

Committee for Risk Assessment

RAC

Annex 1 Background document

to the Opinion proposing harmonised classification and labelling at EU level of

S-metolachlor (ISO); 2-chloro-N-(2-ethyl-6methylphenyl)-N-[(2S)-1-methoxypropan-2yl]acetamide; (R_aS_a)-2-chloro-N-(6-ethyl-o-tolyl) -N-[(1S)-2-methoxy-1-methylethyl]acetamide

[contains 80-100% 2-chloro-*N*-(2-ethyl-6methylphenyl)-*N*-[(2*S*)-1-methoxypropan-2yl]acetamide and 0-20% 2-chloro-*N*-(2-ethyl-6methylphenyl)-*N*-[(2*R*)-1-methoxypropan-2yl]acetamide]

EC Number: -CAS Number: 87392-12-9

CLH-O-0000007145-77-01/F

The background document is a compilation of information considered relevant by the dossier submitter or by RAC for the proposed classification. It includes the proposal of the dossier submitter and the conclusion of RAC. It is based on the official CLH report submitted to consultation. RAC has not changed the text of this CLH report but inserted text which is specifically marked as 'RAC evaluation'. Only the RAC text reflects the view of RAC.

Adopted 2 June 2022

CLH report

Proposal for Harmonised Classification and Labelling

Based on Regulation (EC) No 1272/2008 (CLP Regulation), Annex VI, Part 2

International Chemical Identification:

S-metolachlor (ISO);

2-chloro-N-(2-ethyl-6-methylphenyl)-N-[(2S)-1methoxypropan-2-yl]acetamide; (R_aS_a)-2-chloro-N-(6ethyl-o-tolyl)-N-[(1S)-2-methoxy-1-methylethyl]acetamide

[contains 80-100 % 2-chloro-N-(2-ethyl-6-methylphenyl)-N-[(2S)-1-methoxypropan-2-yl]acetamide and 0-20 % 2chloro-N-(2-ethyl-6-methylphenyl)-N-[(2R)-1methoxypropan-2-yl]acetamide]

EC Number:

CAS Number: 87392-12-9

Index Number: 607-432-00-4

Contact details for dossier submitter:

BAuA

Federal Institute for Occupational Safety and Health Federal Office for Chemicals Friedrich-Henkel-Weg 1-25 44149 Dortmund, Germany

Version number: 3.0

Date: May 2021

CONTENTS

1	IDEN	TITY OF THE SUBSTANCE	1
	1.1 NA 1.2 CC	AME AND OTHER IDENTIFIERS OF THE SUBSTANCE DMPOSITION OF THE SUBSTANCE	
2	PRO	POSED HARMONISED CLASSIFICATION AND LABELLING	4
	2.1 Pr	OPOSED HARMONISED CLASSIFICATION AND LABELLING ACCORDING TO THE CLP CRITERIA	4
3	HIST	ORY OF THE PREVIOUS CLASSIFICATION AND LABELLING	6
4			
4	JUS1	IFICATION THAT ACTION IS NEEDED AT COMMUNITY LEVEL	/
5	IDEN	VTIFIED USES	7
6	DAT	A SOURCES	7
7	PHY	SICOCHEMICAL PROPERTIES	7
8	EVA	LUATION OF PHYSICAL HAZARDS	10
9	тох	ICOKINETICS (ABSORPTION, METABOLISM, DISTRIBUTION AND ELIMINATION)	
	9.1 Sh	IORT SUMMARY AND OVERALL RELEVANCE OF THE PROVIDED TOXICOKINETIC INFORMATION ON THE	PROPOSED
	CLASSIFI	CATION(S)	11
1() EVA	LUATION OF HEALTH HAZARDS	13
	10.1	ACUTE TOXICITY - ORAL ROUTE	14
	10.2	ACUTE TOXICITY - DERMAL ROUTE	14
	10.3	ACUTE TOXICITY - INHALATION ROUTE	14
	10.4	SKIN CORROSION/IRRITATION	14
	10.5	SERIOUS EYE DAMAGE/EYE IRRITATION	
	10.6	RESPIRATORY SENSITISATION	14
	10.7	SKIN SENSITISATION	15 15
	10.8	Short summary and overall relevance of the provided information on bacterial somatic and	13 1 aerm cell
	mutas	genicity.	
	10.8.2	2 Comparison with the CLP criteria	
	10.8.3	3 Conclusion on classification and labelling for genotoxicity / germ cell mutagenicity	
	10.9	CARCINOGENICITY	25
	10.9.1	1 Short summary and overall relevance of the provided information on carcinogenicity	
	10.9.2	2 Comparison with the CLP criteria	63
	10.9.3	Conclusion on classification and labelling for carcinogenicity	
	10.10	KEPKODUCTIVE TOXICITY	
	10.10	 Adverse effects on sexual function and fernitry Short summary and overall relevance of the provided information on adverse effects on sexual 	al function
	and fe	ertility 85	<i>m junemen</i>
	10.ľ0	.3 Comparison with the CLP criteria	87
	10.10	Adverse effects on development	88
	10.10	9.5 Short summary and overall relevance of the provided information on adverse effects on de 88	velopment
	10.10	0.6 Comparison with the CLP criteria	
	10.10	1.7 Adverse effects on or via lactation	
	10.10	Conclusion on classification and labelling for reproductive toxicity	
	10.11	SPECIFIC TARGET ORGAN TOXICITY-SINGLE EXPOSURE	
	10.12	SPECIFIC TARGET ORGAN TOXICITY-REPEATED EXPOSURE	
	10.12	.1 Snort summary and overall relevance of the provided information on specific target organ	toxicity –
	10 12	2 Comparison with the CLP criteria	100 120

10.12.3	Conclusion on classification and labelling for STOT RE	121
11 EVALUA	FION OF ENVIRONMENTAL HAZARDS	125
11.1 Rapi	D DEGRADABILITY OF ORGANIC SUBSTANCES	125
11.1.1	Ready biodegradability	131
11.1.2	BOD ⁵ /COD	132
11.1.3	Hydrolysis	132
11.1.4	Other convincing scientific evidence	133
11.1.4.1	Field investigations and monitoring data (if relevant for C&L)	133
11.1.4.2	Inherent and enhanced ready biodegradability tests	133
11.1.4.3	Water, water-sediment and soil degradation data (including simulation studies)	133
11.1.4.4	Photochemical degradation	148
11.2 ENV	RONMENTAL TRANSFORMATION OF METALS OR INORGANIC METALS COMPOUNDS	151
11.3 ENV	RONMENTAL FATE AND OTHER RELEVANT INFORMATION	151
11.3.1	Adsorption and desorption in soil	151
11.3.2	Fate and behaviour in air	152
11.4 BIOA	CCUMULATION	152
11.4.1	Measured bioaccumulation test data	152
11.5 ACU	TE AQUATIC HAZARD	154
11.5.1	Acute (short-term) toxicity to fish	158
11.5.2	Acute (short-term) toxicity to aquatic invertebrates	171
11.5.3	Acute (short-term) toxicity to algae or other aquatic plants	181
11.5.4	Acute (short-term) toxicity to other aquatic organisms	201
11.6 LON	G-TERM AQUATIC HAZARD	201
11.6.1	Chronic toxicity to fish	205
11.6.2	Chronic toxicity to aquatic invertebrates	214
11.6.3	Chronic toxicity to algae or other aquatic plants	221
11.6.4	Chronic toxicity to other aquatic organisms	221
11.7 Сом	PARISON WITH THE CLP CRITERIA	221
11.7.1	Acute aquatic hazard	221
11.7.2	Long-term aquatic hazard (including bioaccumulation potential and degradation)	221
11.8 CON	CLUSION ON CLASSIFICATION AND LABELLING FOR ENVIRONMENTAL HAZARDS	222
12 EVALUA	TION OF ADDITIONAL HAZARDS	229
12.1 HAZ	ARDOUS TO THE OZONE LAYER	229
13 REFEREN	NCES	230

1 IDENTITY OF THE SUBSTANCE

1.1 Name and other identifiers of the substance

Table 1: Substance identity and information related to molecular and structural formula of the substance

Name(s) in the IUPAC nomenclature or other international chemical name(s)	Mixture of (aRS, 1 S)-2-chloro-N-(6-ethyl-o-tolyl)-N-(2- methoxy-1-methylethyl) acetamide (80-100 %) and		
	(aRS, 1 R)-2-chloro-N-(6-ethyl-o-tolyl)-N-(2-methoxy-1- methylethyl) acetamide (20-0 %)		
Other names (usual name, trade name, abbreviation)	S-metolachlor		
ISO common name (if available and appropriate)	S-metolachlor		
EC number (if available and appropriate)	-		
EC name (if available and appropriate)	-		
CAS number (if available)	87392-12-9 (S-isomer), 178961-20-1 (R-isomer)		
Other identity code (if available)	CIPAC number: 607		
Molecular formula	C ₁₅ H ₂₂ ClNO ₂		
Structural formula	S-metolachlor is a mixture of the 1S and 1 R isomers each of which is a racemic mixture of rotamers as demonstrated by the structural formulas: $\int_{CH_{a}} \begin{pmatrix} C H_{a} \\ C H_{a} \end{pmatrix} \stackrel{C H_{a}}{\underset{a \mathbb{S}, 1 \mathbb{S}}{\overset{C H_{a}}{\underset{a \mathbb{S}, 1 \mathbb{R}}{\overset{C R}{\underset{a \mathbb{S}, 1 \mathbb{R}}}{\overset{C R}{\underset{a \mathbb{S}, 1 \mathbb{R}}{\overset{C R}{\underset{a \mathbb{S}, 1 \mathbb{R}}{\overset{C R}{\underset{a \mathbb{S}, 1 \mathbb{R}}{\overset{C R}{\underset{a \mathbb{S}, 1 \mathbb{R}}{\overset{C R}{\underset{a \mathbb{S}, 1 \mathbb{S}}{\overset{C R}{\underset{C R}{\overset{C R}{\underset{A \mathbb{S}, 1 \mathbb{S}}{\overset{C R}{\underset{A \mathbb{S}, 1 \mathbb{S}}}{\overset{C R}{\underset{A \mathbb{S}, 1 \mathbb{S}}{\overset{C R}{\underset{A \mathbb{S}, 1 \mathbb{S}}{\overset{R \mathbb{S}, 1 \mathbb{S}, 1 \mathbb{S}}}}{\overset{R \mathbb{S}, 1 \mathbb{S}}{\overset{R \mathbb{S}, 1 $		
Molecular weight or molecular weight range	283.8 g/mol		
Information on optical activity and typical ratio of (stereo) isomers (if applicable and appropriate)	S-metolachlor is a mixture of the 1 S (80 – 100 %) and 1 R (20 – 0 %) isomers each of which is a racemic mixture of rotamers		
Degree of purity (%) (if relevant for the entry in Annex VI)	Protamers96 % or 960 g/kgTechnical S-metolachlor consists of two isomers, CGA77102 and CGA 77101. The content of the two isomers in the technical substance meets the following specification limits: minimum 840 g/kg of S-isomer (CGA 77102) maximum 130 g/kg of R-isomer (CGA 77101)		

1.2 Composition of the substance

Table 2: Constituents (non-confidential information)

Constituent (Name and numerical identifier)	Concentration range (% w/w minimum and maximum in multi- constituent substances)	Current CLH in Annex VI Table 3.1 (CLP)	Current self- classification and labelling (CLP)
See table 1			

Table 3: Impurities (non-confidential information) if relevant for the classification of the substance

Impurity (Name and numerical identifier)	Concentration range (% w/w minimum and maximum)	Current CLH in Annex VI Table 3.1 (CLP)	Current self- classification and labelling (CLP)	The impurity contributes to the classification and labelling
There are no relevant				
impurities in the				
technical material.				

Table 4: Additives (non-confidential information) if relevant for the classification of the substance

Additive (Name and numerical identifier)	Function	Concentration range (% w/w minimum and	Current CLH in Annex VI Table 3.1 (CLP)	Current self- classification and labelling	The additive contributes to the classification
identifier)		minimum and maximum)		(CLP)	and labelling
-					

Table 5: Test substances (non-confidential information) (this table is optional)

Identification of test substance	Purity	Impurities and additives (identity, %, classification if available)	Other information	The study(ies) in which the test substance is used
-				

2 PROPOSED HARMONISED CLASSIFICATION AND LABELLING

2.1 Proposed harmonised classification and labelling according to the CLP criteria

Table 6:

					Classificat	tion		Labelling			
	Index No	International Chemical Identification	EC No	CAS No	Hazard Class and Category Code(s)	Hazard statement Code(s)	Pictogram, Signal Word Code(s)	Hazard statement Code(s)	Suppl. Hazard statement Code(s)	Specific Conc. Limits, M-factors	Notes
Current		S-metolachlor (ISO); 2-			Skin Sens. 1	H317	GHS09	H317			
entry		cnioro-in-(2-etnyi-6- methylphenyl)-N-[(2S)-			Aquatic Acute 1 Aquatic Chronic 1	H400 H410	Wng	п410			
Dossier submitters proposal	607-432- 00-4	1-methoxypropan-2- yl]acetamide; (RaSa)-2- chloro-N-(6-ethyl-o- tolyl)-N-[(1S)-2- methoxy-1- methylethyl]acetamide [contains 80-100 % 2- chloro-N-(2-ethyl-6-	-	87392-12-9	Add STOT RE 2 Repr. 2 Carc. 2 Retain Skin Sens. 1 Aquatic Acute 1 Aquatic Chronic 1	Add H373 (skin) H361d H351 Retain H317 H400 H410	Retain GHS09 GHS07 Wng	Add H373 (skin) H361d H351 Retain H317 H410		Add M = 10 M = 10	
Resulting Annex VI entry if agreed by RAC and COM		methylphenyl)-N-[(2S)- 1-methoxypropan-2- yl]acetamide and 0-20 % 2-chloro-N-(2-ethyl-6- methylphenyl)-N-[(2R)- 1-methoxypropan-2- yl]acetamide]			Skin Sens. 1 STOT RE 2 Repr. 2 Carc. 2 Aquatic Acute 1 Aquatic Chronic 1	H317 H373 (skin) H361d H351 H400 H410	GHS09 GHS07 Wng	H317 H373 (skin) H361d H351 H400 H410			

Hazard class	Reason for no classification	Within the scope of public consultation		
Explosives	data conclusive but not sufficient for classification			
Flammable gases (including chemically unstable gases)				
Oxidising gases	Hazard class not applicable			
Gases under pressure				
Flammable liquids	data conclusive but not sufficient for classification			
Flammable solids	Hazard class not applicable			
Self-reactive substances	data conclusive but not sufficient for classification			
Pyrophoric liquids	Hazard class not addressed in this proposal			
Pyrophoric solids	Hazard class not applicable			
Self-heating substances	data conclusive but not sufficient for classification			
Substances which in contact with water emit flammable gases	Hazard class not applicable	No		
Oxidising liquids	Hazard class not addressed in this proposal]		
Oxidising solids	Hazard class not applicable			
Organic peroxides				
Corrosive to metals				
Acute toxicity via oral route				
Acute toxicity via dermal route				
Acute toxicity via inhalation route	Hazard class not addressed in this proposal			
Skin corrosion/irritation				
Serious eye damage/eye irritation				
Respiratory sensitisation				
Skin sensitisation				
Germ cell mutagenicity	data conclusive but not sufficient for classification			
Carcinogenicity	Harmonised classification proposed	Yes		
Reproductive toxicity	Harmonised classification proposed			
Specific target organ toxicity- single exposure	Hazard class not assessed in this dossier	No		
Specific target organ toxicity- repeated exposure	Harmonised classification proposed	Yes		
Aspiration hazard	Hazard class not assessed in this dossier	No		
Hazardous to the aquatic environment	Harmonised classification proposed	Yes		
Hazardous to the ozone layer Hazard class not assessed in this dossier		No		

Table 7: Reason for not proposing harmonised classification and status under public consultation

3 HISTORY OF THE PREVIOUS CLASSIFICATION AND LABELLING

In the CLP-Regulation (EC) No 1272/2008 S-metolachlor was introduced as Skin Sens.1, H371, Aquatic Acute 1, H400 and Aquatic Chronic, H410, on proposal by Belgium. Reproductive toxicity was addressed, but no classification was proposed. No further details are known.

RAC general comment

S-metolachlor is a mixture of the 1S (80-100%) and 1R (20-0%) isomers, each of which is a racemic mixture of rotamers. Metolachlor is a mixture of the S and R stereoisomers, and it contains the two isomers in equal amount (1:1 ratio). The S-isomer, which is the main isomer of s-metolachlor is considered more active as a herbicide than the R-isomer. For carcinogenicity and adverse effects on sexual function and fertility, studies were only available with metolachlor in the CLH dossier.

Figure: Structural isomers of s-metolachlor and metolachlor

S-isomers R-isomers		
matalashlas	S-isomers	R-isomers
S-metonachior	S-metolachlor	

Figure: Isomer composition of metolachlor and s-metolachlor

In the available toxicokinetic studies, a similar oral absorption and metabolic pathway was observed for the racemic mixtures and the S-enantiomer. In addition, some toxicological data were available for both metolachlor and s-metolachlor. Metolachlor, which had a similar acute toxicity profile. The substances were not irritant and were both skin sensitisers. The same target organs (liver, kidney) and similar NOAEL/LOAEL were observed in the short-term toxicity studies. A similar toxicological profile was also observed in the developmental toxicity studies, whose results were comparable between metolachlor and s-metolachlor. Based on this, RAC agrees with the dossier submitter (DS) to consider the read across between the two compounds to be fully acceptable.

4 JUSTIFICATION THAT ACTION IS NEEDED AT COMMUNITY LEVEL

[A.] There is no requirement for justification that action is needed at Community level.

S-metolachlor is an active substance in the meaning of Directive 91/414/EEC (repealed by the Regulation EC 1107/2009).

5 IDENTIFIED USES

S-metolachlor is an herbicide in maize and sunflower.

6 DATA SOURCES

Main data source for this CLH dossier are Volumes 1 and 3 of the Renewal Assessment Report (RAR) which was prepared for the pesticides procedure. Volume 3 is attached to the CLH dossier as a confidential annex. All toxicological studies included in this dossier were evaluated and assessed by the dossier submitter.

