<br>no/group                                 | Test substance                                                                                                                                                                   | Dose levels, duration of exposure                                                                                                                                                                                                                                                                                                                                 | Value<br>LD50                                                                                                                                                                                                                                                                                            | Reference                                                                                          |
|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Acute oral<br>toxicity<br>OECD TG<br>401,<br>No<br>deviations<br>noted.<br>GLP: Yes<br>Acceptable        | Rat,<br>Sprague-<br>Dawley,<br>males and<br>females,<br>5/sex/groups | Chevron RE-45601<br>Lot/Batch: SX-1688<br>Purity: 83.3% w/w<br>Vehicle:<br>Suspension in 0.7%<br>CMC<br>(carboxymethylcell<br>ulose) and 1.0 %<br>TWEEN 80 in<br>distilled water | <u>Males:</u> 0, 1050, 1450, 1860<br>or 2500 mg/kg (equal to 0,<br>875, 1208, 1550 and 2083<br>mg/kg bw based on<br>correction for purity using a<br>correction factor of 1.2)<br><u>Females:</u> 0, 800, 1050, 1450<br>and 2000 mg/kg (equal to 0,<br>667, 875, 1208 and 1667<br>mg/kg bw based on<br>correction for purity using a<br>correction factor of 1.2) | Males: 1630 mg/kg bw<br>(confidence limits: 1050-2550<br>mg/kg) (equal to 1358 mg/kg<br>bw after correction for purity)<br><u>Females:</u> 1360 mg/kg bw<br>(confidence limits: 820-2230<br>mg/kg) (equal to 1133 mg/kg<br>bw after correction for purity)<br>Acute tox 4, H302: Harmful if<br>swallowed | 1986<br>Report<br>number:<br>S2498<br>Vol.3.<br>B.6.2.1/01<br>New data<br>for<br>renewal:<br>No    |
| Acute oral<br>toxicity<br>study<br>OECD TG<br>401<br>No<br>deviations<br>noted<br>GLP: Yes<br>Acceptable | Mouse,<br>CD1, males<br>and females,<br>5 per<br>sex/group           | Chevron RE-45601<br>Lot/Batch: SX-1688<br>Purity: 83.3% w/w<br>Vehicle:<br>Suspension in<br>carboxymethyl<br>cellulose sodium<br>salt and TWEEN 80<br>in distilled water         | 14 days observationMales: 0, 1500, 2000, 2500,3000 mg/kg bw (equal to1250, 1667, 2083, 2500mg/kg bw after correctionfor purity of the testsubstance using a correctionfactor of 1.2)Females: 0, 2000, 2500,3000, and 3500 mg/kg bw(equal to 1667, 2083, 2500,2917 mg/kg bw aftercorrection for purity of thetest substance using acorrection factor of 1.2)       | Males: 2573 mg/kg bw<br>(confidence limits: 2115-3130<br>mg/kg) (equal to 1787 mg/kg<br>bw after correction for purity)<br><u>Females:</u> 2430 (confidence<br>limits: 1956 - 3018 mg/kg<br>bw) (equal to 1688 mg/kg bw<br>after correction for purity)<br>Acute tox 4, H302: Harmful if<br>swallowed    | 1986<br>Report<br>number:<br>2107-143<br>Vol.3.<br>B.6.2.1/02<br>New data<br>for<br>renewal:<br>No |

## Table 18: Summary table of animal studies on acute oral toxicity

Table 19: Summary table of human data on acute oral toxicity.

| Type of<br>data/report | Test<br>substance | Relevant information about the study (as applicable) | Observations | Reference |  |  |  |
|------------------------|-------------------|------------------------------------------------------|--------------|-----------|--|--|--|
| No data availab        | No data available |                                                      |              |           |  |  |  |

Table 20: Summary table of other studies relevant for acute oral toxicity.

| Type of<br>study/data | Test<br>substance | Relevant information about the study (as applicable) | Observations | Reference |  |  |  |
|-----------------------|-------------------|------------------------------------------------------|--------------|-----------|--|--|--|
| No data availab       | No data available |                                                      |              |           |  |  |  |

# 2.6.2.1.1 Short summary and overall relevance of the provided information on acute oral toxicity

There are no new data for this endpoint in this report. Two studies on acute oral toxicity are available, one with Sprague-Dawley rats and one with CD1 mice. Both studies were conducted in accordance with the OECD Principles of Good Laboratory Practice (1981) and according to the OECD 401 (1981). The studies were considered acceptable.

In the DAR (2005) an acute intraperitoneal toxicity study in the rat was evaluated in addition to the studies mentioned above. This study is not included in the dossier by the applicant for the renewal of active substance. However, RMS considers this study as less relevant (intraperitoneal route of administration). Nevertheless, a short study summary is given below (refer to Vol. 3 section B.6.2.1 in DAR (2005) for further details).

Clinical signs in rats included salivation, decreased motor activity, unsteady gait, hyperreactivity, lacrimation, clonic convulsions, red nasal discharge, ocular discharge, and collapse. Clinical signs in mice included hypoactivity, rough coat, hunched appearance, ataxia, tremors, salivation, laboured respiration, and soft faeces and urine stains. Clinical signs of toxicity that subsided after day 6 was observed in all dose groups in both studies. Rats that died during the study had dark red gelatinous material beneath the meninges, reddened meninges, white or black material in the stomach, tan fluid in the stomach and/or small intestine, enlarged adrenals, a dilated renal pelvis, and reddened, darkened, and/or mottled lungs with foam in the trachea (observed in the two highest doses). Two female rats exposed to 1450 mg/kg that survived until termination had trace gliosis in a single spinal nerve in the lower lumbar area. Mice that died during the study had dark-red lungs and compound-like material in the stomach and intestine.

| Species      | Sex    | Dose (mg/kg<br>bw) | Number of<br>dead | Total number | LD <sub>50</sub><br>(corrected for<br>purity) | Reference    |
|--------------|--------|--------------------|-------------------|--------------|-----------------------------------------------|--------------|
| Rat, Sprague | Female | 0                  | 0                 | 5            | 1133 mg/kg bw                                 | 1986         |
| Dawley       |        | 800                | 0                 | 5            |                                               |              |
|              |        | 1050               | 0                 | 5            |                                               | New data for |
|              |        | 1450               | 3                 | 5            |                                               | renewal: No  |
|              |        | 2000               | 5                 | 5            |                                               |              |
|              | Male   | 0                  | 0                 | 5            | 1358 mg/kg bw                                 |              |
|              |        | 1050               | 0                 | 5            |                                               |              |
|              |        | 1450               | 1                 | 5            |                                               |              |
|              |        | 1860               | 4                 | 5            |                                               |              |
|              |        | 2500               | 5                 | 5            |                                               |              |
| Mouse, CD1   | Female | 0                  | 0                 | 5            | 1688 mg/kg bw                                 | 1986         |
|              |        | 2000               | 2                 | 5            |                                               |              |
|              |        | 2500               | 1                 | 5            |                                               | New data for |
|              |        | 3000               | 5                 | 5            |                                               | renewal: No  |
|              |        | 3500               | 4                 | 5            |                                               |              |
|              | Male   | 0                  | 0                 | 5            | 1787 mg/kg bw                                 |              |
|              |        | 1500               | 0                 | 5            |                                               |              |
|              |        | 2000               | 1                 | 5            |                                               |              |
|              |        | 2500               | 3                 | 5            |                                               |              |
|              |        | 3000               | 3                 | 5            | 1                                             |              |

 Table 2.6.2.1.1-1. Acute oral toxicity of clethodim technical

The LD<sub>50</sub>-values were in the same range for both species, but the lowest value was obtained from female rats (1133 mg a.s./kg bw).

| Acute intrar | peritoneal | toxicity | v studv | y ( | presented in l | DAR ( | (2005): |
|--------------|------------|----------|---------|-----|----------------|-------|---------|
|              |            |          |         |     |                |       |         |

| reference         | 1 | 1987                                                                                  | exposure         | 1 | Once (5 ml/kg)                                                                         |
|-------------------|---|---------------------------------------------------------------------------------------|------------------|---|----------------------------------------------------------------------------------------|
| type of study     | : | Acute intraperitoneal toxicity study                                                  | doses            | : | 0, 700, 1000, 1400, 2000 mg/kg bw<br>(both sexes) 1                                    |
| year of execution | : | 1986 - 1987                                                                           | vehicle          | : | Tween 80, carboxymethyl cellulose<br>sodium salt high viscosity and<br>distilled water |
| test substance    | - | Chevron RE-45601 technical<br>(Clethodim technical), lot no SX-<br>1688, purity 83.2% | GLP statement    | : | Yes                                                                                    |
| route             | - | Intraperitoneal injection                                                             | guideline        |   | Not applicable                                                                         |
| species           | : | Rat, Sprague-Dawley, CrI:CD<br>(SD)BR                                                 | acceptability    | : | Acceptable                                                                             |
| group size        | : | 5/sex/dose                                                                            | LD <sub>20</sub> | : | 868 mg a.i./kg bw (male)<br>1001 mg a.i./kg bw (female)                                |

1 equal to 583, 833, 1167, 1667 mg a.i./L (males and females) after correction for purity of the test substance

## Results

Mortality: 5/5 males given 2000 mg/kg, 4/5 males given 1400 mg/kg, 3/5 males given 1000 mg/kg were found dead within 1 d after treatment. 4/5 females given 2000 mg/kg and 1400 mg/kg and 2/5 females given 1000 mg/kg were found dead within 14 d after treatment. No further mortality occurred.

## Symptoms of toxicity:

Among the test substance treated animals, clinical signs observed included hypoactivity, rough coat, hunched posture, urine staining of the fur, soft faeces, salivation, ataxia, red stains on nose and eyes and prostration. Most of the clinical signs disappeared by day 4. Pupillary responses were normal for all animals except for 2 animals on day 1 after dosing.

Body weight: No treatment related findings, except for one female animal in the 700 mg/kg dose group, which showed weight loss.

<u>Pathology:</u> A pale liver and bright red lung was observed for animals which died during the study. Pale left lateral lobes and rounded margins of the liver were observed in two 700 mg/kg dose group animals which survived. Compound-like material was found in the abdominal cavity of all animals that died in the 2000 mg/kg dose group. No further treatment-related effects.

## Acceptability

The study is considered acceptable.

## **Conclusions**

The acute intraperitoneal  $LD_{50}$  of RE-45601 technical was found to be 1041 mg/kg bw for males and 1201 mg/kg bw for females.

After correction for the purity, this is equal to an intraperitoneal  $LD_{50}$  of 868 mg a.s./kg bw for males and 1001 mg a.s./kg bw for females.

# 2.6.2.1.2 Comparison with the CLP criteria regarding acute oral toxicity

The LD<sub>50</sub> value (female, rat) was 1133 mg a.s./kg bw and thus falls under the criterion for acute oral toxicity category 4 ( $300 < ATE \le 2000$ ) under regulation (EC) No 1272/2008. This LD50 represents the ATE as it is the lowest LD50 observed in the most sensitive species (females) and is based on results from a well-performed study in rats which is the preferred test species for evaluation of acute toxicity by the oral route.

# 2.6.2.1.3 Conclusion on classification and labelling for acute oral toxicity

Acute Tox. 4. H302: Harmful if swallowed. ATE = 1133 mg/kg bw.

# 2.6.2.2 Acute toxicity - dermal route [equivalent to section 10.2 of the CLH report template]

| Table 21: Summary table of animal studies on acute dermal toxicity. |                   |                |               |                 |           |  |  |
|---------------------------------------------------------------------|-------------------|----------------|---------------|-----------------|-----------|--|--|
| Method,                                                             | Species, strain,  | Test substance | Dose levels,  | Value           | Reference |  |  |
| guideline,                                                          | sex, no/group     |                | duration of   | LD50            |           |  |  |
| deviations if any                                                   |                   |                | exposure      |                 |           |  |  |
| Acute dermal                                                        | Rabbit, New       | RE-45601       | Females: 5000 | LD50>5000 mg/kg | 1986      |  |  |
| toxicity                                                            | Zealand White, 5- | (technical)    | mg/kg         | bw (equal to    |           |  |  |
|                                                                     | 10 ind./group     |                |               | >4167 mg/kg bw  |           |  |  |

Table 21: Summary table of animal studies on acute dermal toxicity.

| Method,            | Species, strain,  | Test substance   | Dose levels,      | Value                | Reference         |
|--------------------|-------------------|------------------|-------------------|----------------------|-------------------|
| guideline,         | sex, no/group     |                  | duration of       | LD50                 |                   |
| deviations if any  |                   |                  | exposure          |                      |                   |
| No study guideline | Males and females | Lot/Batch: SX-   | Males: 2000 and   | based on             | Report number:    |
| was reported.      |                   | 1688             | 4900 mg/kg        | correction for       | CEHB 2510         |
| Study was          |                   |                  | 24 h exposure, 14 | purity using a       |                   |
| conducted in       |                   | Purity: 83.3%w/w | days observation  | correction factor of | Vol.3. B.6.2.2/01 |
| general            |                   | -                | -                 | 1.2)                 |                   |
| compliance with    |                   |                  |                   |                      | New data for      |
| guideline OECD     |                   |                  |                   |                      | renewal: No       |
| 402 (1981).        |                   |                  |                   |                      |                   |
|                    |                   |                  |                   |                      |                   |
| GLP: Yes           |                   |                  |                   |                      |                   |
|                    |                   |                  |                   |                      |                   |
| Acceptable         |                   |                  |                   |                      |                   |

#### Table 22: Summary table of human data on acute dermal toxicity.

| Type of<br>data/report | Test<br>substance | Relevant information about the study (as applicable) | Observations | Reference |  |
|------------------------|-------------------|------------------------------------------------------|--------------|-----------|--|
| No data available      |                   |                                                      |              |           |  |

#### Table 23: Summary table of other studies relevant for acute dermal toxicity.

| Type of           | Test      | Relevant information about the study |  | Reference |  |  |
|-------------------|-----------|--------------------------------------|--|-----------|--|--|
| study/data        | substance | (as applicable)                      |  |           |  |  |
| No data available |           |                                      |  |           |  |  |

# 2.6.2.2.1 Short summary and overall relevance of the provided information on acute dermal toxicity

There are no new data for this endpoint in this report. One study is available on acute dermal toxicity in which rabbits were exposed for 24 h and observed for 14 days. One animal died during the study (male, 5.0 g/kg bw). Skin irritation occurred in both control and exposed animals, albeit more severe in the latter groups. By day 7, no sign of skin irritation could be observed in the control group while exposed animals displayed both oedema (grade 0-2) and erythema (grade 0-4). Erythema persisted to day 14 in one female dosed with 5.0 g/kg.

Several signs of toxicity were observed. Control animals displayed red, swollen, scabbed, dry/flaky skin. Other signs in the control groups included ocular and nasal discharge, and reduced food intake. Exposed animals showed the same symptoms as the control animals (except nasal discharge and the mouth cut/scab observed in one individual) but usually for a longer period of time. In addition to those symptoms, exposed animals also displayed other dermal effects (abraded, thickened, blackened, crusty, cracked skin) and diarrhoea. The male that was found dead on day 6 displayed reduced food intake, decreased motor activity, decreased body temperature, unkempt appearance, diarrhoea, a lack of faeces, and collapse prior to its death. Body weight was not affected.

The study was conducted in accordance with the OECD Principles of Good Laboratory Practice (1981) and in general compliance with guideline OECD 402 (1981). The study is acceptable.

#### Comparison with the CLP criteria regarding acute dermal toxicity 2.6.2.2.2

LD<sub>50</sub>>4167 mg/kg bw. This is above the cut-off of 2000 mg/kg bw for acute dermal toxicity classification.

#### 2.6.2.2.3 Conclusion on classification and labelling for acute dermal toxicity

Clethodim is not classified for acute dermal toxicity under Regulation (EC) 1272/2008.

#### 2.6.2.3 Acute toxicity - inhalation route [equivalent to section 10.3 of the CLH report template]

| Table 24: Summary   | Table 24: Summary table of animal studies on acute inhalation toxicity. |                   |                      |                   |                   |  |  |  |
|---------------------|-------------------------------------------------------------------------|-------------------|----------------------|-------------------|-------------------|--|--|--|
| Method,             | Species, strain,                                                        | Test substance,   | Dose levels,         | Value             | Reference         |  |  |  |
| guideline,          | sex, no/group                                                           | form and particle | duration of          | LC50              |                   |  |  |  |
| deviations if any   |                                                                         | size (MMAD)       | exposure             |                   |                   |  |  |  |
| Acute inhalation    | Rat, Sprague-                                                           | RE-45601          | 3.9 mg/L, 4 h        | >3.25 mg/L air    | 1986              |  |  |  |
| LC <sub>50</sub>    | Dawley, both                                                            |                   | (maximum             | (4 h, whole body) |                   |  |  |  |
|                     | sexes, 5 per                                                            | Lot/Batch: SX-    | attainable           | (value corrected  | Report number:    |  |  |  |
| No guideline        | sex/group                                                               | 1688              | concentration)       | for purity)       | CEHB 2513         |  |  |  |
| reported, in        |                                                                         |                   | (equal to 3.25       |                   |                   |  |  |  |
| general             |                                                                         | Purity: 83.3%     | mg/L based on        | No mortalities    | Vol.3. B.6.2.3/01 |  |  |  |
| compliance with     |                                                                         |                   | correction for       | occurred.         |                   |  |  |  |
| OECD 403 (2009).    |                                                                         | Vehicle: acetone  | purity using a       |                   | New data for      |  |  |  |
| Deviation: animals  |                                                                         |                   | correction factor of |                   | renewal: No       |  |  |  |
| were older than the |                                                                         | aerosol, MMAD =   | 1.2)                 |                   |                   |  |  |  |
| recommended age     |                                                                         | 2.75 µm           |                      |                   |                   |  |  |  |
| of 8-12 weeks,      |                                                                         |                   |                      |                   |                   |  |  |  |
| humidity (71-72%)   |                                                                         |                   |                      |                   |                   |  |  |  |
| slightly above      |                                                                         |                   |                      |                   |                   |  |  |  |
| recommended         |                                                                         |                   |                      |                   |                   |  |  |  |
| value of 70% in     |                                                                         |                   |                      |                   |                   |  |  |  |
| the guideline       |                                                                         |                   |                      |                   |                   |  |  |  |
| GLP: Yes            |                                                                         |                   |                      |                   |                   |  |  |  |
| Acceptable          |                                                                         |                   |                      |                   |                   |  |  |  |

| 1 | Table 24: Summary | table of animal stud | lies on acute inhalat | ion toxicity. |
|---|-------------------|----------------------|-----------------------|---------------|
|   | 3.6.41.1          | a • • •              |                       | D I I         |

Table 25: Summary table of human data on acute inhalation toxicity.

| Type of<br>data/report | Test<br>substance | Relevant information about the study (as applicable) | Observations | Reference |
|------------------------|-------------------|------------------------------------------------------|--------------|-----------|
| No data availal        | ole               |                                                      |              |           |

| Table 26: Sum                                                                | Table 26: Summary table of other studies relevant for acute inhalation toxicity. |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Type of Test Relevant information about the study (as Observations Reference |                                                                                  |  |  |  |  |  |  |  |  |
| study/data                                                                   | study/data substance applicable)                                                 |  |  |  |  |  |  |  |  |
| No data available                                                            |                                                                                  |  |  |  |  |  |  |  |  |

#### 2.6.2.3.1. Short summary and overall relevance of the provided information on acute inhalation toxicity

There are no new data for this endpoint in this report. One acute inhalation study is available, in which 5 rats of each sex were exposed to an aerosol of diluted test material (3.9 mg clethodim/L) for 240 minutes. It was performed in general compliance with OECD TG 403 and conducted in accordance with the OECD Principles of Good Laboratory Practice. The MMAD was 2.75 µm. Approximately 82% was smaller than 4.5 µm, 23% was smaller than 1.8 µm, and 8% smaller than 1.1 µm. The study is acceptable.

No mortality occurred during the study. During the exposure, salivation was observed in three exposed animals and all animals squinted or had closed eyes. Immediately following the exposure, all exposed animals were salivating, and five of ten animals (four males and one female) had a colourless eye discharge. Additional signs of toxicity observed following exposure included red nasal discharge, abnormal respiratory sounds, decreased faeces, unkempt appearance, and a yellow/red anogenital discharge. All exposed animals appeared normal within 8 days of exposure. In the control group, one male was salivating during the first hour of exposure. Immediately following the exposure and throughout the 14-day observation period, all vehicle control animals appeared normal. No gross pathologic changes that could be attributed to the exposures were seen at necropsy following a 14-day observation period. No exposure-related histologic changes were observed in the lungs or tracheas of exposed animals.

# 2.6.2.3.2. Comparison with the CLP criteria regarding acute inhalation toxicity

The limit for classification of acute inhalation toxicity under regulation (EC) No 1272/2008 (CLP) is 5.0 mg/L while the concentration tested in the available study was 3.9 mg/L (maximal attainable concentration). The LC<sub>50</sub> was >3.25 mg/L (value corrected for purity). No classification for acute inhalation toxicity is needed as an LC<sub>50</sub> equal to or below 5 mg/L has not been demonstrated. There was no mortality at exposure levels relevant to classification.

# 2.6.2.3.3. Conclusion on classification and labelling for acute inhalation toxicity

Clethodim does not fulfil criteria for classification.

# 2.6.2.4 Skin corrosion/irritation [equivalent to section 10.4 of the CLH report template]

| Method,<br>guideline,<br>deviations if<br>any | Species,<br>strain, sex,<br>no/group | Test<br>substance | Dose levels,<br>duration of<br>exposure | Results<br>- Observations and time point of onset<br>- Mean scores/animal<br>- Reversibility | Reference    |
|-----------------------------------------------|--------------------------------------|-------------------|-----------------------------------------|----------------------------------------------------------------------------------------------|--------------|
| Acute dermal                                  | Rabbit,                              | Clethodim         | 0.5 mL                                  | <u>3 minutes (n=1):</u>                                                                      | 2005         |
| irritation in                                 | New                                  | technical         | undiluted test                          | Very slight erythema (day 2)                                                                 |              |
| rabbits                                       | Zealand                              | Lot/Batch:        | item, 3 min,                            |                                                                                              | Report       |
|                                               | White,                               | 6F5056800         | 1 h, 4 h                                | <u>1 h (n=1):</u>                                                                            | number:      |
| OECD TG 404                                   | male, 1 (3                           | 0                 |                                         | Very slight erythema (day 2) and dryness of                                                  | 29389 TAL    |
| Deviations: The                               | min + 1 h)                           | Purity:           |                                         | skin (day 5)                                                                                 |              |
| temperature                                   | or 3 (4 h)                           | 93.4%             |                                         |                                                                                              | B.6.2.4/01   |
| range was                                     | per group                            |                   |                                         | <u>4 h (n=3):</u>                                                                            |              |
| slightly below                                |                                      |                   |                                         | Very slight to well defined erythema (day 1)                                                 | New data for |
| the                                           |                                      |                   |                                         | Very slight to slight oedema (day 2)                                                         | renewal: No  |
| recommended                                   |                                      |                   |                                         | Dryness of the skin (day 5)                                                                  |              |
| (18 ± 3 °C vs 20<br>± 3 °C)                   |                                      |                   |                                         | Slight yellow colouration of the skin (day 1)                                                |              |
| GLP: Yes                                      |                                      |                   |                                         | The mean scores were 0.7, 2.0, and 2.0 for                                                   |              |
|                                               |                                      |                   |                                         | erythema and 0.0, 1.7, and 1.3 for oedema.                                                   |              |
| Acceptable                                    |                                      |                   |                                         |                                                                                              |              |
|                                               |                                      |                   |                                         | All three animals had recovered completely by                                                |              |
|                                               |                                      |                   |                                         | day 9.                                                                                       |              |
| Acute dermal                                  | Rabbit,                              | RE-45601          | Females,                                | LD <sub>50</sub> >4900 mg/kg bw (equal to >4167 mg/kg                                        |              |
| toxicity                                      | New                                  | (technical)       | 5000 mg/kg,                             | bw based on correction for purity using a                                                    | 1986         |
|                                               | Zealand                              | Lot/Batch:        |                                         | correction factor of 1.2)                                                                    |              |
|                                               | White, 5-                            | SX-1688           |                                         |                                                                                              |              |

Table 27: Summary table of animal studies on skin corrosion/irritation.

|                                    |             |              | r                     |                                                                             |              |
|------------------------------------|-------------|--------------|-----------------------|-----------------------------------------------------------------------------|--------------|
| No study                           | 10          | Purity:      | Males, 2000           | Symptoms in the control:                                                    | Report       |
| guideline was                      | ind./group  | 83.3%w/w     | and 4900              | -red, swollen, scabbed, dry/flaky skin.                                     | number:      |
| reported. Study                    |             |              | mg/kg                 | -ocular and nasal discharge                                                 | CEHB 2510    |
| was conducted in                   |             |              | 24 h                  | -reduced food intake                                                        |              |
| general                            |             |              | exposure, 14          | -erythema (slight to severe)                                                | Vol.3.       |
| compliance with                    |             |              | days                  | -oedema (non-existing to well-defined)                                      | B.6.2.2/01   |
| guideline OECD                     |             |              | observation           |                                                                             |              |
| TG 402 (1981).                     |             |              |                       |                                                                             | New data for |
|                                    |             |              |                       | Symptoms in exposed animals:                                                | renewal: No  |
| GLP: Yes                           |             |              |                       | -Red, swollen, scabbed, dry/flaky skin (lasted                              |              |
|                                    |             |              |                       | longer than in the control)                                                 |              |
| Acceptable                         |             |              |                       | -ocular and nasal discharge (lasted longer than                             |              |
|                                    |             |              |                       | in the control)                                                             |              |
|                                    |             |              |                       | -reduced food intake (lasted longer than in the                             |              |
|                                    |             |              |                       | control)                                                                    |              |
|                                    |             |              |                       | -abraded thickened, blackened, crusty, cracked                              |              |
|                                    |             |              |                       | skin                                                                        |              |
|                                    |             |              |                       | -diarrhoea                                                                  |              |
|                                    |             |              |                       | -death (one male, 5.0 g/kg, on day 6)                                       |              |
|                                    |             |              |                       | -erythema (slight to severe)                                                |              |
|                                    |             |              |                       | -oedema (moderate to severe)                                                |              |
|                                    |             |              |                       | -hyperkeratosis (trace to mild, two 2 g/kg                                  |              |
|                                    |             |              |                       | males + one 5/kg female)<br>-dermal necrosis and ulceration (severe, in the |              |
|                                    |             |              |                       | female (5 g/kg) with hyperkeratosis in an area                              |              |
|                                    |             |              |                       | where the wrap was secured with tape, unclear                               |              |
|                                    |             |              |                       | if treatment related, all other females had                                 |              |
|                                    |             |              |                       | normal skin and all treated males were normal                               |              |
|                                    |             |              |                       | at the 5 g/kg level)                                                        |              |
|                                    |             |              |                       |                                                                             |              |
|                                    |             |              |                       | Twenty-four h after dosing treated and control                              |              |
|                                    |             |              |                       | animals showed comparable slight to severe                                  |              |
|                                    |             |              |                       | erythema; erythema was accompanied by                                       |              |
|                                    |             |              |                       | moderate to severe oedema in treated animals                                |              |
|                                    |             |              |                       | and no to well-defined oedema in controls. No                               |              |
|                                    |             |              |                       | erythema or oedema was apparent by day 7 in                                 |              |
|                                    |             |              |                       | the controls. Treated animals still had both                                |              |
|                                    |             |              |                       | erythema (no to severe) and oedema (no to                                   |              |
|                                    |             |              |                       | well-defined) at this time. Erythema persisted                              |              |
|                                    |             |              |                       | to day 14 in one female dosed with 5.0 g/kg (in                             |              |
|                                    |             |              |                       | an area where the wrap was secured with tape,                               |              |
|                                    |             |              |                       | unclear if treatment related, all other females                             |              |
|                                    |             |              |                       | had normal skin and all treated males were                                  |              |
|                                    |             |              |                       | normal at the 5 g/kg level).                                                |              |
| Four-week                          | Rat         | RE-45601     | 0% (vehicle           | NOAEL local: <10 mg/kg bw/day (equal to                                     |              |
| dermal study in                    | Strain:     | (Technical)  | control),             | 8.32 mg/kg bw/day after correction for purity                               | 1987         |
| rat                                | Sprague-    | Lot/Batch:   | 1.0% (low-            | of test substance using a correction factor of                              |              |
|                                    | Dawley®     | SX-1688      | dose), 10.0%          | 1.2)                                                                        | Report       |
| OECD TG 410                        | Crl:CD®     | <b>.</b> .   | (mid-dose),           |                                                                             | number: S-   |
| (1981)                             | BR,         | Purity:      | and 100.0%            | NOAEL systemic: 100 mg/kg bw/day (equiv.                                    | 2848         |
| <b>D</b> · · · ·                   | 6/sex/group | 83.2%        | (high-dose)           | 83.2 mg/kg bw/d) (equal to 83.2 mg/kg bw/day                                |              |
| Deviations from                    |             | 37.1.1       | correspondin          | after correction for purity of test substance                               | Vol.3        |
| current                            |             | Vehicle:     | g to                  | using a correction factor of 1.2)                                           | B.6.3.3/01   |
| guideline: some                    |             | 0.7%         | approximatel          |                                                                             | NT 1. C      |
| of the suggested                   |             | carboxymet   | y 0, 10, 100,         | LOAEL local: 10 mg/kg bw/day (equal to 8.32                                 | New data for |
| serum                              |             | hyl          | and 1000              | mg/kg bw/day based on correction for purity                                 | renewal: No  |
| measurements                       |             | cellulose    | mg/kg/day of          | using a correction factor of 1.2)                                           |              |
| were not                           |             | (CMC) and    | RE-45601              | LOAEL systemic: 1000 / 1 /1 / 1                                             |              |
| performed                          |             | 1.0%         | technical.dos         | LOAEL systemic: 1000 mg/kg bw/day (equal                                    |              |
| (ornithine                         |             | TWEEN 80     | e (equal to $0$ ,     | to 832 mg/kg bw/day based on correction for $\frac{1}{2}$                   |              |
| decarboxylase,                     |             | in distilled | 8.32, 83.2,           | purity using a correction factor of 1.2)                                    |              |
| gamma glutamyl                     |             | water        | and 832               | Effects at 10 mg/kg by/days                                                 |              |
| transpeptidase,                    |             |              | mg/kg<br>bw/day based | Effects at 10 mg/kg bw/day:<br>Skin irritation                              |              |
| hormone levels,<br>methaemoglobin, |             |              | on correction         | triglyceride levels (F: 40%, n.s.)                                          |              |
| cholinesterase                     |             |              | for purity            | ungrycenue levels (F: 40%, n.s.)                                            |              |
|                                    |             |              |                       |                                                                             |              |
| activity)                          |             |              | using a               |                                                                             |              |

|            | correction     | Effects at 100 mg/kg bw/day (equal to 83.2            |
|------------|----------------|-------------------------------------------------------|
| GLP: Yes   | factor of 1.2) | mg/kg bw/day based on correction for purity           |
|            |                | using a correction factor of 1.2):                    |
|            | 21 six-h       | Skin irritation                                       |
| Acceptable | dermal         | ↑ triglyceride levels (F: 140%)                       |
| 1          | applications   | UN/creatinine ratio (M: 22%, F: 9% n.s.)              |
|            | over a 28-day  |                                                       |
|            | period         |                                                       |
|            | 1              | Effects at 1000 mg/kg bw/day (equal to 832            |
|            |                | mg/kg bw/day based on correction for purity           |
|            |                | using a correction factor of 1.2):                    |
|            |                | Skin irritation                                       |
|            |                | -clinical signs (anogenital discharge in all          |
|            |                | males (6 animals) and two females)                    |
|            |                | ↓ food efficiency (M during Weeks 1-2)                |
|            |                | ↓ body weight gain (M: 35%)                           |
|            |                | ↑ absolute liver weight (F: 20%)                      |
|            |                | ↑ relative liver weight (F: 22%)                      |
|            |                | ↑ liver weight relative to brain weight (F: 24%)      |
|            |                | ↑ triglyceride levels (F: 160 %)                      |
|            |                | $\downarrow$ BUN (M: 22%, F: 20% n.s.)                |
|            |                | ↓ BUN/creatinine ratio (M: 32%, F: 21% n.s.)          |
|            |                | $\downarrow$ chloride (M: 3%, F: 3%, both within HCD) |
|            |                | ↑ relative weight of kidneys (M: 10%)                 |
|            |                | ↑ relative testes weight (M: 13%)                     |

#### Table 28: Summary table of human data on skin corrosion/irritation.

| Type of data/report | Test<br>substance | Relevant<br>information about<br>the study (as | Observations | Reference |
|---------------------|-------------------|------------------------------------------------|--------------|-----------|
|                     |                   | applicable)                                    |              |           |
| No data available   |                   |                                                |              |           |

Table 29: Summary table of other studies relevant for skin corrosion/irritation.

| Type of study/data | Test<br>substance | Relevant<br>information about<br>the study (as<br>applicable) | Observations | Reference |
|--------------------|-------------------|---------------------------------------------------------------|--------------|-----------|
| No data available  |                   | applicable)                                                   |              |           |

#### 2.6.2.4.1 Short summary and overall relevance of the provided information on skin corrosion/irritation

There are no new data for this endpoint in this report.

One skin irritation study is available. It was performed on male rabbits and was conducted in accordance with the OECD Principles of Good Laboratory Practice. The study follows OECD TG 410 except for minor deviations (see Table 27) and is considered acceptable. Exposure to 5.0 mL of undiluted test item for 3 minutes induced a grade 1 erythema on day 2 (n=1). Exposure for 1 h (n=1) resulted in a grade 1 erythema, associated with a dryness of the skin from day 5, that lasted from day 2 up to day 7. Exposure for 4 h (n = 3) resulted in grade 1-2 erythema that appeared on day 1 in all animals and lasted until day 3, 5, and 8. Grade 1-2 oedema appeared in two animals on day 2 and lasted until day 3 and 4. Dryness of the skin was observed from day 5 in one animal and slight yellow colouration of the skin was visible in two individuals on day 1. The mean scores were 0.7, 2.0, and 2.0 for erythema and 0.0, 1.7, and 1.3 for oedema (Report number: 29389 TAL).

Dobbit

| Rabbit Dermal |            | Scores   |           |           |           | Mean irritation      | Interpretation                                       |
|---------------|------------|----------|-----------|-----------|-----------|----------------------|------------------------------------------------------|
| number        | Irritation | 1h<br>D1 | 24h<br>D2 | 48h<br>D3 | 72h<br>D4 | score <sup>(1)</sup> | (+)<br>(-)<br>(-)<br>(-)<br>(-)<br>(-)<br>(-)<br>(-) |
|               | Erythema   | 1        | 1         | 1         | 0         | 0.7                  | (-)                                                  |
| 05            | Oedema     | 0        | 0         | 0         | 0         | 0.0                  | (-)                                                  |
|               | Other      | *        | *         | *         | *         |                      |                                                      |
|               | Erythema   | 1        | 2         | 2         | 2         | 2.0                  | (-)                                                  |
| 35            | Oedema     | 0        | 2         | 2         | 1         | 1.7                  | (-)                                                  |
|               | Other      | С        | *         | *         | *         |                      |                                                      |
|               | Erythema   | 1        | 2         | 2         | 2         | 2.0                  | (-)                                                  |
| 36            | Oedema     | 0        | 2         | 2         | 0         | 1.3                  | (-)                                                  |
| (1)           | Other      | С        | *         | *         | *         |                      |                                                      |

 Table 2.6.2.4.1-1: Individual and mean skin irritation scores of Clethodim (technical) according to the Draize scheme

 Dobbit
 Democil

<sup>(1)</sup> mean of scores on days 2, 3 and 4

h = hour

D = day

(+) = irritant according to E.E.C. criteria

Downol

(-) = non-irritant according to E.E.C. criteria

\* = none

C = yellow coloration of the skin

In addition to this study, an acute dermal toxicity study in the rat (refer to section 2.6.2.2), a repeated dose dermal study in the rat (refer to section 2.6.3) and a skin sensitisation study in the Guinea Pig (refer to section 2.6.2.7) are available which also give some information on irritant properties of the active substance.

In the acute dermal toxicity study in which rabbits were exposed for 24 h and observed for 14 days, skin irritation occurred in both control and exposed animals, albeit more severe in the latter group. By day 7, no sign of skin irritation could be observed in the control group while exposed animals displayed both oedema (grade 0-2) and erythema (grade 0-4). Erythema persisted to day 14 in one female dosed with 5.0 g/kg. Other dermal effects reported in exposed animals were red, swollen, scabbed, dry/flaky skin (also observed in the controls for a shorter period of time), and abraded, thickened, blackened, crusty, cracked skin. Histologically, two 2.0 g/kg males and one 5.0 g/kg female had treatment-related trace to mild hyperkeratosis. The 5.0 g/kg female with hyperkeratosis also had severe dermal necrosis and ulceration in an area where the wrap was secured with tape; it is unclear whether or not these lesions are attributable to the test material (all other females had normal skin and all treated males were normal at the 5 g/kg level) (Report number CEHB 2510).

| Table 2.6.2.4.1-2. Signs of toxicit | v in adult rabbits expo | osed to a single dermal d | ose of clethodim (SX-1688). |
|-------------------------------------|-------------------------|---------------------------|-----------------------------|
|                                     |                         |                           |                             |

| Observed sign of toxicity | Con   | trol <sup>1</sup> | Fen   | nales             | Cor   | trol 1            | Mal   | les               | Cor   | trol <sup>2</sup> | Ma    | les               |
|---------------------------|-------|-------------------|-------|-------------------|-------|-------------------|-------|-------------------|-------|-------------------|-------|-------------------|
|                           | Fen   | nales             | 5.0   | g/kg              | Ma    | es                | 4.9   | g/kg              | Ma    | les               | 2.0   | g/kg              |
|                           | $N^1$ | Days <sup>2</sup> |
| Death                     |       |                   |       |                   |       |                   | 1     | 6                 |       |                   |       |                   |
| Reduced food intake       | 1     | 14                | 2     | 4-14              |       |                   | 1     | 2-death           | 1     | 1-8               | 4     | 1-8               |
| Skin, red                 | 4     | 1-5               | 5     | 1-14              | 5     | 1-14              | 5     | 1-8               | 5     | 1-14              | 5     | 1-14              |
| Skin, swollen             |       |                   | 5     | 1-9               | 3     | 1                 | 5     | 1-6               | 1     | 1-2               | 5     | 1-9               |
| Skin, abraded             |       |                   |       |                   |       |                   | 1     | 2-3               |       |                   |       |                   |
| Skin, scabbed             | 1     | 8-13              | 3     | 3-14              | 1     | 5-10              | 1     | 3-6               |       |                   | 3     | 7-14              |
| Skin thickened            |       |                   | 2     | 6-7               |       |                   | 2     | 6-7               |       |                   | 2     | 7-9               |
| Skin, dry/flaky           | 3     | 5-8               | 5     | 6-14              | 2     | 3-14              | 4     | 6-13              |       |                   | 5     | 7-14              |
| Skin, blackened/darkened  |       |                   |       |                   |       |                   |       |                   |       |                   | 2     | 4-9               |
| Skin, crusty              |       |                   |       |                   |       |                   |       |                   |       |                   | 1     | 11-14             |
| Skin, cracked             |       |                   | 4     | 7-9               |       |                   |       |                   |       |                   |       |                   |
| Decreased motor activity  |       |                   |       |                   |       |                   | 1     | 2-death           |       |                   |       |                   |
| Unkempt appearance        |       |                   |       |                   |       |                   | 1     | 4-death           |       |                   |       |                   |
| No faeces                 |       |                   |       |                   |       |                   | 1     | 5                 |       |                   |       |                   |
| Collapse                  |       |                   |       |                   |       |                   | 1     | 5                 |       |                   |       |                   |

| Observed sign of toxicity     |                  | trol <sup>1</sup><br>nales |       | 1ales<br>g/kg     | Con<br>Mal | trol <sup>1</sup><br>les | Ma<br>4.9 | les<br>g/kg       | Con<br>Mal | trol <sup>2</sup><br>les | Ma<br>2.0 |                   |
|-------------------------------|------------------|----------------------------|-------|-------------------|------------|--------------------------|-----------|-------------------|------------|--------------------------|-----------|-------------------|
|                               | $\mathbf{N}^{1}$ | Days <sup>2</sup>          | $N^1$ | Days <sup>2</sup> | $N^1$      | Days <sup>2</sup>        | $N^1$     | Days <sup>2</sup> | $N^1$      | Days <sup>2</sup>        | $N^1$     | Days <sup>2</sup> |
| Diarrhoea                     |                  |                            |       |                   |            |                          | 1         | 6                 |            |                          | 1         | 14                |
| Decreased body temperature    |                  |                            |       |                   |            |                          | 1         | 6                 |            |                          |           |                   |
| Ocular discharge - colourless |                  |                            |       |                   |            |                          |           |                   | 4          | 1-6                      | 4         | 5-13              |
| Nasal discharge - yellow      |                  |                            |       |                   |            |                          |           |                   | 2          | 1-6                      |           |                   |
| Mouth cut/scabbed             | 1                | 1-5                        |       |                   |            |                          |           |                   |            |                          |           |                   |

<sup>1</sup> Number of animals displaying the sign of toxicity

<sup>2</sup> Observation interval: the first and last day each observation was made

Repeated dermal exposure (exposed for 6 h on 21 out of 28 days) in rats induced skin irritation at all tested doses (8.3, 83, 832 mg/kg). Skin irritation, dry and flaky skin, and scabs were observed as well as erythema and oedema (table below) (Report number S-2848).

| Dose    | Day <sup>1</sup> | Irritation | d to clethodim (technica<br>Dry and/or flaky<br>skin | Scab(s) | Mean score for<br>erythema and<br>edema <sup>2</sup> |
|---------|------------------|------------|------------------------------------------------------|---------|------------------------------------------------------|
| Males   |                  |            |                                                      |         |                                                      |
| 0.0%    | 0                | 1/6        | 0/6                                                  | 0/6     | 0.2                                                  |
|         | 2                | 2/6        | 1/6                                                  | 0/6     | 0.5                                                  |
|         | 9                | 3/6        | 1/6                                                  | 0/6     | 0.5                                                  |
|         | 16               | 4/6        | 2/6                                                  | 0/6     | 1.2                                                  |
|         | 23               | 4/6        | 3/6                                                  | 0/6     | 1.2                                                  |
|         | 28               | 6/6        | 2/6                                                  | 1/6     | 2.7                                                  |
| 1.0%    | 0                | 2/6        | 0/6                                                  | 0/6     | 0.3                                                  |
|         | 2                | 3/6        | 0/6.                                                 | 0/6     | 0.5                                                  |
|         | 9                | 6/6        | 0/6                                                  | 0/6     | 1.7                                                  |
|         | 16               | 6/6        | 1/6                                                  | 0/6     | 2.0                                                  |
|         | 23               | 6/6        | 5/6                                                  | 1/6     | 3.0                                                  |
|         | 28               | 6/6        | 4/6                                                  | 0/6     | 4.0                                                  |
| 10.0%   | 0                | 1/6        | 0/6                                                  | 0/6     | 0.2                                                  |
|         | 2                | 4/6        | 0/6                                                  | 0/6     | 0.8                                                  |
|         | 9                | 6/6        | 0/6                                                  | 0/6     | 1.3                                                  |
|         | 16               | 6/6        | 1/6                                                  | 0/6     | 2.7                                                  |
|         | 23               | 6/6        | 0/6                                                  | 0/6     | 3.3                                                  |
|         | 28               | 6/6        | 2/6                                                  | 0/6     | 2.7                                                  |
| 100.0%  | 0                | 6/6        | 0/6                                                  | 0/6     | 2.0                                                  |
|         | 2                | 6/6        | 2/6                                                  | 0/6     | 3.7                                                  |
|         | 9                | 6/6        | 0/6                                                  | 0/6     | 2.7                                                  |
|         | 16               | 6/6        | 3/6                                                  | 0/6     | 4.5                                                  |
|         | 23               | 6/6        | 2/6                                                  | 0/6     | 5.7                                                  |
|         | 28               | 6/6        | 4/6                                                  | 0/6     | 5.0                                                  |
| Females |                  |            | •                                                    |         |                                                      |
| 0.0%    | 0                | 1/6        | 0/6                                                  | 0/6     | 0.2                                                  |
|         | 2                | 2/6        | 0/6                                                  | 0/6     | 0.3                                                  |
|         | 9                | 6/6        | 1/6                                                  | 0/6     | 1.3                                                  |
|         | 16               | 6/6        | 3/6                                                  | 0/6     | 2.2                                                  |
|         | 23               | 5/6        | 2/6                                                  | 0/6     | 2.0                                                  |
|         | 28               | 6/6        | 3/6                                                  | 0/6     | 3.0                                                  |
| 1.0%    | 0                | 0/6        | 0/6                                                  | 0/6     | 0.0                                                  |
|         | 2                | 2/6        | 0/6                                                  | 0/6     | 0.5                                                  |
|         | 9                | 3/6        | 0/6                                                  | 0/6     | 0.8                                                  |
|         | 16               | 6/6        | 4/6                                                  | 0/6     | 3.3                                                  |
|         | 23               | 6/6        | 4/6                                                  | 1/6     | 3.0                                                  |
|         | 28               | 6/6        | 3/6                                                  | 0/6     | 2.2                                                  |
| 10.0%   | 0                | 2/6        | 0/6                                                  | 0/6     | 0.3                                                  |
|         | 2                | 3/6        | 0/6                                                  | 0/6     | 0.8                                                  |
|         | 9                | 6/6        | 0/6                                                  | 0/6     | 1.5                                                  |
|         | 16               | 6/6        | 4/6                                                  | 0/6     | 4.3                                                  |
|         | 23               | 6/6        | 5/6                                                  | 1/6     | 4.5                                                  |

Table 2.6.2.4.1-3. Incidence of skin effects in rats exposed to clethodim (technical) for four weeks.

|        | 28 | 6/6 | 5/6 | 0/6 | 3.8 |
|--------|----|-----|-----|-----|-----|
| 100.0% | 0  | 6/6 | 0/6 | 0/6 | 1.7 |
|        | 2  | 6/6 | 0/6 | 0/6 | 2.7 |
|        | 9  | 6/6 | 1/6 | 0/6 | 3.8 |
|        | 16 | 6/6 | 3/6 | 0/6 | 5.5 |
|        | 23 | 6/6 | 2/6 | 0/6 | 5.3 |
|        | 28 | 6/6 | 4/6 | 0/6 | 4.7 |

<sup>1</sup> 30 minutes after removal of the test item/vehicle. Day 0 = first application.

<sup>2</sup> Mean of the sum of scores for erythema and oedema; maximum mean score possible: 8.0

In the skin sensitisation study, effects on the skin after the intradermal injection occurred in both control and tested animals (as expected since this is well-known to occur after intradermal injection of FCA). Effects included erythema, oedema, necrotizing dermatitis, encrustation, and exfoliation of encrustation. After the epidermal injection on day 8, no erythematous or oedematous reaction was observed in the animals in control group treated with PEG 300 only but discrete or patchy (grade 1) erythema was observed in five (at 24 h) and six (at 48 h) out of 10 animals after treatment with the test item at 62.5% in PEG 300. After the skin challenge on day 22, no skin reactions were observed in the control group when treated with the test item 50% in PEG 300 or with PEG 300 alone. In the treated animals, discrete or patchy (grade 1) to moderate and confluent (grade 2) erythema were observed in nine (at 24 h) and eight (at 48 h) out of 10 animals after treatment with the test item at 50% in PEG 300. No skin reactions were observed in the animals, when treated with PEG 300 only.

## 2.6.2.4.2 Comparison with the CLP criteria regarding skin corrosion/irritation

A substance is irritant to skin when it produces reversible damage to the skin following its application for up to 4 h. According to the CLP Guidance Table 3.2.2, the major criterion for the irritation category is as follows:

| Category                              | Criteria                                                                                             |  |  |  |  |
|---------------------------------------|------------------------------------------------------------------------------------------------------|--|--|--|--|
| Irritation (Category 2)               | (1) Mean score of ≥2,3-≤4,0 for erythema/eschar or for oedema in at least 2 of 3 tested animals      |  |  |  |  |
|                                       | from gradings at 24, 48 and 72 h after patch removal or, if reactions are delayed, from grades on    |  |  |  |  |
|                                       | 3 consecutive days after the onset of skin reactions; or                                             |  |  |  |  |
|                                       | (2) Inflammation that persists to the end of the observation period normally 14 days in at least 2   |  |  |  |  |
|                                       | animals, particularly taking into account alopecia (limited area), hyperkeratosis, hyperplasia, and  |  |  |  |  |
|                                       | scaling; or                                                                                          |  |  |  |  |
|                                       | (3) In some cases where there is pronounced variability of response among animals, with very         |  |  |  |  |
|                                       | definite positive effects related to chemical exposure in a single animal but less than the criteria |  |  |  |  |
|                                       | above                                                                                                |  |  |  |  |
| <sup>a)</sup> Grading criteria are un | nderstood as described in Regulation (EC) No 440/2008                                                |  |  |  |  |

In the previous RAC opinion (2015) the irritation properties of the test substance were discussed. The following conclusion was done by RAC (text copied from RAC opinion 2015):

"In the rabbit skin irritation study the scores obtained following 4 h (or less) treatment with clethodim did not meet the criteria for classification as Skin Irrit. 2 (mean value of  $\geq 2.3 \geq 4.0$  for erythema or oedema in at least 2/3 animals from gradings at 24, 48 and 72 h after patch removal). There was no evidence of full thickness destruction of the skin. The effects observed were not sufficiently severe to justify classification. Additionally, all effects were found to be reversible within 9 days and there was no evidence of alopecia, hyperkeratosis, hyperplasia or scaling. Therefore, the data from this study indicate that no classification for skin irritation is warranted. Labelling phrase EUH066 (Repeated exposure may cause skin dryness or cracking) can be applied to substances which may cause concern as a result of skin dryness, flaking or cracking following exposure but which do not meet the criteria for classification.

In the acute dermal toxicity study with clethodim, there were signs of skin irritation noted during the initial 24 h observation period and flaky, dry and/or reddened skin was observed at termination. In the guinea pig skin sensitisation study, discrete or patchy erythema was noted in 60% of animals 48 h after topical induction. Given these results and the fact that this substance is clearly lipophilic (LogP 4.2), it would seem appropriate to apply EUH066 to clethodim.

Therefore, RAC agrees with the DS that clethodim should not be classified for skin irritation but should bear the supplemental labelling phrase, EUH066".

RMS is of the opinion that this conclusion remains for the renewal of active substance.

# 2.6.2.4.3 Conclusion on classification and labelling for skin corrosion/irritation

No classification is proposed.

Labelling phrase EUH066 ("Repeated exposure may cause skin dryness or cracking") is proposed.

# 2.6.2.5 Serious eye damage/eye irritation [equivalent to section 10.5 of the CLH report template]

| Method, guideline,               | Species,     | Test        | Dose levels            | Results                     | Reference    |
|----------------------------------|--------------|-------------|------------------------|-----------------------------|--------------|
| deviations if any                | strain, sex, | substance   | duration of            | - Observations and time     |              |
| ·                                | no/group     |             | exposure               | point of onset              |              |
|                                  |              |             |                        | - Mean scores/animal        |              |
|                                  |              |             |                        | - Reversibility             |              |
| Primary eye irritation – rabbits | Rabbit,      | RE-45601    | 0.1 mL undiluted test  | Treated, rinsed eyes:       |              |
|                                  | New          | (technical) | material (all          | Moderate conjunctival       | 1986         |
| No guideline reported. In        | Zealand      |             | individuals) + rinse   | irritation one h after      |              |
| general compliance with          | white,       | Lot/Batch:  | with water after 30    | dosing. Slight conjunctival | Report       |
| OECD TG 405 (1981).              | Male, 9      | SX-1688     | seconds of exposure    | redness 24 h after dosing.  | number:      |
| The current guideline (OECD      |              |             | (3 individuals).       | All eyes were clear of      | CEHB 2511    |
| TG 405, 2021) recommends:        |              | Purity:     | Eyes were examined     | irritation after 48 h.      |              |
| -efforts for the reduction of    |              | 83.3 %      | at 1, 24, 48, and 72 h |                             | Vol.3.       |
| pain and refers to integrated    |              | w/w         | post treatment         | Mean scores (1, 24, 48,     | B.6.2.5/01   |
| testing approaches utilizing     |              |             |                        | 72h):                       |              |
| alternative in vitro guideline   |              |             |                        | Cornea: 0, 0, 0, 0          | New data     |
| studies for hazard               |              |             |                        | Iris: 0, 0, 0, 0            | for renewal: |
| classification that were not     |              |             |                        | Redness: 2, 0.7, 0, 0       | No           |
| available at the time of         |              |             |                        | Chemosis: 1.3, 0, 0, 0      |              |
| conduct of this study.           |              |             |                        |                             |              |
| -The use of a satellite group to |              |             |                        | Treated, unrinsed eyes:     |              |
| assess the influence of          |              |             |                        | Moderate-severe             |              |
| washing is not recommended       |              |             |                        | conjunctival irritation one |              |
| in the current guideline.        |              |             |                        | h after dosing. Slight-     |              |
| - The temperature of the water   |              |             |                        | moderate 24 h after         |              |
| used for rinsing was not         |              |             |                        | dosing. All eyes were       |              |
| reported.                        |              |             |                        | clear of irritation 72 h    |              |
| - The guideline recommends       |              |             |                        | after dosing.               |              |
| an initial test using one        |              |             |                        |                             |              |
| individual with the possibility  |              |             |                        |                             |              |

Table 30: Summary table of animal studies on serious eye damage/eye irritation.

| of extending the test with more | Mean scores (1, 24, 48,   |
|---------------------------------|---------------------------|
| animals: in this study, six     | 72h):                     |
| animals were used from the      | Cornea: 0, 0, 0, 0        |
| start.                          | Iris: 0, 0, 0, 0          |
| - Humidity (56.2-71.0%)         | Redness: 2.3, 1.8, 1.0, 0 |
| slightly above recommended      | Chemosis: 1.5, 0.8, 0, 0  |
| value of 70% in the guideline   |                           |
|                                 |                           |
| GLP: Yes                        |                           |
|                                 |                           |
| Acceptable                      |                           |

### Table 31: Summary table of human data on serious eye damage/eye irritation.

| Tuble 51. Dummar  | ruble 51: Summary table of numan data on serious eye damage eye nintation. |                             |              |           |  |  |  |
|-------------------|----------------------------------------------------------------------------|-----------------------------|--------------|-----------|--|--|--|
| Type of           | Test substance                                                             | <b>Relevant information</b> | Observations | Reference |  |  |  |
| data/report       |                                                                            | about the study (as         |              |           |  |  |  |
|                   |                                                                            | applicable)                 |              |           |  |  |  |
| No data available |                                                                            |                             |              |           |  |  |  |

## Table 32: Summary table of other studies relevant for serious eye damage/eye irritation.

| Type of<br>study/data | Test substance | Relevant information<br>about the study (as<br>applicable) | Observations | Reference |
|-----------------------|----------------|------------------------------------------------------------|--------------|-----------|
| No data available     |                |                                                            |              |           |

# 2.6.2.5.1 Short summary and overall relevance of the provided information on serious eye damage/eye irritation

There are no new data for this endpoint in this report.

One study on male New Zealand white rabbits is available. It was conducted in accordance with the principles of Good Laboratory Practice and following the general guidelines of OECD 405 with exception of some deviations (see Table 30) which are not considered to have a major impact on the study outcome. A volume of 0.1 mL undiluted test item was put in the conjunctival sac of male rabbits, three of which were rinsed with distilled water after 30 seconds of exposure and six of which were not. No corneal opacity or iritis was observed during the study. Conjunctival irritation was observed in both groups after 1 h (grade 1-2 in rabbits which eyes were rinsed with water and grade 1-3 in those whose eyes were not rinsed). The irritation gradually cleared out and neither redness nor chemosis were observed after 48 h (rinsed) or 72 h (unrinsed). The study is acceptable.

| Table 2.0.2.5.1. Hulvidual allihal scores-average (24-72 ll) |                                            |  |  |  |
|--------------------------------------------------------------|--------------------------------------------|--|--|--|
|                                                              | Individual animal scores-average (24-72 h) |  |  |  |
| Cornea/opacity                                               | 0-0-0-0-0                                  |  |  |  |
| Iris                                                         | 0-0-0-0-0                                  |  |  |  |
| Conjunctiva redness                                          | 1-0.33-1-1.33-1-1                          |  |  |  |
| Conjunctiva chemosis                                         | 0.33-0.33-0.33-0-0.33-0.33                 |  |  |  |

Table 2.6.2.5.1: Individual animal scores-average (24-72 h)

# 2.6.2.5.2 Comparison with the CLP criteria regarding serious eye damage/eye irritation

Eye irritation means the production of changes in the eye, which are fully reversible, occurring after the exposure of the eye to a substance or mixture. A substance should be classified as an eye irritant if it produces in at least 4 of 6 tested animals a positive response of:

(a) corneal opacity  $\geq$  1; and/or

## (b) iritis $\geq$ 1; and/or

(c) conjunctival redness  $\geq 2$ ; and/or

(d) conjunctival oedema (chemosis)  $\geq 2$ 

calculated as the mean scores following grading at 24, 48 and 72 h after instillation of the test material, and which fully reverses within an observation period of normally 21 days.

All effects were reversible within 3 days. No effects on the iris or cornea were observed and the effects on conjunctiva redness and chemosis were below 2. Therefore, clethodim does not meet the criteria for classification as an eye irritant.

## 2.6.2.5.3 Conclusion on classification and labelling for serious eye damage/eye irritation

Clethodim does not fulfil criteria for classification.

## 2.6.2.6 **Respiratory sensitisation [equivalent to section 10.6 of the CLH report template]**

There are no formally recognised and validated animal or in vitro tests for respiratory sensitisation.

| Method,<br>guideline,<br>deviations if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Species,<br>strain, sex,<br>no/group | Test<br>substance | Dose levels,<br>duration of<br>exposure | Results | Reference |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------|-----------------------------------------|---------|-----------|--|--|
| any   Image: Constraint of the second seco |                                      |                   |                                         |         |           |  |  |

Table 33: Summary table of animal studies on respiratory sensitisation.

#### Table 34: Summary table of human data on respiratory sensitisation.

| Type of<br>data/report     | Test substance | Relevant information<br>about the study (as<br>applicable) | Observations | Reference |  |  |  |
|----------------------------|----------------|------------------------------------------------------------|--------------|-----------|--|--|--|
| No specific data available |                |                                                            |              |           |  |  |  |

Table 35: Summary table of other studies relevant for respiratory sensitisation.

| Type of        | Test substance    | <b>Relevant information</b> | Observations | Reference |  |  |  |
|----------------|-------------------|-----------------------------|--------------|-----------|--|--|--|
| study/data     |                   | about the study (as         |              |           |  |  |  |
|                |                   | applicable)                 |              |           |  |  |  |
| No data availa | No data available |                             |              |           |  |  |  |

# **2.6.2.6.1** Short summary and overall relevance of the provided information on respiratory sensitisation

No information was available on respiratory sensitisation. Clethodim was not classified as acutely toxic via the inhalation route (study summarised in section 2.6.2.3). Furthermore, no medical findings have been reported (refer to section 2.6.9).

# 2.6.2.6.2 Comparison with the CLP criteria regarding respiratory sensitisation

Not relevant as no data are available.

# 2.6.2.6.3 Conclusion on classification and labelling for respiratory sensitisation

Not relevant as no data are available.

# 2.6.2.7 Skin sensitisation [equivalent to section 10.7 of the CLH report template]

| Table 36: Sum | Cable 36: Summary table of animal studies on skin sensitisation. |            |                            |                                       |            |  |  |  |
|---------------|------------------------------------------------------------------|------------|----------------------------|---------------------------------------|------------|--|--|--|
| Method,       | Species,                                                         | Test       | Dose levels                | Results                               | Reference  |  |  |  |
| guideline,    | strain, sex,                                                     | substance  | duration of exposure       |                                       |            |  |  |  |
| deviations if | no/group                                                         |            |                            |                                       |            |  |  |  |
| any           |                                                                  |            |                            |                                       |            |  |  |  |
| GPMT          | Guinea pig,                                                      | Clethodim  | Intradermal induction:     | Grade 1 erythema was observed in 5    |            |  |  |  |
| (Guinea Pig   | Dunkin/Hartley                                                   | technical  | 50% dilution of the test   | and 6 animals 24 and 48 h after the   | 2006       |  |  |  |
| Maximisation  | Albino,                                                          | Lot/Batch: | item with PEG 300 and      | epidermal induction of the test item. |            |  |  |  |
| Test)         | Female,                                                          | 6F57523000 | an emulsion of Freund's    |                                       | Report     |  |  |  |
|               | 5/group                                                          | Purity:    | Complete Adjuvant          | Grade 1-2 erythema was observed in    | number:    |  |  |  |
| OECD TG       | (control) +                                                      | 92.4%      | (FCA)/physiological        | 9/10 and 8/10 animals 24 and 48 h     | A42210     |  |  |  |
| 406 (1992)    | 10/group (test                                                   |            | saline.                    | after the challenge treatment.        |            |  |  |  |
|               | item)                                                            |            |                            |                                       | Vol.3.     |  |  |  |
|               |                                                                  |            | Epidermal induction        | No reactions were seen in control     | B.6.2.6/01 |  |  |  |
| Deviations    |                                                                  |            | (for 48 h): 62.5%          | animals.                              |            |  |  |  |
| from          |                                                                  |            | dilution of the test item. |                                       | New data   |  |  |  |
| guideline:    |                                                                  |            |                            | Skin Sens. 1 (H317: May cause an      | for        |  |  |  |
| -the          |                                                                  |            | Challenge (2 w after       | allergic skin reaction).              | renewal:   |  |  |  |
| temperature   |                                                                  |            | epidermal induction):      |                                       | No         |  |  |  |
| used was      |                                                                  |            | 50% dilution of the test   |                                       |            |  |  |  |
| slightly      |                                                                  |            | item.                      |                                       |            |  |  |  |
| higher than   |                                                                  |            |                            |                                       |            |  |  |  |
| recommended   |                                                                  |            |                            |                                       |            |  |  |  |
| (22±3°C vs.   |                                                                  |            |                            |                                       |            |  |  |  |
| 20±3°C)       |                                                                  |            |                            |                                       |            |  |  |  |
|               |                                                                  |            |                            |                                       |            |  |  |  |
| GLP: Yes      |                                                                  |            |                            |                                       |            |  |  |  |
|               |                                                                  |            |                            |                                       |            |  |  |  |
| Acceptable    |                                                                  |            |                            |                                       |            |  |  |  |
| study         |                                                                  |            |                            |                                       |            |  |  |  |

Table 36: Summary table of animal studies on skin sensitisation

#### Table 37: Summary table of human data on skin sensitisation.

| Type of<br>data/report | Test<br>substance | Relevant information<br>about the study (as<br>applicable) | Observations | Reference |  |  |  |  |
|------------------------|-------------------|------------------------------------------------------------|--------------|-----------|--|--|--|--|
| No data availa         | No data available |                                                            |              |           |  |  |  |  |

#### Table 38: Summary table of other studies relevant for skin sensitisation.

| Type of         | Test      | <b>Relevant information about</b> | Observations | Reference |
|-----------------|-----------|-----------------------------------|--------------|-----------|
| study/data      | substance | the study (as applicable)         |              |           |
| No data availab |           |                                   |              |           |

#### Short summary and overall relevance of the provided information on skin 2.6.2.7.1 sensitisation

There are no new data for this endpoint in this report.

The skin sensitisation study (old data) on female Guinea pigs was conducted in accordance with the Principles of Good Laboratory Practice and follows OECD TG 406 except for minor deviations (see Table 36). In this study, 80-90 % of the animals in the test group had skin reactions after the challenge with the test item at a concentration of 50%. The study is acceptable.

| able 2.02.711. Skill response in remain Guinea pigs after chancinge appreadion of creationini technical 5070 in 1120 500 |                                                                        |      |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------|--|--|--|
| Treatment                                                                                                                | Number of individuals with skin reactions/ total number of individuals |      |  |  |  |
|                                                                                                                          | 24 h                                                                   | 48 h |  |  |  |
| Control group                                                                                                            |                                                                        |      |  |  |  |
| Clethodim technical 50% in PEG 300                                                                                       | 0/5                                                                    | 0/5  |  |  |  |
| PEG 300 only                                                                                                             | 0/5                                                                    | 0/5  |  |  |  |
| Test group                                                                                                               |                                                                        |      |  |  |  |
| Clethodim technical 50% in PEG 300                                                                                       | 9/10                                                                   | 8/10 |  |  |  |
| PEG 300 only                                                                                                             | 0/10                                                                   | 0/10 |  |  |  |

Table 2.6.2.7.1: Skin response in female Guinea pigs after challenge application of clethodim technical 50% in PEG 300

#### 2.6.2.7.2 Comparison with the CLP criteria regarding skin sensitisation

For Category 1, when an adjuvant type test method for skin sensitisation is used, a response of at least 30 % of the animals is considered as positive. Clethodim is therefore classified as a skin sensitiser, Category 1, under Regulation (EC) 1272/2008 (CLP) with the hazed statement H317: "May cause an allergic skin reaction".

Classification in sub-category 1B is appropriate when  $\geq$ 30% of the animals produce a positive response following an intradermal dose of 1%. However, as clethodim was not tested at an intradermal dose of less than 50% this cannot be assessed adequately. Thus, no sub-categorisation was proposed.

#### 2.6.2.7.3 Conclusion on classification and labelling for skin sensitisation

Skin Sens. 1. H317: May cause an allergic skin reaction.

#### 2.6.2.8 Phototoxicity

| Method, guideline, deviations    | Test       | Dose levels             | Results                    | Reference      |
|----------------------------------|------------|-------------------------|----------------------------|----------------|
| if any                           | substance  | duration of exposure    |                            |                |
| In vitro 3T3 NRU phototoxicity   | Clethodim  | 0 (vehicle), 0.316,     | IC50 = 73 (irradiated) and | Gijsbrechts    |
| test                             | technical  | 1.00, 3.16, 10.0, 31.6, | 959.8 (not irradiated)     | 2020           |
|                                  |            | 100, 316, and 1000      | µg/mL                      |                |
| Balb/c 3T3 fibroblast cells      | Lot/Batch: | µg/mL                   | PIF: >14                   | Report number: |
| (clone 31, mouse fibroblast cell | 4478       |                         |                            | 20182211       |
| line)                            |            | $60 \min exposure + 22$ |                            |                |
|                                  | Purity:    | min irradiation         |                            | Vol.3.         |
| OECD TG 432 (2004)               | 95.98%     |                         |                            | B.6.2.7/01     |
| Deviations from guideline:       |            |                         |                            |                |
| - The proportions of the         |            |                         |                            | New data for   |
| components in the cell culture   |            |                         |                            | renewal: Yes   |
| medium differed from those       |            |                         |                            |                |
| recommended in the guideline,    |            |                         |                            |                |
| the RMS does not consider this   |            |                         |                            |                |

Table 39: Summary table of studies on phototoxicity.

| to affect the validity of the     |  |  |
|-----------------------------------|--|--|
| study.                            |  |  |
| - The irradiation time was 22     |  |  |
| minutes as opposed to the ~50     |  |  |
| minutes recommended in the        |  |  |
| guideline. The time was           |  |  |
| sufficient to cause phototoxicity |  |  |
| and thus this deviation does not  |  |  |
| affect the validity of the study. |  |  |
|                                   |  |  |
| GLP                               |  |  |
|                                   |  |  |
| Acceptable                        |  |  |

### Table 40: Summary table of human data on phototoxicity.

| Type of<br>data/report | Test<br>substance | Relevant information<br>about the study (as<br>applicable) | Observations | Reference |  |  |
|------------------------|-------------------|------------------------------------------------------------|--------------|-----------|--|--|
| No data availa         | No data available |                                                            |              |           |  |  |

#### Table 41: Summary table of other studies relevant for phototoxicity.

| Tuble 41. Dul | ible 41: Summary table of other statues relevant for phototoxicity. |                             |              |           |  |  |
|---------------|---------------------------------------------------------------------|-----------------------------|--------------|-----------|--|--|
| Type of       | Test                                                                | <b>Relevant information</b> | Observations | Reference |  |  |
| study/data    | substance                                                           | about the study (as         |              |           |  |  |
|               |                                                                     | applicable)                 |              |           |  |  |
| No data avail | No data available                                                   |                             |              |           |  |  |

# 2.6.2.8.1 Short summary and overall relevance of the provided information on phototoxicity

For this section a new phototoxicity study is available. In this study, potential phototoxicity of clethodim was assessed using the Neutral red uptake phototoxicity assay in Balb/c 3T3 mouse fibroblasts. The study was conducted in accordance with the OECD Principles of Good Laboratory Practice and follows OECD TG 432 except for some deviations (see Table 39) which are not considered to have a major impact on the study outcome. Cytotoxicity was observed after treatment with clethodim technical after exposure with UV/Visible light irradiation. In the absence of light irradiation, the test item showed no clear cytotoxicity. The test item showed an IC50 value of 73  $\mu$ g/mL in the presence of irradiation. No IC50 was reached in the absence of irradiation, resulting in a PIF value of >14. Clethodim technical was shown to be phototoxic.

There are currently no classification and labelling criteria for phototoxicity according to the relevant EU regulation (E.C Regulation 1272/2008).

| Irradiation          | Value | Conce | Concentration of clethodim (µg/mL) |      |      |      |      | Vehicle | IC <sub>50</sub> | PIF     |         |     |
|----------------------|-------|-------|------------------------------------|------|------|------|------|---------|------------------|---------|---------|-----|
|                      |       | 1000  | 316                                | 100  | 31.6 | 10.0 | 3.16 | 1.00    | 0.316            | Control | (µg/mL) | PIF |
| Not                  | OD540 | 0.87  | 0.86                               | 0.89 | 1.00 | 1.06 | 1.07 | 1.07    | 1.06             | 1.05    |         |     |
| irradiated<br>(-Irr) | SEM   | 0.02  | 0.01                               | 0.01 | 0.03 | 0.01 | 0.02 | 0.02    | 0.02             | 0.01    | >1000   | >14 |
| Irradiated           | OD540 | 0.06  | 0.11                               | 0.42 | 0.75 | 0.94 | 0.97 | 1.01    | 0.99             | 0.96    | 73      |     |
| (+Irr)               | SEM   | 0.01  | 0.04                               | 0.03 | 0.02 | 0.03 | 0.03 | 0.03    | 0.02             | 0.02    | 75      |     |

Table 2.6.2.8.1-1: Overview of the results

#### Aspiration hazard [equivalent to section 10.13 of the CLH report template] 2.6.2.9

| Table 42: Summary table of evidence for aspiration hazard. |           |                                                       |  |  |  |  |  |
|------------------------------------------------------------|-----------|-------------------------------------------------------|--|--|--|--|--|
| Type of                                                    | Test      | Relevant information about the Observations Reference |  |  |  |  |  |
| study/data                                                 | substance | study (as applicable)                                 |  |  |  |  |  |
| No specific data available                                 |           |                                                       |  |  |  |  |  |

#### Table 42. C . . . ...

#### 2.6.2.9.1 Short summary and overall relevance of the provided information on aspiration hazard

No specific data available.

#### 2.6.2.9.2 Comparison with the CLP criteria regarding aspiration hazard

According to regulation (EC) No 1272/2008, an active substance is included in the hazard category (Category 1) for aspiration toxicity: (i) based on reliable and good quality human evidence or (ii) if it is a hydrocarbon and has a kinematic viscosity of 20.5 mm<sup>2</sup>/s or less, measured at 40°C. The second criterion is related only to liquid substances.

No data are available from humans indicating an aspiration hazard. Clethodim has a kinematic viscosity>20.5 mm<sup>2</sup>/s.

#### 2.6.2.9.3 Conclusion on classification and labelling for aspiration hazard

No classification for hazard is proposed.

#### 2.6.2.10 Specific target organ toxicity-single exposure (STOT SE) [equivalent to section 10.11 of the CLH report template]

| Method, guideline,          | Test substance, route of        | Results                                        | Reference  |
|-----------------------------|---------------------------------|------------------------------------------------|------------|
| deviations if any, species, | exposure, dose levels, duration | - NOAEL/LOAEL                                  |            |
| strain, sex, no/group       | of exposure                     | - target tissue/organ                          |            |
|                             |                                 | - critical effects at the LOAEL                |            |
| Acute oral toxicity         | Clethodim technical             | NOAEL: -                                       |            |
|                             |                                 |                                                | 1986       |
| OECD TG 401 (1981)          | Lot/Batch: SX-1688              | LOAEL: 800 mg/kg bw (equal to 667 mg/kg        |            |
| No deviations noted.        |                                 | bw based on correction for purity using a      | Report     |
|                             | Purity: 83.3% w/w               | correction factor of 1.2)                      | number: S  |
| Rats (Sprague-Dawley),      |                                 |                                                | 2498       |
| both sexes, 5               | Vehicle: Suspension in 0.7%     | Clinical signs were observed from 30 minutes   |            |
| individuals/group           | CMC (carboxymethylcellulose)    | after administration in all dose groups during | Vol.3.     |
|                             | and 1.0 % TWEEN 80 in           | the first days of the study. All surviving     | B.6.2.1/01 |
| GLP: Yes                    | distilled water                 | animals appeared normal on day 6.              |            |
|                             |                                 |                                                | New data   |
| Acceptable                  | Oral gavage                     | Mortality:                                     | for        |
|                             |                                 | Group Sex Deaths                               | renewal:   |
|                             | 14 days observation period      | 800 F 0/5                                      | No         |
|                             |                                 | 1050 M+F 0/10                                  |            |
|                             |                                 | 1450 M+F 4/10                                  |            |
|                             | Males: 1050, 1450, 1860, and    | 1860 M 4/5                                     |            |
|                             | 2500 mg/kg                      | 2000 F 5/5                                     |            |
|                             |                                 | 2500 M 5/5                                     |            |

Table 43. Summary table of animal studies on STOT SE (specific target organ toxicity-single exposure)

| E1 900 1050 1450 1                       |                                                                                         |
|------------------------------------------|-----------------------------------------------------------------------------------------|
| Females: 800, 1050, 1450, and 2000 mg/kg | I.D. values (values corrected for purity):                                              |
| 2000 mg/kg                               | LD <sub>50</sub> values (values corrected for purity):<br>Eamales: 1133 mg a s $/kg$ by |
|                                          | Females: 1133 mg a.s./kg bw                                                             |
|                                          | Males: 1358 mg a.s./kg bw                                                               |
|                                          | 800 mg/kg (F only):                                                                     |
|                                          | Salivation (5/5)                                                                        |
|                                          | $\downarrow$ motor activity (5/5)                                                       |
|                                          | yellow anogenital stains (5/5)                                                          |
|                                          | unsteady gait (4/5)                                                                     |
|                                          | reduced food consumption (3/5)                                                          |
|                                          | hyperreactive (1/5)                                                                     |
|                                          | clonic convulsions (1/5)                                                                |
|                                          | diarrhoea (1/5)                                                                         |
|                                          | red ocular discharge (1/5)                                                              |
|                                          |                                                                                         |
|                                          | 1050 mg/kg bw (both sexes):                                                             |
|                                          | Salivation (10/10)                                                                      |
|                                          | $\downarrow$ motor activity (10/10)                                                     |
|                                          | yellow anogenital discharge and/or stains                                               |
|                                          | (8/10)                                                                                  |
|                                          | unsteady gait (9/10)                                                                    |
|                                          | hunched or tremoring gait (2/10)                                                        |
|                                          | lacrimation (3/10)                                                                      |
|                                          | reduced food consumption (9/10)                                                         |
|                                          | hyperreactive (8/10)                                                                    |
|                                          | red ocular discharge (1/10)                                                             |
|                                          | red nasal discharge (1/10)                                                              |
|                                          | 1450  mg/kg (both sayas):                                                               |
|                                          | 1450 mg/kg (both sexes):<br>Salivation (10/10)                                          |
|                                          | $\downarrow$ motor activity (9/10)                                                      |
|                                          | Hyperreactive (8/10)                                                                    |
|                                          | Unsteady gait (7/10)                                                                    |
|                                          | Clonic convulsions (3/10)                                                               |
|                                          | Collapse (4/10)                                                                         |
|                                          | Lacrimation (4/10)                                                                      |
|                                          | Diarrhoea (3/10)                                                                        |
|                                          | yellow anogenital discharge and/or stains                                               |
|                                          | (8/10)                                                                                  |
|                                          | Hunched and/or tremoring gait (5/10)                                                    |
|                                          | Reduced food consumption (7/10)                                                         |
|                                          | Clear ocular discharge (1/10)                                                           |
|                                          | Red stained fur on the snout $(1/10)$                                                   |
|                                          | Brain: dark gelatinous material beneath the                                             |
|                                          | meninges (2/10)                                                                         |
|                                          | Trachea: foam/froth (1/10)                                                              |
|                                          | Stomach: dark black content (/1/10)                                                     |
|                                          | Trace gliosis in a single spinal nerve in the                                           |
|                                          | lower lumbar area (2 individuals), trace focal                                          |
|                                          | vacuolar change was associated with one of                                              |
|                                          | these lesions.                                                                          |
|                                          | 1860 mg/kg (M only):                                                                    |
|                                          | Salivation (5/5)                                                                        |
|                                          | $\downarrow$ motor activity (5/5)                                                       |
|                                          | Unsteady gait (4/5)                                                                     |
|                                          | Clonic convulsions (4/5)                                                                |
|                                          | Hyperreactive (4/5)                                                                     |
|                                          | Lacrimation (1/5)                                                                       |
|                                          | Collapse (4/5)                                                                          |
|                                          | Hunched and tremoring gait (1/5)                                                        |
|                                          | Red stained fur on the snout (1/5)                                                      |
|                                          | Yellow anogenital stain (1/5)                                                           |
|                                          | Reduced food consumption (1/5)                                                          |
|                                          | Brain: dark gelatinous material beneath the                                             |
|                                          | meninges (3/5)                                                                          |
|                                          | 0 · · · · · /                                                                           |

|                                                                                                                           |                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                           |
|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
|                                                                                                                           |                                                                                                                                                                                                         | 2000 mg/kg (F only):<br>Salivation (5/5)<br>↓ motor activity (5/5)<br>Clonic convulsions (4/5)<br>Hyperreactive (2/5)<br>Unsteady gait (2/5)<br>Lacrimation (1/5)<br>Collapse (1/5)<br>Yellow anogenital stain (1/5)<br>Brain: dark gelatinous material beneath the<br>meninges (4/5)<br>Brain: reddened meninges (1/5)<br>Lung: reddened/darkened (4/5)<br>Lung: reddened/darkened (4/5)<br>Lung: mottled (2/5)<br>Trachea: foam/froth (3/5)<br>Stomach: white fluid/material (1/5)<br>Kidney: dilated pelvis (1/5)<br>2500  mg/kg (M only):<br>Salivation (5/5)<br>Hyperreactive (4/5)<br>Decreased motor activity (4/5)<br>Unsteady gait (3/5)<br>Clonic convulsions (1/5)<br>Collapse (2/5)<br>Brain: dark gelatinous material beneath the<br>meninges (4/5)<br>Lung: reddened/darkened (4/5)<br>Trachea: foam/froth (3/5)<br>Stomach: white fluid/material (1/5)<br>Stomach: tan fluid (1/5)<br>Small intestine: tan fluid within (1/5) |                                                           |
|                                                                                                                           |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                           |
| Acute oral toxicity                                                                                                       | Clethodim technical                                                                                                                                                                                     | NOAEL: -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1986                                                      |
| OECD TG 401 (1981)<br>No deviations                                                                                       | Lot/Batch: SX-1688<br>Purity: 83.3%w/w                                                                                                                                                                  | LOAEL: 1500 mg/kg bw (equal to 1250 mg/kg bw based on correction for purity using a correction factor of 1.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Report<br>number:<br>2107-143                             |
| Mice, CD1, both sexes, 5<br>of each sex/group<br>GLP: Yes<br>Acceptable                                                   | Vehicle: Suspension in<br>carboxymethyl cellulose sodium<br>salt and TWEEN 80 in distilled<br>water Vehicle: Suspension in<br>carboxymethyl cellulose sodium<br>salt and TWEEN 80 in distilled<br>water | Clinical signs appeared from 1 h post<br>administration in all dose groups<br>(hypoactivity, rough coat, hunched<br>appearance, ataxia, tremors, salivation,<br>laboured respiration, and soft faeces and urine<br>stains) – all visible clinical signs were<br>subsided by day 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Vol.3.<br>B.6.2.1/02<br>New data<br>for<br>renewal:<br>No |
|                                                                                                                           | Oral gavage<br>14-day observation period<br>1500 (males only), 2000, 2500,<br>3000 and 3500 (females only)<br>mg/kg bw                                                                                  | Mortality occurred at doses $\geq$ 2000 mg/kg.<br>Slightly dark-red lungs were observed in<br>animals that died during the study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                           |
| Acute dermal toxicity                                                                                                     | Clethodim technical                                                                                                                                                                                     | NOAEL: -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                           |
| No study guideline was<br>reported. Study was<br>conducted in general<br>compliance with guideline<br>OECD TG 402 (1981). | Lot/Batch: SX-1688<br>Purity: 83.3%w/w<br>Dermal application                                                                                                                                            | LOAEL: 2000 mg/kg (males) (equal to 1667 mg/kg bw based on correction for impurity using a correction factor of 1.2) Control: red swollen coebbed dru/fleku skin Ocular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1986<br>Report<br>number:<br>CEHB<br>2510                 |
| Rabbit, New Zealand<br>White, 5-10 ind./group                                                                             | 24 h exposure, 14 days observation                                                                                                                                                                      | red, swollen, scabbed, dry/flaky skin. Ocular<br>and nasal discharge, and reduced food intake.<br><u>Exposed animals:</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Vol.3.<br>B.6.2.2/01                                      |
| Males and females                                                                                                         | Females: 5000 mg/kg                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                           |

| GLP: Yes<br>Acceptable                                                | Males: 2000 and 4900 mg/kg                                             | the same symptoms as the control animals<br>(except nasal discharge) but for a longer<br>period of time. In addition to those symptoms,<br>exposed animals also displayed abraded | New data<br>for<br>renewal:<br>No        |
|-----------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
|                                                                       |                                                                        | thickened, blackened, crusty, cracked skin,<br>and diarrhoea.<br>Erythema and oedema, trace to mild<br>hyperkeratosis<br>1 death (male, 4900 mg/kg)                               |                                          |
| An Oral (Gavage) Acute                                                | Clethodim TG                                                           | NOAEL neurotox: 1000 mg/kg bw                                                                                                                                                     |                                          |
| Neurotoxicity Study of<br>Clethodim in Rats                           | Lot/Batch: AS 506r                                                     | NOAEL systemic: 100 mg/kg bw                                                                                                                                                      | ,<br>(2012a)                             |
| Guidelines followed:<br>OPPTS 870.6200 (1998)                         | Purity: 95.4%                                                          | Effects at 100 mg/kg bw:                                                                                                                                                          | Report<br>number:                        |
| OECD TG 424 (1997)                                                    | Oral gavage, single dose                                               | - reduced foot splay in males (not statistically significant)                                                                                                                     | WIL-<br>194041                           |
| Deviations from current guidelines: None                              | 15 days                                                                |                                                                                                                                                                                   | Vol. 3.                                  |
| Species: Rat<br>Strain: Charles River CD®<br>(Sprague-Dawley)         | Dose:<br>0, 10, 100 and 1000 mg/kg bw                                  | Effects at 1000 mg/kg bw:<br>- clinical signs (↑ soiled fur on day 0 in<br>females (one of these animals also displayed<br>slight salivation)                                     | B.6.7.1.1<br>New data<br>for<br>renewal: |
| 3 treatment groups and a control group of 12 rats/sex/group           |                                                                        | ↓ transient locomotor activity (total and<br>ambulatory counts) in females (stat. sign. in<br>first 10 min interval).                                                             | Yes                                      |
| GLP: Yes                                                              |                                                                        | <ul> <li>reduced foot splay in males (statistically significant at day 7)</li> </ul>                                                                                              |                                          |
| Acceptable                                                            |                                                                        |                                                                                                                                                                                   |                                          |
| Acute inhalation toxicity                                             | Clethodim technical                                                    | NOAEL: -                                                                                                                                                                          | 1986                                     |
| No guideline reported, in general compliance with                     | Lot/Batch: SX-1688                                                     | LOAEL: 3.9 mg/L (equal to 3.25 mg/L based on correction for purity using a correction                                                                                             | Report                                   |
| OECD 403 (2009).                                                      | Purity: 83.3% w/w                                                      | factor of 1.2)                                                                                                                                                                    | number:<br>CEHB                          |
| Deviation: animals were older than the                                | aerosol, MMAD = $2.75 \mu m$                                           | Effects observed at 3.9 mg/L:<br>Salivations and colourless eye discharge. Red                                                                                                    | 2513                                     |
| recommended age of 8-12<br>weeks, humidity (71-72%)<br>slightly above | Inhalation of an aerosol of diluted test material (90% v/v in acetone) | nasal discharge, abnormal respiratory sounds,<br>decreased faeces, unkempt appearance, and a<br>yellow/red anogenital discharge. All exposed                                      | Vol.3.<br>B.6.2.3/01                     |
| recommended value of 70% in the guideline                             | 240 min exposure + 14 days                                             | animals appeared normal within 8 days of exposure.                                                                                                                                | New data<br>for                          |
| Rat, Sprague-Dawley, both sexes, 5 per sex/group                      | observation<br>3.9 mg/L, 4 h (maximum<br>attainable concentration)     | No mortalities occurred.                                                                                                                                                          | renewal:<br>No                           |
| GLP: Yes                                                              |                                                                        |                                                                                                                                                                                   |                                          |
| Acceptable study                                                      |                                                                        |                                                                                                                                                                                   |                                          |

# Table 44: Summary table of human data on STOT SE (specific target organ toxicity-single exposure).

| Type of<br>data/report | Test<br>substance | Route of exposure<br>Relevant information about the<br>study (as applicable) | Observations | Reference |
|------------------------|-------------------|------------------------------------------------------------------------------|--------------|-----------|
| No information         | n available       | · · · · · · · · · · · · · · · · · · ·                                        |              | •         |

| Type of     | Test substance           | <b>Relevant information</b>     | Observations                                                          | Reference    |
|-------------|--------------------------|---------------------------------|-----------------------------------------------------------------------|--------------|
| study/data  |                          | about the study (as applicable) |                                                                       |              |
| In vivo     | RE-45601 Technical       | Male and female                 | Five of 20 males and 3 of 20                                          |              |
| chromosome  |                          | Sprague-Dawley rats             | females that received 1.5 g RE-                                       | 1987         |
| aberration  | Lot/Batch: SX-1688       | were treated by gavage          | 45601 Technical/kg body weight                                        |              |
| assay       |                          | with 1.5, 0.50 and 0.15         | died prior to their scheduled                                         | Report No.:  |
|             | Purity: 83.3%            | g/kg bw with RE-45601           | sacrifice. A reduction in the rates of                                | S-2864       |
| Acceptable  |                          | Technical (SX-1688)             | body weight gain as compared to the                                   |              |
|             | Vehicle: 0.7%            | which was given as a            | vehicle control groups was observed                                   | Vol. 3.      |
|             | Carboxymethylcellulose   | single administration.          | in animals treated with 1.5 g/kg;                                     | B.6.4.2.1/01 |
|             | (CMC) with 1.0%          |                                 | Clinical signs at 1.5 g/kg included                                   | N. 1. C      |
|             | Polyoxyethylene Sorbitan |                                 | prostration, lethargy, hunching,                                      | New data for |
|             | Mono-oleate (Tween-80)   |                                 | tremors, lacrimation, excessive                                       | renewal: No  |
|             |                          |                                 | salivation, crusty eyes and crusty                                    |              |
|             |                          |                                 | nose; at 0.5 g/kg, lethargy and excessive salivation and at 0.15 g/kg |              |
|             |                          |                                 | lethargy only.                                                        |              |
| In vivo UDS | RE-45601 Technical       | Male mice (B6C3F1)              | Three of the five mice treated with                                   |              |
| assay       |                          | were given RE-45601 at          | 5000  mg/kg (16  hr) were found dead                                  |              |
|             | Lot/Batch: SX-1688       | doses of 0, 100, 1000           | at the time of their scheduled                                        | 1986         |
| Supportive  |                          | and 5000 mg/kg bw 2 or          | sacrifice; No abnormal clinical signs                                 |              |
|             | Purity: 83.3%            | 16 h before sacrifice           | were reported for the remaining                                       | Report No:   |
|             |                          | (single administration).        | mice.                                                                 | S-2762       |
|             | Vehicle:                 |                                 |                                                                       |              |
|             | Carboxymethylcellulose   |                                 |                                                                       | Vol. 3.      |
|             | (CMC), high viscosity.   |                                 |                                                                       | B.6.4.2.2/01 |
|             | Polyoxyethylene Sorbitan |                                 |                                                                       |              |
|             | Mono-oleate (Tween-80).  |                                 |                                                                       | New data for |
|             |                          |                                 |                                                                       | renewal: No  |

|  | Table 45: Summa | ary table of other studies rele | evant for STOT SE (specific tar | rget organ toxicity-single exposure). |
|--|-----------------|---------------------------------|---------------------------------|---------------------------------------|
|--|-----------------|---------------------------------|---------------------------------|---------------------------------------|

#### Short summary and overall relevance of the provided information on specific target 2.6.2.10.1 organ toxicity – single exposure (STOT SE)

#### Oral exposure

Two studies on acute oral toxicity are available (refer to section 2.6.2), one with CD1 mice and another with SD rats. Furthermore, an acute neurotoxicity study in the rat is available (refer to section 2.6.7). This latter study is new data for the renewal of active substance.

In the acute oral toxicity study in CD1 mice, animals were exposed to 2000-3500 mg/kg (females) and 1500-3000 mg/kg (males). Clethodim caused clinical signs such as hypoactivity, rough coat, hunched appearance, ataxia, tremors, salivation, laboured respiration, and soft faeces and urine stains. The effects had subsided by day 6. Mice that died during the study had dark-red lungs and compound-like material in the stomach and intestine.

In the acute oral toxicity study in Sprague-Dawley rats, animals were exposed to 800-2000 mg/kg (females) and 1050-2500 mg/kg (males). All five males of the 2500 mg/kg group, 4/5 males of the 1860 mg/kg bw group, 1/5 males of the 1450 mg/kg group, and all five females of the 2000 mg/kg group died within a day of administration. Three out of five females of the 1450 mg/kg group died within 3 days. Clethodim caused clinical signs such as salivation, decreased motor activity, unsteady gait, hyperreactivity, lacrimation, clonic convulsions, red nasal discharge, ocular discharge, and collapse in almost all treated groups. On day 6 all surviving treated animals appeared normal. Dark red gelatinous material beneath the meninges of the brain occurred in two of ten 1450 mg/kg animals, three of five 1860 mg/kg animals, four of five 2000 mg/kg animals, and four of five 2500 mg/kg animals. Reddened meninges were noted in one of five 2000 mg/kg animals. No brain abnormalities were noted in the animals exposed to  $\leq 1050$  mg/kg. Abnormalities noted in other tissues included foam or froth in the trachea (three of five animals exposed to 2000 mg/kg, three of five animals exposed to 2500 mg/kg); mottled and/or darkened, reddened lungs (two of ten controls, four of five animals exposed to 2000 mg/kg, four of five animals exposed to 2500 mg/kg); enlarged adrenals (one of ten animals exposed to 1450 mg/kg); dilated kidney pelvis (one of five animals exposed to 2000 mg/kg); and discoloured fluid in the stomach and/or intestine (one of five animals exposed to 2000 g/kg, two of five exposed to 2500 mg/kg). The two female rats exposed to 1450 mg/kg that survived until termination had trace gliosis in a single spinal nerve in the lower lumbar area.

Clethodim was also administered orally to rats in the acute neurotoxicity study but at lower doses (10-1000 mg/kg) compared with the other two acute oral toxicity studies. No mortalities occurred in this study. Some clinical signs were observed; the incidence of hair loss on forelimbs was increased in animals in the high dose group, and a larger number of females in the highest dose group had soiled fur on study day 0 compared to the control group; one female in the highest dose group with soiled fur also had slight salivation. This was not observed at later time points. The effects observed on the brain in the other acute oral toxicity study were not observed in these rats. There were no significant differences in body weight or body weight gain between the control and test substance-treated groups. Hindlimb splayfoot was decreased in males of the high dose (1000 mg/kg bw) (statistically significant at day 7) and middle dose (100 mg/kg bw) (not statistically significant) group. The motor activity was highly variable within the 10 minute-time intervals and differed largely between individuals and groups at times; however, the cumulative values did not indicate any clear trends in affected motor activity. There was a tendency towards lower activity in females on day 0 (both total and ambulatory activity in the 0-10-minute interval was statistically significantly decreased;  $\downarrow 16\%$ ) but no clear trend was observed. The RMS agrees with the applicant that this may be connected to general toxicity. Soiled fur + slight salivation was observed in one animal. There was no apparent effect on habituation patterns in the treated animals. Therefore, the effects noted in this study are not considered adverse. The NOAEL for neurotoxicity was 1000 mg/kg bw, the highest dose tested. NOAEL for systemic toxicity was considered 100 mg/kg bw based on soiled fur in females and salivation in one animal (1000 mg/kg bw). Although salivation was observed in one animal only, this effect was also observed in acute oral toxicity study (Report No.: S- 2498) in the same strain at 800 mg/kg bw/day, and therefore considered reflecting systemic toxicity rather than neurotoxicity.

In the *in vivo* chromosome aberration test, male and female Sprague Dawley rats were treated with RE-45601 Technical (single administration) by gavage at 150, 500 and 1500 mg/kg bw. Five of 20 males and 3 of 20 females that received 1.5 g RE-45601 Technical/kg body weight died prior to their scheduled sacrifice. A reduction in the rates of body weight gain as compared to the vehicle control groups was observed in animals treated with 1.5 g/kg; male animals in this group lost weight from Day 1 to Day 2 and had not net weight gain from Day 0 (pre-treatment) to Day 2. Clinical signs at 1.5 g/kg included prostration, lethargy, hunching, tremors, lacrimation, excessive salivation, crusty eyes and crusty nose: at 0.5 g/kg, lethargy and excessive salivation and at 0.15 g/kg lethargy only.

In the *in vivo* UDS assay, male mice (B6C3F1) were given RE-45601 at doses of 0, 100, 1000 and 5000 mg/kg bw 2 or 16 h before sacrifice (single administration). Three of the five mice treated with 5000 mg/kg (16 hr) were found dead at the time of their scheduled sacrifice. No abnormal clinical signs were reported for the remaining mice.

#### Dermal exposure

One study was available on acute dermal toxicity (refer to section 2.6.2) in which rabbits were exposed for 24 h (females: 5000 mg/kg males: 2000 and 4900 mg/kg) and observed for 14 days. Skin irritation occurred in both control and exposed animals, albeit more severe in the latter groups. Control animals displayed red, swollen, scabbed, dry/flaky skin. Other signs in the control groups included ocular and nasal discharge, and reduced food intake. Exposed animals showed the same symptoms as the control animals (except nasal discharge and the mouth cut/scab observed in one individual) but usually for a longer period of time. In addition to those symptoms, exposed animals also displayed other dermal effects (abraded, thickened, blackened, crusty, cracked skin) and diarrhoea. One male was found dead on day 6 and it displayed reduced food intake, decreased motor activity, decreased body temperature, unkempt appearance, diarrhoea, a lack of faeces, and collapse prior to its death. Body weight was not affected.

#### Respiratory exposure

One acute inhalation study was reported (refer to section 2.6.2), in which 5 rats of each sex were exposed to an aerosol of diluted test material (3.9 mg clethodim/L) for 240 minutes. During the exposure, salivation was observed in three exposed animals and all animals squinted or had closed eyes. Immediately following the exposure, all exposed animals were salivating, and five of ten animals (four males and one female) had a colourless eye discharge. Additional signs of toxicity observed following exposure included red nasal discharge, abnormal respiratory sounds, decreased faeces, unkempt appearance, and a yellow/red anogenital discharge. All exposed animals appeared normal within 8 days of exposure. In the control group, one male was salivating during the first h of exposure. Immediately following the exposure and throughout the 14-day observation period, all vehicle control animals appeared normal. No gross pathologic changes that could be attributed to the exposures were seen at necropsy following a 14-day observation period. No exposure-related histologic changes were observed in the lungs or tracheas of exposed animals.

# **2.6.2.10.2** Comparison with the CLP criteria regarding STOT SE (specific target organ toxicity-single exposure)

According to the CLP Guidance, specific target organ toxicity (single exposure) is defined as specific, non-lethal target organ toxicity arising from a single exposure to a substance or mixture, which are not covered by the other hazard classes. Regulation EC No 1272/2008 (CLP), Annex 1: 8.2.1.7.3, states for STOT SE: "...Evidence from appropriate studies in experimental animals can furnish much more detail, in the form of clinical observations, and macroscopic and microscopic pathological examination, and this can often reveal hazards that may not be life-threatening but could indicate functional impairment. Consequently all available evidence, and relevance to human health, must be taken into consideration in the classification process, including but not limited to the following effects in humans and/or animals:...(b) Significant functional changes, more than transient in nature, in the respiratory system, central or peripheral nervous systems, other organs or other organ systems, including signs of central nervous system depression and effects on special senses (such as sight, hearing and sense of smell)..."

| Route of exposure | Units    | Category 1    | Category 2          |
|-------------------|----------|---------------|---------------------|
| Oral              | mg/kg bw | $C \leq 300$  | $2000 \ge C > 300$  |
| Dermal            | mg/kg bw | $C \leq 1000$ | $2000 \ge C > 1000$ |

| Inhalation, vapour | mg/l/4h | $C \leq 10$ | $20 \ge C > 10$ |
|--------------------|---------|-------------|-----------------|

Neurotoxic effects were observed in the acute oral studies. Clinical signs that could indicate neurotoxic effects included salivation, decreased motor activity, unsteady gait, hyperactivity, lacrimation, clonic convulsions. The gross necropsy in the acute oral toxicity study in rats revealed effects on the brain, more specifically red gelatinous material beneath the meninges (≥1450 mg/kg) and reddened meninges (only observed in one animal given 2000 mg/kg). Furthermore, upon histopathological examination, trace gliosis in a single spinal nerve in the lower lumbar area was observed in two females of the 1.45 g/kg dose group which survived until necropsy. No effects were however, considered of concern for a classification as STOT-SE, since increased mortality was observed in the dose range (Cat 2:  $2000 \ge C > 300$ ) relevant for classification with STOT-SE. Thus, the effects observed were covered by the acute oral toxicity classification (for acute oral toxicity classification, please see 2.6.2.3).

In the acute dermal toxicity study in the rat, there was no evidence for specific target organ toxicity at 2000 mg/kg bw. Therefore, no classification was needed for dermal STOT-SE.

In an acute inhalation study in rats, no significant toxicity for classification with STOT-SE was observed up to the maximal attainable concentration of 3.25 mg/L. Therefore, no classification was needed for acute inhalation STOT-SE.

There was no evidence of respiratory tract irritation in the available studies; therefore, classification with STOT-SE Category 3 was not proposed.

#### Conclusion on classification and labelling for STOT SE (specific target organ toxicity-2.6.2.10.3 single exposure)

Clethodim does not meet the criteria for STOT SE under Regulation (EC) 1272/2008.

#### 2.6.3 Summary of repeated dose toxicity (short-term and long-term toxicity) [section 10.12 of the CLH report]

#### 2.6.3.1 Specific target organ toxicity-repeated exposure (STOT RE)

| Method, guideline,<br>deviations if any, species,<br>strain, sex, no/group | Test substance, route of<br>exposure, dose levels,<br>duration of exposure | Results - NOAEL/LOAEL - target tissue/organ - critical effects at the LOAEL Bold text=adverse effect | Reference                    |
|----------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------|
| 5-week oral study in rat<br>No guideline stated, in general                | Clethodim technical<br>Lot/Batch: SX-1653                                  | NOAEL: 200 ppm (12.5 mg/kg/day)<br>LOAEL: 1000 ppm (65.6 mg/kg/day)                                  | 1986                         |
| accordance with OECD 407 (1995)                                            | Purity: 83.4%                                                              | Effects at 5 ppm:<br>↓ erythrocyte count (M: 2% n.s., F: 6%)                                         | Report<br>number: S-<br>2720 |
| Deviations from OECD 407<br>(2008):<br>- exposure for 5 weeks, not 4       | Vehicle: acetone<br>Via the diet for 5 weeks                               | Effects at 200 ppm:<br>↓ erythrocyte count (M: 3% n.s., F: 4% n.s.)<br>↑ platelets (M: 30%)          | Vol.3<br>B.6.3.1/01          |

Table 46: Summary table of animal studies on repeated dose toxicity (short-term and long-term toxicity) STOT RE

| weight of anididumic                                    | 0 5 200 1000 4000 2000             | Effects at 1000 ppm;                                                                        | New date for             |
|---------------------------------------------------------|------------------------------------|---------------------------------------------------------------------------------------------|--------------------------|
| - weight of epididymis,<br>thymus, spleen and heart was | 0, 5, 200, 1000, 4000, 8000<br>ppm | Effects at 1000 ppm:<br>↓ erythrocyte count (M: 4% n.s., F: 6%)                             | New data for renewal: No |
| not determined                                          | (Males: 0, 0.26, 12.5, 65.6,       | ↓ haemoglobin (M: 4%, F: 6%)                                                                | Tellewal. NO             |
| - blood clotting potential was                          | 261 and 515 mg/kg bw/day           | $\uparrow$ platelets (M: 36%)                                                               |                          |
| not measured                                            | Females: 0, 0.29, 13.9, 70.6,      | ↑ absolute liver weight (M: 12%)                                                            |                          |
| - functional observations were                          | 291 and 554 mg/kg bw/day)          | ↑ liver weight relative to brain weight (M:                                                 |                          |
| not performed                                           |                                    | 13%, F: 14% n.s.)                                                                           |                          |
| - histopathology on bone                                |                                    | - centrilobular hypertrophy (M)                                                             |                          |
| marrow was not performed                                |                                    |                                                                                             |                          |
| - humidity (72%) slightly                               |                                    | Effects at 4000 ppm:                                                                        |                          |
| above recommended                                       |                                    | $\downarrow$ food consumption,                                                              |                          |
| acceptable value of 70% in the                          |                                    | $\downarrow$ body weight (F: 8%)                                                            |                          |
| guideline                                               |                                    | ↓ <b>body weight gain</b> (M: 11%, F: 25%)<br>↓ erythrocyte count (M: 5% n.s, F: 4%)        |                          |
| Rat                                                     |                                    | $\downarrow$ haemoglobin (M: 5%, F: 4% n.s.)                                                |                          |
| (Strain: Sprague-Dawley®                                |                                    | $\downarrow$ haematocrit (M: 5%, 1: 4% h.s.)                                                |                          |
| Crl:CD® (SD) BR)                                        |                                    | $\uparrow$ platelets (M: 43%),                                                              |                          |
|                                                         |                                    | $\uparrow$ uric acid (F: 46%)                                                               |                          |
| 10 of each sex/group                                    |                                    | ↑ absolute liver weight (M: 13%)                                                            |                          |
|                                                         |                                    | ↑ liver weight relative to brain weight (M:                                                 |                          |
| GLP: Yes                                                |                                    | 16%, F: 12% n.s.)                                                                           |                          |
|                                                         |                                    | $\uparrow$ liver weight relative to body weight (M:                                         |                          |
| Acceptable                                              |                                    | 19%, F: 18%)                                                                                |                          |
|                                                         |                                    | - centrilobular hypertrophy (M, F)                                                          |                          |
|                                                         |                                    | Effects at 8000 m                                                                           |                          |
|                                                         |                                    | Effects at 8000 ppm:<br>↓ food consumption,                                                 |                          |
|                                                         |                                    | ↓ <b>body weight</b> (M: 13%, F: 16%)                                                       |                          |
|                                                         |                                    | $\downarrow$ body weight (M. 13%, F. 10%)<br>$\downarrow$ body weight gain (M. 28%, F: 44%) |                          |
|                                                         |                                    | ↓ erythrocyte count (M: 3% n.s., F: 5%)                                                     |                          |
|                                                         |                                    | ↓ haemoglobin (M: 7%, F: 7%)                                                                |                          |
|                                                         |                                    | ↓ haematocrit (M: 6%)                                                                       |                          |
|                                                         |                                    | ↑ platelets (M: 27%)                                                                        |                          |
|                                                         |                                    | ↑ cholesterol (M: 68%)                                                                      |                          |
|                                                         |                                    | ↑ uric acid (F: 46%)                                                                        |                          |
|                                                         |                                    | ↑ absolute liver weight (M: 15%, F: 13%                                                     |                          |
|                                                         |                                    | n.s.)                                                                                       |                          |
|                                                         |                                    | $\uparrow$ liver weight relative to brain weight (M:                                        |                          |
|                                                         |                                    | 16%, F: 12% n.s.)<br>↑ liver weight relative to body weight (M:                             |                          |
|                                                         |                                    | 32%, F: 33%)                                                                                |                          |
|                                                         |                                    | $\uparrow$ relative but not absolute, brain, kidneys, and                                   |                          |
|                                                         |                                    | testes weight                                                                               |                          |
|                                                         |                                    | - centrilobular hypertrophy (M, F)                                                          |                          |
| 4-week oral study in mouse                              | Clethodim technical                | NOAEL: 250 ppm (29.7 mg/kg bw/day)                                                          | 1986                     |
|                                                         |                                    | LOAEL: 625 ppm (74.4 mg/kg bw/day)                                                          |                          |
| No guideline stated, in general                         | Lot/Batch: SX-1688                 |                                                                                             | Report                   |
| accordance with OECD 407                                |                                    | Effects at 625 ppm:                                                                         | number: S-               |
| (1995)                                                  | Purity: 83.3%                      | ↓ haemoglobin (M: 4%)                                                                       | 2733                     |
| Deviations from OECD 407                                | Vahiala: asstans                   | Efforts at 1500 ppm;                                                                        | Vol.3                    |
| Deviations from OECD 407 (2008):                        | Vehicle: acetone                   | Effects at 1500 ppm:<br>↓ erythrocyte count (M: 4%)                                         | Vol.3<br>B.6.3.1/02      |
| - clinical and functional                               | Exposed via the diet for 4         | $\downarrow$ haemoglobin (M: 4%, F: 6%)                                                     | <b>D</b> .0.3.1/02       |
| observations were not                                   | weeks.                             | ↑ absolute liver weight incl. gallbladder                                                   | New data for             |
| performed                                               |                                    | (M: 13%)                                                                                    | renewal: No              |
| - blood clotting potential was                          | 0, 100, 250, 625, 1500 and         | ↑ relative liver weight incl. gallbladder (M:                                               |                          |
| not determined                                          | 4000 ppm                           | 14%)                                                                                        |                          |
| - thymus, spleen and heart                              | (equal to 0, 11.9, 29.7, 74.4,     |                                                                                             |                          |
| were not weighed                                        | 179 and 476 mg/kg bw per           | Effects at 4000 ppm:                                                                        |                          |
| - histopathology on bone                                | day)                               | ↓ erythrocyte count (M: 9%)                                                                 |                          |
| marrow was not performed.                               |                                    | ↓ <b>haemoglobin</b> (M: 8%, F: 6% n.s.)                                                    |                          |
|                                                         |                                    | ↓ haematocrit (M: 8%)                                                                       |                          |
| Mouse (strain: CD-1 <sup>®</sup> (ICR-                  |                                    | $\uparrow$ absolute liver weight incl. gallbladder (M                                       |                          |
| derived))                                               |                                    | 42%, F: 16%)                                                                                |                          |
| 10 of each sex/group                                    |                                    | ↑ relative liver weight incl. gallbladder (M:<br>42%, F: 22%)                               |                          |
| 10 of each sex/group                                    |                                    | 72/0,1.22/0)                                                                                |                          |
|                                                         |                                    |                                                                                             |                          |

| GLP: Yes                                         |                                        | - hepatic centrilobular hypertrophy (all                                                  |                     |
|--------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------|---------------------|
| Acceptable                                       |                                        | males: minimal to moderate, eight females:                                                |                     |
|                                                  |                                        | minimal to slight)                                                                        |                     |
| 13-weeks oral study in rat                       | RE-45601 (Technical)                   | NOAEL: 500 ppm (25 mg/kg bw/day)                                                          |                     |
|                                                  |                                        | LOAEL: 2500 ppm (134 mg/kg bw/day)                                                        | 1986                |
| In general accordance with                       | Lot/Batch: SX-1688                     |                                                                                           |                     |
| OECD 408 (1998)                                  |                                        | Effects at 2500 ppm, 13 weeks:                                                            | Report              |
|                                                  | Purity: 84%                            | $\downarrow$ food consumption (M, sporadic)                                               | number: S-          |
| Deviations from OECD 408                         | <b>TT 1 1 A</b>                        | $\downarrow$ body weight (M: 7%)                                                          | 2765                |
| (2018): Parameters/endpoints                     | Vehicle: Acetone                       | ↓bodyweight gain (M: 10%)                                                                 | 11.1.2              |
| not examined in this study<br>include:           | Exposure via the diet for 13           | ↑ relative liver weight (M: 12%, F: 12%)                                                  | Vol.3<br>B.6.3.2/01 |
| - blood measurements of                          | weeks + 6-week recovery period         | - hepatic centrilobular hypertrophy (M: 8/12, F: 2/12)                                    | D.0.3.2/01          |
| thyroxine (T4),                                  | period                                 | δ/12, Γ. 2/12)                                                                            | New data for        |
| triiodothyronine (T3), thyroid                   | Doses: 0, 50, 500, 2500,               | Effects at 5000 ppm, 13 weeks:                                                            | renewal: No         |
| stimulating hormone (TSH);                       | <u>5000 ppm/diet</u>                   | $\downarrow$ food consumption (M, F)                                                      | Tenewai. NO         |
| - plasma/serum measurements                      | 5000 ppin/alet                         | $\downarrow$ body weight (M: 11%, F: 11%)                                                 |                     |
| of low-density lipoproteins                      | (0, 2.3, 25, 134 and 279               | $\downarrow$ body weight gain (M: 18%, F: 24%)                                            |                     |
| (LDL) and high-density                           | mg/kg bw/day for males; 0,             | ↑ serum cholesterol (M: 31%)                                                              |                     |
| lipoproteins (HDL), and other                    | 2.8, 30, 159 and 341 mg/kg             | ↑ total protein (M: 5%)                                                                   |                     |
| hormones (on a case-by-case                      | bw/day for females)                    | $\uparrow$ globulin levels (M: 9%),                                                       |                     |
| basis)                                           |                                        | ↑ <b>absolute liver weight</b> (M: 9% n.s., F: 14%)                                       |                     |
| - weights of prostate and                        |                                        | ↑ relative liver weight (M: 26%, F: 28%)                                                  |                     |
| seminal vesicles with                            |                                        | ↑ relative brain weight (M: 16%, F: 13%)                                                  |                     |
| coagulating glands as a whole,                   |                                        | ↑ relative kidney weight (M: 10%, F: 14%)                                                 |                     |
| pituitary and thyroid gland                      |                                        | - hepatic centrilobular hypertrophy (M                                                    |                     |
| - determination of oestrus                       |                                        | 10/12, F: 7/12)                                                                           |                     |
| cycle stage of all females at                    |                                        |                                                                                           |                     |
| necropsy                                         |                                        | Recovery period:                                                                          |                     |
| - enumeration of cauda                           |                                        | Food consumption and body weight gain was                                                 |                     |
| epididymis sperm reserves,                       |                                        | reduced during the exposure period but was                                                |                     |
| sperm morphology or sperm                        |                                        | increased during the recovery period. Final                                               |                     |
| motility (optional)                              |                                        | body weight (week 19) was similar between                                                 |                     |
| - histopathology of                              |                                        | groups except for females of the high dose                                                |                     |
| coagulation glands and male                      |                                        | group ( $\downarrow$ 7%). The only organ weight that was                                  |                     |
| mammary glands                                   |                                        | significantly different after the 6-week                                                  |                     |
| - sensory reactivity and                         |                                        | recovery period was relative liver weight in                                              |                     |
| functional observations were                     |                                        | females of mid-dose ( $\uparrow$ 11%) and high ( $\uparrow$ 13%)                          |                     |
| not performed.                                   |                                        | dose groups. There were no treatment-related                                              |                     |
| -the weight of the epididymides, thymus, spleen, |                                        | changes present among males and females at<br>the recovery sacrifice. Including no liver  |                     |
| heart and uterus                                 |                                        | hypertrophy.                                                                              |                     |
| - blood clotting potential                       |                                        | nyperuopny.                                                                               |                     |
| - histopathology on bone                         |                                        |                                                                                           |                     |
| marrow                                           |                                        |                                                                                           |                     |
| - humidity (78%) above                           |                                        |                                                                                           |                     |
| recommended acceptable                           |                                        |                                                                                           |                     |
| value of 70%                                     |                                        |                                                                                           |                     |
|                                                  |                                        |                                                                                           |                     |
| Species: Rat                                     |                                        |                                                                                           |                     |
| (Strain: Sprague-Dawley®                         |                                        |                                                                                           |                     |
| Crl:CD® (SD)BR)                                  |                                        |                                                                                           |                     |
| Groups: 12 rats/sex/group                        |                                        |                                                                                           |                     |
|                                                  |                                        |                                                                                           |                     |
| GLP: Yes                                         |                                        |                                                                                           |                     |
|                                                  |                                        |                                                                                           |                     |
| Acceptable                                       |                                        |                                                                                           |                     |
| 90-day oral study in dog                         | RE-45601 (Technical)                   | NOAEL: 25 mg/kg bw per day (equal to 21                                                   | 1007                |
| <b>.</b>                                         |                                        | mg/kg bw/day based on correction for purity)                                              | 1987                |
| In general accordance with                       | Lot/Batch: SX-1688                     |                                                                                           | <b>D</b> .          |
| OECD 409 (1998)                                  | D 1 92 224                             | LOAEL: 75 mg/kg bw per day (equal to 62                                                   | Report              |
| Deviations from OECD 400                         | Purity: 83.3%                          | mg/kg bw/day based after correction for                                                   | number: S-          |
|                                                  |                                        | purity)                                                                                   | 2759                |
| Deviations from OECD 409                         | Onalin antitizer 1 C                   |                                                                                           |                     |
| (1998):                                          | Oral in gelatine capsules for          | Effects at 75 mg/l h/d                                                                    | Vol 2               |
|                                                  | Oral in gelatine capsules for 13 weeks | <u>Effects at 75 mg/kg bw/day:</u><br>↑ <b>absolute liver weight</b> (M: 16% n.s., F: 15% | Vol.3<br>B.6.3.2/02 |

| and uterus were not<br>determined.<br>- histopathology on the bone<br>marrow was not performed.<br>Species:<br>Dogs<br>Strain: Beagle<br>Group: 4/sex/group<br>GLP: Yes<br>Acceptable study                                                                                                                                                                                                                                                                                                                                                                                              | Doses: 0, 1, 25, 75, and 125<br>mg/kg bw/day (0, 0.83, 21,<br>62 and 104 mg/kg bw/day<br>when corrected for purity)                                                                                                                                                                                                                                                                                                               | <pre>↑ relative liver weight (M: 12% n.s., F: 6%<br/>n.s.)<br/>↑ cholesterol (F) (Day 91: ↑32% n.s., Day<br/>55: ↑39%, Day 35: ↑42%)<br/>Effects at 125 mg/kg bw/day:<br/>↑ alkaline phosphatase (increasing over<br/>time, M: 67% n.s., F:88%)<br/>↑ cholesterol (F) (Day 91: ↑57% n.s., Day<br/>55: ↑40%, Day 35: ↑58%)<br/>↑ globulin (M: 22%)<br/>↓ albumin/globulin (M: 21%)<br/>↑ absolute liver weight (M: 34%, F: 30%)<br/>↑ relative liver weight (M: 27% n.s., F: 19%<br/>n.s.)<br/>- increased severity of centrilobular<br/>vesicles/vacuoles (M, F)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | New data for<br>renewal: No                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| One-year oral study in dog                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RE-45601 (Technical)                                                                                                                                                                                                                                                                                                                                                                                                              | NOAEL: 1 mg/kg bw/day (equal to 0.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1000                                                                                       |
| U.S. Environmental Protection<br>Agency (1982). Pesticide<br>Assessment Guidelines –<br>Subdivision F- Hazard<br>Evaluation: Human and<br>Domestic Animals.<br>In general accordance with<br>OECD 452 (1998).<br>Deviations from OECD TG<br>452 (2018):<br>- no histopathologic<br>evaluation of the harderian<br>gland and lacrimal gland<br>- ornithine decarboxylase was<br>not determined.<br>- the temperature and humidity<br>varied greatly and were<br>outside of the recommended<br>range<br>Species:<br>Dogs<br>Strain: Beagle<br>Group: 6/sex/group<br>GLP: Yes<br>Acceptable | Lot/Batch: SX-1688<br>Purity: 83.3%<br>Oral in gelatine capsules for<br>52 weeks<br><u>Doses:</u> 0, 1, 75 and 300<br>mg/kg bw per day (equal to<br>0, 0.83, 62 and 250 mg/kg<br>bw per day after correction<br>for purity of test substance<br>using a correction factor of<br>1.2)<br>Note - the high dose group<br>received 200 mg/kg/day the<br>first 7 weeks and 300 mg/kg<br>bw/day the remainder of the<br>exposure period | mg/kg bw/day after correction for purity)<br>LOAEL: 75 mg/kg bw/day (equal to 62<br>mg/kg bw/day after correction for purity)<br>Effects at 1 mg/kg bw/day:<br>↑ absolute thyroid/parathyroid weight (M:<br>22% n.s.)<br>↑ relative thyroid/parathyroid weight (M:<br>33% n.s.)<br>Effects at 75 mg/kg bw/day:<br>↑ absolute liver weight (M: 27% n.s., F:<br>34%))<br>↑ relative liver weight (M: 16%, F: 25%)<br>↑ absolute thyroid/parathyroid weight (M:<br>45% n.s.)<br>↑ relative thyroid/parathyroid weight (M:<br>33% n.s.)<br>↑ wBC (Day 360: F: 41% n.s., Day 180: 22%<br>n.s., Day 90: 27%)<br>↑ platelet count (M: 20% n.s., F: 39%)<br>↓ A/G Ratio (9% n.s.)<br>↓ glucose (M: 8% n.s., F: 9%)<br>• histopathological changes in the sternal<br>bone marrow (hyperplasia (males: 1/6,<br>females: 1/6))<br>Effects at 300 mg/kg bw/day:<br>↑ absolute liver weight (M: 56%, F: 70%)<br>↑ relative liver weight (M: 60%, F: 75%)<br>↑ absolute thyroid/parathyroid weight (M:<br>91%)<br>↑ relative thyroid/parathyroid weight (M:<br>100%)<br>↑ platelet count (M: 69%, F: 104%)<br>↓ erythrocytes (M: 9%, F: 18%)<br>↓ haemoglobin (M: 8% n.s., F: 44%)<br>↓ haemoglobin (M: 8% n.s., F: 14%)<br>↓ haemoglobin (M: 8% n.s., F: 14%)<br>↓ haemoglobin (M: 8% n.s., F: 60%; Day<br>180: M: 28%, F: 28%; Day 90: M: 23% n.s., Day<br>180: M: 28%, F: 28%; Day 90: M: 23% n.s., F:<br>42%)<br>↓ A/G Ratio (M: 14% n.s., F: 26%)<br>↓ glucose (M: 12% n.s., F: 13%)<br>↑ ALK (increasing over time, M: 273%, F: | 1988<br>Report<br>number: S-<br>2964<br>Vol.3<br>B.6.3.2/03<br>New data for<br>renewal: No |

|                               | ſ                            |                                                          | ı                 |
|-------------------------------|------------------------------|----------------------------------------------------------|-------------------|
|                               |                              | ↑ <b>cholesterol</b> (M: 32%, F: 61%)                    |                   |
|                               |                              | ↑ <b>triglycerides</b> (M: 65%, F:84%)                   |                   |
|                               |                              | ↑ <b>ALT</b> (M: 167%, F: 144%)                          |                   |
|                               |                              | -macroscopical changes in the liver                      |                   |
|                               |                              | (enlarged liver (2M, 2F) and dark liver (4M,             |                   |
|                               |                              | 4F)                                                      |                   |
|                               |                              | -histopathological changes in the liver                  |                   |
|                               |                              | (hepatocyte hypertrophy (males: 5/6, females:            |                   |
|                               |                              | 4/6), hepatocyte pigment (males: 6/6, females            |                   |
|                               |                              | 6/6))                                                    |                   |
|                               |                              | -histopathological changes in the sternal                |                   |
|                               |                              | <b>bone marrow</b> (hyperplasia (males: 6/6,             |                   |
|                               |                              | females: 6/6))                                           |                   |
| Four-week dermal study in rat | RE-45601 (Technical)         | NOAEL for local effects: <10 mg/kg bw/day                |                   |
| i our week dermarstudy in rut |                              | (equal to $< 8.32 \text{ mg/kg bw/day after correction}$ | J.H. 1987         |
| OECD TG 410 (1981)            | Lot/Batch: SX-1688           | for purity of test substance using a correction          | <b>5.11.</b> 1907 |
| 0100 10 410 (1981)            | Lot Daten. SX-1000           | factor of 1.2)                                           | Report            |
| Deviations from our           | Duritzy 82 20/               | lactor of 1.2)                                           | number: S-        |
| Deviations from current       | Purity: 83.2%                |                                                          |                   |
| guideline:                    | M 1 1 0 704                  | LOAEL for local effects: 10 mg/kg bw/day                 | 2848              |
| - some of the suggested serum | Vehicle: 0.7%                | (equal to 8.32 mg/kg bw/day after correction             |                   |
| measurements were not         | carboxymethyl cellulose      | for purity of test substance using a correction          | Vol.3             |
| performed (ornithine          | (CMC) and 1.0% TWEEN         | factor of 1.2)                                           |                   |
| decarboxylase, gamma          | 80 in distilled water        |                                                          | B.6.3.3/01        |
| glutamyl transpeptidase,      |                              | NOAEL for systemic toxicity: 100 mg/kg                   |                   |
| hormone levels,               | 21 six-h dermal applications | bw/day (equal to 83.2 mg/kg bw/day after                 | New data for      |
| methaemoglobin,               | over a 28-day period         | correction for purity of test substance using a          | renewal: No       |
| cholinesterase activity)      |                              | correction factor of 1.2)                                |                   |
| - 2 days acclimation period   | Doses: 0, 10, 100 and 1000   |                                                          |                   |
| instead of 5                  | mg/kg bw/day (equal to 0,    | LOAEL systemic: 1000 mg/kg bw/day (equal                 |                   |
|                               | 8.32, 83.2, and 832 mg/kg    | to 832 mg/kg bw/day based on correction for              |                   |
|                               | bw/day after correction for  | purity using a correction factor of 1.2)                 |                   |
| Species: Rat                  | purity of test substance     | putity using a concertoir factor of 1.2)                 |                   |
| Strain: Sprague-Dawley®       | using a correction factor of |                                                          |                   |
| Crl:CD <sup>®</sup> BR        | 1.2)                         | Effects at 10 mg/kg bw/day:                              |                   |
| Group: 6/sex/group            | 1.2)                         | Skin irritation                                          |                   |
| Group: 0/sex/group            |                              |                                                          |                   |
| CLD                           |                              | ↑ triglyceride levels (F: 40%, n.s.)                     |                   |
| GLP: yes                      |                              |                                                          |                   |
|                               |                              | Effects at 100 mg/kg bw/day (equal to 83.3               |                   |
| Acceptable                    |                              | mg/kg bw/day after correction for purity pf              |                   |
|                               |                              | test substance using a correction factor of              |                   |
|                               |                              | <u>1.2):</u>                                             |                   |
|                               |                              | Skin irritation                                          |                   |
|                               |                              | $\uparrow$ triglyceride levels (F: 140%)                 |                   |
|                               |                              | $\downarrow$ BUN/creatinine ratio (M: 22%, F: 9% n.s.)   |                   |
|                               |                              |                                                          |                   |
|                               |                              | Effects at 1000 mg/kg bw/day (equal to 833               |                   |
|                               |                              | mg/kg bw/day after correction for purity of              |                   |
|                               |                              | test substance using a correction factor of              |                   |
|                               |                              | <u>1.2):</u>                                             |                   |
|                               |                              |                                                          |                   |
|                               |                              | Skin irritation                                          |                   |
|                               |                              | -clinical signs (anogenital discharge in all             |                   |
|                               |                              | males (6 animals) and two females)                       |                   |
|                               |                              | ↓ food efficiency (M during Weeks 1-2)                   |                   |
|                               |                              | ↓ body weight gain (M: 35%)                              |                   |
|                               |                              | ↑ absolute liver weight (F: 20%)                         |                   |
|                               |                              | ↑ relative liver weight (F: 22%)                         |                   |
|                               |                              | ↑ liver weight relative to brain weight (F:              |                   |
|                               |                              | 24%)                                                     |                   |
|                               |                              | ↑ triglyceride levels (F: 160 %)                         |                   |
|                               |                              | ↓ <b>BUN</b> (M: 22%, F: 20% n.s.)                       |                   |
|                               |                              | ↓ <b>BUN/creatinine ratio</b> (M: 32%, F: 21%            |                   |
|                               |                              | n.s.)                                                    |                   |
|                               |                              | $\downarrow$ chloride (M: 3%, F: 3%, both within HCD)    |                   |
|                               |                              | ↑ relative weight of kidneys (M: 10%)                    |                   |
|                               |                              | U/U/U/                                                   |                   |
|                               |                              | ↑ relative testes weight (M: 13%)                        |                   |

| Combined Chronic Oral                   | RE-45601 Technical                                    | NOAEL: 500 ppm (16 mg/kg bw/day)                                                               | 1000                        |
|-----------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------|
| Toxicity/ Oncogenicity Study<br>in Rats | Lot/Batch: SX-1688                                    | LOAEL: 2500 ppm (86 mg/kg bw/day)                                                              | 1988a                       |
| in Kats                                 | LOU Daten. SX-1000                                    | Effects at 500 ppm:                                                                            | Report                      |
| OECD TG 453 (1981)                      | Purity: ~83%                                          | $\uparrow$ relative liver weight after 1 y (F: 18% n.s.)                                       | number: S-                  |
|                                         | -                                                     | and after 2 y (F: 12% n.s.)                                                                    | 2766                        |
| Deviations from current                 | Vehicle: Acetone                                      | ↑ liver weight relative to brain weight after 1                                                |                             |
| OECD 453 (2018):                        |                                                       | y (F: 24%)                                                                                     | Vol. 3.                     |
| - prothrombin time and                  | <u>Doses:</u> 0, 5, 20, 500, 2500                     |                                                                                                | B.6.5/02                    |
| activated partial                       | ppm (equivalent to $0, 0.15, 0.57, 16$ and $86$ mg/hz | Effects at 2500 another                                                                        | New data for                |
| thromboplastin time were not measured   | 0.57, 16 and 86 mg/kg bw/day (♂) and 0, 0.2, 0.72,    | Effects at 2500 ppm:<br>↓ body weight (At Day 91: M: 7%, F: 6%; At                             | new data for<br>renewal: No |
| - weight of thyroid,                    | 21 and 113 mg/kg bw/day                               | Day 360: M: 7%, F: 8%; At Day 724: M: 8%                                                       | Tellewal. NO                |
| epididymis, heart, spleen, and          | $(\bigcirc ))$                                        | n.s., F:13% n.s)                                                                               |                             |
| uterus were not measured                | (+))                                                  | $\downarrow$ <b>bodyweight gain</b> calculated for the first 3                                 |                             |
| - coagulating gland, vagina,            | Oral exposure via the diet                            | months (M:11%, F: 12%)                                                                         |                             |
| and lacrimal gland were not             |                                                       | $\downarrow$ food consumption at intervals during the                                          |                             |
| fixed and/or examined                   | Duration of exposure:                                 | study (M, F)                                                                                   |                             |
| - the humidity varied a lot and         | 104 weeks                                             | $\downarrow$ food efficiency during the first three months                                     |                             |
| was outside of the                      |                                                       | (M)<br>↑ absolute liver weight after 1 y (M: 15%                                               |                             |
| recommended range                       |                                                       | n.s., F: 24%) but not 2 y                                                                      |                             |
| Species:                                |                                                       | $\uparrow$ relative liver weight after 1 y (M: 22%, F:                                         |                             |
| Rat                                     |                                                       | 18% n.s.) and after 2 y (F: 21%)                                                               |                             |
| Strain: Sprague-Dawley®                 |                                                       | ↑ liver weight relative to brain weight after                                                  |                             |
| Crl:CD <sup>®</sup> BR                  |                                                       | 1 y (M: 16% n.s., F: 23%) but not 2 y                                                          |                             |
|                                         |                                                       | - hypertrophy in hepatocytes (after 1 year: 1                                                  |                             |
| Group: 65/sex/group                     |                                                       | M and 3 F, none in the control; after 2 years:<br>1 M and 2 F in this dose group vs 1 F in the |                             |
| 10 animals/sex/group were               |                                                       | control)                                                                                       |                             |
| sacrificed at interim sacrifice         |                                                       | - binucleated cells in the liver after 1 y (6 F                                                |                             |
| (1 year)                                |                                                       | vs 1 in the control) but not after 2 y                                                         |                             |
|                                         |                                                       | - ↑chronic pancreatitis (F: 15 animals                                                         |                             |
| GLP: Yes                                |                                                       | compared to 4 animals in the control group)                                                    |                             |
| A (11                                   |                                                       | (unclear relevance)                                                                            |                             |
| Acceptable<br>Chronic Oral Oncogenicity | Chevron RE-45601                                      | NOAEL: 200 ppm (24 mg/kg bw/day)                                                               |                             |
| Study in Mice                           | Technical                                             | LOAEL: 1000 ppm (119 mg/kg bw/day)                                                             | (1988)                      |
|                                         |                                                       |                                                                                                | ( )                         |
| Guidelines followed: OECD               | Purity: 83.3%                                         | Effects at 1000 ppm:                                                                           | Report                      |
| 451 (1981)                              |                                                       | ↑ <b>absolute liver weight</b> at week 53 (M: 12%                                              | number: S-                  |
|                                         | Vehicle: Acetone                                      | n.s.)                                                                                          | 2867                        |
| Deviations from OECD 451 (2018)         | Desest                                                | ↑ relative liver weight (Week 53: M: 17%) ↑ liver weight relative to brain weight (Week        | Vol. 3.                     |
| Organs not                              | <u>Doses:</u><br>0, 20, 200, 1000,                    | 53: M: 15%)                                                                                    | B.6.5/01                    |
| harvested/assessed:                     | 2000/3000* ppm                                        | - histopathological changes in the liver                                                       | 10.0701                     |
| coagulating gland, lacrimal             | (equal to 0, 2.4, 24, 119 and                         | (centrilobular hypertrophy (M, F), increased                                                   | New data for                |
| gland, mammary glands from              | 238/357 mg/kg bw/day after                            | pigment (F), and bile duct hyperplasia (M))                                                    | renewal: No                 |
| males (note that this is only           | correction for purity of test                         | - histopatohological changes in the lung                                                       |                             |
| required if visibly dissectible,        | substance)                                            | (foci of amphophilic alveolar macrophages                                                      |                             |
| no information on this)                 | *Mice in the highest dose                             | (M, F)                                                                                         |                             |
| Species: Mouse                          | group received 2000 ppm                               | Effects at 2000/3000 ppm:                                                                      |                             |
| Strain: CD-1                            | the first 15 weeks.                                   | $\uparrow$ mortality (M: 68% vs 42% in the control,                                            |                             |
| 60 animals per sex and dose             | Thereafter 3000 ppm                                   | F: 52% vs 33% in the control)                                                                  |                             |
| level                                   |                                                       | ↑ <b>absolute liver weight</b> at week 53 (M: 16%,                                             |                             |
|                                         | Oral exposure (via the diet)                          | F: 16% n.s.) and at week 79 (M: 12% n.s., F:                                                   |                             |
| CLD V                                   |                                                       | 12% n.s.)                                                                                      |                             |
| GLP: Yes                                | Duration of exposure: 52                              | $\uparrow$ relative liver weight at Week 53 (M: 27%,<br>E: 28%) and at week 70 (M: 13% n s. E: |                             |
| Acceptable                              | weeks (10 mice/group) or 78 weeks                     | F: 28%) and at week 79 (M: 13% n.s., F: 16%)                                                   |                             |
| receptable                              | / U WUUKS                                             | ↑ liver weight relative to brain weight at                                                     |                             |
|                                         |                                                       | Week 53 (M: 21%, F: 18%) and at week 79                                                        |                             |
|                                         |                                                       | (M: 15% n.s., F: 20%)                                                                          |                             |
|                                         |                                                       | - macroscopical changes in the kidney (pale,                                                   |                             |
|                                         |                                                       | in animals dying or sacrificed due to                                                          |                             |
| 1                                       |                                                       | moribund status)                                                                               | 1                           |

| <ul> <li>histopathological changes in the liver<br/>(centrilobular hypertrophy (M, F), increased<br/>pigment (M), and bile duct hyperplasia (M))</li> <li>histopathological changes in the lung (foci<br/>of amphophilic alveolar macrophages in the<br/>lung (M, F))</li> <li>↓ erythrocytes (Week 27: M: 8%, F:5%;<br/>Week 53: M:19% n.s., F: 8% n.s.; Week 79:<br/>M: 14%)</li> <li>↓ haematocrit (Week 79: M: 12% n.s.; Week<br/>27: M: 8%)</li> <li>↓ haematocrit (Week 79: M: 12% n.s.;<br/>Week 27: M:7%)</li> <li>↑ incidence of systemic amyloidosis in<br/>animals that died/was sacrificed due to a<br/>moribund state (M: 42% vs 28% in the<br/>control, F: 36% vs 22% in the control)</li> <li>There was an increased incidence of lung<br/>adenomas and carcinomas in the treated<br/>males relative to control males. The incidence<br/>of these tumours for unschedule deaths and<br/>terminally sacrificed animals was 8, 16, 20,<br/>22 and 22% for males in groups treated with</li> </ul> |          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| <ul> <li>pigment (M), and bile duct hyperplasia (M))</li> <li>histopathological changes in the lung (foci of amphophilic alveolar macrophages in the lung (M, F))</li> <li>↓ erythrocytes (Week 27: M: 8%, F:5%; Week 53: M:19% n.s., F: 8% n.s.; Week 79: M: 14%)</li> <li>↓ haematocrit (Week 79: M: 12% n.s.; Week 27: M: 8%)</li> <li>↓ haematolobin (Week 79: M: 12% n.s.; Week 27: M: 8%)</li> <li>↓ haemaglobin (Week 79: M: 12% n.s.; Week 27: M: 7%)</li> <li>↑ incidence of systemic amyloidosis in animals that died/was sacrificed due to a moribund state (M: 42% vs 28% in the control, F: 36% vs 22% in the control)</li> <li>There was an increased incidence of lung adenomas and carcinomas in the treated males relative to control males. The incidence of these tumours for unscheduled deaths and terminally sacrificed animals was 8, 16, 20,</li> </ul>                                                                                                                                |          |
| <ul> <li>histopathological changes in the lung (foci of amphophilic alveolar macrophages in the lung (M, F))</li> <li>↓ erythrocytes (Week 27: M: 8%, F:5%; Week 53: M:19% n.s., F: 8% n.s.; Week 79: M: 14%)</li> <li>↓ haematocrit (Week 79: M: 12% n.s.; Week 27: M: 8%)</li> <li>↓ haemoglobin (Week 79: M: 12% n.s.; Week 27: M: 7%)</li> <li>↑ incidence of systemic amyloidosis in animals that died/was sacrificed due to a moribund state (M: 42% vs 28% in the control, F: 36% vs 22% in the control)</li> <li>There was an increased incidence of lung adenomas and carcinomas in the treated males relative to control males. The incidence of these tumours for unscheduled deaths and terminally sacrificed animals was 8, 16, 20,</li> </ul>                                                                                                                                                                                                                                                    |          |
| <pre>of amphophilic alveolar macrophages in the lung (M, F)) ↓ erythrocytes (Week 27: M: 8%, F:5%; Week 53: M:19% n.s., F: 8% n.s.; Week 79: M: 14%) ↓ haematocrit (Week 79: M: 12% n.s.; Week 27: M: 8%) ↓ haemoglobin (Week 79: M: 12% n.s.; Week 27: M:7%) ↑ incidence of systemic amyloidosis in animals that died/was sacrificed due to a moribund state (M: 42% vs 28% in the control, F: 36% vs 22% in the control) There was an increased incidence of lung adenomas and carcinomas in the treated males relative to control males. The incidence of these tumours for unscheduled deaths and terminally sacrificed animals was 8, 16, 20,</pre>                                                                                                                                                                                                                                                                                                                                                       |          |
| <pre>lung (M, F)) ↓ erythrocytes (Week 27: M: 8%, F:5%; Week 53: M:19% n.s., F: 8% n.s.; Week 79: M: 14%) ↓ haematocrit (Week 79: M: 12% n.s.; Week 27: M: 8%) ↓ haemoglobin (Week 79: M: 12% n.s.; Week 27: M:7%) ↑ incidence of systemic amyloidosis in animals that died/was sacrificed due to a moribund state (M: 42% vs 28% in the control, F: 36% vs 22% in the control) There was an increased incidence of lung adenomas and carcinomas in the treated males relative to control males. The incidence of these tumours for unscheduled deaths and terminally sacrificed animals was 8, 16, 20,</pre>                                                                                                                                                                                                                                                                                                                                                                                                  |          |
| <ul> <li>↓ erythrocytes (Week 27: M: 8%, F:5%;<br/>Week 53: M:19% n.s., F: 8% n.s.; Week 79:<br/>M: 14%)</li> <li>↓ haematocrit (Week 79: M: 12% n.s.; Week 27: M: 8%)</li> <li>↓ haemoglobin (Week 79: M: 12% n.s.; Week 27: M:7%)</li> <li>↑ incidence of systemic amyloidosis in animals that died/was sacrificed due to a moribund state (M: 42% vs 28% in the control, F: 36% vs 22% in the control)</li> <li>There was an increased incidence of lung adenomas and carcinomas in the treated males relative to control males. The incidence of these tumours for unscheduled deaths and terminally sacrificed animals was 8, 16, 20,</li> </ul>                                                                                                                                                                                                                                                                                                                                                          |          |
| Week 53: M:19% n.s., F: 8% n.s.; Week 79:<br>M: 14%)<br>↓ haematocrit (Week 79: M: 12% n.s.; Week<br>27: M: 8%)<br>↓ haemoglobin (Week 79: M: 12% n.s.;<br>Week 27: M:7%)<br>↑ incidence of systemic amyloidosis in<br>animals that died/was sacrificed due to a<br>moribund state (M: 42% vs 28% in the<br>control, F: 36% vs 22% in the control)There was an increased incidence of lung<br>adenomas and carcinomas in the treated<br>males relative to control males. The incidence<br>of these tumours for unscheduled deaths and<br>terminally sacrificed animals was 8, 16, 20,                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
| <ul> <li>M: 14%)</li> <li>↓ haematocrit (Week 79: M: 12% n.s.; Week 27: M: 8%)</li> <li>↓ haemoglobin (Week 79: M: 12% n.s.; Week 27: M:7%)</li> <li>↑ incidence of systemic amyloidosis in animals that died/was sacrificed due to a moribund state (M: 42% vs 28% in the control, F: 36% vs 22% in the control)</li> <li>There was an increased incidence of lung adenomas and carcinomas in the treated males relative to control males. The incidence of these tumours for unscheduled deaths and terminally sacrificed animals was 8, 16, 20,</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |
| <ul> <li>↓ haematocrit (Week 79: M: 12% n.s.; Week 27: M: 8%)</li> <li>↓ haemoglobin (Week 79: M: 12% n.s.; Week 27: M:7%)</li> <li>↑ incidence of systemic amyloidosis in animals that died/was sacrificed due to a moribund state (M: 42% vs 28% in the control, F: 36% vs 22% in the control)</li> <li>There was an increased incidence of lung adenomas and carcinomas in the treated males relative to control males. The incidence of these tumours for unscheduled deaths and terminally sacrificed animals was 8, 16, 20,</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
| <ul> <li>↓ haemoglobin (Week 79: M: 12% n.s.;<br/>Week 27: M:7%)</li> <li>↑ incidence of systemic amyloidosis in<br/>animals that died/was sacrificed due to a<br/>moribund state (M: 42% vs 28% in the<br/>control, F: 36% vs 22% in the control)</li> <li>There was an increased incidence of lung<br/>adenomas and carcinomas in the treated<br/>males relative to control males. The incidence<br/>of these tumours for unscheduled deaths and<br/>terminally sacrificed animals was 8, 16, 20,</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
| Week 27: M:7%)<br>↑ incidence of systemic amyloidosis in<br>animals that died/was sacrificed due to a<br>moribund state (M: 42% vs 28% in the<br>control, F: 36% vs 22% in the control)<br>There was an increased incidence of lung<br>adenomas and carcinomas in the treated<br>males relative to control males. The incidence<br>of these tumours for unscheduled deaths and<br>terminally sacrificed animals was 8, 16, 20,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
| <ul> <li>↑ incidence of systemic amyloidosis in animals that died/was sacrificed due to a moribund state (M: 42% vs 28% in the control, F: 36% vs 22% in the control)</li> <li>There was an increased incidence of lung adenomas and carcinomas in the treated males relative to control males. The incidence of these tumours for unscheduled deaths and terminally sacrificed animals was 8, 16, 20,</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| animals that died/was sacrificed due to a<br>moribund state (M: 42% vs 28% in the<br>control, F: 36% vs 22% in the control)<br>There was an increased incidence of lung<br>adenomas and carcinomas in the treated<br>males relative to control males. The incidence<br>of these tumours for unscheduled deaths and<br>terminally sacrificed animals was 8, 16, 20,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
| moribund state (M: 42% vs 28% in the<br>control, F: 36% vs 22% in the control)<br>There was an increased incidence of lung<br>adenomas and carcinomas in the treated<br>males relative to control males. The incidence<br>of these tumours for unscheduled deaths and<br>terminally sacrificed animals was 8, 16, 20,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
| control, F: 36% vs 22% in the control)<br>There was an increased incidence of lung<br>adenomas and carcinomas in the treated<br>males relative to control males. The incidence<br>of these tumours for unscheduled deaths and<br>terminally sacrificed animals was 8, 16, 20,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |
| There was an increased incidence of lung<br>adenomas and carcinomas in the treated<br>males relative to control males. The incidence<br>of these tumours for unscheduled deaths and<br>terminally sacrificed animals was 8, 16, 20,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
| adenomas and carcinomas in the treated<br>males relative to control males. The incidence<br>of these tumours for unscheduled deaths and<br>terminally sacrificed animals was 8, 16, 20,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
| adenomas and carcinomas in the treated<br>males relative to control males. The incidence<br>of these tumours for unscheduled deaths and<br>terminally sacrificed animals was 8, 16, 20,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
| males relative to control males. The incidence<br>of these tumours for unscheduled deaths and<br>terminally sacrificed animals was 8, 16, 20,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |
| terminally sacrificed animals was 8, 16, 20,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
| terminally sacrificed animals was 8, 16, 20,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
| 22 and 220% for malas in around treated with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| 0, 20, 200, 1000, and 2000/3000 ppm,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| respectively. The incidence was also higher in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
| control females (16%) compared with control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| males. These values were all within the<br>historical control range: the means in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
| historical control mice were 14.9% (range:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
| 5.5-26.5%) and 10.2% (range: 4.0-18.4%) in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
| males and females, respectively.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| Pilot Teratology Study in Rats RE-45601 Technical No NOAEL was set in study*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
| with Chevron RE-45601 (198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6)       |
| Technical   Purity:   Effects at 300 mg/kg bw/day (250 mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
| 83.3% <u>bw/day after correction for purity of test</u> Repo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ber: S-  |
| Not a guideline studyExposure:<br>Oral gavage, single daily- clinical signs (excessive salivation, 4 of 10<br>dams)2807                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | /        |
| Major deviations from a full dose on gestational days 6- $\downarrow$ <b>pup weight</b> (7%, not statistically Vol.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.2.1/01 |
| - ten dams/group, TG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.2.1/01 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | data for |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | wal: Yes |
| implantation sites. mg/kg bw/day (equal to 0, substance):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
| - the exposure period ended at 41.7, 125, 250, and 417 - clinical signs (excessive salivation, 8 of 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
| day 15 instead of the day prior mg/kg bw per day, after dams)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |
| to termination (day 19). correction for purity) $\downarrow$ <b>body weight</b> (Day 20: $\downarrow$ 10%, n.s.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| - anogenital distance in<br>foetuses not investigated,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
| foetuses not investigated,<br>thyroid weight, thyroid6-20: ↓62.5%)<br>↓ number of implantation sites (87 versus 126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
| histopathology, and blood<br>$\downarrow$ number of implantation sites (8 / versus 126<br>in control, n.s.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| thyroid hormone levels (T4, $\uparrow$ pre-implantation loss ratio (0.289 versus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| T3 and TSH) in the maternal 0.082 in control, n.s.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |
| animals not investigated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
| - it is noted that there were 122 in control, within historical controls)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
| indications of SDA viral $\downarrow$ foetal weight of viable foetuses ( $\downarrow 11\%$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
| infections in some dams at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
| gestation day 20. This was This study was used to determine dose levels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
| noted in 1, 2, 2, 3, and 2<br>females in the 0, 50, 150, 300,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |
| and 500 mg/kg bw/day group, It was noted that there were indications of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
| respectively. SDA viral infections in some dams at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Species: Rat gestation day 20 which restricts the reliability of the study. This was noted in 1, 2, 2, 3 and 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
| gestation day 20 which restricts the reliability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |

| 10 mated females per group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| GLP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                  |
| Supportive data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                  |
| Teratology Study in Rats                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RE-45601 Technical                                                                                                                                                                                                                                                                                                                                            | NOAEL maternal and developmental<br>toxicity: 100 mg/kg bw/day (83.3 mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (1987)                                                                                           |
| Teratology Study in Rats<br>Guidelines followed:<br>EPA/FIFRA Pesticide<br>Assessment Guidelines,<br>Subdivision F, Hazard<br>Evaluation (October 1982)<br>Deviations from current<br>OECD 414 (2018): The<br>following endpoints were not<br>assessed:<br>- anogenital distance in<br>foetuses<br>- thyroid weight, thyroid<br>histopathology, and blood<br>thyroid hormone levels (T4,<br>T3 and TSH) in the maternal<br>animals.<br>The exposure period ended at<br>day 15 instead of the day prior<br>to termination (shorter<br>exposure period).<br>Species: Rat<br>Strain: Crl:CD® (COBS)<br>4 treatment groups consisting<br>of 25 rats each<br>Evaluated and accepted in the<br>DAR (2005)<br>GLP<br>Acceptable study | RE-45601 Technical<br>Lot/Batch: SX-1688<br>Purity: 83.3%<br>Vehicle: Carboxymethyl<br>cellulose, Tween 80<br>aqueous suspension<br>Exposure: Oral gavage,<br>single daily dose on<br>gestational days 6-15<br>Doses: 0, 10, 100, 350 and<br>700 mg/kg bw per day<br>(equal to 0, 8.3, 83.3, 292<br>and 583 mg/kg bw per day,<br>after correction for purity) | NOAEL maternal and developmental<br>toxicity: 100 mg/kg bw/day (83.3 mg/kg<br>bw/day after correction for purity of test<br>substance)         LOAEL maternal and developmental toxicity:<br>350 mg/kg bw/day (292 mg/kg bw/day after<br>correction for purity of test substance)         Effects at 350 mg/kg bw/day (292 mg/kg<br>bw/day after correction for purity of test<br>substance):         - clinical signs (excessive salivation, poor<br>condition, red nasal discharge, alopecia,<br>staining ano-genital area)<br>↓ body weight (GD 20: 7%; GD20 corrected<br>value: 6%)         ↓ bodyweight gain (GD 6-15: 15% n.s., GD<br>15-20: 17%, GD 0-20 corrected value: 77%)         ↓ absolute uterine weight (10% n.s.)         ↓ foetal weight (11%)         ↑ skeletal variations (incomplete or<br>unossified vertebrae, unossified 5th and/or<br>6th sternebrae) (foetal:88.8% compared to<br>72.6% in control)         Effects at 700 mg/kg bw/day (583 mg/kg<br>bw/day after correction for purity of test<br>substance):         • mortality (5 females died at GD 11-16)<br>• clinical signs (excessive salivation,<br>excessive lacrimation, red/mucoid nasal<br>discharge, alopecia, staining ano-genital area,<br>chromodacryorrhea)         ↓ body weight (GD 20: 6-8%; GD 20<br>corrected value: 13%)         ↓ bodyweight gain (GD 6-15: 40%, GD 15-<br>20: 17%, GD 0-20 corrected value: 11%)         ↓ food consumption at GD 7, 8, 9, 10 (24-<br>31%)         ↓ bodyweight gain (GD 6-15: 40%, GD 15-<br>20: 17%, GD 0-20 corrected value: 11%)         ↓ food consumption at GD 7, 8, 9, 10 (24-<br>31%)         ↓ bodyweight gain (GD 6-15: 40%, GD 15-<br>20: 17%, GD 0-20 corrected value: 11%)         ↓ food | (1987)<br>Report<br>number: S-<br>2808<br>Vol. 3.<br>B.6.6.2.2/01<br>New data for<br>renewal: No |

|                              |                             | cerebral hemisphere and an opening in the                                                       |              |
|------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------|--------------|
|                              |                             | cranium were seen in one foetus with                                                            |              |
|                              |                             | exencephaly, dissimilar aortic arch defects                                                     |              |
|                              |                             | were observed in two foetuses, one with short                                                   |              |
|                              |                             | tail, absence of the kidney and ureter, bladder                                                 |              |
|                              |                             | and a defect of the large intestine were                                                        |              |
|                              |                             | observed in one foetus that was tailless,                                                       |              |
|                              |                             | oedematous and had an imperforate anus.                                                         |              |
|                              |                             | ↓ foetal weight (25%)                                                                           |              |
|                              |                             | STOT-RE 2: H373 ("May cause damage to                                                           |              |
|                              |                             | organs through prolonged or repeated                                                            |              |
|                              |                             | exposure"). Classification with STOT-RE 2                                                       |              |
|                              |                             | proposed due to mortalities seen in dams.                                                       |              |
| Teratology Study in Rabbits  | Chevron RE-45601            | No NOAEL was set in study*                                                                      |              |
| (dose range finding study)   | Technical                   | -                                                                                               | G.E., (1986) |
|                              |                             | Effects at 50 mg/kg bw/day (equal to 41.7                                                       |              |
| Guidelines followed:         | Lot/Batch: SX-1688          | mg/kg bw/day after correction for purity of                                                     | Report       |
| 40 CFR 158.135, Pesticide    |                             | test substance):                                                                                | number: S-   |
|                              | Purity: 83.3%               |                                                                                                 | 2734         |
| 3                            | 5                           | Tendencies of ↓ food consumption during the                                                     |              |
|                              | Aqueous 0.7% carboxy-       | later stage of the dosage period, and dried                                                     | Vol. 3.      |
|                              | methyl cellulose (w/v) and  | faeces (one animal) – the effects were not                                                      | B.6.6.2.3/01 |
|                              | 0.5% Tween 80 (w/v)         | statistically significant. Considered treatment                                                 |              |
|                              | solution                    | related but not adverse.                                                                        | New data for |
| Major deviations from a full |                             |                                                                                                 | renewal: Yes |
|                              | Exposure: Gavage. Single    | Effects at 150 mg/kg bw/day (equal to 125                                                       |              |
|                              | daily dose on gestational   | mg/kg bw/day after correction for purity of                                                     |              |
|                              | day 7-19                    | test substance):                                                                                |              |
| recommends 20 to achieve at  |                             | - clinical signs (increased incidence of dried                                                  |              |
| least 16 animals with        | Doses:                      | faeces, n.s.)                                                                                   |              |
|                              | 0, 50, 150, 300 or          | $\downarrow$ <b>body weight gain</b> day 7-20 (+0.02 kg vs                                      |              |
|                              | 500 mg/kg bw/day (equal to  | +0.2  kg in the control)                                                                        |              |
|                              | 0, 41.7, 125, 250, and 417  | $\downarrow$ food consumption during the later stage of                                         |              |
|                              | mg/kg bw/day, after         | the dosage period (day 13-20) (n.s.)                                                            |              |
|                              | correction for purity of    | the dosage period (day 15-20) (h.s.)                                                            |              |
|                              | technical substance using a |                                                                                                 |              |
|                              | correction factor of 1.2)   | Effects at 300 mg/kg bw/day (equal to 250                                                       |              |
| SPF                          | ······                      | mg/kg bw/day after correction for purity of                                                     |              |
|                              |                             | test substance):                                                                                |              |
| 4 groups of 8 rabbits each   |                             | - mortality (2/7)                                                                               |              |
| 8F                           |                             | - clinical signs (increased incidence of dried                                                  |              |
| GLP                          |                             | faeces)                                                                                         |              |
|                              |                             | $\downarrow$ <b>body weight</b> (Day 20: 11%)                                                   |              |
| Supportive                   |                             | $\downarrow$ body weight (Day 20: 1170)<br>$\downarrow$ body weight gain (Day 7-20: -0.31 kg vs |              |
| * *                          |                             |                                                                                                 |              |
|                              |                             | +0.2 kg in the control, n.s.)                                                                   |              |
|                              |                             | $\downarrow$ food consumption during the dosage                                                 |              |
|                              |                             | period and some days after (day 7-24)                                                           |              |
|                              |                             | followed by an increase compared with the                                                       |              |
|                              |                             | control (n.s)                                                                                   |              |
|                              |                             | $\uparrow$ absolute liver weight (19% n.s.)                                                     |              |
|                              |                             | $\uparrow$ relative liver weight (23% n.s.)                                                     |              |
|                              |                             | $\uparrow$ resorptions (1.4 vs 0.3 in the control, i.e.                                         |              |
|                              |                             | 2/5  vs  1/7  in the control)                                                                   |              |
|                              |                             | -hairball in stomach (observed in 2 rabbits                                                     |              |
|                              |                             | that died)                                                                                      |              |
|                              |                             | ↓ foetal body weight/litter (13%)                                                               |              |
|                              |                             |                                                                                                 |              |
|                              |                             | Effects at 500 mg/kg bw/day (equal to 417                                                       |              |
|                              |                             | mg/kg bw/day after correction for purity of                                                     |              |
|                              |                             | test substance):                                                                                |              |
|                              |                             | - mortality (2/7)                                                                               |              |
|                              |                             | - clinical signs (increased incidence of dried                                                  |              |
|                              |                             | faeces)                                                                                         |              |
|                              |                             | ↓ <b>body weight</b> (Day 16:15%, Day 20: 22%)                                                  |              |

| []                                                     |                                   |                                                                                                  |                 |
|--------------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------|-----------------|
|                                                        |                                   | $\downarrow$ <b>body weight gain</b> day 7-20 (-0.72 kg vs +0.2 kg in the control)               |                 |
|                                                        |                                   | $\downarrow$ food consumption during the dosage                                                  |                 |
|                                                        |                                   | period (day 7-24) with a post dosage increase                                                    |                 |
|                                                        |                                   | compared with the control                                                                        |                 |
|                                                        |                                   | ↑ absolute liver weight (20% n.s.)                                                               |                 |
|                                                        |                                   | ↑ relative liver weight (19% n.s.)                                                               |                 |
|                                                        |                                   | - gastric ulceration (observed in 3 of 4 rabbit                                                  |                 |
|                                                        |                                   | that aborted and/or died)                                                                        |                 |
|                                                        |                                   | -hairball in stomach (observed in 2 or 4                                                         |                 |
|                                                        |                                   | rabbits that aborted and/or died)                                                                |                 |
|                                                        |                                   | <ul> <li>abortions (4 vs 0 in the control)</li> <li>premature delivery (1 individual)</li> </ul> |                 |
|                                                        |                                   | ↓ foetal body weight/litter (32%)                                                                |                 |
| Developmental toxicity study                           | Chevron RE-45601                  | NOAEL maternal: 25 mg/kg bw/day (20.8                                                            |                 |
| in rabbits                                             | Technical                         | mg/kg bw/day, corrected for purity)                                                              | G.E., (1987)    |
|                                                        | Lot/Batch: SX-1688                | 8 8                                                                                              |                 |
| Guidelines followed:                                   |                                   | NOAEL developmental: 100 mg/kg bw per                                                            | Report          |
| Teratogenicity 40 CFR                                  | Purity: 83.3%                     | day (83.3 mg/kg bw/day, corrected for purity)                                                    | number: S-      |
| 158.135, Pesticide                                     |                                   |                                                                                                  | 2869            |
| 1Asessment Guideline 83-3                              | Exposure: Gavage. Single          | LOAEL maternal: 100 mg/kg bw per day                                                             |                 |
| Deviations from OPOD 414                               | daily dose on gestational         | (83.3 mg/kg bw/day, corrected for purity)                                                        | Vol. 3.         |
| Deviations from OECD 414 (2001; the 2018 update is not | day 7-19                          | LOAEL developmental: 300 mg/kg bw per                                                            | B.6.6.2.4/01    |
| applicable to rabbits): the                            | Doses:                            | day (250 mg/kg bw/day, corrected for purity)                                                     | New data for    |
| exposure period ended at day                           | 0, 25, 100 and 300 mg/kg          | aug (250 mg/kg owraay, concerca for punty)                                                       | renewal: No     |
| 19 instead of the day prior to                         | bw per day (equal to $0, 20.8,$   | Effects observed at 100 mg/kg bw per day                                                         |                 |
| termination (shorter exposure                          | 83.3 and 250 mg/kg bw/day         | (83.3 mg/kg bw/day, corrected for purity):                                                       |                 |
| period).                                               | after correction for purity)      | - clinical signs (dried faeces, red substance in                                                 |                 |
|                                                        |                                   | pan)                                                                                             |                 |
| Species: Rabbit                                        |                                   | $\downarrow$ <b>body weight gain</b> during the dosage period,                                   |                 |
| Strain: New Zealand White SPF                          |                                   | day 7-20 (+0.05 kg vs +0.18 kg in the control, n.s.)                                             |                 |
| 511                                                    |                                   | $\downarrow$ food consumption during both the dosage                                             |                 |
| 19-20 animals/group                                    |                                   | period,day 7-20 (15% n.s.) and during the                                                        |                 |
| 1) 20 anniais, group                                   |                                   | post-dosage period (10% n.s.)                                                                    |                 |
|                                                        |                                   |                                                                                                  |                 |
| GLP                                                    |                                   |                                                                                                  |                 |
|                                                        |                                   | Effects observed at 300 mg/kg bw per day                                                         |                 |
| Acceptable                                             |                                   | (250 mg/kg bw/day, corrected for purity):                                                        |                 |
|                                                        |                                   | - clinical signs (dried faeces, red substance in                                                 |                 |
|                                                        |                                   | <pre>pan) ↓ body weight gain during the dosage period,</pre>                                     |                 |
|                                                        |                                   | $\downarrow$ body weight gain during the dosage period,<br>day 7-20 (-0.10 kg vs +0.18 kg in the |                 |
|                                                        |                                   | control), followed by a $\uparrow$ in the post-dosage                                            |                 |
|                                                        |                                   | period, day 20-29 (+0.24 kg vs +0.09 kg in                                                       |                 |
|                                                        |                                   | the control)                                                                                     |                 |
|                                                        |                                   | $\downarrow$ food consumption during the dosing period,                                          |                 |
|                                                        |                                   | day 7-20 (28%) followed by an $\uparrow$ in the post-                                            |                 |
|                                                        |                                   | dosage period, day 20-29 (11%)<br>↓ absolute uterine weight (10% n.s.)                           |                 |
|                                                        |                                   | ↓ absolute uterine weight (10% n.s.)<br>↑ foetal incidence of angulated hyoid alae               |                 |
|                                                        |                                   | (6.3% vs 1.4% in the control), <b>misaligned</b>                                                 |                 |
|                                                        |                                   | sutures (fontanelle; 3.6 % vs 0% in the                                                          |                 |
|                                                        |                                   | control), and nasal irregular ossification                                                       |                 |
|                                                        |                                   | (6.3% vs 2.2% in the control)                                                                    |                 |
| Rat Reproduction Study (dose                           | RE-45601 Technical                | No NOAEL was set in study*                                                                       |                 |
| range finding study)                                   | L - 4/D - 4 - 1, OV 1 (00         |                                                                                                  | ., (1986)       |
| Guidelines followed: 40 CFR                            | Lot/Batch: SX-1688                | Parental effects:                                                                                | Report          |
|                                                        |                                   | 2000 ppm:                                                                                        | number: S-      |
| 158 135 Pesticide Assessment                           | Purity 83.3%                      |                                                                                                  | mannoer. D-     |
| 158.135, Pesticide Assessment<br>Guideline No.83-4     | Purity: 83.3%                     |                                                                                                  | 2758            |
| 158.135, Pesticide Assessment<br>Guideline No.83-4     | Purity: 83.3%<br>Vehicle: Acetone | No treatment related effects                                                                     | 2758            |
| Guideline No.83-4<br>Species: Rat                      |                                   | No treatment related effects 5000 ppm:                                                           | 2758<br>Vol. 3. |
| Guideline No.83-4                                      |                                   | No treatment related effects                                                                     |                 |

| P generation: 8 males and 8                                                                                                                                                                              | Dietary exposure from 1<br>week before mating until                                                                            | $\downarrow$ <b>body weights</b> during week 0-2 of the study (M: 2%)), or gestational day 20 (F: 13%),                                                                                                                                                                                                 | New data for<br>renewal: Yes |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| females per group                                                                                                                                                                                        | day 7 of lactation.                                                                                                            | (M: 2%)), or gestational day 20 (F: 15%),<br>lactational day 0 (F: 14%), and lactational day<br>7 (F: 16%)                                                                                                                                                                                              | ienewai. 1 es                |
| <ul><li>Major deviations from OECD 416 (2001):</li><li>treatment initiated one week before mating rather than 10</li></ul>                                                                               | Doses:<br>0, 500, 2000, and 5000 ppm<br>(equal to 0, 25, 100 and 250<br>mg/kg bw/day using a                                   | <pre>↓ bodyweight gain during week 0-3 (M:<br/>18%) or week 0-1 (F: 63%)</pre>                                                                                                                                                                                                                          |                              |
| <ul><li>weeks before mating</li><li>only one generation, F0</li></ul>                                                                                                                                    | default value of 0.05 for<br>chronic rat studies as                                                                            | Offspring effects:                                                                                                                                                                                                                                                                                      |                              |
| <ul> <li>dams and F1 pups terminated<br/>on lactation day 7</li> <li>low number of females (8),<br/>GL recommends use of<br/>sufficient number of animals</li> </ul>                                     | recommended by EFSA<br>guidance on selected default<br>values (EFSA Journal<br>2012;10(3):2579))                               | 500 ppm:<br>↓ <b>combined pup weight</b> on day 7 (9%)<br>↓ <b>combined pup weight gain</b> between day 0<br>and 7 (13%)                                                                                                                                                                                |                              |
| to yield preferably not less<br>than 20 pregnant females at or<br>near parturition.<br>• oestrous cycle length and<br>normality not investigated<br>• testis and epididymis weight                       | Values corrected for purity<br>of test substance using a<br>correction factor of 1.2):<br>0, 20.8, 83.3, 208.3 mg/kg<br>bw/day | 2000 ppm:<br>↓ combined pup weight on day 7 (9%)<br>↓ combined pup weight gain between day 0<br>and 7 (14%)                                                                                                                                                                                             |                              |
| <ul> <li>testis and epidudyins weight</li> <li>not investigated</li> <li>sperm motility and sperm</li> <li>morphology not analysed</li> <li>total number of</li> <li>homogenisation-resistant</li> </ul> |                                                                                                                                | 5000 ppm:<br>↓combined pup weight on day 7 (11%)<br>↓ combined pup weight gain between day 0<br>and 7 (16%)                                                                                                                                                                                             |                              |
| testicular spermatids and<br>cauda epididymal sperm not<br>enumerated<br>• physical development of the<br>offspring not investigated<br>• haematological and clinical<br>parameters not investigated,    |                                                                                                                                | <u>Comment:</u><br>The reduced food consumption (observed in<br>both sexes but only significant in males)<br>could be a result of reduced palatability of the<br>food containing the test item. The observed<br>parental effects, which mainly included<br>reduced body weights, could at least in part |                              |
| organ weights not recorded,<br>histopathological<br>investigations not made<br>• less number of observation<br>points                                                                                    |                                                                                                                                | be attributable to the reduced food intake.                                                                                                                                                                                                                                                             |                              |
| GLP: Yes                                                                                                                                                                                                 |                                                                                                                                |                                                                                                                                                                                                                                                                                                         |                              |
| Supportive<br>Two Generation (One Litter)<br>Reproduction Study in Rats                                                                                                                                  | RE-45601 Technical<br>Lot/Batch: SX-1688                                                                                       | NOAEL parental toxicity: 500 ppm (32.2 mg/kg bw/day)                                                                                                                                                                                                                                                    | (1987)                       |
| Guidelines followed:<br>Reproductive and Fertility<br>Effects 40 CFR 158.135,                                                                                                                            | Purity: 83.3%<br>Vehicle: Acetone 10 ml<br>acetone/kg food                                                                     | NOAEL offspring toxicity: 500 ppm (32.2 mg/kg bw/day)                                                                                                                                                                                                                                                   | Report<br>number: S-<br>2778 |
| Pesticide Assessment<br>Guideline 83-4                                                                                                                                                                   | Exposure: The F0 males and females received the test material via the diet                                                     | NOAEL reproductive toxicity: 2500 ppm<br>(163 mg/kg bw/day)                                                                                                                                                                                                                                             | Vol. 3.<br>B.6.6.1/02        |
| Deviations from OECD 416<br>(2001):<br>- no analysis of sperm                                                                                                                                            | throughout pre-mating,<br>mating, gestation, and<br>lactation                                                                  | LOAEL parental toxicity: 2500 ppm (163 mg/kg bw/day)                                                                                                                                                                                                                                                    | New data for renewal: No     |
| parameters<br>- developmental and<br>functional observations of                                                                                                                                          | F1a indirect exposure in<br>utero and through nursing,<br>and direct exposure from                                             | LOAEL offspring toxicity: 2500 ppm (163 mg/kg bw/day)                                                                                                                                                                                                                                                   | Tone war. 140                |
| - weighing of adrenals, brain,<br>liver, pituitary gland, spleen,                                                                                                                                        | weaning to pre-mating,<br>mating, gestation, and<br>lactation.                                                                 | LOAEL reproductive toxicity: Not determined.                                                                                                                                                                                                                                                            |                              |
| thyroids were not performed<br>- histopathology of the vagina<br>was not performed                                                                                                                       | F2 indirect exposure in<br>utero and through nursing                                                                           | Effects at 2500 ppm:<br>F0 adults                                                                                                                                                                                                                                                                       |                              |
| - dosing before mating period<br>seems to be 9 weeks (the<br>guideline recommends dosing<br>to be continued for at least 10                                                                              | Doses:<br>0, 5, 20, 500 and 2500 ppm<br>(equal to 0, 0.5, 1.2, 32.2<br>and 163 mg/kg bw/day for                                | <pre>↓ food intake (during a few days)<br/>↓ body weight (M: 4-9%)<br/>↑ relative testis weight (10%)</pre>                                                                                                                                                                                             |                              |

| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                          |                                                                    |                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------|--------------------------------------------------------------------|----------------------------|
| Species: Rat<br>Species: Rat<br>Strain: Albino Cd: COBS/ CD<br>Sprague-Dawleyfemales in the pre-mating<br>period after correction for<br>purity as calculated by the<br>applicant)i. Bod intake<br>i. Bod intake<br>i. Bod intake<br>i. Bod intake<br>i. absolute prostate and seminal vesicles<br>weight (25 and 11%, respectively), unclear<br>relevance)F1 generation: 30 males and<br>30 females per groupClethodim TG<br>Purity:<br>95.4%No NOAEL was set in study*<br>Exposure via the diet<br>Dose:<br>0, 500, 1500 or 5000 ppm<br>(equal to 0, 45, 132, and 447<br>market/set, 0, 501, 155<br>and 475 mg/kg bw per day<br>for $2$ )No NOAEL was set in study*<br>Effects at 5000 ppm (441 mg/kg bw/d $z_i^2$ and<br>$125 mg/kg bw/d \bar{z}_i^2$ 18 m.5)<br>No reatment related notes were made during<br>market/set for $2$ ).Report<br>market/set for<br>MO weight (M: 15%, F: 5%)<br>i mean body weights (M: 15%, F: 5%)<br>i mean body weights (M: 15%, F: 5%)<br>i mean body weights (M: 15%, F: 5%)<br>i absolute brain weight (M: 4%)Report<br>market/set for $2$ ).Report<br>market/set for $2$ )Dose:<br>market/set for $2$ ).No treatment related notes were made during<br>market/set for $2$ ).No treatment related notes were made during<br>the gross necropsy which is the outy endpoint<br>the gross necropsy which is the outy endpoint<br>ad 300 mg/kg bw/d $z_i^2$ .No AEL seessed that is relevant for STOT-RE.Supportive<br>A 0-Dory ord Dietary<br>New<br>Cation (1998)Clethodim TG<br>Lot/batch: AS 506r<br>Dawley<br>S 3.15 and 300 mg/kg bw/d $z_i^2$ .NOAEL seessed that is relevant for STOT-RE.Report<br>market wird $z_i^2$ and $380 mg/kg bw/d z_i^3.I. 154048 (bw/d z_i^3 and 380 mg/kg bw/d z_i^3.I. DAEL seess: 5000 ppm (331 mg/kg bw/d z_i^3.I. DAEL seessed by gin over the entiregerod and 380 mg/kg bw/d z$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |                          |                                                                    |                            |
| Species: Rat       period after correction for<br>sprayue-Dawley       body weight (M: 10.19%, F: 6-10%)         F0 generation: 30 males and<br>30 females per group       purity as calculated by the<br>applicant)       body weight (25 and 11%, respectively), unclear<br>relevance       t absolute prostate and seminal vesicles<br>weight (25 and 11%, respectively), unclear<br>relevance       t absolute prostate and seminal vesicles<br>weight (25 and 11%, respectively), unclear<br>relevance         F1 generation: 30 males and<br>30 females per group       Clethodim TG       No NOAEL was set in study*         Acceptable       Clethodim TG       No NOAEL was set in study*         Acceptable       Clethodim TG       near body weight (M: 15%, F: 5%)<br>1 mean body weight (M: 15%, F: 5%)<br>1 mean body weight (M: 15%, F: 5%)<br>1 mean body weight (M: 15%, F: 5%)<br>1 absolute brain weight (M: 15%, F: 5%)<br>1 absolute brain weight (M: 4%)       Report<br>relevance         Deviations from 424 (1997):<br>fewer animals, no<br>histopathologic and<br>clinical biochemistry<br>parameters were not assessed.       Dose:<br>0, 500, 1500 or 5000 ppm<br>(cqual to 0, 4; 12, and 44)<br>ng/kg/day for $\frac{2}{2}$ , 0, 511, 512, and 44)<br>ng/kg/day for $\frac{2}{2}$ , 0, 500, 1500 regover which is the only endpoint<br>assessed that is relevant for STOT-RE.       No reatment related notes were made during<br>here during from group and a<br>control group of 5<br>rat/sex/group       Clethodim TG<br>Lotback: AS 500r       NOAELsys: 1500 ppm (94 mg/kg bw/d $\frac{2}{2}$ , 15<br>NOAELsys: 5000 ppm (331 mg/kg bw/d $\frac{2}{2}$ , and<br>380 mg/kg bw/d $\frac{2}{2}$ Report<br>number:<br>91, 403 30 mg/kg bw/d $\frac{2}{2}$ Outelines followed: OPPTS<br>70,6200 (1998)       Purity:<br>95,4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | period)                      |                          |                                                                    |                            |
| Sirait: Abian Crit COBS CD<br>Sprague-Dawley       parity as calculated by the<br>applicant)       i absolute prostate and seminal vesicles<br>weight (25 and 11%, respectively), unclear<br>relevance         90 generation: 30 males and<br>30 females per group       Image: Sprague-Dawley       Image: Sprague-Dawley       Image: Sprague-Dawley         F1 generation: 30 males and<br>30 females per group       Image: Sprague-Dawley       Image: Sprague-Dawley       Image: Sprague-Dawley       Image: Sprague-Dawley         GLP: Yes       Image: Sprague-Dawley       Image: Sprague-Dawley       Image: Sprague-Dawley       Image: Sprague-Dawley       Image: Sprague-Dawley         A28-Day Dictary Dose<br>Range-Finding Neurotoxicity<br>Study of Clehodim in Rats       Clethodim TG       No NOAEL was set in study*       Image: Sprague-Dawley       I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              |                          | •                                                                  |                            |
| Sprague-Dawley       applicant)       weight (25 and 11%, respectively), unclear relevance 1 relative weight of the left epididymis (18%)         F0 generation: 30 males and 30 females per group       applicant)       E1 pups: slightly increased number of stillborn pups (norder relevance)         F1 generation: 30 males and 30 females per group       Clethodim TG       No NOAEL was set in study*         Acceptable       Clethodim TG       No NOAEL was set in study*       Figure 300 ppm (441 mg/kg bw/d ☉) and 15%, F 5%) (25 mg/kg bw/d ☉)       Fifteets at 5000 ppm (441 mg/kg bw/d ☉) and 475 mg/kg bw per day for ☉) .510, r500 ppm (41 mg/kg day 0-28 (M: 30%, F) ± 21% mas)       Fifteets at 5000 ppm (441 mg/kg bw/d ☉)       Report method weight (M: 4%)         Deviations from 424 (1997); brower on tassessed.       Dose:       0, 500, 1500 or 5000 ppm (4 mg/kg bw/d ☉)       No treatment related notes were made during mg/kg bw/d ☉)       No reatment related notes were made during for ①)       No reatment related notes were made during for ①)       No reatment related notes were made during for ①)       No reatment related notes were made during for ②)       No reatment related notes were made during for ②)         Supportive       Ago-Day Oral Dietary Study of Clethodim TG       Lothach: AS 506r       NOAELsys: 1500 ppm (94 mg/kg bw/d ☉)       Report number: 90, 500, 1500 and 5000 ppm (31 mg/kg bw/d ☉)       Figure 31 mg/kg bw/d ☉)         GLP       Dose: 0, 500, 1500 and 5000 ppm (321 mg/kg bw/d ☉)       NOAELsys: 500 ppm (321 mg/kg bw/d ☉)       Figure 31 mg/kg bw/d ☉) <td< td=""><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              |                          |                                                                    |                            |
| relevance<br>r relevance<br>t relative weight of the left epididymis (18%)<br>relative the left epididymis (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              |                          |                                                                    |                            |
| F0 generation: 30 males and<br>30 females per group       F1 relative weight of the left epididymis (18%)       F1 relative weight of the left epididymis (18%)         F1 generation: 30 males and<br>30 females per group       F1 relative weight of the left epididymis (18%)       F1 relative weight of the left epididymis (18%)         F1 generation: 30 males and<br>30 females per group       GLP: Yes       F2 pups:<br>no effects       No NOAEL was set in study#       F1 relative weight of the left epididymis (18%)         A 28-Day Dietary Dose<br>Range-Finding Neurotoxicity<br>Study of Clethodim in Rats       Clethodim TG       No NOAEL was set in study#       Report<br>number:<br>1 mean body weights (M: 15%, F: 5%)       Report<br>number:<br>1 absolute brain weight (M: 4%)       Report<br>Number:<br>Number:<br>1 absolute brain weight (M: 4%)       No reatment related notes were made during<br>maykgday for 0, 0, 51, 51, 53, and 475 mg/kg bw per day<br>for 2)       No treatment related notes were made during<br>maykgday for 0, 0, 51, 51, 50, 0 ppm (94 mg/kg bw/d c),<br>115 mg/kg bw/d 2)       New data fo<br>renewal: Ye         Supportive       Clethodim TG       NOAELsys: 1500 ppm (94 mg/kg bw/d c),<br>115 mg/kg bw/d 2)       New data fo<br>renewal: Ye         Supportive       Clethodim TG       NOAELsys: 1500 ppm (94 mg/kg bw/d c),<br>115 mg/kg bw/d 2)       Report<br>number:<br>NoAELsys: 5000 ppm (31 mg/kg bw/d c),<br>115 mg/kg bw/d 2)       Report<br>number:<br>NOAELsys: 5000 ppm (31 mg/kg bw/d c),<br>120 AEL sys: 5000 ppm (31 mg/kg bw/d c),<br>130 mg/kg bw/d 2)       Report<br>number:<br>NOAELsys: 5000 ppm (31 mg/kg bw/d c),<br>130 mg/kg bw/d 2)         Clethodim Ras       Dose:<br>0, 500, 1500 and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sprague-Dawley               | applicant)               |                                                                    |                            |
| 30 females per group       F1 purps:<br>slightly increased number of stillborn pups<br>(unclear relevance)         F1 generation: 30 males and<br>30 females per group       Cleftodim in Ras         A28-Day Dietary Dose<br>Range-Finding Neurotoxicity<br>Study of Clethodim in Rats       Cleftodim TG         Guidelines followed: None<br>(dose range finding study)       Cleftodim in Rats         Deviations from 424 (1997):<br>fewer animats, no<br>histopathological examination,<br>Postmantology and<br>clinical biochemistry<br>parameters were not assessed.       Dose:<br>0, 500, 1500 or 5000 prm<br>(equal to 0, 45, 132, and 441<br>mg/kg/day for \$0, 0, 51, 155,<br>mg/kg bw per day<br>for \$2\$)       No treatment related notes were made during<br>the gross necropsy which is the only endpoint<br>assessed that is relevant for STOT-RE.       No AELsys: 1500 ppm (94 mg/kg bw/d \$0,<br>115 mg/kg bw/d \$0,<br>105 mg/kg bw/                                                                                                                                                                                                                                                                                                                                                                               | EQ concretions 20 malas and  |                          |                                                                    |                            |
| L L L L $F \pm generation: 30 males and30 females per groupF \pm generation: 30 males and30 females per groupF \pm generation: 30 males andstightly increased number of stillborn pups(unclear relevance)GLP: YesAcceptableF \pm generation: 30 males andstightly increased number of stillborn pups(unclear relevance)F \pm generation: 30 males andstightly increased number of stillborn pups(unclear relevance)F \pm generation: 30 males andstightly increased number of stillborn pups(unclear relevance)F \pm generation: 30 males andstightly increased number of stillborn pups(unclear relevance)F \pm generation: 30 males andstightly increased number of stillborn pups(unclear relevance)F \pm generation: 30 males andstightly increased number of stillborn pups(unclear relevance)F \pm generation: 30 males andstightly increased number of stillborn pups(unclear relevance)F \pm generation: 30 males andstightly increased number of stillborn pups(unclear relevance)F \pm generation: 30 males andstightly increased number of stillborn pups(2012b)F \pm generation: 30 males andstightly increased number of stillborn pups(2012b)F \pm generation: 30 males andstightly increased number of stillborn pups(2012b)F \pm generation: 30 males andstightly increased number of stillborn pups(2012b)F \pm generation: 30 males andstightly increased number of stillborn pups(2012b)F \pm generation: 30 males andstill and still an$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |                          | relative weight of the left epididymis (18%)                       |                            |
| F1 generation: 30 males and<br>30 females per group       slightly increased number of stillborn pups<br>(unclear relevance)         GLP: Yes       P2 pups:<br>no offects         Acceptable       P2 pups:<br>no offects         Acceptable       Clethodim TG         Acceptable       No NOAEL was set in study*         GLP: Yes       Clethodim TG         Guidelines followed: None<br>(dose range finding study)       Clethodim TG         Deviations from 424 (1997):<br>fewer animals, no<br>histopathological examination,<br>equal to 0, 45, 132, and 441       No NOAEL was set in study*         Deviations from 424 (1997):<br>fewer animals, no<br>histopathological examination,<br>equal to 0, 45, 132, and 441       No treatment related notes were made during<br>mad 475 mg/kg bw per day<br>for ♀)       No eration the only endption<br>assessed that is relevant for STOT-RE.       New data for<br>nenewal: Ye         Species: Rat<br>Strain: CPt-CD(SD) (Sprague-<br>Dawley)       Clethodim TG       NOAELsys: 1500 ppm (94 mg/kg bw/d ♂)<br>nat 380 mg/kg bw/d ♀)       NoAELsys: 1500 ppm (94 mg/kg bw/d ♂)<br>and 380 mg/kg bw/d ♀)         GLP       Dothatch: AS 506r       NOAELsys: 5000 ppm (331 mg/kg bw/d ♂)<br>and 380 mg/kg bw/d ♀)       NoAELsys: 5000 ppm (331 mg/kg bw/d ♂)<br>and 380 mg/kg bw/d ♀)       Report<br>and 380 mg/kg bw/d ♀)         Species: Rat<br>Species: Rat<br>S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30 females per group         |                          |                                                                    |                            |
| 30 Females per group       (unclear relevance)         GLP: Yes       Product Prod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | El generation: 30 males and  |                          |                                                                    |                            |
| GL.P: Yes       E2 pups:<br>no effects         Acceptable       A28-Day Dietary Dose<br>Range-Finding Neurotoxicity<br>Study of Clethodim in Rats<br>(didelines followed: None<br>(dose range finding study)       Clethodim TG         Deviations from 424 (1997):<br>fewer animals, no<br>histopathological examination,<br>perket 3, haematology and<br>clinical biochemistry<br>parameters were not assessed.       Clethodim TG         Obse:<br>Davledy J       Dose:<br>0, 500, 1500 or 5000 ppm<br>(equal to 0, 45, 132, and 441<br>mg/kg/day for ♂, 0, 51, 155,<br>and 475 mg/kg bw per day<br>for ♀)       No treatment related notes were made during<br>the gross necropsy which is the only endpoint<br>assessed that is relevant for STOT-RE.       New data for<br>neewal: Ye         Species: Rat<br>Strain: Crt.CD(SD) (Sprague-<br>Dawley)       Clethodim TG<br>Lot/batch: AS 506r       NOAELsys: 1500 ppm (94 mg/kg bw/d ♂,<br>115 mg/kg bw/d ♀)       NoAELsys: 5000 ppm (331 mg/kg bw/d ♂,<br>115 mg/kg bw/d ♀)         Octelthodim in Rats       Clethodim TG<br>Lot/batch: AS 506r       NOAELsys: 5000 ppm (331 mg/kg bw/d ♂,<br>135 mg/kg bw/d ♀)       NoAELsys: 5000 ppm (331 mg/kg bw/d ♂,<br>136 mg/kg bw/d ♀)         Clethodim in Rats       Dose:<br>0, 500, 1500 and 5000 ppm<br>(equal to 0, 31, 94 and 331<br>mg/kg bw per day for ♀)       NOAELsys: 5000 ppm (331 mg/kg bw/d ♂,<br>136 mg/kg bw/d ♀)       NoAELsys:<br>100 AELneuro: None         Species: Rat<br>(1997): None       Exposure via the diet<br>Dose:<br>0, 500, 1500 and 5000 ppm<br>(equal to 0, 31, 94 and 331<br>mg/kg bw per day for ♀)       NOAELneuro: None       NoAELsys: 100 ppm (331 mg/kg bw/d ♂<br>380 mg/kg bw/d ♀)         Davley()       38, 115 and 380 mg/kg bw/<br>9r day for ♀)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |                          |                                                                    |                            |
| Acceptableno effectsA 28-Day Dietary Dose<br>Range-Finding Neurotoxicity<br>Study of Clethodim in RatsClethodim TG<br>Purity:<br>95.4%No NOAEL was set in study*Guidelines followed: None<br>(dose range finding study)Exposure via the diet<br>Dose:<br>0, 500, 1500 or 5000 ppm<br>(equal to 0, 45, 132, and 441<br>mg/kg/day for $c_i^0$ , 0, 51, 155,<br>and 475 mg/kg bw per day<br>for $\gamma$ )No treatment related notes were made during<br>and 475 mg/kg bw per day<br>for $\gamma$ )Report<br>number:<br>WIL-19403Species: Rat<br>Supportive<br>A 90-Day Oral Dietary<br>No followed: 1998)Clethodim TG<br>Lotbatch: AS 506rNOAELsys: 1500 ppm (94 mg/kg bw/d $c_i^3$<br>and 380 mg/kg bw/d $Q$ )<br>and 380 mg/kg bw/d $Q$ )NOAELsys: 1500 ppm (94 mg/kg bw/d $c_i^3$<br>and 380 mg/kg bw/d $Q$ )Species: Rat<br>Stroic Clubodim in RatsClethodim TG<br>Lotbatch: AS 506rNOAELsys: 1500 ppm (94 mg/kg bw/d $c_i^3$<br>and 380 mg/kg bw/d $Q$ )Deviations from OECD 424<br>(1977): NonePurity:<br>95.4%Solon prity:<br>95.4%NOAELsys: 1500 ppm (94 mg/kg bw/d $c_i^3$<br>and 380 mg/kg bw/d $Q$ )Dose:<br>0, 500, 1500 and 5000 ppm<br>(aqual to 0, 31, 94 and 331<br>mg/kg bw per day for $\gamma$ )NOAELneuro: NoneReport<br>mmber:<br>WUL-19404<br>$d_i^3$ son mg/kg bw/d $Q_i^3$<br>and 380 mg/kg bw/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | so remaies per group         |                          | (unclear relevance)                                                |                            |
| Acceptableno effectsA 28-Day Dictary Dose<br>Range-Finding Neurotoxicity<br>Study of Clethodim in RatsClethodim TG<br>Purity:<br>$95.4\%$ No NOAEL was set in study*Guidelines followed: None<br>(dose range finding study)Exposure via the diet<br>$1$ mean body weight ( $M: 15\%$ , F: $5\%$ )<br>$1$ mean body weight ( $M: 15\%$ , F: $5\%$ )<br>$1$ mean body weight ( $M: 4\%$ )Report<br>number:<br>WIL-19403Deviations from 424 (1997):<br>fewer animals, no<br>histopathological examination<br>(equal to 0, 45, 132, and 441<br>mg/kg/day for $\mathcal{C}$ , 0, 51, 155,<br>and 475 mg/kg bw per day<br>for $\mathcal{C}$ )No treatment related notes were made during<br>and 475 mg/kg bw per day<br>for $\mathcal{C}$ )No treatment related notes were made during<br>and 475 mg/kg bw per day<br>for $\mathcal{C}$ )No treatment related notes were made during<br>and 475 mg/kg bw per day<br>for $\mathcal{C}$ )No treatment related notes were made during<br>and 475 mg/kg bw per day<br>for $\mathcal{C}$ )No treatment related notes were made during<br>and 475 mg/kg bw per day<br>for $\mathcal{C}$ )No treatment related notes were made during<br>and 475 mg/kg bw per day<br>for $\mathcal{C}$ )Notextense the only endpoint<br>assessed that is relevant for STOT-RE.New data for<br>renewal: YeSupportive<br>A 90-Day Oral Dietary<br>Noc2D0 (1998)Clethodim TG<br>Lotbatch: AS 506rNOAELsys: 1500 ppm (94 mg/kg bw/d $\mathcal{C}$ ,<br>115 mg/kg bw/d $\mathcal{Q}$ )<br>and 380 mg/kg bw/d $\mathcal{Q}$ )Report<br>number:<br>NOAELneuro: Stoop pm (331 mg/kg bw/d $\mathcal{C}$<br>and 380 mg/kg bw/d $\mathcal{Q}$ )Deviations from OECD 424<br>(1977): NoneDose:<br>0, 500, 1500 and 5000 ppm<br>(equal to 31, 94 and 331<br>mg/kg bw per day for $\mathcal{Q}$ )<br>3, 115 and 380 mg/kg bw/d $\mathcal{Q}$ :<br>and 380 mg/kg bw/d $\mathcal{Q}$ :<br>120AELneuro: NoneNotext entire<br>and 380 mg/kg bw/d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CI P. Ves                    |                          | E2 pups:                                                           |                            |
| AcceptableImage Finding NeurotoxicityA 28-Day Dietary DoseClethodim TGA 28-Day Dietary DoseClethodim TGRange Finding NeurotoxicityPurity:Study of Clethodim in RatsS.4%Guidelines followed: NoneExposure via the diet(dose range finding study)Dose:Deviations from 424 (1997):fewer animals, nofewer animals, nomarks (20, 72, 0.45, 132, and 44)Pistopathological examination;O.500, 1500 or 5000 ppm(FOB performed only duringadsolute brain weight (M: 4%)outsel inical biochemistryand 475 mg/kg bw per dayfor $\mathcal{P}$ )adsolute brain weight (M: 4%)Species: Ratstrain: Ch:CD(SD) (Sprague-<br>Dawley)3 treatment groups and a<br>control group of 5<br>rats/sex/groupClethodim TGGuidelines followed: OPTS<br>S70.6200 (1998)Clethodim TGPority:<br>Pority:S5.4%Dose:<br>Species: Rat<br>Stro.6200 (1998)Clethodim TGDeviations from OECD 424<br>(1997): NoneClethodim TGSpecies: Rat<br>Stro.6200 (1998)Exposure via the diet<br>Dose:<br>0, 500, 1500 and 5000 ppm<br>(equal to 0, 31, 94 and 331<br>mg/kg bw per day for $\hat{\gamma}$ )Dose:<br>0, 500, 1500 and 300 grkg bw/d $\hat{\varphi}$ LOAELneuro: NoneSpecies: Rat<br>Stro.6200 (1998)Exposure via the diet<br>Dose:<br>0, 500, 1500 and 3000 ppm<br>(equal to 0, 31, 94 and 331<br>mg/kg bw per day for $\hat{\varphi}$ )3 treatment groups and a<br>control group of 12<br>rats/sex/groupS1.50 and 300 mg/kg bw/d $\hat{\varphi}$ :<br>mer an fool body weight (10%) and 1<br>body weight gain between day 0.42 (resulting <br< td=""><td></td><td></td><td></td><td></td></br<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              |                          |                                                                    |                            |
| A 28-Day Dictary Dose<br>Range-Finding Neurotoxicity<br>Study of Clethodim in Rats<br>Guidelines followed: None<br>(dose range finding study)Clethodim TG<br>Purity:<br>$95.4\%$ No NOAEL was set in study*<br>Effects at 5000 ppm (441 mg/kg bw/d $3^{\circ}$ and<br>$475 mg/kg bw/d \mathcal{Q}_2:(mean body weights (M: 15%, F: 5%))1 mean body weights (M: 15%, F: 5%)1 absolute brain weight (M: 4%)Reportnumber:WIL-194034Deviations from 424 (1997):fewer animals, nohistopathological examination,reduct biochemistryparameters were not assessed.Dose:0, 500, 1500 or 5000 ppm(day for 3^{\circ}, 0, 51, 155,and 475 mg/kg bw per dayfor \mathcal{Q})No treatment related notes were made duringtassessed that is relevant for STOT-RE.Reportnumber:WIL-194034Species: RatSupportiveA 90-Day Oral DietaryNeurotoxicity Study ofClethodim in RatsGuidelines followed: OPTS870.6200 (1998)Clethodim TGDose:0, 500, 1500 and 5000 ppm95.4\%NOAELsys: 1500 ppm (94 mg/kg bw/d 3^{\circ},115 mg/kg bw/d \mathcal{Q})NOAELsys: 1500 ppm (331 mg/kg bw/d 3^{\circ},115 mg/kg bw/d \mathcal{Q})NOAELsys: 5000 ppm (331 mg/kg bw/d 3^{\circ},30 mg/kg bw/d \mathcal{Q})NOAEL sys: 5000 ppm (331 mg/kg bw/d 3^{\circ},30 mg/kg bw/d \mathcal{Q})NOAEL sys: 5000 ppm (331 mg/kg bw/d 3^{\circ},30 mg/kg bw/d \mathcal{Q})NOAEL sys: 5000 ppm (331 mg/kg bw/d 3^{\circ},31 ma 380 mg/kg bw/d \mathcal{Q})NOAEL sys: 5000 ppm (331 mg/kg bw/d 3^{\circ},31 mg/kg bw/d \mathcal{Q})NOAEL sys: 5000 ppm (331 mg/kg bw/d 3^{\circ},31 ma/kg bw/d \mathcal{Q})NOAEL sys: 5000 ppm (331 mg/kg bw/d 3^{\circ},31 mg/kg bw per day for 3^{\circ},31 ma 380 mg/kg bwper day for \mathbb{Q})NOAEL sys: 5000 ppm (331 mg/kg bw/d 3^{\circ},31 mg/kg bw/d 3^{\circ},31 mg/kg bw/d 2^{\circ},31 mg/kg bw/d 2^{\circ},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Acceptable                   |                          |                                                                    |                            |
| Range-Finding Neurotoxicity<br>Study of Clethodim in RatsPurity:<br>$95.4\%$ Clethodim in RatsPurity:<br>$95.4\%$ Clethodim in RatsClethodim in RatsGuidelines followed: None<br>(dose range finding study)Dose:<br>$0, 500, 1500 \text{ or } 5000 \text{ ppm}$<br>(equal to 0, 45, 132, and 441<br>mg/kg/ds for $d, 0, 51, 32, and 441mg/kg/ds for d, 0, 51, 5000 ppm (441 mg/kg/ds/ds/ds/ds/ds/ds/ds/ds/ds/ds/ds/ds/ds/$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              | Clethodim TG             | No NOAFL was set in study*                                         |                            |
| Study of Clethodim in RatsPurity:<br>$95.4\%$ The first at 5000 ppm (441 mg/kg bw/d $?$ ) and<br>$475 mg/kg bw/d ?):1 mean body weight gain, day 0-28 (M: 30%,F: 21\% ns.)Reportnumber:WIL-194044Guidelines followed: None(dose range finding study)Deviations from 424 (1997):bewet ations from 424 (1997):fewer animals, no(equal to 0, 45, 132, and 441mg/kg/day for ?, 0, 51, 155,and 475 mg/kg bw per dayfor Q)The anibody weight gain, day 0-28 (M: 30%,F: 21\% ns.)4 absolute brain weight (M: 4%)Reportnumber:WIL-194044Species: RatStrain: Crl:CD(SD) (Sprague-Dawley)Clethodim TGLot/batch: AS 506rNOAELsys: 1500 ppm (94 mg/kg bw/d ?,115 mg/kg bw/d Q)Guidelines followed: OPPTS870.6200 (1998)Clethodim TGLot/batch: AS 506rNOAELsys: 5000 ppm (331 mg/kg bw/d ?,105 mg/kg bw/d Q)Deviations from OECD 424(1997): NoneSpecies: RatStrain: Crl:CD(SD) (Sprague-pawley)Clethodim TGLot/batch: AS 506rNOAELsys: 5000 ppm (331 mg/kg bw/d ?,115 mg/kg bw/d Q)Deviations from OECD 424(1997): NoneDose:0, 500, 1500 and 5000 ppm(equal to 0, 31, 94 and 330mg/kg bw per day for ?, 0,38, 115 and 380 mg/kg bwper day for ?)NOAELneuro: NoneStratment groups and acontrol group of 12rats/sex/groupSite at 5000 ppm (331 mg/kg bw/d ?at 30 mg/kg bw/d QHere the second by weight (10%) and 4body weight gain strewen day 0-42 (sould and?, 130 at 380 mg/kg bwper day for ?)Here the second by per day for ?)Here the second by the day for QHere the second by an over the entireperiod, day 0-91)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |                          | The first was set in study                                         |                            |
| Guidelines followed: Nome<br>(dose range finding study)95.4% $\frac{475 mg/kg bw/d Q}{mg/kg bw, G^2}$ Report<br>mean body weight gain, day 0-28 (M: 30%,<br>F: 21% n.s)Report<br>mumber:<br>WIL-19403Deviations from 424 (1997):<br>fewer animals, no<br>histopathological examination;<br>PGB performed only during<br>unicab lichemistry<br>parameters were not assessed.Dose:<br>0, 500, 1500 or 5000 ppm<br>(equal to 0, 45, 132, and 441<br>mg/kg/day for $\mathcal{C}_0$ 0, 51, 155,<br>and 475 mg/kg bw per day<br>for $\mathcal{Q}_0$ No treatment related notes were made during<br>the gross necropsy which is the only endpoint<br>assessed that is relevant for STOT-RE.No w data fo<br>renewal: YeSpecies: Rat<br>Strain: Crl:CD(SD) (Sprague-<br>Dawley)Clethodim TG<br>Lot/batch: AS 506rNOAELsys: 1500 ppm (94 mg/kg bw/d $\mathcal{O}_1$<br>It Smg/kg bw/d $\mathcal{Q}$ )Notestasses/<br>to 31 ng/kg bw/d $\mathcal{O}_2$ Guidelines followed: OPPTS<br>Strain: Crl:CD(SD) (Sprague-<br>Davley)Clethodim TG<br>Lot/batch: AS 506rNOAELsys: 1500 ppm (94 mg/kg bw/d $\mathcal{O}_2$<br>It Smg/kg bw/d $\mathcal{Q}$ )Report<br>mumber:<br>WIL-19404Guidelines followed: OPPTS<br>Strain: Crl:CD(SD) (Sprague-<br>Davley)Clethodim TG<br>Lot/batch: AS 506rNOAELsys: 5000 ppm (331 mg/kg bw/d $\mathcal{O}_2$<br>It Smg/kg bw/d $\mathcal{Q}$ )Report<br>mumber:<br>WIL-19404Species: Rat<br>Strain: Crl:CD(SD) (Sprague-<br>Davley)Soon 1500 and 5000 ppm<br>(equal to 0, 31, 94 and 350<br>mg/kg bw per day for $\mathcal{O}_2$ ,<br>3, 115 and 380 mg/kg bw<br>per day for $\mathcal{Q}_2$ )NOAELneuro: None<br>Strain 200 ppm (331 mg/kg bw/d $\mathcal{O}_3$<br>Bo:1,13 and 380 mg/kg bw<br>per day for $\mathcal{Q}_2$ )Notestasses/dop ppm (331 mg/kg bw/d $\mathcal{O}_3$<br>Bo:1,13<br>Bo:1,13 and 380 mg/kg bw<br>per day for $\mathcal{Q}_2$ )Notestasses/dop ppm (331 mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | Purity:                  | Effects at 5000 ppm (441 mg/kg bw/d $\mathcal{A}$ and              | (2012b)                    |
| Guidelines followed: None<br>(dose range finding study)Exposure via the dietI mean body weights ( $M: 15\%$ , F: $5\%$ )<br>4 mean body weight gain, day 0-28 ( $M: 30\%$ ,<br>4 mean body weight $gain, day 0-28 (M: 30\%,4 mean body weight gain, day 0-28 (M: 30\%,4 mean body weight M: 4\%)Reportnumber:number:number:MI = 19404Deviations from OECD 424(1997): NoneClethodim TGLovbatch: AS 506rNOAELLays: 1500 ppm (94 mg/kg bw/d \circlearrowleft,115 mg/kg bw/d \updownarrow)1004ELneuro: 5000 ppm (331 mg/kg bw/d \circlearrowright3 marks by per day for \circlearrowright, 0,5, 130 and 300 mg/kg bw/d \diamondsuit)Reportnumber:NOAELLays: 5000 ppm (331 mg/kg bw/d \circlearrowrightNOAELneuro: NoneSpecies: RatSpecies: RatDeviations from OECD 424(1997): NoneClethodim TG0, 500, 1500 and 5000 ppm(equal to 0, 31, 94 and 331mg/kg bw per day for \circlearrowright, 0,3, 15 and 380 mg/kg bwper day for \diamondsuit, 0,3, 15 and 380 mg/kg bwper day for \diamondsuit, 0,3, 15 and 380 mg/kg bwper day for \diamondsuit, 0,3, 15 and 380 mg/kg bwper day for \diamondsuit, 0,1, 15 man final body weight (10\%) and \downarrowbody weight gain hetwen day 0-42 (resultingin a 16\% reduced bw gain over the entireperiod, day 0-91)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Study of Clethodini in Ruts  |                          |                                                                    | (20120)                    |
| (dose range finding study)Exposure via the diet<br>Deviations from 424 (1997):<br>(exposure via the diet<br>Dose:<br>0, 500, 1500 or 5000 ppm<br>(equal to 0, 45, 132, and 441<br>mg/kg/day for $\overset{\circ}{\sigma}$ , 0, 51, 155,<br>and 475 mg/kg bw per day<br>for $\overset{\circ}{\circ}$ ) $\stackrel{\circ}{\downarrow}$ mean body weight gain, day 0-28 (M: 30%,<br>$\stackrel{\circ}{\vdash}$ 21% n.s)<br>$\stackrel{\circ}{\downarrow}$ absolute brain weight (M: 4%)number:<br>WIL-194034<br>Vol. 3.<br>B.6.7.1.2Deviations from 424 (1997):<br>fewer animals, no<br>histopathological examination,<br>(equal to 0, 45, 132, and 441<br>mg/kg/day for $\overset{\circ}{\sigma}$ , 0, 51, 155,<br>and 475 mg/kg bw per day<br>for $\overset{\circ}{\circ}$ ) $\stackrel{\circ}{\downarrow}$ absolute brain weight (M: 4%) $\stackrel{\text{number:}}{\downarrow}$<br>Vol. 3.<br>B.6.7.1.2Species: Rat<br>Strain: CrLCD(SD) (Sprague-<br>Dawley)Streatment groups and a<br>control group of 5<br>rats/sex/groupClethodim TG<br>Lot/batch: AS 506rNOAELsys: 1500 ppm (94 mg/kg bw/d $\overset{\circ}{\circ}$ ,<br>115 mg/kg bw/d $\overset{\circ}{\odot}$ )<br>115 mg/kg bw/d $\overset{\circ}{\odot}$ $\stackrel{\circ}{\bullet}$ Guidelines followed: OPPTS<br>Poriti:<br>(1997): NonePurity:<br>95.4%NOAELsys: 1500 ppm (331 mg/kg bw/d $\overset{\circ}{\circ}$<br>and 380 mg/kg bw/d $\overset{\circ}{\odot}$ )<br>10 CAELneuro: 5000 ppm (331 mg/kg bw/d $\overset{\circ}{\circ}$<br>and 380 mg/kg bw/d $\overset{\circ}{\odot}$ )Report<br>rans/ex by weight gain day 0-24 (resulting<br>in a 16% reduced bw gain over the entire<br>period, day 0-91)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Guidelines followed None     |                          |                                                                    | Report                     |
| $\begin{array}{c} \text{Biscopathological examination} \\ \text{Fever animals, no} \\ \text{histopathological examination} \\ \text{FOB performed only during} \\ \text{coll product of of $\mathcal{O}$, $132, and $41$ \\ (equal to 0, 45, 132, and $41$ \\ (for $\mathcal{O}$)$ train: CritCD(SD) (Sprague-Dawley) \\ 3 treatment groups and a control group of $5$ rats/sex/group \\ GLP \\ Supportive \\ A 90-Day Oral Dietary \\ Novient control (for $10$ Clethodim TG \\ Lot/batch: AS 506r \\ Purity: \\ 95.4\% \\ Exposure via the diet \\ (1997): None \\ Species: Rat \\ Strain: CritCD(SD) (Sprague-Dawley) \\ 3 treatment groups and a control group of $12$ rats/sex/group \\ (equal to 0, 31, 94 and 331) \\ mg/kg bw per day for $\car{\phi}$, 0, 500, 1500 ong 5000 ppm ($31 mg/kg bw/d $\car{\phi}$ \\ (2012d) \\ Report \\ number: \\ Witt=14003 \\ Witt=14003 \\ Witte=14003 \\ Witte=140003 \\ Witte=140000 \\ Witte=140000 \\ Witte=140000 \\ Witte=140000 \\ Witte=140000 \\ Wit$                                                                                                                                                                                                                                                                                                                          |                              | Exposure via the diet    |                                                                    |                            |
| $\begin{array}{l lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (                            | r                        |                                                                    | WIL-194039                 |
| fewer animals, no<br>histopathological examination,<br>FOB performed only during<br>up arameters wer node doubled by the gross necropsy which is the only endpoint<br>assessed.Vol. 3.<br>B.6.7.1.2FOB performed only during<br>week 3, haematology and<br>clinical biochemistry<br>parameters wer not assessed.0, 500, 1500 or 5000 ppm<br>(equal to 0, 45, 132, and 441<br>mg/kg/dg/af or $\mathcal{L}$ , 0, 51, 155,<br>and 475 mg/kg bw per day<br>for $\mathcal{P}$ )No treatment related notes were made during<br>the gross necropsy which is the only endpoint<br>assessed that is relevant for STOT-RE.No treatment related notes were made during<br>the gross necropsy which is the only endpoint<br>assessed that is relevant for STOT-RE.No treatment related notes were made during<br>the gross necropsy which is the only endpoint<br>assessed that is relevant for STOT-RE.No treatment related notes were made during<br>the gross necropsy which is the only endpoint<br>assessed that is relevant for STOT-RE.No treatment related notes were made during<br>the gross necropsy which is the only endpoint<br>assessed that is relevant for STOT-RE.No treatment related notes were made during<br>the gross necropsy which is the only endpoint<br>assessed that is relevant for STOT-RE.No treatment related notes were made during<br>the gross necropsy which is the only endpoint<br>assessed that is relevant for STOT-RE.No treatment related notes were made during<br>the gross necropsy which is the only endpoint<br>assessed that is relevant for STOT-RE.No teatment related notes were made during<br>the gross necropsy which is the only endpoint<br>assessed that is relevant for STOT-RE.No teatment related notes were made during<br>the gross necropsy which is the only endpoint<br>assessed that is relevant for STOT-RE.No teatment for STOT-RE.Supportive<br>A 90-Day Oral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Deviations from 424 (1997):  | Dose:                    |                                                                    |                            |
| histopathological examination,<br>FOB performed only during<br>wek 3, haematology and<br>clinical biochemistry<br>parameters were not assessed.<br>Species: Rat<br>Strain: Crl:CD(SD) (Sprague-<br>Dawley)<br>3 treatment groups and a<br>control group of 5<br>rats/sex/group<br>GLP<br>Supportive<br>A 90-Day Oral Dietary<br>No della species: Rat<br>Supportive<br>A 90-Day Oral Dietary<br>Nource Clethodim TG<br>Guidelines followed: OPPTS<br>Species: Rat<br>Strain: Crl:CD(SD) (Sprague-<br>Dawley)<br>Deviations from OECD 424<br>(1997): None<br>Species: Rat<br>Species: Rat<br>Strain: Crl:CD(SD) (Sprague-<br>Dawley)<br>Deviations from OECD 424<br>(1997): None<br>Species: Rat<br>Strain: Crl:CD(SD) (Sprague-<br>Dawley)<br>3 treatment groups and a<br>control group of 12<br>rats/sex/group<br>GLP<br>Supportive<br>A 90-Day Oral Dietary<br>Purity:<br>Sp. 4%<br>Downer via the diet<br>Dose:<br>0, 500, 1500 and 5000 ppm<br>(equal to 0, 31, 94 and 331<br>mg/kg bw per day for <sup>2</sup> , 0,<br>3 treatment groups and a<br>control group of 12<br>rats/sex/group<br>GLP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              | 0, 500, 1500 or 5000 ppm |                                                                    | Vol. 3.                    |
| FOB performed only during<br>week 3, haematology and<br>clinical biochemistry<br>parameters were not assessed.No treatment related notes were made during<br>the gross necropsy which is the only endpoint<br>assessed that is relevant for STOT-RE.New data fo<br>renewal: YeSpecies: Rat<br>Strain: CrI:CD(SD) (Sprague-<br>Dawley)Streatment groups and a<br>control group of 5<br>rats/sex/groupNOAEL.sys: 1500 ppm (94 mg/kg bw/d $\overset{3}{\bigcirc}$ ,<br>115 mg/kg bw/d $\overset{3}{\bigcirc}$ ,<br>15 mg/kg bw/d $\overset{3}{\bigcirc}$ ,<br>16 mode:<br>17 mode:<br>18 mode:<br>19 mode:<br>10 mode:<br>19 mode:<br>19 mode:<br>19 mode:<br>19 mode:<br>19 mode:<br>10 mode:<br>19 mode:<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                              |                          |                                                                    |                            |
| week 3, haematology and<br>clinical biochemistry<br>parameters were not assessed.<br>Species: Rat<br>Strain: Crl:CD(SD) (Sprague-<br>Dawley)<br>3 treatment groups and a<br>control group of 5<br>rats/sex/group<br>GLP<br>Supportive<br>A 90-Day Oral Dietary<br>Neurotoxicity Study of<br>Clethodim in Rats<br>Guidelines followed: OPPTS<br>870.6200 (1998)<br>Periations from OECD 424<br>(1997): None<br>Species: Rat<br>Species: Rat<br>Strain: Crl:CD(SD) (Sprague-<br>Dawley)<br>Strain: Crl:CD(SD) (Sprague-<br>Dawley)<br>Species: Rat<br>Species: Rat<br>Sp |                              |                          | No treatment related notes were made during                        |                            |
| parameters were not assessed.<br>Species: Rat<br>Strain: Crl:CD(SD) (Sprague-<br>Dawley)<br>3 treatment groups and a<br>control group of 5<br>rats/sex/group<br>GLP<br>Supportive<br>A 90-Day Oral Dietary<br>Neurotoxicity Study of<br>Clethodim TG<br>Lot/batch: AS 506r<br>Guidelines followed: OPPTS<br>Species: Rat<br>Species: Rat<br>Sumportive<br>A 90-Day Oral Dietary<br>New data for<br>and 380 mg/kg bw/d $\mathcal{Q}$ )<br>Lot/batch: AS 506r<br>Dose:<br>0, 500, 1500 and 5000 ppm<br>(aqual to 0, 31, 94 and 331<br>mg/kg bw/d $\mathcal{Q}$ )<br>LOAELneuro: None<br>Species: Rat<br>Species: Rat<br>Species                                                                                                                                                          | week 3, haematology and      |                          | the gross necropsy which is the only endpoint                      | New data for               |
| parameters were not assessed.<br>Species: Rat<br>Strain: Crl:CD(SD) (Sprague-<br>Dawley)<br>3 treatment groups and a<br>control group of 5<br>rats/sex/group<br>GLP<br>Supportive<br>A 90-Day Oral Dietary<br>Neurotoxicity Study of<br>Clethodim TG<br>Lot/batch: AS 506r<br>Guidelines followed: OPPTS<br>Spocies: Rat<br>Species: Rat<br>Summer<br>GLP<br>Supportive<br>GLP<br>Supportive<br>Species: Rat<br>Species: Rat<br>Species: Rat<br>Species: Rat<br>Species: Rat<br>Species: Rat<br>Species: Rat<br>Supportive<br>GLP<br>Supportive<br>Species: Rat<br>Species:                                                                                                                                                            |                              |                          |                                                                    | renewal: Yes               |
| Species: Rat<br>Strain: Crl:CD(SD) (Sprague-<br>Dawley)NOAELsys: 1500 ppm (94 mg/kg bw/d $\overset{2}{\circ},$<br>train: Sex/groupNOAELsys: 1500 ppm (94 mg/kg bw/d $\overset{2}{\circ},$<br>tot/batch: AS 506rNOAELsys: 5000 ppm (331 mg/kg bw/d $\overset{2}{\circ},$<br>tot/batch: AS 506rNOAELsys: 5000 ppm (331 mg/kg bw/d $\overset{2}{\circ},$<br>and 380 mg/kg bw/d $\overset{2}{\circ},$<br>tot/batch: AS 506rNOAELsys: 5000 ppm (331 mg/kg bw/d $\overset{2}{\circ},$<br>tot/batch: AS 506rReport<br>number:<br>WIL-19404d<br>$\overset{2}{\circ},$ 380 mg/kg bw/d $\overset{2}{\circ},$<br>tot.3<br>B.6.7.1.3Report<br>number:<br>WIL-19404d<br>$\overset{2}{\circ},$ 380 mg/kg bw/d $\overset{2}{\circ},$<br>tot.3<br>B.6.7.1.3New data fo<br>renewal: Ye<br>secies: Rat<br>Species: Rat<br>Species: Rat<br>Strain: Crl:CD(SD) (Sprague-<br>Dawley)Strain 380 mg/kg bw/d $\overset{2}{\circ},$<br>mg/kg bw per day for $\overset{2}{\circ},$<br>mg/kg bw per day for $\overset{2}{\circ},$<br>mg/kg bw/er day for $\overset{2}{\circ},$<br>mg/kg bw/er day for $\overset{2}{\circ},$<br>mig/kg bw/d $\overset{2}{\circ}$ and<br>380 mg/kg bw/d $\overset{2}{\circ}$ :<br>mig/kg bw/d $\overset{2}{\circ}$ and<br>a80 mg/kg bw/d $\overset{2}{\circ}$ :<br>mig/kg bw/d $\overset{2}{\circ}$ and<br>a80 mg/kg bw/d $\overset{2}{\circ}$ :Mig/kg bw/d $\overset{2}{\circ}$ and<br>a80 mg/kg bw/d $\overset{2}{\circ}$ and<br>a80 mg/kg bw/d $\overset{2}{\circ}$ :<br>mig/kg bw/d $\overset{2}{\circ}$ Mig/kg bw/d $\overset{2}{\circ}$<br>mig/kg bw/d $\overset{2}{\circ}$ Mig/kg bw/d $\overset{2}{\circ}$<br>mig/kg bw/d $\overset{2}{\circ}$ Mig/kg bw/d $\overset{2}{\circ}$<br>mig/kg bw/d $\overset{2}{\circ}$ Mig/kg bw/d $\overset{2}{\circ}$                                                                                                                                                                                                                                       | -                            |                          |                                                                    |                            |
| Strain: Crl:CD(SD) (Sprague-<br>Dawley)Strain: Crl:CD(SD) (Sprague-<br>Dawley)Notel and a control group of 5<br>rats/sex/groupSupportiveGLPSupportiveNOAELsys: 1500 ppm (94 mg/kg bw/d $\Diamond$ ,<br>115 mg/kg bw/d $\Diamond$ )NOAELsys: 1500 ppm (94 mg/kg bw/d $\Diamond$ ,<br>115 mg/kg bw/d $\Diamond$ )Guidelines followed: OPPTS<br>870.6200 (1998)Purity:<br>95.4%NOAELsys: 5000 ppm (331 mg/kg bw/d $\Diamond$ )Deviations from OECD 424<br>(1997): NoneExposure via the diet<br>Dose:<br>0, 500, 1500 and 5000 ppm<br>(331 mg/kg bw/d $\wp$ )NOAELneuro: S000 ppm (331 mg/kg bw/d $\Diamond$ )Species: Rat<br>Strain: Crl:CD(SD) (Sprague-<br>Dawley)Dose:<br>0, 38, 115 and 380 mg/kg bw<br>per day for $\Diamond$ ,<br>0, 38, 115 and 380 mg/kg bw/<br>per day for $\Diamond$ ),<br>0, 38, 115 and 380 mg/kg bw/d $\wp$ :<br>M: $\downarrow$ mean final body weight (10%) and $\downarrow$<br>body weight gain between day 0-42 (resulting<br>in a 16% reduced bw gain over the entire<br>period, day 0-91)Noael<br>Report<br>number:<br>WIL-194040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                            |                          |                                                                    |                            |
| Dawley)NomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNome <t< td=""><td>Species: Rat</td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Species: Rat                 |                          |                                                                    |                            |
| Dawley)NomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNomeNome <t< td=""><td>Strain: Crl:CD(SD) (Sprague-</td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Strain: Crl:CD(SD) (Sprague- |                          |                                                                    |                            |
| control group of 5<br>rats/sex/groupNOAELsys: 1500 ppm (94 mg/kg bw/d $\Diamond$ ,<br>115 mg/kg bw/d $\Diamond$ )GLPSupportiveA 90-Day Oral Dietary<br>Neurotoxicity Study of<br>Clethodim in RatsClethodim TG<br>Lot/batch: AS 506rGuidelines followed: OPPTS<br>870.6200 (1998)Clethodim the diet<br>95.4%Deviations from OECD 424<br>(1997): NonePurity:<br>95.4%Deviations from OECD 424<br>(1997): NoneExposure via the diet<br>0, 500, 1500 and 5000 ppm<br>(equal to 0, 31, 94 and 331<br>mg/kg bw per day for $\Diamond$ , 0,<br>38, 115 and 380 mg/kg bw/d $\Diamond$ :Species: Rat<br>Strain: Crl:CD(SD) (Sprague-<br>Dawley)Dose:<br>0, 500, 1500 and 5000 ppm<br>(equal to 0, 31, 94 and 331<br>mg/kg bw per day for $\Diamond$ , 0,<br>38, 115 and 380 mg/kg bw<br>per day for $\Diamond$ )Streatment groups and a<br>control group of 12<br>rats/sex/groupEffects at 5000 ppm (331 mg/kg bw/d $\Diamond$ and<br>380 mg/kg bw/d $\Diamond$ :<br>M: $\downarrow$ mean final body weight (10%) and $\downarrow$<br>body weight gain between day 0-42 (resulting<br>in a 16% reduced bw gain over the entire<br>period, day 0-91)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |                          |                                                                    |                            |
| control group of 5<br>rats/sex/groupNOAELsys: 1500 ppm (94 mg/kg bw/d $\Diamond$ ,<br>115 mg/kg bw/d $\Diamond$ )GLPSupportiveA 90-Day Oral Dietary<br>Neurotoxicity Study of<br>Clethodim in RatsClethodim TG<br>Lot/batch: AS 506rNOAELsys: 1500 ppm (94 mg/kg bw/d $\Diamond$ ,<br>115 mg/kg bw/d $\Diamond$ )Guidelines followed: OPPTS<br>870.6200 (1998)Purity:<br>95.4%LOAELsys: 5000 ppm (331 mg/kg bw/d $\Diamond$ )Deviations from OECD 424<br>(1997): NoneExposure via the diet<br>0, 500, 1500 and 5000 ppm<br>(equal to 0, 31, 94 and 331<br>mg/kg bw per day for $\Diamond$ , 0,<br>38, 115 and 380 mg/kg bw/d $\Diamond$ ;<br>100 ppm (331 mg/kg bw/d $\Diamond$ )Report<br>number:<br>WIL-19404d<br>$\Diamond$ , 380 mg/kg bw/d $\Diamond$ )Species: Rat<br>Dawley)Dose:<br>0, 500, 1500 and 5000 ppm<br>(equal to 0, 31, 94 and 331<br>mg/kg bw per day for $\Diamond$ , 0,<br>38, 115 and 380 mg/kg bw<br>per day for $\Diamond$ )Effects at 5000 ppm (331 mg/kg bw/d $\Diamond$ and<br>380 mg/kg bw/d $\Diamond$ :<br>M: $\downarrow$ mean final body weight (10%) and $\downarrow$<br>body weight gain between day 0-42 (resulting<br>in a 16% reduced bw gain over the entire<br>period, day 0-91)New data for<br>enewal: Ye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              |                          |                                                                    |                            |
| rats/sex/groupGLPNOAELsys: 1500 ppm (94 mg/kg bw/d $\circle{O}$ ,<br>115 mg/kg bw/d $\circle{O}$ ,<br>12 mathematic critice<br>1997): NoneNOAELneuro: 5000 ppm (331 mg/kg bw/d $\circle{O}$ ,<br>380 mg/kg bw per day for $\circle{O}$ , 0,<br>38, 115 and 380 mg/kg bw<br>per day for $\circle{O}$ , 0,<br>38 mg/kg bw/d $\circle{O}$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3 treatment groups and a     |                          |                                                                    |                            |
| GLPSupportiveA 90-Day Oral Dietary<br>Neurotoxicity Study of<br>Clethodim in RatsClethodim TGGuidelines followed: OPPTS<br>870.6200 (1998)Lot/batch: AS 506rPurity:<br>95.4%Purity:<br>95.4%Deviations from OECD 424<br>(1997): NoneExposure via the diet<br>Dose:<br>0, 500, 1500 and 5000 ppm<br>(equal to 0, 31, 94 and 331<br>mg/kg bw/d $\Im$ , 380 mg/kg bw/d $\Im$ )Dose:<br>0, 38, 115 and 380 mg/kg bw<br>per day for $\Im$ )Dose the field of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | control group of 5           |                          |                                                                    |                            |
| SupportiveNOAELsys: 1500 ppm (94 mg/kg bw/d $\Diamond$ ,<br>115 mg/kg bw/d $\Diamond$ )(2012d)A 90-Day Oral Dietary<br>Neurotoxicity Study of<br>Clethodim in RatsClethodim TG<br>Lot/batch: AS 506rNOAELsys: 1500 ppm (94 mg/kg bw/d $\Diamond$ ,<br>115 mg/kg bw/d $\Diamond$ )(2012d)Guidelines followed: OPPTS<br>870.6200 (1998)Purity:<br>95.4%LoAELsys: 5000 ppm (331 mg/kg bw/d $\Diamond$ )Report<br>number:<br>WIL-19404dDeviations from OECD 424<br>(1997): NoneExposure via the diet<br>0, 500, 1500 and 5000 ppm<br>(equal to 0, 31, 94 and 331<br>mg/kg bw per day for $\Diamond$ , 0,<br>38, 115 and 380 mg/kg bw<br>per day for $\Diamond$ )Effects at 5000 ppm (331 mg/kg bw/d $\Diamond$ and<br>380 mg/kg bw/d $\Diamond$ :<br>M: $\downarrow$ mean final body weight (10%) and $\downarrow$<br>body weight gain between day 0-42 (resulting<br>in a 16% reduced bw gain over the entire<br>period, day 0-91)NoAELsys: 1500 ppm (94 mg/kg bw/d $\Diamond$ ,<br>(2012d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rats/sex/group               |                          |                                                                    |                            |
| SupportiveNOAELsys: 1500 ppm (94 mg/kg bw/d $\Im$ ,<br>115 mg/kg bw/d $\Im$ )A 90-Day Oral Dietary<br>Neurotoxicity Study of<br>Clethodim in RatsClethodim TGSupportiveLot/batch: AS 506rNOAELsys: 1500 ppm (94 mg/kg bw/d $\Im$ ,<br>115 mg/kg bw/d $\Im$ )Guidelines followed: OPPTS<br>870.6200 (1998)Purity:<br>95.4%LOAELsys: 5000 ppm (331 mg/kg bw/d $\Im$<br>and 380 mg/kg bw/d $\Im$ )Deviations from OECD 424<br>(1997): NoneExposure via the diet<br>0, 500, 1500 and 5000 ppm<br>(equal to 0, 31, 94 and 331<br>mg/kg bw per day for $\Im$ , 0,<br>38, 115 and 380 mg/kg bw<br>per day for $\Im$ )NOAELneuro: NoneSpecies: Rat<br>Strain: Crl:CD(SD) (Sprague-<br>Dawley)Dose:<br>0, 500, 1500 and 5000 ppm<br>(equal to 0, 31, 94 and 331<br>mg/kg bw per day for $\Im$ , 0,<br>38, 115 and 380 mg/kg bw<br>per day for $\Im$ )Effects at 5000 ppm (331 mg/kg bw/d $\Im$ and<br>380 mg/kg bw/d $\Im$ :<br>M: $\downarrow$ mean final body weight (10%) and $\downarrow$<br>body weight gain between day 0-42 (resulting<br>in a 16% reduced bw gain over the entire<br>period, day 0-91)New data for<br>renewal: Ye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |                          |                                                                    |                            |
| A 90-Day Oral Dietary<br>Neurotoxicity Study of<br>Clethodim in RatsClethodim TG<br>Lot/batch: AS 506rNOAELsys: 1500 ppm (94 mg/kg bw/d $\Diamond$ ,<br>115 mg/kg bw/d $Q$ )Guidelines followed: OPPTS<br>870.6200 (1998)Purity:<br>95.4%Lot/batch: AS 506rLOAELsys: 5000 ppm (331 mg/kg bw/d $\Diamond$<br>and 380 mg/kg bw/d $Q$ )Report<br>number:<br>NOAELneuro: 5000 ppm (331 mg/kg bw/d $\Diamond$<br>and 380 mg/kg bw/d $Q$ )Deviations from OECD 424<br>(1997): NoneExposure via the diet<br>Dose:<br>0, 500, 1500 and 5000 ppm<br>(equal to 0, 31, 94 and 331<br>mg/kg bw per day for $\Diamond$ , 0,<br>38, 115 and 380 mg/kg bw<br>per day for $Q$ )NOAELneuro: NoneNoAELneuro: NoneSpecies: Rat<br>Oawley)0, 500, 1500 and 5000 ppm<br>(equal to 0, 31, 94 and 331<br>mg/kg bw per day for $\Diamond$ , 0,<br>38, 115 and 380 mg/kg bw<br>per day for $Q$ )Effects at 5000 ppm (331 mg/kg bw/d $\Diamond$ and<br>380 mg/kg bw/d $Q$ :<br>M: $\downarrow$ mean final body weight (10%) and $\downarrow$<br>body weight gain between day 0-42 (resulting<br>in a 16% reduced bw gain over the entire<br>period, day 0-91)New data for<br>renewal: Ye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GLP                          |                          |                                                                    |                            |
| A 90-Day Oral Dietary<br>Neurotoxicity Study of<br>Clethodim in RatsClethodim TG<br>Lot/batch: AS 506rNOAELsys: 1500 ppm (94 mg/kg bw/d $\Diamond$ ,<br>115 mg/kg bw/d $Q$ )Guidelines followed: OPPTS<br>870.6200 (1998)Purity:<br>95.4%Lot/batch: AS 506rLOAELsys: 5000 ppm (331 mg/kg bw/d $\Diamond$<br>and 380 mg/kg bw/d $Q$ )Report<br>number:<br>NOAELneuro: 5000 ppm (331 mg/kg bw/d $\Diamond$<br>and 380 mg/kg bw/d $Q$ )Deviations from OECD 424<br>(1997): NoneExposure via the diet<br>Dose:<br>0, 500, 1500 and 5000 ppm<br>(equal to 0, 31, 94 and 331<br>mg/kg bw per day for $\Diamond$ , 0,<br>38, 115 and 380 mg/kg bw<br>per day for $Q$ )NOAELneuro: NoneNoAELneuro: NoneSpecies: Rat<br>Oawley)0, 500, 1500 and 5000 ppm<br>(equal to 0, 31, 94 and 331<br>mg/kg bw per day for $\Diamond$ , 0,<br>38, 115 and 380 mg/kg bw<br>per day for $Q$ )Effects at 5000 ppm (331 mg/kg bw/d $\Diamond$ and<br>380 mg/kg bw/d $Q$ :<br>M: $\downarrow$ mean final body weight (10%) and $\downarrow$<br>body weight gain between day 0-42 (resulting<br>in a 16% reduced bw gain over the entire<br>period, day 0-91)New data for<br>renewal: Ye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              |                          |                                                                    |                            |
| Neurotoxicity Study of<br>Clethodim in RatsLot/batch: AS 506r115 mg/kg bw/d $\hat{\varphi}$ )(2012d)Guidelines followed: OPPTS<br>870.6200 (1998)Purity:<br>95.4%Purity:<br>95.4%LoAELsys: 5000 ppm (331 mg/kg bw/d $\hat{\varphi}$ )Report<br>number:<br>WIL-194040Deviations from OECD 424<br>(1997): NoneExposure via the dietNOAELneuro: 5000 ppm (331 mg/kg bw/d $\hat{\varphi}$ )Report<br>number:<br>WIL-194040Deviations from OECD 424<br>(1997): NoneExposure via the dietDose:<br>0, 500, 1500 and 5000 ppm<br>(equal to 0, 31, 94 and 331<br>mg/kg bw per day for $\hat{\Diamond}$ , 0,<br>38, 115 and 380 mg/kg bw<br>per day for $\hat{\Diamond}$ )LOAELneuro: NoneB.6.7.1.3<br>New data fo<br>renewal: Ye3 treatment groups and a<br>control group of 12<br>rats/sex/groupStreatment final body weight (10%) and $\downarrow$<br>body weight gain between day 0-42 (resulting<br>in a 16% reduced bw gain over the entire<br>period, day 0-91)M: $\downarrow$ mean final body weight (10%) and $\downarrow$<br>body weight gain over the entire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              |                          |                                                                    |                            |
| Clethodim in RatsLot/batch: AS 506rICOAELsys: 5000 ppm (331 mg/kg bw/d $\Im$<br>and 380 mg/kg bw/d $\Im$ )(2012d)Guidelines followed: OPPTS<br>870.6200 (1998)Purity:<br>95.4%Purity:<br>95.4%NOAELneuro: 5000 ppm (331 mg/kg bw/d $\Im$<br>and 380 mg/kg bw/d $\Im$ )Report<br>number:<br>WIL-194040<br>$\Im$ , 380 mg/kg bw/d $\Im$ )Deviations from OECD 424<br>(1997): NoneExposure via the dietNOAELneuro: 5000 ppm (331 mg/kg bw/d $\Im$ )Report<br>number:<br>WIL-194040<br>$\Im$ , 380 mg/kg bw/d $\Im$ )Species: Rat<br>Strain: Crl:CD(SD) (Sprague-<br>Dawley)Dose:<br>0, 500, 1500 and 5000 ppm<br>(equal to 0, 31, 94 and 331<br>mg/kg bw per day for $\Im$ , 0,<br>38, 115 and 380 mg/kg bw<br>per day for $\Im$ )Effects at 5000 ppm (331 mg/kg bw/d $\Im$ and<br>380 mg/kg bw/d $\Im$ :<br>M: $\downarrow$ mean final body weight (10%) and $\downarrow$<br>body weight gain between day 0-42 (resulting<br>in a 16% reduced bw gain over the entire<br>period, day 0-91)Report<br>number:<br>WIL-194040<br>$\Im$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              | Clethodim TG             |                                                                    |                            |
| Guidelines followed: OPPTS<br>870.6200 (1998)Purity:<br>95.4%LOAELsys: 5000 ppm (331 mg/kg bw/d $\Im$<br>and 380 mg/kg bw/d $\Im$ )Report<br>number:<br>NOAELneuro: 5000 ppm (331 mg/kg bw/d<br>$\Im$ , 380 mg/kg bw/d $\Im$ )Deviations from OECD 424<br>(1997): NoneExposure via the dietNOAELneuro: 5000 ppm (331 mg/kg bw/d<br>$\Im$ , 380 mg/kg bw/d $\Im$ )Report<br>number:<br>NOAELneuro: NONESpecies: Rat<br>Strain: Crl:CD(SD) (Sprague-<br>Dawley)Dose:<br>0, 500, 1500 and 5000 ppm<br>(equal to 0, 31, 94 and 331<br>mg/kg bw per day for $\Im$ , 0,<br>38, 115 and 380 mg/kg bw<br>per day for $\Im$ ).Effects at 5000 ppm (331 mg/kg bw/d $\Im$ and<br>380 mg/kg bw/d $\Im$ :<br>M: $\downarrow$ mean final body weight (10%) and $\downarrow$<br>body weight gain between day 0-42 (resulting<br>in a 16% reduced bw gain over the entire<br>period, day 0-91)New data for<br>enewal: Ye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |                          | 115 mg/kg bw/d $\stackrel{\bigcirc}{\downarrow}$ )                 |                            |
| Guidelines followed: OPPTS<br>870.6200 (1998)Purity:<br>95.4%and 380 mg/kg bw/d $\mathcal{Q}$ )Report<br>number:<br>WIL-194040<br>$\mathcal{J}$ , 380 mg/kg bw/d $\mathcal{Q}$ )Deviations from OECD 424<br>(1997): NoneExposure via the dietNOAELneuro: 5000 ppm (331 mg/kg bw/d $\mathcal{Q}$ )WIL-194040<br>$\mathcal{J}$ , 380 mg/kg bw/d $\mathcal{Q}$ )Species: Rat<br>Strain: Crl:CD(SD) (Sprague-<br>Dawley)Dose:<br>0, 500, 1500 and 5000 ppm<br>(equal to 0, 31, 94 and 331<br>mg/kg bw per day for $\mathcal{J}$ , 0,<br>38, 115 and 380 mg/kg bw<br>per day for $\mathcal{Q}$ )Effects at 5000 ppm (331 mg/kg bw/d $\mathcal{J}$ and<br><u>380 mg/kg bw/d <math>\mathcal{Q}</math>:</u> New data fo<br>renewal: YeGLPM: $\downarrow$ mean final body weight (10%) and $\downarrow$<br>body weight gain between day 0-42 (resulting<br>in a 16% reduced bw gain over the entire<br>period, day 0-91)M: $\downarrow$ mean final body weight (10%) and $\downarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Clethodim in Rats            | Lot/batch: AS 506r       |                                                                    | (2012d)                    |
| 870.6200 (1998) $95.4%$ $number:$ Deviations from OECD 424<br>(1997): NoneExposure via the diet $0.500, 1500$ and $5000$ ppm<br>(equal to 0, 31, 94 and 331<br>mg/kg bw per day for $3, 0,$<br>38, 115 and 380 mg/kg bw<br>per day for $9$ ) $NOAELneuro: 5000$ ppm ( $331  mg/kg bw/d$<br>$2, 380  mg/kg bw/d$<br>$9)Vol. 3.B.6.7.1.3NOAELneuro: NoneVol. 3.B.6.7.1.3Noaecoord3, 380  mg/kg bw/d9)Vol. 3.B.6.7.1.3Noaecoord3, 380  mg/kg bw/d9)Vol. 3.B.6.7.1.3Noaecoord38, 115  and  380  mg/kg bw/d9  per day for  9)Vol. 3.B.6.7.1.3NoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordNoaecoordN$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |                          |                                                                    |                            |
| Deviations from OECD 424<br>(1997): NoneExposure via the dietNOAELneuro: 5000 ppm (331 mg/kg bw/d<br>$\Diamond$ , 380 mg/kg bw/d $\bigcirc$ )WIL-194040<br>$O$ Deviations from OECD 424<br>(1997): NoneExposure via the dietDose:<br>0, 500, 1500 and 5000 ppm<br>(equal to 0, 31, 94 and 331<br>mg/kg bw per day for $\Diamond$ , 0,<br>38, 115 and 380 mg/kg bw<br>per day for $\bigcirc$ )NOAELneuro: 5000 ppm (331 mg/kg bw/d $\bigcirc$<br>LOAELneuro: NoneWIL-194040<br>$\Diamond$ , 380 mg/kg bw/d $\bigcirc$<br>B.6.7.1.33 treatment groups and a<br>control group of 12<br>rats/sex/groupNot all solution of $\Diamond$ , 0,<br>38, 115 and 380 mg/kg bw<br>per day for $\bigcirc$ )Not all solution of $\Diamond$<br>Mither the dietNot all solution of $\Diamond$<br>Mither the dietNot all solution of $\Diamond$<br>Mither the dietNot all solution of $\Diamond$<br>Mither the dietGLPImage: set of the diet set of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              |                          | and 380 mg/kg bw/d $\downarrow$ )                                  |                            |
| Deviations from OECD 424<br>(1997): NoneExposure via the diet $3, 380 \text{ mg/kg bw/d} \buildrel \cite{9}$ Vol. 3.Species: Rat<br>Strain: Crl:CD(SD) (Sprague-<br>Dawley) $0, 500, 1500 \text{ and } 5000 \text{ ppm}$<br>(equal to 0, 31, 94 and 331<br>mg/kg bw per day for $3, 0,$<br>38, 115 and 380 mg/kg bw<br>per day for $\cite{9}$ ) $COAEL neuro: NoneVol. 3.B.6.7.1.30, 500, 1500 \text{ and } 5000 \text{ ppm}(equal to 0, 31, 94 and 331mg/kg bw per day for \cite{3}, 0,38, 115 and 380 mg/kg bwper day for \cite{9})Effects at 5000 \text{ ppm } (331 \text{ mg/kg bw/d} \cite{3} \text{ and } 380 \text{ mg/kg bw/d} \cite{2}:New data forrenewal: YeM: \downarrow mean final body weight (10%) and \cite{10} body weight gain between day 0-42 (resultingin a 16% reduced bw gain over the entireperiod, day 0-91)M: \downarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 870.6200 (1998)              | 95.4%                    |                                                                    |                            |
| (1997): NoneDose:<br>0, 500, 1500 and 5000 ppm<br>(equal to 0, 31, 94 and 331<br>mg/kg bw per day for $3$ , 0,<br>38, 115 and 380 mg/kg bw<br>per day for $9$ )LOAEL neuro: NoneVol. 3.<br>B.6.7.1.3Strain: Crl:CD(SD) (Sprague-<br>Dawley)Dose:<br>0, 500, 1500 and 5000 ppm<br>(equal to 0, 31, 94 and 331<br>mg/kg bw per day for $3$ , 0,<br>38, 115 and 380 mg/kg bw<br>per day for $9$ )Effects at 5000 ppm (331 mg/kg bw/d $3$ and<br>380 mg/kg bw/d $9$ :New data for<br>renewal: YeM: $\downarrow$ mean final body weight (10%) and $\downarrow$<br>body weight gain between day 0-42 (resulting<br>in a 16% reduced bw gain over the entire<br>period, day 0-91)M: $\downarrow$ mean final body weight (10%) and $\downarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | <b>P</b> • <b>A</b> • •  |                                                                    | WIL-194040                 |
| Dose:<br>Optimized<br>Species: Rat<br>Strain: Crl:CD(SD) (Sprague-<br>Dawley)Dose:<br>0, 500, 1500 and 5000 ppm<br>(equal to 0, 31, 94 and 331<br>mg/kg bw per day for $\Diamond$ , 0,<br>38, 115 and 380 mg/kg bw<br>per day for $\Diamond$ )LOAELneuro: NoneB.6.7.1.3<br>New data fo<br>renewal: Ye3 treatment groups and a<br>control group of 12<br>rats/sex/group $Dose:$<br>0, 500, 1500 and 5000 ppm<br>(agual to 0, 31, 94 and 331<br>mg/kg bw per day for $\Diamond$ ) $LOAELneuro: NoneB.6.7.1.3New data forenewal: YeGLPDose:0, 500, 1500 and 5000 ppm(agual to 0, 31, 94 and 331mg/kg bw per day for \Diamond)Dose:0, 500, 1500 and 5000 ppm(331 mg/kg bw/d \Diamond and380 mg/kg bw/d \Diamond:N: \downarrow mean final body weight (10%) and \downarrowbody weight gain between day 0-42 (resultingin a 16% reduced bw gain over the entireperiod, day 0-91)B.6.7.1.3New data forenewal: Ye$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              | Exposure via the diet    | $\odot$ , 380 mg/kg bw/d $\updownarrow$ )                          | $\mathbf{V}_{\mathbf{c}1}$ |
| Species: Rat<br>Strain: Crl:CD(SD) (Sprague-<br>Dawley)0, 500, 1500 and 5000 ppm<br>(equal to 0, 31, 94 and 331<br>mg/kg bw per day for $\Diamond$ , 0,<br>38, 115 and 380 mg/kg bw<br>per day for $\Diamond$ )Effects at 5000 ppm (331 mg/kg bw/d $\Diamond$ and<br>380 mg/kg bw/d $\Diamond$ :New data fo<br>renewal: Ye3 treatment groups and a<br>control group of 12<br>rats/sex/groupmg/kg bw per day for $\Diamond$ )M: $\downarrow$ mean final body weight (10%) and $\downarrow$<br>body weight gain between day 0-42 (resulting<br>in a 16% reduced bw gain over the entire<br>period, day 0-91)New data fo<br>renewal: Ye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (1997): INONE                | Dasat                    |                                                                    |                            |
| Strain: Crl:CD(SD) (Sprague-<br>Dawley)(equal to 0, 31, 94 and 331<br>mg/kg bw per day for $3$ , 0,<br>38, 115 and 380 mg/kg bw<br>per day for $9$ )Effects at 5000 ppm (331 mg/kg bw/d $3$ and<br>380 mg/kg bw/d $9$ :New data fo<br>renewal: Ye3 treatment groups and a<br>control group of 12<br>rats/sex/group(equal to 0, 31, 94 and 331<br>mg/kg bw per day for $9$ )Effects at 5000 ppm (331 mg/kg bw/d $3$ and<br>380 mg/kg bw/d $9$ :New data fo<br>renewal: YeGLP(equal to 0, 31, 94 and 331<br>mg/kg bw per day for $9$ )M: $\downarrow$ mean final body weight (10%) and $\downarrow$<br>body weight gain between day 0-42 (resulting<br>in a 16% reduced bw gain over the entire<br>period, day 0-91)New data fo<br>renewal: Ye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Spaniage Dat                 |                          | LUAELneuro: None                                                   | в.о./.1.3                  |
| Dawley)mg/kg bw per day for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |                          |                                                                    | Now Jet. C                 |
| 38, 115 and 380 mg/kg bw<br>per day for ♀)38, 115 and 380 mg/kg bw<br>per day for ♀)380 mg/kg bw/d ♀:380 mg/kg bw/d ♀:M: ↓ mean final body weight (10%) and ↓<br>body weight gain between day 0-42 (resulting<br>in a 16% reduced bw gain over the entire<br>period, day 0-91)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              |                          | Effects at 5000 ppm (221 mg/les hu/d 1 1                           |                            |
| 3 treatment groups and a control group of 12 rats/sex/group       per day for ♀)       M: ↓ mean final body weight (10%) and ↓ body weight gain between day 0-42 (resulting in a 16% reduced bw gain over the entire period, day 0-91)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Dawley)                      |                          |                                                                    | renewal: res               |
| control group of 12<br>rats/sex/groupM: ↓ mean final body weight (10%) and ↓<br>body weight gain between day 0-42 (resulting<br>in a 16% reduced bw gain over the entire<br>period, day 0-91)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3 treatment groups and a     |                          |                                                                    |                            |
| rats/sex/groupbody weight gain between day 0-42 (resulting<br>in a 16% reduced bw gain over the entire<br>period, day 0-91)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              | per day for $\mp$ )      | M.   mean final body weight (100/) and                             |                            |
| GLP in a 16% reduced bw gain over the entire period, day 0-91)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              | 1                        |                                                                    |                            |
| GLP period, day 0-91)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rais/sex/group               |                          |                                                                    |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | GLP                          | 1                        |                                                                    |                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              | 1                        | ponou, uay 0-71)                                                   |                            |
| Acceptable study $F: \downarrow$ mean final body weight (8%, n.s.) and $\downarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Acceptable study             |                          | F: $\downarrow$ mean final body weight (8%, n.s.) and $\downarrow$ |                            |
| body weight gain until day 35 (resulting in a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | receptuole study             | 1                        |                                                                    |                            |
| 19% reduced by gain over the entire period,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              | 1                        |                                                                    |                            |
| day 0-91)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              | 1                        |                                                                    |                            |
| uay 0-717                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |                          | aug ( )1)                                                          |                            |

|                                                                                      |                                                                                  | No neurotoxic effects                                                                                                                                              |                                           |
|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| A 28-Day Oral (Dietary) Dose                                                         | Clethodim TG, Batch: AS                                                          | NOAELsystemic: 400 ppm (101 mg/kg                                                                                                                                  |                                           |
| Range-Finding                                                                        | 506r                                                                             | bw/day)                                                                                                                                                            | (2012a)                                   |
| Immunotoxicity Study of                                                              |                                                                                  |                                                                                                                                                                    |                                           |
| Clethodim in Female B6C3F1                                                           | Purity:                                                                          | LOAELsystemic: 2000 ppm (551 mg/kg                                                                                                                                 | Report                                    |
| Mice                                                                                 | 95.4%                                                                            | bw/day)                                                                                                                                                            | number:                                   |
| (GLP)                                                                                |                                                                                  |                                                                                                                                                                    | WIL-194037                                |
|                                                                                      | Doses:                                                                           | NOAELimmunotoxicity: 4000 mg/kg bw                                                                                                                                 |                                           |
| Guidelines followed: OPPTS                                                           | 400, 2000 and 4000 ppm                                                           | (958 mg/kg bw/day)                                                                                                                                                 | Vol. 3,                                   |
| 870.7800 (1998)                                                                      | (equal to 101, 551 and 958                                                       |                                                                                                                                                                    | B.6.8.2/01                                |
| × /                                                                                  | mg/kg bw/day)                                                                    | LOAELimmunotoxicity: -                                                                                                                                             |                                           |
| Deviations from current                                                              |                                                                                  |                                                                                                                                                                    | New data for                              |
| guidelines: No positive control                                                      | Clethodim was offered ad                                                         | Effects observed at 2000 ppm (551 mg/kg                                                                                                                            | the Annex I                               |
|                                                                                      | libitum in the diet for 28                                                       | bw/day):                                                                                                                                                           | renewal: Yes                              |
|                                                                                      | consecutive days                                                                 | ↑ absolute and relative liver weight (16%)                                                                                                                         |                                           |
| Species: Mice                                                                        | 5                                                                                |                                                                                                                                                                    |                                           |
| Strain: B6C3F1                                                                       |                                                                                  |                                                                                                                                                                    |                                           |
|                                                                                      |                                                                                  | Effects observed at 4000 ppm (958 mg/kg                                                                                                                            |                                           |
|                                                                                      |                                                                                  | bw/day):                                                                                                                                                           |                                           |
| Female                                                                               |                                                                                  | ↑ absolute and relative liver weight (41 and                                                                                                                       |                                           |
|                                                                                      |                                                                                  | 39 %, respectively)                                                                                                                                                |                                           |
| 8 mice/group                                                                         |                                                                                  | $\downarrow$ food consumption                                                                                                                                      |                                           |
| 0                                                                                    |                                                                                  | * · · · · · · · · · · · · · · · · · · ·                                                                                                                            |                                           |
| GLP                                                                                  |                                                                                  |                                                                                                                                                                    |                                           |
|                                                                                      |                                                                                  | No evidence of immunotoxicity.                                                                                                                                     |                                           |
| Supportive                                                                           |                                                                                  | 5                                                                                                                                                                  |                                           |
| A 28-Day Oral (Dietary)                                                              | Clethodim TG                                                                     | NOAELsystemic: 400 ppm (136 mg/kg                                                                                                                                  |                                           |
| Immunotoxicity Study of                                                              |                                                                                  | bw/day)                                                                                                                                                            | (2012b)                                   |
| Clethodim in Female B6C3F1                                                           | Purity:                                                                          |                                                                                                                                                                    | (20120)                                   |
| Mice                                                                                 | 95.4%                                                                            | LOAELsystemic: 2000 ppm (603 mg/kg                                                                                                                                 | Report                                    |
|                                                                                      |                                                                                  | bw/day)                                                                                                                                                            | number:                                   |
| Guidelines followed: OPPTS                                                           | Dose:                                                                            |                                                                                                                                                                    | WIL-194038                                |
| 870.7800 (1998)                                                                      | 0, 400, 2000 and 4000 ppm                                                        | NOAELimmunotoxicity: 4000 ppm (1312                                                                                                                                |                                           |
|                                                                                      | (equal to 0, 136, 603 and                                                        | mg/kg bw/day):                                                                                                                                                     | Vol. 3,                                   |
| Deviations from OPPTS                                                                | 1312 mg/kg bw per day)                                                           |                                                                                                                                                                    | B.6.8.2/02                                |
| 870.7800 (1998): None                                                                | 1912 mg/kg 0 ( per day)                                                          | LOAELimmunotoxicity: -                                                                                                                                             | D.0.0.2/02                                |
| 0, 0, 000 (1990). I (one                                                             | Clethodim was offered ad                                                         |                                                                                                                                                                    | New data for                              |
| Mice                                                                                 | libitum in the diet for 28                                                       |                                                                                                                                                                    | the Annex I                               |
| Strain: B6C3F1                                                                       | consecutive days                                                                 | Effects observed at 2000 ppm (603 mg/kg                                                                                                                            | renewal: Yes                              |
|                                                                                      |                                                                                  | bw/day):                                                                                                                                                           |                                           |
| Female                                                                               |                                                                                  | $\uparrow$ absolute and relative liver weight (17 and                                                                                                              |                                           |
|                                                                                      |                                                                                  | 13 %, respectively)                                                                                                                                                |                                           |
| 10 mice/group                                                                        |                                                                                  | $\downarrow$ food consumption day 0-7                                                                                                                              |                                           |
|                                                                                      |                                                                                  | *                                                                                                                                                                  |                                           |
| GLP                                                                                  |                                                                                  |                                                                                                                                                                    |                                           |
|                                                                                      |                                                                                  | Effects observed at 4000 ppm (1312 mg/kg                                                                                                                           |                                           |
| Acceptable                                                                           |                                                                                  | bw/day):                                                                                                                                                           |                                           |
| *                                                                                    |                                                                                  | ↑ <b>absolute and relative liver weight</b> (45 and                                                                                                                |                                           |
|                                                                                      |                                                                                  | 42 %, respectively)                                                                                                                                                |                                           |
|                                                                                      |                                                                                  | $\downarrow$ food consumption day 0-7                                                                                                                              |                                           |
|                                                                                      |                                                                                  |                                                                                                                                                                    |                                           |
|                                                                                      |                                                                                  |                                                                                                                                                                    |                                           |
|                                                                                      |                                                                                  | No evidence of immunotoxicity.                                                                                                                                     |                                           |
| Five-Week Subchronic                                                                 | High Purity RE-4560,                                                             | Effects observed rats treated with 6800 ppm                                                                                                                        |                                           |
| Feeding Study of High Purity                                                         | Purity:                                                                          | clethodim (597 mg/kg bw/day for males and                                                                                                                          | 1987                                      |
| RE-45601 (SX-1718) and RE-                                                           | 96.2%                                                                            | 667 mg/kg bw/day for females):                                                                                                                                     |                                           |
| 45601 Process Neutrals (SX-                                                          |                                                                                  | <b>↓body weight</b> (F: 9-15%)                                                                                                                                     | Report no. S-                             |
| 1717) in Rats                                                                        | Dose:                                                                            | ↓ <b>body weight gain</b> (M: 33%, F: 42%)                                                                                                                         | 2763                                      |
|                                                                                      | i                                                                                | - mild anaemia (5-7% reductions in                                                                                                                                 |                                           |
|                                                                                      | 6800 ppm (equal 597 mg/kg                                                        |                                                                                                                                                                    | 1                                         |
| No guideline followed.                                                               | 6800 ppm (equal 597 mg/kg<br>bw/day for males and 667                            | erythrocyte, haemoglobin and haematocrit                                                                                                                           | Vol. 3.                                   |
| No guideline followed.                                                               |                                                                                  |                                                                                                                                                                    | Vol. 3.<br>B.6.8.2/03                     |
|                                                                                      | bw/day for males and 667                                                         | erythrocyte, haemoglobin and haematocrit                                                                                                                           |                                           |
| No guideline followed.                                                               | bw/day for males and 667                                                         | erythrocyte, haemoglobin and haematocrit values)                                                                                                                   |                                           |
| No guideline followed.<br>Sprague-Dawley <sup>®</sup> Crl:CD <sup>®</sup>            | bw/day for males and 667                                                         | erythrocyte, haemoglobin and haematocrit<br>values)<br>↑ <b>liver weight</b> (M: abs.:12%, rel.: 34%, F:<br>rel. 24%) accompanied by centrilobular<br>hypertrophy. | B.6.8.2/03                                |
| No guideline followed.<br>Sprague-Dawley <sup>®</sup> Crl:CD <sup>®</sup>            | bw/day for males and 667<br>mg/kg bw/day for females)                            | erythrocyte, haemoglobin and haematocrit<br>values)<br>↑ <b>liver weight</b> (M: abs.:12%, rel.: 34%, F:<br>rel. 24%) accompanied by centrilobular                 | B.6.8.2/03<br>New data for                |
| No guideline followed.<br>Sprague-Dawley <sup>®</sup> Crl:CD <sup>®</sup><br>(SD) BR | bw/day for males and 667<br>mg/kg bw/day for females)<br>Process Neutrals of RE- | erythrocyte, haemoglobin and haematocrit<br>values)<br>↑ <b>liver weight</b> (M: abs.:12%, rel.: 34%, F:<br>rel. 24%) accompanied by centrilobular<br>hypertrophy. | B.6.8.2/03<br>New data for<br>the Annex I |

| Supportive                                                                    | 1200 ppm (equal 4.87 mg<br>clethodim/kg bw/day for<br>males and 5.78 mg<br>clethodim/kg bw/day for<br>females)<br>The test items were offered<br>ad libitum in the diet for 5<br>consecutive weeks | Effects observed rats treated with 1200 ppm<br>process neutrals (148 and 175 mg Process<br>Neutrals/kg body weight/day containing 4.87<br>and 5.78 mg clethodim/kg bw/day for males<br>and females, respectively):<br>↓ body weight (Day 35: M: 6%)<br>↓ body weight gain (M: 12%)<br>↑ liver weight (F: abs and rel: 10%)<br>-hepatic centrilobular hypertrophy<br>↓ testis weight (abs 5% n.s, rel 6%)<br>In general, animals exposed to clethodim<br>were more severely affected than those<br>exposed to process neutrals. |                                             |
|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
|                                                                               |                                                                                                                                                                                                    | <u>Conclusion:</u><br>Clethodim alters several health parameters in<br>rats but impurities may contribute partially to<br>some of these results.                                                                                                                                                                                                                                                                                                                                                                               |                                             |
| Cytochrome P-450<br>concentration following 21-<br>day oral administration in | RE-45601 Technical (batch SX-1688)                                                                                                                                                                 | Effects observed at 208 mg/kg bw/day:<br>↑ liver weight (M: abs: 21%, rel: 23%)                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1989                                        |
| male rats.                                                                    | Purity:<br>83.3%                                                                                                                                                                                   | No difference in CYP450 concentration was observed                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Report no. S-<br>3055                       |
| No guideline followed.                                                        |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |
| Rat. Sprague-Dawley Crl:CD <sup>®</sup><br>BR                                 | 250 mg/kg/day (208<br>mg/kg/day, corrected for<br>purity)                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Vol. 3.<br>B.6.8.2/04                       |
| 8 males/group                                                                 |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | New data for<br>the Annex I<br>renewal: Yes |
| GLP                                                                           |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tenewai. 105                                |
| Supplementary                                                                 |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |

\*Study not suitable for NOAEL setting (low number of animals used and limited parameters investigated)

| Table 47: Summary table of human data on repeated dose toxicity STOT RE (s | specific target organ toxicity-repeated |
|----------------------------------------------------------------------------|-----------------------------------------|
| exposure).                                                                 |                                         |

| Type of           | Test      | Route of exposure                        | Observations | Reference |  |
|-------------------|-----------|------------------------------------------|--------------|-----------|--|
| data/report       | substance | Relevant information about the study (as |              |           |  |
|                   |           | applicable)                              |              |           |  |
| No data available |           |                                          |              |           |  |

Table 48: Summary table of other studies relevant for repeated dose toxicity STOT RE (specific target organ toxicityrepeated exposure).

| Type of           | Test      | Relevant          | Observations | Reference |  |
|-------------------|-----------|-------------------|--------------|-----------|--|
| study/data        | substance | information about |              |           |  |
| -                 |           | the study (as     |              |           |  |
|                   |           | applicable)       |              |           |  |
| No data available |           |                   |              |           |  |

#### 2.6.3.1.1 Short summary and overall relevance of the provided information on specific target organ toxicity - repeated exposure (short-term and long-term toxicity)

For this section there are a number of studies which are new for the renewal of active substance: two pilot developmental toxicity studies (one in rat and one in rabbit), one reproductive toxicity dose range finding study, one acute neurotoxicity study, one 90-day neurotoxicity study, one dose range findings immunotoxicity study, one 28day immunotoxicity study, and one 21-day oral toxicity study. The latter one was considered supplementary. All other studies (old and new data) were considered acceptable or supportive.

| Study reference                                                                                                       | Effective dose (mg/kg/day)                                                                                                                                                                                                                                                                     | Length of<br>exposure |                                                                                                      |   |
|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------------------------|---|
| 5-week oral toxicity<br>study in the rat<br>Report No. S-2720                                                         | 200 ppm (12.5 mg/kg bw/day)<br>(changes in haematological<br>parameters indicating mild anaemia<br>(↓Hb <10%), effects on the liver<br>(increased cholesterol, increased liver<br>weights, centrilobular hypertrophy)                                                                          | 5 weeks               | 24 <c≤240 bw="" day<br="" kg="" mg="">(Cat 2)<br/>C≤24 mg/kg bw/day (Cat 1)</c≤240>                  |   |
| 5-week feeding<br>study of high purity<br>RE-45601 and RE-<br>45601 process<br>Neutrals in rats<br>Report No.: S-2763 | Clethodim: 8000 ppm (597 mg/kg<br>bw/day) (effects on the liver (changes<br>in haematological parameters<br>indicating mild anaemia, increased<br>weight, centrilobular hypertrophy)                                                                                                           | 5 weeks               | 24 <c≤240 bw="" day<br="" kg="" mg="">(Cat 2)<br/>C≤24 mg/kg bw/day (Cat 1)</c≤240>                  | - |
| 28-day oral dose<br>range finding<br>neurotoxicity study<br>in the rat<br>Report No.: WIL-<br>194039                  | 5000 ppm (441 mg/kg bw/day)<br>(slightly reduced absolute brain<br>weight                                                                                                                                                                                                                      | 28 days               | 30 <c≤300 bw="" day<br="" kg="" mg="">(Cat 2)<br/>C≤ 30 mg/kg bw/day (Cat 1)</c≤300>                 | - |
| 28-day oral toxicity<br>study in mice<br>Report No.: S-2733                                                           | 625 ppm (74.4 mg/kg bw/day)<br>(changes in haematological<br>parameters indicating mild anaemia<br>(↓haemoglobin 4-8%)<br>1500 ppm (179 mg/kg bw/day<br>(changes in haematological<br>parameters indicating mild anaemia,<br>increased liver weights)                                          | 28 days               | 30 <c≤300 bw="" day<br="" kg="" mg="">(Cat 2)<br/>C≤ 30 mg/kg bw/day (Cat 1)</c≤300>                 | - |
|                                                                                                                       | 4000 ppm (476 mg/kg bw/day)<br>(changes in haematological<br>parameters indicating mild anaemia,<br>hepatic centribolular hypertrophy)                                                                                                                                                         | 20.1                  | 20-0-200 4 1 /1                                                                                      |   |
| 28-day oral<br>immunotoxicity<br>study in mice<br>Report No.: WIL-<br>194038                                          | 2000 ppm (603 mg/kg bw/day)<br>(increased liver weight)                                                                                                                                                                                                                                        | 28 days               | 30 <c≤300 bw="" day<br="" kg="" mg="">(Cat 2)<br/>C≤ 30 mg/kg bw/day (Cat 1)</c≤300>                 | - |
| 4-week dermal<br>toxicity study in the<br>rat<br>Report number: S-<br>2848                                            | <ul> <li>100 mg/kg bw/day (changes in<br/>biochemical parameters indicating<br/>liver toxicity)</li> <li>1000 mg/kg bw/day (clinical signs<br/>(anogenital discharge), increased<br/>liver weight</li> </ul>                                                                                   | 28 days               | 60 <c≤600 bw="" day<br="" kg="" mg="">(Cat 2)<br/>C≤60 mg/kg bw/day (Cat 1)</c≤600>                  | - |
| 1-year oral (gavage)<br>study in dogs<br>Report No.: S-2964                                                           | <ul> <li>75 mg/kg bw/day (histopathological changes in sternal bone marrow (hyperplasia))</li> <li>300 mg/kg bw/day (increased cholesterol, enlarged liver, increased, hepatocyte hypertrophy, pigment, increased thyroid/parathyroid weight, changes in haematological parameters)</li> </ul> | 1 year                | 2.5 <c<math>\leq25 mg/kg bw/day<br/>(Cat 2)<br/>C<math>\leq</math> 2.5 mg/kg bw/day (Cat 1)</c<math> | - |
| 2-year feeding study in the rat                                                                                       | 2500 ppm (86 mg/kg bw/day)<br>(increased liver weight,                                                                                                                                                                                                                                         | 2 years               | 1.25 <c≤12.5 bw="" day<br="" kg="" mg="">(Cat 2)</c≤12.5>                                            | - |

 Table 49: Extrapolation of equivalent effective dose for toxicity studies of greater or lesser duration than 90 days.

| Study reference                                        | Effective dose (mg/kg/day)                                                                                                                                                             | Length of exposure | Extrapolated effective dose<br>when extrapolated to 90-<br>day exposure             | Classification<br>supported by the<br>study |
|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------------------------------------------------------------------|---------------------------------------------|
| Report number: S-<br>2766                              | histopathological changes in the liver<br>(hypertrophy (observed after 1 y and<br>2 y), binucleated cells (observer after<br>1y))                                                      |                    | C≤1.25 mg/kg bw/day (Cat<br>1)                                                      |                                             |
| 78-week feeding<br>study in mice<br>Report No.: S-2867 | 1000 ppm (119 mg/kg bw/day<br>(increased liver weight and<br>histopathological changes in liver<br>(centrilobular hypertrophy, increased<br>pigemt, bile duct hyperplasia)             | 78 weeks           | 1.5 <c≤15 bw="" day<br="" kg="" mg="">(Cat 2)<br/>C≤1.5 mg/kg bw/day (Cat 1)</c≤15> | -                                           |
|                                                        | 2000/3000 ppm (238/357 mg/kg<br>bw/day) (histopathological changes<br>in lungs (foci of amphophilic<br>alveolar macrophages), increased<br>incidence of amyloidosis and<br>mortalities |                    |                                                                                     |                                             |

## Rat:

## 5-week oral toxicity study in rats (refer to Vol. 3, B.6.3.1/01)

In this pilot study, Clethodim Technical (purity: 83.4%) was administered to Sprague-Dawley rats (10/sex/group) via the diet at concentrations of 0, 5, 200, 1000, 4000, 8000 ppm (equal to 0, 0.26, 12.5, 65.6, 261 and 515 mg/kg bw/day for males, and 0, 0.29, 13.9, 70.6, 291 and 554 mg/kg bw/day for females) for 5 weeks. Vehicle used in study was acetone. Treatment was associated with reduced body weight noted in females at 291 mg/kg bw/day ( $\downarrow$ 8%) and 554 mg/kg bw/day ( $\downarrow$ 16%) and in males at 515 mg/kg bw/day ( $\downarrow$ 13%), reduced bodyweight gain (>10%) noted in both sexes at  $\geq$ 261/291 (M/F) mg/kg bw/day, changes in haematological parameters noted in males at  $\geq$ 12.5 mg/kg bw/day and in females at  $\geq$ 70.6 mg/kg bw/day, changes in biochemical parameters (increased cholesterol) noted in males at 515 mg/kg bw/day ( $\uparrow$ 68%), changes in urinalysis (increased uric acid) noted in females at  $\geq$ 291 mg/kg bw/day, increased liver weights noted in both sexes at  $\geq$ 65.6/70.6 (M/F) mg/kg bw/day, and histopathological findings in the liver (centrilobular hypertrophy) noted in males at  $\geq$ 70.6 mg/kg bw/day and in females at  $\geq$ 291 mg/kg bw/day. Haematological changes (indicating mild anaemia) included: reduced erythrocyte counts (females at  $\geq$ 70.6 mg/kg bw/day, up to 7% reduction), reduced haemoglobin levels (males at  $\geq$ 65.6 mg/kg bw/day, 4-7%, females at  $\geq$ 70.6 mg/kg bw/day (30-43%).