7 PHYSICOCHEMICAL PROPERTIES

Table 8: Summary of physicochemical properties

Property	Value	Reference	Comment (e.g. measured or estimated)
Physical state at 20 °C and 101,3 kPa	at 25 °C : clear extremely pale-yellow liquid	Das (1995)	Visual assessment
Melting/freezing point	freezing temp. (glass transition temp) = - 61.1 °C	Geoffroy (1995)	Measured EC A 1 (DSC)
Boiling point	boiling temp. = approx. 334 °C (could not be properly determined due to thermal decomposition at a temperature lower than that of the boiling point)	Das (1995)	measured EC A 2 (Siwoloboff-method with photocell detection)
Relative density	density at 20 °C = 1117 kg/m ³	Das (1995)	Measured EC A 3 (oscillating density meter)
Vapour pressure	vapour pressure at 25 °C = 3.7 x 10 ⁻³ Pa (extrapolated) Measurement between 40 °C am 90 °C	Widmer (1995)	Measured EC A 4 (automized gas saturation method with online GC-detection)
Surface tension	54.3 mN/m - 54.5 mN/m (90 % saturated aqueous solution; 22 °C) The substance is considered surface active.	O'Connor (2013)	Measured OECD 115 EC A 5
Water solubility	solubility at 25 °C in water (pH 7.3) = 480 mg/L	Stulz (1995)	Measured EC A 6 (flask method + HPLC- analysis)

Property	Value	Reference	Comment (e.g. measured or estimated)
	The a.s. has no dissociation constant in an accessible pH range (see also B.2.8), which means the pH has no effect on the water solubility of the compound in the pH range 4 - 10.		
Partition coefficient n- octanol/water	at 25 °C : log $P_{ow} = 3.05 \pm 0.02$ (pH of aqueous phase = 7)	Stulz (1995)	Measured EC A 8 (shake-flask method + HPLC analysis)
	flash point (1013 mbar) = 190 °C	Schürch (1995)	Measured EC A 9 DIN 51758
Flash point	Statement on study for flash point (Schürch (1995)) with respect to data requirements of Reg. 1272/2008: EC Test A.9 does not define a method for flash point measurement, but merely lists acceptable national and international standards (e.g. ASTM, BS, DIN, ISO, NM). This is also the case in Section 32 of the UN Manual of Tests and Criteria, which covers the testing of flammable liquids as required for UN transport and UN GHS classification. For S- metolachlor, the flash point was originally determined according to the German DIN 51758 standard for closed-cup Pensky-Martens flash point testing. The original German standard has since been withdrawn but now exists in the form of DIN ISO 2719, which is the same as ISO 2719, the international standard for Pensky-Martens closed-cup testing. ISO 2719 is listed as an acceptable method for flash point in both EC Test A.9 and the UN MoTC. Therefore the original flash point is still valid and meets Reg (EU) 1272/2008 requirements.	Document M (2017)	Statement
Flammability	Not applicable (a.s. is a liquid with flash point > 55 °C)	DAR	Statement
Explosive properties	 no thermal sensitivity (effect of a flame) no mechanical sensitivity (shock) friction testing method is not applicable for liquids => S-metolachlor is not 	Schürch (1995)	Measured EC A 14

Property	Value	Reference	Comment (e.g. measured or estimated)		
	considered an explosive				
	An examination of the structures of S-metolachlor indicates that there are no bond groupings associated with explosive properties. Conclusions: (i) Based on this assessment, the substance is not an explosive. (ii) An experimental determination of the explosive properties, in accordance with UN Test Series 2, is therefore considered unnecessary and has not been carried out on this substance.	Document M (2017)	Statement		
	auto-ignition temperature = 430 °C	Schürch (1995)	Measured EC A 15 DIN 51794		
Self-ignition temperature	Statement on study for self- heating (Schürch (1995)) with respect to data requirements of Reg. 1272/2008: EC Test A.15 does not define a method for AIT measurement, but merely lists acceptable national and international standards (e.g. BS, DIN, IEC, NM). For S- metolachlor, the AIT was originally determined according to the DIN 51794 standard, which is still a valid national standard today. The apparatus defined in DIN 51794 is also covered by IEC 60079-20-1 Section 7, "Method of Test for Auto- Ignition Temperature", which is a currently accepted international standard for AIT measurement. Therefore, the original AIT measurement is still valid. (Note: neither the UN transport recommendations nor the UN GHS address auto-ignition temperatures).	Document M (2017)	Statement		
Oxidising properties	S-metolachlor technical is not an oxidising substance. <u>Statement on study for</u> oxidising properties (Jackson (2013)) with respect to data requirements of Reg. <u>1272/2008:</u> The original test for oxidizing properties was carried out in accordance with EC Test	Jackson (2013) Document M (2017)	Measured EC A 21 Statement		

Property	Value	Reference	Comment (e.g. measured or estimated)
	A.21, which is identical to UN Test O.2 for substances testing negative, as was the case here. The result reported in the study is therefore considered to be still valid for use when classifying the material for UN transport or in accordance with the UN GHS, and therefore the requirements of Reg (EU) 1272/2008.		
Stability in organic solvents and identity of relevant degradation products	solubility at 25 °C in n-hexane : completely miscible toluene : completely miscible dichloromethane : completely miscible methanol : completely miscible acetone : completely miscible acetone : completely miscible ethyl acetate: completely miscible tested in the range from 5 % to 95 % (v/v)	Stulz (1995)	Measured SOP 209/5 (essentially an adaptation of CIPAC MT 157.3)
Dissociation constant	<pre>consideration of structural formula : no dissociation expected within pH-range 2-12 experimental confirmation : UV/VIS-absorption spectra (210-400 nm) recorded in neutral, acidic and basic solution are identical => no dissociation constant (pKa) in an accessible pH-range</pre>	Stulz (1995)	Measured OECD 112 (UV/VIS-absorption spectra)

8 EVALUATION OF PHYSICAL HAZARDS

This endpoint is not addressed in this CLH report and is outside the scope of the public consultation.

9 TOXICOKINETICS (ABSORPTION, METABOLISM, DISTRIBUTION AND ELIMINATION)

9.1 Short summary and overall relevance of the provided toxicokinetic information on the proposed classification(s)

Summary of the relevance of the toxicokinetic studies for the classification proposal:

This summary is taken from Volume 1 (chapter 2.6.1) of the RAR, which was prepared for the renewal of the approval of the active substance. In case more detailed information on the reported effects is needed, it is referred to Volume 3, chapter B.6 of the RAR.

The oral absorption of metolachlor and S-metolachlor was very efficient, and amounted to respectively 92 % and 85 %. Total absorption seemed independent of sex, dose level, administration route or pre-treatment.

After absorption, the compound was found strongly associated to red blood cells (RBC) in the rat, and high levels were maintained up to 11 days. The calculated depletion halftime was about 26.5 days.

Apart from RBC, the compound was distributed in well-perfused organs like heart, lung, spleen, kidney and liver, and was found in highest concentrations 8 h post-dose. Pre-treatment at low dose did not influence tissue residue levels at d7, and decreased slightly (1.6-fold) the residues in RBC, when compared to single low-dose administration. In contrast, pre-treatment at high dose lowered consistently and significantly (about 50 %) residue concentrations in tissues and RBC. This reflected a partial saturation of RBC binding sites. High-dose acute administration (200-fold the low-dose level) resulted in approximately 150-300-fold increase of residues in both RBC and tissues.

Whole-body autoradiography at d8 revealed labelling in GI-tract, kidney, liver and lung, and to some extent in bone marrow. In the absence of high radioactivity measurements in the sum of all tissues at that sampling time (about 1.6-3.5 % of administered dose), it was concluded that no accumulation occurred.

For both metolachlor and S-metolachlor, the metabolite pattern and amount was independent of sex, pretreatment or dose level. Among the 32 identified metabolites of the racemic mixture, 8 were considered as major (occurrence of > 5 % in any fraction). The three identified environmental metabolites (recovered amounts in soil/water 5-10 % of dose) accounted for maximally 0.3 % in the rat excreta. Not more than 3 % of the unchanged compound was recovered in the excreta at d7.

From the analysis of metabolite patterns in a bridging study, it was concluded that metabolic pathways of the racemic mixture and the S-enantiomer were similar. The proposed metabolic pathway for metolachlor is shown in Figure 1.

Excretion occurred moderately rapid and was completed by 72 h post-dose. The major excretion route was biliary (about 80 % at d2), and ultimately fecal, although the renal excretion seemed relatively more important in females when compared to males. Pre-treatment or dose level were without influence on the recovered % of administered doses in the excreta. The amounts of compound-related radioactivity in expired air were low. A comparative in vitro metabolism study was performed using microsomes from rats and humans. S-metolachlor was extensively metabolized in the hepatic microsomes of both species. The quantity of metabolites was comparable, even though minor differences occurred. The metabolite M4 was evident in human microsomes only. It was not possible to conclude on its relevance as no information on its molecular structure or toxicological properties are given. Also, no information about the identity and toxicological profile of the metabolite M9, which was the major metabolite in humans but not in rats, is available. No data to compare metabolism in other key species (e.g. mice, rabbits and dogs) is available.

It is noted that the submitted study reports usually describe separation of metabolites with thin layer chromatography (TLC), which can be a quite insensitive method for detection. Additionally, in several studies, the metabolites were only separated but not identified. In none of the studies, chiral separation methods were used; hence, no firm conclusions can be drawn on possible enantiomeric preference of ADME.

Figure 1: Proposed metabolic pathways of Metolachlor in rats

10 EVALUATION OF HEALTH HAZARDS

S-metolachlor is a mixture of the 1S and 1R isomers each of which is a racemic mixture of rotamers as demonstrated in the structural formulas in Figures 2 and 3.

Figure 2: Structural isomers of S-metolachlor and metolachlor

The isomers in the technical substance S-metolachlor meet the following specification limits: minimum 840 g/kg of S-isomer (CGA 77102), maximum 130 g/kg of R-isomer (CGA 77101). Metolachlor is also a mixture of the S- and R- stereoisomers; it contains the two isomers in equal amounts, i.e.

Metolachlor is also a mixture of the S- and R- stereoisomers; it contains the two isomers in equal amounts, i.e. in a 50:50 ratio.

Figure 3: Isomer composition of metolachlor and S-metolachlor

Toxikokinetic bridging studies revealed similar oral absorption and similar metabolic pathways for the racemic mixtures and the S-enantiomer. S-metolachlor as well as metolachlor is of low acute toxicity and the LD_{50} is greater than 2000 mg/kg bw for oral and dermal exposure and above the maximal applied concentrations of 1.75 mg/L and 2.91 mg/L for inhalative exposure. Both substances are non-irritant and both show skin sensitizing properties. Observed no adverse effect levels in short-term studies (28- and 90-day) in rats were similar for S-metolachlor and metolachlor and liver was the target organ (increase in weight and hypertrophy)

as well as the kidney, where increased weight was observed. For dogs, a 90-day study with S-metolachlor was submitted, along with a 6-month and 1-year study with metolachlor.

Regarding genotoxicity S-metolachlor showed overall negative results regarding all regular end points for genetic damage. Metolachlor showed in vitro inconsistent results (MLA: equivocal, two assays on CA: negative and positive results). In vivo metolachlor was only tested for the endpoint DNA damage and repair and showed negative results. Bone marrow exposure was demonstrated for S-metolachlor in mice, but S-metolachlor could only be detected for a maximum time period of four hours in the plasma of only two (one hour) and one (four hours) out of three tested animals.

Long-term studies were conducted with metolachlor only and a systemic and carcinogenic NOAEL at 15 mg/kg bw/d was derived.

Reproductive toxicity in terms of a multi-generation study was analysed in rats using metolachlor only. Developmental toxicity was analysed in rats and rabbits using S-metolachlor as well as metolachlor. Maternal and developmental NOAELs were similar. Fetal malformations (hydrocephalus) were observed in rabbits upon treatment with S-metolachlor as well as with metolachlor.

Overall, it can be concluded that the toxicological properties S-metolachlor and metolachlor as demonstrated in acute toxicity studies, 28- and 90-day repeated dose studies, genotoxicity studies and developmental toxicity studies are similar and a bridging between S-metolachlor and metolachlor is possible.

This section contains short summaries taken from Vol. 1 (chapter 2.6) of the RAR, which was prepared for the renewal of the approval of the active substance. All studies included in this dossier were evaluated and assessed by the dossier submitter. In case more detailed information on the reported effects is needed, it is referred to Volume 3, chapter B.6 of the RAR.

Acute toxicity

10.1 Acute toxicity - oral route

This endpoint is not addressed in this CLH report and is outside the scope of the public consultation.

10.2 Acute toxicity - dermal route

This endpoint is not addressed in this CLH report and is outside the scope of the public consultation.

10.3 Acute toxicity - inhalation route

This endpoint is not addressed in this CLH report and is outside the scope of the public consultation.

10.4 Skin corrosion/irritation

This endpoint is not addressed in this CLH report and is outside the scope of the public consultation.

10.5 Serious eye damage/eye irritation

This endpoint is not addressed in this CLH report and is outside the scope of the public consultation.

10.6 Respiratory sensitisation

This endpoint is not addressed in this CLH report and is outside the scope of the public consultation.

10.7 Skin sensitisation

This endpoint is not addressed in this CLH report and is outside the scope of the public consultation.

10.8 Genotoxicity / Germ cell mutagenicity

The genotoxicity of S-metolachlor was assessed in *in vitro* studies in bacteria and mammalian cells as well as in *in vivo* studies in somatic cells. The valid *in vitro* mutagenicity/genotoxicity studies are compiled in Table 9 and the valid *in vivo* mutagenicity/genotoxicity studies are given in Table 10. In both tables also results from genotoxicity testing using metolachlor were included.

Method, guideline, deviations if any	Test substance	Relevant information about the study including rationale for dose selection (as applicable)	Observations	Reference
S-metolachlor				
Reverse mutation assay OECD TG 471/1983 GLP	S-metolachlor Batch number: V4673/7 Purity: 95.6 % (S- enantiomeric content: 84 %)	Salmonella typhimurium (TA100, TA1535, TA102, TA 98, TA1537) and E.coli (WP2uvrA) \pm S9 (Aroclor-induced rat liver S9-mix) Solvent: DMSO Study design: plate incorporation Concentrations: 312.5, 625, 1250, 2500, 5000 µg/plate (original experiment, all strains); 78.13, 156.25, 312.50, 625.00, 1250.00 µg/plate (confirmatory experiment, strains TA100, TA1535, TA1537, TA102); 312.5, 625, 1250, 2500, 5000 µg/plate (confirmatory experiment, strains WP2 uvrA, TA98) Preliminary range-finding test (20.6 - 5000 µg/plate; TA100 and E. coli WP2 uvrA), original experiment (312.5 – 5000 µg/plate), confirmatory experiment (78.13 – 5000	+S9: negative -S9: negative Positive controls gave strong increases in revertants Cytotoxicity was seen ≥1250 µg/plate in strains TA100, TA1535, TA1537, TA102 w/o metabolic activation and at 5000µg/plate (TA98), 1250µg/plate (TA102), 2500µg/plate (TA100, TA1535) and 5000µg/plate (TA1537 and WP2 uvra) Non-mutagenic in tested <i>S.</i> <i>typhimurium</i> and <i>E. coli</i> strains	Anonymous (23), 1995c acceptable
Reverse mutation assay OECD TG 471/1997 GLP	S-metolachlor Batch number: SMU3BL1300 1 Purity: 97.1 %	Salmonella typhimurium (TA100, TA1535, TA1537, TA 98) and <i>E.coli</i> (WP2uvrApKM101, WP2pKM101) \pm S9 (phenobarbitol and β - naphthoflavone-induced rat liver S9-mix)	 +S9: negative -S9: negative Positive controls gave strong increases in revertants Precipitation was seen in the overlay agar in the presence of metabolic activation in the test tubes from 2500 μg to 5000 	Sokolowski, 2014 acceptable

 Table 9: Summary table of mutagenicity/genotoxicity tests in vitro

Method, guideline, deviations if any	Test substance	Relevant information about the study including rationale for dose selection (as applicable)	Observations	Reference
Reverse mutation assay OECD TG 471/1997 GLP	S-metolachlor Batch number: CAB7C17042_ FORTIFIED Purity: 96.4 %	Solvent: DMSO Study design: plate incorporation (experiment I), pre-incubation (experiment II) Concentrations: 3, 10, 33, 100, 333, 1000, 2500, 5000 µg/plate Salmonella typhimurium (TA100, TA1535, TA1537, TA 98) and <i>E.coli</i> (WP2uvrApKM101, WP2pKM101) \pm S9 (phenobarbitol and β- naphthoflavone-induced rat liver S9-mix) Solvent: DMSO Study design: plate incorporation (experiment I), pre-incubation (experiment II) Concentrations: 3, 10, 33, 100, 333, 1000, 2500, 5000 µg/plate	 μg/plate Cytotoxicity occurred in all strains except TA1535 Non-mutagenic in tested <i>S.</i> <i>typhimurium</i> and <i>E. coli</i> strains +S9: negative -S9: negative Positive controls gave strong increases in revertants Precipitation was seen in the overlay agar in the test tubes from 2500 to 5000 μg/plate, precipitation on the incubated agar plates was observed at 5000 μg/plate Cytotoxicity occurred in strains TA 98, TA 100, WP2 pKM101, and WP2 uvrA pKM101 	Schulz, 2018 acceptable
In vitro Mammalian Cell Gene Mutation Test OECD TG 476/1997 GLP	S-metolachlor Batch number: SMU3BL1300 1 Purity: 97.1 % (S- enantiomeric content: 86.3 %)	Mouse lymphoma L5178Y/TK ^{+/-} 3.7.2c \pm S9 (phenobarbitol and β - naphthoflavone-induced rat liver S9-mix) Solvent: DMSO Concentrations: experiment I/- S9: 22.5; 45.0; 90.0; 135.0; and 180.0 µg/mL; experiment I/+S9: 22.5; 45.0; 90.0; 180.0; and 270.0 µg/mL; experiment II/-S9: 45.0; 90.0; 135.0; 160.0; and 180.0 µg/mL; experiment II/+S9: 45.0; 90.0; 160.0; 180.0; and 270.0 µg/mL	Non-mutagenic in tested S. typhimurium and E. coli strains +S9: negative -S9: negative Positive control substances led to increases in revertant number, however, positive control responses differed largely between the experiments. No precipitation occurred up to the maximum concentration. Cytotoxicity occurred at concentrations $\geq 180 \ \mu g/mL$ (experiment I) or $\geq 160 \ \mu g/mL$ (experiment II)	Wollny, 2014 acceptable
In Vitro Mammalian Cell Gene Mutation Tests using the Hprt and xprt genes OECD TG	S-metolachlor Batch number: CAB7C17042_ FORTIFIED Purity: 96.4 %	 V79 cells (Chinese hamster lung fibroblasts) ± S9 (phenobarbitol and β- naphthoflavone-induced rat liver S9-mix) Solvent: DMSO Concentrations: 	 +S9: negative -S9: negative Positive controls gave responses (300 μg/mL EMS: 276.4; 1.1 μg/mL DMBA: 109.5 mutant colonies per 10⁶ cells) which were in the lower 	Anonymous (36) 2018 acceptable

Method, guideline, deviations if any	Test substance	Relevant information about the study including rationale for dose selection (as applicable)	Observations	Reference
476/2016 GLP		-S9: 10.00; 150.0; 170.0; 190.0; and 210.0 μg/mL + S9: 50.0; 100.0; 150.0, 200.0; and 220.0 μg/mL	range of the HCD (150 μ g/mL and 300 μ g/mL EMS: 53.9- 872.3; 1.1 μ g/mL and 2.3 μ g/mL DMBA: 56.7-739.9 mutant colonies per 10 ⁶ cells); HCD ranges are not given for the concentrations used, but as summarized data of different concentrations Phase separation occurred at 210.0 μ g/mL and above Severe cytotoxicity was observed at \geq 230 μ g/mL in the absence of metabolic activation and at \geq 240 μ g/mL in the presence of metabolic activation Non-mutagenic in V79 cells	
In Vitro Mammalian Chromosoma I Aberration Test OECD TG 473/1997 GLP 200 cells were counted instead of 300	S-metolachlor Batch number: SMU3BL1300 1 Purity: 97.1 %	Human lymphocytes ± S9 Solvent: DMSO Concentrations: -S9: Experiment 1A: 173, 302.8, 529.9, 927.3 μg/mL; Experiment 1B: 150.0, 300.0, 600.0 μg/mL; Experiment 2: 52.2, 91.4, 159.9 μg/mL + S9: Experiment 1A: 173.0, 302.8, 529.9, 927.3 μg/mL; Experiment 2: 100.0, 200.0, 400.0 μg/mL	Statistically significant increase in number of mutant colonies in experiment 1B (4-hour incubation time, in the presence of metabolic activation) at 400 µg/mL, dose-response, value exceeded historical control data range Positive result was not reproducible Positive controls gave expected responses High variation in cytotoxicity between the experiments Phase separation was observed at 200 µg/mL and above Clastogenic potential in human lymphocytes is not clear	Anonymous (2), 2014 supplementary
In Vitro Mammalian Cell Micronucleus Test OECD TG 487/2016 GLP	S-metolachlor Batch number: CAB7C17042_ FORTIFIED Purity: 96.4 %	Human lymphocytes ± S9 Solvent: DMSO Concentrations: -S9: Experiment I: 69.6, 122, 213, 373 µg/mL; Experiment IID: 38.9, 119, 138, 152 µg/mL + S9: Experiment I: 122, 213, 373, 653 µg/mL; Experiment	Equivocal Non-reproducible statistically significant increases of micronucleated cells in the absence and presence of metabolic activation were observed, one value exceeded the HCD range Positive controls gave expected	Anonymous (32), 2019 acceptable

Method,	Test substance	Relevant information about	Observations	Reference
deviations if any		for dose selection (as applicable)		
Metolachlor		IIB: 126, 152, 182, 319 μg/mL	responses Phase separation was observed at 373 µg/mL and above Clastogenic/aneugenic potential in human lymphocytes is not clear	
In vitro Mammalian Cell Gene Mutation Test Similar to OECD TG 490 No GLP Missing standard deviations and historical control data	Metolachlor Batch number: OP303010 Purity: 95.9 %	Mouse lymphoma cells (L5178Y) ± S9 Solvent: DMSO Concentrations: -S9: 0; 9.5; 19; 38; 76; 114; 152; 190 nL/mL + S9: Experiment I: 0; 10.5; 21; 42; 84; 126; 168; 210 nL/mL; Experiment II: 0; 56; 112; 168; 196; 224; 252; 280 nL/mL	equivocal	Anonymous (1), 1984 supplementary
In Vitro Mammalian Chromosoma I Aberration Test OECD TG 473/1983 GLP	Metolachlor Batch number: P802006 Purity: 97.4 %	CHO cells (CCL61) ± S9 Solvent: DMSO Concentrations: -S9, 3h: 0, 62.5, 125, 250 µg/mL -S9, 24h: 0, 15.63, 31.25, 62.5, 125, 250 µg/mL + S9, 3h: 0, 31.25, 62.5, 125, 250 µg/mL	+S9: negative -S9: negative At 250 μg/ml an increase in polyploid metaphases (endoreduplication figures) was detected, thus, an aneugenic effect of S-metolachlor seems possible. On the other hand, since this polyploidy was accompanied by suppression of mitotic activity by 56.4%, it could also result from cytotoxicity or cell cycle perturbation	Anonymous (36), 1990 supplementary
In Vitro Mammalian Chromosoma I Aberration Test No GLP	Metolachlor Batch number: n.a. Purity: n.a.	Human lymphocytes ± S9 Solvent: isooctane Concentrations: -S9, 72h: 0, 0.01, 0.1, 1 µg/mL	Positive ± S9?	Roloff, 1992 supplementary