The NOAEL in this study is 200 ppm (12.5 mg/kg bw/day) based on reduced body weight grow observed in both sexes at  $\ge 261/291$  (M/F) mg/kg bw/day, changes in haematological parameters (indicating mild anaemia) observed in both sexes at  $\ge 65.6/70.6$  (M/F) mg/kg bw/day, changes in biochemical parameters indicating liver toxicity (increased cholesterol) noted at 515 mg/kg bw/day (males only), increased liver weights noted in both sexes at  $\ge 65.5/70.6$  (M/F) mg/kg bw/day, and histopathological changes in the liver (centrilobular hypertrophy) observed in males at  $\ge 65.6/70.6$  (M/F) mg/kg bw/day and in females at  $\ge 261$  mg/kg bw/day.

The study was performed in accordance with Good Laboratory Practice. The deviations from the current OECD TG 407 are presented in Table 46. These deviations concern endpoints that were not studied which limit the interpretations of the results but do not affect the validity of the study. The study is considered acceptable.

| Diagnosis                        | Group 1A, 0 ppm | Group 4D, 1000 ppm | Group 5E, 4000 ppm | Group 6F, 8000 ppm |
|----------------------------------|-----------------|--------------------|--------------------|--------------------|
| Total examined                   | 10              | 10                 | 10                 | 10                 |
| Hematopoiesis,<br>extramedullary | 10              | 9                  | 6                  | 5                  |
| trace                            | 8               | 9                  | 6                  | 5                  |
| mild                             | 2               | 0                  | 0                  | 0                  |
| Hepatite, chronic                | 0               | 0                  | 0                  | 1                  |
| trace                            | 0               | 0                  | 0                  | 1                  |
| Hypertrophy,<br>centrilobular    | 0               | 9                  | 9                  | 9                  |
| trace                            | 0               | 6                  | 3                  | 1                  |
| mild                             | 0               | 3                  | 6                  | 8                  |

 Table 2.6.3.1.1-01: Histopathology findings in the liver- males

| Table 2.6.3.1.1-02: His | opathology findings | s in the liver- females |
|-------------------------|---------------------|-------------------------|
|-------------------------|---------------------|-------------------------|

| Diagnosis            | Group 1A, 0 ppm | Group 4D, 1000 ppm | Group 5E, 4000 ppm | Group 6F, 8000 ppm |
|----------------------|-----------------|--------------------|--------------------|--------------------|
| Total examined       | 10              | 10                 | 10                 | 10                 |
| Hematopoiesis,       | 5               | 6                  | 5                  | 6                  |
| extramedullary       |                 |                    |                    |                    |
| trace                | 5               | 5                  | 4                  | 6                  |
| mild                 | 0               | 1                  | 1                  | 0                  |
| Hepatite, chronic    | 2               | 0                  | 0                  | 1                  |
| trace                | 2               | 0                  | 0                  | 1                  |
| Hypertrophy,         | 0               | 0                  | 9                  | 9                  |
| centrilobular        |                 |                    |                    |                    |
| trace                | 0               | 0                  | 8                  | 5                  |
| mild                 | 0               | 0                  | 1                  | 4                  |
| Within normal limits | 3               | 4                  | 1                  | 0                  |

#### 13-week oral study in rats (refer to Vol. 3, B.6.3.2/01)

In this study RE-45601 Technical (purity: 84%) was administered to Sprague-Dawley rats (12/sex/group) via the diet at concentrations of 0, 50, 500, 2500 and 5000 ppm (equal to 0, 2.3, 25, 134 and 279 mg/kg bw/day for males; 0, 2.8, 30, 159 and 341 mg/kg bw/day for females) for 13 weeks. Vehicle used in study was acetone. Following this treatment phase, 12 rats/sex/group were sacrificed. The remaining animals (12 rats/sex/group) in the control and two high dose groups were fed untreated basal diet for an additional six weeks and were sacrificed at the end of this recovery phase. Treatment was associated with reduced body weight noted in males at 134 mg/kg bw/day (7%) and in both sexes at 279/341 (M/F) mg/kg bw/day (>10%), reduced bodyweight gain noted in males at 134 mg/kg bw/day (10%) and in both sexes at 279/341 (M/F) mg/kg bw/day (>10%), reduced food consumption noted in both sexes at 279/341 (M/F) mg/kg bw/day (>10%), reduced in both sexes at 2134/159 (M/F) mg/kg bw/day, increased liver weight noted in both sexes at  $\geq 134/159$  (M/F) mg/kg bw/day, increased liver weight noted in both sexes at  $\geq 134/159$  (M/F) mg/kg bw/day, increased liver (hepatic centrilobular hypertrophy) noted in both sexes at  $\geq 134/159$  (M/F) mg/kg bw/day, included: increased serum cholesterol ( $\uparrow$ M: 31%), total protein (M:  $\uparrow$ 5%), globulin (M:  $\uparrow$ 9%).

Food consumption and body weight gain was reduced during the exposure period but was increased during the recovery period. Final body weight (week 19) was similar between groups except for females of the high dose group ( $\downarrow$ 7%). The only organ weight that was significantly different after the 6-week recovery period was relative liver weight in females of mid-dose ( $\uparrow$ 11%) and high ( $\uparrow$ 13%) dose groups. There were no treatment-related changes present among males and females at the recovery sacrifice.

The NOAEL in study was set at 500 ppm (equal to 25 mg/kg bw /day) based on reduced bodyweight noted at 279/341 (M/F) mg/kg bw/day (>10%), reduced bodyweight gain noted at  $\geq$ 134/159 (M/F) mg/kg bw/day ( $\geq$ 10%), changes in biochemical parameters (indicating liver toxicity) noted in males at 279 mg/kg bw/day (increased serum cholesterol, total protein and globulin levels), increased liver weight noted at  $\geq$ 134/159 (M/F) mg/kg bw/day, and histopathological changes in the liver (hypertrophy) observed at  $\geq$ 134/159 (M/F) mg/kg bw/day.

The study was conducted in accordance with good laboratory practice and according to OECD TG 408 (1998). There were a number of endocrine sensitive endpoint (included in the current version of the guideline) that were not analysed. This limits the usefulness of the study, but it does not affect the reliability of the obtained results. The study is considered acceptable.

Table 2.6.3.1.1-03: Selected histopathological results of rats administered clethodim (RE-45601 Technical) in the diet for 13 weeks (mean ± SD)

| Sex                                    | Males |      |      |      |       | Females |      |      |      |      |  |  |
|----------------------------------------|-------|------|------|------|-------|---------|------|------|------|------|--|--|
| Dose (ppm)                             | 0     | 50   | 500  | 2500 | 5000  | 0       | 50   | 500  | 2500 | 5000 |  |  |
| Dose (mg/kg<br>bw/day)                 | 0     | 2.3  | 25   | 134  | 279   | 0       | 2.8  | 30   | 159  | 341  |  |  |
| Liver:<br>centrilobular<br>hypertrophy | 0/12  | 0/12 | 0/12 | 8/12 | 10/12 | 0/12    | 0/12 | 0/12 | 2/12 | 7/12 |  |  |

## 4-week dermal study in rats (refer to Vol. 3, B.6.3.3/01)

In this study Sprague Dawley rats (6/sex/group) were exposed to repeated dermal doses of RE-45601 Technical (purity: 83.2%) during a 28-day period (21 six-h dermal applications) at doses of 0 (control), 10, 100 or 1000 mg/kg bw/day. The vehicle used in study was 0.7% carboxymethyl cellulose (CMC) and 1% TWEEN 80 in distilled water. Treatment was associated with local effects of skin irritation observed at all dose levels. Furthermore treatment was associated with clinical signs (anogenital discharge) noted in both sexes at 1000 mg/kg bw/day, reduced bodyweight gains observed in males at 1000 mg/kg bw/day, changes in biochemical parameters (increased triglyceride levels (F:  $\uparrow$ 140-160%); reduced BUN/creatinine ratio (M: 22%)) noted at  $\geq$ 100 mg/kg bw/day, lower food efficiency values noted in males at 1000 mg/kg bw/day, increased liver weights (about 20%) noted in females at 1000 mg/kg bw/day, increased relative kidney weight (10%) noted in males at 1000 mg/kg bw/day, increased relative testes weight (13%) noted at 1000 mg/kg bw/day.

No NOAEL for local effects could be set in this study since skin irritation was observed from 10 mg/kg bw/day. LOAEL for local effects is 10 mg/kg bw/day (equal to 8.3 mg/kg bw/day after correction for purity using a correction factor of 1.2). The systemic NOAEL was 100 mg/kg bw per day (equal to 83.3 mg/kg bw/day after correction for purity using a correction factor of 1.2) based on reduced bodyweight gain noted in males at 1000 mg/kg bw/day, changes in biochemical parameters (indicating liver toxicity) noted in both sexes at 1000 mg/kg bw/day (increased triglyceride levels (F), reduced BUN (M), reduced BUN/creatinine ratio (M)), and increased liver weights noted in both sexes at 1000 mg/kg bw/day.

The study was performed in accordance with OECD TG 410 and conducted to GLP. Some serum measurements mentioned in OECD TG 410 were not performed (ornithine decarboxylase, gamma glutamyl transpeptidase, hormone levels, methaemoglobin, cholinesterase activity); however, it is noted that these are not required but suggested. The study is acceptable.

## Combined chronic oral toxicity/oncogenicity study in rats (refer to Vol. 3, B.6.5/02)

In this study Sprague Dawley rats were exposed to RE-45601 Technical (purity: 83%) in the diet for 2 years at doses of 0 (control), 5, 20, 500, 2500 ppm (equivalent to 0, 0.15, 0.57, 16 and 86 mg/kg bw/day (males) and 0, 0.2, 0.72, 21 and 113 mg/kg bw/day (females)). The vehicle used in study was Acetone 10 mL/kg diet. Treatment was associated with reduced body weight noted in both sexes at 86/113 (M/F) mg/kg bw/day (At Day 91: M: 7%, F: 6%; At Day 360: M: 7%, F: 8%; At Day 724: M: 8% n.s., F:13% n.s), reduced bodyweight gain noted at 86/113 (M/F) mg/kg bw/day (M:11%, F: 12%, calculated for the first 3 months), reduced food consumption noted at 86/113 (M/F) mg/kg bw/day (noted at intervals during the study), reduced food efficiency noted in males at 86 mg/kg bw/day (during the first three months), increased liver weights noted in females at 21 mg/kg bw/day (rel weight: after 1 year:  $\uparrow$ 18% n.s.; after 2 y: 12%, n.s) and in both sexes at 86/113 (M/F) mg/kg bw/day (abs weight after 1 y: M: 15% n.s., F: 24%; rel weight after 1 y: M: 22%, F: 18% n.s.; rel weight after 2 y: F: 21%), and histopathological findings in the liver noted in both sexes at 86/113 (M/F) mg/kg bw/day. The histopathological findings consisted of hypertrophy in hepatocytes (observed in both sexes after 1 y and 2 y) and binucleated cells in the liver observed in females after 1 y but not after 2 y. No treatment-related increase in the incidence of neoplasms or other microscopic lesions was found in any of the groups.

The NOAEL in study is 500 ppm (equal to 16 mg/kg bw/day) based on reduced bodyweight gain noted in both sexes at 86/113 (M/F) mg/kg bw/day, increased liver weights noted in both sexes at 86/113 (M/F) mg/kg bw/day, and histopathological findings in the liver noted at 86/113 (M/F) mg/kg bw/day (hypertrophy (both sexes), binucleated cells (F)).

The study was performed in accordance with OECD 453 and with EPA, FIFRA and TSCA Good Laboratory Practice (GLP) Standards. The deviations from the current guideline (OECD 453, 2018) includes the ones listed in Table 46. These deviations are not considered to have a major impact on the study outcome. The study is considered acceptable.

|                      | Males |      |      |      |      | Female | Females |      |      |      |  |  |  |
|----------------------|-------|------|------|------|------|--------|---------|------|------|------|--|--|--|
| Dose (ppm)           | 0     | 5    | 20   | 500  | 2500 | 0      | 5       | 20   | 500  | 2500 |  |  |  |
| mg/kg bw/day         | 0     | 0.15 | 0.57 | 16   | 86   | 0      | 0.20    | 0.72 | 21   | 113  |  |  |  |
| Pathology            |       |      |      |      |      |        |         |      |      |      |  |  |  |
| Non-neoplastic lesio | ns    |      |      |      |      |        |         |      |      |      |  |  |  |
| Interim sacrifice#   |       |      |      |      |      |        |         |      |      |      |  |  |  |
| Centrilobular        | 0/10  | 0/10 | 0/10 | 0/10 | 1/10 | 0/10   | 0/10    | 0/10 | 0/10 | 3/10 |  |  |  |
| hypertrophy          | 0/10  | 0/10 | 0/10 | 0/10 | 1/10 | 0/10   | 0/10    | 0/10 | 0/10 | 5/10 |  |  |  |
| All study animals    |       |      |      |      |      |        |         |      |      |      |  |  |  |
| Binucleated cells    | 2/65  | 0/65 | 0/65 | 0/65 | 1/65 | 1/65   | 0/65    | 0/65 | 1/65 | 6/65 |  |  |  |

 Table 2.6.3.1.1-04: Selected pathology parameters of rats administered RE-45601 Technical in the diet for 104 weeks (mean±SD)

# No. of animals with lesion/ No. of animals in group.

## Two generation (one litter) reproduction study in rats (refer to Vol. 3, B.6.6.1/02)

In this two generation study, RE-45601 Technical (purity: 83.3%) was administered in the diet to groups of 30 males and females per generation Treatment was associated with reduced body weight noted in F0 generation males at 163 mg/kg bw/day ( $\downarrow$ 4-9%) and in F1 generation males ( $\downarrow$ 10-19%) and females ( $\downarrow$ 6-10%), and minor reductions in food consumption in both generations at 163/181 (M/F) mg/kg bw/day, organ weight changes noted at 163 mg/kg bw/day (F0 generation: increased relative testis weight (10%); F1 generation: increased relative epididymis weight (18%), reduced absolute prostate (25%) and seminal vesicles weights (11%)). Relative weights of prostate and seminal vesicles were comparable to control. Furthermore, slightly increased number of still born pups was observed in F1 generation at 163/181 (M/F) mg/kg bw/day. The relevance of this latter finding was unclear. The lack of similar effect in the F2 pups and the four-fold higher value in the F2 controls indicates that the effect may be incidental.

The NOAEL for parental toxicity in study is 500 ppm (32.2 mg/kg bw/day) based on reduced body weights noted in both generations at 163/181 (M/F) mg/kg bw/day covering also reduced absolute prostate and seminal vesicles weights of unclear relevance noted in F1 adults at 163 mg/kg bw/day. NOAEL for reproductive toxicity is 2500 ppm (163 mg/kg bw/day, highest dose tested). The NOAEL for offspring toxicity is 500 ppm (32.2 mg/kg bw/day) based on slightly increased number of stillborn noted in F1 pups at 2500 ppm (163/181 (M/F) mg/kg bw/day) (although unclear relevance).

The study was performed in general accordance with OECD 416 and with EPA, FIFRA and TSCA Good Laboratory Practice (GLP) Standards. There were some deviations from the current version of the guideline, see Table 46. The deviations include parameters that were not measured, and while these limits the scope of the study, they do not affect the reliability. The study is considered acceptable.

(F0 and F1) at levels of 0, (control), 5, 20, 500, and 2500 ppm (equal to 0, 0.5, 1.2, 32.2 and 163 mg/kg bw/day for males; 0, 0.5, 1.5, 37.4 and 181 mg/kg bw/day for females in the pre-mating period after correction for purity as calculated by the applicant). The vehicle used in study for preparation of diet was Acetone.

#### Pilot rat reproduction study in rats (refer to Vol. 3, B.6.6.2.1/01)

In this pilot study, groups of 8 male and 8 female Sprague-Dawley CrI:CD strain rats were fed diet containing 0, 500, 2000 or 5000 ppm RE-45601 Technical (purity: 83.3%) for 1 week before mating. The doses equal to 0, 20.8, 83.3, 208.3 mg/kg bw/day when corrected for purity of active substance. The vehicle used in study for preparation of diet was Acetone. Females received the diet continuously throughout mating and gestation, and until Day 7 of lactation when they were necropsied. The offspring were exposed to the test material in utero and while nursing until they were sacrificed and necropsied on Day 7 of lactation. Effects on adults and offspring were observed at the maximum dose level of 5000 ppm (208.3 mg/kg bw/day).

Treatment was associated with reduced bodyweight noted in adults at 208.3 mg/kg bw/day (Males: week 0-2: 2%; Females: GD 20 13%, LD 0 F: 14%, LD: 7 (16%)), reduced bodyweight gain noted in adults at 5000 ppm (M: 18%, F: 63%) and reduced food consumption noted in adult males during the first week (pre-mating) (15%). In the offspring reduced combined pup weights were noted at all dose levels (On day 7: 9%, 9%, and 11% in the low, middle, and high dose, respectively; Day 0-7: 13%, 14%, and 16% in the low, middle, and high dose, respectively). There were no effects on reproduction indices for males or females, or on pup litter size, survival, and sex ration.

The study is not suitable for NOAEL setting (low number of animals used and limited parameters investigated). The study is considered as supportive data (dose range finding study).

#### Teratology study in rats (refer to Vol. 3, B.6.6.2.2/01)

In this study, pregnant dams (Crl:CD rats) (25/dose) were administered clethodim (purity: 83.3%) by gavage during gestational days 6-15 at doses of 0, 10, 100, 300 and 700 mg/kg bw per day (equal to 0, 8.3, 83.3, 292 and 583

Clethodim

mg/kg bw/day after correction for purity of test substance). Maternal toxicity was observed in the top two doses, with increasing severity with dose. Manifestations of maternal toxicity included mortality (5 of 25 animals) noted at 700 mg/kg bw/day (583 mg/kg bw/day after correction for purity of test substance), clinical signs (excessive salivation, excessive lacrimation, poor condition, red/mucoid nasal discharge, alopecia, staining of the ano-genital area, chromodocryorrhea (top dose only)) noted at  $\geq$ 350 mg/kg bw/day, reduced maternal body weight noted at 350 mg/kg bw/day (GD 20: 7%; GD 20 corrected value: 6%) and 700 mg/kg bw/day (GD 20: 8%; GD 20 corrected value: 13%), reduced bodyweight gain noted at 350 mg/kg bw/day (GD 6-15: 15% n.s.; GD 15-20: 17% GD 20 corrected value: 77%) and 700 mg/kg bw/day (GD 6-15: 40%; GD 15-20: 17%; GD 20 corrected value: 11%). Furthermore, food consumption was reduced in the highest dose group during the exposure period (except for the last day). Uterine weight was reduced in a dose dependent manner: 7% reduction in the 100 mg/kg bw/day group, 10 % in the 350 mg/kg bw/day group, and 27% in the 700 mg/kg bw/day group (only the top dose was statistically significant). The mean number of resorptions and resorptions per implant was increased in the top dose group (not statistically significant). There were fewer litters with viable foetuses in the highest dose group. Foetal body weight was reduced at 350 mg/kg bw/day (11%) and 700 mg/kg bw/day (25%). Furthermore, the incidence of skeletal variations (retarded ossification processes) was increased in the top two doses. There was also a higher incidence of external and visceral malformations among the top dose foetuses. Seven out of the 8 foetuses with external malformations had (among other things) deformed tails, an effect that is associated with maternal toxicity. Because the fetotoxic effects only were observed in the presence of maternal toxicity, the distinction between direct and indirect effects on the foetus is unclear.

NOAEL for maternal toxicity is 100 mg/kg bw/day (equal to 83.3 mg/kg bw per day after correction for purity of test substance) based on mortalities noted at 700 mg/kg bw/day, clinical signs noted at  $\geq$ 350 mg/kg bw/day, reduced body weight noted at 700 mg/kg bw/day and reduced bodyweight gain noted at  $\geq$ 350 mg/kg bw. NOAEL for developmental toxicity is 100 mg/kg bw/day (equal to 83.3 mg/kg bw per day after correction for purity of test substance) based on decreased foetal weight noted at  $\geq$ 350 mg/kg bw/day, increased incidence of skeletal variations noted at  $\geq$ 350 mg/kg bw/day, and increased incidence of external and visceral malformations at 700 mg/kg bw/day.

The study was performed in general accordance with OECD 414 and with FIFRA Good Laboratory Practice (GLP) Standards. The deviations from the current guideline include endpoints that would have been valuable for the endocrine disruption assessment (see Table 46); however, the lack of such information does not invalidate the study. The exposure period in the study is shorter than described in the current version of the guideline. The exposure period used (day 5-15) covers the main part of organogenesis. The study is considered acceptable.

#### Pilot teratology study in rats (refer to Vol. 3, B.6.6.2.1/01)

In this dose range finding study, RE-45601 (purity: 83.3%) was administered orally by gavage daily on gestational days 6-15 to groups of 10 female rats at doses of 0, (control), 50, 150, 300 and 500 mg/kg bw/day (equal to 0, 41.7, 125, 250, and 417 mg/kg bw per day, after correction for purity of test substance).

At the top dose of 500 mg/kg bw/day (417 mg/kg bw/day when corrected for purity of test substance), observed effects included increased salivation (8/10 dams), reduced body weight (Day 20:  $\downarrow$ 10% n.s.), reduced bodyweight gain (Day 15-20:  $\downarrow$ 38.8%; Day 6-20:  $\downarrow$ 62.5%), reduced number of implantation sites (87 versus 126 in control, n.s.),

and increased pre-implantation loss ratio (0.289 versus 0.082 in control, n.s.), reduced number of viable foetuses (86 versus 122 in control, within historical control values), and reduced foetal weight of viable foetuses ( $\downarrow 11\%$ ).

In the second highest dose of 300 mg/kg bw/day (250 mg/kg bw/day when corrected for purity), observed effects included increased salivation in the dams (8/10 dams) and reduced pup weight (7%, not statistically significant).

The study was performed in accordance FIFRA Good Laboratory Practice (GLP) Standards. The study is not suitable for NOAEL setting (low number of animals used and limited parameters investigated) (pilot study). It is also noted that there were indications of SDA viral infections in some dams at gestation day 20 which restricts the reliability of the study. This was noted in 1, 2, 2, 3, and 2 females in the 0, 50, 150, 300, and 500 mg/kg bw/day group, respectively. The study is considered as supportive data.

#### 90-day oral dietary neurotoxicity study in rats (refer to Vol. 3, B.6.7.1.3)

In this study, RE-45601 (purity: 95.4%) was administered in the diet to groups of 12 males and females at levels of 0 (control), 500, 1500 and 5000 ppm (equal to 0, 31, 94 and 331 mg/kg bw/day for males, and 0, 38, 115 and 380 mg/kg bw/day for females) for 28 days. No mortality occurred and no clear treatment related clinical signs were observed. Body weights of both sexes were lower in the highest dose group than those of the control group throughout the study (7-11% in males and 7-9% in females). Body weights of the low and middle dose were comparable to control weights or higher (body weight of female of the 500-ppm group). Body weight gain was reduced in both sexes (16% in males and 19% in females) over the entire study period, in general due to lower gains during the first month. Food consumption in males was reduced during the first week, potentially indicating palatability issues, but the food consumption per animal was slightly lower also after that, the consumption per kg bw was similar or slightly higher the rest of the study. In females, the food consumption per animal was lower/slightly lower throughout the study while the consumption per kg bw was similar to the control group overall. The functional battery revealed no treatment related effect on home cage, handling, open field, sensory, or neuromuscular observations. Physiological observations included lower body weight in both sexes. No clear treatment related trends were observed in the treated animals. Total and ambulatory motor activity counts for the 5000 ppm (380 mg/kg bw/day) group females at the study week 7 evaluation was lower than that of the control. The value was also lower than the HCD and the control value was higher than the HCD. No effects on habituation were observed. There were no effects on liver weight, brain weight, or brain length or width but it is noted that relative weights were not reported. No treatment related changes were noted during necropsy.

NOAEL for systemic toxicity was set at 1500 ppm (94 mg/kg/day for males and 115 mg/kg/day for females) based on reduced body weight observed in males and reduced bodyweight gain observed in both sexes at 5000 ppm. NOAEL for neurotoxicity was set at 5000 ppm (331 mg/kg/day for males and 380 mg/kg/day for females) (highest dose level). The study was performed in accordance with good laboratory practice and follows OECD TG 424 and is considered acceptable.

Table 2.6.3.1.1-05: Body weight (g) of rats administered clethodim in the diet for 13 weeks (mean ± SD, n=12) and assessed in the functional observational battery

| Sex        | Male          |               |                  |                            | Female        |                              |                  |                            |  |  |  |
|------------|---------------|---------------|------------------|----------------------------|---------------|------------------------------|------------------|----------------------------|--|--|--|
| Dose (ppm) | 0             | 500           | 1500             | 5000                       | 0             | 500                          | 1500             | 5000                       |  |  |  |
| Week 3     | 374.8 ± 25.70 | 377.8 ± 30.54 | 374.9 ±<br>31.77 | 341.5 ±<br>19.39*<br>(↓9%) | 207.6 ± 15.71 | 229.6 ±<br>21.57**<br>(↑11%) | 211.7 ±<br>17.22 | 190.5 ±<br>11.94*<br>(↓8%) |  |  |  |

| Sex        | Male             |                  |               |                                                                             | Female           |                              |               |                                                                           |
|------------|------------------|------------------|---------------|-----------------------------------------------------------------------------|------------------|------------------------------|---------------|---------------------------------------------------------------------------|
| Dose (ppm) | 0                | 500              | 1500          | 5000                                                                        | 0                | 500                          | 1500          | 5000                                                                      |
| Week 7     | 493.3 ±<br>32.78 | 495.3 ±<br>41.26 | 487.7 ± 50.14 | $\begin{array}{c} 441.1 \pm \\ 33.55^{**} \\ (\downarrow 11\%) \end{array}$ | 246.3 ±<br>18.91 | 273.1 ±<br>26.74**<br>(†11%) | 256.7 ± 18.40 | $\begin{array}{c} 223.8 \pm \\ 17.75^{*} \\ (\downarrow 9\%) \end{array}$ |
| Week 12    | 572.9 ±<br>35.95 | 574.2 ±<br>49.59 | 568.9 ± 58.25 | $516.4 \pm 46.28*$<br>( $\downarrow 10\%$ )                                 | 268.9 ±<br>21.72 | 295.5 ±<br>30.51*<br>(†8%)   | 282.4 ± 23.91 | 244.5 ±<br>21.83                                                          |

## Table 2.6.3.1.1-06: Motor activity counts for female rats at selected time points during study week 7

| Stud- |              |                                                          | Dose (ppm)                  |                  |                 |                 |           |  |  |  |  |  |  |
|-------|--------------|----------------------------------------------------------|-----------------------------|------------------|-----------------|-----------------|-----------|--|--|--|--|--|--|
| Study | Time point   | Statistic                                                | 0                           | 500              | 1500            | 5000            | HCD       |  |  |  |  |  |  |
| week  |              |                                                          | Total motor activity counts |                  |                 |                 |           |  |  |  |  |  |  |
|       |              | Mean ± SD                                                | $573 \pm 350.2$             | $436 \pm 237.7$  | $408 \pm 223.8$ | $288 \pm 265.1$ | 357 - 622 |  |  |  |  |  |  |
| 7     | 21-30 mins   | Linear Trend p-value#                                    |                             | NT               | 0.142           | 0.013* (↓50%)   | NT        |  |  |  |  |  |  |
|       |              | Overall (Statistical model                               | l: LinTrt*Time              | p-value#) 0.026  | *               |                 |           |  |  |  |  |  |  |
|       |              |                                                          | Ambulatory m                | otor activity co | ounts           |                 |           |  |  |  |  |  |  |
|       |              | Mean ± SD                                                | $142 \pm 120.0$             | $79 \pm 63.9$    | $86 \pm 62.8$   | $60 \pm 75.0$   | 50 - 123  |  |  |  |  |  |  |
| 7     | 21-30 mins   | Linear Trend p-value#                                    |                             | NT               | 0.131           | 0.042*          | NT        |  |  |  |  |  |  |
| /     | 21-30 111118 | Linear Trend p-value#                                    |                             | 111              | 0.131           | (↓102%)         |           |  |  |  |  |  |  |
|       |              | Overall (Statistical model: LinTrt*Time p-value#) 0.034* |                             |                  |                 |                 |           |  |  |  |  |  |  |

## Table 2.6.3.1.1-07: Motor activity counts for male rats administered clethodim in the diet

| 1 abic 4 |                     | Mean values |             |             |             |      |           |           |          | % of 0-10 minute interval (within the same group) |           |           |             |
|----------|---------------------|-------------|-------------|-------------|-------------|------|-----------|-----------|----------|---------------------------------------------------|-----------|-----------|-------------|
| Week     | Time interval (min) | Mean        | 2           | 3           | 4           | % a  | 11erenc   | e to co   |          | % 01 0-10 m                                       | 2         | 3         | same group) |
|          |                     | 1           | 2           | 3           | 4           | 1    | 2         | 3         | 4        | 1                                                 | 2         | 3         | 4           |
| Total    | 0.10                | 1216        | 1007        | 1026        | 1200        |      | -7        | 6         | 1        | 100                                               | 100       | 100       | 100         |
| -1       | 0-10<br>11-20       | 1316<br>722 | 1227<br>664 | 1236<br>628 | 1309<br>670 | n.a. | -7        | -6<br>-13 | -1<br>-7 | 100<br>55                                         | 100<br>54 | 100<br>51 | 100<br>51   |
|          | 21-30               | 563         | 467         | 348         | 507         | n.a. | -8<br>-17 | -13       | -10      | 43                                                | 38        | 28        | 39          |
|          |                     |             |             |             |             | n.a. |           |           |          | -                                                 |           | -         |             |
|          | 31-40               | 104         | 464         | 150         | 326         | n.a. | 346       | 44        | 213      | 8<br>10                                           | 38<br>18  | 12<br>8   | 25          |
|          | 41-50               | 135         | 217         | 104         | 205         | n.a. | 61        | -23       | 52       | -                                                 | -         | -         | 16          |
|          | 51-60               | 148         | 98          | 147         | 189         | n.a. | -34       | -1        | 28       | 11                                                | 8         | 12        | 14          |
| -        | Cumulative          | 2989        | 3138        | 2613        | 3206        | n.a. | 5         | -13       | 7        | -                                                 | -         | -         | -           |
| 3        | 0-10                | 1272        | 1260        | 1179        | 1209        | n.a. | -1        | -7        | -5       | 100                                               | 100       | 100       | 100         |
|          | 11-20               | 932         | 832         | 731         | 833         | n.a. | -11       | -22       | -11      | 73                                                | 66        | 62        | 69          |
|          | 21-30               | 684         | 735         | 563         | 595         | n.a. | 7         | -18       | -13      | 54                                                | 58        | 48        | 49          |
|          | 31-40               | 552         | 585         | 343         | 372         | n.a. | 6         | -38       | -33      | 43                                                | 46        | 29        | 31          |
|          | 41-50               | 311         | 470         | 278         | 312         | n.a. | 51        | -11       | 0        | 24                                                | 37        | 24        | 26          |
|          | 51-60               | 230         | 392         | 186         | 316         | n.a. | 70        | -19       | 37       | 18                                                | 31        | 16        | 26          |
|          | Cumulative          | 3981        | 4274        | 3281        | 3637        | n.a. | 7         | -18       | -9       | -                                                 | -         | -         | -           |
| 7        | 0-10                | 1249        | 1114        | 1142        | 1129        | n.a. | -11       | -9        | -10      | 100                                               | 100       | 100       | 100         |
|          | 11-20               | 807         | 694         | 705         | 736         | n.a. | -14       | -13       | -9       | 65                                                | 62        | 62        | 65          |
|          | 21-30               | 573         | 500         | 495         | 508         | n.a. | -13       | -14       | -11      | 46                                                | 45        | 43        | 45          |
|          | 31-40               | 463         | 355         | 363         | 477         | n.a. | -23       | -22       | 3        | 37                                                | 32        | 32        | 42          |
|          | 41-50               | 317         | 297         | 261         | 293         | n.a. | -6        | -18       | -8       | 25                                                | 27        | 23        | 26          |
|          | 51-60               | 84          | 172         | 139         | 165         | n.a. | 105       | 65        | 96       | 7                                                 | 15        | 12        | 15          |
|          | Cumulative          | 3493        | 3132        | 3105        | 3307        | n.a. | -10       | -11       | -5       | -                                                 | -         | -         | -           |
| 12       | 0-10                | 1183        | 1135        | 1098        | 1216        | n.a. | -4        | -7        | 3        | 100                                               | 100       | 100       | 100         |
|          | 11-20               | 658         | 559         | 565         | 713         | n.a. | -15       | -14       | 8        | 56                                                | 49        | 51        | 59          |
|          | 21-30               | 395         | 461         | 335         | 434         | n.a. | 17        | -15       | 10       | 33                                                | 41        | 31        | 36          |
|          | 31-40               | 360         | 337         | 334         | 239         | n.a. | -6        | -7        | -34      | 30                                                | 30        | 30        | 20          |
|          | 41-50               | 249         | 251         | 196         | 230         | n.a. | 1         | -21       | -8       | 21                                                | 22        | 18        | 19          |
|          | 51-60               | 192         | 158         | 129         | 231         | n.a. | -18       | -33       | 20       | 16                                                | 14        | 12        | 19          |
|          | Cumulative          | 3037        | 2899        | 2657        | 3063        | n.a. | -5        | -13       | 1        | -                                                 | -         | -         | -           |
| Ambu     |                     |             |             |             |             |      |           |           |          | •                                                 | •         | •         | •           |
| -1       | 0-10                | 436         | 401         | 379         | 425         | n.a. | -8        | -13       | -3       | 100                                               | 100       | 100       | 100         |
|          | 11-20               | 178         | 144         | 133         | 147         | n.a. | -19       | -25       | -17      | 41                                                | 36        | 35        | 35          |
|          | 21-30               | 112         | 85          | 50          | 94          | n.a. | -24       | -55       | -16      | 26                                                | 21        | 13        | 22          |
|          | 31-40               | 8           | 88          | 12          | 49          | n.a. | 1000      | 50        | 513      | 2                                                 | 22        | 3         | 12          |
|          | 41-50               | 6           | 29          | 16          | 19          | n.a. | 383       | 167       | 217      | 1                                                 | 7         | 4         | 4           |
|          | 51-60               | 16          | 3           | 15          | 11          | n.a. | -81       | -6        | -31      | 4                                                 | 1         | 4         | 3           |
|          | Cumulative          | 757         | 749         | 604         | 745         | n.a. | -1        | -20       | -2       | -                                                 | -         | -         | -           |
| 3        | 0-10                | 316         | 348         | 268         | 326         | n.a. | 10        | -15       | 3        | 100                                               | 100       | 100       | 100         |
|          | 11-20               | 196         | 183         | 137         | 180         | n.a. | -7        | -30       | -8       | 62                                                | 53        | 51        | 55          |
|          | 21-30               | 142         | 162         | 98          | 107         | n.a. | 14        | -31       | -25      | 45                                                | 47        | 37        | 33          |
|          | 31-40               | 105         | 119         | 53          | 56          | n.a. | 13        | -50       | -47      | 33                                                | 34        | 20        | 17          |
|          | 41-50               | 52          | 84          | 56          | 54          | n.a. | 62        | 8         | 4        | 16                                                | 24        | 20        | 17          |
|          | 51-60               | 38          | 71          | 29          | 58          | n.a. | 87        | -24       | 53       | 10                                                | 20        | 11        | 18          |
|          | Cumulative          | 848         | 966         | 641         | 780         | n.a. | 14        | -24       | -8       | -                                                 | -         | -         | -           |
|          | Cumulative          | 540         | 700         | 110         | 700         | n.u. | 17        | 27        | 0        | 1                                                 | 1         | 1         | 1           |

|      | Time interval (min) | Mean | values |     |     | % di | ifferenc | e to co | ntrol | % of 0-10 minute interval (within the same group) |     |     |     |  |
|------|---------------------|------|--------|-----|-----|------|----------|---------|-------|---------------------------------------------------|-----|-----|-----|--|
| Week | Time miler var (mm) | 1    | 2      | 3   | 4   | 1    | 2        | 3       | 4     | 1                                                 | 2   | 3   | 4   |  |
| 7    | 0-10                | 287  | 239    | 244 | 263 | n.a. | -17      | -15     | -8    | 100                                               | 100 | 100 | 100 |  |
|      | 11-20               | 145  | 108    | 99  | 144 | n.a. | -26      | -32     | -1    | 51                                                | 45  | 41  | 55  |  |
|      | 21-30               | 100  | 86     | 82  | 95  | n.a. | -14      | -18     | -5    | 35                                                | 36  | 34  | 36  |  |
|      | 31-40               | 75   | 59     | 50  | 90  | n.a. | -21      | -33     | 20    | 26                                                | 25  | 20  | 34  |  |
|      | 41-50               | 60   | 41     | 39  | 52  | n.a. | -32      | -35     | -13   | 21                                                | 17  | 16  | 20  |  |
|      | 51-60               | 15   | 29     | 24  | 28  | n.a. | 93       | 60      | 87    | 5                                                 | 12  | 10  | 11  |  |
|      | Cumulative          | 682  | 563    | 537 | 672 | n.a. | -17      | -21     | -1    | -                                                 | -   | -   | -   |  |
| 12   | 0-10                | 238  | 228    | 209 | 269 | n.a. | -4       | -12     | 13    | 100                                               | 100 | 100 | 100 |  |
|      | 11-20               | 100  | 85     | 81  | 115 | n.a. | -15      | -19     | 15    | 42                                                | 37  | 39  | 43  |  |
|      | 21-30               | 64   | 64     | 45  | 68  | n.a. | 0        | -30     | 6     | 27                                                | 28  | 22  | 25  |  |
|      | 31-40               | 58   | 54     | 45  | 38  | n.a. | -7       | -22     | -34   | 24                                                | 24  | 22  | 14  |  |
|      | 41-50               | 34   | 34     | 21  | 44  | n.a. | 0        | -38     | 29    | 14                                                | 15  | 10  | 16  |  |
|      | 51-60               | 32   | 22     | 13  | 35  | n.a. | -31      | -59     | 9     | 13                                                | 10  | 6   | 13  |  |
|      | Cumulative          | 527  | 486    | 413 | 569 | n.a. | -8       | -22     | 8     | -                                                 | -   | -   | -   |  |

Groups: 1 = vehicle control, 2 = 500 ppm, 3 = 1500 ppm, 4 = 5000 ppm

| Wee   | Time interval | Mean |      |      |      |      |     | o contro | ol  | % of 0-10 minute interval<br>(within the same group) |     |     |     |
|-------|---------------|------|------|------|------|------|-----|----------|-----|------------------------------------------------------|-----|-----|-----|
| k     | (min)         | 1    | 2    | 3    | 4    | 1    | 2   | 3        | 4   | 1                                                    | 2   | 3   | 4   |
| Total |               |      |      |      |      |      |     |          |     |                                                      |     |     |     |
| -1    | 0-10          | 1211 | 1183 | 1381 | 1259 | n.a. | -2  | 14       | 4   | 100                                                  | 100 | 100 | 100 |
|       | 11-20         | 348  | 535  | 446  | 389  | n.a. | 54  | 28       | 12  | 29                                                   | 45  | 32  | 31  |
|       | 21-30         | 319  | 300  | 508  | 197  | n.a. | -6  | 59       | -38 | 26                                                   | 25  | 37  | 16  |
|       | 31-40         | 186  | 178  | 360  | 312  | n.a. | -4  | 94       | 68  | 15                                                   | 15  | 26  | 25  |
|       | 41-50         | 269  | 235  | 241  | 253  | n.a. | -13 | -10      | -6  | 22                                                   | 20  | 17  | 20  |
|       | 51-60         | 340  | 221  | 222  | 189  | n.a. | -35 | -35      | -44 | 28                                                   | 19  | 16  | 15  |
|       | Cumulative    | 2673 | 2652 | 3157 | 2599 | n.a. | -1  | 18       | -3  | -                                                    | -   | -   | -   |
| 3     | 0-10          | 1630 | 1469 | 1503 | 1469 | n.a. | -10 | -8       | -10 | 100                                                  | 100 | 100 | 100 |
|       | 11-20         | 792  | 787  | 803  | 832  | n.a. | -1  | 1        | 5   | 49                                                   | 54  | 53  | 57  |
|       | 21-30         | 486  | 620  | 492  | 582  | n.a. | 28  | 1        | 20  | 30                                                   | 42  | 33  | 40  |
|       | 31-40         | 516  | 512  | 593  | 276  | n.a. | -1  | 15       | -47 | 32                                                   | 35  | 39  | 19  |
|       | 41-50         | 508  | 346  | 375  | 283  | n.a. | -32 | -26      | -44 | 31                                                   | 24  | 25  | 19  |
|       | 51-60         | 375  | 327  | 428  | 357  | n.a. | -13 | 14       | -5  | 23                                                   | 22  | 28  | 24  |
|       | Cumulative    | 4306 | 4062 | 4193 | 3798 | n.a. | -6  | -3       | -12 | -                                                    | -   | -   | -   |
| 7     | 0-10          | 1293 | 1321 | 1363 | 1288 | n.a. | 2   | 5        | 0   | 100                                                  | 100 | 100 | 100 |
|       | 11-20         | 751  | 742  | 665  | 603  | n.a. | -1  | -11      | -20 | 58                                                   | 56  | 49  | 47  |
|       | 21-30         | 573  | 436  | 408  | 288  | n.a. | -24 | -29      | -50 | 44                                                   | 33  | 30  | 22  |
|       | 31-40         | 436  | 390  | 352  | 306  | n.a. | -11 | -19      | -30 | 34                                                   | 30  | 26  | 24  |
|       | 41-50         | 448  | 305  | 309  | 222  | n.a. | -32 | -31      | -50 | 35                                                   | 23  | 23  | 17  |
|       | 51-60         | 251  | 186  | 249  | 350  | n.a. | -26 | -1       | 39  | 19                                                   | 14  | 18  | 27  |
|       | Cumulative    | 3752 | 3380 | 3346 | 3057 | n.a. | -10 | -11      | -19 | -                                                    | -   | -   | -   |
| 12    | 0-10          | 1362 | 1273 | 1370 | 1309 | n.a. | -7  | 1        | -4  | 100                                                  | 100 | 100 | 100 |
|       | 11-20         | 650  | 560  | 708  | 508  | n.a. | -14 | 9        | -22 | 48                                                   | 44  | 52  | 39  |
|       | 21-30         | 338  | 385  | 585  | 246  | n.a. | 14  | 73       | -27 | 25                                                   | 30  | 43  | 19  |
|       | 31-40         | 429  | 316  | 433  | 295  | n.a. | -26 | 1        | -31 | 31                                                   | 25  | 32  | 23  |
|       | 41-50         | 414  | 288  | 380  | 327  | n.a. | -30 | -8       | -21 | 30                                                   | 23  | 28  | 25  |
|       | 51-60         | 374  | 243  | 351  | 207  | n.a. | -35 | -6       | -45 | 27                                                   | 19  | 26  | 16  |
|       | Cumulative    | 3568 | 3065 | 3827 | 2893 | n.a. | -14 | 7        | -19 | -                                                    | -   | -   | -   |
| Ambu  | ulatory       |      |      |      | •    |      |     | •        |     |                                                      |     | •   |     |
| -1    | 0-10          | 439  | 398  | 504  | 428  | n.a. | -9  | 15       | -3  | 100                                                  | 100 | 100 | 100 |
|       | 11-20         | 91   | 107  | 94   | 87   | n.a. | 18  | 3        | -4  | 21                                                   | 27  | 19  | 20  |
|       | 21-30         | 80   | 53   | 154  | 39   | n.a. | -34 | 93       | -51 | 18                                                   | 13  | 31  | 9   |
|       | 31-40         | 31   | 33   | 88   | 60   | n.a. | 6   | 184      | 94  | 7                                                    | 8   | 17  | 14  |
|       | 41-50         | 48   | 35   | 51   | 45   | n.a. | -27 | 6        | -6  | 11                                                   | 9   | 10  | 11  |
|       | 51-60         | 60   | 12   | 41   | 23   | n.a. | -80 | -32      | -62 | 14                                                   | 3   | 8   | 5   |
|       | Cumulative    | 749  | 638  | 932  | 682  | n.a. | -15 | 24       | -9  | -                                                    | -   | -   | -   |
| 3     | 0-10          | 540  | 447  | 476  | 473  | n.a. | -17 | -12      | -12 | 100                                                  | 100 | 100 | 100 |
|       | 11-20         | 204  | 179  | 193  | 221  | n.a. | -12 | -5       | 8   | 38                                                   | 40  | 41  | 47  |
|       | 21-30         | 135  | 143  | 116  | 140  | n.a. | 6   | -14      | 4   | 25                                                   | 32  | 24  | 30  |
|       | 31-40         | 135  | 121  | 153  | 60   | n.a. | -10 | 13       | -56 | 25                                                   | 27  | 32  | 13  |
|       | 41-50         | 127  | 70   | 90   | 63   | n.a. | -45 | -29      | -50 | 24                                                   | 16  | 19  | 13  |
|       | 51-60         | 89   | 68   | 119  | 84   | n.a. | -24 | 34       | -6  | 16                                                   | 15  | 25  | 18  |

| Wee | Time interval<br>(min) | Mean | values |      |      | % diff | erence t | to contro | ol  | % of 0-10 minute interval<br>(within the same group) |     |     |     |
|-----|------------------------|------|--------|------|------|--------|----------|-----------|-----|------------------------------------------------------|-----|-----|-----|
| k   | (IIIIII)               | 1    | 2      | 3    | 4    | 1      | 2        | 3         | 4   | 1                                                    | 2   | 3   | 4   |
|     | Cumulative             | 1230 | 1027   | 1146 | 1041 | n.a.   | -17      | -7        | -15 | -                                                    | -   | -   | -   |
| 7   | 0-10                   | 378  | 356    | 407  | 375  | n.a.   | -6       | 8         | -1  | 100                                                  | 100 | 100 | 100 |
|     | 11-20                  | 182  | 166    | 150  | 148  | n.a.   | -9       | -18       | -19 | 48                                                   | 47  | 37  | 39  |
|     | 21-30                  | 142  | 79     | 86   | 60   | n.a.   | -44      | -39       | -58 | 38                                                   | 22  | 21  | 16  |
|     | 31-40                  | 103  | 76     | 84   | 63   | n.a.   | -26      | -18       | -39 | 27                                                   | 21  | 21  | 17  |
|     | 41-50                  | 106  | 56     | 58   | 40   | n.a.   | -47      | -45       | -62 | 28                                                   | 16  | 14  | 11  |
|     | 51-60                  | 63   | 37     | 51   | 101  | n.a.   | -41      | -19       | 60  | 17                                                   | 10  | 13  | 27  |
|     | Cumulative             | 974  | 770    | 836  | 787  | n.a.   | -21      | -14       | -19 | -                                                    | -   | -   | -   |
| 12  | 0-10                   | 403  | 326    | 395  | 374  | n.a.   | -19      | -2        | -7  | 100                                                  | 100 | 100 | 100 |
|     | 11-20                  | 158  | 111    | 159  | 94   | n.a.   | -30      | 1         | -41 | 39                                                   | 34  | 40  | 25  |
|     | 21-30                  | 80   | 77     | 123  | 61   | n.a.   | -4       | 54        | -24 | 20                                                   | 24  | 31  | 16  |
|     | 31-40                  | 110  | 63     | 103  | 67   | n.a.   | -43      | -6        | -39 | 27                                                   | 19  | 26  | 18  |
|     | 41-50                  | 91   | 60     | 82   | 74   | n.a.   | -34      | -10       | -19 | 23                                                   | 18  | 21  | 20  |
|     | 51-60                  | 94   | 46     | 78   | 35   | n.a.   | -51      | -17       | -63 | 23                                                   | 14  | 20  | 9   |
|     | Cumulative             | 936  | 683    | 940  | 705  | n.a.   | -27      | 0         | -25 | -                                                    | -   | -   | -   |

Groups: 1 = vehicle control, 2 = 500 ppm, 3 = 1500 ppm, 4 = 5000 ppm

#### 28-day dietary dose range finding study neurotoxicity study (refer to Vol. 3, B.6.7.1.2)

In this dose range finding study, RE-45601 (purity: 95.4%) was administered in the diet to groups of 5 males and females at levels of 0 (control), 500, 1500 and 5000 ppm for 28 days. The mean test substance consumption in the 500, 1500, and 5000 ppm groups was 45, 132, and 441 mg/kg/day, respectively, for males and 51, 155, and 475 mg/kg/day, respectively, for females over the entire study (study days 0-28). It is not clear whether the results from the chemical analysis was used to calculate these values or if only feed consumption was used.

No deaths occurred and no clinical signs stood out in the exposed groups. Body weight and/or body weight gain were affected in all dose groups at one interval or more. The final weight at day 28 was 15 % lower in males of the high dose (441 mg/kg bw/day) group, and body weight gain was reduced by 16, 14, and 30 % in the low, middle, and high dose males, respectively. A similar trend was observed in females. The absolute weight was not significantly affected in females (a 5% reduction at the top dose) and the overall body weight gain was reduced by 21% in this group (475 mg/kg bw/day), mainly due to a significant decrease of body weight change during the first week (48%). No clear effects on food consumption were observed, but body weight gained as percent of feed consumed was lower in the 5000 ppm (441 mg/kg bw/day) males. No treatment related effects on home cage, handling, sensory or neuromuscular observations, or motor activity were observed. Absolute brain weight, but not liver weight in males, was slightly reduced in the top and lowest dose group ( $\downarrow$ 5%) in the low dose and  $\downarrow$  4% in the top dose. No effect on brain weight was observed in middle dose group, thus no dose-response.

The study was performed in accordance with good laboratory practice. It was performed as a dose range finding study and did not follow any specific guideline. It was generally performed in line with OECD TG 424 (1997) with some exceptions which are listed in Table 46. The study is not suitable for NOAEL setting (low number of animals used and limited parameters investigated). The study is considered as supportive data.

## Five-week sub-chronic feeding study of high purity RE-45601 (SX-1718) and RE-45601 process Neutrals (SX-1717) in rats (refer to Vol. 3, B.6.8.2/03)

This study was designed to investigate whether the observed toxicity in the studies performed with low purity RE-45601 (84.3% purity) could be ascribed to the impurities or process Neutrals. RE-45601 Technical and RE-45601 Process Neutrals (containing 3.3% RE-45601) were administered to rats (Sprague-Dawley) (10/sex/group) via the diet for 5 weeks. Dose levels were: Clethodim: 8000 ppm (equivalent to 597 and 667 mg/kg bw/day for males and females); Process Neutrals: 1200 ppm (4.87/5.78 mg clethodim/kg body weight/day (males/females). Control animals received the vehicle (10 mL/kg feed) only.

In summation, exposure to 597/667 mg clethodim/kg body weight/day via the diet (males/females) resulted in reduced body weight (F: 9-15%) and bodyweight gain (M: 33%, F: 42%), mild anaemia (5-7% reductions in erythrocyte, haemoglobin and haematocrit values), increased liver weight (M: abs.:12%, rel.: 34%, F: rel. 24%), liver centrilobular hypertrophy, and altered serum chemistry values (albeit within historical control values) (males only). In addition, adrenal weight was reduced (M: 26%, F: 17%) but no histopathological lesions were observed. Males were more severely affected than females. Animals exposed to 148/175 mg process neutrals/kg body weight/day containing 4.87/5.78 mg clethodim/kg body weight/day (males/females) were also affected, but not as severely. This exposure led to reduced body weight gain (males), reduced alkaline phosphatase values (within historical controls), centrilobular hypertrophy, increased liver weight (females), and reduced testes weight. In general, the animals exposed to clethodim was more severely affected, and increased albumin and total protein levels, and anaemia was observed in these animals only. However, the process neutrals also affected the animals.

The incidence of centrilobular hypertrophy was slightly higher for the RE-45601 treatment groups (RE-45601 treatment group: 10 of 10 males and 8 of 10 females; Process Neutrals treatment group: 6 of 10 males and 3 of 10 females).

The study was performed with GLP compliance. It was not conducted according to a specific OECD test guideline. The study is considered supportive.

## Cytochrome P-450 concentration following 21-day oral administration in male rats (refer to Vol. 3, B.6.8.2/04)

This study was designed to investigate the potential of RE-45601 technical to induce cytochrome P-450 following 21-days of oral administration in male Sprague-Dawley rats. Male rats were administered 208 mg clethodim/kg bw/day for 21 days via oral gavage. This exposure resulted in increased liver weights (abs weight  $\uparrow$ 21%, rel. weight  $\uparrow$ 23%) but no other signs of overt toxicity. The mean CYP450 concentration, determined in liver samples from the exposed rats, did not statistically differ from that of the control. The study was considered as supplementary data.

#### Mouse:

#### 4-week oral study in mice (refer to Vol. 3, B.6.3.1/02)

In this study, RE-45601 Technical (purity: 83.3%) was administered to mice (CD-1) (10/sex/group) via the diet at concentrations of 0, 100, 250, 625, 1500 and 4000 ppm (equivalent to 0, 11.9, 29.7, 74.4, 179 and 476 mg/kg bw per day as calculated by applicant) for 28 days. Vehicle used in study was acetone. Treatment was associated with changes in haematological parameters noted in males at  $\geq$ 74.4 mg/kg bw/day and in females at  $\geq$ 179 mg/kg bw/day, increased liver weights noted in males at  $\geq$ 179 mg/kg bw/day and in females at 476 mg/kg bw/day, and histopathological findings in the liver (hepatic centrilobular hypertrophy) noted in both sexes at 476 mg/kg bw/day. Haematological changes included: reduced haemoglobin noted in males at  $\geq$ 74.4 mg/kg bw/day (4-8%) and in females at  $\geq$ 179 mg/kg bw/day (6%), reduced haematocrit noted in males at 476 mg/kg bw/day (8%), and reduced erythrocyte count noted in males at  $\geq$ 179 mg/kg bw/day (4-9%).

The NOAEL for clethodim in this study was 250 ppm (equivalent to 29.7 mg/kg bw/day) based on haematological changes noted in males at  $\geq$ 74.4 mg/kg bw/day (reduced haemoglobin at  $\geq$ 74.4 mg/kg bw/day, reduced haematocrit at 476 mg/kg bw/day, reduced erythrocyte count at  $\geq$ 179 mg/kg bw/day), increased liver weights noted in males at  $\geq$ 179 mg/kg bw/day and in females at 476 mg/kg bw/day, and histopathological findings in the liver (hepatic centrilobular hypertrophy) noted in males at 476 mg/kg bw/day.

The study was performed in accordance with Good Laboratory Practice. The deviations from the current OECD TG 407 are presented in Table 46. These deviations concern endpoints that were not studied which limit the interpretations of the results but do not affect the validity of the study. The study is considered acceptable.

|                                               |                  |                   | Male (         | Group            | s                |                  | Female Groups    |                |                |                     |                  |                  |  |  |
|-----------------------------------------------|------------------|-------------------|----------------|------------------|------------------|------------------|------------------|----------------|----------------|---------------------|------------------|------------------|--|--|
| Number Examined                               | 1<br>10          | <u>2</u><br>10    | <u>3</u><br>10 | $\frac{4}{10}$   | <u>5</u><br>10   | <u>6</u><br>10   | - <u>1</u><br>10 | <u>2</u><br>10 | $\frac{3}{10}$ | <u>4</u><br>10      | <u>5</u><br>10   | <u>6</u><br>10   |  |  |
| Unremarkable<br>Minimal<br>Slight<br>Moderate | 6<br>4<br>0<br>0 | 10<br>0<br>0<br>0 | 7<br>3<br>0    | 8<br>2<br>0<br>0 | 6<br>3<br>1<br>0 | 0<br>1<br>3<br>6 | ר<br>מ<br>מ<br>מ | 0              | 0              | 10<br>0<br>0<br>- 0 | 9<br>1<br>0<br>0 | 2<br>4<br>4<br>0 |  |  |
| Total Affected                                | 4                | ŏ                 | -3             | 2                | 4                | īō               | Č                |                | i <u>ō</u>     | Ō                   | Ť                | 8                |  |  |

#### Chronic oral oncogenicity study in mice (refer to Vol. 3, B.6.5/01)

In this study mice (CD-1) (60/sex/group) were orally exposed to Chevron RE-45601 Technical (83.3%) for 78 weeks at doses of 0 (control), 20, 200, 1000, 2000/3000 ppm (equal to 0, 2.4, 24, 119 and 238/357 mg/kg bw/day after correction for purity of test substance) for 78 weeks. The vehicle used in study was Acetone 1.5 mL/kg of feed. Treatment was associated with increased mortalities noted in both sexes at 2000/3000 ppm (238/357 mg/kg bw/day) (due to amyloidosis), changes in haematological parameters noted in both sexes at 2000/3000 ppm (238/357 mg/kg bw/day), increased liver weights noted in males at ≥1000 ppm (119 mg/kg bw/day) and in females at 2000/3000 ppm (238/357 mg/kg bw/day), macroscopical changes in the kidney (pale kidney in animals dying or sacrificed due to moribund status) noted in both sexes at 2000/3000 ppm (238/357 mg/kg bw/day), and histopathological findings noted in the liver (males and females at  $\geq 1000$  ppm (119 mg/kg bw/day)) and the lung (males at  $\geq 1000$  ppm (119 mg/kg bw/day)) and findings of increased systemic amyloidosis noted in both sexes at 2000/3000 ppm (238/357 mg/kg bw/day). Changes in haematological parameters noted at 2000/3000 ppm (238/357 mg/kg bw/day) consisted of reduced erythrocytes (Week 79: M: ↓14%; Week 53: M: ↓19%, F: ↓8% n.s., Week 27: M: ↓8%, F: ↓5%), haematocrit (M:  $\downarrow 12\%$  n.s.) and haemoglobin (M:  $\downarrow 12\%$  n.s.). Histopathological findings in the liver at  $\geq 1000$  ppm (119 mg/kg bw/day) consisted of centrilobular hypertrophy (both sexes), increased pigment (F) and bile duct hyperplasia (M). Treatment-related microscopic findings in the lungs consisted of foci of amphophilic alveolar macrophages (at  $\geq 1000$  ppm (119 mg/kg bw/day), both sexes). An additional treatment-related microscopic finding for unscheduled deaths included an increased incidence in systemic amyloidosis for the 3000 ppm (357 mg/kg bw/day) animals. Although amyloidosis is frequently noted in mice of this age and strain, the increased incidence in the high-dose group suggests a treatment-related exacerbation of this finding. The study did not show carcinogenic potential of clethodim technical.

The NOAEL of this study is 200 ppm (equal to 24 mg/kg bw/day, value corrected for purity of test substance) based on increased mortalities noted in both sexes at 2000/3000 ppm (238/357 mg/kg bw/day), changes in haematological parameters (reduced cell mass) noted in both sexes at 2000/3000 ppm (238/357 mg/kg bw/day), increased liver weights noted in males at  $\geq$ 1000 ppm (119 mg/kg bw/day) and in females at 2000/3000 ppm (238/357 mg/kg bw/day), and microscopical finding in the liver noted at  $\geq$ 1000 ppm (119 mg/kg bw/day) (centrilobular hypertrophy (both sexes), increased pigment (females), bile duct hyperplasia (males)) and in the lung noted at  $\geq$ 1000 ppm (119 mg/kg bw/day) (foci of amphophilic alveolar macrophages, both sexes) and increased incidence of systemic amyloidosis noted in both sexes at 2000/3000 ppm (238/357 mg/kg bw/day).

The study was performed in accordance with OECD 451 and FIFRA Good Laboratory Practice. There were some organs that were not harvested/assessed that are listed in the current guideline (OECD 451, 2018), specifically coagulating gland, lacrimal gland, and mammary glands from males (note that this is only required if the glands are visibly dissectible, no information on this). This does not invalidate the outcome of the study. The study is considered acceptable.

|                                                      | Males | Males |      |       |              |      | Females |      |      |              |
|------------------------------------------------------|-------|-------|------|-------|--------------|------|---------|------|------|--------------|
| Dose (ppm)                                           | 0     | 20    | 200  | 1000  | 2000<br>3000 | 0    | 20      | 200  | 1000 | 2000<br>3000 |
| Main groups (mg/kg<br>bw/day)                        | 0     | 2.4   | 24   | 119   | 238/<br>257  | 0    | 2.4     | 24   | 119  | 238/<br>357  |
| Non-neoplastic lesions                               | 1     |       |      |       |              |      |         |      |      |              |
| Interim sacrifice (weel                              | k 53) |       |      |       |              |      |         |      |      |              |
| Liver: centrilobular<br>hypertrophy                  | 0/10  | 1/10  | 1/10 | 8/10  | 10/10        | 1/10 | 2/10    | 2/10 | 8/10 | 9/10         |
| Liver: increased pigment                             | 0/10  | 0/10  | 0/10 | 0/10  | 5/10         | 0/10 | 0/10    | 0/10 | 0/10 | 0/10         |
| Terminal sacrifice                                   |       |       |      |       |              |      |         |      |      |              |
| Liver: centrilobular<br>hypertrophy                  | 1/28  | 1/31  | 1/30 | 10/24 | 16/16        | 0/32 | 0/41    | 0/39 | 4/29 | 10/22        |
| Liver: hyperplasia bile duct                         | 0/28  | 0/31  | 1/30 | 4/24  | 5/16         | 1/32 | 0/41    | 0/39 | 0/29 | 2/22         |
| Liver: increased pigment                             | 0/28  | 0/31  | 0/30 | 7/24  | 11/16        | 2/32 | 1/41    | 4/39 | 5/29 | 8/22         |
| Lung: foci of<br>amphophilic alveolar<br>macrophages | 0/28  | 0/31  | 1/30 | 5/24  | 8/16         | 0/32 | 0/41    | 0/39 | 3/29 | 13/22        |

 Table 2.6.3.1.1-10: Selected histopathology parameters of mice administered RE-45601 Technical in the diet.

## 28-day oral (dietary) immunotoxicity studies (refer to Vol. 3, B.6.8.2/01 and B.6.8.2/02)

Two immunotoxicity studies were performed, one dose range finding study (Vol. 3, B.6.8.2/01) and one main study (Vol. 3, B.6.8.2/02). Both were performed according to OPPTS 870.7800 (1998) with no deviations except that the dose range finding study did not include a positive control. In these studies, Clethodim TG (purity: 95.4%) was administered in the diet to groups of 10 female mice (main study) or 8 female mice (range finding study) at levels of 0, 400, 2000 and 4000 ppm (corresponding to 101, 551 and 958 mg/kg bw/day in the dose range finding study and 0, 136, 603 and 1312 mg/kg bw per day in the main study). No signs of toxicity except for increased liver weights and lower food consumption were observed. The absolute liver weights in the dose range finding study were 16 and 41% higher than that of the control group in the middle (603 mg/kg bw/day) and high (1312 mg/kg bw/day) dose, respectively. The corresponding relative liver weight values were 16 and 39% higher. In the main study, the

absolute and relative liver weights were 17 and 13 % higher, respectively, in the middle dose, and 45 and 42 %, respectively, in the high dose when compared to control.

No immunosuppressant effect was observed in the dose range finding study. There was a statistically significantly higher mean AFC response in the 2000 ppm (551 mg/kg/bw/day) group ( $\uparrow$ 54%). There was a similar tendency in the 4000 ppm (958 mg/kg bw/day) group, the mean value was 36% higher than that of the control group (not statistically significant) but the value was lower than that of the 2000 ppm (551 mg/kg/bw/day) group. In the main study, there was a 19-15% reduction in AFC response in the top two doses but there was no dose response, the differences were not statistically significant, and there was an increase in this endpoint in the dose-range finding study. There was also a statistically significant decreasing trend in relative spleen weight (Jonckheere's Test); however, the differences between the exposed groups and the control (0.36 vs 0.39). Overall, clethodim does not appear to be immunotoxic at these dose levels. NOAEL for systemic toxicity was set at 400 ppm (136 mg/kg bw/day in the main study) based on increased liver weights observed at 2000 ppm (603 mg/kg bw/day in the main study). NOAEL for immunotoxicity was set at 4000 ppm (1312 mg/kg bw/day in the main study). (highest dose level). The studies were considered acceptable (main study) or supportive (dose-range finding study).

 Dose
 0 ppm
 400 ppm
 2000 ppm
 4000 ppm
 50 mg/kg CPS
 Trend analysis a

 Pody weight (a)
 22.0 + 0.2
 23.7 + 0.3
 23.6 + 0.2
 23.2 + 0.3
 23.7 + 0.2
 pg

| Dose                                   | 0 ppm            | 400 ppm         | 2000 ppm             | 4000 ppm             | 50 mg/kg<br>CPS                               | Trend<br>analysis <sup>a</sup> |
|----------------------------------------|------------------|-----------------|----------------------|----------------------|-----------------------------------------------|--------------------------------|
| Body weight (g)                        | $22.9\pm0.3$     | $23.7\pm0.3$    | $23.6\pm0.2$         | $23.2\pm0.3$         | $22.7\pm0.2$                                  | n.s.                           |
| Spleen weight (mg)                     | $90.5\pm3.4$     | $90.7\pm3.1$    | $82.7\pm4.5$         | 84.1 ± 3.9           | $42.0 \pm 2.3 **$<br>( $\downarrow 54\%$ )    | n.s.                           |
| Relative spleen weight                 | $0.39\pm0.01$    | $0.38 \pm 0.01$ | $0.35\pm0.02$        | $0.36\pm0.02$        | $0.19 \pm 0.01^{**}$<br>( $\downarrow 51\%$ ) | $p \leq 0.05$                  |
| Spleen cells (x 10 <sup>7</sup> )      | $12.32 \pm 0.53$ | 12.89 ± 0.44    | $11.46\pm0.42$       | $11.38\pm0.64$       | $3.91 \pm 0.21^{**} (\downarrow 68\%)$        | n.s.                           |
| IgM AFC (10 <sup>6</sup> spleen cells) | $2515\pm292$     | $2450\pm274$    | 2025 ± 275<br>(↓19%) | 2119 ± 245<br>(↓15%) | $0 \pm 0^{**}$<br>( $\downarrow 100\%$ )      | n.s.                           |
| IgM AFC/Spleen (x 10 <sup>3</sup> )    | $308 \pm 41$     | $321\pm42$      | $237\pm37$           | $249\pm39$           | 0 ± 0**<br>(↓100%)                            | n.s.                           |

## Dog:

#### 90-day oral study in dogs (refer to Vol. 3, B.6.3.2/02)

In this study, RE-45601 Technical (purity: 83.3%) was administered to Beagle dogs (4/sex/group) orally via gelatine capsules at doses of 0 (control), 1, 25, 75 and 125 mg/kg bw/day (equal to 0, 0.83, 21, 62 and 104 mg/kg bw/day when corrected for purity) for 13 weeks. Treatment was associated with changes in biochemical parameters noted in females at  $\geq$ 75 mg/kg bw/day and in males at 125 mg/kg bw/day, increased liver weights noted in both sexes at  $\geq$ 75 mg/kg bw/day, and histopathological changes in the liver (increased severity of centrilobular vesicles/vacuoles) noted in both sexes at 125 mg/kg bw/day. Changes in biochemical parameters noted at 125 mg/kg bw/day included: increased cholesterol (F: 40-58%), increased alkaline phosphatase (M: 67% n.s., F: 88%), increased globulin (M: 22%) and reduced albumin/globulin (M: 21%).

The NOAEL is 25 mg/kg bw/day (equal to 21 mg/kg bw/day after correction for purity) based on increased liver weights noted in both sexes at  $\geq$ 75 mg/kg bw/day, changes in biochemical parameters (indicating liver toxicity)

noted in females at  $\geq$ 75 mg/kg bw/day and in males at 125 mg/kg bw/day, and histopathological findings in the liver (increased severity of centrilobular vesicles/vacuoles) noted in both sexes at 125 mg/kg bw/day.

The study was performed in line with OECD guideline 409 with some deviations (see Table 46). The deviations did not affect the reliability of the study. No GLP-certificate was included however, the study is well reported and appear well performed. The study is considered acceptable.

| Table 2.6.3.1.1-12: Hepati<br>(mean ± SD) | c histopathological findings in dogs administered | d clethodim (RE-45601 Technical) for 13 weeks |
|-------------------------------------------|---------------------------------------------------|-----------------------------------------------|
| 0                                         |                                                   |                                               |

| Sex                                       | Males | Iales |      |      |      | Females |      |      |      |      |
|-------------------------------------------|-------|-------|------|------|------|---------|------|------|------|------|
| Dose (mg clethodim/kg<br>bw/day)          | 0     | 1     | 25   | 75   | 125  | 0       | 1    | 25   | 75   | 125  |
| Pathology - microscopic                   |       |       |      |      |      |         |      |      |      |      |
| Liver: Centrilobular<br>vesicles/vacuoles | 4/4   | 4/4   | 4/4  | 4/4  | 4/4  | 3/4     | 4/4  | 4/4  | 4/4  | 4/4  |
| Severity <sup>1</sup>                     | 1.75  | 2.00  | 2.25 | 2.25 | 3.25 | 1.67    | 2.25 | 2.25 | 1.75 | 3.00 |

One-year oral study in dogs (refer to Vol.3, B.6.3.2/03)

In this study Chevron RE-45601 Technical (purity: 83.3%) was administered to Beagle dogs (6/sex/group) orally via gelatine capsules at doses of 0 (control), 1, 75, and 300 mg/kg bw/day for 52 weeks. Treatment was associated with changes in haematological and biochemical parameters noted at  $\geq$ 75 mg/kg bw/day, organ weight changes (increased liver weights noted in both sexes at  $\geq$ 75 mg/kg bw/day; increased thyroid/parathyroid weights noted in males of all treated groups but only statistically significant at 300 mg/kg bw/day), macroscopical findings in the liver noted in both sexes at 300 mg/kg bw/day (enlarged, dark liver), and histopathological changes noted in the sternal bone marrow at  $\geq$ 75 mg/kg bw/day (hyperplasia, both sexes) and in the liver at 300 mg/kg bw/day (hepatocyte hypertrophy, pigment (both sexes)). Treatment-related findings in clinical pathology parameters for the 75 mg/kg group included increases in mean platelet counts (F), leukocyte counts (F), corrected leukocyte counts (F) and decreased glucose values (F). In addition to changes in these parameters, clinical pathological changes for the 300 mg/kg group included decreases in erythrocyte counts (M:9%, F: 18%), haemoglobin concentration (M: 8% n.s, F: 14%), haematocrit levels (M: 8%, F: 14%) and glucose levels (M: 12% n.s., F: 13%); and increase in total cholesterol (M; 32%, F: 61%), alanine aminotransferase (M: 167%, F: 144%), alkaline phosphatase (M: 273%, F: 341%), and triglycerides (M: 65%, F: 84%).

The NOAEL in study is set at 1 mg/kg bw/day (equal to 0.83 mg/kg bw/day after correction for purity for test substance) based on haematological changes (indicating anaemia) noted in both sexes at 300 mg/kg bw/day, changes in biochemical parameters (indicating liver toxicity) noted in both sexes at 300 mg/kg bw/day, changes in organ weights noted at 75 mg/kg bw/day (increased liver weights (both sexes) and 300 mg/kg bw/day (increased liver weights (both sexes) and 300 mg/kg bw/day (increased liver weights (both sexes) and thyroid/parathyroid weights (M)), gross pathological findings in the liver (dark and enlarged) noted at 300 mg/kg bw/day (both sexes), and microscopical findings in the sternal bone marrow (hyperplasia) noted at  $\geq$ 75 mg/kg bw/day (both sexes) and in the liver (hepatocyte hypertrophy, pigment) noted at 300 mg/kg bw/day (both sexes).

The study was performed in accordance with Good Laboratory Practice. The deviations from the current OECD TG 407 are presented in Table 46. These deviations concern endpoints that were not studied which limit the interpretations of the results but do not affect the validity of the study. The study is considered acceptable.

|                                    | Males |     |     |     | Females |     |     |     |
|------------------------------------|-------|-----|-----|-----|---------|-----|-----|-----|
| Dose (mg clethodim/kg<br>bw/day)   | 0     | 1   | 75  | 300 | 0       | 1   | 75  | 300 |
| Macroscopy <sup>1</sup>            |       |     |     |     |         |     |     | ·   |
| Liver, dark                        | 0/6   | 0/6 | 0/6 | 4/6 | 0/6     | 0/6 | 0/6 | 4/6 |
| Liver, enlarged                    | 0/6   | 0/6 | 0/6 | 2/6 | 0/6     | 0/6 | 0/6 | 2/6 |
| Thyroid: enlarged                  | 0/6   | 0/6 | 1/6 | 1/6 | 0/6     | 1/6 | 0/6 | 0/6 |
| Thymus: dark                       | 0/6   | 0/6 | 1/6 | 1/6 | 0/6     | 0/6 | 0/6 | 0/6 |
| Uterus: thickened wall             | -     | -   | -   | -   | 0/6     | 2/6 | 2/6 | 1/6 |
| Uterus: thickened H-wall           | -     | -   | -   | -   | 0/6     | 0/6 | 0/6 | 1/6 |
| Uterus: thickened cervix wall      | -     | -   | -   | -   | 0/6     | 1/6 | 2/6 | 1/6 |
| Vagina: wall thickened             | -     | -   | -   | -   | 0/6     | 1/6 | 1/6 | 2/6 |
| Microscopic findings <sup>1</sup>  |       |     | -   | -   | ·       |     | •   | ·   |
| Hepatocyte hypertrophy             | 0/6   | 0/6 | 0/6 | 5/6 | 0/6     | 0/6 | 0/6 | 4/6 |
| Hepatocyte pigment                 | 0/6   | 0/6 | 1/6 | 6/6 | 0/6     | 0/6 | 0/6 | 6/6 |
| Hyperplasia of marrow<br>(sternum) | 0/6   | 0/6 | 1/6 | 6/6 | 0/6     | 0/6 | 1/6 | 6/6 |
| Testis: hypospermia                | 0/6   | 0/6 | 0/6 | 1/6 | -       | -   | -   | -   |
| Testis: abnormal sperm             | 0/6   | 0/6 | 0/6 | 1/6 | -       | -   | -   | -   |
| Testis: chronic active orchitis    | 0/6   | 0/6 | 0/6 | 1/6 | -       | -   | -   | -   |
| Epididymis: abnormal sperm         | 0/6   | 0/6 | 0/6 | 1/6 | -       | -   | -   | -   |

 Table 2.6.3.1.1-13: Gross pathology and histopathological findings in dogs administered clethodim (RE-45601 Technical) for 52 weeks.

<sup>1</sup> Number of animals with lesion/number of animals in group

## **Rabbit:**

#### Developmental toxicity study in rabbits (refer to Vol. 3, B.6.6.2.4/01)

In this study, Chevron RE-45601 (purity: 83.3%) was administered orally by gavage daily on gestational days 7-19 to groups of 19-20 female rabbits at doses of 0, (control), 25, 100 and 300 mg/kg bw/day (equal to 0, 20.8, 83.3 and 250 mg/kg bw/day, after correction for purity of test substance). Treatment related effects were associated with clinical signs (dried faeces, red substance in pan) observed in dams at  $\geq 100 \text{ mg/kg bw/day}$  ( $\geq 83.3 \text{ mg/kg bw/day}$ after correction for purity of test substance), reduced bodyweight gain observed in dams at  $\geq 100 \text{ mg/kg bw/day}$ (≥83.3 mg/kg bw/day after correction for purity of test substance), and reduced food consumption observed in dams at  $\geq 100 \text{ mg/kg bw/day}$  ( $\geq 83.3 \text{ mg/kg bw/day}$  after correction for purity of test substance). Since neither of the high dosage group does with red substance in the cage pans aborted and each had viable foetuses at scheduled Caesareansectioning, the red substance in the cage pans may reflect rectal irritation and bleeding of these does according to study author. At the high dose level of 300 mg/kg bw/day (250 mg/kg bw/day after correction for purity of test substance) the following developmental effects were observed: increased foetal incidence of angulated hyoid alae, misaligned sutures and nasal irregular ossification. NOAEL for maternal toxicity was set at 25 mg/kg bw/day (20.8 mg/kg bw/day after correction for purity of test substance) based on reduced bodyweight gain observed at  $\geq 100$ mg/kg bw/day (≥83.3 mg/kg bw/day after correction for purity of test substance). NOAEL for developmental toxicity was set at 100 mg/kg bw/day based on increased foetal incidence of angulated hyoid alae, misaligned sutures and nasal irregular ossification observed at 300 mg/kg bw/day (250 mg/kg bw/day after correction for purity of test substance).

The study was performed in general accordance with OECD 414 and with FIFRA Good Laboratory Practice (GLP) Standards. The current guideline applicable to rabbits is the version from 2001 since the updates published in 2018 includes rat-specific requirements. The exposure period in the study is shorter than described in the latest relevant

version of the guideline. The exposure period used (day 7-19) covers the main part of organogenesis but organs are still under development later than that. The study is considered acceptable.

## Pilot teratology study in rabbits (refer to Vol. 3, B.6.6.2.3/01)

In this dose range finding study, Chevron RE-45601 (purity: 83.3%) was administered orally by gavage daily on gestational days 7-19 to groups of 8 female rabbits at doses of 0, (control), 50, 150, 300 and 500 mg/kg bw/day (equal to 0, 41.7, 125, 250, and 417 mg/kg bw/day, after correction for purity of technical substance using a correction factor of 1.2). Treatment related effects were associated with mortality (≥300 mg/kg bw/day), clinical signs of dried faeces ( $\geq$ 50 mg/kg bw/day, statistical significant at  $\geq$ 300 mg/kg bw/day), reduced body weight ( $\geq$ 300 mg/kg bw/day), reduced bodyweight gain (≥150 mg/kg/day), reduced feed consumption during the dosage period (≥50 mg/kg/day, statistically significant at 500 mg/kg bw/day) with a post dosage increase in food consumption compared with the control ( $\geq$ 150 mg/kg/day), increased maternal liver weight and liver/body weight ratio ( $\geq$ 300 mg/kg/day, not statistically significant but ~20% increase), gross pathological findings observed in animals that aborted and/or died (hairball in stomach at  $\geq$ 300 mg/kg bw/day, gastric ulceration at 500 mg/kg bw/day), abortion (500 mg/kg/day), and premature delivery (one animals at 500 mg/kg/day). There was also a possible increase in resorptions: the number of resorptions was 1.4 in the 300 mg/kg bw/day group compared with the 0.3 in the control. There was none in the highest dose group but only one female was available for assessment in that group. In addition, the foetal body weight was 13% and 32% lower in the 300 and 500 mg/kg bw/day dosage groups, respectively, compared with the control. The study is not suitable for NOAEL setting (low number of animals used and limited parameters investigated).

The study was not compared to any guideline since it is a pilot study, however the major deviations from a full OECD TG 414 study include the use of less animals per group and a shorter exposure duration. It was performed in accordance EPA, FIFRA, and TSCA Good Laboratory Practice (GLP) Standards. The study is considered as supportive data.

## **2.6.3.1.2** Comparison with the CLP criteria regarding STOT RE (specific target organ toxicity-repeated exposure)

Regulation EC No 1272/2008 (CLP), Annex 1: 3.9.2.7.3, states for STOT RE:

"All available evidence, and relevance to human health, shall be taken into consideration in the classification process, including but not limited to the following toxic effects in humans and/or animals:

(a) morbidity or death resulting from repeated or long-term exposure. Morbidity or death may result from repeated exposure, even to relatively low doses/concentrations, due to bioaccumulation of the substance or its metabolites, and/or due to the overwhelming of the de-toxification process by repeated exposure to the substance or its metabolites;

(b) significant functional changes in the central or peripheral nervous systems or other organ systems, including signs of central nervous system depression and effects on special senses (e.g. sight, hearing and sense of smell):

(c) any consistent and significant adverse change in clinical biochemistry, haematology, or urinalysis parameters;

(d) significant organ damage noted at necropsy and/or subsequently seen or confirmed at microscopic examination;

(e) multi-focal or diffuse necrosis, fibrosis or granuloma formation in vital organs with regenerative capacity;

(f) morphological changes that are potentially reversible but provide clear evidence of marked organ dysfunction (e.g. severe fatty change in the liver);

(g) evidence of appreciable cell death (including degeneration and reduced cell number) in vital organs incapable of regeneration".

According to the CLP Guidance (Table 3.9.2), a substance should be classified in Category 1 when significant toxic effects observed in a 90-day repeated-dose study conducted in experimental animals are seen to occur within the guidance value ranges as indicated in table below:

| Route of Exposure               | Units           | Guidance Values Ranges: (dose/concentration) |
|---------------------------------|-----------------|----------------------------------------------|
| Oral (rat)                      | mg/kg bw/day    | C≤10                                         |
| Dermal (rat or rabbit)          | mg/kg bw/day    | C≤20                                         |
| Inhalation (rat) gas            | ppm V/6h/day    | C≤50                                         |
| Inhalation (rat) vapour         | mg/litre/6h/day | C≤0.2                                        |
| Inhalation (rat) dust/mist/fume | mg/litre/6h/day | C≤0.2                                        |

According to the CLP Guidance (Table 3.9.3), a substance should be classified in Category 2 when significant toxic effects observed in a 90-day repeated-dose study conducted in experimental animals are seen to occur within the guidance value ranges as indicated in table below:

| Route of Exposure               | Units           | Guidance Values Ranges: (dose/concentration) |
|---------------------------------|-----------------|----------------------------------------------|
| Oral (rat)                      | mg/kg bw/day    | 10 <c≤100< td=""></c≤100<>                   |
| Dermal (rat or rabbit)          | mg/kg bw/day    | 20 <c≤200< td=""></c≤200<>                   |
| Inhalation (rat) gas            | ppm V/6h/day    | 50 <c≤250< td=""></c≤250<>                   |
| Inhalation (rat) vapour         | mg/litre/6h/day | 0.2 <c≤1.0< td=""></c≤1.0<>                  |
| Inhalation (rat) dust/mist/fume | mg/litre/6h/day | 0.02 <c≤0.2< td=""></c≤0.2<>                 |

According to Annex 1 3.9.2.9.8, the guidance values in tables above is increased by a factor of three for a 28-day study.

The CLP Guidance also states the following for STOT RE (in 3.9.1):

"Assessment shall take into consideration not only significant changes in a single organ or biological system but also generalised changes of a less severe nature involving several organs."

## Rat:

#### 5-week oral toxicity study in rats (RAR Vol. 3, B.6.3.1/01)

In this study Clethodim Technical (purity: 83.4%) was administered to Sprague-Dawley rats (10/sex/group) via the diet at concentrations of 0, 5, 200, 1000, 4000, 8000 ppm (equal to 0, 0.26, 12.5, 65.6, 261 and 515 mg/kg bw/day for males, and 0, 0.29, 13.9, 70.6, 291 and 554 mg/kg bw/day for females) for 5 weeks. Vehicle used in study was acetone. Treatment was associated with reduced body weight noted in females at 291 mg/kg bw/day ( $\downarrow$ 8%) and 554 mg/kg bw/day ( $\downarrow$ 16%) and in males at 515 mg/kg bw/day ( $\downarrow$ 13%), reduced bodyweight gain (>10%) noted in both sexes at  $\geq$ 261/291 (M/F) mg/kg bw/day, changes in haematological parameters noted in males at  $\geq$ 12.5 mg/kg bw/day ( $\uparrow$ 68%), changes in urinalysis (increased uric acid) noted in females at  $\geq$ 291 mg/kg

bw/day, increased liver weights noted in both sexes at  $\geq 65.6/70.6$  (M/F) mg/kg bw/day, and histopathological findings in the liver (centrilobular hypertrophy) noted in males at  $\geq 70.6$  mg/kg bw/day and in females at  $\geq 291$  mg/kg bw/day. Haematological changes (indicating mild anaemia) included: reduced erythrocyte counts (females at  $\geq 70.6$  mg/kg bw/day, up to 7% reduction), reduced haemoglobin levels (males at  $\geq 65.6$  mg/kg bw/day, 4-7%, females at  $\geq 70.6$  mg/kg bw/day, 4-7%), and reduced haematocrits (males at  $\geq 261$  mg/kg bw/day, 4-6%). In addition, increased platelets were noted in males at  $\geq 13.9$  mg/kg bw/day (30-43%).

The changes in haematological parameters indicating mild anaemia (a reduction of Hb less than 10%) and urinalysis (increased uric acid) were not considered severe enough for classification with STOT-RE. Also, effects on the liver (increased cholesterol, increased weight and centrilobular hypertrophy) were not considered severe enough for STOT-RE classification.

## 13-week oral study in rats (Vol. 3, B.6.3.2/01)

In this study RE-45601 Technical (purity: 84%) was administered to Sprague-Dawley rats (12/sex/group) via the diet at concentrations of 0, 50, 500, 2500 and 5000 ppm (equal to 0, 2.3, 25, 134 and 279 mg/kg bw/day for males; 0, 2.8, 30, 159 and 341 mg/kg bw/day for females) for 13 weeks. Vehicle used in study was acetone. Following this treatment phase, 12 rats/sex/group were sacrificed. The remaining animals (12 rats/sex/group) in the control and two high dose groups were fed untreated basal diet for an additional six weeks and were sacrificed at the end of this recovery phase. Treatment was associated with reduced body weight noted in males at 134 mg/kg bw/day (7%) and in both sexes at 279/341 (M/F) mg/kg bw/day (>10%), reduced bodyweight gain noted in males at 134 mg/kg bw/day (10%) and in both sexes at 279/341 (M/F) mg/kg bw/day (>10%), reduced food consumption noted in both sexes at 279/341 (M/F) mg/kg bw/day, changes in biochemical parameters (indicating liver toxicity) noted in both sexes at 279/341 (M/F) mg/kg bw/day, increased liver weight noted in both sexes at  $\geq 134/159$  (M/F) mg/kg bw/day, increased relative kidney weight noted in both sexes at 279/341 (M/F) mg/kg bw/day (M:10%, F: 14%), and histopathological findings in the liver (hepatic centrilobular hypertrophy) noted in both sexes at  $\geq 134/159$  (M/F) mg/kg bw/day. Changes in biochemical parameters indicating liver toxicity at 279/341 (M/F) mg/kg bw/day included: increased serum cholesterol (<sup>M</sup>: 31%), total protein (M: <sup>5</sup>%), globulin (M: <sup>9</sup>%). Food consumption and body weight gain was reduced during the exposure period but was increased during the recovery period. Final body weight (week 19) was similar between groups except for females of the high dose group ( $\downarrow$ 7%). The only organ weight that was significantly different after the 6-week recovery period was relative liver weight in females of middose (11%) and high (13%) dose groups. There were no treatment-related changes present among males and females at the recovery sacrifice.

The effects on the liver (changes in biochemical parameters, increased weight, and hypertrophy) were not considered severe enough for classification with STOT-RE. It could also be noted that no effects were observed within the critical range of doses for Cat 2 classification (i.e.  $10 < C \le 100 \text{ mg/kg bw/day}$ ).

#### 4-week dermal study in rats (Vol. 3, B.6.3.3/01)

In this study Sprague Dawley rats (6/sex/group) were exposed to repeated dermal doses of RE-45601 Technical (purity: 83.2%) during a 28-day period (21 six-h dermal applications) at doses of 0 (control), 10, 100 or 1000 mg/kg bw/day. The vehicle used in study was 0.7% carboxymethyl cellulose (CMC) and 1% TWEEN 80 in distilled water.

Treatment was associated with local effects of skin irritation observed at all dose levels. Furthermore treatment was associated with clinical signs (anogenital discharge) noted in both sexes at 1000 mg/kg bw/day, reduced bodyweight gains observed in males at 1000 mg/kg bw/day, changes in biochemical parameters (increased triglyceride levels (F:  $\uparrow$ 140-160%); reduced BUN/creatinine ratio (M: 22%)) noted at  $\geq$ 100 mg/kg bw/day, lower food efficiency values noted in males at 1000 mg/kg bw/day, increased liver weights (about 20%) noted in females at 1000 mg/kg bw/day, increased relative kidney weight (10%) noted in males at 1000 mg/kg bw/day, increased relative testes weight (13%) noted at 1000 mg/kg bw/day.

The effects on the liver (changes in biochemical parameters and increased weight) were not considered severe enough for classification with STOT-RE. It could also be noted that the findings in the liver did not occur within the critical range of doses for Cat 2 classification (i.e.  $60 < C \le 600$  mg/kg bw/day) (Haber's rule considered for exposure duration of 28 days). Increased relative kidney weight noted in males at 1000 mg/kg bw/day might reflect the reduced bodyweight gains observed in males at this dose level and is not considered relevant for STOT-RE classification. Furthermore, this effect did not occur within the critical range of doses for Cat 2 classification.

## Combined chronic oral toxicity/oncogenicity study in rats (Vol. 3, B.6.5/02)

In this study Sprague Dawley rats were exposed to RE-45601 Technical (purity: 83%) in the diet for 2 years at doses of 0 (control), 5, 20, 500, 2500 ppm (equivalent to 0, 0.15, 0.57, 16 and 86 mg/kg bw/day (males) and 0, 0.2, 0.72, 21 and 113 mg/kg bw/day (females)). The vehicle used in study was Acetone 10 mL/kg diet. Treatment was associated with reduced body weight noted in both sexes at 86/113 (M/F) mg/kg bw/day (At Day 91: M: 7%, F: 6%; At Day 360: M: 7%, F: 8%; At Day 724: M: 8% n.s., F:13% n.s.), reduced bodyweight gain noted at 86/113 (M/F) mg/kg bw/day (M:11%, F: 12%, calculated for the first 3 months), reduced food consumption noted at 86/113 (M/F) mg/kg bw/day (noted at intervals during the study), reduced food efficiency noted in males at 86 mg/kg bw/day (during the first three months), increased liver weights noted in females at 21 mg/kg bw/day (rel. weight: after 1 year:  $\uparrow$ 18% n.s.; after 2 y: 12%, n.s.) and in both sexes at 86/113 (M/F) mg/kg bw/day (abs weight after 1 y: M: 15% n.s., F: 24%; rel weight after 1 y: M: 22%, F: 18% n.s.; rel weight after 2 y: F: 21%), and histopathological findings in the liver noted in both sexes at 86/113 (M/F) mg/kg bw/day. The histopathological findings consisted of hypertrophy in hepatocytes (observed in both sexes after 1 y and 2 y) and binucleated cells in the liver observed in females after 1 y but not after 2 y. No treatment-related increase in the incidence of neoplasms or other microscopic lesions was found in any of the groups.

The effects on the liver (increased weight and histopathological findings of hypertrophy in hepatocytes and binucleated cells) were not considered severe enough for classification with STOT-RE. It could also be noted that the findings in the liver did not occur within the critical range of doses for Cat 2 classification (i.e.  $2.5 < C \le 12.5$  mg/kg bw/day) (Haber's rule considered for exposure durations of 104 weeks).

## Two generation (one litter) reproduction study in rats (Vol. 3, B.6.6.1/02)

In this two generation study, RE-45601 Technical (purity: 83.3%) was administered in the diet to groups of 30 males and females per generation (F0 and F1) at levels of 0, (control), 5, 20, 500, and 2500 ppm (equal to 0, 0.5, 1.2, 32.2 and 163 mg/kg bw/day for males; 0, 0.5, 1.5, 37.4 and 181 mg/kg bw/day for females in the pre-mating period after correction for purity as calculated by the applicant). The vehicle used in study for preparation of diet was Acetone.

Treatment was associated with reduced body weight noted in F0 generation males at 163 mg/kg bw/day ( $\downarrow$ 4-9%) and in F1 generation males ( $\downarrow$ 10-19%) and females ( $\downarrow$ 6-10%), and minor reductions in food consumption in both generations at 163/181 (M/F) mg/kg bw/day, organ weight changes noted at 163 mg/kg bw/day (F0 generation: increased relative testis weight (10%); F1 generation: increased relative epididymis weight (18%), reduced absolute prostate (25%) and seminal vesicles weights (11%)). Relative weights of prostate and seminal vesicles were comparable to control. Furthermore, slightly increased number of still born pups was observed in F1 generation at 163/181 (M/F) mg/kg bw/day. The relevance of this latter finding was unclear. The lack of similar effect in the F2 pups and the four-fold higher value in the F2 controls indicates that the effect may be incidental.

No adverse effects relevant for STOT-RE classification were observed in this study. Effect on organ weight changes observed in this study were not considered severe enough for classification and did not occur within the critical range of doses for STOT-RE Cat 2 classification (i.e.  $10 < C \le 100$  mg/kg bw/day) (Haber's rule considered for exposure durations of 90 days). Effects on offspring (slightly increased number of stillborn) were not considered relevant for STOT-RE classification but were further discussed in section 2.6.6.1.

## Pilot rat reproduction study in rats (Vol. 3, B.6.6.1/01)

In this pilot study, groups of 8 male and 8 female Sprague-Dawley Crl:CD strain rats were fed diet containing 0, 500, 2000 or 5000 ppm RE-45601 Technical (purity: 83.3%) for 1 week before mating. The doses equal to 0, 20.8, 83.3, 208.3 mg/kg bw/day when corrected for purity of active substance. The vehicle used in study for preparation of diet was Acetone. Females received the diet continuously throughout mating and gestation, and until Day 7 of lactation when they were necropsied. The offspring were exposed to the test material in utero and while nursing until they were sacrificed and necropsied on Day 7 of lactation. Effects on adults and offspring were observed at the maximum dose level of 5000 ppm (208.3 mg/kg bw/day).

Treatment was associated with reduced bodyweight noted in adults at 208.3 mg/kg bw/day (Males: week 0-2: 2%; Females: GD 20 13%, LD 0 F: 14%, LD: 7 (16%)), reduced bodyweight gain noted in adults at 5000 ppm (M: 18%, F: 63%) and reduced food consumption noted in adult males during the first week (pre-mating) (15%). In the offspring reduced combined pup weights were noted at all dose levels (On day 7: 9%, 9%, and 11% in the low, middle and high dose, respectively; Day 0-7: 13%, 14%, and 16% in the low, middle and high dose, respectively). There were no effects on reproduction indices for males or females, or on pup litter size, survival, and sex ration.

The systemic effects observed in the dams (reduced bodyweight gain and food consumption) were not considered severe enough or relevant for STOT-RE classification. Effects on offspring (reduced pup weight) were further discussed in section 2.6.6.1.

#### Teratology study in rats (Vol. 3, B.6.6.2.2/01)

In this study, pregnant dams (CrI:CD rats) (25/dose) were administered clethodim (purity: 83.3%) by gavage during gestational days 6-15 at doses of 0, 10, 100, 300 and 700 mg/kg bw per day (equal to 0, 8.3, 83.3, 292 and 583 mg/kg bw/day after correction for purity of test substance). Maternal toxicity was observed in the top two doses, with increasing severity with dose. Manifestations of maternal toxicity included mortality (5 of 25 animals) noted at 700 mg/kg bw/day (583 mg/kg bw/day after correction for purity of test substance), clinical signs (excessive salivation, excessive lacrimation, poor condition, red/mucoid nasal discharge, alopecia, staining of the ano-genital

area, chromodocryorrhea (top dose only)) noted at  $\geq$ 350 mg/kg bw/day, reduced maternal body weight noted at 350 mg/kg bw/day (GD 20: 7%; GD 20 corrected value: 6%) and 700 mg/kg bw/day (GD 20: 8%; GD 20 corrected value: 13%), reduced bodyweight gain noted at 350 mg/kg bw/day (GD 6-15: 15% n.s.; GD 15-20: 17%; GD 0-20 corrected value: 77%) and 700 mg/kg bw/day (GD 6-15: 40%; GD 15-20: 17%; GD 0-20 corrected value: 11%). Furthermore, food consumption was reduced in the highest dose group during the exposure period (except for the last day). Uterine weight was reduced in a dose dependent manner: 7% reduction in the 100 mg/kg bw/day group, 10 % in the 350 mg/kg bw/day group, and 27% in the 700 mg/kg bw/day group (only the top dose was statistically significant). The mean number of resorptions and resorptions per implant was increased in the top dose group (not statistically significant). There were fewer litters with viable foetuses in the highest dose group. Foetal body weight was reduced at 350 mg/kg bw/day (11%) and 700 mg/kg bw/day (25%). Furthermore, the incidence of skeletal variations (retarded ossification processes) was increased in the top two doses. There was also a higher incidence of external and visceral malformations among the top dose foetuses. Seven out of the 8 foetuses with external malformations had (among other things) deformed tails, an effect that is associated with maternal toxicity. Because the fetotoxic effects only were observed in the presence of maternal toxicity, the distinction between direct and indirect effects on the foetus is unclear.

Mortality was observed in dams (5 of 25 dams) at 700 mg/kg bw/day (583 mg/kg bw/day after correction for purity of test substance). This effect was considered severe and relevant for human health and noted within the critical range of doses for STOT-RE Category 2 classification (i.e. C $\leq$ 1000 mg/kg bw/day) (Haber's rule considered for exposure duration of 9 days). Several animals in the 700 mg/kg bw/day dose group began to show signs of toxicity (salivation, red nasal discharge, poor condition, staining of the fur in the ano-genital area) at Day 10 of gestation which appeared to be treatment-related, and five females died during the Day 11-16 gestation interval after five to 10 days of treatment. Mortality was not observed in the pilot study (Report No. S-2807, Vol. 3, B.6.6.2.1/01) or in other repeated dose toxicity studies conducted with the rat. However, it could be noted that dose levels used in these studies were lower compared to this study. The developmental effects observed in this study were not considered relevant for STOT-RE classification but have been further discussed in section 2.6.6.2.

#### Pilot teratology study in rats (Vol. 3, B.6.6.2.1/01)

In this dose range finding study, RE-45601 (purity: 83.3%) was administered orally by gavage daily on gestational days 6-15 to groups of 10 females at doses of 0, (control), 50, 150, 300 and 500 mg/kg bw/day (equal to 0, 41.7, 125, 250, and 417 mg/kg bw per day, after correction for purity of test substance).

At the top dose of 500 mg/kg bw/day (417 mg/kg bw/day when corrected for purity of test substance), observed effects included increased salivation (8/10 dams), reduced body weight (Day 20:  $\downarrow$ 10% n.s.), reduced bodyweight gain (Day 15-20:  $\downarrow$ 38.8%; Day 6-20:  $\downarrow$ 62.5%), reduced number of implantation sites (87 versus 126 in control, n.s.), and increased pre-implantation loss ratio (0.289 versus 0.082 in control, n.s.), reduced number of viable foetuses (86 versus 122 in control, within historical control values), and reduced foetal weight of viable foetuses ( $\downarrow$ 11%).

In the second highest dose of 300 mg/kg bw/day (250 mg/kg bw/day when corrected for purity), observed effects included increased salivation in the dams (8/10 dams) and reduced pup weight (7%, not statistically significant).

The systemic effects observed in the dams (salivation, reduced body weight/bodyweight gain) were not considered severe enough or relevant for STOT-RE classification. The developmental effects observed in this study were further discussed in section 2.6.6.2.

#### 90-day oral dietary neurotoxicity study in rats (Vol. 3, B.6.7.1.3)

In this study, RE-45601 (purity: 95.4%) was administered in the diet to groups of 12 males and females at levels of 0 (control), 500, 1500 and 5000 ppm (equal to 0, 31, 94 and 331 mg/kg bw/day for males, and 0, 38, 115 and 380 mg/kg bw/day for females) for 28 days. No mortality occurred and no clear treatment related clinical signs were observed. Body weights of both sexes were lower in the highest dose group than those of the control group throughout the study (7-11% in males and 7-9% in females). Body weights of the low and middle dose were comparable to control weights or higher (body weight of female of the 500-ppm group). Body weight gain was reduced in both sexes (16% in males and 19% in females) over the entire study period, in general due to lower gains during the first month. Food consumption in males was reduced during the first week, potentially indicating palatability issues, but the food consumption per animal was slightly lower also after that, the consumption per kg bw was similar or slightly higher the rest of the study. In females, the food consumption per animal was lower/slightly lower throughout the study while the consumption per kg bw was similar to the control group overall. The functional battery revealed no treatment related effect on home cage, handling, open field, sensory, or neuromuscular observations. Physiological observations included lower body weight in both sexes. No clear treatment related trends were observed in the treated animals. Total and ambulatory motor activity counts for the 5000 ppm (380 mg/kg bw/day) group females at the study week 7 evaluation was lower than that of the control. The value was also lower than the HCD and the control value was higher than the HCD. No effects on habituation were observed. There were no effects on liver weight, brain weight, or brain length or width but it is noted that relative weights were not reported. No treatment related changes were noted during necropsy.

The effects noted in this study (reduced body weight/bodyweight gain) were not considered relevant for STOT-RE Category 2 classification.

## 28-day dietary dose range finding study neurotoxicity study (Vol. 3, B.6.7.1.2)

In this dose range finding study, RE-45601 (purity: 95.4%) was administered in the diet to groups of 5 males and females at levels of 0 (control), 500, 1500 and 5000 ppm for 28 days. The mean test substance consumption in the 500, 1500, and 5000 ppm groups was 45, 132, and 441 mg/kg/day, respectively, for males and 51, 155, and 475 mg/kg/day, respectively, for females over the entire study (study days 0-28). It is not clear whether the results from the chemical analysis was used to calculate these values or if only feed consumption was used.

No deaths occurred and no clinical signs stood out in the exposed groups. Body weight and/or body weight gain were affected in all dose groups at one interval or more. The final weight at day 28 was 15 % lower in males of the high dose (441 mg/kg bw/day) group, and body weight gain was reduced by 16, 14, and 30 % in the low, middle, and high dose males, respectively. A similar trend was observed in females. The absolute weight was not significantly affected in females (a 5% reduction at the top dose) and the overall body weight gain was reduced by 21% in this group (475 mg/kg bw/day), mainly due to a significant decrease of body weight change during the first week (48%). No clear effects on food consumption were observed, but body weight gained as percent of feed consumed was lower in the 5000 ppm (441 mg/kg bw/day) males. No treatment related effects on home cage,

handling, sensory or neuromuscular observations, or motor activity were observed. Absolute brain weight, but not liver weight in males, was slightly reduced in the top and lowest dose group ( $\downarrow 5\%$ ) in the low dose and  $\downarrow 4\%$  in the top dose. No effect on brain weight was observed in middle dose group, thus no dose-response.

The effects noted in this study (reduced body weight/bodyweight gain, slightly reduced brain weight) were not considered of concern for a STOT-RE Category 2 classification. It could be noted that no effects occurred within the critical range of doses for Cat 2 classification (i.e.  $30 < C \le 300$  mg/kg bw/day) (Haber's rule considered for exposure duration of 28 days).

## Five-week sub-chronic feeding study of high purity RE-45601 (SX-1718) and RE-45601 process Neutrals (SX-1717) in rats (B.6.8.2/03)

This study was designed to investigate whether the observed toxicity in the studies performed with low purity RE-45601 (84.3% purity) could be ascribed to the impurities or process Neutrals.

RE-45601 Technical and RE-45601 Process Neutrals (containing 3.3% RE-45601) were administered to rats (Sprague-Dawley) (10/sex/group) via the diet for 5 weeks. Dose levels were: Clethodim: 8000 ppm (equivalent to 597 and 667 mg/kg bw/day for males and females); Process Neutrals: 1200 ppm (4.87/5.78 mg clethodim/kg body weight/day (males/females). Control animals received the vehicle (10 mL/kg feed) only.

In summation, exposure to 597/667 mg clethodim/kg body weight/day via the diet (males/females) resulted in reduced body weight (F: 9-15%) and bodyweight gain (M: 33%, F: 42%), mild anaemia (5-7% reductions in erythrocyte, haemoglobin and haematocrit values), increased liver weight (M: abs.:12%, rel.: 34%, F: rel. 24%), liver centrilobular hypertrophy, and altered serum chemistry values (albeit within historical control values) (males only). In addition, adrenal weight was reduced (M: 26%, F: 17%) but no histopathological lesions were observed. Males were more severely affected than females. Animals exposed to 148/175 mg process neutrals/kg body weight/day containing 4.87/5.78 mg clethodim/kg body weight/day (males/females) were also affected, but not as severely. This exposure led to reduced body weight gain (males), reduced alkaline phosphatase values (within historical controls), centrilobular hypertrophy, increased liver weight (females), and reduced testes weight. In general, the animals exposed to clethodim was more severely affected, and increased albumin and total protein levels, and anaemia was observed in these animals only. However, the process neutrals also affected the animals.

The incidence of centrilobular hypertrophy was slightly higher for the RE-45601 treatment groups (RE-45601 treatment group: 10 of 10 males and 8 of 10 females; Process Neutrals treatment group: 6 of 10 males and 3 of 10 females).

Effects observed in the liver (increased weight and centrilobular hypertrophy) were not considered severe enough for STOT-RE classification and did not occur within the critical range of doses for Cat 2 classification (i.e.  $30 < C \le 300 \text{ mg/kg bw/day}$ ) (Haber's rule considered for exposure duration of 28 days).

The study was performed with GLP compliance. It was not conducted according to a specific OECD test guideline.

## Cytochrome P-450 concentration following 21-day oral administration in male rats (Vol. 3, B.6.8.2/04)

This study was designed to investigate the potential of RE-45601 technical to induce cytochrome P-450 following 21-days of oral administration in male Sprague-Dawley rats. Male rats were administered 208 mg clethodim/kg

bw/day for 21 days via oral gavage. This exposure resulted in increased liver weights (abs weight  $\uparrow$ 21%, rel. weight  $\uparrow$ 23%) but no other signs of overt toxicity. The mean CYP450 concentration, determined in liver samples from the exposed rats, did not statistically differ from that of the control.

Effects observed in the study (increased weight) were not considered severe enough for STOT-RE classification.

## Mouse:

## 4-week oral study in mice (RAR Vol. 3, B.6.3.1/02)

In this study, RE-45601 Technical (purity: 83.3%) was administered to mice (CD-1) (10/sex/group) via the diet at concentrations of 0, 100, 250, 625, 1500 and 4000 ppm (equivalent to 0, 11.9, 29.7, 74.4, 179 and 476 mg/kg bw per day as calculated by applicant) for 28 days. Vehicle used in study was acetone. Treatment was associated with changes in haematological parameters noted in males at  $\geq$ 74.4 mg/kg bw/day and in females at  $\geq$ 179 mg/kg bw/day, increased liver weights noted in males at  $\geq$ 179 mg/kg bw/day and in females at 476 mg/kg bw/day, and histopathological findings in the liver (hepatic centrilobular hypertrophy) noted in both sexes at 476 mg/kg bw/day. Haematological changes included: reduced haemoglobin noted in males at  $\geq$ 74.4 mg/kg bw/day (4-8%) and in females at  $\geq$ 179 mg/kg bw/day (6%), reduced haematocrit noted in males at 476 mg/kg bw/day (8%), and reduced erythrocyte count noted in males at  $\geq$ 179 mg/kg bw/day (4-9%).

The changes in haematological parameters indicating mild anaemia were not considered severe enough for classification with STOT-RE (a reduction of Hb less than 10%). Nor were the findings in the liver (increased weight and hepatic centrilobular hypertrophy) considered severe enough for a classification as STOT-RE. It could also be noted that the histopathological findings in the liver did not occur within the critical range of doses for Cat 2 classification (i.e.  $30 < C \le 300 \text{ mg/kg bw/day}$ ) (Haber's rule considered for exposure duration of 28 days).

## Chronic oral oncogenicity study in mice (Vol. 3, B.6.5/01)

In this study mice (CD-1) (60/sex/group) were orally exposed to Chevron RE-45601 Technical (83.3%) for 78 weeks at doses of 0 (control), 20, 200, 1000, 2000/3000 ppm (equal to 0, 2.4, 24, 119 and 238/357 mg/kg bw/day after correction for purity of test substance) for 78 weeks. The vehicle used in study was Acetone 1.5 mL/kg of feed. Treatment was associated with increased mortalities noted in both sexes at 2000/3000 ppm (238/357 mg/kg bw/day) (due to amyloidosis), changes in haematological parameters noted in both sexes at 2000/3000 ppm (238/357 mg/kg bw/day), increased liver weights noted in males at ≥1000 ppm (119 mg/kg bw/day) and in females at 2000/3000 ppm (238/357 mg/kg bw/day), macroscopical changes in the kidney (pale kidney in animals dying or sacrificed due to moribund status) noted in both sexes at 2000/3000 ppm (238/357 mg/kg bw/day), and histopathological findings noted in the liver (males and females at  $\geq$ 1000 ppm (119 mg/kg bw/day)) and the lung (males at  $\geq$ 1000 ppm (119 mg/kg bw/day)) and findings of increased systemic amyloidosis noted in both sexes at 2000/3000 ppm (238/357 mg/kg bw/day). Changes in haematological parameters noted at 2000/3000 ppm (238/357 mg/kg bw/day) consisted of reduced erythrocytes (Week 79: M: ↓14%; Week 53: M: ↓19%, F: ↓8% n.s., Week 27: M: ↓8%, F: ↓5%), haematocrit (M:  $\downarrow 12\%$  n.s.) and haemoglobin (M:  $\downarrow 12\%$  n.s.). Histopathological findings in the liver at  $\geq 1000$  ppm (119 mg/kg bw/day) consisted of centrilobular hypertrophy (both sexes), increased pigment (F) and bile duct hyperplasia (M). Treatment-related microscopic findings in the lungs consisted of foci of amphophilic alveolar macrophages (at  $\geq 1000$  ppm (119 mg/kg bw/day), both sexes). An additional treatment-related microscopic finding for unscheduled deaths included an increased incidence in systemic amyloidosis for the 3000 ppm (357 mg/kg bw/day) animals. Although amyloidosis is frequently noted in mice of this age and strain, the increased incidence in the high-dose group suggests a treatment-related exacerbation of this finding. The study did not show carcinogenic potential of clethodim technical.

The effects observed in the study were not considered of concern for a STOT-RE classification since the effects were not severe enough and did not occur within the critical range of doses for Cat 2 classification (i.e.  $1.5 < C \le 15$  mg/kg bw/day) (Haber's rule considered for exposure duration of 78 weeks).

#### 28-day oral (dietary) immunotoxicity studies (Vol.3, B.6.8.2/01-02)

Two immunotoxicity studies were performed, one dose range finding study (Vol. 3, B.6.8.2/01) and one main study (Vol. 3, B.6.8.2/02). Both were performed according to OPPTS 870.7800 (1998) with no deviations except that the dose range finding study did not include a positive control. In these studies, Clethodim TG (purity: 95.4%) was administered in the diet to groups of 10 female mice (main study) or 8 female mice (range finding study) at levels of 0, 400, 2000 and 4000 ppm (corresponding to 101, 551 and 958 mg/kg bw/day in the dose range finding study and 0, 136, 603 and 1312 mg/kg bw per day in the main study). No signs of toxicity except for increased liver weights and lower food consumption were observed. The absolute liver weights in the dose range finding study were 16 and 41% higher in the middle (603 mg/kg bw/day) and high (1312 mg/kg bw/day) dose, respectively when compared to the control. In the main study, the absolute and relative liver weights were 17 and 13 % higher in the middle and high dose, respectively, when compared to the control group, and the corresponding relative liver weights were 45 and 42 % higher in the middle and high dose, respectively when compared to the control.

No immunosuppressant effect was observed in the dose range finding study. There was a statistically significantly higher mean AFC response in the 2000 ppm (551 mg/kg/bw/day) group ( $\uparrow$ 54%). There was a similar tendency in the 4000 ppm (958 mg/kg bw/day) group, the mean value was 36% higher than that of the control group (not statistically significant) but the value was lower than that of the 2000 ppm (551 mg/kg/bw/day) group. In the main study, there was a 19-15% reduction in AFC response in the top two doses but there was no dose response, the differences were not statistically significant, and there was an increase in this endpoint in the dose-range finding study. There was also a statistically significant decreasing trend in relative spleen weight (Jonckheere's Test); however, the differences between the exposed groups and the control were not statistically significant and the mean value of the highest dose group was only 8% lower than that of the control (0.36 vs 0.39). Overall, clethodim does not appear to be immunotoxic at these dose levels.

The effects on the liver (increased weights) were not considered severe enough for classification with STOT-RE and did not occur within the critical range of doses for Cat 2 classification (i.e.  $30 < C \le 300 \text{ mg/kg bw/day}$ ) (Haber's rule considered for exposure duration of 28 days).

#### Dog:

## 90-day oral study in dogs (Vol. 3, B.6.3.2/02)

In this study, RE-45601 Technical (purity: 83.3%) was administered to Beagle dogs (4/sex/group) orally via gelatine capsules at doses of 0 (control), 1, 25, 75 and 125 mg/kg bw/day (equal to 0, 0.83, 21, 62 and 104 mg/kg bw/day when corrected for purity) for 13 weeks. Treatment was associated with changes in biochemical parameters noted in females at  $\geq$ 75 mg/kg bw/day and in males at 125 mg/kg bw/day, increased liver weights noted in both sexes at  $\geq$ 75 mg/kg bw/day, and histopathological changes in the liver (increased severity of centrilobular vesicles/vacuoles) noted in both sexes at 125 mg/kg bw/day. Changes in biochemical parameters noted at 125 mg/kg bw/day included: increased cholesterol (F: 40-58%), increased alkaline phosphatase (M: 67% n.s., F: 88%), increased globulin (M: 22%) and reduced albumin/globulin (M: 21%).

The effects on the liver (changes in biochemical parameters, increased weight and increased severity of centrilobular vesicles/vacuoles) were not considered severe enough for classification with STOT-RE. It could also be noted that the histopathological findings in the liver did not occur within the critical range of doses for Cat 2 classification (i.e.  $10 < C \le 100 \text{ mg/kg bw/day}$ ).

#### One-year oral study in dogs (Vol.3, B.6.3.2/03)

In this study Chevron RE-45601 Technical (purity: 83.3%) was administered to Beagle dogs (6/sex/group) orally via gelatine capsules at doses of 0 (control), 1, 75, and 300 mg/kg bw/day for 52 weeks. Treatment was associated with changes in haematological and biochemical parameters noted at  $\geq$ 75 mg/kg bw/day, organ weight changes (increased liver weights noted in both sexes at  $\geq$ 75 mg/kg bw/day; increased thyroid/parathyroid weights noted in males of all treated groups but only statistically significant at 300 mg/kg bw/day), macroscopical findings in the liver noted in both sexes at 300 mg/kg bw/day (enlarged, dark liver), and histopathological changes noted in the sternal bone marrow at  $\geq$ 75 mg/kg bw/day (hyperplasia, both sexes) and in the liver at 300 mg/kg bw/day (hepatocyte hypertrophy, pigment (both sexes)). Treatment-related findings in clinical pathology parameters for the 75 mg/kg group included increases in mean platelet counts (F), leukocyte counts (F), corrected leukocyte counts (F) and decreased glucose values (F). In addition to changes in these parameters, clinical pathological changes for the 300 mg/kg group included decreases in erythrocyte counts (M:9%, F: 18%), haemoglobin concentration (M: 8% n.s, F: 14%), haematocrit levels (M: 8%, F: 14%) and glucose levels (M: 12% n.s., F: 13%); and increase in total cholesterol (M; 32%, F: 61%), alanine aminotransferase (M: 167%, F: 144%), alkaline phosphatase (M: 273%, F: 341%), and triglycerides (M: 65%, F: 84%).

The effects observed in the study were not considered of concern for a classification as STOT-RE. No adverse effects occurred within the critical range of doses for Cat 2 classification (i.e.  $2.5 < C \le 25$  mg/kg bw/day) (Haber's rule considered for exposure duration of 52 weeks).

## **Rabbit:**

#### Developmental toxicity study in rabbits (Vol. 3, B.6.6.2.4/01)

In this study, Chevron RE-45601 (purity: 83.3%) was administered orally by gavage daily on gestational days 7-19 to groups of 19-20 female rabbits at doses of 0, (control), 25, 100 and 300 mg/kg bw/day (equal to 0, 20.8, 83.3 and

250 mg/kg bw/day, after correction for purity of test substance). Treatment related effects were associated with clinical signs (dried faeces, red substance in pan) observed in dams at  $\geq 100$  mg/kg bw/day ( $\geq 83.3$  mg/kg bw/day after correction for purity of test substance), reduced bodyweight gain observed in dams at  $\geq 100$  mg/kg bw/day ( $\geq 83.3$  mg/kg bw/day after correction for purity of test substance), and reduced food consumption observed in dams at  $\geq 100$  mg/kg bw/day ( $\geq 83.3$  mg/kg bw/day after correction for purity of test substance), and reduced food consumption observed in dams at  $\geq 100$  mg/kg bw/day ( $\geq 83.3$  mg/kg bw/day after correction for purity of test substance). Since neither of the high dosage group does with red substance in the cage pans aborted and each had viable foetuses at scheduled Caesarean-sectioning, the red substance in the cage pans may reflect rectal irritation and bleeding of these does according to study author. At the high dose level of 300 mg/kg bw/day (250 mg/kg bw/day after correction for purity of test substance) the following developmental effects were observed: increased foetal incidence of angulated hyoid alae, misaligned sutures and nasal irregular ossification.

The effects noted in dams (clinical signs of dried faeces and red substance in pan, and reduced bodyweight gain) were not considered severe enough for a STOT-RE Category 2 classification. The developmental effects observed in this study were not considered relevant for STOT-RE classification but have been further discussed in section 2.6.6.2.

#### Pilot teratology study in rabbits (Vol. 3, B.6.6.2.3/01)

In this dose range finding study, Chevron RE-45601 (purity: 83.3%) was administered orally by gavage daily on gestational days 7-19 to groups of 8 female rabbits at doses of 0, (control), 50, 150, 300 and 500 mg/kg bw/day (equal to 0, 41.7, 125, 250, and 417 mg/kg bw/day, after correction for purity of technical substance using a correction factor of 1.2). Treatment related effects were associated with mortality ( $\geq$ 300 mg/kg bw/day), clinical signs of dried faeces ( $\geq$ 50 mg/kg bw/day, statistical significant at  $\geq$ 300 mg/kg bw/day), reduced body weight ( $\geq$ 300 mg/kg/day, statistically significant at 500 mg/kg/day) with a post dosage increase in food consumption compared with the control ( $\geq$ 150 mg/kg/day), increased maternal liver weight and liver/body weight ratio ( $\geq$ 300 mg/kg/day, not statistically significant but ~20% increase), gross pathological findings observed in animals that aborted and/or died (hairball in stomach at  $\geq$ 300 mg/kg bw/day). There was also a possible increase in resorptions: the number of resorptions was 1.4 in the 300 mg/kg bw/day group compared with the 0.3 in the control. There was none In the highest dose group but only one female was available for assessment in that group. In addition, the foetal body weight was 13% and 32% lower in the 300 mg/kg bw/day dosage groups, respectively, compared with the control.

The mortalities observed in dams at 300 mg/kg bw/day (250 mg/kg bw/day after correction for purity of test substance) and 500 mg/kg bw/day (417 mg/kg bw/day after correction for purity of test substance) were considered as a severe and relevant effect for human health and noted within the critical range of doses for STOT-RE Category 2 classification (i.e.  $75 < C \le 750$  mg/kg bw/day) (Haber's rule considered for exposure duration of 12 days). One dam in the 300 mg/kg bw/day group was found dead on day 26 of gestation. It had persistent weight loss occur from day 10 of gestation (body weight: 3.79 kg) until its death on day 25 (body weight: 2.94 kg). Its feed consumption was inhibited throughout the dosage period, as compared with the pre-dosage period, and from day 1 until its death. Clinical signs interrelated with the observed decrease in feed consumption were dried faeces (days 17 to 23 of gestation) and no faeces (days 24 and 25 of gestation). At necropsy, the rabbit had a small hairball present in the

stomach and paraovarian cysts. Another dam at 300 mg/kg bw/day was found dead on day 21 of gestation. This rabbit had a general pattern of weight loss occur between days 7 (body weight: 4.15 kg) and 20 (body weight: 3.74 kg) of gestation. Daily feed consumption for this doe was remarkably inhibited beginning on day 14 of gestation; on days 17 through 19 of gestation. Soft or liquid faeces were observed for the doe on days 19 and 20 of gestation. Necropsy revealed a hairball in the stomach and dilated, blood-filled intestinal blood vessels. One rabbit in the 500 mg/kg bw/day group aborted and was found dead on day 20 of gestation; red substance, assumed to be blood and a sign of abortion, was observed in the cage pan on the day death occurred. This rabbit had persistent body weight loss occur from the initiation of dosage (day 7 body weight: 4.25 kg; day 19 body weight: 3.40 kg). Its daily feed consumption was first remarkably decreased on day 8 of gestation; from day 12 of gestation until its death. Dried facees were observed for the doe on days 13 through 19 of gestation. Necropsy of this doe revealed paraovarian cysts, numerous ulcerations in the gastric pylorus and a hairball present in the stomach. Another dam at 500 mg/kg bw/day was found dead on day 8 of gestation. This death may have been interrelated with a possible intubation accident during administration of the second dosage. This rabbit had clonic convulsions occur within approximately seven minutes after intubation, the rabbit died within 15 minutes of intubation and at necropsy had haemorrhagic lungs. The haemorrhagic lungs may have resulted from convulsive activity; test substance was present in the stomach and not apparent in the lungs. In addition to the lung changes, necropsy revealed paraovarian cysts.

The developmental effects observed in this study were not considered relevant for STOT-RE classification but have been further discussed in section 2.6.6.2.

#### **Overall conclusion- findings relevant for STOT-RE:**

Mortality was observed in the developmental toxicity study in rats (Vol. 3, B.6.6.2.2). Five of 25 dams died at 700 mg/kg bw/day (583 mg/kg bw/day, value corrected for purity of test substance). This effect was considered relevant for STOT-RE classification since the effect is severe and occurred within the critical range of doses for STOT-RE Category 2 classification (i.e. C≤1000 mg/kg bw/day) (Haber's rule considered for exposure duration of 9 days). Several animals in the 700 mg/kg bw/day dose group began to show signs of toxicity (salivation, red nasal discharge, poor condition, staining of the fur in the ano-genital area) at Day 10 of gestation which appeared to be treatment-related, and five females died during the Day 11-16 gestation interval after five to 10 days of treatment. Mortality was not observed in the pilot study (Vol. 3, B.6.6.2.1/01) or in other repeated dose toxicity studies conducted with the rat. However, it could be noted that dose levels used in these studies were lower compared to this study.

Furthermore, mortality was observed in the pilot developmental toxicity study in rabbits (Vol. 3. B.6.6.2.3/01). Two of seven pregnant at 300 mg/kg bw/day (250 mg/kg bw/day, value corrected for purity of test substance) dosage group rabbits died, and one of seven pregnant 500 mg/kg bw/day (417 mg/kg bw/day, value corrected for purity of test substance) dosage group rabbits aborted and died. The death of a second 500 mg/kg bw/day dosage group doe was probable related to the test substance according to study author, although this event may be the result of a possible intubation accident. All deaths appeared to be interrelated with decreased feed consumption, weight loss, gastrointestinal lesions (hairball and/or ulceration) and/or abortion. There were no deaths, abortion or premature delivery observed in the main study at the highest dose level of 300 mg/kg bw/day (250 mg/kg bw/day, value corrected for purity of test substance). However, maternal toxicity (clinical signs of dried faeces and red substance in pan, inhibited maternal body weight gain and feed consumption) was produced by the 100 and 300 mg/kg bw/day dosages of the test substance indicating toxicity. The mortalities were noted at a dose level within the critical range

of doses for STOT-RE Category 2 classification (i.e C $\leq$ 750 mg/kg bw/day) (Haber's rule considered for exposure duration of 12 days). The mortalities observed in the pilot study could support a STOT-RE classification.

<u>As a conclusion</u> STOT-RE Cat 2 is proposed based on mortalities observed in the rat developmental toxicity supported by mortalities observed in the pilot teratogenicity study in rabbits.

# 2.6.3.1.3 Conclusion on classification and labelling for STOT RE (specific target organ toxicity-repeated exposure)

Classification as STOT-RE 2. H373 ("May cause damage through prolonged or repeated exposure") is proposed based on mortalities observed in rats (developmental study, Vol. 3, B.6.6.2.2/01) and rabbits (pilot developmental study, Vol. 3, B.6.6.2.3/01).

# 2.6.4 Summary of genotoxicity / germ cell mutagenicity [equivalent to section 10.8 of the CLH report template]

| Method, guideline,<br>deviations if any                         | Test substance                     | Relevant information about<br>the study including rationale<br>for dose selection (as<br>applicable) | Observations /Results                                                                                | Reference                  |
|-----------------------------------------------------------------|------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------|
| Bacterial gene                                                  | Clethodim                          | Plate incorporation method and                                                                       | Negative. Not mutagenic                                                                              | Groot 2020                 |
| mutation                                                        | Technical                          | the pre-incubation method                                                                            | in Salmonella                                                                                        |                            |
| OECD Guideline 471.<br>Genetic Toxicology:<br>Bacterial Reverse | Lot/Batch: 4478<br>Purity: 95.98 ± | With/without S9<br>Strains: TA1535, TA1537,                                                          | <i>typhimurium</i> and<br><i>Escherichia coli</i> under the<br>specified experimental<br>conditions. | Report<br>No.:<br>20182212 |
| Mutation Test.                                                  | Pullty: $93.98 \pm 0.04\%$ w/w     | TA98, TA100 (S. typhimurium)                                                                         | conditions.                                                                                          | Vol.3.                     |
| (Adopted July 21,                                               | 0.0470 W/W                         | and WP2 <i>uvr</i> A ( <i>E. coli</i> )                                                              | Cytotoxicity was observed                                                                            | B.6.4.1/01                 |
| (1997).                                                         | Vehicle:                           |                                                                                                      | in tester strains TA1535,                                                                            | <b>D</b> .0.1.1/01         |
| ,                                                               | Dimethylsulphoxide                 |                                                                                                      | TA1537, TA98 and                                                                                     | New data                   |
| Deviations from                                                 | (DMSO)                             | Doses:                                                                                               | TA100 at the highest                                                                                 | for                        |
| current guidelines:                                             |                                    | 52, 164, 512, 1600 and 5000                                                                          | tested concentration both                                                                            | renewal:                   |
| None                                                            |                                    | μg/plate                                                                                             | with and without metabolic activation.                                                               | Yes                        |
| GLP: Yes                                                        |                                    | Plate incorporation method                                                                           |                                                                                                      |                            |
| Acceptable                                                      |                                    | With/without S9                                                                                      |                                                                                                      |                            |
|                                                                 |                                    | Strains: TA1535, TA1537,<br>TA98, TA100 ( <i>S. typhimurium</i> )                                    |                                                                                                      |                            |
|                                                                 |                                    | <u>Doses:</u><br>0, 100, 300, 1000, 3300, and<br>10000 µg/plate                                      |                                                                                                      |                            |
| Bacterial gene                                                  | RE-45601                           | Plate incorporation method                                                                           | Negative                                                                                             | Machado                    |
| mutation                                                        | Technical                          |                                                                                                      | Clethodim was not shown                                                                              | 1986a                      |
| 10 CED 150 105                                                  | I (D ) 1 (III 1600                 | With/without S9                                                                                      | to be mutagenic under                                                                                |                            |
| 40 CFR 158.135,                                                 | Lot/Batch: SX-1688                 | Staring TA 1525 TA 1527                                                                              | these conditions in this                                                                             | Report<br>No.: S-          |
| Pesticide Assessment<br>Guideline No. 84-2                      | Purity: 83.3%                      | Strains: TA1535, TA1537,<br>TA98, TA100 ( <i>S. typhimurium</i> )                                    | Salmonella typhimurium.                                                                              | No.: S-<br>2760            |
| (1983)                                                          | 1 unity. 05.5%                     | 1A70, 1A100 (S. <i>typninurium</i> )                                                                 | The test item was not                                                                                | 2700                       |
| (1703)                                                          | Vehicle:                           |                                                                                                      | completely miscible with                                                                             | Vol. 3.                    |
| Deviations from                                                 | Dimethylsulphoxide                 | Doses:                                                                                               | the top agar at $\geq 3.3$                                                                           | B.6.4.1/02                 |
| OECD 471:                                                       | (DMSO)                             | 0, 100, 300, 1000, 3300, and                                                                         | mg/plate.                                                                                            |                            |
| - Escherichia coli                                              |                                    | 10000 µg/plate                                                                                       | 0.                                                                                                   | New data                   |
| WP2uvrA was not                                                 |                                    |                                                                                                      | The test item was slightly                                                                           | for                        |
| included, and no                                                |                                    |                                                                                                      | cytotoxic to TA100 and                                                                               |                            |

| Table 50: | Summarv | table of g | enotoxicity/gern | n cell mutagenicity | v tests in vitro. |
|-----------|---------|------------|------------------|---------------------|-------------------|
|           |         |            |                  |                     |                   |

| independent repeat test                |                    |                                                                                                                 | TA1535 at 3300 g/plate           | renewal:           |
|----------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------|
| was performed                          |                    |                                                                                                                 | with metabolic activation        | No                 |
|                                        |                    |                                                                                                                 | and at 10 mg/plate without       |                    |
| GLP: Yes                               |                    |                                                                                                                 | metabolic activation.            |                    |
|                                        |                    |                                                                                                                 |                                  |                    |
| Acceptable                             |                    |                                                                                                                 |                                  |                    |
| Bacterial gene                         | RE-45601           | Plate incorporation method                                                                                      | Equivocal results                | Machado            |
| mutation                               | Technical          | -                                                                                                               | -                                | 1986b              |
|                                        |                    | With/without S9                                                                                                 | Negative for the strains         |                    |
| 40 CFR 158.135,                        | Lot/Batch: SX-1688 |                                                                                                                 | TA1535, TA1537, TA100            | Report             |
| Pesticide Assessment                   |                    | Strains: TA1535, TA1537,                                                                                        | and WP2 $uvrA$ both with         | No.: S-            |
| Guideline No. 84-2                     | Purity: 83.3%      | TA98, TA100 ( <i>S. typhimurium</i> )                                                                           | and without metabolic            | 2859               |
| (1983)                                 | 1 411091 001070    | and WP2 <i>uvr</i> A ( <i>E. coli</i> )                                                                         | activation.                      | 2007               |
| (1903)                                 | Vehicle:           | and WI Zuvili (E. cou)                                                                                          | activation.                      | Vol. 3.            |
| Deviations from                        | Dimethylsulphoxide |                                                                                                                 | In TA98, the mean number         | B.6.4.1/03         |
| OECD 471:                              | (DMSO)             | Doses:                                                                                                          | of revertant colonies was        | <b>D</b> .0.4.1/03 |
| - laboratory historical                | (DMSO)             | 0, 100, 333, 1000, 3333, and                                                                                    | 1.9 times higher than the        | New data           |
| control data was not                   |                    |                                                                                                                 | 8                                |                    |
|                                        |                    | 10000 µg/plate                                                                                                  | control value (both $+$ S9       | for                |
| reported.                              |                    |                                                                                                                 | and -S9) in the first            | renewal:           |
| CLD V                                  |                    |                                                                                                                 | experiment, and 1.8 (+S9)        | No                 |
| GLP: Yes                               |                    |                                                                                                                 | and 2.1 (-S9) times higher       |                    |
|                                        |                    |                                                                                                                 | than the control value in        |                    |
| Acceptable with                        |                    |                                                                                                                 | the second experiment.           |                    |
| limitations                            |                    |                                                                                                                 |                                  |                    |
| (uncertainties                         |                    |                                                                                                                 | Slight cytotoxicity was          |                    |
| regarding statistical                  |                    |                                                                                                                 | observed only in TA100           |                    |
| analysis)                              |                    |                                                                                                                 | with S-9 at 10 mg/plate.         |                    |
| Mammalian cell gene                    | Clethodim (Select) | Chinese Hamster Ovarian CHO                                                                                     | Negative both with and           | Lehn 1990          |
| mutation assay (CHO-                   |                    | cells                                                                                                           | without metabolic                |                    |
| HGPRT assay in vitro)                  | Lot/Batch: 10195-  |                                                                                                                 | activation                       | Report             |
|                                        | 36                 | With/without S9                                                                                                 |                                  | No.:               |
| Guidelines followed:                   |                    |                                                                                                                 | Cytotoxicity was observed        | T6033343           |
| None mentioned, study                  | Purity: 92.7%      | Doses:                                                                                                          | at higher concentrations         |                    |
| performed in general                   |                    | 100, 200, 300, 400, 450, 500                                                                                    | $(\geq 450 \ \mu g/mL)$ (without | Vol. 3.            |
| accordance with                        | Vehicle:           | μg/mL                                                                                                           | metabolic activation)            | B.6.4.1/04         |
| OECD 476                               | Dimethylsulphoxide |                                                                                                                 | Precipitation occurred in        |                    |
|                                        | (DMSO)             |                                                                                                                 | the highest dose group.          | New data           |
| Deviations from TG                     |                    |                                                                                                                 |                                  | for                |
| 476 (2016):                            |                    |                                                                                                                 |                                  | renewal:           |
| - shorter concentration                |                    |                                                                                                                 |                                  | No                 |
| intervals                              |                    |                                                                                                                 |                                  |                    |
| inter ( all)                           |                    |                                                                                                                 |                                  |                    |
| GLP: Yes                               |                    |                                                                                                                 |                                  |                    |
|                                        |                    |                                                                                                                 |                                  |                    |
| Acceptable                             |                    |                                                                                                                 |                                  |                    |
| Chromosome                             | Chevron RE-45601   | Chinese Hamster Ovarian                                                                                         | Negative with metabolic          | Putman             |
| aberration assay                       | Technical          | (CHO) cells                                                                                                     | activation                       | 1986a              |
|                                        |                    |                                                                                                                 |                                  |                    |
| Guidelines followed:                   | Lot/Batch: SX-1688 | With/without S9                                                                                                 | Positive without metabolic       | Report             |
| 40 CFR 158.135,                        |                    |                                                                                                                 | activation at the top two        | No.: S-            |
| Pesticide Assessment                   | Purity: 83.3%      |                                                                                                                 | concentrations                   | 2761               |
| Guideline No. 84-2                     |                    | Doses:                                                                                                          |                                  |                    |
| (1983)                                 |                    | <u>First study:</u> 0.03, 0.1, 0.3, 1.0                                                                         |                                  | Vol. 3.            |
| (                                      |                    | $\mu L/mL$                                                                                                      |                                  | B.6.4.1/05         |
| Deviations from                        |                    | · · · · · · · · · · · · · · · · · · ·                                                                           |                                  |                    |
| OECD 473 (2016):                       |                    | Second study: 0.6, 0.8, 1.0, 1.2                                                                                |                                  | New data           |
| - laboratory historical                |                    | $\mu L/mL$                                                                                                      |                                  | for                |
| control data was not                   |                    | Pr,                                                                                                             |                                  | renewal:           |
| reported.                              |                    |                                                                                                                 |                                  | No                 |
| - the evaluation criteria              |                    |                                                                                                                 |                                  | 110                |
| are inconsistent with                  |                    |                                                                                                                 |                                  |                    |
| recommendations.                       |                    |                                                                                                                 |                                  |                    |
| - fewer cells than                     |                    |                                                                                                                 |                                  |                    |
| - fewer cells than<br>recommended were |                    |                                                                                                                 |                                  |                    |
| scored.                                |                    |                                                                                                                 |                                  |                    |
|                                        |                    | i de la companya de l | 1                                | 1                  |

| - the exposure time                                                 |                    |                                                                  |                                 |                             |
|---------------------------------------------------------------------|--------------------|------------------------------------------------------------------|---------------------------------|-----------------------------|
| was shorter than                                                    |                    |                                                                  |                                 |                             |
| recommended.                                                        |                    |                                                                  |                                 |                             |
| GLP: Yes                                                            |                    |                                                                  |                                 |                             |
| Chromosome                                                          | Purified Chevron   | Chinese Hamster Ovarian                                          | Negative both with and          | Putman                      |
| aberration assay                                                    | RE-45601           | (CHO) cells                                                      | without metabolic<br>activation | 1986b                       |
| Guidelines followed: 40 CFR 158.135,                                | Lot/Batch: SX-1718 | With/without S9                                                  |                                 | Report<br>No.: S-           |
| Pesticide Assessment<br>Guideline No. 84-2                          | Purity: 96.1%      | Doses:                                                           |                                 | 2865                        |
| (1983)                                                              |                    | <u>First study:</u><br>0.03, 0.1, 0.3, 1.0 μL/mL                 |                                 | Vol. 3.<br>B.6.4.1/06       |
| Deviations from                                                     |                    |                                                                  |                                 |                             |
| OECD 473 (2016):<br>- laboratory historical<br>control data was not |                    | <u>Second study:</u> 0.6, 0.8, 1.0, 1.2<br>μL/mL                 |                                 | New data<br>for<br>renewal: |
| reported.<br>- the evaluation criteria<br>are inconsistent with     |                    |                                                                  |                                 | No                          |
| recommendations.<br>- fewer cells than                              |                    |                                                                  |                                 |                             |
| recommended were scored                                             |                    |                                                                  |                                 |                             |
| - the exposure time                                                 |                    |                                                                  |                                 |                             |
| was shorter than                                                    |                    |                                                                  |                                 |                             |
| recommended.                                                        |                    |                                                                  |                                 |                             |
| GLP: Yes                                                            |                    |                                                                  |                                 |                             |
| Acceptable with limitations                                         |                    |                                                                  |                                 |                             |
| In vitro Micronucleus                                               | Clethodim          | Concentration levels                                             | Negative                        | De Jong                     |
| Assay in Cultured                                                   | Technical          |                                                                  |                                 | 2021                        |
| Peripheral Human                                                    |                    | Assay 1A (3 h exposure time, 27                                  |                                 |                             |
| Lymphocytes                                                         | Lot/Batch: 4478    | h harvest time): 50, 600 and 900                                 |                                 | Report                      |
| <b>A</b> 11 11 <b>A A</b>                                           |                    | $\mu g/mL$ culture medium (without                               |                                 | No.: 2020-                  |
| Guidelines followed:                                                | Vehicle: Dimethyl  | S9). 50, 600 and 1000 $\mu$ g/mL                                 |                                 | 33038                       |
| OECD 487 (2016)                                                     | sulfoxide (DMSO)   | medium (with S9)                                                 |                                 | Vol. 3.                     |
| Deviations from                                                     | Purity: 95.98%     | Assay 2 (24h exposure, 24 h                                      |                                 | B.6.4.1/07                  |
| guideline: none                                                     |                    | harvest time): 10, 100, and 250                                  |                                 |                             |
|                                                                     |                    | µg/mL culture medium (without                                    |                                 |                             |
| GLP: Yes                                                            |                    | S9)                                                              |                                 | New data                    |
|                                                                     |                    |                                                                  |                                 | for                         |
| Acceptable                                                          |                    | Concentration selection was                                      |                                 | renewal:                    |
|                                                                     |                    | based on the presence/absence of precipitation and cytotoxicity. |                                 | Yes                         |
|                                                                     | 1                  | or precipitation and cytotoxicity.                               |                                 |                             |

# Table 51: Summary table of genotoxicity/mutagenicity tests in mammalian somatic or germ cells in vivo.

| Method, guideline,     | Test substance     | Relevant information about the        | <b>Observations/Results</b> | Reference  |
|------------------------|--------------------|---------------------------------------|-----------------------------|------------|
| deviations if any      |                    | study (as applicable)                 |                             |            |
| In vivo mammalian bone | Clethodim          | Rats (Sprague Dawley) exposed to      | Negative                    |            |
| marrow chromosomal     | Technical          | clethodim by oral gavage.             |                             | 1987       |
| aberration assay       |                    |                                       | No measurements of          |            |
|                        | Lot/Batch: SX-1688 |                                       | plasma/blood                | Report     |
| Guideline followed: 40 |                    | First dose range finding study: not   | concentration of the test   | No.: S-    |
| CFR 158.135, Pesticide | Purity: 83.3%      | considered reliable due to poor       | substance were              | 2864       |
| Assessment Guideline   |                    | homogeneity of the suspension         | performed and there was     |            |
| No.84-2 of 1983        | Vehicle: 0.7%      | and variable analytical results.      | no depression of mitotic    | Vol. 3,    |
|                        | Carboxymethylcellu |                                       | index. However, TK data     | B.6.4.2/01 |
| The study was checked  | lose (CMC) with    | Second dose range finding study       | is available showing bone   |            |
| for deviations from    | 1.0%               | (5/sex): 5.0, 2.5, 1.8, 1.2 and 0.6 g | marrow exposure (see        |            |

| Method, guideline,                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Test substance                                                                                                                                                                                   | Relevant information about the                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>Observations/Results</b>              | Reference                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------|
| deviations if any                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                  | study (as applicable)                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |                                                                                                 |
| OECD TG 475 (2016).<br>The following deviations<br>were observed:<br>-laboratory historical<br>control data have not<br>been reported<br>-no linear trend<br>assessments has been<br>performed<br>- only 50 metaphases are<br>analysed instead of the<br>prescribed 200<br>metaphases<br>- no blood samples were<br>taken<br>GLP: Yes                                                                                                                                               | Polyoxyethylene<br>Sorbitan Mono-<br>oleate (Tween-80)                                                                                                                                           | test article in 0.7% CMC with 1%<br>Tween-80/kg bw<br><u>Cytogenetics study (15/sex):</u><br>Test substance: 0.15, 0.5, 1.5 g/kg<br>bw<br>Positive control: 0.1 mg/mL<br>thriethylenemelamine (TEM) in<br>distilled water: 0.5 mg/kg bw<br><u>Study duration:</u> Five animals per<br>sex and dose group were<br>sacrificed 12, 24, and 48 h after<br>the exposure was initiated. The<br>positive control animals were<br>sacrificed 24 h after exposure<br>initiation. | Vol. 3, B.6.1, Report<br>No.: MEF-0086). | New data<br>for<br>renewal:<br>No                                                               |
| Acceptable                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                          |                                                                                                 |
| In vivo-in vitro<br>unscheduled DNA<br>(UDS) synthesis test in<br>hepatocytes of male mice<br>Guideline followed in<br>study: 40 CFR 158.135,<br>Pesticide Assessment<br>Guideline No. 84-2<br>(1983)<br>The study was checked<br>for deviations from<br>OECD TG 486 (1997).<br>The following deviations<br>were observed:<br>-no control animals for<br>the 2 h timepoint<br>- only two analysable<br>animals in the control<br>(due to technical error)<br>GLP: Yes<br>Supportive | Clethodim<br>Technical<br>Lot/Batch: SX-1688<br>Purity: 83.3%<br>Vehicle: 0.7%<br>Carboxymethylcellu<br>lose (CMC) high<br>viscosity.<br>Polyoxyethylene<br>Sorbitan Mono-<br>oleate (Tween-80). | Male mouse (B6C3F1) exposed to<br>clethodim by oral gavage.<br>Exposure duration: 16 h<br><u>Main study:</u><br>Vehicle control (3 animals<br>sacrificed at 16 h): 0.7% CMC<br>and 0.5% Tween-80<br>Test substance (3 animals/group<br>sacrificed at 2 h, 3-5<br>animals/group sacrificed at 16 h):<br>100, 1000, 5000 mg/kg bw<br>Positive control: 10 mg DMB/kg<br>bw (1.0% tween-80 was used in<br>the middle and high dose group)                                   | Negative                                 | 1986<br>Report<br>No.: S-<br>2762<br>Vol. 3,<br>B.6.4.2/02<br>New data<br>for<br>renewal:<br>No |

| Table 52: Summary table of human data relevant for genotoxicity / germ cell mutagenicity. |           |                                |              |           |  |  |  |  |  |
|-------------------------------------------------------------------------------------------|-----------|--------------------------------|--------------|-----------|--|--|--|--|--|
| Type of                                                                                   | Test      | Relevant information about the | Observations | Reference |  |  |  |  |  |
| data/report                                                                               | substance | study (as applicable)          |              |           |  |  |  |  |  |
| No data                                                                                   |           |                                |              |           |  |  |  |  |  |

# 2.6.4.1 Short summary and overall relevance of the provided information on genotoxicity / germ cell mutagenicity

The potential mutagenicity of clethodim has been studied *in vitro* in both bacteria and mammalian cells, and *in vivo* in a rat bone marrow chromosomal aberration test and a mouse liver UDS assay. All these studies were conducted in accordance with the OECD Principles of Good Laboratory Practice (1981). The studies were considered acceptable, acceptable with limitations, or supportive. One Ames test and one *in vitro* micronucleus assay are new data for the renewal of active substance.

Clethodim

Three bacterial mutagenicity studies (Ames tests) are available. Two of these studies are old data (presented in DAR, 2005) and one is new data for the renewal of active substance. One previous study investigating S. typhimurium as tester strain, gave negative results, both in the presence and absence of metabolic activation. In this study, the test item was slightly cytotoxic to TA100 and TA1535 at 3300 g/plate with metabolic activation and at 10 mg/plate without metabolic activation (Report No.: S-2760). Another previous study showed increased number of revertant colonies of the strain TA98 in the highest dose group (both with and without metabolic activation). In this study Styphimurium and E.coli as tester strains were investigated at concentrations up to 10000  $\mu$ g/plate. Slight cytotoxicity was observed to TA100 only at the highest concentration. RMS considers the result of this study as equivocal. There are limitations in this study since the statistical analysis was not included in the tabulations and due to lack of historical control data (Report No.: S-2859). A new Ames test is submitted for the renewal procedure which gave negative results, both in the presence and absence of metabolic activation (Report No.: 20182212). In this study Styphimurium and E.coli as tester strains, were tested at concentrations up to 5000 µg/plate. At this concentration cytotoxicity as evidenced by a decrease in the number of revertants, reduction of the bacterial background lawn and the increase in the size of the microcolonies were present. In the Mammalian cell gene mutation assay in Chinese hamster ovary cells, clethodim produced negative results (Report No.: T6033343). In all these studies mentioned above, the top dose tested was limited by the toxicity of the test substance.

In both *in vitro* chromosome aberration tests in Chinese Hamster ovary cells, clethodim technical was not clastogenic in the presence of metabolic activation. In the initial *in vitro* chromosome aberration test, without metabolic activation, clethodim was found to be positive at the two highest doses tested (0.91 and 1.1 mg/mL) (Report No.: S-2761). However, the second *in vitro* chromosome aberration test performed with a purified clethodim (96.1%) demonstrated negative result without metabolic activation (Report No.: S-2865). Further, the clastogenic responses observed in the chromosome aberration assay in the absence of a metabolic activation system were not confirmed in the *in vivo* studies.

A micronucleus study on peripheral human lymphocytes was submitted (new data for the renewal of active substance) in which no increase in the number of mononucleated and binucleated cells with micronuclei was observed in exposed groups (i.e. the study did not indicate clastogenic or aneugenic potential) (Report No: 2020-33038).

The *in vivo* chromosome aberration test in rats was negative using clethodim technical. Limitations of the study included that no historical control data was provided and fewer cells than specified in OECD 475 (2016) were assessed. In addition, no measurements of plasma/blood concentration of the test substance were performed and there was no depression of mitotic index. However, TK data is available (Report No.: MEF-0086) showing bone marrow exposure (Report No.: S-2864). Also negative was the Unscheduled DNA Synthesis test in hepatocytes of male mice. However, this latter study is considered as supportive data only (Report No.: S-2762).

Considering the results in the genotoxicity studies as presented above, clethodim technical is considered nongenotoxic. The available *in vivo* chromosome aberration test did not confirm the positive/equivocal results from some of the *in vitro* studies.

#### 2.6.4.2 Comparison with the CLP criteria regarding genotoxicity / germ cell mutagenicity

The criteria for classification for germ cell mutagenicity under Regulation 1272/2008 (CLP) is as followed:

Category 1: Substances known to induce heritable mutations or to be regarded as if they induce heritable mutations in the germ cells of humans. The classification in Category 1A is based on positive evidence from human epidemiological studies. The classification in Category 1B is based on positive results from in vivo heritable germ cell mutagenicity tests in mammals or positive results from in vivo somatic cell mutagenicity tests in mammals, in combination with some evidence has potential to cause mutations to germ cells or positive results from tests showing mutagenic effect in the germ cells of humans, without demonstration of transmission to progeny.

Category 2: Substances which cause concern for humans owing to the possibility that they may induce heritable mutations in the germ cells of humans. The classification in Category 2 is based on: positive evidence obtained from experiments in mammals and/or in some cases from in vitro experiments, obtained from somatic cell mutagenicity tests in vivo in mammals or other in vivo somatic cell tests which are supported by positive results from in vitro assays.

The available in vivo chromosome aberration test did not confirm the positive/equivocal results from some of the in vitro studies.

RMS agrees with the previous conclusion by RAC (2015) that no Cat. 2 classification of clethodim for germ cell mutagenicity is warranted.

#### Conclusion on classification and labelling for genotoxicity / germ cell mutagenicity 2.6.4.3

No classification of clethodim for germ cell mutagenicity is warranted.

#### 2.6.5 Summary of long-term toxicity and carcinogenicity [equivalent to section 10.9 of the CLH report template]

| Method, guideline, deviations    | Test substance, dose  | Results                                                 | Reference  |
|----------------------------------|-----------------------|---------------------------------------------------------|------------|
| if any, species, strain, sex,    | levels duration of    | - NOAEL/LOAEL                                           |            |
| no/group                         | exposure              | - target tissue/organ                                   |            |
|                                  |                       | - critical effects at the LOAEL                         |            |
|                                  |                       | Bold text=adverse effect                                |            |
| Chronic Oral Oncogenicity        | Chevron RE-45601      | NOAEL: 200 ppm (24 mg/kg bw/day)                        |            |
| Study in Mice                    | Technical             |                                                         | (1988)     |
|                                  |                       | LOAEL: 1000 ppm (119 mg/kg bw/day)                      |            |
| Guidelines followed: OECD        | Purity: 83.3%         |                                                         | Report     |
| 451 (1981)                       |                       |                                                         | number: S- |
|                                  | Vehicle: Acetone      | Effects at 1000 ppm:                                    | 2867       |
| Deviations from OECD 451         |                       | ↑ <b>absolute liver weight</b> at week 53 (M: 12% n.s.) |            |
| (2018)                           | Doses:                | ↑ relative liver weight (Week 53: M: 17%)               | Vol. 3.    |
| Organs not harvested/assessed:   | 0, 20, 200, 1000,     | ↑ liver weight relative to brain weight (Week 53: M:    | B.6.5/01   |
| coagulating gland, lacrimal      | 2000/3000* ppm        | 15%)                                                    |            |
| gland, mammary glands from       | (equal to 0, 2.4, 24, | - histopathological changes in the liver                | New data   |
| males (note that this is only    | 119 and 238/357       | (centrilobular hypertrophy (M, F), increased pigment    | for        |
| required if visibly dissectible, | mg/kg bw/day after    | (F), and bile duct hyperplasia (M))                     | renewal:   |
| no information on this)          | correction for purity | - histopathological changes in the lung (foci of        | No         |
|                                  | of test substance)    | amphophilic alveolar macrophages (M, F)                 |            |
| Species: Mouse                   |                       |                                                         |            |

-----

| Method, guideline, deviations                           | Test substance, dose                          | Results                                                                                                          | Reference          |
|---------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------|
| if any, species, strain, sex,                           | levels duration of                            | - NOAEL/LOAEL                                                                                                    |                    |
| no/group                                                | exposure                                      | <ul> <li>target tissue/organ</li> <li>critical effects at the LOAEL</li> <li>Bold text=adverse effect</li> </ul> |                    |
| Strain: CD-1                                            | *Mice in the highest                          | Effects at 2000/3000 ppm:                                                                                        |                    |
| 60 animals per sex and dose                             | dose group received                           | $\uparrow$ mortality (M: 68% vs 42% in the control, F: 52%                                                       |                    |
| level                                                   | 2000 ppm the first 15                         | vs 33% in the control)                                                                                           |                    |
|                                                         | weeks. Thereafter                             | ↑ <b>absolute liver weight</b> at week 53 (M: 16%, F:                                                            |                    |
| CI D. V                                                 | 3000 ppm                                      | 16% n.s.) and at week 79 (M: 12% n.s., F: 12% n.s.)                                                              |                    |
| GLP: Yes                                                | Oral exposure (via the                        | $\uparrow$ relative liver weight at Week 53 (M: 27%, F: 28%) and at week 79 (M: 13% n.s., F: 16%)                |                    |
| Acceptable                                              | diet)                                         | ↑ liver weight relative to brain weight at Week 53                                                               |                    |
| liceptuble                                              | diet)                                         | (M: 21%, F: 18%) and at week 79 (M: 15% n.s., F:                                                                 |                    |
|                                                         | Duration of exposure:                         | 20%)                                                                                                             |                    |
|                                                         | 52 weeks (10                                  | - macroscopical changes in the kidney (pale, in                                                                  |                    |
|                                                         | mice/group) or 78                             | animals dying or sacrificed due to moribund status)                                                              |                    |
|                                                         | weeks                                         | - <b>histopathological changes in the liver</b><br>(centrilobular hypertrophy (M, F), increased pigment          |                    |
|                                                         |                                               | (M), and bile duct hyperplasia (M))                                                                              |                    |
|                                                         |                                               | - histopathological changes in the lung (foci of                                                                 |                    |
|                                                         |                                               | amphophilic alveolar macrophages in the lung (M,                                                                 |                    |
|                                                         |                                               | F))                                                                                                              |                    |
|                                                         |                                               | $\downarrow$ erythrocytes (Week 27: M: 8%, F:5%; Week 53:                                                        |                    |
|                                                         |                                               | M:19% n.s., F: 8% n.s.; Week 79: M: 14%)                                                                         |                    |
|                                                         |                                               | ↓ haematocrit (Week 79: M: 12% n.s.; Week 27:<br>M: 8%)                                                          |                    |
|                                                         |                                               | haemoglobin (Week 79: M: 12% n.s.; Week 27:                                                                      |                    |
|                                                         |                                               | M:7%)                                                                                                            |                    |
|                                                         |                                               | ↑ incidence of systemic amyloidosis in animals                                                                   |                    |
|                                                         |                                               | that died/was sacrificed due to a moribund state (M:                                                             |                    |
|                                                         |                                               | 42% vs 28% in the control, F: 36% vs 22% in the                                                                  |                    |
|                                                         |                                               | control)                                                                                                         |                    |
|                                                         |                                               | There was an increased incidence of lung adenomas                                                                |                    |
|                                                         |                                               | and carcinomas in the treated males relative to                                                                  |                    |
|                                                         |                                               | control males. The incidence of these tumours for                                                                |                    |
|                                                         |                                               | unscheduled deaths and terminally sacrificed                                                                     |                    |
|                                                         |                                               | animals was 8, 16, 20, 22 and 22% for males in                                                                   |                    |
|                                                         |                                               | groups treated with 0, 20, 200, 1000, and 2000/3000                                                              |                    |
|                                                         |                                               | ppm, respectively. The incidence was also higher in control females (16%) compared with control males.           |                    |
|                                                         |                                               | These values were all within the historical control                                                              |                    |
|                                                         |                                               | range: the means in the historical control mice were                                                             |                    |
|                                                         |                                               | 14.9% (range: 5.5-26.5%) and 10.2% (range: 4.0-                                                                  |                    |
|                                                         |                                               | 18.4%) in males and females, respectively.                                                                       |                    |
| Combined Chronic Oral                                   | RE-45601 Technical                            | NOAEL: 500 ppm (16 mg/kg bw/day)                                                                                 |                    |
| Toxicity/ Oncogenicity Study<br>in Rats                 | Lot/Batch: SX-1688                            | LOAEL: 2500 ppm (86 mg/kg bw/day)                                                                                | (1988a)            |
| Guidelines followed: OECD                               | Purity: ~83%                                  | Effects at 500 ppm:                                                                                              | Report             |
| 453 (1981)                                              | J                                             | $\uparrow$ relative liver weight after 1 y (F: 18% n.s.) and                                                     | number: S-         |
|                                                         | Vehicle: Acetone                              | after 2 y (F: 12% n.s.)                                                                                          | 2766               |
| Deviations from OECD 453                                | D                                             | $\uparrow$ liver weight relative to brain weight after 1 y (F:                                                   | W-12               |
| (2018):<br>- prothrombin time and                       | Doses: 0, 5, 20, 500,<br>2500 ppm (equivalent | 24%)                                                                                                             | Vol.3.<br>B.6.5/02 |
| - prothrombin time and activated partial thromboplastin | to 0, 0.15, 0.57, 16                          |                                                                                                                  | D.0.3/02           |
| time were not measured                                  | and 86 mg/kg bw/day                           | Effects at 2500 ppm:                                                                                             | New data           |
| - weight of thyroid, epididymis,                        | (3) and 0, 0.2, 0.72,                         | $\downarrow$ body weight (At Day 91: M: 7%, F: 6%; At Day                                                        | for                |
| heart, spleen, and uterus were                          | 21 and 113 mg/kg                              | 360: M: 7%, F: 8%; At Day 724: M: 8% n.s., F:13%                                                                 | renewal:           |
| not measured                                            | bw/day (♀))                                   | n.s)                                                                                                             | No                 |
| - coagulating gland, vagina, and                        | Oral avraging 41-                             | $\downarrow$ <b>bodyweight gain</b> calculated for the first 3 months                                            |                    |
| lacrimal gland were not fixed and/or examined           | Oral exposure via the diet                    | (M:11%, F: 12%)<br>↓ food consumption at intervals during the study (M,                                          |                    |
| and, or examined                                        |                                               | F)                                                                                                               |                    |
|                                                         | Duration of exposure:                         | $\downarrow$ food efficiency during the first three months (M)                                                   |                    |
|                                                         | *                                             |                                                                                                                  | 1                  |

| Method, guideline, deviations      | Test substance, dose | Results                                                      | Reference |
|------------------------------------|----------------------|--------------------------------------------------------------|-----------|
| if any, species, strain, sex,      | levels duration of   | - NOAEL/LOAEL                                                |           |
| no/group                           | exposure             | - target tissue/organ                                        |           |
|                                    |                      | - critical effects at the LOAEL                              |           |
|                                    |                      | Bold text=adverse effect                                     |           |
| - the humidity varied a lot and    | 104 weeks            | ↑ <b>absolute liver weight</b> after 1 y (M: 15% n.s., F:    |           |
| was outside the recommended        |                      | 24%) but not 2 y                                             |           |
| range                              |                      | ↑ relative liver weight after 1 y (M: 22%, F: 18%            |           |
|                                    |                      | n.s.) and after 2 y (F: 21%)                                 |           |
| Species: Rat                       |                      | ↑ <b>liver weight relative to brain</b> weight after 1 y (M: |           |
| Strain: Sprague-Dawley®            |                      | 16% n.s., F: 23%) but not 2 y                                |           |
| Crl:CD® BR                         |                      | - hypertrophy in hepatocytes (after 1 year: 1 M              |           |
|                                    |                      | and 3 F, none in the control; after 2 years: 1 M and 2       |           |
| 65 animals/sex/ group              |                      | F in this dose group vs 1 F in the control)                  |           |
| 10 animals/sex/ group were         |                      | - binucleated cells in the liver after 1 y (6 F vs 1 in      |           |
| sacrificed at interim sacrifice (1 |                      | the control) but not after 2 y                               |           |
| year)                              |                      | - ↑chronic pancreatitis (F: 15 animals compared to 4         |           |
|                                    |                      | animals in the control group) (unclear relevance)            |           |
| GLP: Yes                           |                      |                                                              |           |
|                                    |                      |                                                              |           |
| Acceptable                         |                      |                                                              |           |

#### Table 54: Summary table of human data on long-term toxicity and carcinogenicity.

| Tuble 54. Dull | mary tuble of | numun uutu on iong term toxien        | y and caremogementy. |           |
|----------------|---------------|---------------------------------------|----------------------|-----------|
| Type of        | Test          | <b>Relevant information about the</b> | Observations         | Reference |
| data/report    | substance     | study (as applicable)                 |                      |           |
| No data        |               |                                       |                      |           |

#### Table 55: Summary table of other studies relevant for long-term toxicity and carcinogenicity.

| Tuble 55. Dul | tuble 35. Summary tuble of other studies relevant for long term toxicity and curemogeneity. |                                       |              |           |  |  |  |  |  |
|---------------|---------------------------------------------------------------------------------------------|---------------------------------------|--------------|-----------|--|--|--|--|--|
| Type of       | Test                                                                                        | <b>Relevant information about the</b> | Observations | Reference |  |  |  |  |  |
| study/data    | substance                                                                                   | study (as applicable)                 |              |           |  |  |  |  |  |
| No data       |                                                                                             |                                       |              |           |  |  |  |  |  |

# 2.6.5.1 Short summary and overall relevance of the provided information on long-term toxicity and carcinogenicity

The dossier includes one long-term toxicity/carcinogenicity study in the rat and one long-term toxicity/ carcinogenicity study in the mouse (Table 53). Both studies were included in the previous EU evaluation (DAR 2005). There are no new data for this endpoint in this report. The submitted studies are shortly summarised in text (below):

### Combined Chronic Oral Toxicity/Oncogenicity Study in Rats (Report No. S-2766)

In this study, sixty-five male and female Sprague-Dawley rats per group were fed diets containing 0 (control), 5, 20, 500 and 2500 ppm RE-45601 Technical for two years. The concentrations in feed equal to 0, 0.15, 0.57, 16 and 86 mg/kg bw per day for males, and 0, 0.20, 0.72, 21 and 113 mg/kg bw per day for females. The vehicle used in study was Acetone 10 mL/kg diet. Ten animals/sex/group were sacrificed at one year. Survivors were sacrificed after 731-739 days on study. There were no significant differences in mortality rates after one year or at the end of the study. Mortality after two years (excluding accidental deaths) was 53, 51, 54, 50 and 67% for males and 45, 42, 49, 60 and 51% for females in the 0, 5, 20, 500 and 2500 ppm groups, respectively. Treatment was associated with reduced body weights noted in both sexes at 2500 ppm (86 mg/kg bw/day) (At Day 91: M: 7%, F: 6%; At Day 360: M: 7%, F: 8%; At Day 724: M: 8% n.s., F:13% n.s). After three months of feeding, the bodyweight gains of males and females in this group were 89 and 88% respectively, of controls. Decreased food consumption was observed for animals in the 2500 ppm group during the first year of the study (noted at intervals); males in this group also had decreased food efficiency during the first three months. No treatment-related clinical signs, ophthalmic

abnormalities, clinical pathology changes, or differences in brain, kidney, adrenal, or gonad weights were observed during the study. The main target organ was the liver as presented by effects on liver weights and histopathological changes in the liver. Increased absolute and/or relative liver weights and trace to mild centrilobular hypertrophy in a few animals were seen in both sexes in the 2500 ppm group at the end of one year. Females treated at 2500 ppm also showed increased (9%) incidence of binucleated cells in the liver compared to control (2%) but the effect was of uncertain toxicological significance. Relative liver weights were also increased in 500 ppm females, but no hypertrophy was observed. At the end of the study, the liver/body weight ratio was increased in females in the 2500 ppm group; this reflected the decreased body weight in these animals. There were no absolute or relative liver weight changes in males and no treatment-related centrilobular hypertrophy in either sex. It is noted that the intake of the active substance was lower during the second year of the study in all dose groups. This could contribute to the more pronounced effects on the liver at 1 year compared with 2 years. There was no evidence of carcinogenicity in this study.

The NOAEL in study is 500 ppm (equal to 16 mg/kg bw/day) based on reduced bodyweight gain noted at 2500 ppm (both sexes), increased liver weights noted at 2500 ppm (both sexes), and histopathological findings in the liver noted at 2500 ppm (hypertrophy (both sexes) and nucleated cells (females)). The NOAEL set in previous evaluation DAR (2005) remains. The study was performed in accordance with OECD 453 and with EPA, FIFRA and TSCA Good Laboratory Practice (GLP) Standards. The deviations from the current guideline (OECD 453, 2018) includes the ones listed in table 53. The deviations are not considered to have a major impact on the study outcome. The study is considered acceptable.

Table 2.6.5.1-1: Selected pathology parameters of rats administered RE-45601 Technical in the diet for 104 weeks (mean±SD)

|                     | Males         | Males      |              |      |      |      | Females |      |      |      |  |
|---------------------|---------------|------------|--------------|------|------|------|---------|------|------|------|--|
| Dose (ppm)          | 0             | 5          | 20           | 500  | 2500 | 0    | 5       | 20   | 500  | 2500 |  |
| mg/kg bw/day        | 0             | 0.15       | 0.57         | 16   | 86   | 0    | 0.20    | 0.72 | 21   | 113  |  |
| Pathology           |               |            |              |      |      |      |         |      |      |      |  |
| Non-neoplastic lesi | ons           |            |              |      |      |      |         |      |      |      |  |
| Interim sacrifice#  |               |            |              |      |      |      |         |      |      |      |  |
| Centrilobular       | 0/10          | 0/10       | 0/10 0/10    | 0/10 | 1/10 | 0/10 | 0/10    | 0/10 | 0/10 | 3/10 |  |
| hypertrophy         | 0/10          | 0/10       |              |      | 1/10 | 0/10 | 0/10    | 0/10 | 0/10 |      |  |
| All study animals   |               |            |              |      |      |      |         |      |      |      |  |
| Binucleated cells   | 2/65          | 0/65       | 0/65         | 0/65 | 1/65 | 1/65 | 0/65    | 0/65 | 1/65 | 6/65 |  |
| # No. of onimals wi | th laston / N | Jo of onin | sala in anos | 100  |      |      |         |      |      |      |  |

# No. of animals with lesion/ No. of animals in group.

#### Combined Chronic Oral Toxicity/Oncogenicity Study in mice (Report number: S-2867)

In this study mice (CD-1) (60/sex/group) were exposed to Chevron RE-45601 Technical for 78 weeks at doses of 0 (control), 20, 200, 1000, 2000/3000 ppm (equal to 0, 2.4, 24, 119 and 238/357 mg/kg bw/day after correction for purity of test substance). The vehicle used in study was Acetone 1.5 mL/kg of feed. Ten mice per sex per group were randomly selected for sacrifice after 52 weeks of treatment. Animals remaining on study following 78 weeks of treatment were sacrificed. No consistent signs of toxicity were apparent in the gross clinical signs noted during Weeks 7-78. At 78 weeks, there was a significant treatment related increase in mortality. Survival incidence was 58, 66, 60, 52 and 32% for the 0, 20, 200, 1000 and 2000/3000 ppm group females, respectively, and 67, 84, 80, 59 and 48% for the 0, 20, 200, 1000 and 2000/3000 ppm group females, respectively. The predominant cause of death was an increased incidence and severity of systemic amyloidosis. There was no statistically significant effect on body weight, bodyweight gain or food consumption. Evaluation of the haematologic values revealed a slight decrease in

115

red cell mass, i.e., decreased erythrocyte counts, haemoglobin (males only), and haematocrit (males only) values in the 2000/3000 ppm (238/357 mg/kg bw/day) group mice at Weeks 27 and 53 of treatment. Statistically significant differences were noted for some of these values at Week 27 only. The only treatment-related change in red cell mass at Week 79 was a significant decrease in mean erythrocyte count in Group 2000/3000 ppm males. An increased incidence of pale kidneys was noted for the 2000/3000 ppm mice dying or sacrificed due to moribund status which probably correlated with the increased amyloidosis noted microscopically. Mean values of absolute and/or relative, i.e., to terminal body weight and brain weight, liver weights were increased in the 1000 ppm (119 mg/kg bw/day) group males and the 2000/3000 ppm group males and females at Week 53, and in the 2000/3000 ppm group females at Week 79. Microscopic changes consisted of increased incidence of systemic amyloidosis as a cause of death in the high-dose group. This finding was noted in 42% of the high-dose males versus 28% of the control males, and in 36% of the high-dose females versus 22% of the control females Treatment-related microscopic findings were also observed in the liver and in the lung. Centrilobular hypertrophy was noted in the 1000 ppm group and 2000/3000 ppm group males and the 2000/3000 ppm group females following 52 weeks of treatment. After 78 weeks increased pigment and bile duct hyperplasia in the liver of 1000 ppm and 2000/3000 ppm group animals were observed in addition. Increased pigment was also observed in 2000/3000 ppm group males after 53 weeks. After 78 weeks of the test material administration, foci of amphophilic alveolar macrophages were observed in the lung of 1000 ppm and 2000/3000 ppm group animals.

There was an increased incidence of lung adenomas and carcinomas in control females and treated males and females relative to control males. However, these tumours are not believed to be related to treatment with Chevron RE-45601 Technical due to the absence of a dose response, a similar incidence in historical data, the apparent late onset of the tumour, and the lack of statistical support. The incidence of these tumours for unscheduled deaths and terminally sacrificed animals was 8, 16, 20, 22, and 22 % for males in groups 0, 20, 200, 1000, and 2000/3000 ppm, respectively, and 16, 26, 20, 22, and 18% for females in groups 0, 20, 200, 1000, and 2000/3000 ppm, respectively. The range of incidences of these types of tumours in the historical control mice were 5.5-26.5 % and 4.0-18.4 % in males and females, respectively.

The NOAEL of this study is 200 ppm (equal to 24 mg/kg bw/day, value corrected for purity of test substance) based on increased mortalities noted in both sexes at 2000/3000 ppm, changes in haematological parameters (reduced cell mass) noted in both sexes at 2000/3000 ppm, increased liver weights noted in males at  $\geq$ 1000 ppm and in females at 2000/3000 ppm, and microscopical finding in the liver noted at  $\geq$ 1000 ppm (centrilobular hypertrophy (both sexes), increased pigment (females), bile duct hyperplasia (males)) and in the lungs noted at  $\geq$ 1000 ppm (foci of amphophilic alveolar macrophages, both sexes) and increased incidence of systemic amyloidosis noted in both sexes at 2000/3000 ppm. The NOAEL set in previous evaluation DAR (2005) remains. The study was performed In accordance with OECD 451 and FIFRA Good Laboratory Practice. There were some organs that were not harvested/assessed that are listed in the current guideline (OECD 451, 2018), specifically coagulating gland, lacrimal gland, and mammary glands from males (note that this is only required if the glands are visibly dissectible, no information on this). This does not invalidate the study. The study is considered acceptable.

| Table 2.6.5.1-2: Selected | l histopathology pa | rameters of mice administered | d RE-4 | 5601 Technical in the diet |
|---------------------------|---------------------|-------------------------------|--------|----------------------------|
|                           |                     |                               | _      |                            |

|            | Males | Males |     |      |              | Females |    |     |      |              |
|------------|-------|-------|-----|------|--------------|---------|----|-----|------|--------------|
| Dose (ppm) | 0     | 20    | 200 | 1000 | 2000<br>3000 | 0       | 20 | 200 | 1000 | 2000<br>3000 |

| Main groups (mg/kg<br>bw/day)                        | 0                  | 2.4  | 24   | 119   | 238/<br>257 | 0    | 2.4  | 24   | 119  | 238/<br>357 |
|------------------------------------------------------|--------------------|------|------|-------|-------------|------|------|------|------|-------------|
| Non-neoplastic lesions <sup>1</sup>                  |                    |      |      |       |             |      |      |      |      |             |
| Interim sacrifice (weel                              | k 53)              |      |      |       |             |      |      |      |      |             |
| Liver: centrilobular<br>hypertrophy                  | 0/10               | 1/10 | 1/10 | 8/10  | 10/10       | 1/10 | 2/10 | 2/10 | 8/10 | 9/10        |
| Liver: increased pigment                             | 0/10               | 0/10 | 0/10 | 0/10  | 5/10        | 0/10 | 0/10 | 0/10 | 0/10 | 0/10        |
| Terminal sacrifice                                   | Terminal sacrifice |      |      |       |             |      |      |      |      |             |
| Liver: centrilobular<br>hypertrophy                  | 1/28               | 1/31 | 1/30 | 10/24 | 16/16       | 0/32 | 0/41 | 0/39 | 4/29 | 10/22       |
| Liver: hyperplasia<br>bile duct                      | 0/28               | 0/31 | 1/30 | 4/24  | 5/16        | 1/32 | 0/41 | 0/39 | 0/29 | 2/22        |
| Liver: increased pigment                             | 0/28               | 0/31 | 0/30 | 7/24  | 11/16       | 2/32 | 1/41 | 4/39 | 5/29 | 8/22        |
| Lung: foci of<br>amphophilic alveolar<br>macrophages | 0/28               | 0/31 | 1/30 | 5/24  | 8/16        | 0/32 | 0/41 | 0/39 | 3/29 | 13/22       |

<sup>1</sup> No. of animals with lesion/ No. of animals in group.

| Table 2.6.5.1-3: Summary | of neoplas | tic findings in lung | s of mice administered | l RE-45601 T | echnical in the diet |
|--------------------------|------------|----------------------|------------------------|--------------|----------------------|
|                          |            |                      |                        |              |                      |

|                                      |                | Males  |          |         |      |           | Females |     |     |      |           |
|--------------------------------------|----------------|--------|----------|---------|------|-----------|---------|-----|-----|------|-----------|
| Dose (ppm)                           |                | 0      | 20       | 200     | 1000 | 2000/3000 | 0       | 20  | 200 | 1000 | 2000/3000 |
| Main groups (mg/kg bw/               | day)           | 0      | 2.4      | 24      | 119  | 238/ 257  | 0       | 2.4 | 24  | 119  | 238/ 357  |
| All deaths (unscheduled              | l, week 53, an | d tern | ninal sa | crifice | )    |           |         |     |     |      | •         |
| Number ex                            | kamined        | 60     | 60       | 60      | 60   | 60        | 60      | 60  | 60  | 60   | 60        |
| B –<br>alveolar/bi<br>adenoma        | ronchiolar     | 5      | 10       | 12      | 11   | 10        | 9       | 10  | 11  | 10   | 8         |
| B – multip<br>alveolar/br<br>adenoma |                | 0      | 0        | 0       | 0    | 2         | 0       | 2   | 0   | 1    | 2         |
| M –<br>alveolar/bi<br>carcinoma      |                | 0      | 0        | 2       | 2    | 0         | 1       | 3   | 1   | 0    | 0         |
| N – carcin<br>undifferen             | ,              | 0      | 0        | 0       | 0    | 1         | 0       | 0   | 0   | 0    | 0         |
| N – hepato<br>carcinoma              |                | 0      | 0        | 0       | 0    | 0         | 1       | 0   | 0   | 0    | 0         |
| N – mamn<br>carcinoma                | -              | 0      | 0        | 0       | 0    | 0         | 0       | 0   | 2   | 0    | 1         |

B = Primary, Benign Neoplasm; M = Primary, Malignant Neoplasm; N = Metastatic Neoplasm

# Table 2.6.5.1-4: Statistical results from the analysis of lung tumour incidence in male mice exposed to clethodim Tumour type Comparison Probability

| Tumour type                | Comparison | Probability |                         |                             |  |  |  |  |
|----------------------------|------------|-------------|-------------------------|-----------------------------|--|--|--|--|
|                            |            | Prevalence  | Unadjusted <sup>1</sup> | Gross adjusted <sup>2</sup> |  |  |  |  |
| Lung adenoma and carcinoma | Trend      | 0.2624      | 0.2023                  | 0.1921                      |  |  |  |  |
|                            | 1 vs 2     | 0.1528      | 0.1347                  | 0.1588                      |  |  |  |  |
|                            | 1 vs 3     | 0.0203*     | 0.0217*                 | 0.0259*                     |  |  |  |  |
|                            | 1 vs 4     | 0.0750      | 0.0572                  | 0.0660                      |  |  |  |  |
|                            | 1 vs 5     | 0.0625      | 0.0572                  | 0.0611                      |  |  |  |  |

\* Not significant using Bonferroni correction (critical value for p = 0.0125)

<sup>1</sup> All animals included.

<sup>2</sup> Animals which died prior to the first occurrence of any tumour of interest were excluded.

|       |      |       |                   | Terminal |      | Total |      |
|-------|------|-------|-------------------|----------|------|-------|------|
| Study | Year | Weeks | Finding           | Μ        | F    | Μ     | F    |
| А     | 1984 | 78    | Adenoma           | 3/41     | 3/35 | 4/50  | 3/51 |
|       |      |       | Adenoma, Multiple | 0/41     | 0/35 | 0/50  | 0/51 |
|       |      |       | Carcinoma         | 1/41     | 1/35 | 2/50  | 1/51 |
|       |      |       | Combined          | 4/41     | 4/35 | 6/50  | 4/51 |

| В | 1984   | 78 | Adenoma           | 2/37  | 0/37 | 2/50  | 0/50 |
|---|--------|----|-------------------|-------|------|-------|------|
|   |        |    | Adenoma, Multiple | 2/37  | 1/37 | 2/50  | 1/50 |
|   |        |    | Carcinoma         | 3/37  | 0/37 | 4/50  | 1/50 |
|   |        |    | Combined          | 7/37  | 1/37 | 8/50  | 2/50 |
| С | 1985   | 78 | Adenoma           | 1/38  | 3/43 | 1/50  | 3/50 |
|   |        |    | Adenoma, Multiple | 1/38  | 0/43 | 1/50  | 0/50 |
|   |        |    | Carcinoma         | 2/38  | 1/43 | 2/50  | 1/50 |
|   |        |    | Combined          | 4/38  | 4/43 | 4/50  | 4/50 |
| D | . 1985 | 78 | Adenoma           | 8/41  | 6/50 | 10/69 | 7/69 |
|   |        |    | Adenoma, Multiple | 0/41  | 0/50 | 0/69  | 0/69 |
|   |        |    | Carcinoma         | 0/41  | 0/50 | 0/69  | 0/69 |
|   |        |    | Combined          | 8/41  | 6/50 | 10/69 | 7/69 |
| Е | 1986   | 78 | Adenoma           | 2/40  | 4/46 | 2/55  | 4/55 |
|   |        |    | Adenoma, Multiple | 0/40  | 0/46 | 0/55  | 0/55 |
|   |        |    | Carcinoma         | 1/40  | 1/46 | 1/55  | 1/55 |
|   |        |    | Combined          | 3/40  | 5/46 | 3/55  | 5/55 |
| F | 1987   | 78 | Adenoma           | 13/44 | 6/40 | 13/49 | 6/49 |
|   |        |    | Adenoma, Multiple | 0/44  | 0/40 | 0/49  | 0/49 |
|   |        |    | Carcinoma         | 0/44  | 3/40 | 0/49  | 3/49 |
|   |        |    | Combined          | 13/44 | 9/40 | 13/49 | 9/49 |
| G | 1987   | 78 | Adenoma           | 7/32  | 4/32 | 10/50 | 6/50 |
|   |        |    | Adenoma, Multiple | 0/32  | 0/32 | 0/50  | 0/50 |
|   |        |    | Carcinoma         | 1/32  | 1/32 | 1/50  | 1/50 |
|   |        |    | Combined          | 8/32  | 5/32 | 11/50 | 7/50 |

#### 2.6.5.2 Comparison with the CLP criteria regarding carcinogenicity

A substance is classified in Category 1 for carcinogenicity on the basis of epidemiological and/or animal data. A substance may be further distinguished as Category 1A, known to have carcinogenic potential for humans, classification is largely based on human evidence, or Category 1B, presumed to have carcinogenic potential for humans, classification is largely based on animal evidence.

The placing of a substance in Category 2 is done on the basis of evidence obtained from human and/or animal studies, but which is not sufficiently convincing to place the substance in Category 1A or 1B, based on strength of evidence together with additional considerations. Such evidence may be derived either from limited evidence of carcinogenicity in human studies or from limited evidence of carcinogenicity in animal studies.

There are no human studies available. The two combined long term/carcinogenicity studies with clethodim technical did not demonstrate treatment-related increases in tumours in rats or mice. Therefore, clethodim should not be classified for carcinogenicity.

| Table 56: Co  | able 56: Compilation of factors to be taken into consideration in the hazard assessment.                            |            |             |         |           |             |          |         |  |  |
|---------------|---------------------------------------------------------------------------------------------------------------------|------------|-------------|---------|-----------|-------------|----------|---------|--|--|
| Species       | Tumour                                                                                                              | Multi-site | Progression | Reduced | Responses | Confounding | Route of | MoA and |  |  |
| and strain    | and strain type and responses of lesions to tumour in single effect by exposure relevance                           |            |             |         |           |             |          |         |  |  |
|               | background malignancy latency or both excessive to humans                                                           |            |             |         |           |             |          |         |  |  |
|               | incidence sexes toxicity?                                                                                           |            |             |         |           |             |          |         |  |  |
| Refer to asse | Refer to assessment above at section 2.6.5.1. There were no treatment-related increases in tumours in rats or mice. |            |             |         |           |             |          |         |  |  |

#### 2.6.5.3 Conclusion on classification and labelling for carcinogenicity.

Clethodim does not meet the criteria for carcinogenicity under Regulation (EC) 1272/2008. No classification was proposed for carcinogenicity.

# 2.6.6 Summary of reproductive toxicity [equivalent to section 10.10 of the CLH report template]

# 2.6.6.1 Adverse effects on sexual function and fertility – generational studies

#### Table 57: Summary table of animal studies on adverse effects on sexual function and fertility – generational studies. Method, guideline, Test substance, dose levels Results Reference - NOAEL/LOAEL (for sexual function deviations if any, species, duration of exposure strain, sex, no/group and fertility, parents) - target tissue/organ - critical effects at the LOAEL Bold text=adverse effect Rat Reproduction Study RE-45601 Technical No NOAEL was set in study\* (dose range finding study) (1986) Lot/Batch: SX-1688 Parental effects: Guidelines followed: 40 Report CFR 158.135, Pesticide number: S-Purity: 83.3% 2000 ppm: Assessment Guideline No treatment related effects 2758 No.83-4 Vehicle: Acetone 5000 ppm: Vol. 3. Species: Rat Dietary exposure from 1 week ↓ food consumption during the first week B.6.6.1./01 Strain: Albino Crl: CD before mating until day 7 of (pre-mating) (M: 15%) Sprague-Dawley ↓ body weights during week 0-2 of the lactation New data study (M: 2%), or gestational day 20 (F: for renewal. P generation: 8 males and 8 Doses: 13%), lactational day 0 (F: 14%), and Yes 0, 500, 2000, and 5000 ppm (equal lactational day 7 (F: 16%) females per group to 0, 25, 100 and 250 mg/kg ↓ bodyweight gain during week 0-3 (M: Major deviations from bw/day using a default value of 18%) or week 0-1 (F: 63%) OECD 416 (2001): 0.05 for chronic rat studies as • treatment initiated one recommended by EFSA guidance Offspring effects: on selected default values (EFSA week before mating rather than 10 weeks before mating Journal 2012;10(3):2579)) 500 ppm: • only one generation, F0 ↓**combined pup weight** on day 7 (9%) dams and F1 pups Values corrected for purity of test **combined pup weight gain** between terminated on lactation day substance using a correction factor day 0 and 7 (13%) 7 of 1.2): • low number of females (8), 0, 20.8, 83.3, 208.3 mg/kg bw/day 2000 ppm: GL recommends use of ↓**combined pup weight** on day 7 (9%) ↓ combined pup weight gain between sufficient number of animals to yield preferably not less day 0 and 7 (14%) than 20 pregnant females at or near parturition. 5000 ppm: • oestrous cycle length and **combined pup weight** on day 7 (11%) normality not investigated **combined pup weight gain** between day 0 and 7 (16%) • testis and epididymis weight not investigated • sperm motility and sperm Comment: morphology not analysed The reduced food consumption (observed in both sexes but only significant in • total number of homogenisation-resistant males) could be a result of reduced testicular spermatids and palatability of the food containing the test cauda epididymal sperm not item. The observed parental effects, enumerated which mainly included reduced body • physical development of weights, could at least in part be the offspring not attributable to the reduced food intake investigated • haematological and clinical parameters not investigated, organ weights not recorded, histopathological investigations not made • less number of observation points GLP: Yes

| Method, guideline,             | Test substance, dose levels                                        | Results                                             | Reference    |
|--------------------------------|--------------------------------------------------------------------|-----------------------------------------------------|--------------|
| deviations if any, species,    | duration of exposure                                               | - NOAEL/LOAEL (for sexual function                  | Reference    |
| strain, sex, no/group          |                                                                    | and fertility, parents)                             |              |
| strain, sex, no, group         |                                                                    | - target tissue/organ                               |              |
|                                |                                                                    | - critical effects at the LOAEL                     |              |
|                                |                                                                    | Bold text=adverse effect                            |              |
|                                |                                                                    |                                                     |              |
| Supportive                     |                                                                    |                                                     |              |
| Two Generation (One Litter)    | RE-45601 Technical                                                 | NOAEL parental toxicity: 500 ppm (32.2              |              |
| Reproduction Study in Rats     |                                                                    | mg/kg bw/day)                                       | (1987)       |
|                                | Lot/Batch: SX-1688                                                 |                                                     |              |
| Guidelines followed:           |                                                                    | NOAEL offspring toxicity: 500 mg/kg                 | Report       |
| Reproductive and Fertility     | Purity: 83.3%                                                      | bw/day (32.2 mg/kg bw/day)                          | number: S-   |
| Effects 40 CFR 158.135,        |                                                                    |                                                     | 2778         |
| Pesticide Assessment           | Vehicle: Acetone 10 ml acetone/kg                                  | NOAEL reproductive toxicity: 2500 ppm               |              |
| Guideline 83-4                 | food                                                               | (163 mg/kg bw/day)                                  | Vol. 3.      |
|                                |                                                                    |                                                     | B.6.6.1/02   |
| Deviations from OECD 416       | Exposure: The F0 males and                                         | LOAEL parental toxicity: 2500 ppm (163              |              |
| (2001):                        | females received the test material                                 | mg/kg bw/day)                                       | New data     |
| - no analysis of sperm         | via the diet throughout pre-mating,                                |                                                     | for renewal: |
| parameters                     | mating, gestation, and lactation                                   | LOAEL offspring toxicity: 2500 ppm                  | No           |
| - developmental and            | F1a indirect exposure in utero and                                 | (163 mg/kg bw/day)                                  |              |
| functional observations of     | through nursing, and direct                                        |                                                     |              |
| pups were not performed        | exposure from weaning to pre-                                      | LOAEL reproductive toxicity: Not                    |              |
| - weighing of adrenals,        | mating, mating, gestation, and                                     | determined.                                         |              |
| brain, liver, pituitary gland, | lactation. F2 indirect exposure in                                 |                                                     |              |
| spleen, thyroids were not      | utero and through nursing                                          |                                                     |              |
| performed                      |                                                                    | Effects at 2500 ppm:                                |              |
| - histopathology of the        | Doses:                                                             | <u>F0 adults</u>                                    |              |
| vagina was not performed       | 0, 5, 20, 500 and 2500 ppm                                         | $\downarrow$ food intake (during a few days)        |              |
| - dosing before mating         | (equal to 0, 0.5, 1.2, 32.2 and 163                                | $\downarrow$ body weight (M: 4-9%)                  |              |
| period seems to be 9 weeks     | mg/kg bw/day for males; 0, 0.5,                                    | $\uparrow$ relative testis weight (10%)             |              |
| (the guideline recommends      | 1.5, 37.4 and 181 mg/kg bw/day                                     |                                                     |              |
| dosing to be continued for at  | for females in the pre-mating                                      | <u>F1 adults</u>                                    |              |
| least 10 weeks before the      | period after correction for purity as calculated by the applicant) | $\downarrow$ food intake                            |              |
| mating period)                 | calculated by the applicant)                                       | ↓ <b>body weight</b> (M: 10-19%, F: 6-10%)          |              |
| Species: Rat                   |                                                                    | $\downarrow$ absolute prostate and seminal vesicles |              |
| Strain: Albino Crl: COBS/      |                                                                    | weight (25 and 11%, respectively),                  |              |
| CD Sprague-Dawley              |                                                                    | unclear relevance                                   |              |
| CD Sprague-Dawley              |                                                                    | $\uparrow$ relative weight of the left epididymis   |              |
| F0 generation: 30 males and    |                                                                    | (18%)                                               |              |
| 30 females per group           |                                                                    | <u>F1 pups:</u>                                     |              |
| e vennies per group            |                                                                    | - slightly increased number of stillborn            |              |
| F1 generation: 30 males and    |                                                                    | <b>pups</b> (unclear relevance)                     |              |
| 30 females per group           |                                                                    | - decreased bodyweight gain (5% n.s.)               |              |
| r - 0 r                        |                                                                    | decreased body weight gain (570 fl.s.)              |              |
| GLP: Yes                       |                                                                    |                                                     |              |
|                                |                                                                    | F2 pups:                                            |              |
| Acceptable                     |                                                                    | - decreased bodyweight (6% n.s.)                    |              |

\*Study not suitable for NOAEL setting (low number of animals used and limited parameters investigated)

#### Table 58: Summary table of human data on adverse effects on sexual function and fertility.

| Type of<br>data/report | Test      | Relevant information about<br>the study (as applicable) | Observations | Reference |
|------------------------|-----------|---------------------------------------------------------|--------------|-----------|
| uata/report            | substance | the study (as applicable)                               |              |           |
| No data availa         | able      |                                                         |              |           |

# Table 59: Summary table of other studies relevant for toxicity on sexual function and fertility.

| Type of<br>study/data | Test<br>substance | Relevant information about the study (as applicable) | Observations | Reference |
|-----------------------|-------------------|------------------------------------------------------|--------------|-----------|
| No data availa        | able              |                                                      |              |           |

# **2.6.6.1.1** Short summary and overall relevance of the provided information on adverse effects on sexual function and fertility – generational studies

The potential of clethodim to cause effects on sexual function and fertility was examined in one two-generational (one litter) study in the rat. This study was submitted and evaluated in previous EU evaluation (DAR 2005). For the renewal of active substance, the pilot study for the main study has been submitted in addition.

The submitted studies (Table 57) are shortly summarised in text (below):

#### A two-generation (one litter) reproduction study in rats (Report No: S-2778)

A two-generation reproductive toxicity study was performed in which rats (30 males and females/generation (F0 and F1)) were given clethodim at a dietary concentration of 0, 5, 20, 500, and 2500 ppm (equal to 0, 0.5, 1.2, 32.2 and 163 mg/kg bw/day for males; 0, 0.5, 1.5, 37.4 and 181 mg/kg bw/day for females in the pre-mating period after correction for purity as calculated by the applicant)).

No test material-related changes in clinical observations or mortality were observed in either generation. Mean body weights were significantly reduced for both F0 and F1a adult males exposed to 2500 ppm of RE-45601. Body weights for F1a adult females were significantly reduced during the pre-mating (7-10%) and gestation periods (6-9%) up through day-7 (6%) of lactation. While body weights were reduced for F1a females, body weight gain during gestation was not affected by treatment but corrected maternal body weight during pregnancy calculated as a change in maternal body weight gain compared to controls using data point GD0 and LD1 shows a reduced bodyweight gain of 14% in F1 females at 2500 ppm. In F1a males of the high dose group, food consumption was reduced during some time periods in the pre-mating period, during the whole mating period when food consumption was measured, and at times after mating. Mean food consumption values were significantly reduced on days 0-2, 2-5, and 9-12 of gestation of the F1 females However, in all cases, effects were mild (<18%). There was no effect on body weight or food consumption in the F0 females. No effect on the reproductive ability of F0 and F1a adults were observed. Mating indices, pregnancy rates, male fertility, and the oestrous cycle were not affected by treatment.

An increase in the number of stillborn F1 pups was observed (14 pups which corresponds to 3.8% of the delivered pups in the highest treatment group compared with 2 pups, i.e. 0.7%, in the control group). The number of F0 females with at least one stillborn pup was 7 (25%) in the 2500 ppm group and 2 (9.1%) in the control group. The number of stillborn F2 pups in the control group was 7 (2.7%), indicating that the control value in the F1 generation may be in the lower range of the spectrum. No increase in stillborn F2 pups was observed. According to the applicant, historical control data was not available from the lab, but a reference was made to a historical value of 9 stillborn pups from 6 litters cited from one control group in a different 2-generation study performed earlier by the same laboratory. The effect increases with dose, and it is noted that a decrease in the number of litters with viable foetuses was also observed in the high dose group in the developmental toxicity study performed in the same strain although the incidence was yet within historical control range. Overall, the lack of effect in the F2 pups indicates that this may be an incidental finding.

Dilation of the renal pelvis was observed in five F1 pups (1.8%) in 4 litters (16.7%) in the high dose group. No incidence of this was observed in the control group. According to the applicant, no further details is available with respect to the historical control data. Considering that the kidney has not been identified as target organ in other

studies and that there were no indications of renal toxicity in the developmental study performed in the same strain, this finding is not considered to demonstrate teratogenic effect.

In the F1 males, the absolute weights of the prostate and seminal vesicles were 25 and 11% lower than the controls, respectively. The relative weights were similar to the controls. It is noted that while reduced prostate and seminal vesicles weights were observed, no histological lesions were increased in this group. The terminal body weights of both F0 and F1 males were lower in the high dose group. An increase in relative, but not absolute, testis weight was observed in the F0 generation. The absolute, but not relative, weight of the left epididymis was increased in the F1 generation. These increases in organ weights are likely a result of the reduction in body weight. No differences in terminal body weight or organ weights were observed in F0 or F1 females.

The NOAEL for parental toxicity in study is 500 ppm (32.2 mg/kg bw/day) based on reduced body weights noted at 2500 ppm covering also reduced absolute prostate and seminal vesicles weights of unclear relevance noted in F1 adults at 2500 ppm. NOAEL for reproductive toxicity is 2500 ppm (163 mg/kg bw/day, highest dose tested). The toxicological relevance of the slightly increased number of stillborn noted in F1 pups at 2500 ppm is unclear. However, since it is not considered safe to fully exclude an effect of treatment, it is considered appropriate to take a prudent approach and set the NOAEL for offspring toxicity at the same level as the parent NOAEL, i.e. 500 ppm. This NOAEL would also cover for the reduced bodyweight observed in high dose pups on day 21 after culling (6%, not statistically significant) that are seen at all dose levels in the dose-range findings study on day 7 (13-16%, statistically significant). This proposed NOAEL is a change from the previous assessment (DAR 2005) in which the NOAEL for offspring toxicity as set at 2500 ppm. The NOAELs for parental and reproductive toxicity set in previous evaluation remains.