Method, guideline, deviations if	Test substance,	Relevant information about the study (as applicable)	Observations	Reference
any S-metolachlor				
Mammalian Erythrocyte Micronucleus Test OECD TG 474/1983 GLP 1000 cells were scored instead of 4000	S-metolachlor Batch number: V4673/7 Purity: 95.6 %	Tif:MAGf mice Oral (gavage) Solvent: arachis oil Concentrations: 500; 1000; 2000 mg/kg 5 mice/sex/dose/time point	Negative No increases in micronuclei frequency in bone marrow cells of mice due to the test material in doses up to 2000 mg/kg bw. No indications of toxicity in bone marrow in terms of alterations of the ratio PCE/NCE were observed. (Additional proof of exposure study available).	Anonymous (21), 1995a acceptable
Mammalian Erythrocyte Micronucleus Test OECD TG 474/1997 GLP 2000 cells were scored instead of 4000	S-metolachlor Batch number: SMU3BL13001 Purity: 97.1 %	NMRI mice Oral Solvent: aqueous CMC containing Tween 80 Concentrations: 200, 400, 800 mg/kg bw 7 male mice/dose group, 5 male mice per control group	Negative No increases in micronuclei frequency in bone marrow cells of mice due to the test material in doses up to 800 mg/kg bw. No indications of toxicity in bone marrow in terms of alterations of the ratio PCE/NCE were observed. (Additional proof of exposure study available).	Anonymous (9), 2014 acceptable
Unscheduled DNA Synthesis (UDS) Test with Mammalian Liver Cells in vivo GLP	S-metolachlor Batch number: V4673/7 Purity: 95.6 % (S-enantiomeric content: 84 %)	Sprague Dawley Tif:RAIf rats 3 rats/sex/dose/time point Oral (gavage) Solvent: arachis oil Concentrations: 500, 1500, F:3200, M:5000 mg/kg,	Negative No increase in unscheduled DNA synthesis was reported in hepatocytes of treated rats.	Anonymous (22), 1995b acceptable
Metolachlor				•
Unscheduled DNA Synthesis (UDS) Test with Mammalian Liver Cells in vivo GLP	Metolachlor Batch number: FL930326 Purity: 97.3 %	Sprague Dawley, CRL, CD7BR 3 rats/sex/dose/time point Oral (gavage) Solvent: corn oil Concentrations: 500; 1250; 2500; 4000 mg/kg bw (males); 0; 500; 1000 and 1500 mg/kg bw	Negative No increase in unscheduled DNA synthesis was reported in hepatocytes of treated rats	Anonymous (18) 1994 acceptable

- I ADIE IV. SUMMAI V LADIE UI MULAZEMENY/ZEMULUAICH V LESIS III VIVU III MAMMAMAM SUMALIE UI ZEI III CENS
--

Method, guideline, deviations if any	Test substance,	Relevant information about the study (as applicable)	Observations	Reference
		(females)		
Unscheduled DNA Synthesis (UDS) Test with Mammalian Liver Cells in vivo	Metolachlor Batch number: 841697 Purity: 96.4 %	Sprague Dawley rats 3 rats/sex/dose/time point Oral (gavage) Solvent: PEG Concentrations: 2.9, 31.9, 301, 450 mg/kg	Negative No increase in unscheduled DNA synthesis was reported in hepatocytes of treated rats	Anonymous (6), 1988 acceptable
GLP				

10.8.1 Short summary and overall relevance of the provided information on bacterial, somatic and germ cell mutagenicity

The potential genotoxicity of S-metolachlor was investigated in a series of both in vitro and in vivo studies. All regular end points for genetic damage (point mutations, chromosome damage, DNA damage and repair) were assessed. For metolachlor only the endpoint DNA damage and repair was tested in vivo. In vitro data regarding mutagenicity and chromosomal aberrations are also available for metolachlor.

S-metolachlor was tested negative for genotoxicity in vitro in bacterial (Anonymous (23), 1995c, Sokolowski, 2014, Schulz, 2018) and mammalian (Wollny, 2014, Anonymous (36), 2018) cell mutagenicity studies. However, chromosome aberration in vitro showed a positive, but not reproducible result (Anonymous (2), 2014). A micronucleus test (Anonymous (32), 2019) gave equivocal results.

In vivo negative results for S-metolachlor were reported in two micronucleus assays (Anonymous (21), 1995a; Anonymous (9), 2014), but both assays showed deviations as too few cells were scored and therefore the experimental power of the assays was reduced. Bone marrow exposure was not sufficiently demonstrated in the studies (i.e. decrease in the PCE/NCE ratio), but in the study by Anonymous (21), (1995) neurological signs (ataxia, tremor) were observed in 3 out of 5 males and females, which might point to exposure of the bone marrow. In the study by Anonymous (9), 2014 observed neurological signs were rather mild and occurred only in the 0-1 hour post-treatment interval in few animals. ADME data suggest that the bone marrow was reached. As mentioned in Vol. 3, B.6.1.1:"In one study (Momose, 1988) tissue distribution was assessed by whole body autoradiography at 8h post-dose (1.5 mg/kg b.w.). Apart from G.I.-tract membranes, labelling was restricted to liver, kidney and lung, and also slightly to bone marrow." Nevertheless, it was also discussed by the authors that the slight blackening of the bone marrow was possibly "possibly owing to blood". Furthermore, radioactivitiy concentrations in tissues and organs were given in the study report and F-values are in the range of 9 – 16.73 % 24 hours after administration in male and female animals. In a proof of exposure study Anonymous (41), 2017) S-metolachlor was only one hour (in 2 out of 3 animals) and four hours (in 1/3 animals) after exposure and not after 24 hours detectable in plasma of male mice. However, according to the EFSA Scientific Opinion from 2017 (EFSA Journal 2017;15(12):5113) bone marrow exposure is sufficiently shown by the detection of the test substance in plasma. Even though the short abundance of S-metolachlor in the plasma, perhaps due to fast metabolization, might cause some uncertainty. On the pesticides peer review expert meeting (TC 27) the proof of exposure study was discussed and if, based on the results, bone marrow exposure for the in vivo micronucleus studies by Anonymous (21), 1995a and Anonymous (9), 2014 can be assumed. The already identified uncertainty in terms of a very small window (1 hr Cmax) of detection of S-metolachlor and fast metabolisation in mice as a possible reason were confirmed. It was noted that there is no data to compare the different metabolism between the species (rats vs. mice) as only humans were included in the in vitro comparative metabolism study. The small window of detection might be an issue to assess the aneugenicity endpoint (1 hour might not be sufficient). However, as S-metolachlor was detected at variable

amounts in different animals at 1 and 4 hours, it was agreed that there is enough evidence to support bone marrow exposure.

No effect of S-metolachlor was seen in an unscheduled DNA synthesis (UDS) test (Anonymous (22), 1995b). Results for metolachlor from two acceptable unscheduled DNA synthesis (UDS) tests showed no genotoxic potential regarding the endpoint DNA damage and repair. In a mouse lymphoma assay (Anonymous 1, 1984) without S9 mix no mutagenic effect of metolachlor was observed, but contradictory results were seen with S9 mix. This study was of only supplementary informative value as several deviations were obvious (absence of information on the number of treated cells, no historical control data, to high doses to evaluate dose-response relation). Conflicting results were observed with regard to chromosome aberration in vitro as one test gave a negative result (Anonymous (36), 1990) and a further test showed a positive result (Roloff, 1992).

Overall, it was concluded that S-metolachlor is unlikely to have a genotoxic potential.

10.8.2 Comparison with the CLP criteria

Following criteria for classification for germ cell mutagens are given in CLP regulation:

Table 11: CLP criteria for classification for germ cell mutagens

CLP criteria

The classification in **Category 1A** is based on positive evidence from human epidemiological studies. Substances to be regarded as if they induce heritable mutations in the germ cells of humans.

The classification in Category 1B is based on:

- positive result(s) from in vivo heritable germ cell mutagenicity tests in mammals; or
- positive result(s) from in vivo somatic cell mutagenicity tests in mammals, in combination with some evidence that the substance has potential to cause mutations to germ cells. It is possible to derive this supporting evidence from mutagenicity/genotoxicity tests in germ cells in vivo, or by demonstrating the ability of the substance or its metabolite(s) to interact with the genetic material of germ cells; or
- positive results from tests showing mutagenic effects in the germ cells of humans, without demonstration of transmission to progeny; for example, an increase in the frequency of aneuploidy in sperm cells of exposed people.

The classification in **Category 2** is based on:

- positive evidence obtained from experiments in mammals and/or in some cases from in vitro experiments, obtained from:
- somatic cell mutagenicity tests in vivo, in mammals; or
- other in vivo somatic cell genotoxicity tests which are supported by positive results from in vitro mutagenicity assays.

Note: Substances which are positive in in vitro mammalian mutagenicity assays, and which also show chemical structure activity relationship to known germ cell mutagens, shall be considered for classification as Category 2 mutagens.

No human data are available for S-metolachlor, hence a classification in category 1A is not possible. *In vitro* studies (mutagenicity, clastogenicity) and/or the respective *in vivo* studies showed overall a negative outcome, hence a classification in category 2 is currently considered not warranted for S-metolachlor.

10.8.3 Conclusion on classification and labelling for genotoxicity / germ cell mutagenicity

No classification for genotoxicity is proposed.

RAC evaluation of germ cell mutagenicity

Summary of the Dossier Submitter's proposal

S-metolachlor was negative in three *in vitro* gene mutation assays in bacteria (Anonymous (23), 1995c; Sokolowski, 2014; Schulz, 2018) and in two gene mutation assays in mammalian cells (mouse lymphoma TK cells, Wollny, 2014) and Chinese hamster V79 cells (Anonymous (36), 2018). Equivocal results were observed *in vitro* in a chromosomal aberration assay (Anonymous (2), 2014) and in a micronucleus assay (Anonymous (32), 2019) with *S*-metolachlor.

Positive results were observed with metolachlor in a mouse lymphoma assay (Anonymous (1), 1984) and in a chromosomal aberration assay (Roloff, 1992). Polyploidy was increased in a

mammalian chromosomal aberration assay in human lymphocyte (Anonymous (36), 1990). These studies were only considered as supplementary by the DS due to limitations.

In vivo, negative results were observed in two micronucleus assays (Anonymous (21), 1995a; Anonymous (9), 2014). The DS noted that the power of the studies may have been reduced due to the low number of cells analysed. In addition, the DS pointed out that no decrease in PCE/NCE ratio was noted in the studies. Nevertheless, proof of exposure was demonstrated as *S*-metolachlor was detected in mice plasma (one or four hours after exposure but not at the 24-hour time point) in a proof of exposure study (Anonymous (41), 2017). However, the DS pointed out that the small window of exposure might be an issue to doubt on aneugenicity.

Negative results were obtained in three *in vivo* unscheduled DNA synthesis (UDS) tests with *S*-metolachlor or metolachlor (Anonymous (6), 1988; Anonymous (18), 1994; Anonymous (22), 1995b).

Overall, based on the negative outcome obtained in the *in vivo* studies, the DS proposed no classification for germ cell mutagenicity.

Comments received during consultation

One MSCA agreed with no classification for germ cell mutagenicity but pointed out that the micronucleus assays had clear deficiencies and that the UDS test was only an indicator test and relatively insensitive. Therefore, the MSCA considered that the reason for no classification could be "data lacking" or "inconclusive".

Assessment and comparison with the classification criteria

In vitro data

Three negative bacterial gene mutation assays were available with *S*-metolachlor (Anonymous (23), 1995c; Sokolowski, 2014; Schulz, 2018). The studies were performed according to OECD TG 471 and were GLP-compliant.

Two negative *in vitro* gene mutation assays were available with *S*-metolachlor (Wollny, 2014; Anonymous (36), 2018). The studies were performed according to OECD test guidelines and were GLP-compliant. An equivocal gene mutation study (mouse lymphoma TK) was available with metolachlor (Anonymous (1), 1984). The study was only considered supplementary by the DS, was not GLP-compliant and no historical controls were available. The positive outcome obtained in this study is considered of lower weight than the negative results obtained in the two well-conducted studies with *S*-metolachlor.

A non-reproducible increase was observed in a chromosomal aberration assay (Anonymous (2), 2014), following four hours exposure of human lymphocytes with *S*-metolachlor, in the presence of metabolic activation. In addition, an increase in micronuclei was noted both with and without metabolic activation in a micronucleus assay (Anonymous (32), 2019) following four hours exposure of human lymphocytes to *S*-metolachlor. In the absence of metabolic activation, the increase was inside the historical control data (HCD) range. In the presence of metabolic activation, positive results were observed above historical control in one experiment, but the positive outcome was not reproduced in a second experiment.

Inconsistent results were obtained with metolachlor. The substance was not clastogenic in a chromosomal aberration test in Chinese Hamster Ovary cells (Anonymous (36), 1990) but an increase in polyploidy metaphases was detected at the highest concentration, without metabolic activation (three hours exposure). The study was only rated supplementary due to several deficiencies and polyploidy was not noted in other chromosomal aberration studies. A positive result was also observed in a non-guideline cytogenic study in human lymphocytes (Roloff, 1992) also showing deficiencies.

Overall, there are indications that *S*-metolachlor can be clastogenic *in vitro* in the presence of metabolic activation, even after a short exposure (four hours).

In vivo data

Negative results were obtained in vivo, in two micronucleus tests performed in mice (Anonymous (21), 1995a; Anonymous (9), 2014). The studies were similar to OECD TG 474 and performed by oral gavage.

In Anonymous (21) (1995a), mice were exposed up to 2000 mg/kg bw. The main limitation in the study is the low number of cells scored for micronucleus induction (1000). In this study, it is stated that the maximum tolerable dose (MTD) was reached based on the observed clinical signs.

Mice were exposed at 800 mg/kg bw in the main study (Anonymous (9), 2014). The top dose of 800 mg/kg bw was determined as the MTD based on lethalities and severe toxicity. Only 2000 cells were analysed instead of 4000 recommended in the OECD TG.

With regards to bone marrow exposure, only weak direct evidence of exposure was noted:

- No shift in the ratio of polychromatic erythrocytes (PCE) to normochromatic erythrocytes (NCE) was noted in the studies.
- Clinical signs were noted at the time of administration at 2000 mg/kg bw: ataxia and tremor in males and females (Anonymous (21), 1995a).
- At 800 mg/kg bw, mice displayed hunched or abdominal posture, partially closed eyes, ruffled fur, slight reduction in spontaneous activity, Straub's phenomenon, trembling and tippy toe walk (Anonymous (9), 2014). The neurotoxic findings provide some evidence of systemic toxicity.

Nevertheless, there is some indirect evidence of systemic toxicity:

- A proof of exposure study was performed in mice exposed to 400 mg/kg bw S-metolachlor, S-metolachlor was detected in 2/3 animals at the one hour and 1/3 animals at the four-hour time point. S-metolachlor was not detected 24 hours after gavage (three mice). The substance was detected in variable amounts in the three animals. The data indicate a fast metabolisation of S-metolachlor.
- In the 'absorption, distribution, metabolism, and excretion' (ADME) studies, a very efficient oral absorption of *S*-metolachlor was observed in rats. Nevertheless, RAC notes that there is no information available regarding potential differences in mice.
- No short-term toxicity studies were performed in mice to indicate potential systemic toxicity. However, in the two-year mouse chronic study (Anonymous (38), 1982), a

significant increase in liver and kidney weight and lower body weight at 571 mg/kg bw/d may also provide indication of systemic toxicity.

Overall, the negative *in vivo* micronucleus assays may be considered as an appropriate followup to the positive results observed in the *in vitro* cytogenicity studies. RAC considers that there was some evidence of bone marrow exposure in the *in vivo* studies but acknowledges the uncertainties raised by the DS on potential exposure levels and the issue of fast metabolisation to assess the aneugenicity endpoint.

There are two negative *in vivo* UDS assays (Anonymous (6), 1988; Anonymous (18), 1994) with metolachlor, and the one with S-metolachlor (Anonymous (22), 1995b) can also be considered as supportive data.

Comparison with the classification criteria

Based on the negative results observed in the *in vivo* micronucleus assays RAC agrees with the DS that according to the CLP criteria, **no classification is warranted for germ cell mutagenicity**.

10.9 Carcinogenicity

Two studies on chronic toxicity and carcinogenicity of metolachlor in rats and mice are available, however, the study in mice was considered not acceptable due to high mortality (> 50 % in control and treatment groups). Results from rat and mice studies are summarised in Table 12.

Epidemiological studies with metolachlor are available. Most of them are based on data from the Agricultural Health Study (AHS). Results are summarised in Table 13.

Several mechanistic studies concerning a possible mode or mechanism of action for the observed tumourformation in response to metolachlor were conducted. Results are summarised in Table 14.

Method, guideline,	Test substance,	Results	Reference
deviations if any, species,	dose levels duration		
strain, sex, no/group	of exposure		
2-year chronic oral toxicity and oncogenicity study	Metolachlor (95.5 % purity, enantiomeric	NOAELsystemic & carcinogenicity = 15 mg/kg bw/d	Anonymous (39), 1983
Oral (dietary)	content: 47.7 %:47.7 % R/S enantiomer	Body weight (wk 8 – wk 78) \downarrow (10 %) in families	(including Amendment 1
Rat, Sprague Dawley (Crl:CD(SD)BR) 60 animals/sex/dose (5/sex from control and high-dose group for interim kill) 10 rats/sex for haematology prestudy partly in compliance to B.33 of directive 92/69/EEC with deviations (e.g. weekly feed consumptions recorded on 10 animals/sex/dose instead of all animals, except at week	0, 30, 300 and 3000 ppm, equivalent to 1.5, 15, and 150 mg/kg bw/d (calculated using default conversion factor of 20)	Statistically significant increase in liver neoplastic nodules and combined incidence of both nodules and carcinoma in males and females exceeding historical control data (c. f. Table 15, Table 16) Statistically significant increase in adenoma and carcinoma of the pituitary in females (c. f. Table 15) Statistically significant increase in thyroid follicular cell adenoma in females (c. f. Table 15) exceeding historical control data Statistically significant increase in nasal	+ 2) Anonymous (31), 1988 Anonymous (19),1984 supplementary
40, 52, 66, 78, 92 and 104; haematology and urinalysis on 8 animals/sex/dose, but no blood smears, animals were infected with sialodacryoadenitis virus (SDAV) GLP		turbinate adenocarcinoma in males (c. f. Table 17) exceeding historical control data	
Carcinogenicity study	Metolachlor (95.3% purity, enantiomeric	NOAEL for carcinogenicity = not derived	Anonymous (38), 1982
Mice (Crl:CD-1 (ICR)BR)	content: 47.7%:47.7% R/S	NOAEL for systemic toxicity = $1/1 \text{ mg/kg}$ bw/d, LOAEL = 571 mg/kg bw/d	
68 animals/sex/dose (8/sex for interim kill) 10 mice/sex for haematology prestudy	enantiomer 0, 300, 1000 and 3000 ppm, equivalent to 0, 50, 171, 571 mg/kg bw/d	No increase in tumour incidences Lower mean bodyweights in males at 571	not acceptable
partly in compliance to B.32 of directive 92/69/EEC and OECD 451 with deviations (e.g. Mortality > 50 % in control and other dose groups; food consumption recorded in 10 animals/dose/sex instead of all animals, accordingly haematology at 12 and 18 month in 8 animals/dose/sex only, accidental drinking water restriction in week 1 of the study, Sendai virus infections at early stages of the study)	in males and 0, 65, 228 and 733 mg/kg bw/d in females	mg/kg bw/d from week 2 on (↓ 5-10 %) Increased relative liver (+27 %) and kidney (+21 % left kidney, +13 % right kidney) weight at 571 mg/kg bw/d in males	

Table 12: Summary table of animal studies on carcinogenicity

Method, guideline, deviations if any, species, strain, sex, no/group	Test substance, dose levels duration of exposure	Results	Reference
GLP			