The study was performed in general accordance with OECD 416 and with EPA, FIFRA and TSCA Good Laboratory Practice (GLP) Standards. There were some deviations from the current version of the guideline. Endpoints required in OECD 416 (2001) that was not assessed/measured in the study included analysis of sperm parameters, developmental and functional observations of pups, weight of adrenals, brain, liver, pituitary gland, spleen, and thyroid, and histopathology of the vagina. While these limits the scope of the study, they do not affect the acceptability. The study is considered acceptable.

| Dev                           | Dietary concentration of RE-45601 Technical (mg/kg) |                |                |              |                                             |  |  |  |  |
|-------------------------------|-----------------------------------------------------|----------------|----------------|--------------|---------------------------------------------|--|--|--|--|
| Day                           | 0 ppm                                               | 5 ppm          | 20 ppm         | 500 ppm      | 2500 ppm                                    |  |  |  |  |
| F0 generation premating males |                                                     |                |                |              |                                             |  |  |  |  |
| 0                             | $215 \pm 10.1$                                      | $210 \pm 8.7$  | $213\pm9.9$    | 211 ± 9.1    | $210\pm10.8$                                |  |  |  |  |
| 7                             | $269 \pm 14.5$                                      | $269 \pm 11.2$ | $265 \pm 13.5$ | 263 ± 13.3   | $258 \pm 15.1 ** \ (\downarrow 4\%)$        |  |  |  |  |
| 14                            | 315 ± 17.3                                          | $312\pm15.8$   | $310\pm20.2$   | $306\pm27.6$ | 301 ± 16.5**<br>(↓4%)                       |  |  |  |  |
| 21                            | $355\pm20.6$                                        | 352 ± 19.3     | 353 ± 22.9     | $346\pm20.1$ | 336 ± 19.5**<br>(↓5%)                       |  |  |  |  |
| 28                            | $388 \pm 23.7$                                      | $386 \pm 22.9$ | $386 \pm 27.5$ | $375\pm26.0$ | 367 ± 25.0**<br>(↓5%)                       |  |  |  |  |
| 35                            | $417\pm25.9$                                        | $413\pm23.7$   | $415\pm29.8$   | $404\pm25.2$ | $395 \pm 26.0** \ (\downarrow 5\%)$         |  |  |  |  |
| 42                            | $440\pm28.5$                                        | $434\pm23.9$   | $440\pm31.9$   | $424\pm28.0$ | $414 \pm 28.6^{**}$<br>( $\downarrow 6\%$ ) |  |  |  |  |
| 49                            | $659\pm31.7$                                        | $454\pm25.7$   | $460\pm34.0$   | $443\pm32.8$ | 427 ± 32.7**<br>(↓4%)                       |  |  |  |  |
| 56                            | 477 ± 33.5                                          | $474\pm28.9$   | $480\pm36.5$   | $463\pm34.6$ | 447 ± 31.9**<br>(↓6%)                       |  |  |  |  |

Table 2.6.6.1.1-1: Body weights (g) of F0 and F1a males (mean ± SD)

| Day           |                    | tration of RE-45601 |                |                |                                              |
|---------------|--------------------|---------------------|----------------|----------------|----------------------------------------------|
| Duy           | 0 ppm              | 5 ppm               | 20 ppm         | 500 ppm        | <b>2500 ppm</b><br>460 ± 34.7**              |
| 63            | $495 \pm 34.9$     | 490 ± 29.9          | $495 \pm 37.6$ | $474 \pm 43.3$ | $400 \pm 34.7$                               |
| F0 generation | n mated males      |                     |                |                | 4.66                                         |
| 70            | $502\pm35.8$       | 493 ± 30.5          | 500 ± 33.4     | $494 \pm 40.8$ | 466 ± 35.0**<br>(↓7%)                        |
| 77            | 517 ± 38.4         | $508 \pm 27.5$      | $515\pm40.8$   | $496 \pm 40.5$ | 480 ± 36.2**<br>(↓7%)                        |
| 84            | 525 ± 41.9         | $516\pm29.8$        | 524 ± 42.4     | $506 \pm 40.6$ | 490 ± 38.8**<br>(↓7%)                        |
| 91            | 533 ± 44.1         | 524 ± 32.3          | 533 ± 46.4     | $514 \pm 43.8$ | 494 ± 39.6**<br>(↓7%)                        |
| 98            | 537 ± 47.6         | 527 ± 33.6          | 538 ± 47.4     | 521 ± 43.8     | $498 \pm 40.8^{**}$<br>( $\downarrow 7\%$ )  |
| 105           | 546 ± 48.9         | 536 ± 33.2          | 549 ± 49.7     | 533 ± 46.6     | 508 ± 43.0**<br>(↓7%)                        |
| 112           | 556 ± 48.9         | 543 ± 34.5          | 557 ± 53.2     | 541 ± 47.3     | 516 ± 45.4**<br>(↓7%)                        |
| 119           | 562 ± 50.6         | 548 ± 37.7          | 563 ± 58.6     | $548 \pm 49.9$ | $522 \pm 46.6^{**}$<br>( $\downarrow 7\%$ )  |
| 126           | 568 ± 50.1         | 553 ± 37.1          | 570 ± 59.4     | 552 ± 52.2     | 527 ± 47.9**<br>(↓7%)                        |
| 133           | 577 ± 57.7         | 558 = 43.7          | 573 ± 59.0     | $548 \pm 51.0$ | 523 ± 55.2**<br>(↓9%)                        |
| F1a generati  | on premating males |                     |                |                |                                              |
| 119           | 77 ± 10.2          | $74 \pm 8.8$        | 75 ± 10.4      | $74 \pm 8.4$   | 67 ± 11.1**<br>(↓13%)                        |
| 126           | 124 ± 16.1         | 123 ± 23.0          | 123 ± 17.4     | 121 ± 12.0     | 108 ± 19.9**<br>(↓13%)                       |
| 133           | 183 ± 21.8         | $180\pm24.7$        | 179 ± 27.8     | $179 \pm 14.8$ | 149 ± 38.5**<br>(↓19%)                       |
| 140           | 243 ± 24.5         | $240\pm27.8$        | 238 ± 29.3     | 238 ± 18.1     | 203 ± 43.3**<br>(↓16%)                       |
| 147           | 297 ± 27.4         | $296\pm31.0$        | 293 ± 29.6     | $294\pm22.6$   | 255 ± 45.9**<br>(↓14%)                       |
| 154           | 348 ± 31.1         | 347 ± 34.3          | 341 ± 29.0     | 344 ± 25.9     | 303 ± 45.4**<br>(↓13%)                       |
| 161           | 383 ± 34.3         | 384 ± 36.7          | $376\pm28.4$   | $378 \pm 29.2$ | 335 ± 43.6**<br>(↓13%)                       |
| 168           | 411 ± 38.6         | 415 ± 39.7          | $408 \pm 29.5$ | $409\pm34.8$   | 363 ± 43.1**<br>(↓12%)                       |
| 175           | 440 ± 62.1         | $440\pm45.1$        | 437 ± 30.3     | $436\pm37.8$   | 390 ± 46.3**<br>(↓11%)                       |
| 182           | 462 ± 45.3         | 461 ± 46.3          | 456 ± 33.2     | $458\pm39.1$   | 411 ± 48.1**<br>(↓11%)                       |
| 189           | $478 \pm 47.8$     | 477 ± 49.6          | 473 ± 34.8     | $476 \pm 43.3$ | 427 ± 49.5**<br>(↓11%)                       |
| 196           | 492 ± 51.9         | $491\pm51.8$        | $487\pm36.3$   | $489\pm43.6$   | $438 \pm 50.8^{**}$<br>( $\downarrow 11\%$ ) |
| F1a generati  | on mated males     |                     |                |                | 111 . 50 0.44                                |
| 203           | 499 ± 52.7         | 499 ± 52.8          | 492 ± 38.0     | 493 ± 46.4     | 444 ± 50.9**<br>(↓11%)                       |
| 210           | 513 ± 55.8         | 509 ± 54.1          | 509 ± 38.0     | $512\pm49.6$   | 462 ± 53.9**<br>(↓10%)                       |
| 217           | $527\pm58.4$       | $524\pm56.4$        | 524 ± 41.0     | $525\pm51.5$   | 478 ± 56.4**<br>(↓9%)                        |
| 224           | $539\pm62.4$       | $536\pm60.5$        | 534 ± 43.8     | $536\pm53.3$   | 485 ± 57.3**<br>(↓10%)                       |
| 231           | 551 ± 63.3         | 544 ± 63.1          | 543 ± 47.5     | 543 ± 54.1     | 492 ± 57.0*<br>(↓11%)                        |
| 238           | 563 ± 65.0         | 555 ± 63.8          | 552 ± 48.5     | 552 ± 55/7     | 501 ± 59.0*<br>(↓11%)                        |
| 245           | $572 \pm 66.9$     | $566\pm65.3$        | $563\pm50.2$   | $566 \pm 58.8$ | $511 \pm 62.1*$<br>( $\downarrow 11\%$ )     |

| Day | Dietary concentration of RE-45601 Technical (mg/kg) |              |              |                |                                             |  |  |  |
|-----|-----------------------------------------------------|--------------|--------------|----------------|---------------------------------------------|--|--|--|
|     | 0 ppm                                               | 5 ppm        | 20 ppm       | 500 ppm        | 2500 ppm                                    |  |  |  |
| 252 | $583 \pm 69.3$                                      | $575\pm68.7$ | $573\pm50.7$ | $580\pm61.7$   | $520 \pm 63.3^{*}$<br>( $\downarrow 11\%$ ) |  |  |  |
| 259 | 591 ± 71.5                                          | $581\pm74.4$ | 581 ± 52.7   | $586 \pm 63.9$ | 527 ± 64.1*<br>(↓11%)                       |  |  |  |
| 266 | $606\pm74.0$                                        | 577 ± 76.6   | 590 ± 53.6   | $596 \pm 52.1$ | 531 ± 56.6*<br>(↓12%)                       |  |  |  |

\* p<0.05 different from control; \*\* p<0.01 different from control

# Table 2.6.6.1.1-2: Body weights (g) of F0 and F1a females (mean $\pm$ SD)

|                |                        | ncentration of RE-45601 Technical (mg/kg) |                |                |                 |  |  |
|----------------|------------------------|-------------------------------------------|----------------|----------------|-----------------|--|--|
| Day            | 0 ppm                  | 0 ppm 5 ppm                               |                | 500 ppm        | 2500 ppm        |  |  |
| F0 generation  | n premating females    | · · ·                                     |                |                | · •             |  |  |
| 0              | $152 \pm 10.4$         | $154 \pm 9.8$                             | $152 \pm 8.0$  | $153 \pm 8.0$  | $156 \pm 11.1$  |  |  |
| 7              | $173 \pm 23.0$         | $177 \pm 11.7$                            | $173 \pm 10.4$ | $177 \pm 12.9$ | $175 \pm 15.3$  |  |  |
| 14             | $193 \pm 16.2$         | $196\pm15.8$                              | $192 \pm 10.2$ | $197 \pm 13.2$ | $194 \pm 16.5$  |  |  |
| 21             | $208 \pm 18.8$         | $211 \pm 17.3$                            | $207 \pm 13.0$ | $216\pm16.5$   | $211 \pm 18.8$  |  |  |
| 28             | $221 \pm 20.9$         | $225 \pm 19.1$                            | $221 \pm 13.3$ | $228 \pm 17.5$ | $223 \pm 22.4$  |  |  |
| 35             | $232 \pm 22.7$         | $237 \pm 19.3$                            | $230\pm14.8$   | $239\pm10.5$   | $234 \pm 19.3$  |  |  |
| 42             | $242 \pm 24.0$         | $246\pm19.8$                              | $245\pm16.6$   | $246 \pm 18.9$ | $242 \pm 21.8$  |  |  |
| 49             | $231 \pm 26.0$         | $252\pm22.8$                              | $253 \pm 16.0$ | $256 \pm 19.5$ | $250 \pm 22.7$  |  |  |
| 56             | $257 \pm 27.6$         | $262 \pm 22.6$                            | 259 = 18.6     | $263 \pm 22.3$ | $256 \pm 24.0$  |  |  |
| 63             | $265 \pm 28.6$         | $270 \pm 24.1$                            | $265 \pm 16.5$ | $270\pm22.6$   | $262 \pm 24.6$  |  |  |
| F0 generation  | n mated females        |                                           |                |                |                 |  |  |
| 70             | $273 \pm 28.3$         | $270\pm22.5$                              | $269 \pm 17.9$ | $274\pm20.7$   | $264 \pm 26.3$  |  |  |
| 771            | $309 \pm 17.4$         | $288 \pm 22.5$                            | $280 \pm 7.8$  | 291 ± 11.1     | $243 \pm 25.6$  |  |  |
| 841            | $300 \pm 0.0$          | $314\pm34.8$                              | $288 \pm 13.8$ | $308 \pm 0.0$  | $237 \pm 19.3$  |  |  |
| 911            | -                      | -                                         | -              | $293\pm0.0$    | $245 \pm 0.0$   |  |  |
| 981            | $325 \pm 41.3$         | $297 \pm 42.9$                            | $285 \pm 21.6$ | $267 \pm 26.0$ | $279 \pm 35.9$  |  |  |
| 1051           | $312 \pm 35.9$         | $294 \pm 36.3$                            | $286 \pm 14.9$ | $269 \pm 24.4$ | $286 \pm 28.2$  |  |  |
| 1121           | $317 \pm 31.5$         | $302 \pm 28.1$                            | $302 \pm 16.5$ | $278 \pm 34.6$ | $290 \pm 36.7$  |  |  |
| 1191           | $329 \pm 0.0$          | -                                         | $313 \pm 24.1$ | $296 \pm 43.8$ | $325 \pm 0.0$   |  |  |
| F0 maternal    | body weights during g  | estation                                  | •              | •              |                 |  |  |
| 0              | $264 \pm 29.4$         | $267 \pm 25.4$                            | $263\pm19.8$   | $275 \pm 21.3$ | $263 \pm 26.7$  |  |  |
| 7              | $296 \pm 32.9$         | $297\pm25.6$                              | $296 \pm 18.8$ | $307 \pm 23.1$ | $293\pm26.9$    |  |  |
| 14             | 326 ± 32.7             | $327 \pm 27.5$                            | $322 \pm 21.1$ | 331 ± 24.9     | $320 \pm 27.7$  |  |  |
| 21             | 396 ± 33.0             | $387 \pm 42.6$                            | $389 \pm 21.3$ | $393\pm38.8$   | 385 ± 34.7      |  |  |
|                | body weights during la |                                           | •              | •              |                 |  |  |
| 0              | 301 ± 20.1             | $298 \pm 28.2$                            | $297 \pm 16.9$ | $304 \pm 26.4$ | $292 \pm 29.2$  |  |  |
| 7              | $312 \pm 27.5$         | $312 \pm 26.0$                            | $315 \pm 16.0$ | $318 \pm 21.1$ | $308 \pm 24.8$  |  |  |
| 14             | $332 \pm 24.1$         | $333 \pm 21.0$                            | 334 ± 16.9     | 334 ± 19.0     | 331 ± 26.7      |  |  |
| 21             | $319 \pm 24.6$         | 311 ± 18.7                                | $312 \pm 15.0$ | $317 \pm 21.9$ | $312 \pm 27.1$  |  |  |
| F1a generation | on premating females   |                                           | 1              |                |                 |  |  |
| č              |                        | <b>-</b>                                  |                |                | 65 ± 8.1*       |  |  |
| 119            | $70 \pm 8.3$           | $69 \pm 8.3$                              | $70 \pm 8.4$   | $70 \pm 7.1$   | (↓7%)           |  |  |
| 126            | 100 . 10 0             | 100 . 11 4                                | 106 1147       | 100 . 0.0      | $100 \pm 13.6$  |  |  |
| 126            | $108 \pm 12.0$         | $108 \pm 11.4$                            | $106 \pm 14.7$ | $109 \pm 8.9$  | (↓10%)          |  |  |
| 122            | 142 - 14.0             | 107 . 01.0                                | 105 . 00.0     | 147 . 10.1     | $128 \pm 26.1*$ |  |  |
| 133            | $143 \pm 14.2$         | $137\pm21.8$                              | $135 \pm 23.9$ | $145 \pm 10.1$ | (↓8%)           |  |  |
| 140            | $171 \pm 17.6$         | $168 \pm 20.0$                            | $163 \pm 22.4$ | $173 \pm 11.4$ | 157 ± 23.3      |  |  |
| 1.47           | 104 - 10.0             | 101 . 00 4                                |                | 106 - 12.0     | 178 ± 21.8**    |  |  |
| 147            | $194 \pm 18.9$         | $191\pm20.4$                              | $188\pm21.3$   | $196 \pm 13.9$ | (↓8%)           |  |  |
| 154            | 218 + 22.0             | 215 + 21 4                                | 212 + 24.0     | 219 + 17.0     | 199 ± 21.9**    |  |  |
| 154            | $218 \pm 22.0$         | $215 \pm 21.4$                            | $212\pm24.0$   | $218 \pm 17.0$ | (↓9%)           |  |  |
| 161            | 222 + 24 6             | 226 + 22.8                                | 225 + 25 2     | 221 + 17.5     | 211 ± 21.4**    |  |  |
| 161            | $233 \pm 24.6$         | $226\pm23.8$                              | $225 \pm 25.3$ | $231 \pm 17.5$ | (↓9%)           |  |  |
| 169            | 245 - 25 4             | 220 + 25.0                                | 227 + 24.0     | $244 \pm 20.6$ | 222 ± 18.5**    |  |  |
| 168            | $245 \pm 25.4$         | $239 \pm 25.0$                            | $237 \pm 24.0$ | $244 \pm 20.6$ | (↓9%)           |  |  |
| 175            | 258 ± 29.9             | $240 \pm 25.4$                            | $240 \pm 24.2$ | $258 \pm 20.5$ | 236 ± 19.1**    |  |  |
| 175            | $230 \pm 29.9$         | $249 \pm 25.4$                            | $249 \pm 24.3$ | $230 \pm 20.3$ | (↓9%)           |  |  |

| Der          | Dietary concen          | Dietary concentration of RE-45601 Technical (mg/kg) |                |                |                                         |  |  |  |  |
|--------------|-------------------------|-----------------------------------------------------|----------------|----------------|-----------------------------------------|--|--|--|--|
| Day          | 0 ppm                   | 5 ppm                                               | 20 ppm         | 500 ppm        | 2500 ppm                                |  |  |  |  |
| 182          | $267\pm29.4$            | $258\pm24.5$                                        | 257 ± 27.3     | $268\pm22.7$   | 246 ± 20.0**<br>(↓8%)                   |  |  |  |  |
| 189          | $274\pm30.9$            | $263\pm26.3$                                        | 264 ± 27.4     | $274\pm22.8$   | 251 ± 21.3**<br>(↓8%)                   |  |  |  |  |
| 196          | $279\pm29.9$            | $269 \pm 27.2$                                      | $269\pm26.0$   | $279\pm25.1$   | 256 ± 22.7**<br>(↓8%)                   |  |  |  |  |
| F1a generati | ion mated females       |                                                     |                |                |                                         |  |  |  |  |
| 203          | $282 \pm 36.0$          | $275 \pm 31.8$                                      | $270 \pm 25.7$ | $279 \pm 23.6$ | $258 \pm 26.6$                          |  |  |  |  |
| 210          | $329 \pm 0.0$           | $288\pm23.5$                                        | -              | $294 \pm 25.5$ | $254 \pm 0.0$                           |  |  |  |  |
| 217          | $342 \pm 0.0$           | $305\pm32.6$                                        | -              | $333 \pm 0.0$  | $257 \pm 0.0$                           |  |  |  |  |
| 224          | $344 \pm 0.0$           | -                                                   | -              | $341 \pm 0.0$  | -                                       |  |  |  |  |
| 231          | $317 \pm 39.4$          | $293 \pm 39.5$                                      | $271 \pm 0.0$  | $320 \pm 11.9$ | $289 \pm 25.3$                          |  |  |  |  |
| 238          | $316 \pm 39.2$          | $300 \pm 34.8$                                      | $285 \pm 0.0$  | $333 \pm 21.7$ | $294 \pm 27.5$                          |  |  |  |  |
| 245          | $356 \pm 0.0$           | -                                                   | -              | $322 \pm 0.0$  | -                                       |  |  |  |  |
| 252          | $361 \pm 0.0$           | -                                                   | -              | $330 \pm 0.0$  | -                                       |  |  |  |  |
| F1a materna  | al body weights during  | gestation                                           |                |                |                                         |  |  |  |  |
| 0            | 273 ± 25.3              | $267\pm26.9$                                        | $272\pm25.0$   | 277 ± 22.6     | $254 \pm 24.3*$<br>( $\downarrow 7\%$ ) |  |  |  |  |
| 7            | 304 ± 25.9              | 294 ± 31.2                                          | 300 ± 23.5     | 304 ± 25.4     | 279 ± 22.8**<br>(↓8%)                   |  |  |  |  |
| 14           | 334 ± 29.6              | 317 ± 29.2                                          | 327 ± 25.2     | 333 ± 27.6     | 304 ± 21.3**<br>(↓9%)                   |  |  |  |  |
| 21           | $402 \pm 38.7$          | $379\pm28.1$                                        | 397 ± 30.7     | 398 ± 35.7     | $378 \pm 22.4*$<br>( $\downarrow 6\%$ ) |  |  |  |  |
| F1a materna  | al body weight during l | actation                                            | •              | •              | • * •                                   |  |  |  |  |
| 0            | 310 ± 36.3              | 297 ± 31.8                                          | $305 \pm 26.7$ | $306 \pm 28.7$ | 286 ± 18.8*<br>(↓8%)                    |  |  |  |  |
| 7            | 317 ± 30.6              | 309 ± 24.5                                          | 316 ± 26.0     | 312 ± 23.4     | 298 ± 17.4*<br>(↓6%)                    |  |  |  |  |
| 14           | 330 ± 31.9              | $326 \pm 24.6$                                      | 337 ± 24.4     | 325 ± 22.8     | 310 ± 17.5                              |  |  |  |  |
| 21           | $316 \pm 32.4$          | $312 \pm 26.1$                                      | 321 ± 23.4     | $320 \pm 22.3$ | $314 \pm 16.3$                          |  |  |  |  |

 21  $310 \pm 32.4$   $312 \pm 20.1$   $321 \pm 23.4$   $320 \pm 22.3$   $314 \pm 10.5$  

 \* p<0.05 different from control; \*\* p<0.01 different from control</td>
 1
 Not including pregnant females (their weights are reported under "maternal weight"). Statistical analysis not reported due to small sample size (n=1-5).

| Table 2.6.6.1.1-3:  | Reproductive | data FA_F1a   |
|---------------------|--------------|---------------|
| 1 able 2.0.0.1.1-5: | Reproductive | Jata, ru→ria. |

| Parameter                                                      | 0 ppm    | 5 ppm    | 20 ppm    | 500 ppm   | 2500 ppm   |
|----------------------------------------------------------------|----------|----------|-----------|-----------|------------|
| Number of mated females/<br>treated females                    | 28/28    | 30/30    | 30/30     | 29/30     | 29/30      |
| Pregnant females (% of mated)                                  | 78.6     | 83.3     | 76.7      | 82.8      | 96.6       |
| Number of mated males/ treated males                           | 29/30    | 29/30    | 26/30     | 28/30     | 25/29      |
| Males that impregnated at least<br>one female (% mated males)  | 78.6     | 82.8     | 88.5      | 85.7      | 96.0       |
| Duration of gestation (days)                                   | 21.7     | 21.9     | 22.0      | 22.0*     | 22.0*      |
| Dams with at least one stillborn pup                           | 2 (9.1%) | 5 (20%)  | 4 (17.4%) | 4 (16.7%) | 7 (25%)    |
| Dams with only stillborn pups                                  | 0        | 0        | 0         | 0         | 0          |
| Surviving dams with no<br>surviving pups 21 days<br>postpartum | 0        | 1 (4%)   | 0         | 0         | 0          |
| Number pups born                                               | 298      | 308      | 286       | 285       | 367        |
| Number pups born alive                                         | 296      | 303      | 281       | 278       | 353        |
| Number of stillborn                                            | 2 (0.7%) | 5 (1.6%) | 5 (1.7%)  | 7 (2.5%)  | 14* (3.8%) |
| % born stillborn                                               | 180      | 200      | 186       | 180       | 226        |
| Liveborn, not culled                                           | 9        | 13       | 6         | 1         | 7          |
| Number of pups dying 0-21 days                                 | 13.5     | 12.1     | 12.2      | 11.6      | 12.6       |
| Live pups per litter, day 0 (before culling)                   | 7.9      | 7.8      | 7.8       | 7.5       | 7.8        |
| Live pups per litter, day 4 (after culling)                    | 7.9      | 7.8      | 7.8       | 7.5       | 7.8        |
| Live pups per litter, day 21                                   | 6.0      | 6.0      | 6.1       | 6.3       | 6.1        |

| Parameter                                      | 0 ppm | 5 ppm | 20 ppm | 500 ppm | 2500 ppm |
|------------------------------------------------|-------|-------|--------|---------|----------|
| Mean pup weight (g), day 0                     | 9.3   | 9.6   | 9.9    | 10.0    | 9.4      |
| Mean pup weight (g), day 4 (after culling)     | 50.0  | 49.5  | 51.6   | 50.5    | 47.7     |
| Mean pup weight (g), day 21<br>(after culling) | 28/28 | 30/30 | 30/30  | 29/30   | 29/30    |

\* p<0.05 different from control; \*\* p<0.01 different from control

## Table 2.6.6.1.1-4: Reproductive data, F1a→F2.

| Parameter                                                  | 0 ppm     | 5 ppm     | 20 ppm    | 500 ppm   | 2500 ppm  |
|------------------------------------------------------------|-----------|-----------|-----------|-----------|-----------|
| Number of mated females/ treated females                   | 29/30     | 29/29     | 30/30     | 29/30     | 30/30     |
| Pregnant females (% of mated)                              | 72.4      | 79.3      | 96.7*     | 93.1      | 83.3      |
| Number of mated males/ treated males                       | 29/30     | 26/30     | 30/30     | 29/30     | 29/30     |
| Males that impregnated at least one female (% mated males) | 72.4      | 88.5      | 96.7      | 93.1      | 86.2      |
| Duration of gestation (days)                               | 22        | 21.9      | 21.9      | 21.9      | 21.9      |
| Dams with at least one stillborn pup                       | 5 (23.8%) | 5 (21.7%) | 6 (20.7%) | 8 (29.6%) | 6 (24.0%) |
| Dams with only stillborn pups                              | 0         | 0         | 0         | 0         | 0         |
| Surviving dams with no surviving pups 21 days postpartum   | 2 (9.5%)  | 0         | 1 (3.4%)  | 1 (3.7%)  | 1 (4.0%)  |
| Number pups born                                           | 264       | 254       | 371       | 332       | 321       |
| Number pups born alive                                     | 257       | 247       | 363       | 332       | 311       |
| Number of stillborn                                        | 7         | 6         | 7         | 11        | 10        |
| % born stillborn                                           | 2.7%      | 2.4%      | 1.9%      | 3.2%      | 3.1%      |
| Liveborn, not culled                                       | 172       | 182       | 234       | 219       | 216       |
| Number of pups dying 0-21 days                             | 25        | 8         | 16        | 12        | 30        |
| Live pups per litter, day 0 (before culling)               | 12.2      | 10.7      | 12.5      | 12.3      | 12.4      |
| Live pups per litter, day 4 (after culling)                | 7.7       | 7.6       | 7.9       | 8.0       | 7.8       |
| Live pups per litter, day 21                               | 7.7       | 7.6       | 7.8       | 8.0       | 7.8       |
| Mean pup weight (g), day 0                                 | 5.9       | 6.1       | 6.1       | 6.1       | 5.9       |
| Mean pup weight (g), day 4 (after culling)                 | 9.0       | 9.2       | 9.1       | 9.2       | 9.6       |
| Mean pup weight (g), day 21 (after culling)                | 47.1      | 47.6      | 49.5      | 47.9      | 44.3      |

#### Table 2.6.6.1.1-5: Terminal body weight and selected organ weights

| Organ                 | 0 ppm  | 5 ppm  | 20 ppm | 500 ppm | 2500 ppm |
|-----------------------|--------|--------|--------|---------|----------|
| F0 Males              | •      |        | ·      | ·       | ·        |
| Terminal body         | 572.59 | 552.99 | 579.76 | 556.06  | 526.63*  |
| weight (g)            |        |        |        |         | (↓8%)    |
| Testis, left (g)      | 1.75   | 1.79   | 1.79   | 1.78    | 1.76     |
| Testis, right (g)     | 1.76   | 1.78   | 1.79   | 1.80    | 1.77     |
| Testis, left (g/100 g | 0.31   | 0.32   | 0.31   | 0.32    | 0.34*    |
| BW)                   |        |        |        |         | (110%)   |
| Testis, right (g/100  | 0.31   | 0.33   | 0.31   | 0.33    | 0.34*    |
| g BW)                 |        |        |        |         | (10%)    |
| F1a males             |        |        |        |         |          |
| Terminal body         | 602.67 | 589.97 | 587.79 | 598.46  | 536.67** |
| weight (g)            |        |        |        |         | (111%)   |
| Epididymis, left (g)  | 0.68   | 0.63   | 0.68   | 0.71    | 0.69     |
| Prostate (g)          | 0.84   | 0.66   | 0.78   | 0.71    | 0.63*    |
|                       |        |        |        |         | (↓25%)   |
| Seminal vesicles (g)  | 2.09   | 1.82** | 1.94   | 1.92    | 1.86*    |
|                       |        | (↓13%) |        |         | (111%)   |
| Epididymis, left      | 0.11   | 0.11   | 0.12   | 0.12    | 0.13*    |
| (g/100 g BW)          |        |        |        |         | (†18%)   |
| Prostate (g/100 g     | 0.14   | 0.11   | 0.14   | 0.12    | 0.12     |
| BW)                   |        |        |        |         |          |
| Seminal vesicles      | 0.35   | 0.31   | 0.33   | 0.33    | 0.35     |
| (g/100 g BW)          |        |        |        |         |          |

\* p<0.05 different from control; \*\* p<0.01 different from control

#### Reproduction toxicity study (dose range finding study) (Report S-2758):

In addition to the two-generation study, a pilot study was performed with groups of 8 male and 8 female Sprague-Dawley Crl:CD strain rats were fed diet containing 0, 500, 2000 or 5000 ppm RE-45601 Technical (purity: 83.3%) for 1 week before mating. The doses equal to 0, 20.8, 83.3, 208.3 mg/kg bw/day when corrected for purity of active substance. The vehicle used in study for preparation of diet was Acetone. Females received the diet continuously throughout mating and gestation, and until Day 7 of lactation when they were necropsied. The offspring were exposed to the test material in utero and while nursing until they were sacrificed and necropsied on Day 7 of lactation. Effects on adults and offspring were observed at the maximum dose level of 5000 ppm.

Treatment was associated with reduced bodyweight noted in adults at 5000 ppm (Males: week 0-2: 2%; Females: GD 20 13%, LD 0 F: 14%, LD: 7 (16%)), reduced bodyweight gain noted in adults at 5000 ppm (M: 18%, F: 63%) and reduced food consumption noted in adult males during the first week (pre-mating) (15%). In the offspring reduced combined pup weights were noted at all dose levels (On day 7: 9%, 9%, and 11% in the groups 500, 2000 and 5000 ppm, respectively). Pup weight gain (day 0-7) was also reduced in all dose groups ( $\downarrow$ 13%,  $\downarrow$ 14%, and  $\downarrow$ 16% in the groups 500, 2000, and 5000 ppm, respectively). There were no effects on reproduction indices for males or females, or on pup litter size, survival, and sex ration. The study is not suitable for NOAEL setting (low number of animals used and limited parameters investigated). The study was not compared to any guideline since it is a pilot study. It was performed in accordance FIFRA Good Laboratory Practice (GLP) Standards. The study is considered as supportive data (dose range finding study)

Table 2.6.6.1.1-6: Summary of litter data

|                                                                                                                                               |                              | RE-4560                      | 1 (ppm)                       |                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------|-------------------------------|------------------------------|
|                                                                                                                                               | 0                            | 500                          | 2,000                         | 5,000                        |
| Number of females on test at time of mating                                                                                                   | 8                            | 8                            | 8                             | 8                            |
| Number (%) of females mated <sup>a</sup><br>Number (%) of females pregnant <sup>b</sup><br>Number (%) of mated females                        | 8 (100)<br>8 (100)           | 8 (100)<br>8 (100)           | 8 (100)<br>7 (88)             | 8 (100)<br>8 (100)           |
| With viable litter                                                                                                                            | 8 (100)<br>0 (0)             | 8 (100)<br>0 (0)             | 7 (100)<br>0 (0)              | 8 (100)<br>0 (0)             |
| Number (%) of males mated<br>Number (%) males siring litters <sup>d</sup>                                                                     | 8 (100)<br>8 (100)           | 8 (100)<br>8 (100)           | 8 (100)<br>7 (88)             | 8 (100)<br>8 (100)           |
| Days to mate<br>Mean<br>S.D.                                                                                                                  | 3<br>1.1                     | 2<br>0.8                     | 3<br>2.1                      | 2<br>1.2                     |
| Length of gestation (days)<br>Mean<br>S.D.                                                                                                    | 22<br>0.4                    | 22<br>0.4                    | 22<br>0.4                     | 23<br>0.5                    |
| <u>Day O</u><br>Number of litters<br>Total number (%) of pups born alive<br>Total number (%) of pups found dead<br>Total number of live males | 8<br>118 (98)<br>3 (2)<br>64 | 8<br>120 (99)<br>1 (1)<br>63 | 7<br>111 (100)<br>0 (0)<br>63 | 8<br>107 (99)<br>1 (1)<br>58 |
| Total number of live females<br>Total number of dead males<br>Total number of dead females<br>Number of pups (male & female)                  | 54<br>0<br>3                 | 57<br>0<br>1                 | 48<br>0<br>0                  | 49<br>1<br>0                 |
| born alive<br>Mean<br>S.D.<br>Number of male pups born alive                                                                                  | 15<br>2.05                   | 15<br>1.8                    | 16<br>1.2                     | 13<br>1.7                    |
| Mean<br>S.D.<br>Number of female pups born alive                                                                                              | 82.6                         | 8 2.4                        | 9<br>2.7                      | 7 2.5                        |
| Nean<br>S.D.                                                                                                                                  | 7<br>2.2                     | 7<br>2.6                     | 7<br>3.4                      | 6<br>1.9                     |

Also defined as the "mating index."
 Also defined as the female "fertility index."
 Also defined as the "gestation index."
 Also defined as the male "fertility index."

128

|                                                            |      |      | 01 (ppm) |       |
|------------------------------------------------------------|------|------|----------|-------|
|                                                            | 0    | 500  | 2,000    | 5,000 |
| Day 0 (Constituted)                                        |      |      |          |       |
| <u>Day O (Continued)</u><br>Number of pups (male & female) |      |      |          |       |
| found dead                                                 |      |      |          |       |
| Nean                                                       | 0    | 0    | 0        | 0     |
| S.D.                                                       | 0.7  | ŏ.4  | ŏ.o      | 0.4   |
| Number of male pups found dead                             | •    | •••• |          |       |
| Mean                                                       | 0    | 0    | 0        | 0     |
| S.D.                                                       | ō.o  | 0.0  | 0.0      | 0.4   |
| Number of female pups found dead                           |      |      |          |       |
| Mean                                                       | 0    | 0    | 0        | 0     |
| S.D.                                                       | 0.7  | 0.4  | 0.0      | 0.0   |
| Combined pup weight (g)                                    |      |      |          |       |
| Mean                                                       | 6.5  | 6.3  | 6.3      | 6.3   |
| S.D.                                                       | 0.51 | 0.46 | 0.50     | 0.48  |
| Male pup weight (g)                                        | 6.7  | 6.5  | 6.5      | 6.4   |
| Mean<br>S.D.                                               | 0.51 | 0.41 | 0.45     | 0.46  |
| Female pup weight (g)                                      | 0.51 | 0.41 | 0.45     | 0.40  |
| Mean                                                       | 6.3  | 6.2  | 6.2      | 6.1   |
| S.D.                                                       | 0.48 | 0.46 | 0.55     | 0.47  |
|                                                            |      |      |          |       |
| Day_4                                                      |      |      |          |       |
| Number of litters                                          | 8 .  | 8    | 7        | 8     |
| Total number of live pups                                  | 118  | 120  | 110      | 105   |
| Number of pups (male & female)                             |      |      |          |       |
| Hean                                                       | 15   | 15   | 16       | 13    |
| S.D.                                                       | 2.0  | 1.8  | 1.1      | 1.8   |
| Number of male pups                                        | 8    | 8    | 9        | 7     |
| Mean                                                       | 2.6  | 2.4  | 2.7      | 2.7   |
| S.D.<br>Number of female pups                              | 2.0  | 2.4  | 2.1      | 2.7   |
| Mean                                                       | 7    | 7    | 7        | 6     |
| S.D.                                                       | 2.2  | 2.6  | 3.2      | 1.7   |
| Combined pup weight (g)                                    |      |      |          | •••   |
| Mean                                                       | 10.8 | 10.1 | 10.0     | 9.9   |
| S.D.                                                       | 1.21 | 0.82 | 1.05     | 1.04  |
| Male pup weight (g)                                        |      |      |          |       |
| Mean                                                       | 11.2 | 10.3 | 10.2     | 10.2  |
| S.D.                                                       | 1.27 | 0.91 | 0.90     | 0.98  |
| Female pup weight (g)                                      |      |      |          |       |
| Mean                                                       | 10.5 | 10.0 | 9.9      | 9.7   |
| S.D.                                                       | 1.15 | 0.75 | 1.23     | 1.13  |

•

| Lo         SUD         21000         S1000           Day 7<br>Number of litters         8         8         7         8           Total number of litve pups         118         118         109         102           Total number of litve males         64         62         62         56           Total number of litve females         54         56         47         46           Number of pups (male and female)         15         15         16         13           Number of male pups         2.0         1.9         1.1         2.0           Number of female pups         8         8         9         7           Number of female pups         2.0         1.9         1.1         2.0           Number of female pups         8         8         9         7         5.0           Number of survivors         2.2         2.6         3.2         1.5           Percent of survivors         0.0         3.5         4.5         7.4           Combined pup weight (g)         1.87         1.13         1.86         1.25           Mean         15.9         14.5*         14.4*         14.2*         5.0           S.D.         1.97 <t< th=""><th></th><th></th><th></th><th>501 (ppm)</th><th><b>F 0</b>00</th></t<> |                                  |      |       | 501 (ppm)  | <b>F 0</b> 00 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------|-------|------------|---------------|
| Number of litters     8     8     7     8       Total number of live pups     118     118     109     102       Total number of live females     54     56     47     46       Number of pups (male and female)     15     15     16     13       Number of pups (male and female)     15     15     16     13       Number of male pups     2.0     1.9     1.1     2.0       Number of female pups     8     8     9     7       Number of female pups     2.6     2.2     2.9     2.8       Number of female pups     2.2     2.6     3.2     1.5       Percent of survivors     2.2     2.6     3.2     1.5       Percent of survivors     0.0     3.5     4.5     7.4       Combined pup weight (g)     100     98     98     95       Nale pup weight (g)     1.87     1.13     1.86     1.25       Male pup weight (g)     1.97     0.96     1.77     1.12       Mean     15.4     14.1     14.1     13.8       S.D.     1.97     0.96     1.77     1.12       Female pup weight gain (g)     0ays 0-7)     1.50     0.95     1.55       Mean     15.4 <td< th=""><th></th><th></th><th>500</th><th>2,000</th><th>5,000</th></td<>                                                                                                              |                                  |      | 500   | 2,000      | 5,000         |
| Number of litters     8     8     7     8       Total number of live pups     118     118     109     102       Total number of live females     54     56     47     46       Number of pups (male and female)     15     15     16     13       Number of pups (male and female)     15     15     16     13       Number of male pups     2.0     1.9     1.1     2.0       Number of female pups     8     8     9     7       Number of female pups     2.6     2.2     2.9     2.8       Number of female pups     2.2     2.6     3.2     1.5       Percent of survivors     2.2     2.6     3.2     1.5       Percent of survivors     0.0     3.5     4.5     7.4       Combined pup weight (g)     100     98     98     95       Nale pup weight (g)     1.87     1.13     1.86     1.25       Male pup weight (g)     1.97     0.96     1.77     1.12       Mean     15.4     14.1     14.1     13.8       S.D.     1.97     0.96     1.77     1.12       Female pup weight gain (g)     0ays 0-7)     1.50     0.95     1.55       Mean     15.4 <td< td=""><td>Day 7</td><td></td><td></td><td></td><td></td></td<>                                                                                                                      | Day 7                            |      |       |            |               |
| Total number of live pups       118       118       109       102         Total number of live males       64       62       62       56         Number of pups (male and female)       15       15       16       13         Number of pups (male and female)       2.0       1.9       1.1       2.0         Number of male pups       2.0       1.9       1.1       2.0         Number of female pups       2.6       2.2       2.9       2.8         Number of female pups       2.6       2.2       2.9       2.8         Number of female pups       2.2       2.6       3.2       1.5         Percent of survivors       0.0       3.5       4.5       7.4         (Days 0-7) <sup>e</sup> 0.0       3.5       4.5       7.4         Mean       15.9       14.5*       14.4*       14.2*         S.D.       0.0       3.5       4.5       7.4         Mean       15.9       14.5*       14.4*       14.2*         S.D.       1.87       1.13       1.86       1.25         Mean       15.4       14.1       14.1       13.8         S.D.       1.97       0.96       1.77       1.12 </td <td>Number of litters</td> <td>8</td> <td>8</td> <td>7</td> <td>8</td>                                                                                | Number of litters                | 8    | 8     | 7          | 8             |
| Total number of live males       64       62       62       56         Total number of pups (male and female)       54       56       47       46         Mean       15       15       16       13       5.D.       1.9       1.1       2.0         Number of male pups       2.0       1.9       1.1       2.0       1.9       1.1       2.0         Number of female pups       8       8       9       7       5.D.       2.6       2.2       2.9       2.8         Number of female pups       2.6       2.2       2.6       3.2       1.5         Mean       7       7       7       6       5.D.       2.2       2.6       3.2       1.5         Percent of survivors       0.0       3.5       4.5       7.4       7.4       6         Mean       100       98       98       95       5.D.       7.4       1.4.5*       14.4*       14.2*         S.D.       0.0       3.5       4.5       7.4       1.2*       1.2*       1.2*       1.2*       1.2*       1.2*       1.2*       1.2*       1.2*       1.2*       1.2*       1.2*       1.2*       1.2*       1.2*       1.2*                                                                                                                                                                 |                                  | -    | 118   | 109        | 102           |
| Total number of live females       54       56       47       46         Number of pups (male and female)       15       15       16       13         Nean       2.0       1.9       1.1       2.0         Number of male pups       8       8       9       7         Number of female pups       2.6       2.2       2.9       2.8         Number of female pups       7       7       7       6         Number of survivors       2.2       2.6       3.2       1.5         Percent of survivors       0.0       3.5       4.5       7.4         Combined pup weight (g)       0.0       3.5       4.5       7.4         Mean       15.9       14.5*       14.4*       14.2*         S.D.       0.0       3.5       4.5       7.4         Combined pup weight (g)       1.87       1.13       1.86       1.25         Male pup weight (g)       16.4       14.9       14.8       14.5         S.D.       1.97       0.96       1.77       1.12         Female pup weight gain (g) (Days 0-7)       1.50       0.95       1.54       0.94         Mean       1.50       0.95       1.55                                                                                                                                                              |                                  | 64   | 62    | 62         | 56            |
| Mean       15       15       16       13         S.D.       2.0       1.9       1.1       2.0         Number of male pups       8       8       9       7         Mean       2.6       2.2       2.9       2.8         Number of female pups       7       7       7       6         Mean       7       7       7       6         S.D.       2.2       2.6       3.2       1.5         Percent of survivors       0.0       3.5       4.5       7.4         Combined pup weight (g)       0.0       3.5       4.5       7.4         Mean       15.9       14.5*       14.4*       14.2*         S.D.       0.0       3.5       4.5       7.4         Combined pup weight (g)       1.87       1.13       1.86       1.25         Male pup weight (g)       1.87       1.13       1.86       1.25         Mean       15.4       14.1       14.1       13.8       1.25         S.D.       1.97       0.96       1.77       1.12         Female pup weight gain (g) (Days 0-7)       1.41       14.1       13.3       1.34         Combined pup weight ga                                                                                                                                                                                                 |                                  | 54   | 56    | 47         | 46            |
| S.D.       2.0       1.9       1.1       2.0         Number of male pups       8       8       9       7         Mean       2.6       2.2       2.9       2.8         Number of female pups       2.6       2.2       2.9       2.8         Number of female pups       7       7       7       6         Mean       7       7       7       6         S.D.       2.2       2.6       3.2       1.5         Percent of survivors       0.0       3.5       4.5       7.4         Combined pup weight (g)       0.0       3.5       4.5       7.4         Mean       15.9       14.5*       14.4*       14.2*         S.D.       0.0       3.5       4.5       7.4         Combined pup weight (g)       1.87       1.13       1.86       1.25         Male pup weight (g)       1.97       0.96       1.77       1.12         Mean       15.4       14.1       14.1       13.8         S.D.       1.97       0.96       1.77       1.12         Gombined pup weight gain (g) (Days 0-7)       Mean       8.2*       8.1*       7.9*         Mean <td< td=""><td>Number of pups (male and female)</td><td></td><td></td><td></td><td></td></td<>                                                                                                        | Number of pups (male and female) |      |       |            |               |
| Number of male pups       8       8       9       7         Mean       2.6       2.2       2.9       2.8         Number of female pups       7       7       7       6         Mean       7       7       7       6         S.D.       2.2       2.6       3.2       1.5         Percent of survivors       0.0       98       98       95         S.D.       0.0       3.5       4.5       7.4         Combined pup weight (g)       0.0       3.5       4.5       7.4         Mean       15.9       14.5*       14.4*       14.2*         S.D.       1.87       1.13       1.86       1.25         Male pup weight (g)       16.4       14.9       14.8       14.5         Mean       16.4       14.9       14.8       14.5         S.D.       1.97       0.96       1.77       1.12         Female pup weight (g)       15.4       14.1       14.1       13.8         S.D.       1.50       0.95       1.55       0.94         Maen       9.7       8.4       8.4       8.1         S.D.       1.50       0.95       1.53                                                                                                                                                                                                                           |                                  | 15   |       |            |               |
| Mean         8         8         9         7           S.D.         2.6         2.2         2.9         2.8           Number of female pups         7         7         7         6           Mean         7         7         7         6           S.D.         2.2         2.6         3.2         1.5           Percent of survivors         0.0         3.5         4.5         7.4           (Days 0-7) <sup>e</sup> 0.0         3.5         4.5         7.4           Combined pup weight (g)         0.0         3.5         4.5         7.4           Mean         15.9         14.5*         14.4*         14.2*           S.D.         1.87         1.13         1.86         1.25           Male pup weight (g)         1.97         0.96         1.77         1.12           Mean         15.4         14.1         14.1         13.8         3.4           S.D.         1.97         0.96         1.77         1.12           Mean         15.4         14.1         14.1         13.8           S.D.         1.50         0.95         1.55         0.94           Mean         9.7         8                                                                                                                                           |                                  | 2.0  | 1.9   | 1.1        | 2.0           |
| S.D.       2.6       2.2       2.9       2.8         Number of female pups       Mean       7       7       7       6         Mean       7       7       7       6       3.2       1.5         Percent of survivors       (Days 0-7) <sup>e</sup> 0.0       3.5       4.5       7.4         Combined pup weight (g)       0.0       3.5       4.5       7.4         Mean       15.9       14.5*       14.4*       14.2*         S.D.       1.87       1.13       1.86       1.25         Waan       16.4       14.9       14.8       14.5         S.D.       1.97       0.96       1.77       1.12         Female pup weight (g)       1.97       0.96       1.77       1.12         Mean       15.4       14.1       14.1       13.8       13.4         S.D.       1.75       1.21       2.00       1.34         Combined pup weight gain (g) (Days 0-7)       Mean       9.7       8.4       8.4       8.1         Mean       9.7       8.4       8.4       8.1       5.5       0.94         Mean       9.7       8.4       8.4       8.1       5.5       0.94<                                                                                                                                                                                      | Number of male pups              |      |       |            |               |
| Number of female pups       7       7       7       6         Mean       7       7       7       6         S.D.       2.2       2.6       3.2       1.5         Percent of survivors       (Days 0-7) <sup>e</sup> 98       98       95         Mean       100       98       98       95         S.D.       0.0       3.5       4.5       7.4         Combined pup weight (g)       0.0       3.5       4.5       7.4         Mean       15.9       14.5*       14.4*       14.2*         S.D.       1.87       1.13       1.86       1.25         Male pup weight (g)       Mean       16.4       14.9       14.8       14.5         S.D.       1.97       0.96       1.77       1.12         Female pup weight (g)       Mean       15.4       14.1       14.1       13.8         S.D.       1.75       1.21       2.00       1.34         Combined pup weight gain (g) (Days 0-7)       Mean       9.4       8.2*       8.1*       7.9*         Mean       1.50       0.95       1.55       0.94         Male pup weight gain (g) (Days 0-7)       9.7       8.4                                                                                                                                                                                   |                                  | 8    | 8     |            |               |
| Nean       7       7       7       7       6         S.D.       2.2       2.6       3.2       1.5         Percent of survivors<br>(Days 0-7)e       100       98       98       95         Mean       100       98       98       95         S.D.       0.0       3.5       4.5       7.4         Combined pup weight (g)       15.9       14.5*       14.4*       14.2*         Maen       16.4       14.9       14.8       14.5         S.D.       1.97       0.96       1.77       1.12         Female pup weight (g)       15.4       14.1       14.1       13.8         Mean       15.4       14.1       14.1       13.8         S.D.       1.75       1.21       2.00       1.34         Combined pup weight gain (g) (Days 0-7)       9.4       8.2*       8.1*       7.9*         Mean       1.50       0.95       1.55       0.94         Male pup weight gain (g) (Days 0-7)       9.7       8.4       8.4       8.1         Mean       5.0       1.62       0.86       1.53       0.83         Female pup weight gain (g) (Days 0-7)       9.1       8.0       7.9                                                                                                                                                                          |                                  | 2.6  | 2.2   | 2.9        | 2.8           |
| S.D.       2.2       2.6       3.2       1.5         Percent of survivors<br>(Days 0-7) <sup>e</sup><br>Mean       100       98       98       95         S.D.       0.0       3.5       4.5       7.4         Combined pup weight (g)<br>Mean       15.9       14.5*       14.4*       14.2*         S.D.       1.87       1.13       1.86       1.25         Nale pup weight (g)<br>Mean       16.4       14.9       14.8       14.5         S.D.       1.97       0.96       1.77       1.12         Female pup weight (g)<br>Mean       15.4       14.1       14.1       13.8         S.D.       1.97       0.96       1.77       1.12         Female pup weight gain (g) (Days 0-7)<br>Mean       9.4       8.2*       8.1*       7.9*         S.D.       1.50       0.95       1.55       0.94         Male pup weight gain (g) (Days 0-7)<br>Mean       9.7       8.4       8.4       8.1         S.D.       1.62       0.86       1.53       0.83         Female pup weight gain (g) (Days 0-7)<br>Mean       9.1       8.0       7.9       7.7         S.D.       1.62       0.86       1.53       0.83       5.6       1.06 <td< td=""><td></td><td>_</td><td>_</td><td>-</td><td></td></td<>                                                |                                  | _    | _     | -          |               |
| Percent of survivors<br>(Days 0-7) <sup>e</sup><br>Mean 100 98 98 95<br>S.D. 0.0 3.5 4.5 7.4<br>Combined pup weight (g)<br>Mean 15.9 14.5* 14.4* 14.2*<br>S.D. 1.87 1.13 1.86 1.25<br>Male pup weight (g)<br>Mean 16.4 14.9 14.8 14.5<br>S.D. 1.97 0.96 1.77 1.12<br>Female pup weight (g)<br>Mean 15.4 14.1 14.1 13.8<br>S.D. 1.75 1.21 2.00 1.34<br>Combined pup weight gain (g) (Days 0-7)<br>Mean 9.4 8.2* 8.1* 7.9*<br>S.D. 1.50 0.95 1.55 0.94<br>Male pup weight gain (g) (Days 0-7)<br>Mean 9.7 8.4 8.4 8.1<br>S.D. 1.62 0.86 1.53 0.83<br>Female pup weight gain (g) (Days 0-7)<br>Mean 9.7 8.4 8.4 8.1<br>S.D. 1.62 0.86 1.53 0.83<br>Female pup weight gain (g) (Days 0-7)<br>Mean 9.7 8.4 8.4 8.1<br>S.D. 1.62 0.86 1.53 0.83<br>Female pup weight gain (g) (Days 0-7)<br>Mean 9.7 5.0. 1.40 1.04 1.65 1.06<br>Sex ratio (M/M+F)x100<br>Mean 54 53 57 53                                                                                                                                                                                                                                                                                                                                                                                   |                                  | 7    |       |            | -             |
| (Days 0-7) <sup>e</sup> 100       98       98       95         S.D.       0.0       3.5       4.5       7.4         Combined pup weight (g)       15.9       14.5*       14.4*       14.2*         Mean       15.9       14.5*       14.4*       14.2*         S.D.       1.87       1.13       1.86       1.25         Male pup weight (g)       16.4       14.9       14.8       14.5         Mean       16.4       14.9       14.8       14.5         S.D.       1.97       0.96       1.77       1.12         Female pup weight (g)       15.4       14.1       14.1       13.8         Mean       15.4       14.1       14.1       13.8         S.D.       1.75       1.21       2.00       1.34         Combined pup weight gain (g) (Days 0-7)       1.50       0.95       1.55       0.94         Male pup weight gain (g) (Days 0-7)       1.62       0.86       1.53       0.83         Female pup weight gain (g) (Days 0-7)       1.62       0.86       1.53       0.83         Female pup weight gain (g) (Days 0-7)       1.62       0.86       1.53       0.83         Female pup weight gain (g) (Days 0-7)                                                                                                                            |                                  | 2.2  | 2.6   | 3.2        | 1.5           |
| Nean       100       98       98       95         S.D.       0.0       3.5       4.5       7.4         Combined pup weight (g)       15.9       14.5*       14.4*       14.2*         Mean       15.9       14.5*       14.4*       14.2*         S.D.       1.87       1.13       1.86       1.25         Male pup weight (g)       16.4       14.9       14.8       14.5         Mean       16.4       14.9       14.8       14.5         S.D.       1.97       0.96       1.77       1.12         Female pup weight (g)       15.4       14.1       14.1       13.8         Mean       15.4       14.1       14.1       13.8         S.D.       1.75       1.21       2.00       1.34         Combined pup weight gain (g) (Days 0-7)       9.4       8.2*       8.1*       7.9*         Mean       9.7       8.4       8.4       8.1         S.D.       1.50       0.95       1.55       0.94         Male pup weight gain (g) (Days 0-7)       1.62       0.86       1.53       0.83         Female pup weight gain (g) (Days 0-7)       9.1       8.0       7.9       7.7                                                                                                                                                                        |                                  |      |       |            |               |
| S.D.       0.0       3.5       4.5       7.4         Combined pup weight (g)       15.9       14.5*       14.4*       14.2*         S.D.       1.87       1.13       1.86       1.25         Waen       16.4       14.9       14.8       14.5         S.D.       1.97       0.96       1.77       1.12         Female pup weight (g)       15.4       14.1       14.1       13.8         Mean       15.4       14.1       14.1       13.8         S.D.       1.75       1.21       2.00       1.34         Combined pup weight gain (g) (Days 0-7)       1.50       0.95       1.55       0.94         Male pup weight gain (g) (Days 0-7)       9.7       8.4       8.4       8.1         S.D.       1.62       0.86       1.53       0.83         Female pup weight gain (g) (Days 0-7)       9.7       8.4       8.4       8.1         Mean       9.7       8.4       8.4       8.1       3.0.83         Female pup weight gain (g) (Days 0-7)       1.62       0.86       1.53       0.83         Mean       9.1       8.0       7.9       7.7       3.0.83         Female pup weight gain (g) (Days 0-                                                                                                                                            |                                  |      |       |            |               |
| Combined pup weight (g)       15.9       14.5*       14.4*       14.2*         S.D.       1.87       1.13       1.86       1.25         Male pup weight (g)       16.4       14.9       14.8       14.5         Mean       16.4       14.9       14.8       14.5         S.D.       1.97       0.96       1.77       1.12         Female pup weight (g)       15.4       14.1       14.1       13.8         Mean       15.4       14.1       14.1       13.8         S.D.       1.75       1.21       2.00       1.34         Combined pup weight gain (g) (Days 0-7)       1.50       0.95       1.55       0.94         Male pup weight gain (g) (Days 0-7)       9.7       8.4       8.4       8.1         S.D.       1.62       0.86       1.53       0.83         Female pup weight gain (g) (Days 0-7)       9.7       8.4       8.4       8.1         S.D.       1.62       0.86       1.53       0.83         Female pup weight gain (g) (Days 0-7)       9.1       8.0       7.9       7.7         Mean       9.1       8.0       7.9       7.7       1.40       1.04       1.65       1.06                                                                                                                                                   |                                  |      |       |            |               |
| Mean       15.9       14.5*       14.4*       14.2*         S.D.       1.87       1.13       1.86       1.25         Male pup weight (g)       Mean       16.4       14.9       14.8       14.5         S.D.       1.97       0.96       1.77       1.12         Female pup weight (g)       Mean       15.4       14.1       14.1       13.8         Mean       15.4       14.1       14.1       13.8         S.D.       1.75       1.21       2.00       1.34         Combined pup weight gain (g) (Days 0-7)       Mean       9.4       8.2*       8.1*       7.9*         S.D.       1.50       0.95       1.55       0.94         Male pup weight gain (g) (Days 0-7)       Mean       9.7       8.4       8.4       8.1         S.D.       1.62       0.86       1.53       0.83         Female pup weight gain (g) (Days 0-7)       1.62       0.86       1.53       0.83         Female pup weight gain (g) (Days 0-7)       1.62       0.86       1.53       0.83         Female pup weight gain (g) (Days 0-7)       1.62       0.86       1.53       0.83         Female pup weight gain (g) (Days 0-7)       1.40       1                                                                                                                  |                                  | 0.0  | 3.5   | 4.5        | 1.4           |
| S.D.       1.87       1.13       1.86       1.25         Male pup weight (g)       16.4       14.9       14.8       14.5         Mean       16.4       14.9       14.8       14.5         S.D.       1.97       0.96       1.77       1.12         Female pup weight (g)       15.4       14.1       14.1       13.8         Mean       15.4       14.1       14.1       13.8         S.D.       1.75       1.21       2.00       1.34         Combined pup weight gain (g) (Days 0-7)       9.4       8.2*       8.1*       7.9*         Mean       9.7       8.4       8.4       8.1         S.D.       1.62       0.86       1.53       0.83         Female pup weight gain (g) (Days 0-7)       9.7       8.4       8.4       8.1         Male pup weight gain (g) (Days 0-7)       9.1       8.0       7.9       7.7         Mean       9.1       8.0       7.9       7.7         S.D.       1.40       1.04       1.65       1.06         Sex ratio (M/M+F)x100       Mean       54       53       57       53                                                                                                                                                                                                                                   |                                  | 15.0 | 14 54 | 14 44      | 14.24         |
| Male pup weight (g)       16.4       14.9       14.8       14.5         S.D.       1.97       0.96       1.77       1.12         Female pup weight (g)       15.4       14.1       14.1       13.8         Mean       15.4       14.1       14.1       13.8         S.D.       1.75       1.21       2.00       1.34         Combined pup weight gain (g) (Days 0-7)       9.4       8.2*       8.1*       7.9*         Mean       1.50       0.95       1.55       0.94         Male pup weight gain (g) (Days 0-7)       9.7       8.4       8.4       8.1         S.D.       1.62       0.86       1.53       0.83         Female pup weight gain (g) (Days 0-7)       9.7       8.4       8.4       8.1         S.D.       1.62       0.86       1.53       0.83         Female pup weight gain (g) (Days 0-7)       9.1       8.0       7.9       7.7         Mean       9.1       8.0       7.9       7.7       1.06         S.D.       1.40       1.04       1.65       1.06         Sex ratio (N/N+F)x100       54       53       57       53                                                                                                                                                                                                  |                                  |      |       |            |               |
| Mean       16.4       14.9       14.8       14.5         S.D.       1.97       0.96       1.77       1.12         Female pup weight (g)       Mean       15.4       14.1       14.1       13.8         S.D.       1.75       1.21       2.00       1.34         Combined pup weight gain (g) (Days 0-7)       9.4       8.2*       8.1*       7.9*         Mean       1.50       0.95       1.55       0.94         Male pup weight gain (g) (Days 0-7)       9.7       8.4       8.4       8.1         S.D.       1.62       0.86       1.53       0.83         Female pup weight gain (g) (Days 0-7)       9.1       8.0       7.9       7.7         Mean       9.1       8.0       7.9       7.7       1.65       1.06         S.D.       1.40       1.04       1.65       1.06       54       53       57       53                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  | 1.67 | 1.15  | 1.00       | 1.25          |
| S.D.       1.97       0.96       1.77       1.12         Female pup weight (g)       15.4       14.1       14.1       13.8         S.D.       1.75       1.21       2.00       1.34         Combined pup weight gain (g) (Days 0-7)       9.4       8.2*       8.1*       7.9*         Mean       9.4       8.2*       8.1*       7.9*         S.D.       1.50       0.95       1.55       0.94         Wale pup weight gain (g) (Days 0-7)       9.7       8.4       8.4       8.1         S.D.       1.62       0.86       1.53       0.83         Female pup weight gain (g) (Days 0-7)       9.1       8.0       7.9       7.7         Mean       9.1       8.0       7.9       7.7       1.40       1.04       1.65       1.06         Sex ratio (M/M+F)x100       54       53       57       53       53       57       53                                                                                                                                                                                                                                                                                                                                                                                                                       |                                  | 16.4 | 74 9  | 14 8       | 14.5          |
| Female pup weight (g)       15.4       14.1       14.1       13.8         S.D.       1.75       1.21       2.00       1.34         Combined pup weight gain (g) (Days 0-7)       9.4       8.2*       8.1*       7.9*         Mean       9.4       8.2*       8.1*       7.9*         S.D.       1.50       0.95       1.55       0.94         Wale pup weight gain (g) (Days 0-7)       9.7       8.4       8.4       8.1         S.D.       1.62       0.86       1.53       0.83         Female pup weight gain (g) (Days 0-7)       9.1       8.0       7.9       7.7         Mean       9.1       8.0       7.9       7.7       5.0.       1.40       1.04       1.65       1.06         Sex ratio (M/M+F)x100       54       53       57       53       53       57       53                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                  |      |       |            |               |
| Mean       15.4       14.1       14.1       13.8         S.D.       1.75       1.21       2.00       1.34         Combined pup weight gain (g) (Days 0-7)       9.4       8.2*       8.1*       7.9*         Mean       9.4       8.2*       8.1*       7.9*         S.D.       1.50       0.95       1.55       0.94         Wale pup weight gain (g) (Days 0-7)       9.7       8.4       8.4       8.1         S.D.       1.62       0.86       1.53       0.83         Female pup weight gain (g) (Days 0-7)       9.1       8.0       7.9       7.7         Mean       9.1       8.0       7.9       7.7       5.0.       1.40       1.04       1.65       1.06         Sex ratio (M/M+F)x100       Mean       54       53       57       53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  | 1.37 | 0.90  | 1.77       | 1.12          |
| S.D.       1.75       1.21       2.00       1.34         Combined pup weight gain (g) (Days 0-7)       9.4       8.2*       8.1*       7.9*         Mean       9.4       8.2*       8.1*       7.9*         S.D.       1.50       0.95       1.55       0.94         Male pup weight gain (g) (Days 0-7)       9.7       8.4       8.4       8.1         S.D.       1.62       0.86       1.53       0.83         Female pup weight gain (g) (Days 0-7)       9.1       8.0       7.9       7.7         Mean       9.1       8.0       7.9       7.7         S.D.       1.40       1.04       1.65       1.06         Sex ratio (M/M+F)x100       54       53       57       53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  | 15.4 | 14.1  | 14.1       | 13.8          |
| Combined pup weight gain (g) (Days 0-7)       9.4       8.2*       8.1*       7.9*         Mean       9.4       1.50       0.95       1.55       0.94         Male pup weight gain (g) (Days 0-7)       9.7       8.4       8.4       8.1         Mean       9.7       8.4       8.4       8.1         S.D.       1.62       0.86       1.53       0.83         Female pup weight gain (g) (Days 0-7)       9.1       8.0       7.9       7.7         Mean       9.1       8.0       7.9       7.7         S.D.       1.40       1.04       1.65       1.06         Sex ratio (M/M+F)x100       Mean       54       53       57       53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |      |       |            |               |
| Mean       9.4       8.2*       8.1*       7.9*         S.D.       1.50       0.95       1.55       0.94         Male pup weight gain (g) (Days 0-7)       9.7       8.4       8.4       8.1         S.D.       1.62       0.86       1.53       0.83         Female pup weight gain (g) (Days 0-7)       9.1       8.0       7.9       7.7         Mean       9.1       8.0       7.9       7.7         S.D.       1.40       1.04       1.65       1.06         Sex ratio (M/M+F)x100       54       53       57       53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |      |       |            |               |
| S.D.       1.50       0.95       1.55       0.94         Male pup weight gain (g) (Days 0-7)       9.7       8.4       8.4       8.1         S.D.       1.62       0.86       1.53       0.83         Female pup weight gain (g) (Days 0-7)       9.1       8.0       7.9       7.7         Mean       9.1       8.0       7.9       7.7         S.D.       1.40       1.04       1.65       1.06         Sex ratio (M/M+F)x100       Mean       54       53       57       53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  |      | 8.2*  | 8,1*       | 7.9*          |
| Male pup weight gain (g) (Days 0-7)       9.7       8.4       8.4       8.1         S.D.       1.62       0.86       1.53       0.83         Female pup weight gain (g) (Days 0-7)       9.1       8.0       7.9       7.7         Mean       9.1       8.0       7.9       7.7         S.D.       1.40       1.04       1.65       1.06         Sex ratio (M/M+F)x100       54       53       57       53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |      | 0.95  | 1.55       |               |
| Mean         9.7         8.4         8.4         8.1           S.D.         1.62         0.86         1.53         0.83           Female pup weight gain (g) (Days 0-7)         9.1         8.0         7.9         7.7           Mean         9.1         1.04         1.65         1.06           S.D.         1.40         1.04         1.65         1.06           Sex ratio (M/N+F)x100         54         53         57         53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  | )    |       |            |               |
| S.D.       1.62       0.86       1.53       0.83         Female pup weight gain (g) (Days 0-7)       9.1       8.0       7.9       7.7         Mean       9.1       8.0       7.9       7.7         S.D.       1.40       1.04       1.65       1.06         Sex ratio (M/W+F)x100       54       53       57       53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  |      | 8.4   | 8.4        | 8.1           |
| Female pup weight gain (g) (Days 0-7)         9.1         8.0         7.9         7.7           Mean         9.1         1.40         1.04         1.65         1.06           Sex ratio (M/W+F)x100         54         53         57         53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                  | 1.62 | 0.86  | 1.53       | 0.83          |
| Mean         9.1         8.0         7.9         7.7           S.D.         1.40         1.04         1.65         1.06           Sex ratio (M/N+F)x100         54         53         57         53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +-+-                             | -7)  |       |            |               |
| Sex ratio (N/N+F)x100<br>Mean 54 53 57 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  | 9.1  |       |            |               |
| Mean 54 53 57 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S.D.                             | 1.40 | 1.04  | 1.65       | 1.06          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sex ratio (M/M+F)x100            |      |       |            |               |
| S.D. 15.4 14.5 19.7 15.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |      |       | <i>4</i> . |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S.D.                             | 15.4 | 14.5  | 19.7       | 15.1          |

e Also defined as the "viability index."

| Day | 0 ppm | 500 ppm     | 2000 ppm    | 5000 ppm     |
|-----|-------|-------------|-------------|--------------|
| 0   | 6.5   | 6.3         | 6.3         | 6.3          |
| 4   | 10.8  | 10.1        | 10.0        | 9.9          |
| 7   | 15.9  | 14.5* (↓9%) | 14.4* (↓9%) | 14.2* (↓11%) |
| 0-7 | 9.4   | 8.2* (↓13%) | 8.1* (↓14%) | 7.9* (↓16%)  |

# 2.6.6.1.2 Comparison with the CLP criteria regarding adverse effects on sexual function and fertility

In regulation 1272/2008 (CLP), adverse effects on sexual function and fertility are defined as "Any effect of substances that has the potential to interfere with sexual function and fertility. This includes, but is not limited to, alterations to the female and male reproductive system, adverse effects on onset of puberty, gamete production and transport, reproductive cycle normality, sexual behaviour, fertility, parturition, pregnancy outcomes, premature

reproductive senescence, or modifications in other functions that are dependent on the integrity of the reproductive systems."

|          | 5.1.2-1, Hazard categories for reproductive toxicants (corresponding to table 5.7.1(a) in regulation $12/2/2008$ ) |  |  |  |  |
|----------|--------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Category | Description                                                                                                        |  |  |  |  |
| 1        | Known or presumed human reproductive toxicant.                                                                     |  |  |  |  |
|          | Substances are classified in Category 1 for reproductive toxicity when they are known to have produced an          |  |  |  |  |
|          | adverse effect on sexual function and fertility, or on development in humans or when there is evidence from        |  |  |  |  |
|          | animal studies, possibly supplemented with other information, to provide a strong presumption that the             |  |  |  |  |
|          | substance has the capacity to interfere with reproduction in humans. The classification of a substance is further  |  |  |  |  |
|          | distinguished on the basis of whether the evidence for classification is primarily from human data (Category       |  |  |  |  |
|          | 1A) or from animal data (Category 1B).                                                                             |  |  |  |  |
| 1A       | Known human reproductive toxicant.                                                                                 |  |  |  |  |
|          | The classification of a substance in Category 1A is largely based on evidence from humans.                         |  |  |  |  |
| 1B       | Presumed human reproductive toxicant.                                                                              |  |  |  |  |
|          | The classification of a substance in Category 1B is largely based on data from animal studies. Such data shall     |  |  |  |  |
|          | provide clear evidence of an adverse effect on sexual function and fertility or on development in the absence of   |  |  |  |  |
|          | other toxic effects, or if occurring together with other toxic effects the adverse effect on reproduction is       |  |  |  |  |
|          | considered not to be a secondary non-specific consequence of other toxic effects. However, when there is           |  |  |  |  |
|          | mechanistic information that raises doubt about the relevance of the effect for humans, classification in Category |  |  |  |  |
|          | 2 may be more appropriate.                                                                                         |  |  |  |  |
| 2        | Suspected human reproductive toxicant.                                                                             |  |  |  |  |
|          | Substances are classified in Category 2 for reproductive toxicity when there is some evidence from humans or       |  |  |  |  |
|          | experimental animals, possibly supplemented with other information, of an adverse effect on sexual function        |  |  |  |  |
|          | and fertility, or on development, and where the evidence is not sufficiently convincing to place the substance in  |  |  |  |  |
|          | Category 1. If deficiencies in the study make the quality of evidence less convincing, Category 2 could be the     |  |  |  |  |
|          | more appropriate classification. Such effects shall have been observed in the absence of other toxic effects, or   |  |  |  |  |
|          | if occurring together with other toxic effects the adverse effect on reproduction is considered not to be a        |  |  |  |  |
|          | secondary non-specific consequence of the other toxic effects.                                                     |  |  |  |  |

Table 2.6.6.1.2.1. Herered cotogories for reproductive toxicents (corresponding to table 3.7.1(a) in regulation 1272/2008)

As clethodim is not a known human reproductive toxicant and there is no human data available providing clear evidence of an adverse effect on sexual function, the criteria for category 1A is not fulfilled.

Effects of clethodim on sexual function and fertility were investigated in rats in one two-generational (one litter) study considered of acceptable quality (Report No: S-2778). In addition, a range-finding one-generation toxicity study (Report S-2758) is available, but the study is limited and considered as supportive only.

The effects noted in the studies mentioned above, that are considered potentially relevant for classification are as follows: changes in weights of male sexual organs in adult (prostate, seminal vesicles, testis, epididymis) and an increase in the number of stillborn F1 pups.

### Changes in weights of male sexual organs (prostate, seminal vesicles, testis and epididymis):

In the main study (Report S-2758), the absolute weights of the prostate and seminal vesicles were 25 and 11% lower in F1 males at 2500 ppm (151.2 mg/kg bw/day) compared to controls. However, no histological lesions were increased in this group. The terminal body weights of both F0 and F1 males were lower in the high dose group. An increase in relative, but not absolute, testis weight was observed in the F0 generation. The absolute, but not relative, weight of the left epididymis was increased in the F1 generation. These relative increased in organ weights are likely a result of the reduction in body weight. Sperm parameters were not investigated in the studies. However, the results for clethodim technical obtained in the steroidogenesis assay (new data for renewal) were concluded to be negative.

Overall, effects on male sexual organ weights were observed, but findings were confined to a dose level with presence of general toxicity (reduced body weight >10%) and no histopathological findings were observed. Thus, data no not provide convincing evidence for a classification of the substance in Cat. 2.

### Increase in the number of stillborn F1 pups:

In the main study (Report S-2758), an increase in the number of stillborn F1 pups was observed. This type of effect is considered to reflect developmental toxicity rather than fertility and is thus discussed in section 2.6.6.2.

**Overall conclusion**, available data did not provide convincing evidence for a classification with regards to sexual function and fertility. Therefore, no classification for sexual function and fertility is considered warranted.

Weight of the prostate and seminal vesicles in males of the F1 generation were lower in the high dose group in the 2-generation study provided. It is not clear whether this was caused by the reduced food consumption or the treatment, and no effect on the fertility index of these males was observed. This does not warrant for classification for adverse effects on sexual function and fertility.

# 2.6.6.2 Adverse effects on development [equivalent to section 10.10.4 of the CLH report template]

| Test substance, dose levels  | Results                                                                                                                               | Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                              |                                                                                                                                       | iterer ence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                              |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                              |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                              | - critical effects at the LOAEL                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                              | Bold text=adverse effect                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| RE-45601 Technical           | No NOAEL was set in study*                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                              |                                                                                                                                       | (1986)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Lot/Batch: SX-1688           | Parental effects:                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                              |                                                                                                                                       | Report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Purity: 83.3%                | <u>2000 ppm:</u>                                                                                                                      | number: S-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5                            | No treatment related effects                                                                                                          | 2758                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Vehicle: Acetone             |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                              | <u>5000 ppm:</u>                                                                                                                      | Vol. 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Dietary exposure from 1 week | $\downarrow$ food consumption during the first week                                                                                   | B.6.6.1/01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| before mating until day 7 of | (pre-mating) (M: 15%)                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| lactation.                   |                                                                                                                                       | New data for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                              |                                                                                                                                       | renewal: Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Doses:                       |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                              |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                              |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                              | 18%) or week 0-1 (F: 63%)                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                              |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                              | Offspring effects:                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                              |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                              |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2012;10(3):2579))            |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                              |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                              | and / (13%)                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                              | 2000                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                              |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                              |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Uw/day                       |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                              | anu / (1470)                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                              | 5000 ppm;                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                              |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                              |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                              |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                              |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                              | Comment:                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                              |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                              | Lot/Batch: SX-1688<br>Purity: 83.3%<br>Vehicle: Acetone<br>Dietary exposure from 1 week<br>before mating until day 7 of<br>lactation. | duration of exposure- NOAEL/LOAEL (for parent, offspring<br>and for developmental effects)<br>- target tissue/organ<br>- critical effects at the LOAEL<br>Bold text=adverse effectRE-45601 TechnicalNo NOAEL was set in study*Lot/Batch: SX-1688Parental effects:Purity: 83.3%2000 ppm:<br>No treatment related effectsVehicle: Acetone5000 ppm:<br>Lood consumption during the first week<br>(pre-mating) (M: 15%)<br>Lotational day 7 of<br>lactational.Dietary exposure from 1 week<br>before mating until day 7 of<br>lactation.5000 ppm:<br>Loody weights during week 0-2 of the study<br>(M: 2%), or gestational day 20 (F: 13%),<br>lactational day 0 (F: 14%), and lactational day<br>0 (F: 16%)Doses:<br>(o, 500, 2000, and 5000 ppm<br>(equal to 0, 25, 100 and 250<br>mg/kg bw/day using a default<br>value of 0.05 for chronic rat<br>studies as recommended by<br> |

Table 60: Summary table of animal studies on adverse effects on development.

| Method, guideline, Test substance, dose la                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                              | Results                                                                                                                                                                                                                                                                                                                                                        | Reference                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| deviations if any, species,<br>strain, sex, no/group                                                                                                                                                                                                                                                                                                                                                                        | duration of exposure                                                                         | <ul> <li>NOAEL/LOAEL (for parent, offspring<br/>and for developmental effects)</li> <li>target tissue/organ</li> </ul>                                                                                                                                                                                                                                         |                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                              | - critical effects at the LOAEL<br>Bold text=adverse effect                                                                                                                                                                                                                                                                                                    |                              |
| <ul> <li>total number of<br/>homogenisation-resistant<br/>testicular spermatids and<br/>cauda epididymal sperm not<br/>enumerated</li> <li>physical development of<br/>the offspring not<br/>investigated</li> <li>haematological and clinical<br/>parameters not investigated,<br/>organ weights not recorded,<br/>histopathological<br/>investigations not made</li> <li>less number of observation<br/>points</li> </ul> |                                                                                              | Bold text=adverse effect<br>The reduced food consumption (observed in<br>both sexes but only significant in males)<br>could be a result of reduced palatability of the<br>food containing the test item. The observed<br>parental effects, which mainly included<br>reduced body weights, could at least in part be<br>attributable to the reduced food intake |                              |
| GLP: Yes                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                |                              |
| Supportive<br>Two Generation (One Litter)                                                                                                                                                                                                                                                                                                                                                                                   | RE-45601 Technical                                                                           | NOAEL parental toxicity: 500 ppm (32.2                                                                                                                                                                                                                                                                                                                         |                              |
| Reproduction Study in Rats                                                                                                                                                                                                                                                                                                                                                                                                  | Lot/Batch: SX-1688<br>Purity: 83.3%                                                          | mg/kg bw/day)                                                                                                                                                                                                                                                                                                                                                  | (1987)                       |
| Guidelines followed:<br>Reproductive and Fertility<br>Effects 40 CFR 158.135,                                                                                                                                                                                                                                                                                                                                               | Vehicle: Acetone 10 ml<br>acetone/kg food                                                    | NOAEL offspring toxicity: 500 mg/kg<br>bw/day (163 mg/kg bw/day)                                                                                                                                                                                                                                                                                               | Report<br>number: S-<br>2778 |
| Pesticide Assessment<br>Guideline 83-4                                                                                                                                                                                                                                                                                                                                                                                      | Exposure: The F0 males and<br>females received the test<br>material via the diet             | NOAEL reproductive toxicity: 2500 ppm 163 mg/kg bw/day)                                                                                                                                                                                                                                                                                                        | Vol. 3.<br>B.6.6.1/02        |
| Deviations from OECD 416<br>(2001):<br>- no analysis of sperm                                                                                                                                                                                                                                                                                                                                                               | throughout pre-mating,<br>mating, gestation, and<br>lactation                                | LOAEL parental toxicity: 2500 ppm (163 mg/kg bw/day)                                                                                                                                                                                                                                                                                                           | New data for renewal: No     |
| parameters<br>- developmental and<br>functional observations of                                                                                                                                                                                                                                                                                                                                                             | F1a indirect exposure in utero<br>and through nursing, and<br>direct exposure from weaning   | LOAEL offspring toxicity: -                                                                                                                                                                                                                                                                                                                                    |                              |
| pups were not performed<br>- weighing of adrenals,<br>brain, liver, pituitary gland,                                                                                                                                                                                                                                                                                                                                        | to pre-mating, mating,<br>gestation, and lactation.<br>F2 indirect exposure in utero         | Effects at 2500 ppm:                                                                                                                                                                                                                                                                                                                                           |                              |
| spleen, thyroids were not<br>performed<br>- histopathology of the                                                                                                                                                                                                                                                                                                                                                           | and through nursing                                                                          | F0 adults<br>↓ food intake (during a few days)<br>↓ body weight (M: 4-9%)                                                                                                                                                                                                                                                                                      |                              |
| vagina was not performed<br>- dosing before mating<br>period seems to be 9 weeks                                                                                                                                                                                                                                                                                                                                            | 0, 5, 20, 500 and 2500 ppm<br>(equal to 0, 0.5, 1.2, 32.2 and<br>163 mg/kg bw/day for males; | F1 adults                                                                                                                                                                                                                                                                                                                                                      |                              |
| (the guideline recommends<br>dosing to be continued for at<br>least 10 weeks before the                                                                                                                                                                                                                                                                                                                                     | 0, 0.5, 1.5, 37.4 and 181<br>mg/kg bw/day for females in<br>the pre-mating period after      | ↓ food intake<br>↓ <b>body weight</b> (M: 10-19%, F: 6-10%)                                                                                                                                                                                                                                                                                                    |                              |
| mating period)                                                                                                                                                                                                                                                                                                                                                                                                              | correction for purity as<br>calculated by the applicant)                                     | <u>F1 pups:</u><br>- slightly increased number of stillborn                                                                                                                                                                                                                                                                                                    |                              |
| Species: Rat<br>Strain: Albino Crl: COBS/<br>CD Sprague-Dawley                                                                                                                                                                                                                                                                                                                                                              | enconace of the appreary                                                                     | <ul> <li>signity increased number of stabour pups (unclear relevance)</li> <li>decreased bodyweight gain (5% n.s.)</li> </ul>                                                                                                                                                                                                                                  |                              |
| F0 generation: 30 males and 30 females per group                                                                                                                                                                                                                                                                                                                                                                            |                                                                                              | <u>F2 pups:</u><br>- decreased bodyweight (6% n.s.)                                                                                                                                                                                                                                                                                                            |                              |
| F1 generation: 30 males and 30 females per group                                                                                                                                                                                                                                                                                                                                                                            |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                |                              |
| GLP: Yes                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                |                              |
| Acceptable                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                |                              |

| Method, guideline,                                          | Test substance, dose levels                                  | Results                                                                              | Reference                |
|-------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------|
| deviations if any, species,                                 | duration of exposure                                         | - NOAEL/LOAEL (for parent, offspring                                                 | Kelerence                |
| strain, sex, no/group                                       |                                                              | and for developmental effects)                                                       |                          |
|                                                             |                                                              | - target tissue/organ                                                                |                          |
|                                                             |                                                              | - critical effects at the LOAEL<br>Bold text=adverse effect                          |                          |
| Teratology Study in Rats                                    | RE-45601 Technical                                           | No NOAEL was set in study*                                                           |                          |
| (dose range finding study)                                  |                                                              |                                                                                      | (1986)                   |
|                                                             | Lot/Batch: SX-1688                                           | Effects at 300 mg/kg bw/day (250 mg/kg                                               | _                        |
| Guidelines followed:                                        | Purity: 83.3%                                                | <u>bw/day after correction for purity of test</u><br>substance):                     | Report<br>number: S-     |
| Not a guideline study                                       | Funty: 85.5%                                                 | - clinical signs (excessive salivation, 4 of 10                                      | 2807                     |
|                                                             | Vehicle: Carboxymethyl                                       | dams)                                                                                |                          |
| Major deviations from a full                                | cellulose, Tween 80 aqueous                                  | $\downarrow$ <b>pup weight</b> (7%, not statistically                                | Vol. 3.                  |
| OECD 414 (2018):<br>- ten dams/group, TG                    | suspension                                                   | significant)                                                                         | B.6.6.2.1/01             |
| recommends 20 to achieve                                    | Exposure: Oral gavage, single                                | Effects at 500 mg/kg bw/day (417 mg/kg                                               | New data for             |
| at least 16 animals with                                    | daily dose on gestational days                               | bw/day after correction for purity of test                                           | renewal: Yes             |
| implantation sites.                                         | 6-15                                                         | substance):                                                                          |                          |
| - the exposure period ended<br>at day 15 instead of the day | Doses:                                                       | - <b>clinical signs</b> (excessive salivation, 8/10 dams)                            |                          |
| prior to termination (day                                   | 0, 50, 150, 300  and  500  mg/kg                             | $\downarrow$ <b>body weight</b> (Day 20: $\downarrow$ 10%, n.s.)                     |                          |
| 19).                                                        | bw/day (equal to 0, 41.7, 125,                               | $\downarrow$ bodyweight gain (Day 15-20: $\downarrow$ 38.8%; Day                     |                          |
| - anogenital distance in                                    | 250, and 417 mg/kg bw per                                    | 6-20: ↓62.5%)                                                                        |                          |
| foetuses not investigated,<br>thyroid weight, thyroid       | day, after correction for<br>purity)                         | $\downarrow$ number of implantation sites (87 versus 126                             |                          |
| histopathology, and blood                                   | punty)                                                       | in control, n.s.)<br>↑ pre-implantation loss ratio (0.289 versus                     |                          |
| thyroid hormone levels (T4,                                 |                                                              | 0.082 in control, n.s.)                                                              |                          |
| T3 and TSH) in the maternal                                 |                                                              | $\downarrow$ total number of viable foetuses (86 versus                              |                          |
| animals not investigated.<br>- it is noted that there were  |                                                              | 122 in control, within historical controls)                                          |                          |
| indications of SDA viral                                    |                                                              | $\downarrow$ <b>foetal weight</b> of viable foetuses ( $\downarrow 11\%$ )           |                          |
| infections in some dams at                                  |                                                              | This study was used to determine dose levels                                         |                          |
| gestation day 20. This was                                  |                                                              | in Schroeder 1987                                                                    |                          |
| noted in 1, 2, 2, 3, and 2<br>females in the 0, 50, 150,    |                                                              | It was noted that there were indications of                                          |                          |
| 300, and 500 mg/kg bw/day                                   |                                                              | SDA viral infections in some dams at                                                 |                          |
| group, respectively.                                        |                                                              | gestation day 20 which restricts the reliability                                     |                          |
| Species: Rat                                                |                                                              | of the study. This was noted in 1, 2, 2, 3 and 2                                     |                          |
| Strain: CD® Sprague-                                        |                                                              | females in the 0, 50, 150, 300 and 500 mg/kg bw/day groups, respectively             |                          |
| Dawley                                                      |                                                              | ow/day groups, respectively                                                          |                          |
|                                                             |                                                              |                                                                                      |                          |
| 10 mated females per group                                  |                                                              |                                                                                      |                          |
| GLP: Yes                                                    |                                                              |                                                                                      |                          |
| Supportive                                                  |                                                              |                                                                                      |                          |
| Teratology Study in Rats                                    | RE-45601 Technical                                           | NOAEL maternal and developmental toxicity: 100 mg/kg bw/day (83.3 mg/kg bw/day after | (1987)                   |
| Guidelines followed:                                        | Lot/Batch: SX-1688                                           | correction for purity of test substance)                                             | (1907)                   |
| EPA/FIFRA Pesticide                                         |                                                              |                                                                                      | Report                   |
| Assessment Guidelines                                       | Purity: 83.3%                                                | LOAEL maternal and developmental toxicity:                                           | number: S-               |
| Subdivision F, Hazard<br>Evaluation (October 1982)          | Vehicle: Carboxymethyl                                       | 350 mg/kg bw/day (292 mg/kg bw/day after correction for purity of test substance)    | 2808                     |
|                                                             | cellulose, Tween 80 aqueous                                  | concerton for parity of test substance)                                              | Vol. 3.                  |
| Deviations from current                                     | suspension                                                   | Effects at 350 mg/kg bw/day (292 mg/kg                                               | B.6.6.2.2/01             |
| OECD TG 414 (2018): The following and points ware           | Exposures Oral correct size 1                                | bw/day after correction for purity of test                                           | Now data fo              |
| following endpoints were not assessed:                      | Exposure: Oral gavage, single daily dose on gestational days | substance):<br>- clinical signs (excessive salivation, poor                          | New data for renewal: No |
| - anogenital distance in                                    | 6-15                                                         | condition, red nasal discharge, alopecia,                                            | Lene wai. 140            |
| foetuses                                                    |                                                              | staining ano-genital area)                                                           |                          |
| - thyroid weight, thyroid                                   | Doses: 0, 10, 100, 350 and 700                               | $\downarrow$ body weight (GD 20: 7%; GD 20 corrected                                 |                          |
| histopathology, and blood<br>thyroid hormone levels (T4,    | mg/kg bw per day (equal to 0, 8.3, 83.3, 292 and 583 mg/kg   | value: 6%)<br>↓ <b>bodyweight gain</b> (GD 6-15: 15% n.s., GD                        |                          |
| T3 and TSH) in the maternal                                 | bw per day, after correction                                 | 15-20: 17%; GD 0-20 corrected value: 77%)                                            |                          |
| animals                                                     | for purity)                                                  | ↓ absolute uterine weight (10% n.s.)                                                 |                          |

| Method, guideline,                                     | ethod, guideline, Test substance, dose levels Results                  |                                                                                                    | Reference            |
|--------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------|
| deviations if any, species,                            | ny, species, duration of exposure - NOAEL/LOAEL (for parent, offspring |                                                                                                    |                      |
| strain, sex, no/group                                  |                                                                        | and for developmental effects)<br>- target tissue/organ                                            |                      |
|                                                        |                                                                        | - critical effects at the LOAEL                                                                    |                      |
| The sum over a side d and a d                          |                                                                        | Bold text=adverse effect                                                                           |                      |
| The exposure period ended at day 15 instead of the day |                                                                        | ↓ foetal weight (11%) ↑ skeletal variations (incomplete or                                         |                      |
| prior to termination (shorter                          |                                                                        | unossified vertebrae, unossified 5 <sup>th</sup> and/or 6 <sup>th</sup>                            |                      |
| exposure period).                                      |                                                                        | sternebrae) (foetal:88.8% compared to 72.6%                                                        |                      |
| Species: Rat                                           |                                                                        | in control)                                                                                        |                      |
| Strain: Crl:CD® (COBS)                                 |                                                                        | Effects at 700 mg/kg bw/day (583 mg/kg                                                             |                      |
|                                                        |                                                                        | bw/day after correction for purity of test                                                         |                      |
| 4 treatment groups                                     |                                                                        | substance):<br>mortality (5 famalas diad at CD 11 16)                                              |                      |
| consisting of 25 rats each.                            |                                                                        | - mortality (5 females died at GD 11-16)<br>- clinical signs (excessive salivation,                |                      |
| GLP: Yes                                               |                                                                        | excessive lacrimation, red/mucoid nasal                                                            |                      |
|                                                        |                                                                        | discharge, alopecia, staining ano-genital area,                                                    |                      |
| Acceptable                                             |                                                                        | chromodacryorrhea)<br>↓ body weight (GD 20: 6-8%; GD 20                                            |                      |
|                                                        |                                                                        | corrected value: 13%)                                                                              |                      |
|                                                        |                                                                        | ↓ <b>bodyweight gain</b> (GD 6-15: 40%, GD 15-                                                     |                      |
|                                                        |                                                                        | 20: 17%; GD 0-20 corrected value: 11%)<br>↓ food consumption at GD 7, 8, 9, 10 (24-                |                      |
|                                                        |                                                                        | 31%)                                                                                               |                      |
|                                                        |                                                                        | ↓ absolute uterine weight (27%)                                                                    |                      |
|                                                        |                                                                        | $\uparrow$ resorptions (1.9 n.s. vs 0.8 in control)                                                |                      |
|                                                        |                                                                        | ↑ resorptions per implant (0.13 n.s. vs 0.05 in control)                                           |                      |
|                                                        |                                                                        | $\downarrow$ number of litters with viable foetuses (18 vs                                         |                      |
|                                                        |                                                                        | 25 in control within HCD)                                                                          |                      |
|                                                        |                                                                        | ↑ <b>external malformations</b> (foetal: 4%                                                        |                      |
|                                                        |                                                                        | compared to 0% in control; litter: 33.3% compared to 0% in control)                                |                      |
|                                                        |                                                                        | ↑ skeletal variations (incomplete or                                                               |                      |
|                                                        |                                                                        | unossified sacral and caudal vertebrae and                                                         |                      |
|                                                        |                                                                        | unossified 5 <sup>th</sup> and/or 6 <sup>th</sup> sternebrae) (96.4% compared to 72.6% in control) |                      |
|                                                        |                                                                        | ↑ skeletal malformations (foetal: 6.4% n.s.                                                        |                      |
|                                                        |                                                                        | compared to 5.4% in control; litter: 22.2% n.s.                                                    |                      |
|                                                        |                                                                        | compared to 16% in control) (observations generally restricted to foetuses noted                   |                      |
|                                                        |                                                                        | externally with tail defects, 7 foetuses)                                                          |                      |
|                                                        |                                                                        | ↑visceral malformations (foetal: 3.4%                                                              |                      |
|                                                        |                                                                        | compared to 0% in control; litter: 16.7%                                                           |                      |
|                                                        |                                                                        | compared to 0% in control). Distortion of the cerebral hemisphere and an opening in the            |                      |
|                                                        |                                                                        | cranium were seen in one foetus with                                                               |                      |
|                                                        |                                                                        | exencephaly, dissimilar aortic arch defects                                                        |                      |
|                                                        |                                                                        | were observed in two foetuses, one with short<br>tail, absence of the kidney and ureter, bladder   |                      |
|                                                        |                                                                        | and a defect of the large intestine were                                                           |                      |
|                                                        |                                                                        | observed in one foetus that was tailless,                                                          |                      |
|                                                        |                                                                        | oedematous and had an imperforate anus.                                                            |                      |
| Teratology Study in Rabbits                            | Chevron RE-45601 Technical                                             | ↓ foetal weight (25%)<br>No NOAEL was set in study*                                                |                      |
| (dose range finding study)                             | Shorton RE 15001 Technical                                             | The restrict was bet in bludy                                                                      | G.E. (1986)          |
|                                                        | Lot/Batch: SX-1688                                                     | Effects at 50 mg/kg bw/day (equal to 41.7                                                          |                      |
| Guidelines followed:<br>40 CFR 158.135, Pesticide      | Purity: 83.3%                                                          | <u>mg/kg bw/day after correction for purity of</u><br>test substance):                             | Report<br>number: S- |
| Assessment Guideline                                   | 1 ulity. 05.570                                                        | tost substance).                                                                                   | 2734                 |
| No.83-3                                                | Aqueous 0.7% carboxy-                                                  | Tendencies of $\downarrow$ food consumption during the                                             |                      |
| Dervictions from                                       | methyl cellulose $(w/v)$ and $0.5\%$ Tween 80 $(w/v)$ solution         | later stage of the dosage period, and dried                                                        | Vol. 3.              |
| Deviations from current<br>OECD TG 414:                | 0.5% Tween 80 (w/v) solution                                           | faeces (one animal) – the effects were not                                                         | B.6.6.2.3/01         |

| Method, guideline,                                | Test substance, dose levels                                    | Results                                                                                              | Reference    |
|---------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------|
| deviations if any, species,                       | duration of exposure                                           | - NOAEL/LOAEL (for parent, offspring                                                                 |              |
| strain, sex, no/group                             |                                                                | and for developmental effects)                                                                       |              |
|                                                   |                                                                | <ul> <li>target tissue/organ</li> <li>critical effects at the LOAEL</li> </ul>                       |              |
|                                                   |                                                                | Bold text=adverse effect                                                                             |              |
|                                                   | Exposure: Gavage. Single                                       | statistically significant. Considered treatment                                                      | New data for |
| Major deviations from a full                      | daily dose on gestational day                                  | related but not adverse.                                                                             | renewal: Yes |
| OECD 414 (2018):                                  | 7-19                                                           |                                                                                                      |              |
|                                                   | -                                                              | Effects at 150 mg/kg bw/day (equal to 125                                                            |              |
| - eight dams/group, TG                            | Doses:                                                         | mg/kg bw/day after correction for purity of                                                          |              |
| recommends 20 to achieve at least 16 animals with | 0, 50, 150, 300 or 500 mg/kg<br>bw/day (equal to 0, 41.7, 125, | test substance):<br>- clinical signs (increased incidence of dried                                   |              |
| implantation sites.                               | 250, and 417 mg/kg bw/day,                                     | faeces, n.s.)                                                                                        |              |
| - the exposure period ended                       | after correction for purity of                                 | $\downarrow$ <b>body weight gain</b> day 7-20 (+0.02 kg vs                                           |              |
| at day 19 instead of the day                      | technical substance using a                                    | +0.2 kg in the control)                                                                              |              |
| prior to termination (day                         | correction factor of 1.2)                                      | $\downarrow$ food consumption during the later stage of                                              |              |
| 28).                                              |                                                                | the dosage period (day 13-20) (n.s.)                                                                 |              |
| Caralian Dahlit                                   |                                                                |                                                                                                      |              |
| Species: Rabbit<br>Strain: New Zealand White      |                                                                | Effects at 200 mg/kg by/day (equal to 250                                                            |              |
| SPF                                               |                                                                | Effects at 300 mg/kg bw/day (equal to 250 mg/kg bw/day after correction for purity of                |              |
|                                                   |                                                                | test substance):                                                                                     |              |
| 4 groups of 8 rabbits each                        |                                                                | - mortality (2/7)                                                                                    |              |
| CL D                                              |                                                                | - clinical signs (increased incidence of dried                                                       |              |
| GLP                                               |                                                                | faeces)                                                                                              |              |
| Supportive                                        |                                                                | ↓ body weight (Day 20: 11%)                                                                          |              |
| Supportive                                        |                                                                | $\downarrow$ body weight gain (Day 7-20: -0.31 kg vs                                                 |              |
|                                                   |                                                                | +0.2 kg in the control, n.s.)                                                                        |              |
|                                                   |                                                                | $\downarrow$ food consumption during the dosage period and some days after (day 7-24)                |              |
|                                                   |                                                                | followed by an increase compared with the                                                            |              |
|                                                   |                                                                | control (n.s)                                                                                        |              |
|                                                   |                                                                | ↑ absolute liver weight (19% n.s.)                                                                   |              |
|                                                   |                                                                | ↑ relative liver weight (23% n.s.)                                                                   |              |
|                                                   |                                                                | $\uparrow$ <b>resorptions</b> (1.4 vs 0.3 in the control, i.e.                                       |              |
|                                                   |                                                                | 2/5  vs  1/7  in the control)                                                                        |              |
|                                                   |                                                                | -hairball in stomach (observed in 2 rabbits                                                          |              |
|                                                   |                                                                | that died)                                                                                           |              |
|                                                   |                                                                | ↓ foetal body weight/litter (13%)                                                                    |              |
|                                                   |                                                                | Effects at 500 mg/kg bw/day (equal to 417                                                            |              |
|                                                   |                                                                | mg/kg bw/day after correction for purity of                                                          |              |
|                                                   |                                                                | test substance):                                                                                     |              |
|                                                   |                                                                | - mortality (2/7)                                                                                    |              |
|                                                   |                                                                | - clinical signs (increased incidence of dried                                                       |              |
|                                                   |                                                                | faeces)<br>↓ <b>body weight</b> (Day 16:15%, Day 20: 22%)                                            |              |
|                                                   |                                                                | ↓ <b>body weight</b> (Day 16:15%, Day 20: 22%)<br>↓ <b>body weight gain</b> day 7-20 (-0.72 kg vs    |              |
|                                                   |                                                                | $\downarrow$ <b>body weight gain</b> day 7-20 (-0.72 kg vs<br>+0.2 kg in the control)                |              |
|                                                   |                                                                | $\downarrow$ food consumption during the dosage                                                      |              |
|                                                   |                                                                | period (day 7-24) with a post dosage increase                                                        |              |
|                                                   |                                                                | compared with the control.                                                                           |              |
|                                                   |                                                                | ↑ absolute liver weight (20% n.s.)                                                                   |              |
|                                                   |                                                                | $\uparrow$ relative liver weight (19% n.s.)                                                          |              |
|                                                   |                                                                | - gastric ulceration (observed in 3 of 4 rabbit                                                      |              |
|                                                   |                                                                | that aborted and/or died)                                                                            |              |
|                                                   |                                                                | -hairball in stomach (observed in 2 or 4                                                             |              |
|                                                   |                                                                | rabbits that aborted and/or died)<br>- abortions (4 vs 0 in the control)                             |              |
|                                                   |                                                                | <ul> <li>- abortions (4 vs 0 in the control)</li> <li>- premature delivery (1 individual)</li> </ul> |              |
|                                                   |                                                                | $\downarrow$ foetal body weight/litter (32%)                                                         |              |
|                                                   |                                                                |                                                                                                      |              |
| Developmental toxicity                            | Chevron RE-45601 Technical                                     | NOAEL maternal: 25 mg/kg bw/day (20.8                                                                |              |
| study in rabbits                                  | Lot/Batch: SX-1688                                             | mg/kg bw/day, corrected for purity)                                                                  | (1987)       |

| Method, guideline,            | Test substance, dose levels           | Results                                                        | Reference    |
|-------------------------------|---------------------------------------|----------------------------------------------------------------|--------------|
| deviations if any, species,   | duration of exposure                  | - NOAEL/LOAEL (for parent, offspring                           |              |
| strain, sex, no/group         | I I I I I I I I I I I I I I I I I I I | and for developmental effects)                                 |              |
|                               |                                       | - target tissue/organ                                          |              |
|                               |                                       | - critical effects at the LOAEL                                |              |
|                               |                                       | Bold text=adverse effect                                       |              |
|                               |                                       |                                                                |              |
| Guidelines followed:          | Purity: 83.3%                         | NOAEL developmental: 100 mg/kg bw per                          | Report       |
| Teratogenicity 40 CFR         | -                                     | day (83.3 mg/kg bw/day, corrected for purity)                  | number: S-   |
| 158.135, Pesticide            | Exposure: Gavage. Single              |                                                                | 2869         |
| 1Asessment Guideline 83-3     | daily dose on gestational day         | LOAEL maternal: 100 mg/kg bw per day                           |              |
|                               | 7-19                                  | (83.3 mg/kg bw/day, corrected for purity)                      | Vol. 3.      |
| Deviations from OECD 414      |                                       |                                                                | B.6.6.2.4/01 |
| (2001; the 2018 update is     | Doses:                                | LOAEL developmental: 300 mg/kg bw per                          |              |
| not applicable to rabbits):   | 0, 25, 100 and 300 mg/kg bw           | day (250 mg/kg bw/day, corrected for purity)                   | New data for |
| the exposure period ended at  | per day (equal to 0, 20.8, 83.3       |                                                                | renewal: No  |
| day 19 instead of the day     | and 250 mg/kg bw/day after            | Effects observed at 100 mg/kg bw per day                       |              |
| prior to termination (shorter | correction for purity)                | (83.3 mg/kg bw/day, corrected for purity):                     |              |
| exposure period).             |                                       | - clinical signs (dried faeces, red substance in               |              |
|                               |                                       | pan)                                                           |              |
| Species: Rabbit               |                                       | $\downarrow$ <b>body weight gain</b> during the dosage period, |              |
| Strain: New Zealand White     |                                       | day 7-20 (+0.05 kg vs +0.18 kg in the control,                 |              |
| SPF                           |                                       | n.s.)                                                          |              |
|                               |                                       | $\downarrow$ food consumption during both the dosage           |              |
| 19-20 animals/group           |                                       | period, day 7-20 (15% n.s.) and during the                     |              |
|                               |                                       | post-dosage period (10% n.s.)                                  |              |
| GLP                           |                                       |                                                                |              |
| Acceptable                    |                                       | Effects observed at 300 mg/kg bw per day                       |              |
| Acceptable                    |                                       | (250 mg/kg bw/day, corrected for purity):                      |              |
|                               |                                       | - clinical signs (dried faeces, red substance in               |              |
|                               |                                       | pan)                                                           |              |
|                               |                                       | $\downarrow$ <b>body weight gain</b> during the dosage period, |              |
|                               |                                       | day 7-20 (-0.10 kg vs $+0.18$ kg in the control),              |              |
|                               |                                       | followed by a $\uparrow$ in the post-dosage period, day        |              |
|                               |                                       | 20-29 (+0.24  kg vs +0.09  kg in the control)                  |              |
|                               |                                       | $\downarrow$ food consumption during the dosing period,        |              |
|                               |                                       | day 7-20 (28%) followed by an $\uparrow$ in the post-          |              |
|                               |                                       | dosage period, day 20-29 (11%)                                 |              |
|                               |                                       | ↓ absolute uterine weight (10% n.s.)                           |              |
|                               |                                       | ↑ foetal incidence of angulated hyoid alae                     |              |
|                               |                                       | (6.3% vs 1.4% in the control), misaligned                      |              |
|                               |                                       | sutures (fontanelle; 3.6 % vs 0% in the                        |              |
|                               |                                       | control), and nasal irregular ossification                     |              |
|                               |                                       | (6.3% vs 2.2% in the control)                                  |              |
| *-4                           |                                       |                                                                |              |

\*study not suitable for NOAEL setting (low number of animals used and limited parameters investigated)

## Table 61: Summary table of human data on adverse effects on development.

| Type of<br>data/report | Test<br>substance | Relevant information about<br>the study (as applicable) | Observations | Reference |  |
|------------------------|-------------------|---------------------------------------------------------|--------------|-----------|--|
| No data available      |                   |                                                         |              |           |  |

## Table 62: Summary table of other studies relevant for developmental toxicity.

| Tuble 02. Summary tuble of other studies relevant for developmental toxicity: |           |                             |              |           |  |
|-------------------------------------------------------------------------------|-----------|-----------------------------|--------------|-----------|--|
| Type of                                                                       | Test      | <b>Relevant information</b> | Observations | Reference |  |
| study/data                                                                    | substance | about the study (as         |              |           |  |
|                                                                               |           | applicable)                 |              |           |  |
| No data available                                                             |           |                             |              |           |  |

# 2.6.6.2.1 Short summary and overall relevance of the provided information on adverse effects on development

The potential of clethodim to cause adverse effects on developmental was examined in two developmental toxicity studies, one in the rat and the other one in the rabbit. These studies were submitted and evaluated in previous EU evaluation (DAR 2005). For the renewal of active substance, the pilot studies for the main studies have been submitted in addition.

The submitted studies (Table 60) are shortly summarised in text (below):

### Rat

## Pilot developmental toxicity study in rats (Report No.: S-2807):

In this dose range finding study, RE-45601 (purity: 83.3%) was administered orally by gavage daily on gestational days 6-15 to groups of 10 females at doses of 0, (control), 50, 150, 300 and 500 mg/kg bw/day (equal to 0, 41.7, 125, 250, and 417 mg/kg bw per day, after correction for purity). At the top dose of 500 mg/kg bw/day (417 mg/kg bw/day), observed effects included increased salivation (8/10 dams), reduced body weight (Day 20:  $\downarrow$ 10% n.s.), reduced bodyweight gain (Day 15-20:  $\downarrow$ 38.8%; Day 6-20:  $\downarrow$ 62.5%), reduced number of implantation sites (87 versus 126 in control, n.s.), and increased pre-implantation loss ratio (0.289 versus 0.082 in control, n.s.), reduced number of viable foetuses (86 versus 122 in control, within historical control values), and reduced foetal weight of viable foetuses ( $\downarrow$ 11%). In the second highest dose of 300 mg/kg bw/day (250 mg/kg bw/day when corrected for purity), observed effects included increased salivation in the dams (8/10 dams) and reduced pup weight (7%, not statistically significant).

The study was performed in accordance FIFRA Good Laboratory Practice (GLP) Standards. The study is not suitable for NOAEL setting (low number of animals used and limited parameters investigated). It is also noted that there were indications of SDA viral infections in some dams at gestation day 20, which restricts the reliability of the study. This was noted in 1, 2, 2, 3, and 2 females in the 0, 50, 150, 300, and 500 mg/kg bw/day group, respectively. The study is considered as supportive data.

| Table 2.6.6. | 2.1-1: M | laternal b | ody | weights | during | gestat | tion (g | g) (meai | n values) | ) |
|--------------|----------|------------|-----|---------|--------|--------|---------|----------|-----------|---|
|              |          |            |     |         |        |        |         |          |           | 1 |

|        | 0              | 50             | 150            | 300            | 500            |  |
|--------|----------------|----------------|----------------|----------------|----------------|--|
|        | (mg/kg bw/day) |  |
| Day 20 | 338±46         | 338±30         | 349±18         | 335±24         | 305±45 (10%)   |  |

\* p<0.05 different from control

\*\*p<0.01 different from control

|               | 0<br>(mg/kg bw/day) | 50<br>(mg/kg bw/day) | 150<br>(mg/kg bw/day) | 300<br>(mg/kg bw/day) | 500<br>(mg/kg bw/day)   |
|---------------|---------------------|----------------------|-----------------------|-----------------------|-------------------------|
| Day 6-<br>20  | 30.4±7.4            | 32.6±10              | 34.2±9.8              | 28.5±9.9              | 11.4±18.7 **<br>(62.5%) |
| Day 15-<br>20 | 67±11               | 66±14                | 74 <u>±</u> 5         | 62±12                 | 41±25* (38.8%)          |

 Table 2.6.6.2.1-2: Maternal bodyweight change (g)

\* p<0.05 different from control

\*\*p<0.01 different from control

| Effect                                      | Exposure group  |                 |                     |                     |                     |  |  |  |  |  |
|---------------------------------------------|-----------------|-----------------|---------------------|---------------------|---------------------|--|--|--|--|--|
|                                             | Vehicle control | 50 mg/kg bw/day | 150 mg/kg<br>bw/day | 300 mg/kg<br>bw/day | 500 mg/kg<br>bw/day |  |  |  |  |  |
| Total number of viable foetuses             | 122             | 131             | 149                 | 138                 | 86                  |  |  |  |  |  |
| Body weight of viable foetuses (g)          | 3.48            | 3.50            | 3.43                | 3.24<br>(↓7%)       | 3.11**<br>(↓11%)    |  |  |  |  |  |
| Body weight of viable male foetuses         | 3.57            | 3.61            | 3.49                | 3.33<br>(↓7%)       | 3.17**<br>(↓11%)    |  |  |  |  |  |
| Body weight of<br>viable female<br>foetuses | 3.39            | 3.37            | 3.37                | 3.15<br>(↓7%)       | 3.12<br>(↓8%)       |  |  |  |  |  |
| External malformations                      | 0               | 1               | 1                   | 0                   | 1                   |  |  |  |  |  |

Table 2.6.6.2.1-3: Selected foetal data.

#### Developmental toxicity study in rats (Report No.: S-2808)

A developmental rat study was performed in which pregnant dams (Crl:CD rats) (25/dose) were administered clethodim by gavage during gestational days 6-15 at doses of 0, 10, 100, 300 and 700 mg/kg bw per day (equal to 0, 8.3, 83.3, 292 and 583 mg/kg bw/day after correction for purity). Maternal toxicity occurred at the two highest doses (of increasing severity with increasing doses). Manifestations of maternal toxicity included mortality noted at 700 mg/kg bw/day (5 of 25 animals), clinical signs (excessive salivation, excessive lacrimation, poor condition, red/mucoid nasal discharge, alopecia, staining of the ano-genital area, chromodocryorrhea (top dose only)) noted at ≥350 mg/kg bw/day, reduced maternal body weight noted at 350 mg/kg bw/day (GD 20: 7%, GD 20 corrected value: 6%) and 700 mg/kg bw/day (GD 10-20: 6-8%, GD 20 corrected value: 13%), reduced bodyweight gain noted at 350 mg/kg bw/day (GD 6-15: 15% n.s.; GD 15-20: 17%; GD 0-20 corrected value: 77%) and 700 mg/kg bw/day (GD 6-15: 40%; GD 15-20: 17%; GD 0-20 corrected value: 11%). Furthermore, food consumption was reduced in the highest dose group during the exposure period (except for the last day). Uterine weight was reduced in a dose dependent manner: 7% reduction in the 100 mg/kg bw/day group, 10 % in the 350 mg/kg bw/day group, and 27% in the 700 mg/kg bw/day group (only the top dose was statistically significant). The mean number of resorptions and resorptions per implant (not statistically significant) was increased in the top dose group.

There was a statistically significant reduction of litters with viable foetuses in the highest dose group (18 versus the 25 in the control group) and it is noted that the non-statistically significant increase in resorption sites (1.9) was slightly above the range of historical control data (mean 0.7 (0.2-1.8)). Nevertheless, there was no statistically significance difference in litter size compared to concurrent controls and no difference from historical control data (mean 12.3 in high dose compared to a mean of 12.9 (10.5-14.8) in historical controls. Foetal body weight was reduced at 350 mg/kg bw/day (11%) and 700 mg/kg bw/day (25%). Furthermore, the incidence of skeletal variations (retarded ossification processes) was increased in the top two doses. There was also a higher incidence of external and visceral malformations among the top dose foetuses. Seven out of the 8 foetuses with external malformations had (among other things) deformed tails, an effect that is associated with maternal toxicity. Because the fetotoxic effects only were observed in the presence of maternal toxicity, the distinction between direct and indirect effects on the foetus is unclear.

6-15

NOAEL for maternal toxicity is 100 mg/kg bw/day (equal to 83.3 mg/kg bw per day after correction for purity of test substance) based on mortalities noted at 700 mg/kg bw/day, clinical signs noted at  $\geq$ 350 mg/kg bw/day, reduced body weight noted at 700 mg/kg bw/day and reduced bodyweight gain noted at  $\geq$ 350 mg/kg bw

NOAEL for developmental toxicity is 100 mg/kg bw/day (equal to 83.3 mg/kg bw per day after correction for purity of test substance) based on decreased foetal weight noted at  $\geq$ 350 mg/kg bw/day, increased incidence of skeletal variations noted at  $\geq$ 350 mg/kg bw/day, and increased incidence of external and visceral malformations at 700 mg/kg bw/day. The NOAELs for maternal and developmental toxicity set in previous evaluation (DAR 2005) remains.

The study was performed in general accordance with OECD 414 and with FIFRA Good Laboratory Practice (GLP) Standards. The deviations from the current guideline (OECD 414, 208) included a shorter exposure period and that some endpoints (anogenital distance in foetuses, thyroid weight, thyroid histopathology, and blood T4, T3 and TSH concentrations in the dams) were not assessed. The deviations from the current guideline include endpoints that would have been valuable for the endocrine disruption assessment; however, the lack of such information does not invalidate the study. The study is considered acceptable.

| Day    | Day               | Day  | Day      | Day  | Day      | Day      | Day      | Day      | Day      | Day   | Day   | Day   | Day      |
|--------|-------------------|------|----------|------|----------|----------|----------|----------|----------|-------|-------|-------|----------|
| 0      | 3                 | 6    | 7        | 8    | 9        | 10       | 11       | 12       | 13       | 14    | 15    | 20    | 20corr1  |
| A-     | А-                | A-   | A-       | A-   | A-       | AL       | A+L+     | AL       | AL       | A+L+  | A+L+  | K+J+  | A+L+     |
| Contro | Control – 0 mg/kg |      |          |      |          |          |          |          |          |       |       |       |          |
| 215±   | 233±              | 246± | $248\pm$ | 232± | 257±     | 263±     | 268±     | 272±     | 278±     | 284±  | 293±  | 362±  | 281±     |
| 17     | 18                | 19   | 20       | 26   | 22       | 20       | 20       | 20       | 20       | 20    | 20    | 26    | 20       |
| 10 mg/ | /kg               |      |          |      |          |          |          |          |          |       |       |       |          |
| 212±   | 232±              | 245± | 241±     | 251± | 257±     | 263±     | 270±     | 274±     | 279±     | 284±  | 292±  | 362±  | 282±     |
| 17     | 19                | 21   | 19       | 21   | 21       | 21       | 20       | 20       | 20       | 19    | 20    | 26    | 19       |
| 100 m  | g/kg              |      |          |      |          |          |          |          |          |       |       |       |          |
| 211±   | 230±              | 244± | 244±     | 249± | $252\pm$ | 260±     | 264±     | 270±     | 275±     | 280±  | 288±  | 357±  | 281±     |
| 16     | 16                | 18   | 19       | 20   | 18       | 18       | 17       | 18       | 17       | 17    | 18    | 19    | 17       |
| 350 m  | g/kg              |      |          |      |          |          |          | -        |          |       |       | •     | ·        |
| 249±   | 225±              | 239+ | 239+     | 242+ | 246+     | 251+     | 258±     | 262+     | 268+     | 273+  | 279±  | 337±  | 264±     |
| 15     | 16                | 14   | 15       | 17   | 19       | 18       | 18       | 18       | 19       | 18    | 22    | 36*   | 28*      |
|        |                   |      |          |      |          |          |          |          |          |       |       | (↓7%) | (↓6%)    |
| 700 m  | g/kg              |      |          |      |          |          | -        |          |          |       |       | -     | -        |
| 213±   | 233±              | 245+ | 246+     | 245± | 248±     | $248\pm$ | $250\pm$ | $258\pm$ | $263\pm$ | 266±  | 271±  | 332±  | 272±     |
| 12     | 13                | 15   | 15       | 15   | 17       | 16*      | 13**     | 12       | 15       | 16*   | 18**  | 18**  | 14 (↓3%) |
|        |                   |      |          |      |          | (↓6%)    | (↓7%)    | (↓5%)    | (↓5%)    | (↓6%) | (↓9%) | (↓8%) |          |

Table 2.6.6.2.1-4: Maternal body weight during gestation in rats dosed with Clethodim Technical during gestational day

A-: No statistical differences among the means (parametric ANOVA).

A(p<0.05) / A+(p<0.01): The means differ significantly (parametric ANOVA).

L(p<0.05) / L+ (p<0.01): The response is linearly related to the dose levels.

Parametric: \*(p<0.05) / \*\* (p<0.01): Significantly different from control (Dunnett's).

K-: No statistical differences among the means (Kruskal-Wallis, nonparametric).

K(p<0.05) / K+ (p<0.01): The means differ significantly (Kruskal-Wallis, nonparametric).

 $J(p{<}0.05)\,/\,J{+}$  (p<0.01): There is an ordered response to dosage.

 $Non parametric: \ *(p{<}0.05) \ / \ ** \ (p{<}0.01): \ Significantly \ different \ from \ control \ (Dunn's \ Rank \ Sum).$ 

1 Day 20 gestation weight minus the weight of the gravid uterus

| Days |      |       |           |            |     |       |           |          |       |       |       |                           |                           |
|------|------|-------|-----------|------------|-----|-------|-----------|----------|-------|-------|-------|---------------------------|---------------------------|
| 0-3  | 3-6  | 0-6   | 6-7       | 7-8        | 8-9 | 9-10  | 10-11     | 11-12    | 12-13 | 13-14 | 14-15 | 6-15                      | 15-20                     |
| A-   | А-   | А-    | A-        | A+L+       | A-  | AL    | К-        | A-       | A-    | К-    | K-    | A+L+                      | K+L+                      |
|      |      |       |           |            |     |       | Control   | – 0 mg/k | g     |       |       |                           |                           |
| 17±6 | 14±6 | 31±19 | 2±4       | 5±4        | 5±6 | 6±6   | 5±4       | 4±6      | 6±3   | 6±4   | 8±4   | 47±8                      | 70±10                     |
|      |      |       |           |            |     |       | 10 mg/k   | g        |       |       |       |                           |                           |
| 19±5 | 15±5 | 33±8  | 2±6       | 4±4        | 6±5 | 6±4   | 7±5       | 5±4      | 5±4   | 4±4   | 9±4   | 47±9                      | 69±11                     |
|      |      |       |           |            |     |       | 100 mg/kg |          |       |       |       |                           |                           |
| 18±8 | 16±8 | 33±8  | 0±6       | 5±5        | 3±5 | 8±6   | 5±5       | 6±5      | 4±5   | 6±4   | 8±4   | 45±10                     | 69±8                      |
|      |      |       |           |            |     |       | 350 mg/kg |          |       |       |       |                           |                           |
| 16±7 | 15±7 | 30±7  | 0±5       | 3±6        | 4±6 | 5±4   | 7±4       | 4±3      | 6±4   | 5±6   | 6±7   | 40±14<br>(↓15%<br>)       | 58±20<br>*<br>(↓17%<br>)  |
|      |      |       | 700 mg/kg |            |     |       |           |          |       |       |       |                           |                           |
| 19±5 | 13±6 | 32±6  | 1±7       | -<br>1±7** | 3±8 | 0±12* | 2±11      | 6±4      | 5±6   | 3±12  | 5±17  | 28±15<br>**<br>(↓40%<br>) | 58±13<br>**<br>(↓17%<br>) |

Table 2.6.6.2.1-5: Maternal body weight change during gestation in rats dosed with Clethodim Technical during gestational day 6-15

A-: No statistical differences among the means (parametric ANOVA).

A (p<0.05) / A+ (p<0.01): The means differ significantly (parametric ANOVA). L(p<0.05) / L+ (p<0.01): The response is linearly related to the dose levels. Parametric: \*(p<0.05) / \*\* (p<0.01): Significantly different from control (Dunnett's).

K-: No statistical differences among the means (Kruskal-Wallis, nonparametric). K(p<0.05) / K+ (p<0.01): The means differ significantly (Kruskal-Wallis, nonparametric).

J(p<0.05) / J+ (p<0.01): There is an ordered response to dosage.

Nonparametric: \*(p<0.05) / \*\* (p<0.01): Significantly different from control (Dunn's Rank Sum).

| Days              |        |                    |                   |                   |                   |                   |                 |                |                 |                |                |
|-------------------|--------|--------------------|-------------------|-------------------|-------------------|-------------------|-----------------|----------------|-----------------|----------------|----------------|
| 0-3               | 3-6    | 6-7                | 7-8               | 8-9               | 9-10              | 10-11             | 11-12           | 12-13          | 13-14           | 14-15          | 15-20          |
| K-                | A-     | K+J+               | K+J+              | K+J+              | K+J+              | K+J+              | K-              | K-             | К-              | K-             | К-             |
| Control – 0 mg/kg |        |                    |                   |                   |                   |                   |                 |                |                 |                |                |
| 120±37            | 108±10 | 101±11             | 100±13            | 99±10             | 102±14            | 102±11            | 101±22          | 98±10          | 97±12           | 93±8           | 104±7          |
| 10 mg/kg          |        |                    |                   |                   |                   |                   |                 |                |                 |                |                |
| 113±12            | 110±10 | 103±15             | 100±9             | 99±9              | 103±10            | 105±13            | 100±11          | 96±13          | 95±12           | 95±8           | 103±7          |
| 100 mg/kg         |        |                    |                   |                   |                   |                   |                 |                |                 |                |                |
| 115±<br>16        | 111±9  | 96±16              | 96±13             | 95±10             | 101±13            | 99±12             | 100±10          | 95±10          | 94±13           | 95±13          | 102±8          |
| 350 mg/k          | g      |                    |                   |                   |                   |                   | •               |                |                 |                |                |
| 119±<br>28        | 107±10 | 92±14              | 86±16**           | 100±40            | 97±24             | 99±16             | 95±8            | 101±22         | 95±19           | 105±42         | 107±26         |
| 700 mg/kg         |        |                    |                   |                   |                   |                   |                 |                |                 |                |                |
| 109±9             | 107±7  | 137±181*<br>(†36%) | 76±19**<br>(↓24%) | 75±21**<br>(↓24%) | 70±27**<br>(↓31%) | 71±35**<br>(↓30%) | 82±35<br>(↓19%) | 89±23<br>(↓9%) | 84±27<br>(↓13%) | 92±22<br>(↓1%) | 106±7<br>(†2%) |

| Table 2.6.6.2.1-6: Food consumption during gestation in rats dosed with | n Clethodim Technical during gestational day 6- |
|-------------------------------------------------------------------------|-------------------------------------------------|
| 15                                                                      |                                                 |

K(p<0.05) / K+ (p<0.01): The means differ significantly (Kruskal-Wallis, nonparametric).

J(p<0.05) / J+(p<0.01): There is an ordered response to dosage.

Nonparametric: \*(p<0.05) / \*\* (p<0.01): Significantly different from control (Dunn's Rank Sum).

| Effect                                       | Exposure gro                                      | oup                                               |                                                   |                                                   |                                                   | Historical control    |                                |  |
|----------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------|-----------------------|--------------------------------|--|
|                                              | Vehicle<br>control                                | 10 mg/kg<br>bw/day                                | 100 mg/kg<br>bw/day                               | 350 mg/kg<br>bw/day                               | 700 mg/kg<br>bw/day                               | Mean value<br>(range) | Number of<br>control<br>groups |  |
| Pregnancy rates                              | 25/25<br>(100%)                                   | 25/25<br>(100%)                                   | 24/25 (96%)                                       | 25/25<br>(100%)                                   | 24/25<br>(96%)2                                   | 94% (68-<br>100%)     | 38                             |  |
| Mean number of corpora lutea                 | 16.3 ± 3.3                                        | 16.3 ± 2.3                                        | 15.5 ± 2.3                                        | $16.5 \pm 2.3$                                    | 15.5 ± 1.3                                        | 15.3 (13.5-<br>18.3)  | 36                             |  |
| Mean number of implantation sites            | 14.9 ± 2.2                                        | 14.7 ± 1.5                                        | 14.3 ± 1.6                                        | 14.6 ± 2.0                                        | 14.2 ± 1.6                                        | 13.7 (11.3-<br>15.5)  | 38                             |  |
| Mean pre-<br>implantation loss<br>ratio      | $0.074 \pm 0.089$                                 | 0.091 ±<br>0.093                                  | 0.092 ±<br>0.095                                  | 0.111 ± 0.124                                     | 0.085 ±<br>0.083                                  | -                     | -                              |  |
| Uterine weight (g)                           | 82 ± 11                                           | 80 ±10                                            | $76 \pm 9 (\downarrow 7\%)$                       | 74 ± 11<br>(↓10%)                                 | 60 ± 15**<br>(↓27%)                               | -                     | -                              |  |
| Number of litters<br>with viable<br>foetuses | 25                                                | 25                                                | 24                                                | 25                                                | 18*                                               | -                     | -                              |  |
| Mean litter size                             | 14.1 ± 1.9                                        | $14.0\pm1.6$                                      | $13.7\pm1.5$                                      | $14.0 \pm 2.0$                                    | $12.3\pm3.5$                                      | -                     | -                              |  |
| Mean number of resorptions                   | 0.8 ± 0.8                                         | 0.96 ± 0.9                                        | 0.5 ± 0.7                                         | 0.6 ± 0.6                                         | 1.9 ± 3.5                                         | 0.7 (0.2-1.8)         | 38                             |  |
| Mean number<br>resorptions/implant           | $\begin{array}{c} 0.052 \pm \\ 0.047 \end{array}$ | $\begin{array}{c} 0.043 \pm \\ 0.057 \end{array}$ | $\begin{array}{c} 0.036 \pm \\ 0.046 \end{array}$ | $\begin{array}{c} 0.038 \pm \\ 0.040 \end{array}$ | $\begin{array}{c} 0.128 \pm \\ 0.222 \end{array}$ | -                     | -                              |  |

 Table 2.6.6.2.1-7: Selected reproductive data in dams exposed to Clethodim technical at gestational days 6-15

 Table 2.6.6.2.1-8: Summary of selected reproduction data – foetus mean body weights (mean ±SD)

| Mean Body<br>Weight (g) | 0 mg/kg   | 10 mg/kg  | 100 mg/kg | 350 mg/kg            | 700 mg/kg            | Stat. Symbol |
|-------------------------|-----------|-----------|-----------|----------------------|----------------------|--------------|
| Viable<br>Foetuses      | 3.65±0.24 | 3.61±0.17 | 3.48±0.25 | 3.26±0.51**<br>(11%) | 2.75±0.37**<br>(25%) | K+J+         |
| Male<br>Foetuses        | 3.82±0.24 | 3.71±0.17 | 3.58±0.26 | 3.33±0.52**<br>(13%) | 2.79±0.36**<br>(27%) | K+J+         |
| Female<br>Foetuses      | 3.57±0.25 | 3.51±0.19 | 3.38±0.26 | 3.18±0.49**<br>(11%) | 2.77±0.36**<br>(22%) | K+J+         |

 $\begin{array}{l} K(p<0.05) \ / \ K+ \ (p<0.01): \ The means differ significantly (Kruskal-Wallis, nonparametric). \\ J(p<0.05) \ / \ J+ \ (p<0.01): \ There is an ordered response to dosage. \\ Nonparametric: \ *(p<0.05) \ / \ ** \ (p<0.01): \ Significantly \ different from \ control \ (Dunn's \ Rank \ Sum). \end{array}$ 

|                                                                       | 0<br>(mg/kg<br>bw/day) | 10<br>(mg/kg<br>bw/day) | 100<br>(mg/kg<br>bw/day) | 350<br>(mg/kg<br>bw/day) | 700<br>(mg/kg<br>bw/day) |
|-----------------------------------------------------------------------|------------------------|-------------------------|--------------------------|--------------------------|--------------------------|
| Number of foetuses examined                                           | 353                    | 351                     | 329                      | 350                      | 221                      |
| Agnathia (shown to be<br>micrognathia during skeletal<br>examination) | 0                      | 0                       | 1                        | 0                        | 0                        |
| Small foetus with glassy appearance of skin                           | 0                      | 0                       | 1                        | 0                        | 0                        |
| Exencephaly                                                           | 0                      | 0                       | 0                        | 0                        | 1                        |
| Tail malformations (absent, filamentous, or short tail)               | 0                      | 0                       | 0                        | 0                        | 7                        |
| Oedematous                                                            | 0                      | 0                       | 0                        | 0                        | 1                        |
| Imperforated anus                                                     | 0                      | 0                       | 0                        | 0                        | 2                        |

### Table 2.6.6.2.1-10: Incidence – Visceral malformations (number of affected foetuses)

|                                                                                                                 | 0                 | 10                | 100               | 350               | 700               |
|-----------------------------------------------------------------------------------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                                                                                                 | (mg/kg<br>bw/day) | (mg/kg<br>bw/day) | (mg/kg<br>bw/day) | (mg/kg<br>bw/day) | (mg/kg<br>bw/day) |
| Number of foetuses examined                                                                                     | 185               | 181               | 172               | 181               | 118               |
| Distended lateral ventricles of the brain                                                                       | 0                 | 1                 | 1                 | 0                 | 0                 |
| Distortion of the cerebral<br>hemisphere and opening in the<br>cranium (seen in one foetus with<br>exencephaly) | 0                 | 0                 | 0                 | 0                 | 1                 |
| Dissimilar aortic arch defects                                                                                  | 0                 | 0                 | 0                 | 0                 | 2                 |
| Bilateral absence of the kidney and<br>ureter, absence of a bladder and a<br>defect of the large intestine      | 0                 | 0                 | 0                 | 0                 | 1                 |

### Table 2.6.6.2.1-11: Incidence – skeletal malformations (number of affected foetuses)

|                                                                                             | 0<br>(mg/kg<br>bw/day) | 10<br>(mg/kg<br>bw/day) | 100<br>(mg/kg<br>bw/day) | 350<br>(mg/kg<br>bw/day) | 700<br>(mg/kg<br>bw/day) |
|---------------------------------------------------------------------------------------------|------------------------|-------------------------|--------------------------|--------------------------|--------------------------|
| Number of foetuses examined                                                                 | 185                    | 181                     | 172                      | 181                      | 118                      |
| Tail defects; short, absent                                                                 | 0                      | 0                       | 0                        | 0                        | 5                        |
| Tail; filamentous                                                                           | 0                      | 0                       | 0                        | 0                        | 2                        |
| Misshapen mandible and<br>malformation of several cranial<br>bones (tympanic, basisphenoid) | 0                      | 0                       | 1                        | 0                        | 0                        |
| Wavy ribs                                                                                   | 7                      | 0                       | 0                        | 3                        | 0                        |
| 5 lumbar vertebrae                                                                          | 1                      | 0                       | 4                        | 1                        | 2                        |
| Fused sternebra                                                                             | 1                      | 0                       | 0                        | 0                        | 0                        |

## Table 2.6.6.2.1-12: Selected developmental data.

| Effect                                                  | Exposure group     |                    |                     |                      |                         |                          | Historical control1            |  |
|---------------------------------------------------------|--------------------|--------------------|---------------------|----------------------|-------------------------|--------------------------|--------------------------------|--|
|                                                         | Vehicle<br>control | 10 mg/kg<br>bw/day | 100 mg/kg<br>bw/day | 350 mg/kg<br>bw/day  | 700 mg/kg<br>bw/day     | Mean<br>value<br>(range) | Number of<br>control<br>groups |  |
| Number of litters                                       | 25                 | 25                 | 24                  | 25                   | 24                      | -                        | -                              |  |
| Number of litters<br>with viable foetuses               | 25                 | 25                 | 24                  | 25                   | 18* (28%)               | -                        | -                              |  |
| Mean litter size                                        | $14.1 \pm 1.9$     | $14.0\pm1.6$       | $13.7 \pm 1.5$      | $14.0 \pm 2.0$       | 12.3 ± 3.5 (13%)        | -                        | -                              |  |
| Mean number of resorptions                              | $0.8 \pm 0.8$      | $0.96 \pm 0.9$     | $0.5 \pm 0.7$       | 0.6 ± 0.6            | 1.9 ± 3.5 (138%)        | 0.7 (0.2-<br>1.8)        | 38                             |  |
| Mean number<br>resorptions/implant                      | $0.052 \pm 0.047$  | $0.043 \pm 0.057$  | 0.036 ±<br>0.046    | $0.038 \pm 0.040$    | 0.128 ± 0.222<br>(146%) | -                        | -                              |  |
| Body weight of<br>viable foetuses (g)                   | 3.65±0.24          | 3.61±0.17          | 3.48±0.25<br>(5%)   | 3.26±0.51**<br>(11%) | 2.75±0.37**<br>(25%)    | 3.28-3.69                | 10                             |  |
| Body weight of viable male foetuses                     | 3.82±0.24          | 3.71±0.17          | 3.58±0.26<br>(6%)   | 3.33±0.52**<br>(13%) | 2.79±0.36**<br>(27%)    | 3.23-3.99                | 28                             |  |
| Body weight of<br>viable female<br>foetuses             | 3.57±0.25          | 3.51±0.19          | 3.38±0.26<br>(5%)   | 3.18±0.49**<br>(11%) | 2.77±0.36**<br>(22%)    | 3.07-3.78                | 28                             |  |
| Sex ratio of viable<br>foetused (Males:<br>females)     | 1.1                | 1.0                | 1.0                 | 1.0                  | 0.8                     | -                        | -                              |  |
| Incidence of foetal<br>external<br>malformations        | 0/353              | 0/351              | 1/329               | 0/350                | 8/221 ** (3.6%)         | -                        | -                              |  |
| Litter incidence of<br>foetal external<br>malformations | 0/25               | 0/25               | 1/24                | 0/25                 | 6/18 * (33.3%)          | -                        | -                              |  |

| Effect                                                      | Exposure group     |                    |                     |                       |                       |                          | Historical control1            |  |
|-------------------------------------------------------------|--------------------|--------------------|---------------------|-----------------------|-----------------------|--------------------------|--------------------------------|--|
|                                                             | Vehicle<br>control | 10 mg/kg<br>bw/day | 100 mg/kg<br>bw/day | 350 mg/kg<br>bw/day   | 700 mg/kg<br>bw/day   | Mean<br>value<br>(range) | Number of<br>control<br>groups |  |
| Incidence of foetal external variations                     | 0/353              | 0/351              | 1/329               | 0/350                 | 0/221                 | -                        | -                              |  |
| Incidence of foetal<br>visceral<br>malformations (%)        | 0/185 (0%)         | 1/181<br>(0.5%)    | 1/172<br>(0.6%)     | 0/181(0%)             | 4/118 (3.4%) **       | -                        | -                              |  |
| Litter incidence of<br>foetal visceral<br>malformations (%) | 0/25 (0%)          | 1/25 (4%)          | 1/24<br>(4.2%)      | 0/25 (0%)             | 3/18 (16.7%) **       | -                        | -                              |  |
| Incidence of foetal visceral variations                     | 7/185<br>(3.8%)    | 8/181<br>(4.4%)    | 11/172<br>(6.4%)    | 2/181 (1.1%)          | 2/118 (1.7%)          | -                        | -                              |  |
| Incidence of foetal<br>skeletal<br>malformations (%)        | 9/168<br>(5.4%)    | 0/170 (0%)<br>**   | 5/158<br>(3.2%)     | 4/169 (2.4%)          | 7/110 (6.4%)          | -                        | -                              |  |
| Litter incidence of<br>foetal skeletal<br>malformations (%) | 4/25 (16%)         | 0/25               | 3/24<br>(12.5%)     | 3/25 (12.0%)          | 4/18 (22.2%)          | -                        | -                              |  |
| Incidence of foetal<br>skeletal variations<br>(%)           | 122/168<br>(72.6%) | 103/170<br>(60.6%) | 126/158<br>(79.7%)  | 150/169<br>(88.8%) ** | 106/110 (96.4%)<br>** | -                        | -                              |  |
| Litter incidence of<br>foetal skeletal<br>variations (%)    | 24/25<br>(96.4%)   | 25/25<br>(100%)    | 24/24<br>(100%)     | 25/25 (100%)          | 18/18 (100%)          | -                        | -                              |  |

<sup>1</sup> Studies performed between 1976-1985.

\*(p<0.05)

\*\* (p<0.01)

#### Pilot reproduction toxicity study in rats (Report No.: S-2758) (see also section 2.6.6.1):

In this pilot study, groups of 8 male and 8 female Sprague-Dawley Crl:CD strain rats were fed diet containing 0, 500, 2000 or 5000 ppm RE-45601 Technical (purity: 83.3%) for 1 week before mating. The doses equal to 0, 20.8, 83.3, 208.3 mg/kg bw/day when corrected for purity of active substance. The vehicle used in study for preparation of diet was Acetone. Females received the diet continuously throughout mating and gestation, and until Day 7 of lactation when they were necropsied. The offspring were exposed to the test material in utero and while nursing until they were sacrificed and necropsied on Day 7 of lactation. Effects on adults and offspring were observed at the maximum dose level of 5000 ppm.

Postnatal growth was affected in this study at doses where no maternal toxicity was observed. Birth weight and pup weight at day 4 did not differ between the groups but pup weight at day 7 (sexes combined) were reduced in all three dose groups ( $\downarrow 9\%$ ,  $\downarrow 9\%$ , and  $\downarrow 11\%$  in the groups 500, 2000, and 5000 ppm, respectively). Pup weight gain (day 0-7) was also reduced in all dose groups ( $\downarrow 13\%$ ,  $\downarrow 14\%$ , and  $\downarrow 16\%$  in the groups 500, 2000, and 5000 ppm, respectively). The dams of the high dose group (5000 ppm) had a reduced body weight and bodyweight gain, but no effect on the dams were observed in the lower dose groups (500 and 2000 ppm). The study is not suitable for NOAEL setting (low number of animals used and limited parameters investigated). The study was performed in accordance FIFRA Good Laboratory Practice (GLP) Standards. The study is considered as supplementary data (dose range finding study).

#### Reproduction toxicity study in rats (Report No.: S-2778) (see also section 2.6.6.1):

In the 2-generation study rats (30 males and females/generation (F0 and F1)) were given clethodim at a dietary concentration of 0, 5, 20, 500, and 2500 ppm (equivalent to 0, <0.8, 0.8, 26.7 and 133.7 mg a.s./kg bw/day (F0 generation, sexes combined) and 0, < 0.8, 0.8, 28.3, and 151.2 mg a.s./kg bw/day (F1 generation, sexes combined) (values corrected for purity of test substance). An increase in the number of stillborn F1 pups was observed (14 pups which corresponds to 3.8% of the delivered pups in the highest treatment group compared with 2 pups, i.e. 0.7%, in the control group). The number of F0 females with at least one stillborn pup was 7 (25%) in the 2500 ppm group and 2 (9.1%) in the control group. The number of stillborn F2 pups in the control group was 7 (2.7%), indicating that the control value in the F1 generation may be in the lower range of the spectrum. No increase in stillborn F2 pups was observed. Historical control data was not provided but considering the lack of effect in the F2 pups and that the control value in the F2 generation was higher than the F1 generation, this may be incidental. Postnatal pup weight (day 0, 4, and 21) did not differ between groups in either generation.

Dilation of the renal pelvis was observed in five F1 pups (1.8%) in 4 litters (16.7%) in the high dose group. No incidence of this was observed in the control group. Historical control data was not provided in detail, but it was stated in the report that "In studies conducted in this facility between 1984-1986, the historical control data for this finding ranged between one pup from one litter to seventeen pups in ten litters." According to the applicant, no further details is available with respect to the historical control data. Considering that the kidney has not been identified as target organ in other studies and that there were no indications of renal toxicity in the developmental study performed in the same strain, this finding is not considered to demonstrate teratogenic effect.

Body weights for F1a adult females were significantly reduced during the pre-mating (7-10%) and gestation periods (6-9%) up through day-7 (6%) of lactation. While body weights were reduced for F1a females, body weight gain during gestation was not affected by treatment but corrected maternal body weight during pregnancy calculated as a change in maternal body weight gain compared to controls using data point GD0 and LD1 shows a reduced bodyweight gain of 14% in F1 females at 2500 ppm. Mean food consumption values were significantly reduced on days 0-2, 2-5, and 9-12 of gestation of the F1 females. There was no effect on body weight or food consumption in the F0 females.

The NOAEL for parental toxicity in study is 500 ppm (26.7 mg/kg bw/day) based on reduced body weights noted in both generations at 2500 ppm and reduced absolute prostate and seminal vesicles weights noted in F1 adults at 2500 ppm. NOAEL for reproductive toxicity is 2500 ppm (133.7 mg/kg bw/day, highest dose tested). The NOAEL for offspring toxicity is 500 ppm based on slightly increased number of stillborn noted in F1 pups at 2500 ppm (although unclear relevance). The NOAEL for offspring toxicity is a new value for the renewal procedure. In DAR 2005 the NOAEL for offspring toxicity was set at 2500 ppm. The NOAELs for parental and reproductive toxicity set in previous evaluation (DAR 2005) remains.

The study was performed in general accordance with OECD 416 and with EPA, FIFRA and TSCA Good Laboratory Practice (GLP) Standards. There were some deviations from the current version of the guideline. Endpoints required in OECD 416 (2001) that was not assessed/measured in the study included analysis of sperm parameters, developmental and functional observations of pups, weight of adrenals, brain, liver, pituitary gland, spleen, and thyroid, and histopathology of the vagina. While these limits the scope of the study, they do not affect the reliability. The study is considered acceptable.

#### Rabbit

#### Pilot developmental toxicity study in rabbits (Report No.: S-2734):

In this dose range finding study, Chevron RE-45601 (purity: 83.3%) was administered orally by gavage daily on gestational days 7-19 to groups of 8 female rabbits at doses of 0, (control), 50, 150, 300 and 500 mg/kg bw/day (equal to 0, 41.7, 125, 250, and 417 mg/kg bw/day, after correction for purity of technical substance using a correction factor of 1.2). Treatment related effects were associated with mortality (≥300 mg/kg bw/day), clinical signs of dried faeces ( $\geq$ 50 mg/kg bw/day, statistical significant at  $\geq$ 300 mg/kg bw/day), reduced body weight ( $\geq$ 300 mg/kg bw/day), reduced bodyweight gain (≥150 mg/kg/day), reduced feed consumption during the dosage period (≥50 mg/kg/day, statistically significant at 500 mg/kg bw/day) with a post dosage increase in food consumption compared with the control ( $\geq$ 150 mg/kg/day), increased maternal liver weight and liver/body weight ratio ( $\geq$ 300 mg/kg/day, not statistically significant but ~20% increase), gross pathological findings observed in animals that aborted and/or died (hairball in stomach at  $\geq$ 300 mg/kg bw/day, gastric ulceration at 500 mg/kg bw/day), abortion (500 mg/kg/day), and premature delivery (one animals at 500 mg/kg/day). There was also a possible increase in resorptions: the number of resorptions was 1.4 in the 300 mg/kg bw/day group compared with the 0.3 in the control. There was none in the highest dose group but only one female was available for assessment in that group. In addition, the foetal body weight was 13% and 32% lower in the 300 and 500 mg/kg bw/day dosage groups, respectively, compared with the control. The study is not suitable for NOAEL setting (low number of animals used and limited parameters investigated). The study was not compared to any guideline since it is a pilot study. It was performed in accordance EPA, FIFRA, and TSCA Good Laboratory Practice (GLP) Standards. The study is considered as supplementary data.

Table 2.6.6.2.1-13: Clinical signs-summary

|                                 | Dosage Group<br>O(Vehicle) | (mg/kg/days<br>50 | 7-19 of<br>150 | Presumed<br>300 | Gestation)<br>500 |
|---------------------------------|----------------------------|-------------------|----------------|-----------------|-------------------|
| Rabbits Observed                | 8                          | 8                 | 8              | 8               | 8                 |
| Rabbits Pregnant                | 7                          | 8                 | 8              | 7               | 7                 |
| Cited Observation: <sup>a</sup> |                            |                   |                |                 |                   |
| Died [87]                       | 0                          | o                 | o              | 2               | 2 <sup>b</sup>    |
| Aborted [85]                    | 0                          | 0                 | 0              | 0               | 4 <sup>b</sup> ** |
| Naturally Delivered             | 0                          | o                 | 0              | 0               | 1                 |
| Dried Feces [07]                | 0/0                        | 1/8               | 3/3            | 5**/32          | 7**/71*           |
| Soft or Liquid Feces [30]       | 1/1                        | 1/2               | 2/5            | 2/4             | 0/0               |
| No Feces Present [07]           | 0/0                        | 0/0               | 0/0            | 1/2             | 0/0               |
| Alopecia [03]                   | 4/17                       | 4/25              | 4/33*          | 3/32*           | 4/44**            |
| Red Substance in Pan [07]       | 1/1                        | 0/0               | 0/0            | 0/0             | 1/1               |

[ ] = Physical Sign Code.

/ = Rabbits/Days.

a. Maximum incidences (rabbits/days) are 8/184, 8/184, 8/184, 8/174 and 8/136. respectively, for the O(vehicle), 50, 150, 300 and 500 mg/kg/day dosage groups.

b. Rabbit 10516 had a red substance in the cage pan (related to abortion) prior to its death on day 20 of gestation. Rabbit 10519 died following a clonic convulsion on day 8 of gestation; the death was possibly interrelated with an intubation accident, although test substance was not present in the lungs and was present in the stomach at necropsy. \* Significantly different from vehicle control value, at P<0.05. \*\* Significantly different from vehicle control value, at P<0.01.

|                      | DOSAGE GROUP <sup>a</sup> | 0 NG/KG/DAY | 50 NG/KG/DAY | 150 MG/KG/DAY | 300 MG/KG/DAY                      | 500 HG/KG/DAY               |
|----------------------|---------------------------|-------------|--------------|---------------|------------------------------------|-----------------------------|
| ANIMALS - TESTED     |                           | 8           | 8            | 8             | 8                                  | 8                           |
| PREGNANT             | N(X)                      | 7( 87.5)    | 8(100.0)     | 8(100.0)      | 7( 87.5)                           | 7( 87.5)                    |
| ATERNAL BODY WEIGHT  | t                         |             |              |               |                                    |                             |
| DAY 0                | MEANts.D.                 | 3.80 ± 0.22 | 3.76 ± 0.27  | 3.80 ± 0.23   | 3.82 ± 0.19                        | 3.86 ± 0.19                 |
| DAY 7                | MEAN+S.D.                 | 4.04 ± 0.24 | 3.96 ± 0.26  | 4.01 ± 0.22   | 4.07 ± 0.25                        | 4.09 ± 0.22                 |
| DAY 10               | MEAN+S.D.                 | 4.06 + 0.22 | 3.95 + 0.25  | 4.01 ± 0.19   | 3.99 ± 0.18                        | 3.90 ± 0.31                 |
| DAY 13               | HEAN+S.D.                 | 4.15 + 0.23 | 4.01 ± 0.29  | 4.04 ± 0.22   | 3.97 ± 0.25                        | [ 6]<br>3.79 ± 0.39         |
| DAY 16               | MEAN+S.D.                 | 4.22 ± 0.22 | 4.05 ± 0.29  | 4.01 ± 0.28   | 3.91 + 0.39                        | [ 6]<br>3.58 ± 0.39         |
| DAY 20               | MEAN+S.D.                 | 4.23 ± 0.23 | 4.06 ± 0.31  | 4.04 ± 0.24   | 3.76 ± 0.44 #                      | C 63                        |
| DAY 24               | HEAN+S.D.                 | 4.31 ± 0.23 | 4.12 + 0.30  | 4.14 ± 0.24   | 3.96 ± 0.56                        | [ 5]<br>3.28 ± 0.80         |
| DAY 29               | MEAN+S.D.                 | 4.34 + 0.27 | 4.11 ± 0.36  | 4.20 ± 0.24   | [ 6]<br>4.22 ± 0.44                | [ 3]<br>4.41 ± 0.00         |
| DAY 290 <sup>6</sup> | HEAN <u>+</u> S.D.        | 3.89 ± 0.31 | 3.68 ± 0.36  | 3.82 ± 0.29   | [ 5]<br>3.75 <u>+</u> 0.33<br>[ 5] | [ 1]<br>3.97 ± 0.00<br>[ 1] |

Table 2.6.6.2.1-14: Maternal body weight- summary

|                    | DOSAGE GROUP <sup>a</sup> | 0 MG/KG/DAY  | 50 MG/KG/DAY | 150 HG/KG/DAY  | 300 MG/KG/DAY                       | 500 MG/KG/DAY                |
|--------------------|---------------------------|--------------|--------------|----------------|-------------------------------------|------------------------------|
| NIMALS - TESTED    |                           | 8            | 8            | 8              | 8                                   | 8                            |
| PREGNANT           | N(2)                      | 7( 87.5)     | 8(100.0)     | 8(100.0)       | 7( 87.5)                            | 7( 87.5)                     |
| ATERNAL BODY WEIGH | IT CHANGE                 |              |              |                |                                     |                              |
| DAYS 0- 7          | MEAN+S.D.                 | +0.23 ± 0.13 | +0.20 ± 0.14 | +0.21 ± 0.04   | +0.25 + 0.11                        | +0.23 + 0.08                 |
| DAYS 7-10          | MEAN+S.D.                 | +0.03 ± 0.02 | -0.01 ± 0.04 | +0.00 ± 0.05   | -0.07 ± 0.11                        | -0.16 ± 0.08                 |
| DAYS 10-13         | MEAN+S.D.                 | +0.09 + 0.05 | +0.06 ± 0.08 | +0.02 ± 0.06   | -0.02 ± 0.12 ±                      | -0.11 + 0.10                 |
| DAYS 13-16         | MEAN <u>+</u> S.D.        | +0.07 + 0.05 | +0.04 ± 0.07 | -0.03 ± 0.11   | -0.06 ± 0.19                        | -0.20 ± 0.07                 |
| DAYS 16-20         | MEAN+S.D.                 | +0.01 ± 0.06 | +0.01 ± 0.10 | +0.03 ± 0.14   | -0.15 ± 0.14 ±                      | -0.27 + 0.08                 |
| DAYS 20-24         | HEAN+S.D.                 | +0.08 + 0.05 | +0.06 ± 0.04 | +0.10 ± 0.06   | +0.20 + 0.26                        | [ 5]<br>+0.03 ± 0.27         |
| DAYS 24-29         | MEAN <u>+</u> S.D.        | +0.04 ± 0.12 | -0.01 ± 0.13 | +0.06 ± 0.06   | [ 6]<br>+0.07 ± 0.09<br>[ 5]        | [ 3]<br>+0.20 ± 0.00<br>[ ]] |
| DAYS 20-29         | MEAN+S.D.                 | +0.11 ± 0.14 | +0.05 # 0.12 | +0.16 ± 0.08   | +0.35 ± 0.22                        | +0.54 + 0.00                 |
| DAYS 7-20          | HEAN+S.D.                 | +0.20 ± 0.06 | +0.09 ± 0.19 | +0.02 ± 0.15 ± | [ 5]<br>-0.31 ± 0.47                | [ 1]<br>-0.72 ± 0.18         |
| DAYS 7-29          | MEAN+S.D.                 | +0.31 + 0.18 | +0.14 ± 0.17 | +0.19 + 0.14   | +0.11 + 0.42                        | ( 5]<br>+0.09 ± 0.00         |
| DAYS 0-29C         | MEANtS.D.                 | +0.08 ± 0.21 | -0.08 + 0.24 | +0.02 + 0.21   | [ 5]<br>-0.09 <u>+</u> 0.40<br>[ 5] | C 13<br>-0.07 ± 0.00<br>C 13 |

 Table 2.6.6.2.1-15: Maternal bodyweight changes- summary

Table 2.6.6.2.1-16: Maternal feed consumption- summary

|                    | DOSAGE GROUP a              | 0 MG/KG/DAY          | 50 MG/KG/DAY         | 150 MG/KG/DAY | 300 MG/KG/DAY        | 500 MG/KG/DAY       |
|--------------------|-----------------------------|----------------------|----------------------|---------------|----------------------|---------------------|
| ANIMALS - TESTED   |                             | 8                    | 8                    | 8             | 8                    | 8                   |
| PREGNANT           | N(Z)                        | 7( 87,5)             | 8(100.0)             | 8(100.0)      | 7( 87.5)             | 7(87.5)             |
| ATERNAL FEED CONSU | MPTION (g/day) <sup>b</sup> |                      |                      |               |                      |                     |
| DAYS 0-7           | MEAN <u>t</u> S.D.          | 173.8 ± 13.5         | 163.4 ± 33.8<br>[ 7] | 170.1 ± 12.8  | 174.1 ± 13.0         | 178.0 <u>*</u> 8.6  |
| DAYS 7-10          | MEAN <u>+</u> S.D.          | 177.4 ± 9.8<br>[ 6]  | 166.1 ± 29.1         | 169.5 ± 11.8  | 147.7 ± 60.6         | 82.8 ± 48.8<br>E 61 |
| DAYS 10-13         | MEAN+S.D.                   | 172.2 ± 16.3         | 152.1 ± 44.4         | 153.1 ± 30.6  | 129.0 ± 67.8         | 49.1 ± 62.9         |
| DAYS 13-16         | MEAN+S.D.                   | 168.3 ± 18.9         | 134.0 ± 54.5         | 109.8 ± 57.9  | 85.3 ± 81.8          | 13.8 ± 21.9         |
| DAYS 16-20         | MEAN <u>+</u> S.D.          | 169.2 ± 15.0<br>C 61 | 138.5 ± 60.2         | 114.5 ± 48.2  | 74.6 + 89.1          | 2.0 ± 0.4           |
| DAYS 20-24         | MEAN <u>+</u> S.D.          | 160.2 + 27.4         | 144.6 ± 36.9<br>[ 6] | 153.3 ± 31.2  | 116.7 ± 70.0         | 47.0 + 74.7         |
| DAYS 24-29         | MEAN:S.D.                   | 108.3 <u>+</u> 56.9  | 95.0 ± 51.6<br>[ 7]  | 135.6 + 39.0  | 158.4 + 35.6<br>( 5) | 180.8 ± 0.0         |
| DAYS 20-25         | HEAN <u>+</u> S.D.          | 130.5 ± 41.3         | 111.0 ± 45.6<br>[ 7] | 143.5 ± 34.2  | 155.7 + 26.5<br>[ 5] | 159.7 + 0.0         |

|                                   | DOSAGE GROUP <sup>a</sup> | O MG/KG/DAY | 50 MG/KG/DAY               | 150 MG/KG/DAY              | 300 MG/KG/DAY              | 500 MG/KG/DAY              |
|-----------------------------------|---------------------------|-------------|----------------------------|----------------------------|----------------------------|----------------------------|
| ANIMALS - TESTED                  |                           | 8           | 8                          | 8                          | 8                          | 8                          |
| PREGNANT                          | N(Z)                      | 7(87.5)     | 8(100.0)                   | 8(100.0)                   | 7(87.5)                    | 7(87.5)                    |
| ATERNAL FEED CONSUL<br>(g/Kg/day) | HPT ION <sup>b</sup>      |             |                            |                            |                            |                            |
| DAYS 0- 7                         | MEAN+S.D.                 | 44.5 ± 4.5  | 42.6 + 9.6                 | 43.7 ± 4.5                 | 44.2 ± 4.0                 | 44.9 ± 3.4                 |
| DAYS 7-10                         | MEAN <u>+</u> S.D.        | 44.2 ± 2.0  | 42.0 + 7.4                 | 42.4 ± 3.7                 | 36.7 ± 14.9                | 20.2 ± 11.0                |
| DAYS 10-13                        | MEAN+S.D.                 | 42.0 ± 4.1  | 38.1 ± 10.8                | 38.0 + 7.4                 | 32.0 ± 16.5                | [ 6]<br>11.8 ± 14.8        |
| DAYS 13-16                        | MEAN <u>+</u> S.D.        | 40.2 ± 4.3  | 32.9 ± 12.8                | 26.9 ± 13.8                | 20.7 ± 19.7                | [ 6]<br>3.4 ± 5.2          |
| DAYS 16-20                        | MEAN+S.D.                 | 40.1 ± 2.7  | 33.9 ± 14.1                | 28.2 ± 10.9                | 18.0 ± 21.3                | 0.6 ± 0.2                  |
| DAYS 20-24                        | HEAN+S.D.                 | 37.4 ± 5.6  | 34.4 + 7.3<br>[ 6]         | 37.4 + 7.2                 | 29.2 ± 16.7                | [ 5]<br>11.9 ± 18.3 ;      |
| DAYS 24-29                        | HEAN+S.D.                 | 24.8 ± 12.3 | 22.6 + 11.6                | 32.6 + 9.2                 | [ 5]<br>38.0 <u>+</u> 8.9  | [ 3]<br>41.8 ± 0.0         |
| DAYS 20-29                        | HEAN <u>+</u> S.D.        | 30.2 ± 8.7  | [ 7]<br>26.5 ± 9.8<br>[ 7] | [ 7]<br>34.7 + 8.0<br>[ 7] | [ 5]<br>38.1 ± 6.0<br>[ 5] | [ ]]<br>38.1 + 0.0<br>[ ]] |

Table 2.6.6.2.1-17: Maternal feed consumption in g/kg of body weight- summary

DAYS refers to the days of gestation.

[ ] = Number of values averaged when fewer than the number of rabbits pregnant per group. a. Test substance was administered on days 7-19 of presumed gestation.

b. This table is restricted to pregnant rabbits.

★ Significantly different from vehicle control value, at P<0.05. ★★ Significantly different from vehicle control value, at P<0.01.</p>

| Table 2.6.6.2.1-18: Selected results in pregnant rabbits exposed to clethodim technical via oral gavage on gestational days  |
|------------------------------------------------------------------------------------------------------------------------------|
| Table 2.0.0.2.1-10. Selected results in pregnant rabbits exposed to clethounin technical via oral gavage on gestational days |
| 7-19                                                                                                                         |
| 1-1)                                                                                                                         |

| 7-19<br>Parameter          | Vehicle control    | 50 mg/kg        | 150 mg/kg           | 300 mg/kg   | 500 mg/kg   |
|----------------------------|--------------------|-----------------|---------------------|-------------|-------------|
|                            |                    | bw/day          | bw/day              | bw/day      | bw/day      |
| Number of does             | 8                  | 8               | 8                   | 8           | 8           |
| Number of pregnant does    | 7                  | 8               | 8                   | 7           | 7           |
| Abortions                  | 0                  | 0               | 0                   | 0           | 4**         |
| Naturally delivered        | 0                  | 0               | 0                   | 0           | 1 (day 27)  |
| Mortality                  | 0                  | 0               | 0                   | 2           | 2           |
| Clinical signs             |                    |                 |                     |             |             |
| Dried faeces23             | 0/0                | 1/8             | 3/3                 | 5**/32      | 7**/71**    |
| Soft or liquid faeces23    | 1/1                | 1/2             | 2/5                 | 2/4         | 0/0         |
| Alopecia23                 | 4/17               | 4/25            | 4/33*               | 3/32*       | 4/44**      |
| Red substance in pan23     | 1/1                | 0/0             | 0/0                 | 0/0         | 1/1         |
| Necropsy observations      |                    |                 |                     |             |             |
| Paraovarian cyst(s)        | 5                  | 4               | 4                   | 6           | 7           |
| Haemorrhagic lungs         | 0                  | 0               | 0                   | 0           | 1           |
| Ulcerations in             | 0                  | 0               | 0                   | 0           | 3           |
| cardiac or pyloric regions |                    |                 |                     |             |             |
| of the stomach             |                    |                 |                     |             |             |
| Hairball present in        | 0                  | 0               | 0                   | 2           | 2           |
| stomach                    |                    |                 |                     |             |             |
| Liver weight (g)           | 111                | 107             | 116 (↑5%)           | 132 (†19%)  | 133 (↑20%)  |
| Relative liver weight (%   | 2.55               | 2.61            | 2.76 (†8%)          | 3.13 (†23%) | 3.03 (†19%) |
| of body weight)            |                    |                 |                     |             |             |
| Reproductive endpoints in  | animals pregnant a | nd delivered by | c-section on day 29 |             |             |
| Number of does             | 7                  | 8               | 8                   | 5           | 1           |
| Maternal body weight,      | 4.34               | 4.11            | 4.20                | 4.22        | 4.41        |
| day 29 (kg)                |                    |                 |                     |             |             |
| Maternal body weight       | +0.31              | +0.14           | +0.19               | +0.11       | +0.09       |
| gain, day 7-29 (kg)        |                    |                 |                     |             |             |
| Corrected maternal body    | 3.89               | 3.68            | 3.82                | 3.75        | 3.97        |
| weight1 (kg)               |                    |                 |                     |             |             |
| Corrected maternal body    | +0.08              | -0.08           | +0.02               | -0.09       | -0.07       |
| weight gain1, day 0-29     |                    |                 |                     |             |             |
| (kg)                       |                    |                 |                     |             |             |

| Parameter                         | Vehicle control | 50 mg/kg<br>bw/day | 150 mg/kg<br>bw/day | 300 mg/kg<br>bw/day | 500 mg/kg<br>bw/day |
|-----------------------------------|-----------------|--------------------|---------------------|---------------------|---------------------|
| Corpora lutea                     | 10.3            | 10.4               | 9.0                 | 10.4                | 11.0                |
| Implantations                     | 7.0             | 7.1                | 5.9                 | 8.0                 | 9.0                 |
| Litter size                       | 6.7             | 7.1                | 5.9                 | 6.6                 | 9.0                 |
| Number of live/dead               | 47/0            | 57/0               | 47/0                | 33/0                | 9/0                 |
| foetuses                          |                 |                    |                     |                     |                     |
| Resorptions                       | 0.3             | 0                  | 0                   | 1.4                 | 0                   |
| Does with resorptions             | 1/7             | 0/8                | 0/8                 | 2/5                 | 0/1                 |
| Live foetal body<br>weight/litter | 49.17           | 43.15              | 48.77               | 42.90 (↓13%)        | 33.52 (↓32%)        |

#### Table 2.6.6.2.1-19: Animals that died during the study:

| Exposure          | Time of death        | Signs prior to death                                                                                                                                                                   | Necropsy results                                                                                                                                                                                        | State of pregnancy                                                                                                                                                                                                                                                                            |
|-------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (mg/kg<br>bw/day) | (gestational<br>day) |                                                                                                                                                                                        |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                               |
| 300               | 21                   | Weight loss (day 7-20),<br>reduced food<br>consumption, solid or<br>liquid faeces (days 19-<br>20)                                                                                     | Hairball in the stomach<br>and dilated, blood-filled<br>intestinal blood vessels                                                                                                                        | One early resorption and five<br>foetuses that appeared to have<br>been alive and normal for their<br>developmental ages                                                                                                                                                                      |
| 300               | 26                   | Persistent weight loss<br>(from day 10), reduced<br>food consumption, dried<br>faeces (day 17-23), no<br>faeces (day 24-25).                                                           | Small hairball present in stomach and paraovarian cysts.                                                                                                                                                | Two early and two late<br>resorptions and nine foetuses that<br>appeared to have been alive and<br>normal for their developmental<br>ages                                                                                                                                                     |
| 500               | 8                    | Convulsions occur<br>within approximately<br>seven minutes after<br>intubation: the rabbit<br>died within 15 minutes<br>of intubation. Weight<br>loss and reduced food<br>consumption. | Haemorrhagic lungs.<br>The haemorrhagic lungs<br>may have resulted from<br>convulsive activity: test<br>substance was present in<br>the stomach and not<br>apparent in the lungs.<br>Paraovarian cysts. | Six embryos that appeared alive<br>and normal for their<br>developmental ages at the time of<br>maternal death.                                                                                                                                                                               |
| 500               | 20                   | Weight loss (day 7-19),<br>reduced food<br>consumption, dried<br>faeces (day 13-19),                                                                                                   | Paraovarian cysts,<br>numerous ulcerations<br>(>20<40) in the gastric<br>pylorus and a hairball<br>present in the stomach.                                                                              | Red substance, assumed to be<br>blood and a sign of abortion, was<br>observed in the cage pan on the<br>day death occurred. Five late<br>resorptions and one empty<br>implantation site: the conceptus<br>from this site was presumed to<br>have been aborted and<br>cannibalized by the doe. |

#### Developmental toxicity study in rabbits (Report No.: S-2869):

In the developmental rabbit study, inseminated rabbits were administered 0, 25, 100, or 300 mg/kg bw per day (equal to 0, 20.8, 83.3 and 250 mg/kg bw/day after correction for purity). Maternal toxicity was observed in the top two doses (83.3 and 250 mg/kg bw/day). Reduced food consumption and body weight gain, along with dried faeces were observed in the does; effects similar to those in the rat. Observations of a red substance in the pan was made in the highest dose group (250 mg/kg bw/day; observed in 2 rabbits on three days), something that was also observed in the rat. In the rat developmental study this was interpretated as a sign of abortion; however, since no rabbits in the high group aborted it may be a sign of rectal irritation and bleeding. In addition, uterine weight in the highest exposure group was 10% lower than that of the control.

| 7-19                                                               |                 |                 | -                        | •                                                         |
|--------------------------------------------------------------------|-----------------|-----------------|--------------------------|-----------------------------------------------------------|
| Parameter                                                          | Vehicle control | 25 mg/kg bw/day | 100 mg/kg bw/day         | 300 mg/kg bw/day                                          |
| Number of does inseminated                                         | 19              | 20              | 20                       | 20                                                        |
| Number of pregnant does                                            | 19              | 18              | 17                       | 17                                                        |
| Abortions                                                          | 0               | 1               | 0                        | 0                                                         |
| Mortality                                                          | 0               | 0               | 1                        | 0                                                         |
| Naturally delivered                                                | 0               | 0               | 0                        | 0                                                         |
| Body weight and weight change <sup>1</sup>                         | 1               | 1               | 1                        | 1                                                         |
| Body Weight, day 0                                                 | 3.58            | 3.45            | 3.64                     | 3.50                                                      |
| Body Weight, day 20                                                | 3.93            | 3.73            | 3.84                     | 3.60*                                                     |
| Body Weight, day 29                                                | 4.02            | 3.84            | 3.90                     | 3.84                                                      |
| Corrected body weight <sup>2</sup> , day 29                        | 3.58            | 3.43            | 3.46                     | 3.45                                                      |
| Days 0-7                                                           | 0.16±0.06       | 0.15±0.10       | 0.14±0.07                | 0.20±0.10                                                 |
| Days 7-10                                                          | 0.01±0.06       | 0.02±0.05       | 0.01±0.05                | 0.01±0.04                                                 |
| Days 10-13                                                         | 0.06±0.08       | 0.03±0.04       | 0.04±0.06                | 0.01±0.09                                                 |
| Days 13-16                                                         | 0.09±0.06       | 0.05±0.05       | 0.02±0.10                | 0.05±0.10**<br>(↓44%)                                     |
| Days 16-20                                                         | 0.02±0.08       | 0.03±0.08       | 0.01±0.08[16]            | -0.02±0.12                                                |
| Days 20-24                                                         | 0.05±0.07       | 0.08±0.06[17]   | 0.05±0.08[16]            | 0.13±0.11                                                 |
| Days 24-29                                                         | 0.04±0.08       | 0.04±0.12[17]   | 0.01±0.10[16]            | 0.11±0.06                                                 |
| Days 20-29                                                         | 0.09±0.10       | 0.11±0.13[17]   | 0.06±0.13[16]            | 0.24±0.13**<br>(†167%)                                    |
| Days 7-20                                                          | 0.18±0.11       | 0.13±0.10       | 0.05±0.21[16]            | -0.10±0.27**<br>(↓156%)                                   |
| Days 7-29                                                          | 0.28±0.14       | 0.24±0.13[17]   | 0.11±0.20[16]            | 0.14±0.19                                                 |
| Days 0-29                                                          | 0.44±0.18       | 0.39±0.19[17]   | 0.24±0.23[16]            | 0.34±0.23                                                 |
| Days 0-29(corrected) <sup>2</sup>                                  | 0.00±0.20       | -0.01±0.20[17]  | -0.20±0.22[16]           | -0.06±0.28                                                |
| Food consumption <sup>1</sup> (g/day)                              | 0.00±0.20       | 0.01±0.20[17]   | 0.20±0.22[10]            | 0.00±0.20                                                 |
| Days 0-7                                                           | 172.5±11.4      | 163.4±21.6      | 165.3±15.2 (↓4%)         | 167.6±17.7 (↓3%)                                          |
| Days 7-10                                                          | 167.9±14.5      | 162.2±20.0[17]  | 154.9±24.2 (↓8%)         | $151.6\pm24.5(\downarrow10\%)$                            |
| Days 10-13                                                         | 163.7±17.5      | 152.9±28.8      | 141.6±31.6 (↓14%)        | $127.6\pm46.6*$<br>( $\downarrow 22\%$ )                  |
| Days 13-16                                                         | 161.1±22.0      | 147.5±36.2      | 126.0±58.3 (↓22%)        | $(\downarrow 2270)$<br>96.8±66.0**<br>$(\downarrow 40\%)$ |
| Days 16-20                                                         | 156.4±28.8      | 145.8±41.8      | 129.3±62.3[16]<br>(↓17%) | 98.3±69.2**<br>(↓37%)                                     |
| Days 20-24                                                         | 143.4±36.5      | 147.8±24.1[16]  | 135.6±43.5[15]<br>(↓5%)  | 133.4±44.7 (↓7%)                                          |
| Days 24-29                                                         | 106.6±36.5[18]  | 108.2±38.6[17]  | 90.8±41.0[15]<br>(↓15%)  | 137.8±31.0 (†29%)                                         |
| Days 20-29                                                         | 122.7±33.4[18]  | 126.2±25.1[17]  | 110.3±38.0[15]<br>(↓10%) | 135.9±32.9 (†11%)                                         |
| Days 7-20                                                          | 161.8±18.0      | 151.8±30.5      | 137.8±44.2[16]<br>(↓15%) | 116.9±48.8**<br>(↓28%)                                    |
| Days 7-29                                                          | 145.9±19.9[18]  | 140.6±23.2[17]  | 125.1±38.5[15]<br>(↓14%) | 124.7±39.0 (↓15%)                                         |
| Days 0-29                                                          | 152.5±16.2[18]  | 145.9±21.7[17]  | 134.4±32.1[15]<br>(↓12%) | 135.0±30.8 (↓11%)                                         |
| Clinical observations <sup>34</sup>                                |                 |                 |                          |                                                           |
| Dried faeces                                                       | 2/2             | 1/1             | 3/18                     | 5/49**                                                    |
| Soft or liquid faeces                                              | 2/11            | 2/3**           | 6/15                     | 3/13                                                      |
| Alopecia                                                           | 14/179          | 11/96**         | 11/150                   | 10/112**                                                  |
| Red substance in pan                                               | 0/0             | 0/0             | 0/0                      | 2/3**                                                     |
| Necropsy results                                                   |                 |                 |                          |                                                           |
| Paraovarian cyst(s)                                                | 12              | 10              | 7                        | 10                                                        |
| Ulcerations on fundic region of the stomach                        | 0               | 0               | 1                        | 0                                                         |
| External abscess on neck                                           | 0               | 0               | 1                        | 0                                                         |
| Liver: papillary process appears<br>white in color. Numerous white | 0               | 1               | 0                        | 0                                                         |
| areas<br>located on each lobe                                      |                 |                 |                          |                                                           |
| Ulcerated area on external surface of the gall bladder             | 0               | 1               | 0                        | 0                                                         |
|                                                                    |                 |                 |                          |                                                           |

 Table 2.6.6.2.1-20: Selected results in pregnant rabbits exposed to clethodim technical via oral gavage on gestational days

 7-19

| Parameter                                      | Vehicle control     | 25 mg/kg bw/day       | 100 mg/kg bw/day | 300 mg/kg bw/day |
|------------------------------------------------|---------------------|-----------------------|------------------|------------------|
| Red fluid-like substance in uterus             | 0                   | 0                     | 1                | 0                |
| Agenesis of the left uterine horn              | 0                   | 0                     | 0                | 1                |
| <b>Reproductive and fetal endpoints</b>        | in animals pregnant | and delivered by c-se | ction on day 29  |                  |
| Number of does                                 | 19                  | 17                    | 16               | 17               |
| Uterine weight (g)                             | 440.88              | 404.34                | 443.91           | 395.48 (↓10%)    |
| Corpora lutea                                  | 9.6                 | 8.8                   | 10.6             | 11.4             |
| Implantations                                  | 8.3                 | 6.9                   | 7.8              | 7.1              |
| Litters evaluated                              | 19                  | 17                    | 16               | 17               |
| Litter size                                    | 7.3                 | 6.8                   | 7.3              | 6.5              |
| Number of foetuses evaluated <sup>5</sup>      | 140                 | 115                   | 117              | 111              |
| Number of live/dead foetuses <sup>5</sup>      | 139/1               | 114/1                 | 117/0            | 111/0            |
| Resorptions                                    | 0.9                 | 0.2                   | 0.4              | 0.6              |
| Does with any resorptions                      | 9                   | 3                     | 6                | 8                |
| Live foetal body weight/litter                 | 44.87               | 44.21                 | 43.81            | 44.54            |
| Live foetal body weight/litter – males         | 45.856              | 44.96                 | 44.53            | 43.586           |
| Live foetal body weight/litter –<br>females    | 44.01               | 13.54                 | 43.38            | 44.86            |
| Percent dead or resorbed<br>conceptuses/litter | 11.9                | 4.4                   | 6.1              | 6.3              |

This table is restricted to pregnant rabbits. Days refer to the days of gestation.

\* p<0.05 different from control; \*\* p<0.01 different from control

<sup>1</sup>[] = Number of values averaged when different from number of pregnant does.

<sup>2</sup> Body weight minus gravid uterus weight

 $^{3}$  / = rabbits/days

<sup>4</sup> Maximum incidences (rabbits/days) are 20/460, 20/453, 20/448, and 20/460 for the 0 (vehicle) ,50, 150, 300, and 500 mg/kg/day dosage groups, respectively.

<sup>5</sup> Observations for dead conceptuses were excluded from statistical analyses

<sup>6</sup> One control and one high dose litter contained no males

Foetal effects in the rabbits were not very pronounced but observed at a maternal dose of 250 mg/kg bw/day. The incidences of misaligned sutures (fontanelle) and nasal irregular ossification were higher compared with the control: the foetal incidence of misaligned sutures was 3.6% in the high dose group and not observed in any control foetus, while the foetal incidence of nasal irregular ossification was 6.3% (statistically significant increase) compared with the 2.2% in the concurrent control and the 0.24% in the historical control. Angulation of the hyoid alae was noted in 6.3% of the high dose foetuses and 1.4% of the control foetuses (mean historical control incidence: 1.29%), an increase that reached statistical significance. While this is a common observation in rabbit foetuses, considering that the incidence was higher than both the concurrent and the historical control, it might have been exacerbated by the treatment. The overall incidence of foetuses with any alterations was 18.7%, 19.3%, 23.9%, and 23.4% in the control, low, mid, and high dose groups, respectively. The same dose in the pilot study, i.e. 250 mg/kg bw, caused a reduction in foetal body weight ( $\downarrow 13\%$ , sexes combined – similar trend in both sexes) and increased resorptions. This was not observed in the full developmental study, in which the foetal body weight was slightly reduced in males ( $\downarrow 5\%$ ) and slightly increased in females ( $\uparrow 2\%$ ).

In both developmental studies, the developmental pilot (rabbit), and the two-generation studies, foetal effects were observed; however, only in the presence of maternal toxicity, making the distinction between direct and indirect effects on the foetus unclear. Post-natal growth was reduced in the 5-week study in rats ( $\geq$ 500 ppm) at doses where the dams were unaffected, but this was not observed in the full 2-generation study on rats.

The lowest developmental LOAEL was observed in the rabbit and was 250 mg/kg bw/day. At this dose a reduction in foetal body weight and an increased number of resorptions were observed in the pilot, and incidences of misaligned sutures (fontanelle), nasal irregular ossification, and angulation of the hyoid alae were increased in the

main developmental study. The NOAELs of those studies were 83.3 mg/kg bw/day (main) and 125 mg/kg bw/day (pilot). Maternal toxicity was present at the developmental LOAEL (reduced food consumption and body weight gain, along with dried faeces). Deviations from OECD 414 (2001; the 2018 update is not applicable to rabbits): the exposure period ended at day 19 instead of the day prior to termination (shorter exposure period). This does not invalidate the study. The study is considered acceptable.

## 2.6.6.2.2 Comparison with the CLP criteria regarding adverse effects on development

Regulation 1272/2008 (CLP) states that "Developmental toxicity includes, in its widest sense, any effect which interferes with normal development of the conceptus, either before or after birth, and resulting from exposure of either parent prior to conception, or exposure of the developing offspring during prenatal development, or postnatally, to the time of sexual maturation. However, it is considered that classification under the heading of developmental toxicity is primarily intended to provide a hazard warning for pregnant women, and for men and women of reproductive capacity. Therefore, for pragmatic purposes of classification, developmental toxicity essentially means adverse effects induced during pregnancy, or as a result of parental exposure. These effects can be manifested at any point in the life span of the organism. The major manifestations of developmental toxicity include (1) death of the developing organism, (2) structural abnormality, (3) altered growth, and (4) functional deficiency."

| Table 2.6.6.2 | .2-1. Hazard categories for reproductive toxicants (corresponding to table 3.7.1(a) in regulation 1272/2008) |
|---------------|--------------------------------------------------------------------------------------------------------------|
| <b>C</b> ,    |                                                                                                              |

| Category | Description                                                                                                       |
|----------|-------------------------------------------------------------------------------------------------------------------|
| 1        | Known or presumed human reproductive toxicant.                                                                    |
|          | Substances are classified in Category 1 for reproductive toxicity when they are known to have produced an         |
|          | adverse effect on sexual function and fertility, or on development in humans or when there is evidence from       |
|          | animal studies, possibly supplemented with other information, to provide a strong presumption that the            |
|          | substance has the capacity to interfere with reproduction in humans. The classification of a substance is further |
|          | distinguished on the basis of whether the evidence for classification is primarily human data (Category 1A) or    |
|          | from animal data (Category 1B).                                                                                   |
| 1A       | Known human reproductive toxicant.                                                                                |
|          | The classification of a substance in Category 1A is largely based on evidence from humans.                        |
| 1B       | Presumed human reproductive toxicant.                                                                             |
|          | The classification of a substance in Category 1B is largely based on data from animal studies. Such data shall    |
|          | provide clear evidence of an adverse effect on sexual function and fertility or on development in the absence     |
|          | of other toxic effects, or if occurring together with other toxic effects the adverse effect on reproduction is   |
|          | considered not to be a secondary non-specific consequence of other toxic effects. However, when there is          |
|          | mechanistic information that raises doubt about the relevance of the effect for humans, classification in         |
|          | Category 2 may be more appropriate.                                                                               |
| 2        | Suspected human reproductive toxicant.                                                                            |
|          | Substances are classified in Category 2 for reproductive toxicity when there is some evidence from humans or      |
|          | experimental animals, possibly supplemented with other information, of an adverse effect on sexual function       |
|          | and fertility, or on development, and where the evidence is not sufficiently convincing to place the substance    |
|          | in Category 1. If deficiencies in the study make the quality of evidence less convincing, Category 2 could be     |
|          | the more appropriate classification. Such effects shall have been observed in the absence of other toxic effects, |
|          | or if occurring together with other toxic effects the adverse effect on reproduction is considered not to be a    |
|          | secondary non-specific consequence of the other toxic effects.                                                    |

In the rat developmental study, foetal effects were observed at the highest dose including reduced litter size, post implantation loss, reduced foetal weight, increase in tail defects and reduced ossification in the presence of marked maternal toxicity including 20% mortality. The foetal effects are considered to be secondary to the maternal toxicity according to the CLP criteria as there is maternal mortality greater than 10% (criteria chapter 3.7.2.4.4). At the dose of 350 mg/kg bw/day, the foetal effects were limited to reduced foetal weight and reduced ossification. The dams at

this dose levels showed maternal toxicity in the form of reduced body weight and bodyweight gain and clinical effects. The limited foetal toxicity is of limited severity and considered to be secondary to the maternal toxicity. The maternal mortality observed in this study was considered relevant for STOT-RE 2 (refer to section 2.6.3).

There were developmental effects in the studies described above; however, the effects were generally observed at doses that caused maternal toxicity. As is stated in under category 2 in the table above, "Such effects shall have been observed in the absence of other toxic effects, or if occurring together with other toxic effects the adverse effect on reproduction is considered not to be a secondary non-specific consequence of the other toxic effects.". The effects observed included reduced foetal weight, increased number of resorptions, certain external and visceral malformations, and retarded/altered ossification processes – these types of effects can be caused by maternal toxicity. In one study, the number of foetuses per litter and the number of litters with viable pups were reduced but these effects occurred at a dose with severe maternal toxicity (including mortality). Pup weight and pup weight gain was reduced in a 5-week study on rats, but this was not evident in the full 2-genaration study despite overlapping doses.

In the main two-generation study (Report S-2758), an increase in the number of stillborn F1 pups was observed (14 pups which corresponds to 3.8% of the delivered pups in the highest treatment group compared with 2 pups, i.e. 0.7%, in the control group). The number of F0 females with at least one stillborn pup was 7 (25%) in the 2500 ppm group and 2 (9.1%) in the control group. The number of stillborn F2 pups in the control group was 7 (2.7%), indicating that the control value in the F1 generation may be in the lower range of the spectrum. No increase in stillborn F2 pups was observed. Historical control data was not provided but the applicant refers to a historical value of 9 stillborn pups from 6 litters cited from one control group in a different 2-generation study performed earlier by the same laboratory. The effect increased with dose however the lack of effect in the F2 pups and the higher control value in the F1 generation indicate that this may be incidental. The toxicological significance is thus unclear, and data is not considered to provide convincing evidence to fulfil criteria for classification of the substance in category 2.

# 2.6.6.3 Adverse effects on or via lactation [equivalent to section 10.10.7 of the CLH report template]

| Table 05: Summary                                                          | Table 05: Summary table of ammar studies on effects on or via factation. |                                 |           |  |  |
|----------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------|-----------|--|--|
| Method, guideline,                                                         | Test substance, dose                                                     | Results                         | Reference |  |  |
| deviations if any,                                                         | levels duration of                                                       | - NOAEL/LOAEL                   |           |  |  |
| species, strain,                                                           | exposure                                                                 | - target tissue/organ           |           |  |  |
| sex, no/group                                                              |                                                                          | - critical effects at the LOAEL |           |  |  |
|                                                                            |                                                                          |                                 |           |  |  |
| No specific study available. Refer to assessment above at section 2.6.6.1. |                                                                          |                                 |           |  |  |

## Table 63: Summary table of animal studies on effects on or via lactation.

#### Table 64: Summary table of human data on effects on or via lactation.

| Type of        | Test              | <b>Relevant information about</b> | Observations | Reference |  |
|----------------|-------------------|-----------------------------------|--------------|-----------|--|
| data/report    | substance         | the study (as applicable)         |              |           |  |
| No data availa | No data available |                                   |              |           |  |

Table 65: Summary table of other studies relevant for effects on or via lactation.

| Type of<br>study/data | Test<br>substance | Relevant information about<br>the study (as applicable) | Observations | Reference |  |  |
|-----------------------|-------------------|---------------------------------------------------------|--------------|-----------|--|--|
| No data availa        | No data available |                                                         |              |           |  |  |

# **2.6.6.3.1** Short summary and overall relevance of the provided information on effects on or via lactation

In the reproductive pilot study in rats, combined pup weight at day 7 but not day 0 and combined pup weight gain (day 0-7) were reduced in one all exposure groups (500-5000 ppm; 416.2-4162 ppm when corrected for purity; doses not corrected for dietary intake). This could be attributed to exposure via the breastmilk or a reduction of milk quality but since they were also exposed in utero this cannot be established. In addition, the 2-generation rat study did not indicate any effects on the pups via lactation (the only effect on the pups that was observed was an increased number of stillborn pups at 2500 ppm, a dose level that corresponded to 133.7 mg/kg bw/day in the F0 generation after correction for dietary intake).

There are no epidemiological studies assessing any potential effect of clethodim on lactation/breastmilk or effects when exposure occurs via breastmilk.

## 2.6.6.3.2 Comparison with the CLP criteria regarding effects on or via lactation

In regulation (EC) No 1272/2008, it is stated that "Effects on or via lactation are allocated to a separate single category. It is recognised that for many substances there is no information on the potential to cause adverse effects on the offspring via lactation. However, substances which are absorbed by women and have been shown to interfere with lactation, or which may be present (including metabolites) in breast milk in amounts sufficient to cause concern for the health of a breastfed child, shall be classified and labelled to indicate this property hazardous to breastfed babies. This classification can be assigned on the: (a) human evidence indicating a hazard to babies during the lactation period; and/or (b) results of one or two generation studies in animals which provide clear evidence of adverse effect in the offspring due to transfer in the milk or adverse effect on the quality of the milk; and/or (c) absorption, metabolism, distribution and excretion studies that indicate the likelihood that the substance is present in potentially toxic levels in breast milk."

It is not possible from the available information (reproductive pilot + 2-generation rat study) to assess effects specifically on the quality of the breast milk or whether the observed effects in the pilot study were induced by exposure via the breast milk.

There is not enough evidence to determine if classification for effects on or via lactation is necessary. No classification is suggested.

## 2.6.6.4 Conclusion on classification and labelling for reproductive toxicity.

Clethodim does not meet the criteria in regulation (EC) No. 1272/2008 (CLP) for classification for reproductive toxicity.

## 2.6.7 Summary of neurotoxicity

| Method, guideline, deviations                             |                                                | Results:                                             | Reference       |
|-----------------------------------------------------------|------------------------------------------------|------------------------------------------------------|-----------------|
| if any, species, strain, sex,                             | levels duration of                             | - NOAEL/LOAEL                                        |                 |
| no/group                                                  | exposure                                       | - target tissue/organ<br>-critical effect at LOAEL   |                 |
|                                                           |                                                | Bold text=adverse effect                             |                 |
| An Oral (Gavage) Acute                                    | Clethodim TG                                   | NOAEL neurotoxicity: 1000 mg/kg bw                   |                 |
| Neurotoxicity Study of                                    |                                                | itoritte neurotoxicity. 1000 ing/kg ow               | (2012)          |
| Clethodim in Rats                                         | Purity:                                        | NOAEL systemic toxicity: 100 mg/kg bw                | (===)           |
|                                                           | 95.4%                                          |                                                      | Report          |
| Guidelines followed: OPPTS                                |                                                |                                                      | number:         |
| 870.6200 (1998)                                           | Oral gavage, single dose                       | Effects at 100 mg/kg bw:                             | WIL-194041      |
| OECD 424 (1997)                                           |                                                | - reduced foot splay in males (not statistically     |                 |
|                                                           | 15 days                                        | significant)                                         | Vol. 3.         |
| Deviations from current                                   | D                                              |                                                      | B.6.7.1.1       |
| guidelines: None                                          | <u>Doses:</u><br>0, 10, 100 and 1000           | Effects at 1000 mg/kg bw:                            | New data for    |
| Species: Rat                                              | mg/kg bw                                       | - clinical signs (↑ soiled fur on day 0 in females,  | renewal:        |
| Strain: Charles River CD <sup>®</sup>                     | ilig/kg Uw                                     | one of these animals also displayed slight           | Yes             |
| (Sprague-Dawley)                                          |                                                | salivation)                                          | 105             |
| ( <b>1</b> ( <b>0 1 1 1 1 1 1 1 1 1 1</b>                 |                                                | $\downarrow$ transient locomotor activity (total and |                 |
| 3 treatment groups and a                                  |                                                | ambulatory counts) in females on day 0 (stat.        |                 |
| control group of 12                                       |                                                | sign. in first 10 min interval) (considered          |                 |
| rats/sex/group                                            |                                                | connected to general toxicity at this group)         |                 |
|                                                           |                                                | - reduced foot splay in males (statistically         |                 |
| GLP                                                       |                                                | significant at day 7)                                |                 |
|                                                           |                                                |                                                      |                 |
| Acceptable                                                |                                                |                                                      |                 |
| A 28-Day Dietary Dose                                     | Clethodim TG                                   | No NOAEL was set in the study*                       | (2012)          |
| Range-Finding Neurotoxicity<br>Study of Clethodim in Rats | Purity:                                        | Effects at 5000 ppm:                                 | (2012)          |
| Study of Clethounn in Rats                                | 95.4%                                          | $\downarrow$ mean body weights (Day 28: males:15%,   | Report          |
| Guidelines followed: None                                 | 20.170                                         | females: 5%)                                         | number:         |
| (dose range finding study)                                | Exposure via the diet                          | ↓mean bodyweight gain (Day 0-28: males:              | WIL-194039      |
|                                                           | 1                                              | 30%, females: 21% n.s (first week (48%))             |                 |
| Deviations from 424 (1997):                               | Doses:                                         | ↓brain weight in males, 4%)                          | Vol. 3.         |
| - fewer animals (5/sex instead                            | 0, 500, 1500 or 5000                           |                                                      | B.6.7.1.2       |
| of 10)                                                    | ppm (equal to 0, 45, 132,                      |                                                      |                 |
| - histopathological                                       | and 441 mg/kg/day for                          |                                                      | New data for    |
| examination not performed                                 | ♂, 0, 51, 155, and 475 mg/kg bw per day for ♀) |                                                      | renewal:<br>Yes |
| - FOB performed only during week 3                        | (it is not clear whether                       |                                                      | ies             |
| - haematology and clinical                                | the results from the                           |                                                      |                 |
| biochemistry parameters were                              | chemical analysis was                          |                                                      |                 |
| not assessed.                                             | used to calculate these                        |                                                      |                 |
|                                                           | values or if only feed                         |                                                      |                 |
| Species: Rat                                              | consumption was used)                          |                                                      |                 |
| Strain: Crl:CD(SD) (Sprague-                              |                                                |                                                      |                 |
| Dawley)                                                   |                                                |                                                      |                 |
| 2 transformant 1                                          |                                                |                                                      |                 |
| 3 treatment groups and a control group of 5               |                                                |                                                      |                 |
| rats/sex/group                                            |                                                |                                                      |                 |
| Tats/sex/gloup                                            |                                                |                                                      |                 |
| GLP                                                       |                                                |                                                      |                 |
|                                                           |                                                |                                                      |                 |
| Supportive                                                |                                                |                                                      |                 |
| A 90-Day Oral Dietary                                     | Clethodim TG                                   | NOAEL systemic toxicity: 1500 ppm (94 mg/kg          |                 |
| Neurotoxicity Study of                                    |                                                | bw/d for males and 115 mg/kg bw/d for females)       | (2012)          |
| Clethodim in Rats                                         | Lot/batch: AS 506r                             |                                                      |                 |
|                                                           | D :                                            | NOAEL neurotoxicity: 5000 ppm (331 mg/kg             | Report          |
| Guidelines followed: OPPTS                                | Purity:                                        | bw/d for males and 380 mg/kg bw/d for females)       | number:         |
| 870.6200 (1998)                                           | 95.4%                                          |                                                      | WIL-194040      |

Table 66: Summary table of animal studies on neurotoxicity.

| Method, guideline, deviations | Test substance, dose                    | Results:                                             | Reference    |
|-------------------------------|-----------------------------------------|------------------------------------------------------|--------------|
| if any, species, strain, sex, | levels duration of                      | - NOAEL/LOAEL                                        |              |
| no/group                      | exposure                                | - target tissue/organ                                |              |
|                               |                                         | -critical effect at LOAEL                            |              |
|                               |                                         | Bold text=adverse effect                             |              |
| Deviations from OECD 424      | Exposure via the diet                   | LOAEL systemic toxicity: 5000 ppm (331 mg/kg         | Vol. 3.      |
| (1997): None                  |                                         | bw/d for males and 380 mg/kg bw/d for females)       | B.6.7.1.3    |
|                               | Doses:                                  |                                                      |              |
| Species: Rat                  | 0, 500, 1500 and 5000                   | LOAEL neurotoxicity: -                               | New data for |
| Strain: Crl:CD(SD) (Sprague-  | ppm (equal to 0, 31, 94                 |                                                      | renewal:     |
| Dawley)                       | and 331 mg/kg bw per                    |                                                      | Yes          |
|                               | day for $3, 0, 38, 115$ and             | Effects at 5000 ppm                                  |              |
| 3 treatment groups and a      | 380 mg/kg bw per day                    | Males:                                               |              |
| control group of 12           | for $\stackrel{\bigcirc}{\downarrow}$ ) | ↓ mean body weight (7-11%)                           |              |
| rats/sex/group                |                                         | $\downarrow$ <b>body weight gain</b> (day 0-91: 16%) |              |
| GLP                           |                                         | Females:                                             |              |
|                               |                                         | $\downarrow$ mean body weight (7-9%)                 |              |
| Acceptable                    |                                         | $\downarrow$ body weight gain (day 0-91: 19%)        |              |
| 1                             |                                         |                                                      |              |
|                               |                                         | No neurotoxic effects                                |              |
|                               |                                         |                                                      |              |

\* Study not suitable for NOAEL setting (low number of animals used and limited parameters investigated

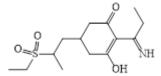
Three neurotoxicity studies of varying length were performed on rats: in the acute neurotoxicity study rats (refer to Vol. 3, B.6.7.1.1) were exposed to 10-1000 mg/kg bw via oral gavage, in a 28-day dose range-finding study (refer to Vol. 3, B.6.7.1.2) the animals were administered 45-441 mg test item/kg bw/day via the diet, and one 90-day study (refer to Vol. 3, B.6.7.1.3) in which the animals were administered 31-380 mg test item/kg bw/day via the diet. All studies are new data for the renewal of active substance.

In the acute study (refer to Vol. 3, B.6.7.1.1), no mortality occurred during the study. The incidence of hair loss on forelimbs was increased in animals in the high dose group, and a larger number of females in the highest dose group (1000 mg/kg bw) had soiled fur on study day 0 compared to the control group; one female in the highest dose group with soiled fur also had slight salivation. This was not observed at later time points. There were no significant differences in body weight or body weight gain between the control and test substance-treated groups. Handling, open field, and sensory parameters were not affected. One male in the low dose (10 mg/kg) group displayed a head flick (a shaking head or backward flip of the head) on study day 14 during the open field test. This was not observed in any other animals or groups and is not considered treatment related. Hindlimb foot splay was decreased in males of the high dose ( $\downarrow$ 8%,  $\downarrow$ 12%,  $\downarrow$ 30, and  $\downarrow$ 24% compared with the control group prior to test initiation, on days 0, 7, and 14, respectively) and middle dose group ( $\downarrow$ 5%,  $\downarrow$ 3%,  $\downarrow$ 20, and  $\downarrow$ 18% compared with the control group prior to test initiation, on days 0, 7, and 14, respectively. The effect was only statistically significant in high dose males on day 7. The motor activity was highly variable within the 10 minute-time intervals and differed largely between individuals and groups at times; however, the cumulative values did not indicate any clear trends in affected motor activity. There was a tendency towards lower activity in females on day 0 (both total and ambulatory activity in the 0-10-minute interval was statistically significantly decreased;  $\downarrow 16\%$ ) but no clear trend was observed. The RMS agrees with the applicant that this may be connected to general toxicity as this group. Soiled fur + slight salivation was observed in one animal. There was no apparent effect on habituation patterns in the treated animals. Therefore, the effects noted in this study are not considered adverse and effect levels thus represent LOEL and NOELs rather than LOAEL and NOAELs. The NOAEL for neurotoxicity was 1000 mg/kg bw, the highest dose tested. NOAEL for systemic toxicity was considered 100 mg/kg bw/day based on soiled fur in females and salivation in one animal. Although salivation was observed in one animal only, this effect was also observed in acute oral toxicity study (Report number: S 2498) in the same strain at 800 mg/kg bw/day, and therefore considered reflecting systemic toxicity rather than neurotoxicity. The study was performed in accordance with OECD 424, and with FIFRA and OECD Good Laboratory Practice (GLP) Standards. The study is considered acceptable.

In the 28-day dietary study (refer to Vol. 3, B.6.7.1.2), no deaths occurred, and no clinical signs stood out in the exposed groups. Body weight and/or body weight gain were affected in all dose groups at one interval or more. The final weight at day 28 was 15 % lower in males of the high dose group, and body weight gain was reduced by 16, 14, and 30 % in the low, middle, and high dose males, respectively. A similar trend was observed in females. The absolute weight was not significantly affected in females (a 5% reduction at the top dose) and the overall body weight gain was reduced by 21% in this group, mainly due to a significant decrease of body weight gained as percent of feed consumed was lower in the 5000 ppm males. No treatment related effects on home cage, handling, sensory or neuromuscular observations, or motor activity were observed. Absolute brain weight, but not liver weight in males, was slightly reduced in the top and lowest dose group ( $\downarrow$ 5% in the low dose and  $\downarrow$  4% in the top dose). No effect on brain weight was observed in middle dose group. The study is considered as supportive data (dose range-finder study) (Report number WIL-194039).

In the 90-day study (refer to Vol. 3, B.6.7.1.3), no mortality occurred, and no clear treatment related clinical signs were observed. Body weights of both sexes were lower in the highest dose group than those of the control group throughout the study (7-11% in males and 7-9% in females). Body weights of the low and middle dose groups were comparable to control weights. Body weight gain in the 5000-ppm group (331 mg/kg bw/d and 380 mg/kg bw/d  $\mathcal{P}$ ) was reduced in both sexes (16% in males and 19% in females) over the entire study period, in general due to lower gains during the first month. Food consumption in males was reduced during the first week, potentially indicating palatability issues, but the consumption per kg bw was similar or slightly higher the rest of the study. In females, the food consumption per kg bw was similar to the control group overall. The functional battery revealed no treatment related effect on home cage, handling, open field, sensory, or neuromuscular observations. Physiological observations included lower body weight in both sexes. No clear treatment related trends were observed in the treated animals. Total and ambulatory motor activity counts for the 5000 ppm group females at the study week 7 evaluation was lower than that of the control. The value was also lower than the HCD and the control value was higher than the HCD. No effects on habituation were observed. There were no effects on liver weight, brain weight, or brain length or width but it is noted that relative weights were not reported. No treatment related changes were noted during necropsy. The study follows OECD TG 424 and is considered acceptable (Report number WIL-194040).

<u>In summation</u>, the test item did not induce much toxicity. No mortality occurred in the studies. Some clinical signs were noted, mainly in the acute study. Some cases of soiled fur and one case of salivation in females of the highest dose group (954 mg/kg bw) during the first week of the acute oral gavage study. Increased incidence of hair loss of the forelimbs occurred in the acute oral gavage study, and a similar tendency (higher total incidence but the same number of animals as the control group) was observed in the high dose (380 mg/kg bw/day) females of the high dose group in the 90-day study. Male body weight and body weight gain was reduced in both the 28- and 90-day studies. Females did not appear as affected. The overall body weight gain was reduced in both studies, mainly due


to a reduction in the beginning of the study (first week in the 28-day study and until day 35 in the 90-day study) with values at the end being similar to those of the controls. Food consumption was not clearly affected in either study. The motor activity seen in the acute toxicity study was highly variable within the 10 minute-time intervals and differed largely between individuals and groups at times; however, the cumulative values did not indicate any clear trends in affected motor activity. There was a tendency towards lower activity in females on day 0 (both total and ambulatory activity in the 0–10-minute interval was statistically significantly decreased;  $\downarrow 16\%$ ) but no clear trend was observed. The RMS agrees with the applicant that this may be connected to general toxicity as this group. Hindlimb foots play was reduced in high dose males in acute study, but not in the two longer studies. The significance of this change and in particular, the direction of change, is unclear. A slight but statistically significant reduction (4%) in absolute brain weight was observed in males exposed to 441 mg/kg bw/day for 28 days. In the absence of other indications in all three studies, the effect noted in the FOB assessments and the motor activity is not considered to indicate a neurotoxic potential of the test substance in rats.

## 2.6.8 Summary of other toxicological studies

## 2.6.8.1 Toxicity studies of metabolites and impurities

Please refer to Vol. 4 for information on impurities.

## 2.6.8.1.1 Clethodim imine sulfone (RE-47719)



| Method, guideline, deviations if any, | Test substance, dose levels      | Results                                  | Reference    |
|---------------------------------------|----------------------------------|------------------------------------------|--------------|
| species, strain, sex, no/group        | duration of exposure             |                                          |              |
| Acute oral toxicity study             | RE-47719                         | LD <sub>50</sub> female rats >1400 mg/kg | Vol.3,       |
|                                       |                                  | bw                                       | B.6.8.1.1/01 |
| GLP: Yes                              | Purity: 98.6%                    |                                          |              |
| Guideline:                            | Lot/batch: SX-1800               |                                          |              |
| 40 CFR 158.135, Pesticide Assessment  |                                  |                                          | (1988a)      |
| Guideline No. 81-1                    | Single dose of 1.4 g/kg          |                                          |              |
|                                       |                                  |                                          | Report No.:  |
| Deviations from OECD TG 401 (1981):   | Vehicle: A solution of 0.7%      |                                          | S-3154       |
| No deviations                         | carboxymethylcellulose (CMC)     |                                          |              |
|                                       | and 1.0% TWEEN 80 in             |                                          |              |
| 5 female Sprague-Dawley rats          | distilled water                  |                                          | New data for |
|                                       |                                  |                                          | the Annex I  |
| Acceptable                            |                                  |                                          | renewal: No  |
|                                       |                                  |                                          |              |
| 5-week oral toxicity study            | RE-47719                         | NOAEL: 1000 ppm (equal to                | Vol.3,       |
|                                       |                                  | 70.9 mg/kg bw/day)                       | B.6.8.1.1/02 |
| GLP: Yes                              | Purity: 99.3% (no certificate of |                                          |              |
|                                       | analysis available)              |                                          |              |

| Method, guideline, deviations if any, species, strain, sex, no/group | Test substance, dose levels<br>duration of exposure      | Results                                             | Reference              |
|----------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|------------------------|
| Guideline: None                                                      | united of Caposult                                       | Effects observed at 100 ppm                         |                        |
| Deviations from OECD TG 407:                                         | Lot/batch: SX-1800                                       | (equal to 6.7 (M) and 7.8 (F)<br>mg/kg bw/day):     | (1988a)                |
| - reactivity to auditory and proprioceptive                          | Target concentrations:                                   | ↓ globulin (M: 17%)                                 |                        |
| stimuli was not determined                                           | 0, 100, 1000 and 8000 ppm                                | ↑ A:G (M: 18%)                                      | Report No.:            |
| - blood clotting time/potential was not                              |                                                          |                                                     | S-3158                 |
| determined                                                           | Achieved concentrations:                                 | Effects observed at 1000 ppm                        |                        |
| - the following organs were not weighed:                             | 80.8, 871 and 7820 ppm                                   | (equal to 70.9 (M) and 83.7                         | New data for           |
| epididymides, prostate + seminal vesicles                            | (corresponding to 0, 6.7, 70.9                           | (F) mg/kg bw/day):                                  | the Annex I            |
| with coagulating spleen, and heart                                   | and 604 mg/kg bw/day for                                 | $\downarrow$ globulin (M: 17%)                      | renewal: No            |
| - histopathological assessment was not                               | males, and 0, 7.8, 83.7 and 723                          | ↑ A:G (M: 15%)                                      |                        |
| performed for the following organs:                                  | mg/kg bw/day for females).                               |                                                     |                        |
| cervix, epididymides, prostate + seminal                             | Duration of anna anna 5 and 1a                           | Effects observed at 8000 ppm                        |                        |
| vesicles with coagulating glands), and                               | Duration of exposure: 5 weeks                            | (equal to $604$ (M) and $723$ (F)                   |                        |
| vagina<br>- highest humidity was slightly above the                  |                                                          | <u>mg/kg bw/day):</u><br>↑ reticulocytes (M: 220%), |                        |
| recommended (78% vs 70%)                                             |                                                          | $\uparrow$ liver absolute and relative              |                        |
| recommended (78% vs 76%)                                             |                                                          | weights (14-19%)                                    |                        |
| 10 Sprague-Dawley rats per sex and dose                              |                                                          | ↑serum cholesterol (M:57%,                          |                        |
| level.                                                               |                                                          | F:27%)                                              |                        |
|                                                                      |                                                          | ↓ ALK (F:32%)                                       |                        |
| Acceptable with limitations                                          |                                                          | ↓ ALT (M: 32%)                                      |                        |
|                                                                      |                                                          | ↑ albumin (M: 9%)                                   |                        |
|                                                                      |                                                          | ↓ globulin (M: 17%)                                 |                        |
|                                                                      |                                                          | ↑ A:G (M: 30%)                                      |                        |
|                                                                      |                                                          | ↑ calcium (M: 5%)                                   |                        |
|                                                                      |                                                          | $\downarrow$ food consumption and bw                |                        |
|                                                                      |                                                          | gain (M: 27%) at day 7, but                         |                        |
| Reverse mutation assay with and without                              | RE-44719                                                 | not at day 14 or 21.<br>RE-44719 does not induce    | Vol.3,                 |
| S9 (Ames test)                                                       | KE-44/17                                                 | mutations in the Salmonella                         | V01.5,<br>B.6.8.1.1/03 |
| S> (Thirds toby)                                                     | Purity: 98.6%                                            | typhimurium (TA1535,                                | 2.0.0.1.1/05           |
| GLP: Yes                                                             |                                                          | TA1537, TA98 and TA100)                             | Machado                |
|                                                                      | Lot/batch: SX-1800                                       | and Escherichia coli                                | (1988)                 |
| Guideline: 40 CFR 158.135, Pesticide                                 |                                                          | (WP2uvrA) in the presence                           |                        |
| Assessment Guideline No. 84-2.                                       | Concentrations:                                          | and absence of a rat liver-                         | Report No.:            |
|                                                                      | 0, 100, 333, 1000, 3333 and                              | derived metabolic activation                        | S-3155                 |
| Deviations from OECD TG 471 (1997):                                  | 10000 µg/plate (+/- S9 mix).                             | system (S9-mix).                                    |                        |
| - no confirmation of bacterial cell density                          |                                                          |                                                     | New data for           |
| at the time of treatment.                                            |                                                          | The test material was slightly                      | the Annex I            |
| A                                                                    |                                                          | cytotoxic at 10 mg/plate to                         | renewal: No            |
| Acceptable                                                           | DE 44710                                                 | TA100 without S-9.                                  | V-12                   |
| Chromosomal aberrations assay in                                     | RE-44719                                                 | RE-44719 does not induce chromosome aberrations in  | Vol.3,<br>B.6.8.1.1/04 |
| Chinese Hamster Ovary (CHO) cells in vitro.                          | Purity 00 30% (stated in the                             | CHO cells under the                                 | <b>Б</b> .0.8.1.1/04   |
| viuo.                                                                | Purity: 99.3% (stated in the analytical report) or 98.6% | conditions tested and was                           | Putnam                 |
| GLP: Yes                                                             | (stated in the protocol). (no                            | partially insoluble in treatment                    | (1988a)                |
| SEI: 105                                                             | certificate of analysis is                               | medium at final                                     | (1)000)                |
| Guideline: 40 CFR 158.135, Pesticide                                 | available)                                               | concentrations of 380 µg/mL                         | Report No.:            |
| Assessment Guideline No. 84-2.                                       |                                                          | and higher.                                         | S-3156                 |
|                                                                      |                                                          |                                                     |                        |
| Deviations from OECD TG 473 (2016):                                  | Lot/batch: SX-1800                                       |                                                     | New data for           |
| - different treatment and fixation times,                            |                                                          |                                                     | the Annex I            |
| only 200 instead of 300 metaphases per                               |                                                          |                                                     | renewal: No            |
| concentration were analysed for                                      | Concentrations:                                          |                                                     |                        |
| chromosomal aberrations                                              | 0, 50, 100, 200 and 400 µg/mL                            |                                                     |                        |
| - no short-term exposure in the absence of                           | (±S9 mix)                                                |                                                     |                        |
| S9 was performed                                                     |                                                          |                                                     |                        |
| - no laboratory historical control data was                          |                                                          |                                                     |                        |
| reported.                                                            |                                                          |                                                     |                        |
| Acceptable with limitations                                          |                                                          |                                                     |                        |
| Oral teratogenicity and developmental                                | RE-47719                                                 | No NOAEL was set in study*                          | Vol.3,                 |
| toxicity screen.                                                     |                                                          |                                                     | B.6.8.1.1/05           |

| Method, guideline, deviations if any,   | Test substance, dose levels    | Results                               | Reference    |
|-----------------------------------------|--------------------------------|---------------------------------------|--------------|
| species, strain, sex, no/group          | duration of exposure           |                                       |              |
|                                         | Purity: 98.6%                  | Effects observed at 100 mg/kg         |              |
| Administration by gavage                |                                | <u>bw/day:</u>                        |              |
|                                         | Lot/batch: SX-1800             |                                       | (1988a)      |
| GLP: Yes                                |                                | Maternal:                             |              |
|                                         | Doses:                         | ↓ bw gain (Days 6-18: 17%)            | Report No .: |
| Guideline: EPA/FIFRA Pesticide          | 0, 10, 100 and 700 mg/kg       |                                       | S-3157       |
| Assessment Guideline 83-3 (Nov 1984).   | bw/day                         |                                       |              |
|                                         |                                | Effects observed at 700               | New data for |
| Deviations from OECD TG 414 (2018):     | Vehicle: aqueous 0.7%          | mg/kg:                                | the Annex I  |
| - only 10 pregnant females were used in | carboxymethyl cellulose and    | Maternal:                             | renewal: No  |
| each dose group                         | 1.0% Tween 80 in deionized     | -clinical signs (excess               |              |
| - no measurement of foetal anogenital   | water                          | salivation and alopecia)              |              |
| distance, thyroid weights and           |                                | ↓ bw gain (Days 6-9: 77%;             |              |
| histopathology and assessment of blood  | Duration of exposure: Day 6 to | Days 6-12: 63%; Days 6-18:            |              |
| thyroid hormone (T4, T3 and TSH)        | 15 of gestation                | 16%)                                  |              |
| concentrations in the maternal animals  |                                | $\downarrow$ FC                       |              |
| rats were exposed from days 6-15 (the   | (maximum of ten dosages)       |                                       |              |
| guideline recommends exposure from      |                                | Foetal:                               |              |
| days 5-15 but also through the entire   |                                | $\downarrow$ foetal body weight (13%) |              |
| period of gestation to the day of       |                                | ↑ incidence of cervical rib           |              |
| caesarean section)                      |                                | (litter incidence: 100%               |              |
|                                         |                                | compared to 10% in control;           |              |
| 10 pregnant female Sprague-Dawley rats  |                                | foetal incidence: 38.5%               |              |
| per dose level.                         |                                | compared to 1.2% in controls)         |              |
|                                         |                                | - delayed sternal ossification        |              |
| Supportive                              |                                |                                       |              |
|                                         |                                |                                       |              |

\* The study is not suitable for NOAEL setting (low number of animals used, limited parameters investigated)

### Results

Clethodim imine sulfone (5-(2-(ethylsulfinyl)propyl)-3-hydroxy-2-(1-iminopropyl) cyclohex-2-en-1- one) is a metabolite found in crops. It was not found in the rat metabolism studies.

All studies with clethodim imine sulfone (RE-47719) were conducted under GLP. The studies were included in the previous EU evaluation (DAR 2005). There are no new data for this metabolite.

The acute oral  $LD_{50}$  of clethodim imine sulfone (RE-47719) was estimated to be >1400 mg/kg bw in female rats and thus higher than clethodim which shows an  $LD_{50}$  of 1133 mg/kg bw in female rats (Vol. 3, B.6.2.1/01). The study was carried out according to OECD TG 401 and considered acceptable (Vol. 3, B.6.8.1.1/01).

Oral administrations of clethodim imine sulfone (RE-47719) to rats at dietary concentrations of 0, 6.7, 70.9 and 604 mg/kg bw/day for males and 0, 7.8, 83.7 and 723 mg/kg bw/day for females for 35-days resulted in a NOAEL of 70.9 mg/kg bw/day based on increased reticulocytes, liver weights and higher serum cholesterol levels noted at 604 mg/kg bw/day. The study was not conducted in accordance with any guideline and the weight of several organs were not determined, histopathology not performed on prostate and epididymides. Further, no blood clotting test or functional observations were performed. The study is therefore considered acceptable with limitations (B.6.8.1.1/02). The NOAEL (70.9 mg/kg bw/day) following 35-day administration of clethodim imine sulfone (RE-47719) is higher compared to the NOAEL (12.5 mg/kg bw/day) and LOAEL (65.6 mg/kg bw/day) obtained in the 28-day oral toxicity study conducted with clethodim (see Vol. 3, B.6.3.1/01).

The clethodim imine sulfone (RE-47719) gave a non-mutagenic response in *Salmonella typhimurium* (TA1535, TA1537, TA98 and TA100) and *Escherichia coli* (WP2*uvr*A) in the presence and absence of a rat liver S9-mix. The

study follows OECD TG 471 with exception for minor deviation (no confirmation of bacterial cell density at the time of treatment). The study was considered acceptable (Vol. 3, B.6.8.1.1/03).

Furthermore, clethodim imine sulfone did not induce structural chromosomal aberrations in Chinese hamster ovary (CHO) cells *in vitro*. The study did not fulfil the requirement of the more recent OECD TG 473 (2016) and the following deviations were noted: different treatment and fixation times, only 200 instead of 300 metaphases per concentration were analysed for chromosomal aberrations, no short-term exposure in the absence of S9 was performed, and no laboratory historical control data was reported. Hence, the RMS considers the chromosomal aberration study to be acceptable with limitations (Vol. 3, B.6.8.1.1/04).

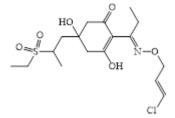
A teratogenicity study with clethodim imine sulfone (RE-47719) was performed at 0, 10, 100 and 700 mg/kg bw/day according to the EPA guideline 40 CFR 158.34, Pesticide Assessment Guideline, No. 83-3 (Nov. 1984). In this study maternal adverse effects were observed at 100 mg/kg bw/day (reduced bodyweight gain (17%)) and 700 mg/kg bw/day (clinical signs of excess salivation and alopecia, and reduced bodyweight gain (77%)). Adverse foetal effects were observed at 700 mg/kg bw/day (reduced foetal body weight (13%), increased incidence of cervical rib and delays in sternal ossification). A number of deviations were observed from the current OECD test guideline, adopted in 2018. Only 10 pregnant female rats were used in each dose group and measurement of foetal anogenital distance, thyroid weights and histopathology as well as assessment of blood thyroid hormone (T4, T3 and TSH) concentrations in the maternal animals were not performed. Furthermore, rats were exposed from days 6-15 (the guideline recommends exposure from days 5-15 but also through the entire period of gestation to the day of caesarean section). The study was considered as supportive data due to major deviations from OECD TG 414. The study was not suitable for NOAEL setting (low number of animals used, limited parameters investigated). However, the result of this study indicates that clethodim imine sulfone (RE-47719) is of lower toxicity compared to the parent compound (LOAEL for developmental toxicity in rats was set at 292 mg/kg bw/day in the developmental toxicity study conducted with clethodim) also taking into account that the effects observed in study were not considered sufficient evidence for a classification of test item for developmental toxicity (Vol. 3, B.6.8.1.1/05).

#### **Overall conclusion:**

Clethodim imine sulfone (RE-47719) was less acutely toxic than the parent substance, and did not cause gene mutations in Ames test, nor did it induce structural chromosomal aberrations *in vitro*. A NOAEL of 70.9 mg/kg bw/day was obtained in a 5-week oral toxicity study conducted with clethodim imine sulfone (RE-47719) based on increased reticulocytes, liver weights and higher serum cholesterol levels noted at 604 mg/kg bw/day. Thus, the toxicity of clethodim imine sulfone (RE-47719) following repeated dose administration was considered lower than that of clethodim (LOAEL in the 28-day oral toxicity study conducted with clethodim was set at 54.7 mg/kg bw/day).

In the developmental toxicity screening study in the rat, clethodim imine sulfone induced foetal alterations (increased incidence of cervical rib and delayed sternal ossification) at a dose level (700 mg/kg bw/day, NOAEL 100 mg/kg bw/day) causing maternal toxicity (reduced body weight gain, reduced food consumption and clinical signs such as excess salivation and alopecia). Also, at this dose level foetal weight was reduced (13%). The result of this study indicates that clethodim imine sulfone (RE-47719) is of lower toxicity compared to the parent compound. For clethodim the NOAEL and LOAEL for developmental toxicity in rats were 83.3 and 292 mg/kg bw/day, respectively. At the LOAEL of 292 mg/kg bw/day increased incidence of skeletal variations (incomplete

or unossified vertebrae, unossified 5<sup>th</sup> or 6<sup>th</sup> sternebrae) were observed. At the higher dose level of 583 mg/kg bw/day increased incidence of skeletal malformations and visceral malformations were observed in addition, and pup weight was reduced 25%.


The effects on developmental observed in the study conducted with clethodim imine sulfone (RE-47719) were observed in presence of maternal toxicity and considered not sufficient evidence for a classification of test item for developmental toxicity.

Clethodim imine sulfone (RE-47719) did not induce gene mutations or structural chromosome aberrations. However, **a data gap** for genotoxicity was identified since aneuploidy has not been properly assessed, this is accordance to the EFSA document Guidance on aneugenicity assessment (2021) \*

\*EFSA Scientific Committee (SC), doi: 10.2903/j.efsa.2021.6770, states on page 4 that "The genotoxicity testing strategy indicated in the EFSA Scientific Committee opinion is designed to investigate the genotoxic potential of substances through the detection of three genotoxic endpoints: gene mutations, structural chromosomal aberrations (i.e. clastogenicity) and numerical chromosomal aberrations (i.e. aneuploidy). The testing strategy id developed as a stepwise approach, beginning with a basic battery of *in vitro* tests, comprising:

- A bacterial reverse mutation assay [Organisation for Economic Co-operation and Development
  - (OECD) TG 471, endpoint: gene mutations]; and
- an *in vitro* mammalian cell micronucleus (MN) test (OECD TG 487, endpoints: clastogenicity and aneugenicity)."

## 2.6.8.1.2 Clethodim 5-OH sulfone (RE-51228)



| Table 2.6.8.1.2-1: Summary  | table of studies on clef | hodim 5-OH sulfone ( | RE-51228) |
|-----------------------------|--------------------------|----------------------|-----------|
| 1 able 2.0.0.1.2-1. Summary | table of studies of the  | Jounn 3-On Sunone () | RE-31220) |

| Method, guideline, deviations if | Test substance, dose   | Results                                     | Reference    |
|----------------------------------|------------------------|---------------------------------------------|--------------|
| any, species, strain, sex,       | levels duration of     |                                             |              |
| no/group                         | exposure               |                                             |              |
| Acute oral toxicity study        | RE-51228               | LD <sub>50</sub> female rats >1400 mg/kg bw | Vol.3,       |
|                                  |                        |                                             | B.6.8.1.2/01 |
| GLP: Yes                         | Purity: 99.9%          |                                             |              |
|                                  |                        |                                             |              |
| Guideline: 40 CFR 158.135,       | Lot/batch: SX-1796     |                                             | (1988b)      |
| Pesticide Assessment Guideline   |                        |                                             |              |
| No. 81-1.                        | Vehicle: aqueous       |                                             | Report No .: |
|                                  | solution of 0.7%       |                                             | S-3159       |
| Deviations from OECD TG 401      | carboxymethylcellulose |                                             |              |
| (1981): No deviations            | and 1.0% TWEEN 80      |                                             | New data     |
|                                  |                        |                                             | for the      |
| 5 female Sprague-Dawley rats     | Single doses of 1.4    |                                             | Annex I      |
|                                  | g/kg                   |                                             | renewal: No  |

Clethodim

| Method, guideline, deviations if<br>any, species, strain, sex,<br>no/group                                                                                                                                                                                                                                                                                                                                                                                                                     | Test substance, dose<br>levels duration of<br>exposure                                                                                                                                                                                                                               | Results                                                                                                                                                                                                                                                                                                                             | Reference                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Acceptable<br>5-week oral toxicity study                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RE-51228                                                                                                                                                                                                                                                                             | NOAEL: 73.2 ppm (equal to 5.94 mg/kg/day for males, 6.43 mg/kg/day for females)                                                                                                                                                                                                                                                     | Vol.3,<br>B.6.8.1.2/02                                                                                                |
| GLP: Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Purity: 94.8%                                                                                                                                                                                                                                                                        | Target organs and effects:                                                                                                                                                                                                                                                                                                          | <b>D</b> .0.0.1.2/02                                                                                                  |
| Guideline: None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lot/batch: SX-1803                                                                                                                                                                                                                                                                   | - reductions in haemoglobin in males (7 and 5% in the middle and high dose, respectively)                                                                                                                                                                                                                                           | (1988b)                                                                                                               |
| Deviations from OECD TG 407<br>(2008):<br>- the humidity was slightly out of<br>range (55-74% vs the<br>recommended maximum of 70%)<br>- sensory reactivity to stimuli was<br>not assessed<br>- blood clotting time/potential was<br>not measured<br>- organs not weighed:<br>epididymides, prostate + seminal<br>vesicles with coagulating glands,<br>thymus, spleen, and heart<br>- histopathological analysis of the<br>vagina, epididymides,<br>prostate+seminal vesicles not<br>performed | Target concentrations:<br>0, 100, 1000 and 8000<br>ppm<br><u>Achieved</u><br><u>concentrations:</u><br>0, 73.2, 856 and 7290<br>ppm (equal to 0, 5.94,<br>67.7 and 588<br>mg/kg/day for males, 0,<br>6.43, 75.5 and 663<br>mg/kg/day for females)                                    | -reductions in haematocrit in males (9 and 6% in<br>the middle and high dose, respectively)                                                                                                                                                                                                                                         | Report No.:<br>S-3162<br>New data<br>for the<br>Annex I<br>renewal: No                                                |
| 10 Sprague-Dawley rats per sex<br>and dose level.<br>Acceptable with limitations                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                     |                                                                                                                       |
| Reverse mutation assay with and<br>without S9 (Ames test)<br>GLP: Yes<br><u>Guideline:</u> 40 CFR 158.135,<br>Pesticide Assessment Guideline<br>No. 84-2.<br><u>Deviations from OECD TG 471</u><br>( <u>1997):</u> No information on the<br>purity of the test substance<br>provided and no confirmation of<br>bacterial cell density at the time of<br>treatment.<br>Acceptable with limitations                                                                                              | RE-51228<br>Purity: not stated<br>Lot/batch: not stated.<br><u>Concentrations:</u><br>Exp I: 0.03, 0.10, 0.33,<br>1.00, 3.33 mg/plate (+/-<br>S9 mix)<br>Exp. II: 0.10, 0.33,<br>1.00, 3.33, 5.00<br>mg/plate (+/- S9 mix)                                                           | RE-51228 does not induce mutations in the<br>Salmonella typhimurium (TA1535, TA1537,<br>TA98 and TA100) and Escherichia coli<br>(WP2uvrA) in the presence and absence of a rat<br>liver-derived metabolic activation system (S9-<br>mix).<br>RE-51228 was cytotoxic to TA98 at ≥3.3<br>mg/plate and to TA100 at ≥1.0 mg/plate (+S9) | Vol.3,<br>B.6.8.1.2/03<br>Machado<br>(1987)<br>Report No.:<br>S-3111<br>New data<br>for the<br>Annex I<br>renewal: No |
| Chromosomal aberrations<br>Chromosomal aberrations assay in<br>Chinese Hamster Ovary (CHO)<br>cells in vitro.<br>GLP: Yes<br>Guideline: 40 CFR 158.135,<br>Pesticide Assessment Guideline<br>No. 84-2.<br>Deviations from current guideline:<br>Does not fulfil the requirement of<br>OECD TG 473 guideline (2016)<br>and limited information is<br>provided on the purity of the test<br>substance. Only 200 instead of<br>300 metaphases per concentration                                   | RE-51228<br>Purity: not determined<br>by the testing facility<br>but it is mentioned that<br>the active ingredient in<br>dose=99.9% (no<br>certificate of analysis is<br>available)<br>Lot/batch: SX-1796<br><u>Concentrations:</u> 0, 313,<br>625, 1250 and 2500<br>µg/mL (-S9 mix) | RE-51228 does not induce chromosome<br>aberrations in CHO cells under the conditions<br>tested.<br>RE-51228 was partially insoluble in test article-<br>treated groups at final concentrations of 625,<br>1250 and 2500 µg/ml in culture medium.                                                                                    | Vol.3,<br>B.6.8.1.2/04<br>Putnam<br>(1988b)<br>Report No.:<br>S-3160<br>New data<br>for the<br>Annex I<br>renewal: No |

Clethodim

| Method, guideline, deviations if<br>any, species, strain, sex,<br>no/group                                                                                                                                                              | Test substance, dose<br>levels duration of<br>exposure | Results                                               | Reference              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|------------------------|
| were analysed for chromosomal<br>aberrations. Different treatment<br>and fixation times compared to<br>OECD TG 473. No short-term<br>exposure in the absence of S9 was<br>performed. No laboratory<br>historical control data reported. |                                                        |                                                       |                        |
| Acceptable with limitations                                                                                                                                                                                                             | DE 51009                                               | N- NOAFL mer and in the 1 *                           | N-12                   |
| Oral teratogenicity and developmental toxicity screen.                                                                                                                                                                                  | RE-51228                                               | No NOAEL was set in study*                            | Vol.3,<br>B.6.8.1.2/05 |
| developmental toxicity screen.                                                                                                                                                                                                          | Purity: 99.9%                                          | Target organ and adverse effects:                     | <b>D</b> .0.0.1.2/03   |
| Administration by gavage                                                                                                                                                                                                                |                                                        |                                                       |                        |
|                                                                                                                                                                                                                                         | Lot/batch: SX-1796                                     | <u>700 mg/kg bw/day:</u>                              | (1988b)                |
| GLP: Yes                                                                                                                                                                                                                                |                                                        | - clinical signs in dams (rales)                      | D (N                   |
| Guideline: EPA/FIFRA Pesticide                                                                                                                                                                                                          | Vehicle: aqueous 0.7%                                  | -reduced body weight gain (Day 12-16: 19%, n.s.)      | Report No.:<br>S-3161  |
| Assessment Guideline 83-3 (Nov                                                                                                                                                                                                          | carboxymethyl                                          | $\downarrow$ gravid uterine weight (Day 28: 4%, n.s.) | 5-5101                 |
| 1984).                                                                                                                                                                                                                                  | cellulose and 1.0%                                     | $\downarrow$ foetal weight (10%, n.s.)                | New data               |
|                                                                                                                                                                                                                                         | Tween 80 in deionized                                  |                                                       | for the                |
| Deviations from OECD TG 414                                                                                                                                                                                                             | water                                                  |                                                       | Annex I                |
| (2018): Only 10 pregnant females were used in each dose group, no                                                                                                                                                                       | Dose: 0, 10, 100 and                                   |                                                       | renewal: No            |
| measurement of foetal anogenital                                                                                                                                                                                                        | 700 mg/kg bw/day                                       |                                                       |                        |
| distance, thyroid weights and                                                                                                                                                                                                           | 100 mg/kg 0 w/day                                      |                                                       |                        |
| histopathology and assessment of                                                                                                                                                                                                        | Duration of exposure:                                  |                                                       |                        |
| blood thyroid hormone (T4, T3                                                                                                                                                                                                           | Day 6 to 15 of                                         |                                                       |                        |
| and TSH) concentrations in the maternal animals. Rats were                                                                                                                                                                              | gestation.                                             |                                                       |                        |
| exposed from days 6-15 (the                                                                                                                                                                                                             | (maximum of ten                                        |                                                       |                        |
| guideline recommends exposure                                                                                                                                                                                                           | dosages)                                               |                                                       |                        |
| from days 5-15 but also through                                                                                                                                                                                                         | 8)                                                     |                                                       |                        |
| the entire period of gestation to                                                                                                                                                                                                       |                                                        |                                                       |                        |
| the day of caesarean section).                                                                                                                                                                                                          |                                                        |                                                       |                        |
| 10 pregnant female Sprague-                                                                                                                                                                                                             |                                                        |                                                       |                        |
| Dawley rats per dose level.                                                                                                                                                                                                             |                                                        |                                                       |                        |
|                                                                                                                                                                                                                                         |                                                        |                                                       |                        |
| Supportive                                                                                                                                                                                                                              |                                                        |                                                       |                        |

\* The study is not suitable for NOAEL setting (low number of animals used, limited parameters investigated)

#### Results

Clethodim 5-OH sulfone, (2-(I-1-(((I-3-chloroallyl)oxy)imino)propyl)-5-(2-(ethylsulfonyl) propyl)-3,5dihydroxycyclohex-2-en-1-one) is a crop metabolite and also a minor rat metabolite (1% in urine).

All studies with clethodim 5-OH sulfone (RE-51228) were conducted under GLP. The studies were included in the previous EU evaluation (DAR 2005). There are no new data for this metabolite.

The acute oral  $LD_{50}$  of clethodim 5-OH sulfone (RE-51228) was estimated to be >1400 mg/kg bw in female rats and thus higher than clethodim which shows an  $LD_{50}$  of 1133 mg/kg bw in female rats. The study was carried out according to OECD TG 401 and considered acceptable (Vol. 3, B.6.8.1.2/01)

Oral administrations of clethodim 5-OH sulfone (RE-51228) to rats at dietary target concentrations of 0, 100, 1000 and 8000 ppm (equal to an overall average weekly test material intake of 5.94, 67.7 and 588 mg/kg bw/day in males and to 6.43, 75.5 and 663 mg/kg/day in females) for 35 days resulted in a NOAEL of 5.94 mg/kg bw/day based on changes in haematological parameters noted at  $\geq$ 67.7 mg/kg bw/day. The haematological changes consisted of

reductions in haemoglobin levels observed in males in the middle-dosage group (7%) and high dosage group (5%), and reductions in haematocrit levels observed in males in the middle-dosage group (9%) and high dosage group (6%). These effects were also observed in repeated dose toxicity studies conducted with the parent substance (effects that often appeared in males at lower doses than females). The NOAEL (5.94 mg/kg bw/day) following 35-day administration of clethodim 5-OH sulfone (RE-51228) is lower compared to the NOAEL (12.5 mg/kg bw/day) obtained in the 28-day oral toxicity study conducted with clethodim; however, the LOAEL (67.7 mg/kg bw/day) following 35-day administration of clethodim 5-OH sulfone (RE-51228) is higher compared to the LOAEL (65.6 mg/kg bw/day) obtained in the 28-day oral toxicity study conducted with clethodim (Vol. 3, B.6.3.1.1/01). Furthermore, it could be noted that other effects in addition were observed at the LOAEL for clethodim (reduced erythrocytes and haemoglobin in both sexes, increased platelets in males, increased liver weight in both sexes and hepatic centrilobular hypertrophy in males) compared with the LOAEL for clethodim 5-OH sulfone. Thus, the general toxicity of clethodim 5-OH sulfone is considered lower or similar to that of clethodim. The study was checked for compliance with OECD TG 407 and following deviations were observed: humidity was slightly out of range (55-74% vs the recommended maximum of 70%), sensory reactivity to stimuli was not assessed, blood clotting time/potential was not measured, organs not weighed (epididymides, prostate + seminal vesicles with coagulating glands, thymus, spleen, and heart), histopathological analysis not performed for the vagina, epididymides, prostate+seminal vesicles, no blood clotting performed. The study is acceptable with limitations (Vol. 3, B.6.8.1.2/02).

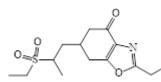
The clethodim 5-OH sulfone (RE-51228) gave a non-mutagenic response in *Salmonella typhimurium* (TA1535, TA1537, TA98 and TA100) and *Escherichia coli* (WP2*uvr*A) in the presence and absence of a rat liver S9-mix. However, the purity of the test compound was not provided. The study was considered acceptable with limitations (Vol. 3, B.6.8.1.2/03)

Clethodim 5-OH sulfone (RE-51228) did not induce structural chromosomal aberrations in CHO cells in vitro. The chromosomal aberration study does not fulfil the requirement of the more recent OECD TG 473 (2016) and the test item was partially insoluble at the tested concentrations. Hence, the RMS considers the chromosomal aberration study to be acceptable with limitations (Vol. 3, B.6.8.1.2/04).