Type of data/rep ort	Test substance	Relevant information about the study (as applicable)	Observations							Reference		
Agricul- tural health study (AHS) Metolachlor p st p aj ir N C A 1	study of pesticide applicators in Iowa and North Carolina AHS cohort,	Increased risk for lung Decreased risk for pros exposure, second highe Rate ratios ¹ from poisso weighted lifetime expose metolachlor exposed ap	creased risk for prostate cancer (lifetime days exposure, highest category of use) ecreased risk for prostate cancer (lifetime days exposure, highest category & intensity-weighted lifetime days posure, second highest category) ate ratios ¹ from poisson regressions for selected cancers ² by tertiles ³ of lifetime exposure-days and intensity- eighted lifetime exposure-days to metolachlor ⁴ among Agricultural Health Study cohort applicators with low- etolachlor exposed applicators as the referent:						Rusiecki, J. A., et al., 2006,			
	1993 - 2002	Cancer site		Li	fetime days ⁶		In	tensity w	eighted lifetime	days ⁷		
				n^5	RR	95 % CI	<i>p</i> -trend	n^5	RR	95 % CI	<i>p</i> -trend	
			All cancers			1				-	_	
			T1	225	1.00			229	1.00			
			T2	221	1.00	(0.83–1.21)		214	0.95	(0.78–1.15)		
			T _{3L}	117	1.05	(0.83–1.32)		113	0.83	(0.65–1.07)		
			T_{3U}	117	1.01	(0.78–1.30)	0.98	124	0.93	(0.72–1.21)	0.72	
				680				680				
			Lung									
			T1	13	1.00			12	1.00			
			T2	11	1.02	(0.45–2.30)		16	1.44	(0.67–3.11)		
			T _{3L}	10	1.89	(0.79–4.48)		8	1.38	(0.51–3.72)		
			T _{3U}	12	2.37	(0.97–5.82)	0.03	10	1.65	(0.61–4.47)	0.65	
				46				46				

Table 13: Summary table of human data on carcinogenicity

Type of data/rep ort	Test substance	Relevant information about the study (as applicable)				Obs	ervations					Reference
				Lifeti	me days	6		Intens	ity weigh	ted lifetime days	5 ⁷	
				n^5	RR	95 % CI	p-trend	n^5	RR	95 % CI	<i>p</i> -trend	
			Prostate		•	-		•	-			
			T1	115	1.00			108	1.00			
			T2	99	0.84	(0.63–1.10)		101	0.91	(0.69–1.21)		
			T _{3L}	47	0.79	(0.55–1.13)		46	0.66	(0.45–0.97)		
			T _{3U}	38	0.59	(0.39–0.89)	0.21	44	0.67	(0.44–1.01)	0.38	
				299	1. 1			299				
			 Adjusted for age, sex, ra residence, and the most hi Cancers for which there covariate data. Top tertile split for all ca Total number exposed to Numbers of cancer-spec Tertiles for lifetime days Tertiles for intensity we 	ce, smo ghly co were at ancers co metola iffic case s: 2.5–2 ighted li	ombined, achlor: 22 es entered 0, 21–56, ifetime da	ohol, applicator s esticides with me exposed cases an colon, lung, pro ,781 into the final me >56; when top to ys: 0.5–103, >10	tatus (priva etolachlor. d 5 exposed state, and a odels in eac ertile split, 3-362, >36	te or con l cases in ll lympho h tertile o T_{3L} : >56- 52; when	each cate, ohematopo of metolac -116, T _{3U} : top tertile	amily history of c gory after account etic cancers. hlor exposure. >116. split, T _{3L} : >362–9	ancer, state of ing for missing 024, T _{3U} : >924.	

Type of data/rep ort	Test substance	Relevant information about the study (as applicable)	Observations	Reference
Agricul- tural health study (AHS)	Metolachlor	Prospective study of pesticide applicators in Iowa and North Carolina AHS cohort, 1993 – 2010 (North Carolina) / 2011(Iowa)	Increased risk for liver cancer (both metrics, two highest categories of use) Increased risk for follicular cell lymphoma (both metrics) With person-time in the low metolachlor use category as referent: decreased risk for developing melanoma (no exposure-response) and increased risk for oral cavity cancer (no exposure-responseRate ratios ^a for cancers with at least 20 exposed cases by quartiles of lifetime exposure days and intensity-weighted lifetime exposure days to metolachlor among Agricultural Health Study cohort applicators (with unexposed person-time as the referent), 5-year lag:	Silver, S. R., et al., 2015,

		Lifetime days			Intensity-weighted lifetime days										
Cancer site	N ^b	RR (95 % CI)	p-Trend	Ν	RR (95 % CI)	p-Trend									
All cancers				·		<u>.</u>									
Unexposed	3,248	1.00 (referent)		3,248	1.00 (referent)										
Q1c	619	0.95 (0.86–1.04)		619	0.98 (0.89–1.08)										
Q2	626	0.96 (0.88–1.06)		604	0.95 (0.86–1.05)										
Q3	611	0.97 (0.88–1.06)		610	0.96 (0.87–1.07)										
Q4	589	0.94 (0.85–1.04)	0.30	613	0.92 (0.83–1.02)	0.14									
Liver				·		<u>.</u>									
Unexposed	17	1.00		15	1.00										
Q1	2	0.97 (0.17-5.50)		3	1.65 (0.37–7.23)										
Q2	4	1.79 (0.54–5.93)		3	1.33 (0.35–4.99)										
Q3	7	3.06 (1.05-8.90)		8	3.14 (1.11-8.88)										
Q4	10	3.99 (1.43–11.1)	< 0.01	9	3.18 (1.10–9.22)	0.03									
	- 1			1											
	Lifetim	e days		Intensit	ys										
Cancer site	N^b	RR (95 % CI)	p-Trend	Ν	RR (95 % CI)	p-Trend									
Follicular cell l	ymphoma		<u>.</u>												
Unexposed	24	1.00		24	1.00										
Q1	4	0.93 (0.31–2.79)		6	1.37 (0.52–3.57)										
Q2	10	2.43 (1.07-5.52)		6	1.45 (0.56–3.78)										
Type of data/rep ort	Test substance	Relevant information about the study (as applicable)				Observat	tions			Reference					
----------------------------	-------------------	--	--	--	------------------	----------	-------	-------------------------	----------	-----------	--	--	--	--	--
			Q3	7	1.76 (0.64–4.81)		10	2.67 (1.10-6.49)							
			Q4	9	2.89 (1.13-7.38)	0.03	8	2.57 (0.95-6.95)	0.04						
			 of residence and the pesticides most highly correlated with metolachlor (alachlor, atrazine, dicamba, imazethapyr, trifluralin). All cancers combined also adjusted for sex and race. Lung and prostate cancers also adjusted for race. b Median number of cases over five imputations. c For lifetime-days analyses with a 5-year lag, unexposed = 0 days, Q1 >0-≤15 days, Q2 >15-≤38.75 days, Q3 >38.75-≤108.5 days, Q4 > 108.5 days. For intensity-weighted lifetime-days analyses, unexposed = 0 days, Q1 >0-≤490, Q2 >490-≤1,403, Q3 >1,403-≤4,103, Q4 > 4,103 units. Rate ratios^a for all cancers with 20 or more exposed cases by quartiles of lifetime days and intensity-weighted lifetime days of metolachlor use among Agricultural Health Study applicators (n = 26,505) who ever used metolachlor (with person-time in the low-metolachlor use category as referent), 5-year lag: 												
					Lifetime days		Ι	ntensity-weighted lifet	ime days						
			Cancer site	N ^b	RR (95 % CI)	p-Trend	N	RR (95 % CI)	p-Trend						
			All cancers		1	T									
			Q1 ^c	699	1.00 reference		694	1.00 reference							
			Q2	626	1.00 (0.90–1.13)		604	0.96 (0.86–1.08)							
			Q3	611	1.00 (0.89–1.13)		610	0.97 (0.86–1.10)							
			Q4 589 0.97 (0.86–1.11) 0.64 613 0.92 (0.80–1.05) 0.27												
				Lifetime days Intensity-weighted lifetime days Cancer site N ^b RR (95 % CI) p_Trend											
			Cancer site	N ^b	RR (95 % CI)	p-Trend	Ν	RR (95 % CI)	p-Trend						
			Liver		1		1	1							
			Q1	2	1.00		3	1.00							

Type of data/rep ort	Test substance	Relevant information about the study (as applicable)				Observa	tions			Reference						
			Q2	4	1.86 (0.31–11.1)		3	0.85 (0.16-4.52)								
			Q3	7	3.13 (0.56–17.4)		8	1.83 (0.42-8.02)								
			Q4	10	4.01 (0.68–23.5)	0.10	9	1.71 (0.33-8.83)	0.44							
			Follicular cell lyr	nphoma												
			Q1	01 5 1.00 7 1.00												
			Q2	Q2 10 2.48 (0.84–7.32) 6 1.08 (0.36–3.24)												
			Q3	7	1.84 (0.53–6.34)		10	2.04 (0.71-5.88)								
			Q4	4 9 3.24 (0.96–11.0) 0.14 8 2.08 (0.61–7.10) 0.21												
			Melanoma													
			Q1	29	1.00		38	1.00								
			Q2	27	1.10 (0.63–1.91)		17	0.54 (0.30-0.97)								
			Q3	29	1.20 (0.68–2.10)		27	0.91 (0.52–1.60)								
			Q4	27	1.19 (0.65–2.18)	0.60	30	1.03 (0.55–1.93)	0.43							
			Oral cavity													
			Q1	10	1.00		14	1.00								
			Q2	21	2.34 (1.06–5.16)		12	1.06 (0.48–2.36)								
			Q3	16	1.88 (0.82–4.31)		19	1.69 (0.79–3.61)								
			Q4	14	1.78 (0.72–4.39)	0.63	16	1.66 (0.70–3.96)	0.21							
			 a Adjusted for ag of residence and trifluralin). All b Median number c For lifetime-da 	Adjusted for age, smoking, alcohol, applicator status (private or commercial), family history of cancer (any site), state of residence and the pesticides most highly correlated with metolachlor (imazethapyr, alachlor, atrazine, dicamba, trifluralin). All cancers combined also adjusted for sex and race. Lung and prostate cancers also adjusted for race. Median number of cases over five imputations. For lifetime-days analyses with a 5-year lag, Q1 >0–≤15 days, Q2 >15–≤38.75 days, Q3 >38.75–≤108.5 days,												

Type of data/rep ort	Test substance	Relevant information about the study (as applicable)			Ob	servations				Reference						
			Q4 > 108.5 day Q4 > 4,103 units d Subtypes for n	Q4 > 108.5 days. For intensity-weighted lifetime-days analyses, Q1 >0–≤490, Q2 >490–≤1,403, Q3 >1,403–≤4,103, Q4 > 4,103 units. Subtypes for non-Hodgkin lymphoma as defined by Morton et al.												
Agricultu ral health study	Metolachlor	Prospectives tudy of pesticide	Increased lung can cancer risk amon Agricultural Healt	Subtypes for non-Hodgkin lymphoma as defined by Morton et al. creased lung cancer risk for highest lifetime exposure days (> 457) independent of used referent groupLung incer risk among applicators by lifetime exposure days of indicated pesticide, using two referent groups, gricultural Health Study, 1993–2001:												
(AHS)		in Iowa and North Carolina	Pesticide by lifetime exposure days	No. of exposed cases	Odds ratio*	95 % confidence interval	Odds ratio*	95 % confidence interval								
		AHS cohort, 1993 -2001	No exposure	96	1.0	Referent										
		1775 2001	<38.8	20	0.6	0.4, 1.0	1.0	Referent								
			38.8–116	20	1.0	0.6, 1.6	1.6	0.8, 3.0								
			116.1–457.0	8	0.9	0.4, 1.8	1.2	0.5, 2.9								
			>457.0 6 4.1 1.6, 10.4 5.0 1.7, 14.9													
			p-trend 0.015 0.0002													
			* Odds ratios adjuste days of any pesticide	ed for smoking (pac e application.	ck-years among cur	rent and pack-year	s among former sm	okers), age, gender	r, and total							

Agricul-	Metolachlor	Prospective	No association be	etween meto	lachlor and pa	ncreatic cance	r				Andreotti, G., et				
tural health		study of pesticide	Odds ratios and 95 % confidence intervals for pancreatic cancer in relation to ever/never pesticide exposure ¹ among applicators and spouses in the agricultural health study, 1993, 2004;												
study		applicators	among applicators and spouses in the agricultural health study, 1993–2004:												
(AHS)		in Iowa and North	Pesticides	Cor	ntrols	Pancreatic	cancer cases	OR ²	95 % CI ²						
		Carolina		Never	Ever	Never	Ever								
		AHS	Metolachlor	52,711	23,097	61	23	1.0	0.6–1.7						

		cohort, 1993 – 2004	1Pesticides2Adjusted 1Odds ratios aexposure1 amore	with at le for age gr nd 95 % ong appli	east 10 expos oup, cigarett 6 confident icators in th	sed cases, or for e smoking (new ce intervals for e agricultural	r organochlor ver, past and c for pancreat health study	ines at leas current), dia ic cancer 7, 1993–20	t 5 expos abetes, an in rela 004:	sed cases, are re nd applicator ty tion to intens	eported. pe. ity-weight	ed pesticide	
			Pesticides	Ir w p ez	ntensity- veighted besticide xposure ²	Controls	Pancreatic	Cancer Ca	ases	OR ³	95% CI ³		
			Metolachlo	or	Never	25,658		34		1.0	_		
					≤224	10,727		14		1.2	0.7–2.3		
					≥225	10,732		6		0.6	0.2–1.4		
]	p-trend						0.34		
			 Pesticides Intensity-v controls. Adjusted for 	having at weighted or age gro	t least 10 exp lifetime exp oup, cigarette	oosed cases and osure days [(ex e smoking (nev	l 5 cases per e posure days)x er, past, curre	exposure gr (intensity s nt), diabete	oup are s score)]; c s	shown. cutoffs based oi	n median lev	vel among	
Agricul- tural health	Metolachlor	Prospective study of pesticide	Positive associ BMI >=30 Ha enrolment by e	iation be zard Rat	tween body te Ratio (H er use of pe	mass index (R) and 95 % sticides amore	(BMI) and co Confidence ng men:	olon cance Intervals (er: incre (CI) for	ased risk for r Colon Cance	netolachlor er in relatio	users when to BMI at	Andreotti, G., et al. (2010)
study (AHS)		applicators in Iowa and North	BMI (kg/m ²)	N	HR ¹	95 %CI ¹	p-inter- action ²	N	HR^1	95 %CI ¹		p-inter- action ²	
		Carolina		No Meto	olachlor			Metolach	nor				
		AHS cohort.	<25	28	1.00	Ref		12	1.00	Ref			
		1993 –	25-29.9	57	1.09	0.67–1.77		36	1.39	0.68–2.83			
		2005	>=30	31	1.29	0.74–2.25		35	2.91	1.42–5.96			
			trend ¹		1.01	0.96–1.06	0.70		1.09	1.04-1.15	0.001	0.02	
			 Based on adjusted for Interaction 	Cox regree or race, ea n calculate	ession using ducation, far ed using nev	age as time-dep nily history col er/ever pesticio	pendent varial on cancer. le use and con	ole; test of t ntinuous BN	trend cal	culated using c	ontinuous B	MI; models	
Agricul- tural	Metolachlor	Prospective study of	No association	n between	n metolach	or and colore	ectal cancer.						Lee, W. J., et al.

health study		pesticide applicators	Colorectal ca Study, 1993-	ncer ris 2002:	k among	pesticid	e applicat	ors by e	ever/nev	ver expo	osed to me	tolachlo	r in the Ag	ricultu	ral Health	(2007)
(AHS)		in Iowa and North	Pesticides ¹		Colorect	al (n = 3	05)		Colon	(n = 2	12)		Rectum	(n = 9	3)	
		Carolina AHS		Obser cases ²	ved	OR ³	95 % CI ³	Obser cases	ved	OR	95 % CI	Observ	ved cases	OR	95 % CI	
		cohort, 1993 – 2002		Exp.	Non- exp.			Exp.	Non- exp.			Exp.	Non- exp.			
		2002	Metolachl or	107	146	1.0	0.8, 1.3	73	104	1.0	0.7, 1.4	34	42	1.0	0.6, 1.7	
			1 The info 2 Missing 3 OR, Odd among a	rmation data for s ratio; (ll enrolm	for ever/r some que CI, confic nent appli	ever exponential estions are lence inte cators. Th	osed to 50 e responsib rval. Odds ne referenc	pesticid le for di ratio ad e catego	es come fference justed fo pry was a	s from the in total or age, s applicato	he enrollme cancer case moking, sta ors who we	ent questi es. ite, total o re not exp	onnaire. lays of pest posed to eac	icide aj h pesti	pplication cide.	
Agricul- tural health study (AHS)	Metolachlor	Prospective study of pesticide applicators in Iowa and	Analysis of i cancer. Expo Metolachlor- risk of prosta	nteracti sure dep 8q24 SI te cance	on of ge pendent NP (rs12 er in the	enetic ris increase 547643) AHS:	sk factor of OR. interactio	for pro ons with	state ca	nncer (8 sed tren	3q24 varia ds across s	nts), me strata of	tolachlor u	ise an	d prostate e days and	Koutros, S., et al. (2010).
		North Carolina		Nonex	posed			Low e	xposed			High e	exposed		p-inter- action	
		cohort, 1993 –	Cases/ Controls	O	R* (95 %	6 CI)	Cases/ Control	s Ol	R* (95)	% CI)	Cases/ Control	s	OR* (95 %	CI)		
		2003	369/711	1.0	05 (0.87-	-1.27)	179/302	2 1.	15 (0.87	7–1.53)	133/302	2 1	.47 (1.08–2	2.00)	0.05	
			*OR per risk a	llele assi	uming a l	og-additi [,]	ve model.	Adjuste	l for age	and sta	te of resider	nce.				
Agricul- tural	Metolachlor	Prospective study of	Negative asso	ociation	of high	metolac	hlor expo	sure an	d prosta	ate canc	er.					Barry, K. H., et al. (2011)
health study		pesticide applicators		Associa	ations b	etween p	pesticide	intensi	ty-weig	hted li	fetime day	ys and p	orostate ca	ncer:		
(AHS)		in Iowa and North							Pest	icide ex	posure					
		Carolina		No	one ^a	Low				High						

		AHS	Pesticide	Ca/Co	Ca/C	Со	OR (95 %	CI) ^b	Ca/	Co C	OR (95 % CI)	b	ptrend ^c		
		1993 –	Metolachlor	369/712	190/	/304	1.21 (0.97,	1.52)	119	9/298 0	0.77	(0.60, 0.9	9 9)	0.02		
		2004	Ca, cases; CI, conf	idence inter	val; Co,	, control	s. ^a Referent g	roup f	for estin	mated effec	cts of	low and h	nigh pestici	de use.		1
			^b Adjusted for	or age and st	ate. ^c p-V	Value fo	r pesticide tre	nd, ad	justed f	for age and	l state		0			
Case-	Metolachlor	Pooled data	No association o	f metolach	lor use	and not	n-Hodgkin l	ymph	oma (1	NHL)						De Roos, A. J.,
control		from three		e											et al. (2003)	
study		case-control	Effect estimates	Effect estimates for use of metolachlor and NHL incidence, adjusting for use of other pesticides (the estimate is												
		studies	adjusted for use	of 46 other	pestici	ides, ag	e, and study	site):								
		conducted		Expos	sed [n (%)]			Lo	gistic regr	ressi	on	Hierarchi	ical regression	on	
		by the		F						88-						
		National Cancer	Cases (N=650))	Con	ntrols (N	N=1933)	(OR (95	5 % CL)†	•	C	OR (95 %	CL)		
		Institute	13 (2.0 %)		37 ((1.9 %)			0.7 (0.	3 to 1.6)		0	.7 (0.4 to	1.5)		
		during the														
		1980s in the														
		Midwestern														
		United														
		States of														
		America.														
		47														
		pesticides														
G		D									•					x xx x x x
Case-	Metolachlor	Population	Metolachlor was	s part of a	in herb	icide g	roup, an ac	etanil	ide gro	oup and a	a nit	rosatable	pesticide	es group. N	on-	Lee, W. J., et al.
Control		based on	significantly inc	reased OR	ts (~ tv	wo-fold) in the her	rb1c1d	e grou	up for gli	iobla	stoma ar	nd for gli	oblastoma a	and	(2005)
study		case-control	astrocytoma in tr	ne acetanili	de grot	up as w	ell as in the	nistro	satable	e pesticide	es gro	oup.				
		study,	Non significantly	inonacca		for most	alaahlan an	1 6.00	:		~ ~		ondoro n	ot omono o	alf	
		interviews	non-significanti	y increased	u or i	for met	ofaction and	i ora	m-can	cer among	ig pr	oxy-resp	onders, n	ot among s	en-	
		with mon	responders.													
		and women	Odds ratios (ORs) and 95 % confidence intervals (CIs) for brain cancer by ever-use of pesticide classes by													
		diagnosed	histological type	s among a	lult mal	le farm	ers.	(13)	101 010		1 Uy	ever-use	of pesti	ende endsses	Uy	
		with	liistologiear type	s among a			c15.									
		gliomas		Glio	blastom	na multi	iforme		Astroc	cytoma		Other	glioma			
		(n=251)		Cases				Case	NC .		C	2525				
		between			Cases			Cast	.0	1		4505	1			
		1988 and	Controls n OR* 95 % CI n OR* 95 % CI n OR* 95 % CI													