A teratogenicity study with clethodim 5-OH sulfone (RE-51228) was performed at 0, 10, 100 and 700 mg/kg bw/day according to the EPA guideline 40 CFR 158.34, Pesticide Assessment Guideline, No. 83-3 (Nov. 1984). In this study maternal adverse effects were observed at 700 mg/kg bw/day (clinical signs of rales, reduced bodyweight gain (19%, n.s.) and reduced gravid uterine weight (Day 28: 4%, n.s.)). Adverse foetal effects were observed at 700 mg/kg bw/day (reduced foetal weight (10%, n.s.), however this effect occurred in presence of maternal toxicity. A number of deviations were observed from the current OECD test guideline, adopted in 2018. Only 10 pregnant female rats were used in each dose group and measurement of foetal anogenital distance, thyroid weights and histopathology as well as assessment of blood thyroid hormone (T4, T3 and TSH) concentrations in the maternal animals were not performed. Furthermore, rats were exposed from days 6-15 (the guideline recommends exposure from days 5-15 but also through the entire period of gestation to the day of caesarean section). The study was considered as supportive data due to major deviations from OECD TG 414. The study is not suitable for NOAEL setting (low number of animals used, limited parameters investigated). However, the result of this study indicates that clethodim 5-OH sulfone (RE-51228) is of lower toxicity compared to the parent compound (LOAEL for

developmental toxicity in rats was set at 292 mg/kg bw/day in the developmental toxicity study conducted with clethodim) also taking into account that the observed foetal effect in the presence of maternal toxicity was not considered sufficient evidence for a classification for developmental toxicity (Vol. 3, B.6.8.1.2/05).

## **Overall conclusion:**


Clethodim 5-OH sulfone (RE-51228) was less acutely toxic than the parent substance, and did not cause gene mutations in Ames test, nor did it induce structural chromosomal aberrations in vitro (albeit this study had some limitations, e.g. with solubility). A NOAEL of 5.94 mg/kg bw/day was obtained in a 5-week oral toxicity study conducted with 5-OH sulfone (RE-51228) based on changes in haematological parameters noted at  $\geq$ 67.7 mg/kg bw/day. Thus, the toxicity of clethodim 5-OH sulfone following repeated dose administration was considered lower or similar to that of clethodim (LOAEL in the 28-day oral toxicity study conducted with clethodim was set at 54.7 mg/kg bw/day). In the developmental toxicity screening study in the rat, clethodim 5-OH sulfone induced reduced foetal weight (10%, n.s.) at a dose level of 700 mg/kg bw/day and in the presence of maternal toxicity (reduced bodyweight gain, 19%, n.s.). The result of this study indicates that clethodim 5-OH (RE-51228) is of lower toxicity compared to the parent compound (LOAEL for developmental toxicity in rats was set at 292 mg/kg bw/day in the developmental toxicity study conducted with clethodim 5-OH sulfone (RE-51228) were not sufficient evidence for a classification of test item for developmental toxicity. Thus, the result of the study indicates that clethodim 5-OH sulfone (RE-51228) is of no concern for developmental toxicity, and no further data is needed.

Clethodim 5-OH sulfone (RE-51228) did not induce gene mutations or structural chromosome aberrations. However, **a data gap** for genotoxicity was identified since aneuploidy has not been properly assessed, this is accordance to the EFSA document Guidance on aneugenicity assessment (2021) \*.

\*EFSA Scientific Committee (SC), doi: 10.2903/j.efsa.2021.6770, states on page 4 that "The genotoxicity testing strategy indicated in the EFSA Scientific Committee opinion is designed to investigate the genotoxic potential of substances through the detection of three genotoxic endpoints: gene mutations, structural chromosomal aberrations (i.e. clastogenicity) and numerical chromosomal aberrations (i.e. aneuploidy). The testing strategy id developed as a stepwise approach, beginning with a basic battery of *in vitro* tests, comprising:

- A bacterial reverse mutation assay [Organisation for Economic Co-operation and Development (OECD) TG 471, endpoint: gene mutations]; *and*
- an *in vitro* mammalian cell micronucleus (MN) test (OECD TG 487, endpoints: clastogenicity and aneugenicity)."

## 2.6.8.1.3 Clethodim oxazole sulfone (RE-47797)



## Table 2.6.8.1.3-1: Summary table of studies on clethodim oxazole sulfone (RE-47797)

| Method, guideline, deviations<br>if any, species, strain, sex,<br>no/group                 | Test substance, dose<br>levels duration of<br>exposure                | Results:                                                                                                                                                       | Reference                         |
|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| Reverse mutation assay with and without S9 (Ames test)                                     | Clethodim oxazole<br>sulfone (RE-47797)                               | RE-47797 does not induce mutations in the <i>Salmonella typhimurium</i> TA 1535, TA 1537, TA 98 and TA 100 and <i>Escherichia coli</i> WP2uvrA                 | Vol.3,<br>B.6.8.1.3/01            |
| GLP: Yes                                                                                   | Purity: 98.9%                                                         | reverse mutation assay.                                                                                                                                        | Stevenson, (2004)                 |
| Guideline: OECD TG 471<br>(1997)                                                           | Lot/batch: AS582d                                                     | Toxicity, observed as a reduction in the number of<br>revertant colonies, occurred with TA 1535 in the<br>absence of S9 mix only, at the highest               | Report No.:<br>S-22789            |
| Deviations from current guideline: None                                                    | <u>Concentrations:</u><br>Exp I: 17, 50, 167,<br>500, 1667, 5000 μg/L | concentration of 5000 $\mu$ g per plate. No precipitation of the test item was observed in either mutation assay, neither in the presence nor the              | New data<br>for the               |
| Acceptable                                                                                 | (+/-S9 mix)                                                           | absence of S9 mix.                                                                                                                                             | Annex I<br>renewal: No            |
|                                                                                            | Exp. II: 17, 50, 167,<br>500, 1667, 5000 µg/L<br>(+/- S9 mix)         |                                                                                                                                                                |                                   |
| Chromosomal aberrations assay<br>in Chinese Hamster Ovary<br>(CHO) cells in vitro.         | Clethodim oxazole<br>sulfone (RE-47797)                               | RE-47797 does not induce chromosome<br>aberrations in CHO cells without metabolic<br>activation.                                                               | Vol.3,<br>B.6.8.1.3/02            |
| GLP: Yes                                                                                   | Purity: 98.9%<br>Lot/batch: AS582d                                    | Clastogenic in the presence of S9 mix at 5000 $\mu$ g/mL                                                                                                       | Hart &<br>Stevenson,<br>(2005)    |
| Guideline: OECD TG 473 (1997).                                                             | <u>Concentrations:</u><br>1250, 2500 and 5000                         |                                                                                                                                                                | Report No.:<br>S-22910            |
| Deviations from current<br>guideline: Only 100 metaphases<br>per concentration were scored | µL/mL (±S9 mix)                                                       |                                                                                                                                                                | New data for the                  |
| for chromosomal aberrations,<br>OECD 473 (2016) requires 300.                              |                                                                       |                                                                                                                                                                | Annex I<br>renewal: No            |
| Acceptable with limitations                                                                |                                                                       |                                                                                                                                                                |                                   |
| Mouse lymphoma cell mutation assay                                                         | Clethodim oxazole<br>sulfone (RE-47797)                               | Clethodim oxazole sulfone (RE-47797) gave<br>statistical significance, when tested for mutagenic<br>activity in mouse lymphoma L5178Y cells, in the            | Vol.3,<br>B.6.8.1.3/03            |
| GLP: Yes                                                                                   | Purity: 98.9%                                                         | presence of S9-mix, at concentrations extending<br>into the toxic range. However, taking the Global                                                            | Riach,<br>(2009)                  |
| Guideline: OECD TG 476 (1997)                                                              | Lot/batch: AS582d                                                     | Evaluation Factor (GEF) into account for the microwell version of 12x 10 <sup>-6</sup> , shows that the results are not biological relevant since all mutation | Report No.:<br>S-22967            |
| Deviations from OECD TG 490 (2016):                                                        | <u>Concentrations:</u><br><u>Exp. I:</u> 1000, 2000,                  | fraction values were below the GEF.<br>Clethodim oxazole sulfone was not mutagenic in                                                                          | New data                          |
| - The report does not state<br>whether cell stocks had been<br>cleansed of mutants.        | 3000, 4000, 5000<br>μg/mL (-S9 mix 4h<br>exposure)                    | the absence of S9-mix when tested to the predetermined maximum concentration of 5000 $\mu$ g/mL (4 h exposure) and at concentrations                           | for the<br>Annex I<br>renewal: No |
| - Acceptance and evaluation<br>criteria are inconsistent with<br>OECD 490 (2016)           | 500, 1000, 2000,<br>3000, 4000, 5000                                  | extending into the toxic range (24 h exposure).                                                                                                                |                                   |
| - No precipitation of the test<br>item was seen at the highest<br>concentration.           | µg/mL (+S9 mix 4 h<br>exposure)                                       |                                                                                                                                                                |                                   |

| Method, guideline, deviations<br>if any, species, strain, sex,<br>no/group                                                                                                         | Test substance, dose<br>levels duration of<br>exposure                                                                                                                                                                    | Results:                                                                         | Reference           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------|
| - No HCD is available. The<br>RTG for the highest dose in<br>experiment one was higher than<br>specified in the TG (27-29%<br>instead of the recommended 10-<br>20%)<br>Acceptable | Exp. II: 500, 1000,<br>1500, 2000, 2500,<br>3000, 3500, 4000           μg/mL (- S9 mix, 24           h exposure)           500, 1000, 1500,<br>2000, 2500, 3000,<br>3500, 4000 μg/mL           (+S9 mix, 4 h<br>exposure) |                                                                                  |                     |
| Mouse micronucleus test                                                                                                                                                            | Clethodim oxazole                                                                                                                                                                                                         | Clethodim oxazole sulfone did not induce                                         | Vol.3,              |
|                                                                                                                                                                                    | sulfone (RE-47797)                                                                                                                                                                                                        | micronuclei in the polychromatic erythrocytes of                                 | B.6.8.1.3/04        |
| GLP: Yes                                                                                                                                                                           | Duritry 00 50/                                                                                                                                                                                                            | the bone marrow of mice treated up to 2000 mg/kg/day (the maximum dose currently |                     |
| Guideline: OECD 474 (1997)                                                                                                                                                         | Purity: 99.5%                                                                                                                                                                                                             | recommended for this study).                                                     | (2007)              |
|                                                                                                                                                                                    | Lot/batch: AS582e                                                                                                                                                                                                         |                                                                                  | ()                  |
| Deviations from current<br>guideline (OECD TG 474                                                                                                                                  |                                                                                                                                                                                                                           | No evidence of exposure to bone marrow                                           | Report No.: 2749/3- |
| (2016): Evidence of that the test                                                                                                                                                  | Doses: Daily doses of                                                                                                                                                                                                     |                                                                                  | D617                |
| article induced toxicity to the                                                                                                                                                    | 500, 1000 and 2000                                                                                                                                                                                                        |                                                                                  | NT 1.4              |
| bone marrow was not presented.                                                                                                                                                     | mg/kg bw (range finder) and 2000                                                                                                                                                                                          |                                                                                  | New data for the    |
| The study is considered                                                                                                                                                            | mg/kg bw (test)                                                                                                                                                                                                           |                                                                                  | Annex I             |
| supportive unless bone marrow                                                                                                                                                      |                                                                                                                                                                                                                           |                                                                                  | renewal: No         |
| exposure can be demonstrated.                                                                                                                                                      | Duration of exposure:                                                                                                                                                                                                     |                                                                                  |                     |
|                                                                                                                                                                                    | Two dosages                                                                                                                                                                                                               |                                                                                  |                     |
|                                                                                                                                                                                    | separated by 24 h.                                                                                                                                                                                                        |                                                                                  |                     |
|                                                                                                                                                                                    | Crl:CD-1 (ICR) mice                                                                                                                                                                                                       |                                                                                  |                     |
|                                                                                                                                                                                    | (3 animals of each                                                                                                                                                                                                        |                                                                                  |                     |
|                                                                                                                                                                                    | sex)                                                                                                                                                                                                                      |                                                                                  |                     |
|                                                                                                                                                                                    |                                                                                                                                                                                                                           |                                                                                  |                     |

## Results

Clethodim oxazole sulfone (2-ethyl-6-(2-(ethylsulfonyl)propyl)-6,7-dihydrobenzo[d]oxazol-4(5H)- one) is a soil and rotational crop metabolite (small amounts, not part of the residue definition). It is found in groundwater with a maximum PEC<sub>gw</sub> of 1.945  $\mu$ g/L. There are no new data for this metabolite in this report.

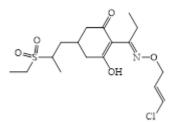
The clethodim oxazole sulfone (RE-47797) gave a non-mutagenic response in *Salmonella typhimurium* (TA1535, TA1537, TA98 and TA100) and *Escherichia coli* (WP2*uvr*A) in the presence and absence of a rat liver S9-mix. The study follows OECD TG 471 and was considered acceptable (Vol. 3, B.6.8.1.3/01).

Clethodim oxazole sulfone (RE-47797) induced structural chromosomal aberrations in CHO *in vitro* in the presence of a rat liver-derived metabolic activation system (S9 mix). In the absence of S9-mix clethodim oxazole sulfone did not induce structural chromosomal aberrations. It is noted that OECD TG 473 requires 300 metaphases to be scored for chromosomal aberrations but only 100 were scored in the study. The study is considered acceptable with limitations (Vol. 3, B.6.8.1.3/02).

The clethodim oxazole sulfone (RE-47797) gave a negative response, when tested for mutagenic activity, in mouse lymphoma L5178Y cells, in the presence of S9-mix, at concentrations extending into the toxic range. Clethodim

oxazole sulfone was not mutagenic in the absence of S9-mix when tested to the predetermined maximum concentration of 5000  $\mu$ g/mL (4 h exposure) and at concentrations extending into the toxic range (24 h exposure). No precipitation of the test item was seen at the highest concentrations. The study was conducted in compliance with the outdated OECD TG 476 (1997). The study is considered acceptable (Vol. 3, B.6.8.1.3/03).

The *in vivo* micronucleus test did not indicate clastogenicity/aneuploidy. However, no evidence that the test item induced toxicity to the bone marrow was presented, thus no conclusion could be drawn and follow-up data for this endpoint is needed. The study is only considered supportive unless bone marrow exposure can be demonstrated (Vol. 3, B.6.8.1.3/04).


No studies are available regarding acute and repeated dose toxicity. However, an *in silico* assessment of clethodim oxazole sulfone predicts that it can be considered of no greater toxicological concern than the parent compound. The general toxicity of clethodim and the metabolites was assessed using all endpoints available in Derek Nexus and the profilers relevant to toxicity in the OECD QSAR Toolbox. According to both Derek Nexus (v.6.1.0) and the OECD QSAR Toolbox (v4.4), no unique alerts were identified for clethodim oxazole sulfone when compared to the parent (clethodim) and major rat metabolite (clethodim sulfoxide) (B.6.8.1.10/02).

## **Overall conclusion:**

Clethodim oxazole sulfone was not mutagenic in Ames test. Negative response was observed in the mouse lymphoma assay. Clethodim oxazole sulfone induced structural chromosomal aberrations in CHO *in vitro* in the presence of a rat liver-derived metabolic activation system (S9 mix). Furthermore, the *in vivo* micronucleus test did not indicate clastogenicity/aneuploidy, but no conclusions could be drawn since no evidence for bone marrow exposure was presented. Clethodim oxazole sulfone (RE-47797) was not likely to be of greater toxicological concern than the parent compound based on the QSAR prediction (no unique alerts identified).

A data gap was identified for the endpoint of genotoxicity (i.e. follow-up data for lack of evidence for bone marrow exposure in the mouse micronucleus test)

## 2.6.8.1.4 Clethodim sulfone (RE-47253)



| Method, guideline, deviations<br>if any, species, strain, sex,<br>no/group | Test substance, dose<br>levels duration of<br>exposure | Results:                   | Reference              |
|----------------------------------------------------------------------------|--------------------------------------------------------|----------------------------|------------------------|
| 14-day dose range finding study                                            | Clethodim sulfone (RE-<br>47253)                       | No NOAEL was set in study* | Vol.3,<br>B.6.8.1.4/01 |
| Oral route                                                                 |                                                        | Target organs and effects: |                        |

 Table 2.6.8.1.4-1: Summary table of studies on clethodim sulfone (RE-47253)

| Method, guideline, deviations<br>if any, species, strain, sex,<br>no/group                                                                                                                                                                                                                                                                                                                                                                                  | Test substance, dose<br>levels duration of<br>exposure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Results:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Reference                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GLP: Yes<br>Guideline: None<br>Species: Rat<br>Strain: Han Wistar (Crl:WI<br>(Han))<br>5 animals per sex and dose level<br>Supportive data<br>28-day oral toxicity study<br>GLP: Yes<br><u>Guideline:</u> OECD Guideline 407<br>(2008).<br><u>Deviations from OECD TG 407</u><br>(2008).<br>No histopathology of the<br>coagulating gland<br><u>Species: Rat<br/>Strain:</u> Han Wistar (Crl:WI<br>(Han))<br>5 animals per sex and dose level<br>Acceptable | Purity: 99.1%<br>Lot/batch:<br>10975AJT004-2<br><u>Doses:</u><br>0, 50, 500 and 2500<br>ppm (equal to 0, 4.1,<br>40.3 and 183.5<br>mg/kg/day for males<br>and 0, 4.4, 42.2 and<br>196.1 mg/kg/day for<br>females)<br>Duration of exposure:<br>14-days<br>Clethodim sulfone (RE-<br>47253)<br>Purity: 99.1%<br>Lot/batch:<br>10975AJT004-2<br>Dose:<br>0, 50, 500 and 2500<br>ppm (equal to 0, 4.1,<br>39.9 and 211.1<br>mg/kg/day for males,<br>and 0, 4.2, 42.8 and<br>207.1 mg/kg/day for<br>females)<br><u>Duration of exposure:</u><br>28-days | 2500 ppm:         - reduced bodyweight gain (M: ↓31%, F: ↓47%)         NOAEL: 50 ppm (equivalent to 4.1 mg/kg bw/day)         Target organs and effects:         500 mg/kg bw/day:         ↓ bodyweight gain, males (15%)         ↓ bodyweight gain, males (15%)         ↓ bodoweight gain, males (15%)         ↓ bodoweight gain, males (15%)         ↓ bodoweight gain, males (16%)         ↓ bodo cell count, females (6%)         ↓ haemoglobin, females (6%)         ↓ haemoglobin, females (16%)         ↓ blood cell count, females (8%)         ↓ haemoglobin, females (7%)         ↓ haemoglobin, females (5%)         ↓ coloseterol, males (35%)         ↑ mean liver weights (M: absolute: ↑12%, relative to brain weight: ↑14%; F: relative to brain weight: ↑17%, n.s.) | (2020a)<br>Report No.: 510884<br>New data<br>for the<br>Annex I<br>renewal:<br>Yes<br>Vol.3,<br>B.6.8.1.4/02<br>(2020b)<br>Report No.: 510900<br>New data<br>for the<br>Annex I<br>renewal:<br>Yes |
| Reverse mutation assay with and<br>without S9.<br>GLP<br>Guideline: OECD Guideline 471<br>(1997).<br>Deviations from current<br>guideline: None<br>Acceptable                                                                                                                                                                                                                                                                                               | Clethodim sulfone (RE-<br>47253)<br>Purity: 99.2%<br>Lot/batch:<br>AS776g<br><u>Concentrations:</u><br>17, 50, 167, 500, 1667<br>and 5000 µg/plate (with<br>and without S9 mix)<br>Strains:<br>Salmonella                                                                                                                                                                                                                                                                                                                                          | Clethodim sulfone gave a mutagenic response in<br>Salmonella typhimurium (TA1535 and TA100) in<br>the absence of S9 mix.<br>Clethodim sulfone gave a non-mutagenic<br>response in Salmonella typhimurium (TA1535,<br>and TA100) in the presence S9-mix; in<br>Salmonella typhimurium (TA1537 and TA98)<br>and Escherichia coli (WP2 uvrA) in the presence<br>and absence of S9-mix.<br>No toxicity to the bacteria was observed and no<br>precipitation of the test item occurred in either<br>the presence or the absence of S9 mix.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Vol.3,<br>B.6.8.1.4/03<br>Stevenson<br>(2004)<br>Report No.:<br>22788<br>New data<br>for the<br>Annex I<br>renewal: No                                                                             |

| Method, guideline, deviations<br>if any, species, strain, sex,<br>no/group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Test substance, dose<br>levels duration of<br>exposure                                                                                                                                                                                                                                                                                                                                                                       | Results:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Reference                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TA 1537, TA 98,<br>TA100<br>Escherichia coli<br>(WP2uvrA)                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                         |
| Reverse mutation in <i>Salmonella</i><br><i>typhimurium</i> strains TA100 and<br>TA1535 without S9.<br>GLP<br>Guideline: OECD 471 (1997).<br>Deviations from current<br>guideline:<br>Only two strains of <i>S</i> .<br><i>thypimurium</i> was used<br>(according to the guideline at<br>least five strains of bacteria<br>should be used. These should<br>include four strains of <i>S</i> .<br><i>thypimurium</i> (TA1535, TA1537<br>or TA97a or TA97, TA98 and<br>TA100). In order to detect cross-<br>lining mutagens it may be<br>preferable to include TA102 or<br>to add a DNA repair-proficient<br>strain of <i>E.Coli</i> .) | Clethodim sulfone (RE-<br>47253)<br>Purity: 99.86%<br>Lot/batch:<br>NC034-Impurity391-<br>005<br><u>Concentrations: Exp. 1:</u><br>1.6, 8, 40, 200, 1000<br>and 5000 µg/plate and<br><u>Exp 2:</u> 156.3, 312.5,<br>625, 2500 and 5000<br>µg/plate.<br>Strains:<br><i>Salmonella</i><br><i>Typhimurium</i> TA TA<br>1537, TA100                                                                                              | In TA100 an statistically significant increase in<br>revertant numbers was observed in the absence of<br>metabolic activation. The increase (in experiment<br>1 at 1.6, 8, 40, 200 but not at 1000 and 5000<br>µg/plate and only at 625 µg/plate in experiment<br>2) and thus not concentration dependent or<br>reproducible.<br>No statistically significant increase in revertant<br>numbers was observed at any concentration in<br>neither experiment with TA1535.<br>The test article was completely soluble in the<br>aqueous assay system at all concentrations.<br>No evidence of toxicity was observed. | Vol. 3,<br>B.6.8.1.4/04<br>Williams<br>(2008)<br>Report No.:<br>2749/5<br>New data<br>for the<br>Annex I<br>renewal: No |
| Acceptable but limited<br>Chromosomal aberrations assay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Clethodim sulfone (RE-                                                                                                                                                                                                                                                                                                                                                                                                       | RE-47253 induced structural chromosomal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Innes (2003)                                                                                                            |
| in CHO cells <i>in vitro</i> .<br>GLP<br>Guideline: OECD TG 473<br>(1997).<br>Deviations from current<br>guidelines: Only 100<br>metaphases were scored for<br>chromosomal aberrations,<br>OECD 473 (2016) requires 300<br>Acceptable                                                                                                                                                                                                                                                                                                                                                                                                 | 47253)<br>Purity: 99.2%<br>Lot/batch:<br>AS776g<br><u>Concentrations:</u><br><u>Test 1:</u> 156, 313, 625,<br>1250, 2500 and 5000<br>μg/mL (+S9 Mix) and<br>20, 39, 78, 156, 313,<br>625, 1250, 2500 and<br>5000 μg/mL (-S9 Mix).<br><u>Test 2:</u> 1250, 2500,<br>3000, 4000 and 5000<br>μg/mL were tested in<br>the presence of S9 mix<br>and 313, 625, 1250,<br>2500, 4000 and 5000<br>μg/mL in the absence<br>of S9 mix. | aberrations in CHO cells in vitro in the presence<br>of S9 mix.<br>In the absence of S9 mix clethodim sulfone did<br>not induce structural chromosomal aberrations.<br>Toxicity in the form of reduced cell counts<br>(below 50% of vehicle control), was noted in<br>cultures treated with 5000 μg/mL in the absence<br>of S9 mix and in test 2 in the presence of S9 mix.                                                                                                                                                                                                                                      | Vol.3,<br>B.6.8.1.4/05<br>Report No.:<br>23058<br>New data<br>for the<br>Annex I<br>renewal: No                         |
| Chromosomal aberrations assay<br>in CHO cells <i>in vitro</i> .<br>GLP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Clethodim sulfone (RE-<br>47253)<br>Purity: 99.86%                                                                                                                                                                                                                                                                                                                                                                           | Clethodim sulfone did not induce structural<br>chromosomal aberrations in the presence of S9-<br>mix and in the presence or absence of cofactors<br>in CHO cells in vitro.                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lloyd,<br>(2009)<br>Vol.3,<br>B.6.8.1.4/06                                                                              |
| Guideline: OECD TG 473 (1997).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Lot/batch:                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                         |

| Method, guideline, deviations<br>if any, species, strain, sex,<br>no/group                                                                                                                                                                                                                                   | Test substance, dose<br>levels duration of<br>exposure                                                                                                                                                                                                                                                                                                                              | Results:                                                                                                                                                                                                                                                                                                                                                                                                                      | Reference                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Deviations from OECD 473<br>(2016):<br>No long-term exposure. Only<br>200 metaphases were scored for<br>chromosomal aberrations,<br>OECD 473 (2016) requires 300.                                                                                                                                            | NC034-Impurity391-<br>005<br><u>Concentrations:</u><br>392.4, 1654, 2940 and<br>3920 μg/mL (+S9 mix<br>± cofactors)                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                               | Report No.:<br>2749/6<br>New data<br>for the<br>Annex I<br>renewal: No                                              |
| Supportive                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                     |
| Mouse lymphoma cell mutation<br>assay<br>GLP<br>Guideline: OECD TG 476<br>(1997).<br>Deviations from current<br>guideline:<br>OECD 476 has now been<br>superseded by OECD 490<br>(2016). Acceptance and<br>evaluation criteria are<br>inconsistent with OECD 490<br>(2016). HCD not presented.<br>Acceptable | Clethodim sulfone (RE-<br>47253)<br>Purity: 99.2%<br>Lot/batch:<br>AS776g<br><u>Concentrations:</u><br><u>Experiment 1,</u> assay 1<br>(without S9 mix): 62.5,<br>125, 250, 500, 1000,<br>2000, 3000 µg/mL and<br>assay 2 (with S9 mix):<br>250, 500, 1000, 2000,<br>3000, 4000, 5000<br>µg/mL.<br><u>Experiment 2,</u> assay 3<br>(without S9 mix): 200,<br>600, 1000, 1400, 1800, | Clethodim sulfone gives an<br>equivocal/inconclusive response, when tested for<br>mutagenic activity, in the absence of S9 mix, at<br>concentrations extending into the toxic range.<br>Clethodim sulfone is mutagenic in the presence<br>of S9 mix when tested to the predetermined<br>maximum concentration of $5000 \ \mu g/mL$ (4 h<br>exposure) and at concentrations extending into<br>the toxic range (24 h exposure). | Riach,<br>(2003)<br>Vol.3,<br>B.6.8.1.4/07<br>Report No.:<br>22966<br>New data<br>for the<br>Annex I<br>renewal: No |
| Mouse lymphoma cell mutation<br>assay                                                                                                                                                                                                                                                                        | 2200, 2600, 3000<br>μg/mL and assay 4<br>(with S9 mix): 1400,<br>2000, 2600, 3200,<br>3800, 4400, 5000<br>μg/mL.<br>Clethodim sulfone (RE-<br>47253)                                                                                                                                                                                                                                | Upon addition of the test article to the cultures,<br>precipitate was observed at concentrations from<br>400 µg/mL in the absence and presence of S9.                                                                                                                                                                                                                                                                         | Stone,<br>(2009)                                                                                                    |
| GLP<br>Guideline: OECD TG 476<br>(1997).<br>Deviations from current<br>guideline: OECD 476 has now<br>been superseded by OECD 490<br>(2016). Acceptance and<br>evaluation criteria are<br>inconsistent with OECD 490<br>(2016).<br>Supportive                                                                | Purity: 99.9%<br>Batch:<br>NC034-Impurity391-<br>007 and NC034-<br>Impurity391-008<br><u>Concentrations:</u><br><u>Experiment 1</u> (3 h<br>treatment with and<br>without S9): 0, 200,<br>400, 800, 1200, 1600,<br>2000, 2500, 3000,<br>3500, 3920 µg/mL.                                                                                                                           | Under the conditions tested clethodim sulfone<br>was negative without rat liver S9 (no conclusion<br>can be drawn with S9 due to precipitation).                                                                                                                                                                                                                                                                              | Vol.3,<br>B.6.8.1.4/08<br>Report No.:<br>2749/7<br>New data<br>for the<br>Annex I<br>renewal: No                    |
|                                                                                                                                                                                                                                                                                                              | Experiment 2 (3 h<br>treatment with S9, 24 h<br>treatment without S9): -<br>S9 mix: 0, 31.25, 62.5,<br>125, 250, 375, 500,<br>625, 750, 1000, 1500<br>μg/mL and +S9 mix: 0,<br>250, 500, 1000, 1500,                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                     |

| Method, guideline, deviations<br>if any, species, strain, sex,<br>no/group                                                                                                                                                                                                                                                                                                                                                    | Test substance, dose<br>levels duration of<br>exposure                                                                                                                                                                                                                                                                        | Results:                                                                                                                                                                                                                                                                                                                                  | Reference                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| <i>In vivo</i> mouse micronucleus<br>assay.<br>GLP<br><u>Guideline:</u> OECD TG 474<br>(2016).<br><u>Deviations from current</u><br><u>guideline:</u> None<br><u>Species:</u> Mouse<br><u>Strain:</u> CRL:NMRI<br>5 males (main exp.)<br>3 males and 3 females (range                                                                                                                                                         | 2000, 2500, 2750, 3000<br>μg/mL.<br>Experiment 3 (24 h<br>treatment without S9):<br>0, 400, 800, 1200,<br>1600, 2000, 2400,<br>2800, 3200, 3600, 3920<br>μg/mL<br>Clethodim sulfone<br>(RE-47253)<br>Purity: 99.1%<br>Batch: 10975AJT004-2<br>Dose: 2000 mg/kg bw.<br>Duration of exposure: 2<br>doses (separated by 24<br>h) | Clethodim sulfone did not induce micronuclei in<br>the bone marrow micronucleus test of male mice<br>at a dose of 2000 mg/kg body weight (the<br>maximum recommended dose in accordance with<br>current regulatory guidelines). Bone marrow<br>exposure was shown.                                                                        | (2021)<br>Vol.3,<br>B.6.8.1.4/09<br>Report No.:<br>2019-32623<br>New data<br>for the<br>Annex I<br>renewal:<br>Yes   |
| finder)<br>Acceptable                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                      |
| In vivo mouse micronucleus<br>assay.<br>GLP<br>Guideline: OECD TG 474<br>(1997).<br>Deviations from current<br>guideline: Only 2000 immature<br>erythrocytes per animal were<br>scored for micronuclei (4000<br>required). No evidence of test<br>article induced toxicity to the<br>bone marrow.<br>Species: Mouse<br>Strain: Crl:CD-1 (ICR)<br>6 males (main exp.)<br>3 males and 3 females (range<br>finder)<br>Supportive | Clethodim sulfone (RE-<br>47253)<br>Purity: 99.3%<br>Batch: AS776i<br><u>Dose:</u> 2000 mg/kg bw.<br>Duration of exposure: 2<br>doses (separated by 24<br>h)                                                                                                                                                                  | Clethodim sulfone induced a small increase in<br>micronuclei in the polychromatic erythrocytes of<br>the bone marrow of mice with 2000 mg/kg/day.<br>The increase (1.5-5 MN PCE/2000 PCE scored)<br>remained within the historical control range. The<br>results are concluded to be equivocal.<br>No evidence of exposure to bone marrow | (2007)<br>Vol.3,<br>B.6.8.1.4/10<br>Report No.:<br>2749/1-<br>D6172<br>New data<br>for the<br>Annex I<br>renewal: No |
| Unscheduled DNA synthesis in<br>mouse liver using an in <i>vivo/in</i><br><i>vitro</i> procedure.<br>GLP<br>Guideline: OECD 486 (1997)                                                                                                                                                                                                                                                                                        | Clethodim sulfone (RE-<br>47253)<br>Purity: 99.3%<br>Batch: AS776i                                                                                                                                                                                                                                                            | Clethodim sulfone was negative in the <i>in vivo/in vitro</i> unscheduled DNA synthesis in mouse primary hepatocyte cultures at 2-4 h and 12-14 h after dosing.                                                                                                                                                                           | (2007)<br>Vol.3,<br>B.6.8.1.4/11                                                                                     |

| Method, guideline, deviations<br>if any, species, strain, sex,<br>no/group | Test substance, dose<br>levels duration of<br>exposure | Results: | Reference   |
|----------------------------------------------------------------------------|--------------------------------------------------------|----------|-------------|
|                                                                            | Dose: Single doses of                                  |          | Report No.: |
| Deviations from current                                                    | 2000 mg/kg bw                                          |          | 2749/2-     |
| guideline: None                                                            |                                                        |          | D6173       |
|                                                                            | Sacrifice a nominal 2-4                                |          |             |
| Species: Mouse                                                             | h and 12-14 h after                                    |          | New data    |
|                                                                            | dosing.                                                |          | for the     |
| Strain: Crl:CD-1 (ICR)                                                     | C                                                      |          | Annex I     |
|                                                                            |                                                        |          | renewal: No |
| 6 males/group                                                              |                                                        |          |             |
|                                                                            |                                                        |          |             |
| Supportive                                                                 |                                                        |          |             |
|                                                                            |                                                        |          |             |

\* The study is not suitable for NOAEL setting (dose range finding study)

## Results

Clethodim sulfone (2-(I-1-(((I-3-chloroallyl)oxy)imino)propyl)-5-(2-(ethylsulfonyl) propyl)-3- hydroxycyclohex-2-en-1-one) is a metabolite in crops and groundwater (max PEC<sub>gw</sub>: 0.843  $\mu$ g/L). It is a minor metabolite in rats ( $\leq$  1% in urine). For the renewal of active substance the applicant has submitted three new studies for this metabolite in addition to old data. The following studies are new data for renewal of active substance: 14-d oral dose range finding study in the rat, 28-d oral toxicity study in the rat, and an *in vivo* mouse micronucleus assay. All new and old studies were considered acceptable or supportive.

Oral administration of clethodim sulfone (RE-47253) by diet for 14 days was generally well tolerated in rats at dose levels up to 2500 ppm, equivalent to 183.5 mg/kg/day in males and 196.1 mg/kg/day in females, with no adverse clinical signs but was associated with lower body weight gain in the high dose group when compared with controls (M:  $\downarrow$ 31% bw gain, F:  $\downarrow$ 47% bw gain). The study was considered as supportive data (dose range finding study) (Vol. 3, B.6.8.1.4/01).

Oral administration of clethodim sulfone (RE-47253) by diet at 0, 50, 500 and 2500 ppm for 28 days (equal to 0, 4.1, 39.9 and 211.1 mg/kg/day for males, and 0, 4.2, 42.8 and 207.1 mg/kg/day for females) was generally well tolerated in rats with no in-life clinical signs at dose levels up to 2500 ppm. Haematology effects in females that received 500 ppm (42.8 mg/kg bw/day) of clethodim sulfone (RE-47253) were limited to lower red blood cell count (7%), haemoglobin (6%) and haematocrit (8%), when compared with controls. Males that received 500 ppm (39.9 mg/kg bw/day) had a lower bodyweight gain (15%) than the control males. Other observed effects were associated with animal's receiving 2500 ppm and included lower bodyweight gain (M: 16%), lower red blood cell count (F: 8%), haemoglobin (F: 7%) and haematocrit (F: 9%), higher creatinine (M: 39%), lower cholesterol (M: 35%), higher liver weights (M: absolute: ↑12%, relative to bw: ↑19.5%, relative to brain weight: ↑14%; F: relative to bw: ↑18%, absolute: ↑15.5%, n.s., relative to brain weight: ↑ 17%, n.s.), germ cell degeneration in the testis (5/5 individuals), and cellular debris and decreased sperm in the epididymis (5/5 individuals). The NOAEL was 50 ppm (equivalent to 4.1 mg/kg bw/day) based on reduced bodyweight gain noted in males at ≥500 ppm (15-16%), changes in haematological parameters indicating mild anaemia noted in females at  $\geq 500$  ppm (reduced red blood cell count, haemoglobin and haematocrit levels), changes in biochemical parameters noted in males at 2500 ppm (reduced cholesterol, increased creatinine levels), increased liver weights noted in both sexes at 2500 ppm, and histopathological changes in sperms noted at 2500 ppm. The NOAEL (4.1 mg/kg bw/day) following 28-day administration of clethodim sulfone (RE-47253) was lower compared to the NOAEL (12.5 mg/kg bw/day) in the 28-day oral toxicity study conducted with clethodim. Furthermore, the LOAEL (39.9 mg/kg bw/day) following 28-day administration of clethodim sulfone (RE-47253) was lower compared to the LOAEL (65.6 mg/kg bw/day) in the 28-day oral toxicity study conducted with clethodim. Thus, it cannot be concluded that the general toxicity of clethodim sulfone (RE-47253) is less toxic than the parent substance based on the available data. The study follows OECD TG 407 except for the fact that no histopathology of the coagulating gland was done. The study was considered acceptable (Vol. 3, B.6.8.1.4/02)

The clethodim sulfone (RE-47253) gave a mutagenic response in *Salmonella typhimurium* TA1535 and TA100 in the absence of S9 mix only, when tested in DMSO up to a predetermined maximum concentration of 5000  $\mu$ g per plate. The response was detected only with the pre-incubation method. No mutagenic activity was observed with *Salmonella typhimurium* TA 1537 and TA 98 or with *Escherichia coli* WP2*uvr*A. The study follows OECD TG 471. The study was considered acceptable (Vol. 3, B.6.8.1.4/03).

In a repeated experiment in *Salmonella typhimurium* TA1535 and TA100, a statistically significant increase in revertant numbers was observed in TA100 in the absence of metabolic activation. An increase was observed in experiment 1 at 1.6, 8, 40, 200 but not at 1000 and 5000  $\mu$ g/plate and only at 625  $\mu$ g/plate in experiment 2 and thus not concentration dependent or reproducible. No statistically significant increase in revertant numbers was observed at any concentration in neither experiment with TA1535. The study follows OECD TG 471 with the exception that only two strains of *S. thypimurium* was used. However, another Ames test is available (Report No.: 22788, presented above) using all recommended test strains. The study was considered acceptable (Vol. 3, B.6.8.1.4/04). Because one of the two Ames test gave a positive response, mutagenicity cannot be ruled out and follow up data is needed for this endpoint.

Clethodim sulfone (RE-47253) gave an equivocal/inconclusive response, when tested for mutagenic activity, in mouse lymphoma L5178Y cells, in the absence of S9 mix, at concentrations extending into the toxic range. Clethodim sulfone was mutagenic in the presence of S9 mix when tested to the predetermined maximum concentration of 5000  $\mu$ g/mL (4 h exposure) and at concentrations extending into the toxic range (24 h exposure). The study was conducted in accordance with OECD TG 476 (1997) which is superseded by OECD 490 (2016). The study was considered acceptable (Vol. 3, B.6.8.1.4/07).

In a second experiment in mouse lymphoma L5178Y cells clethodim sulfone (RE-47253) was non-mutagenic in the presence and absence of S9 mix when tested at concentrations extending into the toxic range but the RMS notes that upon addition of the test article to the cultures, precipitate was observed at concentrations from 400  $\mu$ g/mL in the absence and presence of S9. Therefore, the RMS concludes that under the conditions tested clethodim sulfone (RE-47253) was negative without rat liver S9 and that no conclusion can be drawn from this study on mutagenicity in the presence of S9. The study was conducted in accordance with OECD TG 476 (1997). The study was considered as supportive data (Vol. 3, B.6.8.1.4/08). Because of the positive result in the first MLA, follow up data is needed for this endpoint.

Clethodim sulfone (RE-47253) induced structural chromosomal aberrations in CHO cells *in vitro* in the presence of a rat liver-derived metabolic activation system (S9 mix). In the absence of S9 mix clethodim sulfone did not induce structural chromosomal aberrations. The RMS notes that OECD TG 473 requires 300 metaphases to be scored for

chromosomal aberrations but only 100 were scored in the study. The study was considered acceptable (Vol. 3, B.6.8.1.4/05).

In a second experiment, clethodim sulfone (RE-47253) did not induced structural chromosomal aberrations in the presence of S9 mix in CHO cells *in vitro*. The RMS notes that OECD TG 473 requires 300 metaphases to be scored for chromosomal aberrations but only 200 were scored in the study and no long-term exposure was included. The study was considered supportive (Vol. 3, B.6.8.1.4/06). The positive response in the first chromosome aberration test (above) was followed up in vivo (bone marrow micronucleus test).

Clethodim sulfone (RE-47253) induced a small increase in micronuclei in the polychromatic erythrocytes of the bone marrow of mice with 2000 mg/kg/day. The increase (1.5-5 MN PCE/2000 PCE scored) remained within the historical control range (5 MN PCE/2000 PCE scored) and the RMS therefore concludes that the results are equivocal. It should be noted that only 2000 immature erythrocytes per animal were scored for micronuclei (4000 required according to OECD TG 474) and that no evidence of test article-induced toxicity to the bone marrow was presented. The study is considered supportive (CA 5.8.1.4/10).

A second *in vivo* micronucleus study was performed in another strain of mice in which clethodim sulfone was not clastogenic or aneugenic as it did not induce micronuclei in the bone marrow micronucleus test of male mice at a dose of 2000 mg/kg body weight (the maximum recommended dose in accordance with current regulatory guidelines). The study was performed in accordance with OECD TG 474 (2016) without deviations and considered acceptable. Systemic exposure was shown by the presence of the test item in plasma (CA 5.8.1.4/09). Clethodim sulfone (RE-47253) was evaluated as negative in the *in vivo/in vitro* unscheduled DNA synthesis in mouse primary hepatocyte cultures at two time points. The study was conducted in compliance with OECD TG 486 (1997) but considered supportive due to the limitation of this assay.

#### **Overall conclusion**

Clethodim sulfone (RE-47253) was not clastogenic or aneugenic but was positive in Ames test and MLA inducing gene mutagenicity. **A data gap** was identified for gene mutations (positive responses in Ames test and MLA need to be followed up).

Regarding general toxicity for the assessment of clethodim sulfone, it cannot be concluded that clethodim sulfone (RE-47253) is less toxic than the parent substance based on the available data. The metabolite is considered qualitatively different from the parent compound since effects on male reproductive organ (cellular debris and decreased sperms in epididymis and germ cell degeneration in testis) were observed in the 28-day oral toxicity study at 2500 ppm (211 mg/kg bw/day). RMS proposes to apply an additional safety factor of 10 in the risk assessment provided that the metabolite clethodim sulfone is not shown to be genotoxic. The NOAEL in the 28-day oral toxicity study study conducted with clethodim sulfone (RE-47253) was 4.1 mg/kg bw/day and application of a safety factor for inter- and intraspecies differences of 100, and an additional safety factor of 10 would result in an ADI/AOEL of 0.004 mg/kg bw/day. The magnitude of additional safety factor of 10 is considered sufficient for an extrapolation of study duration (subacute to chronic exposure) and the lack of data for reproductive toxicity.

<u>RMS proposal</u>: the concern for genotoxicity and reproductive toxicity and need for an additional safety factor in the risk assessment to be discussed at expert meeting.

## 2.6.8.1.5 Clethodim oxazole sulfoxide (RE-47796)

0 C

| Table 2.6.8.1.5-1: Summarv  | table of studies on a | clethodim oxazole sulfoxide |
|-----------------------------|-----------------------|-----------------------------|
| 1 abic 2.0.0.1.3-1. Summary | table of studies of v |                             |

| Method, guideline, deviations                                 | Test substance, dose levels                                     | Results:                                                                                     | Reference                             |
|---------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------|
| if any, species, strain, sex,<br>no/group                     | duration of exposure                                            |                                                                                              |                                       |
| 14-day dose range finding study                               | Clethodim oxazole sulfoxide                                     | No NOAEL was set in study*                                                                   | (2020c)                               |
| GLP                                                           | Purity: 98.5%                                                   | <u>Target organs and effects:</u><br>No test item related effects observed.                  | Vol.3,                                |
| Guideline: None                                               | Batch: 10976AJT015-1                                            |                                                                                              | B.6.8.1.5/01                          |
| Species: Rat                                                  | <u>Doses:</u> 0, 50, 500 and 2500<br>ppm (equal to 0, 5.5, 56.3 |                                                                                              | Report No.: 510533                    |
| Strain: Han Wistar Crl:WI (Han)                               | and 270.9 mg/kg/day in males and 0, 5.3, 56.1 and               |                                                                                              | New data                              |
| 5 animals per sex and dose level                              | 246.5 mg/kg/day in females)                                     |                                                                                              | for the<br>Annex I                    |
| Supportive                                                    | Duration of exposure: 14-<br>days                               |                                                                                              | renewal:<br>Yes                       |
| 28-day oral toxicity study                                    | Clethodim oxazole sulfoxide                                     | NOAEL: 2500 ppm (211.7 mg/kg bw/day)                                                         | (2021)                                |
| GLP                                                           | <u>Doses:</u><br>0, 50, 500 and 2500 ppm                        | Target organs and effects:                                                                   | Vol.3,                                |
| Guideline: OECD TG 407.                                       | (equal to 0, 4.3, 41.2 and<br>211.7 mg/kg/day in males          | 500 ppm:<br>↑ mean uterus weight (absolute weight: ↑                                         | B.6.8.1.5/02                          |
| Deviations from OECD TG 407<br>(2008): The highest dose level | and 0, 4.5, 46.3 and 221.9 mg/kg/day in females)                | 50%,)                                                                                        | Report No.:<br>510549                 |
| was lower than recommended in<br>the TG (but adequate for     | Duration of exposure: 28-                                       | 2500 ppm:<br>↑ mean pituitary gland weight in males                                          | New data                              |
| comparison with the parent<br>compound)                       | days                                                            | (absolute weight: ↑18%)<br>↑ mean adrenal gland weight in females                            | for the<br>Annex I                    |
| Species: Rat                                                  |                                                                 | (absolute weight ↑17%)<br>↑ mean uterus weight (absolute weight:<br>↑16%, n.s.).             | renewal:<br>Yes                       |
| Strain: Han Wistar Crl:WI (Han)                               |                                                                 | 1070, 11.5.).                                                                                |                                       |
| 5 animals per sex and dose level                              |                                                                 |                                                                                              |                                       |
| Supportive                                                    |                                                                 |                                                                                              |                                       |
| Reverse mutation assay with and without S9.                   | Clethodim oxazole sulfoxide                                     | Clethodim oxazole sulfoxide was not mutagenic in the <i>Salmonella typhimurium</i>           | Groot<br>(2020)                       |
| GLP                                                           | Purity: 98.5%                                                   | (TA1535, TA1537, TA98 and TA100) reverse mutation assay and in the                           | Vol.3,                                |
| Guideline: OECD Guideline 471                                 | Batch: 10976AJT015-1                                            | <i>Escherichia coli</i> (WP2 <i>uvr</i> A) reverse mutation assay with and without metabolic | B.6.8.1.5/03                          |
| (1997).                                                       | Doses: 1.7, 5.4, 17, 52, 164, 512, 1600, and 5000 μg/plate      | activation.                                                                                  | Report No.: 20225638                  |
| Deviations from current<br>guideline: None                    |                                                                 |                                                                                              | New data                              |
| Acceptable                                                    |                                                                 |                                                                                              | for the<br>Annex I<br>renewal:<br>Yes |

| Method, guideline, deviations<br>if any, species, strain, sex,<br>no/group                                                                                                     | Test substance, dose levels<br>duration of exposure                                                                                                         | Results:                                                                                                                                                                              | Reference                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Mouse lymphoma cell mutation<br>assay<br>GLP<br>Guideline: OECD TG 490<br>(2016).<br>Deviations from current<br>guideline: None<br>Acceptable                                  | Clethodim oxazole sulfoxide<br>Purity: 98.5%<br>Batch: 10976AJT015-1<br><u>Doses:</u> 15.6, 31.3, 62.5, 125,<br>250, 500, 1000, and<br>2000 µg/mL           | Under the conditions tested clethodim<br>oxazole sulfoxide was negative with and<br>without rat liver S9.                                                                             | Groot<br>(2021)<br>Vol.3,<br>B.6.8.1.5/04<br>Report No.:<br>2019-32483<br>New data<br>for the<br>Annex I<br>renewal:<br>Yes |
| In vitro micronucleus assay with<br>in peripheral human<br>lymphocytes<br>GLP<br>Guideline: OECD TG 487<br>(2016).<br>Deviations from current<br>guideline: None<br>Acceptable | Clethodim oxazole sulfoxide<br>Purity: 98.5%<br>Batch: 10976AJT015-1<br><u>Doses:</u> 500, 1000, and 2000<br>µg/mL in the presence and<br>absence of S9 mix | Clethodim oxazole sulfoxide did not induce<br>a relevant increase in the number of<br>mononucleated and binucleated cells with<br>micronuclei in the absence or presence of<br>S9 mix | De Jong<br>(2021)<br>Vol.3,<br>B.6.8.1.5/05<br>Report No.:<br>20225640<br>New data<br>for the<br>Annex I<br>renewal:<br>Yes |

\* The study is not suitable for NOAEL setting (dose range finding study)

#### Results

Clethodim oxazole sulfoxide (RE-47796) is a metabolite in crops (small amounts, not part of the residue definition), and ground water (max PEC<sub>gw</sub>: 0.10  $\mu$ g/L). It is found in the rat metabolism ( $\leq$ 5% in urine). For the renewal of active substance, the applicant has submitted new studies for this metabolite. The studies were considered acceptable or supportive.

Oral administration of clethodim oxazole sulfoxide (RE-47796) by diet for 14 days was well tolerated in rats at dose levels up to 2500 ppm, equivalent to 270.9 mg/kg/day in males and 246.5 mg/kg/day in females, with no adverse findings. The study is a dose range finding study and considered as supportive data (Vol. 3, B.6.8.1.5/01).

Oral administration of clethodim oxazole sulfoxide (RE-47796) by diet for 28 days was well tolerated in rats with no evidence of toxicity at dose levels up to 2500 ppm (equivalent to 211.7 mg/kg bw/day in males and 221.9 mg/kg bw/day in females). The RMS notes that mean pituitary gland weight was higher in males at 2500 ppm (18% higher for absolute weight), mean adrenal gland weight was higher in females at 2500 ppm (17% higher for absolute weight) and mean uterus weight was higher in females at 500 (50% for absolute weight) and 2500 ppm (16% for absolute weight, n.s.). However, there was no histological correlate to these findings (assessed for high dose level). In addition, there was minimal diffuse follicular cell hypertrophy in the thyroid gland in one animal at 2500 ppm and also a minimal increased haematopoiesis in the spleen at 2500 ppm in one male and one female. The top dose appears

to be too low according to the OECD guideline 407 which includes a limit dose of 1000 mg/kg bw/day and considering that no adverse effects were observed in the dose range finding study (doses up to 270.9 mg/kg/day in males and 246.5 mg/kg/day in females). The NOAEL (211.7 mg/kg bw/day) following 28-day administration of clethodim oxazole sulfoxide was higher compared to the NOAEL (12.5 mg/kg bw/day) obtained in the 28-day oral toxicity study conducted with clethodim. The study was conducted in compliance with OECD TG 407 (2008) with the exception that the highest dose level was too low. Thus, the study was considered as supportive data. However, the toxicity of this metabolite following repeated dose was clearly less than that of the parent compound, thus no further data was needed (Vol. 3, B.6.8.1.5/02).

The clethodim oxazole sulfoxide (RE-47796) gave a non-mutagenic response in *Salmonella typhimurium* (TA1535, TA1537, TA98 and TA100) and *Escherichia coli* (WP2*uvr*A) in the presence and absence of a rat liver S9-mix. The study follows OECD TG 471 and was considered acceptable (Vol. 3, B.6.8.1.5/03).

Clethodim oxazole sulfoxide (RE-47796) did not induce an increase in the mutation frequency in in the mouse lymphoma L5178Y test system in the absence and presence of S9-metabolic activation. The study was conducted in accordance with OECD guideline 490 (2016) with no deviations from the test guideline. The study was considered acceptable.

Clethodim oxazole sulfoxide (RE-47796) did not induce an increase in the number of mononucleated and binucleated cells with micronuclei in the absence or presence of S9 mix, in either of the two experiments. The study was conducted in accordance with OECD guideline 487 (2016) with no deviations from the test guideline. The study was considered acceptable.

#### **Overall conclusion:**

Clethodim oxazole sulfoxide (RE-47796) was not mutagenic and did not induce an increase in the number of mononucleated and binucleated cells with micronuclei (Ames test, MLA and *in vitro* MN test were all negative). A NOAEL of 211.7 mg/kg bw/day was obtained in a 28- day oral toxicity study in the rat conducted with clethodim oxazole sulfoxide (RE-47796), thus the toxicity of clethodim oxazole sulfoxide (RE-47796) following repeated dose administration was considered lower than that of clethodim.

## 2.6.8.1.6 DME sulfoxide acid (M17R)

COOH COOH

| Method, guideline, deviations if any,<br>species, strain, sex, no/group | Test substance, dose levels<br>duration of exposure | Results:                                                                   | Reference |
|-------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------|-----------|
| Acute oral toxicity study                                               | DME Sulfoxide Acid                                  | The oral LD <sub>50</sub> value of DME sulfoxide acid was calculated to be |           |
| GLP                                                                     | Purity: 99.51% (HPLC) and 94.09% (minus water       | >5000 mg/kg bw.                                                            | (2010a)   |
| Guideline: OECD TG 423 (2001)                                           | content)                                            |                                                                            |           |

Clethodim

| Method, guideline, deviations if any,<br>species, strain, sex, no/group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Test substance, dose levels<br>duration of exposure                                                                                                                                                                             | Results:                                                                                                                                                                                                                                                                                                                                                            | Reference                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| Deviations from current guideline:<br>Deviations from the minimum level of<br>relative humidity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Batch: 154-VK-144<br>Dose: 2000 mg/kg                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                     | Vol.3,<br>B.6.8.1.6/01<br>Report                                       |
| Species: Rat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                     | No.:491727                                                             |
| Strain: Sprague Dawley Crl:CD (SD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                     | New data for the                                                       |
| Two groups of 3 females                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                     | Annex I<br>renewal: No                                                 |
| Acceptable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                     | Tenewai. 100                                                           |
| 28-day oral toxicity study.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DME sulfoxide acid                                                                                                                                                                                                              | NOAEL: 1000 ppm (equal to 80 mg/kg bw per day)                                                                                                                                                                                                                                                                                                                      |                                                                        |
| GLP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Purity: 99.51% (HPLC) and 94.09% (minus water                                                                                                                                                                                   | Target organs and effects:                                                                                                                                                                                                                                                                                                                                          | (2010b)                                                                |
| Guideline: OECD TG 407 (2008).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | content)                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                     | Vol.3,<br>B.6.8.1.6/02                                                 |
| Deviations from current guideline:<br>- 7 animals were necropsied later than<br>after a maximum of 20 h fasting but not<br>longer than 21 h. – A few tissues were<br>not available for histopathology.<br>Reasons for missing a few tissues<br>included that those tissues were not<br>discernible at trimming or were<br>erroneously not collected at necropsy.<br>Missing tissues are listed in raw data<br>and in the pathology report.<br>- The mean analysed concentrations of<br>the pellet diets of Group 2, Group 3 and<br>Group 4 were in the range of 122-127%<br>and higher than the criterion range of<br>80-120%<br>- a few deviations from the minimum<br>level of relative humidity occurred in<br>the animal room.<br>Species: Rat<br>Strain: Sprague Dawley Crl:CD (SD)<br>5 animals per sex and dose level<br>Acceptable | Batch: 154-VK-144<br><u>Doses:</u> 0, 200, 1000 and<br>5000 ppm (equal to 0, 15,<br>80 and 396 mg/kg bw per<br>day in males, 0, 16, 78, and<br>407 mg/kg bw per day in<br>females).<br><u>Duration of exposure:</u> 28-<br>days | 1000 ppm:         - clinical signs (chromodacryorrhoea from day 26 up to 28)         5000 ppm:         - clinical signs (black staining of the back during the first 3 days)         ↑thymus in males (absolute thymus weight: ↑24%, relative thymus weight: ↑24%, relative thymus weight: ↑25%).         ↑adrenal weight in males (relative adrenals weight: ↑20%) | Report No.:<br>491728<br>New data<br>for the<br>Annex I<br>renewal: No |
| Reverse mutation assay with and without S9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DME sulfoxide acid                                                                                                                                                                                                              | Under the conditions of this assay,                                                                                                                                                                                                                                                                                                                                 | Verspeek-                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Purity: 99.51% (HPLC) and                                                                                                                                                                                                       | DME sulfoxide acid gave a non-<br>mutagenic response in <i>Salmonella</i>                                                                                                                                                                                                                                                                                           | Rip (2009)                                                             |
| GLP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 94.09% (minus water content)                                                                                                                                                                                                    | <i>typhimurium</i> (TA1535, TA1537, TA98 and TA100) and <i>Escherichia</i>                                                                                                                                                                                                                                                                                          | Vol.3,<br>B.6.8.1.6/03                                                 |
| Guideline: OECD Guideline 471 (1997).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Batch: 154-VK-144                                                                                                                                                                                                               | <i>coli</i> (WP2uvrA) in the presence and<br>absence of a rat liver-derived<br>metabolic activation system (S0 mix)                                                                                                                                                                                                                                                 | Report No.:                                                            |
| Deviations from current guideline: None<br>Acceptable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Doses: 3, 10, 33, 100, 333,<br>1000, 3330, and 5000<br>μg/plate                                                                                                                                                                 | metabolic activation system (S9-mix).                                                                                                                                                                                                                                                                                                                               | 491725<br>New data<br>for the<br>Annex I<br>renewal: No                |
| <i>In vitro</i> mammalian chromosome aberration test (human lymphocytes)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DME sulfoxide acid                                                                                                                                                                                                              | Both in the absence and presence of S9 mix, DME sulfoxide acid did not induce structural chromosomal                                                                                                                                                                                                                                                                | Buskens<br>(2010)                                                      |

| Method, guideline, deviations if any,<br>species, strain, sex, no/group | Test substance, dose levels<br>duration of exposure | Results:                               | Reference    |
|-------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------|--------------|
| GLP                                                                     | Purity: 99.51% (HPLC) and                           | aberrations and was not clastogenic in | Vol.3,       |
|                                                                         | 94.09% (minus water                                 | human lymphocytes in vitro.            | B.6.8.1.6/04 |
| Guideline: OECD TG 473 (1997).                                          | content)                                            |                                        |              |
|                                                                         |                                                     |                                        | Report No .: |
| Deviations from current guideline: No                                   | Batch: 154-VK-144                                   |                                        | 491726       |
| deviations are identified from OECD                                     |                                                     |                                        |              |
| 473 (2016).                                                             | Doses: 333, 1000 and 2503                           |                                        | New data     |
|                                                                         | $\mu$ g/mL (± S9 mix, 3 h                           |                                        | for the      |
| Acceptable                                                              | exposure) and 300, 700 and                          |                                        | Annex I      |
|                                                                         | 1000 µg/mL (± S9 mix, 24                            |                                        | renewal: No  |
|                                                                         | and 48 h exposure)                                  |                                        |              |
|                                                                         |                                                     |                                        |              |
|                                                                         |                                                     |                                        |              |

#### Results

Metabolite DME sulfoxide acid (3-[(2-ethylsulfinyl) propyl]-pentanedioic acid) is a crop metabolite. The studies were included in the previous EU evaluation (DAR 2005). There are no new data for this metabolite.

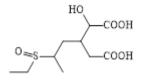
The acute oral LD<sub>50</sub> of DME sulfoxide acid (M17R) was calculated to be >5000 mg/kg bw in female rats. Thus, DME sulfoxide acid (M17R) was of less acutely toxicity than clethodim which shows an LD<sub>50</sub> of 1133 mg/kg bw in female rats. The study follows OECD TG 423 with minor deviations (occasional deviations of minimum level of relative humidity occurred during the study) and was considered acceptable (Vol.3, B.6.8.1.6/01).

Oral administrations of DME sulfoxide acid (M17R) to rats for 28-days at dietary concentrations of 0, 200, 1000 and 5000 ppm (equal to 0, 15, 80 and 396 mg/kg bw/day for males, 0, 16, 78, and 407 mg/kg bw/day for females) resulted in a NOAEL of 1000 ppm (equal to 80 mg/kg bw/day), based on thymus and adrenal weight changes in males at 5000 ppm (equal to 396 mg/kg bw/day). It is also noted that decreased red blood cell distribution width, mean corpuscular haemoglobin, mean corpuscular haemoglobin concentration were observed in males at all doses. However, these changes were small, showed no dose response and were considered to be within normal ranges according to study author (control data given in study report). Thus, of no toxicological significance. Furthermore, statistically significant reduced platelets were noted for females of high dosage level, but without clear doseresponse and values within normal control values given in study report. The NOAEL (80 mg/kg bw/day) following 28-day administration of clethodim DME sulfoxide acid (M17R) was higher compared to the NOAEL (12.5 mg/kg bw/day) obtained in the 28-day oral toxicity study conducted with clethodim. Thus, the toxicity of clethodim DME sulfoxide acid (M17R) following repeated dose administration was less than that of the parent compound. The study was conducted in compliance with OECD TG 407 (2008). Deviations identified includes the mean analysed concentrations of the pellet diets of 200, 1000 and 5000 ppm groups were higher than the criterion range of 80-120%. Further, 7 animals were necropsied later than after a maximum of 20 h fasting but not longer than 21 h. A few tissues were not available for histopathology. Reasons for missing a few tissues included that those tissues were not discernible at trimming or were erroneously not collected at necropsy, and a few deviations from the minimum level of relative humidity occurred in the animal room. The RMS concludes that the study integrity was not adversely affected by these deviations. The study was considered acceptable (Vol.3, B.6.8.1.6/02).

The DME sulfoxide acid (M17R) gave a non-mutagenic response in *Salmonella typhimurium* (TA1535, TA1537, TA98 and TA100) and *Escherichia coli* (WP2uvrA) in the presence and absence of a rat liver S9-mix. The study follows OECD TG 471 and was considered acceptable (Vol.3, B.6.8.1.6/03).

DME sulfoxide acid (M17R) did not induce structural chromosomal aberrations and was not clastogenic in cultured peripheral human lymphocytes *in vitro*. The study was conducted in compliance with the now outdated OECD TG 473 (1997). However, the results obtained are considered sufficient by the RMS for adequate evaluation and conclusion on clastogenicity. The study was considered acceptable (Vol.3, B.6.8.1.6/04).

#### **Overall conclusion:**


DME sulfoxide acid (M17R) was less acutely toxic than the parent substance and was non-mutagenic *in vitro*. Further, it did not induce structural chromosomal aberrations and was not clastogenic in cultured peripheral human lymphocytes *in vitro*. A NOAEL of 80 mg/kg bw/day was obtained in a 28- day oral toxicity study in the rat conducted with clethodim sulfoxide acid (M17R), thus the toxicity following repeated dose administration was considered lower than that of clethodim.

DME sulfoxide acid (M17R) did not induce gene mutations or structural chromosome aberrations. A data gap was identified for genotoxicity since aneuploidy has not been properly assessed, this is accordance to the EFSA document Guidance on aneugenicity assessment (2021) \*

\*EFSA Scientific Committee (SC), doi: 10.2903/j.efsa.2021.6770, states on page 4 that "The genotoxicity testing strategy indicated in the EFSA Scientific Committee opinion is designed to investigate the genotoxic potential of substances through the detection of three genotoxic endpoints: gene mutations, structural chromosomal aberrations (i.e. clastogenicity) and numerical chromosomal aberrations (i.e. aneuploidy). The testing strategy id developed as a stepwise approach, beginning with a basic battery of *in vitro* tests, comprising:

- A bacterial reverse mutation assay [Organisation for Economic Co-operation and Development (OECD) TG 471, endpoint: gene mutations]; *and*
- an *in vitro* mammalian cell micronucleus (MN) test (OECD TG 487, endpoints: clastogenicity and aneugenicity)."

## 2.6.8.1.7 Hydroxy 3-[(2-Ethylsulfinyl) propyl]-pentanedioic acid (M14R/M15R)



Metabolite M15R is the dehydro-form of the plant metabolite DME sulfoxide acid and is expected to have similar toxicity to DME sulfoxide acid (M17R). Read across from DME sulfoxide acid (M17R) is proposed for Metabolite M15R.

A data gap was established on aneuploidy for M17R which is also applicable to M15R.

## 2.6.8.1.8 DME sulfone acid (M18R)

COOH соон

#### Table 2.6.8.1.8-1: Summary table of studies on DME sulfone acid (M18R)

| Method, guideline, deviations if any, species, strain, sex, no/group | Test substance, dose levels duration of | Results:                                                                                               | Reference              |
|----------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------|
|                                                                      | exposure                                |                                                                                                        |                        |
| Acute oral toxicity study                                            | DME sulfone acid                        | The oral LD <sub>50</sub> value of DME sulfoxide acid was calculated to be $> 5000 \text{ mg/kg bw}$ . |                        |
| GLP                                                                  | Purity: 99.58%                          |                                                                                                        | (2010c)                |
| Guideline: OECD TG 423 (2001).                                       | Batch: 151-SRC-178                      |                                                                                                        | Vol.3,<br>B.6.8.1.7/01 |
| Deviations from current guideline:                                   | Dose: 2000 mg/kg                        |                                                                                                        | <b>D</b> .0.0.1.7701   |
| None                                                                 | Dose. 2000 mg/kg                        |                                                                                                        | Report No:<br>491732   |
| Species: Rat                                                         |                                         |                                                                                                        | New data               |
| Strain: Sprague Dawley Crl:CD (SD)                                   |                                         |                                                                                                        | for the<br>Annex I     |
| Two groups of 3 females                                              |                                         |                                                                                                        | renewal: No            |
| Acceptable                                                           |                                         |                                                                                                        |                        |
| Reverse mutation assay with and                                      | DME sulfone acid                        | Under the conditions of this assay, DME                                                                | Verspeek-              |
| without S9.                                                          | Divil suitone dela                      | sulfone acid gave a non-mutagenic response                                                             | Rip (2009b)            |
|                                                                      | Purity: 99.58%                          | in Salmonella typhimurium (TA1535,                                                                     | inp (20090)            |
| GLP                                                                  |                                         | TA1537, TA98 and TA100) and Escherichia                                                                | Vol.3.                 |
|                                                                      | Batch: 151-SRC-178                      | <i>coli</i> (WP2 <i>uvr</i> A) in the presence and absence                                             | B.6.8.1.7/02           |
| Guideline: OECD Guideline 471                                        |                                         | of a rat liver-derived metabolic activation                                                            |                        |
| (1997).                                                              | Doses: 3 to 5000                        | system (S9-mix).                                                                                       | Report No .:           |
|                                                                      | µg/plate                                |                                                                                                        | 491731                 |
| Deviations from current guideline:                                   |                                         |                                                                                                        |                        |
| None                                                                 |                                         |                                                                                                        | New data               |
|                                                                      |                                         |                                                                                                        | for the                |
| Acceptable                                                           |                                         |                                                                                                        | Annex I                |
|                                                                      |                                         |                                                                                                        | renewal: No            |
|                                                                      |                                         |                                                                                                        |                        |

### Results

DME sulfone acid (3-[(2-ethylsulfonyl) propyl]-pentanedioic acid) is a metabolite found in crops and has a similar structure to the metabolite DME sulfoxide acid (M17R). Given the very close structural similarity it is expected that both metabolites behave similarly. The studies were included in the previous EU evaluation (DAR 2005). There are no new data for this metabolite.

The acute oral  $LD_{50}$  of DME sulfone acid (M18R) was calculated to be >5000 mg/kg bw in female rats. Thus, DME sulfone acid (M18R) was less acutely toxic than clethodim which shows an  $LD_{50}$  of 1133 mg/kg bw in female rats. The study follows OECD TG 423 and is considered acceptable (Vol.3, B.6.8.1.7/01).

The DME sulfone acid (M18R) gave a non-mutagenic response in Salmonella typhimurium (TA1535, TA1537, TA98 and TA100) and Escherichia coli (WP2uvrA) in the presence and absence of a rat liver S9-mix. The study follows OECD TG 471 and is considered acceptable (Vol.3, B.6.8.1.7/02).

## **Overall conclusion:**

Read across from DME sulfoxide acid (M17R) is proposed for Metabolite M18R. In addition, one Ames test and one acute oral toxicity study conducted with metabolite M18R are available. DME sulfone acid (M18R) was not considered acutely toxic and the Amest test was negative.

However, a data gap was established on aneuploidy for M17R which is also applicable to M18R.

## 2.6.8.1.9 3-chloroallyl alcohol (3-CAA)



| Method, guideline, deviations if      | Test substance, dose              | Results:                                               | Reference           |
|---------------------------------------|-----------------------------------|--------------------------------------------------------|---------------------|
| any, species, strain, sex, no/group   | levels duration of                |                                                        |                     |
|                                       | exposure                          |                                                        |                     |
| In vivo micronucleus/transgenic       | 3-chloroallyl alcohol (3-         | Administration of chloroallyl                          | (2020)              |
| rodent assay.                         | CAA)                              | alcohol in drinking water at doses                     |                     |
|                                       |                                   | up to and including a top dose of                      | Vol.3, B.6.8.1.9/01 |
| GLP                                   | Purity: 96%                       | 100 mg/kg/day was concluded to be                      |                     |
|                                       |                                   | negative for the induction of cII                      | Report No.:         |
| Guideline: OECD TG 488 (2013)         | Batch: DE3-173144-15              | mutants in liver and bone marrow                       | AF97GE.171.BTL      |
| and OECD TG 474 (2016).               |                                   | and negative for the induction of                      |                     |
|                                       | Doses: 0, 10, 30 and 100          | micronucleated reticulocytes in the                    | New data for the    |
| Deviations from current guideline:    | mg/kg bw/day in drinking          | peripheral blood of male Fischer                       | Annex I renewal:    |
| None                                  | water.                            | 344 Big Blue <sup>®</sup> rats. However, the           | Yes                 |
|                                       |                                   | decrease in water consumption was                      |                     |
| Species: Rat                          | Duration of exposure: 29-         | considered to be an effect of most                     |                     |
|                                       | days.                             | likely non-palatable drinking water                    |                     |
| Strain: Fischer 344 homozygous        |                                   | due to its content of solved 3-CAA                     |                     |
| Big Blue® transgenic male             |                                   | which in turn lead to decreased                        |                     |
|                                       |                                   | body weight gain. The liver weight                     |                     |
| 6 males / dose group                  |                                   | increase was approximately 5% and                      |                     |
| Net constable                         |                                   | is considered to be insignificant.                     |                     |
| Not acceptable                        |                                   | Hence, MTD was not proven to be achieved in the study. |                     |
| 14 day range finding study            | 2 ablamally alashal (2            | The purpose of this study was to                       | (2022)              |
| 14-day range finding study            | 3-chloroallyl alcohol (3-<br>CAA) | select dose levels for a 28-day                        | (2022)              |
| Non-GLP                               | CAA)                              | repeat-dose study to investigate Pig-                  | Vol.3, B.6.8.1.9/02 |
| Non-OLI                               | Purity: 98.1%                     | a mutations and micronuclei                            | V01.5, D.0.0.1.9/02 |
| Guideline: none                       | 1 unty: 90.170                    | formation. The route of                                | Report No.:         |
| Guideline. none                       | Batch: 32634-05-23                | administration was oral gavage, and                    | Charles River ID    |
| Deviations from current guideline:    | Dutch: 5205 1 05 25               | it was clearly demonstrated that                       | 00155013            |
| Not applicable                        | Doses: 0, 25, 50, 75 and          | doses of 25, 50, 75, and 100                           | 00100010            |
|                                       | 100 mg/kg bw/day by oral          | mg/kg/day for 14 days resulted in                      | New data for the    |
| Species: Rat                          | gavage.                           | mortality in the 75 and 100                            | Annex I renewal:    |
| I I I I I I I I I I I I I I I I I I I | 6                                 | mg/kg/day group males and                              | Yes                 |
| Strain: Sprague-Dawley                | Duration of exposure: 14-         | females.                                               |                     |
|                                       | days.                             |                                                        |                     |
| 5 males and 5 females/group           | 5                                 |                                                        |                     |
|                                       |                                   |                                                        |                     |
| Acceptable as a dose range finding    |                                   |                                                        |                     |
| study                                 |                                   |                                                        |                     |
| 28-day repeated dose including        | 3-chloroallyl alcohol (3-         | A single case of mortality, a male                     | (2022)              |
| toxicokinetics, micronucleus assay    | CAA)                              | given 50 mg/kg/day found dead on                       |                     |
| and pig-a assay                       |                                   | day 3, was observed. Target organs                     | Vol.3, B.6.8.1.9/03 |
|                                       | Purity: 98.1%                     | were liver and stomach with a dose-                    |                     |
| GLP                                   |                                   | response relationship, increased                       | Report No.:         |
|                                       | Batch: 32634-05-23                | levels of the liver enzymes AST                        | Charles River ID    |
| Guidelines: OPPTS 870.5395,           |                                   | (38% (M), 62% (F) at 50 mg/kg                          | 00155012            |
| OECD TG 407, OECD TG 417,             |                                   | bw/day) and ALT (264% (M) 148%                         |                     |
| OECD TG 474 and OECD Draft            |                                   | (F) at 50 mg/kg bw/day) and                            |                     |

 Table 2.6.8.1.9-1: Summary table of studies on 3-chloroallyl alcohol (3-CAA)

| Cuidalinas Errether anta Dia         | Deces 0, 10, 25, and 50   | :                                                                        | Norre data familia                |
|--------------------------------------|---------------------------|--------------------------------------------------------------------------|-----------------------------------|
| Guideline: Erythrocyte Pig-a         | Doses: 0, 10, 25 and 50   | increased liver weights (absolute weight: $12\%$ (M) $42\%$ (E) relative | New data for the Annex I renewal: |
| Mutation Assay (2021)                | mg/kg bw/day by oral      | weight: 12% (M), 43% (F), relative                                       |                                   |
|                                      | gavage.                   | body weight: 25% (M), 47% (F) at                                         | Yes                               |
| Deviations from current guidelines:  |                           | 50 mg/kg bw/day). Erosion/ulcer in                                       |                                   |
| - according to the pig-a assay draft | Duration of exposure: 28- | the non-glandular stomach and                                            |                                   |
| guideline two positive controls are  | days.                     | hepatocellular degeneration/necrosis                                     |                                   |
| listed but only one (ENU) is found   |                           | were observed at 50 mg/kg bw/day.                                        |                                   |
| in the pig-a report.                 |                           | NOAEL is 25 mg/kg/day.                                                   |                                   |
| - bile acids are not investigated in |                           |                                                                          |                                   |
| clinical chemistry                   |                           | The bioanalysis and subsequent                                           |                                   |
| Deviations from OECD TG 407:         |                           | toxicokinetics showed exposure in                                        |                                   |
| -low number of animals               |                           | rat plasma with Cmax values being                                        |                                   |
| 6/sex/group except for the highest   |                           | similar to or above ten times of the                                     |                                   |
| dose group where 8 rats/sex were     |                           | value of the limit of detection for all                                  |                                   |
| included (the guidance               |                           | male and female 3-CAA-treated                                            |                                   |
| recommends at least 10 animals       |                           | groups.                                                                  |                                   |
| (5/sex) should be used at each dose  |                           |                                                                          |                                   |
| level)                               |                           | The micronucleus evaluation                                              |                                   |
| -sensory reactivity to stimuli of    |                           | showed no evidence of dose groups                                        |                                   |
| different types and functional       |                           | with a statistically significant                                         |                                   |
| observations were not included in    |                           | increase in micronucleated                                               |                                   |
| the study                            |                           | polychromatic erythrocytes (%MN-                                         |                                   |
| -oestrus cycle of females was not    |                           | PCE) compared to control, nor was                                        |                                   |
| determined                           |                           | there evidence of a dose-response,                                       |                                   |
|                                      |                           | the results were within the                                              |                                   |
| Species: Rat                         |                           | distribution of the historical                                           |                                   |
|                                      |                           | negative control while the positive                                      |                                   |
| Strain: Sprague-Dawley               |                           | control group was statistically                                          |                                   |
|                                      |                           | significant increased compared to                                        |                                   |
| 6 males and 6 females/group          |                           | the control group for both males and                                     |                                   |
| except in highest dose group where   |                           | females. There was no evidence for                                       |                                   |
| 8 males and 8 females were           |                           | cytotoxicity of the bone marrow but                                      |                                   |
| included and in the toxicokinetic    |                           | the exposure of 3-CAA in rat                                             |                                   |
| study where 3 males and females      |                           | plasma indicates adequate bone                                           |                                   |
| were included.                       |                           | marrow exposure.                                                         |                                   |
|                                      |                           | r i i i r                                                                |                                   |
| Acceptable but limited parameters    |                           | The pig-a study showed no sex                                            |                                   |
| investigated for toxicology          |                           | difference for either RBCs or RETs.                                      |                                   |
| assessment                           |                           | There were no statistically                                              |                                   |
|                                      |                           | significant differences in mutation                                      |                                   |
|                                      |                           | frequency between treated groups                                         |                                   |
|                                      |                           | and the control group and, thus,                                         |                                   |
|                                      |                           | there was not positive trend. Only                                       |                                   |
|                                      |                           | one group (group 2) showed                                               |                                   |
|                                      |                           | elevated RET mutant frequency                                            |                                   |
|                                      |                           | outside the historical control data                                      |                                   |
|                                      |                           | 95% quantile. However, this effect                                       |                                   |
|                                      |                           | seems to be due solely to a single                                       |                                   |
|                                      |                           | female animal in this treatment                                          |                                   |
|                                      |                           | group. Thus, this seems to be an                                         |                                   |
|                                      |                           | outlier value and is not considered                                      |                                   |
|                                      |                           | to be a relevant effect and can thus                                     |                                   |
|                                      |                           | be disregarded.                                                          |                                   |
|                                      | l                         | be uistegatueu.                                                          |                                   |

## Results

The metabolite 3-chloroallyl alcohol is the aglycon of the crop metabolite 3-chloroallyl alcohol glucoside. New data are available for this metabolite.

Administration of 3-chloroallyl alcohol (3-CAA) in drinking water at doses up to and including a top dose of 100 mg/kg/day was negative for the induction of cII mutants in liver and bone marrow and negative for the induction of micronucleated reticulocytes in the peripheral blood of male Fischer 344 Big Blue<sup>®</sup> rats. However, the RMS consider

the decrease in water consumption to most likely be an effect of non-palatable drinking water due to its content of solved 3-CAA which in turn lead to decreased body weight gain. The liver weight increase was approximately 5%, was not statistically significant, and is considered to be insignificant. Hence, MTD was not proven to be achieved in the study and no firm conclusions can be drawn. The study is not acceptable.

Due to the inconclusive results in the transgenic rodent assay, the applicant performed a new combined study. This combination study has several objectives such as to assess the toxicity caused by 3-CAA during 28 days repeated administration, the toxicokinetics of 3-CAA as well as its potential to induce micronuclei in red blood cells and gene mutations in reticulocytes and red blood cells in male and female Sprague-Dawley rats. The top dose was 50 mg/kg/day administered by oral gavage and this dose led to a single case of mortality (one male) demonstrating that maximum tolerated dose was achieved. Target organs were liver and stomach shown by findings of erosion/ulcer in the non-glandular stomach and hepatocellular degeneration/necrosis with a dose-response relationship (and also found in the single dead male), increased levels of the liver enzymes AST and ALT and increased liver weights. Due to the adverse findings in stomach and liver, NOAEL was determined to be 25 mg/kg/day.

The bioanalysis and subsequent toxicokinetics showed evidence of high exposure in rat plasma with  $C_{max}$  values being similar to or above ten times of the value of the limit of detection for all male and female 3-CAA-treated groups.

The micronucleus evaluation showed no evidence of dose groups with a statistically significant increase in micronucleated polychromatic erythrocytes (%MN-PCE) compared to control, nor was there evidence of a dose-response, the results were within the distribution of the historical negative control while the positive control group was statistically significant increased compared to the control group for both males and females. There was no evidence for cytotoxicity of the bone marrow but the exposure of 3-CAA in rat plasma indicates adequate bone marrow exposure.

The pig-a study showed no sex difference for either RBCs or RETs. Thus, mutant RBC and mutant RET data were not analysed separately for each sex. There were no statistically significant differences in mutation frequency between treated groups and the control group and, thus, there was no positive trend. Only the lowest dose group (group 2) showed elevated RET mutant frequency outside the historical control data 95% quantile. However, this effect is due solely to a single female animal in this treatment group. Thus, this seems to be an outlier value and is not considered to be a relevant effect and can thus be disregarded.

#### Further studies conducted with 3-CAA (presented in 1,3-dichloropropene DAR, 2017):

Toxicity studies have been evaluated for the metabolite 3-chloroallyl alcohol (3-CAA) during the active substance approval of 1,3-dichloropropene (Spain, 2017 and EFSA Journal 2018;16(11):5464). Conclusions drawn in DAR (2017) are presented in table below.

In the EFSA conclusion on the peer review of 1,3-dichloropropene (EFSA Journal 2018;16(11):5464) it was concluded that the metabolite 3-CAA with respect to acute toxicity should be classified as Acute Tox 3 H301, and that repeated-dose studies with administration via drinking water resulted in an overall NOAEL of 3 mg/kg bw/day

based on periportal hepatotoxicity and decreased water consumption, while the genotoxic potential could not be concluded in the absence of evidence of bone marrow exposure in the *in vivo* micronucleus assay.

Note: the studies presented in Table below are presented in 1,3-D-DAR (2017) and have not been evaluated by RMS

| Study                                                                                                                                                                                                                                                                                                                                 | Conclusions (as presented in 1,3-D DAR (2017)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Acute oral toxicity study in Fischer 344 rats<br>(1999)<br>Test substance: 3-chloroallyl alcohol, purity:<br>98.6%, Lot: 199801576-46<br>Doses: 100 or 200 mg/kg bw<br>Acceptable<br>Acute dermal toxicity study in New Zealand<br>White rabbits (1999)<br>Test substance: 3-chloroallyl alcohol, purity:<br>98.6%, Lot: 199801576-46 | Conclusions (as presented in 1,3-D DAR (2017)The acute oral LDs0 was approximately 141 mg/kg for male and 91mg/kg for female rats. According to EC criteria, the metabolite 3-Chloroallyl alcohol should be classified as T, R25 (or Acute tox Cat 3H301), being more toxic to females than males.Day of death after dosing<br>(number of animals<br>(per sex/dose)Male FemaleMale FemaleMale Female50505NA0/5NA0/5NA0The acute dermal LD <sub>50</sub> was approximately 316 mg/kg for male and 468mg/kg for female rabbits. According to EC criteria, the metabolite 3-Chloroallyl alcohol should be classified as R24 (or Acute tox 3 H311)"Toxic" being less toxic to females"                                                                                                                                                                                                                                                                                                                          |
| Doses: 200 or 300 mg/kg bw<br>Acceptable                                                                                                                                                                                                                                                                                              | Number of deaths           Male         Female           200         0/5         -           300         -         0/5           500         5/5         3/5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Acute dermal irritation study in New Zealand<br>White rabbits (1999)<br>Test substance: 3-chloroallyl alcohol, purity:<br>98.6%, Lot: 199801576-46<br>Two male and one female rabbits were used<br>Acceptable                                                                                                                         | Acute dermal irritation study in New Zealand White rabbits (1999)The systemic clinical signs consisted of slight erythema and oedema in 2out of 3 animals at the application site in male and female that was resolvedby day 7 (see table 1). In males, eyelids and urogenital area appearedswollen for the study. The application of 3-Chloroallyl alcohol did nothave any effect on body weight.In the light of these observations, the 3-Chloroallyl alcohol seemed no tohave a dermal irritation effect.Individual scores for skin irritation at 24, 48 and 72 h:YeinemaOedemaYeinemaYeinemaOedemaYeinemaOedemaYeinemaOedemaYeinemaOut of 3 animals at the application of 3-Chloroallyl alcohol did nothave any effect on body weight.In the light of these observations, the 3-Chloroallyl alcohol seemed no tohave a dermal irritation effect.Individual scores for skin irritation at 24, 48 and 72 h:YeinemaOedemaYeinemaOedemaYeinemaOedemaYeinemaOedemaYeinemaOedemaYeinemaOedema <t< td=""></t<> |
| Dermal sensitization potential study in Hartley<br>albino guineas pigs (1999)<br>OECD TG 406                                                                                                                                                                                                                                          | The metabolite 3-Chloroallyl alcohol is considered not to be skin sensitizer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| Test substance: 3-chloroallyl alcohol, purity: | GroupNo. of animals Incidence of significant responses Ratio* (%)                 |  |  |  |  |
|------------------------------------------------|-----------------------------------------------------------------------------------|--|--|--|--|
| 98.6%, Lot.: 199801576-46                      | (1)<br>24 hours 48 hours                                                          |  |  |  |  |
|                                                | Test 20 5 2 10                                                                    |  |  |  |  |
| Acceptable                                     | *Ratio= number of animals with positive response/number of animals examined.      |  |  |  |  |
|                                                |                                                                                   |  |  |  |  |
|                                                | Group No. of animals Incidence of significant responses (%)                       |  |  |  |  |
|                                                | 24 hours         48 hours           Test         20         0         0         0 |  |  |  |  |
|                                                | Naive Control10 0 0 0                                                             |  |  |  |  |
|                                                | *Ratio= number of animals with positive response/number of animals examined.      |  |  |  |  |
| 4-week repeated dose drinking water toxicity   | A decrease in water and feed consumption, decreases in haemoglobin and            |  |  |  |  |
| study in Fischer 344 rats (1999)               | haematocrit in high-dose male and female rats at the 100 mg/kg/day dose           |  |  |  |  |
| Test substance: 3-chloroallyl alcohol, purity: | were observed. Small increases in alanine aminotransferase in males and           |  |  |  |  |
| 98.6%, Lot.: 199801576-46, TSN101692           | females given 100 mg/kg/day, aspartate aminotransferase in females from           |  |  |  |  |
| 50.0%, Lot.: 155001570-40, 1510101052          | the high dose level, and cholesterol in both sexes given ≥30 mg/kg/day            |  |  |  |  |
| 5/sex/group                                    | were linked to histopathological effects on the liver. Treatment-related          |  |  |  |  |
| Doses: 0, 10, 30, 100 mg/kg bw/day             | histopathologic changes were present in the liver, with minor effects on          |  |  |  |  |
| 200000, 10, 10, 20, 100 mg/ng 0 m/day          | the kidneys of rats given the mid and high-dose. Based on the results of          |  |  |  |  |
| Acceptable                                     | this study, the NOAEL for 3-chloroallyl alcohol when ingested via the             |  |  |  |  |
|                                                | drinking water by rats was 10 mg/kg/day for both sexes.                           |  |  |  |  |
|                                                |                                                                                   |  |  |  |  |
| 13-week sub-chronic drinking water toxicity    | Based on the results of this study 3-chloroallyl alcohol at doses of 3, 10 or     |  |  |  |  |
| study in Fischer 344 rats (1999)               | 30 mg/kg/day in drinking water caused decreased water consumption at 3            |  |  |  |  |
| Test substance: 3-chloroallyl alcohol, purity: | ppm. Decreases in water consumption was 6.22% and 9.26% in male and               |  |  |  |  |
| 98.6%, Lot.: 199801576-46, TSN101692           | female, respectively. At this dose there were no histological findings in         |  |  |  |  |
|                                                | target organs (liver and kidney) At 10 mg/kg/day or greater dose levels           |  |  |  |  |
| 10/sex/group                                   | there were histopathological findings in target organs. Therefore, NOEL           |  |  |  |  |
| Doses: 0, 3, 10, 30 mg/kg bw/day               | was determined to be 0 mg/kg/day and NOAEL was 3 mg/kg/day for both               |  |  |  |  |
| 20505. 0, 5, 10, 50 mg/Kg Uw/day               | males and females.                                                                |  |  |  |  |
| Acceptable                                     | Histopathological observations (liver, kidney) in the study:                      |  |  |  |  |

|                                                         |                                                                                 | 3.0.1           |          |         |      | 5        | -1        |         |         |
|---------------------------------------------------------|---------------------------------------------------------------------------------|-----------------|----------|---------|------|----------|-----------|---------|---------|
|                                                         | Dose (mg/kg/day)                                                                | <u>Mal</u><br>0 | les<br>3 | 10      | 30   | Fem<br>0 | ales<br>3 | 10      | 30      |
|                                                         | Number of animals examined:                                                     | 10              | 10       | 10      | 10   | 10       | 10        | 10      | 10      |
|                                                         | Observation                                                                     |                 |          |         |      | 4.0      |           |         |         |
|                                                         | Liver (No. of tissues examined)<br>Within normal limits                         | 10<br>8         | 10<br>8  | 10<br>9 | 10   | 10<br>9  | 10<br>7   | 10<br>5 | 10<br>0 |
|                                                         | Architecture altered secondary to diaphragmatic hernia                          | 0               | 1        | 1       | 2    | 1        | 2         | 4       | 0       |
|                                                         | Hypertrophy; hepatocyte; periportal                                             | 0               | 0        | 0       | 10   | 0        | 0         | 2       | 10      |
|                                                         | " " very slight<br>" " slight                                                   | 0               | 0        | 0       | 3    | 0        | 0         | 2       | 0       |
|                                                         | Inflammation; chronic; focal                                                    | 0               | 0        | 0       | 0    | 0        | 2         | 0       | 0       |
|                                                         | " "-sligh                                                                       | 0               | 0        | 0       | 0    | 0        | 2         | 0       | 0       |
|                                                         | Inflammation; chronic; periportal<br>" slight                                   | 0               | 0        | 0       | 10   | 0        | 0         | 0       | 8       |
|                                                         | Inflammation; granulomatous; subserosa; multifocal                              | 0               | 0        | 0       | 0    | 0        | 0         | 2       | 0       |
|                                                         | " <u>"</u> slight                                                               | 0               | 0        | 0       | 0    | 0        | 0         | 2       | 0       |
|                                                         | Necrosis; hepatocyte; multifocal<br>" " slight                                  | 0               | 0        | 0       | 1    | 0        | 0         | 0       | 0       |
|                                                         | Necrosis; hepatocyte; individual cells; multifocal                              | 2               | 1        | 0       | 8    | 0        | 0         | 0       | 10      |
|                                                         | " very slight                                                                   | 2               | 1        | 0       | 8    | 0        | 0         | 0       | 8       |
|                                                         | " slight                                                                        | 0               | 0        | 0       | 0    | 0        | 0         | 0       | 2       |
|                                                         | Kidney (No.of tissues examined)                                                 | 10              | 10       | 10      | 10   | 10       | 10        | 10      | 10      |
|                                                         | Within normal limits                                                            | 4               | 5        | 0       | 0    | 9        | 9         | 6       | 1       |
|                                                         | Cyst; tubule; papilla; focal<br>Degeneration; with regeneration; tubule; cortex | 1 6             | 0        | 0       | 0    | 0        | 0         | 0<br>4  | 0       |
|                                                         | " " very slight                                                                 | 6               | 5        | 10      | 10   | 1        | 1         | 4       | 9       |
|                                                         | Nasal times (Na cotiones and the                                                | 10              | _        | 0       | 10   | 10       | 0         | 0       | 10      |
|                                                         | Nasal tissue (No. of tissues examined)<br>Within normal limits                  | 10              | 0        | 0       | 10   | 10<br>9  | 0         | 0       | 10<br>9 |
|                                                         | Slight inflamation; chronic:nasolacrimal duct; unilateral                       | 0               | 0        | 0       | 2    | 1        | 0         | 0       | 0       |
|                                                         | Inflamation:chronic:nasolacrimal duct:bilateral                                 | 0               | 0        | 0       | 5    | 0        | 0         | 0       | 1       |
|                                                         | slight<br>moderate                                                              | 0               | 0        | 0       | 4    | 0        | 0         | 0       | 1       |
|                                                         |                                                                                 |                 |          |         |      |          |           |         |         |
| <i>In vitro</i> bacterial reverse mutation assay (1999) | 3-chloroallyl alcohol was non-mutagenio                                         | 2 11            | nder     | r tha   |      | ndit     | ion       | of      | this    |
| In vitro bacteriai reverse inutation assay (1999)       | 5-chloroanyr alconor was non-mutageni                                           | c, u            | nuei     | un      | - 11 | mun      | IOII      | 5 01    | uns     |
|                                                         | study.                                                                          |                 |          |         |      |          |           |         |         |
|                                                         |                                                                                 |                 |          |         |      |          |           |         |         |
| Test substance: 3-chloroallyl alcohol, purity:          |                                                                                 |                 |          |         |      |          |           |         |         |
|                                                         |                                                                                 |                 |          |         |      |          |           |         |         |
| 98%, Lot: 199801576                                     |                                                                                 |                 |          |         |      |          |           |         |         |
|                                                         |                                                                                 |                 |          |         |      |          |           |         |         |
| Acceptable                                              |                                                                                 |                 |          |         |      |          |           |         |         |
|                                                         |                                                                                 |                 |          |         |      |          |           |         |         |
| In vitro mammalian forward mutation assay               | 3-chloroallyl alcohol induced a weak p                                          | ositi           | ive      | resp    | ons  | se in    | th        | e m     | ouse    |
| (1999)                                                  | lymphoma mutation assay, both in the abs                                        | senc            | e an     | d n     | ese  | nce c    | of n      | netal   | bolic   |
|                                                         |                                                                                 |                 |          | . I     |      |          |           |         |         |
| Test substance: 3-chloroallyl alcohol, purity:          | activation, under the conditions of this stu                                    | dy.             |          |         |      |          |           |         |         |
|                                                         |                                                                                 |                 |          |         |      |          |           |         |         |
| 98.6%, Lot: TSN101692                                   |                                                                                 |                 |          |         |      |          |           |         |         |
| A (11                                                   |                                                                                 |                 |          |         |      |          |           |         |         |
| Acceptable                                              |                                                                                 |                 |          |         |      |          |           |         |         |
|                                                         |                                                                                 | <i>.</i> .      |          | 41      |      | 1        |           |         |         |
| In vivo micronucleus test (1999)                        | 3-chloroallyl alcohol was considered nega                                       | ative           | e in i   | the     | mou  | ise b    | one       | ma      | rrow    |
|                                                         | micronucleus test, under the conditions of                                      | this            | s stu    | dy.     |      |          |           |         |         |
| Test substance: 3-chloroallyl alcohol, purity:          |                                                                                 |                 |          | 2       |      |          |           |         |         |
| 98.6%, Lot: 199801576-46: TSN101692                     |                                                                                 |                 |          |         |      |          |           |         |         |
|                                                         |                                                                                 |                 |          |         |      |          |           |         |         |
| Study considered as not reliable in the absence         |                                                                                 |                 |          |         |      |          |           |         |         |
| of evidence of bone marrow exposure (EFSA               |                                                                                 |                 |          |         |      |          |           |         |         |
|                                                         |                                                                                 |                 |          |         |      |          |           |         |         |
| Journal 2018;16(11):5464)                               |                                                                                 |                 |          |         |      |          |           |         |         |
|                                                         |                                                                                 |                 |          |         |      |          |           |         |         |
| Oral gavage developmental toxicity probe study          | Administration of 75 mg/kg bw/day 3-chl                                         | oroa            | ıllyl    | alco    | oho  | l to p   | oreg      | nan     | t rats  |
| in CD rats (1999)                                       | resulted in excessive maternal toxicity, ma                                     | anife           | ester    | 1 as    | moi  | rtalit   | y (2      | 0%      | ) and   |
| (                                                       |                                                                                 |                 |          |         |      |          |           |         |         |
| Test substance: 3-chloroallyl alcohol, purity:          | clinical signs (decreased activity, colo                                        | 1 to            | to to    | uch     | , ra | ıpıd     | or        | lab     | ored    |
|                                                         | respiration, and perioral/perinasal soiling                                     | g). S           | Subs     | equ     | entl | y, th    | ne s      | urvi    | ving    |
| 98%, Lot: TSN101692, ID# 6823-MI, notebook              |                                                                                 |                 |          |         |      |          |           |         |         |
| reference # 199801576-46                                | rats in this dose group were euthanized on                                      | ges             | iatic    | лa      | ay / | . Ad     | mir       | ustr    | auon    |
|                                                         | of 25 mg/kg bw/day induced maternal tox                                         | cicity          | y, ev    | vide    | nce  | d as o   | dec       | reas    | es in   |
| 10 time-mated females/group                             |                                                                                 |                 |          |         |      |          |           |         |         |
| 0r                                                      | body weight gains and feed consumption                                          | ong             | gesta    | at101   | i da | ys 6     | -y a      | nd      | 9-12,   |
|                                                         |                                                                                 |                 |          |         |      |          |           |         |         |

| Doses: 0, 10, 25 or 75 mg/kg bw/day                                                                                                                                                                                                                                                                                        | as well as significant increases in absolute and relative liver weights (both                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Exposure: days 6 through 20 of gestation<br>Acceptable                                                                                                                                                                                                                                                                     | 19%). No treatment related maternal effects were seen at 10 mg/kg bw/day. No signs of reproductive toxicity (embryonal/foetal effects) were seen at 10 or 25 mg/kg bw/day.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Oral gavage developmental toxicity study in CD<br>rats (1999)<br>Test substance: 3-chloroallyl alcohol, purity:<br>98.6%, Lot: TSN101692, ID# 6823-MI,<br>notebook reference # 199801576-46<br>25 time-mated females/group<br>Doses: 0, 3, 10 or 25 mg/kg bw/day<br>Exposure: days 6 through 20 of gestation<br>Acceptable | Materials and methods: "Groups of 25 time-mated female CD rats were<br>administered aqueous solutions of 3-chloroacrylic acid by gavage at<br>targeted doses of 0 (distilled water), 3, 10 or 25 mg/kg/day on days 6<br>through 20 of gestation. In-life maternal parameters included clinical<br>observations, body weight, body weight gain and feed consumption. On<br>day 21 of gestation, all surviving rats were euthanized and examined for<br>gross pathologic alterations. Liver, kidneys and gravid uterine weights<br>were recorded, along with the number of corpora lutea, implantations,<br>resorptions and live/dead foetuses. All foetuses were weighed, sexed and<br>examined for external alterations. Approximately 1/2 of the foetuses were<br>examined for visceral alterations while skeletal examinations were<br>conducted on the remaining foetuses.<br>Discussion and conclusions: Under the conditions of the present study,<br>gavage administration of 3-chloroallyl alcohol to pregnant rats resulted in<br>maternal toxicity at a dose level of 25 mg/kg bw/day. Mean feed<br>consumption and body weight gain were significantly decreased on<br>gestation days 6-9 at this dose level, with increased absolute and relative<br>liver weights being observed at scheduled necropsy. Reproductive toxicity<br>was observed at the maternal toxic dose of 25 mg/kg bw/day, evidenced<br>as statistically significant decreases in foetal body weights (4% relative to<br>controls) at this dose. No teratogenic effects were observed at any dose<br>level (the low-incidence malformations observed scattered throughout the<br>different groups were within the range of historical controls, and not dose-<br>related, thus being considered incidental). No significant signs of maternal<br>or reproductive toxicity were detected at 3 and 10 mg/kg bw/day.<br>Therefore, the NOAEL for both maternal and developmental toxicity was<br>set at 10 mg/kg bw/day. |
|                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

## **Overall conclusion:**

## Genotoxicity:

3-CAA does not induce gene mutations nor clastogenicity in rats at doses at and below the maximum tolerated dose while adequate exposure of 3-CAA in blood plasma has been achieved (Vol.3, B.6.8.1.9/03).

### General toxicity:

3-CAA is more acutely toxic than the parent substance (refer to 1,3-D-DAR, 2017). The acute oral  $LD_{50}$  (rat) was 91 mg/kg bw (classification as Acute tox Cat 3, H301) compared to acute oral  $LD_{50}$  (mouse) of 1688 mg/kg bw (classification as Acute tox Cat 4, H302) determined for clethodim.

The toxicity profile of 3-CAA shows that the target organs are liver and non-glandular stomach after 28-day repeated dosing. NOAEL was determined to be 25 mg/kg/day based on adverse effects on stomach (erosion/ulcer) and liver (changes in clinical parameters, increased weight, hepatocellular degeneration/necrosis) observed at 50 mg/kg bw/day. The NOAEL (25 mg/kg bw/day) following 28-day administration of 3-CAA was higher compared to the NOAEL (12.5 mg/kg bw/day) obtained in the 28-day oral toxicity study conducted with clethodim based on effects on the liver (increased liver weight, centrilobular hypertrophy) observed at 65.6 mg/kg bw/day. It could however be noted that the findings on liver (necrosis, relevant for STOT-RE 2 classification) noted for 3-CAA are more severe compared to the findings on the liver (hypertrophy) noted for clethodim (Vol.3, B.6.8.1.9/03).

In the 90-day oral toxicity study (refer to 1,3-D-DAR, 2017), where rats were exposed to 3-CAA at dose levels of 0, 3, 10 and 30 mg/kg bw/day, a NOAEL of 3 mg/kg bw/day was obtained based on periportal hepatotoxicity and decreased water consumption observed at  $\geq$ 10 mg/kg bw/day. This NOAEL (3 mg/kg bw/day) and the LOAEL (10 mg/kg bw/day) are lower compared to the NOAEL (25 mg/kg bw/day) obtained in the 90-day oral toxicity study in the rat conducted with clethodim based on effects on the liver (increased weight and hepatic hypertrophy) observed at 134 mg/kg bw/day. Thus, the toxicity of 3-CAA following repeated dose administration was considered higher than that of clethodim.

Since 3-CAA was not genotoxic in the 28-day repeated dose study (including toxicokinetics, micronucleus assay and pig-a assay), toxicological reference values can be derived for this metabolite (see table below).

The NOAEL of 3 mg/kg bw/day obtained from the 13-week study in the rat (refer to 1,3-D-DAR, 2017), based on periportal hepatotoxicity and decreased water consumption observed at 10 mg/kg bw/day was used for calculation of the ADI after applying a safety factor of 200 (10 for inter-species variability x 10 for intra-species variability x 2 for extrapolation from sub-chronic to chronic study duration).

A NOAEL of 10 mg/kg bw/d was obtained from 4-week rat and developmental rat studies (refer to 1,3-D-DAR, 2017), based on effects on liver (periportal hepatotoxicity/increased weight), and used for calculation of the ARfD after applying a safety factor of 100.

| Reference value | Value              | Study relied upon                 | Safety factor |
|-----------------|--------------------|-----------------------------------|---------------|
| ADI             | 0.015 mg/kg bw/day | 13-week rat*                      | 200**         |
| ARfD            | 0.1 mg/kg bw       | 4-week rat and developmental rat* | 100           |

\*Study presented in 1,3-D-DAR (2017)

\*\*A default conversion factor of 2 was used to extrapolate from sub-chronic to chronic study duration in accordance to the EFSA guidance document (Guidance on selected default values to be used by the EFSA Scientific Committee, Scientific Panels and Units in the absence of actual measured data, EFSA Journal 2012;10(3):2579).

## 2.6.8.1.10 Clethodim sulfoxide (RE-45924)



Clethodim sulfoxide is found in crops, groundwater (max  $PEC_{gw}$ : 0.198 µg/L), and in the urine and faeces of rats representing 46-61% and 2-5% of the administered dose in urine and faeces, respectively (see B.6.1.1). Clethodim sulfoxide is considered a major metabolite of clethodim and may therefore be considered to have been assessed by the toxicology studies with the parent compound. Further, in QSAR analyses (Vol. 3, B.6.8.1.10), clethodim sulfoxide was predicted to be inactive for *in vitro* mutagenicity with no misclassified or unclassified features.

## 2.6.8.1.11 General toxicity and genotoxicity assessment using in silico methods

2.6.8.1.11-01: In silico methods for genotoxicity assessment of groundwater metabolites

| Method, guideline,        | Relevant information about the study               | t information about the study Observations /Results |                |
|---------------------------|----------------------------------------------------|-----------------------------------------------------|----------------|
| deviations if any         |                                                    |                                                     |                |
| Genotoxicity assessment   | The genotoxicity of clethodim and its              | In silico assessment of                             | Pellizzaro and |
| of groundwater            | groundwater metabolites has been assessed.         | clethodim groundwater                               | Da Silva-      |
| metabolites of clethodim  | In silico genotoxicity predictions were made using | metabolites using Derek                             | Turner         |
| using in silico methods.  | Derek Nexus v.6.0.1 and Leadscope Inc. non-        | Nexus and Leadscope Inc                             | (2020); Vol.3, |
|                           | human genetic toxicity model suite v.2.4. Read     | non-human genetic                                   | B.6.8.1.10/01  |
|                           | across was carried out using the OECD QSAR         | toxicity models predicts                            |                |
|                           | Toolbox v.4.4.                                     | that clethodim sulfoxide,                           | New data for   |
|                           |                                                    | clethodim sulfone,                                  | the Annex I    |
|                           |                                                    | clethodim oxazole                                   | renewal: Yes   |
|                           |                                                    | sulfoxide or clethodim                              |                |
|                           |                                                    | oxazole sulfone can be                              |                |
|                           |                                                    | considered to be of no                              |                |
|                           |                                                    | greater genotoxicity                                |                |
|                           |                                                    | concern than the parent.                            |                |
| General toxicology        | The toxicity of clethodim and its groundwater      | In silico assessment of                             | Pellizzaro and |
| assessment of groundwater | metabolites has been assessed.                     | clethodim groundwater                               | Da Silva-      |
| metabolites of clethodim  | In silico genotoxicity predictions were made using | metabolites predicts that                           | Turner         |
| using in silico methods.  | Derek Nexus v.6.0.1. Read across was carried out   | all metabolites can be                              | (2020); Vol.3, |
|                           | using the OECD QSAR Toolbox v.4.4.                 | considered to be of no                              | B.6.8.1.10/02  |
|                           |                                                    | greater toxicological                               |                |
|                           |                                                    | concern than the parent.                            | New data for   |
|                           |                                                    |                                                     | the Annex I    |
|                           |                                                    |                                                     | renewal: Yes   |

Table 2.6.8.1.11-1: Summary table of genotoxicity assessment using in silico methods

## Results

*In silico* assessment of clethodim groundwater metabolites predicts that clethodim sulfoxide, clethodim sulfone, clethodim oxazole sulfoxide or clethodim oxazole sulfone can be considered to be of no greater genotoxicity and toxicological concern than the parent.

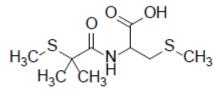
| Method, guideline,       | Relevant information about the study                | <b>Observations</b> / <b>Results</b> | Reference      |
|--------------------------|-----------------------------------------------------|--------------------------------------|----------------|
| deviations if any        |                                                     |                                      |                |
| Genotoxicity and general | The genotoxicity and general toxicity assessment    | In silico assessment of              | Pellizzaro and |
| toxicology assessment of | of metabolite deoxy-M17R has been assessed.         | metabolite deoxy-M17R                | Hynes          |
| deoxy-M17R using in      | In silico genotoxicity predictions were made using  | using Derek Nexus and                | (2022); Vol.3, |
| silico methods.          | Derek Nexus v6.2.0 and Leadscope v3.1. OECD         | Leadscope predicts no                | B.6.8.1.10/03  |
|                          | QSAR Toolbox (v4.5) was used for read across.       | areas of concern.                    |                |
|                          | The general toxicity of deoxy-M17R has been         |                                      | New data for   |
|                          | predicted using all endpoints available in Derek    | No conclusions could be              | the Annex I    |
|                          | Nexus (v6.2.0), and toxicity profilers available in | drawn from the read                  | renewal: Yes   |
|                          | the OECD QSAR Toolbox (v4.5).                       | across used (data gap).              |                |

 Table 2.6.8.1.11-02: In silico toxicity assessment of metabolite deoxy-M17R

## Read across by the applicant:

#### Note text below is text by the applicant:

Read-across is the extrapolation of the known toxicological properties of a substance, or a group of substances, to a similar substance which has not been directly tested, or for which the properties are only partially known. If two substances are shown to be structurally similar and/or similar in other ways, the data for the tested substance might be used to estimate unknown properties for the other substance.


All available databases in the OECD QSAR Toolbox (v4.5) were included in the search for analogy substances that could be used for read across.

Initially, the databases were searched for substances that contained the same organic functional groups as deoxy-M17R (Alkane, branched with tertiary carbon <AND> Carboxylic acid <AND> Sulfide) and no others (i.e. strict). Six substances were found, but these substances were only associated with physical chemical properties data, and no toxicological data was available. Therefore, they were not suitable for read across to deoxy-M17R.

Next the databases were searched for substances that contained the same organic functional groups as deoxy-M17R (Alkane, branched with tertiary carbon <AND> Carboxylic acid <AND> Sulfide), but they could contain other functional groups too. 82 substances were subcategorised to remove substances that have a different protein binding profile to deoxy-M17R. The protein binding profile of deoxy-M17R is:

- Protein binding by OASIS No alert found
- Protein binding by OECD No alert found

Only one substance was found to have the same protein binding profile as deoxy-M17R; S-Methyl-N-(2-methyl-2(methylthio)propionyl)-L-cysteine (Figure 1). S-Methyl-N-(2-methyl-2(methylthio)propionyl)-L-cysteine was taken forward to check its suitability for read across to deoxy-M17R.



S-Methyl-N-(2-methyl-2(methylthio)propionyl)-L-cysteine CAS Number 74407-28-6

Figure 1: Structure of S-Methyl-N-(2-methyl-2(methylthio)propionyl)-L-cysteine which was identified to be suitable to read across to deoxy-M17R.

S-Methyl-N-(2-methylthio)propionyl)-L-cysteine has been compared to deoxy-M17R using 2D parameters available in the OECD QSAR Toolbox. Similarity (Dice, atom centered fragments, Figure 2), pKa (Acidic pKa OASIS consensus), and logP (logKow) were predicted (Table 3). S-Methyl-N-(2-methyl-2(methylthio)propionyl)-L-cysteine is 92.3% similar to deoxy-M17R, and has similar pKa and logP values, as well as similar organic functional groups. Therefore, deoxy-M17R and S-methyl-N-(2-methyl-2(methylthio)propionyl)-L-cysteine are concluded to be similar and the toxicological outcomes of S-methyl-N-(2(methylthio)propionyl)-L-cysteine can be used for deoxy-M17R.

S-Methyl-N-(2-methyl-2(methylthio)propionyl)-L-cysteine has been tested in the Ames test and gave a negative outcome\*

\* https://pubchem.ncbi.nlm.nih.gov/bioassay/1259407#sid=363903211

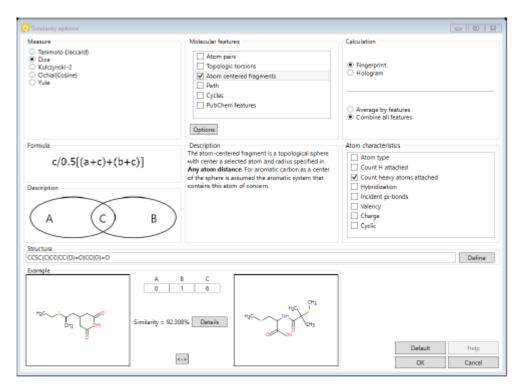



Figure 2: Inputs used to assess the similarity of deoxy-M17R and S-Methyl-N-(2-methyl-2(methylthio)propionyl)-L-cysteine

| 2D parameter | deoxy-M17R | S-Methyl-N-(2-methyl-      |
|--------------|------------|----------------------------|
|              |            | 2(methylthio)propinoyl)-L- |
|              |            | cysteine                   |
| Similarity   | 100%       | 92.3%                      |
| рКа          | 4.26       | 3.4                        |
| logP         | 1.64       | 2.22                       |

## Table 3: 2D parameters used to compare deoxy-M17R and S-Methyl-N-(2(methylthio)propionyl)-L-cysteine

## **Conclusion by applicant:**

Deoxy-M17R is a livestock metabolite that has not been tested in any toxicological studies. The toxicity of deoxy-M17R has been investigated using various *in silico* methods.

According to Derek Nexus and Leadscope, deoxy-M17R is non-gneotoxic. In addition, S-methyl-N-(2-methylthio)propionyl)-L-cysteine, which is negative in the Ames test, can be used to read across to deoxy-M17R.

No areas of concern were identified during a general toxicity screening using Derek Nexus and the OECD QSAR Toobox.

In conclusion, deoxy-M17R is of no toxicological concern according to *in silico* methods.

## Conclusion and comments (RMS)

The following is stated in EFSA guidance (2016) on the establishment of the residue definition for dietary risk assessment: "Read across refers to an approach making use of endpoint information, i.e. experimental data on genotoxicity for one or more chemicals (source chemical(s)), to make a prediction for the same endpoint for one or more different chemicals (target chemical(s). The source and target chemical(s) are considered to provoke similar effects related to the assessed endpoints, usually based on structural similarity, and therefore assumed to exhibit similar biological activity"

Deoxy-M17R has not been tested in any toxicological studies. According to *in silico* methods using Derek Nexus (v6.2.0) and Leadscope (v3.1), deoxy-M17R is non-genotoxic. However, RMS does not agree to the conclusion by the applicant with regards to the read across analysis.

It could be noted that S-methyl-N-(2-methylthio)propionyl)-L-cysteine has not been sufficiently tested for genotoxicity. Ames tests using the strain *S. Typhimurium* are available but these studies are of restricted reliability since they do not include experiments with the presence of S9 mix (experiments without S9 mix only). Furthermore, all relevant genotoxicity endpoints have to be explored (gene mutation, and structural and numerical chromosomal aberrations). This have not been done (Ames test only). Also, it is not relevant to use similarity indices when using arguments for read across.

Thus, a final conclusion on the genotoxic potential could not be drawn. A **data gap** for genotoxicity is identified.

## 2.6.8.2 Supplementary studies on the active substance

| Method,<br>guideline,<br>deviations if<br>any, species,<br>strain, sex,                                                                                                                                                                       | Test substance,<br>dose levels<br>duration of<br>exposure                                                                                                                                 | ditional studies performed on the active substance<br>Results                                                                                                                                                                                                                                                                                               | Reference                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| no/group                                                                                                                                                                                                                                      |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                              |
| A 28-Day Oral<br>(Dietary) Dose<br>Range-Finding<br>Immunotoxicity                                                                                                                                                                            | Clethodim TG,<br>Batch: AS 506r<br>Purity:                                                                                                                                                | NOAELsystemic: 400 ppm (101 mg/kg bw/day)<br>LOAELsystemic: 2000 ppm (551 mg/kg bw/day)<br>NOAELimmunotoxicity: 4000 mg/kg bw (958 mg/kg bw/day)                                                                                                                                                                                                            | (2012a)<br>Report number:                                                                                    |
| Study of<br>Clethodim in<br>Female B6C3F1<br>Mice<br>(GLP)<br>Guidelines<br>followed: OPPTS<br>870.7800 (1998)<br>Deviations from<br>current<br>guidelines: No<br>positive control<br>Supportive<br>Species: Mice<br>Strain: B6C3F1<br>Female | 95.4%<br><u>Doses:</u><br>400, 2000 and<br>4000 ppm (equal<br>to 101, 551 and<br>958 mg/kg<br>bw/day)<br>Clethodim was<br>offered ad<br>libitum in the diet<br>for 28<br>consecutive days | LOAELimmunotoxicity: -<br>Effects observed at 2000 ppm (551 mg/kg bw/day):<br>↑ absolute and relative liver weight (16%)<br>Effects observed at 4000 ppm (958 mg/kg bw/day):<br>↑ absolute and relative liver weight (41 and 39 %, respectively)<br>↓ food consumption<br>No evidence of immunotoxicity.                                                    | WIL-194037<br>Vol. 3, B.6.8.2/01<br>New data for the<br>Annex I renewal:<br>Yes                              |
| 8 mice/group<br>GLP                                                                                                                                                                                                                           |                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                              |
| Supportive<br>A 28-Day Oral<br>(Dietary)<br>Immunotoxicity<br>Study of<br>Clethodim in<br>Female B6C3F1<br>Mice<br>Guidelines<br>followed: OPPTS<br>870.7800 (1998)                                                                           | Clethodim TG<br>Purity:<br>95.4%<br><u>Doses:</u><br>0, 400, 2000 and<br>4000 ppm (equal<br>to 0, 136, 603<br>and 1312 mg/kg<br>bw per day)                                               | NOAELsystemic: 400 ppm (136 mg/kg bw/day)         LOAELsystemic: 2000 ppm (603 mg/kg bw/day)         NOAELimmunotoxicity: 4000 ppm (1312 mg/kg bw/day):         LOAELimmunotoxicity: -         Effects observed at 2000 ppm (603 mg/kg bw/day):         ↑ absolute and relative liver weight (17 and 13 %, respectively)         ↓ food consumption day 0-7 | (2012b)<br>Report number:<br>WIL-194038<br>Vol. 3, B.6.8.2/02<br>New data for the<br>Annex I renewal:<br>Yes |
| Deviations from<br>OPPTS 870.7800<br>(1998): None<br>Mice<br>Strain: B6C3F1                                                                                                                                                                   | Clethodim was<br>offered ad<br>libitum in the diet<br>for 28<br>consecutive days                                                                                                          | Effects observed at 4000 ppm (1312 mg/kg bw/day):<br>↑ absolute and relative liver weight (45 and 42 %, respectively)<br>↓ food consumption day 0-7<br>No evidence of immunotoxicity.                                                                                                                                                                       |                                                                                                              |

Table 2.6.8.2-1. Summary table of additional studies performed on the active substance

| r                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Female                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                               |
| 10 mice/group                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                               |
| GLP                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                               |
| Acceptable                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                               |
| Five-Week<br>Subchronic<br>Feeding Study of<br>High Purity RE-<br>45601 (SX-1718)<br>and RE-45601<br>Process Neutrals<br>(SX-1717) in<br>Rats<br>No guideline<br>followed.<br>Sprague-<br>Dawley®<br>Crl:CD® (SD)<br>BR<br>10 rats/sex/group<br>GLP<br>Supportive | High Purity RE-<br>4560, Purity:<br>96.2%<br>Dose:<br>6800 ppm (equal<br>597 mg/kg<br>bw/day for males<br>and 667 mg/kg<br>bw/day for<br>females)<br>Process Neutrals<br>of RE-45601<br><u>Dose:</u><br>1200 ppm (equal<br>4.87 mg<br>clethodim/kg<br>bw/day for males<br>and 5.78 mg<br>clethodim/kg<br>bw/day for<br>females)<br>The test items<br>were offered ad | Effects observed rats treated with 6800 ppm clethodim (597 mg/kg<br>bw/day for males and 667 mg/kg bw/day for females):<br>↓ body weight (F: 9-15%)<br>↓ body weight gain (M: 33%, F: 42%)<br>- mild anaemia (5-7% reductions in erythrocyte, haemoglobin and<br>haematocrit values)<br>↑ liver weight (M: abs.:12%, rel.: 34%, F: rel. 24%) accompanied<br>by centrilobular hypertrophy.<br>↓ adrenal weight<br>Males were more severely affected.<br>Effects observed rats treated with 1200 ppm process neutrals (148<br>and 175 mg Process Neutrals/kg body weight/day containing 4.87<br>and 5.78 mg clethodim/kg bw/day for males and females,<br>respectively):<br>↓ body weight (Day 35: M: 6%)<br>↓ body weight (Day 35: M: 6%)<br>↓ body weight (F: abs. and rel.: 10%)<br>-hepatic centrilobular hypertrophy<br>↓ testis weight (abs. 5% n.s, rel. 6%)<br>In general, animals exposed to clethodim were more severely<br>affected than those exposed to process neutrals. | 1987<br>Report no. S-2763<br>Vol. 3. B.6.8.2/03<br>New data for the<br>Annex I renewal:<br>No |
|                                                                                                                                                                                                                                                                   | libitum in the diet<br>for 5 consecutive<br>weeks                                                                                                                                                                                                                                                                                                                    | may contribute partially to some of these results.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                               |
| Cytochrome P-<br>450<br>concentration                                                                                                                                                                                                                             | RE-45601<br>Technical (batch<br>SX-1688)                                                                                                                                                                                                                                                                                                                             | Effects observed at 208 mg/kg bw/day:<br>↑ liver weight (M: abs: 21%, rel: 23%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1989                                                                                          |
| following 21-day<br>oral<br>administration in<br>male rats.<br>No guideline<br>followed.<br>Rat. Sprague-<br>Dawley Crl:CD®<br>BR                                                                                                                                 | Purity:<br>83.3%<br>250 mg/kg/day<br>(208 mg/kg/day,<br>corrected for<br>purity)                                                                                                                                                                                                                                                                                     | No difference in CYP450 concentration was observed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Report no. S-3055<br>Vol. 3. B.6.8.2/04<br>New data for the<br>Annex I renewal:<br>Yes        |
| 8 males/group                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                               |
| GLP                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                               |
| Supplementary                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                               |

#### Immunotoxicity

Two immunotoxicity studies were performed, one dose range finding study and one main study. Both were performed according to OPPTS 870.7800 (1998) with no deviations except that the dose range finding study did not include a positive control. In the studies, female mice were exposed to 0, 400, 2000 and 4000 ppm (corresponding to 101, 551 and 958 mg/kg bw/day in the dose range finding study and 0, 136, 603 and 1312 mg/kg bw per day in the main study). No signs of toxicity except for increased liver weights and lower food consumption were observed. The absolute liver weights in the dose range finding study were 16 and 41% lower than that of the control group in the middle and high dose, respectively. The corresponding relative liver weight values were 16 and 39%. In the main study, the absolute and relative liver weights were 17 and 13 %, respectively, in the middle dose, and 45 and 42 %, respectively, in the high dose.

No immunosuppressant effect was observed in the dose range finding study. There was a statistically significantly higher mean AFC response in the 2000 ppm group ( $\uparrow$ 54%). There was a similar tendency in the 4000 ppm group, the mean value was 36% higher than that of the control group (not statistically significant) but the value was lower than that of the 2000 ppm group. In the main study, there was a 19-15% reduction in AFC response in the top two doses but there was no dose response, the differences were not statistically significant, and there was an increase in this endpoint in the dose-range finding study (B.6.8.2.1). There was also a statistically significant decreasing trend in relative spleen weight (Jonckheere's Test); however, the differences between the exposed groups and the control were not statistically significant and the mean value of the highest dose group was only 8% lower than that of the control (0.36 vs 0.39). Overall, clethodim does not appear to be immunotoxic at these dose levels.

#### Process neutrals

A study in which high purity clethodim (RE-45601, 96.2% active ingredient) and RE-45601 Process Neutrals (containing 3.3% RE-45601) were administered ad libitum in the diet to separate groups of 10 rats of each sex for five weeks. The animals were sacrificed on days 36-37. Body weight of males exposed to clethodim was lower than the control from day 7 and throughout the study, resulting in a total weight gain that was 33% lower than that of control males. Males of the process neutrals group was had slightly and not statistically significantly lower body weight from day 7 (3-5%) and a statistically significantly lower body weight at day 35 ( $\downarrow$ 6%), resulting in a total weight gain that was 12% lower than that of control males. No effect on body weight or body weight gain (42%) was lower in females exposed to clethodim compared with the control group. In males, relative food consumption was lower than the control in both groups (albeit slightly more affected in the clethodim group). Following the same pattern as the body weight, no effects were observed in females exposed to process neutrals, but groups (albeit slightly more affected in the clethodim group). Following the same pattern as the body weight, no effects were observed in females exposed to process neutrals, but groups (albeit slightly more affected in the clethodim group). Following the same pattern as the body weight, no effects were observed in females exposed to recess neutrals, but females exposed to clethodim had a reduced absolute food consumption (g/animal/day) but unaffected relative food consumption. The applicant states that palatability may have been an issue during the study and that this may have affected the results. However, no palatability study is available to confirm this statement.

Mild anaemia was evident in both sexes in the clethodim group (5-7% reduction in erythrocyte, haemoglobin, and haematocrit values). This was not evident in the process neutrals group. Some serum chemistry parameters were slightly affected. Males in the clethodim group had significantly higher total protein (7%) and albumin values (7%), and lower alkaline phosphatase value (16%, not statistically significant). Females exposed to clethodim was

unaffected. Both males and females of the process neutrals group had lower alkaline phosphatase value compared with the control (males 19%, not statistically significant; females 24%). Historical control values were provided for total protein (males), albumin (males) and alkaline phosphatase (females). It is noted that the values in this study for these parameters fall within the historical control range; however, the historical control consists of two studies only and it is not stated when they were performed.

Liver weight was increased in both sexes in the clethodim group (absolute, relative to bw and relative to brain weight). Liver weight was affected in females but not males (except for that relative to bw) exposed to process neutrals. Trace to mild centrilobular hypertrophy was observed in both exposure groups and both sexes, with a higher incidence in males versus females and in animals exposed to clethodim versus process neutrals. The incidence of liver hypertrophy was 10 of 10 males and 8 of 10 females exposed to clethodim, and 6 of 10 males and 3 of 10 females exposed to process neutrals. Adrenal weight (absolute and relative to brain weight) was reduced in both males and females exposed to clethodim. No histopathological lesions were noted. Increased relative (to bw) kidney, testes, and brain weight was observed in the clethodim group, likely due to the decrease in terminal body weight. This is not considered to be of concern. Testis weight, relative to brain weight, was 6% lower in the process neutrals group (absolute weight was 5% lower, not statistically significant). No histopathological lesions were noted. No effect on ovary weights were observed.

The dose of active ingredient given via the process neutrals is low (5-6 mg/kg bw/day) but this level could possibly affect the animals. Treating rats dermally with 8.32 mg clethodim/kg bw for 21 days over a 28-day period caused skin irritation and increased triglyceride levels in females (40%, not statistically significant) (Vol. 3 B.6.3.3). Elevated platelet counts and elevated cholesterol levels (26%, not statistically significant) were observed in male rats exposed orally to 12.5 mg clethodim/kg bw/day for 5 weeks (Vol. 3 B.6.3.1.1). These effects differed from the ones observed in the current study but does indicate that clethodim could affect rats in that dose range.

In conclusion, the active ingredient caused effects on blood, liver, adrenals, and body weight and impurities may contribute partially to these effects. The observed anaemia was only observed in the clethodim group, indicating that this effect was likely not caused in combination with the process neutrals.

#### <u>CYP450</u>

Male rats were administered 208 mg clethodim/kg bw/day for 21 days via oral gavage. This exposure resulted in increased liver weights but no other signs of overt toxicity. The mean CYP450 concentration, determined in liver samples from the exposed rats, did not statistically differ from that of the control. When the content of cytochrome P-450 is expressed as total nmoles/liver and mg/gram liver, mean values for treated animals are significantly higher those of the control. This is likely a result of increased liver weights in the treated animals.

|           | Cytochrome P-450  | Cytochrome P-450 |                   |                     |  |
|-----------|-------------------|------------------|-------------------|---------------------|--|
|           | nmoles/mg protein | nmoles/g liver   | nmoles/liver      | mg protein/g liver  |  |
| Controls  | 0.99±0.23         | 29.3±8.0         | 301±89            | 29.9±6.0            |  |
| 250 mg/kg | 0.92±0.13         | 33.7±7.6         | 410±87*<br>(†36%) | 37.1±7.8*<br>(†24%) |  |

Table 2.6.8.2-2. Cytochrome P-450 Data (mean±SD)

Clethodim did not alter CYP concentrations in male rats at an oral dose of 208 mg/kg bw/day for 21 days. However, the carbon monoxide method does not work well to determine the amount of the CYP3A family and since no specific CYP substrates have been used, CYP3A induction cannot be completely ruled out.

## 2.6.9 Summary of medical data and information

No medical findings have been reported linked to clethodim in a plant during manufacturing. Plant protection products containing clethodim have been registered in Europe since the beginning of 1990 and are registered in most EU Member States. To the applicant's knowledge, no cases of poisoning incidents among users or the general population have been reported (Rao, 2020).

## 2.6.10 Toxicological end points for risk assessment (reference values)

Clethodim technical was tested in several repeated dose studies in rats, mice, dogs, and rabbits, including subacute, semi-chronic and chronic studies, reproduction studies, neurotoxicity and immunotoxicity studies.

Route specific AOELs:

The following was stated in DAR 2005: "As clethodim is extensively metabolised, route-specific toxicity cannot be excluded. Therefore, if available, toxicity studies for the route concerned are considered to calculate route-specific AOELs.

At the NOAEL (83 mg a.s./kg bw/day) in the dermal toxicity study the estimated area concentration is 0.74 mg/cm2 (assuming a body weight of 0.285 kg and a corresponding 400 cm<sup>2</sup> body surface, and using the reported 8% exposed body surface). No data on dermal absorption at this area concentration is available. Therefore, the dermal NOAEL is not used for the establishment of the AOEL. Local effects were not taken into account.

No repeated dose inhalation toxicity studies were available for the establishment of a route-specific AOEL."

The RMS is of the opinion that this position remains for the renewal of active substance.

| Species                                  | Study<br>(method/type,<br>length, route of<br>exposure) | Test substance                                                                 | Critical effect                                                                                                                                                                                                                             | NOAEL | LOAEL | Cross<br>reference                                     |
|------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|--------------------------------------------------------|
|                                          |                                                         | Subacute to                                                                    | oxicity studies                                                                                                                                                                                                                             |       |       |                                                        |
| Rat (Sprague-<br>Dawley)<br>10/sex/group | 5-week, oral<br>(dietary)                               | Clethodim technical<br>Lot/batch: SX-1688<br>Purity: 83.4%<br>Vehicle: Acetone | <pre>↑liver weights (M: abs<br/>weight 12%, rel to brain<br/>weight: 13%; F: rel to<br/>brain weight: 14%)<br/>- histopathological<br/>changes in the liver<br/>(centrilobular<br/>hypertrophy (M))<br/>↓haemoglobin (M:4%,<br/>F:6%)</pre> | 12.5  | 65.6  | 1986<br>Report No.:<br>S-2720<br>Vol. 3,<br>B.6.3.1/01 |
| Mouse (CD-1)<br>10/sex/group             | 4-week, oral<br>(dietary)                               | Clethodim technical<br>Lot/batch: SX-1688<br>Purity: 84%                       | ↓haemoglobin (M: 4%)                                                                                                                                                                                                                        | 29.7  | 74.4  | 1986<br>Report No.:<br>S-2733<br>Vol. 3,<br>B.6.3.1/02 |

Table 67: Overview of relevant studies for derivation of reference values for risk assessment

| Species                         | Study                             | Test substance                            | Critical effect                                                             | NOAEL | LOAEL | Cross                 |
|---------------------------------|-----------------------------------|-------------------------------------------|-----------------------------------------------------------------------------|-------|-------|-----------------------|
|                                 | (method/type,<br>length, route of |                                           |                                                                             |       |       | reference             |
|                                 | exposure)                         |                                           |                                                                             |       |       |                       |
|                                 |                                   | Vehicle: Acetone                          |                                                                             |       |       |                       |
| Rat (Sprague-<br>Dawley)        | 4-week dermal                     | Clethodim technical<br>Lot/Batch: SX-1688 | -clinical signs<br>(anogenital discharge in                                 | 83.2  | 832   | J 1987                |
| 6/sex/group                     |                                   | Purity: 83.2%                             | all males (6 animals) and two females)                                      |       |       | Report<br>number: S-  |
|                                 |                                   | Vehicle: 0.7%                             | ↑ absolute liver weight<br>(F: 20%)                                         |       |       | 2848                  |
|                                 |                                   | carboxymethyl cellulose<br>(CMC) and 1.0% | ↑ relative liver weight (F: 22%)                                            |       |       | Vol.3<br>B.6.3.3/01   |
|                                 |                                   | TWEEN 80 in distilled water               | ↑ liver weight relative to<br>brain weight (F: 24%)                         |       |       |                       |
|                                 |                                   |                                           | ↑ triglyceride levels (F: 160 %)                                            |       |       |                       |
|                                 |                                   |                                           | ↓ BUN (M: 22%, F: 20%<br>n.s.)                                              |       |       |                       |
|                                 |                                   |                                           | ↓ BUN/creatinine ratio<br>(M: 32%, F: 21% n.s.)                             |       |       |                       |
| Dat (Spracus                    | 13-week, oral                     | Semichronic<br>Clethodim technical        | toxicity studies<br>↓ bw gain (M: 10%)                                      | 25    | 134   |                       |
| Rat (Sprague-<br>Dawley)        | +<br>6-week                       | (RE-45601)                                | tow gain (M: 10%)<br>$\uparrow$ liver weight (rel) (M<br>and F: 12%)        | 23    | 154   | 1986                  |
| 12/sex/group                    | recovery period                   | Lot/batch: SX-1688                        | - histopathological<br>changes in the liver                                 |       |       | Report No.:<br>S-2765 |
|                                 |                                   | Purity: 84%                               | (hepatic centrilobular<br>hypertrophy: M: 8/12, F:                          |       |       | Vol. 3,               |
|                                 |                                   | Vehicle: Acetone                          | 2/12)                                                                       |       |       | B.6.3.2/01            |
| Dog (Beagle)                    | 90-days, oral<br>(gelatine        | Clethodim technical<br>(RE-45601)         | -effects on the liver<br>(↑cholesterol (F: 42%),<br>↑liver weights n.s. (M: | 21    | 62    | 1987                  |
| 4/sex/group                     | capsules)                         | Lot/batch: SX-1688                        | abs weight: 16%, rel<br>weight: 12%; F: abs                                 |       |       | Report No.:<br>S-2759 |
|                                 |                                   | Purity: 83.3%                             | weight: 15%, rel. weight:<br>6%)                                            |       |       | Vol. 3,<br>B.6.3.2/02 |
| Dog (Beagle)                    | 1-year, oral<br>(gelatine         | Clethodim technical<br>(RE-45601)         | ↑liver weight (M: abs.<br>27%, rel. 16%; F: abs.                            | 0.83  | 62    | 1988                  |
| 6/sex/group                     | capsules)                         | Lot/batch: SX-1688                        | 34%, rel weight: 25%)<br>- changes in blood                                 |       |       | Report No.:<br>S-2964 |
|                                 |                                   | Purity: 83.3%                             | chemistry (†platelet<br>count, M:20% n.s., F:                               |       |       | Vol. 3,               |
|                                 |                                   |                                           | 39%, ↑WBC, F: 27%)<br>-histopathological                                    |       |       | B.6.3.2/03            |
|                                 |                                   |                                           | changes in the sternal                                                      |       |       |                       |
|                                 |                                   |                                           | bone marrow                                                                 |       |       |                       |
|                                 |                                   |                                           | (hyperplasia: M: 1/6, F: 1/6)                                               |       |       |                       |
|                                 | ·                                 |                                           | xicity studies                                                              |       | •     | ·                     |
| Rat (Sprague-                   | 2-year, oral                      | Clethodim technical                       | - ↑liver weights (F: rel.                                                   | 16    | 86    | 1000                  |
| Dawley)                         | (dietary)                         | (RE-45601)                                | 18% n.s., (1 y), 12% (2<br>y), rel to brain weight: F:                      |       |       | 1988                  |
| 65/sex/group                    |                                   | Lot/batch: SX-1688                        | 24% (1 y))                                                                  |       |       | Report No.:<br>S-2766 |
| 10/sex/group<br>(interim        |                                   | Purity: 83%                               |                                                                             |       |       | Vol. 3,               |
| sacrifice, 1 y)<br>Mouse (CD-1) | 78-weeks, oral                    | Vehicle: Acetone<br>Clethodim technical   | -effects on the liver                                                       | 24    | 199   | B.6.5/02              |
| 60/sex/group                    | (dietary)                         | (RE-45601)                                | (↑liver weights: M: abs.<br>12% n.s., rel, 17%;                             | 24    | 177   | Report No.:           |
| o - r                           |                                   | Lot/batch: SX-1688                        | histopathological<br>changes (centrilobular                                 |       |       | S-2867                |
|                                 |                                   | Purity: 83%                               | hypertrophy (M, F),<br>increased pigment (F)                                |       |       | Vol. 3,<br>B.6.5/01   |
|                                 |                                   | Vehicle: Acetone                          |                                                                             |       |       |                       |

| Species                                                                 | Study<br>(method/type,                  | Test substance                                                                                                                                                      | Critical effect                                                                                                                                                                                                                                                                                                                          | NOAEL                                                             | LOAEL                                                          | Cross<br>reference                                                     |
|-------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------|
|                                                                         | length, route of<br>exposure)           |                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                          |                                                                   |                                                                | Tererence                                                              |
|                                                                         |                                         |                                                                                                                                                                     | and bile duct hyperplasia<br>(M))<br>-histopathological<br>changes in the lungs<br>(foci of amphophilic<br>alveolar macrophages                                                                                                                                                                                                          |                                                                   |                                                                |                                                                        |
|                                                                         |                                         | Reproduction and                                                                                                                                                    | (M, F)<br>teratogenicity studies                                                                                                                                                                                                                                                                                                         |                                                                   |                                                                |                                                                        |
| Rat (Albino<br>Crl:COBS/CD<br>30/sex/group<br>(F0 and F1<br>generation) | 2-generation,<br>oral (dietary)         | Clethodim technical<br>(RE-45601)<br>Lot/batch: SX-1688<br>Purity: 83.3%                                                                                            |                                                                                                                                                                                                                                                                                                                                          | Parental:<br>32.2<br>Offspring<br>: 32.2<br>Reproduc<br>tive: 163 | Parental<br>: 163<br>Offsprin<br>g: 163<br>Reprodu<br>ctive: - | 1987<br>Report No:<br>S-2778<br>Vol. 3,                                |
| Rat (Crl:CD<br>25<br>animals/group                                      | Teratogenicity,<br>oral (gavage)        | Vehicle: Acetone<br>Clethodim technical<br>(RE-45601)<br>Lot/batch: SX-1688<br>Purity: 83.3%<br>Vehicle: Carboxymethyl<br>cellulose, Tween 80<br>aqueous suspension | <ul> <li>clinical signs (excessive salivation, poor condition, red nasal discharge, alopecia, staining ano-genital area) ↓ bw gain maternal (GD: 6-15: 15% n.s., GD 15-20: 17%) ↓ foetal weight (11%) ↑ skeletal variations (incomplete or unossified 5th and/or 6th sternebrae) (foetal: 88.8% compared to 72.6% in control)</li> </ul> | Maternal<br>and<br>developm<br>ental:<br>83.3                     | Materna<br>l and<br>develop<br>mental:<br>292                  | B.6.6.1/02<br>1987<br>Report No.:<br>S-2808<br>Vol. 3,<br>B.6.6.2.2/01 |
| Rabbit (New<br>Zealand White<br>SPF)<br>19-20<br>animals/group          | Teratogenicity,<br>oral (gavage)        | Clethodim technical<br>(RE-45601)<br>Lot/batch: SX-1688<br>Purity: 83.3%                                                                                            | - clinical signs, dams<br>(dried faeces and red<br>substance in pan)<br>↓bw gain (Day 7-20:<br>+0.05 kg vs +0.18 kg in<br>the control, n.s.)                                                                                                                                                                                             | Maternal:<br>20.8<br>Develop<br>mental:<br>83.3                   | Materna<br>1: 83.3<br>Develop<br>mental:<br>250                | ,<br>1987<br>Report No.:<br>S-2869<br>Vol. 3,                          |
|                                                                         |                                         | Neuro                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                          |                                                                   |                                                                | B.6.6.2.4/01                                                           |
| Rat<br>(Crl:CD(SD)<br>12/sex/group                                      | 90-days,<br>neurotoxicity               | Clethodim TG<br>(RE-45601)<br>Lot/batch: AS 506r<br>Purity: 95.4%<br>Vehicle: Acetone                                                                               | ↓bw and bw gain Day 0-<br>91: 16%)                                                                                                                                                                                                                                                                                                       | 94                                                                | 331                                                            | 2012<br>Report No.:<br>WIL-<br>194040<br>Vol. 3,<br>B.6.7.1.3          |
|                                                                         | ·                                       |                                                                                                                                                                     | otoxicity                                                                                                                                                                                                                                                                                                                                |                                                                   |                                                                |                                                                        |
| Mouse<br>(B6C3F1)<br>10 female<br>mice/group                            | 28-days,<br>immunotoxicity<br>(dietary) | Clethodim technical<br>(RE-45601)<br>Lot/batch: SX-1688<br>Purity: 95.4%<br>Vehicle: Acetone                                                                        | ↑liver weights (abs<br>weight: 17%, rel weight:<br>13%)                                                                                                                                                                                                                                                                                  | 136                                                               | 603                                                            | 2012b<br>Report No.:<br>WIL-<br>194038<br>Vol. 3,<br>B.6.8.2/02        |

## **2.6.10.1** Toxicological end point for assessment of risk following long-term dietary exposure – ADI (acceptable daily intake)

The calculation of ADI for humans is based on the no-observable effect level (NOAEL) in the most susceptible animal species and with particular respect to the chronic toxicity studies; and an appropriate safety factor which is usually 100.

The lowest NOAEL in the repeated dose-studies was 0.83 mg a.s./kg bw/day that of the 1-year oral study in the dog. However, the LOAEL in the 1-year study is the same as in the 90-day study in the same species, and the NOAEL in that study is 21 mg a.s./kg bw/day. In the DAR (2005), it was argued that *"Since it was concluded that no effect of exposure duration is to be expected after oral exposure to clethodim, the NOAEL of 21 mg a.s./kg bw/day from the 90-day oral toxicity study in dogs might be also be considered for the establishment of the ADI."*. However, it is noted that the effect sizes in the one-year study was larger than in the 90-day study and that it cannot be determined if no effect would have been observed with one year exposure to 21 mg/kg bw/day. Because of this, the NOAEL of the 2-year study in rats (16 mg a.s./kg bw/day) should also be considered for the derivation of the ADI. As was determined in the DAR (2005), the ADI is preferably based on a chronic study and the NOAEL of the 2-year rat study is appropriate for calculation of ADI. Application of a safety factor for inter- and intraspecies differences of 100, results in an **ADI of 0.16 mg/kg bw/day** (as in the EFSA conclusion from 2011).

## **2.6.10.2** Toxicological end point for assessment of risk following acute dietary exposure - ARfD (acute reference dose)

Calculation of the ARfD and AAOEL is usually derived from an appropriate acute toxicity study in which a NOAEL for adverse effects can be established. In the absence of a specific study designed to determine this endpoint, it is based on a consideration of the NOAELs for "acute effects" observed in studies ranging from acute to sub-chronic exposure durations. Thus, relevant NOAELs may be derived from studies involving administration of a single dose or from repeat dose studies in which effects are noted during the initial days of dosing.

In the acute oral study in rats (Vol. 3, B.6.2.1/01), salivation, decreased motor activity, unsteady gait, hyperreactivity, lacrimation, clonic convulsions, red nasal discharge, ocular discharge, collapse, reduced food consumption and yellow anogenital stains were observed. Effects occurred at all dose levels ( $\geq$ 666 mg a.s./kg bw) and mortality occurred from 1208 mg a.s./kg bw. Similarly, in the acute oral toxicity study in mice (1250 – 2916 mg a.s./kg bw) (Vol. 3, B.6.2.1/02), effects included hypoactivity, rough coat, hunched appearance, ataxia, tremors, salivation, laboured respiration, and soft faeces and urine stains. Mortality occurred from 1666 mg a.s./kg bw. In the acute neurotoxicity study in the rat (Vol. 3, B.6.7.1.1), the NOAEL systemic was 100 mg/kg bw due to the following effects occurring at 1000 mg/kg bw: transient reduced locomotor activity (total and ambulatory counts) (of unclear toxicological significance) and soiled fur on day 0 (one of these animals also displayed slight salivation) in females and reduced foot splay in males. Since no substance related mortalities were observed in available studies at doses up to 1000 mg/kg bw, no ARfD was deemed necessary.

## **2.6.10.3** Toxicological end point for assessment of occupational, bystander and resident risks – AOEL (acceptable operator exposure level)

The AOEL is based on the most sensitive study of short to medium term toxicity, relevant to a worker exposure season of no more than 3 months.; and an appropriate safety factor which is usually 100.

Examination of the repeat dose toxicity studies shows that the main toxic effects of clethodim comprise changes in haematological parameters, including anaemia, and evidence of liver hypertrophy/toxicity at relatively high dose levels.

An **AOEL of 0.2 mg/kg bw/day** is proposed based on an overall NOAEL of 21 mg/kg bw/day from the 90-day dog study and an assessment factor of 100. No correction for oral absorption is required. In this study effects on the liver (increased liver weights and increased cholesterol) were observed at a dose level of 62 mg/kg bw/day.

In the EFSA conclusion from 2011, an AOEL of 0.2 mg/kg bw/day was set based on the 90-day dog study as well as on the 1-yr dog study, and an assessment factor of 100.

# **2.6.10.4** Toxicological end point for assessment of occupational, bystander and residents risks – AAOEL (acute acceptable operator exposure level)

No AAOEL was deemed necessary (refer to section 2.6.10.2)

## 2.6.10.5 Drinking water limit

The maximum admissible concentration of an active substance is 0.1 µg/L (according to Directive 89/778/EEC).

A health-based limit (adult) of 0.96 mg/L (960  $\mu$ g/L) can be derived assuming 20% of the ADI, water consumption of 2 L/day and bodyweight of 60 kg. The calculation of this value is:

 $C_{max}$  water= (ADI x 20% x Bodyweight)/2L = (0.16 x 0.2x 60 kg)/2L = 0.96 mg/L. Since this value is higher than the maximum permissible groundwater concentration of 0.1 µg/L, the  $C_{max}$  water calculated should not be used.

A health-based limit (infant) of 0.213 mg/L ( $213 \mu g/L$ ) can be derived assuming 20% of the ADI, water consumption of 0.75 L/day and bodyweight of 5 kg. The calculation of this value is:

 $C_{max}$  water= (ADI x 20% x Bodyweight)/0.75L = (0.16 x 0.2x 5 kg)/0.75L = 0.213 mg/L (213 µg/L). Since this value is higher than the maximum permissible groundwater concentration of 0.1 µg/L, the  $C_{max}$  water calculated should not be used.

## 2.6.11 Summary of product exposure and risk assessment

No acute AOEL has been set or is proposed for clethodim (refer to section 2.6.10). Therefore, an acute exposure assessment was not performed. The acceptable operator exposure level (AOEL) for clethodim (0.2 mg/kg bw/day) will not be exceeded under practical conditions of use without the use of personal protective equipment. The systemic exposure to workers, bystanders and residents will be within acceptable levels of the proposed systemic

AOEL of clethodim. Therefore, the exposure of operators, workers, residents and bystanders for clethodim is acceptable (see Vol.3, B.6.5 PPP).

| Model data                                                         | Level of PPE                                                                     | Total absorbed dose<br>(mg/kg/day) | % of systemic AOEL |  |  |  |
|--------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------|--------------------|--|--|--|
| Tractor mounted boom spray                                         | Tractor mounted boom spray application outdoors to low crops-sugar beet          |                                    |                    |  |  |  |
| Application rate                                                   |                                                                                  | 0.3 kg a.s./ha                     |                    |  |  |  |
| Spray application<br>(AOEM; 75th percentile)<br>Body weight: 60 kg | Work wear (arms, body and<br>legs covered)<br>Mixing/Loading and<br>Application. | 0.0221                             | 11.06              |  |  |  |

### Table 2.6.11-2: Summary of estimated resident exposure to clethodim (longer term)

| Model data                                                                                                                                     |                       | Total absorbed dose (mg/kg<br>bw/day) | % of systemic AOEL |
|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------------|--------------------|
| Field crop (boom) spray<br>Buffer zone: 2-3 m<br>Drift reduction technolo<br>DFR: 3 µg/cm <sup>2</sup> /kg a.s./<br>DT <sub>50</sub> : 30 days |                       | ow crops-sugar beet                   |                    |
| Number of applications                                                                                                                         | and application rate  | $1 \times 0.3$ kg a.s./ha             |                    |
| Resident child                                                                                                                                 | Drift (75th perc.)    | 0.0041                                | 2.03               |
| Body weight: 10 kg                                                                                                                             | Vapour (75th perc.)   | 0.0011                                | 0.54               |
|                                                                                                                                                | Deposits (75th perc.) | 0.0007                                | 0.34               |
|                                                                                                                                                | Re-entry (75th perc.) | 0.0051                                | 2.53               |
|                                                                                                                                                | Sum (mean)            | 0.0078                                | 3.92               |
| Resident adult                                                                                                                                 | Drift (75th perc.)    | 0.0010                                | 0.48               |
| Body weight: 60 kg                                                                                                                             | Vapour (75th perc.)   | 0.0002                                | 0.12               |
|                                                                                                                                                | Deposits (75th perc.) | 0.0002                                | 0.10               |
|                                                                                                                                                | Re-entry (75th perc.) | 0.0028                                | 1.41               |
|                                                                                                                                                | Sum (mean)            | 0.0031                                | 1.54               |

## Table 7.2.3-1: Exposure model for intended uses

| Critical uses | Sugar beet (max. $1 \times 2.5$ L product/ha)                                                                                                                                                         |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Model         | Guidance on the assessment of exposure of operators, workers, residents and bystanders in risk assessment for plant protection products; EFSA Journal 2014;12(10):3874 calculator version: 30/03/2015 |

## Table 7.2.3-2: Estimated worker exposure to clethodim

| Model data                                                                                                                                                                       | Level of PPE         | Total absorbed dose (mg/kg<br>bw/day) | % of systemic AOEL |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------|--------------------|
| Crop inspection<br>Outdoor<br>Work rate: 2 h/day <sup>1</sup> ,<br>DT <sub>50</sub> : 30 days <sup>2</sup><br>DFR: 3 µg/cm <sup>2</sup> /kg a.s./h<br>Interval between treatment |                      |                                       |                    |
| Number of applications                                                                                                                                                           | and application rate | $1 \times 0.3$ kg a.s./ha             |                    |

| Body weight: 60 kg                                                                                                                                                                                                         | Potential exposure<br>TC: 12500 cm <sup>2</sup> /person/h                        | 0.0696                    | 18.8 |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------|------|--|--|
|                                                                                                                                                                                                                            | Work wear (arms, body and legs<br>covered)<br>TC: 1400 cm <sup>2</sup> /person/h | 0.0300                    | 2.1  |  |  |
| Hand-harvesting sugar beet<br>Outdoor<br>Work rate: 8 h/day <sup>1</sup> ,<br>DT <sub>50</sub> : 30 days <sup>2</sup><br>DFR: 3 µg/cm <sup>2</sup> /kg a.s./ha <sup>2</sup><br>Interval between treatments: Not applicable |                                                                                  |                           |      |  |  |
| Number of applications and application rate                                                                                                                                                                                |                                                                                  | $1 \times 0.3$ kg a.s./ha |      |  |  |
| Body weight: 60 kg                                                                                                                                                                                                         | Potential exposure<br>TC: 5800 cm <sup>2</sup> /person/h                         | 0.0696                    | 34.8 |  |  |
|                                                                                                                                                                                                                            | Work wear (arms, body and legs<br>covered)<br>TC: 2500 cm <sup>2</sup> /person/h | 0.0300                    | 15.0 |  |  |

<sup>1</sup>2 h/day for crop inspection tasks and 8 h/day for hand harvesting tasks <sup>2</sup> EFSA Guidance on the assessment of exposure of operators, workers, residents and bystanders in risk assessment for plant protection products [EFSA Journal 2014;12(10):3874 [55 pp.]

## 2.7 **Residues**

## 2.7.1 Summary of storage stability of residues

There was one old study (CA 6.1/01, TSR5068SGBT) investigating the stability of clethodim and 5-Hydroxy clethodim sulfone in sugar beets, which was previously evaluated in the DAR. The RMS did not find this acceptable, as the study was not performed according to current OECD guideline, and a common moiety method was used for analyses, without any justification. Additionally, this analytical method was not acceptably validated.

New studies were submitted to address the storage stability of clethodim, clethodim sulfoxide, clethodim sulfone, M14R, M17R, M18R and 3-chloroallyl alcohol glucoside in plant commodities, covering all the required categories.

Storage stability was investigated in homogenised plant matrices unless stated otherwise in Table 2.7.1-1. In all supervised residue trials (see Vol. 1, 2.7.4 and Vol. 3, B.7.3), field samples were first stored deep-frozen as whole commodity and were then homogenised at the analytical laboratory before extraction. In accordance with OECD guideline 506 (paragraph 15), a homogenate is likely to represent a worst case versus the use of a whole commodity, i.e. storage stability data conducted in homogenised samples are considered acceptable. The storage stability of residues in the available trials was sufficiently demonstrated, unless otherwise stated in Vol. 1, 2.7.4 and Vol. 3, B.7.3.

In animal commodities, there were only two older studies (CA 6.1/12, Weissenburger, 1989, ADC 1124 and CA 6.1/13, Lear, 1989, 129-003) submitted. According to the RMS, these studies had several deviations and deficiencies compared to current guidelines. In the study with cow (CA 6.1/12), the spiking level in milk was too low (4X LOQ), there was no information about extraction procedures and the validation of the analytical method was not acceptable. Likewise, in the study with poultry a common moiety method, which was not acceptably validated, was used for analyses. In the common moiety method, clethodim-like residues were determined as DME, 5-hydroxy clethodim sulfone-like residues determined as DME-OH and S-methyl clethodim like residues determined as S-methyl DME, which according to the RMS does not address the stability of individual components. These studies were therefore considered as supportive only.

Similarly to plants, sample work-up procedures of animal matrices included homogenisation prior to fortification and freezing in the storage stability studies. In the livestock feeding studies, samples obtained during the study were either stored frozen as whole commodity, first as whole commodity followed by storage as homogenised sample, or as homogenised sample (see study summaries in Vol. 3, B.7.4 for details). A homogenate is likely to represent a worst case versus the use of a whole commodity.

The overview of the available data is presented in Table 2.7.1-1 below. Analytical methods used in the storage stability studies were considered acceptable and fit for purpose to address storage stability, except 6.1/01 and the studies in animal matrices.

 Table 2.7.1-1. Overview of storage stability of clethodim and its metabolites in different plant matrices

| Storage stability<br>commodity category | Matrix/commodity  | Demonstrated storage<br>duration (months) | Reference/comment                     |
|-----------------------------------------|-------------------|-------------------------------------------|---------------------------------------|
| Clethodim                               |                   |                                           |                                       |
| High water content                      | Sugar beet leaves | 6 (-20 °C)                                | CA 6.1/01 (determined as equivalents) |

| Alfalfa<1 (-18 'C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Storage stability          | Matrix/commodity      | Demonstrated storage | Reference/comment                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------|----------------------|-----------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | commodity category         | A 10 10               | duration (months)    |                                         |
| $ \begin{array}{                                    $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |                       |                      |                                         |
| Rape seeds6.5 (-18 °C)CA 6.105 (6.5 months was the longest storage period)High oil contentRape seedsn.d. (-18 °C)CA 6.106 (storage interval 0 and 9 months, residues declined to 62%)High protein content/dryPeas (dry seeds)9 (-18 °C)CA 6.101Peas (dry seeds)9 (-18 °C)CA 6.101 (determined as equivalents)High starch contentPeas (dry seeds)9 (-18 °C)CA 6.101 (determined as equivalents)High acid contentGrapes-C1 (-18 °C)CA 6.101 (determined as equivalents)High acid contentGrapes-C1 (-18 °C)CA 6.102 (determined as equivalents)High acid contentAlfalfa6 (-18 °C)CA 6.102 (determined as equivalents)Rape seeds-9 (-18 °C)CA 6.106CA 6.106Rape seeds9 (-18 °C)CA 6.106CA 6.106High oli contentRape seeds9 (-18 °C)CA 6.106High starch contentGrapes9 (-18 °C)CA 6.106High acid contentGrapes9 (-18 °C)CA 6.106High starch contentGrapes9 (-18 °C)CA 6.106High acid contentGrapes9 (-18 °C)CA 6.106High acid contentGrapes9 (-18 °C)CA 6.106High acid contentRape seeds6.5 (-18 °C)CA 6.106High acid contentRape seeds9 (-18 °C)CA 6.106High acid contentRape seeds9 (-18 °C)CA 6.106High acid contentRape seeds9 (-18 °C)CA 6.106High acid contentRape seeds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                       |                      |                                         |
| High oil contentIsrage seedsIsrage period)Rape seeds $\alpha.d.(-18^{\circ}C)$ CA 6.106 (storage interval 0 and 9<br>months, residues declined to 62%)High protein content/dryPeas (dry seeds) $9(-18^{\circ}C)$ CA 6.101High starch contentPeas (dry seeds) $9(-18^{\circ}C)$ CA 6.101High starch contentGrapes $<1(-18^{\circ}C)$ CA 6.101High acid contentGrapes $<1(-18^{\circ}C)$ CA 6.101Grapes $<1(-18^{\circ}C)$ CA 6.101Ca 6.101High acid contentGrapes $<1(-18^{\circ}C)$ CA 6.102High acid contentGrapes $<1(-18^{\circ}C)$ CA 6.102High acid contentAffafra $6(-18^{\circ}C)$ CA 6.102High acid contentAffafra $6(-18^{\circ}C)$ CA 6.106High acid contentAffafra $6(-18^{\circ}C)$ CA 6.106High acid contentGrapes $9(-18^{\circ}C)$ CA 6.106High starch contentOraces $9(-18^{\circ}C)$ CA 6.106High acid contentGrapes $9(-18^{\circ}C)$ CA 6.106High acid contentGrapes $9(-18^{\circ}C)$ CA 6.106High acid contentGrapes $9(-18^{\circ}C)$ CA 6.106High acid contentSugar beet leaves $9(-20^{\circ}C)$ CA 6.106High acid contentSugar beet roots $11^{\circ}C0^{\circ}C$ CA 6.106High acid contentSugar beet roots $11^{\circ}C0^{\circ}C$ CA 6.106High acid contentRape seeds $9(-18^{\circ}C)$ CA 6.106High acid contentSugar beet roots $11^$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |                       | <1 (-18 °C)          |                                         |
| High oil content     Rape seeds     n.d. (18°C)     CA 6.106 (storage interval 0 and 9<br>months, residues selelined to 62%).       High protein content/dry     Pase dry seeds)     9.(18°C)     CA 6.106       High protein content/dry     Pesa (dry seeds)     9.(18°C)     CA 6.106       High starch content     Potato turbers     <1 (18°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            | Rape seeus            | 0.5 (-18 C)          |                                         |
| Rape seeds6 (-18°C)CA 6.171High protein content/dry<br>High starch contentPeas (dry seeds)9 (-18°C)CA 6.171High starch contentFotato tubers-1 (-18°C)CA 6.101High acid contentGrapes-1 (-18°C)CA 6.101Grapes-1 (-18°C)CA 6.101CA 6.101High acid contentGrapes-1 (-18°C)CA 6.101High acid contentGrapes-1 (-18°C)CA 6.101Chethodim sulfoxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | High oil content           | Rane seeds            | nd (-18 °C)          | $CA \in 1/06$ (storage interval 0 and 9 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Thgh on content            | Rape seeds            | n.u. (-18 C)         |                                         |
| High protein content/dy         Peas (dry seeds)         9 (-18 °C)         CA 6.106           High starch content         Stagar beet roots         11 (-20 °C)         CA 6.101 (determined as equivalents)           High starch content         Otato tubers         <1 (-18 °C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            | Rane seeds            | 6 (-18 °C)           |                                         |
| High protein content of the subscript of |                            |                       |                      |                                         |
| High starch contentStogar best roots $11(-20^{\circ}C)$ CA 6.101 (determined as equivalents)High acid contentGrapes<1(-18^{\circ}C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | High protein content/dry   |                       |                      |                                         |
| High starch content       Potato tubers       <1 (-18 °C)       CA 6.1/03         Bigh acid content       Grapes       <1 (-18 °C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            | · · · · ·             |                      |                                         |
| Sugar beet roots<1 (-18°C)CA 6.1/11High acid contentGrapes<1 (-18°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | High starch content        | 0                     |                      |                                         |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C                          |                       |                      |                                         |
| High acid content       Grapes       <1 (-18 °C)       CA 6.1/11         Clethodim sulfoxide       High water content       Alfalfa       6 (-18 °C)       CA 6.1/02 (6.5 months was the longest storage period)         High off content       Rape seeds       9 (-18 °C)       CA 6.1/06 (6.5 months was the longest storage period)         High starch content/dry       Peas (dry seeds)       9 (-18 °C)       CA 6.1/06 (A.6.1/06 (A.                                                                                                                                                                                                                   |                            |                       |                      |                                         |
| Clethodim suffoxide           High water content         Alfalfa $6(-18\ ^{\circ}\text{C})$ CA $6.1/02$ High oil content         Rape seeds $6.5(-18\ ^{\circ}\text{C})$ CA $6.1/05$ CA $6.1/06$ High protein content/dry         Peas (dry seeds) $9(-18\ ^{\circ}\text{C})$ CA $6.1/06$ CA $6.1/06$ High acid content         Otato tubers $6(-18\ ^{\circ}\text{C})$ CA $6.1/06$ CA $6.1/06$ High acid content         Grapes $9(-18\ ^{\circ}\text{C})$ CA $6.1/06$ CH $10^{\circ}$ CA $6.1/06$ Clethodim sulfone         Sugar bect leaves $9(-21\ ^{\circ}\text{C})$ CA $6.1/06$ CH $10^{\circ}$ CA $6.1/06$ High vater content         Alfalfa $3(-18\ ^{\circ}\text{C})$ CA $6.1/05$ CA $6.1/05$ CA $6.1/05$ High oil content         Rape seeds $6.5(-18\ ^{\circ}\text{C})$ CA $6.1/05$ CA $6.1/06$ Storage period)           High acid content         Rape seeds $n.d.(-18\ ^{\circ}\text{C})$ CA $6.1/06$ (storage interval 0 and 9 months, residues declined to $65\%$ )           High starch content         Potas tubers $9(-18\ ^{\circ}\text{C})$ CA $6.1/06$ (storage interval 0 and 9 months, residues declined to $65\%$ )           High acid cont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | High acid content          |                       |                      |                                         |
| High oil contentRape seeds $6.5 (-18 ^{\circ}C)$ CA $6.1/06 (.65 months was the longest storage period)High protein content/dryPeas (dry seeds)9 (-18 ^{\circ}C)CA 6.1/06High starch contentPotato tubers6 (-18 ^{\circ}C)CA 6.1/06High acid contentGrapes9 (-18 ^{\circ}C)CA 6.1/06High acid contentGrapes9 (-18 ^{\circ}C)CA 6.1/06Chebdim sulfoneSugar beet leaves9 (-20 ^{\circ}C)CA 6.1/06Chebdim sulfoneSugar beet leaves9 (-20 ^{\circ}C)CA 6.1/06High water contentRape seeds6.5 (-18 ^{\circ}C)CA 6.1/06High oil contentRape seeds6.5 (-18 ^{\circ}C)CA 6.1/06 (determined as equivalents)High oil contentRape seedsn.d. (-18 ^{\circ}C)CA 6.1/06 (determined as equivalents)High acid contentRape seedsn.d. (-18 ^{\circ}C)CA 6.1/01 (determined as equivalents)High starch content/dryPeas (dry seeds)9 (-18 ^{\circ}C)CA 6.1/01 (determined as equivalents)High acid contentGrapes9 (-18 ^{\circ}C)CA 6.1/01High acid contentSugar beet roots11 (-20 ^{\circ}C)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Clethodim sulfoxide        | - <b>I</b> - <b>I</b> |                      |                                         |
| High oil contentstorage period)High protein content/dryPeas (dry seeds) $9 (-18 ^{\circ} C)$ CA 6.1/06High protein content/dryPeas (dry seeds) $9 (-18 ^{\circ} C)$ CA 6.1/06High starch contentPotato tubers $9 (-18 ^{\circ} C)$ CA 6.1/06High acid contentGrapes $9 (-18 ^{\circ} C)$ CA 6.1/06High acid contentGrapes $9 (-18 ^{\circ} C)$ CA 6.1/06Cethodin sufficeSugar beet leaves $9 (-20 ^{\circ} C)$ CA 6.1/06High water contentSugar beet leaves $9 (-20 ^{\circ} C)$ CA 6.1/06 (dotremined as equivalents)High oil contentRape seeds $6.5 (-18 ^{\circ} C)$ CA 6.1/06 (storage interval 0 and 9 months, residues declined to 65%)High protein content/dryPeas (dry seeds) $9 (-18 ^{\circ} C)$ CA 6.1/06 (storage interval 0 and 9 months, residues declined to 65%)High starch contentSugar beet roots $11 (-20 ^{\circ} C)$ CA 6.1/06 (storage interval 0 and 9 months, residues declined to 65%)High acid contentGrapes $9 (-18 ^{\circ} C)$ CA 6.1/06 (storage interval 0 and 9 months, residues declined to 65%)High acid contentGrapes $9 (-18 ^{\circ} C)$ CA 6.1/06 (months was the longest storage period)High acid contentGrapes $9 (-18 ^{\circ} C)$ CA 6.1/06Cethodim equivalents (sum of elefthodim sufficide and elefthodim sufficide and elefthodim cethodims used as elefthodim)High acid contentGrapes $9 (-18 ^{\circ} C)$ CA 6.1/06High acid contentGrapes $9 (-18 ^{\circ} C)$ CA 6.1/01High acid contentRape                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | High water content         | Alfalfa               | 6 (-18 °C)           | CA 6.1/02                               |
| High oil contentstorage period)High protein content/dryPeas (dry seeds) $9 (-18 ^{\circ} C)$ CA 6.1/06High protein content/dryPeas (dry seeds) $9 (-18 ^{\circ} C)$ CA 6.1/06High starch contentPotato tubers $9 (-18 ^{\circ} C)$ CA 6.1/06High acid contentGrapes $9 (-18 ^{\circ} C)$ CA 6.1/06High acid contentGrapes $9 (-18 ^{\circ} C)$ CA 6.1/06Cethodin sufficeSugar beet leaves $9 (-20 ^{\circ} C)$ CA 6.1/06High water contentSugar beet leaves $9 (-20 ^{\circ} C)$ CA 6.1/06 (dotremined as equivalents)High oil contentRape seeds $6.5 (-18 ^{\circ} C)$ CA 6.1/06 (storage interval 0 and 9 months, residues declined to 65%)High protein content/dryPeas (dry seeds) $9 (-18 ^{\circ} C)$ CA 6.1/06 (storage interval 0 and 9 months, residues declined to 65%)High starch contentSugar beet roots $11 (-20 ^{\circ} C)$ CA 6.1/06 (storage interval 0 and 9 months, residues declined to 65%)High acid contentGrapes $9 (-18 ^{\circ} C)$ CA 6.1/06 (storage interval 0 and 9 months, residues declined to 65%)High acid contentGrapes $9 (-18 ^{\circ} C)$ CA 6.1/06 (months was the longest storage period)High acid contentGrapes $9 (-18 ^{\circ} C)$ CA 6.1/06Cethodim equivalents (sum of elefthodim sufficide and elefthodim sufficide and elefthodim cethodims used as elefthodim)High acid contentGrapes $9 (-18 ^{\circ} C)$ CA 6.1/06High acid contentGrapes $9 (-18 ^{\circ} C)$ CA 6.1/01High acid contentRape                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            | Rape seeds            | 6.5 (-18 °C)         |                                         |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | High oil content           |                       |                      | storage period)                         |
| High starch contentPotato tubers $6 (-18 \ ^{\circ}\text{C})$ CA 6.1/03 (6 months was the longest storage period)High acid contentGrapes $9 (-18 \ ^{\circ}\text{C})$ CA 6.1/06Clethodim sulfoneSugar beet leaves $9 (-20 \ ^{\circ}\text{C})$ CA 6.1/01 (determined as equivalents)High water contentAlfalfa $3 (-18 \ ^{\circ}\text{C})$ CA 6.1/02 (storage period)Rape seeds $6.5 (-18 \ ^{\circ}\text{C})$ CA 6.1/06 (storage interval 0 and 9 months, residues declined to 65%)High oil contentRape seeds $9 (-18 \ ^{\circ}\text{C})$ CA 6.1/06 (storage interval 0 and 9 months, residues declined to 65%)High protein content/dryPeas (dry seeds) $9 (-18 \ ^{\circ}\text{C})$ CA 6.1/06 (storage interval 0 and 9 months, residues declined to 65%)High starch contentSugar beet roots $11 (-20 \ ^{\circ}\text{C})$ CA 6.1/06 (storage interval 0 and 9 months, residues declined to 65%)High acid contentGrapes $9 (-18 \ ^{\circ}\text{C})$ CA 6.1/06 (storage interval 0 and 9 months, residues declined to 65%)High acid contentGrapes $9 (-18 \ ^{\circ}\text{C})$ CA 6.1/06 (storage interval 0 and 9 months, residues declined to 65%)High acid contentGrapes $9 (-18 \ ^{\circ}\text{C})$ CA 6.1/06 (storage period)High acid contentGrapes $9 (-18 \ ^{\circ}\text{C})$ CA 6.1/06High acid contentGrapes $9 (-18 \ ^{\circ}\text{C})$ CA 6.1/06High acid contentSugar beet leaves $6 (-18 \ ^{\circ}\text{C})$ CA 6.1/04High acid contentRape seeds $9 (-18 \ ^{\circ}\text{C})$ CA 6.1/11High acid contentRape seeds $9 (-18 \ ^{\circ}\text$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                       |                      | CA 6.1/06                               |
| High starch contentstorage period)High acid contentGrapes $9(-18\ ^{\circ}C)$ CA 6.1/06High acid contentGrapes $9(-18\ ^{\circ}C)$ CA 6.1/06CA 6.1/01 (determined as equivalents)Alfalfa $3(-18\ ^{\circ}C)$ CA 6.1/02Rape seeds $6.5\ (-18\ ^{\circ}C)$ CA 6.1/02High oil contentRape seeds $n.d.\ (-18\ ^{\circ}C)$ CA 6.1/06 (storage interval 0 and 9<br>months, residues declined to 65%)High protein content/dryPeas (dry seeds) $9\ (-18\ ^{\circ}C)$ CA 6.1/06 (storage interval 0 and 9<br>months, residues declined to 65%)High starch contentPotato tubers $9\ (-18\ ^{\circ}C)$ CA 6.1/01 (determined as equivalents)Potato tubers $9\ (-18\ ^{\circ}C)$ CA 6.1/06High acid contentGrapes $9\ (-18\ ^{\circ}C)$ CA 6.1/06High acid contentGrapes $9\ (-18\ ^{\circ}C)$ CA 6.1/06Cethodim equivalents (sum of clethodim sulfoxide and clethodim sulfone expressed as clethodim)Alfalfa $2\ (-18\ ^{\circ}C)$ CA 6.1/04High starch contentRape seeds $9\ (-18\ ^{\circ}C)$ CA 6.1/04High water contentGrapes $9\ (-18\ ^{\circ}C)$ CA 6.1/04High water contentRape seeds $9\ (-18\ ^{\circ}C)$ CA 6.1/04High starch contentRape seeds $9\ (-18\ ^{\circ}C)$ CA 6.1/11High water contentRape seeds $9\ (-18\ ^{\circ}C)$ CA 6.1/11High starch contentRape seeds $9\ (-18\ ^{\circ}C)$ CA 6.1/11High starch contentGrapes $9\ (-18\ ^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | High protein content/dry   | Peas (dry seeds)      |                      |                                         |
| Potato tubers $9 (-18  ^\circ \text{C})$ CA 6.1/06High acid contentGrapes $9 (-18  ^\circ \text{C})$ CA 6.1/01 (determined as equivalents)High water contentAlfalfa $3 (-18  ^\circ \text{C})$ CA 6.1/01 (determined as equivalents)High water contentRape seeds $6.5 (-18  ^\circ \text{C})$ CA 6.1/02 (6.5 months was the longest<br>storage period)High oil contentRape seedsn.d. (-18  ^\circ \text{C})CA 6.1/06 (storage interval 0 and 9<br>months, residues declined to 65%)High protein content/dryPeas (dry seeds) $9 (-18  ^\circ \text{C})$ CA 6.1/01 (determined as equivalents)High starch contentPotato tubers $6 (-18  ^\circ \text{C})$ CA 6.1/03 (6 months was the longest<br>storage period)High starch contentGrapes $9 (-18  ^\circ \text{C})$ CA 6.1/04 (6 months was the longest<br>storage period)High acid contentGrapes $9 (-18  ^\circ \text{C})$ CA 6.1/06High acid contentGrapes $9 (-18  ^\circ \text{C})$ CA 6.1/04High acid contentGrapes $9 (-18  ^\circ \text{C})$ CA 6.1/04High acid contentRape seeds $9 (-18  ^\circ \text{C})$ CA 6.1/11High acid contentRape seeds $9 (-18  ^\circ \text{C})$ CA 6.1/11High acid contentRape seeds $9 (-18  ^\circ \text{C})$ CA 6.1/11High oil contentRape seeds $9 (-18  ^\circ \text{C})$ CA 6.1/11High acid contentRape seeds $9 (-18  ^\circ \text{C})$ CA 6.1/11High acid contentGrapes $9 (-18  ^\circ \text{C})$ CA 6.1/10High acid contentRape seeds $9 (-18  ^\circ \text{C})$ <td></td> <td>Potato tubers</td> <td>6 (-18 °C)</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            | Potato tubers         | 6 (-18 °C)           |                                         |
| High acid contentGrapes $9 (-18 \ {}^{\circ}\text{C})$ CA 6.1/06Cleftedim sulfoneHigh water contentSugar beet leaves $9 (-20 \ {}^{\circ}\text{C})$ CA 6.1/01 (determined as equivalents)High water contentAlfalfa $3 (-18 \ {}^{\circ}\text{C})$ CA 6.1/06 (5 months was the longest storage period)High oil contentRape seedsn.d. (-18 \ {}^{\circ}\text{C})CA 6.1/06 (storage interval 0 and 9 months, residues declined to 65%)High protein content/dryPeas (dry seeds) $9 (-18 \ {}^{\circ}\text{C})$ CA 6.1/06 (storage interval 0 and 9 months, residues declined to 65%)High starch contentSugar beet roots11 (-20 \ {}^{\circ}\text{C})CA 6.1/06 (storage interval 0 and 9 months, residues declined to 65%)High acid contentPeas (dry seeds) $9 (-18 \ {}^{\circ}\text{C})$ CA 6.1/01 (determined as equivalents)Potato tubers $9 (-18 \ {}^{\circ}\text{C})$ CA 6.1/06 (months was the longest storage period)Clethodim equivalents (sum of clethodim, clethodim sulfoxide and clethodim sulfore expressed as clethodim)Clethodim equivalents (sum of clethodim, clethodim sulfoxide and clethodim sulfore expressed as clethodim)Migh oil contentRape seeds $9 (-18 \ {}^{\circ}\text{C})$ CA 6.1/04High oil contentRape seeds $9 (-18 \ {}^{\circ}\text{C})$ CA 6.1/11High starch contentGrapes $9 (-18 \ {}^{\circ}\text{C})$ CA 6.1/11High starch contentRape seeds $9 (-18 \ {}^{\circ}\text{C})$ CA 6.1/11High acid contentGrapes $9 (-18 \ {}^{\circ}\text{C})$ CA 6.1/10High starch contentGrape seeds $9 (-18 \ {}^{\circ}\text{C})$ <td< td=""><td>High starch content</td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | High starch content        |                       |                      |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | Potato tubers         |                      |                                         |
| High water contentSugar beet leaves $9 (-20 \ C)$ CA 6.1/01 (determined as equivalents)High vater contentRape seeds $3 (-18 \ C)$ CA 6.1/02 (6.5 months was the longest storage period)High oil contentRape seeds $6.5 (-18 \ C)$ CA 6.1/06 (storage interval 0 and 9 months, residues declined to 65%)High protein content/dryPeas (dry seeds) $9 (-18 \ C)$ CA 6.1/06 (storage interval 0 and 9 months, residues declined to 65%)High starch contentPotato tubers $9 (-18 \ C)$ CA 6.1/03 (6 months was the longest storage period)Potato tubers $9 (-18 \ C)$ CA 6.1/03 (6 months was the longest storage period)Potato tubers $9 (-18 \ C)$ CA 6.1/06High acid contentGrapes $9 (-18 \ C)$ CA 6.1/06High water contentGrapes $9 (-18 \ C)$ CA 6.1/06High vater contentMfalfa $2 (-18 \ C)$ CA 6.1/04High vater contentRape seeds $9 (-18 \ C)$ CA 6.1/11High vater contentRape seeds $9 (-18 \ C)$ CA 6.1/11High vater contentRape seeds $9 (-18 \ C)$ CA 6.1/11High vater contentRape seeds $9 (-18 \ C)$ CA 6.1/11High vater contentRape seeds $9 (-18 \ C)$ CA 6.1/11High vater contentRape seeds $9 (-18 \ C)$ CA 6.1/10High vater contentGrapes $9 (-18 \ C)$ CA 6.1/10High vater contentOnion bulbs $12 (-18 \ C)$ CA 6.1/10High vater contentMin bulbs $12 (-18 \ C)$ CA 6.1/10<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            | Grapes                | 9 (-18 °C)           | CA 6.1/06                               |
| High water contentAlfalfa $3 (-18 °C)$ CA 6.1/02High oil contentRape seeds $6.5 (-18 °C)$ CA 6.1/05 ( $6.5$ months was the longest<br>storage period)High oil contentRape seedsn.d. ( $-18 °C$ )CA 6.1/06 (storage interval 0 and 9<br>months, residues declined to 65%)High protein content/dryPeas (dry seeds) $9 (-18 °C)$ CA 6.1/06 (storage interval 0 and 9<br>months, residues declined to 65%)High starch contentSugar beet roots $11 (-20 °C)$ CA 6.1/03 (6 months was the longest<br>storage period)Potato tubers $9 (-18 °C)$ CA 6.1/03 (6 months was the longest<br>storage period)Potato tubers $9 (-18 °C)$ CA 6.1/06High acid contentGrapes $9 (-18 °C)$ CA 6.1/06High water contentGrapes $9 (-18 °C)$ CA 6.1/04Migh water contentSugar beet leaves $6 (-18 °C)$ CA 6.1/04Migh water contentSugar beet leaves $6 (-18 °C)$ CA 6.1/04High vater contentRape seeds $9 (-18 °C)$ CA 6.1/04High vater contentRape seeds $9 (-18 °C)$ CA 6.1/11High acid contentRape seeds $9 (-18 °C)$ CA 6.1/11High starch contentGrapes $9 (-18 °C)$ CA 6.1/11High acid contentGrapes $9 (-18 °C)$ CA 6.1/10High acid contentGrapes $9 (-18 °C)$ CA 6.1/10High acid contentGrapes $9 (-18 °C)$ CA 6.1/10High vater contentSugar beet root $12 (-18 °C)$ CA 6.1/10High acid c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Clethodim sulfone          |                       |                      | r                                       |
| Affaira $3 (-18 \ C)$ CA 6.1/02CA 6.1/02High oil contentRape seeds $6.5 (-18 \ C)$ CA 6.1/06 (storage interval 0 and 9<br>months, residues declined to 65%)High protein content/dryPeas (dry seeds) $9 (-18 \ C)$ CA 6.1/06 (storage interval 0 and 9<br>months, residues declined to 65%)High protein content/dryPeas (dry seeds) $9 (-18 \ C)$ CA 6.1/06 (storage interval 0 and 9<br>months, residues declined to 65%)High starch contentSugar beet roots $11 (-20 \ C)$ CA 6.1/01 (determined as equivalents)Potato tubers $9 (-18 \ C)$ CA 6.1/06High acid contentGrapes $9 (-18 \ C)$ CA 6.1/06High water contentGrapes $9 (-18 \ C)$ CA 6.1/04High water contentSugar beet leaves $6 (-18 \ C)$ CA 6.1/04High oil contentRape seeds $9 (-18 \ C)$ CA 6.1/11High oil contentRape seeds $9 (-18 \ C)$ CA 6.1/11High starch contentGrapes $9 (-18 \ C)$ CA 6.1/11High acid contentGrapes $9 (-18 \ C)$ CA 6.1/11High acid contentGrapes $9 (-18 \ C)$ CA 6.1/11High acid contentGrapes $9 (-18 \ C)$ CA 6.1/10High acid contentRape seeds $9 (-18$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | High water content         |                       |                      |                                         |
| High oil contentRape seedsn.d. (-18 °C)CA 6.1/06 (storage interval 0 and 9<br>months, residues declined to 65%)High protein content/dryPeas (dry seeds)9 (-18 °C)CA 6.1/01 (determined as equivalents)High starch contentSugar beet roots11 (-20 °C)CA 6.1/01 (determined as equivalents)Potato tubers6 (-18 °C)CA 6.1/06High acid contentGrapes9 (-18 °C)CA 6.1/06High acid contentGrapes9 (-18 °C)CA 6.1/06Cethodim equivalents (sum of clethodim, clethodim sulfore expressed as clethodim)Alfalfa2 (-18 °C)CA 6.1/04High water contentSugar beet leaves6 (-18 °C)CA 6.1/04High oil contentRape seeds9 (-18 °C)CA 6.1/11High oil contentRape seeds9 (-18 °C)CA 6.1/11High starch contentSugar beet leaves6 (-18 °C)CA 6.1/11High acid contentRape seeds9 (-18 °C)CA 6.1/11High acid contentRape seeds9 (-18 °C)CA 6.1/11High acid contentGrapes9 (-18 °C)CA 6.1/11High acid contentGrapes9 (-18 °C)CA 6.1/10High acid contentRape seeds9 (-18 °C)CA 6.1/10High acid contentRape seeds9 (-18 °C)CA 6.1/10High acid contentRape s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Trigit water content       |                       |                      |                                         |
| High oil contentRape seedsn.d. (-18 °C)CA 6.1/06 (storage interval 0 and 9<br>months, residues declined to 65%)High protein content/dryPeas (dry seeds)9 (-18 °C)CA 6.1/01 (determined as equivalents)High starch contentSugar beet roots11 (-20 °C)CA 6.1/03 (6 months was the longest<br>storage period)High starch contentPotato tubers6 (-18 °C)CA 6.1/06High acid contentGrapes9 (-18 °C)CA 6.1/06High water contentGrapes9 (-18 °C)CA 6.1/04Miggar beet leaves6 (-18 °C)CA 6.1/04Miggar beet leaves6 (-18 °C)CA 6.1/04Miggar beet leaves6 (-18 °C)CA 6.1/04High oil contentRape seeds9 (-18 °C)CA 6.1/04High starch contentSugar beet leaves9 (-18 °C)CA 6.1/11High starch contentPotato tubers3.4 (-18 °C)CA 6.1/04 (3.4 months was the longest<br>storage period)High acid contentGrapes9 (-18 °C)CA 6.1/11High acid contentGrapes9 (-18 °C)CA 6.1/11High acid contentGrapes9 (-18 °C)CA 6.1/10High acid contentGrape seeds9 (-18 °C)CA 6.1/10High acid contentSugar beet roots9 (-18 °C)CA 6.1/10High acid contentSugar beet root12 (-18 °C)CA 6.1/10High acid contentSugar beet root12 (-18 °C)CA 6.1/10High acid contentSugar beet root12 (-18 °C)CA 6.1/10High acid contentR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            | Rape seeds            | 6.5 (-18 °C)         |                                         |
| High protein content/dryPeas (dry seeds)9 (-18 °C)CA 6.1/06High protein content/dryPeas (dry seeds)9 (-18 °C)CA 6.1/01 (determined as equivalents)High starch contentSugar beet roots11 (-20 °C)CA 6.1/03 (6 months was the longest storage period)Potato tubers9 (-18 °C)CA 6.1/06High acid contentGrapes9 (-18 °C)CA 6.1/06Clethodim equivalents (sum of clethodim, clethodim sulfoxide and clethodim sulfone expressed as clethodim)Migh water contentAlfalfa2 (-18 °C)CA 6.1/04Sugar beet leaves6 (-18 °C)CA 6.1/04Migh oil contentRape seeds9 (-18 °C)CA 6.1/04High protein content/dryPeas (dry seeds)9 (-18 °C)CA 6.1/04High starch contentRape seeds9 (-18 °C)CA 6.1/04High starch contentSugar beet roots9 (-18 °C)CA 6.1/11High starch contentGrapes9 (-18 °C)CA 6.1/11High acid contentGrapes9 (-18 °C)CA 6.1/11High acid contentBape seeds9 (-18 °C)CA 6.1/10High starch contentGrapes9 (-18 °C)CA 6.1/10High acid contentRape seeds9 (-18 °C)CA 6.1/10High starch contentSugar beet root12 (-18 °C)CA 6.1/10<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |                       |                      |                                         |
| High protein content/dryPeas (dry seeds) $9 (-18 \ ^{\circ}C)$ CA 6.1/01 (determined as equivalents)High starch contentSugar beet roots $11 (-20 \ ^{\circ}C)$ CA 6.1/03 (6 months was the longest storage period)Potato tubers $6 (-18 \ ^{\circ}C)$ CA 6.1/06High acid contentGrapes $9 (-18 \ ^{\circ}C)$ CA 6.1/06Clethodim equivalents (sum of clethodim, clethodim sulfoxed and clethodim sulfone expressed as clethodim)Iffalfa $2 (-18 \ ^{\circ}C)$ CA 6.1/04High water contentAlfalfa $2 (-18 \ ^{\circ}C)$ CA 6.1/04Image: Storage period)High oil contentRape seeds $9 (-18 \ ^{\circ}C)$ CA 6.1/04High oil contentRape seeds $9 (-18 \ ^{\circ}C)$ CA 6.1/11High starch content/dryPeas (dry seeds) $9 (-18 \ ^{\circ}C)$ CA 6.1/11High starch contentPotato tubers $3.4 \ (-18 \ ^{\circ}C)$ CA 6.1/11High acid contentGrapes $9 \ (-18 \ ^{\circ}C)$ CA 6.1/11High acid contentGrapes $9 \ (-18 \ ^{\circ}C)$ CA 6.1/10High acid contentGrapes $9 \ (-18 \ ^{\circ}C)$ CA 6.1/10High acid contentGrapes $9 \ (-18 \ ^{\circ}C)$ CA 6.1/10High water contentNoion bulbs $12 \ (-18 \ ^{\circ}C)$ CA 6.1/10High vater contentSugar beet root $12 \ (-18 \ ^{\circ}C)$ CA 6.1/10High acid contentRape seeds $9 \ (-18 \ ^{\circ}C)$ CA 6.1/10High vater contentSugar beet root $12 \ (-18 \ ^{\circ}C)$ CA 6.1/10High vater contentSugar beet root <td< td=""><td>High oil content</td><td>Rape seeds</td><td>n.d. (-18 °C)</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | High oil content           | Rape seeds            | n.d. (-18 °C)        |                                         |
| High starch contentSugar beet roots11 (-20 °C)CA 6.1/01 (determined as equivalents)<br>storage period)Potato tubers6 (-18 °C)CA 6.1/03 (6 months was the longest<br>storage period)High acid contentGrapes9 (-18 °C)CA 6.1/06Clethodim equivalents (sum of clethodim, clethodim sulfoxide and clethodim sulfone expressed as clethodim)Mifaffa2 (-18 °C)CA 6.1/04Sugar beet leaves6 (-18 °C)CA 6.1/04Migh water contentRape seeds9 (-18 °C)CA 6.1/11High protein content/dryPeas (dry seeds)9 (-18 °C)CA 6.1/11High starch contentRape seeds9 (-18 °C)CA 6.1/11High starch contentGrapes9 (-18 °C)CA 6.1/11High starch contentGrapes9 (-18 °C)CA 6.1/11High acid contentGrapes9 (-18 °C)CA 6.1/11High acid contentGrapes9 (-18 °C)CA 6.1/10High water contentGrapes9 (-18 °C)CA 6.1/10High water contentGrapes9 (-18 °C)CA 6.1/10High water contentSugar beet roots9 (-18 °C)CA 6.1/10High water contentSugar beet root12 (-18 °C)CA 6.1/10High acid contentGrapes9 (-18 °C)CA 6.1/10High starch contentSugar beet root12 (-18 °C)CA 6.1/10High acid contentRape seeds9 (-18 °C)CA 6.1/10High starch contentSugar beet root12 (-18 °C)CA 6.1/10High acid content <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |                       |                      |                                         |
| High starch contentPotato tubers $6 (-18 °C)$<br>storage period)CA 6.1/03 (6 months was the longest<br>storage period)High acid contentGrapes $9 (-18 °C)$ CA 6.1/06Clethodim equivalents (sum of clethodim, clethodim sulfoxide and clethodim sulform expressed as clethodim)Clethodim equivalents (sum of clethodim, clethodim sulfoxide and clethodim sufform expressed as clethodim)Clethodim equivalents (sum of clethodim, clethodim sulfoxide and clethodim sufform expressed as clethodim)Clethodim equivalents (sum of clethodim, clethodim sulfoxide and clethodim sufform expressed as clethodim)Mifafa $2 (-18 °C)$ CA 6.1/04Clethodim sulfoxide and clethodim sufform expressed as clethodim)Onion bubs $9 (-18 °C)$ CA 6.1/11High oli contentRape seeds $9 (-18 °C)$ CA 6.1/11High protein content/dryPeas (dry seeds) $9 (-18 °C)$ CA 6.1/11High acid contentGrapes $9 (-18 °C)$ CA 6.1/11High acid contentGrapes $9 (-18 °C)$ CA 6.1/10High water contentMage beet roots $9 (-18 °C)$ CA 6.1/10High starch contentSugar beet root $12 (-18 °C)$ CA 6.1/10High acid contentSugar beet root $12 (-18 °C)$ CA 6.1/10High starch contentSugar beet root $12 (-18 °C)$ CA 6.1/10High acid contentGrapes $9 (-18 °C)$ CA 6.1/10High acid contentSugar beet leaves $9 (-18 °C)$ CA 6.1/10High acid content<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | High protein content/dry   |                       |                      |                                         |
| High starch contentstorage period)Potato tubers $9 (-18 °C)$ CA 6.1/06High acid contentGrapes $9 (-18 °C)$ CA 6.1/06Clethodim equivalents (sum of clethodim, clethodim sulfoxide and clethodim sulfone expressed as clethodim)High water contentAlfalfa $2 (-18 °C)$ CA 6.1/04Bigh oil contentRape seeds $6 (-18 °C)$ CA 6.1/04High oil contentRape seeds $9 (-18 °C)$ CA 6.1/11High starch content/dryPeas (dry seeds) $9 (-18 °C)$ CA 6.1/11High starch contentPotato tubers $3.4 (-18 °C)$ CA 6.1/04 (3.4 months was the longestHigh starch contentGrapes $9 (-18 °C)$ CA 6.1/11High acid contentGrapes $9 (-18 °C)$ CA 6.1/10High acid contentOnion bulbs $12 (-18 °C)$ CA 6.1/10High acid contentGrapes $9 (-18 °C)$ CA 6.1/10High acid contentRape seeds $9 (-18 °C)$ CA 6.1/10High protein content/dryPea seeds $9 (-18 °C)$ CA 6.1/10High acid contentGrapes $9 (-18 °C)$ CA 6.1/10High acid contentRape seeds $9 (-18 °C)$ CA 6.1/10High protein content/dryPea seeds (dry) $12 (-18 °C)$ CA 6.1/10High protein content/dryPea seeds (dry) $12 (-18 °C)$ CA 6.1/10High starch contentSugar beet root $12 (-18 °C)$ CA 6.1/10High starch contentSugar beet leaves $9 (-18 °C)$ CA 6.1/10High starch content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |                       |                      |                                         |
| Potato tubers $9 (-18 °C)$ CA $6.1/06$ High acid contentGrapes $9 (-18 °C)$ CA $6.1/06$ Clehodim, clehodim, clehodim sulfore expressed as clethodim)Alfalfa $2 (-18 °C)$ CA $6.1/04$ High water contentAlfalfa $2 (-18 °C)$ CA $6.1/04$ Wigh oil contentRape seeds $9 (-18 °C)$ CA $6.1/11$ High protein content/dryPeas (dry seeds) $9 (-18 °C)$ CA $6.1/01$ High starch contentRape seeds $9 (-18 °C)$ CA $6.1/04$ ( $3.4$ months was the longestHigh starch contentSugar beet roots $9 (-18 °C)$ CA $6.1/04$ ( $3.4$ months was the longestHigh acid contentGrapes $9 (-18 °C)$ CA $6.1/11$ High acid contentOnion bulbs $12 (-18 °C)$ CA $6.1/11$ High acid contentOnion bulbs $12 (-18 °C)$ CA $6.1/10$ High acid contentSugar beet root $12 (-18 °C)$ CA $6.1/10$ High acid contentSugar beet root $12 (-18 °C)$ CA $6.1/10$ High acid contentSugar beet root $12 (-18 °C)$ CA $6.1/10$ High acid contentSugar beet root $12 (-18 °C)$ CA $6.1/10$ High acid contentSugar beet leaves $9 (-18 °C)$ CA $6.1/10$ High acid contentSugar beet leaves $9 (-18 °C)$ CA $6.1/10$ High acid contentSugar beet leaves $9 (-18 °C)$ CA $6.1/06$ High acid contentSugar beet leaves $9 (-18 °C)$ CA $6.1/06$ High acid contentRape seeds $9 (-18 °C)$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | High starch content        | Potato tubers         | 6 (-18 C)            |                                         |
| High acid contentGrapes $9 (-18 \ {}^{\circ}\text{C})$ CA $6.1/06$ Clethodim sulfoxide and clethodim sulfone expressed as clethodim)Alfalfa $2 (-18 \ {}^{\circ}\text{C})$ CA $6.1/04$ High water contentSugar beet leaves $6 (-18 \ {}^{\circ}\text{C})$ CA $6.1/04$ High oil contentRape seeds $9 (-18 \ {}^{\circ}\text{C})$ CA $6.1/11$ High protein content/dryPeas (dry seeds) $9 (-18 \ {}^{\circ}\text{C})$ CA $6.1/11$ High starch contentPotato tubers $3.4 (-18 \ {}^{\circ}\text{C})$ CA $6.1/04$ ( $3.4 \ {months was the longest}$ High acid contentGrapes $9 (-18 \ {}^{\circ}\text{C})$ CA $6.1/11$ High acid contentGrapes $9 (-18 \ {}^{\circ}\text{C})$ CA $6.1/11$ High acid contentGrapes $9 (-18 \ {}^{\circ}\text{C})$ CA $6.1/11$ High acid contentGrapes $9 (-18 \ {}^{\circ}\text{C})$ CA $6.1/11$ High acid contentGrapes $9 (-18 \ {}^{\circ}\text{C})$ CA $6.1/10$ High acid contentGrapes $9 (-18 \ {}^{\circ}\text{C})$ CA $6.1/10$ High acid contentGrapes $9 (-18 \ {}^{\circ}\text{C})$ CA $6.1/10$ High acid contentGrapes $9 (-18 \ {}^{\circ}\text{C})$ CA $6.1/10$ High starch contentSugar beet root $12 (-18 \ {}^{\circ}\text{C})$ CA $6.1/10$ High starch contentSugar beet root $12 (-18 \ {}^{\circ}\text{C})$ CA $6.1/10$ High starch contentSugar beet leaves $9 (-18 \ {}^{\circ}\text{C})$ CA $6.1/10$ High acid contentSugar beet leaves $9 (-18 \ {}^{\circ}\text{C})$ CA $6.1/10$ High starch cont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                          | Dototo tuboro         | 0 ( 18 °C)           |                                         |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | High agid content          |                       | 9(-18  C)            |                                         |
| High water contentAlfalfa $2 (-18 °C)$ CA 6.1/04High water contentSugar beet leaves $6 (-18 °C)$ CA 6.1/09Onion bulbs $9 (-18 °C)$ CA 6.1/11High oil contentRape seeds $9 (-18 °C)$ CA 6.1/11High protein content/dryPeas (dry seeds) $9 (-18 °C)$ CA 6.1/11High starch contentPotato tubers $3.4 (-18 °C)$ CA 6.1/11High starch contentGrapes $9 (-18 °C)$ CA 6.1/11High acid contentGrapes $9 (-18 °C)$ CA 6.1/11 <b>M14R, M15R</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |                       |                      |                                         |
| High water contentSugar beet leaves $6 (-18 \ ^{\circ}\text{C})$ CA $6.1/09$ High oil contentRape seeds $9 (-18 \ ^{\circ}\text{C})$ CA $6.1/11$ High protein content/dryPeas (dry seeds) $9 (-18 \ ^{\circ}\text{C})$ CA $6.1/11$ High protein content/dryPeas (dry seeds) $9 (-18 \ ^{\circ}\text{C})$ CA $6.1/11$ High starch contentPotato tubers $3.4 (-18 \ ^{\circ}\text{C})$ CA $6.1/04 (3.4 \text{ months was the longest storage period)High starch contentSugar beet roots9 (-18 \ ^{\circ}\text{C})CA 6.1/11High acid contentGrapes9 (-18 \ ^{\circ}\text{C})CA 6.1/11M14R, M15RHigh water contentOnion bulbs12 (-18 \ ^{\circ}\text{C})CA 6.1/10High vater contentSugar beet root12 (-18 \ ^{\circ}\text{C})CA 6.1/10High starch contentSugar beet root12 (-18 \ ^{\circ}\text{C})CA 6.1/10High starch contentSugar beet root12 (-18 \ ^{\circ}\text{C})CA 6.1/10High protein content/dryPea seeds (dry)12 (-18 \ ^{\circ}\text{C})CA 6.1/10High acid contentSugar beet leaves9 (-18 \ ^{\circ}\text{C})CA 6.1/10High water contentSugar beet leaves9 (-18 \ ^{\circ}\text{C})CA 6.1/10High water contentSugar beet leaves9 (-18 \ ^{\circ}\text{C})CA 6.1/10High acid contentRape seeds9 (-18 \ ^{\circ}\text{C})CA 6.1/06High vater contentSugar beet leaves9 (-18 \ ^{\circ}\text{C})CA 6.1/06High vater contentSugar beet leaves9 (-18 \ ^{\circ}\text{C})CA 6.1/06<$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Clethouini equivalents (su |                       |                      |                                         |
| Onion bulbs $9(-18 \degree C)$ CA $6.1/11$ High oil contentRape seeds $9(-18 \degree C)$ CA $6.1/11$ High protein content/dryPeas (dry seeds) $9(-18 \degree C)$ CA $6.1/04$ ( $3.4$ months was the longestHigh starch contentPotato tubers $3.4 (-18 \degree C)$ CA $6.1/04$ ( $3.4$ months was the longestHigh starch contentSugar beet roots $9(-18 \degree C)$ CA $6.1/10$ M14R, M15RGrapes $9(-18 \degree C)$ CA $6.1/10$ High water contentOnion bulbs $12 (-18 \degree C)$ CA $6.1/10$ High starch contentSugar beet root $12 (-18 \degree C)$ CA $6.1/10$ High starch contentSugar beet root $12 (-18 \degree C)$ CA $6.1/10$ High starch contentSugar beet root $12 (-18 \degree C)$ CA $6.1/10$ High starch contentSugar beet root $12 (-18 \degree C)$ CA $6.1/10$ High acid contentGrapes $9 (-18 \degree C)$ CA $6.1/10$ High acid contentGrapes $9 (-18 \degree C)$ CA $6.1/10$ High water contentSugar beet leaves $9 (-18 \degree C)$ CA $6.1/10$ High water contentSugar beet leaves $9 (-18 \degree C)$ CA $6.1/06$ High water contentSugar beet leaves $9 (-18 \degree C)$ CA $6.1/06$ High vater contentSugar beet leaves $9 (-18 \degree C)$ CA $6.1/06$ High starch contentPotato tubers $9 (-18 \degree C)$ CA $6.1/06$ High acid contentRape seeds $9 (-18 \degree C)$ CA $6.1/06$ High acid contentGrapes $9 (-18 \degree C)$ CA $6.1/06$ Hig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | High water content         |                       |                      |                                         |
| High oil contentRape seeds $9(-18 \ ^{\circ}\text{C})$ CA 6.1/11High protein content/dryPeas (dry seeds) $9(-18 \ ^{\circ}\text{C})$ CA 6.1/04 (3.4 months was the longest<br>storage period)High starch contentPotato tubers $3.4 (-18 \ ^{\circ}\text{C})$ CA 6.1/04 (3.4 months was the longest<br>storage period)High acid contentGrapes $9(-18 \ ^{\circ}\text{C})$ CA 6.1/11M14R, M15RM14R, M15R $V$ VHigh water contentOnion bulbs $12 (-18 \ ^{\circ}\text{C})$ CA 6.1/10High oil contentRape seeds $9 (-18 \ ^{\circ}\text{C})$ CA 6.1/10High starch contentSugar beet root $12 (-18 \ ^{\circ}\text{C})$ CA 6.1/10High starch contentGrapes $9 (-18 \ ^{\circ}\text{C})$ CA 6.1/10High starch contentSugar beet root $12 (-18 \ ^{\circ}\text{C})$ CA 6.1/10High protein content/dryPea seeds (dry) $12 (-18 \ ^{\circ}\text{C})$ CA 6.1/10High acid contentSugar beet root $12 (-18 \ ^{\circ}\text{C})$ CA 6.1/10High acid contentSugar beet seeds $9 (-18 \ ^{\circ}\text{C})$ CA 6.1/10High acid contentSugar beet leaves $9 (-18 \ ^{\circ}\text{C})$ CA 6.1/00High acid contentRape seeds $9 (-18 \ ^{\circ}\text{C})$ CA 6.1/06High oil contentRape seeds $9 (-18 \ ^{\circ}\text{C})$ CA 6.1/06High protein content/dryPeas (dry seeds) $9 (-18 \ ^{\circ}\text{C})$ CA 6.1/06High acid contentGrapes $9 (-18 \ ^{\circ}\text{C})$ CA 6.1/06High acid contentGrapes $9 (-18 \ ^{\circ}\text{C})$ CA 6.1/06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Tingh water content        |                       |                      |                                         |
| High protein content/dryPeas (dry seeds) $9 (-18 \ ^{\circ}\text{C})$ CA 6.1/11High starch contentPotato tubers $3.4 (-18 \ ^{\circ}\text{C})$ CA 6.1/04 ( $3.4 \ \text{months was the longest storage period}$ )High acid contentGrapes $9 (-18 \ ^{\circ}\text{C})$ CA 6.1/11 <b>M14R, M15RM14R, M15R</b> High water contentOnion bulbs $12 (-18 \ ^{\circ}\text{C})$ CA 6.1/10High starch contentSugar beet root $12 (-18 \ ^{\circ}\text{C})$ CA 6.1/10High starch contentSugar beet root $12 (-18 \ ^{\circ}\text{C})$ CA 6.1/10High starch contentSugar beet root $12 (-18 \ ^{\circ}\text{C})$ CA 6.1/10High starch contentSugar beet root $12 (-18 \ ^{\circ}\text{C})$ CA 6.1/10High starch contentSugar beet root $12 (-18 \ ^{\circ}\text{C})$ CA 6.1/10High acid contentGrapes $9 (-18 \ ^{\circ}\text{C})$ CA 6.1/10High acid contentGrapes $9 (-18 \ ^{\circ}\text{C})$ CA 6.1/10High acid contentGrapes $9 (-18 \ ^{\circ}\text{C})$ CA 6.1/10High water contentSugar beet leaves $9 (-18 \ ^{\circ}\text{C})$ CA 6.1/00High valer contentSugar beet leaves $9 (-18 \ ^{\circ}\text{C})$ CA 6.1/06High starch contentPotato tubers $9 (-18 \ ^{\circ}\text{C})$ CA 6.1/06High protein content/dryPeas (dry seeds) $9 (-18 \ ^{\circ}\text{C})$ CA 6.1/06High protein content/dryPeas (dry seeds) $9 (-18 \ ^{\circ}\text{C})$ CA 6.1/06High acid contentGrapes $9 (-18 \ ^{\circ}\text{C})$ CA 6.1/06High acid content </td <td>High oil content</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | High oil content           |                       |                      |                                         |
| High starch contentPotato tubers $3.4 (-18 °C)$ CA $6.1/04 (3.4 months was the longest storage period)High starch contentSugar beet roots9 (-18 °C)CA 6.1/11High acid contentGrapes9 (-18 °C)CA 6.1/11M14R, M15RHigh water contentOnion bulbs12 (-18 °C)CA 6.1/10High oil contentRape seeds9 (-18 °C)CA 6.1/10High starch contentSugar beet root12 (-18 °C)CA 6.1/10High starch contentSugar beet root12 (-18 °C)CA 6.1/10High acid contentGrapes9 (-18 °C)CA 6.1/10High acid contentGrapes9 (-18 °C)CA 6.1/10High water contentGrapes9 (-18 °C)CA 6.1/00High water contentSugar beet leaves9 (-18 °C)CA 6.1/00High oil contentRape seeds9 (-18 °C)CA 6.1/06High starch contentPotato tubers9 (-18 °C)CA 6.1/06High starch contentGrapes9 (-18 °C)CA 6.1/06High acid contentPotato tubers9 (-18 °C)CA 6.1/06High protein content/dryPeas (dry seeds)9 (-18 °C)CA 6.1/06High acid contentGrapes9 (-18 °C)CA 6.1/06High acid contentGrapes$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |                       |                      |                                         |
| High starch contentstorage period)Sugar beet roots $9(-18\ ^\circ\text{C})$ CA $6.1/11$ High acid contentGrapes $9(-18\ ^\circ\text{C})$ CA $6.1/11$ <b>M14R, M15R</b> $M14R, M15R$ High water contentOnion bulbs $12(-18\ ^\circ\text{C})$ CA $6.1/10$ High oil contentRape seeds $9(-18\ ^\circ\text{C})$ CA $6.1/10$ High starch contentSugar beet root $12(-18\ ^\circ\text{C})$ CA $6.1/10$ High starch contentSugar beet root $12(-18\ ^\circ\text{C})$ CA $6.1/10$ High protein content/dryPea seeds (dry) $12(-18\ ^\circ\text{C})$ CA $6.1/10$ High acid contentGrapes $9(-18\ ^\circ\text{C})$ CA $6.1/10$ <b>M16R, M17R</b> High vater contentSugar beet leaves $9(-18\ ^\circ\text{C})$ CA $6.1/06$ High starch contentPotato tubers $9(-18\ ^\circ\text{C})$ CA $6.1/06$ High protein content/dryPeas (dry seeds) $9(-18\ ^\circ\text{C})$ CA $6.1/06$ High protein contentGrapes $9(-18\ ^\circ\text{C})$ CA $6.1/06$ High starch contentPotato tubers $9(-18\ ^\circ\text{C})$ CA $6.1/06$ High protein content/dryPeas (dry seeds) $9(-18\ ^\circ\text{C})$ CA $6.1/06$ High acid contentGrapes $9(-18\ ^\circ\text{C})$ CA $6.1/06$ </td <td>Then protoni content dry</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Then protoni content dry   |                       |                      |                                         |
| Sugar beet roots9 (-18 °C)CA 6.1/11High acid contentGrapes9 (-18 °C)CA 6.1/11M14R, M15RHigh water contentOnion bulbs12 (-18 °C)CA 6.1/10High oil contentRape seeds9 (-18 °C)CA 6.1/10High starch contentSugar beet root12 (-18 °C)CA 6.1/10High starch contentSugar beet root12 (-18 °C)CA 6.1/10High acid contentGrapes9 (-18 °C)CA 6.1/10High acid contentGrapes9 (-18 °C)CA 6.1/10M16R, M17RHigh vater contentSugar beet leaves9 (-18 °C)CA 6.1/06High starch contentPotato tubers9 (-18 °C)CA 6.1/06High starch contentGrapes9 (-18 °C)CA 6.1/06High acid contentRape seeds9 (-18 °C)CA 6.1/06High starch contentPotato tubers9 (-18 °C)CA 6.1/06High protein content/dryPeas (dry seeds)9 (-18 °C)CA 6.1/06High acid contentGrapes9 (-18 °C)CA 6.1/06High acid content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | High starch content        | i otato tabelis       | 5.4 (10 0)           |                                         |
| High acid contentGrapes9 (-18 °C)CA 6.1/11M14R, M15RHigh water contentOnion bulbs12 (-18 °C)CA 6.1/10High oil contentRape seeds9 (-18 °C)CA 6.1/10High starch contentSugar beet root12 (-18 °C)CA 6.1/10High protein content/dryPea seeds (dry)12 (-18 °C)CA 6.1/10High acid contentGrapes9 (-18 °C)CA 6.1/10M16R, M17RHigh water contentSugar beet leaves9 (-18 °C)CA 6.1/09High oil contentRape seeds9 (-18 °C)CA 6.1/06High starch contentPotato tubers9 (-18 °C)CA 6.1/06High protein content/dryPeas (dry seeds)9 (-18 °C)CA 6.1/06High acid contentGrapes9 (-18 °C)CA 6.1/06High starch contentGrapes9 (-18 °C)CA 6.1/06High protein content/dryPeas (dry seeds)9 (-18 °C)CA 6.1/06High acid contentGrapes9 (-18 °C)CA 6.1/06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | righ staten content        | Sugar beet roots      | 9 (-18 °C)           |                                         |
| M14R, M15RHigh water contentOnion bulbs12 (-18 °C)CA 6.1/10High oil contentRape seeds9 (-18 °C)CA 6.1/10High starch contentSugar beet root12 (-18 °C)CA 6.1/10High protein content/dryPea seeds (dry)12 (-18 °C)CA 6.1/10High acid contentGrapes9 (-18 °C)CA 6.1/10M16R, M17RHigh water contentSugar beet leaves9 (-18 °C)CA 6.1/09High oil contentRape seeds9 (-18 °C)CA 6.1/06High starch contentPotato tubers9 (-18 °C)CA 6.1/06High protein content/dryPeas (dry seeds)9 (-18 °C)CA 6.1/06High protein contentGrapes9 (-18 °C)CA 6.1/06High starch contentGrapes9 (-18 °C)CA 6.1/06High protein content/dryPeas (dry seeds)9 (-18 °C)CA 6.1/06High acid contentGrapes9 (-18 °C)CA 6.1/06High acid contentGrapes9 (-18 °C)CA 6.1/06High acid contentGrapes9 (-18 °C)CA 6.1/06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | High acid content          |                       |                      |                                         |
| High water contentOnion bulbs12 (-18 °C)CA 6.1/10High oil contentRape seeds9 (-18 °C)CA 6.1/10High starch contentSugar beet root12 (-18 °C)CA 6.1/10High protein content/dryPea seeds (dry)12 (-18 °C)CA 6.1/10High acid contentGrapes9 (-18 °C)CA 6.1/10M16R, M17RHigh water contentSugar beet leaves9 (-18 °C)CA 6.1/09High oil contentRape seeds9 (-18 °C)CA 6.1/06High starch contentPotato tubers9 (-18 °C)CA 6.1/06High protein content/dryPeas (dry seeds)9 (-18 °C)CA 6.1/06High acid contentGrapes9 (-18 °C)CA 6.1/06High starch contentGrapes9 (-18 °C)CA 6.1/06High protein content/dryPeas (dry seeds)9 (-18 °C)CA 6.1/06High acid contentGrapes9 (-18 °C)CA 6.1/06M18R, M19R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            | 1 <b>F</b>            | - ()                 |                                         |
| High oil contentRape seeds9 (-18 °C)CA 6.1/10High starch contentSugar beet root12 (-18 °C)CA 6.1/10High protein content/dryPea seeds (dry)12 (-18 °C)CA 6.1/10High acid contentGrapes9 (-18 °C)CA 6.1/10M16R, M17RHigh water contentSugar beet leaves9 (-18 °C)CA 6.1/09High oil contentRape seeds9 (-18 °C)CA 6.1/06High starch contentPotato tubers9 (-18 °C)CA 6.1/06High protein content/dryPeas (dry seeds)9 (-18 °C)CA 6.1/06High acid contentGrapes9 (-18 °C)CA 6.1/06High acid contentGrapes9 (-18 °C)CA 6.1/06High starch contentPotato tubers9 (-18 °C)CA 6.1/06High acid contentGrapes9 (-18 °C)CA 6.1/06High acid contentGrapes9 (-18 °C)CA 6.1/06M18R, M19REEE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            | Onion bulbs           | 12 (-18 °C)          | CA 6.1/10                               |
| High starch contentSugar beet root12 (-18 °C)CA 6.1/10High protein content/dryPea seeds (dry)12 (-18 °C)CA 6.1/10High acid contentGrapes9 (-18 °C)CA 6.1/10M16R, M17RHigh water contentSugar beet leaves9 (-18 °C)CA 6.1/09High oil contentRape seeds9 (-18 °C)CA 6.1/06High starch contentPotato tubers9 (-18 °C)CA 6.1/06High protein content/dryPeas (dry seeds)9 (-18 °C)CA 6.1/06High acid contentGrapes9 (-18 °C)CA 6.1/06High acid contentGrapes9 (-18 °C)CA 6.1/06M18R, M19R </td <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                       |                      |                                         |
| High protein content/dryPea seeds (dry)12 (-18 °C)CA 6.1/10High acid contentGrapes9 (-18 °C)CA 6.1/10M16R, M17RHigh water contentSugar beet leaves9 (-18 °C)CA 6.1/09High oil contentRape seeds9 (-18 °C)CA 6.1/06High starch contentPotato tubers9 (-18 °C)CA 6.1/06High protein content/dryPeas (dry seeds)9 (-18 °C)CA 6.1/06High acid contentGrapes9 (-18 °C)CA 6.1/06High acid contentGrapes9 (-18 °C)CA 6.1/06M18R, M19R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                       |                      |                                         |
| High acid contentGrapes9 (-18 °C)CA 6.1/10M16R, M17RHigh water contentSugar beet leaves9 (-18 °C)CA 6.1/09High oil contentRape seeds9 (-18 °C)CA 6.1/06High starch contentPotato tubers9 (-18 °C)CA 6.1/06High protein content/dryPeas (dry seeds)9 (-18 °C)CA 6.1/06High acid contentGrapes9 (-18 °C)CA 6.1/06M18R, M19R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                       |                      |                                         |
| M16R, M17RHigh water contentSugar beet leaves9 (-18 °C)CA 6.1/09High oil contentRape seeds9 (-18 °C)CA 6.1/06High starch contentPotato tubers9 (-18 °C)CA 6.1/06High protein content/dryPeas (dry seeds)9 (-18 °C)CA 6.1/06High acid contentGrapes9 (-18 °C)CA 6.1/06M18R, M19R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                       |                      |                                         |
| High water contentSugar beet leaves9 (-18 °C)CA 6.1/09High oil contentRape seeds9 (-18 °C)CA 6.1/06High starch contentPotato tubers9 (-18 °C)CA 6.1/06High protein content/dryPeas (dry seeds)9 (-18 °C)CA 6.1/06High acid contentGrapes9 (-18 °C)CA 6.1/06M18R, M19REEE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |                       |                      | •                                       |
| High oil contentRape seeds9 (-18 °C)CA 6.1/06High starch contentPotato tubers9 (-18 °C)CA 6.1/06High protein content/dryPeas (dry seeds)9 (-18 °C)CA 6.1/06High acid contentGrapes9 (-18 °C)CA 6.1/06M18R, M19R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | Sugar beet leaves     | 9 (-18 °C)           | CA 6.1/09                               |
| High starch contentPotato tubers9 (-18 °C)CA 6.1/06High protein content/dryPeas (dry seeds)9 (-18 °C)CA 6.1/06High acid contentGrapes9 (-18 °C)CA 6.1/06M18R, M19R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |                       |                      |                                         |
| High protein content/dryPeas (dry seeds)9 (-18 °C)CA 6.1/06High acid contentGrapes9 (-18 °C)CA 6.1/06M18R, M19R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                       |                      |                                         |
| High acid content     Grapes     9 (-18 °C)     CA 6.1/06       M18R, M19R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                       |                      |                                         |
| M18R, M19R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |                       |                      |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                       |                      |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | High water content         | Sugar beet leaves     | 9 (-18 °C)           | CA 6.1/09                               |

| Storage stability<br>commodity category | Matrix/commodity | Demonstrated storage<br>duration (months) | Reference/comment |
|-----------------------------------------|------------------|-------------------------------------------|-------------------|
| High oil content                        | Rape seeds       | 9 (-18 °C)                                | CA 6.1/06         |
| High starch content                     | Potato tubers    | 9 (-18 °C)                                | CA 6.1/06         |
| High protein content/dry                | Peas (dry seeds) | 9 (-18 °C)                                | CA 6.1/06         |
| High acid content                       | Grapes           | 9 (-18 °C)                                | CA 6.1/06         |
| M14A, M15A (3-CA gluco                  | side)            |                                           |                   |
| High water content                      | Alfalfa          | 9 (-18 °C)                                | CA 6.1/08         |
| High oil content                        | Rape seeds       | 6 (-18 °C)                                | CA 6.1/08         |
| High starch content                     | Sugar beet root  | 3 (-18 °C)                                | CA 6.1/08         |
| High protein content/dry                | Peas dry seeds   | 3 (-18 °C)                                | CA 6.1/08         |
| High acid content                       | Grapes           | 15 (-18 °C)                               | CA 6.1/08         |
| No defined group                        | Pea straw        | 9 (-18 °C)                                | CA 6.1/08         |

Studies in grey were considered not acceptable

n.d. = not determined

In plant commodities, parent clethodim was demonstrated to be stable in high-oil content commodities for up to 6 months and in high-protein content/dry commodities for at least 9 months. Clethodim was shown to be unstable in high-water, high-starch and high-acid commodities and was quickly (in less than one month) partially or completely degraded into clethodim sulfoxide. Therefore, it is reasonable to demonstrate the stability of clethodim as sum of clethodim and clethodim sulfoxide expressed as clethodim which is covered by the proposed residue definitions for monitoring and risk assessment.

Clethodim (determined as sum of clethodim, clethodim sulfoxide and clethodim sulfone expressed as clethodim) was demonstrated to be stable in high-water content commodities from 2 up to 9 months (2 months in alfalfa, 6 months in sugar beet leaves, and 9 months in onion bulbs) and for up to 9 months in the other commodity groups (high oil-, high starch-, high protein and high acid content).

Clethodim sulfoxide is stable in high-starch content, high-acid content, high-protein content (dry) and high-oil content commodities for at least 9 months, and in high-water content commodities for at least 6 months when stored frozen at -18°C or below.

Clethodim sulfone is stable in high-starch content, high-acid content, and high-protein content (dry) for at least 9 months, in high-oil content for at least 6.5 months, and in high-water content commodities for at least 3 months when stored frozen at -18°C or below.

M14R is demonstrated to be stable in commodities of high-oil content and high acid content for at least 9 months and in high-water content, high-protein content and high-starch content commodities for at least 12 months, when stored frozen at -18°C or below.

The metabolites M17R and M18R are stable in high-water content, high-starch content, high-acid content, highprotein content (dry) and high-oil content commodities for at least 9 months when stored frozen at -18°C or below.

The metabolite M14A/M15A (3-Chloroallyl alcohol glucoside) was shown to be stable in high-acid content commodities for at least 15 months, in high-water content commodities for up to 9 months, in high-oil content commodities for up to 6 months and in high-protein and high starch content commodities for up to 3 months,. In pea straw, 3-chloroallyl alcohol glucoside was found to be stable for at least 9 months when stored frozen at -18°C or below.

| Storage stability     | Matrix/commodity | Demonstrated storage | Reference/comment               |
|-----------------------|------------------|----------------------|---------------------------------|
| commodity category    |                  | duration (months)    |                                 |
| Clethodim             |                  | ·                    | ·                               |
| Ruminant              | Milk             | 5 (-20 °C)           | CA 6.1/12 (Weissenburger, 1989) |
|                       | Fat              | 5 (-20 °C)           | CA 6.1/12 (Weissenburger, 1989) |
|                       | Kidney           | 5 (-20 °C)           | CA 6.1/12 (Weissenburger, 1989) |
|                       | Liver            | 5 (-20 °C)           | CA 6.1/12 (Weissenburger, 1989) |
|                       | Muscle           | 5 (-20 °C)           | CA 6.1/12 (Weissenburger, 1989) |
|                       | Egg              | 2 (-18 °C)           | CA 6.1/13 (Lear, 1989)          |
|                       | Fat              | 1.4 (-18 °C)         | CA 6.1/13 (Lear, 1989)          |
| Poultry               | Gizzard          | 1.4 (-18 °C)         | CA 6.1/13 (Lear, 1989)          |
|                       | Liver            | 1.4 (-18 °C)         | CA 6.1/13 (Lear, 1989)          |
|                       | Muscle           | 1.4 (-18 °C)         | CA 6.1/13 (Lear, 1989)          |
| S-Methyl clethodim su | lfoxide          |                      |                                 |
|                       | Milk             | 5 (-20 °C)           | CA 6.1/12 (Weissenburger, 1989) |
|                       | Fat              | 5 (-20 °C)           | CA 6.1/12 (Weissenburger, 1989) |
| Ruminant              | Kidney           | 5 (-20 °C)           | CA 6.1/12 (Weissenburger, 1989) |
|                       | Liver            | 5 (-20 °C)           | CA 6.1/12 (Weissenburger, 1989) |
|                       | Muscle           | 5 (-20 °C)           | CA 6.1/12 (Weissenburger, 1989) |
|                       | Egg              | 2 (-18 °C)           | CA 6.1/13 (Lear, 1989)          |
|                       | Fat              | 1.4 (-18 °C)         | CA 6.1/13 (Lear, 1989)          |
| Poultry               | Gizzard          | 1.4 (-18 °C)         | CA 6.1/13 (Lear, 1989)          |
|                       | Liver            | 1.4 (-18 °C)         | CA 6.1/13 (Lear, 1989)          |
|                       | Muscle           | 1.4 (-18 °C)         | CA 6.1/13 (Lear, 1989)          |
| 5-hydroxy clethodim s | ulfone           | •                    | ·                               |
|                       | Milk             | 5 (-20 °C)           | CA 6.1/12 (Weissenburger, 1989) |
|                       | Fat              | 5 (-20 °C)           | CA 6.1/12 (Weissenburger, 1989) |
| Ruminant              | Kidney           | 5 (-20 °C)           | CA 6.1/12 (Weissenburger, 1989) |
|                       | Liver            | 5 (-20 °C)           | CA 6.1/12 (Weissenburger, 1989) |
|                       | Muscle           | 5 (-20 °C)           | CA 6.1/12 (Weissenburger, 1989) |
|                       | Egg              | 2 (-18 °C)           | CA 6.1/13 (Lear, 1989)          |
|                       | Fat              | 1.4 (-18 °C)         | CA 6.1/13 (Lear, 1989)          |
| Poultry               | Gizzard          | 1.4 (-18 °C)         | CA 6.1/13 (Lear, 1989)          |
|                       | Liver            | 1.4 (-18 °C)         | CA 6.1/13 (Lear, 1989)          |
|                       | Muscle           | 0.7 (-18 °C)         | CA 6.1/13 (Lear, 1989)          |

Table 2.7.1-2. Overview of storage stability of clethodim and its metabolites in different animal commodities

Studies in grey were considered not acceptable

Neither of the two storage stability studies of residues in animal commodities were considered acceptable by the RMS, due to deviations from the guideline and that the analytical methods used were not acceptably validated. Thus, it is the opinion of the RMS that the storage stability of the residues could not be demonstrated. Nevertheless, the results indicate that residues were shown to be stable under frozen conditions (<-18°C) for at least 1.4 months in poultry tissue (except 5-hydroxy clethodim sulfone in muscle where a decline below 70% was observed, and therefore it was stable only for 22 days), 2 months in egg and 5 months in ruminant commodities and milk. The applicant stated that no new study is submitted or required to address the storage stability of clethodim and its metabolites in animal commodities. The RMS agrees with regards to the representative uses, since no residues above the LOQ are expected in animal commodities. However, when considering other uses leading to quantifiable residues in animal commodities, the storage stability would need be demonstrated.

There was no information regarding storage stability of the residues in honey, and this is not considered necessary for the representative crops.

## 2.7.2 Summary of metabolism, distribution and expression of residues in plants, poultry, lactating ruminants, pigs and fish

## 2.7.2.1 Plants

Metabolism of clethodim was investigated in four crop groups: root and tuber vegetables (carrot), oilseed/pulses (cotton and soybean), leafy vegetables (spinach) and fruit crops (tomato). It was observed that no single pathway is expected to be exclusive for a crop group. However, it is the RMS opinion that the two old studies (from 1988) with carrots, cotton and soybean have several deficiencies and can only be considered supportive. There are other studies with root and tuber vegetables (carrots), but there are no acceptable studies in pulses and oilseeds. Thus these results are regarded as indicative only, but still the representative uses on sugar beet and onion are sufficiently covered by the available metabolism studies.

| Plant category      | Crop         | Application            | Application rate | Reference/comment                  |
|---------------------|--------------|------------------------|------------------|------------------------------------|
| Fruit               | Tomato       | Spraying/Outdoor       | 375 g as/ha      | 6.2.1/08 (Osterman, Kandala, 2022) |
|                     | Carrot       | Foliar spraying/Indoor | 2x280 g as/ha    | 6.2.1/01 (Chen, 1988a)             |
|                     |              |                        | (560 g in total) |                                    |
| Root crops          | Carrot       | Spraying/Indoor        | 2x280 g as/ha    | 6.2.1/02 (Chen, 1988b)             |
| _                   |              |                        | (560 g in total) |                                    |
|                     | Carrot       | Spraying/Outdoor       | 624-638 g as/ha  | 6.2.1/03-05 (Dohn et al, 2009)     |
| Leafy crops         | Spinach      | Spraying/Outdoor       | 539-569 g as/ha  | 6.2.1/06 (Dohn et al, 2012)        |
|                     | Soybean      | Foliar spraying/Indoor | 2x280 g as/ha    | 6.2.1/01 (Chen, 1988a)             |
|                     |              |                        | (560 g in total) |                                    |
|                     | Soybean      | Spraying/Indoor        | 2x280 g as/ha    | 6.2.1/02 (Chen, 1988b)             |
|                     |              |                        | (560 g in total) |                                    |
| Pulses and oilseeds | Cotton seeds | Foliar spraying/Indoor | 2x280 g as/ha    | 6.2.1/01 (Chen, 1988a)             |
|                     |              |                        | (560 g in total) |                                    |
|                     | Cotton seeds | Spraying/Indoor        | 2x280 g as/ha    | 6.2.1/02 (Chen, 1988b)             |
|                     |              |                        | (560 g in total) |                                    |

Table 2.7.2.1-1. Overview of metabolism studies of clethodim in plants

Grey text indicate that the study is considered supportive only

In all four groups clethodim is extensively metabolised and not detected or present at low amounts in mature crops. The one major metabolic pathway, observed in all groups, is sulfoxidation to clethodim sulfoxide followed by further oxidation to clethodim sulfone. Clethodim sulfoxide and clethodim sulfone conjugates were also identified as major or minor metabolites in all crops except in tomato, where these conjugates were not observed. Another pathway is elimination of chloroallyl moiety, leading to the formation of clethodim imine and 3-chloroallyl metabolites, including 3-chloroallyl alcohol glucoside (M14A/M15A).

In the metabolism studies in carrot and cotton and soybean, which were performed under indoor conditions (CA 6.2.1/01-02), no clethodim was detected in any of the plant parts except in carrot roots (0.8-1.1% of TRR; 0.003-0.007 mg/kg). Major metabolites (>10% of TRR) were clethodim sulfoxide (in carrot leaves, carrot roots and soybeans), imine sulfoxide (in soybean leaves, in carrot leaves and in cotton leaves), 5-hydroxy sulfone (in soybeans and carrot roots) and conjugates of clethodim sulfoxide (in soybean beans and leaves). Other identified metabolites are clethodim sulfone, imine sulfone, 5-hydroxy sulfoxide and aromatic sulfone. No ring-opened metabolites M14R/M15R, M16R/M17R and M18R/M19R have been identified. It is suggested that these metabolites are formed as a result of photolytic reaction, while the studies were performed indoor, where access to light can be a limitation. However, since clethodim imine metabolites M14R/M15R, M16R/M17R and M18R/M15R, M16R/M15R, M16R/M17R and M18R/M15R, M16R/M15R, M16R/M15R

photolysis under natural daylight conditions. M17R is formed from clethodim by cleaving the hydroxycyclohexenone ring, and further degraded to M14R by hydroxylation and M18R by sulfoxidation.

In carrot roots grown outdoors (CA 6.2.1/03), clethodim was detected at very small amounts. Clethodim sulfoxide and clethodim sulfone were present at significant levels (0.029-0.032 mg/kg, 18-24% TRR and 0.011-0.013 mg/kg, 7.0-9.9% TRR) in mature roots. The most abundant other components observed were M17R (13% TRR), M3A ((11% TRR) and M18R 8.8% TRR). The absolute concentration of M3A, M17R and M18R had decreased to 0.02 mg/kg in mature carrot.

Spinach plants were grown under outdoor conditions and a similar metabolic profile as the outdoor study on carrot was found. Metabolites occurring at significant levels were M14R (0.476 mg/kg, 14.2% TRR), M16R (1.16 mg/kg, 34.6% TRR), M19R (0.418 mg/kg, 12.5% TRR) (equivalent to M15R, M17R and M18R in carrot) and M14A (3-chloroallyl alcohol glucoside, 0.785 mg/kg, 22.7% TRR) which was the minor metabolite M15A in carrot. However, clethodim sulfoxide was only minor with levels up to 6.8% TRR. Notably, the metabolite codes are different in the outdoor studies on carrot and spinach, codes representing the same structures are displayed by EFSA (EFSA Journal 2019;17(5):5706) as M14R/M15R, M16R/M17R, M18R/M19R and M14A/M15A. For clarity these compounds are presented in the following table:

| Compound<br>identifier | Name in study/assessment report and SMILES                                                         | Structure                   | Comment                                      |
|------------------------|----------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------|
| M14R/M15R              | Hydroxy 3-[(2-Ethylsulfinyl) propyl]-<br>pentanedioic acid<br>CC(S(CC)=O)CC(C(O)C(O)=O)CC(O)=<br>O | О≈б СООН                    | M15R in<br>carrot<br>M14R in<br>spinach      |
| M16R/M17R              | 3-[(2-Ethylsulfinyl) propyl]-pentanedioic<br>acid<br>CC(S(CC)=O)CC(CC(O)=O)CC(O)=O                 | о≈ѕсоон                     | M17R in<br>carrot<br>M16R/M17R<br>in spinach |
| M18R/M19R              | 3-[(2-Ethylsulfonyl) propyl]-<br>pentanedioic acid<br>CC(S(CC)(=O)=O)CC(CC(O)=O)CC(O)<br>=O        | O<br>S<br>S<br>COOH<br>COOH | M18R in<br>carrot<br>M19R in<br>spinach      |
| M14A/M15A              | 3-Chloroallyl alcohol glucoside<br>Cl/C=C/CO[C@H](O[C@@H]1CO)[C<br>@H](O)[C@H]([C@@H]1O)O          | Cl Gluc                     | M15A in<br>carrot<br>M14A/M15A<br>in spinach |

At this point it is important to note that metabolite M19R (spinach) was wrongly attributed to a metabolite where "the phenyl-ring was intact" in the framework of the EFSA review of all existing MRLs for clethodim (EFSA Journal 2019;17(5):5706), and is comparable, but not identical to the metabolite M19R significant only in carrot foliage.