1993 and		Non-farmers	112	2	5 1	1.0	Ref‡	15	1.0	Ref‡	9	1.0	Ref‡		
(n=498)		Herbicides	70	2	1 1	1.9	0.9-3.8	12	1.6	0.7-3.9	9 5	1.1	0.3-3.7		
Eastern		Acetanilide	34	1	0 1	1.9	0.8-4.7	9	2.1	0.8-5.	5 3	0.9	0.2-3.8		
Nebraska		Nitrosatable pesticides use§	61	1	8 2	2.0	0.9-4.2	14	2.2	0.9-5.	1 4	0.9	0.3-3.5		
	*	Odds ratio Reference of Individual cyanazine, chemical fa T, 2,4-D, a insecticide	adjusted category pesticide dicamba amily: ac trazine, l s: bufenc Rs) and	for age i non-fa s were t, EPTC cetanilic outylate carb, car 95 % c	e (≤49, 1 armers. groupe C, glyph de herbi e, cyana rbaryl, o confide	s0–59, ed into h nosate, n icides (azine, d carbofu	60–69, ≥70 herbicides (2 metolachlor alachor, me licamba, EP uran, famph tervals (CI) and ,4,5-7 metr olach (C, gl ur, nic	responde T, 2,4-D ibuzin, p ilor, prop lyphosate cotine)	ent type. , alachlo paraquat, pachlor), e, metola ancer by	r, atrazi pendim nitrosat achlor, p	ne, bentaz ethalin, p able pesti ropachlor use of ind	on, butyla ropachlor cides (11 , triflurali ividual p	ate, chlora , triflurali herbicide in & 5 pesticides	umben, n) or s: 2,4,5-
	a	dult male farm	ners:												
	a	dult male farn	ners:	0	verall				Se	elf			Pı	roxy	
	a	dult male farn	ners:	Cases	overall				Se Cases	elf			Pr	roxy	
	a	dult male farn	Contr ols	Cases n	overall s OR	× 9 C	5 % Cor ZI ols	tr 1	Se Cases n	elf OR†	95 % CI	Contr	Pr Cases n	oxy OR†	95 % CI
	a	dult male farn Non- farmers	Contr ols 112	Cases n 49	Overall S OR 1.0	* 9 C R	5 % Cor CI ols Ref‡ 40	tr 1	Se Cases n 20	OR†	95 % CI Ref‡	Contr ols 72	Pr Cases n 29	OR†	95 % CI Ref‡
	a	dult male farn dult male farn Non- farmers Herbicides §	Contr ols 112 70	Cases n 49 38	Overall S OR 1.0 1.7	** 9 C R 1 3	25 % Cor CI ols Ref‡ 40 .0– 28 .0		Se Cases n 20 9	elf OR† 1.0 0.6	95 % CI Ref‡ 0.2- 1.7	Contr ols 72 42	Pr Cases n 29 29	OR† 1.0 2.8	95 % CI Ref‡ 1.4– 5.9
	a	dult male farn Non- farmers Herbicides § Acetanilide §	Contr ols 112 70 34	Cases n 49 38 22	Overall S OR 1.0 1.7 1.8	* 9. C R 1 3 0 3	5 % Corrol CI ols Ref‡ 40 .0- 28 .0 .0- .9- 17 .6 .0		Se Cases n 20 9 7	elf OR† 1.0 0.6 0.7	95 % CI Ref‡ 0.2- 1.7 0.2- 2.1	Controls 72 42 17	Pr Cases n 29 29 15	OR† 1.0 2.8 3.3	95 % CI Ref‡ 1.4– 5.9 1.3– 8.2
	a	dult male farn Non- farmers Herbicides § Acetanilide § Nitrosatabl e pesticides use§	Contr ols 112 70 34 61	Cases n 49 38 22 36	Overall S OR 1.0 1.7 1.8 1.9	* 9. C R 1 3 0 3 1 3	5 % Corrols CI ols Ref‡ 40 .0- 28 .0- 17 .6 .1- .4 27		Se Cases n 20 9 7 9	elf OR† 1.0 0.6 0.7 0.7	95 % CI Ref‡ 0.2- 1.7 0.2- 2.1 0.2- 1.8	Controls 72 42 17 34	Pr Cases n 29 29 15 27	coxy OR† 1.0 2.8 3.3 3.4	95 % CI Ref‡ 1.4– 5.9 1.3– 8.2 1.6- 3.7

			 Odds ratio adjusted for age (≤49, Odds ratio adjusted for age (≤49, Reference category: non-farmers. Individual pesticides were groupe cyanazine, dicamba, EPTC, glypl chemical family: acetanilide herb 	50–59, 60–69, ≥70) and respondent type. 50–59, 60–69, ≥70). ed into herbicides (2,4,5-T, 2,4-D, alachlor, at nosate, metolachlor, metribuzin, paraquat, pen icides (alachor, metolachlor, propachlor)	razine, bentazon, butylate, chloramben, dimethalin, propachlor, trifluralin) or	
Agricul- tural health study (AHS)	Metolachlor	Prospective study of pesticides applicators in Iowa and North Carolina AHS cohort, but only private pesticides applicators were analysed Cancer cases among the children of the cohort were both retrospectivel y identified	No association between metolachlo Paternal ^a use of metolachlor and su the Agricultural Health Study No. exposed (%) 3,032 (18) ^a Use of chemical by father befo	r and childhood cancer bsequent childhood cancer risk among 17 No. exposed cases 5 ore child's birth. bAdjusted for child's ag	7,280 children of Iowa participants in OR ^b (95 % CI) 0.69 (0.26-1.84) e at enrollment.	Flower, K. B., et al. (2004)

		after parental enrolment 17,280 children in total included				
		menudeu				
Hypothe -sis- gene- rating study	Metolachlor, atrazine, simazine, alachlor, nitrates	Potential correlations of spatial patterns of four types of childhood cancer and the	Children potentially exposed to metolachlor OR=1.54, 95 % CI, 1.1.4-2.07). The risk ind simazine, alachlor) were considered. Non-significant positive associations for m leukemia (Crude OR=1.48, 95 % CI,0.93-2. Crude odds ratios (OR) for selected childl exposure to all detectable concentrations o interval (CI) listed in parentheses:	had an increased risk for developing creased, when mixtures of the analy etolachlor and bone cancer (Crude 36) were observed. hood cancers in Maryland (ages 0- f selected herbicides and nitrates. I	g the analysed cancer types (Crude sed herbicides (nitrazine, atrazine, OR=2.26, 95 % CI, 0.97-5.24) / -17 years old) listed by potential Range of OR for 95% confidence	Thorpe, N. and A. Shirmohammadi (2005)
		distribution of nitrates and	Potential exposure	Crude odds ratio (Range of 95 % CI)	P-value	
		herbicides (atrazine.	Metolachlor	1.54 (1.14–2.07)	0.0061	
		simazine,	Nitrate/Atrazine/Metolachlor	7.56(4.16–13.73)	< 0.0001	
		metolachlor	Nitrate/Metolachlor/Simazine/Alachlor	5.31 (2.84–9.93)	< 0.0001	
) in groundwate r were explored	Crude odds ratios (OR) for selected childl exposure to all detectable concentrations of confidence interval (CI) listed in parenthese	nood cancers in Maryland (ages 0 of metolachlor; categorized by can es:	-17 years old) listed by potential cer type. Range of OR for 95 %	
		Data from the Maryland	Potential exposure	Crude odds ratio (Range of 95 % CI)	P-value	
		Cancer Registry for	Bone/metolachlor	2.26 (0.97–5.24)	0.0995	
		bone and brain	Leukemia/metolachlor	1.48 (0.93–2.36)	0.1256	
1						1

		cancer, leukemia and lymphomas, for ages 0 – 17 years, during the years 1992- 1998												
Case- control study	17 herbicides including metolachlor	Population based on case-control study in California (US).	No detection of Summary of h Childhood Let Analyte	of metolacl ouse-dust <u>akemia Stu</u> Detectio n limit	hlor in hous metolachlo ady, 2001– Child	se-dust of or detectio 2007: hood ALI	C childhoo on and co	ncentration	s for cases	s and con Contr	trols: The N ols (n=306)	orthern Cal	ifornia	Metayer, C., et al. (2013)
		Subset of Northern California Childhood Leukemia		(ng/g)	Detected (%)	Not detecte d (%)	Missin g (%) ^a	Arithmet ic mean ^b (SD) (ng/g)	Detecte d (%)	Not detecte d (%)	Missing(%)	Arithmet ic mean ^b (SD)	P- value ^d	
		Study (NCCLS): 2001-2007, dust samples were collected in families with children <8years of age at the time of diagnosis	Metolachlo r ^c ^a Missing b ^b Analyte c ^c Hexane–a ^d P-value de	67.6 ecause of ir oncentration cetone extr erived from	0 (0) nsufficient d n in ng/g of action metho Fisher's exa	251 (100) ust or inter dust. od. act test cor	1 (<1) ferences i nparing %	NA n the chemic o detected be	2 (<1) cal analyse tween case	304 (99) s.	0 (0) trols.	0.5 (5.6)	0.2	

Table 14: Summary table of other studies relevant for carcinogenicity

Type of study/data	Test substance, purity	Relevant information about the study (as applicable)					0	bservation	IS					Reference
Cell proliferation assay in rat liver cells (in vivo)	Cell Metolachlor proliferation 97.3 %, assay in rat batch liver cells number: (in vivo) P111072, S- enantiomeri No GLP c content not reported	5 rats/sex/dose (Sprague Dawley, CRL, CD ⁷ BR) Oral (gavage)	500 mg/kg bw: D 1000 mg/kg bw: Response to posi	DNA sy liver v tive co	vnthesis veight ↑(ontrol in	↑: ~ 4-f (+19 % female	old in m in femal animals	ales. es, +9 % in markedly s	n males) stronger). DNA sy	vnthesis ↑:	~3-fold in	females	Anonymous (17) 1994
No GLP		Dose levels 0; 150; 500 and 1000 mg/kg bw	Dose (mg/kg b.w.)		0		150	50	0	1	000	Dl 15 n	MN ng/kg	
	not reported	Positive control:		М	F	М	F	М	F	М	F	М	F	
		dimethylnitrosamine (DMN; 10 mg/kg bw) After dosing (0.3 –	liver weight (g) efficiency(%)	15.3	10.2	15.9	10.7	15.2	11.3	16.7 ** (†9 %)	12.1** (†19 %)	14.1	10.6	
		2.3 h) animals were administered bromodeoxyuridine	L.I. (%)	3.1	3.7	3.0	n.a.	13.2 ** (†425 %)	3.1	n.a.	10.6** (†286 %)	18** (486 %)	33.5 ** (1080 %)	
		(BUdR) and sacrificed 72 h later.	histopathology									•	1	
			increase mitoses	0/5	1/5	0/5	0/5	2/5	0/5	0/5	0/5	5/5	4/4	
			glycogen storage	1/5	3/5	3/5	0/5	5/5	3/5	0/5	3/5	4/5	1/4	
			L.I: labelling ind	ex, n.a.	not ana	ysed, **	significa	nt at p≤0.01	, c: four	r animals p	er group			

Type of study/data	Test substance, purity	Relevant information about the study (as applicable)		Observations									Reference
In vitro/in S- vivo m unscheduled , 9 DNA B synthesis in /7	S- metolachlor , 95.6 %, B.n.:V4673	3 rats/sex/dose/time point (Sprague Dawley,Tif:RAIf	Increase in DNA replicatio Increase in DNA replicatio	n in male n in fema	e hepatoo ale hepat	cytes aft tocytes a	er 38 ho after 15	ours at 1 and 38 l	500 mg nours at	/kg bw 500 and	1500 m	ıg/kg bw	Anonymous (22), 1995b
synthesis in rat	/7; S- enantiomeri	Oral (gavage) Dose levels 0; 500;	Males										
hepatocytes	c content: 84 %	1500 and 5000 mg/kg b.w.(males) and 0;	Dose (mg/kg b.w.)	0			500			1500			
GLP		500; 1500 and 3200 mg/kg b.w. (females) Positive control: dimethylnitrosamine	treatment (h)	2	15	38	2	15	38	2	15	38	
			viability (%)	82	84	82	84	78	80	67	67	83	
			S-phase (%)	-	0.07	0.57	-	8	51	-	7	301	
		(DMNA, 15 mg/kg, 2h) or 4-	NGC (total)	0	-8	-	-7	-20	-	-3	-13	-	
		acetylaminofluorene	NGC (cells in repair)	27	32	-	33	44	-	32	33	-	
		(4-AAF, 1000 mg/kg, 38h)	% cells in repair	137	73	-	150	60	-	137	93	-	
		Animals were killed				Fema	ales						
		after dosing	viability (%)	79	80	71	92	86	83	87	84	87	
			S-phase (%)	-	0.18	0.37	-	24	36	-	440	452	
			NGC (total)	0	0	-	10	-4	-	-3	2	-	
			NGC (cells in repair)	29	32	-	36	27	-	31	2	-	
			% cells in repair	140	83	-	290	137	-	190	130	-	
			NCG: mean (net) nuclear gra	ain count,	NGC>2:	fraction	of cells i	n repair					

Type of study/data	Test substance, purity	Relevant information about the study (as applicable)		Observations									
			In the concomitar (females)	at positive contro	l at 38h, S-phase	fraction increase	was 27-fold (mal	es) and 10-fold					
28-day	S-	3 or 5 rats/sex/dose	After 28 days: no i	ncrease of total n	umber of hepatod	cellular nuclei or l	abelling index		Anonymous				
Replicative	, 95.6 %,		Moderate increase of smooth endoplasmatic reticulum for metolachlor and S-metolachlor										
liver DNA	batch	Oral (dietary)	CYP2B induction, and to a lesser extent CYP1A1 induction by metolachlor and S-metolachlor										
synthesis r assay,	number: V4673/7, S- enantiomeri	r: Treatment for 28 days /7, S- omeri ent: S-metolachlor: Dose levels of 0; 2.65; 24.5; 242; 426 mg/kg bw (males) and: 0; 2.73; 26.4; 257; 435 mg/kg bw (females)	No positive control included										
ultramorphol			Results in males (CGA77102 = S-metolachlor, CGA24705 = metolachlor):										
ogical changes.	c content: 84 %		Dose	P450	EROD	PROD	UDPGT	GST					
biochemistry parameters	& Metolachlor			[nmol/g liver]	[nmol/min/g liver]	[nmol/min/g liver]	[nmol/min/g liver]	[nmol/min/g liver]					
	, 97.7 %;		Males	l		4		•					
No GLP	batch	Metolachlor: Dose	Treatment Groups	3		-	_						
	number: P111072	levels: 0; 265; 447	0 ppm	9.55 (0.61)	1.83 (0.39)	0.50 (0.19)	879 (85)	138 (15)					
	1111072	mg/kg b.w. (males) and: 0; 264; 433	30 ppm CGA 77102	9.03 (2.83)	1.83 (1.00)	0.51 (0.29)	810 (277)	121 (29)					
		and: 0; 264; 433 mg/kg b.w. (females) 77102 300 ppm CGA 77102	300 ppm CGA 77102	10.29 (1.18)	2.78 (0.47)	1.05 (0.35)	1095 (218)	119 (46)					
			3000 ppm CGA 77102	13.89* (3.36)	4.06* (1.54)	4.20*** (2.56)	1653** (428)	183 (77)					
			5000 ppm CGA 77102	12.64 (2.18)	4.83 ** (1.87)	4.91*** (2.04)	1729** (424)	179 (69)					

Type of study/data	Test substance, purity	Relevant information about the study (as applicable)			Observ	vations			Reference
			3000 ppm CGA 24705	12.91 (2.62)	4.90** (2.11)	3.14*** (2.31)	1693** (520)	144 (36)	
			5000 ppm CGA 24705	14.56* (2.21)	5.33*** (0.64)	4.98*** (0.86)	2245*** (320)	180 (68)	
			Treatment/Recov	ery Groups					
			0/0 ppm	8.92 (1.03)	2.51 (0.66)	0.46 (0.22)	1052 (232)	124 (11)	
			5000/0 ppm CGA 77102	8.97 (2.17)	2.52 (0.70)	0.62 (0.17)	956 (150)	111 (42)	
			5000/0 ppm CGA 24705	8.34 (1.44)	1.63 (0.28)	0.40 (0.14)	735 (151)	143 (12)	
			Results in females	(CGA77102 = S	S-metolachlor, CG	A24705 = metola	chlor):		
			Dose	P450	EROD	PROD	UDPGT	GST	
				[nmol/g liver]	[nmol/min/g liver]	[nmol/min/g liver]	[nmol/min/g liver]	[nmol/min/g liver]	
			Females					. –	
			Treatment Groups	8					
			0 ppm	7.14 (1.43)	1.32 (0.64)	0.07 (0.04)	625 (94)	122 (21)	
			30 ppm CGA77102	6.47 (1.37)	1.39 (0.55)	0.04 (0.01)	636 (103)	126 (26)	
			300 ppm CGA 77102	7.88 (0.78)	1.61 (0.26)	0.11 (0.04)	741 (60)	128 (26)	
			3000 ppm CGA 77102	9.02 (0.91)	2.97** (0.87)	2.15*** (0.41)	867** (78)	177* (20)	
			5000 ppm CGA 77102	9.68 (2.56)	3.27** (1.38)	4.34*** (2.16)	1027*** (236)	208** (34)	
			3000 ppm CGA 24705	9.20 (1.45)	3.09** (1.02)	1.71*** (0.64)	857** (115)	141 (36)	

Type of study/data	Test substance, purity	Relevant information about the study (as applicable)		Observations								
			5000 ppm CGA 24705 Treatment/Recove 0/0 ppm 5000/0 ppm CGA 77102 5000/0 ppm CGA 24705 *: p < 0.05, **: p <	11.29*** (0.88) ery Groups 6.63 (1.04) 5.79 (1.04) 7.27 (0.90) < 0.01; ****: p < on	2.91* (0.96) 1.58 (0.85) 1.09 (0.20) 1.41 (0.36) < 0.001 (two-sided D	3.13*** (1.06) 0.12 (0.01) 0.07** (0.02) 0.09 (0.03) Dunnett's test)	1067*** (158) 686 (67) 622 (77) 603 (93)	188**(21) 125 (35) 113 (14) 128 (25)				
Assessment of hepatic cell proliferation, apoptosis and liver enzyme induction No GLP	Metolachlor , 97.7 %, batch number: P.11072	15 female CD-Crl: CD (SD) rats Oral (dietary) Treatment for up to 3, 5, 7, 14, 28 and 60 days	PROD and BROD extent in comparis Protein levels of C No positive contro Dietary administ 3000 ppm metol Mean PROD act (% of control) Mean BROD act (% of control) Mean EROD act (% of control) Mean EROD act (% of control) Mean MROD act	activities ↑ aft on to PROD ar CYP2B and CY ol included tration of lachlor tivity tivity tivity	er 14 and 60 days , nd BROD) P3S ↑ after 14 and 14 days 902*** 1336*** 100 114	EROD and MRC 60 days, CYP1A2 60 day 1590* 1918* 193* 162*	D ↑ after 60 days 2 ↑ after 60 days /s **	; (to a lesser	Anonymous (27), 2006			