In the new metabolism study, conducted on tomatoes grown under outdoor conditions (CA 6.2.1/08), the major metabolic pathways of clethodim are oxidation at the ethyl-thio-group, elimination of the chloroallyl side chain and oxidative cleavage of the cyclohexanedione ring. Clethodim sulfone and clethodim sulfoxide lose the chloroallyl portion of the molecule and form corresponding oxazoles and imines. Major metabolites were clethodim sulfone, clethodim sulfoxide, clethodim oxazole sulfoxide, M14R/M15R (hydroxy pentanedioic acid) and its glucoside. A highly polar fraction RT3/RT4 was characterised by TLC and found to contain significant portions of malic acid and citric acid. Although, a direct comparison with the also polar fraction M3/4A found in the carrot and spinach

metabolism studies could not be drawn, it is highly likely that these fractions are identical and are composed of compounds formed in the Krebs cycle, which includes small organic acids such as malic acid and citric acid, and both polar fractions are therefore attributable to complete breakdown of the allyl moiety of clethodim and natural incorporation. This fraction is therefore considered not relevant for risk assessment.

The results from the outdoor studies in carrot and spinach and the new tomato study indicated that the clethodim ring can be opened by a photolysis reaction seen in the outdoor trials (based on formed imine metabolites) to form the pentanedioic acids M14R/M15R, M16R/M17R and M18R/M19R. These metabolites were not identified in the older metabolism studies on carrot, cotton and soybean which were performed indoor. On the other hand, the presence of clethodim imine metabolites were reported in the older studies and therefore cleavage of the chloroallyl group seems to have occurred and potentially allyl-metabolites such as M3/4A and M14A/M15A could also have been formed in addition to metabolites M14R/M15R, M16R/M17R and M18R/M19R.

Although the clethodim oxazole and clethodim imine moieties were also formed in tomato grown outdoors at low levels, 3-chloroallyl alcohol (free or conjugated) was not detected, neither in the fruit nor in the leaves, which is consistent with the findings in carrots, cotton and soybean grown indoors. However, 3-chloroallyl alcohol glucoside (M14A/M15A) was found at low levels in carrot roots (0.004 mg/kg; 3.1% TRR) and carrot foliage (0.027 mg/kg; 3.6% TRR) grown outdoors and at significant levels in spinach grown outdoors (0.785-1.089 mg/kg; 21.1-22.7% TRR).

Although the same metabolites were potentially identified in metabolism studies in carrot, spinach, and tomato, there were clear quantitative differences, especially with regards to the amount of M14A/M15A (3-chloroallyl alcohol glucoside) in spinach (leafy crops) as mentioned above. The proposed metabolic pathway in carrots grown outdoors (CA 6.2.1/03) is presented in figure 2.7.2.1-1 as an example of the more complex metabolism, including photolytic degradation.

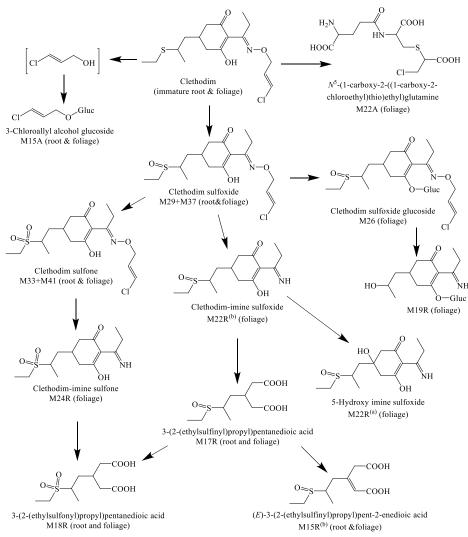



Figure 2.7.2.1-1: Proposed metabolic pathway for clethodim in carrot grown outdoors

## 2.7.2.2 Animals

The livestock metabolism of clethodim was investigated in poultry (laying hen) and in lactating ruminants (goat) with both clethodim and with M17R as a representative of pentanedioic acid like metabolites.

The RMS considered that the hen study (Lee, 1988, 6.2.2/01) had too many deviations from the current guideline, and the results can therefore only be regarded as supportive.

After five daily doses of [ring-4,6-<sup>14</sup>C]-clethodim at 3.5 mg/day (27 mg/kg diet, 2.1 mg/kg bw/day), 78% of the total dose was recovered in excreta, 1.9% in tissues and 0.1% in eggs.

Radioactive residues in tissues were highest in kidney (1.2 mg/kg) and liver (0.7 mg/kg) and in the GI tract (2.8 mg/kg). Residue levels in skin, heart, fat, reproductive organs, gizzard, thigh muscle and breast muscle were all within the range of 0.1-0.3 mg/kg. Residue levels in eggs were less than 0.22 mg/kg (maximum at day 4 in egg white). Radioactivity levels in egg yolk and egg white did not reach a plateau within the 4-day study period. Clethodim was detected in all tissues and egg white/yolk at levels  $\leq 0.03$  mg/kg and at 0.20 mg/kg in fat. Major metabolites were identified as clethodim sulfoxide (15 - 82% of TRR; 0.01-0.51 mg/kg) and clethodim sulfone (10

- 38% of TRR; <0.01-0.33 mg/kg). No other metabolites were identified. Results for a higher dose indicated an increase in residue levels in tissues and eggs roughly proportional to the dose.

The first goat study (**1998**, 6.2.3/01) was considered supportive, and the results are therefore regarded as indicative. Following three daily administrations of [propyl-1-<sup>14</sup>C]-clethodim at 42.6 mg/day (three capsules/day containing 14.2 mg, one capsule on the fourth day), equivalent to 24 mg/kg diet as received and 1.2 mg/kg bw/day (55N for cattle), 56% of the total dose was excreted in urine, 34% in the faeces, 0.14% in milk and 0.6% in tissues.

Radioactive residues in tissues were highest in liver (0.41 mg/kg) and kidney (0.38 mg/kg). Blood contained 0.17 mg/kg. Residue levels in heart, muscle and fat were all within the range of 0.033-0.079 mg/kg. Residue levels in milk did not exceed 0.049 mg/kg, but the RMS considers that it cannot be concluded that a plateau was reached due to the short duration of the study. Clethodim was detected at high levels in blood, liver and day 2 urine and traces were detected in kidney, subcutaneous fat, day 1, 3 and 4 urine, and milk sample at sacrifice. The major metabolites were clethodim sulfoxide, S-methyl sulfoxide and S-methyl (urine only). Other observed minor metabolites (<5% TRR) were clethodim sulfone (blood, liver and urine), imine sulfoxide (blood, liver, kidney, subcutaneous fart, urine and faeces), 5-hydroxy sulfone (blood and faeces) and 5-hydroxy sulfoxide (urine and faeces). Radioactivity in the unextractable milk fraction was shown to be incorporated into lactose.

The metabolites S-methyl sulfoxide and S-methyl are directly formed from clethodim. Since no clethodim is expected in animal feed, these metabolites are also not expected in edible animal products.

In the Article 12 MRL review, EFSA (2019) highlighted that: "During the peer review, no residue definition for animal commodities was proposed because the animal dietary burden was below the trigger value. In the present review, based on the two metabolism studies [Rose, Suzuki, 1988 and Lee, 1988] the following residue definition for monitoring and risk assessment is tentatively proposed: sum of clethodim, clethodim sulfoxide and clethodim sulfone, expressed as clethodim. Since additional metabolites in plant commodities were considered relevant additional studies are needed [...]. It is noted that in the available metabolism study livestock was fed with the parent compound only, which according to the residue trials, is not expected to be present in crops fed to livestock. Furthermore, no studies investigating the livestock metabolism of metabolites proposed for inclusion in the residue definitions for risk assessment are available. Therefore, the proposed residue definition for livestock should be considered tentative only, and additional livestock metabolism studies investigating the relevant metabolites found in plant, are still required." The residue definition for risk assessment RA1 contains two major groups of metabolites:

- Clethodim like metabolites comprising clethodim, clethodim sulfoxide and clethodim sulfone. These
  metabolites are covered by the existing livestock metabolism studies since clethodim is easily converted
  into clethodim sulfoxide and clethodim sulfone as demonstrated in the available animal metabolism studies.
- 2) Pentanedioic acid like metabolites comprising M14R/M15R, M16R/M17R and M18R/M19R. These metabolites are plant unique metabolites and a new animal metabolism study on lactating goats was provided using [methyl-<sup>14</sup>C]-M17R as a representative compound of this group of metabolites.

In the new study (2022, R00239, 6.2.3/02), a single goat was orally dosed with [methyl-<sup>14</sup>C]-M17R (0.415 mg/kg bw/day, 32N for cattle) once daily for five consecutive days.

M17R and its metabolites were rapidly excreted by lactating goats. The majority of the administered dose (AD) (69.9%) was recovered in the urine, with an additional 6.7% of the AD in the faeces. Milk contained a total of 0.012% of the AD reaching a maximal level (0.0017 mg/kg M17R equivalents) after 3 days of dosing, and plateaued at about 0.0012 mg/kg for the remainder of the dosing period. The distribution of radioactive residues in the skim milk and cream fractions was approximately equal with 44% and 56% distribution in the skim milk and cream, respectively. Only 0.057% of the AD was recovered in the edible tissues. The overall recovery of the administered dose was 87.7%.

The highest residue levels in tissues were found in kidney (0.207 mg/kg) and liver (0.016 mg/kg). The residues in all types of muscle and fat were <0.01 mg/kg M17R equivalents and therefore not further analysed.

Residues in liver and kidney were identified as the major compounds parent M17R and deoxy-M17R. Only kidney contained an unknown metabolite at a low level (<10% TRR). Parent M17R was found at 71% TRR (0.013 mg/kg) in liver and 26% TRR (0.055 mg/kg) in kidney, deoxy-M17R accounted for 19% TRR (0.003 mg/kg) in liver and 68% TRR (0.143 mg/kg) in kidney. The residue level in the PES was 9.9% TRR (0.0017 mg/kg) and 2.9% TRR (0.006 mg/kg) for liver and kidney, respectively.

It was concluded that M17R primarily metabolises through the reduction of the sulfoxide to form the sulfide metabolite (deoxy-M17R). The study is considered sufficient to establish the metabolic pathway and the fate of residues after uptake of M17R by ruminants, and could be extrapolated to the other pentanedioic acid metabolites.

#### 2.7.3 Definition of the residue

The current residue definition for monitoring (Regulation (EU) No 839/2008) is "Clethodim (sum of Sethoxydim and Clethodim including degradation products calculated as Sethoxydim)". Since sethoxydim is a standalone active substance that is no longer approved in Europe, the residue definition for clethodim is proposed to be changed.

The available crop metabolism studies indicate that clethodim is extensively metabolised by sulfoxidation into clethodim sulfoxide followed by further oxidation to clethodim sulfone. Metabolism studies in plants conducted under outdoor conditions indicate a photolytic opening of the clethodim ring to form the pentanedioic acid metabolites M14R (M15R in carrot), M16R/M17R and M19R (M18R in carrot) as major metabolites.

Another pathway is elimination of chloroallyl moiety, leading to the formation of clethodim imine and 3-chloroallyl metabolites, including 3-chloroallyl alcohol glucoside (M14A/M15A), which is mainly formed in leafy crops (spinach). This metabolite was not detected in the GAP compliant residue trials with the representative crops. 3-chloroallyl alcohol was also shown to be formed by complete degradation of clethodim sulfone in high temperature hydrolysis (CA 6.5.1/03).

It has previously been concluded that clethodim sulfoxide and clethodim sulfone are sufficient marker components for monitoring residues of clethodim.

Based on the current assessment, the general toxicity of the metabolites clethodim sulfoxide, M14R/M15R, M16R/M17R and M18R/M19R is covered by the parent clethodim. Regarding general toxicity for the assessment of clethodime sulfone, the RMS considers that it cannot be concluded that this metabolite is less toxic than the parent substance based on the available data (see 2.6.8.1.4). The current assessment of the metabolite 3-Chloroallyl alcohol

(the aglycon of M14A/M15A) found that it is not genotoxic. However, based on toxicity data from the DAR of 1,3dichloropropene the systemic toxicity of M14A/M15A is not the same as for the parent clethodim and specific toxicological reference values are proposed (see 2.6.8.1.9). Thus, it is considered that it is necessary to have an individual residue definition for risk assessment for the metabolite M14A/M15A (3-chloroallyl alcohol glucoside). Therefore, the following residue definitions for monitoring and risk assessment are provisionally proposed for plant commodities:

- Monitoring residue definition (plants): Sum of clethodim, clethodim sulfoxide and clethodim sulfone, expressed as clethodim;
- Risk assessment residue definition RA1 (plants): Sum of clethodim, clethodim sulfoxide, clethodim sulfone and metabolites M14R/M15R, M16R/M17R, and M18R/M19R, expressed as clethodim;
- Risk assessment residue definition RA2 (plants): M14A/M15A

However, these proposed residue definitions are pending the conclusion of the toxicological assessment of clethodim sulfone. If it is concluded that its toxicity is not covered by clethodim, a separate residue definition for risk assessment may be needed. The RMS also identified a data gap for genotoxicity for clethodim sulfone (positive responses in Ames and MLA need to be followed up) and for M17R, since aneuploidy has not been properly assessed. The later data gap is also applicable for M14R/15R and M18R/M19R, since read across from M17R was proposed. The final residue definitions are therefore pending the outcome of the toxicological assessment.

For processed commodities, it could not be concluded based on available data and the representative uses if a separate residue definition would be necessary.

The metabolism in rotational crops was similar to the one in primary crops but would need to be more properly investigated in a new study. It is tentatively concluded that a separate residue definition is not necessary.

## Animal commodities

In previous EU evaluations based on the two metabolism studies in poultry and goat (CA 6.2.2/01 and CA 6.2.3/01) the following residue definition for monitoring and risk assessment was tentatively proposed: sum of clethodim, clethodim sulfoxide and clethodim sulfone, expressed as clethodim". It was also concluded that an evaluation of the livestock metabolism of the pentanedioic acid metabolites M14R/M15R, M16R/M17R and M18R/M19R was pending.

A new ruminant metabolism study on the plant unique metabolite M17R (CA 6.2.3/02) was submitted and evaluated. This study demonstrated that based on the calculated dietary burden for the pentanedioic acid metabolites at the representative uses, the residues of M14R/M15R, M16R/M17R and M18R/M19R and the proposed deoxy-M17R metabolite are predicted to be well below 0.01 mg/kg (*i.e.*, non-detectable or < LOQ) in any livestock commodity. Therefore, these metabolites are considered to be not relevant for inclusion in the residue definitions for monitoring or risk assessment purposes in animal commodities. However, if livestock is exposed to feed items with higher residue levels of pentanedioic acid metabolites, resulting in a significant dietary burden, it may be considered to include the deoxy metabolites in the residue definition. An *in silico* toxicity assessment of deoxy-M17R was submitted by the applicant at a later stage, and was evaluated. The RMS does not agree with the applicant that this

assessment indicates that this metabolite is of no toxicological concern, and a data gap for genotoxicity was identified.

The following residue definition for monitoring and risk assessment is provisionally proposed for animal commodities:

• Monitoring and risk assessment residue definition (animals): Sum of clethodim, clethodim sulfoxide and clethodim sulfone, expressed as clethodim

Similarly to the situation for plants, these proposed residue definitions are pending the conclusion of the toxicological assessment of clethodim sulfone and a final conclusion on the genotoxic potential of deoxy-M17R.

## 2.7.4 Summary of residue trials in plants and identification of critical GAP

Clethodim is a herbicide. The field of use is proposed on sugar beet, bulb onion and garlic in the EU. The representative formulated product is an emulsifiable concentrate (EC) formulation containing 120 g as/L used for the control of annual and perennial grasses. Detailed study summaries are available in Volume 3, B.7.3.1 and in Appendix G. The extraction efficiency of the analytical methods used was investigated in a separate study (6.10.2/10, Wiesner, 2020, report no S19-0144), which is evaluated and presented in B.5.2.1, and was considered sufficiently demonstrated.

## Sugar beet

#### cGAP NEU and SEU: 300 g as/ha, BBCH 12-33, PHI not applicable (spraying overall)

A total of 39 residue trials were conducted on sugar beet during 2005-2019, 21 trials in Northern Europe and 18 trials in Southern Europe. All trials conducted before 2018 were performed according to a GAP that was used for the previous active substance approval which was focused on a PHI of 56 days after application. For renewal the GAP is now focused on an application timing of BBCH 12-33. Since the previous GAP with a PHI of 56 days resulted in application to a significantly later crop growth stage, these trials are generally more critical compared to the representative uses in this submission. Additionally, not all metabolites included in the residue definition for risk assessment were analysed in these earlier studies. Therefore, studies performed before 2018 were considered supportive (except two trials in 2015, 6.3.1/09), and were not used for MRL calculation and the consumer risk assessment. In total 8 trials (harvest) performed in NEU and 9 trials (harvest) in SEU during 2018 and 2019 were available and acceptable.

Clethodim is stable for less than 1 month in samples of sugar beet tops and roots. In all the acceptable residue trials, samples were stored deep-frozen for less than 1 month (9-15 days), but due to the low stability, it could not be excluded that clethodim was degraded during this time. However, as residues were determined as total clethodim equivalents (sum of clethodim, clethodim sulfoxide, clethodim sulfone, expressed as clethodim according to the residue definition for enforcement, and including also M14R, M17R and M18R, according to the residue definition for risk assessment) and storage stability for these were at least 6 months in sugar beet tops (high water content commodities) and 9 months in sugar beet roots. Also 3-chloroallyl alcohol glucoside was shown to be stable for up to 9 months in sugar beet tops and root. Therefore, the samples were considered stored in line with the demonstrated

periods of storage stability. Extraction efficiency was also sufficiently demonstrated in a cross-validation study evaluated in B.5 (CA 6.10.2-01, Wiesner 2020).

In the trials performed during 2005-2015, with an application at a later BBCH (up to 49) and PHI of 56 days, residues of clethodim determined as total equivalents were below LOQ in the majority of samples, but were quantified in some samples of sugar beet root (up to 0.044 mg/kg) and at levels up to 0.22 mg/kg in tops with leaves. However, these data were considered supportive only, except two trials with an application at BBCH 33-35, which were acceptable.

In the trials supporting the current critical GAP, all residues in sugar beet roots according to the residue definitions for monitoring and risk assessment were below the respective LOQs of 0.005 mg/kg (clethodim, clethodim sulfoxide, clethodim sulfone), 0.01 mg/kg (M14R, M17R, M18R) and 0.05 mg/kg (3-chloroallyl alcohol glucoside). Residues of clethodim and 3-chloroallyl alcohol glucoside were also below the respective LODs (0.0015 and 0.015 mg/kg). M14R was analysed in four trials per region, which were conducted in 2019, and all residues were below the LOQ of 0.01 mg/kg, and also below the LOD (0.003 mg/kg). The results are summarised in Table 2.7.4-1.

In sugar beet leaves, total clethodim equivalents according to the proposed definition for enforcement (sum of clethodim, clethodim sulfoxide, and clethodim sulfone) was <0.014-0.036 mg/kg in NEU and <0.014-0.018 mg/kg in SEU. The residues according to the residue definition for risk assessment (sum of clethodim, clethodim sulfoxide, clethodim sulfone and metabolites M14R/M15R, M16R/M17R and M18R/M19R, expressed as clethodim) was <0.06-0.31 mg/kg in NEU and <0.06-0.21 mg/kg in SEU. The residues of M14A/M15A (3-chloroallyl alcohol glucoside) were analysed in 8 trials from NEU and 7 acceptable trials from SEU and were below the LOQ (0.05 mg/kg) and also the LOD (0.015 mg/kg).

In Northern and Southern Europe, eight and seven field trials on sugar beet, respectively, were performed in the growing seasons 2018/19 and were considered acceptable for MRL purposes and for risk assessment. All residues in sugar beet roots according to the residue definitions for monitoring and risk assessment are below the respective LOQs of 0.005 mg/kg (clethodim, clethodim sulfoxide, clethodim sulfone), 0.01 mg/kg (M14R, M17R, M18R) and 0.05 mg/kg (3-chloroallyl alcohol glucoside). Thus, since this is a <LOQ situation, the number of trials in SEU is considered sufficient, even if there is not eight acceptable trials for this major crop. M14R was analysed in four trials per region, which were conducted in 2019, and all residues were below the LOD of 0.003 mg/kg. The zero residue situation demonstrated for M14R has therefore been extended to the trials conducted during 2018 (S18-00165-01 to -08) to give eight trials per region compliant with the full residue definition for risk assessment.

# **Bulb onions and garlic**

#### cGAP NEU and SEU: 240 g as/ha, BBCH 12-19, PHI not applicable (spraying overall)

In total, twenty residue trials on onion have been conducted throughout Europe using applications of clethodim at rates generally within  $\pm 25\%$  of the appropriate critical GAP of 240 g as/ha.

Ten field trials in Northern and Central Europe and ten in Southern Europe on onion were performed in the growing seasons 2018 - 2020 and were considered acceptable for MRL purposes and for risk assessment. Although six trials (4x N-EU and 2x S-EU) were performed at a more critical growth stage compared to GAP, these trials are considered

acceptable since in five trials residues at harvest were all below the LOQ and the residue level of the sixth trial is well within the range of residues obtained from GAP-compliant trials on bulb onion.

Total residues in onion bulbs according to the residue definition for monitoring were within the range of <0.014 - 0.023 mg/kg and according to the residue definition for risk assessment are within the range of <0.06 - 0.21 mg/kg, respectively. Residues of clethodim, M18R and 3-chloroallyl alcohol glucoside (M14A/M15A) were always below the respective LOD (0.0015, 0.003, and 0.015 mg/kg). M14R was analysed in six trials each in Northern Europe and in Southern Europe, which were conducted in 2019/20, and all residues were below the LOD of 0.003 mg/kg. The zero residue situation demonstrated for M14R has therefore been extended to the trials conducted during 2018 and 2020 (S18-01121-01 to -08) to give ten trials in the northern zone and ten trials in the southern zone compliant with the full residue definition for risk assessment. The results are summarised in Table 2.7.4-1.

The results from bulb onion can also be extrapolated to garlic, according to guideline SANTE/2019/12752.

Table 2.7.4-1: Available data for residues of clethodim in sugar beet and onion according to the residue definition for risk assessment (RA1)

| Trial               | Clethodim | Clethodim<br>sulfoxide | Clethodim<br>sulfone | M14R/<br>M15R | M16R/<br>M17R | M18R/<br>M19R | Total r<br>accord |        |
|---------------------|-----------|------------------------|----------------------|---------------|---------------|---------------|-------------------|--------|
|                     | (mg/kg)   | (mg/kg)                | (mg/kg)              | (mg/kg)       | (mg/kg)       | (mg/kg)       | MO                | RA1    |
|                     | L         | Su                     | gar Beet Root        | s (N-EU)      |               |               |                   |        |
| S18-08165-01        | < 0.005   | < 0.005                | < 0.005              | (<0.01)       | < 0.01        | < 0.01        | < 0.014           | < 0.06 |
| S18-08165-02        | < 0.005   | < 0.005                | < 0.005              | (<0.01)       | < 0.01        | < 0.01        | < 0.014           | < 0.06 |
| S18-08165-03        | < 0.005   | < 0.005                | < 0.005              | (<0.01)       | < 0.01        | < 0.01        | < 0.014           | < 0.06 |
| S18-08165-04        | < 0.005   | < 0.005                | < 0.005              | (<0.01)       | < 0.01        | < 0.01        | < 0.014           | < 0.06 |
| S18-08161-01        | < 0.005   | < 0.005                | < 0.005              | < 0.01        | < 0.01        | < 0.01        | < 0.014           | < 0.06 |
| S18-08161-02        | < 0.005   | < 0.005                | < 0.005              | < 0.01        | < 0.01        | < 0.01        | < 0.014           | < 0.06 |
| S18-08161-03        | < 0.005   | < 0.005                | < 0.005              | < 0.01        | < 0.01        | < 0.01        | < 0.014           | < 0.06 |
| S18-08161-04        | < 0.005   | < 0.005                | < 0.005              | < 0.01        | < 0.01        | < 0.01        | < 0.014           | < 0.06 |
|                     |           |                        |                      |               |               | STMR:         | 0.01              | 0.06   |
|                     |           |                        |                      |               |               | HR:           | 0.01              | 0.06   |
|                     |           | Sugar Be               | et Tops with         | Leaves (N-    | EU)           |               |                   |        |
| S18-08165-01        | < 0.005   | < 0.005                | < 0.005              | (<0.01)       | 0.06          | 0.02          | < 0.014           | 0.14   |
| S18-08165-02        | < 0.005   | < 0.005                | < 0.005              | (<0.01)       | < 0.01        | < 0.01        | < 0.014           | < 0.06 |
| S18-08165-03        | < 0.005   | 0.005                  | 0.018                | (<0.01)       | 0.16          | 0.03          | 0.026             | 0.31   |
| S18-08165-04        | < 0.005   | < 0.005                | < 0.005              | (<0.01)       | 0.10          | 0.03          | < 0.014           | 0.21   |
| S18-08161-01        | < 0.005   | < 0.005                | < 0.005              | < 0.01        | < 0.01        | < 0.01        | < 0.014           | < 0.06 |
| S18-08161-02        | < 0.005   | < 0.005                | < 0.005              | < 0.01        | 0.02          | < 0.01        | < 0.014           | 0.07   |
| S18-08161-03        | < 0.005   | < 0.005                | < 0.005              | < 0.01        | 0.02          | < 0.01        | < 0.014           | 0.07   |
| S18-08161-04        | < 0.005   | 0.012                  | 0.019                | < 0.01        | 0.13          | 0.02          | 0.033             | 0.26   |
|                     |           |                        |                      |               |               | STMR:         | 0.01              | 0.11   |
|                     |           |                        |                      |               |               | HR:           | 0.033             | 0.31   |
|                     | r         |                        | gar Beet Root        | · · · · · ·   |               |               |                   |        |
| S15-03505-06        | < 0.005   | < 0.005                | < 0.005              | (<0.01)       | < 0.01        | < 0.01        | < 0.014           | < 0.06 |
| S15-03505-08        | < 0.005   | < 0.005                | < 0.005              | (<0.01)       | < 0.01        | < 0.01        | < 0.014           | < 0.06 |
| S18-08165-05        | < 0.005   | < 0.005                | < 0.005              | (<0.01)       | < 0.01        | < 0.01        | < 0.014           | < 0.06 |
| S18-08165-06        | < 0.005   | < 0.005                | < 0.005              | (<0.01)       | < 0.01        | < 0.01        | < 0.014           | < 0.06 |
| S18-08165-07        | < 0.005   | < 0.005                | < 0.005              | (<0.01)       | < 0.01        | < 0.01        | < 0.014           | < 0.06 |
| S18-08165-08        | < 0.005   | < 0.005                | < 0.005              | (<0.01)       | < 0.01        | < 0.01        | < 0.014           | < 0.06 |
| S18-08161-05        | < 0.005   | < 0.005                | < 0.005              | < 0.01        | < 0.01        | < 0.01        | < 0.014           | < 0.06 |
| S18-08161-06        | < 0.005   | < 0.005                | < 0.005              | < 0.01        | < 0.01        | < 0.01        | < 0.014           | < 0.06 |
| <i>S18-08161-07</i> | < 0.005   | < 0.005                | < 0.005              | <0.01         | <0.01         | <0.01         | <0.014            | <0.06  |
| S18-08161-08        | < 0.005   | < 0.005                | < 0.005              | < 0.01        | < 0.01        | < 0.01        | < 0.014           | < 0.06 |
|                     |           |                        |                      |               |               | STMR:         | 0.01              | 0.06   |
|                     |           |                        |                      |               |               | HR:           | 0.01              | 0.06   |

| Trial                              | Clethodim | Clethodim<br>sulfoxide | Clethodim<br>sulfone | M14R/<br>M15R | M16R/<br>M17R | M18R/<br>M19R | Total 1<br>accord |        |  |  |  |
|------------------------------------|-----------|------------------------|----------------------|---------------|---------------|---------------|-------------------|--------|--|--|--|
|                                    | (mg/kg)   | (mg/kg)                | (mg/kg)              | (mg/kg)       | (mg/kg)       | (mg/kg)       | МО                | RA1    |  |  |  |
| Sugar Beet Tops with Leaves (S-EU) |           |                        |                      |               |               |               |                   |        |  |  |  |
| S15-03505-06                       | < 0.005   | < 0.005                | 0.007                | (<0.01)       | 0.04          | 0.01          | 0.016             | 0.10   |  |  |  |
| S15-03505-08                       | < 0.005   | < 0.005                | < 0.005              | (<0.01)       | < 0.01        | < 0.01        | < 0.014           | < 0.06 |  |  |  |
| S18-08165-05                       | < 0.005   | < 0.005                | < 0.005              | (<0.01)       | 0.02          | < 0.01        | < 0.014           | 0.07   |  |  |  |
| S18-08165-06                       | < 0.005   | < 0.005                | < 0.005              | (<0.01)       | < 0.01        | < 0.01        | < 0.014           | < 0.06 |  |  |  |
| S18-08165-07                       | < 0.005   | < 0.005                | < 0.005              | (<0.01)       | < 0.01        | < 0.01        | < 0.014           | < 0.06 |  |  |  |
| S18-08165-08                       | < 0.005   | < 0.005                | < 0.005              | (<0.01)       | < 0.01        | < 0.01        | < 0.014           | < 0.06 |  |  |  |
| S18-08161-05                       | < 0.005   | < 0.005                | 0.008                | < 0.01        | 0.10          | 0.03          | 0.017             | 0.21   |  |  |  |
| S18-08161-06                       | < 0.005   | < 0.005                | < 0.005              | < 0.01        | < 0.01        | < 0.01        | < 0.014           | < 0.06 |  |  |  |
| S18-08161-07                       | < 0.005   | < 0.005                | < 0.005              | <0.01         | <0.01         | <0.01         | < 0.014           | <0.06  |  |  |  |
| S18-08161-08                       | < 0.005   | < 0.005                | < 0.005              | < 0.01        | < 0.01        | < 0.01        | < 0.014           | < 0.06 |  |  |  |
|                                    |           |                        |                      |               |               | STMR:         | 0.01              | 0.06   |  |  |  |
|                                    |           |                        |                      |               |               | HR:           | 0.017             | 0.21   |  |  |  |
|                                    |           |                        | Bulb Onion (N        | N-EU)         |               |               |                   |        |  |  |  |
| S18-01121-01                       | < 0.005   | < 0.005                | < 0.005              | (<0.01)       | < 0.01        | < 0.01        | < 0.014           | < 0.06 |  |  |  |
| S18-01121-02                       | < 0.005   | < 0.005                | < 0.005              | (<0.01)       | < 0.01        | < 0.01        | < 0.014           | < 0.06 |  |  |  |
| S18-01121-03                       | < 0.005   | 0.007                  | 0.007                | (<0.01)       | < 0.01        | < 0.01        | 0.018             | 0.06   |  |  |  |
| S18-01121-04                       | < 0.005   | < 0.005                | < 0.005              | (<0.01)       | < 0.01        | < 0.01        | < 0.014           | < 0.06 |  |  |  |
| S18-08160-01                       | < 0.005   | < 0.005                | < 0.005              | < 0.01        | < 0.01        | < 0.01        | < 0.014           | < 0.06 |  |  |  |
| S18-08160-02                       | < 0.005   | < 0.005                | < 0.005              | < 0.01        | < 0.01        | < 0.01        | < 0.014           | < 0.06 |  |  |  |
| S18-08160-04                       | < 0.005   | < 0.005                | < 0.005              | < 0.01        | < 0.01        | < 0.01        | < 0.014           | < 0.06 |  |  |  |
| S18-08160-05                       | < 0.005   | 0.005                  | < 0.005              | < 0.01        | < 0.01        | < 0.01        | 0.014             | 0.06   |  |  |  |
| S18-08160-06                       | < 0.005   | 0.009                  | 0.010                | < 0.01        | 0.02          | < 0.01        | 0.023             | 0.07   |  |  |  |
| S20-00082-01                       | < 0.005   | < 0.005                | < 0.005              | < 0.01        | < 0.01        | < 0.01        | < 0.014           | < 0.06 |  |  |  |
|                                    |           |                        |                      |               |               | STMR:         | 0.01              | 0.06   |  |  |  |
|                                    |           |                        |                      |               |               | HR:           | 0.023             | 0.07   |  |  |  |
|                                    |           |                        | <b>Bulb Onion (S</b> | S-EU)         |               |               |                   |        |  |  |  |
| S18-01121-05                       | < 0.005   | < 0.005                | < 0.005              | (<0.01)       | < 0.01        | < 0.01        | < 0.014           | < 0.06 |  |  |  |
| S18-01121-06                       | < 0.005   | < 0.005                | < 0.005              | (<0.01)       | < 0.01        | < 0.01        | < 0.014           | < 0.06 |  |  |  |
| S18-01121-07                       | < 0.005   | < 0.005                | < 0.005              | (<0.01)       | < 0.01        | < 0.01        | < 0.014           | < 0.06 |  |  |  |
| S18-01121-08                       | < 0.005   | < 0.005                | 0.007                | (<0.01)       | < 0.01        | < 0.01        | 0.016             | 0.06   |  |  |  |
| S18-08160-07                       | < 0.005   | < 0.005                | < 0.005              | < 0.01        | < 0.01        | < 0.01        | < 0.014           | < 0.06 |  |  |  |
| S18-08160-08                       | < 0.005   | < 0.005                | < 0.005              | < 0.01        | < 0.01        | < 0.01        | < 0.014           | < 0.06 |  |  |  |
| S18-08160-09                       | < 0.005   | < 0.005                | < 0.005              | < 0.01        | < 0.01        | < 0.01        | < 0.014           | < 0.06 |  |  |  |
| S18-08160-11                       | < 0.005   | < 0.005                | < 0.005              | < 0.01        | < 0.01        | < 0.01        | < 0.014           | < 0.06 |  |  |  |
| S18-08160-12                       | < 0.005   | < 0.005                | < 0.005              | < 0.01        | < 0.01        | < 0.01        | < 0.014           | < 0.06 |  |  |  |
| S18-08160-13                       | < 0.005   | < 0.005                | < 0.005              | < 0.01        | < 0.01        | < 0.01        | < 0.014           | < 0.06 |  |  |  |
|                                    |           |                        |                      |               |               | STMR:         | 0.01              | 0.06   |  |  |  |
|                                    |           |                        |                      |               |               | HR:           | 0.016             | 0.06   |  |  |  |

Table 2.7.4-1: Available data for residues of clethodim in sugar beet and onion according to the residue definition for risk assessment (RA1)

# 2.7.5 Summary of feeding studies in poultry, ruminants, pigs and fish

For clethodim the feeding of sugar beet tops with leaves and processed wastes including sugar beet dried pulp, ensiled pulp and molasses are relevant for livestock.

The exposure of livestock to residues of clethodim was estimated using the Animal Model 2017, and both according to the proposed residue definition for monitoring and for risk assessment, since only tentative conversion factors could be determined. Input values for the model are summarised in Table 2.7.5-1 and Table 2.7.5-2.

Based on the available metabolism study in rotational crops, no residues above the LOQ are anticipated in root/tuber crops due to crop rotation and therefore only data from the primary crop residue trials are considered in the dietary burden. In rotational wheat immature plant, straw, and hulls, TRR levels of 0.57-0.93 mg/kg indicate that residues may be expected to be present in feed items. As no individual metabolite was identified and expected at residue levels above the LOQ, residues in rotational cereal forage were not considered in the dietary burden calculations.

The Northern EU data set is considered to represent the worst-case situation with all total residues according to the residue definitions at the LOQ in sugar beet roots and an STMR of 0.01 and 0.11 mg/kg and an HR of 0.033 and 0.31 mg/kg (RD-MO and RD-RA1 respectively) in sugar beet tops with leaves. Since residues of M14A/M15A, which is proposed to have a separate residue definition for risk assessment, was not detected (<LOD), no calculation was performed. The input data for the dietary burden calculation is shown in Table 2.7.5-1 and 2.7.5-2.

|                                 | Med                    | ian dietary burden                                 | Maximum dietary burden |                                                    |  |
|---------------------------------|------------------------|----------------------------------------------------|------------------------|----------------------------------------------------|--|
| Feed Commodity                  | Input Value<br>(mg/kg) | Comment                                            | Input Value<br>(mg/kg) | Comment                                            |  |
| Enforcement residue definition: | Sum of clethod         | im, clethodim sulfoxide, and c                     | lethodim sulfon        | e, expressed as clethodim                          |  |
| Sugar beet (tops)               | 0.04                   | STMR x CF <sup>1)</sup>                            | 0.12                   | HR x CF <sup>1)</sup>                              |  |
| Sugar beet (dried pulp)         | 0.03                   | LOQ (root) x CF <sup>1</sup> ) x PF <sup>2</sup> ) | 0.03                   | LOQ (root) x CF <sup>1</sup> ) x PF <sup>2</sup> ) |  |
| Sugar beet (ensiled pulp)       | 0.03                   | LOQ (root) x CF <sup>1</sup> x PF <sup>2</sup>     | 0.03                   | LOQ (root) x CF <sup>1</sup> x PF <sup>2))</sup>   |  |
| Sugar beet (molasses)           | 0.03                   | LOQ (root) x CF <sup>1)</sup> x PF <sup>2)</sup>   | 0.03                   | LOQ (root) x CF <sup>1</sup> x PF <sup>2</sup> )   |  |

Table 2.7.5-1: Input values (RD-MO) for the dietary burden calculation

STMR: Supervised trials median residue (according to the residue definition for monitoring)

HR: Highest residue (according to the residue definition for monitoring)

2) PF: Processing factor (raw commodity to processed commodity). A <LOQ residue situation is assumed for all metabolites of the residue definition for risk assessment in sugar beet roots. Therefore, a processing factor for sugar beet dried pulp, ensiled pulp and molasses is not appropriate and therefore set to 1.</p>

|                                    | Med                    | ian dietary burden            | Maximum dietary burden |                               |  |
|------------------------------------|------------------------|-------------------------------|------------------------|-------------------------------|--|
| Feed Commodity                     | Input Value<br>(mg/kg) | Comment                       | Input Value<br>(mg/kg) | Comment                       |  |
| Risk assessment residue definition | on (RA1): Sum          | of clethodim, clethodim sulfo | xide, clethodim        | sulfone and metabolites       |  |
| M14R/M15R, M16R/M17R and           | M18R/M19R,             | expressed as clethodim        |                        |                               |  |
| Sugar beet (tops)                  | 0.11                   | STMR                          | 0.31                   | HR                            |  |
| Sugar beet (dried pulp)            | 0.06                   | LOQ (root) x PF <sup>1)</sup> | 0.06                   | LOQ (root) x PF <sup>1)</sup> |  |
| Sugar beet (ensiled pulp)          | 0.06                   | LOQ (root) x PF <sup>1)</sup> | 0.06                   | LOQ (root) x PF <sup>1)</sup> |  |
| Sugar beet (molasses)              | 0.06                   | LOQ (root) x PF <sup>1)</sup> | 0.06                   | LOQ (root) x PF <sup>1</sup>  |  |

STMR: Supervised trials median residue (according to the risk assessment residue definition)

HR: Highest residue (according to the risk assessment residue definition)

1) PF: Processing factor (raw commodity to processed commodity). A <LOQ residue situation is assumed for all metabolites of the residue definition for risk assessment in sugar beet roots. Therefore, a processing factor for sugar beet dried pulp, ensiled pulp and molasses is not appropriate and therefore set to 1.

The results of the dietary burden calculations are shown in Table 2.7.5-3 and Table 2.7.5-4. The calculated dietary burdens based on the residue definition for monitoring were found to exceed the trigger value of 0.004 mg/kg bw for cattle and sheep (all diets). The calculated dietary burdens based on the residue definition for risk assessment (RA1) were found to exceed the trigger value of 0.004 mg/kg bw for all groups of livestock, except swine. The highest dietary burden was calculated for ruminants (0.022 mg/kg bw/d), followed by sheep (0.013 mg/kg bw/d) and poultry (0.005 mg/kg bw/d). Based on the available information, rotational crops have no effect on the dietary burden, since residues are expected to be below the LOQ.

<sup>1)</sup> A tentative conversion factor of 3.5 was used for sugar beet tops, derived from metabolism study in carrot leaves, and a tentative CF of 2.5 was used for sugar beet roots

2

2

| Relevant groups         | Di           | etary burde | en expressed | in   | Most critical<br>diet <sup>1</sup> | Most critical commodity <sup>2</sup> |      | Trigger<br>(0.004 |
|-------------------------|--------------|-------------|--------------|------|------------------------------------|--------------------------------------|------|-------------------|
|                         | mg/kg bw/day |             | mg/kg        | g DM | -                                  |                                      |      | mg/kg<br>bw/day)  |
|                         | Median       | Max.        | Median       | Max. | -                                  |                                      |      | exceeded          |
| Cattle<br>(all diets)   | 0.004        | 0.008       | 0.11         | 0.22 | Dairy cattle                       | Sugar beet                           | tops | Yes               |
| Cattle<br>(dairy only)  | 0.004        | 0.008       | 0.11         | 0.22 | Dairy cattle                       | Sugar beet                           | tops | Yes               |
| Sheep<br>(all diets)    | 0.002        | 0.005       | 0.04         | 0.11 | Lamb                               | Sugar beet                           | tops | Yes               |
| Sheep<br>(ewe only)     | 0.001        | 0.004       | 0.04         | 0.11 | Ram/Ewe                            | Sugar beet                           | tops | No                |
| Swine<br>(all diets)    | 0.000        | 0.001       | 0.02         | 0.06 | Swine (breeding)                   | Sugar beet                           | tops | No                |
| Poultry<br>(all diets)  | 0.001        | 0.002       | 0.01         | 0.03 | Poultry layer                      | Sugar beet                           | tops | No                |
| Poultry<br>(layer only) | 0.001        | 0.002       | 0.01         | 0.03 | Poultry layer                      | Sugar beet                           | tops | No                |

 Table 2.7.5-3:
 Results of the dietary burden calculation with residue levels expressed according to the residue definition for monitoring

When several diets are relevant (e.g. cattle, sheep and poultry "all diets"), the most critical diet is identified from the maximum dietary burdens expressed as "mg/kg bw per day"

The most critical commodity is the major contributor identified from the maximum dietary burden expressed as "mg/kg bw per day".

| Table 2.7.5-4:      | Results of th | e dietary bu | rden calculation | n with residue | e levels e | expressed | according to | the residue |
|---------------------|---------------|--------------|------------------|----------------|------------|-----------|--------------|-------------|
| definition for risk | assessment (R | A1)          |                  |                |            |           |              |             |

| Relevant groups         | Di      | etary burde | en expressed | in   | Most critical<br>diet1Most critical<br>commodity2 |            |      | Trigger<br>(0.004 |  |
|-------------------------|---------|-------------|--------------|------|---------------------------------------------------|------------|------|-------------------|--|
|                         | mg/kg l | bw/day      | mg/kg        | g DM | _                                                 |            |      | mg/kg<br>bw/day)  |  |
|                         | Median  | Max.        | Median       | Max. | -                                                 |            |      | exceeded          |  |
| Cattle<br>(all diets)   | 0.012   | 0.022       | 0.30         | 0.56 | Dairy cattle                                      | Sugar beet | tops | Yes               |  |
| Cattle<br>(dairy only)  | 0.012   | 0.022       | 0.30         | 0.56 | Dairy cattle                                      | Sugar beet | tops | Yes               |  |
| Sheep<br>(all diets)    | 0.005   | 0.013       | 0.12         | 0.30 | Lamb                                              | Sugar beet | tops | Yes               |  |
| Sheep<br>(ewe only)     | 0.004   | 0.010       | 0.12         | 0.30 | Ram/Ewe                                           | Sugar beet | tops | Yes               |  |
| Swine<br>(all diets)    | 0.001   | 0.003       | 0.06         | 0.15 | Swine (breeding)                                  | Sugar beet | tops | No                |  |
| Poultry<br>(all diets)  | 0.002   | 0.005       | 0.02         | 0.07 | Poultry layer                                     | Sugar beet | tops | Yes               |  |
| Poultry<br>(layer only) | 0.002   | 0.005       | 0.02         | 0.07 | Poultry layer                                     | Sugar beet | tops | Yes               |  |

When several diets are relevant (e.g. cattle, sheep and poultry "all diets"), the most critical diet is identified from the maximum dietary burdens expressed as "mg/kg bw per day"

The most critical commodity is the major contributor identified from the maximum dietary burden expressed as "mg/kg bw per day".

Two livestock feeding studies for clethodim were submitted, one in cattle (CA 6.4.2/01, 1989) and one in hen (CA 6.4.1/01, 1988). The RMS considered these studies to be supportive due to deviations regarding analytical methods and that the storage stability of residues was not demonstrated. Residues were determined as clethodim equivalents using a common moiety method which is not compatible with the proposed residue definition. Nevertheless, the studies are presented and the results can be used as indicative.

| Study             | Compound<br>administrated      | Compounds<br>analysed                   | Feeding level<br>(expressed as total<br>clethodim equivalents)<br>[mg/kg bw/d] | N-level compared to<br>estimated dietary burden<br>representative uses |
|-------------------|--------------------------------|-----------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------|
| Poultry           |                                |                                         |                                                                                |                                                                        |
| CA 6.4.1/01, 1998 | Clethodim (5%)<br>& clethodim  | Clethodim, S-methyl clethodim sulfoxide | 1.04                                                                           | 208 N                                                                  |
| Supportive        | sulfoxide (95%)                | and 5-hydroxy                           | 3.05                                                                           | 610 N                                                                  |
|                   |                                | clethodim sulfone                       | 9.58                                                                           | 1916 N                                                                 |
| Ruminants         |                                | •                                       | ·                                                                              |                                                                        |
| CA 6.4.2/01, 1989 | Clethodim (5%)                 | Clethodim, S-methyl                     | 0.65                                                                           | 30 N                                                                   |
| Supportive        | & clethodim<br>sulfoxide (95%) | clethodim sulfoxide<br>and 5-hydroxy    | 1.89                                                                           | 85 N                                                                   |
|                   | suitoxide (5570)               | clethodim sulfone                       | 5.73                                                                           | 260 N                                                                  |

Table 2.7.5-3 Overview of available livestock feeding studies

In both studies, animals were dosed for 28 consecutive days with a diet fortified with a mixture of 5% clethodim and 95% clethodim sulfoxide. According to the applicant, this forms the major component of the residue in root crops and foliage, but according to the RMS the metabolite M17R in sugar beet tops is the major component.

The lowest dose used in the poultry study was 1.04 mg/kg bw/day (clethodim equivalents), which is a factor of 208 higher than the maximum estimated intake by poultry of 0.005 mg/kg bw/day. With a dietary burden calculated according the lower GAP rate (1x 120 g as/ha) the lowest dose rate is a factor of 520 higher than the maximum estimated intake by poultry of approximately 0.002 mg/kg bw/day. The results of the hen feeding study at the lowest dose, indicated that no residues above the LOQ in eggs and tissues were observed. At the estimated intake dose level, independent of the GAP considered, residues in all poultry tissues and egg are expected to be <LOQ.

The lowest dose used in the ruminant study was 0.65 mg/kg bw/day (clethodim equivalents), which is a factor of 30 higher than the maximum estimated intake by cattle of approximately 0.022 mg/kg bw/day. With a dietary burden calculated according the lower GAP rate (1x 120 g as/ha) the lowest dose rate is a factor of 81 higher than the maximum estimated intake by cattle of approximately 0.008 mg/kg bw/day. The results of the livestock feeding study at the lowest dose, indicated that no residues above the LOQ in milk and tissues were observed, with the exception of the total DME residues in liver (HR= 0.059 mg/kg) and kidney (HR= 0.051 mg/kg). At the estimated intake dose level, independent of the GAP considered, residues in these organs are expected to be <LOQ.

# 2.7.6 Summary of effects of processing

## 2.7.6.1 Nature of residues

The nature of residues has been investigated with <sup>14</sup>C-clethodim, <sup>14</sup>C-clethodim sulfoxide (with cyclohexyl-labels) and <sup>14</sup>C-clethodim sulfone (with allyl-label) in accordance with OECD guideline No. 507 (CA 6.5.1/01-03). In these hydrolysis studies it was shown that the substances are extensively degraded to clethodim oxazole, clethodim oxazole sulfoxide and 3-chloroallyl alcohol, respectively, under processing conditions simulating pasteurisation, baking/brewing/boiling and sterilisation.

In Persch, 2013 (CA 6.5.1/01, S12-00895) after processing simulating pasteurisation, clethodim was the main residue, but also clethodim oxazole was a major component with 14% formed. With processing conditions representing baking, boiling and brewing and sterilisation, clethodim was extensively degraded to clethodim

oxazole, which was formed with amounts of 80% and 96%, respectively. An additional degradation product, clethodim trione was also formed with amounts of 5.4% and 3.8%, respectively.

In Blo $\beta$ , 2018 (CA 6.5.1/02, S18-02073) with clethodim sulfoxide under conditions representative of pasteurisation, the degradation product clethodim oxazole sulfoxide was formed with an amount of 89%. Under conditions representative of baking, brewing, boiling and sterilisation, clethodim oxazole sulfoxide was formed with amounts of 94% and 98%, respectively, and an additional degradation product, clethodim trione sulfoxide with amounts of 6.9%, 5.5% and 2.7%, respectively.

In Blo $\beta$ , 2018 (CA 6.5.1/03, S18-02074) with clethodim sulfone, under conditions representative of pasteurisation, baking, brewing, boiling and sterilisation, trans-3-chloroallyl alcohol was formed at an amount of 99-102%. Under conditions representative of sterilisation also a second product M3 was formed at a very low amount of 1.7-1.9%.

These results indicate that clethodim oxazole sulfoxide, clethodim oxazole sulfone and 3-chloroallyl alcohol could be present in processed commodities, if the raw agricultural commodity contains residues at significant levels. Clethodim oxazole is unlikely to be present since the parent compound is never seen to be present at detectable levels in the raw commodity.

# 2.7.6.2 Distribution of residues in peel and pulp

Not required. The representative crops are not separated into peel and pulp.

#### 2.7.6.3 Magnitude of residues in processed commodities

As residues in sugar beet root, onion and garlic raw agricultural commodities (RAC) are below 0.1 mg/kg (based on the total residue definition for risk assessment) and the chronic exposure does not exceed 10% of the ADI, no further considerations about the effect of processing on the magnitude of residues is required. However, one processing study on sugar beet previously submitted for active substance approval was reassessed (CA 6.5.3/01, Lai, 1992, TSR5068SGBT), and was considered supportive. Residues determined as the common moieties DME and DME-OH in sugar beet roots and sliced roots, dehydrated pulp and refined sugar were all below the LOQ and processing factors were therefore not estimated. The mean residue in molasses determined as DME was 0.28 mg/kg and an indicative processing factor of 2.8 was estimated.

# 2.7.7 Summary of residues in rotational crops

Since several soil metabolites were found to be persistent in soil, metabolism studies in rotational crops are needed to be able to determine the nature and extent of potential residue accumulation in rotational crops.

A study was submitted, in which the metabolism of clethodim related residues was studied in carrot, lettuce and wheat grown in rotation after application of [ring-4,6-<sup>14</sup>C]-clethodim to bare soil at an exaggerated rate of 1.1 kg as/ha (3.7-4.6N) (CA 6.6.1/01, Gaddamidi, 1988, MEF-0036).

The total radioactive residue was below 0.05 mg/kg in carrot roots and leaves, wheat grain and in mature lettuce leaf (except for the 30 days PBI). In carrot leaf, lettuce leaf (30 days PBI) and wheat straw and hull, the TRR ranged from 0.053-0.65 mg/kg.

Clethodim imine sulfoxide was significant in lettuce leaf (30 days PBI) and in carrot leaves (366 days PBI). The significant soil metabolites clethodim oxazole sulfoxide and clethodim oxazole sulfone were minor and found only at low levels in all crops grown in rotation. Other metabolites were all below 10% TRR and 0.01 mg/kg, clethodim was not detected in any crop.

The metabolites imine sulfoxide, clethodim oxazole sulfoxide and clethodim oxazole sulfone are soil metabolites of clethodim. Their occurrence in rotational crops is considered to be due to the uptake by plant roots.

Taking into account the exaggerated application rate any identified metabolite is not expected to exceed the trigger value of 0.01 mg/kg in food items, when compared to the cGAPs under consideration. However, since residues in rotational wheat immature plant, straw, and hulls were found at TRR levels of 0.57-0.93 mg/kg this indicate that residues may be present in feed items (considering a fallow period of 120 days).

There were deviations from OECD 502 in the study. The application rate was higher than in the intended cGAP (3.7-4.6N) and the recoveries (33-106% TRR) indicated that the extraction was incomplete and the residue levels were likely underestimated. It is also noted that the %TRR that was identified was low. Additionally, in this study, the active substance was only labelled in one position; [Ring-4,6-<sup>14</sup>C]-clethodim was investigated, and it could be questioned if an allyl-label would also be needed to be able to track all significant moieties or degradation products. Finally, the study was performed in a greenhouse, and since clethodime is photolytically degraded, it may not be representative of the residues that are formed and taken up by plants in field conditions. For example, the metabolites CBA and CAA were found at significant levels in a photolysis study with allyl-labelled clethodim on soil surface,

The applicant stated that based on the findings of the confined rotational crop metabolism study a field rotational crop study is not considered necessary. The RMS is of the opinion that a new rotational crop metabolism study should be requested, to investigate the nature of residues in rotational crops. Based on these results, it could be decided if a field rotational crop study is considered necessary.

# 2.7.8 Summary of other studies

#### 2.7.8.1 Effects on the residue level in pollen and bee products

The evaluation of residues in pollen and bee products is not necessary since according to EU technical guidelines (SANTE/11956/2016 rev. 9) the representative crops under consideration (sugar beet, onion and garlic) are considered as not melliferous.

# 2.7.8.2 Extraction efficiency

An extraction efficiency study (S19-00144, Wiesner and Xu, 2020) was submitted as other study in section 6 of the dossier. The RMS evaluated this study, but it is presented in Vol.3, B.5.2.1 and also in 2.5 Methods of analysis of Vol. 1.

227

# 2.7.9 Estimation of the potential and actual exposure through diet and other sources

The dietary exposure of clethodim and estimated risk for consumers has been calculated using the toxicological endpoints presented in 2.6.10.1 and 2.6.10.2. The ADI 0.16 mg/kg bw/day has been used. An acute reference dose (ARfD) is not deemed necessary. Furthermore, the STMRs and HRs (residue definition for monitoring) for the representative uses, and EFSA PRIMo rev 3.1 have been used to calculate the consumer exposure. Since the residue definitions are pending further assessment of the toxicological profile of metabolites, it is not possible to determine conversions factors. A tentative conversion factor of 2.5 according to residue definition for risk assessment 1 was applied, as derived from metabolism studies and also proposed by EFSA in the review of MRLs (EFSA, 2019). The input values for the consumer risk assessment can be found in table 2.7.9-1.

|                                                               |                          | Chronic exposure              | Acute exposure         |                             |  |
|---------------------------------------------------------------|--------------------------|-------------------------------|------------------------|-----------------------------|--|
| Commodity                                                     | STMR<br>value<br>(mg/kg) | Comment                       | HR<br>value<br>(mg/kg) | Comment                     |  |
| Risk assessment residue definition M14R/M15R, M16R/M17R and M | · /                      |                               | e, clethodim           | sulfone and metabolites     |  |
| Onion (bulb)                                                  | 0.025                    | STMR <sub>Mo</sub> x CF (2.5) | Not applic             | able, no ARfD allocated for |  |
| Garlic                                                        | 0.025                    | STMR <sub>Mo</sub> x CF (2.5) | clethodim              |                             |  |
| Sugar beet (root)                                             | 0.025                    | STMR <sub>Mo</sub> x CF (2.5) |                        |                             |  |

Table 2.7.9-1 Clethodim - Residue input values for the consumer risk assessment

For clethodim, the TMDI is maximally 0.1% of the ADI (NL child), with sugar beet roots as the highest contributor, as presented in Annex 1 (Livestock dietary burden). This indicates that no chronic risk is expected for any of the European consumer groups. A calculation of the IESTI is not required, since no ARfD was considered necessary. However, it has to be emphasised that this consumer risk assessment is only provisional, pending the conclusion of the toxicological assessment of clethodim sulfone and a conclusion on the genotoxic potential for clethodim sulfone and the metabolites proposed to be included in the residue definition for risk assessment, M17R, M14R/15R and M18R/M19R.

The metabolite 3-chloroallyl alcohol (the aglycon of M14A/15A) is a common metabolite with the active substance 1,3-dichloropropene. Toxicity studies were evaluated for the metabolite 3-chloroallyl alcohol during the active substance approval of 1,3-dichloropropene (Spain, 2017 and EFSA Journal 2018;16(11):5464) but the evaluation was not finalised because the genotoxic potential of 3-chloroallyl alcohol could not be concluded. New studies were performed and submitted and the current assessment found that it is not genotoxic. Therefore the following toxicological reference values could be proposed for 3-chloroallyl alcohol; ADI 0.015 mg/kg bw/day and ARfD 0.1 mg/kg bw. The input values for the consumer risk assessment can be found in table 2.7.9-2.

Table 2.7.9-2. M14A/M15A - Residue input values for the consumer risk assessment

|                         | Chi                       | ronic exposure                | Acute exposure            |                        |  |
|-------------------------|---------------------------|-------------------------------|---------------------------|------------------------|--|
| Commodity               | Input<br>value<br>(mg/kg) | Comment                       | Input<br>value<br>(mg/kg) | Comment                |  |
| Risk assessment residue | definition (RA2): N       | M14A/M15A (3-chloroallyl alco | ohol glucoside)           |                        |  |
| Onion (bulb)            | 0.02                      | LOQ x CF (0.05 x 0.36)        | 0.02                      | LOQ x CF (0.05 x 0.36) |  |
| Garlic                  | 0.02                      | LOQ x CF (0.05 x 0.36)        | 0.02                      | LOQ x CF (0.05 x 0.36) |  |
| Sugar beet (root)       | 0.02                      | LOQ x CF (0.05 x 0.36)        | 0.02                      | LOQ x CF (0.05 x 0.36) |  |

CF: Conversion factor: M14A/M15A (3-chloroallyl alcohol glucoside) to 3-chloroallyl alcohol (aglycone): MW (aglycon)/MW (glucoside) = 92.52 / 254.66 = 0.36 For M14A/M15A (3-chloroallyl alcohol glucoside), the TMDI is maximally 1% of the ADI (NL child), with sugar beet roots as the highest contributor, as presented in Annex 2 (PRIMo). For the acute exposure, the highest IESTI was 0.4% of the ARfD (onions, BE toddlers).

These results indicate that there is no unacceptable chronic or acute risk to human health from the consumption of commodities treated with clethodim according to the representative uses.

# 2.7.10 **Proposed MRLs and compliance with existing MRLs**

The current residue definition for monitoring is "Clethodim (sum of Sethoxydim and Clethodim including degradation products calculated as Sethoxydim)", but it is no longer considered relevant. Moreover, this definition differs from the proposed residue definition for monitoring, which is "Sum of clethodim, clethodim sulfoxide and clethodim sulfone, expressed as clethodim" for both plant and animal commodities. These proposed residue definitions are pending the conclusion of the toxicological assessment of clethodim sulfone.

The EU MRLs for clethodim in sugar beet roots, onion bulbs and garlic were set at 0.5 mg/kg in Annex II of Commission Regulation (EC) No 839/2008 of 31 July 2008 amending Regulation (EC) 396/2005.

Sugar beet and bulb onions are both major crops in both northern and southern Europe, requiring eight residue trials in each zone to set an MRL. An overview of the results from available trials are presented in Table 2.7.10-1.

| Сгор              | Region/<br>Indoor <sup>1)</sup> | Results from supervised residue<br>trials (mg/kg) | Calculated<br>MRL<br>(mg/kg) | HR<br>(mg/kg) <sup>2)</sup> | STMR<br>(mg/kg) <sup>3)</sup> | CF <sup>4)</sup> |
|-------------------|---------------------------------|---------------------------------------------------|------------------------------|-----------------------------|-------------------------------|------------------|
| Sugar beet        | NEU                             | Mo.: 8x < 0.014                                   | <u>0.015*</u>                | 0.01                        | 0.01                          | n/a              |
| roots             |                                 | RA1.: 8x <0.06                                    | -                            | 0.06                        | <u>0.06</u>                   | 2.5              |
|                   |                                 | RA2.: 8x <0.05                                    | -                            | <u>0.05</u>                 | 0.05                          | -                |
|                   | SEU                             | Mo.: 9x < 0.014                                   | 0.015*                       | 0.01                        | 0.01                          | n/a              |
|                   |                                 | RA1.: 9x <0.06 #                                  |                              | 0.06                        | 0.06                          | 2.5              |
|                   |                                 | RA2.: 7x <0.05                                    |                              | 0.05                        | 0.05                          | -                |
| Sugar beet tops N | NEU                             | Mo.: 6x <0.014, 0.026, 0.033                      | (0.05)                       | 0.033                       | 0.01                          | n/a              |
|                   |                                 | RA1.: 2x <0.06; 2x 0.07, 0.14, 0.21, 0.26, 0.31   |                              | 0.31                        | 0.11                          | 3.5              |
|                   |                                 | RA2.: 8x <0.05                                    |                              | 0.05                        | 0.05                          | -                |
|                   | SEU                             | Mo.: 6x <0.014, 0.014, 0.016, 0.017               | (0.03)                       | 0.017                       | 0.01                          | n/a              |
|                   |                                 | RA1.: 6x <0.06; 0.07, 0.10, 0.21                  |                              | 0.21                        | 0.06                          | 3.5              |
|                   |                                 | RA2.: 7x <0.05                                    |                              | 0.05                        | 0.05                          | -                |
| Onion (bulb)      | NEU                             | Mo.: 7x < 0.014; 0.014, 0.018, 0.023              | <u>0.03</u>                  | 0.023                       | 0.01                          | n/a              |
| Garlic            |                                 | RA1.: 7x 0.06, 2x 0.06, 0.07                      |                              | 0.07                        | 0.06                          | 2.5              |
| (extrapolated     |                                 | RA2.: 10x <0.05                                   |                              | 0.05                        | 0.05                          | -                |
| from onion)       | SEU                             | Mo.: 9x < 0.014; 0.016                            | 0.02                         | 0.016                       | 0.01                          | n/a              |
|                   |                                 | RA1.: 9x <0.06, 0.06                              |                              | 0.06                        | 0.06                          | 2.5              |
|                   |                                 | RA2.: 10x <0.05                                   |                              | 0.05                        | 0.05                          | - I              |

Table 2.7.10-1 Overview of the residue trials data relevant for MRL setting based on the critical GAP

1) NEU: Outdoor trials conducted in northern Europe, SEU: Outdoor trials conducted in southern Europe, Indoor: indoor EU trials or Country code: if non-EU trials

2) Highest residue (HR) according to the residue definition for risk assessment based on residue definition for risk assessment 1 (sum of clethodim, clethodim sulfoxide, clethodim sulfone and metabolites M14R/M15R, M16R/M17R and M18R/M19R, expressed as clethodim) and according to the residue definition for risk assessment based on residue definition for risk assessment 2 (M14A/M15A)

3) Supervised trials median residue (STMR) according to the residue definition for risk assessment based on residue definition for risk assessment 1 (sum of clethodim, clethodim sulfoxide, clethodim sulfone and metabolites M14R/M15R, M16R/M17R and M18R/M19R, expressed as clethodim) and according to the residue definition for risk assessment based on residue definition for risk assessment 2 (M14A/M15A)

4) Conversion factor (CF) for risk assessment according to EFSA (EFSA Journal 2019;17(5):5706) and results from metabolism studies. Tentative, since the residue definition is pending further toxicological assessment. \*:

Indicates that the MRL is set at the limit of analytical quantification (LOQ)

EU MRLs for clethodim in animal commodities were set at 0.05\* - 0.2 mg/kg in Annex II of Commission Regulation (EC) No 839/2008 of 31 July 2008 amending Regulation (EC) 396/2005. Based on the representative uses, no residues above the LOQ are expected in animal commodities.

#### 2.7.11 Proposed import tolerances and compliance with existing import tolerances

Not applicable.

#### 2.8 FATE AND BEHAVIOUR IN THE ENVIRONMENT

# 2.8.1 Summary of fate and behaviour in soil

#### 2.8.1.1 Route of degradation in soil

For the renewal, a total of three studies are available investigating the degradation of radiolabelled clethodim in soil under aerobic conditions. In Mamouni, 2006a (A00426) and Pack, 1990 (MEF-0015/0016/8914823) both [ring-4,6- $^{14}$ C] and [allyl-2- $^{14}$ C]clethodim was studied in a total of four soils. In addition, in Pack, 1988a (MEF-0014/8721028), [Propyl-1- $^{14}$ C]clethodim was studied in one soil. With regards to route of degradation, for the first approval there was a confirmatory data requirement to further assess the formation of the minor metabolite clethodim was studied in three additional soils. All studies are considered acceptable for the route of degradation of clethodim under aerobic conditions. In Mamouni, 2006a (A00426), clethodim and its metabolites were extracted with acetonitrile/water (4:1; v/v) for 30 minutes by shaking at about 250 rpm, up to three times. An additional Soxhlet extraction using the same solvents under reflux for four hours released an additional 4.6-8.2% AR. In the other studies, the soils were extracted with methanol (4x) and two times with an aqueous CaSO<sub>4</sub> solution or with methanol/water (4:1, v/v) by shaking for 1 hour.

The proposed degradation pathway is shown in Figure 2.8.1.1-1. Under aerobic, non-sterile conditions the major pathway of transformation is the oxidation of sulphur in two steps through clethodim sulfoxide (max 73.4%AR; mean of replicates) and clethodim sulfone (max 42.2%; mean of replicates from non-radiolabelled; 33.3%AR; mean of replicates from radio-labelled) respectively and further to CO<sub>2</sub> (max 34-69% AR) and bound residues (max 20-55%AR). As a parallel minor pathway clethodim sulfone and clethodim sulfoxide also degrades via cyclisation and elimination of the allyl-group into clethodim oxazole sulfoxide (max 6.0%AR; mean of replicates) and clethodim sulfone can degrade through clethodim sulfoxide imine, chloroallyl alcohol and chloroacrylic acid (CAA).

Clethodim oxazole sulfoxide was detected at 5% AR or above in Pack, 1988 (max 6.1% single replicate, 5% x 2), Pack 1990 (max 5.3%) and Mamouni, 2006a (A00426) (max 5.1%). In the non-radiolabelled study Persch, 2012, clethodim oxazole sulfoxide was not found above LOD in any of the three soils used. Nevertheless, for precautionary reasons this metabolite is considered further in the risk assessment.

In Pack, 1990, an unknown metabolite (peak 18), was observed with both labels, at individual max of 6.0% (day 60) and 6.2% (day 14) for the ring and allyl-label respectively. For the allyl-label this unknown metabolite was present at  $\geq$ 5% at two consecutive time points (day 14 and day 30). This unknown metabolite was discussed already at the peer-review of the DAR, with reference to Report PRAPeR 32\_02 clethodim\_Fate where it was concluded that "[..]because newer studies are available that cover a wide enough range of soil conditions, in this case further requests on the unknown compound are not necessary. Also keeping in mind that the metabolite only occurred in one soil." The RMS considers this as a valid conclusion also for the current renewal.

In addition to the aerobic degradation in soil, one old study on photolysis on soil surface is available (Mamouni, 2006b; RCC Study number A00437). It showed an extensive and rapid degradation of radiolabelled clethodim. The ring label gave a low level of mineralisation (max 2.7%AR) and a high level of bound residues (max 73.5% AR). The allyl-label on the other hand showed higher level of mineralisation (max 40%AR) and a lower level of bound residues (max 53.7%AR). The allyl-label, the major metabolite formed was also clethodim sulfoxide (max 60.4%AR). In addition, two other metabolites were found >10%AR, being CAA (max 18.1%) and 2-[3-Chloroallyloxyimino] butanoic acid (CBA) (max 18.7%). These two metabolites where not detected in the studies on aerobic degradation in soil at levels requiring further assessment, but they need to be added to the residue definition for soil based on the findings in the photolysis on soil.

Furthermore, one old study on anaerobic degradation of ring-labelled clethodim in soil is available (Pack, 1998; MEF-0063 / 8819578). It included an aerobic phase for one day followed by an anaerobic phase for 62 days. Due to the rapid degradation of the parent during aerobic conditions, clethodim sulfoxide was the major metabolite formed at day 1 (max 81.8%). The degradation during the anaerobic phase was only assessed after 30 days and 62 days of incubation. After 30 days of anaerobic incubation two major metabolites >10%AR were detected, being clethodim imine (max 44.2%) and clethodim imine sulfoxide (max 15.2%). Given that clethodim imine was the major metabolite formed and as clethodim sulfoxide was reduced to clethodim sulfoxide to a major extent during the aerobic phase it appears as if clethodim sulfoxide was reduced to clethodim during anoxic conditions which then was degraded through the imine pathway. Since, the anaerobic phase was only sampled after 30 days of anaerobic conditions, the relevance of these findings cannot be fully judged. Nevertheless, since the current renewal do not include autumn/winter applications as representative uses, these two major anaerobic metabolites has not been further considered.

In conclusion, the following soil metabolites need to be further considered:

- clethodim sulfoxide (max 73.4%)
- clethodim sulfone (max 42.2% from non-radiolabelled lab study)
- CBA (max 18.7% from photolysis on soil)
- CAA (max 18.1% from photolysis on soil)
- clethodim oxazole sulfone (max 10.0%)
- clethodim oxazole sulfoxide (max 6.0%)

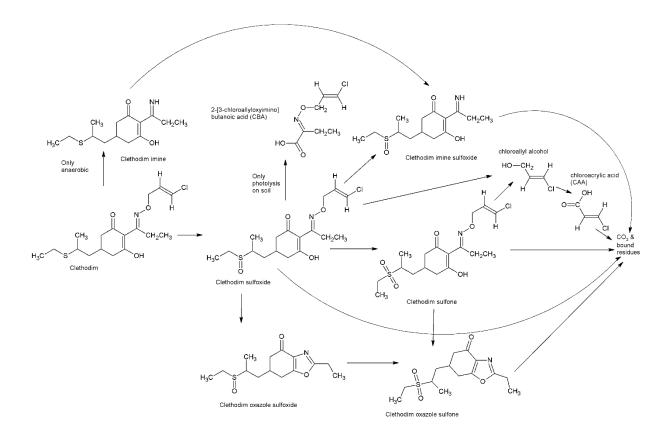
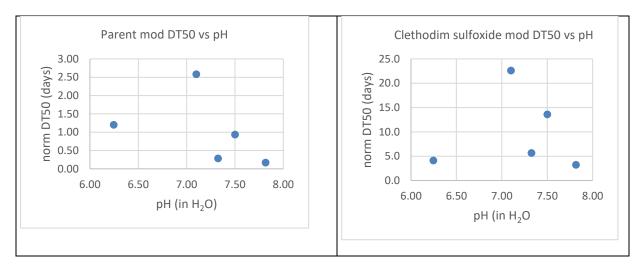
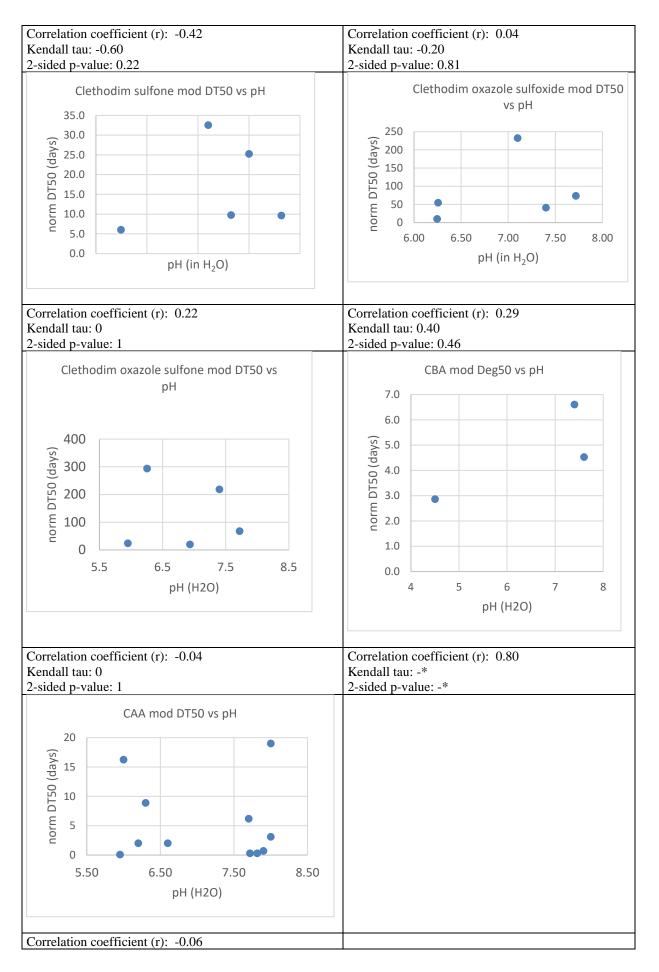



Figure 2.8.1.1-1. Proposed degradation pathway of clethodim in soil.

# 2.8.1.2 Rate of degradation in soil


For the rate of degradation of the parent compound in aerobic soil a total of four old studies are available and these were already discussed for the route of degradation. For the purpose of renewal, a kinetic re-evaluation performed in accordance with FOCUS Degradation kinetics report (2006, 2014) was provided (Jarvis & Jones, 2021; 1602214.UK0-4483). The model used for the kinetic evaluation was CAKE version 3.3. (IRLS). This new report supersedes the kinetic report provided for the first approval (Darriet *et al*, 2007). Acceptable trigger and modelling endpoints could be derived for the parent in all the studies except for Persch, 2012 (S12-00097) in which the data points were too few especially in the early phase of the degradation. From the remaining three studies, acceptable trigger and modelling endpoints could also be derived for the major metabolites clethodim sulfoxide and clethodim sulfone. Additionally, acceptable trigger and modelling endpoints were derived for the metabolite clethodim oxazole sulfoxide from Mamouni, 2006a (A00426) and Pack, 1988a (MEF-0014/8721028)


A total of four metabolite dosed studies are available. In Class, 2009 (B 1460 G), the degradation of nonradiolabelled clethodim oxazole sulfone was studied in three soils. The study was evaluated and accepted in the previous DAR, and it is deemed acceptable also for the renewal. The concentration of the metabolite was quantified using a validated LC-MS/MS method. The kinetic evaluation was performed within the study report using only SFO, but this was complemented by biphasic model runs done by RMS. In Turk, 2012 (13917.6136), the degradation of radiolabelled CBA was studied in three soils. This study was evaluated and deemed acceptable as confirmatory data for the previous approval, and it is considered acceptable also for the renewal. The remaining two studies are considered new for the purpose of renewal. In Schubert, 2016 (103391173), the degradation of radiolabelled CAA was studied in three soils. The kinetic evaluation was done within the study report, but it was re-evaluated by RMS to fully comply with the Focus Guidance (2006, 2011). The RMS notes that there are some indications of problems with the performance of the study which resulted in the total recovery being outside the recommended range (90-110%) on several occasions, probably due to loss of  $CO_2$  and/or inhomogeneous distribution of non-extractable residues, and rather large scatter of the replicate data. Nevertheless, due to the very rapid degradation (mod DT50 0.1-0.3 days) the results are still considered acceptable. Finally, in Piskorsky, 2019 (20180095), the degradation of radiolabelled clethodim oxazole sulfoxide was studied in three soils. The kinetic evaluation was done within the study report in accordance with Focus guidance (2006, 2011). Biphasic models were selected as best fit model for trigger endpoints as well as for modelling endpoints, which was agreed by the RMS. In addition to the accepted endpoints for clethodim oxazole sulfoxide, which was derived from the parent only fitting, pathway fits were also performed with the best fit models for the downstream metabolite clethodim oxazole sulfone. This resulted in acceptable trigger and modelling endpoints for clethodim oxazole sulfone in two out of the three soils. In addition to the endpoints derived for CAA from the study submitted within this application, already peer-reviewed and agreed endpoints for this substance are available from EFSA conclusion/LoEP for (EZ)-1,3-dichloropropene (2018). All these endpoints are pooled together and a new geomean is calculated in agreement with the procedure previously used for common metabolites from several active substance (e.g. the sulfonyl ureas).

The derived persistence and modelling endpoints accepted by the RMS are summarised in Tables 2.8.1-1 through 2.8.1-7 below and the acceptable formation fractions are shown in Table 2.8.1-8. For reasons explained in Volume 3, not all the conclusions drawn by the author of the kinetic evaluation were agreed upon by the RMS.

#### pH dependency of degradation

Clethodim and its major metabolites, clethodim sulfoxide and clethodim sulfone, all contains the enol-group which could be deprotonated. The pKa for clethodim (see section 2.2) is 4.47 and it is likely that it is similar for the major metabolites. This pKa is at a relevant pH for acidic soils. Moreover, clethodim is shown to be prone to aqueous hydrolysis at pH 5 whereas it is stable at pH 7 and pH 9. Altogether, these factors could potentially lead to a pH-dependency of the degradation. In figure 2.8.1.2-1, the normalised DT50 are plotted against pH and the corresponding linear correlation coefficients and Kendall rank correlation coefficients are reported for each plot. As shown, no real conclusions can be made on the pH-dependency mainly because there is almost no data for acidic soils.





| Kendall tau: 0.09                                            |                                                         |
|--------------------------------------------------------------|---------------------------------------------------------|
| 2-sided p-value: 0.75                                        |                                                         |
| Eigene 2.9.1.2.1 Dista of some DT50 as all for slotheding on | dita matabalitan * Nat maanin afal ta muu Van dall namb |

Figure 2.8.1.2-1. Plots of norm DT50 vs pH for clethodim and its metabolites. \* Not meaningful to run Kendall rank correlation since the number of data point was only 3.

| Study                                         | Soil                        | pН          | best         | DT50,  | DT90, | χ2,                                 | Modellin                | ig endpoint                        |                                |               |
|-----------------------------------------------|-----------------------------|-------------|--------------|--------|-------|-------------------------------------|-------------------------|------------------------------------|--------------------------------|---------------|
|                                               |                             | (H2O)*<br>* | fit<br>model | days   | days  | error-<br>%                         | model                   | factor to<br>normalise<br>moisture | factor to<br>normalise<br>temp | DT50,<br>days |
| Mamouni,<br>2006a<br>(A00426)                 | Montesquieu                 | 7.8         | FOM<br>C     | 0.24   | 2.4   | 22.3<br>(SFO)<br>17.2<br>(FOMC<br>) | SFO<br>(0.21<br>days)   | 0.80                               | 1.0                            | 0.17          |
|                                               | Mechtildhause<br>n          | 7.3         | SFO          | 0.36   | 1.2   | 12.1                                | SFO                     | 0.79                               | 1.0                            | 0.28          |
|                                               | Speyer 2.2                  | 6.3         | FOM<br>C     | 0.19   | 3.9   | 19.4                                | FOMC<br>(DT90/<br>3.32) | 1.0                                | 1.0                            | 1.2           |
| Pack, 1988a<br>(MEF-<br>0014/8721028<br>)     | Greenville*                 | 7.1         | SFO          | 2.5    | 8.4   | 5.9                                 | SFO                     | 0.64                               | 1.61                           | 2.6           |
| Pack, 1990<br>(MEF-<br>0015/0016/89<br>14823) | Greenville*                 | 7.5         | SFO          | 1.1    | 3.6   | 4.8                                 | SFO                     | 0.53                               | 1.61                           | 0.9           |
| Persch, 2012                                  | Speyer 2.2                  | 6.0         | -***         | _***   | -***  | -***                                | _***                    | _***                               | _***                           | -***          |
| (S12-00097)                                   | Speyer 2.4                  | 7.9         | _***         | _***   | -***  | _***                                | _***                    | _***                               | _***                           | _***          |
|                                               | Speyer 5M                   | 7.9         | -***         | _***   | -***  | _***                                | _***                    | _***                               | _***                           | _***          |
| with pH (r):†                                 | Γ <sub>50</sub> correlation | -0.42       | -            | depend | lant  |                                     | Geometr<br>(days)       | ic mean (n=5                       | ):                             | 0.54          |
| Worst case DT<br>(days)                       | 50 (persistence t           | rigger):    | 2.5          |        |       |                                     |                         |                                    |                                |               |

| Table 2.8.1.2-1. | Summary | of kin | netic evalu | ation of | 'laborat | ory data | a on aerob | ic degradation | of clethodim in soil. |
|------------------|---------|--------|-------------|----------|----------|----------|------------|----------------|-----------------------|
|                  |         |        |             |          |          |          |            |                |                       |

\* The characteristics of the Greenville soil in the two studies are significantly different and they are regarded as two different soils (i.e. they are directly included in the overall mean).

\*\* pH values have been used as reported in case no media is defined or recalculated when reported as values in CaCl2 (i.e. according to eq. 3-9 in draft guidance on pH dependent degradation and adsorption in soil for groundwater leaching assessment, April 2021)

\*\*\*Due to rapid degradation and few sampling points the RMS considers the data set too small to derive degradation endpoints from this study.

| Study                      | Soil               | pН                             | best fit                             | <b>DT</b> 50 | <b>DT</b> 90 | χ2,                                             | Modell                                       | ing endpoin                            | t                               |                   |
|----------------------------|--------------------|--------------------------------|--------------------------------------|--------------|--------------|-------------------------------------------------|----------------------------------------------|----------------------------------------|---------------------------------|-------------------|
|                            |                    | (H <sub>2</sub> O)* model<br>* | model                                |              | ,<br>days    | error-<br>%                                     | model                                        | factor to<br>normaliz<br>e<br>moisture | factor to<br>normalis<br>e temp | DT50<br>,<br>days |
| Mamouni, 2006a<br>(A00426) | Montesquieu        | 7.8                            | FOMC<br>-SFO                         | 3.4          | 11.3         | 20.6<br>(SFO-<br>SFO)<br>17.2<br>(FOMC<br>-SFO) | SFO-<br>SFO<br>(4.0<br>days)                 | 0.80                                   | 1.0                             | 3.2               |
|                            | Mechtildhause<br>n | 7.3                            | SFO-<br>SFO                          | 7.2          | 24           | 10.5                                            | SFO-<br>SFO                                  | 0.79                                   | 1.0                             | 5.7               |
|                            | Speyer 2.2         | 6.3                            | DFOP-<br>decline<br>fit from<br>max† | 4.1          | 51.4         | 14.2                                            | DFOP<br>-<br>declin<br>e fit<br>from<br>max† | 1.0                                    | 1.0                             | 4.1               |

| Table 2.8.1.2-2. Summary of kinetic evaluation of laboratory data on aerobic degradation of the metabolite clethodim |
|----------------------------------------------------------------------------------------------------------------------|
| sulfoxide in soil.                                                                                                   |

| Study                                         | Soil              | pН                       | best fit    | <b>DT</b> 50 | <b>DT</b> 90 | χ2,         | Modell          | ing endpoin                            | t                               |                   |
|-----------------------------------------------|-------------------|--------------------------|-------------|--------------|--------------|-------------|-----------------|----------------------------------------|---------------------------------|-------------------|
|                                               |                   | (H <sub>2</sub> O)*<br>* | model       | ,<br>days    | ,<br>days    | error-<br>% | model           | factor to<br>normaliz<br>e<br>moisture | factor to<br>normalis<br>e temp | DT50<br>,<br>days |
| Pack, 1988a<br>(MEF-<br>0014/8721028)         | Greenville*       | 7.1                      | SFO-<br>SFO | 21.9         | 72.7         | 7.8         | SFO-<br>SFO     | 0.64                                   | 1.61                            | 22.6              |
| Pack, 1990<br>(MEF-<br>0015/0016/8914823<br>) | Greenville*       | 7.5                      | SFO-<br>SFO | 16           | 53           | 4.0         | SFO-<br>SFO     | 0.53                                   | 1.61                            | 13.6              |
| Persch, 2012                                  | Speyer 2.2        | 6.0                      | _***        | _***         | _***         | -***        | _***            | -***                                   | _***                            | _***              |
| (S12-00097)                                   | Speyer 2.4        | 7.9                      | _***        | -***         | -***         | -***        | _***            | _***                                   | _***                            | -***              |
|                                               | Speyer 5M         | 7.9                      | _***        | _***         | _***         | _***        | _***            | _***                                   | _***                            | _***              |
| Normalised DT <sub>50</sub> co<br>pH (r):     | orrelation with   | 0.04                     | Not pH      | depend       | lant         |             | Geome<br>(days) | tric mean (r                           | n=5):                           | 7.4               |
| Worst case DT50 (pe<br>(days)                 | ersistence trigge | r):                      | 21.9        |              |              |             |                 |                                        |                                 |                   |

\* The characteristics of the Greenville soil in the two studies are significantly different and they are regarded as two different soils (i.e. they are directly included in the overall mean).

\*\* pH values have been used as reported in case no media is defined or recalculated when reported as values in CaCl<sub>2</sub> (i.e. according to eq. 3-9 in draft guidance on pH dependent degradation and adsorption in soil for groundwater leaching assessment, April 2021).

\*\*\* Due to rapid degradation and few sampling points the RMS considers the data set too small to derive degradation endpoints from this study.

† Decline fit performed by RMS since pathway fit resulted in poor visual fit and a significant overestimation of the degradation

| sulfone in soil. | Table 2.8.1.2-3. Summary of k | inetic evaluatior | of laborator | y data on | aerobi | c degradation of the metabolite clethodim |
|------------------|-------------------------------|-------------------|--------------|-----------|--------|-------------------------------------------|
|                  | sulfone in soil.              |                   |              |           |        |                                           |

| Study                                         | Soil                                                         | pН                   | best fit                            | DT 50,  | DT90, | χ2,                                                     | Modelli                             | ng endpoint                        |                                |                            |
|-----------------------------------------------|--------------------------------------------------------------|----------------------|-------------------------------------|---------|-------|---------------------------------------------------------|-------------------------------------|------------------------------------|--------------------------------|----------------------------|
|                                               |                                                              | (H <sub>2</sub> O)** | model                               | days    | days  | error<br>-%                                             | model                               | factor to<br>normalise<br>moisture | factor to<br>normalise<br>temp | DT <sub>50</sub> ,<br>days |
| Mamouni, 2006a<br>(A00426)                    | Montesqui<br>eu                                              | 7.8                  | FOMC<br>-SFO                        | 12.1    | 40.1  | 31.0<br>(SFO<br>-<br>SFO)<br>30.2<br>(FO<br>MC-<br>SFO) | SFO-<br>SFO<br>(12<br>days)         | 0.80                               | 1.0                            | 9.6                        |
|                                               | Mechtildha<br>usen                                           | 7.3                  | SFO-<br>SFO                         | 12.4    | 41.1  | 7.4                                                     | SFO-<br>SFO                         | 0.79                               | 1.0                            | 9.7                        |
|                                               | Speyer 2.2                                                   | 6.3                  | SFO-<br>decline<br>fit from<br>max† | 6.0     | 19.9  | 25.5                                                    | SFO-<br>decline<br>fit from<br>max† | 1.0                                | 1.0                            | 6.0                        |
| Pack, 1988a<br>(MEF-<br>0014/8721028)         | Greenville<br>*                                              | 7.1**                | SFO-<br>SFO                         | 31.5    | 105   | 29.5                                                    | SFO-<br>SFO                         | 0.64                               | 1.61                           | 32.5                       |
| Pack, 1990<br>(MEF-<br>0015/0016/89148<br>23) | Greenville<br>*                                              | 7.5**                | SFO-<br>SFO                         | 29.7    | 98.7  | 19.2                                                    | SFO-<br>SFO                         | 0.53                               | 1.61                           | 25.2                       |
| Persch, 2012                                  | Speyer 2.2                                                   | 6.0                  | -***                                | -***    | -***  | _***                                                    | -***                                | -***                               | -***                           | -***                       |
| (S12-00097)                                   | Speyer 2.4                                                   | 7.9                  | _***                                | _***    | _***  | -***                                                    | _***                                | _***                               | _***                           | -***                       |
|                                               | Speyer 5M                                                    | 7.9                  | _***                                | _***    | _***  | _***                                                    | _***                                | _***                               | _***                           | -***                       |
| Normalised DT <sub>50</sub><br>with pH (r):   | Normalised DT <sub>50</sub> correlation 0.22<br>with pH (r): |                      | Not pH                              | dependa | nt    |                                                         | Geometri<br>(days)                  | ric mean (n=                       | 5):                            | 13.6                       |
| Worst case DT <sub>50</sub><br>(days)         | (persistence t                                               | rigger):             | 31.5                                |         |       |                                                         |                                     |                                    |                                |                            |

\* The characteristics of the Greenville soil in the two studies are significantly different and they are regarded as two different soils (i.e. they are directly included in the overall mean).

\*\* pH values have been used as reported in case no media is defined or recalculated when reported as values in CaCl<sub>2</sub> (i.e. according to eq. 3-9 in draft guidance on pH dependent degradation and adsorption in soil for groundwater leaching assessment, April 2021).

\*\*\* Due to rapid degradation and few sampling points the RMS considers the data set too small to derive degradation endpoints from this study.

† Decline fit performed by RMS since pathway fit resulted in poor visual fit and a significant overestimation of the degradation

| Table 2.8.1.2-4. Sum   | mary of kinetic | evaluati | on of I | aborato | ry data o | n aerob | ic degradation of the metabolite clethodim |
|------------------------|-----------------|----------|---------|---------|-----------|---------|--------------------------------------------|
| oxazole sulfoxide in s | soil.           |          |         |         |           |         |                                            |
|                        |                 |          |         |         |           | -       |                                            |

| Study                                              | Soil                                 | pH         | best fit                                                | DT50,  | DT90, | χ2,         | Modell                                                   | ing endpoint                       |                                |               |
|----------------------------------------------------|--------------------------------------|------------|---------------------------------------------------------|--------|-------|-------------|----------------------------------------------------------|------------------------------------|--------------------------------|---------------|
|                                                    |                                      | (H2O)<br>* | model                                                   | days   | days  | error<br>-% | model                                                    | factor to<br>normalise<br>moisture | factor to<br>normalise<br>temp | DT50,<br>days |
| Mamouni, 2006a                                     | Montesquieu                          | 7.8        | n.d.                                                    | n.d    | n.d   | n.d.        | n.d.                                                     | n.d.                               | n.d                            | n.d.          |
| (A00426)                                           | Mechtildhause<br>n                   | 7.3        | n.d.                                                    | n.d    | n.d   | n.d.        | n.d.                                                     | n.d.                               | n.d                            | n.d.          |
|                                                    | Speyer 2.2                           | 6.3        | FOMC<br>-<br>decline<br>fit<br>from<br>max <sup>†</sup> | 10.2   | 126   | 6.2         | FOM<br>C-<br>declin<br>e fit<br>from<br>max <sup>†</sup> | 1.0                                | 1.0                            | 10.2          |
| Pack, 1988a<br>(MEF-<br>0014/8721028)              | Greenville                           | 7.1        | SFO-<br>SFO                                             | 225    | 747   | 16.4        | SFO-<br>SFO                                              | 0.64                               | 1.61                           | 232           |
| Pack, 1990<br>(MEF-<br>0015/0016/891482<br>3)      | Greenville                           | 7.5        | _**                                                     | _**    | _**   | _**         | _**                                                      | _**                                | _**                            | _**           |
| Persch, 2012                                       | Speyer 2.2                           | 6.0        | n.d.                                                    | n.d    | n.d   | n.d.        | n.d.                                                     | n.d.                               | n.d                            | n.d           |
| (S12-00097)                                        | Speyer 2.4                           | 7.9        | n.d.                                                    | n.d    | n.d   | n.d.        | n.d.                                                     | n.d.                               | n.d                            | n.d           |
|                                                    | Speyer 5M                            | 7.9        | n.d.                                                    | n.d    | n.d   | n.d.        | n.d.                                                     | n.d.                               | n.d                            | n.d           |
| Piskorski, 2019<br>(20180095)<br>Applied as parent | South Witham                         | 7.4        | DFOP                                                    | 3.1    | 71    | 1.7         | DFOP<br>(k=0.0<br>17)                                    | 1.0                                | 1.0                            | 40.8          |
|                                                    | RefSol-01-A-<br>05                   | 6.3        | DFOP                                                    | 5.6    | 158   | 4.7         | DFOP<br>(k=0.0<br>08)                                    | 0.63                               | 1.0                            | 54.5          |
|                                                    | Speyer 6S                            | 7.7        | DFOP                                                    | 27.2   | 272   | 3.1         | DFOP<br>(k=0.0<br>06)                                    | 0.64                               | 1.0                            | 73.4          |
| Normalised DT <sub>50</sub> c<br>pH (r):           | orrelation with                      | 0.29       | Not pH                                                  | depend | ant   |             | Geome<br>(days)                                          | tric mean (n:                      | =5):                           | 52.2          |
| Worst case DT <sub>50</sub> (p<br>(days)           | Worst case DT50 (persistence trigger |            |                                                         |        |       |             | • •                                                      |                                    |                                |               |

\* pH values have been used as reported in case no media is defined or recalculated when reported as values in CaCl<sub>2</sub> (i.e. according to eq. 3-9 in draft guidance on pH dependent degradation and adsorption in soil for groundwater leaching assessment, April 2021).

\*\*: The RMS did not accept the fit as it significantly overestimates the degradation.

† Decline fit performed by RMS since pathway fit resulted in poor visual fit and a significant overestimation of the degradation †† Since only decline fit was accepted, no modelling endpoint can be determined.

n.d.: metabolite not detected in the data set

| Table 2.8.1.2-5. Summary of kinetic evaluation of laboratory data on aerobic degradation of the metabolite clethodim | ı |
|----------------------------------------------------------------------------------------------------------------------|---|
| oxazole sulfone in soil.                                                                                             | _ |

| Study                                 | Soil           | pН                  | best         | DT50, | DT90, | χ2,         | Modelli | ng endpoint                        | ng endpoint                    |               |  |  |
|---------------------------------------|----------------|---------------------|--------------|-------|-------|-------------|---------|------------------------------------|--------------------------------|---------------|--|--|
|                                       |                | (H <sub>2</sub> O)* | fit<br>model | days  | days  | error-<br>% | model   | factor to<br>normalise<br>moisture | factor to<br>normalise<br>temp | DT50,<br>days |  |  |
| Mamouni, 2006a                        | Montesquieu    | 7.8                 | n.d.         | n.d   | n.d   | n.d.        | n.d.    | n.d.                               | n.d                            | n.d.          |  |  |
| (A00426)                              | Mechtildhausen | 7.3                 | n.d.         | n.d   | n.d   | n.d.        | n.d.    | n.d.                               | n.d                            | n.d.          |  |  |
|                                       | Speyer 2.2     | 6.3                 | _**          | -**   | -**   | -**         | -**     | _**                                | -**                            | _**           |  |  |
| Pack, 1988a<br>(MEF-<br>0014/8721028) | Greenville     | 7.1*                | _***         | _***  | _***  | _***        | _***    | _***                               | _***                           | _***          |  |  |

| Study                                                        |                    | pН                  | best             | DT50, | DT90, | χ2,                             | Modelli      | ng endpoint                        | t                              |               |
|--------------------------------------------------------------|--------------------|---------------------|------------------|-------|-------|---------------------------------|--------------|------------------------------------|--------------------------------|---------------|
| -                                                            |                    | (H <sub>2</sub> O)* | fit<br>model     | days  | days  | error-<br>%                     | model        | factor to<br>normalise<br>moisture | factor to<br>normalise<br>temp | DT50,<br>days |
| Pack, 1990<br>(MEF-<br>0015/0016/8914823)                    | Greenville         | 7.5*                | _***             | _***  | _***  | _***                            | _***         | _***                               | _***                           | _***          |
| Persch, 2012                                                 | Speyer 2.2         | 6.0                 | n.d.             | n.d   | n.d   | n.d.                            | n.d.         | n.d.                               | n.d                            | n.d           |
| (S12-00097)                                                  | Speyer 2.4         | 7.9                 | n.d.             | n.d   | n.d   | n.d.                            | n.d.         | n.d.                               | n.d                            | n.d           |
|                                                              | Speyer 5M          | 7.9                 | n.d.             | n.d   | n.d   | n.d.                            | n.d.         | n.d.                               | n.d                            | n.d           |
| Piskorski, 2019<br>(20180095)                                | South Witham       | 7.4                 | DFOP-<br>SFO     | 219   | 729   | 6.2                             | DFOP-<br>SFO | 1.0                                | 1.0                            | 219           |
| Applied as<br>clethodim oxazole                              | RefSol-01-A-<br>05 | 6.3                 | DFOP-<br>SFO     | 468   | 1550  | 5.4                             | DFOP-<br>SFO | 0.63                               | 1.0                            | 294           |
| sulfoxide                                                    | Speyer 6S          | 7.7                 | _***             | _***  | _***  | -***                            | -***         | _***                               | _***                           | _***          |
| Class, 2009                                                  | LUFA 2.3           | 6.9                 | SFO              | 20    | 66    | 8.5                             | SFO          | 0.85                               | 1.0                            | 17            |
| (B 1460 G)                                                   | LUFA 2.2           | 6.0                 | SFO              | 24    | 79    | 6.4                             | SFO          | 1.0                                | 1.0                            | 24            |
| Applied as parent                                            | LUFA 6S            | 7.7                 | SFO              | 68    | 227   | 7.3                             | SFO          | 0.61****                           | 1.0                            | 41<br>****    |
| Normalised DT <sub>50</sub> correlation with -0.04 pH (r):   |                    | -0.04               | Not pH dependant |       |       | Geometric mean (n=4):<br>(days) |              |                                    | 64.1                           |               |
| Worst case DT <sub>50</sub> (persistence trigger):<br>(days) |                    | 468                 |                  |       |       | • <i>·</i> · ·                  |              |                                    |                                |               |

\* pH values have been used as reported in case no media is defined or recalculated when reported as values in CaCl<sub>2</sub> (i.e. according to eq. 3-9 in draft guidance on pH dependent degradation and adsorption in soil for groundwater leaching assessment, April 2021).

\*\*: Neither trigger nor modelling endpoints could be determined since the decline phase was not reached and as the pathway fit for the precursors were not accepted.

\*\*\* The fit was not statistically acceptable

\*\*\*\* Please see RMS comments to the normalised DT50 41 d in Vol 3 CA, B.8.1.1.4.

n.d.: metabolite either not detected or at too low levels in the data set

| Table 2.8.1.2-6. Summary of kinetic evaluation of | f laboratory data | on aerobic | degradation | of the | metabolite 2 | 2-[3- |
|---------------------------------------------------|-------------------|------------|-------------|--------|--------------|-------|
| chloroallyloxyimino] butanoic acid (CBA) in soil. |                   |            |             |        |              |       |

| Study                                                         | Soil         | pH                                                        | best         | DT50, | DT90, | χ2,         | Modell | Iodelling endpoint                 |                                |               |
|---------------------------------------------------------------|--------------|-----------------------------------------------------------|--------------|-------|-------|-------------|--------|------------------------------------|--------------------------------|---------------|
|                                                               |              | (H <sub>2</sub> O)                                        | fit<br>model | days  | days  | error-<br>% | model  | factor to<br>normalize<br>moisture | factor to<br>normalise<br>temp | DT50,<br>days |
| Turk, 2012                                                    | A1 UK soil   | 4.5                                                       | SFO          | 4.4   | 14.5  | 8.2         | SFO    | 0.65                               | 1.0                            | 2.9           |
| (13917.6136)                                                  | Horn soil    | 7.4                                                       | SFO          | 6.7   | 22.4  | 6.5         | SFO    | 0.99                               | 1.0                            | 6.6           |
| Applied as parent                                             | Sevelen soil | 7.6                                                       | SFO          | 4.8   | 15.8  | 10          | SFO    | 0.94                               | 1.0                            | 4.5           |
| Normalised DT <sub>50</sub> correlation with 0.80*<br>pH (r): |              | Potentially pH dependant* Geometric mean (n=3):<br>(days) |              |       |       |             | =3):   | 4.4*                               |                                |               |
| Worst case DT <sub>50</sub> (persistence trigger):<br>(days)  |              | r):                                                       | 6.7          |       |       |             |        |                                    |                                |               |

\* Only three data points are available so the pH -dependency cannot be fully evaluated. Since the metabolite is an acid a pHdependency can possibly be expected. Nevertheless, since the difference in the longest norm DT50 and the geomean is rather small, the choice of input for modelling is not anticipated to have a significant impact on the modelling outcome.

| Table 2.8.1.2-7. Summary of kinetic evaluation of laboratory data on aerobic degradation of the metabolite trans-3 |
|--------------------------------------------------------------------------------------------------------------------|
| chloroacrylic acid (CAA) in soil.                                                                                  |

| Study                                              | Soil                       | pН                  | best         | DT50,    | DT90,    | χ2,                           | Modell        | ing endpoint                       | t                              |               |
|----------------------------------------------------|----------------------------|---------------------|--------------|----------|----------|-------------------------------|---------------|------------------------------------|--------------------------------|---------------|
|                                                    |                            | (H <sub>2</sub> O)* | fit<br>model | days     | days     | error-<br>%                   | model         | factor to<br>normalize<br>moisture | factor to<br>normalise<br>temp | DT50,<br>days |
| Schubert, 2016<br>(103391173)<br>Applied as parent | LUFA 2.2                   | 6.0                 | HS           | 0.1      | 1.4      | 16.2<br>(SFO)<br>10.4<br>(HS) | SFO<br>(0.14) | 1.0                                | 1.0                            | 0.1           |
|                                                    | LUFA 2.4                   | 7.8                 | SFO          | 0.3      | 0.8      | 18.2                          | SFO           | 1.0                                | 1.0                            | 0.3           |
|                                                    | LUFA 6S                    | 7.7                 | SFO          | 0.3      | 1.1      | 13.1                          | SFO           | 1.0                                | 1.0                            | 0.3           |
| Already peer-review                                | ved values taken           | from the l          | EFSA co      | nclusion | on activ | ve substa                     | ance (EZ      | )-1,3-dichlo                       | ropropene                      |               |
| Applied as (EZ)-<br>1,3-dichloropropene            | Marcham soil<br>(M585, UK) | 7.7                 | SFO-<br>SFO  | 6.2      | 20.6     | 28.2                          | SFO-<br>SFO   | -                                  | -                              | 6.2           |

| Study                                                        | Soil                                   | pН                  | best         | DT50,  | DT90, χ | χ2,         | Modell                           | ing endpoint                       | Modelling endpoint             |               |  |  |
|--------------------------------------------------------------|----------------------------------------|---------------------|--------------|--------|---------|-------------|----------------------------------|------------------------------------|--------------------------------|---------------|--|--|
|                                                              |                                        | (H <sub>2</sub> O)* | fit<br>model | days   | days    | error-<br>% | model                            | factor to<br>normalize<br>moisture | factor to<br>normalise<br>temp | DT50,<br>days |  |  |
|                                                              | Charently soil<br>(M584, France)       | 6.3                 | SFO-<br>SFO  | 10.1   | 33.61   | 20.9        | SFO-<br>SFO                      | -                                  | -                              | 8.9           |  |  |
|                                                              | Thessaloniki<br>soil (M583,<br>Greece) | 8.0                 | SFO-<br>SFO  | 19     | 63.1    | 24.7        | SFO-<br>SFO                      | -                                  | -                              | 19            |  |  |
|                                                              | Cuckney soil<br>(M579, UK)             | 6.0                 | SFO-<br>SFO  | 18.6   | 61.7    | 23.4        | SFO-<br>SFO                      | -                                  | -                              | 16.3          |  |  |
| Applied as (EZ)-3-<br>chloroallyl alcohol.                   | Marcham soil<br>(M622, UK)             | 7.9                 | SFO-<br>SFO  | 0.7    | 2.4     | 13          | SFO-<br>SFO                      | -                                  | -                              | 0.7           |  |  |
|                                                              | Charently soil<br>(M608, France)       | 6.2                 | SFO-<br>SFO  | 2.0    | 6.7     | 22.2        | SFO-<br>SFO                      | -                                  | -                              | 2.0           |  |  |
|                                                              | Thessaloniki<br>soil (M607,<br>Greece) | 8.0                 | SFO-<br>SFO  | 3.1    | 10.3    | 17          | SFO-<br>SFO                      | -                                  | -                              | 3.1           |  |  |
|                                                              | Cuckney soil<br>(M609, UK)             | 6.6                 | SFO-<br>SFO  | 2.0    | 6.8     | 21          | SFO-<br>SFO                      | -                                  | -                              | 2.0           |  |  |
| Normalised DT <sub>50</sub> correlation with pH (r):         |                                        | -0.06               | Not pH       | depend | ant     |             | Geometric mean (n=11):<br>(days) |                                    |                                | 1.9           |  |  |
| Worst case DT <sub>50</sub> (persistence trigger):<br>(days) |                                        | :                   | 19           |        |         |             |                                  |                                    |                                |               |  |  |

\* pH values have been used as reported in case no media is defined or recalculated when reported as values in CaCl<sub>2</sub> (i.e. according to eq. 3-9 in draft guidance on pH dependent degradation and adsorption in soil for groundwater leaching assessment, April 2021).

|                   | Formation fra             | action estimates in ea  | ach soil                |                   |                     |
|-------------------|---------------------------|-------------------------|-------------------------|-------------------|---------------------|
|                   | $clethodim {\rightarrow}$ | Clethodim               | Clethodim               | Clethodim         | Clethodim oxazole   |
| Soil              | clethodim                 | sulfoxide $\rightarrow$ | sulfoxide $\rightarrow$ | sulfone→Clethodim | sulfoxide→clethodim |
|                   | sulfoxide                 | clethodim sulfone       | Clethodim               | oxazole sulfone   | oxazole sulfone     |
|                   |                           |                         | oxazole sulfoxide       |                   |                     |
| Montesquieu       | 0.83                      | 0.64                    | -                       | -                 | -                   |
| Mechtildhausen    | 0.89                      | 0.63                    | -                       | -                 | -                   |
| Speyer 2.2        | -                         | -                       | -                       | -                 | -                   |
| Greenville, Pack, | 0.80                      | 0.27                    | 0.09                    | 0.34              | -                   |
| 1988a             |                           |                         |                         |                   |                     |
| Greenville, Pack, | 0.83                      | 0.39                    | 0.12                    | -                 | -                   |
| 1990              |                           |                         |                         |                   |                     |
| Speyer 2.2        | -                         | -                       | -                       | -                 | -                   |
| Speyer 2.4        | -                         | -                       | -                       | -                 | -                   |
| Speyer 5M         | -                         | -                       | -                       | -                 | -                   |
| South Witham      | -                         | -                       | -                       | -                 | 0.68                |
| RefSol-01-A-05    | -                         | -                       | -                       | -                 | 0.83                |
| Speyer 6S         | -                         | -                       | -                       | -                 | 0.92                |
| Formation         | 0.84 (n=4)                | 0.48 (n=4)              | 0.11 (n=2)              | 0.34 (n=1)        | 0.81                |
| fraction for      |                           |                         |                         |                   | ( <b>n=3</b> )      |
| PEC modelling     |                           |                         |                         |                   |                     |
| Arithmetic        |                           |                         |                         |                   |                     |
| mean              |                           |                         |                         |                   |                     |

-: The formation fraction is not acceptable, or the metabolite was not formed at sufficient levels

The study on the degradation of radiolabelled clethodim under anaerobic conditions (Pack, 1988b; MEF-0063 / 8819578) could not be used to calculate rates due to the rapid degradation during the aerobic phase (first day).

The soil photolysis study (Mamouni, 2006b; RCC Study number A00437), gave a net irradiation degradation halflive of 0.15 days (corresponding to 0.7 days of natural sunlight at latitudes 30-40°N) for clethodim which is not significantly different to the half-lives determined for aerobic degradation in soil. However, in this specific study a half-life of 2.7 days was determined for the dark control, which indicates that soil photolysis may have an influence on the degradation in soil. No acceptable field dissipation studies are available (for further details on previous submitted non-acceptable studies; see Volume 3 Annex B.8 (AS)) and the applicant did not consider this requirement to be triggered (i.e. they state that all laboratory trigger  $DT_{50}$  values are <60 days for clethodim and metabolites). However, since the normalised lab DT50, at 20 C and pF 2.0 is >60 days for the metabolites clethodim oxazole sulfoxide and clethodim oxazole sulfone in one or more soils, field dissipation studies are set as a data gap.

#### 2.8.1.3 Assessment in relation to the P-criteria for soil

The criteria for persistence in soil, as stated in Annex II to Reg (EC) 1107/2009, are  $DT_{50}$  120 days (PBT) and 180 days (POP and vPvB). It is assumed that these criteria represent a constant rate of degradation over the decline curve, i.e. that single first order (SFO) kinetics has been assumed implicitly when the criteria were defined. Therefore, to allow a comparison against the criteria also for results derived by other kinetic models than SFO it is considered appropriate to divide FOMC/DFOP  $DT_{90}$ s by 3.32 in agreement with the DG SANCO Working Document (2012)<sup>1</sup>. The resulting trigger values used in the comparison are shown in the table below:

| Tuble 2.0.1.5 1. Summary of t | Table 2.6.1.5-1. Summary of trigger D150 for elethoum used in the comparison with the 1-effectia |                        |      |  |  |  |  |  |  |  |  |
|-------------------------------|--------------------------------------------------------------------------------------------------|------------------------|------|--|--|--|--|--|--|--|--|
| Soil                          | Model                                                                                            | DT <sub>90</sub> /3.32 | DT50 |  |  |  |  |  |  |  |  |
| Montesquieu                   | FOMC                                                                                             | 0.7                    | -    |  |  |  |  |  |  |  |  |
| Mechtildhausen                | SFO                                                                                              | -                      | 0.4  |  |  |  |  |  |  |  |  |
| Speyer 2.2                    | FOMC                                                                                             | 1.2                    | -    |  |  |  |  |  |  |  |  |
| Greenville Pack, 1988a        | SFO                                                                                              | -                      | 2.6  |  |  |  |  |  |  |  |  |
| Greenville Pack, 1990         | SFO                                                                                              | -                      | 1.1  |  |  |  |  |  |  |  |  |

Table 2.8.1.3-1. Summary of trigger DT<sub>50</sub> for clethodim used in the comparison with the P-criteria

The aerobic degradation of clethodim in soil is very rapid and it is concluded that it does not fulfil any of the criteria for persistence (PBT/ vPvB /POP).

With regards to the main metabolites, it should be stressed that the criteria only apply to the parent substance. However, the comparison itself give useful information on the persistence of metabolites and it is thus presented below. The major metabolites clethodim sulfoxide and clethodim sulfone had acceptable DT50's derived from laboratory data in five soils, of which none exceeds the criterion for PBT/ vPvB /POP. For the minor metabolite clethodim oxazole sulfoxide trigger values were available from two soils from parent dosed studies, where the DT50's where 38 (DT90/3.32) and 225 days respectively. In addition, DT50's for three soils from metabolites dosed studies were available where criteria for PBT/ vPvB /POP were not met for any of the soils. In conclusion, the persistence of this metabolite can be seen as low to moderate. For the minor metabolite clethodim oxazole sulfor, DT50's from, two soils from parent dosed studies gave DT50's in the range of 219-468 days which clearly exceeded the criterion for PBT and vPvB/POP. On the other hand, the data from the parent dosed studies gave DT50's in the range of 20-68 days, which indicate that the endpoints derived from the parent dosed studies may be over conservative. The metabolite CBA, only found in significant amounts in the soil photolysis studies, had DT50's from three soils from a metabolite dosed studies may be over conservative. The metabolite dosed study. It showed a rapid degradation (DT50's in the range of 4.4-6.7 days) and the metabolite dose not fulfil the criteria for PBT/ vPvB /POP. Finally, for CAA (also an exclusive soil

<sup>&</sup>lt;sup>1</sup> DG SANCO Working Document on "Evidence Needed to Identify POP, PBT and vPvB Properties for Pesticides", Brussels, 25.09.2012 – rev. 3

photolysis metabolite), data from a total of 11 soils are available, which gave DT50's in the range of 0.3-19 days. Consequently, the criteria for PBT/ vPvB /POP are not met for this metabolite either.

# 2.8.1.4 Adsorption to soil

Batch experiments to determine the potential for adsorption to soils were available for clethodim, and the major metabolites clethodim sulfoxide, clethodim sulfone, clethodim oxazole sulfoxide, clethodim oxazole sulfone. For metabolite CAA (3-chloroacrylic acid), which is a common metabolite with (EZ)-1,3-dichloropropene, the already peer-reviewed data as presented in EFSA Conclusion (2018) are reported here. They were not further discussed.

Some of the studies were submitted to support the first approval of the parent compound (Völkel 2006 a; A00448), and it was previously evaluated in the AR (2007), or in the DAR 2005, or in Addendum to the DAR 2006. Some of the studies on single metabolites were also evaluated before (Völkel 2006 b–g, report numbers A58667, A32815, A58680, A32826, A58691, A34391; Kang 2012, report number 13917.6137). Some studies on metabolites were never evaluated before (Lee, 2021 a, b, report numbers AU-2019-28, AU-2019-29A; Völkel 2022\_amendment of Beyer, 2018, report number 20180079; Völkel, 2022 a, b, report numbers 20210247, 20200587).

The results from the adsorption experiments are summarized in the following tables. All data are for room temperature. All are isotherm  $K_F$  and  $K_{F,OC}$  and are derived for the reference concentration 1 mg/L and in the units liter water per kg dry weight ( $L_w/kg_{dw}$ ) or liter water per kg organic carbon ( $L_w/kg_{OC}$ ). Our results may differ marginally from those presented by the Applicant, mainly due to rounding off and number of significant digits used for the calculations. For some studies however, the result from individual soils were considered as unreliable, and the RMS has not included these in Volume 1 and LoEP. Main reasons for exclusion were too low mass balance, and/or too low stability. The RMS quantified these factors using the criteria set in EFSA (2017)<sup>2</sup>, for instance the RMS investigated if the  $K_F \times$  soil:solution ratio was higher than 0.3 and the "Boesten ratio"  $K_{F,E} / K_F$  was lower than 1.2. If these criteria were not met, and the indirect method was used, the RMS generally excluded the soil from the data set.

All studies used the OECD 106 batch experiments and covered a sufficient number of soils with a range of properties (texture). All studies also covered a sufficiently large range in concentrations (typically a factor 100), although the absolute concentration in some studies were high (up to 10-12 mg/L), which possibly challenges the scope of the guideline (OECD 106 §5) to investigate environmental conditions, since for toxic pesticides such high concentrations are never expected under the uses applied for (GAP). The RMS notes that 10-12 mg/L is high enough to increase dissolved organic carbon (DOC)<sup>3</sup> in the test system, and in some cases also the pH. The RMS also questions if a sufficient range for pH soil is included in the studies, but we also note that this is a generic issue for all PPP-dossiers, and not a specific concern for the clethodim dossier.

<sup>&</sup>lt;sup>2</sup> EFSA (European Food Safety Authority), 2017. Technical report on the outcome of the pesticides peer review meeting on the OECD 106 evaluators checklist. EFSA supporting publication 2017:EN-1326. 18 pp. doi:10.2903/sp.efsa.2017.EN-1326

<sup>&</sup>lt;sup>3</sup> The RMS also note that the particle separation methods are different in the studies, some uses ultracentrifugation. This creates different supernatants, with lower amount of colloids after ultracentrifugation (OECD 106 §6, and Annex 5). Modern research methods for studying sorption makes use of passive samplers for determining the dissolved phase in a more consistent manner (e.g. Jahnke et al., Environ. Sci . Technol. 46, 2012).

An analysis of the potential pH dependency of sorption was not available in any of the study reports, and consistently, pKa values were never reported in spite of the recommendation in OECD 106, §13f. Where possible, RMS tried to investigate the influence of soil pH. We looked for correlations of  $^{ads}K_{F,OC}$  versus pH (but not log  $^{ads}K_{F,OC}$  versus pH), we plotted the data and looked for any type of relationship (linear, sigmoidal, U-shaped or inverted U). For the acid CBA the RMS also speculated in what pKa the test items may have, based on comparison to known values for analogue compounds.

For the active substance, clethodim, there is one single study (Völkel 2006 a; A00448). The RMS found that a linear negative relationship of  $K_{F,OC}$  versus pH was significant (p = 0.004,  $R^2 = 0.99$ , Nsoils = 4, Excel AddIn Analysis ToolPak, regression). The  $K_{F,OC}$  increased from 7–17  $L_w/kg_{OC}$  at pH 7 up to 161–203  $L_w/kg_{OC}$  at pH 5, in essence at least by a factor 9. The RMS therefore propose to divide the sorption data into two groups soils (N = 2 at low pH, and N = 2 at high).

For adsorption at normal pH the  $K_F$  at 1 mg/L was 0.222 and 0.288, with a geomean of 0.253 (0.194–0.329)  $L_w/kg_{dw}$ , (confidence interval of geomean). The PPP-procedure (from e.g. prosulfocarb) is to use worst case (lowest) instead of average when only two points are available, hence value to use is 0.222  $L_w/kg_{dw}$ . The  $K_{F,OC}$  was 6.98 and 17.3 with a geomean of 11.0 (8.45–14.3)  $L_w/kg_{OC}$  (confidence interval of geomean), and its lowest of the two points to use is thereby 6.98  $L_w/kg_{OC}$ . Adsorption was non-linear so the arithmetic mean "1/n" of 0.95 should be used for the Freundlich non-linearity constant at normal pH.

For adsorption at low pH the K<sub>F</sub> at 1 mg/L was 4.07 and 3.70, with a geomean of 3.88 (2.67–5.63)  $L_w/kg_{dw}$ , (confidence interval of geomean). PPP-procedure (from e.g. prosulfocarb) is to use worst case (lowest) instead of average when only two points are available, hence value to use is 3.70  $L_w/kg_{dw}$ . The K<sub>F,OC</sub> was 203 and 161 with a geomean of 181 (125–262)  $L_w/kg_{OC}$  (confidence interval of geomean), and its lowest of the two points to use is thereby 161  $L_w/kg_{OC}$ . Adsorption was linear (confidence interval of the slope overlapped 1) so the arithmetic mean "1/n" of 1.00 should be used for the Freundlich non-linearity constant at low pH.

As a result, the K<sub>F,OC</sub> for the group normal soil pH is a factor 23 higher than for the low soil pH.

| Clethodim                                                                            |      |                |                          |                            |                          |                            |         |  |  |  |
|--------------------------------------------------------------------------------------|------|----------------|--------------------------|----------------------------|--------------------------|----------------------------|---------|--|--|--|
| Soil Type (b)                                                                        | OC % | Soil pH<br>(a) | K <sub>d</sub><br>(mL/g) | K <sub>doc</sub><br>(mL/g) | K <sub>F</sub><br>(mL/g) | K <sub>Foc</sub><br>(mL/g) | 1/n     |  |  |  |
| sandy loam                                                                           | 2.30 | 5.60           |                          |                            | 3.70                     | 161                        | 0.999   |  |  |  |
| Loam                                                                                 | 1.28 | 7.37           |                          |                            | 0.222                    | 17.3                       | 0.931   |  |  |  |
| clay loam                                                                            | 4.13 | 7.55           |                          |                            | 0.288                    | 6.98                       | 0.964   |  |  |  |
| silt loam                                                                            | 2.00 | 5.36           |                          |                            | 4.07                     | 203                        | 1.034   |  |  |  |
| Geometric mean (if not pH dependent)                                                 |      |                |                          |                            | (0.721)                  | (44.6)                     |         |  |  |  |
| Arithmetic mean (if not pH dependent)                                                |      |                |                          |                            |                          |                            | (0.982) |  |  |  |
| pH dependence, YesLow pH $K_{Foc} = 161, 1/n = 1$<br>Normal pH $K_{Foc} = 6.98, 1/n$ |      |                |                          |                            |                          |                            |         |  |  |  |

Table 2.8.1.4-1. Clethodim: Adsorption Freundlich isotherm, Freundlich exponent ("1/n"), Kd and organic carbon normalised Kd.

(a) Measured in 0.01 M calcium chloride solution (b) All soils from (Völkel 2006 a; A00448)

As indicated above, data from the EFSA conclusion of 1,3-dichloropropene (2018) are presented in Table 2.8.1.4-2.

| 3-CAA                              |                                                     |                       |         |        |           |        |       |
|------------------------------------|-----------------------------------------------------|-----------------------|---------|--------|-----------|--------|-------|
| Soil Type                          | OC %                                                | Soil pH <sup>a)</sup> | Kd      | Kdoc   | KF        | KFoc   | 1/n   |
|                                    |                                                     |                       | (mL/g)  | (mL/g) | (mL/g)    | (mL/g) |       |
| Sandy Loam (Bertie County/COBB)    | 0.66                                                | 5.9                   | 0.115   | 17.5   | 0.106     | 16.1   | 0.883 |
| Clay loam (Grand Forks/M536)       | 4.76                                                | 6                     | < 0.01  | < 0.01 | NC        | NC     | NC    |
| Loamy sand Wake County/M537)       | 0.41                                                | 6                     | 0.0518  | 12.6   | 0.0409    | 9.97   | 0.872 |
| Silty clay loam (Charentilly/M547) | 1.07                                                | 6.3                   | < 0.01  | < 0.01 | < 0.00278 | 0.259  | 0.426 |
| Loam (Fresno, M528)                | 0.81                                                | 7                     | 0.00887 | 1.10   | < 0.0129  | 0.16   | 0.961 |
| Silt Loam (Thessaloniki/M546)      | 1                                                   | 7.9                   | 0.0200  | 1.99   | < 0.0241  | 2.41   | 1.18  |
| Clay (Faringdon/M549)              | 3.22                                                | 7.9                   | < 0.01  | < 0.01 | NC        | NC     | NC    |
| Sandy clay loam (Marcham/M548)     | 1.25                                                | 8                     | < 0.01  | < 0.01 | NC        | NC     | NC    |
| Silt loam, M504                    | 0.9                                                 | 8.2                   | 0.00691 | 0.767  | < 0.0143  | 1.6    | 0.907 |
| Geometric mean (n=6)               |                                                     | -                     | 1.72    |        |           |        |       |
| Arithmetic mean (n=6)              |                                                     |                       |         | 0.872  |           |        |       |
| pH dependence                      | slight pH dependence [slightly higher at higher pH] |                       |         |        |           |        |       |

Table 2.8.1.4-2: Kfoc values for 3-chloroacrylic acid, already peer-reviewed and agreed, taken from the EFSA conclusion of the active substance (EZ)-1,3-dichloropropene (2018).

<sup>a</sup> medium not stated

Regarding the metabolite clethodim sulfoxide, there are three studies (Völkel 2006 b,c, reports number A58667, A32815, and Völkel 2022 b, report number 20200587), of which two studies presents the isotherm for  $K_{F,oc}$  (the third A32815 is just pre-studies). The RMS decided to exclude Völkel 2006 b,c (A58667, A32815), because the quality criteria indicate very uncertain data ( $K_{F,E}/K_F$  ratios are 2.3–4.7, and the Efsa Checklist recommend caution for values above 1.2. Plotting data for the two isotherm studies together indicates a systematic difference, with significantly higher Koc values in Völkel 2006 b (A58667), since the confidence interval for the points never overlap (Figure 2.8.1.4-1). The RMS interpret this as if degraded substance is erroneously counted as sorbed. Therefore, the RMS propose (Table 2.8.1.4-3) that sorption data for clethodim sulfoxide should be based exclusively on Völkel 2022 b (20200587).

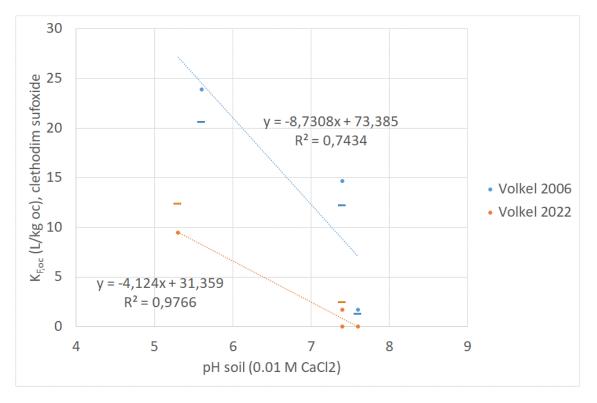



Figure 2.8.1.4-1.  $K_{F,oc}$  for clethodim sulfoxide from two isotherm studies. Lower 95% confidence limit for Völkel 2006 (A58667) blue dash, upper confidence limit for Völkel 2022 (UPL/2021/0339) red dash.

|                                       |                                                 |                |                          | -                          | -                        |                            |       |
|---------------------------------------|-------------------------------------------------|----------------|--------------------------|----------------------------|--------------------------|----------------------------|-------|
| Soil Type                             | OC %                                            | Soil pH<br>(a) | K <sub>d</sub><br>(mL/g) | K <sub>doc</sub><br>(mL/g) | K <sub>F</sub><br>(mL/g) | K <sub>Foc</sub><br>(mL/g) | 1/n   |
| Clay (St Bauzille) d                  | 1.4                                             | 7.4            |                          |                            | 0                        | 0                          | -     |
| Sandy loam (Longwood) d               | 1.2                                             | 7.6            |                          |                            | 0                        | 0                          | -     |
| Clay (Sout Witham) d                  | 2.8                                             | 7.4            |                          |                            | 0.049                    | 1.7                        | 1.292 |
| Loam (Kenslow) d                      | 3.6                                             | 5.3            |                          |                            | 0.342                    | 9.5                        | 0.956 |
| Geometric mean (if not pH dependent)  |                                                 |                |                          |                            | (0.129)b                 | (4.1)b                     |       |
| Arithmetic mean (if not pH dependent) |                                                 |                | 1.00 c                   |                            |                          |                            |       |
| pH dependence, Yes                    | Low pH $K_{Foc} = 9.5$ , $1/n = 1.00$ , $N = 1$ |                |                          |                            |                          |                            |       |
|                                       |                                                 |                | Normal r                 | $H K_{Eoc} = 1$            | 12 1/n = 1               | 00 N = 3                   |       |

Table 2.8.1.4-3: Clethodim sulfoxide: Adsorption Freundlich isotherm, Freundlich exponent ("1/n"), Kd and organic carbon normalised Kd.

(a) Measured in 0.01 M calcium chloride solution

(b) Geomean for the two sorption isotherms which were above zero

(c) RMS recommend setting 1/n equal to one, due to lack of robust evidence of concentration dependency

(d) Völkel 2022 (UPL/2021/0339)

Regarding the metabolite clethodim sulfone, there are three studies (Völkel 2006 d,e, report numbers A58680, A32826, and Lee 2021 a, report number AU-2019-28), of which two studies presents the isotherm for  $K_{F,oc}$  (A32826 is only pre-studies). The RMS propose to use all four soils from Lee 2021 a (AU-2019-28), and one soil from Völkel 2006d (A58680). For these five soils,  $K_{F,OC}$  did not have statistically significant (p = 0.056,  $R^2 = 0.75$ , N = 5, Excel AddIn Analysis ToolPak, regression) linear correlation on soil pH. However, the RMS still propose to assume  $K_{F,OC}$  was pH-dependent. Primarily because the regression should better have been made in relation to the expected sigmoidal relation, which is not how we did it (we do not know pKa). pKa/b values should be possible to derive using QSAR-tools. Therefore the RMS presents  $K_{F,OC}$  grouped into low pH and normal pH. For the low pH group, there are only two values, and the PPP-agreement (from e.g. prosulfocarb) is to use worst case (lowest) instead of average when only two points are available, hence  $K_{F,OC}$  value to use is 15.9 L<sub>w</sub>/kg oc.

 Table 2.8.1.4-4: Clethodim sulfone: Adsorption Freundlich isotherm, Freundlich exponent ("1/n"), Kd and organic carbon normalised Kd.

| Soil Type                            | OC % | Soil pH<br>(a) | K <sub>d</sub><br>(mL/g)                                                                             | K <sub>doc</sub><br>(mL/g) | K <sub>F</sub><br>(mL/g) | K <sub>Foc</sub><br>(mL/g) | 1/n   |
|--------------------------------------|------|----------------|------------------------------------------------------------------------------------------------------|----------------------------|--------------------------|----------------------------|-------|
| Sandy loam (Longwoods) (b)           | 1.6  | 7.5            |                                                                                                      |                            | 0.132                    | 8.3                        | 1.16  |
| Clay (St Bauzille) (b)               | 1.4  | 7.4            |                                                                                                      |                            | 0.159                    | 11                         | 1.04  |
| Loam (Kenslow) (b)                   | 3.6  | 5.3            |                                                                                                      |                            | 0.704                    | 24                         | 0.828 |
| Clay (South Witham) (b)              | 2.8  | 7.4            |                                                                                                      |                            | 0.0376                   | 1.3                        | 0.785 |
| Sandy loam (Speyer 2.2) (c)          | 2.3  | 5.6            |                                                                                                      |                            | 0.366                    | 15.9                       | 0.774 |
| Geometric mean (if not pH dependent) |      |                |                                                                                                      |                            | (0.183)                  | (8.5)                      |       |
| Arithmetic mean (if not pH dependent | nt)  |                |                                                                                                      |                            |                          |                            | 0.92  |
| pH dependence, Yes                   |      |                | Low pH $K_{Foc} = 15.9$ , $1/n = 1.00$ , $N = 2$<br>Normal pH $K_{Foc} = 4.9$ $1/n = 1.00$ , $N = 3$ |                            |                          |                            |       |

(a) Measured in 0.01 M calcium chloride solution

(b) Lee 2021 a (AU-2019-28)

(c) Völkel 2006d (A58680)

Regarding the metabolite clethodim oxazole sulfone, there are three studies (Völkel 2006 f, g, study numbers A58691, A34391, and Lee 2021 b, study number AU-2019-29A), of which two studies presents the isotherm for  $K_{F,OC}$  (A34391is only pre-studies). The RMS propose to use all four soils from Lee 2021 b (AU-2019-29A), but none from Völkel 2006 f, g (A58691, A34391) due to low mass-balances and non-convincing data on stability (low stability and sparse chromatographic information). For the four Lee soils (AU-2019-29A),  $K_{F,OC}$  did not have statistically significant linear correlation on soil pH (p = 0.31,  $R^2 = 0.48$ , N= 4, Excel AddIn Analysis ToolPak,

regression), but considering the many functional groups, many of which has potential to change the molecules charge and hydrophobicity with pH (e.g. the oxazole group may be basic). The RMS proposes to consider pH-dependency as being established, and therefore to group sorption data into the two groups low pH and normal pH. This gives  $K_{F,OC}$  groups which differs by a factor 2.3 (230% higher at normal pH). For the normal pH the slope of the isotherm should be set to one, since the confidence interval for the arithmetic mean of the three slopes did overlap with 1. For the acidic pH, there is only one isotherm, and its slope was significantly lower than 1, so we propose to use its arithmetic mean (0.918). For the normal pH, we used the geometric mean for  $K_{F,OC}$  (96.3 L<sub>w</sub>/kg<sub>OC</sub>).

| Table 2.8.1.4-5: Clethodim oxazole sulfone: Adsorption Freundlich isotherm, Freundlich exponent ("1/n"), Kd and |
|-----------------------------------------------------------------------------------------------------------------|
| organic carbon normalised Kd.                                                                                   |
|                                                                                                                 |

| Soil Type                                                            | OC % | Soil pH<br>(a) | K <sub>d</sub><br>(mL/g) | K <sub>doc</sub><br>(mL/g) | K <sub>F</sub><br>(mL/g) | K <sub>Foc</sub><br>(mL/g) | 1/n     |
|----------------------------------------------------------------------|------|----------------|--------------------------|----------------------------|--------------------------|----------------------------|---------|
| Sandy loam (Longwoods) (b)                                           | 1.6  | 7.5            |                          |                            | 0.9878                   | 61.6                       | 0.964   |
| Clay (St Bauzille) (b)                                               | 1.4  | 7.4            |                          |                            | 1.736                    | 124                        | 0.996   |
| Loam (Kenslow) (b)                                                   | 3.6  | 5.3            |                          |                            | 1.518                    | 42.2                       | 0.918   |
| Clay (South Witham) (b)                                              | 2.8  | 7.4            |                          |                            | 2.283                    | 117                        | 0.958   |
| Geometric mean (if not pH dependent)                                 |      |                |                          |                            | (1.630)                  | (86.2)                     |         |
| Arithmetic mean (if not pH dependent)                                |      |                |                          |                            |                          |                            | (0.989) |
| pH dependence, Yes Low pH $K_{Foc} = 42.2$ , $1/n = 0.918$ , $N = 1$ |      |                |                          |                            |                          |                            |         |
| Normal pH $K_{Foc} = 96.3, 1/n = 1.00, N = 3$                        |      |                |                          |                            |                          |                            |         |

(a) Measured in 0.01 M calcium chloride solution

(b) Lee 2021 b, AU-2019-29A

Regarding the metabolite clethodim oxazole sulfoxide, there is one study on soil sorption isotherm (Beyer 2018, study number 20180079). The RMS propose to use all three soils in that study. For the three Beyer soils,  $K_{F,OC}$  did not have statistically significant linear correlation on soil pH (p = 0.14,  $R^2 = 0.95$ , N= 3, Excel AddIn Analysis ToolPak, regression), but the RMS do see a weak pH dependency (higher  $K_{F,OC}$  at lower pH), but in the studied pH range, the  $K_{F,OC}$  only differs by 20%. In the absence of more datapoints and a pKa value, the RMS therefore propose to use averaged sorption isotherm values for the three soils.

| Table 2.8.1.4-6: Clethodim oxazole sulfoxide: Adsorption Freundlich isotherm, Freundlich exponent ("1/n"), Kd and |
|-------------------------------------------------------------------------------------------------------------------|
| organic carbon normalised Kd.                                                                                     |
|                                                                                                                   |

| Clethodim oxazole sulfoxide           |      |                |                          |                            |                          |                            |       |
|---------------------------------------|------|----------------|--------------------------|----------------------------|--------------------------|----------------------------|-------|
| Soil Type                             | OC % | Soil pH<br>(a) | K <sub>d</sub><br>(mL/g) | K <sub>doc</sub><br>(mL/g) | K <sub>F</sub><br>(mL/g) | K <sub>Foc</sub><br>(mL/g) | 1/n   |
| Sandy clay loam (Sout Witham) (b)     | 2.8  | 7.4            |                          |                            | 2.956                    | 105.6                      | 0.934 |
| Clay (Stenson) (b)                    | 3.8  | 5.8            |                          |                            | 4.761                    | 125.3                      | 0.947 |
| Silt loam (Am Fischteish) (b)         | 1.6  | 5.2            |                          |                            | 2.020                    | 126.3                      | 0.920 |
| Geometric mean (if not pH dependent)  |      |                |                          |                            | 3.05                     | 118.6                      |       |
| Arithmetic mean (if not pH dependent) |      |                |                          |                            |                          |                            | 0.934 |
| pH dependence. No                     |      |                | -                        |                            |                          |                            |       |

pri dependence, No

(a) Measured in 0.01 M calcium chloride solution

(b) Beyer 2018, 20180079

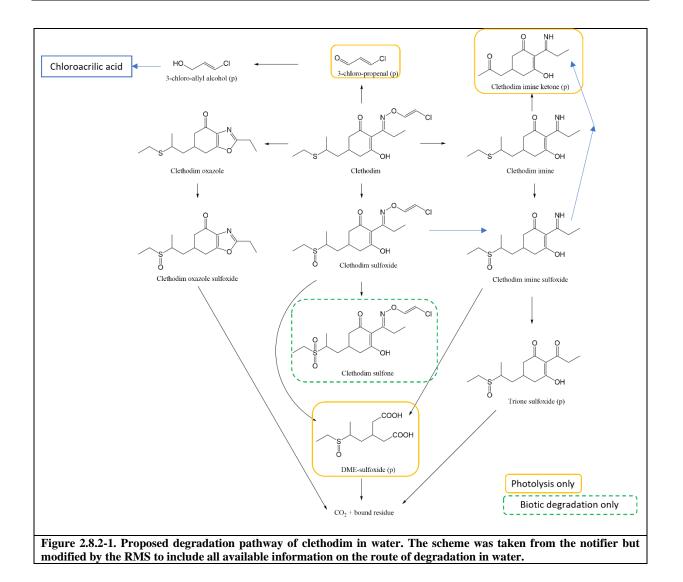
Regarding the metabolite CBA, there are two studies (Kang, 2012 study number 13917.6137 and Völkel, 2022a study number 20210247). Both uses 14-labelled test item, but Kang does not fulfil many critical quality criteria (stability is not convincingly demonstrated, detection limits are not presented, new appearing chromatographic peaks are not discussed, R2 for isotherm regression are too low, slope of isotherm is extraordinary low, and in two of three soils the check "Kd × soil:solution ratio" is too low for indirect method to be acceptable). The RMS therefore solely uses the data from Völkel 2022a (20210247). For the four soils,  $K_{F,OC}$  did have statistically significant linear correlation with soil pH (p = 0.002, R2 = 0.995, N= 4, Excel AddIn Analysis ToolPak, regression), and RMS sees a strong pH dependency (higher  $K_{F,OC}$  at lower pH), in the studied pH range. A literature pKa value for a similar

compound, the unsubstituted butanoic acid is around 4.6, so the RMS therefore propose that the negative linear relation in the range reflects a change in test item composition, with a higher share of hydrophobic neutral CBA-species at lower pH, giving stronger hydrophobic interaction with the organic matter, and more anionic species at higher pH, which are less hydrophobic, and also repels from the soils natural organic matter which may be slightly negatively charged in this pH range. The RMS therefore proposes to consider pH-dependency as fully established, and to group sorption data into the two groups low pH and normal pH. This gives  $K_{F,OC}$  groups which differs by a factor 5.3 (530% higher at low pH).

Table 2.8.1.4-7: CBA: Adsorption Freundlich isotherm, Freundlich exponent ("1/n"), Kd and organic carbon normalised Kd.

| CBA<br>Soil Type (b)                     | OC %  | Soil pH | Kd     | Kdoc        | KF            | KFoc        | 1/n    |
|------------------------------------------|-------|---------|--------|-------------|---------------|-------------|--------|
|                                          | 00 /0 | (a)     | (mL/g) | (mL/g)      | (mL/g)        | (mL/g)      |        |
| Clay (St Bauzille)                       | 1.4   | 7.4     |        |             | 0.049         | 3.5         | 1.14   |
| Sandy loam (Longwoods)                   | 1.2   | 7.6     |        |             | 0.019         | 1.6         | 0.89   |
| Clay (South Witham)                      | 2.8   | 7.4     |        |             | 0.074         | 2.7         | 1.03   |
| Loam (Kenslow)                           | 3.6   | 5.3     |        |             | 0.493         | 14          | 0.96   |
| Geometric mean (if not pH dependen       | t)    |         |        |             | (0.076)       | (3.8)       |        |
| Arithmetic mean (if not pH dependen      | t)    |         |        |             |               |             | (1.01) |
| pH dependence, Yes Low pH $K_{Foc} = 14$ |       |         |        | 1/n = 1.00, | $\dot{N} = 1$ |             |        |
|                                          |       |         |        |             |               | 1.00, N = 3 |        |

(a) Measured in 0.01 M calcium chloride solution


(b) All from Völkel, 2022 study number 20210247

# 2.8.2 Summary of fate and behaviour in water and sediment [equivalent to section 11.1 of the CLH report template]

This section has been written both to present degradation data necessary for comparison with the CLP criteria and to fulfil the requirements under Regulation (EC) No 1107/2009. The comparison with the CLP criteria is presented in section 2.9.2.4.2 (Long-term aquatic hazard (including bioaccumulation potential and degradation)).

One new study was provided on aerobic mineralisation of clethodim in surface water to comply with new data requirements. Additionally, one aqueous photolysis study from the open literature was provided as supportive information. All other studies and data points covering the degradation of clethodim in the aquatic environment were covered with studies submitted and accepted during the Annex I inclusion. These studies are still considered valid by the RMS SE. Degradation kinetics for clethodim and its metabolites in the water/sediment system were evaluated according to FOCUS DegKinetics Report (2006, 2014).

The proposed route of degradation in water is shown in the figure below. The RMS has modified the applicant's proposal slightly to include all available information (see Vol. 3, CA, B.8.2): additional metabolites found in some studies are added with a blue rectangular frame, blue arrows are added for additional pathways and the metabolites that are clearly only formed as photolytic degradation products or from biodegradation processes are marked with yellow or green dashed frames, respectively.



# 2.8.2.1 Rapid degradability of organic substances

An overview of all studies that are considered relevant for the aquatic compartment are summarised in the table below. The studies are further presented in the sections that follow. See Vol. 3, B.8.2 (CA) for additional information.

| Method             | Results                                  | Key or<br>Supportive | Remarks                             | Reference   |
|--------------------|------------------------------------------|----------------------|-------------------------------------|-------------|
|                    |                                          | study                |                                     |             |
| Hydrolysis         | Clethodim hydrolysed under acidic        | Key study            | Radiolabelled Clethodim             | Pack, 1988c |
|                    | conditions (pH 5) at environmentally     |                      | (propyl & allyl label).             | Report no.  |
| Guideline:         | relevant temperatures (25 °C), with      | Study                |                                     | MEF-0013 /  |
| US EPA N:161-      | estimated half-lives of 28-54 days.      | considered           | Test concentration: 5               | 8703899     |
| 1, OECD TG         | Clethodim corresponded to 43.1% AR       | acceptable           | mg/L (propyl-14C-                   | Vol. 3 CA   |
| No. 111            | (propyl-labelled) and 64.9% AR (allyl    | for evaluation       | clethodim) and 10 mg/L              | B.8.2.1.1   |
|                    | labelled) at the end of the study at     | of hydrolytic        | (allyl- <sup>14</sup> C-clethodim). |             |
| Deviations:        | $25 \pm 0.1$ °C.                         | degradation          |                                     |             |
| None that would    |                                          |                      | Endpoints: route of                 |             |
| invalidate the     | Two major metabolites were formed,       |                      | degradation and major               |             |
| study: sterility   | oxazole (max. 50.5% AR after 32 days,    |                      | metabolites (>10% AR).              |             |
| not confirmed at   | propyl-labelled) and chloroallyl-alcohol |                      |                                     |             |
| the end of the     | (max. 30.7% AR after 30 days, allyl-     |                      | Validity criteria met?:             |             |
| study, no tests at | labelled).                               |                      | yes, apart from that                |             |

Table 68. Summary of relevant information on rapid degradability.

| Method                                                                                                                                                                                                                                                                                                                                                                                                        | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Key or<br>Supportive                            | Remarks                                                                                                                                                                                                                                                                            | Reference                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | study                                           |                                                                                                                                                                                                                                                                                    |                                                               |
| pH 4, only at pH<br>5, nor at higher<br>temperatures,<br>only at 25 °C,<br>were performed.                                                                                                                                                                                                                                                                                                                    | At neutral or higher pH at 25 °C,<br>clethodim was stable to hydrolysis. At<br>pH 7 and 9, at the end of the study at<br>$25 \pm 0.1$ °C, clethodim corresponded to<br>91% AR (propyl-labelled, both pH) and<br>93.4% AR (allyl-labelled, pH 7).<br>Mineralization was not measured.<br>Studies at higher temperatures were not<br>performed.                                                                                                                                                                                                                                                                                                                                   |                                                 | sterility was not<br>confirmed at the end of<br>the study. However,<br>comparison with studies<br>under aerobic suggests<br>that other metabolites<br>would have been formed<br>if biodegradation would<br>have occurred (mainly<br>clethodim sulfoxide and<br>clethodim sulfone). |                                                               |
| Aqueous<br>photolysis<br><u>Guideline:</u><br>U.S. EPA<br>N:161-2<br>OECD TG No.<br>316<br><u>Deviations:</u><br>Shorter test<br>duration for<br>most studies,<br>but an irradiated<br>30-day study at<br>pH 7 was<br>performed<br>fulfilling the<br>recommendation<br>in OECD TG<br>No 316. Daily<br>sunlight<br>exposure was 10<br>hours instead of<br>12 hours as<br>recommended in<br>OECD TG No.<br>316. | Clethodim was photochemically<br>degraded under natural sunlight (10-<br>hour daily exposure with average<br>intensity of 20.3 kW/cm <sup>2</sup> ) at all tested<br>pH-levels (pH 5, 7, 9) with estimated<br>effective photolysis-DT50s of 1.7, 6.8<br>and 9.6 days at pH 5, 7, and 9 at $25 \pm 1$<br>°C. Sensitization enhanced the<br>degradation.<br>Several metabolites were formed at ><br>10% AR:<br>DME sulfoxide (RE-52453), imine<br>sulfoxide (RE-47718), clethodim<br>sulfoxide (RE-47924), imine (RE-<br>47686), and imine ketone.<br>Mineralization was very low (CO <sub>2</sub> was<br><1 % AR in all samples).<br>Quantum yield was not determined.           | Key study<br>Study<br>considered<br>acceptable  | Radiolabelled Clethodim<br>[ring-4,6-14C]         Test concentration: 10<br>mg/L         Endpoints: route of<br>degradation and major<br>metabolites (>10% AR).         Validity criteria met?:<br>yes.                                                                            | Chen, 1988a<br>Report no.<br>MEF-0024<br>Vol 3CA<br>B.8.2.1.2 |
| Aqueous<br>photolysis<br><u>Guideline:</u><br>U.S. EPA<br>N:161-2<br>OECD TG No.<br>316<br><u>Deviations:</u><br>Shorter test<br>duration for<br>most studies,<br>but an irradiated<br>30-day study at<br>pH 7 was<br>performed<br>fulfilling the<br>recommendation<br>in OECD TG<br>No 316. Daily                                                                                                            | Clethodim was photochemically<br>degraded under natural sunlight (10-<br>hour daily exposure with average<br>intensity of 20.5 kW/cm <sup>2</sup> ) at all tested<br>pH-levels (pH 5, 7, 9) with estimated<br>effective photolysis-DT50s of 1.5, 4.1<br>and 6.0 days at pH 5, 7, and 9, and at<br>$25 \pm 1$ °C.<br>Sensitization enhanced the degradation.<br>Several metabolites were formed at ><br>10% AR:<br>clethodim sulfoxide (RE-45924),<br>chloroallyl alcohol and 3-<br>chloropropenal.<br>Mineralization reached 24.8% AR (sum<br>of CO <sub>2</sub> trapped and in solution) after 30<br>days under natural sunlight at pH 7.<br>Quantum yield was not determined. | Key study<br>Study<br>considered<br>acceptable. | Radiolabelled Clethodim         [ally1-2-14C]         Test concentration: 10         mg/L         Endpoints: route of         degradation and major         metabolites (>10% AR).         Validity criteria met?:         yes.                                                    | Chen, 1988b<br>Report no.<br>MEF-0025<br>Vol 3CA<br>B.8.2.1.2 |

| Method                                                                                                                                                                     | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Key or<br>Supportive                                       | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Reference                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
|                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | supportive                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                               |
| sunlight<br>exposure was 10<br>hours instead of<br>12 hours as<br>recommended in<br>OECD TG No.                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                               |
| 316<br>Aqueous<br>photolysis<br>published<br>literature                                                                                                                    | Clethodim was rapidly degraded under<br>simulated sunlight (250-750 Wm <sup>-2</sup> ) and<br>natural sunlight with half-lives below 5<br>hours. Clethodim in a formulation<br>degraded even quicker with DT50s<br><1.5h.<br>Some mineralization occurred (not<br>quantified in the study, authors only<br>state that clethodim was not completely<br>mineralized).<br>Four metabolites were identified:<br>clethodim imine, clethodim sulfoxides,<br>clethodim imine sulfoxide and<br>clethodim imine ketone                                | Supportive                                                 | Non-radiolabelled<br>clethodim analytical<br>standard and clethodim<br>in formulation<br>(Centurion Plus, 120<br>g/L)<br>Test concentration 5<br>mg/L                                                                                                                                                                                                                                                                                                                    | Villaverde<br>(2018),<br>published<br>literature<br>Vol 3CA<br>B.8.2.1.2      |
| Ready<br>biodegradability<br><u>Guideline:</u><br>OECD 301D<br>EEC guidance<br>C.4-E (closed<br>bottle test)<br><u>Deviations:</u><br>None.                                | The biodegradation of technical<br>clethodim was high with 55.9% of<br>ThOD after 7 days and 133-138%<br>ThOD measured after 14-28 days. The<br>reference substance (sodium benzoate)<br>was degraded by 72.5% ThOD after 7<br>days and 104-131% thereafter (DAT<br>14-28).<br>No inhibitory effect in the mixture of<br>reference substance and clethodim was<br>observed.<br>It was concluded that clethodim is<br>readily biodegradable.                                                                                                  | Key study<br>The study<br>was<br>considered<br>acceptable. | The high degradation<br>rates (>100 %) for both<br>clethodim and the<br>reference substance were<br>explained by a high<br>bacterial density in the<br>inoculum that caused a<br>high oxygen<br>consumption and self-<br>digestion of the<br>inoculum. This was also<br>used to explain the<br>oxygen depletion in the<br>blank control, which<br>exceeded the maximum<br>values given in OECD<br>301D.<br>All other validity criteria<br>of the tests were<br>fulfilled | Dengler (2002),<br>Report no.<br>20011424/01-<br>AACB<br>Vol 3CA<br>B.8.2.2.1 |
| Aerobic<br>Mineralisation<br>in surface water<br><u>Guideline:</u><br>OECD 309<br><u>Deviations:</u><br>Uncertainty in<br>the mass<br>balance of<br>individual<br>samples. | Mineralization in the pelagic test was<br>low with 6% AR at low test<br>concentration (9.1 $\mu$ g/L) and 1.4% AR<br>at high test concentration (90.6 $\mu$ g/L).<br>Half-lives of 14.9 and 23.5 days were<br>calculated for low and high test<br>concentration.<br>87.3% AR of the reference substance<br>(benzoic acid) was mineralized after 11<br>days, indicating a valid test.<br>Clethodim sulfoxide was formed<br>reaching average maximum of 86.5% at<br>low concentration. No other individual<br>metabolite was detected >10% AR. | Key study<br>Study<br>considered<br>acceptable.            | fulfilled.<br>Radiolabelled (ring<br>labelled)<br>Uncertainty in the mass<br>balance of individual<br>samples in the test with<br>low test concentration at<br>day 21 and 28 are not<br>considered to invalidate<br>the study. No other<br>deviations were noted.                                                                                                                                                                                                        | Irmer (2020),<br>Report no. S17-<br>08723<br>Vol 3CA<br>B.8.2.2.2             |
| Aerobic<br>water/sediment<br><u>Guideline:</u>                                                                                                                             | Clethodim dissipated from the water<br>phase from ca 92% AR at day 0 to <<br>2% after 42 days (allyl) or 56 days<br>(ring), mainly due to degradation. The                                                                                                                                                                                                                                                                                                                                                                                   | Key study                                                  | Radiolabelled (ring- and<br>allyl)<br>Test concentration:                                                                                                                                                                                                                                                                                                                                                                                                                | Mamouni<br>(2006c),<br>Report no.<br>A00450                                   |

| Method                                                                                                                                                                                                                                              | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Key or<br>Supportive                                                                                                                                                                                                                                                 | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Reference                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | study                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                     |
| OECD 308<br>EPA N, 162-4<br>Deviations:<br>None that would<br>invalidate the<br>study.<br>Study duration<br>was longer than<br>100 days in the<br>ring test, and<br>only single<br>samples were<br>taken in the<br>allyl-test.                      | maximum observed in sediment was<br>12% AR after 7 days, which also<br>decreased in all test systems to < 2 %<br>AR after 90 days.<br>SFO DegT50 of clethodim in total<br>water/sediment-system was 9.2 days<br>(river) and 13.1 days (pond), resulting<br>in a geomean of 11.0 days.<br>Several metabolites were detected that<br>classify as 'major metabolites' in the<br>total system, i.e. >10% AR or >5% at<br>two consecutive sampling dates:<br>Clethodim sulfoxide, clethodim<br>sulfone, clethodim imine, clethodim<br>imine sulfoxide as well as an unknown,<br>non-characterised metabolite M20.<br>Major metabolites in the water phase:<br>clethodim sulfoxide (>10% AR),<br>clethodim sulfoxide, clethodim imine<br>(>10% AR), clethodim imine<br>(>10% AR), clethodim imine<br>(>10% AR), clethodim imine sulfoxide,<br>M20 (if characterised as one<br>substance).<br>DT50s were estimated with pathway-<br>fits for all metabolites in agreement<br>with relevant guidance on kinetic<br>assessments, resulting in half-lives of<br>19-52 days and, thus, more persistent in<br>aquatic environments than the parent.<br>DT50s in the total system > 40 days<br>were obtained for clethodim imine (51<br>days), and clethodim sulfone (52 days).<br>No degradation rates were estimated for<br>the unknown metabolite M20.<br>Significant mineralization occurred in<br>both pond and river system, with a<br>maximum of 43.7 % AR formed in the<br>pond test system after 90 days (allyl-<br>labelled experiment). | study<br>considered<br>acceptable.                                                                                                                                                                                                                                   | 0.06 mg/L<br>River and pond water<br>test systems were used<br>with aerobic conditions<br>in water and anaerobic<br>conditions in sediment.<br>Temperature: 20 ± 2 °C.<br>No duplicated samples<br>were taken in the<br>experiments with the<br>allyl-labelled clethodim.<br>The results were pooled<br>with the results from the<br>ring-labelled study for<br>estimating half-lives.<br>Thus, for that purpose,<br>sufficient data points<br>were available. | Vol 3CA,<br>B.8.2.2.3<br>Lee & Jarvis<br>(2020),<br>Report no.<br>1602214.UK0-<br>5305<br>B.8.2.2.3 |
| Aerobic<br>water/sediment<br><u>Guideline:</u><br>BBA, part IV,<br>5-1 (1990)<br><u>Deviations from</u><br><u>OECD 308:</u><br>Acclimation<br>phase of 60<br>days, exceeding<br>the guideline<br>stipulated 4<br>weeks.<br>LOD/LOQ not<br>reported. | Clethodim dissipated from the water<br>phase from 70.5% AR at day 0 to < 1%<br>after 121 days, mainly due to<br>degradation. Hardly any clethodim was<br>detected in sediment (max. 2.4% after<br>103 days, not-detected after 121 days).<br>SFO DegT50 of clethodim in total<br>water/sediment-system was 22.1 days.<br>Three metabolites were identified as<br>major in total system, i.e. occurring at<br>>10% AR or >5% at two consecutive<br>sampling dates: clethodim sulfoxide,<br>clethodim imine. The two sulfoxide<br>compounds were also classified as<br>major in water, while the two imine<br>compounds were classified as major in<br>sediment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Key study<br>Study<br>considered<br>acceptable<br>for<br>classification<br>purpose and<br>for exposure<br>assessments<br>with the<br>parent only.<br>Study also<br>considered<br>acceptable<br>for exposure<br>assessment of<br>the major<br>metabolites<br>based on | Radiolabelled (ring)<br>Test concentration:<br>0.077  mg/L<br>Pond water test systems<br>were used with aerobic<br>conditions in water and<br>anaerobic conditions in<br>sediment.<br>Temperature: $20 \pm 2$ °C.<br>Concentration of<br>clethodim at day 0 is<br>only 70%, suggesting<br>uncertainty in the<br>assessment and handling<br>of the samples.<br>However, degradation                                                                             | Heintze (1998,<br>amended 2005).<br>Report no.<br>97245/01-<br>CUWS<br>Vol 3CA,<br>B.8.2.2.3        |

| Method | Results                                                                                        | Key or<br>Supportive<br>study                                                                                                    | Remarks                                                                                                                                                                                                                                                                                                                                                                                                | Reference |
|--------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|        | Mineralization reached a maximum of<br>15.4 % AR after 121 days (and 18.3%<br>AR after 196 d). | maximum<br>occurrences,<br>but not<br>acceptable<br>for exposure<br>assessments<br>with parent<br>and<br>metabolite<br>together. | rate estimates may still<br>be acceptable for<br>classification purposes<br>considering that the<br>estimates will be rather<br>conservative.<br>The too long acclimation<br>phase does not seem to<br>have invalidated the<br>results, as the sediment<br>showed good viability<br>after 120 days and the<br>physico-chemical<br>parameters measured<br>before and after the<br>study were unchanged. |           |

# 2.8.2.1.1 Ready biodegradability

One study on ready biodegradability was available (Dengler, 2002, Report no. 20011424/01-AACB). The study was conducted in accordance with OECD 301D (closed bottle test). The reference substance (sodium benzoate) was significantly degraded within 7 days (72.5% ThOD). Also, high degradation of technical clethodim was observed during the first 7 days, with 55.9% ThOD. For both substances, clethodim and sodium benzoate, degradation increased to >100% ThOD after 14-28 days. This was correlated to a high cell number and high bacterial density used in the inoculum, resulting in a high oxygen consumption and self-digestion of the inoculum causing the exceedance of the theoretical oxygen demand. This may indicate that the amount of inoculum (0.1 mL/L) was rather high for the batch of effluent used, despite being within the limits given in the guideline (0.05-5 mL/L). The oxygen depletion in the blank control exceeded 1.5 mg dissolved oxygen/L after 28 days. This was explained by the above discussed high bacterial density, which is seen as a further investigation of the experimental techniques. All other validity criteria were fulfilled, i.e. no inhibitory effect was seen in the tests with a mixture of reference substance and clethodim, and the residual concentrations of oxygen in the test bottles were above the minimum value indicated in the test guideline.

The study was already available for the first approval. It is still deemed to be acceptable, despite the high oxygen depletion as the overall test results were consistent and all other validity criteria fulfilled. The conclusion of the study is that clethodim is readily biodegradable.

# 2.8.2.1.2 BOD<sub>5</sub>/COD

No BOD<sub>5</sub>/COD test was available.

# 2.8.2.2 Other convincing scientific evidence

Relevant data on abiotic degradation were available (hydrolysis, see 2.8.2.2.5, and aquatic photolysis, see 2.8.2.2.6).

Other data of relevance for classification and labelling were one study on biodegradation in surface water (see 2.8.2.2.1) and two studies on biodegradation in water/sediment systems (see 2.8.2.2.4). Additionally, studies on biodegradation in soil were available (see 2.8.1.1 and 2.8.1.2).

#### 2.8.2.2.1 Aquatic simulation tests

Irmer (2020), Report no. S17-08723, investigated the rate of mineralization of [ring-4,6, 14C]-clethodim in surface water with a pelagic test according to OECD TG no. 309. The two concentrations (9.1  $\mu$ g/L and 90.6  $\mu$ g/L) were in line with recommendations in the guideline. Mineralization was low with a maximum of 6.0 % AR at low test concentration and 1.4% at the high test concentrations after 68 and 60 days, respectively. The overall mass balances were acceptable, even if individual samples at the low test concentration were outside the range of 90-110 % AR. Clethodim degraded during the course of the study with no detection at the end of the study at low test concentration and 10% AR in the high test concentration. Half-lives (SFO) were estimated to be 14.9 days at low test concentration and 23.9 days at high test concentration, in accordance with FOCUS DegKinetics (2006, 2014).

Clethodim sulfoxide was the main metabolite, reaching average maximum values of 86.5 % AR (low concentration, 14 days) and 77% AR (high concentration, 60 days). One unknown metabolite (M5) was detected >10 % AR in both low and high test concentration, but further characterised as consisting of 17 components, none exceeding 5% AR. After 11 days, 87.3% AR of the reference substance, benzoic acid, was mineralized, indicating that the test was valid.

A chiral analysis of clethodim was performed for all samples were clethodim was detected. It was concluded that E-clethodim is dominating and that the R/S-ratio for E-clethodim was constant and 1:1 throughout the study duration. For the Z-isomer of clethodim, the R:S ratio was less constant, but as the overall concentrations were low (max. 5.6% at low test concentration in 2 samples, otherwise <2%), the analysis of the R:S ratio must be considered uncertain. Please refer to section 2.13, and in particular section 2.13.6 for a further discussion on the isomeric composition of clethodim and this study.

The study was provided for the purpose of renewal and deemed acceptable.

Two studies were available that investigated the route and rate of clethodim in aerobic water/sediment systems; Mamouni (2006c), Report no. A00450, and Heintze (1998, amended 2005, Report no. 97245/01-CUWS). Both studies were available already for the previous approval. For the purpose of renewal, a kinetic re-assessment was performed following FOCUS DegKinetics (2006, 2014) by Lee & Jarvis (2020), Report no. 1602214.UK0-5305. Mamouni (2006c), Report no. A00450, included ring- and allyl-labelled clethodim in its study and used river (River Rhine) and pond (Pond Möhlin) test systems at 20 °C. In Heintze (1998, 2005, Report no. 97245/01-CUWS), ring-labelled clethodim was investigated in a pond system at 20 °C (denoted as 'Pond II' in the summary table for clethodim below). Mineralization was significant in all experiments, with a maximum of 32.3 % AR reached after 174 days in the river test system (Mamouni, 2006c), Report no. A00450. Radioactivity in the water phase decreased continuously throughout the study (from 99% AR to 15%-30% AR after 90-120 days, Mamouni, 2006c, Report no. A00450), while radioactivity increased in the sediment phase reaching around 36-54 % AR in sediment after 120 days. In Heintze (1998, 2005, Report no. 97245/01-CUWS), clethodim was only present at roughly 70% in the sample at day 0. The remaining radioactivity was identified as its metabolite clethodim sulfoxide. In both studies,

clethodim dissipated, mainly via degradation, from the water phase, while only small quantities of clethodim were detected in the sediment (maximum of 12 % AR after 7 days in Mamouni (2006c), Report no. A00450, max. 2.4% in Heintze, 1998, 2005, Report no. 97245/01-CUWS). DT50s were estimated to 9-13 days in Mamouni (2006c), Report no. A00450. In Heintze (1998, 2005, Report no. 97245/01-CUWS), a half-live of 22 days was estimated, which is probably relatively slower due to the uncertainty of the measurements at day 0.

Several major metabolites were identified: Clethodim sulfoxide and Clethodim sulfone (both mainly in water phase), Clethodim imine (mainly in sediment), Clethodim imine sulfoxide (both in water and sediment) and unknown, non-characterised, metabolite M20 (detections of 2 x  $\geq$ 5% AR only in sediment phase).

Summary of the degradation rates estimated for parent and metabolites in the water/sediment studies as well as maximum occurrences are presented in the following tables.

| able 2.8.2.2.1-1: Degradation rates estimated for clethodin |                      |                                                                                     |            |                                                            |             |                                                       |             |                                                     |             |                       |
|-------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------|------------|------------------------------------------------------------|-------------|-------------------------------------------------------|-------------|-----------------------------------------------------|-------------|-----------------------|
| Parent                                                      |                      | Distribution river system: Max in water 96.1 % at day 0. Max. sed 11.1 % after 7 d. |            |                                                            |             |                                                       |             |                                                     |             |                       |
|                                                             | Distrib              | Distribution pond system: Max in water 96.5 % at day 0. Max. sed 12.0 % after 7 d   |            |                                                            |             |                                                       |             |                                                     |             |                       |
| Water / sediment<br>system                                  | pH<br>water<br>phase | pH<br>sed<br>(a)                                                                    | t. °C      | DT <sub>50</sub> /DT <sub>90</sub><br>(days)<br>whole sys. | St.<br>(χ2) | DT <sub>50</sub> /DT <sub>90</sub><br>(days)<br>water | St.<br>(χ2) | DT <sub>50</sub> /DT <sub>90</sub><br>(days)<br>sed | St.<br>(χ2) | Method of calculation |
|                                                             | phase                | ( <i>a</i> )                                                                        |            | (c)                                                        |             | water                                                 |             | seu                                                 |             |                       |
| River Rhine                                                 | 8.18                 | 7.18                                                                                | $20 \pm 2$ | 9.2 / 30.6                                                 | 18.8        | n.d.                                                  | -           | n.d.                                                | -           | SFO                   |
| Pond Möhlin                                                 | 8.24                 | 7.15                                                                                | $20 \pm 2$ | 13.2 / 43.8                                                | 15.6        | n.d.                                                  | -           | n.d.                                                | -           | SFO                   |
| Pond II (d)                                                 | 7.8                  | 7.84 <sup>(b)</sup>                                                                 | $20\pm2$   | 22.1 / 73.4                                                | 5.96        | n.d.                                                  | -           | n.d.                                                | -           | SFO                   |
| Geometric mean at 20                                        | 0°C <sup>b)</sup>    |                                                                                     |            | 13.9                                                       |             |                                                       |             |                                                     |             |                       |

# Table 2.8.2.2.1-1: Degradation rates estimated for clethodim

n.d. not determined

(a) Measured in calcium chloride solution

(b) Medium for pH determination not reported.

(c) Normalised using a Q10 of 2.58

(d) Results from this study can be used for classification purposes and risk assessment of the parent only.

#### Table 2.8.2.2.1-2: Degradation rates estimated for clethodim sulfoxide

| Clethodim<br>sulfoxide     | system<br>Distrib    | Distribution river system: Max in water 57.8 % after 14d. Max. sed 5.2 % after 21 d. Max in total system 61.5 % after 14 days.<br>Distribution pond system: Max in water 37.2 % after 21 d. Max. sed 5.3 % after 21 d. Max in total system 42.5 % after 21 days. |            |                                                                   |             |                                                       |             |                                                     |             |                       |
|----------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------------------------------------------|-------------|-------------------------------------------------------|-------------|-----------------------------------------------------|-------------|-----------------------|
|                            |                      | kinetic formation fraction ( $k_f/k_{dp}$ ): 0.747 river system, 0.487 pond system. Arithmetic mean ffM: 0.617 (from parent)                                                                                                                                     |            |                                                                   |             |                                                       |             |                                                     |             |                       |
| Water / sediment<br>system | pH<br>water<br>phase | pH<br>sed<br>(a)                                                                                                                                                                                                                                                 | t. °C      | DT <sub>50</sub> /DT <sub>90</sub><br>(days)<br>whole sys.<br>(b) | St.<br>(χ2) | DT <sub>50</sub> /DT <sub>90</sub><br>(days)<br>water | St.<br>(χ2) | DT <sub>50</sub> /DT <sub>90</sub><br>(days)<br>sed | St.<br>(χ2) | Method of calculation |
| River Rhine                | 8.18                 | 7.18                                                                                                                                                                                                                                                             | $20 \pm 2$ | 30.6 / 102                                                        | 21.9        | n.d.                                                  | -           | n.d.                                                | -           | SFO-SFO               |
| Pond Möhlin                | 8.24                 | 24 7.15 20 ± 2 26.1 / 86.7 34.1 n.d n.d SFO-SFO                                                                                                                                                                                                                  |            |                                                                   |             |                                                       |             |                                                     |             |                       |
| Geometric mean at          | 20°C <sup>b)</sup>   |                                                                                                                                                                                                                                                                  |            | 28.3                                                              |             |                                                       |             |                                                     |             |                       |

n.d. not determined

(a) Measured in calcium chloride solution

(b) Normalised using a Q10 of 2.58

#### Table 2.8.2.2.1-3: Degradation rates estimated for clethodim imine

| Clethodim imine  |         |                     | •          | n: Max in water                             | 1.4 %      | after 7d. Max. | sed 18     | 3.4 % after 33 d                   | . Max      | in total    |
|------------------|---------|---------------------|------------|---------------------------------------------|------------|----------------|------------|------------------------------------|------------|-------------|
|                  | system  | 19.2 %              | after 33   | days.                                       |            |                |            |                                    |            |             |
|                  | Distrib | ution po            | ond system | m: Max in wate                              | r 2.1 %    | after 7 d. Max | . sed 3    | 5.8 % after 33                     | d. Max     | in total    |
|                  | system  | 36.4 %              | after 33   | days.                                       |            |                |            |                                    |            |             |
|                  | Kinetic | format              | ion fracti | on (k <sub>f</sub> /k <sub>dp</sub> ): 0.25 | 3 river    | system, 0.512  | pond s     | system. Arithm                     | etic me    | an ffM:     |
|                  | 0.383 ( | 0.383 (from parent) |            |                                             |            |                |            |                                    |            |             |
| Water / sediment | pН      | pН                  | t. °C      | DT <sub>50</sub> /DT <sub>90</sub>          | St.        | DT50 /DT90     | St.        | DT <sub>50</sub> /DT <sub>90</sub> | St.        | Method of   |
| system           | water   | sed                 |            | (days)                                      | $(\chi 2)$ | (days)         | $(\chi 2)$ | (days)                             | $(\chi 2)$ | calculation |
|                  | phase   | (a)                 |            | whole sys.                                  |            | water          |            | sed                                |            |             |
|                  | -       |                     |            | (b)                                         |            |                |            |                                    |            |             |
| River Rhine      | 8.18    | 7.18                | $20 \pm 2$ | 51.0 / 169                                  | 13.7       | n.d.           | -          | n.d.                               | -          | SFO-SFO     |

| Pond Möhlin       | 8.24               | 7.15 | $20 \pm 2$ | 46.9 / 156 | 15.2 | n.d. | - | n.d. | - | SFO-SFO |
|-------------------|--------------------|------|------------|------------|------|------|---|------|---|---------|
| Geometric mean at | 20°C <sup>b)</sup> |      |            | 48.9       |      |      |   |      |   |         |

n.d. not determined

(a) Measured in calcium chloride solution

(b) Normalised using a Q10 of 2.58

#### Table 2.8.2.2.1-4: Degradation rates estimated for clethodim imine sulfoxide

| Clethodim imine   | Distrib | ution riv                                                                                                                          | er syster  | n: Max in water | •7.1 %     | after 33 d. Ma | x. sed :                                                                                                                                              | 3.3 % after 90 c | l. Max     | in total    |
|-------------------|---------|------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------|------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------|-------------|
| sulfoxide         | system  | 8.3% at                                                                                                                            | fter 56 da | iys.            |            |                |                                                                                                                                                       |                  |            |             |
|                   | Distrib | Distribution pond system: Max in water 4.3 % after 33 d. Max. sed 8.3 % after 90 d. Max in total                                   |            |                 |            |                |                                                                                                                                                       |                  |            |             |
|                   | system  | system 10.6 % after 90 days.                                                                                                       |            |                 |            |                |                                                                                                                                                       |                  |            |             |
|                   | kinetic | kinetic formation fraction (k <sub>f</sub> /k <sub>dp</sub> ): 0.307 river system (from clethodim sulfoxide); 1 river system (from |            |                 |            |                |                                                                                                                                                       |                  |            |             |
|                   | clethod | clethodim imine). Arithmetic mean ffM: 0.307 (from clethodim sulfoxide), 1 (from clethodim imine)                                  |            |                 |            |                |                                                                                                                                                       |                  |            |             |
| Water / sediment  | pН      | pН                                                                                                                                 | t. °C      | DT50 /DT90      | St.        | DT50 /DT90     | St.                                                                                                                                                   | DT50 /DT90       | St.        | Method of   |
| system            | water   | sed                                                                                                                                |            | (days)          | $(\chi 2)$ | (days)         | ( <u></u> <u></u> <u></u> <u></u> ( <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> ( <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> | (days)           | $(\chi 2)$ | calculation |
|                   | phase   | (a)                                                                                                                                |            | whole sys.      |            | water          |                                                                                                                                                       | sed              |            |             |
|                   | -       |                                                                                                                                    |            | (b)             |            |                |                                                                                                                                                       |                  |            |             |
| River Rhine       | 8.18    | 7.18                                                                                                                               | $20 \pm 2$ | 14.8 / 49.1     | 15.5       | n.d.           | -                                                                                                                                                     | n.d.             | -          | SFO-SFO     |
| Pond Möhlin       | 8.24    | 7.15                                                                                                                               | $20 \pm 2$ | -(c)            |            | n.d.           | -                                                                                                                                                     | n.d.             | -          | -           |
| Geometric mean at |         |                                                                                                                                    |            |                 |            |                |                                                                                                                                                       |                  |            |             |

n.d. not determined

(a) Measured in calcium chloride solution

(b) Normalised using a Q10 of 2.58

(c) kinetic fit was statistically not acceptable, and the peak not covered in the visual fit.

# Table 2.8.2.2.1-5: Degradation rates estimated for clethodim sulfone

| Clethodim<br>sulfone       | system<br>Distrib<br>system     | Distribution river system: Max in water 9.5 % after 68 d. Max. sed 2.9 % after 68 d. Max in total system 12.4 % after 68 days.<br>Distribution pond system: Max in water 10.4 % after 68 d. Max. sed 3.1 % after 68 d. Max in total system 13.5 % after 68 days.<br>kinetic formation fraction (k <sub>f</sub> /k <sub>dp</sub> ):0.277 river system. Arithmetic mean ffM: 0.277 (from clethodim |            |                                                                   |             |                                                       |             |                                                     |             |                       |
|----------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------------------------------------------------------------|-------------|-------------------------------------------------------|-------------|-----------------------------------------------------|-------------|-----------------------|
| Water / sediment<br>system | sulfoxi<br>pH<br>water<br>phase | de)<br>pH<br>sed<br>(a)                                                                                                                                                                                                                                                                                                                                                                          | t. °C      | DT <sub>50</sub> /DT <sub>90</sub><br>(days)<br>whole sys.<br>(b) | St.<br>(χ2) | DT <sub>50</sub> /DT <sub>90</sub><br>(days)<br>water | St.<br>(χ2) | DT <sub>50</sub> /DT <sub>90</sub><br>(days)<br>sed | St.<br>(χ2) | Method of calculation |
| River Rhine                | 8.18                            | 7.18                                                                                                                                                                                                                                                                                                                                                                                             | $20 \pm 2$ | 52.5 / 174                                                        | 28.6        | n.d.                                                  | -           | n.d.                                                | -           | SFO-SFO               |
| Pond Möhlin                | 8.24                            | .24 7.15 $20 \pm 2$ -(c) 46.9 n.d n.d SFO-SFO                                                                                                                                                                                                                                                                                                                                                    |            |                                                                   |             |                                                       |             |                                                     |             |                       |
| Geometric mean at          | 20°C <sup>b)</sup>              |                                                                                                                                                                                                                                                                                                                                                                                                  |            | 52.5                                                              |             |                                                       |             |                                                     |             |                       |

n.d. not determined

(a) Measured in calcium chloride solution

(b) Normalised using a Q10 of 2.58

(c) kinetic fit was statistically and visually too poor and, therefore, not considered acceptable.

#### Table 2.8.2.2.1-6: Degradation rates estimated for unknown metabolite M20

| ystem 5.7 % a<br>Distribution po<br>ystem 8.8 % a<br>inetic formati | after 90 da<br>ond system<br>after 90 da                           | m: Max in water<br>ays.                                                 |                                                                                                                                                       |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                         |                                                                                                                                                                     |  |  |  |  |  |
|---------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Distribution po<br>ystem 8.8 % a<br>inetic formati                  | ond syster<br>after 90 da                                          | m: Max in water<br>ays.                                                 | 2.8 %                                                                                                                                                 | after 56 d. Ma                                                                                                         | x. sed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.0 % after 90 o                                                                                                                                                                                                                                                                                                                                                                                    | d. Max                                                                                                                                                  | in total                                                                                                                                                            |  |  |  |  |  |
| ystem 8.8 % a<br>tinetic formati                                    | after 90 da                                                        | ays.                                                                    | 2.8 %                                                                                                                                                 | after 56 d. Ma                                                                                                         | x. sed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.0 % after 90 o                                                                                                                                                                                                                                                                                                                                                                                    | d. Max                                                                                                                                                  | in total                                                                                                                                                            |  |  |  |  |  |
| ystem 8.8 % a<br>tinetic formati                                    | after 90 da                                                        | ays.                                                                    |                                                                                                                                                       |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                         |                                                                                                                                                                     |  |  |  |  |  |
|                                                                     | on fractio                                                         | $(k_f/k_{dn})$ n d                                                      |                                                                                                                                                       |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ystem 8.8 % after 90 days.                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                         |                                                                                                                                                                     |  |  |  |  |  |
| u "u                                                                | inetic formation fraction (k <sub>f</sub> /k <sub>dp</sub> ): n.d. |                                                                         |                                                                                                                                                       |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                         |                                                                                                                                                                     |  |  |  |  |  |
| H pH                                                                | t. °C                                                              | DT50 /DT90                                                              | St.                                                                                                                                                   | DT50 /DT90                                                                                                             | St.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DT50 /DT90                                                                                                                                                                                                                                                                                                                                                                                          | St.                                                                                                                                                     | Method of                                                                                                                                                           |  |  |  |  |  |
| vater sed                                                           |                                                                    | (days)                                                                  | ( <u></u> <u></u> <u></u> <u></u> <u></u> ( <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> ( <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> | (days)                                                                                                                 | ( <u></u> <u></u> <u></u> <u></u> <u></u> ( <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> ( <u></u> <u></u> <u></u> <u></u> <u></u> <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (days)                                                                                                                                                                                                                                                                                                                                                                                              | ( <u></u> <u></u> <u></u> <u></u> <u></u> ( <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> ( <u></u> <u></u> <u></u> <u></u> <u></u> <u></u>   | calculation                                                                                                                                                         |  |  |  |  |  |
| hase (a)                                                            |                                                                    | whole sys.                                                              |                                                                                                                                                       | water                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | sed                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                         | 1                                                                                                                                                                   |  |  |  |  |  |
|                                                                     |                                                                    | (b)                                                                     |                                                                                                                                                       |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                         |                                                                                                                                                                     |  |  |  |  |  |
| .18 7.18                                                            | $20 \pm 2$                                                         | n.d.                                                                    | -                                                                                                                                                     | n.d.                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n.d.                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                       | SFO-SFO                                                                                                                                                             |  |  |  |  |  |
| .24 7.15                                                            | 4 7.15 20 ± 2 n.d n.d n.d SFO-SFO                                  |                                                                         |                                                                                                                                                       |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                         |                                                                                                                                                                     |  |  |  |  |  |
| Geometric mean at 20°C <sup>b)</sup>                                |                                                                    |                                                                         |                                                                                                                                                       |                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                         |                                                                                                                                                                     |  |  |  |  |  |
| /a<br>ha<br>.1                                                      | ter sed<br>ase (a)<br>8 7.18<br>4 7.15                             | ter sed<br>ase (a)<br>$\frac{8}{7.18} = 20 \pm 2$<br>$\frac{20}{4} = 2$ | ter sed (days)<br>ase (a) (days)<br>(b) $\frac{8}{4}$ 7.18 $20 \pm 2$ n.d.<br>4 7.15 $20 \pm 2$ n.d.                                                  | ter sed<br>ase (a) (days) ( $\chi^2$ )<br>whole sys.<br>(b) (b) ( $\chi^2$ )<br>8 7.18 20 ± 2 n.d<br>4 7.15 20 ± 2 n.d | ter sed<br>(a) (days)<br>whole sys.<br>(b) ( $\chi^2$ ) (days)<br>water<br>(days)<br>water<br>( $\chi^2$ ) (days)<br>water<br>( $\chi^2$ ) (days)<br>( $\chi^2$ ) ( $\chi^2$ ) | ter sed<br>ase ase $\begin{pmatrix} 1 \\ a \end{pmatrix}$ $\begin{pmatrix} (days) \\ whole sys. \\ (b) \end{pmatrix}$ $\begin{pmatrix} \chi 2 \end{pmatrix}$ $\begin{pmatrix} (days) \\ water \end{pmatrix}$ $\begin{pmatrix} \chi 2 \end{pmatrix}$<br>water $\begin{pmatrix} \chi 2 \end{pmatrix}$<br>water $\begin{pmatrix} \chi 2 \end{pmatrix}$<br>water $\begin{pmatrix} \chi 2 \end{pmatrix}$ | ter<br>asesed<br>(a)(days)<br>whole sys.<br>(b)( $\chi 2$ )(days)<br>water( $\chi 2$ )(days)<br>sed87.1820 $\pm 2$ n.dn.dn.d.47.1520 $\pm 2$ n.dn.dn.d. | ter<br>asesed<br>(a)(days)<br>whole sys.<br>(b)( $\chi 2$ )(days)<br>water( $\chi 2$ )(days)<br>sed( $\chi 2$ )87.18 $20 \pm 2$ n.dn.dn.d47.15 $20 \pm 2$ n.dn.dn.d |  |  |  |  |  |

n.d. not determined

(a) Measured in calcium chloride solution

(b) Normalised using a Q10 of 2.58

#### 2.8.2.2.2 Field investigations and monitoring data (if relevant for C&L)

No field dissipation studies were available (see section 2.8.1.1). No monitoring data was available either (see section 2.8.4).

#### 2.8.2.2.3 Inherent and enhanced ready biodegradability tests

Inherent or enhanced biodegradability tests were not provided.

# 2.8.2.2.4 Soil and sediment degradation data

Soil degradation data are presented in sections 2.8.1.1 (route of degradation) and 2.8.1.2 (rate of degradation). Sediment degradation data are presented in section 2.8.2.2.1.

# 2.8.2.2.5 Hydrolysis

Hydrolysis of clethodim was investigated in one study, Pack (1988c), Report no. MEF-0013 / 8703899, in sterilized aqueous buffer solutions at pH 5, 7 and 9 (propyl-labelled), and pH 5 and 7 (allyl-labelled) at  $25 \pm 0.1$  °C. Under acidic conditions, at pH 5, hydrolysis was observed and the two major clethodim oxazole and chloroallyl-alcohol were formed with maximum occurrences of 50.5% AR and 30.7 %AR, respectively. At pH 7 and 9, clethodim was deemed stable to hydrolysis with 91-93.4% AR corresponding to the parent substance at the end of the study (30-32 days). Clethodim sulfoxide, present as an impurity in the starting material, was found at low levels in nearly all samples (maximum levels per test ranged between 1.2 and 4.7% AR). Only low levels ( $\leq$ 4.7% AR) of unidentified compounds were detected during the tests.

The estimated DT50s were 28 d (propyl-labelled) and 54 d (allyl-labelled) at pH 5, and 297-499 d at pH 7 and 9.

The study was available also for the first approval and the RMS deems it to be acceptable also for the renewal. This is despite that the tests were not performed at pH 4 as it is unlikely that other metabolites would have been formed compared to the ones formed at pH 5 and despite that tier-1-testing at 50 °C was not performed, as hydrolysis was observed at 25 °C under acidic conditions. The full assessment is provided in Vol. 3 (CA), B.8.2.1.1.

#### 2.8.2.2.6 Photochemical degradation

In total, three studies that investigated the direct aquatic photolysis of clethodim were available. Two studies had already been available for the first approval. These studies investigated the photolysis of [ring-4,6-<sup>14</sup>C]-clethodim (Chen, 1988a), Report no. MEF-0024, and [allyl-2-<sup>14</sup>C]-clethodim (Chen, 1988b), Report no. MEF-0025, respectively. The new study, Villaverde (2018), was available from the open literature and investigated the photodegradation potential of clethodim and a formulation containing clethodim in aquatic environments.

The two old studies (Chen, 1988a, Report no. MEF-0024, and Chen, 1988b, Report no. MEF-0025) were performed outdoors at 25 °C for up to 2.5 days (pH 5), 30 days (pH 7) and 10-14 days (pH 9), and the test substance exposed to natural sunlight at Richmond, California, USA (37.6°N, 122.2°W) during year 1988. The average duration of exposure to sunlight was 10 hours at an average intensity of ca. 20.3-20.5 kW/cm<sup>2</sup>. Incident light intensity was

measured continuously using a photometer, showing a mean daily exposure of 4-31 kW/cm<sup>2</sup>. Clethodim was extensively photochemically degraded during the course of the study at all 3 pH-levels. In the irradiated 30-day-studies at pH 7, clethodim decreased from 94.9-99.0% AR at day 0 to 1.2-3.5% AR after 15 days and was not detected thereafter. Several degradation products were identified at >10% AR: clethodim sulfoxide (RE-45924), cholorallyl alcohol, chloropropenal, DME sulfoxide (RE-52453), clethodim imine sulfoxide (RE-47718), clethodim imine (RE-47686), and clethodim imine ketone. For most of them, formation peaked at 3-21 days after treatment (DAT) and was reduced after. Only the formation of metabolite DME sulfoxide increased throughout the studies at pH 7, with a maximum of 48.9% AR reached by the end of the study.

| Metabolite                | Max. occurrence [%AR] <sup>a</sup> | DAT [days] | Occurrence after 30 days [%AR] |
|---------------------------|------------------------------------|------------|--------------------------------|
| Clethodim sulfoxide       | 14.2                               | 3          | 0                              |
| Clethodim imine           | 12.4 <sup>b</sup>                  | 7          | 0                              |
| Clethodim imine sulfoxide | 23.0                               | 21         | 19.5                           |
| DME sulfoxide             | 48.9                               | 30         | 48.9                           |
| Clethodim imine ketone    | 11.8                               | 15         | 9.5                            |
| Chloroallyl alcohol       | 31.3                               | 15         | 29.2                           |
| 3-chloro-propenal         | 21.8                               | 10         | 19.4                           |

Table 2.8.2.2.6-1: Summary of the photochemical degradation

a The maximum occurrences were all obtained from the 30-day study at pH 7.

b Detected at a maximum of 18.2% AR at pH 5. As hydrolysis is not minimized at that pH, the value was disregarded.

The effective photolysis rates of clethodim were estimated to be < 10 days (1.7-9.6 days depending on pH for ringlabelled clethodim and 1.5-6 days for allyl-labelled clethodim, with higher DT50s under neutral and alkaline conditions, where hydrolysis is minimized). Sensitization enhanced the degradation at all pH-levels with effective photolysis rates below 1 day (max. 0.61 d). Significant (and measurable) mineralization occurred only in the study with allyl-labelled clethodim, with a maximum of 24.8 % AR present as CO<sub>2</sub> (in NaOH trap and in solution). Quantum yield was not calculated.

For both studies by Chen (1988a), Report no. MEF-0024, and Chen (1988b), Report no. MEF-0025, the degradation of the metabolites was rather briefly discussed, no degradation rates were calculated for any of the metabolites. For the two metabolites clethodim sulfoxide and clethodim imine, degradation is observed during the studies. However, for all other metabolites (clethodim imine sulfoxide, clethodim imine ketone, DME sulfoxide, chloroallyl alcohol and 3-chloropropenal), no or very limited degradation is observed.

Aqueous photolysis was investigated in the study by Villaverde (2018) both with simulated sunlight (xenon arc lamp with radiation intensity of 250, 500 and 750 W/m<sup>2</sup>, internal temperature was  $25 \pm 1$  °C) and with natural sunlight exposure. The outdoor experiments under natural sunlight were performed in the Madrid area during the summer period with mean solar radiation intensities of 70 W/m<sup>2</sup> - 412 W/m<sup>2</sup> during the day, and temperatures ranging from 20 to 46 °C. The tests were performed with different types of water, such as ultrapure, mineral, ground and surface water. It was not explicitly stated, but the figures suggested the study duration was 12 hours. Dark control experiments were performed in parallel confirming that the test conditions were chosen in a way that hydrolysis was minimized. Clethodim showed high photodegradation in aqueous solutions both under natural sunlight and simulated sunlight but was not completely mineralized. Four different degradation products were identified (if isomers are not listed separately): clethodim sulfoxide, clethodim imine, clethodim imine ketone and clethodim imine sulfoxide. The estimated photodegradation rate of (technical) clethodim was below 5 hours for all investigated conditions, and below 1.5 h for clethodim in the formulation.

The two studies by Chen (1988a), Report no. MEF-0024, and Chen (1988b), Report no. MEF-0025, were available also for the first approval and the RMS deems them to be acceptable also for the renewal. This is despite that the daily sunlight exposure was less than the recommendations in OECD TG no. 316, as clear photodegradation was observed and major degradation products were identified. It should also be mentioned that the kinetic assessment was not performed according to FOCUS DegKinetics Guidance (2006, 2014). This is not considered an issue as the estimated degradation rates are not used for any exposure assessment. The study by Villaverde (2018) is new. It is considered supportive information, as it provides valuable information, but did not follow strict guidelines, nor is a method validation available for this study with non-radiolabelled test substance. The study was not performed under GLP.

The full assessment of all three studies is provided in Vol. 3 (CA), B.8.2.1.2.

The applicant suggested that the two metabolites formed in the photolysis study by Chen (1988b), Report no. MEF-0025, namely chloroallyl alcohol and 3-chloropropenal, are not included in the definition of residues. The RMS questioned this, and the applicant provided the following arguments: "The presence of significant levels of imine metabolites in the biotic (water sediment) studies indicates that cleavage of N-O bond occurred and hence this would have resulted in the formation of chloroallyl alcohol and/or 3-chloropropenal. The fact that these metabolites were not observed in the water sediment studies where clethodim was labeled in the allyl ring confirms that chloroallyl alcohol and 3-chloropropenal degraded rapidly and hence were not requiring risk assessment (i.e. the results from the abiotic studies were shown to be superseded by the results in the biotic studies). Some initial methodology work also showed very rapid degradation of chloroallyl alcohol in aquatic systems and hence confirmed our view."

The RMS agrees that the findings of imine metabolites in the water/sediment study suggests that it is likely that chloroallyl alcohol and/or 3-chloropropenal were formed at the same time, too. However, it must be noted that none of these two metabolites were included as reference items in the water/sediment study by Mamouni (2006c), Report no. A00450, and, thus, could not be identified in the study. Only a degradation product of them, trans-3-chloroacrylic acid, was included as a reference item, and not detected in the study. Several minor metabolites (individually not exceeding 1.6% in total river system, or 3.6% in total pond system) were in fact detected in the study but those did not need to be further characterised. From the EFSA conclusion on 1,3-dichloropropene, an active substance that also transforms into 3-chloroallyl alcohol and 3-chloroacrylic acid, additional information can be obtained. Both substances are found to be stable to hydrolysis but were degraded in water/sediment systems (metabolite dosed studies) with DT50 in total systems of 1.2 days (chloroallyl alcohol) and 5.63 days (chloroacrylic acid), respectively. Thus, for chloroallyl alcohol, the overall conclusion of the applicant can be accepted. In principle, aldehyde-groups are rather reactive. This may suggest that 3-chloropropenal may be a transient metabolite in biotic aquatic systems. However, in order to be precautionary and in lack of further specific evidence, the RMS proposes that 3-chloropropenal is included in the 'Definition of residues requiring further assessment'. We welcome comments from EFSA and other MS on this issue and our proposal.

#### 2.8.2.2.7 Other / Weight of evidence

No other data that could be of relevance for the classification and labelling were available.

# 2.8.2.3 Assessment in relation to the P-criteria for water and sediment

The criteria for persistence in water and sediment, as stated in Annex II to Regulation (EC) 1107/2009, are: Water: DT<sub>50</sub> 40 days (fresh water in PBT), 60 days (POP, marine water in PBT, and all water in vPvB), Sediment: DT<sub>50</sub> 120 days (fresh water sediment in PBT), 180 days (POP, marine sediment in PBT, and all sediments in vPvB).

Clethodim is slowly hydrolysed at pH 5 (DT50 of 32-54d) or not at all hydrolysed at pH 7 or 9. Clethodim is subject to photolytic degradation with estimated half-lives of 6 days or less at environmentally relevant pH (5-9). Clethodim undergoes biotic degradation, with estimated half-lives of 14.9-23.9 d as obtained from the aerobic mineralization study in a fresh water system at two different application rates (low and high, respectively). DegT50s estimated for the total water-sediment system were similar, with 9.2-22.1 days and a geomean of 13.8 days at reference temperature of 20 °C. The DegT50 for clethodim in the water-sediment system should be compared to the criteria for water, as clethodim is considered mobile to moderately mobile and a maximum of 11% was found in sediment. Thus, clethodim is not considered to fulfil the criteria for persistence with respect to water and sediment. Additionally, the results from the ready biodegradability test suggesting that clethodim is readily biodegradable.

The RMS acknowledges that the criteria only applies to the parent in the frame of EU Reg. no. 1107/2009, however, it can be noted that all major water/sediment metabolites have longer total system-DegT50s and are more persistent in the aquatic water-sediment-system than the parent. One metabolite, clethodim sulfone, would exceed the trigger persistence in the relevant compartment; it has a total system DegT50 of 52 days and mainly occurs in the water phase suggesting that the trigger for water of 40 days should be used. The other metabolite with DegT50 above 40 days, namely clethodim imine, with DegT50 of 51 d, mainly occurs in the sediment phase and should, thus, be compared to the trigger values for sediment.

## 2.8.3 Summary of fate and behaviour in air

## 2.8.3.1 Hazardous to the ozone layer

| Table 69: Summary table of studies on hazards to the ozone layer. |         |         |           |  |  |  |  |  |  |
|-------------------------------------------------------------------|---------|---------|-----------|--|--|--|--|--|--|
| Method                                                            | Results | Remarks | Reference |  |  |  |  |  |  |
| No studies available.                                             |         |         |           |  |  |  |  |  |  |

# **2.8.3.1.1** Short summary and overall relevance of the provided information on hazards to the ozone layer

There were no specific data available on the potential hazard to the ozone layer. However, clethodim is based on its properties (low volatility, fast degradation in air) not expected to undergo long-range transport. In addition, it is not included in Annex I or Annex II to Regulation (EC) 1005/2009.

# 2.8.3.1.2 Comparison with the CLP criteria

Since clethodim is not expected to undergo long-range transport and is not included in Annex I or Annex II to Regulation (EC) 1005/2009 it is concluded that it does not fulfil the classification criteria for 'hazardous to the ozone layer'.

# 2.8.3.1.3 Conclusion on classification and labelling for hazardous to the ozone layer

Data conclusive but not sufficient for classification.

## 2.8.3.1.4 Conclusion regarding potential for short- and long-range transport

The vapour pressure of clethodim is 2.7 x  $10^{-5}$  Pa (20 °C) and the Henry's law constant 1.8 x  $10^{-6}$  Pa/m<sup>3</sup>/mol. Considering these properties, clethodim has the potential to reach the air if foliar applied since the trigger of  $10^{-5}$  Pa at 20°C set by the FOCUS guidance Air (2008) is exceeded. Given the proposed foliar use the potential short-range transport of the active substance might have to be considered in the risk assessment.

The atmospheric half-life for reaction with hydroxyl radicals was estimated to <1 hour (Lee & Jarvis, 2020b, 1602214.UK0-6964) assuming an average daily air concentrations of hydroxyl radicals of  $1.5 \times 10^{6}$ /cm<sup>3</sup> (12-hr day). Thus, long-range transport is not expected.

The RMS concludes that no further data on fate of clethodim in air is required.

The RMS considers that clethodim does not fulfil the POP criteria for long-range transport since  $DT_{50}$  air is < 2 days.

# 2.8.4 Summary of monitoring data concerning fate and behaviour of the active substance, metabolites, degradation and reaction products

Monitoring data for clethodim was not presented by the applicant and claimed not to be available.

## 2.8.5 Definition of the residues in the environment requiring further assessment

Substances for which further exposure/risk assessment is considered necessary are listed in the below table.

| Compartment   | Residue                     | Justification                                                   |
|---------------|-----------------------------|-----------------------------------------------------------------|
|               | Clethodim                   | by default                                                      |
|               | Clethodim sulfoxide         | Up to 73.4% of applied radioactivity in aerobic soil (lab)      |
|               | Clethodim sulfone           | Up to 42.2% of applied (non-labelled) in aerobic soil (lab)     |
| Soil          | CBA                         | Up to 18.7% of applied radioactivity in soil photolysis         |
|               | CAA                         | Up to 18.1% of applied radioactivity in soil photolysis         |
|               | Clethodim oxazole sulfone   | Up to 10.0% of applied radioactivity in aerobic soil (lab)      |
|               | Clethodim oxazole sulfoxide | Up to 6.0% of applied radioactivity in aerobic soil (lab)       |
|               | Clethodim                   | by default                                                      |
|               | Clethodim sulfoxide         | From soil                                                       |
|               | Clethodim sulfone           | From soil                                                       |
| Groundwater   | CBA                         | From soil                                                       |
|               | CAA                         | From soil                                                       |
|               | Clethodim oxazole sulfone   | From soil                                                       |
|               | Clethodim oxazole sulfoxide | From soil                                                       |
|               | Clethodim                   | by default                                                      |
|               | Clethodim sulfoxide         | From soil,                                                      |
|               |                             | up to 61.5% of applied radioactivity in total water/sediment    |
|               |                             | system (up to 57.8% of applied radioactivity in water phase and |
| Surface water |                             | 5.3% of applied radioactivity in sediment phase)                |
|               | Clethodim sulfone           | From soil,                                                      |
|               |                             | up to 13.5% of applied radioactivity in total water/sediment    |
|               |                             | system (up to 10.4% of applied radioactivity in water phase and |
|               |                             | 3.1% of applied radioactivity in sediment phase)                |

 Table 2.8.5-1. RMS proposal for Definition of the residue for exposure and risk assessment.

| Compartment | Residue                     | Justification                                                                                                                                                                                                       |
|-------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | Clethodim imine             | Up to 36.4% of applied radioactivity in total water/sediment system (up to 2.1% of applied radioactivity in water phase and                                                                                         |
|             |                             | 35.8% of applied radioactivity in sediment phase),                                                                                                                                                                  |
|             |                             | up to 12.4% of applied radioactivity in sedment phase),                                                                                                                                                             |
|             | Clethodim imine sulfoxide   | Up to 21.7% of applied radioactivity in biologysis study                                                                                                                                                            |
|             | Ciculounin minie sunovide   | system ( $2x \ge 5\%$ and up to 7.1% of applied radioactivity in water phase and up to 15.5% of applied radioactivity in sediment phase),                                                                           |
|             |                             | up to 23.0% of applied radioactivity in photolysis study                                                                                                                                                            |
|             | Unknown metabolite M20      | $2x \ge 5\%$ and up to 8.8% of applied radioactivity in total                                                                                                                                                       |
|             |                             | water/sediment system (up to 2.8% of applied radioactivity in $122 \times 50$                                                                                                                                       |
|             |                             | water phase and $2x \ge 5\%$ and up to 6.0% of applied radioactivity in sediment phase)                                                                                                                             |
|             | DME sulfoxide               | Up to 48.9% of applied radioactivity in photolysis study                                                                                                                                                            |
|             | Clethodim imine ketone      | Up to 11.8% of applied radioactivity in photolysis study                                                                                                                                                            |
|             | 3-chloro-propenal           | Up to 21.8% of applied radioactivity in photolysis study                                                                                                                                                            |
|             | СВА                         | From soil                                                                                                                                                                                                           |
|             | CAA                         | From soil                                                                                                                                                                                                           |
|             | Clethodim oxazole sulfone   | From soil                                                                                                                                                                                                           |
|             | Clethodim oxazole sulfoxide | From soil                                                                                                                                                                                                           |
|             | Clethodim                   | by default                                                                                                                                                                                                          |
|             | Clethodim sulfoxide         | Up to 61.5% of applied radioactivity in total water/sediment<br>system (up to 57.8% of applied radioactivity in water phase and<br>5.3% of applied radioactivity in sediment phase)                                 |
|             | Clethodim sulfone           | up to 13.5% of applied radioactivity in total water/sediment<br>system (up to 10.4% of applied radioactivity in water phase and<br>3.1% of applied radioactivity in sediment phase)                                 |
| Sediment    | Clethodim imine             | Up to 36.4% of applied radioactivity in total water/sediment system (up to 2.1% of applied radioactivity in water phase and 35.8% of applied radioactivity in sediment phase, respectively),                        |
|             | Clethodim imine sulfoxide   | Up to 21.7% of applied radioactivity in total water/sediment system ( $2x \ge 5\%$ and up to 7.1% of applied radioactivity in water phase and up to 15.5% of applied radioactivity in sediment phase),              |
|             | Unknown metabolite M20      | $2x \ge 5\%$ and up to 8.8% of applied radioactivity in total water/sediment system (up to 2.8% of applied radioactivity in water phase and $2x \ge 5\%$ and up to 6.0% of applied radioactivity in sediment phase) |
| Air         | Clethodim                   | by default                                                                                                                                                                                                          |

## 2.8.6 Summary of exposure calculations and product assessment

The PEC-calculations were made for all relevant compartments (soil, groundwater, and surface water/sediments) considering the following representative uses:

- Sugar beet, 1 x 120 g a.s/ha, BBCH 12-33
- Sugar beet, 1 x 300 g a.s/ha, BBCH 12-33
- Onions (vegetables, bulb), 1 x 120 g a.s./ha, BBCH 12-19
- Onions (vegetables, bulb), 1 x 240 g a.s./ha, BBCH 12-19

# 2.8.6.1 PEC soil

PECsoil (Initial PECsoil after application within one season, and actual and TWA PECsoil after 1, 2, 4, 7, 14, 21, 28, 50, and 100 days) were calculated for clethodim and its metabolites clethodim sulfoxide, clethodim sulfone, clethodim oxazole sulfoxide, clethodim oxazole sulfoxed, 2-[3-chloroallyloxyimino]butanoic acid (CBA) and trans-

3-chloroacrylic acid (CAA). The calculations were made assuming earliest possible application according to the GAP using the lowest interception (i.e., sugar beet 20%, onion 10%). However, the RMS does not agree with the input parameters used in the calculations except for metabolites CAA and CBA. For the other substances, several triggering endpoints proposed by the RMS are more worst-case compared to the input values used in the calculations. Moreover, the lab DT50 values for metabolites clethodim oxazole sulfoxide and clethodim oxazole sulfone indicate that the risk for accumulation in soil (PECacc) needs to be investigated. The RMS sets field dissipation studies as a data gap for these metabolites, since the normalised lab DT50, at 20 °C and pF 2.0 are >60 days in one or more soils (see 2.8.1.2).

The RMS concludes that updated PECsoil calculations are required that consider the endpoints agreed on during the peer review. New PECsoil calculations, including PECsoil initial, PECsoil TWA and, where triggered PECacc, are required for all intended uses (data gap).

#### 2.8.6.2 PEC groundwater

The 80th percentile PECgw of the active substance clethodim and its metabolites clethodim sulfoxide, clethodim sulfone, clethodim oxazole sulfone, 2-[3-chloroallyloxyimino]butanoic acid (CBA) and trans-3-chloroacrylic acid (CAA) were calculated in FOCUS PEARL (v 4.4.4) and FOCUS PELMO (v 5.5.3). Calculations with FOCUS MACRO (Châteaudun) are missing. The application dates were chosen using AppDate tool version 3.06 for an early application at BBCH stage 12, in accordance with the representative GAP, and the crop interception values chosen correspondingly in agreement with the relevant guidance (EFSA GD on DegT50, 2014).

Based on the provided results, PECgw for the parent clethodim and the photolysis metabolites CAA and CBA were <0.001  $\mu$ g/L for all scenarios and uses. Metabolites clethodim sulfoxide (max. 0.198  $\mu$ g/L), clethodim sulfone (max. 1.778  $\mu$ g/L) and clethodim oxazole sulfone (max. 0.684  $\mu$ g/L) were predicted to exceed the parametric drinking water limit of 0.1  $\mu$ g/L. Further, clethodim oxazole sulfoxide was predicted to be present at max. 0.1  $\mu$ g/L. These four metabolites were, thus, further considered in the assessment of relevance in groundwater (see 2.12).

# However, the PECgw calculations are not considered acceptable for several reasons, and a data gap is proposed for updated modelling (see below).

**Input parameters:** The input parameters used are not in line with the endpoints determined by the RMS or not in agreement with relevant guidance. According to the FOCUS Generic GD on GW (2014), a PUF/TSCF of 0 should be used for all compounds unless a TSCF calculated with the Briggs equation is applicable. The argument provided by the study author "Clethodim is a systemic herbicide. Value published in previous EFSA conclusion (EFSA, 2011)." is, thus, not considered sufficient to justify a PUF of 0.5. The vapour pressure for clethodim used in the provided PECgw-calculations does not agree with the value of  $2.68 \times 10^{-5}$  Pa determined in the latest study (see Volume 3, B2 (CA)). Further, the RMS does not agree with the choice of several degradation and adsorption endpoints in the calculations. Most DT<sub>50</sub> and K<sub>Foc</sub> proposed by the RMS are more conservative than the once considered in the calculations. The RMS concludes that adsorption is pH-depended for clethodim and suggests that the pH-dependence should be considered, i.e., by calculating PECgw for two contrasting pH (5.1 and 8.0) and reporting results from both runs. Also, adsorption has shown to be pH-dependent for most of the metabolites,

however, the adsorption is generally low for these metabolites. The RMS, therefore, suggests that the pH dependence of the metabolites does not need to be further considered and the geometric mean  $K_{Foc}$  and arithmetic mean 1/n from all acceptable soils is used instead.

**Metabolic pathway**: In the applicant's simulations, metabolite clethodim oxazole sulfone is formed directly from clethodim sulfoxide, which differs from the proposed degradation pathway (see Vol 1, 2.8.1.1) were clethodim oxazole is formed via clethodim sulfone and via clethodim oxazole sulfoxide. Further, for simulation in FOCUS PELMO, the simulations were split into two pathways (A and B). The RMS does not agree with this modelling setup and concludes that the simulations should follow the pathway as outlined in Volume 1, section 2.8.1.1, i.e., that clethodim oxazole sulfone is formed from clethodim sulfone and clethodim oxazole sulfoxide. Considering the formation fractions proposed by the RMS it is then not necessary to split the pathway in FOCUS PELMO into two simulations.

Both photolysis metabolites CAA and CBA were simulated as the parent compound with the application rate being adjusted for molecular weight and the maximum occurrence in the photolysis study. This is considered acceptable by the RMS.

It is difficult to estimate which impact these deviations from the RMS proposal have on the resulting PECs. Thus, the RMS proposes a data gap for the applicant to provide updated PECgw calculations considering the endpoints and pathway agreed on during the peer review. New calculations for all intended uses are required using all relevant models (FOCUS PEARL, PELMO and MACRO).

The calculations were presented in Jones, B. & Jarvis, T. (2021, report no. 1602214.UK0-2996), see summary in Volume 3 CP B.8 under section B.8.3.

# 2.8.6.3 PEC surface water and sediment

PECsw and PECsed at FOCUS Steps 1-2 were calculated for clethodim and its metabolites clethodim sulfoxide, clethodim oxazole sulfone, clethodim oxazole sulfoxide, clethodim imine, clethodim imine sulfoxide, DME sulfoxide and imine ketone, 2-[3-chloroallyloxyimino]butanoic acid (CBA) and trans-3-chloroacrylic acid (CAA) with the FOCUS Steps 1-2 calculator, version 3.2. The calculations were performed for all intended uses considering a reasonable worst-case (minimal crop cover, early application) in accordance with the GAP. The RMS does, however, not agree with the choice of several endpoints in the calculations. For several compounds  $DT_{50}$ , Koc or max. occurrence proposed by the RMS are different to the once considered in the calculations and are often more conservative. Moreover, the RMS concluded to add metabolite 3-chloro-propenal to the list of metabolites requiring a surface water assessment and the unknown metabolite M20 requiring an assessment for surface water and sediment. The FOCUS SW calculations at Steps 1 and 2 were therefore rerun by the RMS (see Volume 3 CP B.8.5.1).

Step 3 modelling was performed for the parent clethodim only. PECsw and PECsed were calculated for all intended uses, using FOCUS SWASH 5.3 with SPIN 2.2 and the operational models FOCUS MACRO 5.5.4, FOCUS PRZM 4.3.1 and FOCUS TOXSWA 5.5.3. All scenarios where the intended crops are implemented were presented. For each use, the application window was set to start at BBCH 12 based on the software AppDate (v. 3.06). The application dates were subsequently selected by the Pesticide Application Timer (PAT) internally by the model.

263

Step 4 modelling was performed for the parent clethodim considering different mitigation options. The results are presented in the modelling study but were not considered necessary to demonstrate acceptable use and are, thus, not summarised in Volume 3 CP B.8.

However, some input parameters used are not in line with the endpoints determined by the RMS or in agreement with relevant guidance. Like for the PECgw calculations, a PUF of 0.5 was used in the calculations which is not considered acceptable by the RMS. Instead, the RMS proposes to use a default of 0. Further, the  $DT_{50}$  and Koc used in the calculations are different to the RMS proposal. The difference in this input values is not expected to change the outcome of the risk assessment. However, for completion the RMS proposes a data gap for the applicant to provide updated PECsw calculations for clethodim at Step 3 considering the endpoints agreed on during the peer review.

Note that, in accordance with FOCUS guidance Air (2008) the contribution of clethodim from deposition after volatilisation needs to be quantified and added to the deposition from spray drift if risk mitigation measures (Step 4 calculations) are required to pass the aquatic risk assessment.

Modelling at FOCUS STEP 1-2 is presented in study Lee, R. & Jarvis, T. (2020b, report no.: 1602214.UK0-2662) and at STEP 3-4 in study Lee, R. & Jarvis, T. (2020c, report no.: 1602214.UK0-3557). See Volume 3 CP B.8, section 8.5 for details.

#### 2.8.6.4 PEC air

Based on its vapour pressure of 2.68 x 10<sup>-5</sup> Pa (20 °C) and the Henry's law constant of 1.8 x 10<sup>-6</sup> Pa/m<sup>3</sup>/mol at 20°C and pH 7, clethodim has the potential for short-rang transport after volatilisation from plant surfaces. The RMS concludes that deposition following volatilisation needs to be considered in the terrestrial and aquatic risk assessment if drift mitigations are required to pass the respective risk assessment. Given that the atmospheric half-life for reaction with hydroxyl radicals was estimated to < 1 hour (Lee & Jarvis, 2020b, 1602214.UK0-6964) and, thus, below the trigger of 2 days, no long-range transport is expected.

# 2.8.6.5 Other routes of exposure

There are no other routes of exposure to be considered if the product is used according to good agricultural practice.

# 2.9 EFFECTS ON NON-TARGET SPECIES

# 2.9.1 Summary of effects on birds and other terrestrial vertebrates

The available data on avian and mammal toxicity of technical clethodim are summarised in the table below. Data used for the risk assessment are marked in bold.

| Species                           | Method <sup>d</sup> | Results                                           | Remarks                                        | Reference                      |
|-----------------------------------|---------------------|---------------------------------------------------|------------------------------------------------|--------------------------------|
| •                                 | -                   | Birds                                             |                                                |                                |
| Colinus virginianus               | OECD 223            | LD <sub>50</sub> > 1660 mg a.s./kg bw/d           | Acute, Oral                                    |                                |
| (northern bobwhite)               |                     | [mm]                                              | (1-day)                                        | (1986a)                        |
|                                   |                     |                                                   |                                                | Report no.: 162-165            |
| Colinus virginianus               | OECD 205            | LC <sub>50</sub> >1244 mg a.s./kg bw/d            | Dietary, Short-term                            | Vol 3 CA B.9.1.1.1             |
| (northern bobwhite)               | OECD 203            | [mm]                                              | (5-day)                                        | J. (1986b)                     |
| (normern bob white)               |                     | []                                                | (5 ddy)                                        | Report no.: 162-166            |
|                                   |                     |                                                   |                                                | Vol 3 CA B.9.1.1.2             |
| Anas platyrhynchos                | OECD 205            | LC50 >851 mg a.s./kg bw/d                         | Dietary, Short-term                            | <i>et al.</i> (1986)           |
| (mallard duck)                    |                     | [TWA]                                             | (5-day)                                        | Report no.: 162-167            |
| <u> </u>                          | 0.5.05.00.4         |                                                   |                                                | Vol 3 CA B.9.1.1.2             |
| Colinus virginianus               | OECD 206            | NOEL = $326 \text{ mg a.s./kg bw/d}$              | Dietary,                                       | et al.                         |
| (northern bobwhite)               |                     | (males)<br>NOEL = 258 mg a.s./kg bw/d             | Reproductive (pilot)<br>(6 weeks) <sup>b</sup> | (1987a)<br>Report no.: 162-176 |
|                                   |                     | (females) [TWA]                                   | (0 weeks)                                      | Vol 3 CA B.9.1.1.3             |
| Colinus virginianus               | OECD 206            | NOEL = $18 \text{ mg a.s./kg bw/d}$               | Dietary,                                       | et al.                         |
| (northern bobwhite)               |                     | (males)                                           | Reproductive                                   | (1988a)                        |
|                                   |                     | NOEL = 17 mg a.s./kg bw/d                         | (22 weeks)                                     | Report no.: 162-183            |
|                                   |                     | (females) <sup>a</sup>                            |                                                | Vol 3 CA B.9.1.1.3             |
|                                   |                     | [mm]                                              | D' /                                           |                                |
| Anas platyrhynchos (mallard duck) | OECD 206            | NOEL = 133 mg a.s./kg bw/d (males)                | Dietary,<br>Reproductive (pilot)               | <i>et al.</i> (1987b)          |
| (manalu uuck)                     |                     | NOEL = $122 \text{ mg a.s./kg bw/d}$              | (6 weeks) <sup>b</sup>                         | Report no.: 162-177            |
|                                   |                     | (females)                                         | (0 weeks)                                      | Vol 3 CA B.9.1.1.3             |
|                                   |                     | [mm]                                              |                                                |                                |
| Anas platyrhynchos                | OECD 206            | NOEL = 82 mg a.s./kg bw/d                         | Dietary, Reproductive                          | et al.                         |
| (mallard duck)                    |                     | (males)                                           | (19 weeks)                                     | (1988b)                        |
|                                   |                     | NOEL = 89 mg a.s./kg bw/d                         |                                                | Report No.: 162-184            |
|                                   |                     | (females)<br>[ <b>mm</b> ]                        |                                                | Vol 3 CA B.9.1.1.3             |
|                                   | 1                   | Mammals                                           |                                                |                                |
| Rat                               | OECD 401            | LD <sub>50</sub> = 1133 g a.s./kg bw              | Acute, Oral                                    | (1986)                         |
| (Sprague-Dawley)                  |                     | (females) [nom]                                   | (14 days)                                      | Report No.: S 2498             |
|                                   |                     | $LD_{50} = 1358 \text{ mg/kg bw}$                 |                                                | Vol 3 CA B.6.2.1               |
|                                   |                     | (males)                                           |                                                |                                |
| Mouse                             | OECD 401            | $LD_{50} = 1688 \text{ mg/kg bw}$                 | Acute, Oral                                    | 1986                           |
| (CD-1)                            |                     | (females)                                         | (14 days)                                      | Report number: 2107-<br>143    |
|                                   |                     | $LD_{50} = 1787 \text{ mg/kg bw}$<br>(males)      |                                                | Vol.3. B.6.2.1/02              |
| Rat                               | OECD 423            | $LD_{50} > 2000 \text{ mg product/kg}$            | Acute, Oral                                    | (2008a)                        |
| (Han Wistar)                      | 0202 .20            | bw (females)                                      | (14 days)                                      | Report number: 082148          |
| · · ·                             |                     | · · · ·                                           |                                                | Vol 3 CP 7.1.1/01              |
| Rat                               | OECD 453            | NOAEL = 16  mg a.s./kg bw/d                       | Chronic, Oral                                  | (1988)                         |
| (Sprague-Dawley)                  |                     | (males) <sup>c</sup> [nom]                        | (2 years)                                      | Report No.: S-2766             |
| Dat                               | OECD 416            | $I O A E I = 250 \dots = 4 \dots + 1$             | Onal abnorie (1 1                              | Vol 3 CA B.6.5/02              |
| Rat<br>(Sprague-Dawley)           | OECD 416            | LOAEL = 250 mg/kg bw/d<br>NOAEL n.d. <sup>e</sup> | Oral, chronic (1 week before mating until      | (1986)                         |
| (Sprague-Dawley)                  |                     | TOTILL II.u.                                      | day 7 of lactation) <sup>b</sup>               | Report no. S-2758              |
|                                   |                     |                                                   |                                                | Vol 3 CA 6.6.1./01             |
| Rat                               | OECD 416            | NOAEL = 32.2 mg/kg                                | Oral, chronic (two-                            | (1987)                         |
| (Sprague-Dawley)                  |                     | bw/day (parental toxicity)                        | generation)                                    | Report no. S-2778              |
|                                   |                     | NOAEL = $163 \text{ mg/kg bw/day}$                |                                                | Vol 3 CA 6.6.1/02              |
|                                   |                     | (reproductive toxicity)                           |                                                |                                |

 Table 2.9.1-1. Summary of all terrestrial vertebrates data for clethodim (a.s.)

| Species             | Method <sup>d</sup> | Results                      | Remarks                 | Reference             |
|---------------------|---------------------|------------------------------|-------------------------|-----------------------|
| Rat                 | OECD 414            | LOAEL = 250  mg/kg bw/d      | Oral gavage, single     | (1986)                |
| (Sprague-Dawley)    |                     | (decreased pup weight)       | daily dose on           | Report number: S-2807 |
|                     |                     | NOAEL n.d. <sup>e</sup>      | gestational days 6-15 b | Vol 3 CA 6.6.2.1/01   |
| Rat                 | OECD 414            | NOAEL = $83.3 \text{ mg/kg}$ | Oral gavage, single     | (1987)                |
| (Sprague-Dawley)    |                     | bw/day (maternal and         | daily dose on           | Report number: S-2808 |
|                     |                     | developmental toxicity)      | gestational days 6-15   | Vol 3 CA 6.6.2.2/01   |
| Rabbit              | OECD 414            | LOAEL = 125 mg/kg bw/day     | Oral gavage, single     | (1986)                |
| (New Zealand White) |                     | (reduced body weight gain)   | daily dose on           | Report number: S-2734 |
|                     |                     | NOAEL n.d. <sup>e</sup>      | gestational day 7-19 b  | Vol 3 CA 6.6.2.3/01   |
| Rabbit              | OECD 414            | NOAEL maternal = 20.8        | Oral gavage, single     | (1987)                |
| (New Zealand White) |                     | mg/kg bw/day                 | daily dose on           | Report number: S-2869 |
|                     |                     |                              | gestational day 7-19    | Vol 3 CA 6.6.2.4/01   |
|                     |                     | NOAEL developmental =        |                         |                       |
|                     |                     | 83.3 mg/kg bw/day            |                         |                       |

<sup>a</sup> NOEL used for risk assessment as lower than the LD<sub>50</sub>/10 in line with EFSA's Bird and Mammal Guidance Document (EFSA/2009/1438)

<sup>b</sup> Pilot study, supportive information only

<sup>c</sup> this endpoint was used in the Applicant's risk assessment. The RMS has used the value of 20.8 mg/kg bw/day instead, as it was generated from a study that followed one of the test guidelines recommended in EFSA 2009.

<sup>d</sup> the method listed here refers to the most relevant test guideline used for determining the validity of the study

<sup>e</sup> study not suitable for NOAEL setting (low number of animals used and limited parameters investigated)

[mm] mean measured concentration; [nom] nominal concentration; [TWA] time-weighted average

Details on the effects on mammals are given in sections 2.6.2. and 2.6.6. of this volume. The respective studies are

summarised in Vol 3 CA B6.

#### 2.9.2 Summary of effects on aquatic organisms

#### 2.9.2.1 **Bioaccumulation** [equivalent to section 11.4 of the CLH report template]

| Method                                                                           | Species                              | Results                                                                            | Key or<br>Supportive<br>study | Remarks                    | Reference                                                  |
|----------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------|-------------------------------|----------------------------|------------------------------------------------------------|
| US EPA 165-4                                                                     | Lepomis<br>macrochirus<br>(Bluegill) | Max BCF <sup>a</sup> = 3.5<br>L/kg (whole fish)<br>and 2.0 L/kg (edible<br>tissue) | key                           | 28-day,<br>bioaccumulation | (1987)<br>Report No.: 35636<br>Vol 3 CA B.9.2.2.3          |
| 40 CFR158.130<br>Pesticide<br>Assessment<br>Guideline<br>Subdivision N.<br>165-7 | Lepomis<br>macrochirus<br>(Bluegill) | BCF <0.96 <sup>b</sup> (whole fish)                                                | supportive                    | 28-day,<br>bioaccumulation | & (1988)<br>Report No.: MEF-<br>0020<br>Vol 3 CA B.9.2.2.3 |

Table 70. Summary of relevant information on bioaccumulation.

<sup>a</sup> not normalised for lipids (no lipid data)

<sup>b</sup> concentrations in fish were <LOQ, so BCF was estimated by the RMS by considering the concentration in fish to be equal to LOQ (0.0364 mg/kg)

#### 2.9.2.1.1 **Estimated bioaccumulation**

Table 2.9.2.1-1. Log Pow values for clethodim based on pH

| pH range | Log Pow   |
|----------|-----------|
| 4        | 3.4       |
| 7        | 2.3 - 2.8 |
| 9        | 1.7 – 1.9 |

# 2.9.2.1.2 Measured partition coefficient and bioaccumulation test data

Given the available data on log Pow (max 3.4 at acidic pH 4) and experimental BCF in fish 3.5, clethodim is not expected to bioaccumulate.

# 2.9.2.2 Acute aquatic hazard [equivalent to section 11.5 of the CLH report template]

| Method                                                                                                                        | ry of relevant inform                     | Test<br>material       | Results                                                                      | Key or<br>Supportive<br>study | Remarks             | Reference                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------|------------------------------------------------------------------------------|-------------------------------|---------------------|--------------------------------------------------------------------------------|
|                                                                                                                               |                                           |                        | Fish                                                                         |                               |                     |                                                                                |
| US EPA 72-1<br>(1982)                                                                                                         | Oncorhynchus<br>mykiss<br>(rainbow trout) | Clethodim              | LC <sub>50</sub> = 25<br>mg a.s./L (mm)                                      | key                           | 96 hours,<br>static | (1986a)<br>Report No.: 34968<br>Vol 3 CA B.9.2.1                               |
| OECD 203<br>(1992),<br>Directive<br>92/69/EEC,<br>Annex Part C1<br>(1992)                                                     | Oncorhynchus<br>mykiss<br>(rainbow trout) | Clethodim<br>sulfoxide | LC50 > 100<br>mg/L (nom)                                                     | key                           | 96 hours,<br>static | (2005)<br>Report No.:<br>25012230<br>Vol 3 CA B.9.2.1                          |
| OECD 203<br>(1992),<br>Commission<br>Directive<br>92/69/EEC,<br>Annex Part C,<br>C.l: "Acute<br>Toxicity for<br>Fish" 1992    | Oncorhynchus<br>mykiss<br>(rainbow trout) | Clethodim<br>120       | LC50 = 8.98 mg<br>product/L<br>(nom)<br>(1.21 mg<br>a.s./L(nom))             | key                           | 96 hours,<br>static | (2006)<br>Report No.:<br>30704230<br>Vol 3 CP B.9.3.1                          |
| US EPA 72-1<br>(1982)                                                                                                         | Lepomis<br>macrochirus<br>(bluegill)      | Clethodim              | LC <sub>50</sub> > 33<br>mg a.s./L (mm)                                      | key                           | 96 hours,<br>static | Swigert, J.P.<br>Report No.: S-2839<br>Vol 3 CA B.9.2.1                        |
|                                                                                                                               |                                           |                        | Invertebrates                                                                |                               |                     |                                                                                |
| U.S. EPA 72-2<br>(1982)                                                                                                       | Daphnia magna<br>(waterflea)              | Clethodim              | EC <sub>50</sub> > 100<br>mg a.s./L (nom)                                    | key                           | 48 hours,<br>static | Forbis, A.D. (1986)<br>Report No.: 34969<br>Vol 3 CA B.9.2.4                   |
| OECD 202<br>(2004)<br>Commission<br>Directive<br>92/69/EEC,<br>Annex Part C,<br>C.2: "Acute<br>Toxicity for<br>Daphnia", 1992 | Daphnia magna<br>(waterflea)              | Clethodim<br>120       | EC <sub>50</sub> = 29.4 mg<br>product/L<br>(nom)<br>(3.9 mg a.s./L<br>(nom)) | key                           | 48 hours,<br>static | Vinken R. & Wydra<br>V. (2006a)<br>Report No.:<br>30703220<br>Vol 3 CP B.9.3.1 |

Table 71. Summary of relevant information on acute aquatic toxicity.

# 2.9.2.2.1 Acute (short-term) toxicity to fish

Relevant endpoints are available from acute (96 h) studies on rainbow trout and bluegill. The sensitivity of the two species to clethodim a.s. was similar. The data on rainbow trout show that the metabolite clethodim sulfoxide was less toxic than the parent compound clethodim (by a factor of 4), whereas the formulated product Clethodim 120 was more toxic than the active substance (by a factor of 20).

# 2.9.2.2.2 Acute (short-term) toxicity to aquatic invertebrates

Relevant endpoints for clethodim a.s. and formulated product are available from acute (48 h) studies on *Daphnia magna*. The data show that the product Clethodim 120 was more than 25 times more toxic than the active substance.

# 2.9.2.2.3 Acute (short-term) toxicity to algae or aquatic plants

Please refer to Section 2.9.2.3.3 'Chronic toxicity to algae or aquatic plants' where both acute (short-term) and chronic toxicity to algae and aquatic plants are discussed.

# 2.9.2.2.4 Acute (short-term) toxicity to other aquatic organisms

No further acute data on other aquatic organisms are available, nor required for this evaluation.