Type of study/data	Test substance, purity	Relevant information about the study (as applicable)		Observations							
			(% of cont * and ***: S	rol) tatistically significantly d	ifferent from cont	rol with p≤0.05 a	nd p≤0.001,	respectively.			
				14 Days		60 Days					
				0 ppm	3000 ppm	0 ppm	30	00 ppm			
			CYP1A1	n.d.	n.d.	n.d.	n.c	1.			
			CYP1A2	11143	11002	9572	17	340			
			CYP2B	n.d.	20122	n.d.	26	831			
			CYP3S	3391	14216	5758	19	975			
			Units are relat analysed	ive area units derived fror l for statistical significanc	n western blot bar e. Data are group	nd intensities. n.d. means.	: Not detect	ed. These dat	a were not		
CAR3	S-	CAR3 reporter	Activation of	f CAR3 from rat: 57-fo	old, mouse: 27-f	old and human 9	9-fold			Anonymous	
n assay	, 98.8 % w/w, batch number: CAB2H120 58, 87.4 %	humans, mice and rats Positive control: CITCO, TCPOBOP and Clotrimazole	Activation of substances (human: 83 %	f CAR3 by S-metolach Clotrimazole, TCPOBC)).	lor in compariso DP, CITCO), wa	on to the used 'p as between 59	oositive con and 83 %	ntrols', direc (rat: 60 %,	et-acting model mouse: 59 %,	(34), 2014,	
	S- enantiomeri c content		Construct	Treatment	Normalised Luciferase activity	SD	Fold Change	SD	Statistical significance (p<0.01)		
			Empty Vector	DMSO	0.011601867	0.001689407	1.0000	0.1456			
				S-metolachlor 30µM	0.008282301	0.004001144	0.7139	0.3449	No		

Type of study/data	Test substance, purity	Relevant information about the study (as applicable)	Observations								
			hCAR3	DMSO	0.006283901	0.002030466	1.0000	0.3231			
				PB 1mM	0.005458657	0.003216095	0.8687	0.5118	No		
				CITCO 5µM	0.064987884	0.025951624	10.3420	4.1299	Yes		
				S-metolachlor 1 µM	0.010589304	0.000771497	1.6851	0.1228	No		
				S-metolachlor 3 µM	0.017636257	0.000630748	2.8066	0.1004	Yes		
				S-metolachlor 10 µM	0.046978073	0.004127987	7.4759	0.6569	Yes		
				S-metolachlor 30 µM	0.054376733	0.002486991	8.6533	0.3958	Yes		
			Results for	mCAR and rCAR:	Γ	Τ	Τ	T	1		
			Construct	Treatment	Normalised Luciferase activity	SD	Fold Change	SD	Statistical significance (p<0.01)		
			Empty Vector	DMSO	0.011601867	0.001689407	1.0000	0.1456			
				S-metolachlor 30 µM	0.008282301	0.004001144	0.7139	0.3449	No		
			mCAR3	DMSO	0.011443407	0.000769916	1.0000	0.0673			

Type of study/data	Test substance, purity	Relevant information about the study (as applicable)		Observations							Reference		
				PB 1mM		0.023631	1748	0.0020298	14 2.0651	0.17	774	Yes	
				ТСРОВО	Ρ 0.5 μΜ	0.51872	.4797	0.0206912	201 45.3296	5 1.80	081	Yes	
				S-metolac	chlor 1 μM	0.096709	9989	0.0041786	78 8.4512	0.36	552	Yes	
				S-metolac	chlor 3 μM	0.171585	5113	0.0058053	68 14.9942	0.50)73	Yes	
				S-metolad	chlor 10 μM	0.281709	9139	0.0146598	35 24.6176	5 1.28	811	Yes	
				S-metolad	chlor 30 μM	0.307933	3035	0.0273868	99 26.9092	2.39	932	Yes	
			rCAR3	DMSO		0.005454	4521	0.0004477	46 1.0000	0.08	321		
				PB 1mM		0.032469	9909	0.0018288	58 5.9528	0.33	353	Yes	
				CLOT 10	μΜ	0.52054	0006	0.0159267	700 95.4328	3 2.91	199	Yes	
				S-metolac	chlor 1 μM	0.049952	2778	0.0017972	51 9.1581	0.32	295	No	
				S-metolac	chlor 3 μM	0.119770	0083	0.0154475	92 21.9579	2.83	321	No	
				S-metolac	chlor 10 μM	0.279788	8451	0.0706750	39 51.2948	3 12.9	9572	Yes	
				S-metolac	chlor 30 μM	0.311426	6195	0.0918978	38 57.095	6.84	180	Yes	
Enzyme and DNA	S- metolachlor	Sprague Dawley rats (out-bred Crl:CD(SD)	No increase Cell prolife	e in PROD a ration signif	ctivity, BRO	D activity ases (up to	y slight o 1.9-f	ly increased old)	l up to 1.3-fc	ld,			Anonymous (10), 2014
induction in cultured	, 98.8 %, batch number:	Hepatocytes from two independent perfusions were	Phenobarbi 2.8-fold as	tal induced well as BRC	increased cel D activity u	ll prolifer p to 4.7-fo	ation (old. (A	up to 1.64- TP as indica	fold) and inc ator for cytot	reased oxicity	PROD	activity up to	
female rat hepatocytes	CAB2H120 58, 87.4 % S- enantiomeri	pooled. Concentrations: 1, 5, 10, 20, 40 and 75 µM	Trea	Treatment AT (lumine units rele		sence sed) ^a	-phase inde	e labelling x (%) ^b	PROD (p resorufin/mi	nol 1/mg) ^c	BR resort	ROD (pmol 1fin/min/mg) ^c	
No GLP	c content		Vehicle c	ontrol	99051 ± 79	68 6.	$.49 \pm 1$.24	0.405 ± 0.09	1	2.42 ±	± 0.22	

Type of study/data	Test substance, purity	Relevant information about the study (as	Observations						
		applicable)							
		Exposure for 96 hours	(0.5 % v/v DMSO)	(100.0 ± 8.0)	(100.0 ± 19.1)	(100.0 ± 22.6)	(100.0 ± 9.3)		
		Positive control: phenobarbital sodium (PB: 10, 100 and 1000	PB 10 μM	77206 ± 3949** (78.0 ± 4.0)	$\begin{array}{c} 10.39 \pm 1.09^{**} \\ (160.0 \pm 16.8) \end{array}$	$\begin{array}{c} 0.488 \pm 0.085 \\ (120.5 \pm 21.0) \end{array}$	$\begin{array}{c} 3.50 \pm 0.94 \\ (144.5 \pm 38.8) \end{array}$		
		$(\mu B, 10, 100 \text{ and } 1000 \mu M)$ and epidermal growth factor (EGF)	ΡΒ 100 μΜ	89463 ± 7925 (90.3 ± 8.0)	$\begin{array}{c} 10.59 \pm 1.08^{**} \\ (163.1 \pm 16.6) \end{array}$	$\begin{array}{c} 0.921 \pm 0.059^{**} \\ (227.2 \pm 14.6) \end{array}$	7.08 ± 0.11 ** (292.3 ± 4.7)		
			ΡΒ 1000 μΜ	$95601 \pm 5474 (96.5 \pm 5.5)$	$\begin{array}{c} 10.64 \pm 0.85^{**} \\ (164.0 \pm 13.1) \end{array}$	$\begin{array}{c} 1.134 \pm 0.057^{**} \\ (279.9 \pm 14.1) \end{array}$	$\begin{array}{c} 11.48 \pm 0.79^{**} \\ (474.1 \pm 32.6) \end{array}$		
			S-metolachlor 1 µM	93673 ± 7611 (94.6 ± 7.7)	$\begin{array}{c} 11.88 \pm 0.974^{**} \\ (183.0 \pm 15.0) \end{array}$	$\begin{array}{c} 0.350 \pm 0.041 \\ (86.4 \pm 10.1) \end{array}$	$\begin{array}{c} 2.77 \pm 0.06 \\ (114.6 \pm 2.6) \end{array}$		
			S-metolachlor 5 μM	$96460 \pm 12271 \\ (97.4 \pm 12.4)$	$\begin{array}{c} 12.43 \pm 1.54^{**} \\ (191.5 \pm 23.7) \end{array}$	$\begin{array}{c} 0.369 \pm 0.054 \\ (91.0 \pm 13.3) \end{array}$	$\begin{array}{c} 2.76 \pm 0.12 \\ (114.1 \pm 4.9) \end{array}$		
			S-metolachlor 10 μM	89418 ± 5537* (90.3 ± 5.6)	$\begin{array}{c} 12.34 \pm 1.42^{**} \\ (190.1 \pm 21.8) \end{array}$	$\begin{array}{c} 0.398 \pm 0.002 \\ (98.2 \pm 0.5) \end{array}$	$3.23 \pm 0.17 **$ (133.7 ± 6.9)		
			S-metolachlor 20 μM	$88500 \pm 2530*$ (89.3 ± 2.6)	$\begin{array}{c} 12.01 \pm 2.03^{**} \\ (185.0 \pm 31.2) \end{array}$	$\begin{array}{c} 0.440 \pm 0.082 \\ (108.6 \pm 20.2) \end{array}$	$3.35 \pm 0.29*$ (138.6 ± 12.2)		
			S-metolachlor 40 µM	$93104 \pm 3650 (94.0 \pm 3.7)$	$9.73 \pm 1.29^{**}$ (149.9 ± 19.8)	$\begin{array}{c} 0.448 \pm 0.077 \\ (110.5 \pm 19.0) \end{array}$	$\begin{array}{c} 3.12 \pm 0.19 \ast \\ (128.7 \pm 7.9) \end{array}$		
			S-metolachlor 75 μM	57907 ± 3394** (58.5 ± 3.4)	$\begin{array}{c} 11.96 \pm 0.70^{**} \\ (184.3 \pm 10.8) \end{array}$	$\begin{array}{c} 0.377 \pm 0.092 \\ (93.1 \pm 22.7) \end{array}$	$\begin{array}{c} 3.20 \pm 0.21 * \\ (132.3 \pm 8.5) \end{array}$		
			EGF 25 ng/mL	-	$\begin{array}{c} 26.23 \pm 1.14^{**} \\ (404.1 \pm 17.6) \end{array}$	-	-		
			Values are mean \pm SD. Va 3 per group. Statistic	alues in parenthesis ar	the mean % control \pm S ontrol $p < 0.05$: **p<0	D. A, $n = 6$ per group, 0.01 (Student's t-test . 2)	b n = 5 per group, c n = -sided)		
Enzyme and DNA synthesis	S- metolachlor , 98.8 %,	Human female hepatocytes from one donor.	No effect on cell prolife	eration. No effect or	n CYP enzyme activ	vity. (ATP as indicate	or for cytotoxicity)	Anonymous (11), 2014	
induction in cultured	batch number:	Concentrations: 1, 5,							

Type of study/data	Test substance, purity	Relevant information about the study (as applicable)			Observations			Reference	
female human hepatocytes	CAB2H120 58, 87.4 % S- enantiomeri	10, 20, 40 and 75 μM Exposure for 96 hours Positive control:	Treatment	ATP (luminescence units released) ^a	S-phase labelling index (%) ^b	PROD (pmol resorufin/min/mg) ^c	BROD (pmol resorufin/min/mg) ^c		
No GLP	c content	phenobarbital sodium (PB; 10, 100 and 1000 uM) and epidermal	Vehicle control (0.5 % [v/v] MSO)	$\begin{array}{c} 110849 \pm 2851 \\ (100.0 \pm 2.6) \end{array}$	$\begin{array}{c} 0.31 \pm 0.06 \\ (100.0 \pm 18.8) \end{array}$	$\begin{array}{c} 0.133 \pm 0.052 \\ (100.0 \pm 39.1) \end{array}$	$\begin{array}{c} 0.484 \pm 0.073 \\ (100.0 \pm 15.0) \end{array}$		
		growth factor (EGF, 25 ng/ml)	ΡΒ 10 μΜ	$\begin{array}{c} 100370\pm 3668^{**}\\ (90.5\pm 3.3)\end{array}$	$\begin{array}{c} 0.36 \pm 0.14 \\ (117.1 \pm 45.2) \end{array}$	$\begin{array}{c} 0.100 \pm 0.034 \\ (75.0 \pm 25.6) \end{array}$	$\begin{array}{c} 0.758 \pm 0.047^{**} \\ (156.8 \pm 9.7) \end{array}$		
			ΡΒ 100 μΜ	$\begin{array}{c} 106086 \pm 7328 \\ (95.7 \pm 6.6) \end{array}$	$\begin{array}{c} 0.35 \pm 0.13 \\ (114.9 \pm 41.4) \end{array}$	$\begin{array}{c} 0.238 \pm 0.044 \\ (178.7 \pm 33.0) \end{array}$	$\begin{array}{c} 0.734 \pm 0.021^{**} \\ (151.9 \pm 4.4) \end{array}$		
			ΡΒ 1000 μΜ	93842 ± 9505** (84.7 ± 8.6)	$\begin{array}{c} 0.27 \pm 0.07 \\ (86.3 \pm 24.3) \end{array}$	$\begin{array}{c} 0.298 \pm 0.057 * \\ (223.4 \pm 43.2) \end{array}$	$\begin{array}{c} 1.487 \pm 0.252^{**} \\ (307.5 \pm 52.0) \end{array}$		
				S-metolachlor 1 μM	$99434 \pm 5363^{**} \\ (89.7 \pm 4.8)$	$\begin{array}{c} 0.31 \pm 0.12 \\ (99.3 \pm 38.1) \end{array}$	$\begin{array}{c} 0.225 \pm 0.019 * \\ (169.0 \pm 14.5) \end{array}$	$\begin{array}{c} 0.226 \pm 0.058^{**} \\ (46.8 \pm 11.9) \end{array}$	
			S-metolachlor 5 μM	$\begin{array}{c} 101606 \pm 7659 * \\ (91.7 \pm 6.9) \end{array}$	$\begin{array}{c} 0.35 \pm 0.05 \\ (113.5 \pm 15.9) \end{array}$	$\begin{array}{c} 0.087 \pm 0.030 \\ (65.1 \pm 22.9) \end{array}$	$\begin{array}{c} 0.357 \pm 0.091 \\ (73.9 \pm 18.8) \end{array}$		
			S-metolachlor 10 µM	97038 ± 3326** (87.5 ± 3.0)	$\begin{array}{c} 0.43 \pm 0.15 \\ (140.6 \pm 48.8) \end{array}$	$\begin{array}{c} 0.109 \pm 0.031 \\ (81.9 \pm 23.6) \end{array}$	$\begin{array}{c} 0.312 \pm 0.117 \\ (64.4 \pm 24.1) \end{array}$		
			S-metolachlor 20 µM	$92539 \pm 5387 ** \\ (83.5 \pm 4.9)$	$\begin{array}{c} 0.39 \pm 0.07 \\ (126.4 \pm 23.9) \end{array}$	$\begin{array}{c} 0.075 \pm 0.020 \\ (56.2 \pm 14.7) \end{array}$	$\begin{array}{c} 0.205 \pm 0.110 * \\ (42.4 \pm 22.8) \end{array}$		
			S-metolachlor 40 µM	83329 ± 4112** (75.2 ± 3.7)	$\begin{array}{c} 0.35 \pm 0.04 \\ (114.5 \pm 13.1) \end{array}$	$\begin{array}{c} 0.082 \pm 0.007 \\ (61.3 \pm 5.6) \end{array}$	$\begin{array}{c} 0.167 \pm 0.036^{**} \\ (34.5 \pm 7.3) \end{array}$		
			S-metolachlor 75 µM	48926 ± 4280** (44.1 ± 3.9)	$0.21 \pm 0.07*$ (67.3 ± 22.4)	$\begin{array}{c} 0.077 \pm 0.024 \\ (58.1 \pm 17.8) \end{array}$	$\begin{array}{c} 0.096 \pm 0.004^{**} \\ (19.9 \pm 0.8) \end{array}$		
			EGF 25 ng/mL	-	$2.99 \pm 0.21^{**} \\ (969.9 \pm 67.2)$	-	-		
			Values are mean \pm SD.	Values in parenthesis	are mean % control ±	SD. ^a $n = 6$ per group,	b n = 5 per group, c n =		

Type of study/data	Test substance, purity	Relevant information about the study (as applicable)			Observations			Reference
			3 per group Statistically differer	nt from control *p<0.05; *	**p<0.01 (Student's t	-test, 2-sided).		
Enzyme and DNA synthesis induction in cultured female human hepatocytes	and S- metolachlor , 98.1 % Human female hepatocytes from two donors in w/w, Concentrations: 1, 5, 10, 20, 40 and 75 μM tes Positive control: phenobarbital sodium (PB; 10, 100 and 1000 μM) and epidermal growth factor (EGF,		No induction of ana No induction of cell positive control (pho were seen (ATP ↓) no analysis of CYP CAR Donor 1:	lysed CYP enzyme act proliferation enobarbital sodium salt enzymes, which could	ivity (PROD & BR	OD) ncrease in PROD ar plvement of other nu	nd signs of cytotoxicity	Anonymous (5), 2019
No GLP		growth factor (EGF, 25 ng/ml)	Treatment	ATP (luminescence units released) ^A	S-phase labelling index (%) ^B	PROD (pmol resorufin/min/m g) ^C	BROD (pmol resorufin/min/mg) ^D	
		Exposure for 96 hours	Vehicle control (0.1 % [v/v] DMSO)	$\begin{array}{c} 141825\pm 5596 \\ (100.0\pm 3.9) \end{array}$	$0.24 \pm 0.04 \\ (100.0 \pm 16.8)$	$\begin{array}{c} 0.192 \pm 0.045 \\ (100.0 \pm 23.6) \end{array}$	$\begin{array}{c} 0.382 \pm 0.106 \\ (100.0 \pm 27.8) \end{array}$	
			ΡΒ 10 μΜ	$\begin{array}{r} 163945 \pm \\ 15690^{***} \\ (115.6 \pm 11.1) \end{array}$	$\begin{array}{c} 0.23 \pm 0.03 \\ (93.3 \pm 12.5) \end{array}$	$\begin{array}{c} 0.129 \pm 0.078 \\ (67.0 \pm 40.8) \end{array}$	$\begin{array}{c} 0.409 \pm 0.061 \\ (106.9 \pm 16.0) \end{array}$	
			PB 100 μM PB	$153081 \pm 7604 \\ (107.9 \pm 5.4) \\ 132696 \pm 4898 \\ (22.6 \pm 2.5) \\ ($	$\begin{array}{c} 0.18 \pm 0.04 \\ (72.6 \pm 16.8) \\ 0.21 \pm 0.06 \\ (85.0 \pm 25.0) \end{array}$	$\begin{array}{c} 0.126 \pm 0.099 \\ (65.4 \pm 51.4) \\ 0.199 \pm 0.029 \\ (102.5 \pm 15.1) \end{array}$	$0.500 \pm 0.084 \\ (130.7 \pm 22.1) \\ 0.749 \pm 0.224 \\ (105.0 \pm 52.7) $	
			S-metolachlor 1 µM S-metolachlor	$\begin{array}{r} (93.6 \pm 3.5) \\ \hline 151941 \pm 7888 \\ (107.1 \pm 5.6) \\ \hline 148163 \pm 6318 \end{array}$	$\begin{array}{c} (85.0 \pm 25.9) \\ \hline 0.20 \pm 0.03 \\ \hline (84.4 \pm 13.7) \\ \hline 0.29 \pm 0.05 \end{array}$	$\begin{array}{c} (103.5 \pm 15.1) \\ 0.203 \pm 0.035 \\ (105.8 \pm 18.3) \\ 0.178 \pm 0.048 \end{array}$	$\frac{(195.9 \pm 58.7)^{**}}{0.429 \pm 0.045}$ $\frac{(112.2 \pm 11.9)}{0.388 \pm 0.061}$	
			5 μM S-metolachlor 10 μM S-metolachlor 20 μM	(104.5 ± 4.5) 153680 ± 9124 (108.4 ± 6.4) 154326 ± 8528 (108.8 ± 6.0)	$\begin{array}{c} (120.3 \pm 21.0) \\ 0.23 \pm 0.06 \\ (96.4 \pm 25.2) \\ 0.25 \pm 0.04 \\ (102.7 \pm 16.5) \end{array}$	$\begin{array}{c} (92.7 \pm 24.9) \\ 0.167 \pm 0.057 \\ (86.9 \pm 29.7) \\ 0.152 \pm 0.033 \\ (79.4 \pm 17.0) \end{array}$	(101.5 ± 15.9) 0.307 ± 0.005 (80.4 ± 1.2) 0.369 ± 0.082 (96.5 ± 21.6)	

S-metolachlor	128301 ± 8685	0.26 ± 0.04	0.106 ± 0.010	0.203 ± 0.040
40 µM	(90.5 ± 6.1)	(108.8 ± 16.1)	(55.2 ± 5.2)	(53.1 ± 10.5)
S-metolachlor	91310 ± 5442***	#	0.116 ± 0.030	0.211 ± 0.067
75 μM	(64.4 ± 3.8)		(60.7 ± 15.6)	(55.3 ± 17.6)
EGF	=	1.09 ± 0.08	=	-
25 ng/ml		(450.1 ±		
0		33.2)***		
Donor 2:				
Treatment	ATP (luminescence	S-phase	PROD (pmol	BROD (pmol
	units released) ^A	labelling index	resorufin/min/m	resorufin/min/mg) ¹
	,	(%) ^B	g) ^C	0,
Vehicle control	264108 ± 26706	0.09 ± 0.03	0.174 ± 0.055	0.978 ± 0.127
(0.1 % [v/v]	(100.0 ± 10.1)	(100.0 ± 36.7)	(100.0 ± 31.7)	(100.0 ± 13.0)
DMSO)				
PB	259361 ± 19415	0.09 ± 0.03	0.179 ± 0.047	1.072 ± 0.106
10 µM	(98.2 ± 7.4)	(101.0 ± 37.6)	(103.0 ± 26.9)	(109.6 ± 10.8)
PB	270500 ± 29342	0.07 ± 0.00	0.170 ± 0.037	1.423 ± 0.345
100 µM	(102.4 ± 11.1)	(82.7 ± 1.4)	(97.8 ± 21.5)	(145.5 ± 35.3)*
PB	251500 ± 18783	0.10 ± 0.04	0.224 ± 0.083	2.017 ± 0.057
1000 μM	(95.2 ± 7.1)	(116.8 ± 46.3)	(128.9 ± 47.9)	(206.2 ± 5.8)***
S-metolachlor	270560 ± 29478	0.09 ± 0.03	0.186 ± 0.047	0.940 ± 0.042
1 μM	(102.4 ± 11.2)	(99.6 ± 35.8)	(107.2 ± 27.1)	(96.2 ± 4.3)
S-metolachlor	285569 ± 28434	0.09 ± 0.03	0.182 ± 0.032	1.071 ± 0.120
5 µM	(108.1 ± 10.8)	(100.7 ± 37.7)	(104.8 ± 18.3)	(109.5 ± 12.3)
S-metolachlor	257934 ± 30972	0.07 ± 0.00	0.163 ± 0.022	1.229 ± 0.019
10 µM	(97.7 ± 11.7)	(82.7 ± 1.2)	(94.2 ± 12.4)	(125.7 ± 2.0)
S-metolachlor	244527 ± 28360	0.09 ± 0.03	0.155 ± 0.033	1.251 ± 0.099
20 µM	(92.6 ± 10.7)	(100.4 ± 36.8)	(89.2 ± 19.2)	(127.9 ± 10.1)
S-metolachlor	198703 ± 16272	0.09 ± 0.03	0.187 ± 0.044	1.100 ± 0.063
40 µM	(75.2 ± 6.2) ***	(98.8 ± 37.09)	(107.7 ± 25.1)	(112.5 ± 6.5)
S-metolachlor	104011 ± 11863	#	0.135 ± 0.032	0.914 ± 0.205
75 μM	(39.4 ± 4.5) ***		(77.8 ± 18.7)	(93.5 ± 20.9)
EGF	-	0.65 ± 0.05	-	_
25 ng/ml		(739.2 ± 55.7)		
Ŭ		***		

Type of study/data	Test substance, purity	Relevant information about the study (as applicable)			Observatio	ns		Reference			
Componetius	Matalashlar	COS 7 simise kideou	 A: Values are Mean ± SD. Values in parenthesis are mean % control ± SD; n = 6 per group. One w was performed on the results, followed by a Dunnett's multiple comparison test *** statistically di control *** p<0.001. B: Values are Mean ± SD. n = 5 per group. Statistical analysis was performed using a one way variance (DMSO control compared to S-metolachlor or PB) or a 2-tailed Student's t-test (DN compared to EGF); *** statistically different from control p<0.001. # not counted due to cytotoxici C: Values are Mean ± SD. n = 3 per group. Statistical analysis was performed using a one-way variance followed by a Dunnett's multiple comparison test. No statistically significant diffe observed. D: Values are Mean ± SD. n = 3 per group. Statistical analysis was performed using a one way variance followed by a Dunnett's multiple comparison test; * statistically different from control p<0.01; *** p<0.001. mian kidney ression 								
study of	, purity >97	cells, expression	Compound	Metolachlor is an agonist of human PXR as well as of mice PXR Compound hPXR assay							
human and mouse	%	plasmids of pSG5- hPXR and pSG5- mPXR encoding the full-length receptor protein	lasmids of pSG5- PXR and pSG5-	plasmids of pSG5- PXR and pSG5-		REC ₂₀ ^a (M)	RLA ^b (%)	REC ₂₀ ^a (M)	RLA ^b (%)		
pregnane X receptor			Rifampicin	4.3 × 10 ⁻⁷	100 ^c	N.D. ^d					
agonistic activity			PCN	N.D.		$5.7 imes 10^{-8}$	100 ^e				
activity		Positive controls: Rifampicin and PCN	Metolachlor	5.0×10^{-7}	81	2.7×10^{-6}	32				
No GLP			* 20 % relative effective concentration; the concentration of the test compound showing 20 % of the agonistic activity of 1×10^{-5} M rifampicin via hPXR, or 1×10^{-5} M PCN via mPXR. Each REC20 value represents the mean of three independent experiments.								
			^b Relative luciferase activity; percentage response at a concentration of 1×10^{-5} M with 100 % activit defined as the activity achieved with 1×10^{-5} M rifampicin or 1×10^{-5} M PCN. Each RLA value is expressed as mean from at least three independent experiments performed in triplicate.								
			^c RLA of rifampicin	n for hPXR is repre	esented as the activi	ty at a concentration	of 1×10^{-5} M.				
			^d Not detectable (no	effect or REC20 >	>1×10 ⁻⁵ M).						
			^e RLA of PCN for n	nPXR is represente	ed as the activity at	a concentration of 1	$\times 10^{-5}$ M.				

Type of study/data	Test substance, purity	Relevant information about the study (as applicable)				Observation	ns			Reference
Screening assay for human CAR activators	Metolachlor , purity not specified	C3A hepatoma cells reporter assays for hAhR, hCAR and	Activation of hu The relative ext the screening pr	Activation of human CAR and PXR by metolachlor The relative extent of receptor activation (Emax) and selectivity for best hCAR activators identified in the screening process						
		hPXR	Emax (%) Selectivity Ratio						Ratio	
No GLP		Positive controls: FL81, rifampicin and omeprazole	Compound name	μΜ	hCAR	hPXR	hAhR	hCAR/h PXR	hCAR/hAh R	
		I I	Metolachlor	10	42.29±5.46*	53.52±2.00*	5.91±0.96	0.79	7.15	
			FL81	10	100*	26.67±0.29*	1.71±0.11	3.75	58.48	
			Rifampicin	10	25.80±3.15	100*	3.80±0.23	0.26	6.79	
			Omeprazole	10	18.75±3.05	23.33±4.60	100*	0.80	0.19	
			The data is pres 3). * p<0.05 vs.	ented as rovehicle (I	elative fold-activ DMSO) control.	ation when pos	itive control is	set as 100, Me	$an \pm S.E.M.$ (n =	
Screening assay for arylhydrocar	Metolachlor , purity > 95 %	Mouse hepatoma Hepa1c1c7 cells hAhR-reporter	No activation of	f human A	hR in vitro					Takeuchi, 2008
bon receptor agonistic		plasmid								

Type of study/data	Test substance, purity	Relevant information about the study (as applicable)	Observations	Reference
activity				
No GLP				

10.9.1 Short summary and overall relevance of the provided information on carcinogenicity

Animal studies:

No long-term studies are available with S-metolachlor. As bridging from metolachlor to S-metolachlor is accepted, the results from the long-term studies conducted with metolachlor are taken to conclude on Smetolachlor to avoid further animal studies. Two studies on chronic toxicity and carcinogenicity of metolachlor in rats (Anonymous (39), 1983) and mice (Anonymous (38), 1982) are available. However, the study conducted in mice was considered not acceptable due to deviations (i.e. too high mortality). Body weight loss was observed in the long-term studies in both rats and mice at the top dose. No tumours were observed in the surviving animals of the not acceptable mice study. However, in rats, liver was shown to be the target organ. In females and males total incidences of foci (sum of eosinophilic, clear and basophilic foci) were statistically significant increased at the top dose of 150 mg/kg bw/d. Also the number of animals with foci was increased in both sexes, albeit only for females statistically significant. For the dose-dependent increase of neoplastic nodules a positive trend was observed in both sexes: incidences for control and 3 treatment groups: m: 0/0/0/4 (6.7%), f: 0/0/1/4 (6.7%) (Cochrane-Armitage, p < 0.01). Hepatocellular carcinoma showed also a positive trend in females (incidences for control and 3 treatment groups: f: 0/0/0/2 (3.3%), Cochrane-Armitage, p < 0.01) and the combined incidence of "nodules + carcinoma" was statistically significant increased in females at the top dose of 150 mg/kg bw/d (incidence for control and 3 treatment groups: 0/0/1/6). Also in males a dose-dependent increase of the rate of "nodules + carcinoma" was observed ((incidence for control and 3 treatment groups: 2/1/3/6, Cochrane-Armitage, p < 0.01) and overall 10% of males and females were affected at the top dose. (c.f. Table 15) Incidences of neoplastic nodules and carcinomas for both sexes at 150 mg/kg bw/d were above the HCD, which consisted of only two control groups from the same study. Reported incidences of the two historical control groups were as follows: proliferative foci – females: 1/47 (2.1%), 0/46; males: 0/45, 2/45 (4.4%) and hepatocellular carcinoma: females: 0/47, 1/46 (2.2%); males: 0/45, 1/45 (2.2%) (c.f. Table 16) It should be mentioned that the HCD was of questionable quality as it consisted of only two control groups from the same study. Besides the original evaluation of tumour incidences in the liver, also a re-evaluation is available. In the re-evaluation, also an increase of total nodules and carcinoma was reported. No reasoned arguments for the re-evaluation were presented, but, nonetheless, it confirmed the previous outcome.

Additional neoplastic findings at the top dose of 150 mg/kg bw/d in females were a dose-dependent and statistically significant increase of adenoma (incidences for control and 3 treatment groups: 11/20/20/31) as well as of carcinoma (incidence for control and 3 treatment groups: 0/1(3.7%)/1(3.7%)/5(12.8%)) of the pituitary (no data from historical controls available).

Follicular cell adenoma of the thyroid (incidence for control and 3 treatment groups: 0/0/2 (3.5 %) /3 (5 %)) were also increased at the highest dose in females (Cochrane-Armitage, p < 0.05) As historical control data only one study with two groups of 46 and 47 animals was provided; incidences of 0 and 1, corresponding to a maximum of 2.1 %, were reported. The maximum of this low quality HCD is exceeded by the the observed incidences at the two upper dose levels.

Table 15: Tumour incidences pituitary, brain, thyroid and liver (original evaluation from the study report)

Dose (ppm)	0		30		300		3000		
	М	F	М	F	М	F	М	F	
Pituitary									
– number examined (terminal sacrifice)	32	25	32	27	34	31	27	39	

Dose (ppm)		0	3	0	3	00	30	00
Adenoma (not otherwise specified)	18	11	22	20	15	20	19	31#**
Carcinoma	0	0	1	1 (3.7 %)	0	1 (3.2 %)	0	5 [#] (12.8 %)
		E	Brain	L		I	I	I
– number examined (terminal sacrifice)	33	33	34	30	25	29	34	40
Invasive carcinoma: pituitary	0	0	0	2	0	2 (6.9 %)	1#	4 (10 %)
		Tł	nyroid	1		1	1	1
 number examined (terminal kill & died on test/moribund) 	58	57	58	59	57	57	59	60
Adenoma: clear cell	4	4	3	2	5	2	2	7
Carcinoma: clear cell	1	2	1	0	0	1	1	1
Adenoma: follicular cell	0	0	3 (5.2 %)	0	3 (5.3 %)	2 (3.5 %)	1 (1.7 %)	3 [#] (5 %)
		Ι	Liver					
- Number examined (terminal kill & died on test/moribund)	59	60	59	60	60	60	60	60
Foci of cellular alteration								
- eosinophilic	10	4	15	7	14	5	21	23*
- clear	6	4	12	6	11	9	9	12
- basophilic	5	7	5	5	0	10	5	11
Total incidences foci ^a	21	15	32	18	25	24	35*	46*
Total number of animals with foci	19 (32.2 %)	13 (21.7 %)	24 (40.7 %)	15 (25 %)	22 (36.7 %)	18 (30 %)	29 (48.3 %)	34* (56.7 %)
Proliferative foci (neoplastic nodules)	0	0	0	0	0	1 (1.7%)	4 ^{##} (6.7 %)	4 ^{##} (6.7 %)
Hepatocellular carcinoma	2 (3.4 %)	0	1 (1.7 %)	0	3 (5 %)	0	2 (3.3 %)	2 ^{##} (3.3 %)
Total nodules+carcinoma (%)	2 (3.4 %)	0	1 (1.7 %)	0	3 (5 %)	1 (1.7 %)	6 ^{##} (10 %)	6** ^{##} (10 %)

^a: foci of any type (eosinophilic+clear+basophilic), statistical significance at p<0.05:*Fisher's exact test, #Cochrane-Armitage Trend-Test, one-sided], at p<0.01, **Fisher's exact test, ##Cochrane-Armitage Trend-Test, one-sided

Table 16: Historical control data – combination of animals died on test/moribund and terminal sacrifice (based on data from only one available study (1982). In the eight month of the study an outbreak of Sialodacroadenitis virus occurred, according to the study director without unusual findings.

Cont	rol 1	Control 2		
Μ	F	Μ	F	

	Cont	trol 1	Cont	trol 2			
Liver lesions							
Number of organs examined	45	47	45	46			
Proliferative foci	0	1 (2.1 %)	2 (4.4 %)	0			
Hepatocellular Carcinoma	0	0	1 (2.2 %)	1 (2.2 %)			
Survival	36 %	49 %	62 %	47 %			
Т	hyroid						
Number of organs examined	43	47	45	46			
Follicular cell adenoma	2 (4.7 %)	1 (2.1 %)	1 (2.2 %)	0			

Nasal turbinates have been shown target organs for the structurally similar chloroacetanilide Alachlor. It was investigated whether metolachlor had similar tumour-promoting characteristics. In contrast to Alachlor, which induced a marked and dose-related increase of nasal turbinate tumours, rats treated with metolachlor exhibited no significant increase of malignant tumours when performing a group-wise comparison to controls. The incidence of observed adenocarcinoma was 2/69 males or 1/59 males in the group exposed to 3000 ppm in the original report and the re-evaluation, respectively. Nevertheless a positive trend (Cochrane-Armitage, p<0.05) was observed and the incidence in the high dose group was above the historical control data, where no neoplastic findings in 2 examined nasal turbinates out of nearly 400 animals were observed (c.f. Table 17, Table 18). It should be mentioned that in animals from the historic control data base, only those with macroscopic lesions were examined, therefore the informative value of the provided HCD for nasal turbinate tumours might be limited.

Overall, a NOAEL for carcinogenicity was set at 15 mg/kg bw/d.

	Origin	al report			Re-evaluation²	
			Males			
Feeding Level ppm	Adenomatous Polyp	Adenocarcinoma	Fibroadenoma	Polypoid Adenoma ³	Adenocarcinoma ⁴	Neurofibro- sarcoma ⁵
0	$1/67^{1}$	0/67	0/67	1/57	0/57	0/57
30	0/59	0/59	0/59	0/59	0/59	0/59
300	0/53	0/53	0/53	0/53	0/53	0/53
3000	0/69	2/69#	1/69	1/59	1/59#	1/59
			Females			
Feeding Level ppm	Adenoma Papilloma	Squamous cell Papilloma	Odontoma Adenoma	Adenoma Papilloma ³	Squamous Papilloma ⁶	Odontoma ⁷
0	0/67	0/67	1/67	0/57	0/57	1/57
30	0/58	1/58	0/58	0/57	0/57	0/57
300	1/59	0/59	0/59	1/59	0/59	0/59
3000	0/69	1/69	0/69	0/59	1/59	0/59

Table 17: Nasal tumour incidence – original evaluation and re-evaluation

¹ including animals of interim sacrifice

² animals of 1-year interim sacrifice were not re-examined for males

³ Tumours of this type associated with the respiratory epithelium

⁴ Tumours of this type associated with nasal glands

- Tumour associated with peripheral nerve
- ⁵ Tumours of this type associated with buccal mucosa
- ⁷ Tumour associated with teeth

statistically different at p<0.05 level, ,#Cochrane-Armitage Trend-Test, one-sided</pre>

Table 18: Historical Control Data for Nasal turbinate tumour incidence

104-Week Studies ^a							
Covance - Madison ^{b,}							
Males		Females	6				
397		398					
2		2					
2		2					
Total Incidence (%)	Range (%) ^d	Total Incidence (%)	Range (%)				
0/2 (0.0)	0.0 - 0.0	0/2 (0.0)	0.0 - 0.0				
	Males 397 2 Total Incidence (%) 0/2 (0.0)	104-Weel Covance - Covance - Males 397 2 Total Incidence (%) Range (%) ^d 0/2 (0.0) 0.0 - 0.0	104-Week Studies ^a Covance - Madison ^b , Covance - Madison ^b , Males Females 397 398 2 2 Total Incidence (%) Range (%) ^d 0/2 (0.0) 0.0 - 0.0 0/2 (0.0)				

a Historical control data for this table was not reviewed by QA and is not GLP compliant.

b Data from 6 studies conducted at Covance - Madison (formerly Raltech Scientific Services, Inc and Hazleton Laboratories America, Inc) from June 1975 through June 1987.

In the six Covance - Madison studies with microscopic data available, nasal turbinates were not required to be

examined (per protocol) and were only examined when macroscopic lesions were present.

d Range (%) represents the lowest and highest group incidence across studies.

Epidemiological studies, human data:

с

Epidemiological studies are a source for human information on carcinogenicity of metolachlor (c.f. Table 13). The largest epidemiological study of pesticide exposure and health outcomes is the Agricultural Health Study (AHS), which was conducted in the U.S. Federal States of Iowa and North Carolina. The AHS is a prospective cohort study, composed of about ~ 57,000 licensed private and commercial pesticide applicators. Recruitment of the cohort occurred between 1993 and 1997 and a plenty of publications have resulted from the data of this study. Rusiecki et al. (2006,) evaluated cancer incidences from applicators exposed to metolachlor (n=22,781) of the period 1993-2002 of the AHS. Low-metolachlor exposed applicators were taken as the referent and two different lifetime metolachlor exposure metrics were investigated. Only for the metric "lifetime exposure days", but not for the "intensity weighted lifetime days exposure" an increased risk for lung cancer (RR = 2.37; 95 % CI, 0.97-5.82, p-trend = 0.03) was observed in the highest category $(T3_U)$ of use. Among a total number of 680 cases of all cancers, 12 cases of lung cancer in the T3_U-category were reported, 46 cases for all tertiles. Silver et al., (2015,) evaluated cancer incidences from the AHS for a longer follow-up period through 2010 (North Carolina) or 2011 (Iowa) for applicators exposed to metolachlor (n=26,505) and saw no increase for lung cancer in any of the exposure quartiles. However, for liver cancer and follicular cell lymphoma positive associations were reported and a positive trend for liver cancer was observed for both lifetime days (p<0.01) and intensity-weighted lifetime days (p=0.03) at higher categories of use (with unexposed person-time as the referent): for Q3 and Q4 the RR were 3.06 (95 % CI, 1.05 - 8.9) and 3.99 (95 % CI, 1.43 - 11.1) for lifetime days. For intensity-weighted lifetime days an RR of 3.14 (95 % CI, 1.11 – 8.88) and 3.18 (95 % CI, 1.1 – 9.22) was reported for the two highest quartiles of use. For follicular cell lymphoma also a positive trend was observed (p=0.03, lifetime days and p= 0.04 intensity-weighted lifetime days) and significant increases were reported. Alavanja et al. (2004) analysed a similar AHS-period as Rusiecki et al. (2006) and again, a significantly increased risk for lung cancer was identified, based on data obtained in the AHS between 1993 and 2001. For the highest category of lifetime exposure days (>457) an Odds ratio of 4.1 (95 % CI, 1.6-10.4) was reported when "no exposure" was the referent group and an OR of 5.0 (95 % CI, 1.7 - 14.9) when low exposure was taken as referent group. Positive trends were seen for both referent group analyses.

And reotti et al. (2009) analysed association of pesticides and pancreatic cancer in the AHS cohort (1993 – 2004) and found no effect of metolachlor.