# 2.9.2.3 Long-term aquatic hazard [equivalent to section 11.6 of the CLH report template]

| Method       | Species         | Test      | Results                               | Key or    | Remarks    | Reference   |
|--------------|-----------------|-----------|---------------------------------------|-----------|------------|-------------|
|              | -               | material  |                                       | Supportiv |            |             |
|              |                 |           |                                       | e study   |            |             |
|              |                 |           | Fish                                  | 1         | <b></b>    | 1           |
| US EPA       | Cyprinodon      | Clethodim | NOEC = 4.2  mg a.s./L                 | key       | 34-day ELS |             |
| OPPTS        | variegatus      |           | (mm)                                  |           | flow       | et al.      |
| 850.1000     | (sheepshead     |           | $EC_{10}$ n.d.                        |           | through    | (2011)      |
| (1996)       | minnow)         |           |                                       |           |            | Report No.: |
| US EPA       |                 |           |                                       |           |            | 263A-127    |
| OPPTS        |                 |           |                                       |           |            | Vol 3 CA    |
| 850.1400     |                 |           |                                       |           |            | B.9.2.2.1   |
| (1996)       |                 |           |                                       |           |            |             |
| ASTM         |                 |           |                                       |           |            |             |
| Standard     |                 |           |                                       |           |            |             |
| E1241-05     |                 |           |                                       |           |            |             |
| OECD 229     | Pimephales      | Clethodim | No effects                            | key       | 21-day     | et          |
| (2012)       | promelas        |           | (test concentrations: 0.1-            |           | FSTRA      | al. (2020)  |
| US EPA       | (fathead        |           | 10 mg/L, nom)                         |           | flow       | Report No.: |
| OPPTS No.    | minnow)         |           |                                       |           | through    | 443A-166A   |
| 890.1350     |                 |           |                                       |           |            | Vol 3 CA    |
| (2009)       |                 |           |                                       |           |            | B.9.2.3     |
|              |                 |           | Amphibians                            |           |            |             |
| OECD 231     | Xenopus laevis  | Clethodim | No effects                            | key       | 21-day     |             |
| (2009)       | (African clawed |           | (test concentrations: 0.23-           |           | AMA, flow  | (2021)      |
| US EPA       | frog)           |           | 23 mg/L, nom)                         |           | through    | Report No.: |
| OPPTS No.    |                 |           |                                       |           |            | 443A-165    |
| 890.1100     |                 |           |                                       |           |            | Vol 3 CA    |
| (2009)       |                 |           |                                       |           |            | B.9.2.3     |
|              |                 |           | Invertebrates                         |           |            |             |
| OECD 211     | Daphnia magna   | Clethodim | Reproduction                          | key       | 21 d, semi | Kuhl, R. &  |
| (2008)       | (waterflea)     | 120       | NOEC = 1.0 mg                         |           | static     | Wydra, V.   |
| Commission   |                 |           | product/L                             |           |            | (2011)      |
| Regulation   |                 |           | (0.14 mg a.s./L)                      |           |            | Report No.: |
| (EC) No      |                 |           | $EC_{10} = 1.69 mg$                   |           |            | 62161221    |
| 440/2008,    |                 |           | product/L (0.23 mg a.s./L)            |           |            | Vol 3 CP    |
| Annex, Part  |                 |           | G 1 1                                 |           |            | B.9.3.2     |
| C, C.20.:    |                 |           | Survival                              |           |            |             |
| "Daphnia     |                 |           | NOEC = $3.2 \text{ mg}$               |           |            |             |
| magna        |                 |           | product/L (0.44 mg a.s./L)            |           |            |             |
| Reproduction |                 |           | $EC_{10} = 1.38 \text{ mg product/L}$ |           |            |             |
| Test" 2008   |                 |           | (0.19 mg a.s./L)                      |           |            |             |

Table 72. Summary of relevant information on chronic aquatic toxicity.

| Method                                                                                                                                               | Species                                                 | Test               | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Key or               | Remarks                                     | Reference                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------|----------------------------------------------------------------------------------------------|
|                                                                                                                                                      |                                                         | material           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Supportiv<br>e study |                                             |                                                                                              |
|                                                                                                                                                      |                                                         |                    | (nom)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · · ·                |                                             |                                                                                              |
| Draft OECD<br>219 (Feb<br>2000)<br>Streloke, M.<br>and Köpp, H.<br>(1995):<br>Proposal for a<br>BBA-<br>Guideline                                    | Chironomus<br>riparius<br>(common non-<br>biting midge) | Clethodim<br>imine | NOEC = $10 \text{ mg/L} (\text{nom})$<br>EC <sub>10</sub> n.d.                                                                                                                                                                                                                                                                                                                                                                                                                                                   | key                  | 28-day,<br>semi-static<br>(spiked<br>water) | Stäbler, D.<br>(2003)<br>Report No.:<br>20031106/01<br>-ASCr<br>Vol 3 CA<br>B.9.2.5          |
|                                                                                                                                                      | 1                                                       | 1                  | Algae                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                                             |                                                                                              |
| OECD 201<br>(2006:2011)                                                                                                                              | Pseudokirchneri<br>ella subcapitata<br>(green algae)    | Clethodim          | $E_rC_{50} = 35.1 \text{ mg a.s./L}$<br>$E_rC_{10} = 17.9 \text{ mg a.s./L}$<br>$E_yC_{50} = 20.0 \text{ mg a.s./L}$<br>$E_yC_{10} = 11.8 \text{ mg a.s./L}$<br>NOEC = 4.98 mg a.s./L<br>(mm)                                                                                                                                                                                                                                                                                                                    | key                  | 72 hours                                    | Siche, O. &<br>Mollandin,<br>G. (2020a)<br>Report No.:<br>140061210<br>Vol 3 CA<br>B.9.2.6.1 |
| OECD 201<br>(1984)<br>OECD 201<br>(revised 2004)<br>Commission<br>Directive<br>92/69/EEC,<br>Annex Part C,<br>C3: "Algal<br>Inhibition<br>Test" 1992 | Pseudokirchneri<br>ella subcapitata<br>(green algae)    | Clethodim<br>120   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | key                  | 72 hours                                    | Vinken R. &<br>Wydra V.<br>(2006b)<br>Report No.:<br>30701210<br>Vol 3 CP<br>B.9.3.1         |
| OECD 201<br>(2006:2011)                                                                                                                              | Navicula<br>pelliculosa<br>(diatom)                     | Clethodim          | $E_rC_{50} > 61.3 \text{ mg a.s./L} \\ E_rC_{10} = 21.2 \text{ mg a.s./L} \\ E_yC_{50} = 49.3 \text{ mg a.s./L} \\ E_yC_{10} = 3.12 \text{ mg a.s./L} \\ \text{NOEC} = 0.651 \text{ mg a.s./L} \\ (\text{mm})$                                                                                                                                                                                                                                                                                                   | key                  | 72 hours                                    | Siche, O. &<br>Mollandin,<br>G. (2020b)<br>Report No.:<br>140061218<br>Vol 3 CA<br>B.9.2.6.2 |
| OECD 201<br>(1984)<br>OECD 201<br>(revised 2004)<br>Commission<br>Directive<br>92/69/EEC,<br>Annex Part C,<br>C3: "Algal<br>Inhibition<br>Test" 1992 | Anabaena flos-<br>aquae<br>(cyanobacteria)              | Clethodim<br>120   | $\begin{split} & F_{r}C_{50} = 15.86 \text{ mg} \\ & \text{product/L (2.14 mg a.s/L)} \\ & F_{r}C_{10} = 9.004 \text{ mg} \\ & \text{product/L (1.22 mg a.s/L)} \\ & \text{NOEC (growth rate)} = 8.8 \\ & \text{mg product/L (1.19 mg a.s/L)} \\ & E_{y}C_{50} = 7.43 \text{ mg} \\ & \text{product/L (1.00 mg a.s/L)} \\ & E_{y}C_{10} = 3.277 \text{ mg} \\ & \text{product/L (0.44 mg a.s/L)} \\ & \text{NOEC (yield)} = 0.95 \text{ mg} \\ & \text{product/L (0.13 mg a.s/L)} \\ & (\text{nom)} \end{split}$ | key                  | 72 hours                                    | Vinken R. &<br>Wydra V.<br>(2006c)<br>Report No.:<br>30702210<br>Vol 3 CP<br>B.9.3.1         |
| US EPA 123-                                                                                                                                          | Lamna cibba                                             | Clethodim          | Aquatic plants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | kov                  | 7 day                                       | Rhodes, J.E.                                                                                 |
| US EPA 123-<br>2 (1989)                                                                                                                              | Lemna gibba<br>G3 (duckweed)                            | Clethodim          | $\label{eq:rc_50} \frac{Fronds}{E_r C_{50}} = 3.78 \mbox{ mg a.s./L} \\ E_r C_{10} = 0.323 \mbox{ mg a.s./L} \\ NOEC (growth rate) = 0.670 \mbox{ mg a.s./L} \\ E_y C_{50} = 1.09 \mbox{ mg a.s./L} \\ E_y C_{10} = 0.174 \mbox{ mg a.s./L} \\ NOEC (yield) = 0.286 \mbox{ mg a.s./L} \\ a.s./L \end{tabular}$                                                                                                                                                                                                   | key                  | 7-day,<br>static                            | Rhodes, J.E.<br>& Hughes,<br>J.S. (1991)<br>Report No.:<br>B765-01-1<br>Vol 3 CA<br>B.9.2.7  |

| Method                                                                                                                    | Species                             | Test<br>material                  | Results                                                                                                                                                                                                                                                                                                                                                                                                        | Key or<br>Supportiv<br>e study | Remarks                | Reference                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------|-----------------------------------------------------------------------------------------------------|
|                                                                                                                           |                                     |                                   | (gmm)                                                                                                                                                                                                                                                                                                                                                                                                          | estudy                         |                        |                                                                                                     |
| Pesticide<br>Assessment<br>Guidelines,<br>Subdivision J<br>Hazard<br>Evaluation:<br>Wildlife and<br>Aquatic<br>Organisms. | <i>Lemna gibba</i><br>G3 (duckweed) | Clethodim                         | $\frac{\text{Fronds}}{\text{ErC}_{50} > 4.83 \text{ mg a.s./L}}$ $\frac{\text{ErC}_{10} \text{ n.d.}}{\text{NOEC (growth rate)} = 4.83 \text{ mg a.s./L}}$ $\frac{\text{NOEC (phytotoxicity)}}{\text{el.77 mg a.s./L}}$                                                                                                                                                                                        | key                            | 14-day,<br>static      | Grimstead,<br>S.R. et al.,<br>(1991)<br>Report No.:<br>162A-115A<br>Vol 3 CA<br>B.9.2.7             |
| OECD 239<br>(2014), Ring<br>test protocol<br>for <i>Glyceria</i><br><i>maxima</i> , July<br>17, 2018                      | Glyceria<br>maxima                  | Clethodim                         | $\frac{\text{Fresh weight}}{\text{ErC}_{50} = 0.0886 \text{ mg a.s./L}}$ $\text{ErC}_{10} = 0.00066 \text{ mg a.s./L}$ $\text{EyC}_{50} = 0.0342 \text{ mg a.s./L}$ $\text{EyC}_{10} = 0.00007 \text{ mg a.s./L}$ $\text{NOEC} = 0.027 \text{ mg a.s./L}$ $(\text{total leaf length and fresh weight})$ $(\text{twa})$                                                                                         | key                            | 14-day,<br>semi static | Armbruster,<br>H. (2020)<br>Report No.:<br>136151245<br>Vol 3 CA<br>B.9.2.7                         |
| OECD 221<br>(2004)<br>US EPA 712-<br>C-96-156:<br>OPPTS<br>850.4400<br>(1996)                                             | <i>Lemna gibba</i><br>(duckweed)    | Clethodim<br>sulfoxide            | $\frac{Fronds}{E_rC_{50} > 100 \text{ mg/L}}$ $E_rC_{10} = 30.57 \text{ mg/L}$ $E_yC_{50} = 75.6 \text{ mg/L}$ $E_yC_{10} = 14.56 \text{ mg/L}$ $NOEC = 9.77 \text{ mg/L}$ $\frac{Biomass}{E_rC_{50} > 100 \text{ mg/L}}$ $E_yC_{50} = 88.4 \text{ mg/L}$ $E_yC_{10} = 24.13 \text{ mg/L}$ $NOEC = 31.25 \text{ mg/L}$ (nom)                                                                                   | key                            | 7-day,<br>static       | Pawlowski,<br>S. (2006)<br>Report No.:<br>25011240<br>Vol 3 CA<br>B.9.2.7                           |
| OECD 221<br>(2006)                                                                                                        | <i>Lemna gibba</i><br>(duckweed)    | Clethodim<br>sulfone              | $\frac{\text{Fronds}}{\text{E}_{r}\text{C}_{50} = 76.7 \text{ mg/L}}$ $E_{r}\text{C}_{10} = 8.46 \text{ mg/L}$ $E_{y}\text{C}_{10} = 5.70 \text{ mg/L}$ $E_{y}\text{C}_{10} = 5.70 \text{ mg/L}$ NOEC (growth rate) = 3.2 mg/L<br>$\frac{\text{Biomass}}{\text{E}_{r}\text{C}_{50} > 100 \text{ mg/L}}$ $E_{r}\text{C}_{10} = 5.49 \text{ mg/L}$ $E_{y}\text{C}_{10} = 5.74 \text{ mg/L}$ NOEC = 10 mg/L (nom) | key                            | 7-day,<br>static       | Seeland-<br>Fremer, A. &<br>Wydra, V.<br>(2019a)<br>Report No.:<br>136041240<br>Vol 3 CA<br>B.9.2.7 |
| OECD 221<br>(2006)                                                                                                        | <i>Lemna gibba</i><br>(duckweed)    | Clethodim<br>oxazole<br>sulfoxide | $\frac{\text{Fronds and Biomass}}{\text{E}_{r}\text{C}_{50} > 100 \text{ mg/L}}$ $E_{y}\text{C}_{50} > 100 \text{ mg/L}$ $E_{r}\text{C}_{10} \text{ and } E_{y}\text{C}_{10} > 100 \text{ mg/L}$ $\text{mg/L}$ NOEC = 100 mg/L (nom)                                                                                                                                                                           | key                            | 7-day,<br>static       | Siche &<br>Mollandin<br>(2020c)<br>Report No.:<br>136141240<br>Vol 3 CA<br>B.9.2.7                  |
| OECD 221<br>(2006)                                                                                                        | <i>Lemna gibba</i> (duckweed)       | Clethodim<br>oxazole<br>sulfone   | $\frac{\text{Fronds and Biomass}}{\text{E}_{r}\text{C}_{50} > 100 \text{ mg/L}}$ $E_{y}\text{C}_{50} > 100 \text{ mg/L}$                                                                                                                                                                                                                                                                                       | key                            | 7-day,<br>static       | Seeland-<br>Fremer, A. &<br>Wydra, V.                                                               |

| Method             | Species                          | Test<br>material                | Results                                                                                                                                                                                    | Key or<br>Supportiv<br>e study | Remarks               | Reference                                                                   |
|--------------------|----------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------|-----------------------------------------------------------------------------|
|                    |                                  |                                 | $E_r C_{10}$ and $E_y C_{10} > 100$ mg/L                                                                                                                                                   | c study                        |                       | (2019b)<br>Report No.:                                                      |
|                    |                                  |                                 | NOEC = $100 \text{ mg/L}$<br>(nom)                                                                                                                                                         |                                |                       | 136051240<br>Vol 3 CA<br>B.9.2.7                                            |
| OECD 221<br>(2006) | <i>Lemna gibba</i><br>(duckweed) | Clethodim<br>imine              | $\frac{Fronds}{E_rC_{50}} = 45.4 \text{ mg/L}$<br>E <sub>r</sub> C <sub>10</sub> = 14.4 mg/L<br>E <sub>y</sub> C <sub>50</sub> = 19.2 mg/L                                                 | key                            | 7-day, semi<br>static | Wieth, F. &<br>Wydra, V.<br>(2019a)<br>Report No.:<br>136061240             |
|                    |                                  |                                 | $E_yC_{10} = 4.23 \text{ mg/L}$<br><u>Biomass</u><br>$E_rC_{50} = 50.9 \text{ mg/L}$                                                                                                       |                                |                       | Vol 3 CA<br>B.9.2.7                                                         |
|                    |                                  |                                 | $E_{r}C_{10} = 19.5 \text{ mg/L}$ $E_{y}C_{50} = 24.8 \text{ mg/L}$ $E_{y}C_{10} = 7.93 \text{ mg/L}$                                                                                      |                                |                       |                                                                             |
|                    |                                  |                                 | NOEC = $3.24 \text{ mg/L}$<br>(mm)                                                                                                                                                         |                                |                       |                                                                             |
| OECD 221<br>(2006) | <i>Lemna gibba</i><br>(duckweed) | Clethodim<br>imine<br>sulfoxide | $\frac{Fronds}{E_{r}C_{50} > 100 \text{ mg/L}}$<br>E <sub>r</sub> C <sub>10</sub> = 16.0 mg/L                                                                                              | key                            | 7-day,<br>static      | Wieth, F. &<br>Wydra, V.<br>(2019b)<br>Benert No.                           |
|                    |                                  |                                 | $\begin{split} E_y C_{50} &= 42.5 \ mg/L \\ E_y C_{10} &= 7.34 \ mg/L \end{split}$                                                                                                         |                                |                       | Report No.:<br>136071240<br>Vol 3 CA                                        |
|                    |                                  |                                 | NOEC = 10 mg/L                                                                                                                                                                             |                                |                       | B.9.2.7                                                                     |
|                    |                                  |                                 | $\frac{Biomass}{E_{r}C_{50} > 100 \text{ mg/L}} \\ E_{r}C_{10} = 13.6 \text{ mg/L}$                                                                                                        |                                |                       |                                                                             |
|                    |                                  |                                 | $\begin{split} E_y C_{50} &= 32.1 \text{ mg/L} \\ E_y C_{10} &= 8.46 \text{ mg/L} \end{split}$                                                                                             |                                |                       |                                                                             |
|                    |                                  |                                 | NOEC = $32 \text{ mg/L}$<br>(nom)                                                                                                                                                          |                                |                       |                                                                             |
| OECD 221<br>(2006) | <i>Lemna gibba</i><br>(duckweed) | Clethodim<br>imine<br>ketone    | $\frac{Fronds}{E_rC_{50} > 100 mg/L} \\ E_yC_{50} > 100 mg/L \\ NOEC = 32 mg/L$                                                                                                            | key                            | 7-day, semi<br>static | Wieth, F. &<br>Emnet, P.<br>(2019a)<br>Report No.:                          |
|                    |                                  |                                 | $\frac{Biomass}{E_rC_{50} dry weight > 100}$ $mg/L (nom)$ $E_yC_{50} dry weight > 100$ $mg/L$ $NOEC = 100 mg/L$ (nom)                                                                      |                                |                       | 136131240<br>Vol 3 CA<br>B.9.2.7                                            |
| OECD 221<br>(2006) | <i>Lemna gibba</i><br>(duckweed) | Clethodim<br>M17                | $\label{eq:constraint} \begin{array}{l} \hline Fronds and Biomass \\ \hline E_r C_{50} > 100 \ mg/L \\ E_y C_{50} > 100 \ mg/L \\ E_r C_{10} \ and \ E_y C_{10} > 100 \\ mg/L \end{array}$ | key                            | 7-day,<br>static      | Wieth, F. &<br>Emnet, P.<br>(2019b)<br>Report No.:<br>136121240<br>Vol 3 CA |
|                    |                                  |                                 | NOEC = 100 mg/L<br>(nom)                                                                                                                                                                   |                                |                       | B.9.2.7                                                                     |
| OECD 221<br>(2006) | <i>Lemna gibba</i><br>(duckweed) | CBA                             | $\frac{\text{Fronds}}{\text{E}_{r}\text{C}_{50} > 100 \text{ mg/L}}$ $\text{E}_{r}\text{C}_{10} = 38.0 \text{ mg/L}$                                                                       | key                            | 7-day,<br>static      | Seeland-<br>Fremer, A. &<br>Wydra, V.<br>(2019c)                            |
|                    |                                  |                                 | $E_yC_{50} > 100 \text{ mg/L}$<br>$E_yC_{10} = 9.58 \text{ mg/L}$<br>NOEC = 10 mg/L                                                                                                        |                                |                       | Report No.:<br>136081240<br>Vol 3 CA                                        |
|                    |                                  |                                 | Biomass                                                                                                                                                                                    |                                |                       | B.9.2.7                                                                     |

| Method             | Species                             | Test<br>material | Results                                                                                                                                                               | Key or<br>Supportiv<br>e study | Remarks          | Reference                                                                  |
|--------------------|-------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------|----------------------------------------------------------------------------|
|                    |                                     |                  | $\begin{array}{l} E_r C_{50} > 100 \ mg/L \\ E_r C_{10} > 100 \ mg/L \end{array}$                                                                                     |                                |                  |                                                                            |
|                    |                                     |                  | $\begin{array}{l} E_y C_{50} > 100 \ mg/L \\ E_y C_{10} = 13.8 \ mg/L \end{array}$                                                                                    |                                |                  |                                                                            |
|                    |                                     |                  | NOEC = 32 mg/L<br>(nom)                                                                                                                                               |                                |                  |                                                                            |
| OECD 221<br>(2006) | <i>Lemna gibba</i> (duckweed)       | CAA              | $\frac{\text{Fronds}}{\text{E}_{r}\text{C}_{50} = 10.1 \text{ mg/L}}$<br>ErC <sub>10</sub> = 2.23 mg/L                                                                | key                            | 7-day,<br>static | Seeland-<br>Fremer, A. &<br>Wydra, V                                       |
|                    |                                     |                  | $\begin{split} E_y C_{50} &= 5.09 \text{ mg/L} \\ E_y C_{10} &= 1.91 \text{ mg/L} \end{split}$                                                                        |                                |                  | (2019d)<br>Report No.:<br>136091240                                        |
|                    |                                     |                  | $\label{eq:bound} \begin{array}{l} \underline{Biomass} \\ E_rC_{50} > 100 \mbox{ mg/L} \\ E_rC_{10} = 1.88 \mbox{ mg/L} \end{array}$                                  |                                |                  | Vol 3 CA<br>B.9.2.7                                                        |
|                    |                                     |                  | $\begin{split} E_y C_{50} &= 9.02 \ mg/L \\ E_y C_{10} \ n.d. \end{split}$                                                                                            |                                |                  |                                                                            |
|                    |                                     |                  | NOEC n.d.<br>(nom)                                                                                                                                                    |                                |                  |                                                                            |
| OECD 221<br>(2006) | <i>Lemna gibba</i><br>G3 (duckweed) | Clethodim<br>120 | $\frac{\text{Fronds}}{\text{E}_{r}\text{C}_{50} = 104.17 \text{ mg}}$ product/L (14.06 mg<br>a.s/L)<br>E_{r}\text{C}_{10} = 2.49 \text{ mg product/L} (0.34 mg a.s/L) | key                            | 7-day,<br>static | Vinken, R. &<br>Wydra, V.<br>(2007)<br>Report No.:<br>35071240<br>Vol 3 CP |
|                    |                                     |                  | $E_yC_{50} = 12.92 \text{ mg}$<br>product/L (1.74 mg a.s/L)<br>$E_yC_{10} = 0.91 \text{ mg}$<br>product/L (0.12 mg a.s/L)                                             |                                |                  | B.9.3.1                                                                    |
|                    |                                     |                  | $\frac{\text{Biomass}}{\mathbf{E}_{r}C_{50}} = 90.98 \text{ mg}$<br>product/L (12.28 mg<br>a.s./L)<br>$E_{r}C_{10} = 3.34 \text{ mg product/L}$<br>(0.45 mg a.s/L)    |                                |                  |                                                                            |
|                    |                                     |                  | $E_yC_{50} = 11.82 \text{ mg}$<br>product/L (1.6 mg a.s/L)<br>$E_yC_{10} = 1.36 \text{ mg}$<br>product/L (0.18 mg a.s/L)                                              |                                |                  |                                                                            |
|                    |                                     |                  | NOEC = 1 mg product/L<br>(0.14 mg a.s./L)<br>(nom)                                                                                                                    |                                |                  |                                                                            |

# 2.9.2.3.1 Chronic toxicity to fish

Relevant data for the active substance clethodim are available for sheepshead minnow (34-day Early Life Stage test) and for fathead minnow (21-day Fish Short Term Reproduction Assay). The most sensitive endpoint was the growth of sheepshead minnow, with a NOEC of 4.2 mg a.s./L.

# 2.9.2.3.2 Chronic toxicity to aquatic invertebrates

Relevant data are available from chronic tests with the active substance and formulated product on *Daphnia magna* (21d). Data on the metabolite clethodim imine are available for *Chironomus riparius* (28d). The data on *D. magna* 

show 350-fold higher toxicity of the formulated product Clethodim 120 than of the active substance clethodim (but note that the latter endpoint is not considered acceptable by the RMS).

# 2.9.2.3.3 Chronic toxicity to algae or aquatic plants

Relevant data are available from 72 h tests with green algae, diatoms and blue-green algae, and from 7 or 14-day tests with two species of aquatic plants (*Lemna gibba* and *Glyceria maxima*). *Glyceria maxima* was the most sensitive of the tested aquatic species, by up to two orders of magnitude. The study on *G. maxima* had a semi-static design with renewal of test media every 2-3 days. As this is a rooted macrophyte, the test was performed in the presence of sediment, which could potentially lead to an under-estimation of the exposure during the test due to dissipation and subsequent accumulation of the substance in the sediment. Clethodim was measured in the sediment from the highest test concentration (1000 µg a.s./L) only at the end of the 14-day exposure period and was found in small concentrations, representing only 4% of the nominal concentration. The recovery of clethodim in water was 67 - 98 % in fresh media and 56 - 81 % in aged media. Thus it appears that exposure occurred mainly through the water phase and the study can therefore be considered relevant also for classification purposes. The study fulfils the validity criteria of OECD 239, except for the mean CV for yield, where the acceptable limit is slightly exceeded (*i.e.*, 35.8 % instead of max 35%). Since this deviation is only minor and variability in shoot weight is a common problem in this type of test, the RMS considers that overall, the study is valid.

The data on the green algae *Pseudokirchneriella subcapitata* show that the formulated product Clethodim 120 is more toxic than the active substance clethodim by a factor of at least 25. The sensitivity of the cyanobacteria *Anabaena flos-aquae* to the formulated product is comparable to that of the green algae. The sensitivity of the diatom *Navicula pelliculosa* to clethodim technical is slightly lower than that of the green algae (i.e., by a factor of 1.7).

Growth stimulation of toxin-producing cyanobacteria (*Raphidiopsis raciborskii* and *Microcystis aeruginosa*) has also been shown at 1 mg/L for the clethodim product Poquer in the open literature study by Breda-Alves et al 2020. It is unclear how this product compares to the representative one.

## 2.9.2.3.4 Chronic toxicity to other aquatic organisms

No further acute data on other aquatic organisms are available, nor required for this evaluation.

# 2.9.2.4 Comparison with the CLP criteria

## 2.9.2.4.1 Acute aquatic hazard

| able 73. Summary of information on acute aquatic toxicity relevant for classification. |                 |               |                 |           |                     |  |  |
|----------------------------------------------------------------------------------------|-----------------|---------------|-----------------|-----------|---------------------|--|--|
| Method                                                                                 | Species         | Test material | Results         | Remarks   | Reference           |  |  |
| US EPA 72-1                                                                            | Oncorhynchus    | Clethodim     | $LC_{50} = 25$  | 96 hours, | (1986a)             |  |  |
| (1982)                                                                                 | mykiss          |               | mg a.s./L (mm)  | static    | Report No.: 34968   |  |  |
|                                                                                        | (rainbow trout) |               |                 |           | Vol 3 CA B.9.2.1    |  |  |
| U.S. EPA 72-2                                                                          | Daphnia magna   | Clethodim     | $EC_{50} > 100$ | 48 hours, | Forbis, A.D. (1986) |  |  |
| (1982)                                                                                 | (waterflea)     |               | mg a.s./L (nom) | static    | Report No.: 34969   |  |  |
|                                                                                        |                 |               |                 |           | Vol 3 CA B.9.2.4    |  |  |

Table 73. Summary of information on acute aquatic toxicity relevant for classification.

| Method            | Species         | Test material | Results                 | Remarks      | Reference          |
|-------------------|-----------------|---------------|-------------------------|--------------|--------------------|
| OECD 239          | Glyceria maxima | Clethodim     | ErC <sub>50</sub> fresh | 14-day, semi | Armbruster, H.     |
| (2014), Ring test |                 |               | weight= 0.0886          | static       | (2020) Report No.: |
| protocol for      |                 |               | mg a.s./L (twa)         |              | 136151245          |
| Glyceria maxima,  |                 |               | EyC50 shoot             |              | Vol 3 CA B.9.2.7   |
| July 17, 2018     |                 |               | height = 0.0146         |              |                    |
|                   |                 |               | mg a.s./L (twa)         |              |                    |

From the available acute data on aquatic organisms, the most sensitive species tested is *Glyceria maxima*, with an  $E_rC_{50}$  of 0.0886 mg a.s./L. Based on these results ( $E_rC_{50} \le 1 \text{ mg/L}$ ), clethodim fulfils the criteria for Aquatic Acute Category 1, H400 and the M-factor is 10 as 0.01 mg/L  $< E_rC_{50} \le 0.1 \text{ mg/L}$  (CLP Table 4.1.3.).

# 2.9.2.4.2 Long-term aquatic hazard (including bioaccumulation potential and degradation)

| Table 74. Summary | of information on | long-term squat | ic toxicity relevant f | or classification |
|-------------------|-------------------|-----------------|------------------------|-------------------|

| Method                                                                                       | Species                                            | Test material | Results                                                                                                                                                                                                                                          | Remarks                                                                                                                                        | Reference                                                                       |
|----------------------------------------------------------------------------------------------|----------------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| US EPA OPPTS 850.1000<br>(1996)<br>US EPA OPPTS 850.1400<br>(1996)<br>ASTM Standard E1241-05 | Cyprinodon<br>variegatus<br>(sheepshead<br>minnow) | Clethodim     | NOEC = 4.2<br>mg a.s./L (mm)                                                                                                                                                                                                                     | 34-day ELS<br>flow through                                                                                                                     | et al. (2011)<br>Report No.:<br>263A-127<br>Vol 3 CA<br>B.9.2.2.1               |
| OECD 239 (2014), Ring<br>test protocol for <i>Glyceria</i><br><i>maxima</i> , July 17, 2018  | Glyceria<br>maxima                                 | Clethodim     | $E_rC_{10} =$<br>0.00066 mg<br>a.s./L (twa)<br>[growth rate<br>based on fresh<br>weight]<br>NOEC = 0.0267<br>mg a.s./L (twa)<br>[yield and<br>growth rate<br>based on both<br>total leaf length<br>and fresh<br>weight]                          | 14-day, semi<br>static                                                                                                                         | Armbruster, H.<br>(2020) Report<br>No.: 136151245<br>Vol 3 CA<br>B.9.2.7        |
| US EPA 165-4                                                                                 | Lepomis<br>macrochirus<br>(Bluegill)               | Clethodim     | Max BCF <sup>*</sup> =<br>3.5 L/kg<br>(whole fish) and<br>2.0 L/kg (edible<br>tissue)                                                                                                                                                            | 28-day,<br>bioaccumulation                                                                                                                     | (1987)<br>Report No.:<br>35636<br>Vol 3 CA<br>B.9.2.2.3                         |
| OECD TG no. 301D<br>(Closed Bottle Test)                                                     | -                                                  | Clethodim     | Clethodim:<br>55.9% of ThOD<br>after 7d, 133-<br>138% of ThOD<br>thereafter (14d-<br>28d)<br>Reference<br>substance:<br>72.5% ThOD<br>after 7d and<br>104-131%<br>ThOD<br>thereafter (14d-<br>28d).<br>Clethodim is<br>readily<br>biodegradable. | Test valid,<br>confirmed by<br>high<br>degradation of<br>sodium<br>benzoate. No<br>inhibitory<br>effects.<br>Please also refer<br>to Table 68. | Dengler (2002),<br>Report No.:<br>20011424/01-<br>AACB<br>Vol 3 CA<br>B.8.2.2.1 |

Clethodim is not expected to bioaccumulate, since an experimental BCF in fish of only 3.5 was reported.

Long term aquatic data are available for two trophic levels: fish and primary producers (algae and macrophytes). Clethodim is evaluated according to the flow-chart in CLP regulation (EG) 1272/2008, Annex I: Figure 4.1.1. For the present situation where adequate chronic toxicity data are available for two trophic levels, it is required to assess both:

- (a) according to the criteria given in Table 4.1.0(b)(ii) (rapidly degraded), and
- (b) according to the criteria given in Table 4.1.0(b)(iii),

and the substance is to be classified according to the most stringent outcome.

Thus:

a) According to Table 4.1.0(b)(ii) clethodim is classified based on the most sensitive species *Glyceria maxima* ( $E_rC_{10}$  of 0.00066 mg/L), which results in a classification as Chronic 1 (endpoint is  $\leq 1$  mg/L). Although *Glyceria* is not a pelagic species, it is more sensitive than *Lemna* by a factor 55 and thus leads to a more stringent classification.

b) According to Table 4.1.0(b)(iii) clethodim does not fulfil the criteria for chronic aquatic hazard since the substance is rapidly biodegradable (see results from OECD TG 301D test in the table above) and the BCF is below 500. The surrogate approach due to the lack of valid chronic data on invertebrates is thus not applicable in this case.

Since the outcome from assessment a) is more stringent, clethodim is classified as Chronic 1, H410 and an M factor of 10 applies, as the  $E_rC_{10}$  of 0.00066 mg/L for *Glyceria maxima* is in the range 0.0001 mg/L <  $E_rC_{10} \le 0.001$  mg/L (CLP Table 4.1.3.)

# 2.9.2.5 Conclusion on classification and labelling for environmental hazards

In conclusion, Clethodim fulfils the criteria for classification as Aquatic Acute 1 (Very toxic to aquatic life) and Aquatic Chronic 1 (Very toxic to aquatic life with long lasting effects). The applicable M-factors are 10 for both acute and chronic classifications.

# 2.9.3 Summary of effects on arthropods

Data are available for 5 arthropod species, summarised in the table below. More details on the studies, as well as the RMS's evaluation are presented in the summaries in Volume 3CA Section B.9.3 for the active substance and Vol. 3CP, Section B.9.5 for the formulated product.

 Table 2.9.3-1. Summary of endpoints for arthropods; all values refer to nominal concentrations

| Species | l est<br>material | Results                                     | Kemarks*                           | Keterence                                |
|---------|-------------------|---------------------------------------------|------------------------------------|------------------------------------------|
| Bees    |                   |                                             |                                    |                                          |
|         | Clethodim         | LD <sub>50</sub> > 215.1 μg a.s./bee (oral) | Acute (48 hours), oral and contact | Berg, C. (2020)<br>Report No.: 140061035 |

| Species                                         | Test<br>material                         | Results                                                                                                                                                                                                         | Remarks*                                                         | Reference                                                                     |
|-------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Apis mellifera<br>(honeybees,<br>adults)        |                                          | LD <sub>50</sub> > 199.2 μg a.s./bee<br>(contact)                                                                                                                                                               |                                                                  | Vol 3 CA B.9.3.1.1                                                            |
| Apis mellifera<br>(honeybees,<br>adults)        | Clethodim                                | $LDD_{50} = 10.64 \ \mu g \ a.s./bee/day$                                                                                                                                                                       | Chronic (10 days), oral                                          | Kimmel, S. (2016a)<br>Report No.: 20160123<br>Vol 3 CA B.9.3.1.2              |
| Apis mellifera<br>(honeybees,<br>larvae)        | Clethodim                                | LD <sub>10</sub> = 1.1 μg a.s./larva<br>NOED = 0.8 μg a.s./larva                                                                                                                                                | Acute (8 days), oral                                             | Kimmel, S. (2016b)<br>Report No.: 2016030<br>Vol 3 CA B.9.3.1.3               |
| <i>Apis mellifera</i><br>(honeybees,<br>adults) | Clethodim<br>120                         | LD <sub>50</sub> > 100 μg product/bee<br>(> 14 μg a.s./bee) (oral)<br>LD <sub>50</sub> > 100 μg product/bee<br>(> 14 μg a.s./bee) (contact)                                                                     | Acute (48 hours), oral and contact                               | Szentes, C. (2003)<br>Report No.: 2912/03<br>Vol 3 CP B.9.5.1                 |
|                                                 |                                          | Non-target arthropod                                                                                                                                                                                            | s other than bees                                                |                                                                               |
| Aphidius<br>rhopalosiphi                        | Clethodim<br>120 EC <sup>a</sup>         | <b>LR50 = 27.6 g a.s./ha</b><br>ER50= 11.5 g a.s./ha                                                                                                                                                            | Glass plate<br>(2D exposure regime, 14<br>days)                  | Bützler, R. (2020a)<br>Report No.: 141411001<br>Vol 3 CA B.9.3.2              |
| Aphidius<br>rhopalosiphi                        | Select<br>120 <sup>b</sup>               | LR <sub>50</sub> > 325.5 g a.s./ha<br>ER <sub>50</sub> > 325.5 g a.s./ha                                                                                                                                        | Extended laboratory test<br>(3D exposure regime, 14<br>days)     | Hirth, N. (2003)<br>Report No.: 20021309/01-<br>NEAp<br>Vol 3 CP B.9.5.2      |
| Typhlodromus<br>pyri                            | Clethodim<br>120 EC <sup>a</sup>         | LR50 = 7.8 g a.s./ha<br>ER50 > 7.8 g a.s./ha                                                                                                                                                                    | Glass plate<br>(2D exposure regime, 14<br>days)                  | Bützler, R. (2020b)<br>Report No.: 141411063<br>Vol 3 CA B.9.3.2              |
| Typhlodromus<br>pyri                            | Select<br>120 <sup>b</sup>               | LR <sub>50</sub> = 3.7 g a.s./ha<br>ER <sub>50</sub> > 3.5 g a.s./ha                                                                                                                                            | Extended laboratory test<br>(2D exposure regime, 2<br>weeks)     | Adelberger, I. (2003)<br>Report No.: 20021309/01-<br>NETp<br>Vol 3 CP B.9.5.2 |
| Typhlodromus<br>pyri                            | Select 240<br>+<br>adjuvant <sup>c</sup> | LR <sub>50</sub> = 3.6 g a.s./ha<br>ER <sub>50</sub> > 4.8 g a.s./ha                                                                                                                                            | Extended laboratory test<br>(2D exposure regime, 14<br>days)     | Röhlig, U. (2001)<br>Report No.: 00 10 48 063<br>Vol 3 CP B.9.5.2             |
| Typhlodromus<br>pyri                            | Select 240<br>EC <sup>d</sup>            | LR <sub>50</sub> < 384 g a.s./ha<br>(fresh residues);<br>> 384 g a.s./ha<br>(4,7 & 14 d aged residues)<br>ER <sub>50</sub> > 11 g a.s./ha<br>(fresh residues);<br>> 384 g a.s./ha<br>(4,7 & 14 d aged residues) | Aged residue<br>laboratory test (3D<br>exposure regime, 14 days) | Warmers C. (2005)<br>Report No.: 20051242/01-<br>NETp<br>Vol 3 CP B.9.5.2     |
| Chrysoperla<br>carnea                           | Select 1<br>EC <sup>e</sup>              | LR <sub>50</sub> > 325.5 g a.s./ha<br>ER <sub>50</sub> > 325.5 g a.s./ha                                                                                                                                        | Extended laboratory test<br>(2D exposure regime, 9<br>weeks)     | Hirth, N. (2004)<br>Report No.: 20021309/01-<br>NECc<br>Vol 3 CP B.9.5.2      |
| Aleochara<br>bilineata                          | Clethodim<br>120 EC                      | ER <sub>50</sub> > 976 g a.s./ha                                                                                                                                                                                | Extended laboratory test<br>(2D exposure regime, 77<br>days)     | Berg, C. (2020)<br>Report No.: 141411071<br>Vol 3 CP B.9.5.2                  |

<sup>a</sup> Representative formulation H1231bc; Clethodim 120 EC (Clethodim 120 g/L)

<sup>b</sup> Select 120: 120 g/L, 14% clethodim

<sup>c</sup> Select + adjuvant is a 1:2 v/v mixture with Select 240 (25% clethodim) and Para Sommer (75% paraffin oil) and was considered as a representative formulation for clethodim (EFSA Conclusion 2011)

<sup>d</sup> Select 240 EC (nominally 240 g/L clethodim) was considered as a representative formulation for clethodim (EFSA Conclusion 2011)

<sup>e</sup> Select 1 EC: 14% clethodim

\* note that the information provided in this column refers to the duration of the test, which for some studies is not the same as the length of exposure. See study summaries in Vol 3CA/CP for details

Endpoints in **bold** have been used in the risk assessment

#### 2.9.4 Summary of effects on non-target soil meso- and macrofauna

Data are available for 4 species of soil meso- and macrofauna, summarised in the table below. More details on the studies, as well as the RMS's evaluation are presented in the summaries in Volume 3CA Section B.9.4 for the active substance and Vol. 3CP, Section B.9.7 for the formulated product. The most sensitive species to the active substance clethodim was the earthworm *Eisenia andrei*, with a NOEC for reproduction of 27 mg a.s./kg soil dw. The metabolite CAA was 8-fold more toxic than the parent compound, with a NOEC of 3.2 mg CAA/kg soil dw. The formulated product Clethodim 120 EC was 2, 7 and 42 times more toxic than clethodim technical to earthworms, mites and collembolans, respectively.

| Species               | Test        | Results                                       | Remarks               | Reference                                    |
|-----------------------|-------------|-----------------------------------------------|-----------------------|----------------------------------------------|
|                       | material    |                                               |                       |                                              |
| Firmin m losi         | Clathadim   | Earthwor<br>NOEC = 54 mg                      |                       | Stresh $D$ (2020-)                           |
| Eisenia andrei        | Clethodim   | AOEC = 54  mg<br>a.s./kg soil dw <sup>b</sup> | 56 days (chronic)     | Straube, D. (2020a)<br>Report No.: 140061022 |
|                       |             | NOECcorr = 27 mg                              | (10% peat)            | Vol 3 CA B.9.4.1                             |
|                       |             | a.s./kg soil dw <sup>a</sup>                  |                       | VOI 3 CA B.9.4.1                             |
| Eisenia fetida        | Clethodim   | $LC_{50} > 1000 \text{ mg/kg}$                | 14 days (acute)       | Stäbler, D. (2003)                           |
| Eisema jenaa          | sulfoxide   | soil dw                                       | (10% peat)            | Report No.: 20031112/01-                     |
|                       | sunomae     | LC <sub>50</sub> corr > 500 mg                | (10/0 pour)           | NLEf                                         |
|                       |             | kg soil dw <sup>a</sup>                       |                       | Vol 3 CA B.9.4.1                             |
| Eisenia andrei        | Clethodim   | NOEC = 25 mg/kg                               | 56 days (chronic)     | Straube, D. (2019)                           |
|                       | oxazole     | soil dw <sup>b</sup>                          | (10% peat)            | Report No.: 136141022                        |
|                       | sulfoxide   |                                               |                       | Vol 3 CA B.9.4.1                             |
| Eisenia fetida        | Clethodim   | NOEC = 10 mg/kg                               | 56 days (chronic)     | Lührs, U. (2006)                             |
|                       | oxazole     | soil dw <sup>b</sup>                          | (10% peat)            | Report No.: 31592022                         |
|                       | sulfone     |                                               |                       | Vol 3 CA B.9.4.1                             |
| Eisenia andrei        | CBA         | NOEC = 6.4  mg/kg                             | 56 days (chronic)     | Pavić, B. (2019a)                            |
|                       |             | soil dw <sup>b</sup>                          | (10% peat)            | Report No.: 136081022                        |
|                       |             | NOECcorr = 3.2                                |                       | Vol 3 CA B.9.4.1                             |
|                       |             | mg/kg soil dw <sup>a</sup>                    |                       |                                              |
| Eisenia andrei        | CAA         | NOEC = $3.2 \text{ mg/kg}$                    | 56 days (chronic)     | Pavić, B. (2019b)                            |
|                       |             | soil dw                                       | (10% peat)            | Report No.: 136091022                        |
| <b>T</b> : : ()       |             | NOTO 1040                                     |                       | Vol 3 CA B.9.4.1                             |
| Eisenia fetida        | Clethodim   | NOEC = 196.9  mg                              | 56 days (chronic)     | Witte, B (2011)                              |
|                       | 120         | product/kg dw<br>(25.6 mg a.s/kg soil         | 5 % peat content      | Report No.: 62162022<br>Vol 3 CP B.9.7.1     |
|                       |             | (25.0 mg a.s/kg som<br>dw <sup>b</sup> )      |                       | V013 CF B.9.7.1                              |
|                       |             | NOECcorr=12.8 mg                              |                       |                                              |
|                       |             | a.s/kg soil dw <sup>a</sup>                   |                       |                                              |
| Eisenia andrei and    | Clethodim   | Mean BAFk: 1.20                               | 21 days exposure + 21 | Schöbinger, U. (2012)                        |
| Eisenia fetida,       |             |                                               | days elimination      | Report No.: S11-03866                        |
| sub-species E. fetida |             |                                               | 5                     | Vol 3 CA B.9.1.3                             |
| andrei                |             |                                               |                       |                                              |
| Aporrectodea          | Clethodim   | DT <sub>50</sub> for residues in              | 28 days               | Hamberger, A (2012)                          |
| caliginosa,           | 120 g/L EC  | pooled earthworms:                            |                       | Report No.: S11-03863                        |
| A. rosea, Lumbricus   | (TM-20015)  | Clethodim: 0.5 days                           |                       | Vol 3 CA B.9.1.3                             |
| terrestris,           |             | Clethodim sulfoxide:                          |                       |                                              |
| L. rubellus,          |             | 2.33 days                                     |                       |                                              |
| Tanylobous sp. and    |             | Clethodim sulfone:                            |                       |                                              |
| Epilobous sp.*        |             | 5.91 days                                     |                       |                                              |
| Folsomia candida      | Clethodim   | ther non-target soil meson NOEC = 171 mg      | 28 days (5% peat)     | Straube, D. (2020b)                          |
|                       | Cieuiouiiii | a.s./kg soil dw                               | 20 days (5 % peat)    | Report No.: 140061016                        |
|                       |             | (mortality and                                |                       | Vol 3 CA B.9.4.2                             |
|                       |             | reproduction)                                 |                       | , or 5 C/1 D.J.4.2                           |
|                       |             | $EC_{10} = 169.9 \text{ mg}$                  |                       |                                              |
|                       |             | a.s./kg soil dw                               |                       |                                              |
|                       |             | [reproduction]                                |                       |                                              |
|                       |             | $(EC_{10} \text{ corr} = 84.95)$              |                       |                                              |
|                       |             | mg a.s./kg soil dw) <sup>a</sup>              |                       |                                              |
| Hypoaspis aculeifer   | Clethodim   | NOEC = 47.6  mg                               | 14 days (5% peat)     | Straube, D. (2020c)                          |
|                       |             | a.s./kg soil dw <sup>b</sup>                  |                       | Report No.: 140061089                        |
|                       |             | [reproduction]                                |                       | Vol 3 CA B.9.4.2                             |
|                       |             | $EC_{10} = 61.7 mg$                           |                       |                                              |
|                       |             | a.s./kg soil dw                               |                       |                                              |

Table 2.9.4-1. Summary of endpoints for soil meso- and macrofauna

| Species             | Test<br>material                  | Results                                                                                                                                     | Remarks               | Reference                                                        |
|---------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------------------------|
|                     |                                   | (NOECcorr = 23.8 mg)<br>a.s./kg soil dw) <sup>a</sup>                                                                                       |                       |                                                                  |
| Folsomia candida    | Clethodim<br>oxazole<br>sulfoxide | NOEC = 100 mg/kg<br>soil dw <sup>a</sup>                                                                                                    | 28 days<br>(10% peat) | Lührs, U. (2005)<br>Report No.: 25001016<br>Vol 3 CA B.9.4.2     |
| Folsomia candida    | Clethodim<br>sulfone              | NOEC = 85.7 mg/kg<br>soil dw                                                                                                                | 28 days<br>(5% peat)  | Pavić, B. (2020)<br>Report No.: 153041016<br>Vol 3 CA B.9.4.2    |
| Folsomia candida    | Clethodim<br>120 EC               | NOEC = 29.4 mg<br>product/kg soil dw<br>(3.88 mg a.s./kg soil<br>dw) [reproduction]<br>NOECcorr = 1.94<br>mg a.s./kg soil dw <sup>a</sup>   | 28 days<br>(5% peat)  | Straube, D. (2020c)<br>Report No.: 141411016<br>Vol 3 CP B.9.7.2 |
| Hypoaspis aculeifer | Clethodim<br>120 EC               | NOEC = 52.9 mg<br>product/kg soil dw<br>(6.98 mg a.s./kg soil<br>dw) [reproduction]<br>(NOECcorr = 3.49<br>mg a.s./kg soil dw) <sup>a</sup> | 14 days<br>(5% peat)  | Straube, D. (2020d)<br>Report No.: 141411089<br>Vol 3 CP B.9.7.2 |

<sup>a</sup> Corrected value derived by dividing the endpoint by a factor of 2 in accordance with the EPPO earthworm scheme 2002. Clethodim sulfoxide and CBA have a log Pow > 2

<sup>b</sup> Highest concentration tested

\*taxa identified in samples of natural populations of earthworms in the field

dw = dry weight

Endpoints in **bold** have been used for the risk assessment

# 2.9.5 Summary of effects on soil nitrogen transformation

Data on soil nitrogen transformation are available for clethodim, 4 of its metabolites and the formulated product. Less than 25% inhibition of N transformation was observed in all tests. More details on the studies, as well as the RMS's evaluation are presented in the summaries in Volume 3CA Section B.9.5 for the active substance and Vol. 3CP, Section B.9.9 for the formulated product.

| Species        | Test material     | Results                            | Remarks | Reference              |
|----------------|-------------------|------------------------------------|---------|------------------------|
| Soil           | Clethodim         | <25% effects at 2.741 mg/kg soil   | 28-day  | Reis, K-H. (2005)      |
| microorganisms |                   | dw                                 |         | Report No.: 24991080   |
|                |                   |                                    |         | Vol 3 CA B.9.5         |
| Soil           | Clethodim 120     | <25% effect at 2.0 mg a.s./kg soil | 28-day  | Feil, N. (2009)        |
| microorganisms |                   | dw                                 |         | Report No.: 50271080   |
|                |                   |                                    |         | Vol 3 CP B.9.9         |
|                |                   |                                    |         |                        |
| Soil           | Clethodim         | <25% effect at 0.1 mg/kg soil dw   | 70-day  | Reis, K-H. (2007)      |
| microorganisms | oxazole sulfone   |                                    |         | Report No.: 31591080   |
|                |                   |                                    |         | Vol 3 CA B.9.5         |
| Soil           | Clethodim         | <25% effect at 0.14 mg/kg soil dw  | 28-day  | Hammesfahr, U. (2019a) |
| microorganisms | oxazole sulfoxide |                                    |         | Report No.: 136141080  |
|                |                   |                                    |         | Vol 3 CA B.9.5         |
| Soil           | CBA               | <25% effect at 0.35 mg/kg soil dw  | 57-day  | Hammesfahr, U. (2019b) |
| microorganisms |                   |                                    |         | Report No.: 136081080  |
|                |                   |                                    |         | Vol 3 CA B.9.5         |
| Soil           | CAA               | <25% effect at 0.175 mg/kg soil    | 28-day  | Hammesfahr, U. (2019c) |
| microorganisms |                   | dw                                 |         | Report No.: 136091080  |
|                |                   |                                    |         | Vol 3 CA B.9.5         |

Table 2.9.5-1. Summary of endpoints for soil nitrogen transformation

# 2.9.6 Summary of effects on terrestrial non-target higher plants

Data on the formulated product Centurion Pro are available for 6 species of terrestrial higher plants. More details on the studies, as well as the RMS's evaluation are presented in the summaries in Volume 3CA Section B.9.6. The most sensitive endpoint was vegetative vigour in corn.

| Species                                      | Test<br>material                               | Results                                                                                                                                                                                                                                                       | Remarks                                                   | Reference                                                                                         |
|----------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Corn, oat, onion,<br>radish, carrot, soybean | Centurion<br>Pro <sup>a</sup>                  | ER50 > 270.4 g a.s./ha<br>(all species tested)                                                                                                                                                                                                                | Seedling<br>emergence <sup>b</sup><br>21 days             | Fiebig, S. (2003a)<br>Report No.: TNK86941<br>Vol 3 CA B.9.6.2                                    |
| Corn, oat, onion,<br>radish, carrot, soybean | Centurion<br>Pro <sup>a</sup>                  | $\begin{array}{l} ER_{50}=4.7 \ g \ a.s./ha \ (corn)^d \\ ER_{50}=10.8 \ g \ a.s./ha \ (oats)^d \\ ER_{50}>270.4 \ g \ a.s./ha \ (all \ other species tested) \end{array}$                                                                                    | Vegetative<br>vigour <sup>c</sup><br>21 days              | Fiebig, S. (2003b)<br>Report No.: TNW86942<br>Vol 3 CA B.9.6.2                                    |
| Lolium perenne and<br>Echinochloa crus-galli | clethodim<br>clethodim<br>sulfoxide            | $ER_{50} = 3.37 \text{ g/ha} (E. crus-galli)ER_{50} = 6.67 \text{ g/ha} (L. perenne)ER_{50} = 16.49 \text{ g/ha} (E. crus-galli)ER_{50} = 24.86 \text{ g/ha} (L. perenne)$                                                                                    | Vegetative<br>vigour <sup>c</sup> ,<br>Biomass<br>21 days | Balluff, M. (2003a) <sup>e</sup><br>Report No.: 20033008/S1-<br>FGVV<br>Vol 3 CA B.9.6.2          |
| Lolium perenne and<br>Echinochloa crus-galli | clethodim<br>sulfone                           | $ER_{50} = 24.00 \text{ g/ha} (L. perenne)$ $ER_{50} = 12.47 \text{ g/ha} (E. crus-galli)$ $ER_{50} = 23.2 \text{ g/ha} (L. perenne)$                                                                                                                         | Vegetative<br>vigour <sup>c</sup> ,<br>Biomass<br>21 days | Balluff, M. (2003b) <sup>e</sup><br>Report No.: 20033009/S1-<br>FGVV<br>Vol 3 CA B.9.6.2          |
| Lolium perenne and<br>Echinochloa crus-galli | clethodim<br>oxazole<br>sulfone                | ER <sub>50</sub> : >320 g/ha (both species)                                                                                                                                                                                                                   | Vegetative<br>vigour <sup>c</sup> ,<br>Biomass<br>21 days | Balluff, M. (2003c) <sup>e</sup><br>Report No.: 20033010/S1-<br>FGVV<br>Vol 3 CA B.9.6.2          |
| Lolium perenne and<br>Echinochloa crus-galli | clethodim<br>clethodim<br>oxazole<br>sulfoxide | $\begin{array}{l} \text{ER}_{50} = 9.57 \text{ g/ha} \left( \textit{E. crus-galli} \right) \\ \text{ER}_{50} = 21.0 \text{ g/ha} \left( \textit{L. perenne} \right) \\ \text{ER}_{50} > 320 \text{ g a.s./ha} \left( \text{both species} \right) \end{array}$ | Vegetative<br>vigour <sup>c</sup> ,<br>Biomass<br>21 days | Bützler, R. and Kowalczyk,<br>F. (2020) <sup>e</sup><br>Report No.: 153191087<br>Vol 3 CA B.9.6.2 |

 Table 2.9.6-1. Summary of endpoints on terrestrial plants

<sup>a</sup> Formulation details: The tested formulation is Centurion Pro: clethodim 135.2 g/L

<sup>b</sup> Seedling emergence = pre-emergence exposure

<sup>c</sup> Vegetative vigour = post-emergence exposure

<sup>d</sup> Based on fresh weight (most sensitive parameter)

<sup>e</sup> Studies submitted for assessment of metabolite relevance for groundwater.

Endpoints in **bold** have been used for the risk assessment

# 2.9.7 Summary of effects on other terrestrial organisms (flora and fauna)

No further studies required.

# 2.9.8 Summary of effects on biological methods for sewage treatment

The available data show no inhibition of the biological activity of activated sludge at a test concentration of 100 mg clethodim/L. More details on the study, as well as the RMS's evaluation are presented in the summary in Volume 3CA Section B.9.8.

| Test system      | Test<br>material | Results                                                | Key or<br>Supportive study | Remarks | Reference                                                              |
|------------------|------------------|--------------------------------------------------------|----------------------------|---------|------------------------------------------------------------------------|
| Activated sludge | Clethodim        | $ER_{50} > 100 \text{ mg/L}$ $NOEC = 100 \text{ mg/L}$ | key                        | 3 hours | Dengler, D (2002)<br>Report No.:<br>20011424/01-AAHT<br>Vol 3 CA B.9.8 |

#### 2.9.9 Summary of product exposure and risk assessment

Overall, an acceptable risk to the environment is demonstrated for Clethodim 120 EC for all the proposed uses. Details of the risk assessments for clethodim and Clethodim 120 EC are summarised for all wildlife groups in the relevant sections below. The formulation used for aquatic testing, Clethodim 120 (TM-20015) is considered comparable to the representative formulation Clethodim 120 EC (H1231bc). Clethodim 120 appears to be more toxic than clethodim to fish, *Daphnia* and algae but not to aquatic plants. Since these effects are formulation-specific, it is considered appropriate for renewal of approval of the active substance to use endpoints for the active substance, rather than the formulation, for aquatic risk assessments.

# 2.9.9.1 Risk assessment for birds and other terrestrial vertebrates

Risk assessments for terrestrial vertebrates are conducted in accordance with EFSA guidance (2009) for the intended uses of clethodim detailed within the GAP and presented in Vol 3CP, B.9.2.

A comprehensive data set of acute oral, dietary and reproduction studies with the active substance is available. In addition, an acute oral study with Clethodim 120 (TM-20015 considered comparable to the representative formulated product Clethodim 120 EC (H1231bc)) is available in mammals. An acceptable acute risk is demonstrated in the screening assessment for both birds and mammals for all the proposed uses. TER<sub>h</sub> are above the trigger value of 5 for applications of 120 g a.s./L in sugar beet, onions and garlic in the screening assessment for both birds and mammals only. For all other scenarios, an acceptable long-term risk is demonstrated at the first tier for both birds and mammals. An acceptable acute and chronic risk to mammals and birds through exposure via drinking water (puddles) is demonstrated based on the worst-case screening assessment.

The risk assessment of secondary poisoning through earthworm-eating and fish-eating birds and mammals is necessary for clethodim for acidic conditions only (log  $P_{ow}$  of 3.4). In all cases, an acceptable risk is demonstrated at the first tier and therefore the risk of bioaccumulation from the proposed uses of clethodim is considered low in birds and mammals. All the potentially relevant metabolites are not considered a secondary poisoning risk as their log  $P_{ow}$  values are all below three.

#### 2.9.9.2 Risk assessment for aquatic organisms

Aquatic risk assessments as presented (refer to Vol 3 CP, B.9.4) are conducted in accordance with EFSA guidance (2013). Laboratory data are available for fish, aquatic invertebrates, algae and macrophytes with the active substance and the formulated product Clethodim 120 (TM-20015, considered comparable to the representative formulated product Clethodim 120 EC (H1231bc)). Metabolites identified as requiring risk assessment in the aquatic compartment are: clethodim sulfoxide, clethodim sulfone, clethodim imine sulfoxide, clethodim imine, DME

sulfoxide (M17), imine ketone (clethodim imine ketone), 3-chloropropenal, CBA, CAA, clethodim oxazole sulfone, clethodim oxazole sulfoxide and the unknown metabolite M20.

New metabolite studies are available for macrophytes only (*Lemna gibba*), as they represent one of the most sensitive taxonomic groups. However, a fish acute and a *Chironomus riparius* spiked water study are available with clethodim sulfoxide and clethodim imine respectively. For fish the metabolite was less toxic than the parent compound, but for invertebrates no direct comparison can be made since different species were tested for the metabolite and parent compound.

An acceptable risk for all representative uses was demonstrated for all aquatic groups based on the laboratory derived acceptable concentrations (RAC) and Step 2 PEC<sub>sw</sub> values modelled for relevant exposure scenarios. An acceptable risk from exposure to potentially relevant metabolites was confirmed based on FOCUS modelling Step 2 (clethodim sulfone, M17, unknown M20 and 3-chloropropenal) and Step 1 (all other metabolites) and for the worst-case application of 300 g a.s./ha in sugar beet. An acceptable risk from the formulated product for exposure via spray drift was also confirmed using FOCUS Step 1 drift values (also based on worst-case application).

#### 2.9.9.3 Risk assessment for bees and other non-target arthropods

Bee risk assessments as presented (refer to Vol 3 CP, B.9.6.) are performed in accordance with the recommendations of the "Guidance Document on Terrestrial Ecotoxicology", as provided by the Commission Services (SANCO/10329/2002 rev. 2 (final), October 17, 2002).

The acute and contact toxicity studies demonstrate clethodim and Clethodim 120 (considered comparable to the representative formulated product Clethodim 120 ED (H1231bc)) to be of low toxicity to bees. An acceptable risk to honeybees is demonstrated at the first tier from all the proposed uses of clethodim. Chronic adult and larval honeybee studies are submitted in line with data requirements, however risk assessment schemes for such studies are not provided under the current guidance. Based on EFSA 2013, a guidance that has not yet been noted by the Standing Committee on Plants, Animals, Food and Feed, the risk assessment for honeybees requires further refinement. Moreover, bumblebees and solitary bees should also be addressed.

Risk assessments for other non-target arthropods than bees are also presented in Vol 3 CP, B.9.6, and performed in accordance with the recommendations of the "Guidance Document on Terrestrial Ecotoxicology", as provided by the Commission Services (SANCO/10329/2002 rev.2 (final), October 17, 2002), and in consideration of the recommendations of the guidance document ESCORT 2.

Glass plate studies are available for both *Typhlodromus pyri* and *Aphidius rhopalosiphi* and the representative formulated product Clethodim 120 EC. Higher tier extended laboratory studies with *A. rhopalosiphi* (Select 120, 14 % clethodim) and *Chrysoperla carnea* (Select 1 EC, clethodim 14%) are available alongside higher tier extended laboratory studies including an aged residue study with *T. pyri* (Select 120, 14% clethodim; Select, 25% clethodim; Select 240, 240 g/L clethodim). Formulations used for the extended studies are considered sufficiently similar to the representative formulation to enable read across.

An acceptable off-field risk is demonstrated at the first tier for all proposed uses. An acceptable in-field risk is demonstrated at the higher tier for all proposed uses. However, short-term adverse effects may occur in-field with data demonstrating the potential for recovery/recolonization within an acceptable time-period.

# 2.9.9.4 Risk assessment for earthworms and other non-target soil meso- and macrofauna

Non-target soil meso and macro-fauna risk assessments as presented (refer to CP 10.4.) are performed in accordance with the recommendations of the "Guidance Document on Terrestrial Ecotoxicology", as provided by the Commission Services (SANCO/10329/2002 rev. 2 (final), October 17, 2002).

Chronic data on earthworms, collembola and soil mites are available for the active substance and on collembola and soil mites for the representative formulated product Clethodim 120 EC. Chronic earthworm data are available with Clethodim 120 (TM-20025 considered comparable to Clethodim 120 EC (H1231bc)). Six potentially relevant soil metabolites are identified as needing risk assessment: clethodim sulfoxide, clethodim sulfone, clethodim oxazole sulfoxide, clethodim oxazole sulfone, CBA (trans-3-chloroacrylic acid) and CAA (2-[3-chloroallyloxyimino]butanoic acid).

Chronic earthworm studies are available for all metabolites except for clethodim sulfoxide and clethodim sulfone. As clethodim degrades rapidly to clethodim sulfoxide ( $DT_{50}$ : 0.3 day) and then to clethodim sulfone ( $DT_{50}$ : 3.7 days), these metabolites are present during chronic studies with clethodim. Nonetheless, as a precaution, the RMS considers that both clethodim sulfoxide and clethodim sulfone are more toxic than the parent compound by a factor of 10.

Data on two metabolites are available for *Folsomia candida*, namely clethodim oxazole sulfoxide and clethodim sulfone. For the remaining metabolites, the toxicity is assumed to be 10 times higher than for the parent compound. No metabolite data are available for *Hypoaspis aculeifer*, so the toxicity of metabolites is also assumed to be 10 times larger than that of the parent compound at this screening step.

The chronic risk to non-target soil meso- and macrofauna is considered low from the proposed uses of clethodim; this is demonstrated at the first tier.

# 2.9.9.5 Risk assessment for terrestrial non-target higher plants

Terrestrial non-target higher plant risk assessments as presented (refer to Vol 3CP B.9.11) are performed in accordance with the recommendation of the "Guidance Document on Terrestrial Ecotoxicology", (SANCO/10329/2002 rev. 2 final, 2002). The risk assessment is performed based on endpoints from a vegetative vigour and seedling emergence study on *Echinochloa crus-galli* and the active substance clethodim. An acceptable risk is demonstrated at the first-tier for seedling emergence at the highest application rate of 300 g a.s./ha in sugar beet. However, for all proposed uses, a higher tier assessment is required for vegetative vigour as the TERs are < 5. Deposition of clethodim after volatilisation was also considered in the calculation of PER<sub>off-field</sub> by the RMS, in accordance with the FOCUS Air guidance (2008).

The following alternative risk mitigation measures are required:

| Crop scenario                              | Mitigation measures                                    |
|--------------------------------------------|--------------------------------------------------------|
|                                            | 50% drift reduction technology and a 10 m buffer strip |
| 300 g a.s./ha sugar beet                   | 75% drift reduction technology and a 5 m buffer strip  |
|                                            | 90% drift reduction technology and a 5 m buffer strip  |
|                                            | 50% drift reduction technology and a 10 m buffer strip |
| 240 g a.s./ha onion and garlic             | 75% drift reduction technology and a 5 m buffer strip  |
|                                            | 90% drift reduction technology                         |
|                                            | 10 m buffer strip                                      |
|                                            | 50% drift reduction technology and a 5 m buffer strip  |
| 120 g a.s./ha sugar beet, onion and garlic | 75% drift reduction technology and a 5 m buffer strip  |
|                                            | 90% drift reduction technology                         |

#### 2.9.9.6 Risk assessment for soil microorganisms

Soil nitrogen transformation risk assessment as presented (refer to Vol 3CP B.9.10) is performed in accordance with the recommendations of the "Guidance Document on Terrestrial Ecotoxicology", as provided by the Commission Services (SANCO/10329/2002 rev. 2 (final), October 17, 2002).

Data are available for the active substance and the formulated product Clethodim 120 (TM-20025 considered comparable to Clethodim 120 EC (H1231bc)). The risk to soil nitrogen transformation is considered low from the worst-case use of clethodim (300 g a.s./ha in sugar beet); this is demonstrated at the first tier. Six potentially relevant soil metabolites are identified as needing risk assessment: clethodim sulfoxide, clethodim sulfone, clethodim oxazole sulfoxide, clethodim oxazole sulfore, CBA and CAA. Nitrogen transformation studies with metabolites are available except for clethodim sulfoxide and clethodim sulfone. Given that there were no effects in the study with the active ingredient at concentrations 8.5 times higher than the representative PEC, low risk from the two metabolites tested, and that the formation rates of clethodim sulfoxide and clethodim sulfone are 74.6% and 43.9%, respectively, it is considered that there is a sufficient margin to assume a low risk also for these metabolites.

#### 2.9.9.7 Risk assessment for biological methods for sewage treatment

The results of a study on the effects of clethodim on the respiration of aerobic wastewater bacteria showed the 3-hour  $EC_{50}$  to be greater than 100 mg/L, the highest concentration tested, thus, indicating no concern over effects on biological methods for sewage treatment.

#### 2.10 ENDOCRINE DISRUPTING PROPERTIES

## 2.10.1 Gather all relevant information.

The mammalian toxicology studies for clethodim cover a range of study types including subacute, subchronic, chronic, developmental, and reproductive toxicity studies in mammalian species including rat, mouse, dog, and rabbit. The relevant regulatory non-mammalian toxicology studies for clethodim include studies in amphibians as well as studies in birds and fish. Furthermore, *in vivo* mechanistic studies (Uterotrophic assay and Hershberger assay) and *in vitro* mechanistic studies (*in vitro* aromatase and steroidogenesis assays) are available as well as *in silico* mechanistic data (ER, AR, TR).

No studies within the scope of the Guidance and relevant to identification of ED properties were deemed to be relevant following evaluation of the hits from search of the open literature.

The following studies and assays were considered in the ED assessment of Clethodim:

| Matrix | Study type                | Guidance                                                            | ED endpoints missing       | Reference          |
|--------|---------------------------|---------------------------------------------------------------------|----------------------------|--------------------|
| Study  |                           |                                                                     |                            |                    |
| ID     |                           |                                                                     |                            |                    |
| Mamma  | lian Repeat Dose Toxicity | y Studies                                                           |                            |                    |
| 1      | 5-weeks oral (dietary)    | GLP                                                                 | Yes - weight of epididymis | (1986)             |
|        |                           | OECD 407                                                            |                            |                    |
|        | Rat (Sprague Dawley)      | (1995)                                                              |                            | Report No: S-2720  |
|        | 10/sex/group              | Deviations from OECD 407 (2008):<br>- exposure for 5 weeks, not 4   |                            | Vol. 3, B.6.3.1/01 |
|        |                           | - weight of epididymis, thymus, spleen and heart was not determined |                            |                    |
|        | Acceptable                | - blood clotting potential was not measured                         |                            |                    |
|        | 1                         | - functional observations were not performed                        |                            |                    |
|        |                           | - histopathology on bone marrow was not performed                   |                            |                    |
|        |                           | - humidity (72%) slightly above recommended acceptable value of     |                            |                    |
|        |                           | 70% in the guideline                                                |                            |                    |
| 2      | 4-week oral dietary       | GLP                                                                 | No                         | (1986)             |
|        |                           | OECD 407                                                            |                            |                    |
|        | Mouse (CD-1 ICR-          | (1995)                                                              |                            | Report No.: S-2733 |
|        | derived)                  |                                                                     |                            |                    |
|        |                           | Deviations from OECD 407 (2008):                                    |                            | Vol. 3, B.6.3.1/02 |
|        | 10/sex/group              | - clinical and functional observations were not performed           |                            |                    |

| Matrix<br>Study<br>ID | Study type                                                                       | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ED endpoints missing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Reference                                          |
|-----------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
|                       | Acceptable                                                                       | <ul> <li>blood clotting potential was not determined</li> <li>thymus, spleen and heart were not weighed</li> <li>histopathology on bone marrow was not performed.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                    |
| 3                     | 90 days oral (dietary)<br>Rat (Wistar)<br>Acceptable                             | GLP OECD 408<br>(1998)         Deviations from OECD 408 (2018): Parameters/endpoints not<br>examined in this study include:         - blood measurements of thyroxine (T4), triiodothyronine (T3),<br>thyroid stimulating hormone (TSH)         - plasma/serum measurements of low-density lipoproteins (LDL) and<br>high-density lipoproteins (HDL), and other hormones (on a case-by-<br>case basis)         - weights of prostate and seminal vesicles with coagulating glands as a<br>whole, pituitary and thyroid gland         - determination of oestrus cycle stage of all females at necropsy         - enumeration of cauda epididymis sperm reserves, sperm morphology<br>or sperm motility (optional)         - histopathology of coagulation glands and male mammary glands         - sensory reactivity and functional observations were not performed.<br>The weights of the epididymides, thymus, spleen, heart and uterus         - blood clotting potential         - histopathology on bone marrow | Yes - Parameters/endpoints not examined in this study<br>include:<br>- blood measurements of thyroxine (T4),<br>triiodothyronine (T3), thyroid stimulating hormone<br>(TSH)<br>- plasma/serum measurements of low-density<br>lipoproteins (LDL) and high-density lipoproteins<br>(HDL), and other hormones (on a case-by-case basis)<br>- weights of prostate and seminal vesicles with<br>coagulating glands as a whole, pituitary and thyroid<br>gland<br>- determination of oestrus cycle of all females at<br>necropsy<br>- enumeration of cauda epididymis sperm reserves,<br>sperm morphology or sperm motility (optional)<br>- histopathology of coagulation glands and male<br>mammary glands<br>- sensory reactivity and functional observations<br>- weights of epididymides, thymus, spleen, and uterus | (1986)<br>Report No.: S-2765<br>Vol. 3, B.6.3.2/01 |
| 4                     | 90 days oral (gelatine<br>capsules)<br>Dog (Beagle)<br>4/sex/group<br>Acceptable | <ul> <li>humidity (78%) above recommended acceptable value of 70%</li> <li>GLP statement (but no certificate)</li> <li>In general accordance with OECD 409<br/>(1998)</li> <li><u>Deviations from OECD 409 (1998):</u></li> <li>the weights of the epididymides, thymus, spleen and uterus were not determined.</li> <li>histopathology on the bone marrow was not performed.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes - weights of epididymides, thymus, spleen and<br>uterus were not determined.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (1987)<br>Report No: S-2759<br>Vol. 3, B.6.3.2./02 |
| 5                     | 1 year oral (gelatine<br>capsules)<br>Dog (Beagle)<br>6/sex/group                | GLP<br>OECD 452<br>(1998)<br>Deviations from OECD TG 452 (2018):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (1988)<br>Report No.: S-2964<br>Vol. 3, B.6.3.2/03 |

| Matrix<br>Study<br>ID | Study type                                                            | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ED endpoints missing                                                                                                                    | Reference                     |
|-----------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|                       | Acceptable                                                            | <ul> <li>no histopathologic evaluation of the harderian gland and lacrimal gland</li> <li>ornithine decarboxylase was not determined.</li> <li>the temperature and humidity varied greatly and were outside of the recommended range</li> </ul>                                                                                                                                                                                                                                              |                                                                                                                                         |                               |
| 6                     | 2 years oral (dietary)<br>Rat (Sprague-Dawley)                        | GLP<br>OECD 453<br>(1981)                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Yes<br>- weight of thyroid, epididymis, spleen, and uterus<br>were not measured<br>- coagulating gland and vagina were not fixed and/or | (1988a)<br>Report No.: S-2766 |
|                       | 65/sex/group<br>10/sex/group (sacrificed                              | Deviations from current OECD 453 (2018):<br>- prothrombin time and activated partial thromboplastin time were not<br>measured                                                                                                                                                                                                                                                                                                                                                                | examined                                                                                                                                | Vol. 3, B.6.5./02             |
|                       | at interim sacrifice, 1 y)<br>Acceptable                              | <ul> <li>weight of thyroid, epididymis, heart, spleen, and uterus were not<br/>measured</li> <li>coagulating gland, vagina, and lacrimal gland were not fixed and/or</li> </ul>                                                                                                                                                                                                                                                                                                              |                                                                                                                                         |                               |
| 7                     | 18 months oral (feeding)                                              | examined<br>- the humidity varied a lot and was outside of the recommended range<br>GLP                                                                                                                                                                                                                                                                                                                                                                                                      | No                                                                                                                                      | (1988)                        |
|                       | Mouse (Crl:CD-<br>1(ICR)BR)                                           | OECD 451<br>(1981)                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                         | Report No.: S-2867            |
|                       | 60/sex/group                                                          | Deviations from current OECD 451 (2018):<br>Organs not harvested/assessed: coagulating gland, lacrimal gland,<br>mammary glands from males (note that it is only required if visibly                                                                                                                                                                                                                                                                                                         |                                                                                                                                         | Vol. 3, B.6.5/01              |
| 8                     | Acceptable<br>Dose range-finding<br>developmental toxicity,<br>gavage | dissectible, no information on this)<br>GLP<br>EPA 83-3                                                                                                                                                                                                                                                                                                                                                                                                                                      | Not applicable. Pilot study                                                                                                             | (1987a)<br>Report No.: S-2807 |
|                       | Rat (Sprague-Dawley)                                                  | <u>Major deviations from a full OECD TG 414 (2018):</u><br>- ten dams/group, TG recommends 20 to achieve at least 16 animals<br>with implantation sites                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                         | Vol. 3, B.6.6.2.1/01          |
|                       | 10 mated females/group                                                | <ul> <li>the exposure period ended at day 15 instead of the day prior to termination (day 19)</li> <li>anogenital distance in foetuses, thyroid weight, thyroid histopathology, and blood thyroid hormone levels (T4, T3 and TSH) in the maternal animals</li> <li>it is noted that there were indications of SDA viral infections in some dams at gestation day 20. This was noted in 1, 2, 2, 3, and 2 females in the 0, 50, 150, 300, and 500 mg/kg bw/day group, respectively</li> </ul> |                                                                                                                                         |                               |

|             | Study type                      | Guidance                                                                                                                        | ED endpoints missing                                                                                      | Reference            |
|-------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------|
| Study<br>ID |                                 |                                                                                                                                 |                                                                                                           |                      |
| 9           | Developmental toxicity          | GLP                                                                                                                             | Yes:                                                                                                      | (1987)               |
|             | rat, gavage                     | EPA 83-3                                                                                                                        | - anogenital distance in foetuses was not measured<br>- thyroid weight, thyroid histopathology, and blood | Report No.: S-2808   |
|             | Rat (Sprague-Dawley)            | Deviations from current                                                                                                         | thyroid hormone (T4, T3 and TSH) concentrations                                                           | •                    |
|             | 25 mated/group                  | OECD 414 (2018): The following endpoints were not assessed:<br>- anogenital distance in foetuses                                | were not measured in the maternal animals.                                                                | Vol. 3, B.6.6.2.2/01 |
|             | 25 mated/group                  | - thyroid weight, thyroid histopathology, and blood thyroid hormone                                                             |                                                                                                           |                      |
|             |                                 | levels (T4, T3 and TSH) in the maternal animals.                                                                                |                                                                                                           |                      |
|             |                                 | The exposure period ended at day 15 instead of the day prior to termination (shorter exposure period).                          |                                                                                                           |                      |
| 10          | Dose range-finding,             | GLP                                                                                                                             | Not applicable. Pilot study                                                                               | (1987a)              |
|             | gavage                          | EPA 83-3                                                                                                                        |                                                                                                           |                      |
|             | Rabbit (New Zealand             | Major deviations from a full OECD 414 (2018):                                                                                   |                                                                                                           | Report No.: S-2734   |
|             | White)                          | - eight dams/group, TG recommends 20 to achieve at least 16 animals                                                             |                                                                                                           | Vol. 3, B.6.6.2.3/01 |
|             |                                 | with implantation sites                                                                                                         |                                                                                                           |                      |
|             | 8/group                         | - the exposure period ended at day 19 instead of the day prior to termination (day 28)                                          |                                                                                                           |                      |
|             |                                 | termination (day 28)                                                                                                            |                                                                                                           |                      |
| 11          | Developmental toxicity,         | GLP EPA 83-3                                                                                                                    | No                                                                                                        | (1987)               |
|             | gavage                          | Deviations from OECD 414 (2001; the 2018 update is not applicable                                                               |                                                                                                           | Report No.: S- 2869  |
|             | Rabbit (New Zealand             | to rabbits): the exposure period ended at day 19 instead of the day                                                             |                                                                                                           | Report 110 5 2009    |
|             | White)                          | prior to termination (shorter exposure period).                                                                                 |                                                                                                           | Vol. 3, B.6.6.2.4/01 |
|             | 19-20/group                     |                                                                                                                                 |                                                                                                           |                      |
| 12          | Dose range finding              | GLP                                                                                                                             | Not applicable. Pilot study                                                                               | (1986)               |
|             | reproduction study<br>(dietary) | EPA 83-4                                                                                                                        |                                                                                                           | Report No.: S-2758   |
|             | (uletaly)                       | Major deviations from OECD 416 (2001):                                                                                          |                                                                                                           | Report No.: 5-2758   |
|             | Rat (Albino Crl:CD              | - treatment initiated one week before mating rather than 10 weeks                                                               |                                                                                                           | Vol. 3, B.6.6.1/01   |
|             | Sprague Dawley)                 | before mating                                                                                                                   |                                                                                                           |                      |
|             | 8/sex/group                     | - only one generation, F0 dams and F1 pups terminated on lactation day 7                                                        |                                                                                                           |                      |
|             | o/sex/group                     | - low number of females (8), GL recommends use of sufficient                                                                    |                                                                                                           |                      |
|             |                                 | number of animals to yield preferably not less than 20 pregnant                                                                 |                                                                                                           |                      |
|             |                                 | females at or near parturition.                                                                                                 |                                                                                                           |                      |
|             |                                 | <ul> <li>oestrous cycle length and normality not investigated</li> <li>testis and epididymis weight not investigated</li> </ul> |                                                                                                           |                      |
|             |                                 | - sperm motility and sperm morphology not analysed                                                                              |                                                                                                           |                      |

| Matrix<br>Study<br>ID     | Study type                                                                                                                                                                                                      | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ED endpoints missing                                                                                                                                                                                                                                                       | Reference                                          |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
|                           |                                                                                                                                                                                                                 | <ul> <li>total number of homogenisation-resistant testicular spermatids and cauda epididymal sperm not enumerated</li> <li>physical development of the offspring not investigated</li> <li>haematological and clinical parameters not investigated, organ weights not recorded, histopathological investigations not made</li> <li>less number of observation points</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                            |                                                    |
| 13                        | Two-generation<br>reproductive study,<br>dietary<br>Rat (Crl: COBS/CD<br>Sprague-Dawley)<br>30/sex/group (F0 and F1<br>generation)                                                                              | GLP EPA 83-4<br><u>Deviations from OECD 416 (2001):</u><br>- no analysis of sperm parameters<br>- developmental and functional observations of pups were not<br>performed<br>- weighing of adrenals, brain, liver, pituitary gland, spleen, thyroids<br>were not performed<br>- histopathology of the vagina was not performed<br>- dosing before mating period seems to be 9 weeks (the guideline<br>recommends dosing to be continued for at least 10 weeks before the<br>mating period)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Yes<br>- no analysis of sperm parameters<br>- developmental and functional observations of pups<br>were not performed<br>- weight of adrenals, brain, liver, pituitary gland,<br>spleen, and thyroid were not measured<br>- histopathology of the vagina was not performed | (1987)<br>Report No.: S-2778<br>Vol. 3, B.6.6.1/02 |
| Report<br>No. S-<br>2763* | Five-Week Sub-chronic<br>Feeding Study of High<br>Purity RE-45601 (SX-<br>1718) and RE-45601<br>Process Neutrals (SX-<br>1717) in Rats<br>Sprague-Dawley®<br>Crl:CD® (SD) BR<br>10 rats/sex/group<br>Supportive | No guideline followed.<br><u>Observations in study:</u><br>-Viability (daily)<br>-Signs of toxicity (weekly and on the last day of the study)<br>-Pupil responses (day 35)<br>-Body weight (weekly, starting on day 0)<br>-Food consumption (new food was provided twice weekly, at which<br>time the remaining food was weighed to estimate consumption)<br>-Test material intake (calculated weekly)<br>-Haematology (platelet count, erythrocyte count, haemoglobin,<br>haematocrit, mean cell volume, mean cell haemoglobin, mean cell<br>haemoglobin concentration, reticulocyte count, total and differential<br>leukocyte morphology.)<br>-Serum chemistry (sodium, potassium, chloride, calcium, phosphorus,<br>glucose, triglycerides, cholesterol, total, direct and indirect bilirubin,<br>alkaline phosphatase, lactate dehydrogenase, aspartate<br>aminotransferase, alanine aminotransferase, creatine phosphokinase<br>activity, uric acid, blood urea nitrogen (BUN), creatinine,<br>BUN/creatinine ratio, total protein, albumin, globulin and<br>albumin/globulin ratio) | Not applicable. No guideline study                                                                                                                                                                                                                                         | 1987<br>Report no. S-2763<br>Vol. 3. B.6.8.2/03    |

| Matrix      | Study type                   | Guidance                                                                                                                                        | ED endpoints missing | Reference            |
|-------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------|
| Study<br>ID |                              |                                                                                                                                                 |                      |                      |
| ID .        |                              | -Gross necropsy (external surface of the body, all orifices and the                                                                             |                      |                      |
|             |                              | cranial, thoracic, abdominal, and pelvic cavities with their associated                                                                         |                      |                      |
|             |                              | organs and tissues)                                                                                                                             |                      |                      |
|             |                              | -Organ weights (brain, liver, adrenals, kidneys, and testes or ovaries)<br>Histopathological examination (adrenals, brain, epididymis, kidneys, |                      |                      |
|             |                              | liver, lungs, ovaries, sciatic nerve, spinal cord, spleen, testes, urinary                                                                      |                      |                      |
|             |                              | bladder, uterus and all gross lesions)                                                                                                          |                      |                      |
| In vivo l   | Mechanistic Studies          |                                                                                                                                                 |                      |                      |
| 14          | Uterotrophic Assay,          | OECD                                                                                                                                            | No                   | (2020a)              |
|             | gavage                       | Guideline 440                                                                                                                                   |                      |                      |
|             |                              |                                                                                                                                                 |                      | Report No.: 00155006 |
|             | Rat (Sprague Dawley)         | Deviations from OECD Guideline 440 (2007):                                                                                                      |                      |                      |
| 15          | II                           | None<br>OECD                                                                                                                                    | NI-                  | Vol. 3, B.6.8.3/03   |
| 15          | Hershberger Assay,<br>gavage | Guideline 441                                                                                                                                   | No                   | (2020b)              |
|             | gavage                       |                                                                                                                                                 |                      | Report No.: 00155007 |
|             | Rat (Sprague Dawley)         | Deviations from OECD Guideline 441 (2009):                                                                                                      |                      |                      |
|             |                              | -a full necropsy was not carried out                                                                                                            |                      | Vol. 3, B.6.8.3/04   |
| In vitro    | Mechanistic Studies          |                                                                                                                                                 |                      |                      |
| 16          | In vitro Aromatase           | OPPTS 890.1200                                                                                                                                  | -                    | Rijk J.C.W. (2020a)  |
|             | Inhibition using Human       |                                                                                                                                                 |                      |                      |
|             | Recombinant<br>Microsomes    |                                                                                                                                                 |                      | Report No.: 20221185 |
|             | Microsomes                   |                                                                                                                                                 |                      | Vol. 3, B.6.8.3/01   |
| 17          | Steroidogenesis assay        | OECD                                                                                                                                            | -                    | Rijk J.C.W. (2020b)  |
|             | using the Human H295R        | Guideline 456                                                                                                                                   |                      |                      |
|             | Adreno- carcinoma Cell       |                                                                                                                                                 |                      | Report No.: 20221184 |
|             | Line                         | Deviation from OPPTS) guideline 890.1200 (2019):                                                                                                |                      |                      |
|             |                              | The microsomes should not be stored longer than 12 months according to the guideline, in this study they were stored "for a                     |                      | Vol. 3, B.6.8.3/02   |
|             |                              | maximum of 2 years"                                                                                                                             |                      |                      |
| In silico   | mechanistic data             | maximum of 2 years                                                                                                                              |                      |                      |
| 18          | ER                           | -                                                                                                                                               | _                    | Cloke et al (2020)   |
| 10          | -ATG_ERa_TRANS_up            |                                                                                                                                                 |                      |                      |
|             | -ATG, ERE_CIS_up             |                                                                                                                                                 |                      | Report No.:          |
|             | -ATG_Era_TRANS_dn            |                                                                                                                                                 |                      | 1602215.UK0 – 9208   |
|             | -ATG_ERE_CIS_dn              |                                                                                                                                                 |                      |                      |

| Matrix  | Study type               | Guidance                                | ED endpoints missing                                     | Reference            |
|---------|--------------------------|-----------------------------------------|----------------------------------------------------------|----------------------|
| Study   |                          |                                         |                                                          |                      |
| ID      |                          |                                         |                                                          |                      |
|         |                          |                                         |                                                          | Vol. 3, B.6.8.3.5/01 |
|         |                          |                                         |                                                          |                      |
|         | AR                       |                                         |                                                          |                      |
|         | -ATG, AR_TRANS_up        |                                         |                                                          |                      |
|         | -ATG_AR-TRANS-dn         |                                         |                                                          |                      |
|         | -TOX21_AR_LUC_           |                                         |                                                          |                      |
|         | MDAKB2_Agonist_3u        |                                         |                                                          |                      |
|         | M_Nilutamide             |                                         |                                                          |                      |
|         | -TOX21_AR_LUC_           |                                         |                                                          |                      |
|         | MDAKB2_Antagonist_0      |                                         |                                                          |                      |
|         | .5nM_R1881               |                                         |                                                          |                      |
|         |                          |                                         |                                                          |                      |
|         | TR                       |                                         |                                                          |                      |
|         | ATG_THRa1_TRANS_         |                                         |                                                          |                      |
|         | up                       |                                         |                                                          |                      |
|         | ATG_THRa1_TRANS_         |                                         |                                                          |                      |
|         | dn                       |                                         |                                                          |                      |
| Non-tar | get Organisms Repeat Dos | se Toxicity Studies                     |                                                          |                      |
| 19      | RE-45601 Technical: A    | US EPA 71-4 (1982)/ASTM                 | Yes. The test method was not designed for evaluation     |                      |
|         | One-Generation           | Draft Number 8 (1983)                   | of endocrine properties, but includes endpoints that are |                      |
|         | Reproduction Study with  |                                         | 'sensitive to but not diagnostic of' endocrine           | (1988a)              |
|         | the Bobwhite (Colinus    |                                         | disruption according to Echa/Efsa GD.                    |                      |
|         | virginianus)             |                                         |                                                          | (ID S-2836)          |
| 20      | RE-45601 Technical: A    | US EPA 71-4 (1982)/ASTM Number 8 (1983) | Yes. The test method was not designed for evaluation     |                      |
|         | One-generation           | Draft                                   | of endocrine properties, but includes endpoints that are |                      |
|         | Reproduction Study with  |                                         | 'sensitive to but not diagnostic of' endocrine           | (1988b)              |
|         | the Mallard (Anas        |                                         | disruption according to Echa/Efsa GD.                    | (ID S-2837)          |
|         | platyrhynchos)           |                                         |                                                          |                      |
| 21      | RE-45601 Technical: A    | US EPA 71-4 (1982)/ASTM                 | Not applicable. Pilot study                              |                      |
|         | Pilot Reproduction Study | Draft Number 8 (1983)                   |                                                          | (1987a)              |
|         | with the Bobwhite        |                                         |                                                          |                      |
|         | (Colinus virginianus)    |                                         |                                                          | (ID S-2833)          |
| 22      | RE-45601 Technical: a    | US EPA 71-4 (1982)/ASTM                 | Not applicable. Pilot study                              |                      |
|         | pilot reproduction study | Draft Number 8                          |                                                          |                      |
|         | with the mallard (Anas   | (1983)                                  |                                                          | (1987b)              |
|         | platyrhynchos)           |                                         |                                                          |                      |
|         |                          |                                         |                                                          | (ID S-2834)          |

| Matrix | Study type                | Guidance                     | ED endpoints missing                                     | Reference |
|--------|---------------------------|------------------------------|----------------------------------------------------------|-----------|
| Study  |                           |                              |                                                          |           |
| ID     |                           |                              |                                                          |           |
| 23     | Clethodim: An early life- | US EPA OPPTS 850.1000        | Yes. The test method was not designed for evaluation     |           |
|        | stage toxicity test with  | (1996) US EPA OPPTS 850.1400 | of endocrine properties, but includes endpoints that are |           |
|        | the sheepshead minnow     | (1996) ASTM                  | 'sensitive to but not diagnostic of' endocrine           | (2011)    |
|        | (Cyprinodon variegatus)   | Standard E1241-05            | disruption according to Echa/Efsa GD.                    |           |
|        |                           |                              |                                                          | VP-37752  |
| 24     | Clethodim: Fish short-    | U.S. EPA                     | No                                                       |           |
|        | term reproduction assays  | OPPTS                        |                                                          |           |
|        | with the fathead minnow   | 890.1350                     |                                                          | (2020)    |
|        | (Pimephales promelas)     | ECD 229                      |                                                          |           |
|        |                           | (2012)                       |                                                          |           |
|        |                           |                              |                                                          |           |
| 25     | Clethodim: Amphibian      | OECD 231                     | No                                                       |           |
|        | metamorphosis assay       | (2009)                       |                                                          |           |
|        | with the African clawed   |                              |                                                          | (2021)    |
|        | frog (Xenopus laevis)     |                              |                                                          |           |

\* Effects on the liver, adrenal, red blood cell parameters and body weight grow were observed in this study. The effect on the adrenal (reduced weight) was included in the Lines of evidence for adverse effects and endocrine activity. For brain, testes, ovary, epididymis, sciatic nerves, there were no changes in organ weights or histopathology. The study is supportive data only.

## 2.10.2 ED assessment for humans

The lines of evidence for adverse effects and endocrine activity are detailed separately for the T modality (section 2.10.2.1) and then for the EAS modalities (section 2.10.2.2).

## 2.10.2.1 ED assessment for T-modality

|                       | Sufficiently investigated                                |
|-----------------------|----------------------------------------------------------|
| T-mediated parameters | Yes, based on the availability of the following studies: |
|                       | ID 1, 3, 4, 5, 6, and 7                                  |

According to the EFSA guidance document ("Guidance for the identification of endocrine disruptors in the context of Regulations (EU) No 528/2012 and (EC) No 1107/2009" adopted 5 June 2018), a sufficient data set to support a conclusion on absence of thyroid related endocrine activity and adversity includes "the thyroid parameters foreseen to be investigated in the following studies OECD test guidelines 407, 408, 409 (and/or the one-year dog study, if available), 416 (or 443 if available) and 451-3". The parameters and the studies in which they were assessed in this data package are summarized in the table below.

| Parameter           | Investigated? | Study ID             | Species       | Study length   |
|---------------------|---------------|----------------------|---------------|----------------|
| T3 and/or T4 level  | No            | -                    | -             | -              |
| Thyroid stimulating | No            | -                    | -             | -              |
| hormone (TSH) level |               |                      |               |                |
| Thyroid weight      | Yes           | 4 and 5              | Dog           | 13 w, 52 w     |
| Thyroid             | Yes           | 1, 3, 4, 5, 6, and 7 | Rat (1, 3, 6) | 5 w, 13 w, 2 y |
| histopathology      |               |                      | Dog (4, 5)    | 13 w, 52 w     |
|                     |               |                      | Mouse (7)     | 52 w           |

Thyroid parameters foreseen to be investigated in OECD test guidelines 407, 408, 409, 416, 443, and 451-3

In addition to the parameters above, liver weight (measured in several studies, affected in most) and HDL/LDL ratio (not measured) can be considered T-mediated when a change is observed in combination with other thyroid-related endpoints.

| Study  | Effect         | Effect target | Species   | Duration | Duration | Route    | Lowest | Dose | Effect    | Observed      | Assessment   | Assessment on the      |
|--------|----------------|---------------|-----------|----------|----------|----------|--------|------|-----------|---------------|--------------|------------------------|
| ID     | classification |               |           | of       | unit     | of       | Effect | unit | direction | effect        | of each line | integrated line of     |
| Matrix |                |               |           | exposure |          | adminis  | dose   |      |           | (positive and | of evidence  | evidence               |
|        |                |               |           |          |          | tration  |        |      |           | negative)     |              |                        |
| 18     | In vitro       | Thyroid       | human     | 24       | Hours    | Uptake   | 0      | μΜ   | No effect | No effect 0   | No TR-       | Thyroid weight was     |
|        | mechanistic    | receptor      | liver     |          |          | from the |        |      |           | (No TR        | mediated     | not measured in        |
|        |                |               | cell line |          |          | medium   |        |      |           | agonist       | activity     | rodents but no remarks |
|        |                |               |           |          |          | (in      |        |      |           | activity)     |              | on thyroid histology   |
|        |                |               |           |          |          | vitro)   |        |      |           |               |              | were made. An          |
|        |                |               |           |          |          |          |        |      |           |               |              | indication of thyroid  |
|        |                |               |           |          |          |          |        |      |           |               |              | activity was observed  |
|        |                |               |           |          |          |          |        |      |           |               |              | in male dogs because   |
|        |                |               |           |          |          |          |        |      |           |               |              | of the higher thyroid  |
|        |                |               |           |          |          |          |        |      |           |               |              | weight in exposed      |
|        |                |               |           |          |          |          |        |      |           |               |              | animals (appears to be |
|        |                |               |           |          |          |          |        |      |           |               |              | a dose response but    |
|        |                |               |           |          |          |          |        |      |           |               |              | only statistically     |
|        |                |               |           |          |          |          |        |      |           |               |              | significant in highest |
|        |                |               |           |          |          |          |        |      |           |               |              | dose), but the number  |
|        |                |               |           |          |          |          |        |      |           |               |              | of individuals in dog  |
|        |                |               |           |          |          |          |        |      |           |               |              | studies are low, no    |
|        |                |               |           |          |          |          |        |      |           |               |              | hormone                |
|        |                |               |           |          |          |          |        |      |           |               |              | measurements were      |
|        |                |               |           |          |          |          |        |      |           |               |              | performed, and no      |
|        |                |               |           |          |          |          |        |      |           |               |              | remarks were made on   |
|        |                |               |           |          |          |          |        |      |           |               |              | the histology of the   |

2.10.2.1 Lines of evidence for adverse effects and endocrine activity related to T-modality, for parameters which may be 'Sensitive to-but-not -diagnostic-of EATS', and for systemic/target organ toxicity in mammals following clethodim exposure.

| Study<br>ID<br>Matrix | Effect<br>classification | Effect target                                                                                                           | Species | Duration<br>of<br>exposure | Duration<br>unit | Route<br>of<br>adminis<br>tration | Lowest<br>Effect<br>dose | Dose<br>unit    | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative) | Assessment<br>of each line<br>of evidence | Assessment on the<br>integrated line of<br>evidence<br>gland. Overall, thyroid |
|-----------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------|---------|----------------------------|------------------|-----------------------------------|--------------------------|-----------------|---------------------|--------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------|
|                       |                          |                                                                                                                         |         |                            |                  |                                   |                          |                 |                     |                                                  |                                           | related effects cannot<br>be excluded nor<br>confirmed.                        |
| 15                    | In vivo<br>mechanistic   | Liver weight<br>(Hershberger<br>considered T-<br>mediated only<br>in combination<br>with other<br>thyroid<br>endpoints) | Rat     | 10                         | Days             | Oral                              | >200                     | mg/kg<br>bw/day | No effect           | No effect<br>>200 mg/kg<br>bw/day                |                                           |                                                                                |
| 1                     | EATS-<br>mediated        | Thyroid histo-<br>pathology                                                                                             | Rat     | 5                          | Weeks            | Oral                              | >8000                    | ppm             | No effect           | No effects on<br>thyroid                         | The increase<br>in thyroid                |                                                                                |
| 3                     | EATS-<br>mediated        | Thyroid histo-<br>pathology                                                                                             | Rat     | 13                         | Weeks            | Oral                              | >5000                    | ppm             | No effect           | histology were<br>observed in<br>any of the      | weight in<br>male dogs<br>(ID: 5) in the  |                                                                                |
| 4                     | EATS-<br>mediated        | Thyroid histo-<br>pathology                                                                                             | Dog     | 90                         | Days             | Oral                              | >125                     | mg/kg<br>bw/d   | No effect           | studies.                                         | high dose<br>group was                    |                                                                                |
| 5                     | EATS-<br>mediated        | Thyroid histo-<br>pathology                                                                                             | Dog     | 52                         | Weeks            | Oral                              | >300                     | mg/kg<br>bw/d   | No effect           |                                                  | large<br>(~100%<br>increase) and          |                                                                                |
| 6                     | EATS-<br>mediated        | Thyroid histo-<br>pathology                                                                                             | Rat     | 2                          | Years            | Oral                              | >2500                    | ppm             | No effect           |                                                  | appeared<br>dose                          |                                                                                |

| Study  | Effect                                                      | Effect target                                                         | Species             | Duration       | Duration         | Route                | Lowest               | Dose                         | Effect                                                                                                                                                                                                    | Observed                                                                                                                                                                                                                                                                                                                                      | Assessment                                                                                                                                                         | Assessment on the  |
|--------|-------------------------------------------------------------|-----------------------------------------------------------------------|---------------------|----------------|------------------|----------------------|----------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| ID     | classification                                              |                                                                       |                     | of             | unit             | of                   | Effect               | unit                         | direction                                                                                                                                                                                                 | effect                                                                                                                                                                                                                                                                                                                                        | of each line                                                                                                                                                       | integrated line of |
| Matrix |                                                             |                                                                       |                     | exposure       |                  | adminis              | dose                 |                              |                                                                                                                                                                                                           | (positive and                                                                                                                                                                                                                                                                                                                                 | of evidence                                                                                                                                                        | evidence           |
|        |                                                             |                                                                       |                     |                |                  | tration              |                      |                              |                                                                                                                                                                                                           | negative)                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                    |                    |
| 7 4 5  | EATS-<br>mediated<br>EATS-<br>mediated<br>EATS-<br>mediated | Thyroid histo-<br>pathology<br>Thyroid<br>weight<br>Thyroid<br>weight | Mouse<br>Dog<br>Dog | 52<br>90<br>52 | Weeks Days Weeks | Oral<br>Oral<br>Oral | >3000<br>>125<br>300 | ppm<br>mg/kg<br>bw/d<br>bw/d | No effect<br>No effect<br>Absolute<br>and<br>relative<br>thyroid/pa<br>rathyroid<br>weight<br>was sig-<br>nificantly<br>increased<br>in males<br>(183 and<br>200% of<br>controls,<br>respect-<br>tively). | A dose<br>dependent<br>increase in<br>thyroid/parath<br>yroid weight<br>was observed<br>in males (22,<br>45, and 91%<br>increase in<br>absolute<br>weight; 33, 33,<br>and 100%<br>increase in<br>relative<br>weight) but<br>not females in<br>dogs exposed<br>for 52 weeks.<br>No effects<br>were observed<br>in either sex in<br>the 13-week | dependent<br>but no histo-<br>pathological<br>correlated<br>changes<br>were<br>observed. No<br>thyroid<br>weight<br>changes<br>have been<br>observed in<br>females |                    |

| Study  | Effect         | Effect target | Species | Duration | Duration | Route   | Lowest | Dose  | Effect    | Observed         | Assessment   | Assessment on the       |
|--------|----------------|---------------|---------|----------|----------|---------|--------|-------|-----------|------------------|--------------|-------------------------|
| ID     | classification |               |         | of       | unit     | of      | Effect | unit  | direction | effect           | of each line | integrated line of      |
| Matrix |                |               |         | exposure |          | adminis | dose   |       |           | (positive and    | of evidence  | evidence                |
|        |                |               |         |          |          | tration |        |       |           | negative)        |              |                         |
|        |                |               |         |          |          |         |        |       |           | study, but it is |              |                         |
|        |                |               |         |          |          |         |        |       |           | noted that the   |              |                         |
|        |                |               |         |          |          |         |        |       |           | highest dose     |              |                         |
|        |                |               |         |          |          |         |        |       |           | was lower in     |              |                         |
|        |                |               |         |          |          |         |        |       |           | that study.      |              |                         |
| 1      | Sensitive to   | Adrenals      | Rat     | 5        | Weeks    | Oral    | >8000  | ppm   | No effect | No effects       | Adrenal      | Evidence of effects on  |
|        | but not        | histo-        |         |          |          |         |        |       |           | were observed    | weight was   | parameters sensitive to |
|        | diagnostic of  | pathology     |         |          |          |         |        |       |           | on adrenal       | clearly      | but not diagnostic of   |
|        | EATS           |               |         |          |          |         |        |       |           | histopathology   | affected in  | T-mediated adversity    |
| 3      | Sensitive to   | Adrenals      | Rat     | 13       | Weeks    | Oral    | >5000  | ppm   | No effect | -                | one out of 8 | (Litter/pup weight,     |
| 5      | but not        | histo-        | Kat     | 15       | WEEKS    | Ofai    | 25000  | ppm   | No chect  |                  | studies, but | Foetal development,     |
|        | diagnostic of  | pathology     |         |          |          |         |        |       |           |                  | no remarks   | Post implantation loss, |
|        | EATS           | pathology     |         |          |          |         |        |       |           |                  | have been    | incidence of external   |
|        | EAIS           |               |         |          |          |         |        |       |           |                  | made in the  | malformations) at dose  |
| 4      | Sensitive to   | Adrenals      | Dog     | 90       | Days     | Oral    | >125   | mg/kg | No effect |                  | histo-       | levels causing          |
|        | but not        | histo-        |         |          |          |         |        | bw/d  |           |                  | pathological | maternal toxicity.      |
|        | diagnostic of  | pathology     |         |          |          |         |        |       |           |                  | assessment.  | Effects may be          |
|        | EATS           |               |         |          |          |         |        |       |           |                  | The animals  | secondary to maternal   |
| 5      | Sensitive to   | Adrenals      | Dog     | 52       | Weeks    | Oral    | >300   | mg/kg | No effect | -                | in the study | toxicity.               |
| 5      | but not        | histo-        | Dog     | 52       | Weeks    | Olui    | 2500   | bw/d  | ito chect |                  | with reduced |                         |
|        | diagnostic of  | pathology     |         |          |          |         |        | 0w/u  |           |                  | adrenal      |                         |
|        | EATS           | patiology     |         |          |          |         |        |       |           |                  | weight also  |                         |
|        |                |               |         |          |          |         |        |       |           |                  | -            |                         |

| Study<br>ID<br>Matrix | Effect<br>classification                         | Effect target                   | Species | Duration<br>of<br>exposure | Duration<br>unit | Route<br>of<br>adminis<br>tration | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)                             | Assessment<br>of each line<br>of evidence                      | Assessment on the<br>integrated line of<br>evidence |
|-----------------------|--------------------------------------------------|---------------------------------|---------|----------------------------|------------------|-----------------------------------|--------------------------|---------------|---------------------|------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|
| 6                     | Sensitive to<br>but not<br>diagnostic of<br>EATS | Adrenals<br>histo-<br>pathology | Rat     | 2                          | Years            | Oral                              | >2500                    | ppm           | No effect           |                                                                              | had a<br>reduced<br>body weight<br>and                         |                                                     |
| 7                     | Sensitive to<br>but not<br>diagnostic of<br>EATS | Adrenals<br>histo-<br>pathology | mouse   | 52                         | Weeks            | Oral                              | >3000                    | ppm           | No effect           |                                                                              | increased<br>liver weight.<br>In another<br>study,<br>adrenals |                                                     |
| 1                     | Sensitive to<br>but not<br>diagnostic of<br>EATS | Adrenals<br>weight              | Rat     | 5                          | Weeks            | Oral                              | >8000                    | ppm           | No effect           | Lower adrenal<br>weight<br>(absolute and<br>relative to                      | weights of<br>both males<br>and females<br>were                |                                                     |
| 2                     | Sensitive to<br>but not<br>diagnostic of<br>EATS | Adrenals<br>weight              | mouse   | 4                          | Weeks            | Oral                              | >4000                    | ppm           | No effect           | brain weight)<br>was observed<br>in both males<br>and females in<br>a 5-week | affected at<br>53 weeks but<br>not 79<br>weeks:<br>decrease in |                                                     |
| 3                     | Sensitive to<br>but not<br>diagnostic of<br>EATS | Adrenals<br>weight              | Rat     | 13                         | Weeks            | Oral                              | >5000                    | ppm           | No effect           | dietary study<br>on rats, but no<br>effect was<br>observed in                | males and<br>increase in<br>females. The<br>result in the      |                                                     |
| 4                     | Sensitive to but not                             | Adrenals<br>weight              | Dog     | 90                         | Days             | Oral                              | >125                     | mg/kg<br>bw/d | No effect           | other rat<br>studies (5w,                                                    | latter study                                                   |                                                     |

| Study  | Effect         | Effect target | Species | Duration | Duration | Route   | Lowest | Dose   | Effect    | Observed        | Assessment    | Assessment on the  |
|--------|----------------|---------------|---------|----------|----------|---------|--------|--------|-----------|-----------------|---------------|--------------------|
| ID     | classification |               |         | of       | unit     | of      | Effect | unit   | direction | effect          | of each line  | integrated line of |
| Matrix |                |               |         | exposure |          | adminis | dose   |        |           | (positive and   | of evidence   | evidence           |
|        |                |               |         |          |          | tration |        |        |           | negative)       |               |                    |
|        | diagnostic of  |               |         |          |          |         |        |        |           | 13w, and 2y.    | is of unclear |                    |
|        | EATS           |               |         |          |          |         |        |        |           | The rats that   | relevance.    |                    |
| 5      | Sensitive to   | Adrenals      | Dog     | 52       | Weeks    | Oral    | >300   | mg/kg  | No effect | died during the |               |                    |
| C      | but not        | weight        | 2.08    | 02       | eens     | 01      | , 200  | bw/d   |           | acute oral      |               |                    |
|        | diagnostic of  |               |         |          |          |         |        | e in d |           | study had       |               |                    |
|        | EATS           |               |         |          |          |         |        |        |           | enlarged        |               |                    |
|        |                |               |         |          |          |         |        |        |           | adrenals along  |               |                    |
| 6      | Sensitive to   | Adrenals      | Rat     | 2        | Years    | Oral    | >2500  | ppm    | No effect | with several    |               |                    |
|        | but not        | weight        |         |          |          |         |        |        |           | other clinical  |               |                    |
|        | diagnostic of  |               |         |          |          |         |        |        |           | signs.          |               |                    |
|        | EATS           |               |         |          |          |         |        |        |           | In the 2y       |               |                    |
| 7      | Sensitive to   | Adrenals      | mouse   | 52       | Weeks    | Oral    | >3000  | ppm    | Change    | mouse study     |               |                    |
|        | but not        | weight        |         |          |          |         |        |        |           | decreased       |               |                    |
|        | diagnostic of  |               |         |          |          |         |        |        |           | adrenal weight  |               |                    |
|        | EATS           |               |         |          |          |         |        |        |           | was observed    |               |                    |
| S-2763 | Sensitive to   | Adrenals      | Rat     | 5        | Weeks    | Oral    | 6800   | ppm    | Decrease  | for all treated |               |                    |
|        | but not        | weight        |         |          |          |         |        | 11     |           | male groups     |               |                    |
|        | diagnostic of  | 6             |         |          |          |         |        |        |           | and for low-    |               |                    |
|        | EATS           |               |         |          |          |         |        |        |           | and mid-dose    |               |                    |
|        |                |               |         |          |          |         |        |        |           | group females   |               |                    |
|        |                |               |         |          |          |         |        |        |           | when            |               |                    |
|        |                |               |         |          |          |         |        |        |           | compared to     |               |                    |
|        |                |               |         |          |          |         |        |        |           | respective      |               |                    |
|        |                |               |         |          |          |         |        |        |           | control values. |               |                    |

| Study  | Effect         | Effect target | Species | Duration | Duration | Route   | Lowest | Dose | Effect    | Observed        | Assessment   | Assessment on the  |
|--------|----------------|---------------|---------|----------|----------|---------|--------|------|-----------|-----------------|--------------|--------------------|
| ID     | classification |               |         | of       | unit     | of      | Effect | unit | direction | effect          | of each line | integrated line of |
| Matrix |                |               |         | exposure |          | adminis | dose   |      |           | (positive and   | of evidence  | evidence           |
|        |                |               |         |          |          | tration |        |      |           | negative)       |              |                    |
|        |                |               |         |          |          |         |        |      |           | However, due    |              |                    |
|        |                |               |         |          |          |         |        |      |           | to the          |              |                    |
|        |                |               |         |          |          |         |        |      |           | inconsistency   |              |                    |
|        |                |               |         |          |          |         |        |      |           | of the change   |              |                    |
|        |                |               |         |          |          |         |        |      |           | between sexes,  |              |                    |
|        |                |               |         |          |          |         |        |      |           | the lack of     |              |                    |
|        |                |               |         |          |          |         |        |      |           | dose response   |              |                    |
|        |                |               |         |          |          |         |        |      |           | and no          |              |                    |
|        |                |               |         |          |          |         |        |      |           | differences at  |              |                    |
|        |                |               |         |          |          |         |        |      |           | Week 79, this   |              |                    |
|        |                |               |         |          |          |         |        |      |           | finding was     |              |                    |
|        |                |               |         |          |          |         |        |      |           | not considered  |              |                    |
|        |                |               |         |          |          |         |        |      |           | to be treatment |              |                    |
|        |                |               |         |          |          |         |        |      |           | related.        |              |                    |
| 1      | Sensitive to   | Brain histo-  | Rat     | 5        | Weeks    | Oral    | >8000  | ppm  | No effect | No effects      | No clear     | -                  |
|        | but not        | pathology     |         |          |          |         |        |      |           | have been       | treatment    |                    |
|        | diagnostic of  | examination   |         |          |          |         |        |      |           | observed on     | related      |                    |
|        | EATS           |               |         |          |          |         |        |      |           | brain histology | effects on   |                    |
| 2      | Sensitive to   | Brain histo-  | Rat     | 13       | Weeks    | Oral    | >5000  |      | No effect | -               | the brain    |                    |
| 3      |                |               | Kat     | 15       | weeks    | Orai    | >5000  | ppm  | No effect |                 | weight or    |                    |
|        | but not        | pathology     |         |          |          |         |        |      |           |                 | histo-       |                    |
|        | diagnostic of  | examination   |         |          |          |         |        |      |           |                 | pathology    |                    |
|        | EATS           |               |         |          |          |         |        |      |           |                 |              |                    |

| Study  | Effect         | Effect target | Species | Duration | Duration | Route   | Lowest | Dose  | Effect    | Observed       | Assessment   | Assessment on the  |
|--------|----------------|---------------|---------|----------|----------|---------|--------|-------|-----------|----------------|--------------|--------------------|
| ID     | classification |               |         | of       | unit     | of      | Effect | unit  | direction | effect         | of each line | integrated line of |
| Matrix |                |               |         | exposure |          | adminis | dose   |       |           | (positive and  | of evidence  | evidence           |
|        |                |               |         |          |          | tration |        |       |           | negative)      |              |                    |
| 4      | Sensitive to   | Brain histo-  | Dog     | 90       | Days     | Oral    | >125   | mg/kg | No effect |                |              |                    |
|        | but not        | pathology     |         |          |          |         |        | bw/d  |           |                |              |                    |
|        | diagnostic of  | examination   |         |          |          |         |        |       |           |                |              |                    |
|        | EATS           |               |         |          |          |         |        |       |           |                |              |                    |
| 5      | Sensitive to   | Brain histo-  | Dog     | 52       | Weeks    | Oral    | >300   | mg/kg | No effect | -              |              |                    |
|        | but not        | pathology     |         |          |          |         |        | bw/d  |           |                |              |                    |
|        | diagnostic of  | examination   |         |          |          |         |        |       |           |                |              |                    |
|        | EATS           |               |         |          |          |         |        |       |           |                |              |                    |
| 6      | Sensitive to   | Brain histo-  | Rat     | 2        | Years    | Oral    | >2500  | ppm   | No effect |                |              |                    |
|        | but not        | pathology     |         |          |          |         |        |       |           |                |              |                    |
|        | diagnostic of  | examination   | -       |          |          |         |        |       |           |                |              |                    |
|        | EATS           |               |         |          |          |         |        |       |           |                |              |                    |
| 7      | Sensitive to   | Brain histo-  | mouse   | 52       | Weeks    | Oral    | >3000  | ppm   | No effect |                |              |                    |
|        | but not        | pathology     |         |          |          |         |        |       |           |                |              |                    |
|        | diagnostic of  | examination   | -       |          |          |         |        |       |           |                |              |                    |
|        | EATS           |               |         |          |          |         |        |       |           |                |              |                    |
| 1      | Sensitive to   | Brain weight  | Rat     | 5        | Weeks    | Oral    | >8000  | ppm   | No effect | Relative brain |              |                    |
|        | but not        |               |         |          |          |         |        |       |           | weight was     |              |                    |
|        | diagnostic of  |               |         |          |          |         |        |       |           | increased in   |              |                    |
|        | EATS           |               |         |          |          |         |        |       |           | two studies on |              |                    |
| 2      | Sensitive to   | Brain weight  | mouse   | 4        | Weeks    | Oral    | >4000  | ppm   | No effect | rats (ID 1 and |              |                    |
|        | but not        |               |         |          |          |         |        |       |           | 3); however,   |              |                    |

| Study<br>ID | Effect<br>classification                         | Effect target | Species | Duration<br>of | Duration<br>unit | Route<br>of        | Lowest<br>Effect | Dose<br>unit  | Effect<br>direction | Observed<br>effect                                            | Assessment<br>of each line | Assessment on the integrated line of |
|-------------|--------------------------------------------------|---------------|---------|----------------|------------------|--------------------|------------------|---------------|---------------------|---------------------------------------------------------------|----------------------------|--------------------------------------|
| Matrix      | clussification                                   |               |         | exposure       |                  | adminis<br>tration | dose             | unit          |                     | (positive and<br>negative)                                    | of evidence                | evidence                             |
|             | diagnostic of<br>EATS                            |               |         |                |                  |                    |                  |               |                     | these increases<br>are likely a<br>result of                  |                            |                                      |
| 3           | Sensitive to<br>but not<br>diagnostic of<br>EATS | Brain weight  | Rat     | 13             | Weeks            | Oral               | >5000            | ppm           | No effect           | reduced BW.<br>No effects on<br>absolute brain<br>weight have |                            |                                      |
| 4           | Sensitive to<br>but not<br>diagnostic of<br>EATS | Brain weight  | Dog     | 90             | Days             | Oral               | >125             | mg/kg<br>bw/d | No effect           | been observed.                                                |                            |                                      |
| 5           | Sensitive to<br>but not<br>diagnostic of<br>EATS | Brain weight  | Dog     | 52             | Weeks            | Oral               | >300             | mg/kg<br>bw/d | No effect           |                                                               |                            |                                      |
| 6           | Sensitive to<br>but not<br>diagnostic o,<br>EATS | Brain weight  | Rat     | 2              | Years            | Oral               | >2500            | ppm           | No effect           |                                                               |                            |                                      |
| 7           | Sensitive to<br>but not<br>diagnostic of<br>EATS | Brain weight  | mouse   | 52             | Weeks            | Oral               | >3000            | ppm           | No effect           |                                                               |                            |                                      |

| Study<br>ID<br>Matrix<br>13 | Effect<br>classification<br>Sensitive to<br>but not<br>diagnostic of<br>EATS | Effect target Dystocia | Species<br>rat | Duration<br>of<br>exposure<br>28 | Duration<br>unit<br>weeks | Route<br>of<br>adminis<br>tration<br>Oral | Lowest<br>Effect<br>dose | Dose<br>unit<br>ppm | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative) | Assessment<br>of each line<br>of evidence<br>No effects<br>on dystocia | Assessment on the<br>integrated line of<br>evidence |
|-----------------------------|------------------------------------------------------------------------------|------------------------|----------------|----------------------------------|---------------------------|-------------------------------------------|--------------------------|---------------------|---------------------|--------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------|
| 13                          | Sensitive to<br>but not<br>diagnostic of<br>EATS                             | Fertility<br>(mammals) | rat            | 28                               | weeks                     | Oral                                      | >2500                    | ppm                 | No effect           |                                                  | No effects<br>on fertility                                             |                                                     |
| 13                          | Sensitive to<br>but not<br>diagnostic of<br>EATS                             | Gestation<br>length    | rat            | 28                               | weeks                     | Oral                                      | >2500                    | ppm                 | No effect           |                                                  | No effect on<br>gestation<br>length                                    |                                                     |
| 12                          | Sensitive to<br>but not<br>diagnostic of<br>EATS                             | Litter size            | rat            | 5 to 6                           | Weeks                     | Oral                                      | >5000                    | ppm                 | No effect           |                                                  | No effect on<br>litter size                                            |                                                     |
| 13                          | Sensitive to<br>but not<br>diagnostic of<br>EATS                             | Litter size            | rat            | 28                               | weeks                     | Oral                                      | >2500                    | ppm                 | No effect           |                                                  |                                                                        |                                                     |
| 8                           | Sensitive to but not                                                         | Litter/pup<br>weight   | rat            | 10 (GD 6-<br>15)                 | Days                      | Oral                                      | 500                      | mg/kg<br>bw/d       | Decrease            | Mean foetal<br>weights were                      | Reduction in foetal body                                               |                                                     |

| Study  | Effect         | Effect target | Species | Duration | Duration | Route   | Lowest | Dose | Effect    | Observed       | Assessment     | Assessment on the  |
|--------|----------------|---------------|---------|----------|----------|---------|--------|------|-----------|----------------|----------------|--------------------|
| ID     | classification |               |         | of       | unit     | of      | Effect | unit | direction | effect         | of each line   | integrated line of |
| Matrix |                |               |         | exposure |          | adminis | dose   |      |           | (positive and  | of evidence    | evidence           |
|        |                |               |         |          |          | tration |        |      |           | negative)      |                |                    |
|        | diagnostic of  |               |         |          |          |         |        |      |           | reduced in the | weight were    |                    |
|        | EATS           |               |         |          |          |         |        |      |           | animals of the | observed in    |                    |
|        |                |               |         |          |          |         |        |      |           | top dose group | three studies  |                    |
|        |                |               |         |          |          |         |        |      |           | (-10.6% for    | (rat and       |                    |
|        |                |               |         |          |          |         |        |      |           | the composite  | rabbit) but at |                    |
|        |                |               |         |          |          |         |        |      |           | foetal weight  | doses          |                    |
|        |                |               |         |          |          |         |        |      |           | data). A       | causing        |                    |
|        |                |               |         |          |          |         |        |      |           | tendency was   | maternal       |                    |
|        |                |               |         |          |          |         |        |      |           | observed       | toxicity,      |                    |
|        |                |               |         |          |          |         |        |      |           | already at 300 | including      |                    |
|        |                |               |         |          |          |         |        |      |           | mg/kg bw/day   | reductions in  |                    |
|        |                |               |         |          |          |         |        |      |           | (7% reduction, | body weight    |                    |
|        |                |               |         |          |          |         |        |      |           | not            | and food       |                    |
|        |                |               |         |          |          |         |        |      |           | statistically  | consump-       |                    |
|        |                |               |         |          |          |         |        |      |           | significant).  | tion. In rats, |                    |
|        |                |               |         |          |          |         |        |      |           | Maternal       | reductions in  |                    |
|        |                |               |         |          |          |         |        |      |           | effects at the | combined       |                    |
|        |                |               |         |          |          |         |        |      |           | top dose       | pup weight     |                    |
|        |                |               |         |          |          |         |        |      |           | included:      | (day 7) and    |                    |
|        |                |               |         |          |          |         |        |      |           | excess         | pup weight     |                    |
|        |                |               |         |          |          |         |        |      |           | salivation and | gain (day 0-   |                    |
|        |                |               |         |          |          |         |        |      |           | reduced body   | 7), but not    |                    |
|        |                |               |         |          |          |         |        |      |           | weight gain    | birth weight,  |                    |
| 1      |                |               |         |          |          |         |        |      |           |                |                |                    |

| Study<br>ID<br>Matrix | Effect<br>classification                         | Effect target        | Species | Duration<br>of<br>exposure | Duration<br>unit | Route<br>of<br>adminis | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and                                                                                                                                                                                                | Assessment<br>of each line<br>of evidence                                                                                                                                                                                                     | Assessment on the<br>integrated line of<br>evidence |
|-----------------------|--------------------------------------------------|----------------------|---------|----------------------------|------------------|------------------------|--------------------------|---------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
|                       |                                                  |                      |         | caposare                   |                  | tration                | uose                     |               |                     | negative)                                                                                                                                                                                                                          | of evidence                                                                                                                                                                                                                                   |                                                     |
| 9                     | Sensitive to<br>but not<br>diagnostic of<br>EATS | Litter/pup<br>weight | rat     | 10 (GD 6-<br>15)           | Days             | Oral                   | 350                      | mg/kg<br>bw/d | Decrease            | Reduction in<br>foetal body<br>weight was<br>observed in<br>dose groups<br>receiving 350<br>and 700 mg/kg<br>bw/day.<br>Maternal<br>effects at those<br>doses<br>included:<br>clinical signs<br>and reduced<br>body weight<br>gain | were<br>observed at<br>all dose<br>levels (500,<br>2000, and<br>5000 ppm)<br>in the 5-<br>week study.<br>Maternal<br>toxicity was<br>only noted in<br>the highest<br>dose group.<br>This effect<br>on postnatal<br>growth was<br>not observed |                                                     |
| 10                    | Sensitive to<br>but not<br>diagnostic of<br>EATS | Litter/pup<br>weight | rabbit  | 13 (DG 7-<br>19)           | Days             | Oral                   | 300                      | mg/kg<br>bw/d | Decrease            | Reduction in<br>foetal body<br>weight was<br>observed in<br>dose groups<br>receiving 300<br>and 500 mg/kg<br>bw/day.                                                                                                               | in either<br>generation of<br>the 2-<br>generation<br>study (doses<br>used: 5, 20,                                                                                                                                                            |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classification                         | Effect target        | Species | Duration<br>of<br>exposure | Duration<br>unit | Route<br>of<br>adminis<br>tration | Lowest<br>Effect<br>dose | Dose<br>unit | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)                                                                                                                       | Assessment<br>of each line<br>of evidence | Assessment on the<br>integrated line of<br>evidence |
|-----------------------|--------------------------------------------------|----------------------|---------|----------------------------|------------------|-----------------------------------|--------------------------|--------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------|
| 11                    | Sensitive to                                     | Litter/pup           | rabbit  | 13 (DG 7-<br>19)           | Days             | Oral                              | >300                     | mg/kg        | No effect           | Maternal<br>effects at those<br>doses included<br>reduced food<br>consumption,<br>reduced body<br>weight gain<br>and body<br>weight, dried<br>faeces, and<br>mortality | 500, and<br>2500 ppm).                    |                                                     |
|                       | but not<br>diagnostic of<br>EATS                 | weight               |         | 19)                        |                  |                                   |                          | bw/d         |                     |                                                                                                                                                                        |                                           |                                                     |
| 12                    | Sensitive to<br>but not<br>diagnostic of<br>EATS | Litter/pup<br>weight | rat     | 5 to 6                     | Weeks            | Oral                              | 5000                     | ppm          | Decrease            | There was a<br>significant<br>decrease in<br>combined pup<br>weight (male<br>and female) at<br>day 7 and a<br>decrease in<br>combined pup                              |                                           |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classification                         | Effect target                                | Species | Duration<br>of<br>exposure | Duration<br>unit | Route<br>of<br>adminis<br>tration | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)                                                                                                                                                       | Assessment<br>of each line<br>of evidence                                                  | Assessment on the<br>integrated line of<br>evidence |
|-----------------------|--------------------------------------------------|----------------------------------------------|---------|----------------------------|------------------|-----------------------------------|--------------------------|---------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------|
| 13                    | Sensitive to                                     | Litter/pup                                   | rat     | 28                         | weeks            | Oral                              | >2500                    | 2022          | No effect           | weight gain<br>between days<br>0 and 7 for all<br>three dose<br>levels.<br>Maternal food<br>consumption<br>and body<br>weight was<br>reduced in the<br>highest but not<br>in the lower<br>dose groups. |                                                                                            |                                                     |
| 15                    | but not<br>diagnostic of<br>EATS                 | weight                                       | Tat     | 20                         | weeks            | Ora                               | >2300                    | ppm           | No enect            |                                                                                                                                                                                                        |                                                                                            |                                                     |
| 8                     | Sensitive to<br>but not<br>diagnostic of<br>EATS | Number of<br>implantations,<br>corpora lutea | rat     | 10 (GD 6-<br>15)           | Days             | Oral                              | 500                      | mg/kg<br>bw/d | No effect           | Number of<br>implantation<br>sites was<br>reduced (87 vs<br>126) - not<br>statistically<br>significant.                                                                                                | No clear<br>indications<br>that the<br>number of<br>implant-<br>tation sites<br>or corpora |                                                     |

| Study  | Effect         | Effect target  | Species | Duration  | Duration | Route   | Lowest | Dose  | Effect    | Observed        | Assessment     | Assessment on the  |
|--------|----------------|----------------|---------|-----------|----------|---------|--------|-------|-----------|-----------------|----------------|--------------------|
| ID     | classification |                |         | of        | unit     | of      | Effect | unit  | direction | effect          | of each line   | integrated line of |
| Matrix |                |                |         | exposure  |          | adminis | dose   |       |           | (positive and   | of evidence    | evidence           |
|        |                |                |         |           |          | tration |        |       |           | negative)       |                |                    |
|        |                |                |         |           |          |         |        |       |           | Note that there | lutea were     |                    |
|        |                |                |         |           |          |         |        |       |           | were            | affected. The  |                    |
|        |                |                |         |           |          |         |        |       |           | indications of  | pilot study in |                    |
|        |                |                |         |           |          |         |        |       |           | SDA viral       | which a        |                    |
|        |                |                |         |           |          |         |        |       |           | infections in   | reduction in   |                    |
|        |                |                |         |           |          |         |        |       |           | some dams at    | the number     |                    |
|        |                |                |         |           |          |         |        |       |           | gestation day   | of implant-    |                    |
|        |                |                |         |           |          |         |        |       |           | 20.             | tation sites   |                    |
| 9      | Sensitive to   | Number of      | rat     | 10 (GD 6- | Days     | Oral    | >700   | mg/kg | No effect |                 | was            |                    |
| ,      | but not        | implantations, | Tut     | 15)       | Duyo     | orui    | 2100   | bw/d  |           |                 | observed       |                    |
|        | diagnostic of  | -              | -       |           |          |         |        |       |           |                 | was of         |                    |
|        | EATS           | corpora lutea  |         |           |          |         |        |       |           |                 | limited        |                    |
|        |                |                |         |           |          |         |        |       |           |                 | reliability    |                    |
| 10     | Sensitive to   | Number of      | rabbit  | 13 (DG 7- | Days     | Oral    | >500   | mg/kg | No effect |                 | due to         |                    |
|        | but not        | implantations, |         | 19)       |          |         |        | bw/d  |           |                 | potential      |                    |
|        | diagnostic of  | corpora lutea  | -       |           |          |         |        |       |           |                 | SDA            |                    |
|        | EATS           |                |         |           |          |         |        |       |           |                 | infections in  |                    |
| 11     | Sensitive to   | Number of      | rabbit  | 13 (DG 7- | Days     | Oral    | >300   | mg/kg | No effect |                 | some           |                    |
|        | but not        | implantations, |         | 19)       |          |         |        | bw/d  |           |                 | individuals.   |                    |
|        | diagnostic of  | corpora lutea  | -       |           |          |         |        |       |           |                 |                |                    |
|        | EATS           | corpora intea  |         |           |          |         |        |       |           |                 |                |                    |
| 13     | Sensitive to   | Number of      | rat     | 28        | weeks    | Oral    | >2500  | ppm   | No effect |                 |                |                    |
|        | but not        | implantations, |         |           |          |         |        |       |           |                 |                |                    |

| Study<br>ID<br>Matrix | Effect<br>classification                                                  | Effect target                                                         | Species | Duration<br>of<br>exposure | Duration<br>unit | Route<br>of<br>adminis<br>tration | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)                                                                                 | Assessment<br>of each line<br>of evidence                                                                                            | Assessment on the<br>integrated line of<br>evidence |
|-----------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------|---------|----------------------------|------------------|-----------------------------------|--------------------------|---------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| 12                    | diagnostic of<br>EATS<br>Sensitive to<br>but not<br>diagnostic of<br>EATS | corpora lutea<br>Number of<br>live births                             | rat     | 5 to 6                     | Weeks            | Oral                              | >5000                    | ppm           | No effect           |                                                                                                                                  | The one<br>effect on the<br>number of<br>stillborn                                                                                   |                                                     |
| 13                    | Sensitive to<br>but not<br>diagnostic of<br>EATS                          | Number of<br>live births                                              | rat     | 28                         | weeks            | Oral                              | >2500                    | ppm           | No effect           | Number of<br>stillborn were<br>increased in<br>the F1<br>generation (F1<br>pups) but not<br>in the F1<br>generation (F2<br>pups) | were in the<br>F0<br>generation<br>(F0> F1),<br>something<br>that was not<br>evident in<br>the second<br>generation of<br>the study. |                                                     |
| 8                     | Sensitive to<br>but not<br>diagnostic of<br>EATS                          | Numbers of<br>embryonic<br>or foetal<br>deaths and<br>viable foetuses | rat     | 10 (GD 6-<br>15)           | Days             | Oral                              | 500                      | mg/kg<br>bw/d | No effect           | Number of<br>viable foetuses<br>was reduced<br>(86 vs 122)<br>but not<br>statistically<br>significant.                           | The effect on<br>foetal<br>viability in<br>the rabbit at<br>high doses is<br>likely related                                          |                                                     |

| Study<br>ID<br>Matrix<br>9 | Effect<br>classification<br>Sensitive to<br>but not<br>diagnostic of | Effect target          Numbers of         embryonic         or foetal | Species<br>rat | Duration<br>of<br>exposure<br>10 (GD 6-<br>15) | Duration<br>unit<br>Days | Route<br>of<br>adminis<br>tration<br>Oral | Lowest<br>Effect<br>dose<br>>700 | Dose<br>unit<br>mg/kg<br>bw/d | Effect<br>direction<br>No effect | Observed<br>effect<br>(positive and<br>negative)                                                                                                                                                                                                                                                              | Assessment<br>of each line<br>of evidence<br>to maternal<br>toxicity. | Assessment on the<br>integrated line of<br>evidence |
|----------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|----------------|------------------------------------------------|--------------------------|-------------------------------------------|----------------------------------|-------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------|
| 10                         | EATS                                                                 | deaths and viable foetuses                                            |                | 12 (5) (2)                                     | 2                        |                                           | 500                              |                               | C                                |                                                                                                                                                                                                                                                                                                               |                                                                       |                                                     |
| 10                         | Sensitive to<br>but not<br>diagnostic of<br>EATS                     | Numbers of<br>embryonic or<br>foetal deaths<br>and viable<br>foetuses | rabbit         | 13 (DG 7-<br>19)                               | Days                     | Oral                                      | >500                             | mg/kg<br>bw/d                 | Change                           | Four of the<br>seven pregnant<br>500 mg/kg/day<br>dosage group<br>rabbits aborted<br>during the<br>study. All<br>abortions<br>occurred after<br>completion of<br>the dosage<br>period. Three<br>of the seven<br>aborted 3<br>foetuses each<br>and 1 rabbit<br>aborted 2. One<br>of the seven<br>rabbits had 1 |                                                                       |                                                     |

| Study  | Effect         | Effect target | Species | Duration | Duration | Route   | Lowest | Dose | Effect    | Observed        | Assessment   | Assessment on the  |
|--------|----------------|---------------|---------|----------|----------|---------|--------|------|-----------|-----------------|--------------|--------------------|
| ID     | classification |               |         | of       | unit     | of      | Effect | unit | direction | effect          | of each line | integrated line of |
| Matrix |                |               |         | exposure |          | adminis | dose   |      |           | (positive and   | of evidence  | evidence           |
|        |                |               |         |          |          | tration |        |      |           | negative)       |              |                    |
|        |                |               |         |          |          |         |        |      |           | early           |              |                    |
|        |                |               |         |          |          |         |        |      |           | resorption and  |              |                    |
|        |                |               |         |          |          |         |        |      |           | 2 rabbits had 2 |              |                    |
|        |                |               |         |          |          |         |        |      |           | late            |              |                    |
|        |                |               |         |          |          |         |        |      |           | resorptions.    |              |                    |
|        |                |               |         |          |          |         |        |      |           | Clear signs of  |              |                    |
|        |                |               |         |          |          |         |        |      |           | maternal        |              |                    |
|        |                |               |         |          |          |         |        |      |           | toxicity were   |              |                    |
|        |                |               |         |          |          |         |        |      |           | observed in     |              |                    |
|        |                |               |         |          |          |         |        |      |           | the study:      |              |                    |
|        |                |               |         |          |          |         |        |      |           | reduced food    |              |                    |
|        |                |               |         |          |          |         |        |      |           | consumption     |              |                    |
|        |                |               |         |          |          |         |        |      |           | (≥50 mg/kg      |              |                    |
|        |                |               |         |          |          |         |        |      |           | bw/day),        |              |                    |
|        |                |               |         |          |          |         |        |      |           | reduced bw      |              |                    |
|        |                |               |         |          |          |         |        |      |           | gain (≥150      |              |                    |
|        |                |               |         |          |          |         |        |      |           | mg/kg           |              |                    |
|        |                |               |         |          |          |         |        |      |           | bw/day),        |              |                    |
|        |                |               |         |          |          |         |        |      |           | increased LW    |              |                    |
|        |                |               |         |          |          |         |        |      |           | (≥150 mg/kg     |              |                    |
|        |                |               |         |          |          |         |        |      |           | bw/day), and    |              |                    |
|        |                |               |         |          |          |         |        |      |           | death (≥150     |              |                    |
|        |                |               |         |          |          |         |        |      |           | mg/kg           |              |                    |
|        |                |               |         |          |          |         |        |      |           | bw/day)         |              |                    |
|        |                |               |         |          |          |         |        |      |           |                 |              |                    |

| Study  | Effect         | Effect target  | Species | Duration  | Duration | Route   | Lowest | Dose  | Effect    | Observed      | Assessment   | Assessment on the  |
|--------|----------------|----------------|---------|-----------|----------|---------|--------|-------|-----------|---------------|--------------|--------------------|
| ID     | classification |                |         | of        | unit     | of      | Effect | unit  | direction | effect        | of each line | integrated line of |
| Matrix |                |                |         | exposure  |          | adminis | dose   |       |           | (positive and | of evidence  | evidence           |
|        |                |                |         |           |          | tration |        |       |           | negative)     |              |                    |
| 11     | Sensitive to   | Numbers of     | rabbit  | 13 (DG 7- | Days     | Oral    | >300   | mg/kg | No effect |               |              |                    |
|        | but not        | embryonic or   |         | 19)       |          |         |        | bw/d  |           |               |              |                    |
|        | diagnostic of  | foetal deaths  |         |           |          |         |        |       |           |               |              |                    |
|        | EATS           | and viable     |         |           |          |         |        |       |           |               |              |                    |
|        |                | foetuses       |         |           |          |         |        |       |           |               |              |                    |
| 1      | Sensitive to   | Pituitary      | Rat     | 5         | Weeks    | Oral    | >8000  | ppm   | No effect | No treatment  | No effects   | -                  |
|        | but not        | histopathology |         |           |          |         |        |       |           | related       | on the       |                    |
|        | diagnostic of  |                |         |           |          |         |        |       |           | microscopic   | pituitary    |                    |
|        | EATS           |                |         |           |          |         |        |       |           | lesions were  | weight or    |                    |
| 3      | Sensitive to   | Pituitary      | Rat     | 13        | Weeks    | Oral    | >5000  | ppm   | No effect | observed in   | histo-       |                    |
| 5      | but not        | histopathology | Kai     | 15        | WEEKS    | Ofai    | >5000  | ppm   | NO effect | the pituitary | pathology    |                    |
|        | diagnostic of  | nistopathology |         |           |          |         |        |       |           |               |              |                    |
|        | EATS           |                |         |           |          |         |        |       |           |               |              |                    |
|        | EAIS           |                |         |           |          |         |        |       |           |               |              |                    |
| 4      | Sensitive to   | Pituitary      | Dog     | 90        | Days     | Oral    | >125   | mg/kg | No effect | -             |              |                    |
|        | but not        | histopathology |         |           |          |         |        | bw/d  |           |               |              |                    |
|        | diagnostic of  |                |         |           |          |         |        |       |           |               |              |                    |
|        | EATS           |                |         |           |          |         |        |       |           |               |              |                    |
| 5      | Sensitive to   | Pituitary      | Dog     | 52        | Weeks    | Oral    | >300   | mg/kg | No effect | -             |              |                    |
|        | but not        | histopathology |         |           |          |         |        | bw/d  |           |               |              |                    |
|        | diagnostic of  |                |         |           |          |         |        |       |           |               |              |                    |
|        | EATS           |                |         |           |          |         |        |       |           |               |              |                    |
|        |                |                |         |           |          |         |        |       |           |               |              |                    |

| Study<br>ID<br>Matrix | Effect<br>classification<br>Sensitive to         | Effect target Pituitary      | Species<br>Rat | Duration<br>of<br>exposure<br>2 | Duration<br>unit<br>Years | Route<br>of<br>adminis<br>tration | Lowest<br>Effect<br>dose<br>>2500 | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)                                                    | Assessment<br>of each line<br>of evidence                                                                    | Assessment on the<br>integrated line of<br>evidence |
|-----------------------|--------------------------------------------------|------------------------------|----------------|---------------------------------|---------------------------|-----------------------------------|-----------------------------------|---------------|---------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
|                       | but not<br>diagnostic of<br>EATS                 | histopathology               | Tut            | _                               | - Curls                   |                                   | / 2500                            | ppm           |                     |                                                                                                     |                                                                                                              |                                                     |
| 7                     | Sensitive to<br>but not<br>diagnostic of<br>EATS | Pituitary<br>histopathology  | mouse          | 52                              | Weeks                     | Oral                              | >3000                             | ppm           | No effect           |                                                                                                     |                                                                                                              |                                                     |
| 4                     | Sensitive to<br>but not<br>diagnostic of<br>EATS | Pituitary<br>weight          | Dog            | 90                              | Days                      | Oral                              | >125                              | mg/kg<br>bw/d | No effect           | No effects on<br>pituitary<br>weight were<br>observed                                               |                                                                                                              |                                                     |
| 5                     | Sensitive to<br>but not<br>diagnostic of<br>EATS | Pituitary<br>weight          | Dog            | 52                              | Weeks                     | Oral                              | >300                              | mg/kg<br>bw/d | No effect           |                                                                                                     |                                                                                                              |                                                     |
| 9                     | Sensitive to<br>but not<br>diagnostic of<br>EATS | Post<br>implantation<br>loss | rat            | 10 (GD 6-<br>15)                | Days                      | Oral                              | 700                               | mg/kg<br>bw/d | Increase            | Increased<br>post-<br>implantation<br>loss at 700<br>mg/kg bw/day.<br>This in part<br>was driven by | Increase in<br>post implant-<br>tation loss in<br>the rabbit at<br>high doses,<br>considered<br>secondary to |                                                     |

| Study<br>ID | Effect classification                            | Effect target                | Species | Duration<br>of   | Duration<br>unit | Route<br>of        | Lowest<br>Effect | Dose<br>unit  | Effect<br>direction | Observed<br>effect                                                                                                                                                                                                            | Assessment<br>of each line | Assessment on the integrated line of |
|-------------|--------------------------------------------------|------------------------------|---------|------------------|------------------|--------------------|------------------|---------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------|
| Matrix      |                                                  |                              |         | exposure         |                  | adminis<br>tration | dose             |               |                     | (positive and<br>negative)                                                                                                                                                                                                    | of evidence                | evidence                             |
|             |                                                  |                              |         |                  |                  |                    |                  |               |                     | a single female<br>with 15/16<br>foetal<br>resorptions,<br>with this<br>female<br>excluded the<br>mean<br>resorption rate<br>was 1.1 which<br>is slightly<br>higher than<br>concurrent<br>control (0.8)<br>and within<br>HCD. | maternal<br>toxicity.      |                                      |
| 10          | Sensitive to<br>but not<br>diagnostic of<br>EATS | Post<br>implantation<br>loss | rabbit  | 13 (DG 7-<br>19) | Days             | Oral               | 500              | mg/kg<br>bw/d | Increase            | Four of the<br>seven pregnant<br>500 mg/kg/day<br>dosage group<br>rabbits aborted<br>during the<br>study. One of<br>these rabbits                                                                                             |                            |                                      |

| Study  | Effect         | Effect target | Species | Duration | Duration | Route   | Lowest | Dose | Effect    | Observed       | Assessment   | Assessment on the  |
|--------|----------------|---------------|---------|----------|----------|---------|--------|------|-----------|----------------|--------------|--------------------|
| ID     | classification |               |         | of       | unit     | of      | Effect | unit | direction | effect         | of each line | integrated line of |
| Matrix |                |               |         | exposure |          | adminis | dose   |      |           | (positive and  | of evidence  | evidence           |
|        |                |               |         |          |          | tration |        |      |           | negative)      |              |                    |
|        |                |               |         |          |          |         |        |      |           | died following |              |                    |
|        |                |               |         |          |          |         |        |      |           | abortion. All  |              |                    |
|        |                |               |         |          |          |         |        |      |           | abortions      |              |                    |
|        |                |               |         |          |          |         |        |      |           | occurred after |              |                    |
|        |                |               |         |          |          |         |        |      |           | completion of  |              |                    |
|        |                |               |         |          |          |         |        |      |           | the dosage     |              |                    |
|        |                |               |         |          |          |         |        |      |           | period. Clear  |              |                    |
|        |                |               |         |          |          |         |        |      |           | signs of       |              |                    |
|        |                |               |         |          |          |         |        |      |           | maternal       |              |                    |
|        |                |               |         |          |          |         |        |      |           | toxicity were  |              |                    |
|        |                |               |         |          |          |         |        |      |           | observed in    |              |                    |
|        |                |               |         |          |          |         |        |      |           | the study:     |              |                    |
|        |                |               |         |          |          |         |        |      |           | reduced food   |              |                    |
|        |                |               |         |          |          |         |        |      |           | consumption    |              |                    |
|        |                |               |         |          |          |         |        |      |           | (≥50 mg/kg     |              |                    |
|        |                |               |         |          |          |         |        |      |           | bw/day),       |              |                    |
|        |                |               |         |          |          |         |        |      |           | reduced bw     |              |                    |
|        |                |               |         |          |          |         |        |      |           | gain (≥150     |              |                    |
|        |                |               |         |          |          |         |        |      |           | mg/kg          |              |                    |
|        |                |               |         |          |          |         |        |      |           | bw/day),       |              |                    |
|        |                |               |         |          |          |         |        |      |           | increased LW   |              |                    |
|        |                |               |         |          |          |         |        |      |           | (≥150 mg/kg    |              |                    |
|        |                |               |         |          |          |         |        |      |           | bw/day), and   |              |                    |
|        |                |               |         |          |          |         |        |      |           | death (≥150    |              |                    |

| Study<br>ID<br>Matrix | Effect<br>classification                         | Effect target                | Species | Duration<br>of<br>exposure | Duration<br>unit | Route<br>of<br>adminis<br>tration | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)<br>mg/kg<br>bw/day)                                     | Assessment<br>of each line<br>of evidence                                                                  | Assessment on the<br>integrated line of<br>evidence |
|-----------------------|--------------------------------------------------|------------------------------|---------|----------------------------|------------------|-----------------------------------|--------------------------|---------------|---------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| 11                    | Sensitive to<br>but not<br>diagnostic of<br>EATS | Post<br>implantation<br>loss | rabbit  | 13 (DG 7-<br>19)           | Days             | Oral                              | >300                     | mg/kg<br>bw/d | No effect           |                                                                                                          |                                                                                                            |                                                     |
| 13                    | Sensitive to<br>but not<br>diagnostic of<br>EATS | Post<br>implantation<br>loss | rat     | 28                         | weeks            | Oral                              | >2500                    | ppm           | No effect           |                                                                                                          |                                                                                                            |                                                     |
| 8                     | Sensitive to<br>but not<br>diagnostic of<br>EATS | Pre-<br>implantation<br>loss | rat     | 10 (GD 6-<br>15)           | Days             | Oral                              | 500                      | mg/kg<br>bw/d | Increase            | The mean pre-<br>implantation<br>loss ratio at<br>500 mg/kg<br>bw/day was<br>higher than the<br>control. | Increase in<br>pre-implan-<br>tation loss in<br>the rat at the<br>highest dose.<br>Note that the<br>dosing |                                                     |
| 9                     | Sensitive to<br>but not                          | Pre-<br>implantation<br>loss | rat     | 10 (GD 6-<br>15)           | Days             | Oral                              | >700                     | mg/kg<br>bw/d | No effect           |                                                                                                          | commenced<br>during the<br>implant-                                                                        |                                                     |

| Study  | Effect         | Effect target | Species | Duration  | Duration | Route   | Lowest | Dose  | Effect    | Observed        | Assessment    | Assessment on the  |
|--------|----------------|---------------|---------|-----------|----------|---------|--------|-------|-----------|-----------------|---------------|--------------------|
| ID     | classification |               |         | of        | unit     | of      | Effect | unit  | direction | effect          | of each line  | integrated line of |
| Matrix |                |               |         | exposure  |          | adminis | dose   |       |           | (positive and   | of evidence   | evidence           |
|        |                |               |         |           |          | tration |        |       |           | negative)       |               |                    |
|        | diagnostic of  |               |         |           |          |         |        |       |           |                 | tation phase  |                    |
|        | EATS           |               |         |           |          |         |        |       |           |                 | (GD 6) and    |                    |
| 10     | Sensitive to   | Pre-          | rabbit  | 13 (DG 7- | Days     | Oral    | >500   | mg/kg | No effect |                 | therefore the |                    |
| 10     | but not        | implantation  | rabbit  | 19)       | Days     | Orai    | 2500   | bw/d  | No chect  |                 | pre-implan-   |                    |
|        | diagnostic of  | loss          |         | 1))       |          |         |        | 0w/d  |           |                 | tation losses |                    |
|        | EATS           | 1000          |         |           |          |         |        |       |           |                 | may be        |                    |
|        |                |               |         |           |          |         |        |       |           |                 | unrelated to  |                    |
| 11     | Sensitive to   | Pre-          | rabbit  | 13 (DG 7- | Days     | Oral    | >300   | mg/kg | No effect |                 | treatment.    |                    |
|        | but not        | implantation  |         | 19)       |          |         |        | bw/d  |           |                 |               |                    |
|        | diagnostic of  | loss          |         |           |          |         |        |       |           |                 |               |                    |
|        | EATS           |               |         |           |          |         |        |       |           |                 |               |                    |
| 9      | Sensitive to   | Presence of   | rat     | 10 (GD 6- | Days     | Oral    | 350    | mg/kg | Change    | At 700 mg/kg    | Increase in   |                    |
|        | but not        | anomalies     |         | 15)       |          |         |        | bw/d  |           | there was an    | foetal        |                    |
|        | diagnostic of  | (External,    |         |           |          |         |        |       |           | increased       | malfor-       |                    |
|        | EATS           | visceral,     |         |           |          |         |        |       |           | incidence of    | mations and   |                    |
|        |                | skeletal)     |         |           |          |         |        |       |           | external        | altered       |                    |
|        |                |               |         |           |          |         |        |       |           | malformation    | ossification  |                    |
|        |                |               |         |           |          |         |        |       |           | on a foetal     | processes     |                    |
|        |                |               |         |           |          |         |        |       |           | (3.6%; 8/221    | occurred in   |                    |
|        |                |               |         |           |          |         |        |       |           | foetuses) and a | two studies.  |                    |
|        |                |               |         |           |          |         |        |       |           | litter (33.3%;  | No effects    |                    |
|        |                |               |         |           |          |         |        |       |           | 6/18 litters)   | were          |                    |
|        |                |               |         |           |          |         |        |       |           | basis. There    | observed at   |                    |
|        |                |               |         |           |          |         |        |       |           | were no         | doses         |                    |

| Study  | Effect         | Effect target | Species | Duration | Duration | Route   | Lowest | Dose | Effect    | Observed           | Assessment     | Assessment on the  |
|--------|----------------|---------------|---------|----------|----------|---------|--------|------|-----------|--------------------|----------------|--------------------|
| ID     | classification |               |         | of       | unit     | of      | Effect | unit | direction | effect             | of each line   | integrated line of |
| Matrix |                |               |         | exposure |          | adminis | dose   |      |           | (positive and      | of evidence    | evidence           |
|        |                |               |         |          |          | tration |        |      |           | negative)          |                |                    |
|        |                |               |         |          |          |         |        |      |           | external           | without        |                    |
|        |                |               |         |          |          |         |        |      |           | malformations      | maternal       |                    |
|        |                |               |         |          |          |         |        |      |           | in controls.       | toxicity and   |                    |
|        |                |               |         |          |          |         |        |      |           | The increased      | may thus be    |                    |
|        |                |               |         |          |          |         |        |      |           | incidences (7      | secondary to   |                    |
|        |                |               |         |          |          |         |        |      |           | foetuses from      | those effects. |                    |
|        |                |               |         |          |          |         |        |      |           | 6 litters) of tail |                |                    |
|        |                |               |         |          |          |         |        |      |           | defects            |                |                    |
|        |                |               |         |          |          |         |        |      |           | (absence of        |                |                    |
|        |                |               |         |          |          |         |        |      |           | tail, short tail   |                |                    |
|        |                |               |         |          |          |         |        |      |           | or filamentous     |                |                    |
|        |                |               |         |          |          |         |        |      |           | tail) among        |                |                    |
|        |                |               |         |          |          |         |        |      |           | foetuses of the    |                |                    |
|        |                |               |         |          |          |         |        |      |           | high dose          |                |                    |
|        |                |               |         |          |          |         |        |      |           | group were         |                |                    |
|        |                |               |         |          |          |         |        |      |           | attributed to      |                |                    |
|        |                |               |         |          |          |         |        |      |           | severe signs of    |                |                    |
|        |                |               |         |          |          |         |        |      |           | maternal           |                |                    |
|        |                |               |         |          |          |         |        |      |           | toxicity.          |                |                    |
|        |                |               |         |          |          |         |        |      |           | Skeletal           |                |                    |
|        |                |               |         |          |          |         |        |      |           | ossification       |                |                    |
|        |                |               |         |          |          |         |        |      |           | variation data     |                |                    |
|        |                |               |         |          |          |         |        |      |           | indicated          |                |                    |
|        |                |               |         |          |          |         |        |      |           | retarded           |                |                    |

| Study  | Effect         | Effect target | Species | Duration  | Duration | Route   | Lowest | Dose  | Effect    | Observed        | Assessment   | Assessment on the  |
|--------|----------------|---------------|---------|-----------|----------|---------|--------|-------|-----------|-----------------|--------------|--------------------|
| ID     | classification |               |         | of        | unit     | of      | Effect | unit  | direction | effect          | of each line | integrated line of |
| Matrix |                |               |         | exposure  |          | adminis | dose   |       |           | (positive and   | of evidence  | evidence           |
|        |                |               |         |           |          | tration |        |       |           | negative)       |              |                    |
|        |                |               |         |           |          |         |        |       |           | ossification at |              |                    |
|        |                |               |         |           |          |         |        |       |           | 350 and 700     |              |                    |
|        |                |               |         |           |          |         |        |       |           | mg/kg bw/day.   |              |                    |
| 10     | Sensitive to   | Presence of   | rabbit  | 13 (DG 7- | Days     | Oral    | >500   | mg/kg | No effect |                 |              |                    |
|        | but not        | anomalies     |         | 19)       |          |         |        | bw/d  |           |                 |              |                    |
|        | diagnostic of  | (External,    |         |           |          |         |        |       |           |                 |              |                    |
|        | EATS           | visceral,     |         |           |          |         |        |       |           |                 |              |                    |
|        |                | skeletal      |         |           |          |         |        |       |           |                 |              |                    |
| 11     | Sensitive to   | Presence of   | rabbit  | 13 (DG 7- | Days     | Oral    | 300    | mg/kg | No effect | Misaligned      |              |                    |
|        | but not        | anomalies     |         | 19)       |          |         |        | bw/d  |           | sutures (3.6%   |              |                    |
|        | diagnostic of  | (External,    |         |           |          |         |        |       |           | vs 0% in        |              |                    |
|        | EATS           | visceral,     |         |           |          |         |        |       |           | control): nasal |              |                    |
|        |                | skeletal      |         |           |          |         |        |       |           | irregular       |              |                    |
|        |                | Sheretar      |         |           |          |         |        |       |           | ossification    |              |                    |
|        |                |               |         |           |          |         |        |       |           | (6.3% vs 2.2%   |              |                    |
|        |                |               |         |           |          |         |        |       |           | in the control  |              |                    |
|        |                |               |         |           |          |         |        |       |           | and 0.24% in    |              |                    |
|        |                |               |         |           |          |         |        |       |           | HCD):           |              |                    |
|        |                |               |         |           |          |         |        |       |           | angulation of   |              |                    |
|        |                |               |         |           |          |         |        |       |           | hyoid alae      |              |                    |
|        |                |               |         |           |          |         |        |       |           | (6.3% vs 1.4%   |              |                    |
|        |                |               |         |           |          |         |        |       |           | in control and  |              |                    |
|        |                |               |         |           |          |         |        |       |           | 1.29% in        |              |                    |

| Study  | Effect         | Effect target | Species | Duration | Duration | Route   | Lowest | Dose | Effect    | Observed         | Assessment   | Assessment on the  |
|--------|----------------|---------------|---------|----------|----------|---------|--------|------|-----------|------------------|--------------|--------------------|
| ID     | classification |               |         | of       | unit     | of      | Effect | unit | direction | effect           | of each line | integrated line of |
| Matrix |                |               |         | exposure |          | adminis | dose   |      |           | (positive and    | of evidence  | evidence           |
|        |                |               |         |          |          | tration |        |      |           | negative)        |              |                    |
|        |                |               |         |          |          |         |        |      |           | HCD). Overall    |              |                    |
|        |                |               |         |          |          |         |        |      |           | incidences of    |              |                    |
|        |                |               |         |          |          |         |        |      |           | foetal           |              |                    |
|        |                |               |         |          |          |         |        |      |           | alterations      |              |                    |
|        |                |               |         |          |          |         |        |      |           | were 18.7%,      |              |                    |
|        |                |               |         |          |          |         |        |      |           | 19.3%, 23.9%,    |              |                    |
|        |                |               |         |          |          |         |        |      |           | and 23.4% in     |              |                    |
|        |                |               |         |          |          |         |        |      |           | the control,     |              |                    |
|        |                |               |         |          |          |         |        |      |           | low, mid, and    |              |                    |
|        |                |               |         |          |          |         |        |      |           | high dose        |              |                    |
|        |                |               |         |          |          |         |        |      |           | groups,          |              |                    |
|        |                |               |         |          |          |         |        |      |           | respectively.    |              |                    |
|        |                |               |         |          |          |         |        |      |           | Maternal         |              |                    |
|        |                |               |         |          |          |         |        |      |           | toxicity at this |              |                    |
|        |                |               |         |          |          |         |        |      |           | dose included    |              |                    |
|        |                |               |         |          |          |         |        |      |           | reduced food     |              |                    |
|        |                |               |         |          |          |         |        |      |           | consumption      |              |                    |
|        |                |               |         |          |          |         |        |      |           | and body         |              |                    |
|        |                |               |         |          |          |         |        |      |           | weight gain,     |              |                    |
|        |                |               |         |          |          |         |        |      |           | clinical signs   |              |                    |
|        |                |               |         |          |          |         |        |      |           | (red substance   |              |                    |
|        |                |               |         |          |          |         |        |      |           | in pan and       |              |                    |
|        |                |               |         |          |          |         |        |      |           | dried faeces),   |              |                    |
|        |                |               |         |          |          |         |        |      |           | and reduced      |              |                    |

| Study        | Effect                                           | Effect target                                                               | Species | Duration       | Duration | Route                    | Lowest         | Dose | Effect    | Observed                             | Assessment                            | Assessment on the              |
|--------------|--------------------------------------------------|-----------------------------------------------------------------------------|---------|----------------|----------|--------------------------|----------------|------|-----------|--------------------------------------|---------------------------------------|--------------------------------|
| ID<br>Matrix | classification                                   |                                                                             |         | of<br>exposure | unit     | of<br>adminis<br>tration | Effect<br>dose | unit | direction | effect<br>(positive and<br>negative) | of each line<br>of evidence           | integrated line of<br>evidence |
| 12           | Sensitive to<br>but not<br>diagnostic of<br>EATS | Presence of<br>anomalies<br>(External,<br>visceral,                         | rat     | 5 to 6         | Weeks    | Oral                     | >5000          | ppm  | No effect | uterine weight<br>(10%, n.s.)        |                                       |                                |
| 13           | Sensitive to<br>but not<br>diagnostic of<br>EATS | skeletal<br>Presence of<br>anomalies<br>(external,<br>visceral,<br>skeletal | rat     | 28             | weeks    | Oral                     | >2500          | ppm  | No effect |                                      |                                       |                                |
| 12           | Sensitive to<br>but not<br>diagnostic of<br>EATS | Pup survival<br>index                                                       | rat     | 5 to 6         | Weeks    | Oral                     | >5000          | ppm  | No effect |                                      | No effect on<br>pup survival<br>index |                                |
| 13           | Sensitive to<br>but not<br>diagnostic of<br>EATS | Pup survival<br>index                                                       | rat     | 28             | weeks    | Oral                     | >2500          | ppm  | No effect |                                      |                                       |                                |

| Study  | Effect         | Effect target | Species | Duration  | Duration | Route   | Lowest | Dose  | Effect    | Observed      | Assessment   | Assessment on the  |
|--------|----------------|---------------|---------|-----------|----------|---------|--------|-------|-----------|---------------|--------------|--------------------|
| ID     | classification |               |         | of        | unit     | of      | Effect | unit  | direction | effect        | of each line | integrated line of |
| Matrix |                |               |         | exposure  |          | adminis | dose   |       |           | (positive and | of evidence  | evidence           |
|        |                |               |         |           |          | tration |        |       |           | negative)     |              |                    |
| 9      | Sensitive to   | Sex ratio     | rat     | 10 (GD 6- | Days     | Oral    | >700   | mg/kg | No effect |               | No effect on |                    |
|        | but not        |               |         | 15)       |          |         |        | bw/d  |           |               | sex ratio    |                    |
|        | diagnostic of  |               |         |           |          |         |        |       |           |               |              |                    |
|        | EATS           |               |         |           |          |         |        |       |           |               |              |                    |
| 10     | Sensitive to   | Sex ratio     | rabbit  | 13 (DG 7- | Days     | Oral    | >500   | mg/kg | No effect |               | -            |                    |
|        | but not        |               |         | 19)       |          |         |        | bw/d  |           |               |              |                    |
|        | diagnostic of  |               |         |           |          |         |        |       |           |               |              |                    |
|        | EATS           |               |         |           |          |         |        |       |           |               |              |                    |
| 11     | Sensitive to   | Sex ratio     | rabbit  | 13 (DG 7- | Days     | Oral    | >300   | mg/kg | No effect |               |              |                    |
|        | but not        |               |         | 19)       |          |         |        | bw/d  |           |               |              |                    |
|        | diagnostic of  |               |         |           |          |         |        |       |           |               |              |                    |
|        | EATS           |               |         |           |          |         |        |       |           |               |              |                    |
| 12     | Sensitive to   | Sex ratio     | rat     | 5 to 6    | Weeks    | Oral    | >5000  | ppm   | No effect |               | -            |                    |
|        | but not        |               |         |           |          |         |        |       |           |               |              |                    |
|        | diagnostic o,  |               |         |           |          |         |        |       |           |               |              |                    |
|        | EATS           |               |         |           |          |         |        |       |           |               |              |                    |
| 13     | Sensitive to   | Sex ratio     | rat     | 28        | weeks    | Oral    | >2500  | ppm   | No effect |               | -            |                    |
|        | but not        |               |         |           |          |         |        |       |           |               |              |                    |
|        | diagnostic of  |               |         |           |          |         |        |       |           |               |              |                    |
|        | EATS           |               |         |           |          |         |        |       |           |               |              |                    |
| 13     | Sensitive to   | Time to       | rat     | 28        | weeks    | Oral    | >2500  | ppm   | No effect |               | No effect on |                    |
|        | but not        | mating        |         |           |          |         |        |       |           |               | mating time  |                    |

| Study<br>ID<br>Matrix | Effect<br>classification<br>diagnostic of | Effect target                 | Species | Duration<br>of<br>exposure | Duration<br>unit | Route<br>of<br>adminis<br>tration | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative) | Assessment<br>of each line<br>of evidence               | Assessment on the<br>integrated line of<br>evidence                                            |
|-----------------------|-------------------------------------------|-------------------------------|---------|----------------------------|------------------|-----------------------------------|--------------------------|---------------|---------------------|--------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------|
|                       | EATS                                      |                               |         |                            |                  |                                   |                          |               |                     |                                                  |                                                         |                                                                                                |
| 1                     | Target organ<br>toxicity                  | Aorta<br>histopathology       | Rat     | 5                          | Weeks            | Oral                              | >8000                    | ppm           | No effect           |                                                  | No effect on<br>aorta histo-<br>pathology in<br>the rat | Overall evidence of<br>target organ toxicity<br>(liver, blood) with the<br>rat, mouse and dog, |
| 1                     | Target organ<br>toxicity                  | Bone<br>histopathology        | Rat     | 5                          | Weeks            | Oral                              | >8000                    | ppm           | No effect           |                                                  | No effect on<br>bone histo-                             | and systemic toxicity<br>(lower body<br>weight/body weight                                     |
| 4                     | Target organ<br>toxicity                  | Bone<br>histopathology        | Dog     | 90                         | Days             | Oral                              | >125                     | mg/kg<br>bw/d | No effect           |                                                  | pathology in<br>the rat<br>mouse and                    | gain and food<br>consumption, and in                                                           |
| 5                     | Target organ toxicity                     | Bone<br>histopathology        | Dog     | 52                         | Weeks            | Oral                              | >300                     | mg/kg<br>bw/d | No effect           |                                                  | dog                                                     | some cases clinical<br>signs and mortality)<br>across the tested                               |
| 6                     | Target organ toxicity                     | Bone<br>histopathology        | Rat     | 2                          | Years            | Oral                              | >2500                    | ppm           | No effect           |                                                  |                                                         | species.                                                                                       |
| 7                     | Target organ toxicity                     | Bone<br>histopathology        | mouse   | 52                         | Weeks            | Oral                              | >3000                    | ppm           | No effect           |                                                  |                                                         |                                                                                                |
| 4                     | Target organ toxicity                     | Bone marrow<br>histopathology | Dog     | 90                         | Days             | Oral                              | >125                     | mg/kg<br>bw/d | No effect           |                                                  | Hyperplasia of the                                      |                                                                                                |
| 5                     | Target organ<br>toxicity                  | Bone marrow<br>histopathology | Dog     | 52                         | Weeks            | Oral                              | 75                       | mg/kg<br>bw/d | Change              | Hyperplasia of<br>the sternum<br>marrow was      | sternum<br>marrow in 1-<br>year study                   |                                                                                                |

| Study  | Effect         | Effect target  | Species | Duration | Duration | Route   | Lowest | Dose  | Effect    | Observed        | Assessment   | Assessment on the  |
|--------|----------------|----------------|---------|----------|----------|---------|--------|-------|-----------|-----------------|--------------|--------------------|
| ID     | classification |                |         | of       | unit     | of      | Effect | unit  | direction | effect          | of each line | integrated line of |
| Matrix |                |                |         | exposure |          | adminis | dose   |       |           | (positive and   | of evidence  | evidence           |
|        |                |                |         |          |          | tration |        |       |           | negative)       |              |                    |
|        |                |                |         |          |          |         |        |       |           | observed in     | with the dog |                    |
|        |                |                |         |          |          |         |        |       |           | one male and    | but no       |                    |
|        |                |                |         |          |          |         |        |       |           | one female      | effects in a |                    |
|        |                |                |         |          |          |         |        |       |           | given 75        | short-term   |                    |
|        |                |                |         |          |          |         |        |       |           | mg/kg bw/day    | study. No    |                    |
|        |                |                |         |          |          |         |        |       |           | and all animals | effects with |                    |
|        |                |                |         |          |          |         |        |       |           | given 300       | the mouse.   |                    |
|        |                |                |         |          |          |         |        |       |           | mg/kg bw/day    |              |                    |
| 7      | Target organ   | Bone marrow    | mouse   | 52       | Weeks    | Oral    | >3000  | ppm   | No effect |                 |              |                    |
| -      | toxicity       | histopathology |         |          |          |         |        | rr    |           |                 |              |                    |
|        | -              |                |         |          |          |         |        |       |           |                 |              |                    |
| 1      | Target organ   | Eyes           | Rat     | 5        | Weeks    | Oral    | >8000  | ppm   | No effect |                 | No effect on |                    |
|        | toxicity       | histopathology |         |          |          |         |        |       |           |                 | the eyes     |                    |
|        |                |                |         |          |          |         |        |       |           |                 | histo-       |                    |
|        |                |                |         |          |          |         |        |       |           |                 | pathology    |                    |
| 1      | Target organ   | Heart          | Rat     | 5        | Weeks    | Oral    | >8000  | ppm   | No effect |                 | No effects   | -                  |
|        | toxicity       | histopathology |         |          |          |         |        |       |           |                 | on the heart |                    |
| 3      | Target organ   | Heart          | Rat     | 13       | Weeks    | Oral    | >5000  | ppm   | No effect |                 | weight or    |                    |
| _      | toxicity       | histopathology |         |          |          |         |        |       |           |                 | histo-       |                    |
|        | -              |                |         |          |          |         |        |       |           |                 | pathology    |                    |
| 4      | Target organ   | Heart          | Dog     | 90       | Days     | Oral    | >125   | mg/kg | No effect |                 |              |                    |
|        | toxicity       | histopathology |         |          |          |         |        | bw/d  |           |                 |              |                    |
| 5      | Target organ   | Heart          | Dog     | 52       | Weeks    | Oral    | >300   | mg/kg | No effect |                 |              |                    |
|        | toxicity       | histopathology |         |          |          |         |        | bw/d  |           |                 |              |                    |

| Study<br>ID | Effect<br>classification | Effect target            | Species | Duration<br>of | Duration<br>unit | Route<br>of        | Lowest<br>Effect | Dose<br>unit  | Effect<br>direction | Observed<br>effect      | Assessment<br>of each line                                    | Assessment on the integrated line of |
|-------------|--------------------------|--------------------------|---------|----------------|------------------|--------------------|------------------|---------------|---------------------|-------------------------|---------------------------------------------------------------|--------------------------------------|
| Matrix      |                          |                          |         | exposure       |                  | adminis<br>tration | dose             |               |                     | (positive and negative) | of evidence                                                   | evidence                             |
| 6           | Target organ<br>toxicity | Heart<br>histopathology  | Rat     | 2              | Years            | Oral               | >2500            | ppm           | No effect           |                         |                                                               |                                      |
| 7           | Target organ toxicity    | Heart<br>histopathology  | mouse   | 52             | Weeks            | Oral               | >3000            | ppm           | No effect           |                         | -                                                             |                                      |
| 4           | Target organ toxicity    | Heart weight             | Dog     | 90             | Days             | Oral               | >125             | mg/kg<br>bw/d | No effect           |                         | -                                                             |                                      |
| 5           | Target organ toxicity    | Heart weight             | Dog     | 52             | Weeks            | Oral               | >300             | mg/kg<br>bw/d | No effect           |                         | -                                                             |                                      |
| 1           | Target organ toxicity    | Kidney<br>histopathology | Rat     | 5              | Weeks            | Oral               | >8000            | ppm           | No effect           |                         | No effects<br>on the                                          |                                      |
| 2           | Target organ toxicity    | Kidney<br>histopathology | mouse   | 4              | Weeks            | Oral               | >4000            | ppm           | No effect           |                         | <ul> <li>kidney</li> <li>weight or</li> <li>histo-</li> </ul> |                                      |
| 3           | Target organ toxicity    | Kidney<br>histopathology | Rat     | 13             | Weeks            | Oral               | >5000            | ppm           | No effect           |                         | pathology                                                     |                                      |
| 4           | Target organ toxicity    | Kidney<br>histopathology | Dog     | 90             | Days             | Oral               | >125             | mg/kg<br>bw/d | No effect           |                         | -                                                             |                                      |
| 5           | Target organ toxicity    | Kidney<br>histopathology | Dog     | 52             | Weeks            | Oral               | >300             | mg/kg<br>bw/d | No effect           |                         |                                                               |                                      |
| 6           | Target organ<br>toxicity | Kidney<br>histopathology | Rat     | 2              | Years            | Oral               | >2500            | ppm           | No effect           |                         |                                                               |                                      |

| Study       | Effect                   | Effect target            | Species | Duration | Duration | Route              | Lowest | Dose          | Effect    | Observed                                      | Assessment                               | Assessment on the  |
|-------------|--------------------------|--------------------------|---------|----------|----------|--------------------|--------|---------------|-----------|-----------------------------------------------|------------------------------------------|--------------------|
| ID<br>M ( ) | classification           |                          |         | of       | unit     | of                 | Effect | unit          | direction | effect                                        | of each line                             | integrated line of |
| Matrix      |                          |                          |         | exposure |          | adminis<br>tration | dose   |               |           | (positive and negative)                       | of evidence                              | evidence           |
| 7           | Target organ toxicity    | Kidney<br>histopathology | mouse   | 52       | Weeks    | Oral               | >3000  | ppm           | No effect |                                               |                                          |                    |
| 1           | Target organ toxicity    | Kidney weight            | Rat     | 5        | Weeks    | Oral               | >8000  | ppm           | No effect |                                               |                                          |                    |
| 2           | Target organ toxicity    | Kidney weight            | mouse   | 4        | Weeks    | Oral               | >4000  | ppm           | No effect |                                               |                                          |                    |
| 3           | Target organ toxicity    | Kidney weight            | Rat     | 13       | Weeks    | Oral               | >5000  | ppm           | No effect |                                               |                                          |                    |
| 4           | Target organ<br>toxicity | Kidney weight            | Dog     | 90       | Days     | Oral               | >125   | mg/kg<br>bw/d | No effect |                                               |                                          |                    |
| 5           | Target organ<br>toxicity | Kidney weight            | Dog     | 52       | Weeks    | Oral               | >300   | mg/kg<br>bw/d | No effect |                                               |                                          |                    |
| 6           | Target organ<br>toxicity | Kidney weight            | Rat     | 2        | Years    | Oral               | >2500  | ppm           | No effect |                                               |                                          |                    |
| 7           | Target organ<br>toxicity | Kidney weight            | mouse   | 52       | Weeks    | Oral               | >3000  | ppm           | No effect |                                               |                                          |                    |
| 15          | Target organ<br>toxicity | Kidney weight            | rat     | 10       | Days     | Oral               | >200   | mg/kg<br>bw/d | No effect |                                               |                                          |                    |
| 1           | Target organ<br>toxicity | Liver<br>histopathology  | Rat     | 5        | Weeks    | Oral               | 1000   | ppm           | Change    | Trace to mild<br>centrilobular<br>hypertrophy | Increased<br>liver weights<br>and histo- |                    |

| Study  | Effect                   | Effect target           | Species | Duration | Duration | Route   | Lowest | Dose | Effect    | Observed                                                                                                                                                                                              | Assessment                                                                                                                                                           | Assessment on the  |
|--------|--------------------------|-------------------------|---------|----------|----------|---------|--------|------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| ID     | classification           |                         |         | of       | unit     | of      | Effect | unit | direction | effect                                                                                                                                                                                                | of each line                                                                                                                                                         | integrated line of |
| Matrix |                          |                         |         | exposure |          | adminis | dose   |      |           | (positive and                                                                                                                                                                                         | of evidence                                                                                                                                                          | evidence           |
|        |                          |                         |         |          |          | tration |        |      |           | negative)                                                                                                                                                                                             |                                                                                                                                                                      |                    |
|        |                          |                         |         |          |          |         |        |      |           | was observed<br>in males in the<br>1000, 4000<br>and 8000 ppm<br>groups (30%,<br>60%, 80%,<br>respectively)<br>and in females<br>in the 4000<br>and 8000 ppm<br>groups (10%,<br>40%,<br>respectively) | pathological<br>changes<br>(centri-<br>lobular<br>hypertrophy<br>and in some<br>cases<br>vacuolation<br>and pig-<br>mentation)<br>in the liver<br>were<br>induced in |                    |
| 2      | Target organ<br>toxicity | Liver<br>histopathology | mouse   | 4        | Weeks    | Oral    | 4000   | ppm  | Change    | Increased<br>hypertrophy of<br>centrilobular<br>hepatocytes<br>was noted in<br>all male mice<br>(minimal to<br>moderate) at<br>4000 ppm and<br>eight of ten<br>female mice                            | the short-<br>term and<br>long-term<br>studies<br>across the<br>tested<br>species.                                                                                   |                    |

| Study<br>ID<br>Matrix | Effect<br>classification | Effect target           | Species | Duration<br>of<br>exposure | Duration<br>unit | Route<br>of<br>adminis<br>tration | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)<br>(minimal to                                                                                                                               | Assessment<br>of each line<br>of evidence | Assessment on the<br>integrated line of<br>evidence |
|-----------------------|--------------------------|-------------------------|---------|----------------------------|------------------|-----------------------------------|--------------------------|---------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------|
|                       |                          |                         |         |                            |                  |                                   |                          |               |                     | slight)                                                                                                                                                                                       |                                           |                                                     |
| 3                     | Target organ<br>toxicity | Liver<br>histopathology | Rat     | 13                         | Weeks            | Oral                              | 2500                     | ppm           | Change              | Increased<br>incidence of<br>centrilobular<br>hypertrophy of<br>the liver in<br>males and<br>females at<br>2500 (67%,<br>17%,<br>respectively)<br>and 5000 ppm<br>(83%, 58%,<br>respectively) |                                           |                                                     |
| 4                     | Target organ<br>toxicity | Liver<br>histopathology | Dog     | 90                         | Days             | Oral                              | 125                      | mg/kg<br>bw/d | Change              | Vesiculation/v<br>acuolation in<br>the cytoplasm<br>of<br>centrilobular<br>hepatocytes in<br>all males at all<br>levels<br>including the                                                      |                                           |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classification | Effect target           | Species | Duration<br>of<br>exposure | Duration<br>unit | Route<br>of<br>adminis<br>tration | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)                                                                                                                                                                                          | Assessment<br>of each line<br>of evidence | Assessment on the<br>integrated line of<br>evidence |
|-----------------------|--------------------------|-------------------------|---------|----------------------------|------------------|-----------------------------------|--------------------------|---------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------|
|                       |                          |                         |         |                            |                  |                                   |                          |               |                     | control group<br>and in all<br>treated<br>females and<br>3/4 control<br>females but<br>increased in<br>severity at 125<br>mg/kg bw/day.                                                                                                   |                                           |                                                     |
| 5                     | Target organ<br>toxicity | Liver<br>histopathology | Dog     | 52                         | Weeks            | Oral                              | 300                      | mg/kg<br>bw/d | Change              | Centrilobular<br>to mid-zonal<br>hepatocellular<br>hypertrophy in<br>five out of six<br>males and four<br>out of six<br>females given<br>300 mg/kg<br>bw/day.<br>Increased<br>pigmentation<br>of the liver<br>was observed<br>in one male |                                           |                                                     |

| Study  | Effect         | Effect target  | Species | Duration | Duration | Route   | Lowest | Dose | Effect    | Observed         | Assessment   | Assessment on the  |
|--------|----------------|----------------|---------|----------|----------|---------|--------|------|-----------|------------------|--------------|--------------------|
| ID     | classification |                |         | of       | unit     | of      | Effect | unit | direction | effect           | of each line | integrated line of |
| Matrix |                |                |         | exposure |          | adminis | dose   |      |           | (positive and    | of evidence  | evidence           |
|        |                |                |         |          |          | tration |        |      |           | negative)        |              |                    |
|        |                |                |         |          |          |         |        |      |           | given 75         |              |                    |
|        |                |                |         |          |          |         |        |      |           | mg/kg bw/day     |              |                    |
|        |                |                |         |          |          |         |        |      |           | and all animals  |              |                    |
|        |                |                |         |          |          |         |        |      |           | given 300        |              |                    |
|        |                |                |         |          |          |         |        |      |           | mg/kg bw/day     |              |                    |
| 6      | Target organ   | Liver          | Rat     | 2        | Years    | Oral    | 2500   | ppm  | Change    | Hypertrophy      |              |                    |
|        | toxicity       | histopathology |         |          |          |         |        |      |           | was observed     |              |                    |
|        |                |                |         |          |          |         |        |      |           | in the highest   |              |                    |
|        |                |                |         |          |          |         |        |      |           | dose group       |              |                    |
|        |                |                |         |          |          |         |        |      |           | (2500 ppm).      |              |                    |
|        |                |                |         |          |          |         |        |      |           | Females          |              |                    |
|        |                |                |         |          |          |         |        |      |           | offered 2500     |              |                    |
|        |                |                |         |          |          |         |        |      |           | ppm had a        |              |                    |
|        |                |                |         |          |          |         |        |      |           | slightly greater |              |                    |
|        |                |                |         |          |          |         |        |      |           | (12%)            |              |                    |
|        |                |                |         |          |          |         |        |      |           | incidence of     |              |                    |
|        |                |                |         |          |          |         |        |      |           | binucleated      |              |                    |
|        |                |                |         |          |          |         |        |      |           | cells in the     |              |                    |
|        |                |                |         |          |          |         |        |      |           | liver than the   |              |                    |
|        |                |                |         |          |          |         |        |      |           | controls (2%),   |              |                    |
|        |                |                |         |          |          |         |        |      |           | but the effect   |              |                    |
|        |                |                |         |          |          |         |        |      |           | was of           |              |                    |
|        |                |                |         |          |          |         |        |      |           | uncertain        |              |                    |

| Study<br>ID<br>Matrix | Effect<br>classification | Effect target  | Species | Duration<br>of<br>exposure | Duration<br>unit | Route<br>of<br>adminis<br>tration | Lowest<br>Effect<br>dose | Dose<br>unit | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)                                                                                                                                                                                                                                                    | Assessment<br>of each line<br>of evidence | Assessment on the<br>integrated line of<br>evidence |
|-----------------------|--------------------------|----------------|---------|----------------------------|------------------|-----------------------------------|--------------------------|--------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------|
| 7                     | Target organ             | Liver          | mouse   | 52                         | Weeks            | Oral                              | 1000                     | ppm          | Change              | toxicological<br>significance.<br>Centrilobular                                                                                                                                                                                                                                                     |                                           |                                                     |
|                       | toxicity                 | histopathology |         |                            |                  |                                   |                          |              |                     | hypertrophy of<br>the liver was<br>observed in<br>males given<br>1000 ppm<br>(42%) and in<br>males and<br>females given<br>3000 ppm<br>(100%).<br>Pigment,<br>described as<br>morphological<br>ly compatible<br>with<br>haemosiderin<br>and bile, was<br>noted in males<br>given 3000<br>ppm (69%). |                                           |                                                     |

| Study  | Effect         | Effect target | Species | Duration | Duration | Route   | Lowest | Dose | Effect    | Observed       | Assessment   | Assessment on the  |
|--------|----------------|---------------|---------|----------|----------|---------|--------|------|-----------|----------------|--------------|--------------------|
| ID     | classification |               |         | of       | unit     | of      | Effect | unit | direction | effect         | of each line | integrated line of |
| Matrix |                |               |         | exposure |          | adminis | dose   |      |           | (positive and  | of evidence  | evidence           |
|        |                |               |         |          |          | tration |        |      |           | negative)      |              |                    |
| 1      | Target organ   | Liver weight  | Rat     | 5        | Weeks    | Oral    | 1000   | ppm  | Increase  | Absolute liver |              |                    |
|        | toxicity       |               |         |          |          |         |        |      |           | weight was     |              |                    |
|        |                |               |         |          |          |         |        |      |           | significantly  |              |                    |
|        |                |               |         |          |          |         |        |      |           | increased in   |              |                    |
|        |                |               |         |          |          |         |        |      |           | males at 1000, |              |                    |
|        |                |               |         |          |          |         |        |      |           | 4000 and 8000  |              |                    |
|        |                |               |         |          |          |         |        |      |           | ppm (+12%,     |              |                    |
|        |                |               |         |          |          |         |        |      |           | +13% and       |              |                    |
|        |                |               |         |          |          |         |        |      |           | +15%,          |              |                    |
|        |                |               |         |          |          |         |        |      |           | respectively)  |              |                    |
|        |                |               |         |          |          |         |        |      |           | and in females |              |                    |
|        |                |               |         |          |          |         |        |      |           | at 8000 ppm    |              |                    |
|        |                |               |         |          |          |         |        |      |           | (+12.5%).      |              |                    |
|        |                |               |         |          |          |         |        |      |           | Relative liver |              |                    |
|        |                |               |         |          |          |         |        |      |           | weight was     |              |                    |
|        |                |               |         |          |          |         |        |      |           | significantly  |              |                    |
|        |                |               |         |          |          |         |        |      |           | increased in   |              |                    |
|        |                |               |         |          |          |         |        |      |           | males and      |              |                    |
|        |                |               |         |          |          |         |        |      |           | females at     |              |                    |
|        |                |               |         |          |          |         |        |      |           | 4000 (+19.4%   |              |                    |
|        |                |               |         |          |          |         |        |      |           | and +18.2%     |              |                    |
|        |                |               |         |          |          |         |        |      |           | respectively)  |              |                    |
|        |                |               |         |          |          |         |        |      |           | and 8000 ppm   |              |                    |
|        |                |               |         |          |          |         |        |      |           | (+32% and      |              |                    |

| Study<br>ID<br>Matrix | Effect<br>classification | Effect target | Species | Duration<br>of<br>exposure | Duration<br>unit | Route<br>of<br>adminis<br>tration | Lowest<br>Effect<br>dose | Dose<br>unit | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)                                                                                                                                                                                                                                                                         | Assessment<br>of each line<br>of evidence | Assessment on the<br>integrated line of<br>evidence |
|-----------------------|--------------------------|---------------|---------|----------------------------|------------------|-----------------------------------|--------------------------|--------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------|
|                       |                          |               |         |                            |                  |                                   |                          |              |                     | +33%,<br>respectively).                                                                                                                                                                                                                                                                                                  |                                           |                                                     |
| 2                     | Target organ<br>toxicity | Liver weight  | mouse   | 4                          | Weeks            | Oral                              | 1500                     | ppm          | Increase            | The absolute<br>liver with<br>gallbladder<br>weight was<br>significantly<br>increased in<br>males at 1500<br>(+13%) and in<br>males and<br>females at<br>4000 ppm<br>(+42% and<br>+16%,<br>respectively).<br>The liver/body<br>weight ratio<br>was<br>significantly<br>increased for<br>the same<br>groups of<br>animals |                                           |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classification | Effect target | Species | Duration<br>of<br>exposure | Duration<br>unit | Route<br>of<br>adminis<br>tration | Lowest<br>Effect<br>dose | Dose<br>unit | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)<br>(+14%, +42%                                                                                                                                                                                                                                                             | Assessment<br>of each line<br>of evidence | Assessment on the<br>integrated line of<br>evidence |
|-----------------------|--------------------------|---------------|---------|----------------------------|------------------|-----------------------------------|--------------------------|--------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------|
|                       |                          |               |         |                            |                  |                                   |                          |              |                     | (+14%, +42%)<br>and +23%,<br>respectively).                                                                                                                                                                                                                                                                                 |                                           |                                                     |
| 3                     | Target organ<br>toxicity | Liver weight  | Rat     | 13                         | Weeks            | Oral                              | 2500                     | ppm          | Increase            | Absolute liver<br>weight was<br>significantly<br>increased for<br>females given<br>5000 ppm<br>(114% of<br>control),<br>relative liver<br>weight was<br>significantly<br>increased in<br>both sexes<br>given 2500<br>ppm (+12% in<br>males and<br>females) and<br>5000 ppm (+<br>26% in males;<br>+ 28% in<br>females) with |                                           |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classification | Effect target | Species | Duration<br>of<br>exposure | Duration<br>unit | Route<br>of<br>adminis<br>tration | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)<br>a dose-related                                                                                                                        | Assessment<br>of each line<br>of evidence | Assessment on the<br>integrated line of<br>evidence |
|-----------------------|--------------------------|---------------|---------|----------------------------|------------------|-----------------------------------|--------------------------|---------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------|
|                       |                          |               |         |                            |                  |                                   |                          |               |                     | trend.                                                                                                                                                                                    |                                           |                                                     |
| 4                     | Target organ<br>toxicity | Liver weight  | Dog     | 90                         | Days             | Oral                              | 75                       | mg/kg<br>bw/d | Increase            | Absolute liver<br>weight was<br>increased in<br>animals given<br>75 and 125<br>mg/kg bw/day<br>(in males 116<br>and 134% of<br>controls and in<br>females 115<br>and 130% of<br>controls) |                                           |                                                     |
| 5                     | Target organ<br>toxicity | Liver weight  | Dog     | 52                         | Weeks            | Oral                              | 75                       | mg/kg<br>bw/d | Increase            | Absolute and<br>relative liver<br>weight was<br>significantly<br>increased in<br>both sexes<br>given 300<br>mg/kg bw/day<br>(156 and<br>160% of                                           |                                           |                                                     |

| Study  | Effect         | Effect target | Species | Duration | Duration | Route   | Lowest | Dose | Effect    | Observed       | Assessment   | Assessment on the  |
|--------|----------------|---------------|---------|----------|----------|---------|--------|------|-----------|----------------|--------------|--------------------|
| ID     | classification |               |         | of       | unit     | of      | Effect | unit | direction | effect         | of each line | integrated line of |
| Matrix |                |               |         | exposure |          | adminis | dose   |      |           | (positive and  | of evidence  | evidence           |
|        |                |               |         |          |          | tration |        |      |           | negative)      |              |                    |
|        |                |               |         |          |          |         |        |      |           | controls for   |              |                    |
|        |                |               |         |          |          |         |        |      |           | males,         |              |                    |
|        |                |               |         |          |          |         |        |      |           | respectively,  |              |                    |
|        |                |               |         |          |          |         |        |      |           | and 170 and    |              |                    |
|        |                |               |         |          |          |         |        |      |           | 168% of        |              |                    |
|        |                |               |         |          |          |         |        |      |           | controls for   |              |                    |
|        |                |               |         |          |          |         |        |      |           | females,       |              |                    |
|        |                |               |         |          |          |         |        |      |           | respectively), |              |                    |
|        |                |               |         |          |          |         |        |      |           | and in females |              |                    |
|        |                |               |         |          |          |         |        |      |           | given 75       |              |                    |
|        |                |               |         |          |          |         |        |      |           | mg/kg bw/day   |              |                    |
|        |                |               |         |          |          |         |        |      |           | (134 and       |              |                    |
|        |                |               |         |          |          |         |        |      |           | 158% of        |              |                    |
|        |                |               |         |          |          |         |        |      |           | controls,      |              |                    |
|        |                |               |         |          |          |         |        |      |           | respectively). |              |                    |
|        |                |               |         |          |          |         |        |      |           | In males given |              |                    |
|        |                |               |         |          |          |         |        |      |           | 75 mg/kg       |              |                    |
|        |                |               |         |          |          |         |        |      |           | bw/day         |              |                    |
|        |                |               |         |          |          |         |        |      |           | absolute liver |              |                    |
|        |                |               |         |          |          |         |        |      |           | weight was     |              |                    |
|        |                |               |         |          |          |         |        |      |           | increased      |              |                    |
|        |                |               |         |          |          |         |        |      |           | (127%) and     |              |                    |
|        |                |               |         |          |          |         |        |      |           | relative liver |              |                    |
|        |                |               |         |          |          |         |        |      |           | weight was     |              |                    |

| Study<br>ID<br>Matrix | Effect<br>classification | Effect target | Species | Duration<br>of<br>exposure | Duration<br>unit | Route<br>of<br>adminis<br>tration | Lowest<br>Effect<br>dose | Dose<br>unit | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)<br>statistically                                                                                                                                                                                                                                             | Assessment<br>of each line<br>of evidence | Assessment on the<br>integrated line of<br>evidence |
|-----------------------|--------------------------|---------------|---------|----------------------------|------------------|-----------------------------------|--------------------------|--------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------|
|                       |                          |               |         |                            |                  |                                   |                          |              |                     | significantly<br>increased<br>(116%).                                                                                                                                                                                                                                                                         |                                           |                                                     |
| 6                     | Target organ<br>toxicity | Liver weight  | Rat     | 2                          | Years            | Oral                              | 500                      | ppm          | Increase            | Absolute liver<br>weights and<br>liver weights<br>adjusted for<br>brain weight<br>of females<br>given 2500<br>ppm were<br>statistically<br>significantly<br>increased<br>(+24% and<br>+23%,<br>respectively)<br>and absolute<br>liver weight/<br>liver weight<br>relative to BW<br>in males were<br>increased |                                           |                                                     |

| Study  | Effect         | Effect target | Species | Duration | Duration | Route   | Lowest | Dose | Effect    | Observed         | Assessment   | Assessment on the  |
|--------|----------------|---------------|---------|----------|----------|---------|--------|------|-----------|------------------|--------------|--------------------|
| ID     | classification |               |         | of       | unit     | of      | Effect | unit | direction | effect           | of each line | integrated line of |
| Matrix |                |               |         | exposure |          | adminis | dose   |      |           | (positive and    | of evidence  | evidence           |
|        |                |               |         |          |          | tration |        |      |           | negative)        |              |                    |
|        |                |               |         |          |          |         |        |      |           | 21/18% (not      |              |                    |
|        |                |               |         |          |          |         |        |      |           | statistically    |              |                    |
|        |                |               |         |          |          |         |        |      |           | significant)     |              |                    |
|        |                |               |         |          |          |         |        |      |           | while liver      |              |                    |
|        |                |               |         |          |          |         |        |      |           | weight relative  |              |                    |
|        |                |               |         |          |          |         |        |      |           | to brain weight  |              |                    |
|        |                |               |         |          |          |         |        |      |           | was increased    |              |                    |
|        |                |               |         |          |          |         |        |      |           | 24%              |              |                    |
|        |                |               |         |          |          |         |        |      |           | (significant) in |              |                    |
|        |                |               |         |          |          |         |        |      |           | the 500 ppm      |              |                    |
|        |                |               |         |          |          |         |        |      |           | group            |              |                    |
| 7      | Target organ   | Liver weight  | mouse   | 52       | Weeks    | Oral    | 1000   | ppm  | Increase  | At week 53, in   |              |                    |
|        | toxicity       |               |         |          |          |         |        |      |           | males liver      |              |                    |
|        |                |               |         |          |          |         |        |      |           | weights          |              |                    |
|        |                |               |         |          |          |         |        |      |           | (absolute,       |              |                    |
|        |                |               |         |          |          |         |        |      |           | body weight      |              |                    |
|        |                |               |         |          |          |         |        |      |           | ratio and brain  |              |                    |
|        |                |               |         |          |          |         |        |      |           | weight ratio)    |              |                    |
|        |                |               |         |          |          |         |        |      |           | were             |              |                    |
|        |                |               |         |          |          |         |        |      |           | statistically    |              |                    |
|        |                |               |         |          |          |         |        |      |           | significantly    |              |                    |
|        |                |               |         |          |          |         |        |      |           | increased at     |              |                    |
|        |                |               |         |          |          |         |        |      |           | 2000/3000        |              |                    |
|        |                |               |         |          |          |         |        |      |           | ppm (+16%,       |              |                    |

| Study  | Effect         | Effect target | Species | Duration | Duration | Route   | Lowest | Dose | Effect    | Observed       | Assessment   | Assessment on the  |
|--------|----------------|---------------|---------|----------|----------|---------|--------|------|-----------|----------------|--------------|--------------------|
| ID     | classification |               |         | of       | unit     | of      | Effect | unit | direction | effect         | of each line | integrated line of |
| Matrix |                |               |         | exposure |          | adminis | dose   |      |           | (positive and  | of evidence  | evidence           |
|        |                |               |         |          |          | tration |        |      |           | negative)      |              |                    |
|        |                |               |         |          |          |         |        |      |           | +31% and       |              |                    |
|        |                |               |         |          |          |         |        |      |           | +21%,          |              |                    |
|        |                |               |         |          |          |         |        |      |           | respectively), |              |                    |
|        |                |               |         |          |          |         |        |      |           | and liver      |              |                    |
|        |                |               |         |          |          |         |        |      |           | weight ratio   |              |                    |
|        |                |               |         |          |          |         |        |      |           | with brain     |              |                    |
|        |                |               |         |          |          |         |        |      |           | weight was     |              |                    |
|        |                |               |         |          |          |         |        |      |           | statistically  |              |                    |
|        |                |               |         |          |          |         |        |      |           | significantly  |              |                    |
|        |                |               |         |          |          |         |        |      |           | increased at   |              |                    |
|        |                |               |         |          |          |         |        |      |           | 1000 mg/kg     |              |                    |
|        |                |               |         |          |          |         |        |      |           | (+14%). At     |              |                    |
|        |                |               |         |          |          |         |        |      |           | week 53 in     |              |                    |
|        |                |               |         |          |          |         |        |      |           | female liver   |              |                    |
|        |                |               |         |          |          |         |        |      |           | weight (body   |              |                    |
|        |                |               |         |          |          |         |        |      |           | weight ratio   |              |                    |
|        |                |               |         |          |          |         |        |      |           | and brain      |              |                    |
|        |                |               |         |          |          |         |        |      |           | weight ratio)  |              |                    |
|        |                |               |         |          |          |         |        |      |           | were           |              |                    |
|        |                |               |         |          |          |         |        |      |           | statistically  |              |                    |
|        |                |               |         |          |          |         |        |      |           | significantly  |              |                    |
|        |                |               |         |          |          |         |        |      |           | increased at   |              |                    |
|        |                |               |         |          |          |         |        |      |           | 2000/3000      |              |                    |
|        |                |               |         |          |          |         |        |      |           | ppm (+28%      |              |                    |

| Study  | Effect         | Effect target | Species | Duration  | Duration | Route   | Lowest | Dose  | Effect    | Observed                      | Assessment   | Assessment on the  |
|--------|----------------|---------------|---------|-----------|----------|---------|--------|-------|-----------|-------------------------------|--------------|--------------------|
| ID     | classification |               |         | of        | unit     | of      | Effect | unit  | direction | effect                        | of each line | integrated line of |
| Matrix |                |               |         | exposure  |          | adminis | dose   |       |           | (positive and                 | of evidence  | evidence           |
|        |                |               |         |           |          | tration |        |       |           | negative)                     |              |                    |
|        |                |               |         |           |          |         |        |       |           | and +18%,                     |              |                    |
|        |                |               |         |           |          |         |        |       |           | respectively).                |              |                    |
|        |                |               |         |           |          |         |        |       |           | At week 79,                   |              |                    |
|        |                |               |         |           |          |         |        |       |           | only female                   |              |                    |
|        |                |               |         |           |          |         |        |       |           | liver weights<br>(body weight |              |                    |
|        |                |               |         |           |          |         |        |       |           | ratio and brain               |              |                    |
|        |                |               |         |           |          |         |        |       |           | weight ratio)                 |              |                    |
|        |                |               |         |           |          |         |        |       |           | were                          |              |                    |
|        |                |               |         |           |          |         |        |       |           | significantly                 |              |                    |
|        |                |               |         |           |          |         |        |       |           | increased at                  |              |                    |
|        |                |               |         |           |          |         |        |       |           | 3000 ppm                      |              |                    |
|        |                |               |         |           |          |         |        |       |           | (+14% and                     |              |                    |
|        |                |               |         |           |          |         |        |       |           | +16%,                         |              |                    |
|        |                |               |         |           |          |         |        |       |           | respectively).                |              |                    |
|        |                |               |         |           |          |         |        |       |           |                               |              |                    |
| 10     | Target organ   | Liver weight  | rabbit  | 13 (DG 7- | Days     | Oral    | 300    | mg/kg | Increase  | Increased                     |              |                    |
|        | toxicity       |               |         | 19)       |          |         |        | bw/d  |           | absolute and                  |              |                    |
|        |                |               |         |           |          |         |        |       |           | relative liver                |              |                    |
|        |                |               |         |           |          |         |        |       |           | weight in does                |              |                    |
|        |                |               |         |           |          |         |        |       |           | given 300 and                 |              |                    |
|        |                |               |         |           |          |         |        |       |           | 500 mg/kg                     |              |                    |
|        |                |               |         |           |          |         |        |       |           | bw/day                        |              |                    |

| Study<br>ID<br>Matrix | Effect<br>classification | Effect target                  | Species | Duration<br>of<br>exposure | Duration<br>unit | Route<br>of<br>adminis<br>tration | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative) | Assessment<br>of each line<br>of evidence | Assessment on the<br>integrated line of<br>evidence |
|-----------------------|--------------------------|--------------------------------|---------|----------------------------|------------------|-----------------------------------|--------------------------|---------------|---------------------|--------------------------------------------------|-------------------------------------------|-----------------------------------------------------|
| 15                    | Target organ toxicity    | Liver weight                   | rat     | 10                         | Days             | Oral                              | >200                     | mg/kg<br>bw/d | No effect           | No effect<br>>200 mg/kg<br>bw/day                |                                           |                                                     |
| 1                     | Target organ toxicity    | Lung<br>histopathology         | Rat     | 5                          | Weeks            | Oral                              | >8000                    | ppm           | No effect           |                                                  | No effects to<br>lung histo-<br>pathology |                                                     |
| 2                     | Target organ<br>toxicity | Lung<br>histopathology         | mouse   | 4                          | Weeks            | Oral                              | >4000                    | ppm           | No effect           |                                                  | except for<br>foci of                     |                                                     |
| 3                     | Target organ<br>toxicity | Lung<br>histopathology         | Rat     | 90                         | Weeks            | Oral                              | >5000                    | ppm           | No effect No effect |                                                  | amphophilic<br>alveolar<br>macrophages    |                                                     |
| 4                     | Target organ<br>toxicity | Lung<br>histopathology<br>Lung | Dog     | 52                         | Days<br>Weeks    | Oral                              | >125                     | mg/kg<br>bw/d | No effect           |                                                  | observed in males and                     |                                                     |
|                       | Target organ<br>toxicity | histopathology                 | _       |                            |                  |                                   |                          | mg/kg<br>bw/d |                     |                                                  | females of<br>the two<br>highest dose     |                                                     |
| 6                     | Target organ<br>toxicity | Lung<br>histopathology         | Rat     | 2                          | Years            | Oral                              | >2500                    | ppm           | No effect           |                                                  | groups in the<br>chronic oral             |                                                     |
| 7                     | Target organ toxicity    | Lung<br>histopathology         | mouse   | 52                         | Weeks            | Oral                              | >1000                    | ppm           | Change              |                                                  | oncogenicity<br>study in<br>mice. These   |                                                     |
|                       |                          |                                |         |                            |                  |                                   |                          |               |                     |                                                  | findings<br>were<br>observed in           |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classification | Effect target                 | Species | Duration<br>of<br>exposure | Duration<br>unit | Route<br>of<br>adminis | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and | Assessment<br>of each line<br>of evidence                                                                                                                                                  | Assessment on the<br>integrated line of<br>evidence |
|-----------------------|--------------------------|-------------------------------|---------|----------------------------|------------------|------------------------|--------------------------|---------------|---------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
|                       |                          |                               |         | -                          |                  | tration                |                          |               |                     | negative)                           |                                                                                                                                                                                            |                                                     |
|                       |                          |                               |         |                            |                  |                        |                          |               |                     |                                     | mice that<br>died/were<br>sacrificed<br>due to a<br>moribund<br>state during<br>the study.<br>Another<br>finding in<br>the highest<br>dose group<br>animals was<br>systemic<br>amyloidosis |                                                     |
| 1                     | Target organ<br>toxicity | Lymph nodes<br>histopathology | Rat     | 5                          | Weeks            | Oral                   | >8000                    | ppm           | No effect           |                                     | No effects to<br>lymph node<br>histo-                                                                                                                                                      |                                                     |
| 3                     | Target organ<br>toxicity | Lymph nodes<br>histopathology | Rat     | 13                         | Weeks            | Oral                   | >5000                    | ppm           | No effect           |                                     | pathology                                                                                                                                                                                  |                                                     |
| 4                     | Target organ toxicity    | Lymph nodes<br>histopathology | Dog     | 90                         | Days             | Oral                   | >125                     | mg/kg<br>bw/d | No effect           |                                     |                                                                                                                                                                                            |                                                     |
| 5                     | Target organ<br>toxicity | Lymph nodes<br>histopathology | Dog     | 52                         | Weeks            | Oral                   | >300                     | mg/kg<br>bw/d | No effect           |                                     |                                                                                                                                                                                            |                                                     |

| Study<br>ID | Effect classification    | Effect target                 | Species | Duration<br>of | Duration<br>unit | Route<br>of        | Lowest<br>Effect | Dose<br>unit  | Effect<br>direction | Observed<br>effect         | Assessment<br>of each line  | Assessment on the integrated line of |
|-------------|--------------------------|-------------------------------|---------|----------------|------------------|--------------------|------------------|---------------|---------------------|----------------------------|-----------------------------|--------------------------------------|
| Matrix      |                          |                               |         | exposure       |                  | adminis<br>tration | dose             |               |                     | (positive and<br>negative) | of evidence                 | evidence                             |
| 6           | Target organ<br>toxicity | Lymph nodes<br>histopathology | Rat     | 2              | Years            | Oral               | >2500            | ppm           | No effect           |                            |                             |                                      |
| 7           | Target organ<br>toxicity | Lymph nodes<br>histopathology | mouse   | 52             | Weeks            | Oral               | >3000            | ppm           | No effect           |                            |                             |                                      |
| 1           | Target organ<br>toxicity | Oesophagus<br>histopathology  | Rat     | 5              | Weeks            | Oral               | >8000            | ppm           | No effect           |                            | No effects to<br>oesophagus |                                      |
| 4           | Target organ<br>toxicity | Oesophagus<br>histopathology  | Dog     | 90             | Days             | Oral               | >125             | mg/kg<br>bw/d | No effect           |                            | histo-<br>pathology         |                                      |
| 1           | Target organ<br>toxicity | Pancreas<br>histopathology    | Rat     | 5              | Weeks            | Oral               | >8000            | ppm           | No effect           |                            | No effects to pancreas      |                                      |
| 3           | Target organ<br>toxicity | Pancreas<br>histopathology    | Rat     | 13             | Weeks            | Oral               | >5000            | ppm           | No effect           |                            | histo-<br>pathology         |                                      |
| 4           | Target organ<br>toxicity | Pancreas<br>histopathology    | Dog     | 90             | Days             | Oral               | >125             | mg/kg<br>bw/d | No effect           |                            |                             |                                      |
| 5           | Target organ<br>toxicity | Pancreas<br>histopathology    | Dog     | 52             | Weeks            | Oral               | >300             | mg/kg<br>bw/d | No effect           |                            |                             |                                      |
| 6           | Target organ<br>toxicity | Pancreas<br>histopathology    | Rat     | 2              | Years            | Oral               | >2500            | ppm           | No effect           |                            |                             |                                      |
| 7           | Target organ<br>toxicity | Pancreas<br>histopathology    | mouse   | 52             | Weeks            | Oral               | >3000            | ppm           | No effect           |                            |                             |                                      |

| Study  | Effect                | Effect target  | Species | Duration | Duration | Route   | Lowest | Dose          | Effect    | Observed      | Assessment    | Assessment on the  |
|--------|-----------------------|----------------|---------|----------|----------|---------|--------|---------------|-----------|---------------|---------------|--------------------|
| ID     | classification        |                |         | of       | unit     | of      | Effect | unit          | direction | effect        | of each line  | integrated line of |
| Matrix |                       |                |         | exposure |          | adminis | dose   |               |           | (positive and | of evidence   | evidence           |
|        |                       |                |         |          |          | tration |        |               |           | negative)     |               |                    |
| 1      | Target organ          | Salivary       | Rat     | 5        | Weeks    | Oral    | >8000  | ppm           | No effect |               | No effects to |                    |
|        | toxicity              | glands         |         |          |          |         |        |               |           |               | salivary      |                    |
|        |                       | histopathology |         |          |          |         |        |               |           |               | glands histo- |                    |
| 3      | Target organ          | Salivary       | Rat     | 13       | Weeks    | Oral    | >5000  | ppm           | No effect |               | pathology     |                    |
|        | toxicity              | glands         |         |          |          |         |        |               |           |               |               |                    |
|        |                       | histopathology |         |          |          |         |        |               |           |               |               |                    |
| 4      | Transit range         | Salivary       | Dee     | 90       | Dava     | Oral    | >125   |               | No effect |               | _             |                    |
| 4      | Target organ toxicity | glands         | Dog     | 90       | Days     | Oral    | >125   | mg/kg<br>bw/d | No effect |               |               |                    |
|        | toxicity              | histopathology |         |          |          |         |        | bw/d          |           |               |               |                    |
|        |                       |                |         |          |          |         |        |               |           |               |               |                    |
| 5      | Target organ          | Salivary       | Dog     | 52       | Weeks    | Oral    | >300   | mg/kg         | No effect |               |               |                    |
|        | toxicity              | glands         |         |          |          |         |        | bw/d          |           |               |               |                    |
|        |                       | histopathology |         |          |          |         |        |               |           |               |               |                    |
| 6      | Target organ          | Salivary       | Rat     | 2        | Years    | Oral    | >2500  | ppm           | No effect |               | -             |                    |
|        | toxicity              | glands         |         |          |          |         |        |               |           |               |               |                    |
|        |                       | histopathology |         |          |          |         |        |               |           |               |               |                    |
| 7      | Target organ          | Salivary       | mouse   | 52       | Weeks    | Oral    | >3000  | ppm           | No effect |               |               |                    |
|        | toxicity              | glands         |         | -        |          |         |        | 11            |           |               |               |                    |
|        | 2                     | histopathology |         |          |          |         |        |               |           |               |               |                    |
| 1      | Target organ          | Skeletal       | Rat     | 5        | Weeks    | Oral    | >8000  | ppm           | No effect |               | No effects to |                    |
| 1      | toxicity              | muscle         | ixat    | 5        | WUUKS    |         | 20000  | ppm           | no chect  |               | skeletal      |                    |
|        | toxicity              | histopathology |         |          |          |         |        |               |           |               | muscle        |                    |
|        |                       | mstopathology  |         |          |          |         |        |               |           |               | musere        |                    |

| Study<br>ID<br>Matrix | Effect<br>classification | Effect target                        | Species | Duration<br>of<br>exposure | Duration<br>unit | Route<br>of<br>adminis<br>tration | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative) | Assessment<br>of each line<br>of evidence | Assessment on the<br>integrated line of<br>evidence |
|-----------------------|--------------------------|--------------------------------------|---------|----------------------------|------------------|-----------------------------------|--------------------------|---------------|---------------------|--------------------------------------------------|-------------------------------------------|-----------------------------------------------------|
| 3                     | Target organ<br>toxicity | Skeletal<br>muscle<br>histopathology | Rat     | 13                         | Weeks            | Oral                              | >5000                    | ppm           | No effect           |                                                  | histo-<br>pathology                       |                                                     |
| 4                     | Target organ<br>toxicity | Skeletal<br>muscle<br>histopathology | Dog     | 90                         | Days             | Oral                              | >125                     | mg/kg<br>bw/d | No effect           |                                                  |                                           |                                                     |
| 5                     | Target organ<br>toxicity | Skeletal<br>muscle<br>histopathology | Dog     | 52                         | Weeks            | Oral                              | >300                     | mg/kg<br>bw/d | No effect           |                                                  |                                           |                                                     |
| 6                     | Target organ<br>toxicity | Skeletal<br>muscle<br>histopathology | Rat     | 2                          | Years            | Oral                              | >2500                    | ppm           | No effect           |                                                  |                                           |                                                     |
| 7                     | Target organ<br>toxicity | Skeletal<br>muscle<br>histopathology | mouse   | 52                         | Weeks            | Oral                              | >3000                    | ppm           | No effect           |                                                  |                                           |                                                     |
| 1                     | Target organ<br>toxicity | Skin<br>histopathology               | Rat     | 5                          | Weeks            | Oral                              | >8000                    | ppm           | No effect           |                                                  | No effects to skin histo-                 |                                                     |
| 3                     | Target organ<br>toxicity | Skin<br>histopathology               | Rat     | 13                         | Weeks            | Oral                              | >5000                    | ppm           | No effect           |                                                  | - pathology                               |                                                     |
| 4                     | Target organ<br>toxicity | Skin<br>histopathology               | Dog     | 90                         | Days             | Oral                              | >125                     | mg/kg<br>bw/d | No effect           |                                                  |                                           |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classification | Effect target                                   | Species | Duration<br>of<br>exposure | Duration<br>unit | Route<br>of<br>adminis<br>tration | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative) | Assessment<br>of each line<br>of evidence | Assessment on the<br>integrated line of<br>evidence |
|-----------------------|--------------------------|-------------------------------------------------|---------|----------------------------|------------------|-----------------------------------|--------------------------|---------------|---------------------|--------------------------------------------------|-------------------------------------------|-----------------------------------------------------|
| 5                     | Target organ<br>toxicity | Skin<br>histopathology                          | Dog     | 52                         | Weeks            | Oral                              | >300                     | mg/kg<br>bw/d | No effect           |                                                  |                                           |                                                     |
| 6                     | Target organ<br>toxicity | Skin<br>histopathology                          | Rat     | 2                          | Years            | Oral                              | >2500                    | ppm           | No effect           |                                                  |                                           |                                                     |
| 7                     | Target organ toxicity    | Skin<br>histopathology                          | mouse   | 52                         | Weeks            | Oral                              | >3000                    | ppm           | No effect           |                                                  |                                           |                                                     |
| 1                     | Target organ<br>toxicity | Small and<br>large intestines<br>histopathology | Rat     | 5                          | Weeks            | Oral                              | >8000                    | ppm           | No effect           |                                                  | No effects to<br>small and<br>large       |                                                     |
| 3                     | Target organ<br>toxicity | Small and<br>large intestines<br>histopathology | Rat     | 13                         | Weeks            | Oral                              | >5000                    | ppm           | No effect           |                                                  | intestine<br>histo-<br>pathology          |                                                     |
| 4                     | Target organ<br>toxicity | Small and<br>large intestines<br>histopathology | Dog     | 90                         | Days             | Oral                              | >125                     | mg/kg<br>bw/d | No effect           |                                                  |                                           |                                                     |
| 5                     | Target organ<br>toxicity | Small and<br>large intestines<br>histopathology | Dog     | 52                         | Weeks            | Oral                              | >300                     | mg/kg<br>bw/d | No effect           |                                                  |                                           |                                                     |
| 6                     | Target organ<br>toxicity | Small and<br>large intestines<br>histopathology | Rat     | 2                          | Years            | Oral                              | >2500                    | ppm           | No effect           |                                                  |                                           |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classification | Effect target                                   | Species | Duration<br>of<br>exposure | Duration<br>unit | Route<br>of<br>adminis<br>tration | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative) | Assessment<br>of each line<br>of evidence           | Assessment on the<br>integrated line of<br>evidence |
|-----------------------|--------------------------|-------------------------------------------------|---------|----------------------------|------------------|-----------------------------------|--------------------------|---------------|---------------------|--------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
| 7                     | Target organ toxicity    | Small and<br>large intestines<br>histopathology | mouse   | 52                         | Weeks            | Oral                              | >3000                    | ppm           | No effect           |                                                  |                                                     |                                                     |
| 1                     | Target organ<br>toxicity | Spinal cord<br>histopathology                   | Rat     | 5                          | Weeks            | Oral                              | >8000                    | ppm           | No effect           |                                                  | No effects to<br>spinal cord<br>histo-<br>pathology |                                                     |
| 3                     | Target organ toxicity    | Spleen<br>histopathology                        | Rat     | 13                         | Weeks            | Oral                              | >5000                    | ppm           | No effect           |                                                  | No effects<br>on spleen                             |                                                     |
| 4                     | Target organ<br>toxicity | Spleen<br>histopathology                        | Dog     | 90                         | Days             | Oral                              | >125                     | mg/kg<br>bw/d | No effect           |                                                  | weight or<br>histo-<br>pathology                    |                                                     |
| 7                     | Target organ<br>toxicity | Spleen<br>histopathology                        | mouse   | 52                         | Weeks            | Oral                              | >3000                    | ppm           | No effect           |                                                  |                                                     |                                                     |
| 5                     | Target organ<br>toxicity | Spleen weight                                   | Dog     | 52                         | Weeks            | Oral                              | >300                     | mg/kg<br>bw/d | No effect           |                                                  |                                                     |                                                     |
| 1                     | Target organ<br>toxicity | Stomach<br>histopathology                       | Rat     | 5                          | Weeks            | Oral                              | >8000                    | ppm           | No effect           |                                                  | No effects to<br>stomach<br>histo-                  |                                                     |
| 3                     | Target organ<br>toxicity | Stomach<br>histopathology                       | Rat     | 13                         | Weeks            | Oral                              | >5000                    | ppm           | No effect           |                                                  | pathology                                           |                                                     |
| 4                     | Target organ toxicity    | Stomach<br>histopathology                       | Dog     | 90                         | Days             | Oral                              | >125                     | mg/kg<br>bw/d | No effect           |                                                  |                                                     |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classification | Effect target             | Species | Duration<br>of<br>exposure | Duration<br>unit | Route<br>of<br>adminis<br>tration | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative) | Assessment<br>of each line<br>of evidence | Assessment on the<br>integrated line of<br>evidence |
|-----------------------|--------------------------|---------------------------|---------|----------------------------|------------------|-----------------------------------|--------------------------|---------------|---------------------|--------------------------------------------------|-------------------------------------------|-----------------------------------------------------|
| 5                     | Target organ<br>toxicity | Stomach<br>histopathology | Dog     | 52                         | Weeks            | Oral                              | >300                     | mg/kg<br>bw/d | No effect           |                                                  |                                           |                                                     |
| 6                     | Target organ toxicity    | Stomach<br>histopathology | Rat     | 2                          | Years            | Oral                              | >2500                    | ppm           | No effect           |                                                  |                                           |                                                     |
| 7                     | Target organ toxicity    | Stomach<br>histopathology | mouse   | 52                         | Weeks            | Oral                              | >3000                    | ppm           | No effect           |                                                  |                                           |                                                     |
| 1                     | Target organ<br>toxicity | Thymus<br>histopathology  | Rat     | 5                          | Weeks            | Oral                              | >8000                    | ppm           | No effect           |                                                  | No effects to thymus                      |                                                     |
| 3                     | Target organ<br>toxicity | Thymus<br>histopathology  | Rat     | 13                         | Weeks            | Oral                              | >5000                    | ppm           | No effect           |                                                  | histo-<br>pathology                       |                                                     |
| 4                     | Target organ<br>toxicity | Thymus<br>histopathology  | Dog     | 90                         | Days             | Oral                              | >125                     | mg/kg<br>bw/d | No effect           |                                                  |                                           |                                                     |
| 5                     | Target organ<br>toxicity | Thymus<br>histopathology  | Dog     | 52                         | Weeks            | Oral                              | >300                     | mg/kg<br>bw/d | No effect           |                                                  |                                           |                                                     |
| 6                     | Target organ<br>toxicity | Thymus<br>histopathology  | Rat     | 2                          | Years            | Oral                              | >2500                    | ppm           | No effect           |                                                  | 1                                         |                                                     |
| 7                     | Target organ<br>toxicity | Thymus<br>histopathology  | mouse   | 52                         | Weeks            | Oral                              | >3000                    | ppm           | No effect           |                                                  | 1                                         |                                                     |
| 1                     | Target organ<br>toxicity | Trachea<br>histopathology | Rat     | 5                          | Weeks            | Oral                              | >8000                    | ppm           | No effect           |                                                  | No effects to trachea                     |                                                     |

| Study  | Effect         | Effect target  | Species | Duration | Duration | Route   | Lowest | Dose  | Effect    | Observed      | Assessment    | Assessment on the  |
|--------|----------------|----------------|---------|----------|----------|---------|--------|-------|-----------|---------------|---------------|--------------------|
| ID     | classification |                |         | of       | unit     | of      | Effect | unit  | direction | effect        | of each line  | integrated line of |
| Matrix |                |                |         | exposure |          | adminis | dose   |       |           | (positive and | of evidence   | evidence           |
|        |                |                |         |          |          | tration |        |       |           | negative)     |               |                    |
| 3      | Target organ   | Trachea        | Rat     | 13       | Weeks    | Oral    | >5000  | ppm   | No effect |               | histo-        |                    |
|        | toxicity       | histopathology |         |          |          |         |        |       |           |               | pathology     |                    |
| 4      | Target organ   | Trachea        | Dog     | 90       | Days     | Oral    | >125   | mg/kg | No effect |               |               |                    |
|        | toxicity       | histopathology |         |          |          |         |        | bw/d  |           |               |               |                    |
| 1      | Target organ   | Urinary        | Rat     | 5        | Weeks    | Oral    | >8000  | ppm   | No effect |               | No effects to |                    |
|        | toxicity       | bladder        |         |          |          |         |        |       |           |               | urinary       |                    |
|        |                | histopathology |         |          |          |         |        |       |           |               | bladder       |                    |
| 3      | Target organ   | Urinary        | Rat     | 13       | Weeks    | Oral    | >5000  | ppm   | No effect |               | histo-        |                    |
|        | toxicity       | bladder        |         |          |          |         |        |       |           |               | pathology     |                    |
|        |                | histopathology |         |          |          |         |        |       |           |               |               |                    |
| 4      | Target organ   | Urinary        | Dog     | 90       | Days     | Oral    | >125   | mg/kg | No effect |               | -             |                    |
|        | toxicity       | bladder        |         |          |          |         |        | bw/d  |           |               |               |                    |
|        |                | histopathology |         |          |          |         |        |       |           |               |               |                    |
| 5      | Target organ   | Urinary        | Dog     | 52       | Weeks    | Oral    | >300   | mg/kg | No effect |               |               |                    |
|        | toxicity       | bladder        |         |          |          |         |        | bw/d  |           |               |               |                    |
|        |                | histopathology |         |          |          |         |        |       |           |               |               |                    |
| 6      | Target organ   | Urinary        | Rat     | 2        | Years    | Oral    | >2500  | ppm   | No effect |               |               |                    |
|        | toxicity       | bladder        |         |          |          |         |        |       |           |               |               |                    |
|        |                | histopathology |         |          |          |         |        |       |           |               |               |                    |

| Study  | Effect         | Effect target  | Species | Duration | Duration | Route   | Lowest | Dose | Effect    | Observed       | Assessment    | Assessment on the  |
|--------|----------------|----------------|---------|----------|----------|---------|--------|------|-----------|----------------|---------------|--------------------|
| ID     | classification |                |         | of       | unit     | of      | Effect | unit | direction | effect         | of each line  | integrated line of |
| Matrix |                |                |         | exposure |          | adminis | dose   |      |           | (positive and  | of evidence   | evidence           |
|        |                |                |         |          |          | tration |        |      |           | negative)      |               |                    |
| 7      | Target organ   | Urinary        | mouse   | 52       | Weeks    | Oral    | >3000  | ppm  | No effect |                |               |                    |
|        | toxicity       | bladder        |         |          |          |         |        |      |           |                |               |                    |
|        |                | histopathology |         |          |          |         |        |      |           |                |               |                    |
| 1      | Systemic       | Body weight    | Rat     | 5        | Weeks    | Oral    | 4000   | ppm  | Decrease  | Statistically  | Body weight   |                    |
|        | toxicity       |                |         |          |          |         |        |      |           | significantly  | and/or body   |                    |
|        |                |                |         |          |          |         |        |      |           | reduced bw in  | weight gain   |                    |
|        |                |                |         |          |          |         |        |      |           | M at 8000      | were          |                    |
|        |                |                |         |          |          |         |        |      |           | ppm (-13%)     | affected in   |                    |
|        |                |                |         |          |          |         |        |      |           | and in females | most studies. |                    |
|        |                |                |         |          |          |         |        |      |           | at 4000 ppm (- | In several,   |                    |
|        |                |                |         |          |          |         |        |      |           | 8%) and 8000   | food          |                    |
|        |                |                |         |          |          |         |        |      |           | ppm (-16%).    | consum-       |                    |
|        |                |                |         |          |          |         |        |      |           | Statistically  | ption was     |                    |
|        |                |                |         |          |          |         |        |      |           | significantly  | reduced as    |                    |
|        |                |                |         |          |          |         |        |      |           | reduced bwg    | well and      |                    |
|        |                |                |         |          |          |         |        |      |           | in males and   | there may     |                    |
|        |                |                |         |          |          |         |        |      |           | females at     | have been a   |                    |
|        |                |                |         |          |          |         |        |      |           | 4000 ppm (-    | palatability  |                    |
|        |                |                |         |          |          |         |        |      |           | 11% and -      | issue rather  |                    |
|        |                |                |         |          |          |         |        |      |           | 25%,           | than a        |                    |
|        |                |                |         |          |          |         |        |      |           | respectively), | toxicol-      |                    |
|        |                |                |         |          |          |         |        |      |           | and 8000 ppm   | ogical issue  |                    |
|        |                |                |         |          |          |         |        |      |           | (-28% and -    |               |                    |

| Study<br>ID<br>Matrix | Effect<br>classification | Effect target | Species | Duration<br>of<br>exposure | Duration<br>unit | Route<br>of<br>adminis<br>tration | Lowest<br>Effect<br>dose | Dose<br>unit | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)                                                                                                                                                                                                                         | Assessment<br>of each line<br>of evidence | Assessment on the<br>integrated line of<br>evidence |
|-----------------------|--------------------------|---------------|---------|----------------------------|------------------|-----------------------------------|--------------------------|--------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------|
|                       |                          |               |         |                            |                  |                                   |                          |              |                     | 44%,<br>respectively)                                                                                                                                                                                                                                                    |                                           |                                                     |
| 2                     | Systemic<br>toxicity     | Body weight   | mouse   | 4                          | Weeks            | Oral                              | >4000                    | ppm          | No effect           |                                                                                                                                                                                                                                                                          |                                           |                                                     |
| 3                     | Systemic<br>toxicity     | Body weight   | Rat     | 13                         | Weeks            | Oral                              | 2500                     | ppm          | Decrease            | Body weight<br>and body<br>weight gain<br>were<br>significantly<br>reduced in<br>males given<br>2500 ppm (-7<br>and -10%<br>when<br>compared to<br>control). Body<br>weight was<br>reduced in<br>both sexes<br>given 5000<br>ppm (-11% for<br>both sexes,<br>compared to |                                           |                                                     |

| Study  | Effect         | Effect target | Species | Duration | Duration | Route   | Lowest | Dose  | Effect    | Observed         | Assessment   | Assessment on the  |
|--------|----------------|---------------|---------|----------|----------|---------|--------|-------|-----------|------------------|--------------|--------------------|
| ID     | classification |               |         | of       | unit     | of      | Effect | unit  | direction | effect           | of each line | integrated line of |
| Matrix |                |               |         | exposure |          | adminis | dose   |       |           | (positive and    | of evidence  | evidence           |
|        |                |               |         |          |          | tration |        |       |           | negative)        |              |                    |
|        |                |               |         |          |          |         |        |       |           | control). Body   |              |                    |
|        |                |               |         |          |          |         |        |       |           | weight gain      |              |                    |
|        |                |               |         |          |          |         |        |       |           | was reduced in   |              |                    |
|        |                |               |         |          |          |         |        |       |           | both sexes at    |              |                    |
|        |                |               |         |          |          |         |        |       |           | 5000 ppm (-      |              |                    |
|        |                |               |         |          |          |         |        |       |           | 18% and -24%     |              |                    |
|        |                |               |         |          |          |         |        |       |           | of control for   |              |                    |
|        |                |               |         |          |          |         |        |       |           | males and        |              |                    |
|        |                |               |         |          |          |         |        |       |           | females,         |              |                    |
|        |                |               |         |          |          |         |        |       |           | respectively).   |              |                    |
| 4      | Systemic       | Body weight   | Dog     | 90       | Days     | Oral    | >125   | mg/kg | No effect |                  |              |                    |
|        | toxicity       |               |         |          |          |         |        | bw/d  |           |                  |              |                    |
| 5      | Systemic       | Body weight   | Dog     | 52       | Weeks    | Oral    | >300   | mg/kg | No effect |                  |              |                    |
|        | toxicity       |               |         |          |          |         |        | bw/d  |           |                  |              |                    |
| 6      | Systemic       | Body weight   | Rat     | 2        | Years    | Oral    | 2500   | ppm   | Decrease  | Body weight      |              |                    |
|        | toxicity       |               |         |          |          |         |        |       |           | and body         |              |                    |
|        |                |               |         |          |          |         |        |       |           | weight gain      |              |                    |
|        |                |               |         |          |          |         |        |       |           | was decreased    |              |                    |
|        |                |               |         |          |          |         |        |       |           | in animals of    |              |                    |
|        |                |               |         |          |          |         |        |       |           | each sex         |              |                    |
|        |                |               |         |          |          |         |        |       |           | during the first |              |                    |
|        |                |               |         |          |          |         |        |       |           | year of          |              |                    |
|        |                |               |         |          |          |         |        |       |           | treatment with   |              |                    |

| Study  | Effect         | Effect target | Species | Duration  | Duration | Route   | Lowest | Dose  | Effect    | Observed       | Assessment   | Assessment on the  |
|--------|----------------|---------------|---------|-----------|----------|---------|--------|-------|-----------|----------------|--------------|--------------------|
| ID     | classification |               |         | of        | unit     | of      | Effect | unit  | direction | effect         | of each line | integrated line of |
| Matrix |                |               |         | exposure  |          | adminis | dose   |       |           | (positive and  | of evidence  | evidence           |
|        |                |               |         |           |          | tration |        |       |           | negative)      |              |                    |
|        |                |               |         |           |          |         |        |       |           | 2500 ppm.      |              |                    |
|        |                |               |         |           |          |         |        |       |           | Body weight    |              |                    |
|        |                |               |         |           |          |         |        |       |           | was reduced    |              |                    |
|        |                |               |         |           |          |         |        |       |           | after 2 years  |              |                    |
|        |                |               |         |           |          |         |        |       |           | but this       |              |                    |
|        |                |               |         |           |          |         |        |       |           | difference was |              |                    |
|        |                |               |         |           |          |         |        |       |           | not            |              |                    |
|        |                |               |         |           |          |         |        |       |           | statistically  |              |                    |
|        |                |               |         |           |          |         |        |       |           | significant    |              |                    |
|        |                |               |         |           |          |         |        |       |           | (8% in males,  |              |                    |
|        |                |               |         |           |          |         |        |       |           | and 13% in     |              |                    |
|        |                |               |         |           |          |         |        |       |           | females.       |              |                    |
| 7      | Systemic       | Body weight   | mouse   | 52        | Weeks    | Oral    | >3000  | ppm   | No effect |                |              |                    |
|        | toxicity       |               |         |           |          |         |        |       |           |                |              |                    |
| 8      | Systemic       | Body weight   | rat     | 10 (GD 6- | Days     | Oral    | 500    | mg/kg | Decrease  | Reduction in   |              |                    |
|        | toxicity       |               |         | 15)       |          |         |        | bw/d  |           | body weight    |              |                    |
|        |                |               |         |           |          |         |        |       |           | gain was       |              |                    |
|        |                |               |         |           |          |         |        |       |           | observed in    |              |                    |
|        |                |               |         |           |          |         |        |       |           | the dams       |              |                    |
|        |                |               |         |           |          |         |        |       |           | receiving 500  |              |                    |
|        |                |               |         |           |          |         |        |       |           | mg/kg bw/day   |              |                    |
|        |                |               |         |           |          |         |        |       |           | (-38.8%)       |              |                    |
|        |                |               |         |           |          |         |        |       |           |                |              |                    |

| Study  | Effect         | Effect target | Species | Duration  | Duration | Route   | Lowest | Dose  | Effect    | Observed       | Assessment   | Assessment on the  |
|--------|----------------|---------------|---------|-----------|----------|---------|--------|-------|-----------|----------------|--------------|--------------------|
| ID     | classification |               |         | of        | unit     | of      | Effect | unit  | direction | effect         | of each line | integrated line of |
| Matrix |                |               |         | exposure  |          | adminis | dose   |       |           | (positive and  | of evidence  | evidence           |
|        |                |               |         |           |          | tration |        |       |           | negative)      |              |                    |
| 9      | Systemic       | Body weight   | rat     | 10 (GD 6- | Days     | Oral    | 350    | mg/kg | Decrease  | Reduction in   |              |                    |
|        | toxicity       |               |         | 15)       |          |         |        | bw/d  |           | body weight    |              |                    |
|        |                |               |         |           |          |         |        |       |           | gain was       |              |                    |
|        |                |               |         |           |          |         |        |       |           | observed in    |              |                    |
|        |                |               |         |           |          |         |        |       |           | the dams at    |              |                    |
|        |                |               |         |           |          |         |        |       |           | 350 and 700    |              |                    |
|        |                |               |         |           |          |         |        |       |           | mg/kg bw/day   |              |                    |
|        |                |               |         |           |          |         |        |       |           | during the     |              |                    |
|        |                |               |         |           |          |         |        |       |           | treatment      |              |                    |
|        |                |               |         |           |          |         |        |       |           | period (-14.9% |              |                    |
|        |                |               |         |           |          |         |        |       |           | and -40.4%,    |              |                    |
|        |                |               |         |           |          |         |        |       |           | respectively)  |              |                    |
|        |                |               |         |           |          |         |        |       |           | and post       |              |                    |
|        |                |               |         |           |          |         |        |       |           | treatment (GD  |              |                    |
|        |                |               |         |           |          |         |        |       |           | 16-20; -17.1%  |              |                    |
|        |                |               |         |           |          |         |        |       |           | for each       |              |                    |
|        |                |               |         |           |          |         |        |       |           | group). Mean   |              |                    |
|        |                |               |         |           |          |         |        |       |           | corrected body |              |                    |
|        |                |               |         |           |          |         |        |       |           | weight on      |              |                    |
|        |                |               |         |           |          |         |        |       |           | gestation day  |              |                    |
|        |                |               |         |           |          |         |        |       |           | 20 was         |              |                    |
|        |                |               |         |           |          |         |        |       |           | reduced in     |              |                    |
|        |                |               |         |           |          |         |        |       |           | dams at 750    |              |                    |

| Study<br>ID<br>Matrix | Effect<br>classification | Effect target | Species | Duration<br>of<br>exposure | Duration<br>unit | Route<br>of<br>adminis<br>tration | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)<br>mg/kg bw/day                                                                                                                                                                                                | Assessment<br>of each line<br>of evidence | Assessment on the<br>integrated line of<br>evidence |
|-----------------------|--------------------------|---------------|---------|----------------------------|------------------|-----------------------------------|--------------------------|---------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------|
|                       |                          |               |         |                            |                  |                                   |                          |               |                     | (-6.1%)                                                                                                                                                                                                                                                         |                                           |                                                     |
| 10                    | Systemic<br>toxicity     | Body weight   | rabbit  | 13 (DG 7-<br>19)           | Days             | Oral                              | 150                      | mg/kg<br>bw/d | Decrease            | Reduction in<br>body weight<br>gain day 13-20<br>from 150<br>mg/kg bw with<br>a tendency<br>already at 50<br>mg/kg bw/day.<br>Reduction in<br>body weight<br>and body<br>weight gain<br>was observed<br>in the dams<br>receiving 300<br>and 500 mg/kg<br>bw/day |                                           |                                                     |
| 11                    | Systemic<br>toxicity     | Body weight   | rabbit  | 13 (DG 7-<br>19)           | Days             | Oral                              | 100                      | mg/kg<br>bw/d | Decrease            | Administration<br>of the 100 and<br>300 mg/kg/day<br>dosages of the<br>test substance                                                                                                                                                                           |                                           |                                                     |

| Study  | Effect         | Effect target | Species | Duration | Duration | Route   | Lowest | Dose | Effect    | Observed      | Assessment   | Assessment on the  |
|--------|----------------|---------------|---------|----------|----------|---------|--------|------|-----------|---------------|--------------|--------------------|
| ID     | classification |               |         | of       | unit     | of      | Effect | unit | direction | effect        | of each line | integrated line of |
| Matrix |                |               |         | exposure |          | adminis | dose   |      |           | (positive and | of evidence  | evidence           |
|        |                |               |         |          |          | tration |        |      |           | negative)     |              |                    |
|        |                |               |         |          |          |         |        |      |           | resulted in   |              |                    |
|        |                |               |         |          |          |         |        |      |           | dosage-       |              |                    |
|        |                |               |         |          |          |         |        |      |           | dependent,    |              |                    |
|        |                |               |         |          |          |         |        |      |           | significant   |              |                    |
|        |                |               |         |          |          |         |        |      |           | inhibition of |              |                    |
|        |                |               |         |          |          |         |        |      |           | average       |              |                    |
|        |                |               |         |          |          |         |        |      |           | maternal body |              |                    |
|        |                |               |         |          |          |         |        |      |           | weight during |              |                    |
|        |                |               |         |          |          |         |        |      |           | the dosage    |              |                    |
|        |                |               |         |          |          |         |        |      |           | period.       |              |                    |
|        |                |               |         |          |          |         |        |      |           | Average       |              |                    |
|        |                |               |         |          |          |         |        |      |           | maternal body |              |                    |
|        |                |               |         |          |          |         |        |      |           | weight change |              |                    |
|        |                |               |         |          |          |         |        |      |           | for days 7-20 |              |                    |
|        |                |               |         |          |          |         |        |      |           | of gestation  |              |                    |
|        |                |               |         |          |          |         |        |      |           | (the dosage   |              |                    |
|        |                |               |         |          |          |         |        |      |           | period) was   |              |                    |
|        |                |               |         |          |          |         |        |      |           | +0.18. +0.13. |              |                    |
|        |                |               |         |          |          |         |        |      |           | +0.05(p<0.05) |              |                    |
|        |                |               |         |          |          |         |        |      |           | and -0.10 kg  |              |                    |
|        |                |               |         |          |          |         |        |      |           | (p<0.01) for  |              |                    |
|        |                |               |         |          |          |         |        |      |           | control. low. |              |                    |
|        |                |               |         |          |          |         |        |      |           | middle and    |              |                    |
|        |                |               |         |          |          |         |        |      |           | high dosage   |              |                    |

| Study<br>ID<br>Matrix | Effect<br>classification | Effect target | Species | Duration<br>of<br>exposure | Duration<br>unit | Route<br>of<br>adminis<br>tration | Lowest<br>Effect<br>dose | Dose<br>unit | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)                                                                                                                                                                                                                                                                                            | Assessment<br>of each line<br>of evidence | Assessment on the<br>integrated line of<br>evidence |
|-----------------------|--------------------------|---------------|---------|----------------------------|------------------|-----------------------------------|--------------------------|--------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------|
|                       |                          |               |         |                            |                  |                                   |                          |              |                     | group dose, respectively.                                                                                                                                                                                                                                                                                                                   |                                           |                                                     |
| 12                    | Systemic<br>toxicity     | Body weight   | rat     | 5 to 6                     | Weeks            | Oral                              | 5000                     | ppm          | Decrease            | A significant<br>reduction in<br>body weight<br>was observed<br>in parents<br>receiving 5000<br>ppm. Body<br>weight was<br>stat sig<br>reduced in<br>males in<br>weeks 1 and 2<br>of the study (-<br>2% and -1.6%)<br>and overall<br>BWG was<br>reduced weeks<br>0-3 (-18%).<br>Female body<br>weight and<br>BWG was stat<br>sig reduced at |                                           |                                                     |

| Study  | Effect         | Effect target | Species | Duration | Duration | Route   | Lowest | Dose | Effect    | Observed       | Assessment   | Assessment on the  |
|--------|----------------|---------------|---------|----------|----------|---------|--------|------|-----------|----------------|--------------|--------------------|
| ID     | classification |               |         | of       | unit     | of      | Effect | unit | direction | effect         | of each line | integrated line of |
| Matrix |                |               |         | exposure |          | adminis | dose   |      |           | (positive and  | of evidence  | evidence           |
|        |                |               |         |          |          | tration |        |      |           | negative)      |              |                    |
|        |                |               |         |          |          |         |        |      |           | end of pre-    |              |                    |
|        |                |               |         |          |          |         |        |      |           | mating period  |              |                    |
|        |                |               |         |          |          |         |        |      |           | of (-12.6% and |              |                    |
|        |                |               |         |          |          |         |        |      |           | 62.5%,         |              |                    |
|        |                |               |         |          |          |         |        |      |           | respectively), |              |                    |
|        |                |               |         |          |          |         |        |      |           | BW was stat    |              |                    |
|        |                |               |         |          |          |         |        |      |           | sig reduced at |              |                    |
|        |                |               |         |          |          |         |        |      |           | end of         |              |                    |
|        |                |               |         |          |          |         |        |      |           | gestation (-   |              |                    |
|        |                |               |         |          |          |         |        |      |           | 13.4%), and    |              |                    |
|        |                |               |         |          |          |         |        |      |           | on day 7 of    |              |                    |
|        |                |               |         |          |          |         |        |      |           | lactation      |              |                    |
|        |                |               |         |          |          |         |        |      |           | period (-16%). |              |                    |
| 13     | Systemic       | Body weight   | rat     | 28       | weeks    | Oral    | 2500   | ppm  | Decrease  | Mean body      |              |                    |
|        | toxicity       |               |         |          |          |         |        |      |           | weights were   |              |                    |
|        |                |               |         |          |          |         |        |      |           | significantly  |              |                    |
|        |                |               |         |          |          |         |        |      |           | reduced for    |              |                    |
|        |                |               |         |          |          |         |        |      |           | both F0 and    |              |                    |
|        |                |               |         |          |          |         |        |      |           | F1a adult      |              |                    |
|        |                |               |         |          |          |         |        |      |           | males at 2500  |              |                    |
|        |                |               |         |          |          |         |        |      |           | ppm            |              |                    |
|        |                |               |         |          |          |         |        |      |           | throughout the |              |                    |
|        |                |               |         |          |          |         |        |      |           | study. Body    |              |                    |
|        |                |               |         |          |          |         |        |      |           | weights for F0 |              |                    |

| Study  | Effect         | Effect target | Species | Duration | Duration | Route   | Lowest | Dose | Effect    | Observed         | Assessment   | Assessment on the  |
|--------|----------------|---------------|---------|----------|----------|---------|--------|------|-----------|------------------|--------------|--------------------|
| ID     | classification |               |         | of       | unit     | of      | Effect | unit | direction | effect           | of each line | integrated line of |
| Matrix |                |               |         | exposure |          | adminis | dose   |      |           | (positive and    | of evidence  | evidence           |
|        |                |               |         |          |          | tration |        |      |           | negative)        |              |                    |
|        |                |               |         |          |          |         |        |      |           | adult females    |              |                    |
|        |                |               |         |          |          |         |        |      |           | were similar to  |              |                    |
|        |                |               |         |          |          |         |        |      |           | those of         |              |                    |
|        |                |               |         |          |          |         |        |      |           | control          |              |                    |
|        |                |               |         |          |          |         |        |      |           | animals during   |              |                    |
|        |                |               |         |          |          |         |        |      |           | the premating,   |              |                    |
|        |                |               |         |          |          |         |        |      |           | gestation and    |              |                    |
|        |                |               |         |          |          |         |        |      |           | lactation        |              |                    |
|        |                |               |         |          |          |         |        |      |           | periods. Body    |              |                    |
|        |                |               |         |          |          |         |        |      |           | weights for      |              |                    |
|        |                |               |         |          |          |         |        |      |           | F1a adult        |              |                    |
|        |                |               |         |          |          |         |        |      |           | females were     |              |                    |
|        |                |               |         |          |          |         |        |      |           | significantly    |              |                    |
|        |                |               |         |          |          |         |        |      |           | reduced during   |              |                    |
|        |                |               |         |          |          |         |        |      |           | the pre-mating   |              |                    |
|        |                |               |         |          |          |         |        |      |           | and gestation    |              |                    |
|        |                |               |         |          |          |         |        |      |           | periods up       |              |                    |
|        |                |               |         |          |          |         |        |      |           | through Day      |              |                    |
|        |                |               |         |          |          |         |        |      |           | 14 of lactation. |              |                    |
|        |                |               |         |          |          |         |        |      |           | While body       |              |                    |
|        |                |               |         |          |          |         |        |      |           | weights were     |              |                    |
|        |                |               |         |          |          |         |        |      |           | reduced for      |              |                    |
|        |                |               |         |          |          |         |        |      |           | F1a females,     |              |                    |
|        |                |               |         |          |          |         |        |      |           | body weight      |              |                    |

| Study<br>ID | Effect<br>classification | Effect target | Species | Duration<br>of | Duration<br>unit | Route<br>of        | Lowest<br>Effect | Dose<br>unit  | Effect<br>direction | Observed<br>effect                                                                                                                                                                                                                                                                               | Assessment<br>of each line | Assessment on the integrated line of |
|-------------|--------------------------|---------------|---------|----------------|------------------|--------------------|------------------|---------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------|
| Matrix      |                          |               |         | exposure       |                  | adminis<br>tration | dose             |               |                     | (positive and negative)                                                                                                                                                                                                                                                                          | of evidence                | evidence                             |
|             |                          |               |         |                |                  |                    |                  |               |                     | gain during<br>gestation was<br>not affected by<br>treatment.                                                                                                                                                                                                                                    |                            |                                      |
| 14          | Systemic<br>toxicity     | Body weight   | rat     | 3              | Days             | Oral               | 135              | mg/kg<br>bw/d | Decrease            | Mean body<br>weight losses<br>at 450<br>mg/kg/day<br>group (Study<br>Days 0–3);<br>mean absolute<br>body weight<br>that was<br>14.0% lower<br>than controls<br>on Study Day<br>3. At 45 and<br>135<br>mg/kg/day,<br>mean body<br>weight losses<br>were noted<br>Study Days 0–<br>1, resulting in |                            |                                      |

| Study  | Effect         | Effect target | Species | Duration | Duration | Route   | Lowest | Dose  | Effect    | Observed       | Assessment   | Assessment on the  |
|--------|----------------|---------------|---------|----------|----------|---------|--------|-------|-----------|----------------|--------------|--------------------|
| ID     | classification |               |         | of       | unit     | of      | Effect | unit  | direction | effect         | of each line | integrated line of |
| Matrix |                |               |         | exposure |          | adminis | dose   |       |           | (positive and  | of evidence  | evidence           |
|        |                |               |         |          |          | tration |        |       |           | negative)      |              |                    |
|        |                |               |         |          |          |         |        |       |           | lower mean     |              |                    |
|        |                |               |         |          |          |         |        |       |           | body weight    |              |                    |
|        |                |               |         |          |          |         |        |       |           | gains when the |              |                    |
|        |                |               |         |          |          |         |        |       |           | overall        |              |                    |
|        |                |               |         |          |          |         |        |       |           | treatment      |              |                    |
|        |                |               |         |          |          |         |        |       |           | period (Study  |              |                    |
|        |                |               |         |          |          |         |        |       |           | Days 0–3) was  |              |                    |
|        |                |               |         |          |          |         |        |       |           | evaluated.     |              |                    |
|        |                |               |         |          |          |         |        |       |           | However,       |              |                    |
|        |                |               |         |          |          |         |        |       |           | mean absolute  |              |                    |
|        |                |               |         |          |          |         |        |       |           | body weights   |              |                    |
|        |                |               |         |          |          |         |        |       |           | at 45 and 135  |              |                    |
|        |                |               |         |          |          |         |        |       |           | mg/kg/day      |              |                    |
|        |                |               |         |          |          |         |        |       |           | were within    |              |                    |
|        |                |               |         |          |          |         |        |       |           | 3.3% of the    |              |                    |
|        |                |               |         |          |          |         |        |       |           | control group  |              |                    |
|        |                |               |         |          |          |         |        |       |           | value on Study |              |                    |
|        |                |               |         |          |          |         |        |       |           | Day 3.         |              |                    |
| 15     | Systemic       | Body weight   | rat     | 10       | Days     | Oral    | >200   | mg/kg | No effect |                |              |                    |
|        | toxicity       |               |         |          |          |         |        | bw/d  |           |                |              |                    |

| Study  | Effect         | Effect target | Species | Duration | Duration | Route   | Lowest | Dose | Effect    | Observed       | Assessment     | Assessment on the  |
|--------|----------------|---------------|---------|----------|----------|---------|--------|------|-----------|----------------|----------------|--------------------|
| ID     | classification |               |         | of       | unit     | of      | Effect | unit | direction | effect         | of each line   | integrated line of |
| Matrix |                |               |         | exposure |          | adminis | dose   |      |           | (positive and  | of evidence    | evidence           |
|        |                |               |         |          |          | tration |        |      |           | negative)      |                |                    |
| 1      | Systemic       | Clinical      | Rat     | 5        | Weeks    | Oral    | 1000   | ppm  | Change    | The mean       | Obser-         |                    |
|        | toxicity       | chemistry and |         |          |          |         |        |      |           | haemoglobin    | vations in     |                    |
|        |                | haematology   |         |          |          |         |        |      |           | values for     | blood/serum    |                    |
|        |                |               |         |          |          |         |        |      |           | males were     | included       |                    |
|        |                |               |         |          |          |         |        |      |           | significantly  | reduced        |                    |
|        |                |               |         |          |          |         |        |      |           | decreased in   | haematocrit,   |                    |
|        |                |               |         |          |          |         |        |      |           | the 1000, 4000 | reduced        |                    |
|        |                |               |         |          |          |         |        |      |           | and 8000 ppm   | haemo-         |                    |
|        |                |               |         |          |          |         |        |      |           | groups, and    | globin,        |                    |
|        |                |               |         |          |          |         |        |      |           | haematocrits   | reduced        |                    |
|        |                |               |         |          |          |         |        |      |           | were           | erythrocyte    |                    |
|        |                |               |         |          |          |         |        |      |           | decreased for  | count,         |                    |
|        |                |               |         |          |          |         |        |      |           | the 4000 and   | increased      |                    |
|        |                |               |         |          |          |         |        |      |           | 8000 ppm       | reticulo-      |                    |
|        |                |               |         |          |          |         |        |      |           | groups. For    | cytes,         |                    |
|        |                |               |         |          |          |         |        |      |           | females, mean  | increased      |                    |
|        |                |               |         |          |          |         |        |      |           | haemoglobin    | platelets,     |                    |
|        |                |               |         |          |          |         |        |      |           | values and     | increased      |                    |
|        |                |               |         |          |          |         |        |      |           | erythrocyte    | cholesterol    |                    |
|        |                |               |         |          |          |         |        |      |           | counts were    | and            |                    |
|        |                |               |         |          |          |         |        |      |           | significantly  | triglycerides, |                    |
|        |                |               |         |          |          |         |        |      |           | reduced in the | increased      |                    |
|        |                |               |         |          |          |         |        |      |           | 5, 1000 and    | total protein, |                    |
|        |                |               |         |          |          |         |        |      |           | 8000 ppm       | reduced        |                    |

| Study  | Effect               | Effect target                            | Species | Duration | Duration | Route   | Lowest | Dose | Effect    | Observed                                                                                                                                                                                                                                                       | Assessment                                                                                                                                                        | Assessment on the  |
|--------|----------------------|------------------------------------------|---------|----------|----------|---------|--------|------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| ID     | classification       |                                          |         | of       | unit     | of      | Effect | unit | direction | effect                                                                                                                                                                                                                                                         | of each line                                                                                                                                                      | integrated line of |
| Matrix |                      |                                          |         | exposure |          | adminis | dose   |      |           | (positive and                                                                                                                                                                                                                                                  | of evidence                                                                                                                                                       | evidence           |
|        |                      |                                          |         |          |          | tration |        |      |           | negative)                                                                                                                                                                                                                                                      |                                                                                                                                                                   |                    |
| 2      | Systemic<br>toxicity | Clinical<br>chemistry and<br>haematology | mouse   | 4        | Weeks    | Oral    | 625    | ppm  | Decrease  | negative)groups; the200 and 4000ppm femalesshoweddecreases intheseparametersthat were notstatisticallysignificant.Red blood cellcounts weresignificantlydecreased inmales at 1500and 4000 ppmand in femalesat 1500 ppm.Haemoglobinwassignificantlydecreased in | albumin/glob<br>ulin ratio,<br>alterations in<br>alkaline<br>phosphatase,<br>increased<br>chloride<br>levels (fm),<br>reduced<br>BUN/creatin<br>increased<br>ALT. |                    |

| Study<br>ID<br>Matrix | Effect<br>classification | Effect target                            | Species | Duration<br>of<br>exposure | Duration<br>unit | Route<br>of<br>adminis<br>tration | Lowest<br>Effect<br>dose | Dose<br>unit | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)                                                                                                                                                                                  | Assessment<br>of each line<br>of evidence | Assessment on the<br>integrated line of<br>evidence |
|-----------------------|--------------------------|------------------------------------------|---------|----------------------------|------------------|-----------------------------------|--------------------------|--------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------|
|                       |                          |                                          |         |                            |                  |                                   |                          |              |                     | ppm and in<br>females at<br>1500 ppm.<br>Haematocrit<br>was<br>significantly<br>reduced in<br>males at 4000<br>ppm.                                                                                                               |                                           |                                                     |
| 3                     | Systemic<br>toxicity     | Clinical<br>chemistry and<br>haematology | Rat     | 13                         | Weeks            | Oral                              | 5000                     | ppm          | Increase            | Clinical<br>chemistry<br>showed<br>significantly<br>higher<br>cholesterol,<br>total protein<br>and globulin<br>values at 5000<br>ppm in males<br>(131%, 165%<br>and 109% of<br>control values,<br>respectively).<br>A significant |                                           |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classification | Effect target                            | Species | Duration<br>of<br>exposure | Duration<br>unit | Route<br>of<br>adminis<br>tration | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)                                                                                                                                                                                                                                                                                                                                        | Assessment<br>of each line<br>of evidence | Assessment on the<br>integrated line of<br>evidence |
|-----------------------|--------------------------|------------------------------------------|---------|----------------------------|------------------|-----------------------------------|--------------------------|---------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------|
| 4                     | Systemic<br>toxicity     | Clinical<br>chemistry and<br>haematology | Dog     | 90                         | Days             | Oral                              | 125                      | mg/kg<br>bw/d | Increase            | decrease in<br>blood urea<br>nitrogen/creati<br>ne ratio was<br>observed in<br>females at<br>2500 ppm but<br>not at 5000<br>ppm - this was<br>considered to<br>be unrelated to<br>treatment.<br>Mean alkaline<br>phosphatase<br>(ALP) activity<br>progressively<br>increased in<br>males and<br>females given<br>125 mg/kg<br>bw/day. Mean<br>cholesterol<br>levels in<br>females given |                                           |                                                     |

| Study  | Effect         | Effect target | Species | Duration | Duration | Route   | Lowest | Dose | Effect    | Observed       | Assessment   | Assessment on the  |
|--------|----------------|---------------|---------|----------|----------|---------|--------|------|-----------|----------------|--------------|--------------------|
| ID     | classification |               |         | of       | unit     | of      | Effect | unit | direction | effect         | of each line | integrated line of |
| Matrix |                |               |         | exposure |          | adminis | dose   |      |           | (positive and  | of evidence  | evidence           |
|        |                |               |         |          |          | tration |        |      |           | negative)      |              |                    |
|        |                |               |         |          |          |         |        |      |           | 125 mg/kg      |              |                    |
|        |                |               |         |          |          |         |        |      |           | bw/day         |              |                    |
|        |                |               |         |          |          |         |        |      |           | progressively  |              |                    |
|        |                |               |         |          |          |         |        |      |           | increased      |              |                    |
|        |                |               |         |          |          |         |        |      |           | these          |              |                    |
|        |                |               |         |          |          |         |        |      |           | differences    |              |                    |
|        |                |               |         |          |          |         |        |      |           | from control   |              |                    |
|        |                |               |         |          |          |         |        |      |           | were           |              |                    |
|        |                |               |         |          |          |         |        |      |           | statistically  |              |                    |
|        |                |               |         |          |          |         |        |      |           | significant    |              |                    |
|        |                |               |         |          |          |         |        |      |           | after 1 and 2  |              |                    |
|        |                |               |         |          |          |         |        |      |           | months.        |              |                    |
|        |                |               |         |          |          |         |        |      |           | Albumin/glob   |              |                    |
|        |                |               |         |          |          |         |        |      |           | ulin ratio was |              |                    |
|        |                |               |         |          |          |         |        |      |           | reduced in     |              |                    |
|        |                |               |         |          |          |         |        |      |           | males at 125   |              |                    |
|        |                |               |         |          |          |         |        |      |           | mg/kg bw/day.  |              |                    |
|        |                |               |         |          |          |         |        |      |           | Chloride       |              |                    |
|        |                |               |         |          |          |         |        |      |           | levels were    |              |                    |
|        |                |               |         |          |          |         |        |      |           | reduced in     |              |                    |
|        |                |               |         |          |          |         |        |      |           | females at 75  |              |                    |
|        |                |               |         |          |          |         |        |      |           | and 125 mg/kg  |              |                    |
|        |                |               |         |          |          |         |        |      |           | bw/day.        |              |                    |
|        |                |               |         |          |          |         |        |      |           |                |              |                    |

| Study  | Effect         | Effect target | Species | Duration | Duration | Route   | Lowest | Dose  | Effect    | Observed      | Assessment   | Assessment on the  |
|--------|----------------|---------------|---------|----------|----------|---------|--------|-------|-----------|---------------|--------------|--------------------|
| ID     | classification |               |         | of       | unit     | of      | Effect | unit  | direction | effect        | of each line | integrated line of |
| Matrix |                |               |         | exposure |          | adminis | dose   |       |           | (positive and | of evidence  | evidence           |
|        |                |               |         |          |          | tration |        |       |           | negative)     |              |                    |
| 5      | Systemic       | Clinical      | Dog     | 52       | Weeks    | Oral    | 75     | mg/kg | Change    | Erythrocyte   |              |                    |
|        | toxicity       | chemistry and |         |          |          |         |        | bw/d  |           | count was     |              |                    |
|        |                | haematology   |         |          |          |         |        |       |           | statistically |              |                    |
|        |                |               |         |          |          |         |        |       |           | significantly |              |                    |
|        |                |               |         |          |          |         |        |       |           | decreased in  |              |                    |
|        |                |               |         |          |          |         |        |       |           | males given   |              |                    |
|        |                |               |         |          |          |         |        |       |           | 300 mg/kg     |              |                    |
|        |                |               |         |          |          |         |        |       |           | bw/day on     |              |                    |
|        |                |               |         |          |          |         |        |       |           | days 270 and  |              |                    |
|        |                |               |         |          |          |         |        |       |           | 360 and in    |              |                    |
|        |                |               |         |          |          |         |        |       |           | females given |              |                    |
|        |                |               |         |          |          |         |        |       |           | 300 mg/kg     |              |                    |
|        |                |               |         |          |          |         |        |       |           | bw/day on     |              |                    |
|        |                |               |         |          |          |         |        |       |           | days 180, 270 |              |                    |
|        |                |               |         |          |          |         |        |       |           | and 360.      |              |                    |
|        |                |               |         |          |          |         |        |       |           | Haemoglobin   |              |                    |
|        |                |               |         |          |          |         |        |       |           | and           |              |                    |
|        |                |               |         |          |          |         |        |       |           | haematocrit   |              |                    |
|        |                |               |         |          |          |         |        |       |           | were          |              |                    |
|        |                |               |         |          |          |         |        |       |           | statistically |              |                    |
|        |                |               |         |          |          |         |        |       |           | significantly |              |                    |
|        |                |               |         |          |          |         |        |       |           | decreased in  |              |                    |
|        |                |               |         |          |          |         |        |       |           | females given |              |                    |
|        |                |               |         |          |          |         |        |       |           | 300 mg/kg     |              |                    |

| Study  | Effect         | Effect target | Species | Duration | Duration | Route   | Lowest | Dose | Effect    | Observed       | Assessment   | Assessment on the  |
|--------|----------------|---------------|---------|----------|----------|---------|--------|------|-----------|----------------|--------------|--------------------|
| ID     | classification |               |         | of       | unit     | of      | Effect | unit | direction | effect         | of each line | integrated line of |
| Matrix |                |               |         | exposure |          | adminis | dose   |      |           | (positive and  | of evidence  | evidence           |
|        |                |               |         |          |          | tration |        |      |           | negative)      |              |                    |
|        |                |               |         |          |          |         |        |      |           | bw/day on      |              |                    |
|        |                |               |         |          |          |         |        |      |           | days 180, 270  |              |                    |
|        |                |               |         |          |          |         |        |      |           | and 360. In    |              |                    |
|        |                |               |         |          |          |         |        |      |           | males on day   |              |                    |
|        |                |               |         |          |          |         |        |      |           | 360 the        |              |                    |
|        |                |               |         |          |          |         |        |      |           | haemoglobin    |              |                    |
|        |                |               |         |          |          |         |        |      |           | and            |              |                    |
|        |                |               |         |          |          |         |        |      |           | haematocrit    |              |                    |
|        |                |               |         |          |          |         |        |      |           | values were    |              |                    |
|        |                |               |         |          |          |         |        |      |           | 8% lower than  |              |                    |
|        |                |               |         |          |          |         |        |      |           | those of the   |              |                    |
|        |                |               |         |          |          |         |        |      |           | control group  |              |                    |
|        |                |               |         |          |          |         |        |      |           | (not           |              |                    |
|        |                |               |         |          |          |         |        |      |           | statistically  |              |                    |
|        |                |               |         |          |          |         |        |      |           | significant).  |              |                    |
|        |                |               |         |          |          |         |        |      |           | Platelet count |              |                    |
|        |                |               |         |          |          |         |        |      |           | was            |              |                    |
|        |                |               |         |          |          |         |        |      |           | statistically  |              |                    |
|        |                |               |         |          |          |         |        |      |           | significantly  |              |                    |
|        |                |               |         |          |          |         |        |      |           | increased in   |              |                    |
|        |                |               |         |          |          |         |        |      |           | both sexes     |              |                    |
|        |                |               |         |          |          |         |        |      |           | given 300      |              |                    |
|        |                |               |         |          |          |         |        |      |           | mg/kg bw/day   |              |                    |
|        |                |               |         |          |          |         |        |      |           | during the     |              |                    |

| Study  | Effect         | Effect target | Species | Duration | Duration | Route   | Lowest | Dose | Effect    | Observed        | Assessment   | Assessment on the  |
|--------|----------------|---------------|---------|----------|----------|---------|--------|------|-----------|-----------------|--------------|--------------------|
| ID     | classification |               |         | of       | unit     | of      | Effect | unit | direction | effect          | of each line | integrated line of |
| Matrix |                |               |         | exposure |          | adminis | dose   |      |           | (positive and   | of evidence  | evidence           |
|        |                |               |         |          |          | tration |        |      |           | negative)       |              |                    |
|        |                |               |         |          |          |         |        |      |           | whole           |              |                    |
|        |                |               |         |          |          |         |        |      |           | exposure        |              |                    |
|        |                |               |         |          |          |         |        |      |           | period and a    |              |                    |
|        |                |               |         |          |          |         |        |      |           | similar trend   |              |                    |
|        |                |               |         |          |          |         |        |      |           | was observed    |              |                    |
|        |                |               |         |          |          |         |        |      |           | in the 75       |              |                    |
|        |                |               |         |          |          |         |        |      |           | mg/kg bw        |              |                    |
|        |                |               |         |          |          |         |        |      |           | group (20%      |              |                    |
|        |                |               |         |          |          |         |        |      |           | higher than the |              |                    |
|        |                |               |         |          |          |         |        |      |           | control on      |              |                    |
|        |                |               |         |          |          |         |        |      |           | 360) although   |              |                    |
|        |                |               |         |          |          |         |        |      |           | not             |              |                    |
|        |                |               |         |          |          |         |        |      |           | statistically   |              |                    |
|        |                |               |         |          |          |         |        |      |           | significant.    |              |                    |
|        |                |               |         |          |          |         |        |      |           | The white       |              |                    |
|        |                |               |         |          |          |         |        |      |           | blood cell      |              |                    |
|        |                |               |         |          |          |         |        |      |           | count was       |              |                    |
|        |                |               |         |          |          |         |        |      |           | statistically   |              |                    |
|        |                |               |         |          |          |         |        |      |           | significantly   |              |                    |
|        |                |               |         |          |          |         |        |      |           | increased in    |              |                    |
|        |                |               |         |          |          |         |        |      |           | females given   |              |                    |
|        |                |               |         |          |          |         |        |      |           | 300 mg/kg       |              |                    |
|        |                |               |         |          |          |         |        |      |           | bw/day on       |              |                    |
|        |                |               |         |          |          |         |        |      |           | days 90, 180,   |              |                    |

| Study  | Effect         | Effect target | Species | Duration | Duration | Route   | Lowest | Dose | Effect    | Observed        | Assessment   | Assessment on the  |
|--------|----------------|---------------|---------|----------|----------|---------|--------|------|-----------|-----------------|--------------|--------------------|
| ID     | classification |               |         | of       | unit     | of      | Effect | unit | direction | effect          | of each line | integrated line of |
| Matrix |                |               |         | exposure |          | adminis | dose   |      |           | (positive and   | of evidence  | evidence           |
|        |                |               |         |          |          | tration |        |      |           | negative)       |              |                    |
|        |                |               |         |          |          |         |        |      |           | 270 and 360     |              |                    |
|        |                |               |         |          |          |         |        |      |           | and in females  |              |                    |
|        |                |               |         |          |          |         |        |      |           | given 75        |              |                    |
|        |                |               |         |          |          |         |        |      |           | mg/kg bw/day    |              |                    |
|        |                |               |         |          |          |         |        |      |           | at day 90 only. |              |                    |
|        |                |               |         |          |          |         |        |      |           | Segmented       |              |                    |
|        |                |               |         |          |          |         |        |      |           | neutrophils     |              |                    |
|        |                |               |         |          |          |         |        |      |           | were            |              |                    |
|        |                |               |         |          |          |         |        |      |           | significantly   |              |                    |
|        |                |               |         |          |          |         |        |      |           | higher in       |              |                    |
|        |                |               |         |          |          |         |        |      |           | females given   |              |                    |
|        |                |               |         |          |          |         |        |      |           | 300 mg/kg       |              |                    |
|        |                |               |         |          |          |         |        |      |           | bw/day on       |              |                    |
|        |                |               |         |          |          |         |        |      |           | days 31, 90     |              |                    |
|        |                |               |         |          |          |         |        |      |           | and 270. The    |              |                    |
|        |                |               |         |          |          |         |        |      |           | albumin/globu   |              |                    |
|        |                |               |         |          |          |         |        |      |           | lin ratio was   |              |                    |
|        |                |               |         |          |          |         |        |      |           | decreased in    |              |                    |
|        |                |               |         |          |          |         |        |      |           | females given   |              |                    |
|        |                |               |         |          |          |         |        |      |           | 300 mg/kg       |              |                    |
|        |                |               |         |          |          |         |        |      |           | bw/day at day   |              |                    |
|        |                |               |         |          |          |         |        |      |           | 270 and 360.    |              |                    |
|        |                |               |         |          |          |         |        |      |           | The glucose     |              |                    |
|        |                |               |         |          |          |         |        |      |           | level was       |              |                    |

| Study  | Effect         | Effect target | Species | Duration | Duration | Route   | Lowest | Dose | Effect    | Observed        | Assessment   | Assessment on the  |
|--------|----------------|---------------|---------|----------|----------|---------|--------|------|-----------|-----------------|--------------|--------------------|
| ID     | classification |               |         | of       | unit     | of      | Effect | unit | direction | effect          | of each line | integrated line of |
| Matrix |                |               |         | exposure |          | adminis | dose   |      |           | (positive and   | of evidence  | evidence           |
|        |                |               |         |          |          | tration |        |      |           | negative)       |              |                    |
|        |                |               |         |          |          |         |        |      |           | significantly   |              |                    |
|        |                |               |         |          |          |         |        |      |           | decreased in    |              |                    |
|        |                |               |         |          |          |         |        |      |           | males given     |              |                    |
|        |                |               |         |          |          |         |        |      |           | 300 mg/kg       |              |                    |
|        |                |               |         |          |          |         |        |      |           | bw/day on day   |              |                    |
|        |                |               |         |          |          |         |        |      |           | 270, in         |              |                    |
|        |                |               |         |          |          |         |        |      |           | females given   |              |                    |
|        |                |               |         |          |          |         |        |      |           | 300 mg/kg       |              |                    |
|        |                |               |         |          |          |         |        |      |           | bw/day on       |              |                    |
|        |                |               |         |          |          |         |        |      |           | days 180 and    |              |                    |
|        |                |               |         |          |          |         |        |      |           | 360, and in     |              |                    |
|        |                |               |         |          |          |         |        |      |           | females given   |              |                    |
|        |                |               |         |          |          |         |        |      |           | 75 mg/kg        |              |                    |
|        |                |               |         |          |          |         |        |      |           | bw/day at day   |              |                    |
|        |                |               |         |          |          |         |        |      |           | 360. Alkaline   |              |                    |
|        |                |               |         |          |          |         |        |      |           | phosphatase     |              |                    |
|        |                |               |         |          |          |         |        |      |           | was             |              |                    |
|        |                |               |         |          |          |         |        |      |           | significantly   |              |                    |
|        |                |               |         |          |          |         |        |      |           | higher than the |              |                    |
|        |                |               |         |          |          |         |        |      |           | control group's |              |                    |
|        |                |               |         |          |          |         |        |      |           | from day 90     |              |                    |
|        |                |               |         |          |          |         |        |      |           | onwards at 75   |              |                    |
|        |                |               |         |          |          |         |        |      |           | and 300 mg/kg   |              |                    |
|        |                |               |         |          |          |         |        |      |           | bw/day in both  |              |                    |

| Study  | Effect         | Effect target | Species | Duration | Duration | Route   | Lowest | Dose | Effect    | Observed       | Assessment   | Assessment on the  |
|--------|----------------|---------------|---------|----------|----------|---------|--------|------|-----------|----------------|--------------|--------------------|
| ID     | classification |               |         | of       | unit     | of      | Effect | unit | direction | effect         | of each line | integrated line of |
| Matrix |                |               |         | exposure |          | adminis | dose   |      |           | (positive and  | of evidence  | evidence           |
|        |                |               |         |          |          | tration |        |      |           | negative)      |              |                    |
|        |                |               |         |          |          |         |        |      |           | sexes,         |              |                    |
|        |                |               |         |          |          |         |        |      |           | although only  |              |                    |
|        |                |               |         |          |          |         |        |      |           | statistically  |              |                    |
|        |                |               |         |          |          |         |        |      |           | significant at |              |                    |
|        |                |               |         |          |          |         |        |      |           | the highest    |              |                    |
|        |                |               |         |          |          |         |        |      |           | dose level.    |              |                    |
|        |                |               |         |          |          |         |        |      |           | ALP had a      |              |                    |
|        |                |               |         |          |          |         |        |      |           | decreasing     |              |                    |
|        |                |               |         |          |          |         |        |      |           | trend over     |              |                    |
|        |                |               |         |          |          |         |        |      |           | time in all    |              |                    |
|        |                |               |         |          |          |         |        |      |           | groups but the |              |                    |
|        |                |               |         |          |          |         |        |      |           | highest dose   |              |                    |
|        |                |               |         |          |          |         |        |      |           | group, in      |              |                    |
|        |                |               |         |          |          |         |        |      |           | which it       |              |                    |
|        |                |               |         |          |          |         |        |      |           | increased over |              |                    |
|        |                |               |         |          |          |         |        |      |           | time. ALT was  |              |                    |
|        |                |               |         |          |          |         |        |      |           | statistically  |              |                    |
|        |                |               |         |          |          |         |        |      |           | significantly  |              |                    |
|        |                |               |         |          |          |         |        |      |           | increased at   |              |                    |
|        |                |               |         |          |          |         |        |      |           | 300 mg/kg      |              |                    |
|        |                |               |         |          |          |         |        |      |           | bw/day in both |              |                    |
|        |                |               |         |          |          |         |        |      |           | sexes from day |              |                    |
|        |                |               |         |          |          |         |        |      |           | 180 onwards.   |              |                    |
|        |                |               |         |          |          |         |        |      |           | Cholesterol    |              |                    |

| Study  | Effect         | Effect target | Species | Duration | Duration | Route   | Lowest | Dose | Effect    | Observed       | Assessment   | Assessment on the  |
|--------|----------------|---------------|---------|----------|----------|---------|--------|------|-----------|----------------|--------------|--------------------|
| ID     | classification |               |         | of       | unit     | of      | Effect | unit | direction | effect         | of each line | integrated line of |
| Matrix |                |               |         | exposure |          | adminis | dose   |      |           | (positive and  | of evidence  | evidence           |
|        |                |               |         |          |          | tration |        |      |           | negative)      |              |                    |
|        |                |               |         |          |          |         |        |      |           | was            |              |                    |
|        |                |               |         |          |          |         |        |      |           | statistically  |              |                    |
|        |                |               |         |          |          |         |        |      |           | significantly  |              |                    |
|        |                |               |         |          |          |         |        |      |           | increased in   |              |                    |
|        |                |               |         |          |          |         |        |      |           | males given    |              |                    |
|        |                |               |         |          |          |         |        |      |           | 300 mg/kg      |              |                    |
|        |                |               |         |          |          |         |        |      |           | bw/day at day  |              |                    |
|        |                |               |         |          |          |         |        |      |           | 360 only and   |              |                    |
|        |                |               |         |          |          |         |        |      |           | in females     |              |                    |
|        |                |               |         |          |          |         |        |      |           | throughout the |              |                    |
|        |                |               |         |          |          |         |        |      |           | study.         |              |                    |
|        |                |               |         |          |          |         |        |      |           | Triglycerides  |              |                    |
|        |                |               |         |          |          |         |        |      |           | were           |              |                    |
|        |                |               |         |          |          |         |        |      |           | significantly  |              |                    |
|        |                |               |         |          |          |         |        |      |           | increased in   |              |                    |
|        |                |               |         |          |          |         |        |      |           | both sexes     |              |                    |
|        |                |               |         |          |          |         |        |      |           | given 300      |              |                    |
|        |                |               |         |          |          |         |        |      |           | mg/kg bw/day   |              |                    |
|        |                |               |         |          |          |         |        |      |           | at day 360,    |              |                    |
|        |                |               |         |          |          |         |        |      |           | and not        |              |                    |
|        |                |               |         |          |          |         |        |      |           | statistically  |              |                    |
|        |                |               |         |          |          |         |        |      |           | significantly  |              |                    |
|        |                |               |         |          |          |         |        |      |           | increased (29- |              |                    |

| Study  | Effect         | Effect target | Species | Duration | Duration | Route   | Lowest  | Dose | Effect    | Observed       | Assessment   | Assessment on the  |
|--------|----------------|---------------|---------|----------|----------|---------|---------|------|-----------|----------------|--------------|--------------------|
| ID     | classification |               |         | of       | unit     | of      | Effect  | unit | direction | effect         | of each line | integrated line of |
| Matrix |                |               |         | exposure |          | adminis | dose    |      |           | (positive and  | of evidence  | evidence           |
|        |                |               |         |          |          | tration |         |      |           | negative)      |              |                    |
|        |                |               |         |          |          |         |         |      |           | 41%) at 75     |              |                    |
|        |                |               |         |          |          |         |         |      |           | mg/kg bw/day.  |              |                    |
| 6      | Systemic       | Clinical      | Rat     | 2        | Years    | Oral    | >2500   | ppm  | No effect |                |              |                    |
|        | toxicity       | chemistry and |         |          |          |         |         |      |           |                |              |                    |
|        |                | haematology   |         |          |          |         |         |      |           |                |              |                    |
| 7      | Systemic       | Clinical      | mouse   | 52       | Weeks    | Oral    | 2000/30 | ppm  | Decrease  | Red blood cell |              |                    |
|        | toxicity       | chemistry and |         |          |          |         | 00      |      |           | count was      |              |                    |
|        |                | haematology   |         |          |          |         |         |      |           | statistically  |              |                    |
|        |                |               |         |          |          |         |         |      |           | significantly  |              |                    |
|        |                |               |         |          |          |         |         |      |           | decreased in   |              |                    |
|        |                |               |         |          |          |         |         |      |           | males given    |              |                    |
|        |                |               |         |          |          |         |         |      |           | 2000/3000      |              |                    |
|        |                |               |         |          |          |         |         |      |           | ppm in week    |              |                    |
|        |                |               |         |          |          |         |         |      |           | 27 and 79 and  |              |                    |
|        |                |               |         |          |          |         |         |      |           | in females     |              |                    |
|        |                |               |         |          |          |         |         |      |           | given          |              |                    |
|        |                |               |         |          |          |         |         |      |           | 2000/3000      |              |                    |
|        |                |               |         |          |          |         |         |      |           | ppm in week    |              |                    |
|        |                |               |         |          |          |         |         |      |           | 27.            |              |                    |
|        |                |               |         |          |          |         |         |      |           | Haemoglobin    |              |                    |
|        |                |               |         |          |          |         |         |      |           | and            |              |                    |
|        |                |               |         |          |          |         |         |      |           | haematocrit    |              |                    |
|        |                |               |         |          |          |         |         |      |           | were           |              |                    |
|        |                |               |         |          |          |         |         |      |           | statistically  |              |                    |

| Study<br>ID<br>Matrix | Effect<br>classification | Effect target  | Species | Duration<br>of<br>exposure | Duration<br>unit | Route<br>of<br>adminis<br>tration | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)                                | Assessment<br>of each line<br>of evidence   | Assessment on the<br>integrated line of<br>evidence |
|-----------------------|--------------------------|----------------|---------|----------------------------|------------------|-----------------------------------|--------------------------|---------------|---------------------|---------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------|
|                       |                          |                |         |                            |                  |                                   |                          |               |                     | significantly<br>decreased in<br>males given<br>2000/3000<br>ppm in week<br>27. |                                             |                                                     |
| 1                     | Systemic<br>toxicity     | Clinical signs | Rat     | 5                          | Weeks            | Oral                              | >8000                    | ppm           | No effect           |                                                                                 | Clinical<br>signs                           |                                                     |
| 2                     | Systemic<br>toxicity     | Clinical signs | mouse   | 4                          | Weeks            | Oral                              | >4000                    | ppm           | No effect           |                                                                                 | occurred in<br>some studies<br>and included |                                                     |
| 3                     | Systemic<br>toxicity     | Clinical signs | Rat     | 13                         | Weeks            | Oral                              | >5000                    | ppm           | No effect           |                                                                                 | excess<br>salivation,                       |                                                     |
| 4                     | Systemic<br>toxicity     | Clinical signs | Dog     | 90                         | Days             | Oral                              | >125                     | mg/kg<br>bw/d | No effect           |                                                                                 | excess<br>lacrimation,                      |                                                     |
| 5                     | Systemic<br>toxicity     | Clinical signs | Dog     | 52                         | Weeks            | Oral                              | >300                     | mg/kg<br>bw/d | No effect           |                                                                                 | staining of<br>the fur/skin<br>in the       |                                                     |
| 6                     | Systemic<br>toxicity     | Clinical signs | Rat     | 2                          | Years            | Oral                              | >2500                    | ppm           | No effect           |                                                                                 | anogenital<br>area, red                     |                                                     |
| 7                     | Systemic<br>toxicity     | Clinical signs | mouse   | 52                         | Weeks            | Oral                              | >3000                    | ppm           | No effect           |                                                                                 | substance in                                |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classification | Effect target  | Species | Duration<br>of<br>exposure | Duration<br>unit | Route<br>of<br>adminis<br>tration | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)                                                                                                                                                                                                                     | Assessment<br>of each line<br>of evidence | Assessment on the<br>integrated line of<br>evidence |
|-----------------------|--------------------------|----------------|---------|----------------------------|------------------|-----------------------------------|--------------------------|---------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------|
| 8                     | Systemic<br>toxicity     | Clinical signs | rat     | 10 (GD 6-<br>15)           | Days             | Oral                              | 300                      | mg/kg<br>bw/d | Change              | Excess<br>salivation was<br>seen with<br>increased<br>frequency in at<br>300 and 500<br>mg/kg bw/day                                                                                                                                                                 | the pan, and dried faeces.                |                                                     |
| 9                     | Systemic<br>toxicity     | Clinical signs | rat     | 10 (GD 6-<br>15)           | Days             | Oral                              | 350                      | mg/kg<br>bw/d | Change              | Excess<br>salivation was<br>seen was seen<br>at least once in<br>11/25 females<br>at 350 mg/kg<br>bw/day and<br>19/25 females<br>at 700 mg/kg<br>bw/day.<br>Excessive<br>lacrimation in<br>12/25 and<br>staining of<br>fur/skin in the<br>anogenital<br>area of 7/25 |                                           |                                                     |

| Study  | Effect               | Effect target         | Species | Duration         | Duration | Route   | Lowest | Dose          | Effect    | Observed       | Assessment   | Assessment on the  |
|--------|----------------------|-----------------------|---------|------------------|----------|---------|--------|---------------|-----------|----------------|--------------|--------------------|
| ID     | classification       |                       |         | of               | unit     | of      | Effect | unit          | direction | effect         | of each line | integrated line of |
| Matrix |                      |                       |         | exposure         |          | adminis | dose   |               |           | (positive and  | of evidence  | evidence           |
|        |                      |                       |         |                  |          | tration |        |               |           | negative)      |              |                    |
|        |                      |                       |         |                  |          |         |        |               |           | females at 700 |              |                    |
|        |                      |                       |         |                  |          |         |        |               |           | mg/kg bw/day.  |              |                    |
| 10     | S                    | <u>Clinical sizes</u> | rabbit  | 13 (DG 7-        | Dava     | Oral    | >500   |               | No effect |                |              |                    |
| 10     | Systemic<br>toxicity | Clinical signs        | rabbit  | 13 (DG /-<br>19) | Days     | Oral    | >500   | mg/kg<br>bw/d | No effect |                |              |                    |
| 11     | Systemic             | Clinical signs        | rabbit  | 13 (DG 7-        | Days     | Oral    | 100    | mg/kg         | Change    | Signs of       |              |                    |
| 11     | toxicity             | Clinical signs        | Tabbit  | 13 (DG /-<br>19) | Days     | Orai    | 100    | bw/d          | Change    | maternal       |              |                    |
|        | tonienty             |                       |         |                  |          |         |        | o ma          |           | toxicity were  |              |                    |
|        |                      |                       |         |                  |          |         |        |               |           | noted in       |              |                    |
|        |                      |                       |         |                  |          |         |        |               |           | females        |              |                    |
|        |                      |                       |         |                  |          |         |        |               |           | treated at 100 |              |                    |
|        |                      |                       |         |                  |          |         |        |               |           | or 300 mg/kg   |              |                    |
|        |                      |                       |         |                  |          |         |        |               |           | bw/day and     |              |                    |
|        |                      |                       |         |                  |          |         |        |               |           | comprised      |              |                    |
|        |                      |                       |         |                  |          |         |        |               |           | clinical signs |              |                    |
|        |                      |                       |         |                  |          |         |        |               |           | (red substance |              |                    |
|        |                      |                       |         |                  |          |         |        |               |           | in the pan and |              |                    |
|        |                      |                       |         |                  |          |         |        |               |           | dried faeces   |              |                    |
| 12     | Systemic             | Clinical signs        | rat     | 5 to 6           | Weeks    | Oral    | >5000  | ppm           | No effect |                |              |                    |
|        | toxicity             |                       |         |                  |          |         |        |               |           |                |              |                    |
| 13     | Systemic             | Clinical signs        | rat     | 28               | weeks    | Oral    | >2500  | ppm           | No effect |                |              |                    |
|        | toxicity             |                       |         |                  |          |         |        |               |           |                |              |                    |

| Study<br>ID<br>Matrix<br>14 | Effect<br>classification<br>Systemic<br>toxicity<br>Systemic | Effect target Clinical signs Clinical signs | Species Frat | Duration<br>of<br>exposure<br>3<br>10 | Duration<br>unit<br>Days<br>Days | Route<br>of<br>adminis<br>tration<br>Oral<br>Oral | Lowest<br>Effect<br>dose<br>>450<br>>200 | Dose<br>unit<br>mg/kg<br>bw/d<br>mg/kg | Effect<br>direction<br>No effect | Observed<br>effect<br>(positive and<br>negative)                                                                                                                        | Assessment<br>of each line<br>of evidence                                                                                                         | Assessment on the<br>integrated line of<br>evidence |
|-----------------------------|--------------------------------------------------------------|---------------------------------------------|--------------|---------------------------------------|----------------------------------|---------------------------------------------------|------------------------------------------|----------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| 1                           | toxicity<br>Systemic<br>toxicity                             | Food<br>consumption                         | Rat          | 5                                     | Weeks                            | Oral                                              | 4000                                     | bw/da<br>ppm                           | Decrease                         | Statistically<br>significantly<br>reduced in<br>males and<br>females at<br>4000 ppm (-<br>8% males; -<br>10% females)<br>and 8000 ppm<br>(-22% males; -<br>26% females) | Food<br>consum-<br>ption was<br>affected in 8<br>studies. In<br>five of them<br>the test<br>substance<br>was incorp-<br>orated in the<br>diet and |                                                     |
| 2                           | Systemic<br>toxicity<br>Systemic<br>toxicity                 | Food<br>consumption<br>Food<br>consumption  | Rat          | 4                                     | Weeks                            | Oral                                              | >4000                                    | ppm<br>ppm                             | No effect<br>Decrease            | Food<br>consumption<br>was<br>significantly<br>reduced in<br>males and                                                                                                  | palatability<br>may<br>influence the<br>outcome.<br>However,<br>oral gavage<br>was used to<br>administer                                          |                                                     |

| Study  | Effect               | Effect target       | Species | Duration | Duration | Route   | Lowest | Dose          | Effect    | Observed                                                                                                  | Assessment                                                                                           | Assessment on the  |
|--------|----------------------|---------------------|---------|----------|----------|---------|--------|---------------|-----------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------|
| ID     | classification       |                     |         | of       | unit     | of      | Effect | unit          | direction | effect                                                                                                    | of each line                                                                                         | integrated line of |
| Matrix |                      |                     |         | exposure |          | adminis | dose   |               |           | (positive and                                                                                             | of evidence                                                                                          | evidence           |
|        |                      |                     |         |          |          | tration |        |               |           | negative)                                                                                                 |                                                                                                      |                    |
|        |                      |                     |         |          |          |         |        |               |           | females during<br>treatment at<br>5000 ppm.<br>Decreases<br>were also<br>noted at                         | the<br>substance in<br>the three<br>other studies<br>which<br>eliminates                             |                    |
|        |                      |                     |         |          |          |         |        |               |           | sporadic<br>intervals for<br>males in the<br>500 and 2500<br>ppm groups.                                  | the<br>palatability<br>issue. Of the<br>four studies<br>without an                                   |                    |
| 4      | Systemic<br>toxicity | Food<br>consumption | Dog     | 90       | Days     | Oral    | >125   | mg/kg<br>bw/d | No effect |                                                                                                           | observed<br>effect on<br>food                                                                        |                    |
| 5      | Systemic<br>toxicity | Food<br>consumption | Dog     | 52       | Weeks    | Oral    | >300   | mg/kg<br>bw/d | No effect |                                                                                                           | consump-<br>tion, oral                                                                               |                    |
| 6      | Systemic<br>toxicity | Food<br>consumption | Rat     | 2        | Years    | Oral    | 2500   | ppm           | Decrease  | Food<br>consumption<br>was<br>significantly<br>decreased in<br>animals of<br>each sex<br>during the first | gavage was<br>used in three<br>of them and<br>administratio<br>n via the diet<br>was<br>performed in |                    |

| Study<br>ID | Effect<br>classification | Effect target       | Species | Duration<br>of   | Duration<br>unit | Route<br>of        | Lowest<br>Effect | Dose<br>unit  | Effect<br>direction | Observed<br>effect                                                                                                                                                                                                           | Assessment<br>of each line | Assessment on the integrated line of |
|-------------|--------------------------|---------------------|---------|------------------|------------------|--------------------|------------------|---------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------|
| Matrix      |                          |                     |         | exposure         |                  | adminis<br>tration | dose             |               |                     | (positive and<br>negative)                                                                                                                                                                                                   | of evidence                | evidence                             |
|             |                          |                     |         |                  |                  |                    |                  |               |                     | year to<br>treatment with<br>2500 ppm.                                                                                                                                                                                       | one (4-week,<br>mice).     |                                      |
| 7           | Systemic<br>toxicity     | Food<br>consumption | mouse   | 52               | Weeks            | Oral               | >3000            | ppm           | No effect           |                                                                                                                                                                                                                              |                            |                                      |
| 8           | Systemic<br>toxicity     | Food<br>consumption | rat     | 10 (GD 6-<br>15) | Days             | Oral               | >500             | mg/kg<br>bw/d | No effect           |                                                                                                                                                                                                                              |                            |                                      |
| 9           | Systemic<br>toxicity     | Food<br>consumption | rat     | 10 (GD 6-<br>15) | Days             | Oral               | 700              | mg/kg<br>bw/d | Decrease            | Reduction in<br>food<br>consumption<br>was observed<br>in the dams<br>receiving 350<br>(Day 7 of<br>gestation) and<br>700 mg/kg<br>bw/day (Days<br>7-10 of<br>gestion), but<br>only the<br>prolonged<br>reduction in<br>food |                            |                                      |

| Study<br>ID<br>Matrix | Effect<br>classification | Effect target       | Species | Duration<br>of<br>exposure | Duration<br>unit | Route<br>of<br>adminis<br>tration | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)                                                                                                                                                                                                                                 | Assessment<br>of each line<br>of evidence | Assessment on the<br>integrated line of<br>evidence |
|-----------------------|--------------------------|---------------------|---------|----------------------------|------------------|-----------------------------------|--------------------------|---------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------|
|                       |                          |                     |         |                            |                  |                                   |                          |               |                     | consumption<br>at 700 mg/kg<br>bw/day<br>considered<br>related to<br>treatment.                                                                                                                                                                                                  |                                           |                                                     |
| 10                    | Systemic<br>toxicity     | Food<br>consumption | rabbit  | 13 (DG 7-<br>19)           | Days             | Oral                              | 50                       | mg/kg<br>bw/d | Decrease            | Reduced feed<br>consumption<br>during the<br>dosage period<br>$(\geq 50$<br>mg/kg/day –<br>statistically<br>significant<br>only at highest<br>dose) with a<br>post dosage<br>increase in<br>food<br>consumption<br>compared with<br>the control<br>$(\geq 150$<br>mg/kg/day, not |                                           |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classification | Effect target       | Species | Duration<br>of<br>exposure | Duration<br>unit | Route<br>of<br>adminis<br>tration | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)<br>statistically<br>significant),                                                                                                                                                      | Assessment<br>of each line<br>of evidence | Assessment on the<br>integrated line of<br>evidence |
|-----------------------|--------------------------|---------------------|---------|----------------------------|------------------|-----------------------------------|--------------------------|---------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------|
| 11                    | Systemic<br>toxicity     | Food<br>consumption | rabbit  | 13 (DG 7-<br>19)           | Days             | Oral                              | 100                      | mg/kg<br>bw/d | Decrease            | Administration<br>of the 100 and<br>300 mg/kg/day<br>dosages of the<br>test substance<br>resulted in<br>dosage-<br>dependent,<br>significant<br>inhibition of<br>average<br>maternal food<br>consumption<br>during the<br>dosage period |                                           |                                                     |
| 12                    | Systemic<br>toxicity     | Food<br>consumption | rat     | 5 to 6                     | Weeks            | Oral                              | 5000                     | ppm           | Decrease            | Food<br>consumption<br>was<br>consistently<br>lower for<br>treated males                                                                                                                                                                |                                           |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classification | Effect target       | Species | Duration<br>of<br>exposure | Duration<br>unit | Route<br>of<br>adminis<br>tration | Lowest<br>Effect<br>dose | Dose<br>unit | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)                                                                                                                                                        | Assessment<br>of each line<br>of evidence | Assessment on the<br>integrated line of<br>evidence |
|-----------------------|--------------------------|---------------------|---------|----------------------------|------------------|-----------------------------------|--------------------------|--------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------|
|                       |                          |                     |         |                            |                  |                                   |                          |              |                     | and females in<br>all dose<br>groups.<br>However, the<br>difference was<br>statistically<br>significant in<br>high-dose<br>males only.                                                                  |                                           |                                                     |
| 13                    | Systemic<br>toxicity     | Food<br>consumption | rat     | 28                         | weeks            | Oral                              | 2500                     | ppm          | Decrease            | In general,<br>food<br>consumption<br>of F0 adults<br>was not<br>affected by<br>treatment<br>except for<br>decreases for<br>animals at<br>2500 ppm<br>during the<br>initial<br>exposure<br>period. Food |                                           |                                                     |

| Study  | Effect         | Effect target | Species | Duration | Duration | Route   | Lowest | Dose | Effect    | Observed        | Assessment   | Assessment on the  |
|--------|----------------|---------------|---------|----------|----------|---------|--------|------|-----------|-----------------|--------------|--------------------|
| ID     | classification |               |         | of       | unit     | of      | Effect | unit | direction | effect          | of each line | integrated line of |
| Matrix |                |               |         | exposure |          | adminis | dose   |      |           | (positive and   | of evidence  | evidence           |
|        |                |               |         |          |          | tration |        |      |           | negative)       |              |                    |
|        |                |               |         |          |          |         |        |      |           | consumption     |              |                    |
|        |                |               |         |          |          |         |        |      |           | for F1a adult   |              |                    |
|        |                |               |         |          |          |         |        |      |           | males was       |              |                    |
|        |                |               |         |          |          |         |        |      |           | decreased on    |              |                    |
|        |                |               |         |          |          |         |        |      |           | many of the     |              |                    |
|        |                |               |         |          |          |         |        |      |           | intervals       |              |                    |
|        |                |               |         |          |          |         |        |      |           | measured        |              |                    |
|        |                |               |         |          |          |         |        |      |           | throughout the  |              |                    |
|        |                |               |         |          |          |         |        |      |           | study. Food     |              |                    |
|        |                |               |         |          |          |         |        |      |           | consumption     |              |                    |
|        |                |               |         |          |          |         |        |      |           | for F1a adult   |              |                    |
|        |                |               |         |          |          |         |        |      |           | females,        |              |                    |
|        |                |               |         |          |          |         |        |      |           | however, was    |              |                    |
|        |                |               |         |          |          |         |        |      |           | not affected    |              |                    |
|        |                |               |         |          |          |         |        |      |           | during the pre- |              |                    |
|        |                |               |         |          |          |         |        |      |           | mating period   |              |                    |
|        |                |               |         |          |          |         |        |      |           | but was         |              |                    |
|        |                |               |         |          |          |         |        |      |           | reduced on      |              |                    |
|        |                |               |         |          |          |         |        |      |           | Days 0-2, 2-5,  |              |                    |
|        |                |               |         |          |          |         |        |      |           | and 9-12 of     |              |                    |
|        |                |               |         |          |          |         |        |      |           | 1estation.      |              |                    |
|        |                |               |         |          |          |         |        |      |           | Food            |              |                    |
|        |                |               |         |          |          |         |        |      |           | consumption     |              |                    |
|        |                |               |         |          |          |         |        |      |           | for F1a         |              |                    |

| Study<br>ID<br>Matrix | Effect<br>classification | Effect target | Species | Duration<br>of<br>exposure | Duration<br>unit | Route<br>of<br>adminis<br>tration | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)<br>females was<br>not affected<br>during<br>lactation. | Assessment<br>of each line<br>of evidence | Assessment on the<br>integrated line of<br>evidence |
|-----------------------|--------------------------|---------------|---------|----------------------------|------------------|-----------------------------------|--------------------------|---------------|---------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------|
| 1                     | Systemic<br>toxicity     | Mortality     | Rat     | 5                          | Weeks            | Oral                              | >8000                    | ppm           | No effect           |                                                                                                         | Mortality<br>occurred in                  |                                                     |
| 2                     | Systemic<br>toxicity     | Mortality     | mouse   | 4                          | Weeks            | Oral                              | >4000                    | ppm           | No effect           |                                                                                                         | three studies:<br>at a dose of<br>238/357 |                                                     |
| 3                     | Systemic<br>toxicity     | Mortality     | Rat     | 13                         | Weeks            | Oral                              | >5000                    | ppm           | No effect           |                                                                                                         | mg/kg<br>bw/day in a                      |                                                     |
| 4                     | Systemic<br>toxicity     | Mortality     | Dog     | 90                         | Days             | Oral                              | >125                     | mg/kg<br>bw/d | No effect           |                                                                                                         | 2-year study<br>in non-<br>pregnant       |                                                     |
| 5                     | Systemic<br>toxicity     | Mortality     | Dog     | 52                         | Weeks            | Oral                              | >300                     | mg/kg<br>bw/d | No effect           |                                                                                                         | mice, and at 300-700                      |                                                     |
| 6                     | Systemic<br>toxicity     | Mortality     | Rat     | 2                          | Years            | Oral                              | >2500                    | ppm           | No effect           |                                                                                                         | mg/kg<br>bw/day in                        |                                                     |
| 7                     | Systemic<br>toxicity     | Mortality     | mouse   | 52                         | Weeks            | Oral                              | 2000/30<br>00            | ppm           | Change              | Survival for<br>males and<br>females of the<br>3000-ppm                                                 | pregnant rats<br>and rabbits.             |                                                     |

| Study  | Effect         | Effect target | Species | Duration  | Duration | Route   | Lowest | Dose  | Effect    | Observed        | Assessment   | Assessment on the  |
|--------|----------------|---------------|---------|-----------|----------|---------|--------|-------|-----------|-----------------|--------------|--------------------|
| ID     | classification |               |         | of        | unit     | of      | Effect | unit  | direction | effect          | of each line | integrated line of |
| Matrix |                |               |         | exposure  |          | adminis | dose   |       |           | (positive and   | of evidence  | evidence           |
|        |                |               |         |           |          | tration |        |       |           | negative)       |              |                    |
|        |                |               |         |           |          |         |        |       |           | group through   |              |                    |
|        |                |               |         |           |          |         |        |       |           | Week 78 was     |              |                    |
|        |                |               |         |           |          |         |        |       |           | significantly   |              |                    |
|        |                |               |         |           |          |         |        |       |           | lower than      |              |                    |
|        |                |               |         |           |          |         |        |       |           | control, and    |              |                    |
|        |                |               |         |           |          |         |        |       |           | there was a     |              |                    |
|        |                |               |         |           |          |         |        |       |           | significant     |              |                    |
|        |                |               |         |           |          |         |        |       |           | negative trend, |              |                    |
|        |                |               |         |           |          |         |        |       |           | i.e. treatment- |              |                    |
|        |                |               |         |           |          |         |        |       |           | related         |              |                    |
|        |                |               |         |           |          |         |        |       |           | decrease, in    |              |                    |
|        |                |               |         |           |          |         |        |       |           | survival for    |              |                    |
|        |                |               |         |           |          |         |        |       |           | both males and  |              |                    |
|        |                |               |         |           |          |         |        |       |           | females.        |              |                    |
| 8      | Systemic       | Mortality     | rat     | 10 (GD 6- | Days     | Oral    | >500   | mg/kg | No effect |                 |              |                    |
|        | toxicity       |               |         | 15)       |          |         |        | bw/d  |           |                 |              |                    |
| 9      | Systemic       | Mortality     | rat     | 10 (GD 6- | Days     | Oral    | 700    | mg/kg | Increase  | At 700 mg/kg    |              |                    |
|        | toxicity       |               |         | 15)       |          |         |        | bw/d  |           | bw/day          |              |                    |
|        |                |               |         |           |          |         |        |       |           | maternal        |              |                    |
|        |                |               |         |           |          |         |        |       |           | toxicity was    |              |                    |
|        |                |               |         |           |          |         |        |       |           | evident as      |              |                    |
|        |                |               |         |           |          |         |        |       |           | mortality       |              |                    |

| Study  | Effect         | Effect target | Species | Duration  | Duration | Route   | Lowest | Dose  | Effect    | Observed        | Assessment   | Assessment on the  |
|--------|----------------|---------------|---------|-----------|----------|---------|--------|-------|-----------|-----------------|--------------|--------------------|
| ID     | classification |               |         | of        | unit     | of      | Effect | unit  | direction | effect          | of each line | integrated line of |
| Matrix |                |               |         | exposure  |          | adminis | dose   |       |           | (positive and   | of evidence  | evidence           |
|        |                |               |         |           |          | tration |        |       |           | negative)       |              |                    |
|        |                |               |         |           |          |         |        |       |           | increased by a  |              |                    |
|        |                |               |         |           |          |         |        |       |           | 20% (5/25).     |              |                    |
| 10     | Systemic       | Mortality     | rabbit  | 13 (DG 7- | Days     | Oral    | 300    | mg/kg | Increase  | Two of seven    |              |                    |
|        | toxicity       |               |         | 19)       |          |         |        | bw/d  |           | pregnant 300    |              |                    |
|        |                |               |         |           |          |         |        |       |           | mg/kg/day       |              |                    |
|        |                |               |         |           |          |         |        |       |           | dosage group    |              |                    |
|        |                |               |         |           |          |         |        |       |           | rabbits died,   |              |                    |
|        |                |               |         |           |          |         |        |       |           | and one of      |              |                    |
|        |                |               |         |           |          |         |        |       |           | seven pregnant  |              |                    |
|        |                |               |         |           |          |         |        |       |           | 500 mg/kg/day   |              |                    |
|        |                |               |         |           |          |         |        |       |           | dosage group    |              |                    |
|        |                |               |         |           |          |         |        |       |           | rabbits aborted |              |                    |
|        |                |               |         |           |          |         |        |       |           | and died.       |              |                    |
| 11     | Systemic       | Mortality     | rabbit  | 13 (DG 7- | Days     | Oral    | >300   | mg/kg | No effect |                 |              |                    |
|        | toxicity       |               |         | 19)       |          |         |        | bw/d  |           |                 |              |                    |
| 12     | Systemic       | Mortality     | rat     | 5 to 6    | Weeks    | Oral    | >5000  | ppm   | No effect |                 |              |                    |
|        | toxicity       |               |         |           |          |         |        |       |           |                 |              |                    |
| 13     | Systemic       | Mortality     | rat     | 28        | weeks    | Oral    | >2500  | ppm   | No effect |                 |              |                    |
|        | toxicity       |               |         |           |          |         |        |       |           |                 |              |                    |
| 14     | Systemic       | Mortality     | rat     | 3         | Days     | Oral    | >450   | mg/kg | No effect |                 |              |                    |
|        | toxicity       |               |         |           |          |         |        | bw/d  |           |                 |              |                    |

| Study  | Effect         | Effect target | Species | Duration | Duration | Route   | Lowest | Dose  | Effect    | Observed      | Assessment   | Assessment on the  |
|--------|----------------|---------------|---------|----------|----------|---------|--------|-------|-----------|---------------|--------------|--------------------|
| ID     | classification |               |         | of       | unit     | of      | Effect | unit  | direction | effect        | of each line | integrated line of |
| Matrix |                |               |         | exposure |          | adminis | dose   |       |           | (positive and | of evidence  | evidence           |
|        |                |               |         |          |          | tration |        |       |           | negative)     |              |                    |
|        |                |               |         |          |          |         |        |       |           |               |              |                    |
| 15     | Systemic       | Mortality     | rat     | 10       | Days     | Oral    | >200   | mg/kg | No effect |               |              |                    |
|        | toxicity       |               |         |          |          |         |        | bw/d  |           |               |              |                    |
|        |                |               |         |          |          |         |        |       |           |               |              |                    |

# **2.10.2.1.1.1** Assessment of the integrated lines of evidence and weight of evidence for T-mediated adversity and endocrine activity

### Table 2.10.2.1.1.1-1. WoE for T-mediated adversity.

The effect of clethodim on thyroid weight was assessed in two dog studies of different lengths. In the shorter 13-week study, no effect was observed in the tested dose span of 1-125 mg/kg bw/day (ID 4). In the 1-year study (ID 5), males administered 1, 75, and 300 mg/kg bw /day had absolute thyroid weights that were 22%, 45%, and 91% higher, respectively, than that of the control group (only the difference between the control and the highest dose was statistically significant). No microscopic lesion or similar weight increase was noted in females, or in the other dog study weighing thyroids. Nor were there any microscopic changes in any of the other studies in rats or mice.

No exposure related remarks were noted in the microscopic assessment of thyroids from rats (ID 1, 3, and 6), mice (ID 7), or dogs (ID 4 and 5), including the male dogs with increased thyroid weight.

The male dogs exposed to 300 mg/kg bw /day (ID 5) with a 91% larger absolute thyroid weight also had increased liver weights, hepatocellular enlargement (often with cytoplasmic clearing), increased hepatic pigment, reduced A/G Ratio, increased ALK and ALT, and increased levels of cholesterol and triglycerides. Hyperplasia of the bone marrow was also observed, along with reduced erythrocyte and haemoglobin levels and increases in white blood cells and segmented neutrophils. The male dogs exposed to 75 mg/kg bw/day that had a non-statistically significant increase in thyroid weight (45%) had increased liver weights, increased platelet counts, increased cholesterol levels, and 1/6 individuals had hyperplasia in the bone marrow. The dogs in the lowest exposure group (1 mg/kg bw/day) had no significant effects (thyroid weight was 22% higher than that of the control group but this was not statistically significant). There were no effects on body weights and no clinical signs related to the exposure were observed in the study.

Additional effects that are not necessarily related to ED described in the data package include signs of anaemia, liver effects, effects on foetal development (generally occurring at doses with maternal toxicity), and reductions in body weight (although palatability issues may confound these results in some studies).

Clethodim was found to cause effects on the liver in all short-term studies (rat, mouse, and dog; ID 1, 2, 4, 5). These effects included increased liver weight, hypertrophy, vacuolisation of hepatocytes, increased pigmentation, effects on clinical chemistry parameters associated with liver damage and/or affected fat metabolism. Besides hepatotoxicity, several haematological effects were observed, most prominently anaemia. In addition, increases of the numbers of platelets and leukocytes were found in a 5-week rat study and the one-year dog study (ID 1, 5). The 1-year dog study also revealed bone-marrow hyperplasia in the sternum at the highest dose level. Effects observed during the long-term/carcinogenicity studies with rats and mice (ID 6, 7) included reduced body weight, increases in hepatic volume (liver weight and hypertrophy) and anaemia (reduction in the number of erythrocytes, haemoglobin, and haematocrit). These effects are consistent with those obtained in the short-term studies. Hepatotoxicity is considered the critical effect in the sense that it always (co-) determines the NOAEL of each study (ID: 1, 2, 4, 5, 6, 7, 10).

Foetal/pup growth was impeded in several studies (as indicated by reduced foetal or pup weight). In most of these studies maternal toxicity was evident and body weight/food consumption in the dams were lower than in the control group. The exception to this dose range finding reproduction study in the rat (ID 12). In that study, pups born to dams exposed to 500, 2000, and 5000 ppm of clethodim during gestation had a lower body weight at PND 7, but not birth weight, and a reduced body weight gain between PND 0 and 7.

No changes in absolute organ weights and no histopathological lesions in the kidneys, brain, or pituitary were observed in the rat, mouse, or dog. Relative brain and kidney weights were increased in two studies, likely a result of reduced body weight (ID 1 and 3).

Adrenal weights (absolute and relative to brain weight) were reduced in rats exposed to 597 (males) or 667 (females) mg/kg bw/day for females for 5 weeks (Report No.: S-2763). Adrenal weights were increased in females and decreased in male mice at the interim but not the terminal sacrifice (week 53 and 79, respectively (ID 7). Due to the inconsistency of the change between sexes, the lack of a dose -response and no differences at Week 79 this finding was not considered to be treatment related. Adrenal weight was unaffected in the other six studies (ID 1-6). No microscopic lesions in the adrenals have been reported.

<u>In conclusion</u>, there are no clear indications of T-mediated adversity in the available data package. While the increased thyroid weight in male dogs is substantial, no remarks were made on the thyroid histopathology of these dogs (or in any other study) and no such effect was observed in females. The increase is considered noteworthy but not enough to conclude that T-mediated adversity is observed. The biological significance of the effect is questioned.

#### Table 2.10.2.1.1.1-2. WoE for T-mediated endocrine activity.

Clethodim was not identified as a THRA agonist in the available ToxCast assay (ATG\_THRa1\_TRANS\_up) (ID 18).

Measurements of T3, T4, and TSH were not included in the data package. However, no exposure related remarks were noted in the microscopic assessment of thyroids from rats (ID 1, 3, and 6), mice (ID 7), or dogs (ID 4 and 5).

<u>In conclusion</u>, there are some thyroid parameters missing from data package i.e., measurements of hormone levels. However, the thyroid parameters included in the test guidelines at the time when the studies in the data package were performed were assessed: thyroid weight (dog, but not in rat or mouse) and histopathology assessments (rat, dog, and mouse). For e.g., OECD 407 (ver. 1995 and 2008) and OECD 408 (ver. 1998), weighing thyroid is not mandatory; but histopathology must be performed. Furthermore, the ToxCast assay showed no thyroid receptor activity. Thus, the available data does not indicate T-mediated activity.

# 2.10.2.1.2 Initial analysis of the evidence and identification of relevant scenario for the ED assessment of T-modality

| Adversity based on    | Positive mechanistic |          |                                  | Scenario selected |
|-----------------------|----------------------|----------|----------------------------------|-------------------|
| T-mediated            | OECD CF level 2/3    | Scenario | Next step of the assessment      | Scenario selecteu |
| parameters            | Test                 |          |                                  |                   |
| No (sufficiently      | Yes/No               | 1a       | Conclude: ED criteria not met    | Х                 |
| investigated)         |                      |          | because there is no "T-mediated" |                   |
|                       |                      |          | adversity                        |                   |
| Yes (sufficiently     | Yes/No               | 1b       | Perform MoA analysis             |                   |
| investigated)         |                      |          |                                  |                   |
| No (not sufficiently  | Yes                  | 2a (i)   | Perform MoA analysis (additional |                   |
| investigated)         |                      |          | information may be needed for    |                   |
|                       |                      |          | the analysis)                    |                   |
| No (not sufficiently  | No (sufficiently     | 2a (ii)  | Conclude: ED criteria not met    |                   |
| investigated)         | investigated)        |          | because no <b>T-mediated</b>     |                   |
|                       |                      |          | endocrine activity observed      |                   |
| No (not sufficiently  | No (not sufficiently | 2a (iii) | Generate missing level 2 and 3   |                   |
| investigated)         | investigated)        |          | information. Alternatively,      |                   |
|                       |                      |          | generate missing "EATS-          |                   |
|                       |                      |          | mediated" parameters. Depending  |                   |
|                       |                      |          | on the outcome move to           |                   |
|                       |                      |          | corresponding scenario           |                   |
| Yes (not sufficiently | Yes/No               | 2b       | Perform MoA analysis             |                   |
| investigated)         |                      |          |                                  |                   |

Table 2.10.2.1.2-1. Selection of relevant scenario.

## 2.10.2.1.3 MoA analysis for T-modality

Not applicable

### 2.10.2.1.4 Conclusion on the assessment of T-modality

The data package was slightly limited in terms of T-mediated parameters: thyroid weight was only measured in the dog and hormone measurements of the thyroid gland were not performed. However, histopathological assessments performed in the thyroid gland of dogs, rats, and mice and no effects were observed. Thyroid gland weight was increased in a dose dependent manner in male- but not female dogs exposed to clethodim for a year, however no microscopic treatment related changes were observed. While the weight increase of the thyroid in male dogs was substantial in the highest dose group (~100%), it is not considered enough to indicate T-mediated adversity due to the lack of effect in females and the absence of histopathological effects, also, no effects on thyroid weight was observed in the 90-day dog study.

There was some evidence of disruption of reproductive parameters sensitive to but not diagnostic of T-mediated adversity (litter/pup weight, foetal development, post implantation loss, incidence of external malformations) but these generally occurred at dose levels inducing maternal toxicity. The most common effects observed in the data package include liver effects (weight and hypertrophy) and accompanied alterations in serum measurements, and effects on the blood system (generally indicating anaemia). Body weights were commonly reduced, usually in combination with reduced food intake. Reduced food intake may in several cases be caused by palatability issues, but toxicity cannot be ruled out.

Overall, apart from the increased thyroid weight in male dogs, there is not much cause for concern regarding thyroid disruption in the observed effects. It is concluded that no T-mediated adversity was observed (Scenario 1a). Clethodim does not meet the criteria for T-mediated endocrine disruption.

|                         | Sufficiently investigated                            |
|-------------------------|------------------------------------------------------|
| EAS-mediated parameters | Yes, based on availability of the following studies: |
|                         | OECD TG 416: ID 13                                   |
|                         | OECD TG 440: ID 14                                   |
|                         | ToxCast ER Bioactivity Model: ID 18                  |
|                         | OECD TG 441: ID 15                                   |
|                         | OECD TG 456: ID 17                                   |
|                         | OPPTS 890.1200: ID 16                                |

### 2.10.2.2 ED assessment for EAS-modality

All studies required for sufficiently assessing EAS-related activity are available and acceptable. According to the EFSA guidance document ("Guidance for the identification of endocrine disruptors in the context of Regulations (EU) No 528/2012 and (EC) No 1107/2009" adopted 5 June 2018), all the 'EAS-mediated' parameters foreseen to be investigated in an extended one-generation reproductive toxicity study (EOGRTS; OECD TG 443; with cohort 1a/1b including the mating of cohort 1b to produce the F2 generation (OECD, 2012b)) or a two-generation reproductive toxicity study (OECD TG 416; test protocol according to latest version of January 2001 (OECD, 2001)) is needed for the EAS-related endocrine adversity to be sufficiently assessed. A two-generation study is available in the data package on clethodim (ID 13), but some EAS-mediated parameters were not assessed.

EAS-mediated parameters not investigated in the toxicological database for clethodim in the 2-generation study:

- Age at preputial separation of offspring
- -Age at vaginal opening of offspring
- -Ano-genital distance of foetuses and offspring
- -Primordial follicles count
- -Histopathology of cervix, coagulating gland and vagina

-Organ weights of adrenal glands, brain, epididymides, kidneys, liver, ovaries, pituitary, prostate, spleen, seminal vesicles/coagulating gland, thyroids, and uterus

-Sperm analysis

Some of the parameters not investigated in the 2-generation reproduction study were, however, measured in other repeated-dose studies. These include vaginal histopathology in the dog (ID: 4), weights of the epididymides in the mouse (ID: 2, 7), ovaries in the rat, mouse and dog (ID: 1, 2, 4, 5, 6, 7) and uterus in the mouse (ID: 7).

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n | Effect target                             | Species                      | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation             | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative) | Assessment of<br>each line of<br>evidence                           | Assessment on<br>the integrated<br>line of evidence                    |
|-----------------------|------------------------------|-------------------------------------------|------------------------------|----------------------------|------------------|--------------------------------------------|--------------------------|---------------|---------------------|--------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------|
| 18                    | In vitro<br>mechanistic      | Androgen<br>receptor                      | human<br>liver cell<br>line  | 24                         | Hours            | Uptake<br>from the<br>medium<br>(in vitro) | 0                        | μМ            | No effect           |                                                  | No AR agonist<br>or antagonist<br>activity in the<br>ToxCast assays | No in vitro or in<br>vivo mechanistic<br>data indicate<br>EAS-mediated |
| 18                    | In vitro<br>mechanistic      | Androgen<br>receptor                      | human<br>breast<br>cell line | 24                         | Hours            | Uptake<br>from the<br>medium<br>(in vitro) | 0                        | μM            | No effect           |                                                  |                                                                     | activity                                                               |
| 16                    | In vitro<br>mechanistic      | CYP19                                     | human                        | 15                         | Minutes          | Uptake<br>from the<br>medium<br>(in vitro) | >1 mM                    | mM            | No effect           |                                                  | No inhibition of<br>aromatase<br>activity                           |                                                                        |
| 17                    | In vitro<br>mechanistic      | Estradiol<br>synthesis                    | human                        | 48                         | Hours            | Uptake<br>from the<br>medium<br>(in vitro) | >31.6<br>µM              |               | No effect           |                                                  | No effect on<br>estradiol release<br>by H295R cells                 | -                                                                      |
| 18                    | In vitro<br>mechanistic      | Estrogen<br>receptor                      | human<br>liver cell<br>line  | 24                         | Hours            | Uptake<br>from the<br>medium<br>(in vitro) | 0                        | μM            | No effect           |                                                  | No ER agonist<br>activity in the<br>ToxCast assays                  |                                                                        |
| 18                    | In vitro<br>mechanistic      | Estrogen<br>receptor                      | human<br>liver cell<br>line  | 24                         | Hours            | Uptake<br>from the<br>medium<br>(in vitro) | 0                        | μM            | No effect           |                                                  |                                                                     |                                                                        |
| 17                    | In vitro<br>mechanistic      | Testosterone<br>synthesis                 | human                        | 48                         | Hours            | Uptake<br>from the<br>medium<br>(in vitro) | >31.6<br>μM              |               | No effect           |                                                  | No effect on<br>testosterone<br>release by<br>H295R cells           |                                                                        |
| 15                    | In vivo<br>mechanistic       | Adrenals<br>weight<br>(Hershberger)       | rat                          | 10                         | Days             | Oral                                       | >200                     | mg/kg<br>bw/  | No effect           |                                                  | No treatment<br>related weight<br>changes were                      |                                                                        |
| 15                    | In vivo<br>mechanistic       | Cowpers<br>glands weight<br>(Hershberger) | rat                          | 10                         | Days             | Oral                                       | >200                     | mg/kg<br>bw/d | No effect           |                                                  | observed in<br>androgen                                             |                                                                        |

2.10.2.2.1 Lines of evidence for adverse effects and endocrine activity related to EAS-modalities.

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n | Effect target                                  | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative) | Assessment of<br>each line of<br>evidence             | Assessment on<br>the integrated<br>line of evidence  |
|-----------------------|------------------------------|------------------------------------------------|---------|----------------------------|------------------|--------------------------------|--------------------------|---------------|---------------------|--------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|
| 15                    | In vivo<br>mechanistic       | Glans penis<br>weight<br>(Hershberger)         | rat     | 10                         | Days             | Oral                           | >200                     | mg/kg<br>bw/d | No effect           |                                                  | responsive<br>organs.                                 |                                                      |
| 15                    | In vivo<br>mechanistic       | LABC weight<br>(Hershberger)                   | rat     | 10                         | Days             | Oral                           | >200                     | mg/kg<br>bw/d | No effect           |                                                  |                                                       |                                                      |
| 15                    | In vivo<br>mechanistic       | Prostate<br>weight<br>(Hershberger)            | rat     | 10                         | Days             | Oral                           | >200                     | mg/kg<br>bw/d | No effect           |                                                  |                                                       |                                                      |
| 15                    | In vivo<br>mechanistic       | Seminal<br>vesicles<br>weight<br>(Hershberger) | rat     | 10                         | Days             | Oral                           | >200                     | mg/kg<br>bw/d | No effect           |                                                  |                                                       |                                                      |
| 14                    | In vivo<br>mechanistic       | Uterus histo-<br>pathology<br>(UT assay)       | rat     | 3                          | Days             | Oral                           | >450                     | mg/kg<br>bw/d | No effect           |                                                  | There were no<br>observed effects<br>on uterus weight | -                                                    |
| 14                    | In vivo<br>mechanistic       | Uterus weight<br>(UT assay)                    | rat     | 3                          | Days             | Oral                           | >450                     | mg/kg<br>bw/d | No effect           |                                                  | or histo-<br>pathology                                |                                                      |
| 14                    | In vivo<br>mechanistic       | Uterus weight<br>(UT assay)                    | rat     | 3                          | Days             | Oral                           | >450                     | mg/kg<br>bw/d | No effect           |                                                  |                                                       |                                                      |
| 1                     | EATS-<br>mediated            | Epididymis<br>histo-<br>pathology              | Rat     | 5                          | Weeks            | Oral                           | >8000                    | ppm           | No effect           |                                                  | No effects have<br>been observed<br>on epididymis     | EATS-mediated<br>parameters were<br>unaffected in    |
| 3                     | EATS-<br>mediated            | Epididymis<br>histo-<br>pathology              | Rat     | 13                         | Weeks            | Oral                           | >5000                    | ppm           | No effect           |                                                  | histology (rat,<br>dog, mouse) or<br>epididymis       | most studies.<br>Relative testis<br>weight was       |
| 4                     | EATS-<br>mediated            | Epididymis<br>histo-<br>pathology              | Dog     | 90                         | Days             | Oral                           | >125                     | mg/kg<br>bw/d | No effect           |                                                  | weight (rat)                                          | increased in one<br>study, but this<br>was likely a  |
| 5                     | EATS-<br>mediated            | Epididymis<br>histo-<br>pathology              | Dog     | 52                         | Weeks            | Oral                           | >300                     | mg/kg<br>bw/d | No effect           |                                                  |                                                       | result of the<br>reduced body<br>weight rather       |
| 6                     | EATS-<br>mediated            | Epididymis<br>histo-<br>pathology              | Rat     | 2                          | Years            | Oral                           | >2500                    | ppm           | No effect           |                                                  |                                                       | than a hormonal<br>effect. Reduced<br>absolute ovary |
| 7                     | EATS-<br>mediated            | Epididymis<br>histo-<br>pathology              | mouse   | 52                         | Weeks            | Oral                           | >3000                    | ppm           | No effect           |                                                  |                                                       | weight was<br>observed in the<br>90-d studies (dog   |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n | Effect target                                    | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative) | Assessment of<br>each line of<br>evidence                                  | Assessment on<br>the integrated<br>line of evidence                                                                                                                                                            |
|-----------------------|------------------------------|--------------------------------------------------|---------|----------------------------|------------------|--------------------------------|--------------------------|---------------|---------------------|--------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 13                    | EATS-<br>mediated            | Epididymis<br>histo-<br>pathology                | rat     | 28                         | weeks            | Oral                           | >2500                    | ppm           | No effect           |                                                  |                                                                            | and rat) but the<br>relevance is<br>unclear, and no<br>such effects were<br>observed in the<br>long-term<br>studies. Absolute<br>uterus weights                                                                |
| 13                    | EATS-<br>mediated            | Epididymis<br>weight                             | rat     | 28                         | weeks            | Oral                           | >2500                    | ppm           | No effect           |                                                  |                                                                            |                                                                                                                                                                                                                |
| 13                    | EATS-<br>mediated            | Estrus<br>cyclicity                              | rat     | 28                         | weeks            | Oral                           | >2500                    | ppm           | No effect           |                                                  | No effect on<br>oestrus cyclicity<br>in the rat                            |                                                                                                                                                                                                                |
| 1                     | EATS-<br>mediated            | Mammary<br>gland histo-<br>pathology<br>(female) | Rat     | 5                          | Weeks            | Oral                           | >8000                    | ppm           | No effect           |                                                  | No effects on<br>female<br>mammary gland<br>histology (rat,<br>dog, mouse) | were reduced in<br>dams following<br>gestational<br>exposure in rats                                                                                                                                           |
| 3                     | EATS-<br>mediated            | Mammary<br>gland histo-<br>pathology<br>(female) | Rat     | 13                         | Weeks            | Oral                           | >5000                    | ppm           | No effect           |                                                  |                                                                            | and rabbits.<br>Oestrus cyclicity<br>was not<br>mentioned in<br>most studies<br>which limits the<br>possibility of<br>interpreting the<br>differences in<br>ovary and uterus<br>weights. In<br>males, absolute |
| 4                     | EATS-<br>mediated            | Mammary<br>gland histo-<br>pathology<br>(female) | Dog     | 90                         | Days             | Oral                           | >125                     | mg/kg<br>bw/d | No effect           |                                                  |                                                                            |                                                                                                                                                                                                                |
| 5                     | EATS-<br>mediated            | Mammary<br>gland histo-<br>pathology<br>(female) | Dog     | 52                         | Weeks            | Oral                           | >300                     | mg/kg<br>bw/d | No effect           |                                                  |                                                                            |                                                                                                                                                                                                                |
| 6                     | EATS-<br>mediated            | Mammary<br>gland histo-<br>pathology<br>(female) | Rat     | 2                          | Years            | Oral                           | >2500                    | ppm           | No effect           |                                                  |                                                                            | but not relative<br>seminal vesicles<br>and prostate<br>weights were                                                                                                                                           |
| 7                     | EATS-<br>mediated            | Mammary<br>gland histo-<br>pathology<br>(female) | mouse   | 52                         | Weeks            | Oral                           | >3000                    | ppm           | No effect           |                                                  |                                                                            | reduced in rats.<br>Overall, there<br>were some organ<br>weight changes                                                                                                                                        |
| 1                     | EATS-<br>mediated            | Ovary histo-<br>pathology                        | Rat     | 5                          | Weeks            | Oral                           | >8000                    | ppm           | No effect           |                                                  | No effects on<br>female ovary<br>histology (rat,<br>dog, mouse)            | that may indicate<br>EAS-mediated                                                                                                                                                                              |
| 3                     | EATS-<br>mediated            | Ovary histo-<br>pathology                        | Rat     | 13                         | Weeks            | Oral                           | >5000                    | ppm           | No effect           |                                                  |                                                                            | effects but there<br>are no clear<br>trends in the data<br>package.                                                                                                                                            |
| 4                     | EATS-<br>mediated            | Ovary histo-<br>pathology                        | Dog     | 90                         | Days             | Oral                           | >125                     | mg/kg<br>bw/d | No effect           |                                                  |                                                                            |                                                                                                                                                                                                                |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n | Effect target             | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)                                                                                                                                                                                                                                                      | Assessment of<br>each line of<br>evidence                                                                                                 | Assessment on<br>the integrated<br>line of evidence |
|-----------------------|------------------------------|---------------------------|---------|----------------------------|------------------|--------------------------------|--------------------------|---------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| 5                     | EATS-<br>mediated            | Ovary histo-<br>pathology | Dog     | 52                         | Weeks            | Oral                           | >300                     | mg/kg<br>bw/d | No effect           |                                                                                                                                                                                                                                                                                                       |                                                                                                                                           |                                                     |
| 6                     | EATS-<br>mediated            | Ovary histo-<br>pathology | Rat     | 2                          | Years            | Oral                           | >2500                    | ppm           | No effect           |                                                                                                                                                                                                                                                                                                       |                                                                                                                                           |                                                     |
| 7                     | EATS-<br>mediated            | Ovary histo-<br>pathology | mouse   | 52                         | Weeks            | Oral                           | >3000                    | ppm           | No effect           |                                                                                                                                                                                                                                                                                                       |                                                                                                                                           |                                                     |
| 13                    | EATS-<br>mediated            | Ovary histo-<br>pathology | rat     | 28                         | weeks            | Oral                           | >2500                    | ppm           | No effect           |                                                                                                                                                                                                                                                                                                       |                                                                                                                                           |                                                     |
| 1                     | EATS-<br>mediated            | Ovary weight              | Rat     | 5                          | Weeks            | Oral                           | >8000                    | ppm           | No effect           |                                                                                                                                                                                                                                                                                                       | The differences<br>in ovary weights                                                                                                       |                                                     |
| 3                     | EATS-<br>mediated            | Ovary weight              | Rat     | 13                         | Weeks            | Oral                           | >5000                    | ppm           | No effect           | All relative<br>and absolute<br>weights were<br>lower than the<br>control, but<br>no dose<br>response was<br>apparent.                                                                                                                                                                                | observed in the<br>90-d studies (dog<br>and rat) are of<br>unclear<br>relevance.<br>Oestrus cyclicity<br>not mentioned.<br>Differences in |                                                     |
| 4                     | EATS-<br>mediated            | Ovary weight              | Dog     | 90                         | Days             | Oral                           | 75                       | mg/kg<br>bw/d | Change              | The mean<br>ovary weight<br>of dogs<br>administered<br>75 mg/kg<br>bw/d was<br>lower and<br>those of dogs<br>administered<br>125mg/kg<br>bw/day were<br>higher than<br>the mean<br>ovary weight<br>of the control<br>group. The<br>differences<br>were not<br>significant<br>but rather<br>large (30- | ovary weights<br>were not<br>observed in the<br>long- term<br>studies in dog<br>and rat.                                                  |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n | Effect target                                                                             | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)                   | Assessment of<br>each line of<br>evidence                                         | Assessment on<br>the integrated<br>line of evidence |
|-----------------------|------------------------------|-------------------------------------------------------------------------------------------|---------|----------------------------|------------------|--------------------------------|--------------------------|---------------|---------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------|
|                       |                              |                                                                                           |         |                            |                  |                                |                          |               |                     | 82%). Both<br>relative and<br>absolute<br>weights were<br>affected |                                                                                   |                                                     |
| 5                     | EATS-<br>mediated            | Ovary weight                                                                              | Dog     | 52                         | Weeks            | Oral                           | >300                     | mg/kg<br>bw/d | No effect           |                                                                    |                                                                                   |                                                     |
| 6                     | EATS-<br>mediated            | Ovary weight                                                                              | Rat     | 2                          | Years            | Oral                           | >2500                    | ppm           | No effect           |                                                                    |                                                                                   |                                                     |
| 13                    | EATS-<br>mediated            | Ovary weight                                                                              | rat     | 28                         | weeks            | Oral                           | >2500                    | ppm           | No effect           |                                                                    |                                                                                   |                                                     |
| 1                     | EATS-<br>mediated            | Prostate<br>histopatholog<br>y (with<br>seminal<br>vesicles and<br>coagulating<br>glands) | Rat     | 5                          | Weeks            | Oral                           | >8000                    | ppm           | No effect           |                                                                    | No effects on<br>prostate or<br>seminal vesicle<br>histology (rat,<br>dog, mouse) |                                                     |
| 3                     | EATS-<br>mediated            | Prostate histo-<br>pathology<br>(with seminal<br>vesicles and<br>coagulating<br>glands)   | Rat     | 13                         | Weeks            | Oral                           | >5000                    | ppm           | No effect           |                                                                    |                                                                                   |                                                     |
| 4                     | EATS-<br>mediated            | Prostate histo-<br>pathology<br>(with seminal<br>vesicles and<br>coagulating<br>glands)   | Dog     | 90                         | Days             | Oral                           | >125                     | mg/kg<br>bw/d | No effect           |                                                                    |                                                                                   |                                                     |
| 5                     | EATS-<br>mediated            | Prostate histo-<br>pathology<br>(with seminal<br>vesicles and<br>coagulating<br>glands)   | Dog     | 52                         | Weeks            | Oral                           | >300                     | mg/kg<br>bw/d | No effect           |                                                                    |                                                                                   |                                                     |
| 6                     | EATS-<br>mediated            | Prostate histo-<br>pathology<br>(with seminal                                             | Rat     | 2                          | Years            | Oral                           | >2500                    | ppm           | No effect           |                                                                    |                                                                                   |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n | Effect target                                                                             | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative) | Assessment of<br>each line of<br>evidence                                                                                                                                     | Assessment on<br>the integrated<br>line of evidence |
|-----------------------|------------------------------|-------------------------------------------------------------------------------------------|---------|----------------------------|------------------|--------------------------------|--------------------------|--------------|---------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
|                       |                              | vesicles and<br>coagulating<br>glands)                                                    |         |                            |                  |                                |                          |              |                     |                                                  |                                                                                                                                                                               |                                                     |
| 7                     | EATS-<br>mediated            | Prostate histo-<br>pathology<br>(with seminal<br>vesicles and<br>coagulating<br>glands)   | mouse   | 52                         | Weeks            | Oral                           | >3000                    | ppm          | No effect           |                                                  |                                                                                                                                                                               |                                                     |
| 13                    | EATS-<br>mediated            | Prostate<br>histopatholog<br>y (with<br>seminal<br>vesicles and<br>coagulating<br>glands) | rat     | 28                         | weeks            | Oral                           | >2500                    | ppm          | No effect           |                                                  |                                                                                                                                                                               |                                                     |
| 1                     | EATS-<br>mediated            | Seminal<br>vesicles histo-<br>pathology                                                   | Rat     | 5                          | Weeks            | Oral                           | >8000                    | ppm          | No effect           |                                                  |                                                                                                                                                                               |                                                     |
| 7                     | EATS-<br>mediated            | Seminal<br>vesicles histo-<br>pathology                                                   | mouse   | 52                         | Weeks            | Oral                           | >3000                    | ppm          | No effect           |                                                  |                                                                                                                                                                               |                                                     |
| 13                    | EATS-<br>mediated            | Seminal<br>vesicles histo-<br>pathology                                                   | rat     | 28                         | weeks            | Oral                           | >2500                    | ppm          | No effect           |                                                  |                                                                                                                                                                               |                                                     |
| 13                    | EATS-<br>mediated            | Seminal<br>vesicles<br>weight                                                             | rat     | 28                         | weeks            | Oral                           | 2500                     | ppm          | Decrease            |                                                  | There was a<br>reduced absolute<br>but not relative<br>seminal vesicles<br>weight in the F1<br>generation of the<br>2500 ppm group<br>(food intake and<br>BW also<br>reduced) |                                                     |
| 13                    | EATS-<br>mediated            | Prostate<br>weight                                                                        | rat     | 28                         | weeks            | Oral                           | 2500                     | ppm          | Decrease            |                                                  | There was a<br>reduced absolute<br>but not relative<br>prostate weight                                                                                                        |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n | Effect target              | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)                                                               | Assessment of<br>each line of<br>evidence                                                                                      | Assessment on<br>the integrated<br>line of evidence |
|-----------------------|------------------------------|----------------------------|---------|----------------------------|------------------|--------------------------------|--------------------------|---------------|---------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
|                       |                              |                            |         |                            |                  |                                |                          |               |                     |                                                                                                                | in the F1<br>generation of the<br>2500 ppm group<br>(food intake and<br>BW also<br>reduced)                                    |                                                     |
| 1                     | EATS-<br>mediated            | Testis histo-<br>pathology | Rat     | 5                          | Weeks            | Oral                           | >8000                    | ppm           | No effect           |                                                                                                                | No effects on testis histology                                                                                                 |                                                     |
| 3                     | EATS-<br>mediated            | Testis histo-<br>pathology | Rat     | 13                         | Weeks            | Oral                           | >5000                    | ppm           | No effect           |                                                                                                                | (rat, dog, mouse)                                                                                                              |                                                     |
| 4                     | EATS-<br>mediated            | Testis histo-<br>pathology | Dog     | 90                         | Days             | Oral                           | >125                     | mg/kg<br>bw/d | No effect           |                                                                                                                |                                                                                                                                |                                                     |
| 5                     | EATS-<br>mediated            | Testis histo-<br>pathology | Dog     | 52                         | Weeks            | Oral                           | >300                     | mg/kg<br>bw/d | No effect           |                                                                                                                |                                                                                                                                |                                                     |
| 6                     | EATS-<br>mediated            | Testis histo-<br>pathology | Rat     | 2                          | Years            | Oral                           | >2500                    | ppm           | No effect           |                                                                                                                |                                                                                                                                |                                                     |
| 7                     | EATS-<br>mediated            | Testis histo-<br>pathology | mouse   | 52                         | Weeks            | Oral                           | >3000                    | ppm           | No effect           |                                                                                                                |                                                                                                                                |                                                     |
| 13                    | EATS-<br>mediated            | Testis histo-<br>pathology | rat     | 28                         | weeks            | Oral                           | >2500                    | ppm           | No effect           |                                                                                                                |                                                                                                                                |                                                     |
| 1                     | EATS-<br>mediated            | Testis weight              | Rat     | 5                          | Weeks            | Oral                           | >8000                    | ppm           | No effect           | Relative<br>testes weight<br>was increased<br>at 8000 ppm,<br>likely a result<br>of the reduced<br>body weight | Relative testis<br>weight was<br>increased in two<br>studies on rats;<br>however, these<br>increases are<br>likely a result of |                                                     |
| 2                     | EATS-<br>mediated            | Testis weight              | mouse   | 4                          | Weeks            | Oral                           | >4000                    | ppm           | No effect           |                                                                                                                | reduced BW. No effects on                                                                                                      |                                                     |
| 3                     | EATS-<br>mediated            | Testis weight              | Rat     | 13                         | Weeks            | Oral                           | >5000                    | ppm           | No effect           |                                                                                                                | absolute testis<br>weight have                                                                                                 |                                                     |
| 4                     | EATS-<br>mediated            | Testis weight              | Dog     | 90                         | Days             | Oral                           | >125                     | mg/kg<br>bw/d | No effect           |                                                                                                                | been observed.                                                                                                                 |                                                     |
| 5                     | EATS-<br>mediated            | Testis weight              | Dog     | 52                         | Weeks            | Oral                           | >300                     | mg/kg<br>bw/d | No effect           |                                                                                                                |                                                                                                                                |                                                     |
| 6                     | EATS-<br>mediated            | Testis weight              | Rat     | 2                          | Years            | Oral                           | >2500                    | ppm           | No effect           |                                                                                                                |                                                                                                                                |                                                     |
| 7                     | EATS-<br>mediated            | Testis weight              | mouse   | 52                         | Weeks            | Oral                           | >3000                    | ppm           | No effect           |                                                                                                                |                                                                                                                                |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n | Effect target                               | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)                                                                      | Assessment of<br>each line of<br>evidence                                                                      | Assessment on<br>the integrated<br>line of evidence |
|-----------------------|------------------------------|---------------------------------------------|---------|----------------------------|------------------|--------------------------------|--------------------------|---------------|---------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| 13                    | EATS-<br>mediated            | Testis weight                               | rat     | 28                         | weeks            | Oral                           | >2500                    | ppm           | No effect           | Relative<br>testes weight<br>was increased<br>in the F0<br>males, likely<br>a result of the<br>reduced body<br>weight |                                                                                                                |                                                     |
| 1                     | EATS-<br>mediated            | Uterus histo-<br>pathology<br>(with cervix) | Rat     | 5                          | Weeks            | Oral                           | >8000                    | ppm           | No effect           |                                                                                                                       | No effects on<br>uterus histology<br>(rat, dog, mouse)                                                         |                                                     |
| 3                     | EATS-<br>mediated            | Uterus histo-<br>pathology<br>(with cervix) | Rat     | 13                         | Weeks            | Oral                           | >5000                    | ppm           | No effect           |                                                                                                                       |                                                                                                                |                                                     |
| 4                     | EATS-<br>mediated            | Uterus histo-<br>pathology<br>(with cervix) | Dog     | 90                         | Days             | Oral                           | >125                     | mg/kg<br>bw/d | No effect           |                                                                                                                       |                                                                                                                |                                                     |
| 5                     | EATS-<br>mediated            | Uterus histo-<br>pathology<br>(with cervix) | Dog     | 52                         | Weeks            | Oral                           | >300                     | mg/kg<br>bw/d | No effect           |                                                                                                                       |                                                                                                                |                                                     |
| 6                     | EATS-<br>mediated            | Uterus histo-<br>pathology<br>(with cervix) | Rat     | 2                          | Years            | Oral                           | >2500                    | ppm           | No effect           |                                                                                                                       |                                                                                                                |                                                     |
| 7                     | EATS-<br>mediated            | Uterus histo-<br>pathology<br>(with cervix) | mouse   | 52                         | Weeks            | Oral                           | >3000                    | ppm           | No effect           |                                                                                                                       |                                                                                                                |                                                     |
| 13                    | EATS-<br>mediated            | Uterus histo-<br>pathology<br>(with cervix) | rat     | 28                         | weeks            | Oral                           | >2500                    | ppm           | No effect           |                                                                                                                       |                                                                                                                |                                                     |
| 2                     | EATS-<br>mediated            | Uterus weight<br>(with cervix)              | mouse   | 4                          | Weeks            | Oral                           | >4000                    | ppm           | No effect           |                                                                                                                       | Uterus weights<br>were reduced in                                                                              |                                                     |
| 7                     | EATS-<br>mediated            | Uterus weight<br>(with cervix)              | mouse   | 52                         | Weeks            | Oral                           | >3000                    | ppm           | No effect           |                                                                                                                       | two studies after<br>exposure during                                                                           |                                                     |
| 9                     | EATS-<br>mediated            | Uterus weight<br>(with cervix)              | rat     | 10 (GD 6-<br>15)           | Days             | Oral                           | 350                      | mg/kg<br>bw/d | Decrease            | 7% reduction<br>in the 100<br>mg/kg<br>bw/day<br>group, 10 %<br>in the 350                                            | gestational days<br>6-15 in rat and 7-<br>19 in rabbit. BW<br>was reduced in<br>both studies.<br>Food consump- |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n                       | Effect target                   | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)                                                                                                                    | Assessment of<br>each line of<br>evidence                                                                                                                  | Assessment on<br>the integrated<br>line of evidence           |
|-----------------------|----------------------------------------------------|---------------------------------|---------|----------------------------|------------------|--------------------------------|--------------------------|---------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
|                       |                                                    |                                 |         |                            |                  |                                |                          |               |                     | mg/kg<br>bw/day<br>group, and<br>27% in the<br>700 mg/kg<br>bw/day group<br>(only the top<br>dose was<br>statistically<br>significant).                             | tion was reduced<br>in the rabbit<br>study. Uterus<br>weight was not<br>affected in non-<br>pregnant rats or<br>mice, nor in the<br>pilot with<br>rabbits. |                                                               |
| 10                    | EATS-<br>mediated                                  | Uterus weight<br>(with cervix)  | rabbit  | 13 (DG 7-<br>19)           | Days             | Oral                           | >500                     | mg/kg<br>bw/d | No effect           |                                                                                                                                                                     |                                                                                                                                                            |                                                               |
| 11                    | EATS-<br>mediated                                  | Uterus weight<br>(with cervix)  | rabbit  | 13 (DG 7-<br>19)           | Days             | Oral                           | 300                      | mg/kg<br>bw/d | Decrease            | Not<br>statistically<br>significant<br>10% decrease<br>in absolute<br>uterus weight<br>in the 300<br>mg/kg<br>bw/day dose<br>group when<br>compared to<br>controls. |                                                                                                                                                            |                                                               |
| 13                    | EATS-<br>mediated                                  | Uterus weight<br>(with cervix)  | rat     | 28                         | weeks            | Oral                           | >2500                    | ppm           | No effect           |                                                                                                                                                                     |                                                                                                                                                            |                                                               |
| 13                    | EATS-<br>mediated                                  | Vagina histo-<br>pathology      | rat     | 28                         | weeks            | Oral                           | >2500                    | ppm           | No effect           |                                                                                                                                                                     | No effect on<br>vagina histo-<br>pathology                                                                                                                 |                                                               |
| 1                     | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Adrenals<br>histo-<br>pathology | Rat     | 5                          | Weeks            | Oral                           | >8000                    | ppm           | No effect           |                                                                                                                                                                     | No effects on<br>adrenals<br>histology (rat,<br>dog, mouse)                                                                                                | Effects were<br>observed on<br>parameters<br>sensitive to but |
| 3                     | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Adrenals<br>histo-<br>pathology | Rat     | 13                         | Weeks            | Oral                           | >5000                    | ppm           | No effect           |                                                                                                                                                                     |                                                                                                                                                            | not diagnostic of<br>T-mediated<br>adversity<br>(Litter/pup   |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n                       | Effect target                   | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative) | Assessment of<br>each line of<br>evidence                                                                                                                                                                                                                               | Assessment on<br>the integrated<br>line of evidence                       |
|-----------------------|----------------------------------------------------|---------------------------------|---------|----------------------------|------------------|--------------------------------|--------------------------|---------------|---------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| 4                     | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Adrenals<br>histo-<br>pathology | Dog     | 90                         | Days             | Oral                           | >125                     | mg/kg<br>bw/d | No effect           |                                                  |                                                                                                                                                                                                                                                                         | weight, Foetal<br>development,<br>Post<br>implantation                    |
| 5                     | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Adrenals<br>histo-<br>pathology | Dog     | 52                         | Weeks            | Oral                           | >300                     | mg/kg<br>bw/d | No effect           |                                                  |                                                                                                                                                                                                                                                                         | loss, incidence of<br>external<br>malformations,<br>and altered           |
| 6                     | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Adrenals<br>histo-<br>pathology | Rat     | 2                          | Years            | Oral                           | >2500                    | ppm           | No effect           |                                                  |                                                                                                                                                                                                                                                                         | adrenals weight).<br>The effects on<br>offspring/<br>reproduction         |
| 7                     | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Adrenals<br>histo-<br>pathology | mouse   | 52                         | Weeks            | Oral                           | >3000                    | ppm           | No effect           |                                                  |                                                                                                                                                                                                                                                                         | mainly occurred<br>at dose levels<br>causing maternal<br>toxicity and may |
| 1                     | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Adrenals<br>weight              | Rat     | 5                          | Weeks            | Oral                           | >8000                    | ppm           | No effect           |                                                  | Adrenal weight<br>was clearly<br>affected in one<br>out of 8 studies                                                                                                                                                                                                    | thus be<br>secondary to<br>maternal<br>toxicity.                          |
| 2                     | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Adrenals<br>weight              | mouse   | 4                          | Weeks            | Oral                           | >4000                    | ppm           | No effect           |                                                  | (S-2763) but no<br>remarks have<br>been made in the<br>histopathological                                                                                                                                                                                                |                                                                           |
| 3                     | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Adrenals<br>weight              | Rat     | 13                         | Weeks            | Oral                           | >5000                    | ppm           | No effect           |                                                  | histopathological<br>assessments. The<br>rats in the study<br>with reduced<br>adrenal weight<br>also shad a<br>reduced body<br>weight and<br>increased liver<br>weight. In<br>another study,<br>adrenals weights<br>of both male and<br>female mice<br>were affected at |                                                                           |
| 4                     | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Adrenals<br>weight              | Dog     | 90                         | Days             | Oral                           | >125                     | mg/kg<br>bw/d | No effect           |                                                  |                                                                                                                                                                                                                                                                         |                                                                           |
| 5                     | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Adrenals<br>weight              | Dog     | 52                         | Weeks            | Oral                           | >300                     | mg/kg<br>bw/d | No effect           |                                                  |                                                                                                                                                                                                                                                                         |                                                                           |
| 6                     | Sensitive to,<br>but not                           | Adrenals<br>weight              | Rat     | 2                          | Years            | Oral                           | >2500                    | ppm           | No effect           |                                                  |                                                                                                                                                                                                                                                                         |                                                                           |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n                       | Effect target      | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Assessment of<br>each line of<br>evidence                                                                                 | Assessment on<br>the integrated<br>line of evidence |
|-----------------------|----------------------------------------------------|--------------------|---------|----------------------------|------------------|--------------------------------|--------------------------|--------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
|                       | diagnostic<br>of, EATS                             |                    |         |                            |                  |                                |                          |              |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 53 weeks but not<br>79 weeks:                                                                                             |                                                     |
| 7                     | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Adrenals<br>weight | mouse   | 52                         | Weeks            | Oral                           | >3000                    | ppm          | Change              | Adrenals<br>weight<br>(absolute and<br>relative to<br>both BW and<br>brain weight)<br>was reduced<br>in males of all<br>exposure<br>groups at the<br>interim<br>sacrifice, i.e.<br>week 53 (34-<br>55%<br>reduction, no<br>dose<br>response) but<br>not at the<br>terminal<br>sacrifice, i.e.<br>week 79. In<br>females,<br>adrenals<br>weight<br>(absolute and<br>relative to<br>both BW and<br>brain weight)<br>was increased<br>in all<br>exposure<br>groups at the<br>interim<br>sacrifice (10-<br>41% increase,<br>no dose<br>response) but<br>not at the | decrease in<br>males and<br>increase in<br>females. The<br>results in the<br>latter study are<br>of unclear<br>relevance. |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n                       | Effect target                            | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)                                                              | Assessment of<br>each line of<br>evidence                                                                                     | Assessment on<br>the integrated<br>line of evidence |
|-----------------------|----------------------------------------------------|------------------------------------------|---------|----------------------------|------------------|--------------------------------|--------------------------|---------------|---------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
|                       |                                                    |                                          |         |                            |                  |                                |                          |               |                     | terminal<br>sacrifice.<br>Unclear<br>relevance.                                                               |                                                                                                                               |                                                     |
| S-2763                | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Adrenals<br>weight                       | Rat     | 5                          | Weeks            | Oral                           | 6800                     | ppm           | Decrease            |                                                                                                               |                                                                                                                               |                                                     |
| 1                     | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Brain histo-<br>pathology<br>examination | Rat     | 5                          | Weeks            | Oral                           | >8000                    | ppm           | No effect           |                                                                                                               | No effects on<br>brain histology<br>(rat, dog, mouse)                                                                         |                                                     |
| 3                     | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Brain histo-<br>pathology<br>examination | Rat     | 13                         | Weeks            | Oral                           | >5000                    | ppm           | No effect           |                                                                                                               |                                                                                                                               |                                                     |
| 4                     | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Brain histo-<br>pathology<br>examination | Dog     | 90                         | Days             | Oral                           | >125                     | mg/kg<br>bw/d | No effect           |                                                                                                               |                                                                                                                               |                                                     |
| 5                     | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Brain histo-<br>pathology<br>examination | Dog     | 52                         | Weeks            | Oral                           | >300                     | mg/kg<br>bw/d | No effect           |                                                                                                               |                                                                                                                               |                                                     |
| 6                     | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Brain histo-<br>pathology<br>examination | Rat     | 2                          | Years            | Oral                           | >2500                    | ppm           | No effect           |                                                                                                               |                                                                                                                               |                                                     |
| 7                     | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Brain histo-<br>pathology<br>examination | mouse   | 52                         | Weeks            | Oral                           | >3000                    | ppm           | No effect           |                                                                                                               |                                                                                                                               |                                                     |
| 1                     | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Brain weight                             | Rat     | 5                          | Weeks            | Oral                           | >8000                    | ppm           | No effect           | Relative brain<br>weight was<br>increased at<br>8000 ppm,<br>likely a result<br>of the reduced<br>body weight | Relative brain<br>weight was<br>increased in two<br>studies on rats;<br>however, these<br>increases are<br>likely a result of |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n                       | Effect target          | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)                                                                                | Assessment of<br>each line of<br>evidence                     | Assessment on<br>the integrated<br>line of evidence |
|-----------------------|----------------------------------------------------|------------------------|---------|----------------------------|------------------|--------------------------------|--------------------------|---------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------|
| 2                     | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Brain weight           | mouse   | 4                          | Weeks            | Oral                           | >4000                    | ppm           | No effect           |                                                                                                                                 | reduced BW. No<br>effects on<br>absolute brain<br>weight have |                                                     |
| 3                     | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Brain weight           | Rat     | 13                         | Weeks            | Oral                           | >5000                    | ppm           | No effect           | Relative brain<br>weight was<br>increased in<br>both sexes at<br>5000 ppm,<br>likely a result<br>of the reduced<br>body weights | been observed.                                                |                                                     |
| 4                     | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Brain weight           | Dog     | 90                         | Days             | Oral                           | >125                     | mg/kg<br>bw/d | No effect           |                                                                                                                                 |                                                               |                                                     |
| 5                     | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Brain weight           | Dog     | 52                         | Weeks            | Oral                           | >300                     | mg/kg<br>bw/d | No effect           |                                                                                                                                 |                                                               |                                                     |
| 6                     | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Brain weight           | Rat     | 2                          | Years            | Oral                           | >2500                    | ppm           | No effect           |                                                                                                                                 |                                                               |                                                     |
| 7                     | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Brain weight           | mouse   | 52                         | Weeks            | Oral                           | >3000                    | ppm           | No effect           |                                                                                                                                 |                                                               |                                                     |
| 13                    | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Dystocia               | rat     | 28                         | weeks            | Oral                           | >2500                    | ppm           | No effect           |                                                                                                                                 | No effects on<br>dystocia                                     |                                                     |
| 13                    | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Fertility<br>(mammals) | rat     | 28                         | weeks            | Oral                           | >2500                    | ppm           | No effect           |                                                                                                                                 | No effects on fertility                                       |                                                     |
| 13                    | Sensitive to,<br>but not                           | Gestation<br>length    | rat     | 28                         | weeks            | Oral                           | >2500                    | ppm           | No effect           |                                                                                                                                 | No effect on gestation length                                 |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n                       | Effect target        | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)                                                                                                                                                                                                                                                                                                                                                                    | Assessment of<br>each line of<br>evidence                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Assessment on<br>the integrated<br>line of evidence |
|-----------------------|----------------------------------------------------|----------------------|---------|----------------------------|------------------|--------------------------------|--------------------------|---------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
|                       | diagnostic<br>of, EATS                             |                      |         |                            |                  |                                |                          |               |                     |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                     |
| 12                    | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Litter size          | rat     | 5 to 6                     | Weeks            | Oral                           | >5000                    | ppm           | No effect           |                                                                                                                                                                                                                                                                                                                                                                                                                     | No effect on<br>litter size                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                     |
| 13                    | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Litter size          | rat     | 28                         | weeks            | Oral                           | >2500                    | ppm           | No effect           |                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                     |
| 8                     | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Litter/pup<br>weight | rat     | 10 (GD 6-<br>15)           | Days             | Oral                           | 500                      | mg/kg<br>bw/d | Decrease            | Mean foetal<br>weights were<br>reduced in the<br>animals of the<br>top dose<br>group (-<br>10.6% for the<br>composite<br>foetal weight<br>data). A<br>tendency was<br>observed<br>already at 300<br>mg/kg<br>bw/day (7%<br>reduction, not<br>statistically<br>significant).<br>Maternal<br>effects at the<br>top dose<br>included:<br>excess<br>salivation and<br>reduced body<br>weight and<br>body weight<br>gain | Reduction in<br>foetal body<br>weight were<br>observed three<br>studies (rat and<br>rabbit) but at<br>doses causing<br>maternal<br>toxicity,<br>including<br>reductions in<br>body weight and<br>food consump-<br>tion. In rats,<br>reductions in<br>combined pup<br>weight (day 7)<br>and pup weight<br>gain (day 0-7),<br>but not birth<br>weight, were<br>observed at all<br>dose levels (500,<br>2000, and 5000<br>ppm) in the 5-<br>week study.<br>Maternal toxicity<br>was only noted |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n                       | Effect target        | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)                                                                                                                                                                                                                                                     | Assessment of<br>each line of<br>evidence                                                                                                                                                        | Assessment on<br>the integrated<br>line of evidence |
|-----------------------|----------------------------------------------------|----------------------|---------|----------------------------|------------------|--------------------------------|--------------------------|---------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| 9                     | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Litter/pup<br>weight | rat     | 10 (GD 6-<br>15)           | Days             | Oral                           | 350                      | mg/kg<br>bw/d | Decrease            | Reduction in<br>foetal body<br>weight was<br>observed in<br>dose groups<br>receiving 350<br>and 700<br>mg/kg<br>bw/day.<br>Maternal<br>effects at<br>those doses<br>included:<br>clinical signs<br>and reduced<br>body weight<br>gain                                                                | in the highest<br>dose group. This<br>effect on<br>postnatal growth<br>was not observed<br>in either<br>generation of the<br>2-generation<br>study (doses<br>used: 5, 20, 500,<br>and 2500 ppm). |                                                     |
| 10                    | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Litter/pup<br>weight | rabbit  | 13 (DG 7-<br>19)           | Days             | Oral                           | 300                      | mg/kg<br>bw/d | Decrease            | Reduction in<br>foetal body<br>weight was<br>observed in<br>dose groups<br>receiving 300<br>and 500<br>mg/kg<br>bw/day.<br>Maternal<br>effects at<br>those doses<br>included<br>reduced food<br>consumption,<br>reduced body<br>weight gain<br>and body<br>weight, dried<br>faeces, and<br>mortality |                                                                                                                                                                                                  |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n                       | Effect target                                | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)                                                                                                                                                                                                                                                                                                                    | Assessment of<br>each line of<br>evidence                                                                        | Assessment on<br>the integrated<br>line of evidence |
|-----------------------|----------------------------------------------------|----------------------------------------------|---------|----------------------------|------------------|--------------------------------|--------------------------|---------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| 11                    | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Litter/pup<br>weight                         | rabbit  | 13 (DG 7-<br>19)           | Days             | Oral                           | >300                     | mg/kg<br>bw/d | No effect           |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  |                                                     |
| 12                    | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Litter/pup<br>weight                         | rat     | 5 to 6                     | Weeks            | Oral                           | 500                      | ppm           | Decrease            | There was a<br>significant<br>decrease in<br>combined pup<br>weight (male<br>and female) at<br>day 7 and a<br>decrease in<br>combined pup<br>weight gain<br>between days<br>0 and 7 for all<br>three dose<br>levels (500-<br>5000 ppm).<br>Maternal food<br>consumption<br>and body<br>weight was<br>reduced in the<br>highest but<br>not the lower<br>dose groups. |                                                                                                                  |                                                     |
| 13                    | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Litter/pup<br>weight                         | rat     | 28                         | weeks            | Oral                           | >2500                    | ppm           | No effect           |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  |                                                     |
| 8                     | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Number of<br>implantations,<br>corpora lutea | rat     | 10 (GD 6-<br>15)           | Days             | Oral                           | 500                      | mg/kg<br>bw/d | Decrease            | Number of<br>implantation<br>sites was<br>reduced (87<br>vs 126) - not<br>statistically<br>significant                                                                                                                                                                                                                                                              | No clear<br>indications that<br>the number of<br>implantation<br>sites or corpora<br>lutea were<br>affected. The |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n                       | Effect target                                                         | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)                                                                                        | Assessment of<br>each line of<br>evidence                                                                               | Assessment on<br>the integrated<br>line of evidence |
|-----------------------|----------------------------------------------------|-----------------------------------------------------------------------|---------|----------------------------|------------------|--------------------------------|--------------------------|---------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| 9                     | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Number of<br>implantations,<br>corpora lutea                          | rat     | 10 (GD 6-<br>15)           | Days             | Oral                           | >700                     | mg/kg<br>bw/d | No effect           |                                                                                                                                         | pilot study in<br>which a<br>reduction in the<br>number of                                                              |                                                     |
| 10                    | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Number of<br>implantations,<br>corpora lutea                          | rabbit  | 13 (DG 7-<br>19)           | Days             | Oral                           | >500                     | mg/kg<br>bw/d | No effect           |                                                                                                                                         | implantation<br>sites was<br>observed was of<br>limited reliability                                                     |                                                     |
| 11                    | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Number of<br>implantations,<br>corpora lutea                          | rabbit  | 13 (DG 7-<br>19)           | Days             | Oral                           | >300                     | mg/kg<br>bw/d | No effect           |                                                                                                                                         | due to potential<br>SDA infections<br>in some<br>individuals.                                                           |                                                     |
| 13                    | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Number of<br>implantations,<br>corpora lutea                          | rat     | 28                         | weeks            | Oral                           | >2500                    | ppm           | No effect           |                                                                                                                                         |                                                                                                                         |                                                     |
| 12                    | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Number of<br>live births                                              | rat     | 5 to 6                     | Weeks            | Oral                           | >5000                    | ppm           | No effect           |                                                                                                                                         | The one<br>potential effect<br>on the number of<br>stillborn were in                                                    |                                                     |
| 13                    | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Number of<br>live births                                              | rat     | 28                         | weeks            | Oral                           | >2500                    | ppm           | No effect           | Number of<br>stillborn were<br>increased in<br>the F1<br>generation<br>(F1 pups) but<br>not in the F1<br>generation<br>(F2 pups)        | the F0<br>generation (F0<br>> F1), something<br>that was not<br>evident in the<br>second<br>generation of the<br>study. |                                                     |
| 8                     | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Numbers of<br>embryonic or<br>foetal deaths<br>and viable<br>foetuses | rat     | 10 (GD 6-<br>15)           | Days             | Oral                           | 500                      | mg/kg<br>bw/d | Decrease            | Number of<br>viable<br>foetuses was<br>reduced (86<br>vs 122) but<br>not<br>statistically<br>significant.<br>Indications of<br>maternal | The reduction in<br>foetal viability<br>observed in two<br>studies is likely<br>related to<br>maternal<br>toxicity.     |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n                       | Effect target                                                         | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)                                                                                                                                                                                                                                                                                                                                                                                         | Assessment of<br>each line of<br>evidence | Assessment on<br>the integrated<br>line of evidence |
|-----------------------|----------------------------------------------------|-----------------------------------------------------------------------|---------|----------------------------|------------------|--------------------------------|--------------------------|---------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------|
|                       |                                                    |                                                                       |         |                            |                  |                                |                          |               |                     | SDA<br>infections<br>were present<br>in some dams<br>(all groups)                                                                                                                                                                                                                                                                                                                                                                        |                                           |                                                     |
| 9                     | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Numbers of<br>embryonic or<br>foetal deaths<br>and viable<br>foetuses | rat     | 10 (GD 6-<br>15)           | Days             | Oral                           | >700                     | mg/kg<br>bw/d | No effect           |                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           |                                                     |
| 10                    | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Numbers of<br>embryonic or<br>foetal deaths<br>and viable<br>foetuses | rabbit  | 13 (DG 7-<br>19)           | Days             | Oral                           | 500                      | mg/kg<br>bw/d | Change              | Four of the<br>seven<br>pregnant 500<br>mg/kg/day<br>dosage group<br>rabbits<br>aborted<br>during the<br>study. All<br>abortions<br>occurred after<br>completion of<br>the dosage<br>period. Three<br>of the seven<br>aborted 3<br>foetuses each<br>and 1 rabbit<br>aborted 2.<br>One of the<br>seven rabbits<br>had 1 early<br>resorption<br>and 2 rabbits<br>had 2 late<br>resorptions.<br>Clear signs of<br>maternal<br>toxicity were |                                           |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n                       | Effect target                                                         | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)                                                                                                                                                                                                              | Assessment of<br>each line of<br>evidence                       | Assessment on<br>the integrated<br>line of evidence |
|-----------------------|----------------------------------------------------|-----------------------------------------------------------------------|---------|----------------------------|------------------|--------------------------------|--------------------------|---------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------|
|                       |                                                    |                                                                       |         |                            |                  |                                |                          |               |                     | observed in<br>the study:<br>reduced food<br>consumption<br>$(\geq 50 \text{ mg/kg}$<br>bw/day),<br>reduced bw<br>gain $(\geq 150$<br>mg/kg<br>bw/day),<br>increased LW<br>$(\geq 150 \text{ mg/kg}$<br>bw/day), and<br>death $(\geq 150$<br>mg/kg<br>bw/day) |                                                                 |                                                     |
| 11                    | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Numbers of<br>embryonic or<br>foetal deaths<br>and viable<br>foetuses | rabbit  | 13 (DG 7-<br>19)           | Days             | Oral                           | >300                     | mg/kg<br>bw/d | No effect           |                                                                                                                                                                                                                                                               |                                                                 |                                                     |
| 1                     | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Pituitary<br>histo-<br>pathology                                      | Rat     | 5                          | Weeks            | Oral                           | >8000                    | ppm           | No effect           |                                                                                                                                                                                                                                                               | No effects on the<br>pituitary weight<br>or histo-<br>pathology |                                                     |
| 3                     | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Pituitary<br>histo-<br>pathology                                      | Rat     | 13                         | Weeks            | Oral                           | >5000                    | ppm           | No effect           |                                                                                                                                                                                                                                                               |                                                                 |                                                     |
| 4                     | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Pituitary<br>histo-<br>pathology                                      | Dog     | 90                         | Days             | Oral                           | >125                     | mg/kg<br>bw/d | No effect           |                                                                                                                                                                                                                                                               |                                                                 |                                                     |
| 5                     | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Pituitary<br>histo-<br>pathology                                      | Dog     | 52                         | Weeks            | Oral                           | >300                     | mg/kg<br>bw/d | No effect           |                                                                                                                                                                                                                                                               |                                                                 |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n                       | Effect target                    | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)                                                                                                                                                                                                                                                                     | Assessment of<br>each line of<br>evidence                                                                                       | Assessment on<br>the integrated<br>line of evidence |
|-----------------------|----------------------------------------------------|----------------------------------|---------|----------------------------|------------------|--------------------------------|--------------------------|---------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| 6                     | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Pituitary<br>histo-<br>pathology | Rat     | 2                          | Years            | Oral                           | >2500                    | ppm           | No effect           |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                 |                                                     |
| 7                     | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Pituitary<br>histo-<br>pathology | mouse   | 52                         | Weeks            | Oral                           | >3000                    | ppm           | No effect           |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                 |                                                     |
| 4                     | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Pituitary<br>weight              | Dog     | 90                         | Days             | Oral                           | >125                     | mg/kg<br>bw/d | No effect           |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                 |                                                     |
| 5                     | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Pituitary<br>weight              | Dog     | 52                         | Weeks            | Oral                           | >300                     | mg/kg<br>bw/d | No effect           |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                 |                                                     |
| 9                     | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Post<br>implantation<br>loss     | rat     | 10 (GD 6-<br>15)           | Days             | Oral                           | 700                      | mg/kg<br>bw/d | Increase            | Increased<br>post-<br>implantation<br>loss at 700<br>mg/kg<br>bw/day. This<br>in part was<br>driven by a<br>single female<br>with 15/16<br>foetal<br>resorptions,<br>with this<br>female<br>excluded the<br>mean<br>resorption<br>rate was 1.1<br>which is<br>slightly<br>higher than<br>concurrent<br>control (0.8) | Increase in post<br>implantation loss<br>in the rabbit at<br>high doses,<br>considered<br>secondary to<br>maternal<br>toxicity. |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n                       | Effect target                | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Assessment of<br>each line of<br>evidence | Assessment on<br>the integrated<br>line of evidence |
|-----------------------|----------------------------------------------------|------------------------------|---------|----------------------------|------------------|--------------------------------|--------------------------|---------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------|
|                       |                                                    |                              |         |                            |                  |                                |                          |               |                     | and within HCD.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                           |                                                     |
| 10                    | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Post<br>implantation<br>loss | rabbit  | 13 (DG 7-<br>19)           | Days             | Oral                           | 300                      | mg/kg<br>bw/d | Increase            | Four of the<br>seven<br>pregnant 500<br>mg/kg/day<br>dosage group<br>rabbits<br>aborted<br>during the<br>study. One of<br>these rabbits<br>died<br>following<br>abortion. All<br>abortions<br>occurred after<br>completion of<br>the dosage<br>period. Clear<br>signs of<br>maternal<br>toxicity were<br>observed in<br>the study:<br>reduced food<br>consumption<br>$(\geq 50 \text{ mg/kg}$<br>bw/day),<br>reduced bw<br>gain ( $\geq 150$<br>mg/kg<br>bw/day), and<br>death ( $\geq 150$<br>mg/kg<br>bw/day), and |                                           |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n                       | Effect target                                                   | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)                                                                                                                       | Assessment of<br>each line of<br>evidence                                                                                                                                           | Assessment on<br>the integrated<br>line of evidence |
|-----------------------|----------------------------------------------------|-----------------------------------------------------------------|---------|----------------------------|------------------|--------------------------------|--------------------------|---------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| 11                    | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Post<br>implantation<br>loss                                    | rabbit  | 13 (DG 7-<br>19)           | Days             | Oral                           | >300                     | mg/kg<br>bw/d | No effect           |                                                                                                                                                                        |                                                                                                                                                                                     |                                                     |
| 13                    | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Post<br>implantation<br>loss                                    | rat     | 28                         | weeks            | Oral                           | >2500                    | ppm           | No effect           |                                                                                                                                                                        |                                                                                                                                                                                     |                                                     |
| 8                     | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Pre<br>implantation<br>loss                                     | rat     | 10 (GD 6-<br>15)           | Days             | Oral                           | 500                      | mg/kg<br>bw/d | Increase            | The mean<br>pre-<br>implantation<br>loss ratio at<br>500 mg/kg<br>bw/day was<br>higher than<br>the control.                                                            | Increase in pre-<br>implantation loss<br>in the rat at the<br>highest dose.<br>Note that the<br>dosing<br>commenced<br>during the                                                   |                                                     |
| 9                     | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Pre<br>implantation<br>loss                                     | rat     | 10 (GD 6-<br>15)           | Days             | Oral                           | >700                     | mg/kg<br>bw/d | No effect           |                                                                                                                                                                        | implantation<br>phase (GD 6)<br>and therefore the<br>pre-implantation                                                                                                               |                                                     |
| 10                    | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Pre<br>implantation<br>loss                                     | rabbit  | 13 (DG 7-<br>19)           | Days             | Oral                           | >500                     | mg/kg<br>bw/d | No effect           |                                                                                                                                                                        | losses may be<br>unrelated to<br>treatment.                                                                                                                                         |                                                     |
| 11                    | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Pre<br>implantation<br>loss                                     | rabbit  | 13 (DG 7-<br>19)           | Days             | Oral                           | >300                     | mg/kg<br>bw/d | No effect           |                                                                                                                                                                        |                                                                                                                                                                                     |                                                     |
| 9                     | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Presence of<br>anomalies<br>(external,<br>visceral,<br>skeletal | rat     | 10 (GD 6-<br>15)           | Days             | Oral                           | 350                      | mg/kg<br>bw/d | Increase            | At 700 mg/kg<br>there was an<br>increased<br>incidence of<br>external<br>malformation<br>on a foetal<br>(3.6%; 8/221<br>foetuses) a<br>litter (33.3%;<br>6/18 litters) | Increase foetal<br>malformations<br>and altered<br>ossification<br>processes<br>occurred in two<br>studies. No<br>effects were<br>observed at<br>doses without<br>maternal toxicity |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n                       | Effect target                                                   | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)                                                                                                                                                                                                                                                                                                                                                 | Assessment of<br>each line of<br>evidence         | Assessment on<br>the integrated<br>line of evidence |
|-----------------------|----------------------------------------------------|-----------------------------------------------------------------|---------|----------------------------|------------------|--------------------------------|--------------------------|---------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------|
|                       |                                                    |                                                                 |         |                            |                  |                                |                          |               |                     | basis. There<br>were no<br>external<br>malformation<br>s in controls.<br>The increased<br>incidences (7<br>foetuses) of<br>tail defects<br>(absence of<br>tail, short tail<br>or<br>filamentous<br>tail) among<br>foetuses of<br>the high dose<br>group were<br>attributed to<br>severe signs<br>of maternal<br>toxicity.<br>Skeletal<br>ossification<br>variation data<br>indicated<br>retarded | and may thus be<br>secondary to<br>those effects. |                                                     |
| 10                    | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Presence of<br>anomalies<br>(external,<br>visceral,<br>skeletal | rabbit  | 13 (DG 7-<br>19)           | Days             | Oral                           | >500                     | mg/kg<br>bw/d | No effect           | ossification at<br>350 and 700<br>mg/kg<br>bw/day,<br>considered to<br>represent a<br>fetotoxic<br>response.                                                                                                                                                                                                                                                                                     |                                                   |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n                       | Effect target                                                   | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)                                                                                                                                                                                                                                                                                                                                                                                   | Assessment of<br>each line of<br>evidence | Assessment on<br>the integrated<br>line of evidence |
|-----------------------|----------------------------------------------------|-----------------------------------------------------------------|---------|----------------------------|------------------|--------------------------------|--------------------------|---------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------|
|                       | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Presence of<br>anomalies<br>(external,<br>visceral,<br>skeletal | rabbit  | 13 (DG 7-<br>19)           | Days             | Oral                           | 300                      | mg/kg<br>bw/d | Increase            | Misaligned<br>sutures (3.6%<br>vs 0% in<br>control):<br>nasal<br>irregular<br>ossification<br>(6.3% vs<br>2.2% in the<br>control and<br>0.24% in<br>HCD):<br>angulation of<br>hyoid alae<br>(6.3% vs<br>1.4% in<br>control and<br>1.29% in<br>HCD).<br>Overall<br>incidences of<br>foetal<br>alterations<br>were 18.7%,<br>19.3%,<br>23.9%, and<br>23.4% in the<br>control, low,<br>mid, and high<br>dose groups,<br>respectively. |                                           |                                                     |
| 12                    | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Presence of<br>anomalies<br>(external,<br>visceral,<br>skeletal | rat     | 5 to 6                     | Weeks            | Oral                           | >5000                    | ppm           | No effect           |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           |                                                     |
| 13                    | Sensitive to,<br>but not                           | Presence of<br>anomalies<br>(external,                          | rat     | 28                         | weeks            | Oral                           | >2500                    | ppm           | No effect           |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                           |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n                       | Effect target               | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative) | Assessment of<br>each line of<br>evidence               | Assessment on<br>the integrated<br>line of evidence                        |
|-----------------------|----------------------------------------------------|-----------------------------|---------|----------------------------|------------------|--------------------------------|--------------------------|---------------|---------------------|--------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------|
|                       | diagnostic<br>of, EATS                             | visceral,<br>skeletal       |         |                            |                  |                                |                          |               |                     |                                                  |                                                         |                                                                            |
| 12                    | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Pup survival<br>index       | rat     | 5 to 6                     | Weeks            | Oral                           | >5000                    | ppm           | No effect           |                                                  | No effect on pup<br>survival index                      |                                                                            |
| 13                    | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Pup survival<br>index       | rat     | 28                         | weeks            | Oral                           | >2500                    | ppm           | No effect           |                                                  |                                                         |                                                                            |
| 9                     | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Sex ratio                   | rat     | 10 (GD 6-<br>15)           | Days             | Oral                           | >700                     | mg/kg<br>bw/d | No effect           |                                                  | No effect on sex<br>ratio                               |                                                                            |
| 10                    | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Sex ratio                   | rabbit  | 13 (DG 7-<br>19)           | Days             | Oral                           | >500                     | mg/kg<br>bw/d | No effect           |                                                  |                                                         |                                                                            |
| 11                    | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Sex ratio                   | rabbit  | 13 (DG 7-<br>19)           | Days             | Oral                           | >300                     | mg/kg<br>bw/d | No effect           |                                                  |                                                         |                                                                            |
| 12                    | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Sex ratio                   | rat     | 5 to 6                     | Weeks            | Oral                           | >5000                    | ppm           | No effect           |                                                  |                                                         |                                                                            |
| 13                    | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Sex ratio                   | rat     | 28                         | weeks            | Oral                           | >2500                    | ppm           | No effect           |                                                  |                                                         |                                                                            |
| 13                    | Sensitive to,<br>but not<br>diagnostic<br>of, EATS | Time to<br>mating           | rat     | 28                         | weeks            | Oral                           | >2500                    | ppm           | No effect           |                                                  | No effect on<br>time to mating                          |                                                                            |
| 1                     | Target<br>organ<br>toxicity                        | Aorta<br>histopatholog<br>y | Rat     | 5                          | Weeks            | Oral                           | >8000                    | ppm           | No effect           |                                                  | No effect on<br>aorta histo-<br>pathology in the<br>rat | Overall evidence<br>of target organ<br>toxicity (liver,<br>blood) with the |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n | Effect target                      | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)                                                                                                                              | Assessment of<br>each line of<br>evidence                                                           | Assessment on<br>the integrated<br>line of evidence |
|-----------------------|------------------------------|------------------------------------|---------|----------------------------|------------------|--------------------------------|--------------------------|---------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| 1                     | Target<br>organ<br>toxicity  | Bone histo-<br>pathology           | Rat     | 5                          | Weeks            | Oral                           | >8000                    | ppm           | No effect           |                                                                                                                                                                               | No effect on<br>bone histo-<br>pathology in the                                                     | rat, mouse and<br>dog, and<br>systemic toxicity     |
| 4                     | Target<br>organ<br>toxicity  | Bone histo-<br>pathology           | Dog     | 90                         | Days             | Oral                           | >125                     | mg/kg<br>bw/d | No effect           |                                                                                                                                                                               | rat mouse and dog                                                                                   | (lower body<br>weight/body<br>weight gain and       |
| 5                     | Target<br>organ<br>toxicity  | Bone histo-<br>pathology           | Dog     | 52                         | Weeks            | Oral                           | >300                     | mg/kg<br>bw/d | No effect           |                                                                                                                                                                               |                                                                                                     | food<br>consumption,<br>and in some                 |
| 6                     | Target<br>organ<br>toxicity  | Bone histo-<br>pathology           | Rat     | 2                          | Years            | Oral                           | >2500                    | ppm           | No effect           |                                                                                                                                                                               |                                                                                                     | cases clinical<br>signs and<br>mortality) across    |
| 7                     | Target<br>organ<br>toxicity  | Bone histo-<br>pathology           | mouse   | 52                         | Weeks            | Oral                           | >3000                    | ppm           | No effect           |                                                                                                                                                                               |                                                                                                     | the tested species.                                 |
| 4                     | Target<br>organ<br>toxicity  | Bone marrow<br>histo-<br>pathology | Dog     | 90                         | Days             | Oral                           | >125                     | mg/kg<br>bw/d | No effect           |                                                                                                                                                                               | Hyperplasia of<br>the sternum<br>marrow in 1-year                                                   |                                                     |
| 5                     | Target<br>organ<br>toxicity  | Bone marrow<br>histo-<br>pathology | Dog     | 52                         | Weeks            | Oral                           | 75                       | mg/kg<br>bw/d | Change              | Hyperplasia<br>of the<br>sternum<br>marrow was<br>observed in<br>one male and<br>one female<br>given 75<br>mg/kg<br>bw/day and<br>all animals<br>given 300<br>mg/kg<br>bw/day | study with the<br>dog but no<br>effects in a short-<br>term study. No<br>effects with the<br>mouse. |                                                     |
| 7                     | Target<br>organ<br>toxicity  | Bone marrow<br>histopatholog       | mouse   | 52                         | Weeks            | Oral                           | >3000                    | ppm           | No effect           |                                                                                                                                                                               |                                                                                                     |                                                     |
| 1                     | Target<br>organ<br>toxicity  | Eyes histo-<br>pathology           | Rat     | 5                          | Weeks            | Oral                           | >8000                    | ppm           | No effect           |                                                                                                                                                                               | No effect on eye<br>histo-pathology<br>in the rat                                                   |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n | Effect target              | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative) | Assessment of<br>each line of<br>evidence       | Assessment on<br>the integrated<br>line of evidence |
|-----------------------|------------------------------|----------------------------|---------|----------------------------|------------------|--------------------------------|--------------------------|---------------|---------------------|--------------------------------------------------|-------------------------------------------------|-----------------------------------------------------|
| 1                     | Target<br>organ<br>toxicity  | Heart histo-<br>pathology  | Rat     | 5                          | Weeks            | Oral                           | >8000                    | ppm           | No effect           |                                                  | No effects on the<br>heart histo-<br>pathology  |                                                     |
| 3                     | Target<br>organ<br>toxicity  | Heart histo-<br>pathology  | Rat     | 13                         | Weeks            | Oral                           | >5000                    | ppm           | No effect           |                                                  |                                                 |                                                     |
| 4                     | Target<br>organ<br>toxicity  | Heart histo-<br>pathology  | Dog     | 90                         | Days             | Oral                           | >125                     | mg/kg<br>bw/d | No effect           |                                                  |                                                 |                                                     |
| 5                     | Target<br>organ<br>toxicity  | Heart histo-<br>pathology  | Dog     | 52                         | Weeks            | Oral                           | >300                     | mg/kg<br>bw/d | No effect           |                                                  |                                                 |                                                     |
| 6                     | Target<br>organ<br>toxicity  | Heart histo-<br>pathology  | Rat     | 2                          | Years            | Oral                           | >2500                    | ppm           | No effect           |                                                  |                                                 |                                                     |
| 7                     | Target<br>organ<br>toxicity  | Heart histo-<br>pathology  | mouse   | 52                         | Weeks            | Oral                           | >3000                    | ppm           | No effect           |                                                  |                                                 |                                                     |
| 4                     | Target<br>organ<br>toxicity  | Heart weight               | Dog     | 90                         | Days             | Oral                           | >125                     | mg/kg<br>bw/d | No effect           |                                                  | No effects on the heart weight                  |                                                     |
| 5                     | Target<br>organ<br>toxicity  | Heart weight               | Dog     | 52                         | Weeks            | Oral                           | >300                     | mg/kg<br>bw/d | No effect           |                                                  |                                                 |                                                     |
| 1                     | Target<br>organ<br>toxicity  | Kidney histo-<br>pathology | Rat     | 5                          | Weeks            | Oral                           | >8000                    | ppm           | No effect           |                                                  | No effects on the<br>kidney histo-<br>pathology |                                                     |
| 2                     | Target<br>organ<br>toxicity  | Kidney histo-<br>pathology | mouse   | 4                          | Weeks            | Oral                           | >4000                    | ppm           | No effect           |                                                  |                                                 |                                                     |
| 3                     | Target<br>organ<br>toxicity  | Kidney histo-<br>pathology | Rat     | 13                         | Weeks            | Oral                           | >5000                    | ppm           | No effect           |                                                  | 1                                               |                                                     |
| 4                     | Target<br>organ<br>toxicity  | Kidney histo-<br>pathology | Dog     | 90                         | Days             | Oral                           | >125                     | mg/kg<br>bw/d | No effect           |                                                  | 1                                               |                                                     |
| 5                     | Target<br>organ<br>toxicity  | Kidney histo-<br>pathology | Dog     | 52                         | Weeks            | Oral                           | >300                     | mg/kg<br>bw/d | No effect           |                                                  |                                                 |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n | Effect target              | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)                                                                                  | Assessment of<br>each line of<br>evidence                                                                                                      | Assessment on<br>the integrated<br>line of evidence |
|-----------------------|------------------------------|----------------------------|---------|----------------------------|------------------|--------------------------------|--------------------------|---------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| 6                     | Target<br>organ<br>toxicity  | Kidney histo-<br>pathology | Rat     | 2                          | Years            | Oral                           | >2500                    | ppm           | No effect           |                                                                                                                                   |                                                                                                                                                |                                                     |
| 7                     | Target<br>organ<br>toxicity  | Kidney histo-<br>pathology | mouse   | 52                         | Weeks            | Oral                           | >3000                    | ppm           | No effect           |                                                                                                                                   |                                                                                                                                                |                                                     |
| 1                     | Target<br>organ<br>toxicity  | Kidney<br>weight           | Rat     | 5                          | Weeks            | Oral                           | >8000                    | ppm           | No effect           |                                                                                                                                   | No effects on the kidney weight                                                                                                                |                                                     |
| 2                     | Target<br>organ<br>toxicity  | Kidney<br>weight           | mouse   | 4                          | Weeks            | Oral                           | >4000                    | ppm           | No effect           |                                                                                                                                   |                                                                                                                                                |                                                     |
| 3                     | Target<br>organ<br>toxicity  | Kidney<br>weight           | Rat     | 13                         | Weeks            | Oral                           | >5000                    | ppm           | No effect           |                                                                                                                                   | ]                                                                                                                                              |                                                     |
| 4                     | Target<br>organ<br>toxicity  | Kidney<br>weight           | Dog     | 90                         | Days             | Oral                           | >125                     | mg/kg<br>bw/d | No effect           |                                                                                                                                   |                                                                                                                                                |                                                     |
| 5                     | Target<br>organ<br>toxicity  | Kidney<br>weight           | Dog     | 52                         | Weeks            | Oral                           | >300                     | mg/kg<br>bw/d | No effect           |                                                                                                                                   |                                                                                                                                                |                                                     |
| 6                     | Target<br>organ<br>toxicity  | Kidney<br>weight           | Rat     | 2                          | Years            | Oral                           | >2500                    | ppm           | No effect           |                                                                                                                                   |                                                                                                                                                |                                                     |
| 7                     | Target<br>organ<br>toxicity  | Kidney<br>weight           | mouse   | 52                         | Weeks            | Oral                           | >3000                    | ppm           | No effect           |                                                                                                                                   |                                                                                                                                                |                                                     |
| 15                    | Target<br>organ<br>toxicity  | Kidney<br>weight           | rat     | 10                         | Days             | Oral                           | >200                     | mg/kg<br>bw/d | No effect           |                                                                                                                                   |                                                                                                                                                |                                                     |
| 1                     | Target<br>organ<br>toxicity  | Liver histo-<br>pathology  | Rat     | 5                          | Weeks            | Oral                           | 1000                     | ppm           | Change              | Trace to mild<br>centrilobular<br>hypertrophy<br>was observed<br>in males in<br>the 1000,<br>4000 and<br>8000 ppm<br>groups (30%, | Increased liver<br>weights and<br>histo-<br>pathological<br>changes (centri-<br>lobular<br>hypertrophy and<br>in some cases<br>vacuolation and |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n | Effect target             | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)                                                                                                                                                        | Assessment of<br>each line of<br>evidence                                                                                     | Assessment on<br>the integrated<br>line of evidence |
|-----------------------|------------------------------|---------------------------|---------|----------------------------|------------------|--------------------------------|--------------------------|---------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
|                       |                              |                           |         |                            |                  |                                |                          |               |                     | 60%, 80%,<br>respectively)<br>and in<br>females in the<br>4000 and<br>8000 ppm<br>groups (10%,<br>40%,<br>respectively)                                                                                 | pigmen-tation) in<br>the liver were<br>induced in the<br>short-term and<br>long-term studies<br>across the tested<br>species. |                                                     |
| 2                     | Target<br>organ<br>toxicity  | Liver histo-<br>pathology | mouse   | 4                          | Weeks            | Oral                           | 4000                     | ppm           | Change              | Increased<br>hypertrophy<br>of<br>centrilobular<br>hepatocytes<br>was noted in<br>all male mice<br>(minimal to<br>moderate) at<br>4000 ppm and<br>eight of ten<br>female mice<br>(minimal to<br>slight) |                                                                                                                               |                                                     |
| 3                     | Target<br>organ<br>toxicity  | Liver histo-<br>pathology | Rat     | 13                         | Weeks            | Oral                           | 2500                     | ppm           | Change              | Increased<br>incidence of<br>centrilobular<br>hypertrophy<br>of the liver in<br>males and<br>females at<br>2500 (67%,<br>17%,<br>respectively)<br>and 5000 ppm<br>(83%, 58%,<br>respectively)           |                                                                                                                               |                                                     |
| 4                     | Target<br>organ<br>toxicity  | Liver histo-<br>pathology | Dog     | 90                         | Days             | Oral                           | 125                      | mg/kg<br>bw/d | Change              | Vesiculation/<br>vacuolation in<br>the cytoplasm                                                                                                                                                        |                                                                                                                               |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n | Effect target             | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)                                                                                                                                                                                                                                                                            | Assessment of<br>each line of<br>evidence | Assessment on<br>the integrated<br>line of evidence |
|-----------------------|------------------------------|---------------------------|---------|----------------------------|------------------|--------------------------------|--------------------------|---------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------|
|                       |                              |                           |         |                            |                  |                                |                          |               |                     | of<br>centrilobular<br>hepatocytes<br>in all males at<br>all levels<br>including the<br>control group<br>and in all<br>treated<br>females and<br>3/4 control<br>females but<br>increased in<br>severity at<br>125 mg/kg<br>bw/day.                                                                                          |                                           |                                                     |
| 5                     | Target<br>organ<br>toxicity  | Liver histo-<br>pathology | Dog     | 52                         | Weeks            | Oral                           | 300                      | mg/kg<br>bw/d | Change              | Centrilobular<br>to mid-zonal<br>hepatocellular<br>hypertrophy<br>in five out of<br>six males and<br>four out of six<br>females given<br>300 mg/kg<br>bw/day.<br>Increased<br>pigmentation<br>of the liver<br>was observed<br>in one male<br>given 75<br>mg/kg<br>bw/day and<br>all animals<br>given 300<br>mg/kg<br>bw/day |                                           |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n | Effect target             | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)                                                                                                                                                                                                                                                              | Assessment of<br>each line of<br>evidence | Assessment on<br>the integrated<br>line of evidence |
|-----------------------|------------------------------|---------------------------|---------|----------------------------|------------------|--------------------------------|--------------------------|--------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------|
| 6                     | Target<br>organ<br>toxicity  | Liver histo-<br>pathology | Rat     | 2                          | Years            | Oral                           | 2500                     | ppm          | Change              | Hypertrophy<br>was observed<br>in the highest<br>dose group<br>(2500 ppm).<br>Females<br>offered 2500<br>ppm had a<br>slightly<br>greater (12%)<br>incidence of<br>binucleated<br>cells in the<br>liver than the<br>controls (2%),<br>but the effect<br>was of<br>uncertain<br>toxicological<br>significance. |                                           |                                                     |
| 7                     | Target<br>organ<br>toxicity  | Liver histo-<br>pathology | mouse   | 52                         | Weeks            | Oral                           | 1000                     | ppm          | Change              | Centrilobular<br>hypertrophy<br>of the liver<br>was observed<br>in males<br>given 1000<br>ppm (42%)<br>and in males<br>and females<br>given 3000<br>ppm (100%).<br>Pigment,<br>described as<br>morpho-<br>logically<br>compatible<br>with haemo-<br>siderin and<br>bile, was<br>noted in                      |                                           |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n | Effect target | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)                                                                                                                                                                                                                                                                                                                                                            | Assessment of<br>each line of<br>evidence | Assessment on<br>the integrated<br>line of evidence |
|-----------------------|------------------------------|---------------|---------|----------------------------|------------------|--------------------------------|--------------------------|--------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------|
|                       |                              |               |         |                            |                  |                                |                          |              |                     | males given<br>3000 ppm<br>(69%).                                                                                                                                                                                                                                                                                                                                                                           |                                           |                                                     |
| 1                     | Target<br>organ<br>toxicity  | Liver weight  | Rat     | 5                          | Weeks            | Oral                           | 1000                     | ppm          | Increase            | Absolute liver<br>weight was<br>significantly<br>increased in<br>males at<br>1000, 4000<br>and 8000 ppm<br>(+12%, +13%<br>and +15%,<br>respectively)<br>and in<br>females at<br>8000 ppm<br>(+12.5%).<br>Relative liver<br>weight was<br>significantly<br>increased in<br>males and<br>females at<br>4000<br>(+19.4% and<br>+18.2%<br>respectively)<br>and 8000 ppm<br>(+32% and<br>+33%,<br>respectively). |                                           |                                                     |
| 2                     | Target<br>organ<br>toxicity  | Liver weight  | mouse   | 4                          | Weeks            | Oral                           | 1500                     | ppm          | Increase            | The absolute<br>liver with<br>gallbladder<br>weight was<br>significantly<br>increased in<br>males at 1500<br>(+13%) and                                                                                                                                                                                                                                                                                     |                                           |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n | Effect target | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)                                                                                                                                                                                                                                                                            | Assessment of<br>each line of<br>evidence | Assessment on<br>the integrated<br>line of evidence |
|-----------------------|------------------------------|---------------|---------|----------------------------|------------------|--------------------------------|--------------------------|--------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------|
|                       |                              |               |         |                            |                  |                                |                          |              |                     | in males and<br>females at<br>4000 ppm<br>(+42% and<br>+16%,<br>respectively).<br>The<br>liver/body<br>weight ratio<br>was<br>significantly<br>increased for<br>the same<br>groups of<br>animals<br>(+14%, +42%<br>and +23%,<br>respectively).                                                                              |                                           |                                                     |
| 3                     | Target<br>organ<br>toxicity  | Liver weight  | Rat     | 13                         | Weeks            | Oral                           | 2500                     | ppm          | Increase            | Absolute liver<br>weight was<br>significantly<br>increased for<br>females given<br>5000 ppm<br>(114% of<br>control),<br>relative liver<br>weight was<br>significantly<br>increased in<br>both sexes<br>given 2500<br>ppm (+12%<br>in males and<br>females) and<br>5000 ppm (+<br>26% in males;<br>+ 28% in<br>females) with |                                           |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n | Effect target | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative) | Assessment of<br>each line of<br>evidence | Assessment on<br>the integrated<br>line of evidence |
|-----------------------|------------------------------|---------------|---------|----------------------------|------------------|--------------------------------|--------------------------|---------------|---------------------|--------------------------------------------------|-------------------------------------------|-----------------------------------------------------|
|                       |                              |               |         |                            |                  |                                |                          |               |                     | a dose-related                                   |                                           |                                                     |
| 4                     | Tanat                        | Liver weight  | Dee     | 90                         | Days             | Oral                           | 75                       |               | T                   | trend.<br>Absolute liver                         | -                                         |                                                     |
| 4                     | Target<br>organ              | Liver weight  | Dog     | 90                         | Days             | Orai                           | 15                       | mg/kg<br>bw/d | Increase            | weight was                                       |                                           |                                                     |
|                       | toxicity                     |               |         |                            |                  |                                |                          | 0 W/G         |                     | increased in                                     |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |               |                     | animals given                                    |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |               |                     | 75 and 125                                       |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |               |                     | mg/kg                                            |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |               |                     | bw/day (in                                       |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |               |                     | males 116                                        |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |               |                     | and 134% of                                      |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |               |                     | controls and                                     |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |               |                     | in females<br>115 and                            |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |               |                     | 130% of                                          |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |               |                     | controls)                                        |                                           |                                                     |
| 5                     | Target                       | Liver weight  | Dog     | 52                         | Weeks            | Oral                           | 75                       | mg/kg         | Increase            | Absolute and                                     |                                           |                                                     |
|                       | organ                        | U             | C       |                            |                  |                                |                          | bw/d          |                     | relative liver                                   |                                           |                                                     |
|                       | toxicity                     |               |         |                            |                  |                                |                          |               |                     | weight was                                       |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |               |                     | significantly                                    |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |               |                     | increased in                                     |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |               |                     | both sexes                                       |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |               |                     | given 300<br>mg/kg                               |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |               |                     | bw/day (156                                      |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |               |                     | and 160% of                                      |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |               |                     | controls for                                     |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |               |                     | males,                                           |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |               |                     | respectively,                                    |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |               |                     | and 170 and                                      |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |               |                     | 168% of                                          |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |               |                     | controls for females,                            |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |               |                     | respectively),                                   |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |               |                     | and in                                           |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |               |                     | females given                                    |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |               |                     | 75 mg/kg                                         |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |               |                     | bw/day (134                                      |                                           |                                                     |
|                       | 1                            |               |         |                            |                  |                                |                          |               |                     | and 158% of                                      |                                           |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n | Effect target | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)                                                                                                                                                                                                                                                                                                               | Assessment of<br>each line of<br>evidence | Assessment on<br>the integrated<br>line of evidence |
|-----------------------|------------------------------|---------------|---------|----------------------------|------------------|--------------------------------|--------------------------|--------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------|
|                       |                              |               |         |                            |                  |                                |                          |              |                     | controls,<br>respectively).<br>In males<br>given 75<br>mg/kg<br>bw/day<br>absolute liver<br>weight was<br>increased<br>(127%) and<br>relative liver<br>weight was<br>statistically<br>significantly<br>increased<br>(116%).                                                                                                                                    |                                           |                                                     |
| 6                     | Target<br>organ<br>toxicity  | Liver weight  | Rat     | 2                          | Years            | Oral                           | 500                      | ppm          | Increase            | Absolute liver<br>weight and<br>liver weight<br>adjusted for<br>brain weight<br>of females<br>given 2500<br>ppm were<br>statistically<br>significantly<br>increased<br>(+24% and<br>+23%,<br>respectively)<br>and absolute<br>liver weight/<br>liver weight<br>relative to<br>BW in males<br>were<br>increased<br>21/18% (not<br>statistically<br>significant) |                                           |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n | Effect target | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)                                                                                                                                                                                                                                                                                                                                                                                                          | Assessment of<br>each line of<br>evidence | Assessment on<br>the integrated<br>line of evidence |
|-----------------------|------------------------------|---------------|---------|----------------------------|------------------|--------------------------------|--------------------------|--------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------|
|                       |                              |               |         |                            |                  |                                |                          |              |                     | while liver<br>weight<br>relative to<br>brain weight<br>was increased<br>24%<br>(significant)<br>in the 500                                                                                                                                                                                                                                                                                                                                               |                                           |                                                     |
| 7                     | Target<br>organ<br>toxicity  | Liver weight  | mouse   | 52                         | Weeks            | Oral                           | 1000                     | ppm          | Increase            | At week 53,<br>in males liver<br>weights<br>(absolute,<br>body weight<br>ratio and<br>brain weight<br>ratio) were<br>statistically<br>significantly<br>increased at<br>2000/3000<br>ppm (+16%,<br>+31% and<br>+21%,<br>respectively),<br>and liver<br>weight ratio<br>with brain<br>weight was<br>statistically<br>significantly<br>increased at<br>1000 mg/kg<br>(+14%). At<br>week 53 in<br>females, liver<br>weight ratio<br>and brain<br>weight ratio |                                           |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n | Effect target            | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)                                                                                                                                                                                                                                                               | Assessment of<br>each line of<br>evidence | Assessment on<br>the integrated<br>line of evidence |
|-----------------------|------------------------------|--------------------------|---------|----------------------------|------------------|--------------------------------|--------------------------|---------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------|
|                       |                              |                          |         |                            |                  |                                |                          |               |                     | was<br>statistically<br>significantly<br>increased at<br>2000/3000<br>ppm (+28%<br>and +18%,<br>respectively).<br>At week 79,<br>only female<br>liver weights<br>(body weight<br>ratio and<br>brain weight<br>ratio) were<br>significantly<br>increased at<br>3000 ppm<br>(+14% and<br>+16%,<br>respectively). |                                           |                                                     |
| 10                    | Target<br>organ<br>toxicity  | Liver weight             | rabbit  | 13 (DG 7-<br>19)           | Days             | Oral                           | 300                      | mg/kg<br>bw/d | Increase            | Increased<br>absolute and<br>relative liver<br>weight in<br>doses given<br>300 and 500<br>mg/kg<br>bw/day                                                                                                                                                                                                      |                                           |                                                     |
| 1                     | Target<br>organ<br>toxicity  | Lung histo-<br>pathology | Rat     | 5                          | Weeks            | Oral                           | >8000                    | ppm           | No effect           |                                                                                                                                                                                                                                                                                                                | No effects to<br>lung<br>histopathology   |                                                     |
| 2                     | Target<br>organ<br>toxicity  | Lung histo-<br>pathology | mouse   | 4                          | Weeks            | Oral                           | >4000                    | ppm           | No effect           |                                                                                                                                                                                                                                                                                                                |                                           |                                                     |
| 3                     | Target<br>organ<br>toxicity  | Lung histo-<br>pathology | Rat     | 13                         | Weeks            | Oral                           | >5000                    | ppm           | No effect           |                                                                                                                                                                                                                                                                                                                |                                           |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n | Effect target                      | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative) | Assessment of<br>each line of<br>evidence      | Assessment on<br>the integrated<br>line of evidence |
|-----------------------|------------------------------|------------------------------------|---------|----------------------------|------------------|--------------------------------|--------------------------|---------------|---------------------|--------------------------------------------------|------------------------------------------------|-----------------------------------------------------|
| 4                     | Target<br>organ<br>toxicity  | Lung<br>histopatholog<br>y         | Dog     | 90                         | Days             | Oral                           | >125                     | mg/kg<br>bw/d | No effect           |                                                  |                                                |                                                     |
| 5                     | Target<br>organ<br>toxicity  | Lung histo-<br>pathology           | Dog     | 52                         | Weeks            | Oral                           | >300                     | mg/kg<br>bw/d | No effect           |                                                  |                                                |                                                     |
| 6                     | Target<br>organ<br>toxicity  | Lung histo-<br>pathology           | Rat     | 2                          | Years            | Oral                           | >2500                    | ppm           | No effect           |                                                  |                                                |                                                     |
| 7                     | Target<br>organ<br>toxicity  | Lung histo-<br>pathology           | mouse   | 52                         | Weeks            | Oral                           | 1000                     | ppm           | Increase            |                                                  |                                                |                                                     |
| 1                     | Target<br>organ<br>toxicity  | Lymph nodes<br>histo-<br>pathology | Rat     | 5                          | Weeks            | Oral                           | >8000                    | ppm           | No effect           |                                                  | No effects to<br>lymph node<br>histopathology  |                                                     |
| 3                     | Target<br>organ<br>toxicity  | Lymph nodes<br>histo-<br>pathology | Rat     | 13                         | Weeks            | Oral                           | >5000                    | ppm           | No effect           |                                                  |                                                |                                                     |
| 4                     | Target<br>organ<br>toxicity  | Lymph nodes<br>histo-<br>pathology | Dog     | 90                         | Days             | Oral                           | >125                     | mg/kg<br>bw/d | No effect           |                                                  |                                                |                                                     |
| 5                     | Target<br>organ<br>toxicity  | Lymph nodes<br>histo-<br>pathology | Dog     | 52                         | Weeks            | Oral                           | >300                     | mg/kg<br>bw/d | No effect           |                                                  |                                                |                                                     |
| 6                     | Target<br>organ<br>toxicity  | Lymph nodes<br>histo-<br>pathology | Rat     | 2                          | Years            | Oral                           | >2500                    | ppm           | No effect           |                                                  |                                                |                                                     |
| 7                     | Target<br>organ<br>toxicity  | Lymph nodes<br>histo-<br>pathology | mouse   | 52                         | Weeks            | Oral                           | >3000                    | ppm           | No effect           |                                                  |                                                |                                                     |
| 1                     | Target<br>organ<br>toxicity  | Oesophagus<br>histo-<br>pathology  | Rat     | 5                          | Weeks            | Oral                           | >8000                    | ppm           | No effect           |                                                  | No effects to<br>oesophagus<br>histo-pathology |                                                     |
| 4                     | Target<br>organ<br>toxicity  | Oesophagus<br>histo-<br>pathology  | Dog     | 90                         | Days             | Oral                           | >125                     | mg/kg<br>bw/d | No effect           |                                                  |                                                |                                                     |
| 1                     | Target<br>organ<br>toxicity  | Pancreas<br>histo-<br>pathology    | Rat     | 5                          | Weeks            | Oral                           | >8000                    | ppm           | No effect           |                                                  | No effects to<br>pancreas histo-<br>pathology  |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n | Effect target                          | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative) | Assessment of<br>each line of<br>evidence           | Assessment on<br>the integrated<br>line of evidence |
|-----------------------|------------------------------|----------------------------------------|---------|----------------------------|------------------|--------------------------------|--------------------------|---------------|---------------------|--------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|
| 3                     | Target<br>organ<br>toxicity  | Pancreas<br>histo-<br>pathology        | Rat     | 13                         | Weeks            | Oral                           | >5000                    | ppm           | No effect           |                                                  |                                                     |                                                     |
| 4                     | Target<br>organ<br>toxicity  | Pancreas<br>histo-<br>pathology        | Dog     | 90                         | Days             | Oral                           | >125                     | mg/kg<br>bw/d | No effect           |                                                  |                                                     |                                                     |
| 5                     | Target<br>organ<br>toxicity  | Pancreas<br>histo-<br>pathology        | Dog     | 52                         | Weeks            | Oral                           | >300                     | mg/kg<br>bw/d | No effect           |                                                  |                                                     |                                                     |
| 6                     | Target<br>organ<br>toxicity  | Pancreas<br>histo-<br>pathology        | Rat     | 2                          | Years            | Oral                           | >2500                    | ppm           | No effect           |                                                  |                                                     |                                                     |
| 7                     | Target<br>organ<br>toxicity  | Pancreas<br>histo-<br>pathology        | mouse   | 52                         | Weeks            | Oral                           | >3000                    | ppm           | No effect           |                                                  |                                                     |                                                     |
| 1                     | Target<br>organ<br>toxicity  | Salivary<br>glands histo-<br>pathology | Rat     | 5                          | Weeks            | Oral                           | >8000                    | ppm           | No effect           |                                                  | No effects to<br>salivary glands<br>histo-pathology | -                                                   |
| 3                     | Target<br>organ<br>toxicity  | Salivary<br>glands histo-<br>pathology | Rat     | 13                         | Weeks            | Oral                           | >5000                    | ppm           | No effect           |                                                  |                                                     |                                                     |
| 4                     | Target<br>organ<br>toxicity  | Salivary<br>glands histo-<br>pathology | Dog     | 90                         | Days             | Oral                           | >125                     | mg/kg<br>bw/d | No effect           |                                                  |                                                     |                                                     |
| 5                     | Target<br>organ<br>toxicity  | Salivary<br>glands histo-<br>pathology | Dog     | 52                         | Weeks            | Oral                           | >300                     | mg/kg<br>bw/d | No effect           |                                                  | -                                                   |                                                     |
| 6                     | Target<br>organ<br>toxicity  | Salivary<br>glands histo-<br>pathology | Rat     | 2                          | Years            | Oral                           | >2500                    | ppm           | No effect           |                                                  |                                                     |                                                     |
| 7                     | Target<br>organ<br>toxicity  | Salivary<br>glands histo-<br>pathology | mouse   | 52                         | Weeks            | Oral                           | >3000                    | ppm           | No effect           |                                                  | -                                                   |                                                     |
| 1                     | Target<br>organ<br>toxicity  | Skeletal<br>muscle histo-<br>pathology | Rat     | 5                          | Weeks            | Oral                           | >8000                    | ppm           | No effect           |                                                  | No effects to<br>skeletal muscle<br>histo-pathology |                                                     |
| 3                     | Target<br>organ<br>toxicity  | Skeletal<br>muscle histo-<br>pathology | Rat     | 13                         | Weeks            | Oral                           | >5000                    | ppm           | No effect           |                                                  | moto pullology                                      |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n | Effect target                                           | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative) | Assessment of<br>each line of<br>evidence                         | Assessment on<br>the integrated<br>line of evidence |
|-----------------------|------------------------------|---------------------------------------------------------|---------|----------------------------|------------------|--------------------------------|--------------------------|---------------|---------------------|--------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------|
| 4                     | Target<br>organ<br>toxicity  | Skeletal<br>muscle histo-<br>pathology                  | Dog     | 90                         | Days             | Oral                           | >125                     | mg/kg<br>bw/d | No effect           |                                                  |                                                                   |                                                     |
| 5                     | Target<br>organ<br>toxicity  | Skeletal<br>muscle histo-<br>pathology                  | Dog     | 52                         | Weeks            | Oral                           | >300                     | mg/kg<br>bw/d | No effect           |                                                  |                                                                   |                                                     |
| 6                     | Target<br>organ<br>toxicity  | Skeletal<br>muscle histo-<br>pathology                  | Rat     | 2                          | Years            | Oral                           | >2500                    | ppm           | No effect           |                                                  |                                                                   |                                                     |
| 7                     | Target<br>organ<br>toxicity  | Skeletal<br>muscle histo-<br>pathology                  | mouse   | 52                         | Weeks            | Oral                           | >3000                    | ppm           | No effect           |                                                  |                                                                   |                                                     |
| 1                     | Target<br>organ<br>toxicity  | Skin histo-<br>pathology                                | Rat     | 5                          | Weeks            | Oral                           | >8000                    | ppm           | No effect           |                                                  | No effects to<br>skin histo-<br>pathology                         |                                                     |
| 3                     | Target<br>organ<br>toxicity  | Skin histo-<br>pathology                                | Rat     | 13                         | Weeks            | Oral                           | >5000                    | ppm           | No effect           |                                                  |                                                                   |                                                     |
| 4                     | Target<br>organ<br>toxicity  | Skin histo-<br>pathology                                | Dog     | 90                         | Days             | Oral                           | >125                     | mg/kg<br>bw/d | No effect           |                                                  |                                                                   |                                                     |
| 5                     | Target<br>organ<br>toxicity  | Skin histo-<br>pathology                                | Dog     | 52                         | Weeks            | Oral                           | >300                     | mg/kg<br>bw/d | No effect           |                                                  |                                                                   |                                                     |
| 6                     | Target<br>organ<br>toxicity  | Skin histo-<br>pathology                                | Rat     | 2                          | Years            | Oral                           | >2500                    | ppm           | No effect           |                                                  |                                                                   |                                                     |
| 7                     | Target<br>organ<br>toxicity  | Skin histo-<br>pathology                                | mouse   | 52                         | Weeks            | Oral                           | >3000                    | ppm           | No effect           |                                                  |                                                                   |                                                     |
| 1                     | Target<br>organ<br>toxicity  | Small and<br>large<br>intestines<br>histo-<br>pathology | Rat     | 5                          | Weeks            | Oral                           | >8000                    | ppm           | No effect           |                                                  | No effects to<br>small and large<br>intestine histo-<br>pathology |                                                     |
| 3                     | Target<br>organ<br>toxicity  | Small and<br>large<br>intestines                        | Rat     | 13                         | Weeks            | Oral                           | >5000                    | ppm           | No effect           |                                                  |                                                                   |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n | Effect target                                           | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative) | Assessment of<br>each line of<br>evidence            | Assessment on<br>the integrated<br>line of evidence |
|-----------------------|------------------------------|---------------------------------------------------------|---------|----------------------------|------------------|--------------------------------|--------------------------|---------------|---------------------|--------------------------------------------------|------------------------------------------------------|-----------------------------------------------------|
|                       |                              | histo-<br>pathology                                     |         |                            |                  |                                |                          |               |                     |                                                  |                                                      |                                                     |
| 4                     | Target<br>organ<br>toxicity  | Small and<br>large<br>intestines<br>histo-<br>pathology | Dog     | 90                         | Days             | Oral                           | >125                     | mg/kg<br>bw/d | No effect           |                                                  |                                                      |                                                     |
| 5                     | Target<br>organ<br>toxicity  | Small and<br>large<br>intestines<br>histo-<br>pathology | Dog     | 52                         | Weeks            | Oral                           | >300                     | mg/kg<br>bw/d | No effect           |                                                  |                                                      |                                                     |
| 6                     | Target<br>organ<br>toxicity  | Small and<br>large<br>intestines<br>histo-<br>pathology | Rat     | 2                          | Years            | Oral                           | >2500                    | ppm           | No effect           |                                                  |                                                      |                                                     |
| 7                     | Target<br>organ<br>toxicity  | Small and<br>large<br>intestines<br>histo-<br>pathology | mouse   | 52                         | Weeks            | Oral                           | >3000                    | ppm           | No effect           |                                                  |                                                      |                                                     |
| 1                     | Target<br>organ<br>toxicity  | Spinal cord<br>histo-<br>pathology                      | Rat     | 5                          | Weeks            | Oral                           | >8000                    | ppm           | No effect           |                                                  | No effects to<br>spinal cord histo-<br>pathology     |                                                     |
| 3                     | Target<br>organ<br>toxicity  | Spleen histo-<br>pathology                              | Rat     | 13                         | Weeks            | Oral                           | >5000                    | ppm           | No effect           |                                                  | No effects on<br>spleen weight or<br>histo-pathology |                                                     |
| 4                     | Target<br>organ<br>toxicity  | Spleen histo-<br>pathology                              | Dog     | 90                         | Days             | Oral                           | >125                     | mg/kg<br>bw/d | No effect           |                                                  |                                                      |                                                     |
| 7                     | Target<br>organ<br>toxicity  | Spleen histo-<br>pathology                              | mouse   | 52                         | Weeks            | Oral                           | >3000                    | ppm           | No effect           |                                                  |                                                      |                                                     |
| 5                     | Target<br>organ<br>toxicity  | Spleen weight                                           | Dog     | 52                         | Weeks            | Oral                           | >300                     | mg/kg<br>bw/d | No effect           |                                                  |                                                      |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n | Effect target                  | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative) | Assessment of<br>each line of<br>evidence    | Assessment on<br>the integrated<br>line of evidence |
|-----------------------|------------------------------|--------------------------------|---------|----------------------------|------------------|--------------------------------|--------------------------|---------------|---------------------|--------------------------------------------------|----------------------------------------------|-----------------------------------------------------|
| 1                     | Target<br>organ<br>toxicity  | Stomach<br>histo-<br>pathology | Rat     | 5                          | Weeks            | Oral                           | >8000                    | ppm           | No effect           |                                                  | No effects to<br>stomach histo-<br>pathology |                                                     |
| 3                     | Target<br>organ<br>toxicity  | Stomach<br>histopatholog<br>y  | Rat     | 13                         | Weeks            | Oral                           | >5000                    | ppm           | No effect           |                                                  |                                              |                                                     |
| 4                     | Target<br>organ<br>toxicity  | Stomach<br>histo-<br>pathology | Dog     | 90                         | Days             | Oral                           | >125                     | mg/kg<br>bw/d | No effect           |                                                  |                                              |                                                     |
| 5                     | Target<br>organ<br>toxicity  | Stomach<br>histo-<br>pathology | Dog     | 52                         | Weeks            | Oral                           | >300                     | mg/kg<br>bw/d | No effect           |                                                  |                                              |                                                     |
| 6                     | Target<br>organ<br>toxicity  | Stomach<br>histo-<br>pathology | Rat     | 2                          | Years            | Oral                           | >2500                    | ppm           | No effect           |                                                  |                                              |                                                     |
| 7                     | Target<br>organ<br>toxicity  | Stomach<br>histo-<br>pathology | mouse   | 52                         | Weeks            | Oral                           | >3000                    | ppm           | No effect           |                                                  |                                              |                                                     |
| 1                     | Target<br>organ<br>toxicity  | Thymus histo-<br>pathology     | Rat     | 5                          | Weeks            | Oral                           | >8000                    | ppm           | No effect           |                                                  | No effects to<br>thymus histo-<br>pathology  |                                                     |
| 3                     | Target<br>organ<br>toxicity  | Thymus histo-<br>pathology     | Rat     | 13                         | Weeks            | Oral                           | >5000                    | ppm           | No effect           |                                                  |                                              |                                                     |
| 4                     | Target<br>organ<br>toxicity  | Thymus histo-<br>pathology     | Dog     | 90                         | Days             | Oral                           | >125                     | mg/kg<br>bw/d | No effect           |                                                  |                                              |                                                     |
| 5                     | Target<br>organ<br>toxicity  | Thymus histo-<br>pathology     | Dog     | 52                         | Weeks            | Oral                           | >300                     | mg/kg<br>bw/d | No effect           |                                                  |                                              |                                                     |
| 6                     | Target<br>organ<br>toxicity  | Thymus histo-<br>pathology     | Rat     | 2                          | Years            | Oral                           | >2500                    | ppm           | No effect           |                                                  |                                              |                                                     |
| 7                     | Target<br>organ<br>toxicity  | Thymus histo-<br>pathology     | mouse   | 52                         | Weeks            | Oral                           | >3000                    | ppm           | No effect           |                                                  |                                              |                                                     |
| 1                     | Target<br>organ<br>toxicity  | Trachea histo-<br>pathology    | Rat     | 5                          | Weeks            | Oral                           | >8000                    | ppm           | No effect           |                                                  | No effects to<br>trachea histo-<br>pathology |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n | Effect target                          | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)                                                                                                                                                                                | Assessment of<br>each line of<br>evidence                                                                                                                                                                                                   | Assessment on<br>the integrated<br>line of evidence |
|-----------------------|------------------------------|----------------------------------------|---------|----------------------------|------------------|--------------------------------|--------------------------|---------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| 3                     | Target<br>organ<br>toxicity  | Trachea histo-<br>pathology            | Rat     | 13                         | Weeks            | Oral                           | >5000                    | ppm           | No effect           |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                             |                                                     |
| 4                     | Target<br>organ<br>toxicity  | Trachea<br>histopatholog<br>y          | Dog     | 90                         | Days             | Oral                           | >125                     | mg/kg<br>bw/d | No effect           |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                             |                                                     |
| 1                     | Target<br>organ<br>toxicity  | Urinary<br>bladder histo-<br>pathology | Rat     | 5                          | Weeks            | Oral                           | >8000                    | ppm           | No effect           |                                                                                                                                                                                                                                 | No effects to<br>urinary bladder<br>histo-pathology                                                                                                                                                                                         |                                                     |
| 3                     | Target<br>organ<br>toxicity  | Urinary<br>bladder histo-<br>pathology | Rat     | 13                         | Weeks            | Oral                           | >5000                    | ppm           | No effect           |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                             |                                                     |
| 4                     | Target<br>organ<br>toxicity  | Urinary<br>bladder histo-<br>pathology | Dog     | 90                         | Days             | Oral                           | >125                     | mg/kg<br>bw/d | No effect           |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                             |                                                     |
| 5                     | Target<br>organ<br>toxicity  | Urinary<br>bladder histo-<br>pathology | Dog     | 52                         | Weeks            | Oral                           | >300                     | mg/kg<br>bw/d | No effect           |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                             |                                                     |
| 6                     | Target<br>organ<br>toxicity  | Urinary<br>bladder histo-<br>pathology | Rat     | 2                          | Years            | Oral                           | >2500                    | ppm           | No effect           |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                             |                                                     |
| 7                     | Target<br>organ<br>toxicity  | Urinary<br>bladder histo-<br>pathology | mouse   | 52                         | Weeks            | Oral                           | >3000                    | ppm           | No effect           |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                             |                                                     |
| 1                     | Systemic<br>toxicity         | Body weight                            | Rat     | 5                          | Weeks            | Oral                           | 4000                     | ppm           | Decrease            | Statistically<br>significantly<br>reduced bw in<br>M at 8000<br>ppm (-13%)<br>and in<br>females at<br>4000 ppm (-<br>8%) and 8000<br>ppm (-16%).<br>Statistically<br>significantly<br>reduced bwg<br>in males and<br>females at | Body weight<br>and/or body<br>weight gain were<br>affected in most<br>studies. In<br>several, food<br>consump-tion<br>was reduced as<br>well and there<br>may have been a<br>palatability issue<br>rather than a<br>toxicol-ogical<br>issue |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n | Effect target | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative) | Assessment of<br>each line of<br>evidence | Assessment on<br>the integrated<br>line of evidence |
|-----------------------|------------------------------|---------------|---------|----------------------------|------------------|--------------------------------|--------------------------|--------------|---------------------|--------------------------------------------------|-------------------------------------------|-----------------------------------------------------|
|                       |                              |               |         |                            |                  |                                |                          |              |                     | 4000 ppm (-<br>11% and -                         |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | 24%,                                             |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | respectively)                                    |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | and 8000 ppm                                     |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | (-28% and -                                      |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | 42%,<br>respectively)                            |                                           |                                                     |
| 2                     | Systemic                     | Body weight   | mouse   | 4                          | Weeks            | Oral                           | >4000                    | ppm          | No effect           | Tespectively)                                    |                                           |                                                     |
| -                     | toxicity                     | Body weight   | mouse   |                            | 11 CORB          | orui                           | 2 1000                   | ppm          | ito enece           |                                                  |                                           |                                                     |
| 3                     | Systemic                     | Body weight   | Rat     | 13                         | Weeks            | Oral                           | 2500                     | ppm          | Decrease            | Body weight                                      |                                           |                                                     |
|                       | toxicity                     |               |         |                            |                  |                                |                          |              |                     | and body                                         |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | weight gain<br>were                              |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | significantly                                    |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | reduced in                                       |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | males given                                      |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | 2500 ppm (-7                                     |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | and -10%<br>when                                 |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | compared to                                      |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | control).                                        |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | Body weight                                      |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | was reduced                                      |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | in both sexes                                    |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | given 5000<br>ppm (-11%                          |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | for both                                         |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | sexes,                                           |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | compared to                                      |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | control).                                        |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | Body weight                                      |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | gain was<br>reduced in                           |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | both sexes at                                    |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | 5000 ppm (-                                      |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | 18% and -                                        |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | 24% of                                           |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | control for                                      |                                           |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n | Effect target | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)                                                                                                                                                                                                                                                                        | Assessment of<br>each line of<br>evidence | Assessment on<br>the integrated<br>line of evidence |
|-----------------------|------------------------------|---------------|---------|----------------------------|------------------|--------------------------------|--------------------------|---------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------|
|                       |                              |               |         |                            |                  |                                |                          |               |                     | males and<br>females,<br>respectively).                                                                                                                                                                                                                                                                                 |                                           |                                                     |
| 4                     | Systemic<br>toxicity         | Body weight   | Dog     | 90                         | Days             | Oral                           | >125                     | mg/kg<br>bw/d | No effect           |                                                                                                                                                                                                                                                                                                                         |                                           |                                                     |
| 5                     | Systemic<br>toxicity         | Body weight   | Dog     | 52                         | Weeks            | Oral                           | >300                     | mg/kg<br>bw/d | No effect           |                                                                                                                                                                                                                                                                                                                         |                                           |                                                     |
| 6                     | Systemic<br>toxicity         | Body weight   | Rat     | 2                          | Years            | Oral                           | 2500                     | ppm           | Decrease            | Body weight<br>and body<br>weight gain<br>was<br>decreased in<br>animals of<br>each sex<br>during the<br>first year of<br>treatment<br>with 2500<br>ppm. Body<br>weight was<br>reduced after<br>2 years but<br>this<br>difference<br>was not<br>statistically<br>significant<br>(8% in males,<br>and 13% in<br>females. |                                           |                                                     |
| 7                     | Systemic<br>toxicity         | Body weight   | mouse   | 52                         | Weeks            | Oral                           | >3000                    | ppm           | No effect           |                                                                                                                                                                                                                                                                                                                         | 1                                         |                                                     |
| 8                     | Systemic<br>toxicity         | Body weight   | rat     | 10 (GD 6-<br>15)           | Days             | Oral                           | 500                      | mg/kg<br>bw/d | Decrease            | Reduction in<br>body weight<br>gain was<br>observed in<br>the dams<br>receiving 500<br>mg/kg                                                                                                                                                                                                                            |                                           |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n | Effect target | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)                                                                                                                                                                                                                                                                                                                                              | Assessment of<br>each line of<br>evidence | Assessment on<br>the integrated<br>line of evidence |
|-----------------------|------------------------------|---------------|---------|----------------------------|------------------|--------------------------------|--------------------------|---------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------|
|                       |                              |               |         |                            |                  |                                |                          |               |                     | bw/day (-<br>38.8%)                                                                                                                                                                                                                                                                                                                                                                           |                                           |                                                     |
| 9                     | Systemic<br>toxicity         | Body weight   | rat     | 10 (GD 6-<br>15)           | Days             | Oral                           | 350                      | mg/kg<br>bw/d | Decrease            | Reduction in<br>body weight<br>gain was<br>observed in<br>the dams at<br>350 and 700<br>mg/kg<br>bw/day<br>during the<br>treatment<br>period (-<br>14.9% and -<br>40.4%,<br>respectively)<br>and post<br>treatment<br>(GD 16-20; -<br>17.1% for<br>each group).<br>Mean<br>corrected<br>body weight<br>on gestation<br>day 20 was<br>reduced in<br>dams at 750<br>mg/kg<br>bw/day (-<br>6.1%) |                                           |                                                     |
| 10                    | Systemic<br>toxicity         | Body weight   | rabbit  | 13 (DG 7-<br>19)           | Days             | Oral                           | 150                      | mg/kg<br>bw/d | Decrease            | Reduction in<br>body weight<br>gain day 13-<br>20 from 150<br>mg/kg bw<br>with a<br>tendency<br>already at 50                                                                                                                                                                                                                                                                                 |                                           |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n | Effect target | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)                                                                                                                                                                                                                                                                                                                                                                         | Assessment of<br>each line of<br>evidence | Assessment on<br>the integrated<br>line of evidence |
|-----------------------|------------------------------|---------------|---------|----------------------------|------------------|--------------------------------|--------------------------|---------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------|
|                       |                              |               |         |                            |                  |                                |                          |               |                     | mg/kg<br>bw/day.<br>Reduction in<br>body weight<br>and body<br>weight gain<br>was observed<br>in the dams<br>receiving 300<br>and 500<br>mg/kg                                                                                                                                                                                                                                                                           |                                           |                                                     |
| 11                    | Systemic<br>toxicity         | Body weight   | rabbit  | 13 (DG 7-<br>19)           | Days             | Oral                           | 100                      | mg/kg<br>bw/d | Decrease            | bw/day<br>Administ-<br>ration of the<br>100 and 300<br>mg/kg/day<br>dosages of the<br>test substance<br>resulted in<br>dosage-<br>dependent,<br>significant<br>inhibition of<br>average<br>maternal<br>body weight<br>during the<br>dosage<br>period.<br>Average<br>maternal<br>body weight<br>change for<br>days 7-20 of<br>gestation (the<br>dosage<br>period) was<br>+0.18. +0.13.<br>+0.05(p<0.05)<br>) and -0.10 kg |                                           |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n | Effect target | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Assessment of<br>each line of<br>evidence | Assessment on<br>the integrated<br>line of evidence |
|-----------------------|------------------------------|---------------|---------|----------------------------|------------------|--------------------------------|--------------------------|--------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------|
|                       |                              |               |         |                            |                  |                                |                          |              |                     | (p<0.01) for<br>control. low.<br>middle and<br>high dosage<br>group dose,<br>respectively.                                                                                                                                                                                                                                                                                                                                                                                                                               |                                           |                                                     |
| 12                    | Systemic<br>toxicity         | Body weight   | rat     | 5 to 6                     | Weeks            | Oral                           | 5000                     | ppm          | Decrease            | A significant<br>reduction in<br>body weight<br>was observed<br>in parents<br>receiving<br>5000 ppm.<br>Body weight<br>was stat sig<br>reduced in<br>males in<br>weeks 1 and 2<br>of the study (-<br>2% and -<br>1.6%) and<br>overall BWG<br>was reduced<br>weeks 0-3 (-<br>18%). Female<br>body weights<br>and BWG<br>was stat sig<br>reduced at<br>end of pre-<br>mating period<br>of (-12.6%<br>and 62.5%,<br>respectively),<br>BW was stat<br>sig reduced at<br>end of<br>gestation (-<br>13.4%), and<br>on day 7 of |                                           |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n | Effect target | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)<br>lactation | Assessment of<br>each line of<br>evidence | Assessment on<br>the integrated<br>line of evidence |
|-----------------------|------------------------------|---------------|---------|----------------------------|------------------|--------------------------------|--------------------------|--------------|---------------------|---------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------|
|                       |                              |               |         |                            |                  |                                |                          |              |                     | period (-                                                     |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | 16%).                                                         | _                                         |                                                     |
| 13                    | Systemic                     | Body weight   | rat     | 28                         | weeks            | Oral                           | 2500                     | ppm          | Decrease            | Mean body                                                     |                                           |                                                     |
|                       | toxicity                     |               |         |                            |                  |                                |                          |              |                     | weights were significantly                                    |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | reduced for                                                   |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | both F0 and                                                   |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | F1a adult                                                     |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | males at 2500                                                 |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | ppm                                                           |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | throughout                                                    |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | the study.                                                    |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | Body weights                                                  |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | for F0 adult                                                  |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | females were                                                  |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | similar to those of                                           |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | control                                                       |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | animals                                                       |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | during the                                                    |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | premating,                                                    |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | gestation and                                                 |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | lactation                                                     |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | periods. Body                                                 |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | weights for                                                   |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | F1a adult                                                     |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | females were significantly                                    |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | reduced                                                       |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | during the                                                    |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | pre-mating                                                    |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | and gestation                                                 |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | periods up                                                    |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | through Day                                                   |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | 14 of                                                         |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | lactation.                                                    |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | While body                                                    |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | weights were                                                  |                                           |                                                     |
|                       | 1                            |               |         |                            |                  |                                |                          | 1            |                     | reduced for                                                   |                                           | 1                                                   |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n | Effect target | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative) | Assessment of<br>each line of<br>evidence | Assessment on<br>the integrated<br>line of evidence |
|-----------------------|------------------------------|---------------|---------|----------------------------|------------------|--------------------------------|--------------------------|--------------|---------------------|--------------------------------------------------|-------------------------------------------|-----------------------------------------------------|
|                       |                              |               |         |                            |                  |                                |                          |              |                     | F1a females,                                     |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | body weight                                      |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | gain during                                      |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | gestation was                                    |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | not affected                                     |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | by treatment.                                    | -                                         |                                                     |
| 14                    | Systemic                     | Body weight   | rat     | 3                          | Days             | Oral                           | 45                       | mg/kg        | Decrease            | Mean body                                        |                                           |                                                     |
|                       | toxicity                     |               |         |                            |                  |                                |                          | bw/d         |                     | weight losses                                    |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | at 450                                           |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | mg/kg/day                                        |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | group (Study                                     |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | Days 0–3);                                       |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | mean                                             |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | absolute body                                    |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | weight that<br>was 14.0%                         |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | lower than                                       |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | controls on                                      |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | Study Day 3.                                     |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | At 45 and 135                                    |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | mg/kg/day,                                       |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | mean body                                        |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | weight losses                                    |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | were noted                                       |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | Study Days                                       |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | 0-1, resulting                                   |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | in lower mean                                    |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | body weight                                      |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | gains when                                       |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | the overall                                      |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | treatment                                        |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | period (Study                                    |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | Days 0–3)                                        |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | was                                              |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | evaluated.                                       |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | However,                                         |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | mean                                             |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | absolute body                                    |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | weights at 45                                    |                                           |                                                     |
|                       |                              |               |         |                            | 1                |                                |                          |              |                     | and 135                                          |                                           |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n | Effect target                            | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)                                                                                                                                                                                                                                                                                                                                                                                                  | Assessment of<br>each line of<br>evidence                                                                                                                                                                                                                                                                                                                                                                                                                     | Assessment on<br>the integrated<br>line of evidence |
|-----------------------|------------------------------|------------------------------------------|---------|----------------------------|------------------|--------------------------------|--------------------------|---------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
|                       |                              |                                          |         |                            |                  |                                |                          |               |                     | mg/kg/day<br>were within<br>3.3% of the<br>control group<br>value on<br>Study Day 3.                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     |
| 15                    | Systemic<br>toxicity         | Body weight                              | rat     | 10                         | Days             | Oral                           | >200                     | mg/kg<br>bw/d | No effect           |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     |
| 1                     | Systemic<br>toxicity         | Clinical<br>chemistry and<br>haematology | Rat     | 5                          | Weeks            | Oral                           | 1000                     | ppm           | Change              | The mean<br>haemoglobin<br>values for<br>males were<br>significantly<br>decreased in<br>the 1000,<br>4000 and<br>8000 ppm<br>groups, and<br>haematocrits<br>were<br>decreased for<br>the 4000 and<br>8000 ppm<br>groups. For<br>females,<br>mean<br>haemoglobin<br>values and<br>erythrocyte<br>counts were<br>significantly<br>reduced in the<br>5, 1000 and<br>8000 ppm<br>groups; the<br>200 and 4000<br>ppm females<br>showed<br>decreases in | Obser-vations in<br>blood/serum<br>included reduced<br>haematocrit,<br>reduced haemo-<br>globin, reduced<br>erythrocyte<br>count, increased<br>reticulocytes,<br>increased<br>platelets,<br>increased<br>cholesterol and<br>triglycerides,<br>increased total<br>protein, reduced<br>albumin/<br>globulin ratio,<br>alterations in<br>alkaline<br>phosphatase,<br>increased<br>chloride levels,<br>reduced BUN/<br>creatinine ratio,<br>and increased<br>ALT. |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n | Effect target                            | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)                                                                                                                                                                                                                                                                                                        | Assessment of<br>each line of<br>evidence | Assessment on<br>the integrated<br>line of evidence |
|-----------------------|------------------------------|------------------------------------------|---------|----------------------------|------------------|--------------------------------|--------------------------|--------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------|
|                       | Sector                       | Clinical                                 |         | 4                          | Weeler           | Oral                           | (25                      |              | Durrent             | these<br>parameters<br>that were not<br>statistically<br>significant.                                                                                                                                                                                                                                                                                   |                                           |                                                     |
| 2                     | Systemic<br>toxicity         | Clinical<br>chemistry and<br>haematology | mouse   | 4                          | Weeks            | Oral                           | 625                      | ppm          | Decrease            | Red blood<br>cell counts<br>were<br>significantly<br>decreased in<br>males at 1500<br>and 4000 ppm<br>and in<br>females at<br>1500 ppm.<br>Haemoglobin<br>was<br>significantly<br>decreased in<br>males at 625,<br>1500 and<br>4000 ppm and<br>in females at<br>1500 ppm.<br>Haematocrit<br>was<br>significantly<br>reduced in<br>males at 4000<br>ppm. |                                           |                                                     |
| 3                     | Systemic<br>toxicity         | Clinical<br>chemistry and<br>haematology | Rat     | 13                         | Weeks            | Oral                           | 5000                     | ppm          | Increase            | Clinical<br>chemistry<br>showed<br>significantly<br>higher<br>cholesterol,<br>total protein<br>and globulin<br>values at                                                                                                                                                                                                                                |                                           |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n | Effect target                            | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)                                                                                                                                                                                                                                                               | Assessment of<br>each line of<br>evidence | Assessment on<br>the integrated<br>line of evidence |
|-----------------------|------------------------------|------------------------------------------|---------|----------------------------|------------------|--------------------------------|--------------------------|---------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------|
|                       |                              |                                          |         |                            |                  |                                |                          |               |                     | 5000 ppm in<br>males (131%,<br>165% and<br>109% of<br>control<br>values,<br>respectively).<br>A significant<br>decrease in<br>blood urea<br>nitrogen/creat<br>ine ratio was<br>observed in<br>females at<br>2500 ppm but<br>not at 5000<br>ppm - this<br>was<br>considered to<br>be unrelated<br>to treatment. |                                           |                                                     |
| 4                     | Systemic<br>toxicity         | Clinical<br>chemistry and<br>haematology | Dog     | 90                         | Days             | Oral                           | 125                      | mg/kg<br>bw/d | Increase            | Mean alkaline<br>phosphatase<br>(ALP)<br>activity<br>progressively<br>increased in<br>males and<br>females given<br>125 mg/kg<br>bw/day. Mean<br>cholesterol<br>levels in<br>females given<br>125 mg/kg<br>bw/day<br>progressively<br>increased<br>these<br>differences                                        |                                           |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n | Effect target                            | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Assessment of<br>each line of<br>evidence | Assessment on<br>the integrated<br>line of evidence |
|-----------------------|------------------------------|------------------------------------------|---------|----------------------------|------------------|--------------------------------|--------------------------|---------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------|
| 5                     | Systemic<br>toxicity         | Clinical<br>chemistry and<br>haematology | Dog     | 52                         | Weeks            | Oral                           | 75                       | mg/kg<br>bw/d | Change              | from control<br>were<br>statistically<br>significant<br>after 1 and 2<br>months.<br>Albumin/glob<br>ulin ratio was<br>reduced in<br>males at 125<br>mg/kg<br>bw/day.<br>Chloride<br>levels were<br>reduced in<br>females at 75<br>and 125<br>mg/kg<br>bw/day.<br>Erythrocyte<br>count was<br>statistically<br>significantly<br>decreased in<br>males given<br>300 mg/kg<br>bw/day on<br>days 270 and<br>360 and in<br>females given<br>300 mg/kg<br>bw/day on<br>days 180, 270<br>and 360.<br>Haemoglobin<br>and<br>haematocrit<br>were<br>statistically<br>significantly |                                           |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n | Effect target | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative) | Assessment of<br>each line of<br>evidence | Assessment on<br>the integrated<br>line of evidence |
|-----------------------|------------------------------|---------------|---------|----------------------------|------------------|--------------------------------|--------------------------|--------------|---------------------|--------------------------------------------------|-------------------------------------------|-----------------------------------------------------|
|                       |                              |               |         |                            |                  |                                |                          |              |                     | decreased in                                     |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | females given                                    |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | 300 mg/kg                                        |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | bw/day on                                        |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | days 180, 270                                    |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | and 360. In                                      |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | males on day                                     |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | 360 the                                          |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | haemoglobin<br>and                               |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | haematocrit                                      |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | values were                                      |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | 8% lower                                         |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | than those of                                    |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | the control                                      |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | group (not                                       |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | statistically                                    |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | significant)                                     |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | Platelet count                                   |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | was                                              |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | statistically                                    |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | significantly                                    |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | increased in                                     |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | both sexes                                       |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | given 300                                        |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | mg/kg                                            |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | bw/day                                           |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | during the                                       |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | whole                                            |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | exposure                                         |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | period and a                                     |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | similar trend                                    |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | was observed                                     |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | in the 75                                        |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | mg/kg bw                                         |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | group (20%                                       |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | higher than                                      |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | the control on                                   |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | 360) although                                    |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | not                                              |                                           | 1                                                   |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n | Effect target | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit | Effect<br>direction | Observed<br>effect<br>(positive and | Assessment of<br>each line of<br>evidence | Assessment on<br>the integrated<br>line of evidence |
|-----------------------|------------------------------|---------------|---------|----------------------------|------------------|--------------------------------|--------------------------|--------------|---------------------|-------------------------------------|-------------------------------------------|-----------------------------------------------------|
|                       |                              |               |         |                            |                  |                                |                          |              |                     | negative)                           |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | statistically                       |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | significant.                        |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | The white                           |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | blood cell                          |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | count was                           |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | statistically                       |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | significantly                       |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | increased in                        |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | females given                       |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | 300 mg/kg                           |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | bw/day on                           |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | days 90, 180,                       |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | 270 and 360                         |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | and in                              |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | females given                       |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | 75 mg/kg                            |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | bw/day at day                       |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | 90 only.                            |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | Segmented                           |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | neutrophils                         |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | were                                |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | significantly                       |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | higher in                           |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | females given                       |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | 300 mg/kg                           |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | bw/day on                           |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | days 31, 90                         |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | and 270. The                        |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | albumin/glob                        |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | ulin ratio was                      |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | decreased in                        |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | females given                       |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | 300 mg/kg                           |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | bw/day at day                       |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | 270 and 360.                        |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | The glucose                         |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | level was                           |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | significantly                       |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | decreased in                        |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | males given                         |                                           |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n | Effect target | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative) | Assessment of<br>each line of<br>evidence | Assessment on<br>the integrated<br>line of evidence |
|-----------------------|------------------------------|---------------|---------|----------------------------|------------------|--------------------------------|--------------------------|--------------|---------------------|--------------------------------------------------|-------------------------------------------|-----------------------------------------------------|
|                       |                              |               |         |                            |                  |                                |                          |              |                     | 300 mg/kg                                        |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | bw/day on                                        |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | day 270, in                                      |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | females given                                    |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | 300 mg/kg                                        |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | bw/day on<br>days 180 and                        |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | 360, and in                                      |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | females given                                    |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | 75 mg/kg                                         |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | bw/day at day                                    |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | 360. Alkaline                                    |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | phosphatase                                      |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | was                                              |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | significantly                                    |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | higher than                                      |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | the control                                      |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | group's from                                     |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | day 90                                           |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | onwards at 75                                    |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | and 300                                          |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | mg/kg<br>bw/day in                               |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | both sexes,                                      |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | although only                                    |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | statistically                                    |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | significant at                                   |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | the highest                                      |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | dose level.                                      |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | ALP had a                                        |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | decreasing                                       |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | trend over                                       |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | time in all                                      |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | groups but the                                   |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | highest dose                                     |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | group, in<br>which it                            |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | increased                                        |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | over time.                                       |                                           |                                                     |
| 1                     |                              |               |         |                            |                  |                                |                          |              |                     | ALT was                                          |                                           |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n | Effect target                            | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Assessment of<br>each line of<br>evidence | Assessment on<br>the integrated<br>line of evidence |
|-----------------------|------------------------------|------------------------------------------|---------|----------------------------|------------------|--------------------------------|--------------------------|--------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------|
|                       |                              |                                          |         |                            |                  |                                |                          |              |                     | statistically<br>significantly<br>increased at<br>300 mg/kg<br>bw/day in<br>both sexes<br>from day 180<br>onwards.<br>Cholesterol<br>was<br>statistically<br>significantly<br>increased in<br>males given<br>300 mg/kg<br>bw/day at day<br>360 only and<br>in females<br>throughout<br>the study.<br>Triglycerides<br>were<br>significantly<br>increased in<br>both sexes<br>given 300<br>mg/kg<br>bw/day at day<br>360, and not<br>statistically<br>significantly<br>increased (29-<br>41%) at 75<br>mg/kg<br>bw/day. |                                           |                                                     |
| 6                     | Systemic<br>toxicity         | Clinical<br>chemistry and<br>haematology | Rat     | 2                          | Years            | Oral                           | >2500                    | ppm          | No effect           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n | Effect target                            | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)                                                                                                                                                                                                                                                                                                     | Assessment of<br>each line of<br>evidence | Assessment on<br>the integrated<br>line of evidence |
|-----------------------|------------------------------|------------------------------------------|---------|----------------------------|------------------|--------------------------------|--------------------------|---------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------|
| 7                     | Systemic<br>toxicity         | Clinical<br>chemistry and<br>haematology | mouse   | 52                         | Weeks            | Oral                           | 2000/30<br>00            | ppm           | Decrease            | Red blood<br>cell count was<br>statistically<br>significantly<br>decreased in<br>males given<br>2000/3000<br>ppm in week<br>27 and 79 and<br>in females<br>given<br>2000/3000<br>ppm in week<br>27.<br>Haemoglobin<br>and<br>haematocrit<br>were<br>statistically<br>significantly<br>decreased in<br>males given<br>2000/3000<br>ppm in week<br>27. |                                           |                                                     |
| 1                     | Systemic<br>toxicity         | Clinical signs                           | Rat     | 5                          | Weeks            | Oral                           | >8000                    | ppm           | No effect           |                                                                                                                                                                                                                                                                                                                                                      | Clinical signs<br>occurred in some        |                                                     |
| 2                     | Systemic<br>toxicity         | Clinical signs                           | mouse   | 4                          | Weeks            | Oral                           | >4000                    | ppm           | No effect           |                                                                                                                                                                                                                                                                                                                                                      | studies and<br>included excess            |                                                     |
| 3                     | Systemic<br>toxicity         | Clinical signs                           | Rat     | 13                         | Weeks            | Oral                           | >5000                    | ppm           | No effect           |                                                                                                                                                                                                                                                                                                                                                      | salivation,<br>excess                     |                                                     |
| 4                     | Systemic<br>toxicity         | Clinical signs                           | Dog     | 90                         | Days             | Oral                           | >125                     | mg/kg<br>bw/d | No effect           |                                                                                                                                                                                                                                                                                                                                                      | lacrimation,<br>staining of the           |                                                     |
| 5                     | Systemic<br>toxicity         | Clinical signs                           | Dog     | 52                         | Weeks            | Oral                           | >300                     | mg/kg<br>bw/d | No effect           |                                                                                                                                                                                                                                                                                                                                                      | fur/skin in the anogenital area,          |                                                     |
| 6                     | Systemic<br>toxicity         | Clinical signs                           | Rat     | 2                          | Years            | Oral                           | >2500                    | ppm           | No effect           |                                                                                                                                                                                                                                                                                                                                                      | red substance in the pan, and             |                                                     |
| 7                     | Systemic<br>toxicity         | Clinical signs                           | mouse   | 52                         | Weeks            | Oral                           | >3000                    | ppm           | No effect           |                                                                                                                                                                                                                                                                                                                                                      | dried faeces.                             |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n | Effect target  | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)                                                                                                                                                                                                                                                              | Assessment of<br>each line of<br>evidence | Assessment on<br>the integrated<br>line of evidence |
|-----------------------|------------------------------|----------------|---------|----------------------------|------------------|--------------------------------|--------------------------|---------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------|
| 8                     | Systemic<br>toxicity         | Clinical signs | rat     | 10 (GD 6-<br>15)           | Days             | Oral                           | 300                      | mg/kg<br>bw/d | Change              | Excess<br>salivation was<br>seen with<br>increased<br>frequency in<br>at 300 and<br>500 mg/kg<br>bw/day                                                                                                                                                                                                       |                                           |                                                     |
| 9                     | Systemic<br>toxicity         | Clinical signs | rat     | 10 (GD 6-<br>15)           | Days             | Oral                           | 350                      | mg/kg<br>bw/d | Change              | Excess<br>salivation was<br>seen was seen<br>at least once<br>in 11/25<br>females at<br>350 mg/kg<br>bw/day and<br>19/25 females<br>at 700 mg/kg<br>bw/day.<br>Excessive<br>lacrimation in<br>12/25 and<br>staining of<br>fur/skin in the<br>anogenital<br>area of 7/25<br>females at<br>700 mg/kg<br>bw/day. |                                           |                                                     |
| 10                    | Systemic<br>toxicity         | Clinical signs | rabbit  | 13 (DG 7-<br>19)           | Days             | Oral                           | >500                     | mg/kg<br>bw/d | No effect           |                                                                                                                                                                                                                                                                                                               |                                           |                                                     |
| 11                    | Systemic<br>toxicity         | Clinical signs | rabbit  | 13 (DG 7-<br>19)           | Days             | Oral                           | 100                      | mg/kg<br>bw/d | Change              | Signs of<br>maternal<br>toxicity were<br>noted in<br>females<br>treated at 100<br>or 300 mg/kg<br>bw/day and                                                                                                                                                                                                  | ll<br>were<br>at 100<br>ng/kg             |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n     | Effect target               | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction   | Observed<br>effect<br>(positive and<br>negative)                                                                                                                                                                   | Assessment of<br>each line of<br>evidence                                                                                                                                                                                                                                                         | Assessment on<br>the integrated<br>line of evidence |
|-----------------------|----------------------------------|-----------------------------|---------|----------------------------|------------------|--------------------------------|--------------------------|---------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
|                       |                                  |                             |         |                            |                  |                                |                          |               |                       | comprised<br>clinical signs<br>(red<br>substance in<br>the pan and<br>dried faeces                                                                                                                                 |                                                                                                                                                                                                                                                                                                   |                                                     |
| 12                    | Systemic toxicity                | Clinical signs              | rat     | 5 to 6                     | Weeks            | Oral                           | >5000                    | ppm           | No effect             |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                   |                                                     |
| 13                    | Systemic<br>toxicity             | Clinical signs              | rat     | 28                         | weeks            | Oral                           | >2500                    | ppm           | No effect             |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                   |                                                     |
| 14                    | Systemic<br>toxicity             | Clinical signs              | rat     | 3                          | Days             | Oral                           | >450                     | mg/kg<br>bw/d | No effect             |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                   |                                                     |
| 15                    | Systemic<br>toxicity             | Clinical signs              | rat     | 10                         | Days             | Oral                           | >200                     | mg/kg<br>bw/d | No effect             |                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                   |                                                     |
| 2                     | Systemic<br>toxicity<br>Systemic | Food<br>consumption<br>Food | Rat     | 5                          | Weeks            | Oral                           | 4000                     | ppm           | Decrease<br>No effect | Statistically<br>significantly<br>reduced in<br>males and<br>females at<br>4000 ppm (-<br>8% males; -<br>10% females)<br>and 8000 ppm<br>(-22% males;<br>-26%<br>females).<br>May be<br>related to<br>palatability | Food consump-<br>tion was affected<br>in 8 studies. In<br>five of them the<br>test substance<br>was incorporated<br>in the diet and<br>palatability may<br>influence the<br>outcome.<br>However, oral<br>gavage was used<br>to administer the<br>substance in the<br>three other<br>studies which |                                                     |
|                       | toxicity                         | consumption<br>Food         | Rat     | 13                         | Weeks            | Oral                           | 2500                     |               |                       | Food                                                                                                                                                                                                               | eliminates the palatability                                                                                                                                                                                                                                                                       |                                                     |
| 3                     | Systemic<br>toxicity             | consumption                 | Kat     | 15                         | weeks            | Oral                           | 2300                     | ppm           | Decrease              | rood<br>consumption<br>was<br>significantly<br>reduced in<br>males and<br>females<br>during                                                                                                                        | issue. Of the four<br>studies without<br>an observed<br>effect on food<br>consump-tion,<br>oral gavage was<br>used in three of                                                                                                                                                                    |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n | Effect target       | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)                                                                                                                    | Assessment of<br>each line of<br>evidence                                              | Assessment on<br>the integrated<br>line of evidence |
|-----------------------|------------------------------|---------------------|---------|----------------------------|------------------|--------------------------------|--------------------------|---------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------|
|                       |                              |                     |         |                            |                  |                                |                          |               |                     | treatment at<br>5000 ppm.<br>Decreases<br>were also<br>noted at<br>sporadic<br>intervals for<br>males in the<br>500 and 2500<br>ppm groups.<br>May be<br>related to | them and<br>adminis-tration<br>via the diet was<br>performed in one<br>(4-week, mice). |                                                     |
| 4                     | Systemic<br>toxicity         | Food<br>consumption | Dog     | 90                         | Days             | Oral                           | >125                     | mg/kg<br>bw/d | No effect           | palatability                                                                                                                                                        |                                                                                        |                                                     |
| 5                     | Systemic<br>toxicity         | Food<br>consumption | Dog     | 52                         | Weeks            | Oral                           | >300                     | mg/kg<br>bw/d | No effect           |                                                                                                                                                                     |                                                                                        |                                                     |
| 6                     | Systemic<br>toxicity         | Food<br>consumption | Rat     | 2                          | Years            | Oral                           | 2500                     | ppm           | Decrease            | Food<br>consumption<br>was<br>significantly<br>decreased in<br>animals of<br>each sex<br>during the<br>first year to<br>treatment<br>with 2500<br>ppm.              |                                                                                        |                                                     |
| 7                     | Systemic toxicity            | Food consumption    | mouse   | 52                         | Weeks            | Oral                           | >3000                    | ppm           | No effect           |                                                                                                                                                                     |                                                                                        |                                                     |
| 8                     | Systemic<br>toxicity         | Food<br>consumption | rat     | 10 (GD 6-<br>15)           | Days             | Oral                           | >500                     | mg/kg<br>bw/d | No effect           |                                                                                                                                                                     |                                                                                        |                                                     |
| 9                     | Systemic<br>toxicity         | Food<br>consumption | rat     | 10 (GD 6-<br>15)           | Days             | Oral                           | 700                      | mg/kg<br>bw/d | Decrease            | Reduction in<br>food<br>consumption<br>was observed<br>in the dams<br>receiving 350                                                                                 |                                                                                        |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n | Effect target       | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)                                                                                                                                                                                                                                                                           | Assessment of<br>each line of<br>evidence | Assessment on<br>the integrated<br>line of evidence |
|-----------------------|------------------------------|---------------------|---------|----------------------------|------------------|--------------------------------|--------------------------|---------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------|
|                       |                              |                     |         |                            |                  |                                |                          |               |                     | (Day 7 of<br>gestation) and<br>700 mg/kg<br>bw/day (Days<br>7-10 of<br>gestion), but<br>only the<br>prolonged<br>reduction in<br>food<br>consumption<br>at 700 mg/kg<br>bw/day<br>considered<br>related to                                                                                                                 |                                           |                                                     |
| 10                    | Systemic<br>toxicity         | Food<br>consumption | rabbit  | 13 (DG 7-<br>19)           | Days             | Oral                           | 50                       | mg/kg<br>bw/d | Decrease            | treatment.<br>Reduced feed<br>consumption<br>during the<br>dosage period<br>(≥50<br>mg/kg/day –<br>statistically<br>significant<br>only at<br>highest dose)<br>with a post<br>dosage<br>increase in<br>food<br>consumption<br>compared<br>with the<br>control (≥150<br>mg/kg/day,<br>not<br>statistically<br>significant), |                                           |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n | Effect target       | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)                                                                                                                                                                                       | Assessment of<br>each line of<br>evidence | Assessment on<br>the integrated<br>line of evidence |
|-----------------------|------------------------------|---------------------|---------|----------------------------|------------------|--------------------------------|--------------------------|---------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------|
| 11                    | Systemic<br>toxicity         | Food<br>consumption | rabbit  | 13 (DG 7-<br>19)           | Days             | Oral                           | 100                      | mg/kg<br>bw/d | Decrease            | Adminis-<br>tration of the<br>100 and 300<br>mg/kg/day<br>dosages of the<br>test substance<br>resulted in<br>dosage-<br>dependent,<br>significant<br>inhibition of<br>average<br>maternal food<br>consumption<br>during the            |                                           |                                                     |
| 12                    | Systemic<br>toxicity         | Food<br>consumption | rat     | 5 to 6                     | Weeks            | Oral                           | 5000                     | ppm           | Decrease            | dosage period<br>Food<br>consumption<br>was<br>consistently<br>lower for<br>treated males<br>and females<br>in all dose<br>groups.<br>However, the<br>difference<br>was<br>statistically<br>significant in<br>high-dose<br>males only. |                                           |                                                     |
| 13                    | Systemic<br>toxicity         | Food<br>consumption | rat     | 28                         | weeks            | Oral                           | 2500                     | ppm           | Decrease            | In general,<br>food<br>consumption<br>of F0 adults<br>was not<br>affected by<br>treatment                                                                                                                                              |                                           |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n | Effect target | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative) | Assessment of<br>each line of<br>evidence | Assessment on<br>the integrated<br>line of evidence |
|-----------------------|------------------------------|---------------|---------|----------------------------|------------------|--------------------------------|--------------------------|--------------|---------------------|--------------------------------------------------|-------------------------------------------|-----------------------------------------------------|
|                       |                              |               |         |                            |                  |                                |                          |              |                     | except for                                       |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | decreases for                                    |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | animals at                                       |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | 2500 ppm                                         |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | during the                                       |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | initial                                          |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | exposure                                         |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | period. Food                                     |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | consumption                                      |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | for F1a adult                                    |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | males was                                        |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | decreased on                                     |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | many of the                                      |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | intervals                                        |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | measured                                         |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | throughout                                       |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | the study.                                       |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | Food                                             |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | consumption                                      |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | for F1a adult                                    |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | females,                                         |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | however, was                                     |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | not affected                                     |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | during the                                       |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | pre-mating                                       |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | period but                                       |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | was reduced                                      |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | on Days 0-2,                                     |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | 2-5, and 9-12                                    |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | of gestation.                                    |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | Food                                             |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | consumption                                      |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | for F1a                                          |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | females was                                      |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | not affected                                     |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | during                                           |                                           |                                                     |
|                       |                              |               |         |                            |                  |                                |                          |              |                     | lactation.                                       |                                           |                                                     |
| 1                     | Systemic                     | Mortality     | Rat     | 5                          | Weeks            | Oral                           | >8000                    | ppm          | No effect           |                                                  | Mortality                                 |                                                     |
|                       | toxicity                     |               |         |                            |                  |                                |                          |              |                     |                                                  | occurred in three                         |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n | Effect target | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)                                                                                                                                                                                                                                       | Assessment of<br>each line of<br>evidence | Assessment on<br>the integrated<br>line of evidence |
|-----------------------|------------------------------|---------------|---------|----------------------------|------------------|--------------------------------|--------------------------|---------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------|
| 2                     | Systemic<br>toxicity         | Mortality     | mouse   | 4                          | Weeks            | Oral                           | >4000                    | ppm           | No effect           |                                                                                                                                                                                                                                                                                        | studies: at a dose<br>of 238/357          |                                                     |
| 3                     | Systemic<br>toxicity         | Mortality     | Rat     | 13                         | Weeks            | Oral                           | >5000                    | ppm           | No effect           |                                                                                                                                                                                                                                                                                        | mg/kg bw/day in a 2-year study in         |                                                     |
| 4                     | Systemic toxicity            | Mortality     | Dog     | 90                         | Days             | Oral                           | >125                     | mg/kg<br>bw/d | No effect           |                                                                                                                                                                                                                                                                                        | non-pregnant<br>mice, and at 300-         |                                                     |
| 5                     | Systemic<br>toxicity         | Mortality     | Dog     | 52                         | Weeks            | Oral                           | >300                     | mg/kg<br>bw/d | No effect           |                                                                                                                                                                                                                                                                                        | 700 mg/kg<br>bw/day in                    |                                                     |
| 6                     | Systemic<br>toxicity         | Mortality     | Rat     | 2                          | Years            | Oral                           | 2500                     | ppm           | No effect           |                                                                                                                                                                                                                                                                                        | pregnant rats and rabbits.                |                                                     |
| 7                     | Systemic<br>toxicity         | Mortality     | mouse   | 52                         | Weeks            | Oral                           | 2000/30<br>00            | ppm           | Change              | Survival for<br>males and<br>females of the<br>3000-ppm<br>group through<br>Week 78 was<br>significantly<br>lower than<br>control, and<br>there was a<br>significant<br>negative<br>trend, i.e.<br>treatment-<br>related<br>decrease, in<br>survival for<br>both males<br>and females. |                                           |                                                     |
| 8                     | Systemic<br>toxicity         | Mortality     | rat     | 10 (GD 6-<br>15)           | Days             | Oral                           | >500                     | mg/kg<br>bw/d | No effect           |                                                                                                                                                                                                                                                                                        |                                           |                                                     |
| 9                     | Systemic<br>toxicity         | Mortality     | rat     | 10 (GD 6-<br>15)           | Days             | Oral                           | 700                      | mg/kg<br>bw/d | Increase            | At 700 mg/kg<br>bw/day<br>maternal<br>toxicity was<br>evident as<br>mortality<br>increased by a<br>20% (5/25).                                                                                                                                                                         |                                           |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classificatio<br>n | Effect target | Species | Duration<br>of<br>exposure | Duration<br>unit | Route of<br>administr<br>ation | Lowest<br>Effect<br>dose | Dose<br>unit  | Effect<br>direction | Observed<br>effect<br>(positive and<br>negative)                                                                                                                                  | Assessment of<br>each line of<br>evidence | Assessment on<br>the integrated<br>line of evidence |
|-----------------------|------------------------------|---------------|---------|----------------------------|------------------|--------------------------------|--------------------------|---------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------|
| 10                    | Systemic<br>toxicity         | Mortality     | rabbit  | 13 (DG 7-<br>19)           | Days             | Oral                           | 300                      | mg/kg<br>bw/d | Increase            | Two of seven<br>pregnant 300<br>mg/kg/day<br>dosage group<br>rabbits died,<br>and one of<br>seven<br>pregnant 500<br>mg/kg/day<br>dosage group<br>rabbits<br>aborted and<br>died. |                                           |                                                     |
| 11                    | Systemic toxicity            | Mortality     | rabbit  | 13 (DG 7-<br>19)           | Days             | Oral                           | >300                     | mg/kg<br>bw/d | No effect           |                                                                                                                                                                                   |                                           |                                                     |
| 12                    | Systemic toxicity            | Mortality     | rat     | 5 to 6                     | Weeks            | Oral                           | >5000                    | ppm           | No effect           |                                                                                                                                                                                   |                                           |                                                     |
| 13                    | Systemic<br>toxicity         | Mortality     | rat     | 28                         | weeks            | Oral                           | >2500                    | ppm           | No effect           |                                                                                                                                                                                   |                                           |                                                     |
| 14                    | Systemic<br>toxicity         | Mortality     | rat     | 3                          | Days             | Oral                           | >450                     | mg/kg<br>bw/d | No effect           |                                                                                                                                                                                   |                                           |                                                     |
| 15                    | Systemic<br>toxicity         | Mortality     | rat     | 10                         | Days             | Oral                           | >200                     | mg/kg<br>bw/d | No effect           |                                                                                                                                                                                   |                                           |                                                     |

# **2.10.2.2.1.1** Assessment of the integrated lines of evidence and weight of evidence for T-mediated adversity and endocrine activity

## Table 2.10.2.2.1.1-1. WoE for EAS-mediated adversity.

Overall, no clear signs of EAS-mediated adversity have been observed at doses not causing overt toxicity. Observed effects on organ weights and reproduction occurred at dose levels producing effects like reduced food consumption and/or body weight, increased liver weight accompanied by microscopic alterations (hypertrophy and in some cases pigmentation and vacuolation), alteration in clinical chemistry parameters (e.g. cholesterol and ALK) and blood system effects (anaemia).

Increased left, right and combined testes weight/body weight ratios were observed in rats at 8000 ppm (equivalent to 515 mg/kg bw/day) group following 5-weeks exposure (ID 1) and in F0 male rats exposed to 163 mg/kg bw/day throughout premating, mating, gestation, and lactation of the F1 pups (ID 13). These increases were due to the reduced body weights and the absolute weights were not affected. Testis weight was not affected in other studies assessing it (ID 2, 3, 4, 5, 6, 7) and no histopathological lesions were observed (ID 1, 2, 3, 4, 5, 6, 7).

The weights of the seminal vesicles and the prostate were not affected by treatment in the Hershberger assay (ID 15; five weeks exposure of male rats to 20 - 200 mg/kg bw/day) but absolute weights of the two organs were reduced in male rats of the F1-generation (11% and 25%, respectively) that were exposed to 151.2 mg/kg bw/day in the multigenerational reproductive toxicity study (ID 13). The F1 males in this study also displayed reduced food consumption and body weight. No effects have been observed in the histopathological assessments of the two organs (seminal vesicles: ID 1, 7, 13; prostate: ID 1, 3, 4, 5, 6, 7)

No treatment related weight changes of the Cowper's gland, glans penis, or LABC muscle group were observed in the Hershberger assay (ID 15). No effects have been observed on epididymis histology (rat, dog, mouse; ID 1, 3, 4, 5, 6, 7, 13). Relative epididymis weight was increased in male rats of the F1 generation (ID 13) but this was due to the reduced body weight. The absolute weight of the epididymis was unaffected in this study as well as in the Hershberger assay (ID 13, 15).

No microscopic lesions in the ovaries were detected in dog, rat, or mouse (ID 1, 3, 4, 5, 6, 7, 13) but in two studies differences in ovary weight were observed (ID 3, 4). In the 13-week rat study, relative and absolute ovary weights were lower in exposed groups than in the control, but no dose response was apparent. The mean relative and absolute ovary weights of dogs administered 75 mg/kg bw/day for 90 days were lower, and those of dogs administered 125 mg/kg bw/day were higher than those of the control group. The differences were not statistically significant but notable due to the size (30-82%). Oestrus cyclicity was not determined in these studies, and differences in ovary weights were not observed in the longer-term studies in dog and rat.

No effects have been observed on uterus histology (ID 1, 3, 4, 5, 6, 7, 13, 15). Uterus weights were reduced in two studies after exposure during gestational days 6-15 in rat and 7-19 in rabbit. In the teratology study in rats (ID 9), a 7% reduction in uterus weight compared with the control was observed in dams exposed to 100 mg/kg bw/day, a 10 % reduction in the 350 mg/kg bw/day group, and a 27% reduction in the 700 mg/kg bw/day group (only the top dose was statistically significant). In the teratology study in rabbits (ID 11), a statistically significant 10% decrease in absolute uterus weight was observed in the 300 mg/kg bw/day dose group when compared to controls.

No effect on the histology of the female mammary gland (rat, dog, mouse; ID 1, 3, 4, 5, 6, 7)

In the 2-generation reproduction toxicity study with the rat (ID: 13), no treatment related effect was observed on the vaginal cytology or the oestrous cycles of any F0 or F1a females. No changes in mating indices, pregnancy rates, or male fertility were observed in the F0 or F1a adults. No treatment related effects on litter size, sex ratio, or litter survival were evident. An increase in stillborn pups was observed in F1a litters of the highest dose group, but in light of historical control data and the lack of a similar response in F2a litters, this finding was not considered to be treatment related. Necropsy and histopathological observations did not reveal any adverse effects of treatment in F1a or F2a pups.

The number of implantation sites (87 vs 126) and as a result the number of viable foetuses (86 vs 122) were reduced, albeit not statistically significant, in the pilot teratology study in rats (ID 8); however, it is noted that there were signs of SDA

infections in some individuals. There was no such effect in the full teratology study in rats (ID 9) nor in the pilot or full teratology study in rabbits (ID 10, 11).

In the teratology study in rats (ID 9), there was an increase in post-implantation loss at 700 mg/kg bw/day. This in part was driven by a single female with 15/16 foetal resorptions, with this female excluded the mean resorption rate was 1.1 which was slightly higher than concurrent control (0.8) and within HCD. This dose induced severe maternal toxicity (mortality, reduced food consumption and body weight gain, clinical signs). In the pilot teratology study in rabbits (ID 10), four of the seven pregnant 500 mg/kg/day dosage group rabbits aborted after completion of the dosage period. One of these rabbits died following abortion. Clear signs of maternal toxicity were observed in the study: reduced food consumption ( $\geq$ 50 mg/kg bw/day), reduced bw gain ( $\geq$ 150 mg/kg bw/day), increased LW ( $\geq$ 150 mg/kg bw/day), and death ( $\geq$ 150 mg/kg bw/day). There was no increase in post-implantation loss in the teratology study in rabbits (ID 11).

Foetal sex ratios were unaffected by clethodim (ID 9, 10, 11, 12, 13).

Increase foetal malformations and altered ossification processes occurred in two studies (ID 9 and 11). In the teratology study in rats (ID 9), there was an increased incidence of external malformation on a foetal (3.6%; 8/221 foetuses) and litter (33.3%; 6/18 litters) basis, and an increase in incidence of tail defects (7 foetuses; absence of tail, short tail or filamentous tail) in the high dose group. Skeletal ossification variation data indicated retarded ossification at 350 and 700 mg/kg bw/day. Maternal effects at  $\geq$ 350 mg/kg bw/day included reduced body weight gain, clinical signs (excessive salivation, red/mucoid nasal discharge, alopecia, staining of the anogenital area), and reduced uterine weight. Additional signs at 700 mg/kg bw/day included excessive lacrimation and mortality. In the developmental toxicity study in rabbits ID 11), there was an increased incidence of angulated hyoid alae, misaligned sutures (fontanelle), and nasal irregular ossification in the foetuses at 300 mg/kg bw/day; a dose level which caused reduced food consumption and body weight gain, clinical signs (red substance in pan, dried faeces), and reduced uterine weight in the dams. Overall incidences of fetal alterations were 18.7%, 19.3%, 23.9%, and 23.4% in the control, low, mid, and high dose groups, respectively (0, 25, 100 and 300 mg/kg bw/day). The dams exposed to 100 mg/kg bw/day had dried faeces and reduced food consumption and body weight gain.

Reduction in foetal body weight were observed three studies (rat and rabbit; ID 8, 9, 10) but at doses causing maternal toxicity, including reductions in body weight and food consumption. The effects on foetal body weight are therefore considered secondary to maternal toxicity.

In rats, reductions in combined pup weight (day 7) and pup weight gain (day 0-7), but not birth weight, were observed at all dose levels (500, 2000, and 5000 ppm) in the 5-week pilot study (ID 12). Maternal toxicity was only noted in the highest dose group and included reduced food consumption (possible palatability issue) and reduced body weight gain (only statistically significant in males). This effect on postnatal growth was not observed in either generation of the 2-generation study (doses used: 5, 20, 500, and 2500 ppm; ID 13).

No changes in absolute organ weights and no histopathological lesions in the kidneys, brain, or pituitary were observed in the rat, mouse, or dog. Relative brain and kidney weights were increased in two studies, likely a result of reduced body weight (ID 1 and 3).

Adrenal weights (absolute and relative to brain weight) were reduced in rats exposed to 597 (males) or 667 (females) mg/kg bw/day for females for 5 weeks (Report No.: S-2763) and increased in females and decreased in male mice at the interim but not the terminal sacrifice (week 53 and 79, respectively; unclear relevance; ID 7). Adrenal weight was unaffected in the other seven studies (ID 1-6, 15). No microscopic lesions in the adrenals have been reported (ID 1, 3, 4, 5, 6, 7).

Clethodim was found to cause effects on the liver in all short-term studies (rat, mouse, and dog; ID 1, 2, 4, 5). These effects included increased liver weight, hypertrophy, vacuolisation of hepatocytes, increased pigmentation, effects on clinical chemistry parameters associated with liver damage and/or affected fat metabolism. Besides hepatotoxicity, several haematological effects were observed, most prominently anaemia. In addition, increases of the numbers of platelets and leukocytes were found in a5 week rat study and the one-year dog study (ID 1, 5). The 1-year dog study also revealed bone-marrow hyperplasia in the sternum at the highest dose level. Effects observed during the long-term/carcinogenicity studies with rats and mice (ID 6, 7) included reduced body weight, increases in hepatic volume (liver weight and hypertrophy) and anaemia (reduction in the number of erythrocytes, haemoglobin, and haematocrit). These effects are consistent with those obtained in the short-term studies. Hepatotoxicity is considered the critical effect in the sense that it always (co-)determines the NOAEL of each study (ID: 1, 2, 4, 5, 6, 7, 10).

No EAS-mediated adversity was found at doses not causing overt toxicity, the overall assessment of the integrated

lines of evidence indicates that there is no evidence to support an EAS-mediated ED identification.

### Table 2.10.2.2.1.1-2. WoE for EAS-mediated endocrine activity.

The ToxCast assays available did not indicate any ER agonistic or AR agonistic/antagonistic activity: ATG\_ERa\_TRANS\_up, ATG\_ERE\_CIS\_up, ATG\_AR\_TRANS\_up, TOX21\_AR\_LUC\_MDAKB2\_Agonist\_3uM\_Nilutamide, TOX21\_AR\_LUC\_MDAKB2\_ Antagonist\_0.5nM\_R1881 (ID 18). There are no ToxCast AUC model data for the estrogen or androgen receptor.

There were no changes in uterus weight or histopathology in the Uterotrophic assay (ID14)

There were no weight changes in androgen dependent organs in the Hershberger assay (ID 15)

No hormone levels have been measured in vivo but there was no effect on estradiol or testosterone release by H295R cells in vitro (ID 17)

Clethodim showed no aromatase inhibitory activity using human recombinant microsomes (ID 16).

EAS-related activity was sufficiently investigated in mechanistic studies (Hershberger-, Uterotrophic-, Aromataseand Steroidogenesis assays) (refer to Vol. 3. section B.6.8.3 for details). These studies were negative. Thus, no EASmediated endocrine activity was observed.

# 2.10.2.2.2 Initial analysis of the evidence and identification of relevant scenario for the ED assessment of EAS-modalities

| Adversity based on<br>EAS-mediated<br>parameters | Positive mechanistic<br>OECD CF level 2/3<br>Test | Scenario | Next step of the assessment                                                                                                                                                     | Scenario selected |
|--------------------------------------------------|---------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| No (sufficiently investigated)                   | Yes/No                                            | 1a       | Conclude: ED criteria not met<br>because there is not "EAS-<br>mediated" adversity                                                                                              |                   |
| Yes (sufficiently investigated)                  | Yes/No                                            | 1b       | Perform MoA analysis                                                                                                                                                            |                   |
| No (not sufficiently investigated)               | Yes                                               | 2a (i)   | Perform MoA analysis (additional<br>information may be needed for<br>the analysis)                                                                                              |                   |
| No (not sufficiently investigated)               | No (sufficiently investigated)                    | 2a (ii)  | Conclude: ED criteria not met<br>because no EAS-mediated<br>endocrine activity observed                                                                                         | X                 |
| No (not sufficiently investigated)               | No (not sufficiently<br>investigated)             | 2a (iii) | Generate missing level 2 and 3<br>information. Alternatively,<br>generate missing "EATS-<br>mediated" parameters. Depending<br>on the outcome move to<br>corresponding scenario |                   |
| Yes (not sufficiently investigated)              | Yes/No                                            | 2b       | Perform MoA analysis                                                                                                                                                            |                   |

Table 2.10.2.2.2-1. Selection of relevant scenario.

There are endpoints missing from the data package, namely *in vivo* serum hormonal levels, sperm analyses, anogenital distance in offspring, age at balano-preputial separation, and age at vaginal opening. However, since EAS-related activity was sufficiently investigated, no indications of such activity was found in the data set, and since no EAS-mediated adversity was found at doses not causing overt toxicity, the overall assessment of the integrated lines of evidence indicates that there is no evidence to support an EAS-mediated ED identification. The ED criteria for EAS-modalities are not met for Clethodim (scenario 2a (ii)).

## 2.10.2.2.3 MoA analysis for EAS-modalities

Not applicable

### 2.10.2.2.3.1 Postulate MoA

Not applicable

#### 2.10.2.2.3.2 Further information to be generated to postulate MoA

Not applicable

## 2.10.2.2.3.3 Empirical support of the postulated MoA

Not applicable

#### 2.10.2.2.3.4 Conclusion on MoA analysis

Not applicable

#### 2.10.2.2.4 Conclusion of the assessment of EAS-modalities

There are some endpoints missing from the data package, namely *in vivo* serum hormonal levels, sperm analyses, anogenital distance in offspring, age at balano-preputial separation, and age at vaginal opening. However, since EAS-related activity was sufficiently investigated, no indications of such activity was found in the data set, and since no EAS-mediated adversity was found at doses not causing overt toxicity, the overall assessment of the integrated lines of evidence indicates that there is no evidence to support an EAS-mediated ED classification. The ED criteria for EAS-modalities are not met for Clethodim (scenario 2a (ii)).

## 2.10.2.3 Overall conclusion on the ED assessment for humans

Clethodim does not meet the criteria for endocrine disruption by the EATS-modalities.

## 2.10.3 ED assessment for non-target organisms

# 2.10.3.1 ED assessment for T-modality

## Table 2.10.3-1. Data sufficiency for clethodim via the T-modality for non-target organisms

|                       | Sufficiently investigated                                                                                                                                                                                                                                                                    |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| T-mediated parameters | Yes                                                                                                                                                                                                                                                                                          |
|                       | T-mediated parameters have been investigated directly with an OECD CF level 3 amphibian metamorphosis test (AMA, OECD 231) which showed no T-mediated activity. The data package is supported by CF Level 4 data from a fish early life stage test (ELS) and two avian reproduction studies. |

## 2.10.3.1.1 Lines of evidence for adverse effects and endocrine activity related to T-modality

| Study        | Effect                           |                                                                                                                       | Species                  |       | tion of | Route of                             |                      | Effect direction | Observed effect                                                                                                                                           | Assessment of each                                                                                                                                                                                                                 | Assessment of                                                                                                                                                           |
|--------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------|-------|---------|--------------------------------------|----------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ID<br>Matrix | classification                   |                                                                                                                       |                          | expos | ure     | administration                       | dose                 |                  | (positive and negative)                                                                                                                                   | line of evidence                                                                                                                                                                                                                   | the integrated<br>line of evidence                                                                                                                                      |
| 18           | In vitro<br>mechanistic          | Thyroid receptor                                                                                                      | Human liver cell<br>line | 24    | Hours   | Uptake from the<br>medium (in vitro) | 0 μΜ                 | No effect        | No effect 0 (No TR<br>agonist activity)                                                                                                                   |                                                                                                                                                                                                                                    | Increased thyroid weight was                                                                                                                                            |
| 115          | <i>In vivo</i><br>mechanistic    | Liver weight<br>(Hershberger,<br>considered T-<br>mediated only in<br>combination with<br>other thyroid<br>endpoints) | Rat                      | 10    | Days    | Oral                                 | >200 mg/kg<br>bw/day | No effect        | No effect                                                                                                                                                 | No T-mediated<br>activity                                                                                                                                                                                                          | observed in males<br>in the 1-year dog<br>study but not in<br>females and not in<br>the 90-day dog<br>study. Thus,<br>considered of<br>unclear biological<br>relevance. |
| 25           |                                  | Developmental stage                                                                                                   | Xenopus laevis           | 21    | Days    | Uptake from water                    | 24 mg/L              | Decrease         | Day 7 - Statistically<br>significant reduction in<br>development score at 24<br>mg/L, 53 compared with<br>54 in controls (P <0.05)                        | Lack of follicular cell<br>hypertrophy and<br>hyperplasia at the<br>highest concentration<br>consistent with the NF                                                                                                                |                                                                                                                                                                         |
| 25a          |                                  | Developmental stage                                                                                                   | Xenopus laevis           | 21    | Days    | Uptake from water                    | 24 mg/L              | Decrease         | Day 21 - Statistically<br>significant decrease in<br>development stage at<br>24mg/L (55) compared<br>with controls (57)                                   | Stage Score 55.<br>Therefore, effects seen<br>not considered to be<br>endocrine related.                                                                                                                                           | A thyroid<br>antagonist would<br>be expected to<br>cause delays in                                                                                                      |
| 25a          | EATS-mediated                    | Hind limb length                                                                                                      | Xenopus laevis           | 21    | Days    | Uptake from water                    | 0.25 mg/L            | Decrease         | Day 21 - Statistically<br>significant decrease at<br>0.25, 2.4 and 24 mg/L<br>(0.41, 0.38 and 0.24 mm<br>respectively) compared<br>with control (0.45 mm) | Reduced growth<br>indicative of onset of<br>systemic toxicity.                                                                                                                                                                     | somatic growth,<br>but would also<br>tend to cause<br>thyroid gland<br>proliferation,<br>which did not                                                                  |
| 25           |                                  | Thyroid histopatho<br>logy (amphibia n)                                                                               | Xenopus laevis           | 21    | Days    | Uptake from water                    | 24 mg/L              | Decrease         | Treatment related lack of<br>thyroid follicular cell<br>hypertrophy and<br>hyperplasia in 24 mg/L<br>group compared with<br>controls.                     | Lack of follicular cell<br>hypertrophy and<br>hyperplasia at the<br>highest concentration<br>consistent with the NF<br>Stage Score 55.<br>Associated with delay<br>in somatic growth seen<br>in this group. Non-<br>endocrine MoA. | occur in this<br>study. Likely<br>onset of systemic<br>toxicity.                                                                                                        |
| 25           |                                  | 2                                                                                                                     | Xenopus laevis           | 21    | Days    | Uptake from water                    | > 24.0 mg/L          | No effect        | Day 7                                                                                                                                                     | No effect                                                                                                                                                                                                                          | No effect                                                                                                                                                               |
| 125          | Sensitive to, but not diagnostic | Body weight<br>(amphibian)                                                                                            | Xenopus laevis           | 21    | Days    | Uptake from water                    | 2.4 mg/L             | Decrease         | Day 7 -Statistically<br>significant reduction in                                                                                                          | Delay in growth and<br>development indicative                                                                                                                                                                                      | Onset of systemic toxicity                                                                                                                                              |

| Table 2.10.3-2. Lines of evidence for | clethodim via the T-modali | ty relevant for non-target organisms |
|---------------------------------------|----------------------------|--------------------------------------|
|                                       |                            |                                      |

| Study<br>ID<br>Matrix | D classification |                            | -                    |                                                                                                                                                   | tion of<br>sure                                                                                                           | Route of<br>administration | Lowest Effect<br>dose | Effect direction | Observed effect<br>(positive and<br>negative)                                                                                                             | Assessment of each<br>line of evidence                                   | Assessment of<br>the integrated<br>line of evidence |
|-----------------------|------------------|----------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------|
|                       | of, EATS         |                            |                      | body weight at 2.4 and<br>24 mg/L (208 mg and<br>116 mg respectively)<br>compared with 280 mg in<br>controls (P < 0.05)<br>Day 21 – Statistically | of onset of systemic<br>toxicity. Thyroid<br>histopathology<br>concomitant with<br>growth stage of<br>tadpoles at highest |                            |                       |                  |                                                                                                                                                           |                                                                          |                                                     |
| 25a                   |                  | Body weight<br>(amphibian) | Xenopus laevis       | 21                                                                                                                                                | Days                                                                                                                      | Uptake from water          | 2.4 mg/L              | Decrease         | significant reduction in<br>body weight at 2.4 and<br>24 mg/L (773 mg and<br>225 mg, respectively)<br>compared with 1053 mg<br>in controls ( $P < 0.05$ ) | concentration, Non-<br>endocrine MoA.                                    |                                                     |
| 19                    |                  | Body weight (bird)         | Bobwhite quail       | 22                                                                                                                                                | Weeks                                                                                                                     | Oral                       | >1000 ppm             | No effect        | No effect                                                                                                                                                 | No effect                                                                | No effect                                           |
| 19                    |                  | Body weight (bird)         | Bobwhite quail       | 22                                                                                                                                                | Weeks                                                                                                                     | Oral                       | >1000 ppm             | No effect        |                                                                                                                                                           |                                                                          |                                                     |
| 19                    |                  |                            | Bobwhite quail       | 22                                                                                                                                                | Weeks                                                                                                                     | Oral                       | >1000 ppm             | No effect        |                                                                                                                                                           |                                                                          |                                                     |
| 19a                   |                  |                            | Bobwhite quail       | 22                                                                                                                                                | Weeks                                                                                                                     | Oral                       | >1000 ppm             | No effect        | No effect                                                                                                                                                 |                                                                          |                                                     |
| 20                    |                  |                            | Mallard              | 19                                                                                                                                                | Weeks                                                                                                                     | Oral                       | >1000 ppm             | No effect        |                                                                                                                                                           |                                                                          |                                                     |
| 20                    |                  |                            | Mallard              | 19                                                                                                                                                | Weeks                                                                                                                     | Oral                       | >1000 ppm             | No effect        |                                                                                                                                                           |                                                                          |                                                     |
| 20a                   |                  |                            | Mallard              | 19                                                                                                                                                | Weeks                                                                                                                     | Oral                       | >1000 ppm             | No effect        |                                                                                                                                                           |                                                                          |                                                     |
| 21                    |                  |                            | Bobwhite quail       | 6                                                                                                                                                 | Weeks                                                                                                                     | Oral                       | >3000 ppm             | Change           | Incidental statistically<br>significant variation in<br>body weight during test,<br>no effect on overall body<br>weight change.                           | 7<br>t                                                                   | No effect                                           |
| 22                    |                  |                            | Mallard              | б                                                                                                                                                 | Weeks                                                                                                                     | Oral                       | >3000 ppm             | Change           | Variability on body<br>weight throughout, slight<br>reduction in overall body<br>weight gain at 3000 ppm,<br>not statistically<br>significant             |                                                                          |                                                     |
| 23                    |                  | Body weight (fish)         | Sheepshead<br>minnow | 34                                                                                                                                                | Days                                                                                                                      | Uptake from water          | 11 mg/L               | Decrease         | Significant reduction in<br>wet weight at 11 mg<br>a.s./L (71.8 mg)<br>compared with solvent<br>control (92.2 mg)                                         | No T activity identified<br>in mammalian data,<br>therefore effects seen | Onset of systemic                                   |
| 23a                   |                  | Body weight (fish)         | Sheepshead<br>minnow | 34                                                                                                                                                | Days                                                                                                                      | Uptake from water          | 11 mg/L               | Decrease         | Statistically significant<br>reduction in dry weight a<br>11 mg a.s./L (16.9 mg)<br>compared with solvent<br>control (21.4 mg a.s./L)                     | not "EATS"- mediated.<br>tLikely onset of<br>systemic toxicity           | toxicity                                            |
| 19                    |                  | Current and the            | Bobwhite quail       | 22                                                                                                                                                | Weeks                                                                                                                     | Oral                       | >1000 ppm             | No effect        |                                                                                                                                                           |                                                                          |                                                     |
| 20                    | 1                | Cracked eggs               | Mallard              | 19                                                                                                                                                | Weeks                                                                                                                     | Oral                       | >1000 ppm             | No effect        |                                                                                                                                                           |                                                                          |                                                     |
| 19                    | 1                |                            | Bobwhite quail       | 22                                                                                                                                                | Weeks                                                                                                                     | Oral                       | >1000 ppm             | No effect        | No effect                                                                                                                                                 | No effect                                                                | No effect                                           |
| 19a                   | 1                | Egg production             | Bobwhite quail       | 22                                                                                                                                                | Weeks                                                                                                                     | Oral                       | >1000 ppm             | No effect        |                                                                                                                                                           |                                                                          |                                                     |
| 19b                   | 1                |                            | Bobwhite quail       | 22                                                                                                                                                | Weeks                                                                                                                     | Oral                       | >1000 ppm             | No effect        |                                                                                                                                                           |                                                                          |                                                     |

| Study<br>ID<br>Matrix | Effect<br>classification | Effect target                                    | Species              | Durat<br>expos | ion of<br>ure | Route of<br>administration | Lowest Effect<br>dose | Effect direction | Observed effect<br>(positive and<br>negative)                                                                                                                            | Assessment of each<br>line of evidence                                                                                                     | Assessment of<br>the integrated<br>line of evidence |
|-----------------------|--------------------------|--------------------------------------------------|----------------------|----------------|---------------|----------------------------|-----------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| 19c                   |                          |                                                  | Bobwhite quail       | 22             | Weeks         | Oral                       | >1000 ppm             | No effect        |                                                                                                                                                                          |                                                                                                                                            |                                                     |
| 20                    |                          |                                                  | Mallard              | 19             | Weeks         | Oral                       |                       | No effect        |                                                                                                                                                                          |                                                                                                                                            |                                                     |
| 20a                   |                          |                                                  | Mallard              | 19             | Weeks         | Oral                       |                       | No effect        |                                                                                                                                                                          |                                                                                                                                            |                                                     |
| 20b                   |                          |                                                  | Mallard              | 19             | Weeks         | Oral                       | >1000 ppm             | No effect        |                                                                                                                                                                          |                                                                                                                                            |                                                     |
| 20c                   |                          |                                                  | Mallard              | 19             | Weeks         | Oral                       | >1000 ppm             | No effect        |                                                                                                                                                                          |                                                                                                                                            |                                                     |
| 21                    |                          |                                                  | Bobwhite quail       | 6              | Weeks         | Oral                       | >3000 ppm             | No effect        |                                                                                                                                                                          |                                                                                                                                            |                                                     |
| 22                    |                          |                                                  | Mallard              | 6              | Weeks         | Oral                       | >3000 ppm             | No effect        |                                                                                                                                                                          |                                                                                                                                            |                                                     |
| 19                    |                          | Egg viability (%<br>viable embryo of egg<br>set) | Bobwhite quail       | 22             | Weeks         | Oral                       |                       | Decrease         | Slight decrease at 1000<br>ppm of 72% compared<br>with controls of 91%.<br>Not statistically<br>significant but NOEC<br>lowered to reflect this                          | No T activity identified<br>in mammalian data,<br>therefore effects seen<br>not "EATS"- mediated.<br>Likely onset of<br>systemic toxicity  | Onset of systemic<br>toxicity                       |
| 20                    |                          |                                                  | Mallard              | 19             | Weeks         | Oral                       | >1000 ppm             | No effect        |                                                                                                                                                                          |                                                                                                                                            |                                                     |
| 19                    | ]                        | Eggshall thiskness                               | Bobwhite quail       | 22             | Weeks         | Oral                       | >1000 ppm             | No effect        |                                                                                                                                                                          |                                                                                                                                            |                                                     |
| 20                    | 7                        | Eggshell thickness                               | Mallard              | 19             | Weeks         | Oral                       | >1000 ppm             | No effect        |                                                                                                                                                                          |                                                                                                                                            |                                                     |
| 19                    |                          |                                                  | Bobwhite quail       | 22             | Weeks         | Oral                       | >1000 ppm             | No effect        |                                                                                                                                                                          |                                                                                                                                            |                                                     |
| 20                    |                          | Gross pathology<br>(bird)                        | Mallard              | 19             | Weeks         | Oral                       |                       | No effect        |                                                                                                                                                                          |                                                                                                                                            |                                                     |
| 21                    |                          |                                                  | Bobwhite quail       | 6              | Weeks         | Oral                       | >3000 ppm             | No effect        |                                                                                                                                                                          |                                                                                                                                            |                                                     |
| 22                    |                          |                                                  | Mallard              | 6              | Weeks         | Oral                       |                       | No effect        |                                                                                                                                                                          |                                                                                                                                            |                                                     |
| 19                    |                          |                                                  | Bobwhite quail       | 22             | Weeks         | Oral                       | >1000 ppm             | No effect        | No effect                                                                                                                                                                |                                                                                                                                            |                                                     |
| 19a                   |                          |                                                  | Bobwhite quail       | 22             | Weeks         | Oral                       | >1000 ppm             | No effect        |                                                                                                                                                                          |                                                                                                                                            |                                                     |
| 19b                   |                          |                                                  | Bobwhite quail       | 22             | Weeks         | Oral                       | >1000 ppm             | No effect        |                                                                                                                                                                          | No effect                                                                                                                                  | No effect                                           |
| 19c                   |                          | TT=+=1=1=1:1:+==                                 | Bobwhite quail       | 22             | Weeks         | Oral                       | >1000 ppm             | No effect        |                                                                                                                                                                          |                                                                                                                                            |                                                     |
| 20                    |                          | Hatchability                                     | Mallard              | 19             | Weeks         | Oral                       | >1000 ppm             | No effect        |                                                                                                                                                                          |                                                                                                                                            |                                                     |
| 20                    |                          |                                                  | Mallard              | 19             | Weeks         | Oral                       | >1000 ppm             | No effect        |                                                                                                                                                                          |                                                                                                                                            |                                                     |
| 20                    |                          |                                                  | Mallard              | 19             | Weeks         | Oral                       | >1000 ppm             | No effect        |                                                                                                                                                                          |                                                                                                                                            |                                                     |
| 20a                   | ]                        |                                                  | Mallard              | 19             | Weeks         | Oral                       | >1000 ppm             | No effect        |                                                                                                                                                                          |                                                                                                                                            |                                                     |
| 23                    |                          | Hatching success                                 | Sheepshead<br>minnow | 34             | Days          | Uptake from water          | >11 mg/L              | No effect        |                                                                                                                                                                          |                                                                                                                                            |                                                     |
| 23                    |                          | Embryo time-to-<br>hatch                         | Sheepshead<br>minnow | 34             | Days          | Uptake from water          | >11 mg/L              | No effect        |                                                                                                                                                                          |                                                                                                                                            |                                                     |
| 23                    |                          | Length (fish)                                    | Sheepshead<br>minnow | 34             | Days          | Uptake from water          | 11 mg/L               | Decrease         | Significant reduction in<br>length at 11 mg a.s./L<br>(18.3 mm) compared<br>with solvent control (19.8<br>mm)                                                            | No T activity identified<br>in mammalian data,<br>therefore effects seen<br>not "EATS"- mediated.<br>Likely onset of<br>systemic toxicity. | Onset of systemia                                   |
| 25                    |                          | Snout- vent<br>length/growth                     | Xenopus laevis       | 21             | Days          | Uptake from water          | 2.4 mg/L              | Decrease         | Day 7 -Statistically<br>significant reduction in<br>SNV t at 2.4 and 24 mg/I<br>(14.0 mm and 11.2 mm<br>respectively) compared<br>with 15.4 mm in controls<br>(P < 0.05) | Associated with delay<br>in growth and<br>development as a result<br>of exposure to<br>clethodim. Lack of                                  | Onset of systemic<br>toxicity<br>t                  |

| Study<br>ID<br>Matrix | Effect<br>classification            | Effect target<br>Snout- vent<br>length/growth | Species              | Duration of<br>exposure |       | Route of administration | Lowest Effec<br>dose | t Effect direction | Observed effect<br>(positive and<br>negative)                                                                                                                                 | Assessment of each<br>line of evidence | Assessment of<br>the integrated<br>line of evidence |
|-----------------------|-------------------------------------|-----------------------------------------------|----------------------|-------------------------|-------|-------------------------|----------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------|
| 25a                   |                                     |                                               | Xenopus laevis       | 21                      | Days  | Uptake from water       |                      | Decrease           | Day 21 – Statistically<br>significant reduction in<br>SNV at 2.4 and 24 mg/L<br>(21.7 mm and 13.7 mm<br>respectively). Compared<br>with 24.2 mm in controls<br>( $P < 0.05$ ) | endocrine MoA.                         |                                                     |
| 19                    |                                     |                                               | Bobwhite quail       | 22                      | Weeks | Oral                    | >1000 ppm            | No effect          |                                                                                                                                                                               |                                        |                                                     |
| 19a                   |                                     |                                               | Bobwhite quail       | 22                      | Weeks | Oral                    | >1000 ppm            | No effect          |                                                                                                                                                                               |                                        |                                                     |
| 19b                   |                                     | Viable embryos                                | Bobwhite quail       | 22                      | Weeks | Oral                    | >1000 ppm            | No effect          |                                                                                                                                                                               |                                        |                                                     |
| 20                    |                                     | viable enioryos                               | Mallard              | 19                      | Weeks | Oral                    | >1000 ppm            | No effect          |                                                                                                                                                                               |                                        |                                                     |
| 20a                   |                                     |                                               | Mallard              | 19                      | Weeks | Oral                    | >1000 ppm            | No effect          |                                                                                                                                                                               |                                        |                                                     |
| 20b                   |                                     |                                               | Mallard              | 19                      | Weeks | Oral                    | >1000 ppm            | No effect          |                                                                                                                                                                               |                                        |                                                     |
| 19                    |                                     |                                               | Bobwhite quail       | 22                      | Weeks | Oral                    | >1000 ppm            | No effect          |                                                                                                                                                                               |                                        |                                                     |
| 20                    |                                     | Mortality                                     | Mallard              | 19                      | Weeks | Oral                    | >1000 ppm            | No effect          |                                                                                                                                                                               |                                        |                                                     |
| 21                    |                                     | wonanty                                       | Bobwhite quail       | 6                       | Weeks | Oral                    | >3000 ppm            | No effect          |                                                                                                                                                                               |                                        |                                                     |
| 22                    |                                     |                                               | Mallard              | 6                       | Weeks | Oral                    | >3000 ppm            | No effect          |                                                                                                                                                                               |                                        |                                                     |
| 25                    |                                     | Mortality<br>(amphibian)                      | Xenopus laevis       | 21                      | Days  | Uptake from water       | >24.0 mg/L           | No effect          | No effect                                                                                                                                                                     | No effect                              | No effect                                           |
| 25a                   | Evotomio                            | Mortality<br>(amphibian)                      | Xenopus laevis       | 21                      | Days  | Uptake from water       | >24.0 mg/L           | No effect          |                                                                                                                                                                               |                                        |                                                     |
| 19                    | Systemic<br>toxicity                |                                               | Bobwhite quail       | 22                      | Weeks | Oral                    | >1000 ppm            | No effect          |                                                                                                                                                                               |                                        |                                                     |
| 19a                   | toxicity                            |                                               | Bobwhite quail       | 22                      | Weeks | Oral                    | >1000 ppm            | No effect          |                                                                                                                                                                               |                                        |                                                     |
| 19a                   |                                     |                                               | Bobwhite quail       | 22                      | Weeks | Oral                    | >1000 ppm            | No effect          |                                                                                                                                                                               |                                        |                                                     |
| 20                    |                                     | Survival (bird)                               | Mallard              | 19                      | Weeks | Oral                    | >1000 ppm            | No effect          |                                                                                                                                                                               |                                        |                                                     |
| 20a                   |                                     |                                               | Mallard              | 19                      | Weeks | Oral                    | >1000 ppm            | No effect          |                                                                                                                                                                               |                                        |                                                     |
| 20b                   |                                     |                                               | Mallard              | 19                      | Weeks | Oral                    | >1000 ppm            | No effect          |                                                                                                                                                                               |                                        |                                                     |
| 20c                   |                                     |                                               | Mallard              | 19                      | Weeks | Oral                    | >1000 ppm            | No effect          |                                                                                                                                                                               |                                        |                                                     |
| 23                    |                                     | Survival (fish)                               | Sheepshead<br>minnow | 34                      | Day   | Uptake from water       | >11 mg/L             | No effect          |                                                                                                                                                                               |                                        |                                                     |
| 19                    | Systemic<br>toxicity Feed consumpti |                                               | Bobwhite quail       | 22                      | Weeks | Oral                    | >1000 ppm            | Change             | Incidental statistically<br>significant variation in<br>weekly feed consumption<br>throughout trial. Not<br>treatment related                                                 | n<br>No effect                         | No effect                                           |
| 20                    |                                     | Feed consumption                              | Mallard              | 19                      | Weeks | Oral                    | >1000 ppm            | Change             | Incidental statistically<br>significant variation in<br>weekly feed consumption<br>throughout trial. Not<br>treatment related                                                 |                                        |                                                     |
| 21                    |                                     |                                               | Bobwhite quail       | 6                       | Weeks | Oral                    | >3000 ppm            | No effect          | No effect                                                                                                                                                                     | No effect                              | No effect                                           |
| 22                    |                                     |                                               | Mallard              | 6                       | Weeks | Oral                    | >3000 ppm            | No effect          | No effect                                                                                                                                                                     | No effect                              | No effect                                           |

## 2.10.3.1.1.1 Assessment of the integrated lines of evidence and weight

## Table 2.10.3-3. WoE for T mediated adversity/activity

## Amphibians

No T-mediated adversity evident in a valid AMA (tested over mean measured concentrations of 0.25, 2.4, 24 mg a.s./L clethodim).

- A significant decrease in snout vent length, hind limb length and wet weight compared with controls followed a concentration response. Tadpole development delayed at the highest test concentration with a lower mean development stage at testtermination compared with the controls.
- Complete lack of follicular cell hypertrophy and hyperplasia in thyroid tissue at the highest test concentration are in concordance with the NF Stage Score of 55 of the tadpoles.
- No significant difference in thyroid histopathology compared with controls following exposure to 0.25 and 2.4 mg a.s./L clethodim.
- No mortalities

Therefore, the delay in somatic growth and development seen, particularly at the highest concentration, is driven by a non-endocrine mode of action. Effects are attributed to the onset of systemic toxicity.

## Birds

No statistically significant adversity seen in four avian reproduction studies. Two full studies (exposure with bobwhite quail and mallard (exposure period 22 and 19 weeks respectively) over a dose range of 0, 120, 300 and 1000 ppm, and two pilot studies (exposure reduced to 6weeks) with bobwhite quail and mallard over a dose range of 0, 100, 300, 1000 and 3000 ppm.

## Fish

An ELS with sheepshead minnow tested over a concentration range 0, 0.26, 0.66, 1.6, 4.2 and 11 mg/L (mean measured).

- No effects on survival, time to hatch and hatching success.
- Reduction in growth (length, wet and dry weight) at the highest test concentration, considered onset of systemic toxicity.

## Mammals

- No T mediated activity was observed in the ToxCast assay using human liver cells (ID: 24).
- Thyroid hormones were not measured in any of the tested species. However, a lack of adversity in the thyroid weights or histopathology indicates no significant changes in hormonal balance. This is supported by a lack of effects in the pituitary gland. The available data meet guidance criteria for sufficiency.

From the mammalian dataset, no clear evidence of T-mediated adversity was identified in vivo.

Results from the AMA measured T-mediated effects directly in vivo. There was a clear treatment-related effect evident at the cellular level. In the 24 mg a.s./L group, there was no follicular cell hypertrophy and hyperplasia seen in the thyroid tissue. All other treatment groups showed thyroid histopathology comparable with the controls, where there was mild follicular cell hyperplasia and hypertrophy. Follicular cell hypertrophy and hyperplasia are stimulated by increased levels of circulating TSH, of which the highest level in Xenopus laevis occur between NF Stages 58 to 62. Development of larvae was delayed in the highest test group (NF stage 55 compared to 57 in the other groups), which could explain the differences in histopathology between the test groups. Exposure to T-agonists would reduce follicular cell proliferation as a consequence of inhibited TSH release via a negative feedback loop. However, this would be accompanied by a reduced time to metamorphosis and accelerated somatic growth. Accelerated growth was not seen, conversely, a statistically significant decrease in development stage compared with controls was observed at the highest test concentration (24 mg a.s./L) on day 7 and 21. Further, a statistically significant reduction in hind limb length was evident from 0.25 mg a.s./L compared with controls at day 21 only. The histopathological findings at the higher test concentration were in concordance with tadpoles of NF Stage Score of 55. It is possible that clethodim could interfere directly with THS secretion. However, it is more likely that general toxic effects, such as reduced food consumption would lead to the observed somatic effects combined with the thyroid histopathology observed. Therefore, the decrease in growth seen at the higher test concentration is attributed to non-endocrine effects. This is supported by ToxCast data that confirmed no T-activity, as there cannot be T-mediated adversity in the absence of T-activity.

The AMA is supported by two full avian reproduction studies with bobwhite quail and mallard and a fish ELS with sheepshead minnow. In the study with mallard, there was a slight reduction in egg viability (% of eggs set) at 1000 ppm, the highest test concentration. In the ELS, reduced growth was seen at the highest test concentration (11 mg a.s./L). In both cases, effects were considered to be due to the onset of systemic toxicity; this is in line with the findings from the AMA.

The available dataset for clethodim showed no T-mediated adversity in tadpoles up to the highest concentration tested. The decrease in growth of tadpoles seen is attributed to a non-endocrine mode of action likely due to the onset of systemic toxicity. No T-mediated activity was identified from ToxCast assays. The overall assessment of the integrated lines of evidence indicates that there is no T-mediated adversity in non-target organisms.

#### 2.10.3.1.2 Initial analysis of the evidence and identification of the relevant scenario

| Adversity based on T-<br>mediated parameters | Positive<br>mechanistic OECD<br>CF level 2/3 Test | Scenario | Next step of the assessment                                                                  | Scenario selected |
|----------------------------------------------|---------------------------------------------------|----------|----------------------------------------------------------------------------------------------|-------------------|
| No (sufficiently investigated)               | Yes/No                                            | 1a       | Conclude: ED criteria not met because<br>there is <b>not "T-mediated"</b> adversity          | Х                 |
| Yes (sufficiently investigated)              | Yes/No                                            | 1b       | Perform MoA analysis                                                                         |                   |
| No (not sufficiently investigated)           | Yes                                               | 2a (i)   | Perform MoA analysis (additional<br>information may be needed for the<br>analysis)           |                   |
| No (not sufficiently investigated)           | No (sufficiently investigated)                    | 2a (ii)  | Conclude: ED criteria not met because<br><b>no T-mediated endocrine activity</b><br>observed |                   |
| No (not sufficiently investigated)           | No (not sufficiently investigated)                | 2a (iii) | Generate missing level 2 and 3 information. Alternatively, generate                          |                   |

 Table 2.10.3-4. Selection of relevant scenario

|                       |        |    | missing "EATS-mediated" parameters.<br>Depending on the outcome move to<br>corresponding scenario |  |
|-----------------------|--------|----|---------------------------------------------------------------------------------------------------|--|
| Yes (not sufficiently | Yes/No | 2b | Perform MoA analysis                                                                              |  |
| investigated)         |        |    |                                                                                                   |  |

# 2.10.3.1.3 MoA analysis for T-modality

Not applicable.

# 2.10.3.1.4 Conclusion on the ED assessment for T-modality

Overall, there is sufficient weight-of-evidence (WoE) to indicate that clethodim does not affect the T-modality.

# 2.10.3.2 ED assessment for EAS-modality

| Table 2.10.3-5. Data sufficience | y for clethodim via the EAS-modalit  | v for non-target organisms |
|----------------------------------|--------------------------------------|----------------------------|
| Tuble 2.10.5 5. Duta Sufficient  | y for electround via the EAB modalit | y for non anger organisms  |

|                         | Sufficiently investigated                                                                                                                                                                                                                                                                                            |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EAS-mediated parameters | Yes                                                                                                                                                                                                                                                                                                                  |
|                         | EAS-mediated parameters have been investigated directly with an OECD CF level 3 fish short-term reproduction test (FSTRA, OECD 229) which showed no EAS-mediated adversity or activity. The data package is supported by CF Level 4 data from a fish early life stage test (ELS) and two avian reproduction studies. |

# 2.10.3.2.1 Lines of evidence for adverse effects and endocrine activity related to EAS-modalities

| Study |                         |                                                                                                         | Species                                   | Duration<br>exposure | of                                | Route of<br>administration                              |       |              | Effect<br>direction | Observed effect<br>(positive and negative) | Assessment of each<br>line of evidence         | Assessment on<br>the integrated<br>line of<br>evidence |
|-------|-------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------|-----------------------------------|---------------------------------------------------------|-------|--------------|---------------------|--------------------------------------------|------------------------------------------------|--------------------------------------------------------|
| 16    | -                       |                                                                                                         | Human<br>(Aromatase                       | 15                   | Minutes                           | Uptake from the<br>medium (in vitro)<br>Uptake from the | >1 mM | -            | No effect           | -                                          | -                                              |                                                        |
| 16    | -                       | Androgen receptor                                                                                       | Assay)                                    | 15                   | Minutes                           | medium (in vitro)                                       | >1 mM | -            | No effect           | -                                          | -                                              |                                                        |
| 18    | -                       |                                                                                                         | Human liver cell<br>line                  | 24                   | Hours                             | Uptake from the<br>medium (in vitro)                    | -     | -            | No effect           | -                                          | -                                              |                                                        |
| 18    |                         |                                                                                                         | Human breast<br>cell line                 | 24                   | Hours                             | Uptake from the medium (in vitro)                       | -     | -            | No effect           | -                                          | _                                              |                                                        |
| 17    | In vitro<br>mechanistic | Estradiol synthesis                                                                                     | Human (H295R<br>steroidogenesis<br>assay) | 48                   | Hours                             | Uptake from the medium (in vitro)                       | >31.6 | μΜ           | No effect           | _                                          |                                                |                                                        |
| 18    |                         |                                                                                                         | Human liver cell<br>line                  |                      | Hours                             | Uptake from the<br>medium (in vitro)                    | -     | -            | No effect           | -                                          |                                                |                                                        |
| 18    | Estrogen receptor       | Human liver cell<br>line                                                                                | 24                                        | Hours                | Uptake from the medium (in vitro) | -                                                       | -     | No effect    | -                   |                                            |                                                |                                                        |
| 17    |                         | Testosterone<br>synthesis                                                                               | Human (H295R<br>steroidogenesis<br>assay) | 48                   | Hours                             | Uptake from the medium (in vitro)                       | >31.6 | μΜ           | No effect           | _                                          | No ER- and AR-<br>mediated agonistic           | Overall, no                                            |
| 18    |                         | Thyroid receptor                                                                                        | Human liver cell<br>line                  | 24                   | Hours                             | Uptake from the medium (in vitro)                       | -     | -            | No effect           | -                                          | and/or antagonistic<br>-activity. No effect on | evidence of E-,<br>A- S- mediated                      |
| 15    |                         | Adrenals weight<br>(Hershberger)                                                                        |                                           | 10                   | Days                              | Oral                                                    | >200  | mg/kg bw/day | No effect           | -                                          | steroidogenesis.                               | activity.                                              |
| 15    |                         | Cowpers glands<br>weight (Hershberger)                                                                  |                                           | 10                   | Days                              | Oral                                                    | >200  | mg/kg bw/day | No effect           | -                                          |                                                |                                                        |
| 15    |                         | Glans penis weight<br>(Hershberger)                                                                     |                                           | 10                   | Days                              | Oral                                                    | >200  | mg/kg bw/day | No effect           | -                                          |                                                |                                                        |
| 15    |                         | LABC weight<br>(Hershberger)                                                                            |                                           | 10                   | Days                              | Oral                                                    | >200  | mg/kg bw/day | No effect           | -                                          |                                                |                                                        |
| 15    | In vivo<br>mechanistic  | Liver weight<br>(Hershberger,<br>considered T-<br>mediated only in<br>combination with<br>other thyroid | Rat                                       | 10                   | Days                              | Oral                                                    | >200  | mg/kg bw/day | No effect           | -                                          |                                                |                                                        |
| 15    | -                       | endpoints)<br>Prostate weight<br>(Hershberger)                                                          | -                                         | 10                   | Days                              | Oral                                                    | >200  | mg/kg bw/day | No effect           | -                                          |                                                |                                                        |
| 15    |                         | Seminal vesicles                                                                                        | 1                                         | 10                   | Days                              | Oral                                                    | >200  | mg/kg bw/day | No effect           | -                                          |                                                |                                                        |

Table 2.10.3-6. Lines of evidence for adverse effects and endocrine activity related to EAS-modalities

|     | Effect<br>classification | Effect target                                    | Species              | Duration of<br>exposure |       | Route of Lowest Effect dose Effect<br>administration direction |        |              |           |                                                                                                                                                                      |                               |                                  | Assessment of each ) line of evidence | Assessment on<br>the integrated<br>line of<br>evidence |
|-----|--------------------------|--------------------------------------------------|----------------------|-------------------------|-------|----------------------------------------------------------------|--------|--------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------|---------------------------------------|--------------------------------------------------------|
|     |                          | weight (Hershberger)                             |                      |                         |       |                                                                |        |              |           |                                                                                                                                                                      |                               |                                  |                                       |                                                        |
| 14  |                          | Uterus histopathology<br>(UT assay)              |                      | 3                       | Days  | Oral                                                           | >450   | mg/kg bw/day | No effect | -                                                                                                                                                                    |                               |                                  |                                       |                                                        |
| 14  |                          | Uterus weight (UT<br>assay)                      |                      | 3                       | Days  | Oral                                                           | >450   | mg/kg bw/day | No effect | -                                                                                                                                                                    |                               |                                  |                                       |                                                        |
| 14  |                          | Uterus weight (UT<br>assay)                      |                      | 3                       | Days  | Oral                                                           | >450   | mg/kg bw/day | No effect | -                                                                                                                                                                    |                               |                                  |                                       |                                                        |
| 24a | In vivo                  | Vitellogenin (VTG)<br>in females                 | Fathead minnow       | 21                      | Days  | Uptake from water                                              | > 10.0 | mg/L         | No effect | No effect                                                                                                                                                            | No effect                     | No effect                        |                                       |                                                        |
| 24  | mechanistic              | Vitellogenin (VTG)<br>in males                   | Fathead minnow       | 21                      | Days  | Uptake from water                                              | > 10.0 | mg/L         | No effect |                                                                                                                                                                      |                               |                                  |                                       |                                                        |
| 24  | EATS-                    | Histopathology<br>(gonad, reproductive<br>ducts) | Fathead minnow       | 21                      | Days  | Uptake from water                                              | > 10.0 | mg/L         | Change    | Slight increase in<br>testicular stage scores at<br>10 mg a.s./L, driven by<br>one individual and not<br>considered to be<br>biologically meaningful                 |                               | No effect                        |                                       |                                                        |
| 24  | mediated                 | Male 2nd sex<br>characteristics in<br>females    | Fathead minnow       | 21                      | Days  | Uptake from water                                              | > 10.0 | mg/L         | No effect |                                                                                                                                                                      |                               | no enect                         |                                       |                                                        |
| 24  |                          | Male 2nd sex<br>characteristics in<br>males      | Fathead minnow       | 21                      | Days  | Uptake from water                                              | > 10.0 | mg/L         | No effect | ino effect                                                                                                                                                           |                               |                                  |                                       |                                                        |
| 19  |                          |                                                  | Bobwhite quail       | 22                      | Weeks | Oral                                                           | >1000  | ppm          | No effect |                                                                                                                                                                      |                               |                                  |                                       |                                                        |
| 19  |                          |                                                  | Bobwhite quail       | 22                      | Weeks | Oral                                                           | >1000  | ppm          | No effect |                                                                                                                                                                      |                               |                                  |                                       |                                                        |
| 19a |                          |                                                  | Bobwhite quail       | 22                      | Weeks | Oral                                                           | >1000  | ppm          | No effect | No effect                                                                                                                                                            |                               |                                  |                                       |                                                        |
| 20  |                          |                                                  | Mallard              | 19                      | Weeks | Oral                                                           | >1000  | ppm          | No effect | No effect                                                                                                                                                            |                               |                                  |                                       |                                                        |
| 20  |                          |                                                  | Mallard              | 19                      | Weeks | Oral                                                           | >1000  | ppm          | No effect |                                                                                                                                                                      |                               |                                  |                                       |                                                        |
| 20a |                          |                                                  | Mallard              | 19                      | Weeks | Oral                                                           | >1000  | ppm          | No effect |                                                                                                                                                                      |                               |                                  |                                       |                                                        |
|     | Sensitive to,<br>but not | Body weight (bird)                               | Bobwhite quail       | 6                       | Weeks | Oral                                                           | >3000  | ppm          | Change    | Incidental statistically<br>significant variation in<br>body weight during test,<br>no effect on overall<br>body weight change                                       | No effect                     | No effect                        |                                       |                                                        |
| 22  | diagnostic of,<br>EATS   |                                                  | Mallard              | 6                       | Weeks | Oral                                                           | >3000  | ppm          | Change    | body weight change.<br>Variability on body<br>weight throughout,<br>slight reduction in<br>overall body weight<br>gain at 3000 ppm, not<br>statistically significant |                               |                                  |                                       |                                                        |
| 23  |                          | Body weight (fish)                               | Sheepshead<br>minnow | 34                      | Days  | Uptake from water                                              | 11     | mg/L         | Decrease  |                                                                                                                                                                      | identified in mammalian data, | Onset of<br>systemic<br>toxicity |                                       |                                                        |

| Study<br>ID<br>Matrix | Effect<br>classification | Effect target<br>n                               |                      |    | of    | Route of<br>administration | Lowest Effect dose |      | Effect<br>direction | Observed effect<br>(positive and negative                                                                                                       | Assessment of each<br>line of evidence                                                                                                            | Assessment on<br>the integrated<br>line of<br>evidence |
|-----------------------|--------------------------|--------------------------------------------------|----------------------|----|-------|----------------------------|--------------------|------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
|                       |                          |                                                  |                      |    |       |                            |                    |      |                     | control (92.2 mg)                                                                                                                               | not "EATS"-                                                                                                                                       |                                                        |
| 23a                   |                          | Body weight (fish)                               | Sheepshead<br>minnow | 34 | Days  | Uptake from water          | 11                 | mg/L | Decrease            | Statistically significant<br>reduction in dry weight<br>at 11 mg a.s./L (16.9<br>mg) compared with<br>solvent control (21.4 mg<br>a.s./L)       | toxicity                                                                                                                                          |                                                        |
| 24                    | 1                        | Body weight (fish)                               | Fathead minnow       | 21 | Days  | Uptake from water          | > 10.0             | mg/L | No effect           |                                                                                                                                                 |                                                                                                                                                   |                                                        |
| 19                    | 1                        |                                                  | Bobwhite quail       | 22 | Weeks | Oral                       | >1000              | ppm  | No effect           |                                                                                                                                                 |                                                                                                                                                   |                                                        |
| 20                    | 1                        | Cracked eggs                                     | Mallard              | 19 | Weeks | Oral                       | >1000              | ppm  | No effect           |                                                                                                                                                 |                                                                                                                                                   |                                                        |
| 19                    | 1                        |                                                  | Bobwhite quail       | 22 | Weeks | Oral                       | >1000              | ppm  | No effect           |                                                                                                                                                 |                                                                                                                                                   |                                                        |
| 19a                   |                          |                                                  | Bobwhite quail       | 22 | Weeks | Oral                       | >1000              | ppm  | No effect           |                                                                                                                                                 |                                                                                                                                                   |                                                        |
| 19b                   | 1                        |                                                  | Bobwhite quail       | 22 | Weeks | Oral                       | >1000              | ppm  | No effect           |                                                                                                                                                 |                                                                                                                                                   |                                                        |
| 19c                   | 1                        |                                                  | Bobwhite quail       | 22 | Weeks | Oral                       | >1000              | ppm  | No effect           | No effect                                                                                                                                       | No effect                                                                                                                                         | No effect                                              |
| 20                    | 1                        |                                                  | Mallard              | 19 | Weeks | Oral                       | >1000              | ppm  | No effect           |                                                                                                                                                 |                                                                                                                                                   |                                                        |
| 20a                   | 1                        | Egg production                                   | Mallard              | 19 | Weeks | Oral                       | >1000              | ppm  | No effect           |                                                                                                                                                 |                                                                                                                                                   |                                                        |
| 20b                   | 1                        |                                                  | Mallard              | 19 | Weeks | Oral                       | >1000              | ppm  | No effect           |                                                                                                                                                 |                                                                                                                                                   |                                                        |
| 20c                   | 1                        |                                                  | Mallard              | 19 | Weeks | Oral                       | >1000              | ppm  | No effect           |                                                                                                                                                 |                                                                                                                                                   |                                                        |
| 21                    | 1                        |                                                  | Bobwhite quail       | 6  | Weeks | Oral                       | >3000              | ppm  | No effect           |                                                                                                                                                 |                                                                                                                                                   |                                                        |
| 22                    |                          |                                                  | Mallard              | 6  | Weeks | Oral                       | >3000              | ppm  | No effect           |                                                                                                                                                 |                                                                                                                                                   |                                                        |
| 19                    |                          | Egg viability (%<br>viable embryo of egg<br>set) | Bobwhite quail       | 22 | Weeks | Oral                       | 1000               | ppm  | Decrease            | Slight decrease at 1000<br>ppm of 72% compared<br>with controls of 91%.<br>Not statistically<br>significant but NOEC<br>lowered to reflect this | No EAS activity<br>identified in<br>mammalian data,<br>therefore effects seen<br>not "EATS"-<br>mediated. Likely<br>onset of systemic<br>toxicity | Onset of<br>systemic<br>toxicity                       |
| 20                    |                          |                                                  | Mallard              | 19 | Weeks | Oral                       | >1000              | ppm  | No effect           |                                                                                                                                                 | -                                                                                                                                                 |                                                        |
| 19                    |                          | E h - 11 4h - 1-m -                              | Bobwhite quail       | 22 | Weeks | Oral                       | >1000              | ppm  | No effect           |                                                                                                                                                 |                                                                                                                                                   |                                                        |
| 20                    |                          | Eggshell thickness                               | Mallard              | 19 | Weeks | Oral                       | >1000              | ppm  | No effect           |                                                                                                                                                 |                                                                                                                                                   |                                                        |
| 19                    |                          |                                                  | Bobwhite quail       | 22 | Weeks | Oral                       | >1000              | ppm  | No effect           |                                                                                                                                                 |                                                                                                                                                   |                                                        |
| 20                    |                          | Gross pathology                                  | Mallard              | 19 | Weeks | Oral                       | >1000              | ppm  | No effect           |                                                                                                                                                 |                                                                                                                                                   |                                                        |
| 21                    |                          | (bird)                                           | Bobwhite quail       | 6  | Weeks | Oral                       | >3000              | ppm  | No effect           |                                                                                                                                                 |                                                                                                                                                   |                                                        |
| 22                    |                          |                                                  | Mallard              | 6  | Weeks | Oral                       | >3000              | ppm  | No effect           |                                                                                                                                                 |                                                                                                                                                   |                                                        |
| 19                    |                          |                                                  | Bobwhite quail       | 22 | Weeks | Oral                       | >1000              | ppm  | No effect           | No effect                                                                                                                                       | No effects                                                                                                                                        | No effects                                             |
| 19a                   | _                        |                                                  | Bobwhite quail       | 22 | Weeks | Oral                       | >1000              | ppm  | No effect           |                                                                                                                                                 |                                                                                                                                                   |                                                        |
| 19b                   | _                        |                                                  | Bobwhite quail       | 22 | Weeks | Oral                       | >1000              | ppm  | No effect           |                                                                                                                                                 |                                                                                                                                                   |                                                        |
| 19c                   | _                        | Hatchability                                     | Bobwhite quail       | 22 | Weeks | Oral                       | >1000              | ppm  | No effect           |                                                                                                                                                 |                                                                                                                                                   |                                                        |
| 20                    | _                        | ratenaomity                                      | Mallard              | 19 | Weeks | Oral                       | >1000              | ppm  | No effect           |                                                                                                                                                 |                                                                                                                                                   |                                                        |
| 20                    | 4                        |                                                  | Mallard              | 19 | Weeks | Oral                       | >1000              | ppm  | No effect           |                                                                                                                                                 |                                                                                                                                                   |                                                        |
| 20                    | 4                        |                                                  | Mallard              | 19 | Weeks | Oral                       | >1000              | ppm  | No effect           | _                                                                                                                                               |                                                                                                                                                   |                                                        |
| 20a                   |                          |                                                  | Mallard              | 19 | Weeks | Oral                       | >1000              | ppm  | No effect           |                                                                                                                                                 |                                                                                                                                                   |                                                        |

| Study<br>ID<br>Matrix | Effect<br>classification | Effect target Species Duration of exposure administration Lowest Effect dose |                                  | Effect<br>direction | Observed effect<br>(positive and negative) | Assessment of each<br>line of evidence | Assessment on<br>the integrated<br>line of<br>evidence |            |                                                        |                                                                                                               |                                                                                                                                                   |                                  |
|-----------------------|--------------------------|------------------------------------------------------------------------------|----------------------------------|---------------------|--------------------------------------------|----------------------------------------|--------------------------------------------------------|------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| 23                    |                          | Hatching success                                                             | Sheepshead<br>minnow             | 34                  | Days                                       | Uptake from water                      | >11                                                    | mg/L       | No effect                                              |                                                                                                               |                                                                                                                                                   |                                  |
| 23                    |                          | Embryo time-to-<br>hatch                                                     | Sheepshead<br>minnow             | 34                  | Days                                       | Uptake from water                      | >11                                                    | mg/L       | No effect                                              |                                                                                                               |                                                                                                                                                   |                                  |
| 24                    |                          | Gonado-somatic<br>index                                                      | Fathead minnow                   | 21                  | Days                                       | Uptake from water                      | > 10.0                                                 | mg/L       | No effect                                              |                                                                                                               |                                                                                                                                                   |                                  |
| 24a                   | -                        | Gonado-somatic<br>index                                                      | Fathead minnow                   | 22                  | Days                                       | Uptake from water                      | > 10.0                                                 | mg/L       | No effect                                              |                                                                                                               |                                                                                                                                                   |                                  |
| 23                    |                          | Length (fish)                                                                | Sheepshead<br>minnow             | 34                  | Days                                       | Uptake from water                      | 11                                                     | mg/L       |                                                        | Significant reduction in<br>length at 11 mg a.s./L<br>(18.3 mm) compared<br>with solvent control<br>(19.8 mm) | No EAS activity<br>identified in<br>mammalian data,<br>therefore effects seen<br>not "EATS"-<br>mediated. Likely<br>onset of systemic<br>toxicity | Onset of<br>systemic<br>toxicity |
| 24                    |                          | Length (fish)                                                                | Fathead minnow                   | 21                  | Days                                       | Uptake from water                      | > 10.0                                                 | mg/L       | No effect                                              |                                                                                                               |                                                                                                                                                   |                                  |
| 24                    |                          | Reproduction<br>(fecundity, fertility)                                       | Fathead minnow                   | 21                  | Days                                       | Uptake from water                      | > 10.0                                                 | mg/L       | Mean<br>cumulative no.<br>eggs No effect               |                                                                                                               |                                                                                                                                                   |                                  |
| 24a                   |                          | Reproduction<br>(fecundity, fertility)                                       | Fathead minnow                   | 21                  | Days                                       | Uptake from water                      | > 10.0                                                 | mg/L       | Mean no.<br>eggs/female No<br>effect                   |                                                                                                               |                                                                                                                                                   |                                  |
| 24                    |                          | Reproduction<br>(fecundity, fertility)                                       | Fathead minnow                   | 21                  | Days                                       | Uptake from water                      | > 10.0                                                 | mg/L       | Mean %<br>fertility (no.<br>fertile eggs)<br>No effect |                                                                                                               |                                                                                                                                                   |                                  |
| 19                    |                          |                                                                              | Bobwhite quail                   | 22                  | Weeks                                      | Oral                                   | >1000                                                  | ppm        | No effect                                              |                                                                                                               |                                                                                                                                                   |                                  |
| 19a                   |                          |                                                                              |                                  | 22                  | Weeks                                      | Oral                                   | >1000                                                  | ppm        | No effect                                              |                                                                                                               |                                                                                                                                                   |                                  |
| 19b                   |                          | Viable embryos                                                               | Bobwhite quail                   | 22                  | Weeks                                      | Oral                                   | >1000                                                  | ppm        | No effect                                              |                                                                                                               | NT 66 4                                                                                                                                           | NT 66 4                          |
| 20                    |                          | v lable ellibryos                                                            | Mallard                          | 19                  | Weeks                                      | Oral                                   | >1000                                                  | ppm        | NO effect                                              | No effect                                                                                                     | No effects                                                                                                                                        | No effects                       |
| 20a                   |                          |                                                                              | Mallard                          | 19                  | Weeks                                      | Oral                                   | >1000                                                  | ppm        | No effect                                              |                                                                                                               |                                                                                                                                                   |                                  |
| 20b                   |                          |                                                                              | Mallard                          | 19                  | Weeks                                      | Oral                                   | >1000                                                  | ppm        | No effect                                              |                                                                                                               |                                                                                                                                                   |                                  |
| 19                    | -                        |                                                                              | Bobwhite quail                   | 22                  | Weeks                                      | Oral                                   | >1000                                                  | ppm        | No effect                                              |                                                                                                               |                                                                                                                                                   |                                  |
| 20                    |                          | Mortality                                                                    | Mallard                          | 19                  | Weeks                                      | Oral                                   | >1000                                                  | ppm        | No effect                                              |                                                                                                               |                                                                                                                                                   |                                  |
| 21                    |                          | 5                                                                            | Bobwhite quail                   | 6                   | Weeks                                      | Oral                                   | >3000                                                  | ppm        | No effect                                              |                                                                                                               |                                                                                                                                                   |                                  |
| 22                    | _                        |                                                                              | Mallard                          | 6                   | Weeks                                      | Oral                                   | >3000                                                  | ppm        | No effect                                              |                                                                                                               |                                                                                                                                                   |                                  |
| 19<br>19a             | Systemic                 |                                                                              |                                  | 22                  | Weeks                                      | Oral                                   | >1000                                                  | ppm        | No effect                                              |                                                                                                               |                                                                                                                                                   |                                  |
| 19a<br>19a            | toxicity                 |                                                                              | Bobwhite quail<br>Bobwhite quail | 22<br>22            | Weeks<br>Weeks                             | Oral<br>Oral                           | >1000                                                  | ppm        | No effect<br>No effect                                 |                                                                                                               |                                                                                                                                                   |                                  |
| 19a<br>20             | 4                        | Survival (bird)                                                              | Mallard                          | 22<br>19            | Weeks                                      | Oral                                   | >1000                                                  | ppm<br>ppm | No effect                                              |                                                                                                               |                                                                                                                                                   |                                  |
| 20<br>20a             | 1                        | Survival (Ullu)                                                              | Mallard                          | 19                  | Weeks                                      | Oral                                   | >1000                                                  | ppm        | No effect                                              |                                                                                                               |                                                                                                                                                   |                                  |
| 20a<br>20b            | 1                        |                                                                              | Mallard                          | 19                  | Weeks                                      | Oral                                   | >1000                                                  | ppm        | No effect                                              |                                                                                                               |                                                                                                                                                   |                                  |
| 200<br>20c            | -                        |                                                                              | Mallard                          | 19                  | Weeks                                      | Oral                                   | >1000                                                  | ppm        | No effect                                              |                                                                                                               |                                                                                                                                                   |                                  |
| 20C                   |                          | 1                                                                            | iviailalu                        | 17                  | W eeks                                     | Olai                                   | >1000                                                  | ррш        | ino effect                                             |                                                                                                               | 1                                                                                                                                                 |                                  |

| ~  | Effect<br>classification | Effect target    | Species              | Duration<br>exposure |       | Route of<br>administration | Lowest E | ffect dose | Effect<br>direction | Observed effect<br>(positive and negative)                                                                                       | Assessment of each<br>line of evidence | Assessment on<br>the integrated<br>line of<br>evidence |
|----|--------------------------|------------------|----------------------|----------------------|-------|----------------------------|----------|------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------|
| 23 |                          | Survival (fish)  | Sheepshead<br>minnow | 34                   | Days  | Uptake from water          | >11      | mg/L       | No effect           |                                                                                                                                  |                                        |                                                        |
| 24 |                          | Survival (fish)  | Fathead minnow       | 21                   | Days  | Uptake from water          | > 10.0   | mg/L       | No effect           |                                                                                                                                  |                                        |                                                        |
| 19 |                          |                  | Bobwhite quail       | 22                   | Weeks | Oral                       | >1000    | ppm        | Change              | Incidental statistically<br>significant variation in<br>weekly feed<br>consumption throughout<br>trial. Not treatment<br>related |                                        |                                                        |
|    | Systemic<br>toxicity     | Feed consumption | Mallard              | 19                   | Weeks | Oral                       | >1000    | ppm        | Change              | Incidental statistically<br>significant variation in<br>weekly feed<br>consumption throughout<br>trial. Not treatment<br>related | No effects                             | No effects                                             |
| 21 | 1                        |                  | Bobwhite quail       | 6                    | Weeks | Oral                       | >3000    | ppm        | No effect           | No effect                                                                                                                        | 1                                      |                                                        |
| 22 |                          |                  | Mallard              | 6                    | Weeks | Oral                       | >3000    | ppm        | No effect           | No effect                                                                                                                        |                                        |                                                        |

# 2.10.3.2.1.1 Assessment of the integrated lines of evidence and weight of evidence

#### Table 2.10.3-7. WoE for T mediated adversity/activity

#### Fish (FSTRA)

No evidence of EAS- mediated adversity evident in a valid FSTRA (tested over mean measured concentrations of 0.11, 1.1, 10 mg a.s./L clethodim).

- No effect on growth (wet weight and length) of fish compared with controls.
- No effect on VTG levels in either male or female fish compared with controls.
- No effect on secondary sexual characteristics in either male or female fish.
- No effect on gonadosomatic index in either male or female fish compared with controls.
- No mortalities.

#### Fish (ELS)

An ELS with sheepshead minnow tested over a concentration range 0, 0.26, 0.66, 1.6, 4.2 and 11 mg/L (mean measured).

- No effects on survival, time to hatch and hatching success.
- Reduction in growth (length, wet and dry weight) at the highest test concentration, considered onset of systemic toxicity.

#### Birds

No statistically significant adversity seen in four avian reproduction studies. Two full studies with bobwhite quail and mallard over a dose range of 0, 120, 300 and 1000 ppm, and two pilot studies (exposure reduced to 6 weeks) with bobwhite quail and mallard over a dose range of 0, 100, 300, 1000 and 3000 ppm.

#### Mammals

- Clethodim showed no ER- or AR-mediated agonistic activity in a limited selection of ToxCast assays using human liver and breast cells (ID: 18). There are no ToxCast AUC model data for the estrogen or androgen receptor. However, other *in silico* models (COMPARA; CERAPP potency levels) showed no ER- or ARmediated (ant)agonistic activity (US EPA, 2020a,b).
- Clethodim showed no aromatase inhibitory activity using human recombinant microsomes (ID: 16).
- Clethodim did not alter estradiol and testosterone release by H295R cells (ID: 17)
- Clethodim showed no ER- or AR-mediated agonistic and/or antagonistic activities in the Hershberger assay and Uterotrophic assay (ID: 14, 15). There were no weight changes in the reproductive organs under the condition of the assays.
- Serum hormonal levels were not measured in available *in vivo* studies for clethodim. There is also a lack of information on sexual maturation of offspring and sperm analysis. However, a lack of effects on *in vitro* and *in vivo* mechanistic studies support a lack of ER- or AR-mediated (ant)agonistic activities of clethodim.

There are some endpoints missing from the mammalian data package, namely *in vivo* serum hormonal levels, sperm analyses, anogenital distance in offspring, age at balanopreputial separation, and age at vaginal opening. However, since EAS-related activity was sufficiently investigated, no indications of such activity was found in the data set, and since no EAS-mediated adversity was found at doses not causing overt toxicity, the overall assessment of the integrated lines of evidence indicates that there is no evidence to support an EAS-mediated ED classification. The ED criteria for EAS-modalities are not met for Clethodim (scenario 2a (ii)).

Results from the FSTRA showed that vitellogenin levels in male and female fish were unaffected by exposure to clethodim up to the maximum concentration tested of 10 mg a.s./L clethodim; thus, confirming no *in vivo* activity via the E and S modality. Secondary sexual characteristics in males and females were unaffected, indicating no E and A-mediated effects. No adverse effects were observed in the gonadosomatic index in males and females. One of the males in the 10 mg a.s./L treatment group had a gonadosomatic index significantly higher than all other males in the group. This was identified as an outlier and was excluded from analysis. There was a slight increase in testicular stage scores in males at the highest test concentration, however this increase was heavily influenced by the single male with the abnormal GSI. Since there were no apical or endocrine mediated endpoints and the higher testicular stage scores are not considered to be abnormal, this slight elevation to the testicular stage score was not considered to be biologically meaningful.

The FSTRA is supported by two full avian reproduction studies with bobwhite quail and mallard and a fish ELS with sheepshead minnow. In the study with mallard, there was a slight reduction in egg viability (% of eggs set) at 1000 ppm, the highest test concentration. In the ELS, reduced growth was seen at the highest test concentration (11 mg a.s./L). In both cases, effects were considered to be due to the onset of systemic toxicity, supporting the findings from the FSTRA.

The available dataset for clethodim showed no EAS-mediated activity or adversity up to the highest concentrations tested in non-target organisms *in vivo*.

| 2.10.3.2.2 Initial analysis of the evidence and identification of the relevant scenario | for the ED |
|-----------------------------------------------------------------------------------------|------------|
| assessment of EAS-modality                                                              |            |

| Adversity based on<br>EAS-mediated<br>parameters | Positive<br>mechanistic OECD<br>CF level 2/3 Test | Scenario | Next step of the assessment                                                                                                                                                  | Scenario selected |
|--------------------------------------------------|---------------------------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| No (sufficiently investigated)                   | Yes/No                                            | 1a       | Conclude: ED criteria not met because<br>there is <b>not "EAS- mediated"</b> adversity                                                                                       | Х                 |
| Yes (sufficiently investigated)                  | Yes/No                                            | 1b       | Perform MoA analysis                                                                                                                                                         |                   |
| No (not sufficiently investigated)               | Yes                                               | 2a (i)   | Perform MoA analysis (additional information may be needed for the analysis)                                                                                                 |                   |
| No (not sufficiently investigated)               | No (sufficiently investigated)                    | 2a (ii)  | Conclude: ED criteria not met<br>because <b>no EAS-mediated endocrine</b><br>activity observed                                                                               |                   |
| No (not sufficiently investigated)               | No (not sufficiently investigated)                | 2a (iii) | Generate missing level 2 and 3<br>information. Alternatively, generate<br>missing "EATS- mediated" parameters.<br>Depending on the outcome move to<br>corresponding scenario |                   |

Table 2.10.3-8. Selection of relevant scenario

| Yes (not sufficiently | Yes/No | 2b | Perform MoA analysis |  |
|-----------------------|--------|----|----------------------|--|
| investigated)         |        |    |                      |  |

#### 2.10.3.2.3 MoA analysis for EAS-modalities

Not applicable.

#### 2.10.3.2.4 Conclusion on the ED assessment for the EAS-modality

Overall, there is sufficient weight-of-evidence (WoE) to indicate that clethodim does not affect the EAS- modality.

#### 2.10.3.3 Overall conclusion on the ED assessment for non-target organisms

The available dataset for clethodim for non-target vertebrates (other than mammals) consists of two CF Level 3 studies (FSTRA and AMA) and five CF level 4 studies, four with birds (avian reproduction studies) and one with fish (ELS study). There were significant effects on fish growth in the ELS study, and only a slight effect on body weight in one of the bird studies. The FSTRA study did not show any significant effects on EAS-mediated parameters, except for an increase in GSI which was driven by one data point. The AMA study showed significant effects on several parameters (developmental stage, wet weight, snout to vent length and normalised hind-limb length), but a potential action via the T-modality is not supported by the histopathological findings. Overall, clethodim meets the data sufficiency requirements for assessing endocrine activity effects via the EATS-modalities for non-target organisms. The available data do not indicate that clethodim meets the criteria for endocrine disruption in non-target organisms.

## 2.10.4 Overall conclusion on the ED assessment

Clethodim does not meet the criteria for endocrine disruption by the EATS-modalities.

# 2.11 PROPOSED HARMONISED CLASSIFICATION AND LABELLING ACCORDING TO THE CLP **CRITERIA** [SECTIONS 1-6 OF THE CLH REPORT]

# 2.11.1 Identity of the substance

#### Name and other identifiers of the substance 2.11.1.1

| Table 75. Substance identity and information related to n                                                | nolecular and structural formula of the substance.                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name(s) in the IUPAC nomenclature or other international chemical name(s)                                | (5 <i>RS</i> )-2-{(1 <i>EZ</i> )-1-[(2 <i>E</i> )-3-chloroallyloxyimino]propyl}-5-<br>[(2 <i>RS</i> )-2-(ethylthio)propyl]-3-hydroxycyclohex-2-en-1-one                                                                                                                                                                                                                                                                                        |
| Other names (usual name, trade name, abbreviation)                                                       | CA: 2-[1-[[((2 <i>E</i> )-3-chloro-2-propen-1-yl]oxy]imino]propyl]-5-<br>[2-(ethylthio)propyl]-3-hydroxy-2-cyclohexen-1-one                                                                                                                                                                                                                                                                                                                    |
| ISO common name (if available and appropriate)                                                           | Clethodim                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| EC number (if available and appropriate)                                                                 | Not available                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| EC name (if available and appropriate)                                                                   | Not available                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| CAS number (if available)                                                                                | 99129-21-2                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Other identity code (if available)                                                                       | CIPAC No. 508                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Molecular formula                                                                                        | C <sub>17</sub> H <sub>26</sub> ClNO <sub>3</sub> S                                                                                                                                                                                                                                                                                                                                                                                            |
| Structural formula                                                                                       | S CI                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| SMILES notation (if available)                                                                           | Canonical:<br>CCC(=NOCC=CCl)C1=C(CC(CC1=O)CC(C)SCC)O<br>Isomeric:<br>CC/C(=N\OC/C=C/Cl)/C1=C(CC(CC1=O)CC(C)SCC)O                                                                                                                                                                                                                                                                                                                               |
| Molecular weight or molecular weight range                                                               | 359.92 g/mol                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Information on optical activity and typical ratio of<br>(stereo) isomers (if applicable and appropriate) | Clethodim contains one chiral centre for which R and S optical forms exist. Where the R and S optical forms have been analysed separately the R:S isomer ratio remained at ca 1:1. Furthermore, there is $E/Z$ -isomerism around the C=N bond. It has been demonstrated by the applicant and accepted by the RMS that the ratio of the $E/Z$ isomers is an equilibrium that will depend on physical/chemical factors. It is not a fixed value. |
| Description of the manufacturing process and identity of<br>the source (for UVCB substances only)        | Not available                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Degree of purity (%) (if relevant for the entry in Annex VI)                                             | 93%                                                                                                                                                                                                                                                                                                                                                                                                                                            |

Table 75 Substa nd info alated to molecular and structural formula of the subst identity a matio

#### 2.11.1.2 **Composition of the substance**

| Constituent<br>(Name and numerical<br>identifier) | Concentration range<br>(% w/w minimum and<br>maximum in multi-<br>constituent substances) | Current CLH in Annex VI<br>Table 3.1 (CLP) | Current self- classification<br>and labelling (CLP) |
|---------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------|
| Clethodim (CAS 99129-21-                          | Min. 93 % w/w                                                                             | Aquatic chronic 3 H412                     | Aquatic chronic 3 H412                              |
| 2)                                                |                                                                                           | Acute tox. 4 H302                          | Acute tox. 4 H302                                   |
|                                                   |                                                                                           | Skin sens. 1 H317                          | Skin sens. 1 H317                                   |
| Toluene* (CAS 108-88-3)                           | Max 0.4 % w/w                                                                             | Flam. Liq. 2 (H225)                        | Flam. Liq. 2 (H225)                                 |

| Skin Irrit. 2 (H315) | Skin Irrit. 2 (H315) |
|----------------------|----------------------|
| Asp. Tox. 1 (H304)   | Asp. Tox. 1 (H304)   |
| STOT SE 3 (H336)     | STOT SE 3 (H336)     |
| STOT RE 2 (H373)     | STOT RE 2 (H373)     |
| Repr. 2 (H361d)      | Repr. 2 (H361d)      |

\*Does not contribute to the classification at the specified level (max. 0.4 % w/w).

## Table 77. Impurities (non-confidential information) if relevant for the classification of the substance.

| Impurity                                                                                                                                                                                                                                                                                                                  | <b>Concentration range</b> | Current CLH in     | Current self-      | The impurity       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------|--------------------|--------------------|
| (Name and                                                                                                                                                                                                                                                                                                                 | (% w/w minimum             | Annex VI Table 3.1 | classification and | contributes to the |
| numerical identifier)                                                                                                                                                                                                                                                                                                     | and maximum)               | (CLP)              | labelling (CLP)    | classification and |
|                                                                                                                                                                                                                                                                                                                           |                            |                    |                    | labelling          |
| Impurities not considered relevant impurities due to (eco)toxicological or environmental concerns are confidential information and do not contribute to the classification and labelling. Toluene is considered a relevant impurity but does not contribute to the classification at the specified level (max. 0.4 %w/w). |                            |                    |                    |                    |

#### Table 78. Additives (non-confidential information) if relevant for the classification of the substance.

| Additive                                                       | Function | Concentration | Current CLH in | Current self-  | The additive       |
|----------------------------------------------------------------|----------|---------------|----------------|----------------|--------------------|
| (Name and                                                      |          | range         | Annex VI Table | classification | contributes to     |
| numerical                                                      |          | (% w/w        | 3.1 (CLP)      | and labelling  | the classification |
| identifier)                                                    |          | minimum and   |                | (CLP)          | and labelling      |
|                                                                |          | maximum)      |                |                |                    |
| No additives that contribute to the classification are present |          |               |                |                |                    |

No additives that contribute to the classification are present.

#### Table 79. Test substances (non-confidential information).

| Identification of<br>test substance                          | Purity  | Impurities and<br>additives (identity,<br>%, classification if<br>available) | Other information                               | The study(ies) in which<br>the test substance is used                                                                                             |
|--------------------------------------------------------------|---------|------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Physical hazards                                             |         |                                                                              |                                                 |                                                                                                                                                   |
| Technical material,<br>92.4 % Batch<br>Number:<br>6F57523000 | 92.4 %  |                                                                              | Slightly below<br>specification (min.<br>93 %). | Franke, 2005<br>(20050374.01)                                                                                                                     |
| 93 %<br>Batch Number:<br>X-29014-170-01                      | 93 %    |                                                                              |                                                 | Franke, 2006<br>(20050645.01)                                                                                                                     |
| 98.5 %<br>Lot Number:<br>AS-70373                            | 98.5 %  |                                                                              |                                                 | Butler & O'Connor, 2009<br>(2699/0001)                                                                                                            |
| Technical material<br>95.98 %<br>Batch 4478                  | 95.98 % |                                                                              |                                                 | Winkler, 2020<br>(PS20190380-1)<br>Arif, 2022<br>(GLP3016010712R1/2022)<br>Kuchta, 2022b<br>(CSL-21-1644.01)<br>Kuchta, 2022c<br>(CSL-21-1644.02) |
| Technical material,<br>95.82 %<br>Batch Number: 4478         | 95.82 % |                                                                              |                                                 | Gledhill, 2022<br>(GLP3016011271R1/2022)                                                                                                          |

| Toxicology and ecotoxicology |                                                  |               |  |
|------------------------------|--------------------------------------------------|---------------|--|
| Batch                        | Study title                                      | Reference     |  |
|                              | RE-45601 (SX-1688): An acute oral toxicity study | CA 8.1.1.1/01 |  |
| RE-45601 Technical           | with the bobwhite.                               |               |  |
| SX-1688 (83.3 %)             |                                                  | 1986a         |  |
|                              |                                                  | 162-165       |  |

| RE-45601 Technical (SX-1688): A dietary LC50                                                                                                                                  | CA 8.1.1.2/01                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| study with the bobwhite                                                                                                                                                       | 1986b<br>162-166                                                                                           |
| RE-45601 Technical (SX-1688): A Dietary LC50 Study with the Mallard                                                                                                           | CA 8.1.1.2/02                                                                                              |
| RE-45601 Technical: A One-Generation                                                                                                                                          | 1986<br>162-167<br>CA 8.1.1.3/02 (main study) and CA                                                       |
| Reproduction Study with the Bobwhite ( <i>Colinus virginianus</i> )                                                                                                           | 8.1.1.3/01 (pilot study) and CA                                                                            |
| RE-45601 Technical: A Pilot Reproduction Study with the Bobwhite ( <i>Colinus virginianus</i> )                                                                               | (main study)                                                                                               |
|                                                                                                                                                                               | (pilot study)<br>1988a (main study); 1987a (pilot study)<br>162-183 (main study); 162-176 (pilot<br>study) |
| RE-45601 Technical: A One-generation<br>Reproduction Study with the Mallard ( <i>Anas</i><br><i>platyrhynchos</i> )                                                           | CA 8.1.1.3/04 (main study) and CA 8.1.1.3/03 (pilot study)                                                 |
| RE-45601 Technical: a pilot reproduction study with the mallard ( <i>Anas platyrhynchos</i> )                                                                                 | (main study)                                                                                               |
|                                                                                                                                                                               | (pilot study)<br>1988b (main study); 1987b (pilot study)<br>162-177 (pilot study), 162-184 (main<br>study) |
| Acute Toxicity of CHEVRON RE-45601 Technical<br>to Rainbow Trout in a Static Test System                                                                                      | CA 8.2.1/01<br>1986a<br>34968                                                                              |
| Acute Toxicity of CHEVRON RE-45601 Technical<br>to Bluegill Sunfish in a Static Test System                                                                                   | CA 8.2.1/02<br>1986b<br>34967                                                                              |
| Uptake, Depuration and Bioconcentration of [Allyl-2 <sup>14</sup> C] and [Cyclohexene-1-one-4, 6 <sup>14</sup> C] RE-45601 to Bluegill Sunfish ( <i>Lepomis macrochirus</i> ) | CA 8.2.2.3/01<br>1987<br>35636                                                                             |
| Characterization of <sup>14</sup> C residues in bluegill sunfish<br>treated with [Allyl-2 <sup>14</sup> C]-clethodim or<br>[Cyclohexene-1-one-4, 6 14C]-clethodim             | CA 8.2.2.3/02<br>1988<br>MEF-0020                                                                          |
| Acute Toxicity of Chevron RE-45601 Technical to<br>Daphnia magna in a Static Test System                                                                                      | CA 8.2.4.1/01<br>Forbis, A.D.<br>1986<br>34969                                                             |
| The Phytotoxicity of RE-45601 Technical with Duckweed ( <i>Lemna gibba</i> G3) in a Static System                                                                             | CA 8.2.7/01<br>Rhodes, J.E. and Hughes, J.S.<br>1991<br>65-01-1                                            |
| The acute oral toxicity of RE-45601 technical (SX-1688) in adult male and female rats.                                                                                        | CA 5.2.1/01<br>1986<br>S 2498                                                                              |
| Acute Oral Toxicity Study in Mice with Cheveron<br>RE-45601 Technical                                                                                                         | CA 5.2.1/02<br>1986<br>2107-143                                                                            |
| The Acute Dermal Toxicity of RE-45601 Technical (SX-1688) in Adult Male and Female Rabbits                                                                                    | CA 5.2.2/01<br>1986<br>CEHB 2510                                                                           |
| The Acute Inhalation Toxicity of RE-45601<br>Technical (SX-1688) in Rats                                                                                                      | CA 5.2.3/01<br>1986<br>CEHB 2513                                                                           |

| 1                                                                                                   | 1                     |
|-----------------------------------------------------------------------------------------------------|-----------------------|
| The Acute Eye Irritation Potential of RE-45601                                                      | CA 5.2.5/0.1          |
| Technical (SX-1688)                                                                                 | 1986                  |
|                                                                                                     | CEHB 2511             |
| Four-Week Subchronic Oral Toxicity Study in                                                         | CA 5.3.1/02           |
| Mice Chevron RE-45601 Technical Final Report                                                        |                       |
|                                                                                                     | 1986                  |
|                                                                                                     | S-2733                |
| 13-Week Oral Toxicity Study in Rats with RE-                                                        | CA 5.3.2/01           |
| 45601 Technical (SX-1688)                                                                           | 100 (                 |
|                                                                                                     | 1986<br>S 2765        |
| A Ninety-Day Subchronic Oral Toxicity Study in                                                      | S-2765<br>CA 5.3.2/02 |
| Dogs with Chevron RE-45601 Technical                                                                | CR 5.5.2/02           |
|                                                                                                     | 1987                  |
|                                                                                                     | S-2759                |
| One-Year Oral Toxicity Study in Dogs with                                                           | CA 5.3.2/03           |
| Chevron RE-45601 Technical (SX-1688)                                                                |                       |
|                                                                                                     | 1988                  |
|                                                                                                     | S-2964                |
| Four-Week Repeated-Dose Dermal Toxicity Study                                                       | CA 5.3.3/01           |
| in Rats With RE-45601 Technical (SX-1688)                                                           | 1987                  |
|                                                                                                     | S-2848                |
| Microbial / Mammalian Microsome Mutagenicity                                                        | CA 5.4.1/02           |
| Plate Incorporation Assay with RE-45601 (83%                                                        | Machado M.L.          |
| Purity, SX-1688)                                                                                    | 1986a                 |
|                                                                                                     | S-2760                |
| Microbial / Mammalian Microsome Mutagenicity                                                        | CA 5.4.1/03           |
| Plate Incorporation Assay with RE-45601                                                             | Machado M.L.          |
| Technical (83.3% Purity, SX-1688)                                                                   | 1986b                 |
| Chromosome Aberrations in Chinese Hamster                                                           | S-2859<br>CA 5.4.1/06 |
| Ovary (CHO) Cells with Chevron RE-45601                                                             | Putman D.L.           |
| Technical                                                                                           | 1986                  |
|                                                                                                     | S-2761                |
| Cytogenetic Assay in Bone Marrow Cells of Rats                                                      | CA 5.4.2/01           |
| Following Acute Oral Exposure to RE-45601                                                           |                       |
| Technical                                                                                           | 1987                  |
| In Vivo – In Vitro Hepatocyte DNA Repair Assay:                                                     | S-2864<br>CA 5.4.2/02 |
| In Vivo – In Viuo Hepatocyte Diva Repair Assay.<br>In Vitro Evaluation of Unscheduled DNA Synthesis | CA 3.4.2/02           |
| (UDS) Following Oral Administration of Chevron                                                      | 1986                  |
| RE-45601 Technical to B6C3F1 Mice                                                                   | S-2762                |
|                                                                                                     |                       |
| Chronic Oral Oncogenicity Study in Mice with                                                        | CA 5.5/02             |
| Chevron RE-45601 Technical (SX-1688)                                                                | 1000                  |
|                                                                                                     | 1988<br>S-2867        |
| Combined Chronic Oral Toxicity/ Oncogenicity                                                        | CA 5.5/01             |
| Study in Rats with RE-45601 Technical (SX-1688)                                                     | CA 5.5/01             |
|                                                                                                     | 1988                  |
|                                                                                                     | S-2766                |
| Two Generation (One Litter) Reproduction Study                                                      | CA 5.6.1/02           |
| in Rats with RE-45601 Technical                                                                     |                       |
|                                                                                                     | 1987                  |
| Pilot Rat Reproduction Study with Cheveron RE-                                                      | S-2778<br>CA 5.6.1/01 |
| 45601 Technical                                                                                     | (1986)                |
|                                                                                                     | 1986                  |
|                                                                                                     | S-2758                |
| Pilot Teratology Study in Rats with Chevron RE-                                                     | CA 5.6.2/01           |
| 45601 Technical                                                                                     |                       |
|                                                                                                     | 1986                  |
|                                                                                                     | S-2807                |
|                                                                                                     |                       |

|                  | Teratology Study in Rats with Chevron RE-45601<br>Technical                                                                             | CA 5.6.2/02                                                                           |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
|                  | Pilot Teratology Study in Rabbits with Chevron<br>RE-45601 Technical                                                                    | S-2808<br>CA 5.6.2/03                                                                 |
|                  | Argus Research Laboratories, Inc. Protocol 303-<br>007 Teratology Study in Rabbits with Chevron-<br>45601 (Chevron Protocol No. S-2869) | S-2734<br>CA 5.6.2/04<br>1987<br>S-2869                                               |
|                  | The Comparative Acute Oral Toxicity of RE-51228<br>(SX-1796) and RE-45601 Technical (SX-1688) in<br>Adults Female Rats                  | CA 5.8.1.2/01<br>1988<br>S-3159                                                       |
|                  | The Potential of RE-45601 Technical (SX-1688)<br>To Induce Cytochrome P-450 Following 21-Day<br>Oral Administration in Male Rats        | CA 5.8.2/02<br>1989<br>S-3055                                                         |
|                  | Clethodim: An early life-stage toxicity test with the sheepshead minnow ( <i>Cyprinodon variegatus</i> )                                | CA 8.2.2.1/01                                                                         |
|                  | An Oral (Gavage) Acute Neurotoxicity Study of<br>Clethodim in Rats                                                                      | 263A-127<br>CA 5.7.1/01<br>2012<br>WIL-194041                                         |
| AS 506r (95.4 %) | A 28-Day Dietary Dose Range-Finding<br>Neurotoxicity Study of Clethodim in Rats                                                         | CA 5.7.1/02<br>2012<br>WIL-194039                                                     |
|                  | A 90-Day Oral Dietary Neurotoxicity Study of<br>Clethodim in Rats                                                                       | CA 5.7.1/03<br>2012<br>WIL-194040                                                     |
|                  | A 28-Day Oral (Dietary) Dose Range-Finding<br>Immunotoxicity Study of Clethodim in Female<br>B6C3F1 Mice                                | CA 5.8/01<br>2012<br>WIL-194037                                                       |
|                  | A 28-Day Oral (Dietary) Immunotoxicity Study of<br>Clethodim in Female B6C3F1 Mice                                                      | CA 5.8/02<br>2012<br>WIL-194038                                                       |
| 40716 (92.5 %)   | Assessment of Toxic Effects of Clethodim<br>Technical on <i>Daphnia magna</i> using the 21 Days<br>Reproduction Test                    | CA 8.2.5.1/01<br>Knoch, M.<br>1995<br>95027/01-ARDm.                                  |
| SX-1845 (91.1 %) | Clethodim Technical (SX-1845): A 14-day<br>Toxicity Test with Duckweed ( <i>Lemna gibba</i> G3)                                         | CA 8.2.7/02<br>Grimstead, S.R., Holmes, C.M. and Peters,<br>G.T.<br>1991<br>162A-115A |
|                  | Clethodim: Fish short-term reproduction assay with<br>the fathead minnow ( <i>Pimephales promelas</i> )                                 | CA 8.2.3/01<br>2020<br>443A-166A                                                      |
| 4478 (95.98 %)   | Clethodim: Amphibian metamorphosis assay with<br>the African clawed frog ( <i>Xenopus laevis</i> )                                      | CA 8.2.3/02<br>2021<br>443A-165                                                       |

| Clethodim Technical: Toxicity to                                                               | CA 8.2.6.1/01                       |
|------------------------------------------------------------------------------------------------|-------------------------------------|
| Pseudokirchneriella subcapitata in an Algal                                                    | Siche, O. and Mollandin G.          |
| Growth Inhibition Test                                                                         | 2020a                               |
|                                                                                                | 140061210                           |
| Clethodim Technical: Toxicity to Navicula                                                      | CA 8.2.6.2/01                       |
| pelliculosa in an Algal Growth Inhibition Test                                                 | Siche, O. and Mollandin G.          |
|                                                                                                | 2020b                               |
|                                                                                                | 140061218                           |
| Clethodim Technical: Toxicity to the Aquatic Plant                                             | CA 8.2.7/03                         |
| Glyceria maxima in a Semi-Static Growth                                                        | Armbruster, H.                      |
| Inhibition Test                                                                                | 2020                                |
|                                                                                                | 136151245                           |
| Clethodim technical: Effects (acute contact and                                                | CA 8.3.1.1.1/01 and CA 8.3.1.1.2/01 |
| oral) on honey bees ( <i>Apis mellifera</i> L.) in the                                         | Berg, C.                            |
|                                                                                                | 2020                                |
| laboratory                                                                                     |                                     |
|                                                                                                | 140061035                           |
| Clethodim Technical: Effects on Reproduction and                                               | CA 8.4.1/01                         |
| Growth of Earthworms <i>Eisenia andrei</i> in Artificial                                       | Straube, D.                         |
| Soil                                                                                           | 2020a                               |
|                                                                                                | 140061022                           |
| Clethodim Technical: Effects on Reproduction of                                                | CA 8.4.2/01                         |
| the Collembola Folsomia candida in Artificial Soil                                             | Straube, D.                         |
|                                                                                                | 2020b                               |
|                                                                                                | 140061016                           |
| Clethodim Technical: Effects on Reproduction of                                                | CA 8.4.2/02                         |
| the Predatory Mite <i>Hypoaspis aculeifer</i> in Artificial                                    | Straube, D.                         |
| Soil                                                                                           | 2020c                               |
| 501                                                                                            | 140061089                           |
| Clethodim Technical and Clethodim Oxazole                                                      | CA 8.6.2/06                         |
|                                                                                                |                                     |
| Sulfoxide:                                                                                     | Bützler, R. and Kowalczyk, F.2020   |
| Effects on Terrestrial Plants: Vegetative Vigour                                               | 53191087                            |
| Test                                                                                           |                                     |
| Interspecies Comparison of In Vitro Metabolism of                                              | CA 5.1.2/01                         |
| [ <sup>14</sup> C] Clethodim in Rat, Dog and Human                                             | Krebbers, S.                        |
| Hepatocytes                                                                                    | 2020                                |
|                                                                                                | 20182210                            |
| Evaluation of in vitro Phototoxicity of Clethodim                                              | CA 5.2.7/01                         |
| Technical in 3T3 Fibroblasts using the Neutral Red                                             | Gijsbrechts J.J.A.                  |
| Uptake Assay                                                                                   | 2020                                |
| 1 5                                                                                            | 20182211                            |
| Evaluation of the Mutagenic Activity of Clethodim                                              | CA 5.4.1/01                         |
| Technical in the Salmonella typhimurium Reverse                                                | Groot A.P.                          |
| Mutation Assay and the Escherichia coli Reverse                                                | 2020                                |
| Mutation Assay and the Escherichia con Reverse<br>Mutation Assay (Plate Incorporation and Pre- | 20182212                            |
|                                                                                                | 20182212                            |
| Incubation Methods)                                                                            |                                     |
| An in sites Misses 1 A 14 Cl d 1                                                               | CA 5 4 1/04                         |
| An in vitro Micronucleus Assay with Clethodim                                                  | CA 5.4.1/04                         |
| Technical in Cultured Peripheral Human                                                         | De Jong B.G.                        |
| Lymphocytes                                                                                    | 2021                                |
|                                                                                                | 2020-33038                          |
| In Vitro Aromatase Inhibition using Human                                                      | CA 5.8.3/01                         |
| Recombinant Microsomes                                                                         | Rijk J.C.W.                         |
|                                                                                                | 2020a                               |
|                                                                                                | 20221185                            |
| Screening Clethodim Technical for Modulation of                                                | CA 5.8.3/02                         |
| Steroidogenesis using the Human H295R Adreno-                                                  | Rijk J.C.W.                         |
| carcinoma Cell Line                                                                            | 2020b                               |
|                                                                                                | 20221184                            |
| A Uterotrophic Assay of Clethodim Technical                                                    | CA 5.8.3/03                         |
| Administered Orally in Young Adult                                                             |                                     |
| Ovariectomized Rats                                                                            | 2020a                               |
|                                                                                                | 00155006                            |
| A Harshharson Assay of Clathadin Tabaian                                                       |                                     |
| A Hershberger Assay of Clethodim Technical                                                     | CA 5.8.3/04                         |
| Administered Orally in Peripubertal                                                            | 20201                               |
| Orchidoepididymectomized Rats                                                                  | 2020b                               |
|                                                                                                | 00155007                            |
|                                                                                                |                                     |

| HE<br>1209 (96.12 %)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | lethodim: Toxicity Effects to Adult Worker<br>foney Bees ( <i>Apis mellifera</i> L.) after Chronic Oral<br>xposure under Laboratory Conditions<br>lethodim: Toxicity to Honey Bee ( <i>Apis mellifera</i><br>.) Larvae after Single Exposure under In Vitro<br>aboratory Conditions<br>ffects of Clethodim Technical on the Activity of<br>the Soil Microflora in the Laboratory<br>cute Dermal Irritation in Rabbits<br>lethodim: A Laboratory Study to Evaluate<br>ioaccumulation in Earthworms<br>cute Toxicity Testing of Clethodim Technical on<br>ctivated Sludge with the Respiration Inhibition<br>est<br>lethodim Technical: Contact Hypersensitivity in<br>lbino Guinea Pigs, Maximization-Test<br>ive-Week Pilot Feeding Study in Rats with RE- | CA 8.3.1.2/01<br>Kimmel, S.<br>2016<br>20160123<br>CA 8.3.1.3/01<br>Kimmel, S.<br>2016<br>2016030<br>CA 8.5/01<br>Reis, K-H.<br>2005<br>24991080<br>CA 5.2.4/01<br>2005<br>29389 TAL<br>CA 8.1.3/01<br>Schöbinger, U.<br>2012<br>S11-03866<br>CA 8.8/01<br>Dengler, D.<br>2002<br>20011424/01-AAHT<br>CA 5.2.6/01<br>2006<br>4.42210                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E<br>1209 (96.12 %)<br>E<br>C<br>C<br>C<br>L<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | xposure under Laboratory Conditions lethodim: Toxicity to Honey Bee ( <i>Apis mellifera</i> .) Larvae after Single Exposure under In Vitro aboratory Conditions ffects of Clethodim Technical on the Activity of ne Soil Microflora in the Laboratory cute Dermal Irritation in Rabbits lethodim: A Laboratory Study to Evaluate ioaccumulation in Earthworms cute Toxicity Testing of Clethodim Technical on ctivated Sludge with the Respiration Inhibition est lethodim Technical: Contact Hypersensitivity in libino Guinea Pigs, Maximization-Test                                                                                                                                                                                                    | 2016<br>20160123<br>CA 8.3.1.3/01<br>Kimmel, S.<br>2016<br>2016030<br>CA 8.5/01<br>Reis, K-H.<br>2005<br>24991080<br>CA 5.2.4/01<br>2005<br>29389 TAL<br>CA 8.1.3/01<br>Schöbinger, U.<br>2012<br>S11-03866<br>CA 8.8/01<br>Dengler, D.<br>2002<br>20011424/01-AAHT<br>CA 5.2.6/01<br>2006                                                           |
| 1209 (96.12 %)<br>C L<br>C L<br>C L<br>C L<br>C L<br>C L<br>C L<br>C L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lethodim: Toxicity to Honey Bee (Apis mellifera         .) Larvae after Single Exposure under In Vitro         aboratory Conditions         ffects of Clethodim Technical on the Activity of         ne Soil Microflora in the Laboratory         cute Dermal Irritation in Rabbits         lethodim: A Laboratory Study to Evaluate         ioaccumulation in Earthworms         cute Toxicity Testing of Clethodim Technical on         ctivated Sludge with the Respiration Inhibition         est         lethodim Technical: Contact Hypersensitivity in         lbino Guinea Pigs, Maximization-Test                                                                                                                                                 | 20160123<br>CA 8.3.1.3/01<br>Kimmel, S.<br>2016<br>2016030<br>CA 8.5/01<br>Reis, K-H.<br>2005<br>24991080<br>CA 5.2.4/01<br>2005<br>29389 TAL<br>CA 8.1.3/01<br>Schöbinger, U.<br>2012<br>S11-03866<br>CA 8.8/01<br>Dengler, D.<br>2002<br>20011424/01-AAHT<br>CA 5.2.6/01                                                                           |
| 6F50568000 (93.4 %)       E         6F50568000 (93.4 %)       A         6F10972000 (93.7 %)       C         6F10972000 (93.7 %)       A         10773 (94.6%)       A         6F57523000 (93.5 %)       A         SX-1653 (83.4 %)       Fi         10195-36 (92.7%)       M         O       O         O       C         O       C         O       C         O       C         O       C         O       C         O       C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>.) Larvae after Single Exposure under In Vitro<br/>aboratory Conditions</li> <li>ffects of Clethodim Technical on the Activity of<br/>the Soil Microflora in the Laboratory</li> <li>cute Dermal Irritation in Rabbits</li> <li>lethodim: A Laboratory Study to Evaluate<br/>ioaccumulation in Earthworms</li> <li>cute Toxicity Testing of Clethodim Technical on<br/>ctivated Sludge with the Respiration Inhibition<br/>est</li> <li>lethodim Technical: Contact Hypersensitivity in<br/>lbino Guinea Pigs, Maximization-Test</li> </ul>                                                                                                                                                                                                       | CA 8.3.1.3/01<br>Kimmel, S.<br>2016<br>2016030<br>CA 8.5/01<br>Reis, K-H.<br>2005<br>24991080<br>CA 5.2.4/01<br>2005<br>29389 TAL<br>CA 8.1.3/01<br>Schöbinger, U.<br>2012<br>S11-03866<br>CA 8.8/01<br>Dengler, D.<br>2002<br>20011424/01-AAHT<br>CA 5.2.6/01<br>2006                                                                               |
| LL<br>LA<br>6F50568000 (93.4 %)<br>6F10972000 (93.7 %)<br>6F10972000 (93.7 %)<br>10773 (94.6%)<br>6F57523000 (93.5 %)<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>.) Larvae after Single Exposure under In Vitro<br/>aboratory Conditions</li> <li>ffects of Clethodim Technical on the Activity of<br/>the Soil Microflora in the Laboratory</li> <li>cute Dermal Irritation in Rabbits</li> <li>lethodim: A Laboratory Study to Evaluate<br/>ioaccumulation in Earthworms</li> <li>cute Toxicity Testing of Clethodim Technical on<br/>ctivated Sludge with the Respiration Inhibition<br/>est</li> <li>lethodim Technical: Contact Hypersensitivity in<br/>lbino Guinea Pigs, Maximization-Test</li> </ul>                                                                                                                                                                                                       | Kimmel, S.         2016         2016030         CA 8.5/01         Reis, K-H.         2005         24991080         CA 5.2.4/01         2005         29389 TAL         CA 8.1.3/01         Schöbinger, U.         2012         S11-03866         CA 8.8/01         Dengler, D.         2002         20011424/01-AAHT         CA 5.2.6/01         2006 |
| Image: 1 minipage in the second se                                   | aboratory Conditions  ffects of Clethodim Technical on the Activity of the Soil Microflora in the Laboratory  cute Dermal Irritation in Rabbits  lethodim: A Laboratory Study to Evaluate ioaccumulation in Earthworms  cute Toxicity Testing of Clethodim Technical on ctivated Sludge with the Respiration Inhibition est  lethodim Technical: Contact Hypersensitivity in lbino Guinea Pigs, Maximization-Test                                                                                                                                                                                                                                                                                                                                          | 2016<br>2016030<br>CA 8.5/01<br>Reis, K-H.<br>2005<br>24991080<br>CA 5.2.4/01<br>2005<br>29389 TAL<br>CA 8.1.3/01<br>Schöbinger, U.<br>2012<br>S11-03866<br>CA 8.8/01<br>Dengler, D.<br>2002<br>20011424/01-AAHT<br>CA 5.2.6/01<br>2006                                                                                                              |
| $ \frac{1}{6F50568000 (93.4 \%)} = \frac{E}{10} $ $ \frac{1}{6F10972000 (93.7 \%)} = \frac{C}{B} $ $ \frac{1}{10773 (94.6\%)} = \frac{C}{A} $ $ \frac{C}{A} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ffects of Clethodim Technical on the Activity of<br>the Soil Microflora in the Laboratory<br>cute Dermal Irritation in Rabbits<br>lethodim: A Laboratory Study to Evaluate<br>ioaccumulation in Earthworms<br>cute Toxicity Testing of Clethodim Technical on<br>ctivated Sludge with the Respiration Inhibition<br>est<br>lethodim Technical: Contact Hypersensitivity in<br>Ibino Guinea Pigs, Maximization-Test                                                                                                                                                                                                                                                                                                                                         | 2016030<br>CA 8.5/01<br>Reis, K-H.<br>2005<br>24991080<br>CA 5.2.4/01<br>2005<br>29389 TAL<br>CA 8.1.3/01<br>Schöbinger, U.<br>2012<br>S11-03866<br>CA 8.8/01<br>Dengler, D.<br>2002<br>20011424/01-AAHT<br>CA 5.2.6/01                                                                                                                              |
| $ \begin{array}{c}                                     $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e Soil Microflora in the Laboratory<br>cute Dermal Irritation in Rabbits<br>lethodim: A Laboratory Study to Evaluate<br>ioaccumulation in Earthworms<br>cute Toxicity Testing of Clethodim Technical on<br>ctivated Sludge with the Respiration Inhibition<br>est<br>lethodim Technical: Contact Hypersensitivity in<br>Ibino Guinea Pigs, Maximization-Test                                                                                                                                                                                                                                                                                                                                                                                               | CA 8.5/01<br>Reis, K-H.<br>2005<br>24991080<br>CA 5.2.4/01<br>2005<br>29389 TAL<br>CA 8.1.3/01<br>Schöbinger, U.<br>2012<br>S11-03866<br>CA 8.8/01<br>Dengler, D.<br>2002<br>20011424/01-AAHT<br>CA 5.2.6/01<br>2006                                                                                                                                 |
| 6F50568000 (93.4 %)       H         6F50568000 (93.4 %)       A         6F10972000 (93.7 %)       C         6F10972000 (93.7 %)       A         10773 (94.6%)       C         6F57523000 (93.5 %)       C         SX-1653 (83.4 %)       F         10195-36 (92.7%)       M         C       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e Soil Microflora in the Laboratory<br>cute Dermal Irritation in Rabbits<br>lethodim: A Laboratory Study to Evaluate<br>ioaccumulation in Earthworms<br>cute Toxicity Testing of Clethodim Technical on<br>ctivated Sludge with the Respiration Inhibition<br>est<br>lethodim Technical: Contact Hypersensitivity in<br>Ibino Guinea Pigs, Maximization-Test                                                                                                                                                                                                                                                                                                                                                                                               | Reis, K-H.<br>2005<br>24991080<br>CA 5.2.4/01<br>2005<br>29389 TAL<br>CA 8.1.3/01<br>Schöbinger, U.<br>2012<br>S11-03866<br>CA 8.8/01<br>Dengler, D.<br>2002<br>20011424/01-AAHT<br>CA 5.2.6/01<br>2006                                                                                                                                              |
| 6F50568000 (93.4 %)       A         6F50568000 (93.4 %)       A         6F10972000 (93.7 %)       C         10773 (94.6%)       A         6F57523000 (93.5 %)       C         SX-1653 (83.4 %)       Fi         10195-36 (92.7%)       M         C       C         O       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | cute Dermal Irritation in Rabbits<br>lethodim: A Laboratory Study to Evaluate<br>ioaccumulation in Earthworms<br>cute Toxicity Testing of Clethodim Technical on<br>ctivated Sludge with the Respiration Inhibition<br>est<br>lethodim Technical: Contact Hypersensitivity in<br>Ibino Guinea Pigs, Maximization-Test                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2005<br>24991080<br>CA 5.2.4/01<br>2005<br>29389 TAL<br>CA 8.1.3/01<br>Schöbinger, U.<br>2012<br>S11-03866<br>CA 8.8/01<br>Dengler, D.<br>2002<br>20011424/01-AAHT<br>CA 5.2.6/01<br>2006                                                                                                                                                            |
| A<br>6F10972000 (93.7 %)<br>10773 (94.6%)<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | lethodim: A Laboratory Study to Evaluate<br>ioaccumulation in Earthworms<br>cute Toxicity Testing of Clethodim Technical on<br>ctivated Sludge with the Respiration Inhibition<br>est<br>lethodim Technical: Contact Hypersensitivity in<br>Ibino Guinea Pigs, Maximization-Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24991080<br>CA 5.2.4/01<br>2005<br>29389 TAL<br>CA 8.1.3/01<br>Schöbinger, U.<br>2012<br>S11-03866<br>CA 8.8/01<br>Dengler, D.<br>2002<br>20011424/01-AAHT<br>CA 5.2.6/01<br>2006                                                                                                                                                                    |
| A<br>6F10972000 (93.7 %)<br>10773 (94.6%)<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | lethodim: A Laboratory Study to Evaluate<br>ioaccumulation in Earthworms<br>cute Toxicity Testing of Clethodim Technical on<br>ctivated Sludge with the Respiration Inhibition<br>est<br>lethodim Technical: Contact Hypersensitivity in<br>Ibino Guinea Pigs, Maximization-Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CA 5.2.4/01<br>2005<br>29389 TAL<br>CA 8.1.3/01<br>Schöbinger, U.<br>2012<br>S11-03866<br>CA 8.8/01<br>Dengler, D.<br>2002<br>20011424/01-AAHT<br>CA 5.2.6/01<br>2006                                                                                                                                                                                |
| 6F10972000 (93.7 %)       C         6F10972000 (93.7 %)       A         10773 (94.6%)       C         6F57523000 (93.5 %)       C         SX-1653 (83.4 %)       Fi         10195-36 (92.7%)       M         Fi       C         O       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C         C       C         C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | lethodim: A Laboratory Study to Evaluate<br>ioaccumulation in Earthworms<br>cute Toxicity Testing of Clethodim Technical on<br>ctivated Sludge with the Respiration Inhibition<br>est<br>lethodim Technical: Contact Hypersensitivity in<br>Ibino Guinea Pigs, Maximization-Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2005<br>29389 TAL<br>CA 8.1.3/01<br>Schöbinger, U.<br>2012<br>S11-03866<br>CA 8.8/01<br>Dengler, D.<br>2002<br>20011424/01-AAHT<br>CA 5.2.6/01                                                                                                                                                                                                       |
| 6F10972000 (93.7 %)       B         10773 (94.6%)       A         10773 (94.6%)       C         6F57523000 (93.5 %)       C         SX-1653 (83.4 %)       F         10195-36 (92.7%)       K         C       C         O       C         O       C         O       C         O       C         O       C         O       C         O       C         O       O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ioaccumulation in Earthworms<br>cute Toxicity Testing of Clethodim Technical on<br>ctivated Sludge with the Respiration Inhibition<br>est<br>lethodim Technical: Contact Hypersensitivity in<br>Ibino Guinea Pigs, Maximization-Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 29389 TAL<br>CA 8.1.3/01<br>Schöbinger, U.<br>2012<br>S11-03866<br>CA 8.8/01<br>Dengler, D.<br>2002<br>20011424/01-AAHT<br>CA 5.2.6/01                                                                                                                                                                                                               |
| 6F10972000 (93.7 %)       B         10773 (94.6%)       A         10773 (94.6%)       C         6F57523000 (93.5 %)       C         SX-1653 (83.4 %)       Fi         10195-36 (92.7%)       K         O       C         O       C         O       C         O       C         O       C         O       C         O       C         O       C         O       O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ioaccumulation in Earthworms<br>cute Toxicity Testing of Clethodim Technical on<br>ctivated Sludge with the Respiration Inhibition<br>est<br>lethodim Technical: Contact Hypersensitivity in<br>Ibino Guinea Pigs, Maximization-Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 29389 TAL<br>CA 8.1.3/01<br>Schöbinger, U.<br>2012<br>S11-03866<br>CA 8.8/01<br>Dengler, D.<br>2002<br>20011424/01-AAHT<br>CA 5.2.6/01                                                                                                                                                                                                               |
| 6F10972000 (93.7 %)       B         10773 (94.6%)       A         10773 (94.6%)       C         6F57523000 (93.5 %)       C         SX-1653 (83.4 %)       F         10195-36 (92.7%)       K         C       C         O       C         O       C         O       C         O       C         O       C         O       C         O       C         O       O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ioaccumulation in Earthworms<br>cute Toxicity Testing of Clethodim Technical on<br>ctivated Sludge with the Respiration Inhibition<br>est<br>lethodim Technical: Contact Hypersensitivity in<br>Ibino Guinea Pigs, Maximization-Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CA 8.1.3/01<br>Schöbinger, U.<br>2012<br>S11-03866<br>CA 8.8/01<br>Dengler, D.<br>2002<br>20011424/01-AAHT<br>CA 5.2.6/01                                                                                                                                                                                                                            |
| 6F10972000 (93.7 %)       B         10773 (94.6%)       A         10773 (94.6%)       C         6F57523000 (93.5 %)       C         SX-1653 (83.4 %)       Fi         10195-36 (92.7%)       K         O       C         O       C         O       C         O       C         O       C         O       C         O       C         O       C         O       O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ioaccumulation in Earthworms<br>cute Toxicity Testing of Clethodim Technical on<br>ctivated Sludge with the Respiration Inhibition<br>est<br>lethodim Technical: Contact Hypersensitivity in<br>Ibino Guinea Pigs, Maximization-Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Schöbinger, U.<br>2012<br>S11-03866<br>CA 8.8/01<br>Dengler, D.<br>2002<br>20011424/01-AAHT<br>CA 5.2.6/01                                                                                                                                                                                                                                           |
| 6F10972000 (93.7 %)<br>A<br>10773 (94.6%)<br>6F57523000 (93.5 %)<br>SX-1653 (83.4 %)<br>10195-36 (92.7%)<br>M<br>Fi<br>V<br>C<br>A<br>Fi<br>45<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>A<br>C<br>C<br>A<br>C<br>A<br>C<br>C<br>A<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | cute Toxicity Testing of Clethodim Technical on<br>ctivated Sludge with the Respiration Inhibition<br>est<br>lethodim Technical: Contact Hypersensitivity in<br>lbino Guinea Pigs, Maximization-Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2012<br>S11-03866<br>CA 8.8/01<br>Dengler, D.<br>2002<br>20011424/01-AAHT<br>CA 5.2.6/01<br>2006                                                                                                                                                                                                                                                     |
| 10773 (94.6%) A<br>Transition (94.6%) C<br>6F57523000 (93.5%) F<br>45<br>SX-1653 (83.4%) K<br>10195-36 (92.7%) K<br>C<br>O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ctivated Sludge with the Respiration Inhibition<br>est<br>lethodim Technical: Contact Hypersensitivity in<br>lbino Guinea Pigs, Maximization-Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S11-03866         CA 8.8/01         Dengler, D.         2002         20011424/01-AAHT         CA 5.2.6/01         2006                                                                                                                                                                                                                               |
| 10773 (94.6%) A<br>Transformed and the second s | ctivated Sludge with the Respiration Inhibition<br>est<br>lethodim Technical: Contact Hypersensitivity in<br>lbino Guinea Pigs, Maximization-Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CA 8.8/01<br>Dengler, D.<br>2002<br>20011424/01-AAHT<br>CA 5.2.6/01                                                                                                                                                                                                                                                                                  |
| 10773 (94.6%) A<br>Transformed and the second s | ctivated Sludge with the Respiration Inhibition<br>est<br>lethodim Technical: Contact Hypersensitivity in<br>lbino Guinea Pigs, Maximization-Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dengler, D.<br>2002<br>20011424/01-AAHT<br>CA 5.2.6/01<br>2006                                                                                                                                                                                                                                                                                       |
| 10775 (94.0%) The form of the     | est<br>lethodim Technical: Contact Hypersensitivity in<br>lbino Guinea Pigs, Maximization-Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2002<br>20011424/01-AAHT<br>CA 5.2.6/01<br>2006                                                                                                                                                                                                                                                                                                      |
| 6F57523000 (93.5 %)       CA         6F57523000 (93.5 %)       Fi         SX-1653 (83.4 %)       Fi         10195-36 (92.7%)       M         CO       O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lethodim Technical: Contact Hypersensitivity in<br>lbino Guinea Pigs, Maximization-Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20011424/01-AAHT<br>CA 5.2.6/01<br>2006                                                                                                                                                                                                                                                                                                              |
| A<br>6F57523000 (93.5 %)<br>SX-1653 (83.4 %)<br>10195-36 (92.7%)<br>C<br>O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | lbino Guinea Pigs, Maximization-Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CA 5.2.6/01<br>2006                                                                                                                                                                                                                                                                                                                                  |
| A<br>6F57523000 (93.5 %)<br>SX-1653 (83.4 %)<br>10195-36 (92.7%)<br>C<br>O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | lbino Guinea Pigs, Maximization-Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2006                                                                                                                                                                                                                                                                                                                                                 |
| 5F57523000 (93.5 %)<br>SX-1653 (83.4 %)<br>10195-36 (92.7%)<br>C<br>O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                      |
| 45<br>SX-1653 (83.4 %)<br>10195-36 (92.7%)<br>C<br>O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ive-Week Pilot Feeding Study in Rats with RE-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                      |
| 45<br>SX-1653 (83.4 %)<br>10195-36 (92.7%)<br>C<br>O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ive-Week Pilot Feeding Study in Rats with RF-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                      |
| 45<br>SX-1653 (83.4 %)<br>10195-36 (92.7%)<br>C<br>O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A42210<br>CA 5.3.1/01                                                                                                                                                                                                                                                                                                                                |
| SX-1653 (83.4 %)<br>10195-36 (92.7%)<br>C<br>O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CA 5.5.1/01                                                                                                                                                                                                                                                                                                                                          |
| 10195-36 (92.7%) M<br>FG<br>V<br>C<br>O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5601 Technical (SX-1653)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1986                                                                                                                                                                                                                                                                                                                                                 |
| 10195-36 (92.7%) Fe V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S-2720                                                                                                                                                                                                                                                                                                                                               |
| 10195-36 (92.7%) Fe V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3-2720                                                                                                                                                                                                                                                                                                                                               |
| 10195-36 (92.7%) Fe V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Iutagenicity Study for the Detection of Induced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CA 5.4.1/05                                                                                                                                                                                                                                                                                                                                          |
| 10195-36 (92.7%) V<br>C<br>O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | orward Mutations in the CHO-HGPRT Assay In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Lehn H.                                                                                                                                                                                                                                                                                                                                              |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ïtro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1990                                                                                                                                                                                                                                                                                                                                                 |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | T6033343                                                                                                                                                                                                                                                                                                                                             |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | hromosome Aberrations in Chinese Hamster                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CA 5.4.1/07                                                                                                                                                                                                                                                                                                                                          |
| SA-1/18 (96.1%) 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | vary (CHO) Cells with Purified Chevron RE-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Putman D.L.                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1986b                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | S-2865                                                                                                                                                                                                                                                                                                                                               |
| Λ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Toxicity Test to Compare the Effect of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CA 8.6.2/03                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | lethodim and its Metabolite Clethodim sulfoxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Balluff, M.                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n Vegetative Vigour of Selected Species (Lolium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2003a                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | erenne and Echinochloa crus-galli)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2003a<br>20033008/S1-FGVV                                                                                                                                                                                                                                                                                                                            |
| pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20055000/51-1 G Y Y                                                                                                                                                                                                                                                                                                                                  |
| А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Toxicity Test to Compare the Effect of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CA 8.6.2/04                                                                                                                                                                                                                                                                                                                                          |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lethodim and its Metabolite Clethodim sulfone on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Balluff, M.                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | egetative Vigour of Selected Species (Lolium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2003b                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | erenne and Echinochloa crus-galli)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20033009/S1-FGVV                                                                                                                                                                                                                                                                                                                                     |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | creatine and Lemnoemoa erus-gam)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CA 8.6.2/05                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Toxicity Test to Compare the Effect of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D 11 CC M                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Toxicity Test to Compare the Effect of lethodim and its Metabolite Clethodim Oxazole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Balluff, M.                                                                                                                                                                                                                                                                                                                                          |
| (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Toxicity Test to Compare the Effect of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Balluff, M.<br>2003c<br>20033010/S1-FGVV                                                                                                                                                                                                                                                                                                             |
| M021400MLR V<br>pe<br>A<br>C<br>St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | egetative Vigour of Selected Species (Lolium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2003b                                                                                                                                                                                                                                                                                                                                                |

# 2.11.2 Proposed harmonized classification and labelling

# 2.11.2.1 Proposed harmonised classification and labelling according to the CLP criteria

|                                                            | Index                | International Chemical Identification                                                                                                                                            | EC | CAS            | Classif                                                                                                                       | ication                                                                                                          |                                                 | Labelling                                                                                         |                                          | Specific                                             | Notes |
|------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------------|-------|
|                                                            | No                   |                                                                                                                                                                                  | No | No             | Hazard Class<br>and Category<br>Code(s)                                                                                       | Hazard<br>statement<br>Code(s)                                                                                   | Pictogram,<br>Signal Word<br>Code(s)            | Hazard<br>statement<br>Code(s)                                                                    | Suppl.<br>Hazard<br>statement<br>Code(s) | Conc.<br>Limits, M-<br>factors                       |       |
| Current Annex<br>VI entry                                  | 606-<br>150-<br>00-9 | Clethodim (ISO); (5 <i>RS</i> )-2-{(1 <i>EZ</i> )-1-<br>[(2 <i>E</i> )-3-chloroallyloxyimino]propyl}-5-<br>[(2 <i>RS</i> )-2-(ethylthio)propyl]-3-<br>hydroxycyclohex-2-en-1-one | -  | 99129-<br>21-2 | Acute Tox. 4<br>Skin Sens. 1<br>Aquatic Chronic 3                                                                             | H302<br>H317<br>H412                                                                                             | GHS07<br>Wng                                    | H302<br>H317<br>H412                                                                              | EUH066                                   |                                                      |       |
| Dossier<br>submitters<br>proposal                          | 606-<br>150-<br>00-9 | Clethodim (ISO); (5 <i>RS</i> )-2-{(1 <i>EZ</i> )-1-<br>[(2 <i>E</i> )-3-chloroallyloxyimino]propyl}-5-<br>[(2 <i>RS</i> )-2-(ethylthio)propyl]-3-<br>hydroxycyclohex-2-en-1-one | -  | 99129-<br>21-2 | Retain<br>Acute Tox. 4<br>Skin Sens. 1<br>Add<br>Self-react. G<br>STOT-RE 2<br>Modify<br>Aquatic Acute 1<br>Aquatic Chronic 1 | Retain           H302           H317           Add           H373           Modify           H400           H410 | Retain<br>GHS07<br>Wng<br>Add<br>GHS08<br>GHS09 | Retain           H302           H317           Add           H373           Modify           H410 | <b>Retain</b><br>EUH066                  | Add<br>ATE =<br>1133 mg/kg<br>bw<br>M = 10<br>M = 10 |       |
| Resulting Annex<br>VI entry if<br>agreed by RAC<br>and COM | 606-<br>150-<br>00-9 | clethodim (ISO); (5RS)-2-{(1EZ)-1-<br>[(2E)-3-chloroallyloxyimino]propyl}-5-<br>[(2RS)-2-(ethylthio)propyl]-3-<br>hydroxycyclohex-2-en-1-one                                     | -  | 99129-<br>21-2 | Self-react. G<br>Acute Tox. 4<br>Skin Sens. 1<br>STOT RE 2<br>Aquatic Acute 1<br>Aquatic Chronic 1                            | H302<br>H317<br>H373<br>H400<br>H410                                                                             | GHS07<br>GHS08<br>GHS09<br>Wng                  | H302<br>H317<br>H373<br>H410                                                                      | EUH066                                   | ATE =<br>1133 mg/kg<br>bw<br>M = 10<br>M = 10        |       |

Table 80. Proposed harmonised classification and labelling according to the CLP criteria.

# 2.11.2.2 Additional hazard statements / labelling

| Table 81. Reason for no | t proposing harmonised | d classification and status under | CLH public consultation. |
|-------------------------|------------------------|-----------------------------------|--------------------------|
|-------------------------|------------------------|-----------------------------------|--------------------------|

| Hazard class                                                | Reason for no classification                           | Within the scope of CLH<br>public consultation |
|-------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------|
| Explosives                                                  | Data conclusive but not sufficient for classification  | Yes                                            |
| Flammable gases (including chemically unstable gases)       | Hazard class not applicable                            | No                                             |
| Oxidising gases                                             | Hazard class not applicable                            | No                                             |
| Gases under pressure                                        | Hazard class not applicable                            | No                                             |
| Flammable liquids                                           | Data conclusive but not sufficient for classification  | Yes                                            |
| Flammable solids                                            | Hazard class not applicable                            | Yes                                            |
| Self-reactive substances                                    | Harmonised classification proposed                     | Yes                                            |
| Pyrophoric liquids                                          | Data conclusive but not sufficient for classification  | Yes                                            |
| Pyrophoric solids                                           | Hazard class not applicable                            | No                                             |
| Self-heating substances                                     | Data conclusive but not sufficient for classification  | Yes                                            |
| Substances which in contact with water emit flammable gases | Data conclusive but not sufficient for classification  | Yes                                            |
| Oxidising liquids                                           | Data conclusive but not sufficient for classification  | Yes                                            |
| Oxidising solids                                            | Hazard class not applicable                            | No                                             |
| Organic peroxides                                           | Hazard class not applicable                            | No                                             |
| Corrosive to metals                                         | Data conclusive but not sufficient for classification  | Yes                                            |
| Acute toxicity via oral route                               | Harmonised classification proposed                     | Yes                                            |
| Acute toxicity via dermal route                             | Data conclusive but not sufficient for classification  | Yes                                            |
| Acute toxicity via inhalation route                         | Data conclusive but not sufficient for classification  | Yes                                            |
| Skin corrosion/irritation                                   | Data conclusive but not sufficient for classification  | Yes                                            |
| Serious eye damage/eye irritation                           | Data conclusive but not sufficient for classification  | Yes                                            |
| Respiratory sensitisation                                   | Data lacking                                           | No                                             |
| Skin sensitisation                                          | Harmonised classification proposed                     | Yes                                            |
| Germ cell mutagenicity                                      | Data conclusive but not sufficient for classification  | Yes                                            |
| Carcinogenicity                                             | Data conclusive but not sufficient for classification  | Yes                                            |
| Reproductive toxicity                                       | Data conclusive but not sufficient for classification  | Yes                                            |
| Specific target organ toxicity-<br>single exposure          | Data conclusive but not sufficient for classification  | Yes                                            |
| Specific target organ toxicity-<br>repeated exposure        | Harmonised classification proposed                     | Yes                                            |
| Aspiration hazard                                           | Data lacking                                           | No                                             |
| Hazardous to the aquatic environment                        | Harmonised classification proposed                     | Yes                                            |
| Hazardous to the ozone layer                                | Data conclusive but not sufficient for classification. | Yes                                            |

Additional hazard statement:

EUH066 ("Repeated exposure may cause skin dryness or cracking")

# 2.11.3 History of the previous classification and labelling

The previous harmonised classification and labelling was discussed and concluded in 2015.

# 2.11.4 Identified uses

Only used as herbicide.

# 2.11.5 Data sources

Please see RAR Vol 3, B.2.15, B.6.10, B.8.5 and B.9.11.

#### 2.12 RELEVANCE OF METABOLITES IN GROUNDWATER

#### 2.12.1 STEP 1: Exclusion of degradation products of no concern

None of the metabolites are degradation products of no concern and hence all progress to Step 2.

#### 2.12.2 STEP 2: Quantification of potential groundwater contamination

Based on the current PECgw calculations (see 2.8.6.2), predict concentrations of clethodim sulfoxide (max. 0.198  $\mu$ g/L), clethodim sulfone (max. 1.778  $\mu$ g/L) and clethodim oxazole sulfone (max. 0.684  $\mu$ g/L) are expected to exceed the parametric drinking water limit of 0.1  $\mu$ g/L for at least one scenario considering the worst-case use in sugar beets (300 g a.s./ha). Metabolite clethodim oxazole sulfoxide was calculated to be present in groundwater at a maximum concentration of 0.1  $\mu$ g/L.

According to Sanco/221/2000 –rev.10- final, based on the current PECgw values three metabolites are identified at step 2 requiring further assessment, as metabolite clethodim oxazole sulfoxide does not exceed the trigger. Clethodim oxazole sulfoxide was still included in the further steps of the relevance assessment.

However, new PECgw calculations have been set as a data gap due to proposed changes to the input parameters and the relevance assessment may need to be updated following the submission of such data.

#### 2.12.3 STEP 3: Hazard assessment – identification of relevant metabolites

#### 2.12.3.1 STEP 3, Stage 1: screening for biological activity

Clethodim is an acetyl CoA carboxylase (ACCase) inhibitor (HRAC Group A), which acts on the plant meristem, interacting with the enzyme responsible for the biosynthesis of lipids. As the cell membranes are composed of phospholipids, clethodim stops new cell growth leading to the gradual death of the plant.

Four clethodim metabolites were predicted to reach groundwater concentrations of 0.1 µg/L or above (see 2.12.2) for the 300 g a.s./ha application in sugar beet, which triggers the screening for biological activity. Vegetative vigour studies on terrestrial plants are available for each of these metabolites, tested side-by-side with the parent compound clethodim. The studies were performed on two surrogate species for target weeds, i.e., *Lolium perenne* (rye grass) and *Echinochloa crus-galli* (cockspur grass) according to OECD 208 and are summarised in detail in Vol 3CA, B.9.6.

Clethodim sulfoxide had a lower herbicidal activity than clethodim, *i.e.*, by a factor of 3.7 for *L. perenne* and 4.9 for *E. crus-galli*, based on ER<sub>50</sub> for biomass.

Clethodim sulfone had a lower herbicidal activity than clethodim, *i.e.*, by a factor of 3.5 for *L. perenne* and 3.7 for *E. crus-galli*, based on ER<sub>50</sub> for biomass.

Clethodim oxazole sulfone had a considerably lower herbicidal activity than clethodim, *i.e.*, by a factor of 49 for *L. perenne* and 95 for *E. crus-galli*, based on ER<sub>50</sub> for biomass.

Clethodim oxazole sulfoxide had a considerably lower herbicidal activity than clethodim, *i.e.*, by a factor of 15 for *L. perenne* and 33 for *E. crus-galli*, based on ER<sub>50</sub> for biomass.

The SANCO guidance 221/2000-rev.10-final (25 February 2003) 'Guidance document on the assessment of the relevance of metabolites in groundwater of substances regulated under Council Directive 91/414/EEC' (later Council Regulation EC 1107/2009) describes a metabolite to be comparable to the parent compound (and thus not relevant from a biological activity viewpoint) when "clearly less than 50% of the activity of the parent" is observed. As the biological activity of the four metabolites screened was lower by more than a factor 2 compared to the parent compound, no metabolites as considered relevant at this stage.

# 2.12.3.2 STEP 3, Stage 2: screening for genotoxicity

Based on the available information, the parent compound clethodim is considered non-genotoxic.

#### RE-45924 (Clethodim sulfoxide)

Clethodim sulfoxide is a major metabolite in urine and faeces, representing 46-61% and 2-5% of the administered dose in urine and faeces, respectively. Therefore, clethodim sulfoxide can be considered to have been assessed by the toxicology studies with the parent, thus it is considered to be non-genotoxic.

#### Clethodim oxazole sulfoxide (RE-47796)

The genotoxic potential of clethodim oxazole sulfoxide has been investigated in three *in vitro* studies (see below) which are assessed in detail in Volume 3 section B.6.8.1.5 and summarised in Volume 1 section 2.6.8.1.5.

| Study                                   | Species                      | Purity (%) | Results  | Reference     |
|-----------------------------------------|------------------------------|------------|----------|---------------|
| Ames test                               | S. typhimurium, E. coli      | 98.5       | Negative | Groot, 2020   |
| <i>In vitro</i> mammalian gene mutation | Mouse lymphoma L5178Y cells  | 98.5       | Negative | Groot, 2021   |
| In vitro micronucleus                   | Peripheral human lymphocytes | 98.5       | Negative | De Jong, 2021 |

#### Table 2.12.3.2-1. Studies on the genotoxic potential of clethodim oxazole sulfoxide

All submitted genotoxicity studies with clethodim oxazole sulfoxide are considered acceptable and showed negative results. Clethodim oxazole sulfoxide is not considered genotoxic.

#### RE-47253 (Clethodim sulfone)

The genotoxic potential of clethodim sulfone has been investigated in a number of studies (see below) which are assessed in detail in Volume 3 section B.6.8.1.4 and summarised in Volume 1 section 2.6.8.1.4.

| Study     | Species                          | Purity (%) | Results                                                                                                                                         | Reference           |
|-----------|----------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Ames test | S. typhimurium, E. coli          | 99.2       | Positive without<br>activation in TA100 &<br>TA1535<br>Negative with and<br>without activation in<br>with TA 1537 and TA<br>98 or with WP2uvrA. | Stevenson,<br>2004a |
| Ames test | S. typhimurium (TA100 & TA 1535) | 99.86      | Not mutagenic                                                                                                                                   | Williams, 2008      |

 Table 2.12.3.2-2. Studies on the genotoxic potential of clethodim sulfone

| Study                                            | Species                           | Purity (%) | Results                                                     | Reference    |
|--------------------------------------------------|-----------------------------------|------------|-------------------------------------------------------------|--------------|
| <i>In vitro</i> chromosomal aberration           | Chinese hamster ovary cells (CHO) | 99.2       | Negative without<br>activation<br>Positive with activation  | Innes, 2005  |
| <i>In vitro</i> chromosomal aberration           | Chinese hamster ovary cells (CHO) | 99.86      | Negative with activation                                    | Lloyd, 2009  |
| <i>In vitro</i> mammalian gene mutation          | Mouse lymphoma L5178Y cells       | 99.2       | Equivocal without<br>activation<br>Positive with activation | Riach, 2003a |
| <i>In vitro</i> mammalian gene mutation          | Mouse lymphoma L5178Y cells       | 99.9       | Negative without activation                                 | Stone, 2009  |
| In vivo mouse micronucleus                       | Mouse, Crl:CD-1 (ICR)             | 99.3       | Equivocal                                                   | 2007a        |
| In vivo mouse<br>micronucleus                    | Mouse, CRL:NMRI                   | 99.1       | Negative                                                    | 2021         |
| In vivo/in vitro<br>unscheduled DNA<br>synthesis | Mouse, Crl:CD-1 (ICR)             | 99.3       | Negative                                                    | 2007ь        |

One of the two Ames test showed that clethodim sulfone was mutagenic to *Salmonella typhimurium* TA 1535 and TA 100 in the absence of S9 when tested in DMSO up to a predetermined maximum concentration of 5000  $\mu$ g per plate. Because of this a conclusion of non-mutagenicity cannot be reached. A **data gap** is suggested by the RMS.

Clethodim sulfone gave an equivocal/inconclusive response when tested for mutagenic activity in mouse lymphoma L5178Y cells in the absence of S9 mix but was shown to be mutagenic in the presence of S9. A second MLA was performed that showed that the test item was negative without rat liver S9 (no conclusions could be drawn with S9 because of precipitation in the cell medium). A data gap is suggested by the RMS.

One of the two *in vitro* chromosomal aberration tests showed that clethodim sulfone was clastogenic in CHO cells in the presence of S9 mix. Two *in vivo* micronucleus studies were performed. The first one gave equivocal results as a small increase in micronuclei in the polychromatic erythrocytes of the bone marrow was observed but the increase (1.5-5 MN PCE/2000 PCE scored) remained within the historical control range (5 MN PCE/2000 PCE scored). A second *in vivo* micronucleus study was performed in which it was concluded that clethodim sulfone was not clastogenic or aneugenic. The study followed OECD TG 474 (2016) without deviations and plasma levels confirmed sufficient systemic exposure. Overall, the RMS considers this information sufficient and concludes that clethodim sulfone is not clastogenic or aneugenic. In addition, clethodim sulfone was negative in the *in vivo/in vitro* unscheduled DNA synthesis in mouse primary hepatocyte cultures.

In summary, genotoxic properties of clethodim sulfone cannot be excluded. Data gaps for gene mutations (follow up data for positive Ames and MLA) were identified.

#### RE-47797 (Clethodim oxazole sulfone)

The genotoxic potential of clethodim oxazole sulfone has been investigated in three *in vitro* studies and one *in vivo* study (see below) which are assessed in detail in Volume 3 section B.6.8.1.3 and summarised in Volume 1 section 2.6.8.1.3.

| Study     | Species                 | Purity (%) | Results                                                   | Reference           |
|-----------|-------------------------|------------|-----------------------------------------------------------|---------------------|
| Ames test | S. typhimurium, E. coli | 98.9       | Negative with and<br>without activation in all<br>strains | Stevenson,<br>2004b |

 Table 2.12.3.2-3. Studies on the genotoxic potential of clethodim oxazole sulfone

| Study                                   | Species                           | Purity (%) | Results                                                                                     | Reference                 |
|-----------------------------------------|-----------------------------------|------------|---------------------------------------------------------------------------------------------|---------------------------|
| <i>In vitro</i> chromosomal aberration  | Chinese hamster ovary cells (CHO) | 98.9       | Negative without<br>activation<br>Positive with activation                                  | Hart &<br>Stevenson, 2005 |
| <i>In vitro</i> mammalian gene mutation | Mouse lymphoma L5178Y cells       | 98.9       | Negative without<br>activation<br>Equivocal with<br>activation (not<br>biological relevant) | Riach, 2009b              |
| In vivo mouse<br>micronucleus           | Mouse, Crl:CD-1 (ICR)             | 99.5       | Inconclusive                                                                                | 2007c                     |

Clethodim oxazole sulfone was not mutagenic an Ames test with *Salmonella typhimurium* (TA1535, TA1537, TA98 and TA100) and *Escherichia coli* (WP2uvrA).

The clethodim oxazole sulfone (RE-47797) gave statistical significance, when tested for mutagenic activity in mouse lymphoma L5178Y cells, in the presence of S9-mix, at concentrations extending into the toxic range. However, taking the Global Evaluation Factor (GEF) into account for the microwell version of  $12x 10^{-6}$ , shows that the results are not biological relevant since all mutation fraction values were below the GEF. Clethodim oxazole sulfone was not mutagenic in the absence of S9-mix when tested to the predetermined maximum concentration of 5000 µg/mL (4 h exposure) and at concentrations extending into the toxic range (24 h exposure).

The *in vitro* CHO chromosomal aberration test was positive with, but negative without, S9 activation and thus an *in vivo* mouse micronucleus (MN) test was performed. The MN study indicated that clethodim oxazole sulfone was not clastogenic after treatment of mice with 2000 mg/kg bw for two days. However, no evidence that the item induced toxicity to the bone marrow was presented and thus no conclusions can be drawn. This is considered **a data gap.** 

In summary, genotoxic properties of clethodim oxazole sulfone cannot be excluded. Data gaps for genotoxicity (follow up data for lack of evidence for bone marrow exposure) was identified.

#### <u>QSAR</u>

The *in silico* assessment of clethodim groundwater metabolites (Derek Nexus v.6.1.0 and OECD Toolbox v4.4) predicts that clethodim sulfoxide, clethodim sulfone, clethodim oxazole sulfoxide or clethodim oxazole sulfone can be considered to be of no greater genotoxicity concern than the parent, although it should be noted that the oxazole metabolites were out of domain for the leadscope genotoxicity predictions (Report No. 1602214.UKO – 7878). However, this does not cover the data gaps indicated in the experimental data package on the metabolites

#### Conclusion: Step 3, stage 2

Clethodim sulfoxide can be considered to have been assessed by the toxicology studies with the parent, thus it is considered to be non-genotoxic. Clethodim oxazole sulfoxide was assessed in a fully accepted data package that gave negative results and is also considered non-genotoxic. Neither of these two metabolites are therefore considered "relevant" in this regulatory context.

No conclusion on relevance can be drawn for clethodim sulfone and clethodim oxazole sulfone because of data gaps in the genotoxicity data package. Thus, these two metabolites are considered as "potentially relevant" in the absence of further information.

# 2.12.3.3 STEP 3, Stage 3: screening for toxicity

Clethodim, the parent compound, has the following harmonized classifications: Acute Tox. 4. H302: Harmful if swallowed and Skin Sens. 1. H317: May cause an allergic skin reaction.

#### RE-45924 (Clethodim sulfoxide)

Clethodim sulfoxide is a major metabolite in urine and faeces, representing 46-61% and 2-5% of the administered dose in urine and faeces, respectively. Its toxicity is considered covered by the toxicity studies with the parent compound. The classification of the parent, clethodim, does not indicate any need for further assessment of clethodim sulfoxide. Thus, it is considered a "non-relevant" metabolite under regulatory aspects.

#### Clethodim oxazole sulfoxide

The toxicity of clethodim oxazole sulfoxide has been investigated in two studies (see below) which are assessed in detail in Volume 3 section B.6.8.1.5 and summarised in Volume 1 section 2.6.8.1.5.

| Study                 | Dose levels                                 | NOAEL/ LOAEL                         | Effects                                                                                 |
|-----------------------|---------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------|
| 14-day dose range-    | 0, 50, 500 or 2500                          | NOAEL:                               | No test item related effects observed.                                                  |
| finding study         | ppm (equal to 0, 5.5, 56.3 and 270.9 mg/kg  | 2500 ppm (270.9<br>mg/kg bw ♂; 246.5 |                                                                                         |
| Dietary exposure      | bw per day for ♂, 0, 5.3, 56.1 and 246.5    | mg/kg bw ♀)                          |                                                                                         |
| Rat, Han Wistar       | mg/kg bw per day for                        | LOAEL: -                             |                                                                                         |
| Crl:WI (Han),         | 우)                                          |                                      |                                                                                         |
| (2020c)               |                                             |                                      |                                                                                         |
| 28-day toxicity study | 0, 50, 500 or 2500<br>ppm (equal to 0, 4.3, | NOAEL: 2500 ppm (211.7               | Mean pituitary gland weight was higher in<br>males at 2500 ppm (18% higher for absolute |
| Dietary exposure      | 41.2 and 211.7 mg/kg                        | mg/kg bw ♂; 221.9                    | weight), mean adrenal gland weight was higher                                           |
|                       | bw per day for $3, 0,$                      | mg/kg bw ♀)                          | in females at 2500 ppm (17% higher for                                                  |
| Rat, Han Wistar       | 4.5, 46.3 and 221.9                         |                                      | absolute weight) and mean uterus weight was                                             |
| Crl:WI (Han)          | mg/kg bw per day for                        | LOAEL: -                             | higher in females at 500 and 2500 ppm (50%                                              |
|                       | 우)                                          |                                      | and 16% higher, respectively, for absolute                                              |
| (2021)                |                                             |                                      | weight). However, there was no histological                                             |
|                       |                                             |                                      | correlate to these findings.                                                            |

Table 2.12.3.2-5. Studies on the toxicity of clethodim oxazole sulfoxide

The effects observed in the 28-day toxicity study does not indicate that clethodim oxazole sulfoxide falls under the criteria for a STOT-RE classification. NOAEL in the 28-day toxicity study conducted with clethodim oxazole sulfoxide (NOAEL: 211.7 mg/kg bw/day) was higher than the NOAEL obtained in the 28-day toxicity study conducted with the parent compound clethodim (NOAEL: 12.5 mg/kg bw/day). Thus, the metabolite oxazole sulfoxide is considered a "non-relevant" metabolite under regulatory aspects.

#### RE-47253 (Clethodim sulfone)

No assessment is done for clethodim sulfone since this metabolite did not pass step 3 stage 2 (data gaps for genotoxicity) (see section 2.12.3.2).

#### RE-47797 (Clethodim oxazole sulfone)

The metabolite clethodim oxazole sulfone did not pass step 3 stage 2 (see section 2.12.3.2).

No studies on the toxicity of clethodim oxazole sulfone has been provided but an *in silico* model predicted that it was of no greater concern than the parent compound.

As a conclusion on general toxicology, clethodim oxazole sulfone (RE-47797) was not likely to be of greater toxicological concern than the parent compound based on the QSAR prediction (no unique alerts identified).

#### **QSAR**

Screening for the toxicity of clethodim sulfone, clethodim oxazole sulfoxide and clethodim oxazole sulfone has been carried out using various in silico toxicology models including, Derek Nexus, the OECD QSAR Toolbox and Leadscope. The model outputs for these metabolites were compared to those of the parent, clethodim.

According to both Derek Nexus and the OECD QSAR Toolbox, no unique alerts were identified for the metabolites of unknown toxicity when compared to the parent (clethodim) and major rat metabolite (clethodim sulfoxide) (Report No.: 1602214.UK0 – 4078)

#### 2.12.4 STEP 4: Exposure assessment – threshold of concern approach

The threshold of concern approach uses a toxicological threshold of concern of 0.02  $\mu$ g/kg bw/day, which when assuming a consumption of 2 litres of water per day, all of which comes from the upper soil layer, relates to an acceptable estimated upper limit for the concentration of a metabolite of 0.75  $\mu$ g/L. If exposure from other sources can be expected, e.g., crops, these must be taken into account as well.

Clethodim sulfoxide is found in levels below 0.01 mg/kg bw in onions and sugar beet roots in all residue trials. The same is true for garlic, based on extrapolation from trials in onions. Clethodim oxazole sulfoxide has only been found in rotational crops, and in edible parts no residues above 0.01 mg/kg are expected. The exposure to these two metabolites via food is therefore negligible. The PECgw values for clethodim sulfoxide and clethodim oxazole sulfoxide do not exceed the threshold of concern.

No exposure assessment is done for clethodim sulfone and clethodim oxazole sulfone at this step since these metabolites did not pass step 3 stage 2 (see section 2.12.3.2).

#### 2.12.5 STEP 5: Refined risk assessment

No refined risk assessment is needed for clethodim sulfoxide and clethodim oxazole sulfoxide since sufficient information was available for these metabolites to do a satisfactory assessment at step 4. The current PECgw values for clethodim sulfoxide and clethodim oxazole sulfoxide do not exceed the threshold of concern. However, new PECgw calculations have been set as a data gap due to proposed changes to the input parameters and new PECgw may trigger an assessment of these metabolites at step 5.

No assessment was done for the metabolites clethodim sulfone and clethodim oxazole sulfone since these metabolites did not pass step 3 stage 2 (see section 2.12.3.2).

#### RMS proposal - metabolite clethodim sulfone:

The metabolite clethodim sulfone (RE-47253) did not pass step 3 stage 2 (data gap for genotoxicity) (see section 2.12.3.2). Thus, this metabolite is considered as "potentially relevant" in the absence of further data. With regard to general toxicology, RMS will consider this metabolite as "relevant" since the 28-day oral toxicity study conducted with clethodim sulfone indicated effects on male reproductive organs (germ cell degeneration in the testis and

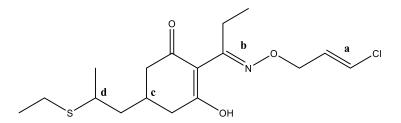
cellular debris and decreased sperm in the epididymis) (for details on study results see Vol. 3, B.6.8.1.4/02). No reproductive toxicity study is however available. The guidance document states that "if there is reason to expect that a certain degradation product may have toxicological hazards of concern, a targeted testing may be necessary". Another option could be to apply an additional safety factor of 10 in the risk assessment provided that the metabolite clethodim sulfone is not shown to be genotoxic. The NOAEL in the 28-day oral toxicity study conducted with clethodim sulfone was 4.1 mg/kg bw/day and application of a safety factor for inter- and intraspecies differences of 100, and an additional safety factor of 10 would result in an ADI/AOEL of 0.004 mg/kg bw/day. The magnitude of additional safety factor of 10 is considered sufficient for an extrapolation of study duration (subacute to chronic exposure) and the lack of data for reproductive toxicity.

<u>RMS proposal</u>: the concern for genotoxicity and reproductive toxicity and need for an additional safety factor in the risk assessment to be discussed at expert meeting.

#### 2.12.6 Overall conclusion

The metabolites clethodim sulfoxide and clethodim oxazole sulfoxide are not relevant metabolites in groundwater in accordance with SANCO/221/2000 - rev.11, Guidance Document on the Assessment of the Relevance of Metabolites in Groundwater of Substances regulated under Regulation (EC) No 1107/2009. At the currently predicted maximal concentrations in groundwater of <0.75  $\mu$ g/L, these metabolites passed the relevance assessment.

The metabolites clethodim sulfone and clethodim oxazole sulfone are considered "potentially relevant" in the absence of further data (data gaps for genotoxicity). These metabolites did not pass Step 3, stage 2.


However, new PECgw calculations have been set as a data gap due to proposed changes to the input parameters and the section on the relevance of metabolites in groundwater will need to be updated following the submission of such data.

#### 2.13 CONSIDERATION OF ISOMERIC COMPOSITION IN THE RISK ASSESSMENT

The chemical structure of clethodim (see below) contains two double bonds (a – alkyl group and b – oxime ether), for each of which *E* and *Z* geometric isomers theoretically exist. However, the manufacturing process for technical clethodim gives rise to E geometry with respect to the allyl group and a mixture of E and Z isomers with respect to the oxime ether. Thus, technical clethodim as manufactured is considered to be a mixture of the (*E*, *E*) and (*Z*, *E*) geometric isomers. Generally, these isomers can be separated with conventional HPLC columns. The *E* and *Z* isomers at the oxime ether will exist in equilibrium and thus analytical techniques will show the resolved isomers in varying ratios depending on the environment (polarity, pH, temperature etc.). In general, the *E* (trans) form is the major isomer.

Clethodim also contains one chiral centre (d), for which R and S optical isomers exist. Conventional chromatographic techniques do not separate optical isomers and their relative proportions have only been examined in one study (Irmer, 2020, Report number S17-08723). The metabolites clethodim sulfoxide, clethodim sulfone, clethodim oxazole sulfoxide, clethodim oxazole sulfone, clethodim imine and clethodim imine sulfoxide will also retain the chiral centre. Although the carbon at position c may appear to exhibit chirality, there is rapid keto-enol

tautomerism present which renders both sides of the cyclohexane ring as equivalent, thus position c is not a chiral centre.



The isomeric composition was also discussed in the EFSA conclusion at the Annex I inclusion of clethodim (EFSA Journal 2011;9(10):2417). Even though the individual properties (toxicity, behaviour in the environment) of the R and S isomers were not explicitly determined, additional information was not requested. Since then, new extensive guidance has been published on the matter of stereoisomeric active substances (EFSA Journal 2019;17(8):5804). However, this guidance is not applicable for the clethodim renewal, and the RMS' opinion is that further information should not be requested when the data requirements have not changed, and no new applicable guidance is available. More detailed information on how the isomeric composition is addressed in the different sections of the dossier is available under the subheadings below.

#### 2.13.1 Identity and physical chemical properties

The manufacturing process is not considered to favour any of the R and S isomers, and is considered to produce a racemic mixture with regards to the R/S isomerism (see Volume 4 for further details). At position b, clethodim is a mixture of E and Z isomers and only the E isomer is present at position a. The exact isomer ratio with regard to the oxime ether (E, E: Z, E) of clethodim is dependent on the conditions of the test system. It should be noted that the applicant has not been able to confirm the exact manufacturing process used for production of the batches used in the phys/chem studies but has stated that all of the batches used for testing are considered to be racemic mixtures with regards to the R/S isomerism. It should however be noted that this statement has not been confirmed by any analytical results or other documentation.

#### 2.13.2 Methods of analysis

Methods of analysis for clethodim, and its structurally similar metabolites, determine the content of E, E and Z, E isomers. On occasion this results in two peaks in the chromatograms. On these occasions the quantity of the analyte is determined by the sum of the two peaks, or by consistently using only the major peak. The ratio of the size of these two peaks will be affected by the analytical conditions (solvent, temperature etc.), since the Z/E isomerism at the oxime ether is not fixed.

The R and S isomers cannot be separated by conventional chromatography columns, and it is thus generally not known what ratio of these two isomers that is measured and tested throughout the studies in the dossier. One method by Irmer (2020), Report number S17-08723, has been submitted for the environmental fate section, using radiolabelled material, where the relative composition of the *R* and *S* isomers is measured by chiral HPLC coupled

with MS and radiodetection to investigate the degradation in surface water. No other analytical methods capable of separation the R and S isomers were supplied by the applicant.

#### 2.13.3 Mammalian toxicity

There is currently no information on the difference in toxicity between the *S* and *R* isomers. Similarly, there is no specific information as to whether these isomers are absorbed and metabolised differently. Nonetheless, the testing of the racemic mixture means that the individual enantiomers have been tested and the boundary condition is that each isomer would have to have toxicity/absorption etc. within a factor of 2 of the racemate. Currently, the preferential degradation of the R and S isomers of clethodim has only been investigated in surface water (Irmer 2020). Those results indicate that there is no preferential degradation of the *R* and *S* isomers for the *E*, *E* isomer. From these results is not possible to conclude on the absence of preferential degradation in other matrices, and it cannot be excluded that further information on the difference in toxicity of the *S* and *R* isomers could be of relevance.

Sine the ratio of the E and Z isomers at the oxime ether is dependent on the physicochemical parameters, they cannot be isolated and the relevant isomeric composition in this aspect can be considered to have been tested in the toxicological studies.

#### 2.13.4 Operator, Worker, Bystander and Resident exposure

No information available.

#### 2.13.5 Residues and Consumer risk assessment

#### The following information was supplied by the applicant:

No chiral analysis occurred in any of the metabolism studies or residue studies and hence there is no specific information regarding differential metabolism of the R and S isomers.

Two separate residue definitions for risk assessment are proposed: the first (RA1) is for clethodim, clethodim sulfoxide, clethodim sulfone, M14R/M15R, M16R/M17R and M18R/M19R and the second (RA2) is for 3-chloroallyl alcohol glucoside (M14A/M15A).

Of the residue definition for risk assessment 1 (RA1), the metabolites clethodim sulfoxide and clethodim sulfone retain the two stereo-isomeric centres, whereas in the pentanedioic acid metabolites M14R/M15R, M16R/M17R and M18R/M19R, both E and Z isomeric regions of the oxime ether and the allyl group were removed. The stereo-isomeric centre (c) is also removed in the pentanedioic acid metabolites M14R/M15R, M16R/M17R and M18R/M19R. Thus, all the components of the residue definition for risk assessment 1 (RA1) contain one or more stereo-isomeric centres. The 3-chloroallyl alcohol glucoside is expected to retain its E form after cleavage from the precursor based on plant metabolism and high-temperature hydrolysis data.

In relation to the representative uses, only sugar beet roots and onion bulbs are commodities used for human consumption. In sugar beet roots, all individual compounds of the residue definitions RA1 and RA2 were found to be below the respective LOQ of the method. Therefore, an investigation of the isomeric composition is neither

required nor possible. In onion bulb, single positive residues were found at or slightly above the LOQ, with levels up to 0.009 mg/kg for clethodim sulfoxide, 0.010 mg/kg for clethodim sulfone and 0.02 mg/kg for M16R/M17R. These residues are too low to allow reliable assessment of their isomeric composition. It is noteworthy that the maximum consumer intake as calculated for RA1 using the EFSA PRIMo is only 0.1% ADI (for the Netherlands child). The maximum consumer intake calculated for RA2 is only 1% ADI (again for the Netherlands child) and is unaffected by isomer considerations since 3-chloroallyl alcohol glucoside contains no stereocentre. Therefore, the isomeric composition of the low residues in sugar beet root and onion bulb are considered to have no impact on the consumer risk assessments.

More generally the consumer risk assessment for clethodim when accounting for all uses, in addition to those that are representative uses in this renewal dossier, also has an adequate margin of safety to account for any potential changes in the *R*:*S* isomer ratio for consumed crops, in combination with any variations in the toxicity of either of the individual stereoisomers.

#### Further information added by the RMS:

At the annex I inclusion it was determined that no further information concerning the isomer ratio in treated crop residues was required having regard to the very low consumer exposure resulting from the representative use (EFSA Journal 2011;9(10):2417).

#### 2.13.6 Environmental fate

The degradation of clethodim in soil is very rapid, and the main metabolites (clethodim sulfoxide and clethodim sulfone) degrade rather quickly; see section 2.8.1.2. No separate assessment of the proportions of the R and S isomers was undertaken for clethodim or any of the metabolites. Given the rapid overall degradation, the degradation rate for the racemate is considered to provide a suitable worst case value for risk assessment in soil and groundwater.

In a modern aerobic mineralisation study in surface water (Irmer, 2020; Report number S17-08723; CA 7.2.2.2/01) conducted over 68 days, the clethodim R:S isomer ratio remained at ca 1:1 during the study for the major isomeric form (E). For the Z-form, the analysis was less conclusive, due to the overall low concentration of the Z-isomer in the samples. Nevertheless, the analysis indicated that there is no preferential degradation of clethodim in aquatic systems.

Since clethodim is a racemic mixture of the *R* and *S* isomers the degradation kinetics account for both isomers. No impact on the risk assessment is expected.

#### 2.13.7 Ecotoxicology

Environmental fate data confirm that clethodim and the major metabolites degrade rapidly in soil, there is however no information on the possible preferential degradation of the R and S isomers in soil, and no information has been provided on the ecotoxicology of the isolated isomers. The previously mentioned study by Irmer (2020), Report number S17-08723, does however indicate that there is no preferential degradation of the R and S isomers in aquatic environments, at least for the E,E isomer. All ecotoxicology testing occurred with the racemic mixture of R and S isomers (based on the manufacturing process not favouring any isomer; see Volume 4) and hence there is no specific information as to whether the R isomer is more or less toxic than the S isomer.

#### 2.14 **Residue definition**

#### 2.14.1 Definition of residues for exposure/risk assessment

#### Food of plant origin:

RA1: Sum of clethodim, clethodim sulfoxide, clethodim sulfone and metabolites M14R/M15R, M16R/M17R, and M18R/M19R, expressed as clethodim (provisional, pending conclusion on toxicological profile of metabolites)

#### RA2: M14A/M15A

#### Food of animal origin:

Sum of clethodim, clethodim sulfoxide and clethodim sulfone, expressed as clethodim (provisional, pending conclusion no toxicological profile of clethodim sulfone).

#### Soil:

Clethodim, clethodim sulfoxide, clethodim sulfone, clethodim oxazole sulfoxide, clethodim oxazole sulfone, CBA and CAA

#### Groundwater:

Clethodim, clethodim sulfoxide, clethodim sulfone, clethodim oxazole sulfoxide, clethodim oxazole sulfone, CBA and CAA

#### Surface water:

Clethodim, clethodim sulfoxide, clethodim sulfone, clethodim oxazole sulfoxide, clethodim oxazole sulfone, CBA, CAA, clethodim imine, clethodim imine sulfoxide, DME sulfoxide, clethodim imine ketone, 3-chloro-propenal, unknown metabolite M20

#### Sediment:

Clethodim, clethodim sulfoxide, clethodim sulfone, clethodim imine, clethodim imine sulfoxide, unknown metabolite M20

#### Air:

Clethodim

#### 2.14.2 Definition of residues for monitoring

Food of plant origin:

Sum of clethodim, clethodim sulfoxide and clethodim sulfone, expressed as clethodim (provisional, pending conclusion no toxicological profile of clethodim sulfone).

#### Food of animal origin:

Sum of clethodim, clethodim sulfoxide and clethodim sulfone, expressed as clethodim (provisional, pending conclusion no toxicological profile of clethodim sulfone).

#### Soil:

Clethodim

#### Groundwater:

Clethodim, clethodim sulfone, clethodim oxazole sulfone

Surface water:

Clethodim

Sediment:

Clethodim

Air:

Clethodim

# 2.15 EFFECT OF WATER TREATMENT PROCESSES ON THE NATURE OF RESIDUES PRESENT IN SURFACE WATER

The applicant provided a short position paper (Jarvis & Tallentire, 2020, 1602214.UK0-1829) addressing the potential for the formation of hazardous transformation products from the reaction of clethodim and its metabolites in water treatment processes. It contains a theoretical discussion and a reference to experimental data in a published paper (Sandín-España, Magrans & García-Baudín, 2005) which is evaluated in detail in Volume 3, Annex B.8.2.4 (AS). The theoretical discussion points at the low probability of clethodim and its metabolites to reach drinking water due to the high absorption, rapid biotic and photolytical degradation in soil.

The experimental data indicates that clethodim degrades very rapidly (DT50 = < 1 s) and rapidly (DT50 = 8 min) in the reaction with sodium hypochlorite and monochloramine, respectively. The major metabolite formed was in both cases clethodim sulfoxide with an estimated DT50 (decline from max) of 4.4 s and 9.3 h for the two reactions, respectively. The further degradation products were clethodim sulfone and other minor identified metabolites (hydroxylated in the cyclohexanodione ring) and unidentified metabolites as analysed by HPLC-MS. The fragmentation pattern and isotope abundance indicated that none of the unidentified metabolites contained additional chlorine.

In conclusion, with reference to the preliminary PECsw and PECgw, clethodim and at least some of its metabolites may have a potential to reach levels  $>0.1 \mu g/L$  in drinking water which means that the effect of water treatment processes on the nature of the residues of clethodim needs to be further studied. The RMS considers that the provided experimental data only in part addresses this as LOQ was not reported meaning that the levels of the unidentified

minor metabolites remained unknown. Further testing with other commonly used water treatment agents may also be required. Consequently, a data gap for further data is set.

# 2.16 SUBSTANCES AND METABOLITES; STRUCTURES, CODES, SYNONYMS

| Code Number<br>(Synonyms)                             | Description                                                                                                                                                                                        | Compound found in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Structure |
|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Name:<br>Clethodim<br>Code: RE-<br>45601              | IUPAC: (5RS)-2-{(1EZ)-1-[(2E)-3-<br>chloroallyloxyimino]propyl}-5-[(2RS)-2-<br>ethylthio)propyl]-3-hydroxycyclohex-2-en-1-one<br>SMILES:<br>CC/C(C1=C(O)CC(CC(C)SCC)CC1=O)=N\OC/C=C/<br>Cl         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |
| Name:<br>Clethodim<br>sulfoxide<br>Code: RE-<br>45924 | IUPAC: (5RS)-2-{(1EZ)-1-[(2E)-3-<br>chloroallyloxyimino]propyl}-5-[(2RS)-2-<br>ethylsulfinyl)propyl]-3-hydroxycyclohex-2-en-1-one<br>SMILES:<br>CC/C(C1=C(O)CC(CC(C)S(CC)=O)CC1=O)=N\OC/C<br>=C/Cl | Spinach (foliage 2.8-6.8% TRR)<br>Carrot (roots 16-34% TRR)<br>Carrot (foliage 11-22% TRR)<br>Cotton (seeds 3.1-4.3% TRR)<br>Cotton (foliage 4.1-5.3% TRR)<br>Soya (seeds 32% TRR)<br>Soya (seeds 32% TRR)<br>Tomato (foliage 25-29% TRR)<br>Hen (kidney 40-43% TRR, liver 31-33% TRR, skin 48-57%<br>TRR, heart 37-48% TRR, fat 15-41% TRR, muscle 37-51%<br>TRR, egg yolk 25-37% TRR, egg white 26-82% TRR)<br>Goat (milk 15-29% TRR, liver 33% TRR, kidney 37% TRR,<br>heart 43% TRR, muscle 41-52% TRR, fat 47% TRR)<br>Soil (73.4%)<br>Water (61.5%)<br>Rat (61% urine)<br>Dog (hepatocytes)<br>Human (hepatocytes) |           |

| Name:<br>Clethodim<br>sulfoxide<br>glucoside<br>Code: RE-<br>45924 glucoside | $\label{eq:starsest} \begin{array}{l} IUPAC: (5RS)-2-\{(1EZ)-1-[(2E)-3-chloroallyloxyimino]propyl\}-5-[(2RS)-2-ethylsulfinyl)propyl]-3-hydroxycyclohex-2-en-1-one glucoside \\ SMILES: \\ CC/C(C1=C(0[C@H](0[C@@H]2C0)[C@H](0)[C@H](0)[C@H](0)[C@H](0)[C@H](0)C(CC(C)S(CC)=0)CC1=0)=N \\ OC/C=C/Cl \end{array}$ | Carrot (roots 5.9-9.9% TRR)<br>Carrot (foliage 2.9-15% TRR)<br>Cotton (foliage 2.7-10% TRR)<br>Soya (seeds 8.5-12% TRR)<br>Soya (foliage 25-27% TRR)                                                                                                                                                                                                                                                                                                                                                      | $O \approx_S$ $O$ $N-O$ $O-Gluc$ $Cl$ |
|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Name:<br>Clethodim 5-<br>hydroxy<br>sulfoxide<br>Code: RE-<br>51229          | IUPAC: (5RS)-2-{(1EZ)-1-[(2E)-3-<br>chloroallyloxyimino]propyl}-5-[(2RS)-2-<br>ethylsulfinyl)propyl]-3,5-dihydroxycyclohex-2-en-1-<br>one<br>SMILES:<br>CC/C(C1=C(0)CC(CC(C)S(CC)=O)(O)CC1=O)=N\O<br>C/C=C/Cl                                                                                                   | Carrot (roots 6.4-7.3% TRR)<br>Carrot (foliage 1.0-1.6% TRR)<br>Cotton (seeds 0.4-0.6% TRR)<br>Cotton (foliage 1.1-1.4% TRR)<br>Soya (seeds 4.0-7.1% TRR)<br>Soya (foliage 1.4% TRR)<br>Rat (4% urine)                                                                                                                                                                                                                                                                                                    |                                       |
| Name:<br>Clethodim<br>sulfone<br>Code: RE-<br>47253                          | IUPAC: (5RS)-2-{(1EZ)-1-[(2E)-3-<br>chloroallyloxyimino]propyl}-5-[(2RS)-2-<br>ethylsulfonyl)propyl]-3-hydroxycyclohex-2-en-1-one<br>SMILES:<br>CC/C(C1=C(0)CC(CC(C)S(CC)(=O)=O)CC1=O)=N\<br>OC/C=C/Cl                                                                                                          | Spinach (foliage 0.3-0.6% TRR)<br>Carrot (roots 3.4-4.6% TRR)<br>Carrot (foliage 0.4-6.1% TRR)<br>Cotton (seeds 0.4-2.8% TRR)<br>Cotton (foliage 0.6-1.8% TRR)<br>Soya (seeds 4.6-5.1% TRR)<br>Soya (foliage 0.9% TRR)<br>Tomato (foliage 7.3-9.7% TRR)<br>Hen (kidney 25-28% TRR, liver 21-27% TRR, skin 17-28%<br>TRR, heart 22-28% TRR, fat 10-16% TRR, muscle 27-34%<br>TRR, egg yolk 11-29% TRR, egg white 9.9-38% TRR)<br>Goat (liver 3.2% TRR)<br>Soil (42.2%)*<br>Water (13.5%)<br>Rat (1% urine) |                                       |

| Name:<br>Clethodim<br>sulfone<br>glucoside<br>Code: RE-<br>47253 glucoside | IUPAC: (5RS)-2-{(1EZ)-1-[(2E)-3-<br>chloroallyloxyimino]propyl}-5-[(2RS)-2-<br>ethylsulfonyl)propyl]-3-hydroxycyclohex-2-en-1-one<br>glucoside<br>SMILES:<br>CC/C(C1=C(0[C@H](O[C@@H]2C0)[C@H](O)[C<br>@H]([C@@H]2O)O)CC(CC(C)S(CC)(=O)=O)CC1=O<br>)=N\OC/C=C/Cl | Carrot (roots 0.5-4.3% TRR)<br>Carrot (foliage 0.5-4.3% TRR)<br>Cotton (foliage 1.3-5.0% TRR)<br>Soya (seeds 1.3-2.5% TRR)<br>Soya (foliage 2.0-12% TRR)                                                                                                                                                                                                                       |                                  |
|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Name:<br>Clethodim 5-<br>hydroxy sulfone<br>Code: RE-<br>51228             | IUPAC: (5RS)-2-{(1EZ)-1-[(2E)-3-<br>chloroallyloxyimino]propyl}-5-[(2RS)-2-<br>ethylsulfonyl)propyl]-3,5-dihydroxycyclohex-2-en-1-<br>one2<br>SMILES:<br>CC/C(C1=C(0)CC(CC(C)S(CC)(=O)=O)(O)CC1=O)=<br>N\OC/C=C/Cl                                               | Carrot (roots 7.6-10% TRR)<br>Carrot (foliage 1.7-1.9% TRR)<br>Cotton (seeds 0.6-1.6% TRR)<br>Cotton (foliage 0.4-0.6% TRR)<br>Soya (seeds 10-11% TRR)<br>Soya (foliage 2.2-3.1% TRR)<br>Rat (1% urine)                                                                                                                                                                        |                                  |
| Name:<br>Clethodim<br>imine sulfoxide<br>Code: RE-<br>47718<br>M21R        | IUPAC: (5RS)-5-[(2RS)-2-ethylsulfinyl)propyl]-3-<br>hydroxy-2-(1-iminopropyl)cyclohex-2-en-1-one<br>SMILES:<br>N=C(CC)C1=C(O)CC(CC(C)S(CC)=O)CC1=O                                                                                                               | Spinach (immature 14% TRR)<br>Carrot (roots 9.9% TRR)<br>Carrot (foliage 13-22% TRR)<br>Cotton (foliage 13% TRR)<br>Cotton (seeds 6.0% TRR)<br>Soya (seeds 7.8% TRR)<br>Soya (foliage 14% TRR)<br>Tomato (foliage 3.5% TRR)<br>Tomato (foliage 3.5% TRR)<br>Tomato (fruit 4.5% TRR)<br>Goat (liver 1.5% TRR, kidney 4.1% TRR, fat 4.7% TRR)<br>Water (21.7%)<br>Rat (7% urine) | O≈S<br>OH<br>NH                  |
| Name:<br>Clethodim<br>imine sulfone<br>Code: RE-<br>47719<br>M23R, M24R    | IUPAC: (5RS)-5-[(2RS)-2-ethylsulfonyl)propyl]-3-<br>hydroxy-2-(1-iminopropyl)cyclohex-2-en-1-one<br>SMILES:<br>N=C(CC)C1=C(O)CC(CC(C)S(CC)(=O)=O)CC1=O                                                                                                           | Spinach (foliage 6.3-7.5% TRR)<br>Carrot (root 8.6% TRR)<br>Carrot (foliage 5.9-7.4% TRR)<br>Cotton (seeds 2.3% TRR)<br>Cotton (foliage 4.1% TRR)<br>Soya (seeds 8.1% TRR)<br>Soya (foliage 8.7% TRR)<br>Tomato (foliage 2.9% TRR)                                                                                                                                             | O<br>O<br>S<br>O<br>O<br>H<br>NH |

| Name: 3-[(2-<br>Ethylsulfonyl)<br>propyl]-<br>pentanedioic<br>acid<br>Code: M18R,<br>M19R<br>DME sulfone<br>acid   | IUPAC: 3-((2RS)-2-(ethylsulfonyl)propyl)<br>pentanedioic acid<br>SMILES: CC(S(CC)(=O)=O)CC(CC(O)=O)CC(O)=O                                                                                                                                      | Spinach (foliage 9.7-13% TRR)<br>Carrot (roots 8.8-13% TRR)<br>Carrot (foliage 0-9.2% TRR)<br>Tomato (foliage 1.8-1.9% TRR)<br>Tomato (fruit 2.1% TRR) |                                                                        |
|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| Name: Hydroxy<br>clethodim imine<br>sulfone<br>glucoside<br>Code: M20R(a)                                          | IUPAC: (5RS)-5-((2RS)-2-(ethylsulfonyl)propyl)-3,6-<br>dihydroxy-2-((EZ)-1-(hydroxyimino)propyl)cyclohex-<br>2-en-1-one glucoside<br>SMILES:<br>CC/C(C1=C(0)CC(CC(C)S(CC)(=O)=O)C(O)C1=O)=<br>N\O[C@H](O[C@@H]2CO)[C@H](O]C@H]([C@@<br>H]2O)O   | Spinach (foliage 9.7-13% TRR as sum of M20R(a+b))                                                                                                      | $\begin{array}{c} HO \\ O \\ O \\ S \\ O \\ O \\ O \\ O \\ O \\ O \\ $ |
| Name:<br>Clethodim<br>imine sulfone<br>glucoside<br>Code: M20R(b)                                                  | IUPAC: ( <i>5RS</i> )-5-((2RS)2-(ethylsulfonyl)propyl)-3-<br>hydroxy-2-((EZ)-1-(hydroxyimino)propyl)cyclohex-2-<br>en-1-one glucoside<br>SMILES:<br>CC/C(C1=C(O)CC(CC(C)S(CC)(=O)=O)CC1=O)=N\<br>O[C@H](O[C@@H]2CO)[C@H](O)[C@H]([C@@H<br>]2O)O | Spinach (foliage 9.7-13% TRR as sum of M20R(a+b))                                                                                                      | O $O$ $O$ $O$ $O$ $O$ $O$ $O$ $O$ $O$                                  |
| Name: 5-<br>Hydroxy imine<br>sulfoxide<br>Code: M22R                                                               | IUPAC: (5RS)-5-((2RS)-2-(ethylsulfinyl)propyl)-3,5-<br>dihydroxy-2-(1-iminopropyl)cyclohex-2-en-1-one<br>SMILES:<br>N=C(CC)C1=C(O)CC(CC(C)S(CC)=O)(O)CC1=O                                                                                      | Carrot (foliage 13% TRR as sum with clethodim imine sulfoxide)                                                                                         |                                                                        |
| Name: 3-[(2-<br>Ethylsulfinyl)<br>propyl]-<br>pentanedioic<br>acid<br>Code: M16R,<br>M17R<br>DME sulfoxide<br>acid | IUPAC: 3-[((2RS)-2-ethylsulfinyl)propyl]-pentanedioic<br>acid<br>SMILES: CC(S(CC)=O)CC(CC(O)=O)CC(O)=O                                                                                                                                          | Spinach (foliage 33-35% TRR)<br>Carrot (roots 13-14% TRR)<br>Carrot (foliage 8.9-9.2% TRR)<br>Water (48.9%)<br>Tomato (foliage 2.6% TRR)               | O≈s-COOH<br>COOH                                                       |

| Name: Hydroxy<br>3-[(2-<br>Ethylsulfinyl)<br>propyl]-<br>pentanedioic<br>acid<br>Code: M14R,<br>M15R                                | IUPAC: 3-((2RS)-2-(ethylsulfinyl)propyl)-2-<br>hydroxypentanedioic acid<br>SMILES: CC(S(CC)=O)CC(C(O)C(O)=O)CC(O)=O                                                                                                                                                                                    | Spinach (foliage 13-14% TRR)<br>Carrot (roots 7.7-12% TRR)<br>Carrot (foliage 3.6-11% TRR)<br>Tomato (foliage 4.6-19% TRR)<br>Tomato (fruit 18% TRR) |                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| Name: 3-<br>Chloroallyl<br>alcohol<br>glucoside<br>Code: M14A,<br>M15A                                                              | IUPAC: (E)-3-chloroallyl alcohol glucoside<br>SMILES:<br>Cl/C=C/CO[C@H](O[C@@H]1CO)[C@H](O)[C@H]<br>([C@@H]1O)O                                                                                                                                                                                        | Spinach (foliage 21-23% TRR)<br>Carrot (roots 3.1-6.5% TRR)<br>Carrot (foliage 3.6-4.8% TRR)                                                         | Cl Glue                                                        |
| Name: 3-<br>Chloroallyl<br>alcohol                                                                                                  | IUPAC: (E)-3-chloroallyl alcohol<br>SMILES:<br>Cl/C=C/CO                                                                                                                                                                                                                                               | Residues<br>(high temperature hydrolysis 99-101% of AR)                                                                                              | СІ-ОН                                                          |
| Name: 2-<br>(Glutamyl-<br>cysteinyl)-3-<br>chloropropanol<br>Code: M19A                                                             | IUPAC: N <sup>5</sup> -(1-carboxy-2-((1-chloro-3-hydroxypropan-<br>2-yl)thio)ethyl) glutamine<br>SMILES:<br>NC(C(O)=O)CCC(NC(C(O)=O)CSC(CCl)CO)=O                                                                                                                                                      | Spinach (leaves 6.8-9.5% TRR)                                                                                                                        | H <sub>2</sub> N<br>HOOC<br>COOH<br>HN<br>CI                   |
| Name: 2-<br>(glutamyl-<br>cysteinyl)-3-<br>chloroacrylic<br>acid<br>Code: M22A                                                      | IUPAC: N <sup>5</sup> -(1-carboxy-2-((1-carboxy-2-<br>chloroethyl)thio)ethyl)glutamine<br>SMILES:<br>NC(C(O)=O)CCC(NC(C(O)=O)CSC(CCl)C(O)=O)=O                                                                                                                                                         | Carrot (foliage 7.3% TRR)                                                                                                                            | H <sub>2</sub> N<br>HOOC<br>COOH<br>HN<br>COOH<br>COOH<br>COOH |
| Name: 3-<br>hydroxy-5-(2-<br>hydroxypropyl)-<br>2-(1-<br>iminopropyl)cy<br>clohex-2-en-1-<br>one glucose<br>conjugate<br>Code: M19R | IUPAC: (5RS)-5-((2RS)-2-hydroxypropyl)-2-(1-<br>iminopropyl)-3-(((3 <i>R</i> ,4 <i>S</i> ,5 <i>S</i> ,6 <i>R</i> )-3,4,5-trihydroxy-6-<br>(hydroxymethyl)tetrahydro-2H-pyran-2-<br>yl)oxy)cyclohex-2-en-1-one<br>SMILES:<br>N=C(CC)C1=C(O[C@H](O[C@@H]2CO)[C@H](O)[<br>C@H]([C@@H]2O)O)CC(CC(C)O)CC1=O | Carrot (foliage 11-14% TRR)                                                                                                                          | HO                                                             |

| r                                                                |                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                     |          |
|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Name:<br>Aromatic<br>sulfone<br>Code: RE-<br>50419               | IUPAC: ( <i>EZ</i> )-1-(4-((2RS)-2-(ethylsulfonyl)propyl)-2,6-<br>dihydroxyphenyl)propan-1-one <i>O</i> -(( <i>E</i> )-3-chloroallyl)<br>oxime<br>SMILES:<br>CC/C(C1=C(O)C=C(CC(C)S(CC)(=O)=O)C=C1O)=N<br>\OC/C=C/Cl | Carrot (roots 0.8-1.4% TRR)<br>Carrot (foliage 0.3-0.6% TRR)<br>Cotton (foliage 0.4-0.5% TRR)<br>Soya (seeds 1.5-1.9% TRR)<br>Soya (foliage 0.4-0.5% TRR)<br>Rat (0.5% urine)                                                         |          |
| Name:<br>Clethodim<br>oxazole<br>sulfoxide<br>Code: RE-<br>47796 | IUPAC: 2-ethyl-(6RS)-6-((2RS)-2-<br>(ethylsulfinyl)propyl)-6,7-dihydrobenzo[ <i>d</i> ]oxazol-<br>4(5 <i>H</i> )-one<br>SMILES:<br>O=C1C2=C(OC(CC)=N2)CC(CC(C)S(CC)=O)C1                                             | Tomato (foliage 3.7-5.6% TRR)<br>Tomato (fruit 14% TRR)<br>Soil (6.0%)<br>Water (0.8%)<br>rotational carrot (3.2% TRR), lettuce (3.6% TRR), wheat straw<br>(3.6% TRR)<br>Rat (3% urine)<br>(high temperature hydrolysis 89-91% of AR) |          |
| Name:<br>Clethodim<br>oxazole sulfone<br>Code: RE-<br>47797, M4  | IUPAC: 2-ethyl-(6RS)-6-((2RS)-2-<br>(ethylsulfonyl)propyl)-6,7-dihydrobenzo[ <i>d</i> ]oxazol-<br>4(5 <i>H</i> )-one<br>SMILES:<br>O=C1C2=C(OC(CC)=N2)CC(CC(C)S(CC)(=O)=O)C1                                         | Tomato (foliage 7.2% TRR)<br>Soil (10.0%)<br>Water (2.8%)<br>rotational carrot (1.7-1.8% TRR), lettuce (7.1% TRR), wheat<br>straw (3.3-6.7% TRR)                                                                                      |          |
| Name: S-methyl<br>sulfoxide<br>Code: RE-<br>47507                | IUPAC: 2-(( <i>E</i> )-1-(((( <i>E</i> )-3-<br>chloroallyl)oxy)imino)propyl)-3-hydroxy-5-(2-<br>(methylsulfinyl)propyl)cyclohex-2-en-1-one<br>SMILES:<br>CC/C(C1=C(O)CC(CC(C)S(C)=O)CC1=O)=N\OC/C=<br>C/Cl           | Goat (milk 4.3-11% TRR, liver 6.2% TRR, kidney 31% TRR,<br>heart 37% TRR, muscle 29-32% TRR, fat 29% TRR)<br>Rat (8% urine)                                                                                                           |          |
| Clethodim<br>imine                                               | IUPAC: 5-(2-(ethylthio)propyl)-3-hydroxy-2-(1-<br>iminopropyl)cyclohex-2-en-1-one<br>SMILES:<br>N=C(CC)C1=C(O)CC(CC(C)SCC)CC1=O                                                                                      | Water (36.4%)*                                                                                                                                                                                                                        | S-COH NH |
| Clethodim<br>imine ketone                                        | IUPAC: 3-hydroxy-2-(1-iminopropyl)-5-(2-<br>oxopropyl)cyclohex-2-en-1-one<br>SMILES:<br>N=C(CC)C1=C(O)CC(CC(C)=O)CC1=O                                                                                               | Water (11.8%)*                                                                                                                                                                                                                        |          |

|                                                         | Γ                                                                                                                                       | I                                                                          | 1 1                     |
|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------|
| 2-[3-<br>chloroallyloxyi<br>mino]butanoic<br>acid (CBA) | IUPAC: (E)-2-((((E)-3-chloroallyl)oxy)imino)butanoic<br>acid<br>SMILES:<br>OC(/C(CC)=N/OC/C=C/Cl)=O                                     | Soil (18.7%)                                                               | HO N O CI               |
| Trans-3-<br>chloroacrylic<br>acid (CAA)                 | IUPAC: (E)-3-chloroacrylic acid<br>SMILES:<br>OC(/C=C/Cl)=O                                                                             | Soil (18.1%)                                                               | HO<br>O<br>O            |
| Clethodim<br>oxazole                                    | IUPAC: 2-ethyl-6-(2-(ethylthio)propyl)-6,7-<br>dihydrobenzo[d]oxazol-4(5H)-one<br>SMILES:<br>O=C1C2=C(OC(CC)=N2)CC(CC(C)SCC)C1          | Residues (high temperature hydrolysis 12-97% of AR) water: (7.7%)*         |                         |
| Clethodim-<br>trione                                    | IUPAC: 5-(2-(ethylthio)propyl)-3-hydroxy-2-<br>propionylcyclohex-2-en-1-one<br>SMILES:<br>O=C(CC)C1=C(O)CC(CC(C)SCC)CC1=O               | Residues<br>(high temperature hydrolysis 3.0-5.3% of AR)                   |                         |
| Clethodim-<br>trione sulfoxide<br>Code: RE-<br>47386    | IUPAC: 5-(2-(ethylsulfinyl)propyl)-3-hydroxy-2-<br>propionylcyclohex-2-en-1-one<br>SMILES:<br>O=C(CC)C1=C(O)CC(CC(C)S(CC)=O)CC1=O       | Rat (1% urine)<br>Residues<br>(high temperature hydrolysis 2.5-7.1% of AR) |                         |
| Trans-3-<br>chloropropenal                              | IUPAC: ( <i>E</i> )-3-chloroacrylaldehyde<br>SMILES: Cl/C=C/C=O                                                                         | Water (21.8%)*                                                             | CI O                    |
| Deoxy-M17R                                              | IUPAC: 3-(2-(ethylthio)propyl)pentanedioic acid<br>SMILES: CC(SCC)CC(CC(O)=O)CC(O)=O                                                    | Goat when dosed with M17R (kidney 68% TRR, liver 19% TRR)                  | СООН                    |
| Hydroxy<br>pentanoic acid<br>glucoside<br>(RT26)        | IUPAC: 5-hydroxy-2-(2-hydroxy-6-oxo-4-<br>propylcyclohex-1-en-1-yl)pentanoic acid glucoside<br>SMILES: O=C(O)C(CCCO)C1=C(O)CC(CCC)CC1=O | Tomato (foliage 6.1-30% TRR)<br>Tomato (fruit 27% TRR)                     | O O<br>OH<br>Glucose HO |
| Hydroxy<br>propanoic acid                               | IUPAC: 2-hydroxy-3-(2-hydroxycyclohexyl)propanoic<br>acid or 3-hydroxy-3-(2-hydroxycyclohexyl)propanoic<br>acid                         | Tomato (foliage 1.1-6.2% TRR)<br>Tomato (fruit 4.9% TRR)                   | ОН ОН                   |

|                           | SMILES: OC1CCCCC1CC(O)C(O)=O or<br>OC1CCCCC1C(O)CC(O)=O                                |                              |                                    |
|---------------------------|----------------------------------------------------------------------------------------|------------------------------|------------------------------------|
| Malic acid                | IUPAC: 2-hydroxysuccinic acid<br>SMILES: OC(CC(O)C(O)=O)=O                             | Tomato (foliage 0.8-17% TRR) | HO<br>HO<br>O<br>O<br>HO<br>O<br>H |
| Citric acid               | IUPAC: 2-hydroxypropane-1,2,3-tricarboxylic acid<br>SMILES: OC(CC(C(O)=O)(O)CC(O)=O)=O | Tomato (foliage 3.1% TRR)    | HO OH OH                           |
| Unknown<br>metabolite M20 | unknown                                                                                | Water/sediment (8.8%)*       | unknown                            |

\*Value amended to align with the RMS' assessment (e.g., due to rounding differences or including values that were omitted in the applicant's summary table).

# LEVEL 3

# **<u>3</u>** PROPOSED DECISION WITH RESPECT TO THE APPLICATION

## 3.1 BACKGROUND TO THE PROPOSED DECISION

## 3.1.1 Proposal on acceptability against the approval criteria – Article 4 and Annex II of Regulation (EC) No 1107/2009

| 3.1.1. | 1 Article 4                                                                                                                                                                                                                                                                                                                                                                                        | Yes | No |                                                                                                                                                                                                                 |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | It is considered that Article 4 of Regulation (EC) No 1107/2009 is<br>complied with. Specifically, the RMS considers that authorisation in at<br>least one Member State is expected to be possible for at least one plant<br>protection product containing the active substance for at least one of the<br>representative uses.                                                                    | X   |    | Pending additional data and further discussion during the peer review of the substance (see below).                                                                                                             |
| 3.1.1. | 2 Submission of further information (Annex II 2.2)                                                                                                                                                                                                                                                                                                                                                 | Yes | No |                                                                                                                                                                                                                 |
| i)     | It is considered that a complete dossier has been submitted                                                                                                                                                                                                                                                                                                                                        | Х   |    | Regarding the data gaps identified during the evaluation, please refer to section 3.1.4.                                                                                                                        |
| ii)    | It is considered that in the absence of a full dossier the active substance<br>may be approved even though certain information is still to be submitted<br>because:<br>(a) the data requirements have been amended or refined after the<br>submission of the dossier; or<br>(b) the information is considered to be confirmatory in nature, as required<br>to increase confidence in the decision. |     |    | Not relevant.                                                                                                                                                                                                   |
| 3.1.1. | 3 Restrictions on approval (Annex II 2.3)                                                                                                                                                                                                                                                                                                                                                          | Yes | No |                                                                                                                                                                                                                 |
|        | It is considered that in line with Article 6 of Regulation (EC) No 1107/2009 approval should be subject to conditions and restrictions.                                                                                                                                                                                                                                                            | X   |    | The following conditions for approval are proposed:<br>a) the minimum degree of purity of the active substance is 930 g/kg<br>i) the need to impose risk mitigation measures for non-target terrestrial plants. |
| 3.1.1. | 4 Criteria for the approval of an active substance (Annex II 3)                                                                                                                                                                                                                                                                                                                                    |     |    |                                                                                                                                                                                                                 |
| Dossi  | er (Annex II 3.1)                                                                                                                                                                                                                                                                                                                                                                                  | Yes | No |                                                                                                                                                                                                                 |

| i)  | It is considered the dossier contains the information needed to establish,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Х | See Vol 1, Level 2. sections 2.6.10.1 (ADI), 2.6.10.2 (ARfD). 2.6.10.3 (AOEL) and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | where relevant, Acceptable Daily Intake (ADI), Acceptable Operator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | 2.6.10.4 (AAOEL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     | Exposure Level (AOEL) and Acute Reference Dose (ARfD).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ii) | Exposure Level (AOEL) and Acute Reference Dose (ARfD).<br>It is considered that the dossier contains the information necessary to carry<br>out a risk assessment and for enforcement purposes (relevant for<br>substances for which one or more representative uses includes use on feed<br>or food crops or leads indirectly to residues in food or feed). In particular<br>it is considered that the dossier:<br>(a) permits any residue of concern to be defined;<br>(b) reliably predicts the residues in food and feed, including succeeding<br>crops<br>(c) reliably predicts, where relevant, the corresponding residue level<br>reflecting the effects of processing and/or mixing;<br>(d) permits a maximum residue level to be defined and to be determined<br>by appropriate methods in general use for the commodity and, where<br>appropriate, for products of animal origin where the commodity or parts of<br>it is fed to animals;<br>(e) permits, where relevant, concentration or dilution factors due to<br>processing and/or mixing to be defined. | X | <ul> <li>a) The metabolism in plants was investigated in three crop groups (root and tuber vegetables, leafy vegetables and fruit crops) with acceptable studies and in pulses and oilseeds with supportive studies. Clethodim is extensively metabolised and the same metabolic pathways were identified, although the quantity of the metabolites differed between crops. Photolytic degradation occurs, and therefore the major metabolites formed in outdoor conditions (pentanedioic acids) were not identified in studies performed indoors. For enforcement, the residue definition in plants is proposed as: Sum of clethodim, clethodim sulfoxide, clethodim sulfone, expressed as clethodim. For risk assessment, a general residue definition in plant commodities is proposed as sum of clethodim, clethodim sulfoxide, clethodim sulfox, expressed as clethodim. However, the RMS identified a data gap for genotxicity for M17R, M14R/15R and M18R/M19R. The final residue definition is therefore pending the outcome of this genotoxicity assessment.</li> <li>For processed commodities, it could not be concluded based on available data and the representative uses if a separate residue definition would be necessary. Clethodim, clethodim sulfoxide and clethodim sulfox studies.</li> <li>The metabolism in rotational crops was similar to the one in primary crops, but would need to be investigated in a field trial, simulating more realistic outdoor conditions. It is tentatively concluded that a separate residue definition is not necessary. Livestock metabolism of clethodim was investigated in old studies in poultry (laying hen) and in lactating ruminants (goat). These studies were considered supportive only, and the results are less relevant, since the parent clethodim is not expected in the feed. The metabolites of the pentanedioic acid metabolite M17R was investigated in goat. Major metabolites and that a M18R/M19R and M18R/M19R. M16R/M17R and M18R/M19R and the proposed deoxy-M17R metabolites are predicted to be well below 0.01 mg/kg (i.e. non-detectab</li></ul> |
| 1   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 | are expected in any animal commodity at the estimated intake levels.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| iii)    | It is considered that the dossier submitted is sufficient to permit, where relevant, an estimate of the fate and distribution of the active substance in                                                                                                                                                                      | X   |     | <ul> <li>Based on metabolism studies in rotational crop, residues of clethodim and all relevant metabolites are expected to be below the LOQ (&lt;0.01 mg/kg) in food items when clethodim is applied according to the intended cGAPs. However, residue levels above the LOQ may be present in cereal feed items. See detailed evaluation in Volume 3, B7.</li> <li>c) Not relevant, residues below 0.1 mg/kg and exposure less than 10% of the ADI.</li> <li>d) Yes, MRLs are proposed for representative crops. No residues above the LOQ are expected in animal commodities and honey. Appropriate methods are available to determine the residues. See detailed evaluation in Volume 3, B5 and B7.</li> <li>e) Not relevant.</li> <li>Bee data gaps under 3.1.4.7.</li> <li>Data gaps have been identified regarding the environmental fate and exposure of clethodim and its metabolites (PECsoil, PECgw and PECsw/sed, see 3.1.4).</li> </ul> |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Efficac | the environment, and its impact on non-target species.<br>cy (Annex II 3.2)                                                                                                                                                                                                                                                   | Yes | No  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Effica  | It is considered that it has been established for one or more representative<br>uses that the plant protection product, consequent on application consistent<br>with good plant protection practice and having regard to realistic<br>conditions of use is sufficiently effective.                                            | X X | INO | No new data available, and not required (renewal).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Releva  | nce of metabolites (Annex II 3.3)                                                                                                                                                                                                                                                                                             | Yes | No  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         | It is considered that the documentation submitted is sufficient to permit the establishment of the toxicological, ecotoxicological or environmental relevance of metabolites.                                                                                                                                                 |     | X   | The dossier did not permit establishment of the toxicological relevance of following metabolites: clethodim imine sulfone, clethodim 5-OH sulfone, clethodim oxazole sulfone, clethodim sulfone, DME sulfoxide acid (M17), deoxy-M17R, M18R/M19R, M14R/M15R, DME sulfone acid (M18R). Data gaps have been identified for these metabolites as metabolites in crop/ groundwater (see Level 2 sections 2.6.8 and 2.12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Comp    | osition (Annex II 3.4)                                                                                                                                                                                                                                                                                                        | Yes | No  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| i)      | It is considered that the specification defines the minimum degree of<br>purity, the identity and maximum content of impurities and, where<br>relevant, of isomers/diastereo-isomers and additives, and the content of<br>impurities of toxicological, ecotoxicological or environmental concern<br>within acceptable limits. |     | Х   | Pending submission of further data to assess the (eco)toxicological relevance of impurities (see section 2.1 and section 3.1.4 and Volume 4 for further details).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ii)     | It is considered that the specification is in compliance with the relevant<br>Food and Agriculture Organisation specification, where such specification<br>exists.                                                                                                                                                            | Х   |     | Declared minimum clethodim content according to 2017 FAO evaluation report (930 g/kg).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| iii)    | It is considered for reasons of protection of human or animal health or the<br>environment, stricter specifications than that provided for by the FAO<br>specification should be adopted.                                                                                                                                     |     | Х   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Metho   | ds of analysis (Annex II 3.5)                                                                                                                                                                                                                                                                                                 | Yes | No  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| i)      | It is considered that the methods of analysis of the active substance,<br>safener or synergist as manufactured and of determination of impurities of<br>toxicological, ecotoxicological or environmental concern or which are<br>present in quantities greater than 1 g/kg in the active substance, safener or                | Х   |     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

|        | synergist as manufactured, have been validated and shown to be               |     |                                         |                                                                                         |
|--------|------------------------------------------------------------------------------|-----|-----------------------------------------|-----------------------------------------------------------------------------------------|
|        | sufficiently specific, correctly calibrated, accurate and precise.           |     |                                         |                                                                                         |
| ii)    | It is considered that the methods of residue analysis for the active         |     | Х                                       | Data gap identified for analytical methods for monitoring of the metabolites clethodim  |
|        | substance and relevant metabolites in plant, animal and environmental        |     |                                         | sulfone and clethodim oxazole sulfone in drinking/groundwater.                          |
|        | matrices and drinking water, as appropriate, shall have been validated and   |     |                                         |                                                                                         |
|        | shown to be sufficiently sensitive with respect to the levels of concern.    |     |                                         |                                                                                         |
| iii)   | It is confirmed that the evaluation has been carried out in accordance with  | Х   |                                         |                                                                                         |
|        | the uniform principles for evaluation and authorisation of plant protection  |     |                                         |                                                                                         |
|        | products referred to in Article 29(6) of Regulation 1107/2009.               |     |                                         |                                                                                         |
| Impac  | t on human health (Annex II 3.6)                                             |     |                                         |                                                                                         |
|        | t on human health - ADI, AOEL, ARfD (Annex II 3.6.1)                         | Yes | No                                      |                                                                                         |
|        | It is confirmed that (where relevant) an ADI, AOEL and ARfD can be           | Х   |                                         | ADI: 0.16 mg/kg bw/day                                                                  |
|        | established with an appropriate safety margin of at least 100 taking into    |     |                                         | AOEL: 0.2 mg/kg bw/day                                                                  |
|        | account the type and severity of effects and the vulnerability of specific   |     |                                         | ARfD: not necessary                                                                     |
|        | groups of the population.                                                    |     |                                         | AAOEL: not necessary                                                                    |
|        | groups of the population.                                                    |     |                                         | See Level 2, section 2.6.10 for explanation                                             |
| Imnac  | t on human health – proposed genotoxicity classification (Annex II           | Yes | No                                      |                                                                                         |
| 3.6.2) | t on numan nearth – proposed genotoxicity classification (Annex H            | 105 | 110                                     |                                                                                         |
| 5.0.2) | It is considered that, on the basis of assessment of higher tier             |     | X                                       | See Level 2, section 2.6.4                                                              |
|        | genotoxicity testing carried out in accordance with the data                 |     | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | See Level 2, seedon 2.0.4                                                               |
|        | requirements and other available data and information, including a           |     |                                         | Based on the available in vitro and in vivo genotoxicity studies, no classification for |
|        | review of the scientific literature, reviewed by the Authority, the          |     |                                         | germ cell mutagenicity is warranted.                                                    |
|        | substance SHOULD BE classified or proposed for classification, in            |     |                                         | gerni cen mutagementy is warranteu.                                                     |
|        | accordance with the provisions of Regulation (EC) No 1272/2008, as           |     |                                         |                                                                                         |
|        | mutagen category 1A or 1B.                                                   |     |                                         |                                                                                         |
| Impoo  | t on human health – proposed carcinogenicity classification (Annex II        | Yes | No                                      |                                                                                         |
| 3.6.3) | t on numan nearth – proposed carcinogenicity classification (Annex II        | res | INO                                     |                                                                                         |
|        | It is considered that on the basis of accomment of the consideration         |     | X                                       | See Level 2, section 2.6.5                                                              |
| i)     | It is considered that, on the basis of assessment of the carcinogenicity     |     | Λ                                       | See Level 2, section 2.0.5                                                              |
|        | testing carried out in accordance with the data requirements for the         |     |                                         |                                                                                         |
|        | active substances, safener or synergist and other available data and         |     |                                         | Based on the available long-term studies, no classification for carcinogenicity is      |
|        | information, including a review of the scientific literature, reviewed by    |     |                                         | warranted.                                                                              |
|        | the Authority, the substance SHOULD BE classified or proposed for            |     |                                         |                                                                                         |
|        | classification, in accordance with the provisions of Regulation (EC) No      |     |                                         |                                                                                         |
|        | 1272/2008, as carcinogen category 1A or 1B.                                  |     |                                         |                                                                                         |
| ii)    | Linked to above classification proposal.                                     |     |                                         | Not applicable.                                                                         |
|        | It is considered that exposure of humans to the active substance, safener or |     |                                         |                                                                                         |
|        | synergist in a plant protection product, under realistic proposed conditions |     |                                         |                                                                                         |
|        | of use, is negligible, that is, the product is used in closed systems or in  |     |                                         |                                                                                         |
|        | other conditions excluding contact with humans and where residues of the     |     |                                         |                                                                                         |
|        | active substance, safener or synergist concerned on food and feed do not     |     |                                         |                                                                                         |
|        | exceed the default value set in accordance with Article 18(1)(b) of          |     |                                         |                                                                                         |
| 1      | Regulation (EC) No 396/2005.                                                 |     |                                         |                                                                                         |

| Impact on human health – proposed reproductive toxicity classification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Yes | No  |                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (Annex II 3.6.4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | res | INO |                                                                                                                                                                                                                                                                                                                             |
| <ul> <li>i) It is considered that, on the basis of assessment of the reproductive toxicity testing carried out in accordance with the data requirements for the active substances, safeners or synergists and other available data and information, including a review of the scientific literature, reviewed by the Authority, the substance SHOULD BE classified or proposed for classification, in accordance with the provisions of Regulation (EC) No 1272/2008, as toxic for reproduction category 1A or 1B.</li> </ul>                                                          |     | X   | See Level 2, section 2.6.6<br>Based on the available reproductive toxicity studies, no classification for reproductive toxicity is warranted.                                                                                                                                                                               |
| <ul> <li>Linked to above classification proposal.</li> <li>It is considered that exposure of humans to the active substance, safener or<br/>synergist in a plant protection product, under realistic proposed conditions<br/>of use, is negligible, that is, the product is used in closed systems or in<br/>other conditions excluding contact with humans and where residues of the<br/>active substance, safener or synergist concerned on food and feed do not<br/>exceed the default value set in accordance with Article 18(1)(b) of<br/>Regulation (EC) No 396/2005.</li> </ul> |     |     | Not applicable                                                                                                                                                                                                                                                                                                              |
| Impact on human health – proposed endocrine disrupting properties classification (Annex II 3.6.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Yes | No  |                                                                                                                                                                                                                                                                                                                             |
| <ul> <li>i) It is considered that the substance SHOULD BE identified as having<br/>endocrine disrupting properties in accordance with the provisions of point<br/>3.6.5 in Annex II of Regulation (EC) No 1107/2009.</li> </ul>                                                                                                                                                                                                                                                                                                                                                        |     | X   | See Level 2, section B.2.10.<br>Clethodim does not meet the criteria for endocrine disruption by the EATS-modalities.                                                                                                                                                                                                       |
| <ul> <li>ii) Linked to above identification proposal.</li> <li>It is considered that exposure of humans to the active substance, safener or synergist in a plant protection product, under realistic proposed conditions of use, is negligible, that is, the product is used in closed systems or in other conditions excluding contact with humans and where residues of the active substance, safener or synergist concerned on food and feed do not exceed the default value set in accordance with Article 18(1)(b) of Regulation (EC) No 396/2005.</li> </ul>                     |     | X   |                                                                                                                                                                                                                                                                                                                             |
| Fate and behaviour in the environment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |     |                                                                                                                                                                                                                                                                                                                             |
| Persistent organic pollutant (POP) (Annex II 3.7.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Yes | No  |                                                                                                                                                                                                                                                                                                                             |
| It is considered that the active substance FULFILS the criteria of a persistent organic pollutant (POP) as laid out in Regulation 1107/2009 Annex II Section 3.7.1.                                                                                                                                                                                                                                                                                                                                                                                                                    |     | X   | The criteria for bioaccumulation or long-range transport are not fulfilled.<br>The criterion for persistence in soil is not fulfilled.<br>The RMS concludes that clethodim does not fulfil the criteria of a POP.<br>See discussion under separate sub-headings in Vol 1, Level 2, sections 2.8.1.3, 2.8.2.3<br>and 2.9.2.1 |
| Persistent, bioaccumulative and toxic substance (PBT) (Annex II 3.7.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Yes | No  |                                                                                                                                                                                                                                                                                                                             |

| Very  | It is considered that the active substance FULFILS the criteria of a persistent, bioaccumulative and toxic (PBT) substance as laid out in Regulation 1107/2009 Annex II Section 3.7.2.         persistent and very bioaccumulative substance (vPvB) (Annex II 3.7.3)         It is considered that the active substance FULFILS the criteria of a a very persistent and very bioaccumulative substance (vPvB) as laid out in Regulation 1107/2009 Annex II Section 3.7.3.                                                                                                                                                                                    | Yes | X<br>No<br>X | The toxicity criterion (T) is fulfilled. (ErC <sub>10</sub> <0.01 mg /L for <i>Glyceria maxima</i> ).<br>The criterion for bioaccumulation is not fulfilled.<br>The criterion for persistence is not fulfilled.<br>The RMS concludes that clethodim does not fulfil the criteria of a PBT.<br>See discussion under separate sub-headings in Vol 1, Level 2, sections 2.6.3-2.6.6,<br>2.8.1.3, 2.8.2.3 and 2.9.2.1.<br>The criterion for bioaccumulation is not fulfilled.<br>The criterion for persistence in soil is not fulfilled.<br>The RMS concludes that clethodim does not fulfilled.<br>The RMS concludes that clethodim does not fulfilled. |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |              | See discussion under separate sub-headings in Vol 1, Level 2, 2.8.1.3, 2.8.2.3 and 2.9.2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Ecoto | oxicology (Annex II 3.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Yes | No           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| i)    | It is considered that the risk assessment demonstrates risks to be<br>acceptable in accordance with the criteria laid down in the uniform<br>principles for evaluation and authorisation of plant protection products<br>referred to in Article 29(6) under realistic proposed conditions of use of a<br>plant protection product containing the active substance, safener or<br>synergist. The RMS is content that the assessment takes into account the<br>severity of effects, the uncertainty of the data, and the number of organism<br>groups which the active substance, safener or synergist is expected to<br>affect adversely by the intended use. | X   |              | See 2.9.9.3 in Vol 1. The acute risk to honeybees as per SANCO 2002 is acceptable.<br>However, in line with EFSA 2013, risk assessment for honeybees requires further<br>refinement, and data are needed for bumble bees and solitary bees.                                                                                                                                                                                                                                                                                                                                                                                                          |
| ii)   | It is considered that, on the basis of the assessment of Community or<br>internationally agreed test guidelines, the substance HAS endocrine<br>disrupting properties that may cause adverse effects on non-target<br>organisms.                                                                                                                                                                                                                                                                                                                                                                                                                             |     | X            | According to the EFSA/ECHA guidance (2019) for the identification of endocrine disruptors in the context of Regulations (EU) No 528/2012 and (EC) No 1107/2009, no further data are needed for non-target organisms.                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| iii)  | Linked to the consideration of the endocrine properties immediately above.<br>It is considered that the exposure of non-target organisms to the active<br>substance in a plant protection product under realistic proposed conditions<br>of use is negligible.                                                                                                                                                                                                                                                                                                                                                                                               |     |              | Not applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| iv)   | It is considered that it is established following an appropriate risk<br>assessment on the basis of Community or internationally agreed test<br>guidelines, that the use under the proposed conditions of use of plant<br>protection products containing this active substance, safener or synergist:<br>— will result in a negligible exposure of honeybees, or<br>— has no unacceptable acute or chronic effects on colony<br>survival and development, taking into account effects on honeybee larvae<br>and honeybee behaviour.                                                                                                                          | X   |              | The proposed conditions of use of plant protection products containing Clethodim are expected to have no unacceptable acute or chronic effects on colony survival and development, taking into account effects on honeybee larvae and honeybee behaviour, based on SANCO 2002. Based on EFSA 2013 (a guidance that has not yet been noted by the Standing Committee on Plants, Animals, Food and Feed) further refinement is needed for honeybees. Moreover, no data have been provided for bumble bees and solitary bees.                                                                                                                           |
| Resid | ue definition (Annex II 3.9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Yes | No           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|       | It is considered that, where relevant, a residue definition can be established<br>for the purposes of risk assessment and for enforcement purposes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     | Х            | The residue definition for enforcement purposes is pending the finalization of the relevance assessment of metabolites in groundwater (see section 2.12).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |    | For risk assessment of residues in plants and animal commodities: reference is made to 2.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fate and                   | d behaviour concerning groundwater (Annex II 3.10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Yes | No |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ן<br>נ<br>נ<br>נ<br>נ<br>נ | It is considered that it has been established for one or more representative<br>uses, that consequently after application of the plant protection product<br>consistent with realistic conditions on use, the predicted concentration of<br>the active substance or of metabolites, degradation or reaction products in<br>groundwater complies with the respective criteria of the uniform principles<br>for evaluation and authorisation of plant protection products referred to in<br>Article 29(6) of Regulation 1107/2009. | X   |    | Calculations of PEC in groundwater were available for the parent and all metabolites<br>for which an assessment is necessary. Based on this PECgw, three metabolites were<br>identified that are likely to exceed the parametric drinking water limit for most<br>representative uses. For two of these metabolites the assessment of relevance could not<br>be finalised (see 2.12). For at least one use (i.e. 120 g/ha in onions), current FOCUS<br>PEARL and PELMO PECgw of clethodim and its metabolites did not exceed 0.1 $\mu$ g/l in<br>two scenarios (Porto and Thiva), indicating a safe use. However, the substance specific<br>input parameters and pathway considered in the modelling are not in line with the RMS<br>proposal. New PECgw calculations are thus required and may change this conclusion. |

# 3.1.2 Proposal - Candidate for substitution

| Candi | date for substitution                                                       | Yes | No |                                                                                            |
|-------|-----------------------------------------------------------------------------|-----|----|--------------------------------------------------------------------------------------------|
|       | It is considered that the active substance shall be approved as a candidate |     | Х  | The RMS concludes that clethodim does not fulfil any of the criteria for identification as |
|       | for substitution                                                            |     |    | candidate for substitution.                                                                |

# 3.1.3 **Proposal – Low risk active substance**

| Low-risk active substances                                                                                                                                                                            | Yes | No |                                                                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| It is considered that the active substance shall be considered of low risk.                                                                                                                           |     | Х  | The active substance clethodim is a highly potent herbicide which cannot be identified as a low risk substance.                                                                                       |
| In particular it is considered that the substance should NOT be<br>classified or proposed for classification in accordance with Regulation<br>(EC) No 1272/2008 as at least one of the following:<br> |     |    | Clethodim is currently classified for skin sensitisation in Cat 1 (H317). The RMS is of the opinion that classification should be retained, therefore the substance cannot be considered of low risk. |
| In addition it is considered that the substance is NOT:<br>— persistent (half-life in soil more than 60 days),                                                                                        |     |    |                                                                                                                                                                                                       |

| — has a bioconcentration factor higher than 100, |  |  |
|--------------------------------------------------|--|--|
| — is deemed to be an endocrine disrupter, or     |  |  |
| — has neurotoxic or immunotoxic effects.         |  |  |

# 3.1.4 List of studies to be generated, still ongoing or available but not evaluated

| Data gap                                                                                                                                                                                                                                                                                             | ta gap Relevance in relation to representative use(s) |                                                         | Study status                                            |                                       |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------|--|--|
|                                                                                                                                                                                                                                                                                                      |                                                       | No confirmation that<br>study available or on-<br>going | Study on-going and<br>anticipated date of<br>completion | Study available but not peer-reviewed |  |  |
| <b>3.1.4.1</b> Identity of the active substance or formulation(s)                                                                                                                                                                                                                                    |                                                       |                                                         |                                                         |                                       |  |  |
| Information on the toxicological, ecotoxicological and environmental relevance of impurities (please refer to Volume 4 for further details3.1).                                                                                                                                                      | All representative uses                               | Х                                                       |                                                         |                                       |  |  |
| 3.1.4.2 Physical and chemical properties of the active substance<br>and physical, chemical and technical properties of the                                                                                                                                                                           |                                                       |                                                         |                                                         |                                       |  |  |
| formulation(s)                                                                                                                                                                                                                                                                                       | A 11                                                  |                                                         |                                                         |                                       |  |  |
| Spectra (UV/VIS, IR, NMR, MS) for the impurity that is proposed to<br>be considered a relevant impurity for the renewal (please refer to<br>Volume 4 for further details).                                                                                                                           | All representative uses                               | Х                                                       |                                                         |                                       |  |  |
| 3.1.4.3 Data on uses and efficacy                                                                                                                                                                                                                                                                    |                                                       |                                                         |                                                         |                                       |  |  |
| No data gaps identified.                                                                                                                                                                                                                                                                             |                                                       |                                                         |                                                         |                                       |  |  |
| 3.1.4.4 Data on handling, storage, transport, packaging and labelling                                                                                                                                                                                                                                |                                                       |                                                         |                                                         |                                       |  |  |
| No data gaps identified.                                                                                                                                                                                                                                                                             |                                                       |                                                         |                                                         |                                       |  |  |
| 3.1.4.5 Methods of analysis                                                                                                                                                                                                                                                                          |                                                       |                                                         |                                                         |                                       |  |  |
| Analytical method for quantification of the impurity that is proposed<br>to be considered a relevant impurity for the renewal in the formulation<br>(please refer to Volume 4 for further details).                                                                                                  | All representative uses                               | Х                                                       |                                                         |                                       |  |  |
| Analytical method for monitoring of the metabolites clethodim sulfone and clethodim oxazole sulfone in drinking/groundwater.                                                                                                                                                                         | All representative uses                               | X                                                       |                                                         |                                       |  |  |
| Analytical validation methods in the 3-CAA genotoxicity study ( <i>i.e.</i> , reports by Zachary and Andy 2021 and Jutson and Evers 2021) have been submitted by the Applicant, but due to time limitations, they have not been assessed by the RMS, nor included in the current version of the RAR. | All representative uses                               |                                                         |                                                         | Х                                     |  |  |

| 3.1.4.6 Toxicology and metabolism                                       |                         |   |  |
|-------------------------------------------------------------------------|-------------------------|---|--|
| Vol 3, B.6.8.1.3/04                                                     | All representative uses | Х |  |
| metabolite clethodim oxazole sulfone (RE-47797)): data gap for          | 1                       |   |  |
| genotoxicity (follow-up data for lack of evidence for bone marrow       |                         |   |  |
| exposure in the mouse micronucleus test)                                |                         |   |  |
| Vol 3, B.6.8.1.4/03 and B.6.8.1.4/07                                    | All representative uses | Х |  |
| -metabolite clethodim sulfone (RE-47253): data gap for gene             | -                       |   |  |
| mutations (follow-up data for positive responses in Ames test and       |                         |   |  |
| MLA)                                                                    |                         |   |  |
| Clethodim imine sulfone (RE-47719): data gap (genotox,                  | All representative uses | Х |  |
| aneuploidy)                                                             | -                       |   |  |
| Clethodim 5-OH sulfone (RE-51228): data gap (genotox,                   | All representative uses | Х |  |
| aneuploidy)                                                             |                         |   |  |
| DME sulfoxide acid (M17R): data gap (genotox, aneuploidy)               |                         |   |  |
| Deoxy-M17R: data gap (genotox)                                          |                         |   |  |
| 3-[(2-ethylsulfonyl)propyl]pentanedioic acid (M18R/M19R): data          |                         |   |  |
| gap (genotox, aneuploidy)                                               |                         |   |  |
| Hydroxy-3-[(2-Ethylsulfinyl)]-propyl]-pentanedioic acid                 |                         |   |  |
| (M14R/M15R): data gap (genotox, aneuploidy)                             |                         |   |  |
| DME sulfone acid (M18R): data gap (genotox, aneuploidy)                 |                         |   |  |
| 3.1.4.7 Residue data                                                    |                         |   |  |
| Storage stability study in animal commodities                           | Sugar beet              | Х |  |
| Metabolism in rotational crops (study performed outdoors)               | All representative uses | Х |  |
| Metabolism study in poultry investigating relevant metabolites present  | Sugar beet              | Х |  |
| in feed                                                                 |                         |   |  |
| 3.1.4.8 Environmental fate and behaviour                                |                         |   |  |
| Field dissipation studies for metabolites clethodim oxazole sulfoxide   | All representative uses | Х |  |
| and clethodim oxazole sulfone.                                          |                         |   |  |
| Further data to address the effect of water treatment processes on the  | All representative uses | Х |  |
| nature of residues present in surface water/ground water.               |                         |   |  |
| Further characterisation or identification of the unknown metabolite    | All representative uses | Х |  |
| M20 detected in $2x > 5\%$ of applied radioactivity in the pond test    |                         |   |  |
| system of a water/sediment study.                                       |                         |   |  |
| PECgw for a.s. and all metabolites listed in the definition of residues | All representative uses | Х |  |
| for risk assessment with input parameters and pathway agreed upon       |                         |   |  |
| during peer-review.                                                     |                         |   |  |
| PECsw/sed for a.s. with input parameters agreed upon during peer-       | All representative uses | Х |  |
| review.                                                                 |                         |   |  |
| PECsoil for a.s. and all metabolites with input parameters agreed upon  | All representative uses | Х |  |
| during peer-review.                                                     |                         |   |  |
| 3.1.4.9 Ecotoxicology                                                   |                         |   |  |

| Revised risk assessments in line with the updated PEC values (see 3.1.4.8 above).                                                                                               | All representative uses                               | X |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---|--|
| Risk assessment for all representative uses besides the worst case, for<br>a.s. metabolites and representative formulated product, for all non-<br>target organisms.            | Onions and garlic (all)<br>Sugar beet (120 g a.s./ha) | X |  |
| Discussion on the single exposure study currently included in the RAR for chronic toxicity to honeybee larvae vs repeated exposure studies, which are recommended in EFSA 2013. | All representative uses                               | X |  |
| Refinement of the risk assessment for honeybees, as per EFSA 2013.                                                                                                              | All representative uses                               | X |  |
| Further consideration on risks to bumble bees and solitary bees.                                                                                                                | All representative uses                               | X |  |

# 3.1.5 Issues that could not be finalised

|    | of the risk assessment that could not be finalised basis of the available data $^{1)}$ | Relevance in relation to representative use(s) |
|----|----------------------------------------------------------------------------------------|------------------------------------------------|
| 1. | Groundwater risk assessment for metabolites                                            | all representative uses                        |
| 2. | Consumer risk assessment                                                               | Onion and garlic                               |
| 3. | Risk assessment for bumblebees and solitary bees                                       | all representative uses                        |

1) An issue is listed as an issue that could not be finalised where there is not enough information available to perform an assessment, even at the lowest tier level, for the representative uses in line with the Uniform Principles, as laid out in Commission Regulation (EU) No 546/2011, and where the issue is of such importance that it could, when finalised, become a concern (which would also be listed as a critical area of concern if it is of relevance to all representative uses).

# 3.1.6 Critical areas of concern

| Critic | al area of concern identified <sup>1)</sup> | Relevance in relation to representative use(s) |  |
|--------|---------------------------------------------|------------------------------------------------|--|
| 1.     | -                                           |                                                |  |
| 2.     | -                                           |                                                |  |
| 3.     | -                                           |                                                |  |
|        |                                             |                                                |  |

1) An issue is listed as a critical area of concern:

(a) where the substance does not satisfy the criteria set out in points 3.6.3, 3.6.4, 3.6.5 or 3.8.2 of Annex II of Regulation (EC) No 1107/2009 and the applicant has not provided detailed evidence that the active substance is necessary to control a serious danger to plant health which cannot be contained by other available means including non-chemical methods, taking into account risk mitigation measures to ensure that exposure of humans and the environment is minimised, or

(b) where there is enough information available to perform an assessment for the representative uses in line with the Uniform Principles, as laid out in Commission Regulation (EU) 546/2011, and where this assessment does not permit to conclude that for at least one of the representative uses it may be expected that a plant protection product containing the active substance will not have any harmful effect on human or animal health or on groundwater or any unacceptable influence on the environment.

An issue is also listed as a critical area of concern where the assessment at a higher tier level could not be finalised due to a lack of information, and where the assessment performed at the lower tier level does not permit to conclude that for at least one of the representative uses it may be expected that a plant protection product containing the active substance will not have any harmful effect on human or animal health or on groundwater or any unacceptable influence on the environment.

# 3.1.7 Overview table of the concerns identified for each representative use considered

Note: If a particular condition proposed to be taken into account to manage an identified risk, as listed in 3.3.1, has been evaluated as being effective, then 'risk identified' is not indicated in this table.

| Representative use:        |                          | Sugar    | · beet           | Onion/garlic     |                  |
|----------------------------|--------------------------|----------|------------------|------------------|------------------|
|                            |                          | 120 g/ha | 300 g/ha         | 120 g/ha         | 240 g/ha         |
| Operator rick              | Risk identified          |          |                  |                  |                  |
| Operator risk              | Assessment not finalised |          |                  |                  |                  |
| Worker risk                | Risk identified          |          |                  |                  |                  |
| WOIKEI IISK                | Assessment not finalised |          |                  |                  |                  |
| Protondon viel             | Risk identified          |          |                  |                  |                  |
| Bystander risk             | Assessment not finalised |          |                  |                  |                  |
| Consumer risk              | Risk identified          |          |                  |                  |                  |
| Consumer risk              | Assessment not finalised |          |                  | X <sup>(2)</sup> | X <sup>(2)</sup> |
| Risk to wild non target    | Risk identified          |          |                  |                  |                  |
| terrestrial vertebrates    | Assessment not finalised |          |                  |                  |                  |
| Risk to wild non target    | Risk identified          |          |                  |                  |                  |
| terrestrial organisms      | Assessment not finalised |          | X <sup>(3)</sup> |                  |                  |
| other than vertebrates     |                          |          |                  |                  |                  |
| Risk to aquatic organisms  | Risk identified          |          |                  |                  |                  |
| Kisk to aquatic organishis | Assessment not finalised |          |                  |                  |                  |
| Groundwater exposure       | Legal parametric value   |          |                  |                  |                  |
| active substance           | breached                 |          |                  |                  |                  |

| Representative use:                 |                                                 | Sugar            | Sugar beet       |                  | Onion/garlic     |  |
|-------------------------------------|-------------------------------------------------|------------------|------------------|------------------|------------------|--|
|                                     |                                                 | 120 g/ha         | 300 g/ha         | 120 g/ha         | 240 g/ha         |  |
|                                     | Assessment not finalised                        |                  |                  |                  |                  |  |
|                                     | Legal parametric value breached                 |                  |                  |                  |                  |  |
| Groundwater exposure<br>metabolites | Parametric value of 10 $\mu g/L^{(a)}$ breached |                  |                  |                  |                  |  |
|                                     | Assessment not finalised                        | X <sup>(1)</sup> | X <sup>(1)</sup> | X <sup>(1)</sup> | X <sup>(1)</sup> |  |
| Comments/Remarks                    |                                                 |                  |                  |                  |                  |  |

The superscript numbers in this table relate to the numbered points indicated within chapter 3.1.5 and 3.1.6. Where there is no superscript number, see level 2 for more explanation.

(a) Value for non-relevant metabolites prescribed in SANCO/221/2000-rev 10-final, European Commission, 2003

## 3.1.8 Area(s) where expert consultation is considered necessary

It is recommended to organise a consultation of experts on the following parts of the assessment report:

| Area(s) where expert consultation is considered necessary                                                                                                                                                                   | Justification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Assessment of metabolite clethodim<br>sulfone. The concerns for genotoxicity<br>and reproductive toxicity, and need for<br>an additional safety factor in the risk<br>assessment need to be discussed at<br>expert meeting. | There are data gaps identified for genotoxicity (follow-up data for positive responses<br>in Ames test and MLA). With regards to general toxicology, the 28-day oral toxicity<br>study conducted with clethodim sulfone indicated effects on male reproductive<br>organs (germ cell degeneration in the testis and cellular debris and decreased sperm<br>in the epididymis) (for details on study results see Vol. 3, B.6.8.1.4/02). No<br>reproductive toxicity study is however available. RMS proposes to apply an<br>additional safety factor of 10 in the risk assessment to fill in the missing data,<br>provided that the metabolite clethodim sulfone is not shown to be genotoxic. The<br>NOAEL in the 28-day oral toxicity study conducted with clethodim sulfone was 4.1<br>mg/kg bw/day and application of a safety factor for inter- and intraspecies differences<br>of 100, and an additional safety factor of 10 would result in an ADI/AOEL of 0.004 |
|                                                                                                                                                                                                                             | mg/kg bw/day. The magnitude of additional safety factor of 10 is considered sufficient for an extrapolation of study duration (subacute to chronic exposure) and the lack of data for reproductive toxicity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Assessment of metabolite clethodim<br>oxazole sulfone. The concern for<br>genotoxicity needs to be discussed at<br>expert meeting.                                                                                          | A data gap is identified for genotoxicity. Follow-up data for lack of evidence for<br>bone marrow exposure in the mouse micronucleus test is needed according to RMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

## 3.1.9 Critical issues on which the Co-RMS did not agree with the assessment by the RMS

Points on which the co-rapporteur Member State did not agree with the assessment by the rapporteur member state. Only the points relevant for the decision-making process are listed.

No disagreements have been noted between the RMS and the Co-RMS (Lithuania).

#### **3.2 PROPOSED DECISION**

The RMS cannot conclude at this stage on approval of Clethodim under Regulation (EC) No 1107/2009. The proposal of a decision by the RMS is pending results from additional data addressing i) the toxicological relevance assessment of the metabolites clethodim imine sulfone, clethodim 5-OH sulfone, clethodim oxazole sulfone, clethodim sulfone, DME sulfoxide acid (M17), deoxy-M17R, M18R/M19R, M14R/M15R, DME sulfone acid (M18R) and ii) the risk assessment to groundwater and consumers, for at least one representative use.

It is considered that the following is specified in Part A of the Commission Implementing Regulation for the approval of the active substance:

N/A.

It is considered that the following be specified in Part B of the Commission Implementing Regulation as areas requiring particular attention from Member States when evaluating applications for product authorisation(s):

Risk mitigation for terrestrial non-target higher plants.

Potential contamination of groundwater by metabolites of clethodim, when the active substance is applied in regions with vulnerable soil and/or with vulnerable climatic conditions.

It is proposed that the Member States concerned shall request the submission of confirmatory information:

(a) where new data requirements are established during the evaluation process, or

(b) as a result of new scientific and technical knowledge, or

(c) to increase confidence in the decision.

# **3.3** RATIONAL FOR THE CONDITIONS AND RESTRICTIONS TO BE ASSOCIATED WITH ANY APPROVAL OR AUTHORISATION(S), AS APPROPRIATE

#### 3.3.1 Particular conditions proposed to be taken into account to manage the risks identified

| Proposed condition/risk mitigation measure                              | Relevance in relation to representative use(s) |
|-------------------------------------------------------------------------|------------------------------------------------|
| Drift mitigation measures are needed to protect terrestrial plants (see | All representative uses                        |
| Vol 1, 2.9.9.5)                                                         |                                                |

#### APPENDICES

# APPENDIX 1 GUIDANCE DOCUMENTS USED IN THIS ASSESSMENT

#### <u>General</u>

SANCO/2012/11251 rev. 5 [Guidance Document on the renewal of approval of active substances to be assessed in compliance with Regulation (EU) No 844/2012 (the Renewal Regulation)]

EFSA (European Food Safety Authority), 2019. Administrative guidance on submission of dossiers and assessment reports for the peer-review of pesticide active substances, EFSA supporting publication 2019:EN-1612. 49 pp. doi:10.2903/sp.efsa.2019.EN-1612

#### Section Identity, Physical chemical properties and Analytical methods

Section Identity

None.

Section Physical chemical properties

Manual on development and used of FAO and WHO specifications for pesticides, First Edition – third revision-March 2016

Guidance on the application of the CLP Criteria, version 5.0, July 2017

Section Analytical methods

Technical Active Substance and Plant protection products: Guidance for generating and reporting methods of analysis in support of pre- and post-registration data requirements for Annex (Section 4) of Regulation (EU) No 283/2013 and Annex (Section 5) of Regulation (EU) No 284/2013., Guidance document SANCO/3030/99 rev.5

Technical Guideline on the Evaluation of Extraction Efficiency of Residue Analytical Methods, SANTE 2017/10632 Rev. 3

Guidance document on pesticide residue analytical methods, SANCO/825/00 rev. 8.1

Residues: Guidance for generating and reporting methods of analysis in support of pre-registration data requirements for Annex II (part A, Section 4) and Annex III (part A, Section 5) of Directive 91/414, SANCO/3029/99 rev.4

#### Section Data on application and efficacy

None.

#### Section Toxicology

ECHA (European Chemicals Agency), 2017. Guidance on the Application of the CLP Criteria; Guidance to Regulation (EC) No 1272/2008 on classification, labelling and packaging (CLP) of substances and mixtures. Version 5.0, July 2017. Reference: ECHA-17-G-21-EN; ISBN: 978-92-9020-050-5

ECHA and EFSA (European Chemicals Agency and European Food Safety Authority), with the technical support of the Joint Research Centre (JRC), 2018. Guidance for the identification of endocrine disruptors in the context of Regulations (EU) No 528/2012 and (EC) No 1107/2009. EFSA Journal 2018;16(6):5311, 135 pp.

EFSA (European Food Safety Authority), 2011. Submission of scientific peer-reviewed open literature for the approval of pesticide active substances under Regulation (EC) No 1107/2009. EFSA Journal 2011;9(2):2092, 49 pp.

EFSA (European Food Safety Authority), 2012, Guidance on selected default values to be used by the EFSA Scientific Committee, Scientific Panels and Units in the absence of actual measured data. EFSA Journal 2012;10(3):2579

EFSA (European Food Safety Authority), 2014c. Guidance on the assessment of exposure of operators, workers, residents and bystanders in risk assessment for plant protection products. EFSA Journal 2014;12(10):3874, 55pp.

EFSA (European Food Safety Authority), 2017, Guidance on dermal absorption. EFSA Journal 2017;15(6):4873.

European Commission, 2012. Guidance document on the assessment of the equivalence of technical materials of substances regulated under Regulation (EC) No 1107/2009. SANCO/10597/2003-rev. 10.1, 13 July 2012.

SANCO/221/2000 - rev.11, Guidance Document on the Assessment of the Relevance of Metabolites in Groundwater of Substances regulated under Regulation (EC) No 1107/2009.

#### Section Residues and consumer risk assessment

EFSA (European Food Safety Authority), 2016. Guidance on the establishment of the residue definition for dietary risk assessment. EFSA Journal 2016;14(12):4549

EFSA (European Food Safety Authority), 2017. Pesticides MRL guidelines animal model 2017.

European Commission, 2019. Technical guidelines on data requirements for setting maximum residue levels, comparability of residue trials and extrapolation of residue data on products from plant and animal origin. SANTE/2019/12752.

OECD (Organisation for Economic Co-operation and Development), 2009. Guidance document on overview of residue chemistry studies. ENV/JM/MONO(2009)31, 28 July 2009.

OECD (Organisation for Economic Co-operation and Development), 2020. OECD MRL calculator: spreadsheet for single data set and spreadsheet for multiple data set, 23 April 2020. In: Agricultural pesticides and biocides. Available online: www.oecd.org

JMPR (Joint Meeting on Pesticide Residues), 2004. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assessment Group on Pesticide Residues, Rome, Italy, 20–29 September 2004, 383 pp.

JMPR (Joint Meeting on Pesticide Residues), 2007. Report of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Core Assessment Group on Pesticide Residues, Geneva, Switzerland, 18–27 September 2007, 164 pp.

#### Section Fate and behaviour in environment

European Commission (2014) - Assessing Potential for Movement of Active Substances and their Metabolites to Ground Water in the EU" Report of the FOCUS Ground Water Work Group, EC Document Reference Sanco/13144/2010 version 3, 613 pp.

EFSA (European Food Safety Authority), 2014. EFSA Guidance Document for evaluating laboratory and field dissipation studies to obtain DegT50 values of active substances of plant protection products and transformation products of these active substances in soil. EFSA Journal 2014;12(5):3662, 37 pp., doi:10.2903/j.efsa.2014.3662

FOCUS (1997) - Soil persistence models and EU Registration - The Final Report of the Soil Modelling Workgroup of FOCUS (Forum for the Co-ordination of Pesticide Fate Models and their Use) – 29 February 1997.

FOCUS (2001) - FOCUS Surface Water Scenarios in the EU Evaluation Process under 91/414/EEC. Report of the FOCUS Working Group on Surface Water Scenarios, EC Document Reference SANCO/4802/2001-rev.1. 221 pp.

FOCUS (2006) - Guidance document on estimating persistence and degradation kinetics from environmental fate studies on pesticides in EU registration. Report of the FOCUS Work Group on Degradation Kinetics, EC Document Reference Sanco/10058/2005, version 2.0, 434 pp.

FOCUS (2008) - Pesticides in Air: Considerations for Exposure Assessment. Report of the FOCUS Working Group on Pesticides in Air, EC Document Reference SANCO/10553/2006 Rev 2 June 2008. 327 pp.

FOCUS (2014a) - Generic guidance for Tier 1 FOCUS groundwater assessments. Version 2.3, June 2021.

FOCUS (2014b) - Generic Guidance for Estimating Persistence and Degradation Kinetics from Environmental Fate Studies on Pesticides in EU Registration, version 1.

FOCUS (2015) - Generic guidance for FOCUS surface water Scenarios, Version: 1.4, Date: May 2015

SANCO (2003) Guidance document on the assessment of the relevance of metabolites in groundwater of substances regulated under Council directive 91/414/EEC. Sanco/221/2000-rev.10-final, 25 February 2003.

#### Section Ecotoxicology

EFSA (European Food Safety Authority), 2009. Guidance on the Risk Assessment for Birds and Mammals: EFSA Journal 2009; 7(12):1438

EFSA (European Food Safety Authority), 2011. Guidance Submission of scientific peer-reviewed open literature for the approval of pesticide active substances under Regulation (EC) No 1107/2009: EFSA Journal 2011;9(2):2092 and the corresponding Appendix from 2019.

EFSA (European Food Safety Authority), 2013. EFSA Guidance Document on the risk assessment of plant protection products on bees (Apis mellifera, Bombus spp. and solitary bees). EFSA Journal 2013;11(7):3295, 268 pp., doi:10.2903/j.efsa.2013.3295

EFSA (European Food Safety Authority), 2013. Guidance on tiered risk assessment for plant protection products for aquatic organisms in edge-of-field surface waters: EFSA Journal 2013;11(7):3290

Guidance document on regulatory testing and risk assessment procedures for plant protection products with nontarget arthropods ESCORT II (2000)

Guidance Document on Terrestrial Ecotoxicology Under Council Directive 91/414/EEC: SANCO/10329/2002

ECHA and EFSA (European Chemicals Agency and European Food Safety Authority), 2018. Guidance for the identification of endocrine disruptors in the context of Regulations (EU) No 528/2012 and (EC) No 1107/2009 (EFSA/ECHA, 2018). EFSA Journal, Vol 16, Issue 6, June 2018, e05311 https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2018.5311.

# APPENDIX 2 REFERENCE LIST

## Section identity, physical chemical and analytical methods

None.

Section data on application and efficacy

None.

Section toxicology

None.

Section residue and consumer risk assessment

None.

## Section fate and behaviour in environment

EFSA (European Food Safety Authority), 2018. Conclusion on the peer review of the pesticide risk assessment of the active substance 1,3-dichloropropene. EFSA Journal 2018;16(11):5464, 88 pp., doi:10.2903/j.efsa.2018.5464.

## Section ecotoxicology

None.

# <u>ANNEX</u>

| Annex 1 | Excel file reporting Livestock Overview Dietary Burden                    |
|---------|---------------------------------------------------------------------------|
| Annex 2 | Excel file reporting PRIMo                                                |
| Annex 3 | Excel file reporting the available information relevant for ED assessment |

See separate Excel-files.