When the risk of colorectal cancer in the AHS cohort (1993-2002) was analysed by Lee et al. (2007), no increased risk for metolachlor users regarding colorectal cancer (total incidences as well as separated incidences for colon and rectum) was seen. A positive association for metolachlor use and colon cancer was observed, when the body weight of users was taken into account (AHS, 1993 -2005): at a BMI of 30 (= obese)

or above the HR was significantly elevated (HR = 2.91, 95% CI, 1.42 - 5.96) (Andreotti et al., 2010). For prostate cancer, a decreased risk for metolachlor users was observed according to the assessment of the data from the AHS cohort (1993-2002) by Rusiecki et al. (2006). Koutros et al. (2010) reported an OR of 1.47 (95 % CI, 1.08-2) for the risk for prostate cancer for highly exposed users of the AHS, who already bear a genetic risk factor for prostate cancer. However, Barry et al. (2011) observed a significant negative association of high metolachlor use and prostate cancer among the entire AHS cohort, when genetic risk factors were not taken into account (OR=0.77, 95 % CI, 0.6 - 0.99, p=0.0.2). The publication by De Ross et al. (2003) based on a different data set than the AHS and focussed on non-Hodgkin lymphoma (NHL). For NHL and metolachlor no significant association was observed, ORs were decreased.

Lee et al. (2005) used telephone interviews to analyse pesticide exposure and risk of glioma. Data were presented for metolachlor itself and metolachlor as component of a herbicide group, an acetanilide group and a nitrosatable pesticides group. For all groups no significant association was reported to develop glioblastoma multiforme, astrocytoma or other glioma, however, the OR was about two-fold increased for glioblastoma multiforme in the herbicide group and for glioblastoma multiforme and astrocytomas in the acetanilide group as well as in the nitrosatable pesticides group. Differing ORs for the association of metolachlor as well as for the analysed groups of pesticides and brain cancer for self-responders and proxy responders were reported. Proxy responders showed in all cases the strongest positive associations, while for self-responders inversed ORs were reported. The proxy-responder OR for brain-cancer for metolachlor was 2.6 (95 %CI, 0.6-11.3), while an OR=0.4 (95 %CI, 0.1-2.3) for self-responder was observed. Overall, the OR was 1.2 (95 %CI; 0.4-3.6). The authors are aware, that the observed higher positive associations for proxy responders raise concern of recall bias. Three studies are available regarding a potential association of childhood cancer and use of metolachlor. Flower et al. (2004) reported no positive association for paternal use of metolachlor and childhood cancer among private pesticides applicators of the AHS cohort (OR=0.69, 95 %CI, 0.26-1.84). Among the children of exposed applicators (n=3,032), 5 cases of cancer occurred. Thorpe & Shirmohammadi (2005) investigated a potential correlation of four types of childhood cancers in 689 cases (bone and brain, leukemia, non-Hodgkin lymphoma) and exposure to selected pesticides and nitrates via groundwater in Maryland (US). According to the authors exposure to low-levels of metolachlor and, more pronounced, to mixtures of metolachlor with further pesticides (+nitrate/atrazine and +nitrate/simazine/alachlor) significantly increased the risk for the four analysed types of childhood cancer (Crude ORs: 1.54, 7.56, 5.31). Positive associations were reported for bone cancer and metolachlor (Crude OR=2.26, 95 % CI, 0.97-5.24), as well as leukemia and metolachlor (Crude OR=1.48, 95 % CI, 0.93-2.36). The authors are aware, that there are several limitations of the study (e.g. amount of tap water consumption per day, other routes of pesticides exposure, distance of residence to herbicide application sites). Metayer et al. (2013) investigated an association between exposure to herbicides (including metolachlor) via house dust and childhood acute lymphoblastic leukemia (ALL). As in cases of ALL (n=252) no metolachlor was detected in dust, no association could be observed.

Overall, in epidemiological studies some associations of metolachlor exposure with increased likelihoods to develop certain tumours were reported (lung cancer, colon cancer, liver cancer, follicular cell lymphoma). Most interesting was the positive exposure-response association between liver cancer and metolachlor use (Silver et al., 2015) identified in the AHS cohort for a follow-up period through 2010/20, as also in the rat long-term study liver tumours had been observed. Regarding the risk of developing prostate cancer, negative associations were observed. Nevertheless, these associations need to be balanced against the fact that these were mainly seen from evaluations of a single cohort. Although data were stratified for confounders, it needs to be kept in mind that participants were also exposed to additional compounds. It may be concluded that there is limited evidence of carcinogenicity of metolachlor in humans which is, however, partly complimentary to what was observed in a study in rats and might support a need for classification.

Mechanistic studies:

Mechanistic studies were conducted to elucidate a potential mechanism or mode of action of proliferative changes in livers. Available studies and results are summarised in detail in Table 14. Metolachlor and S-metolachlor induced S-phase replicative DNA synthesis in rats at doses starting at 500 mg/kg bw/day after 72 hours (4.3-fold in males at 500 mg/kg bw, 2.9-fold in females at 1000 mg/kg bw) and 15, 38 hours, respectively (Anonymous (17), 1994, Anonymous (22), 1995b), but metolachlor as well as S-metolachlor did not result in

replicative liver DNA synthesis after 7 or 28 days of treatment (Anonymous (35), 1995). However, in this negative 7-day and 28-day study, no positive controls were included.

In cultured female rat hepatocytes, cell proliferation (up to 1.9-fold) was shown (Anonymous (10), 2014), albeit no clear dose-response was obvious. In this in vitro system BROD activity was only slightly increased up to 1.3-fold and no increase of PROD activity was seen. In vivo an increase in CAR-dependent enzyme activity in response to S-metolachlor/metolachlor was seen after different periods of treatment: after 14 days of treatment with S-metolachlor (5000 ppm) PROD activity in female rats was increased 9-fold and BROD activity about 13-fold (Anonymous (27), 2006). After 28 days a 10-fold induction of PROD activity was observed for S-metolachlor (5000 ppm) as well as metolachlor (5000 ppm) in male rats, while in females PROD was induced 62-fold in response to S-metolachlor and 45-fold in response to metolachlor (Anonymous (35), 1995).

Direct activation of CAR from different species (rat, mouse, human) was shown in a transactivation assay (Anonymous (34), 2014): at the highest dose rCAR3 was induced 57-fold (pos. control, clotrimazole: 95 - fold), mCAR3 27-fold (pos. control, TCPOBOP: 45-fold), and hCAR3 9-fold (pos. control, CITCO: 10-fold). Valuable experiments with CAR-knockout hepatocytes and humanized-CAR animals are missing.

Other mechanisms possibly involved in hepatic tumour formation were not investigated and the impact of other receptors/signaling pathways cannot be assessed. For example, AhR implication cannot be excluded from the available data, as in most of the in vivo mechanistic studies no enzyme activity indicative for AhR activity was measured. When EROD activity was analysed, an induction was observed, albeit, in comparison to CAR-associated CYP enzymes, to a lesser extent: 3-fold/2.5-fold after 28-day of S-metolachlor and metolachlor treatment in males/females, 2-fold after 60 days of metolachlor treatment (Anonymous (35), 1995; Anonymous (27), 2006). However, in vitro no activation of human AhR could be demonstrated (Takeuchi, 2008; Kuelbeck, 2011). In contrast, further in vitro analysis revealed that metolachlor is an agonist of human PXR, as well as mice PXR, and human CAR (Kojima, 2011; Kuelbeck, 2011).

Two studies on enzyme and DNA synthesis induction in cultured female human hepatocytes (Anonymous (11), 2014, Anonymous (5), 2019) are available. The study by Anonymous (11), 2014, is based on only one donor and the results are therefore of limited validity: PROD induction in response to treatment with S-metolachlor was only seen at the lowest dose. For BROD a decrease was observed. This result was confirmed in the study by Anonymous (5), 2019: results from two female donors were presented, but one of the females was under chemotherapy just before the hepatocytes were prepared and it is questionable if such data should be used. Moreover, the positive control showed no response for PROD and cytotoxicity was observed, questioning if the selected doses were appropriate. No cell proliferation in response to PB or S-metolachlor was observed in the human hepatocytes, while EGF induced cell proliferation at least 4-fold.

Due to the above summarized findings and lack of further experiments to exclude other possible mechanisms responsible for tumour formation than CAR activation, the DS concludes that a potential non-relevance of different mechanism for liver tumours is not sufficiently demonstrated.

Species and strain	Multi- site respons e	Tumour type and background incidence	Progressio n of lesions to malignanc y	Reduce d tumour latency	Response s in single or both sexes	Confoundin g effect by excessive toxicity?	Route of exposur e	MoA and relevanc e to humans
Rat, Sprague Dawley, (Crl:CD(SD)BR)	Yes	Liver carcinoma HCD incidence (Max.): 2.2 %	Yes (arising in adenoma)	unknow n	Both sexes	No excessive toxicity	oral	relevant for humans
		Pituitary carcinoma	Yes (arising in adenoma)	unknow n	Single (female)	No excessive toxicity	oral	relevant for humans
		Nassal turbinate adenocarcinom	unknown	unknow n	Single (male)	No excessive toxicity	oral	relevant for

Table 19: Compilation of factors to be taken into consideration in the hazard assessment

Species and strain	Multi- site respons e	Tumour type and background incidence	Progressio n of lesions to malignanc y	Reduce d tumour latency	Response s in single or both sexes	Confoundin g effect by excessive toxicity?	Route of exposur e	MoA and relevanc e to humans
		a HCD incidence (Max.): 0 %						humans

10.9.2 Comparison with the CLP criteria

The following criteria for classification for carcinogenicity are given in the CLP regulation:

Table 20: CLP criteria for classification of carcinogenicity

CLP criteria

A substance is classified in Category 1 (known or presumed human carcinogens) for carcinogenicity on the basis of epidemiological and/or animal data. A substance may be further distinguished as:

Category 1A, known to have carcinogenic potential for humans, classification is largely based on human evidence, or

Category 1B, presumed to have carcinogenic potential for humans, classification is largely based on animal evidence.

The classification in Category 1A and 1B is based on strength of evidence together with additional considerations (see section 3.6.2.2). Such evidence may be derived from:

- human studies that establish a causal relationship between human exposure to a substance and the development of cancer (known human carcinogen); or
- animal experiments for which there is sufficient (1) evidence to demonstrate animal carcinogenicity (presumed human carcinogen).

In addition, on a case-by-case basis, scientific judgement may warrant a decision of presumed human carcinogenicity derived from studies showing limited evidence of carcinogenicity in humans together with limited evidence of carcinogenicity in experimental animals.

The placing of a substance in Category 2 (suspected human carcinogens) is done on the basis of evidence obtained from human and/or animal studies, but which is not sufficiently convincing to place the substance in Category 1A or 1B, based on strength of evidence together with additional considerations (see section 3.6.2.2). Such evidence may be derived either from limited (1) evidence of carcinogenicity in human studies or from limited evidence of carcinogenicity in animal studies.

[...]

3.6.2.2.3. Strength of evidence involves the enumeration of tumours in human and animal studies and determination of their level of statistical significance. Sufficient human evidence demonstrates causality between human exposure and the development of cancer, whereas sufficient evidence in animals shows a causal relationship between the substance and an increased incidence of tumours. Limited evidence in humans is demonstrated by a positive association between exposure and cancer, but a causal relationship cannot be stated. Limited evidence in animals is provided when data suggest a carcinogenic effect, but are less than sufficient. The terms 'sufficient' and 'limited' have been used here as they have been defined by the International Agency for Research on Cancer (IARC) and read as follows:

(a) Carcinogenicity in humans

The evidence relevant to carcinogenicity from studies in humans is classified into one of the following categories:

- sufficient evidence of carcinogenicity: a causal relationship has been established between exposure to the agent and human cancer. That is, a positive relationship has been observed between the exposure and cancer in studies in which chance, bias and confounding could be ruled out with reasonable confidence;
- limited evidence of carcinogenicity: a positive association has been observed between exposure to the agent and cancer for which a causal interpretation is considered to be credible, but chance, bias or confounding

CLP criteria

could not be ruled out with reasonable confidence.

(b) Carcinogenicity in experimental animals

Carcinogenicity in experimental animals can be evaluated using conventional bioassays, bioassays that employ genetically modified animals, and other in-vivo bioassays that focus on one or more of the critical stages of carcinogenesis. In the absence of data from conventional long-term bioassays or from assays with neoplasia as the endpoint, consistently positive results in several models that address several stages in the multistage process of carcinogenesis should be considered in evaluating the degree of evidence of carcinogenicity in experimental animals. The evidence relevant to carcinogenicity in experimental animals is classified into one of the following categories:

- sufficient evidence of carcinogenicity: a causal relationship has been established between the agent and an increased incidence of malignant neoplasms or of an appropriate combination of benign and malignant neoplasms in (a) two or more species of animals or (b) two or more independent studies in one species carried out at different times or in different laboratories or under different protocols. An increased incidence of tumours in both sexes of a single species in a well-conducted study, ideally conducted under Good Laboratory Practices, can also provide sufficient evidence. A single study in one species and sex might be considered to provide sufficient evidence of carcinogenicity when malignant neoplasms occur to an unusual degree with regard to incidence, site, type of tumour or age at onset, or when there are strong findings of tumours at multiple sites;
- limited evidence of carcinogenicity: the data suggest a carcinogenic effect but are limited for making a definitive evaluation because, e.g. (a) the evidence of carcinogenicity is restricted to a single experiment; (b) there are unresolved questions regarding the adequacy of the design, conduct or interpretation of the studies; (c) the agent increases the incidence only of benign neoplasms or lesions of uncertain neoplastic potential; or (d) the evidence of carcinogenicity is restricted to studies that demonstrate only promoting activity in a narrow range of tissues or organs.

3.6.2.2.4. Additional considerations (as part of the weight of evidence approach (see 1.1.1)). Beyond the determination of the strength of evidence for carcinogenicity, a number of other factors need to be considered that influence the overall likelihood that a substance poses a carcinogenic hazard in humans. The full list of factors that influence this determination would be very lengthy, but some of the more important ones are considered here.

3.6.2.2.5. The factors can be viewed as either increasing or decreasing the level of concern for human carcinogenicity. The relative emphasis accorded to each factor depends upon the amount and coherence of evidence bearing on each. Generally, there is a requirement for more complete information to decrease than to increase the level of concern. Additional considerations should be used in evaluating the tumour findings and the other factors in a case-by-case manner.

3.6.2.2.6. Some important factors which may be taken into consideration, when assessing the overall level of concern

are:

- (a) tumour type and background incidence;
- (b) multi-site responses;
- (c) progression of lesions to malignancy;
- (d) reduced tumour latency;
- (e) whether responses are in single or both sexes;
- (f) whether responses are in a single species or several species;
- (g) structural similarity to a substance(s) for which there is good evidence of carcinogenicity;
- (h) routes of exposure;

(i) comparison of absorption, distribution, metabolism and excretion between test animals and humans;

(j) the possibility of a confounding effect of excessive toxicity at test doses;

(k) mode of action and its relevance for humans, such as cytotoxicity with growth stimulation, mitogenesis, immunosuppression, mutagenicity.

CLP criteria

Mutagenicity: it is recognised that genetic events are central in the overall process of cancer development. Therefore, evidence of mutagenic activity in vivo may indicate that a substance has a potential for carcinogenic effects.

Based on the limited evidence from epidemiological studies (increased likelihood to develop certain tumours e.g. lung cancer, colon cancer, liver cancer, follicular cell lymphoma) no classification for Carc. Cat. 1A is proposed based on the available data and information. However, the limited evidence from epidemiological studies, which is partly complementary to carcinogenic effects observed in rats, supports a need for classification that is based on animal data and classification into Cat. 1B or 2 can be considered, based on strength of evidence. On the one hand, carcinogenic long-term study findings were observed only in the rat and not in the mice, however, the available study in mice showed high mortality (> 50 %) and was considered not acceptable and is therefore only of limited value. Accordingly, from animal studies only evidence for one species is available. However, a multi-site tumour formation was evident in rats as the organs liver and pituitary were affected and tumours in the nasal turbinates were observed Moreover, a progression to malignancy was observed with adenoma and carcinoma in the pituitary of females, and increased incidences of neoplastic nodules and carcinomas in the liver of males and females. Of the adenocarcinoma in nasal turbinates of male rats, one was identified by the pathologist as arising from a subepithelial nasal gland and no associated preneoplastic lesions were identified. Fibroadenoma and squamous cell papilloma occurred at unrelated localisation. A high frequency of inflammation in the nasal epithelium was reported for all dose groups. Mechanistic data could not sufficiently demonstrate that CAR activation is the only mechanism involved in liver-tumour formation and the non-relevance for humans of the observed tumours was not sufficiently shown. Furthermore, also in the large cohort of the AHS a positive exposure-response association between liver cancer and metolachlor use was reported for applicators. Overall, there is limited evidence for carcinogenicity from animal and epidemiological studies and this criteria warrants classification of S-metolachlor as a suspected human carcinogen (Carc. Category 2) according the Guidance on the Application of the CLP Criteria (V5.0 – July 2017, Tab. 3.6.1). However, at the pesticides peer review meeting, experts discussed if a classification into Carc. Cat. 1B might be more appropriate.

10.9.3 Conclusion on classification and labelling for carcinogenicity

Classification into Carc. Cat. 1A or B is currently not considered to be appropriate. Limited evidence for a carcinogenic potential in rats is provided. In addition, there is limited evidence for a carcinogenic potential of metolachlor in humans, which is, however, partly complimentary to what was observed in rats Therefore, classification into Carc. Cat. 2 (H351) is proposed.

RAC evaluation of carcinogenicity

Summary of the Dossier Submitter's proposal

The assessment of the DS is based on two long-term studies with metolachlor in rats and mice. There are no long-term studies available with *S*-metolachlor. In addition, several mechanistic studies were available to investigate the potential liver tumour mode of action (MoA) in rats.

No tumours were seen in the carcinogenicity study in mice (Anonymous (38), 1982). Nevertheless, the study in mice was not considered acceptable by the DS due to high mortality rate in mice (> 50%).

In the rat carcinogenicity study (Anonymous (39), 1983), the DS considered the following tumours for classification:

- Increased incidence in adenoma and carcinoma in the pituitary of females.
- Increased combined incidence of neoplastic nodules and carcinomas in liver of males and females.
- Increased nasal turbinates adenocarcinoma in male rats.
- Increased thyroid adenoma in females.

Eleven mechanistic studies¹) were provided in the CLH dossier to investigate a potential CAR/PXR-mediated MoA for liver tumours. The arguments for human non-relevance were not accepted by the DS. The DS noted the lack of further experiments to exclude other mechanisms possibly responsible for tumour formation than CAR activation (no CAR knockout hepatocyte or humanised-CAR data, lack of PROD activity in human hepatocytes, missing positive control in some studies and effects not always comparable to the positive control). The DS concluded that the relevance or not to humans of different mechanisms for liver tumours is not sufficiently demonstrated.

In the many epidemiological studies reported², the DS noted that some associations were observed between metolachlor exposure and increased likelihood to develop certain tumours (lung cancer, colon cancer, liver cancer, follicular cell lymphoma). The DS pointed out that the positive exposure-response association between liver cancer and metolachlor use (Silver et al., 2015) identified in a prospective cohort through 2010/20, may be of particular concern as in the long-term rat study, liver tumours were observed. Nevertheless, although data were stratified for confounders, its participants were also exposed to other compounds. The DS concluded that no classification in Category 1A was warranted but that there is some limited evidence of carcinogenicity in humans that might support a need for classification.

Based on the weight of evidence considering both human and animal data, the DS proposed to classify *S*-metolachlor as Carc. 2; H351.

Comments received during consultation

One MSCA agreed with the DS's proposal, considering that Category 2 is more appropriate than Category 1B based on the available data. Another MSCA agreed to classify *S*-metolachlor at least in Category 2 based on the epidemiological findings in combination with the multiple tumours observed in rats (liver, pituitary, nasal turbinates and thyroid). The MSCA pointed out that the case may be borderline between Category 2 and 1B.

Industry representatives disagreed with the classification proposal and provided the following arguments in favour of no classification:

¹ Anonymous (17), 1994; Anonymous (22), 1995b; Anonymous (35), 1995; Anonymous (10), 2014; Anonymous (27), 2006; Anonymous (34), 2014; Takeuchi, 2008; Kuelbeck, 2011; Kojima, 2011; Anonymous (11), 2014; Anonymous (5), 2019

² Rusiecki, 2006; Silver et al., 2015; Alavanja et al., 2004; Andreotti et al., 2009, 2010; Lee et al., 2007, 2005; Koutros et al., 2010; Berry et al., 2011; De Roos et al., 2003; Flower et al., 2004; Thorpe and Shirmohammadi, 2005; Metayer et al., 2013

- The preneoplastic nodules in the liver have been demonstrated to be due to CAR activation, via a MoA not relevant to human.
- The findings in the pituitary and nasal passages were incidental and not treatment related.
- No findings were noted in the carcinogenicity study in mice, and they further noted that the study should be considered acceptable and similar to OECD TG.
- The epidemiological data do not provide conclusive evidence. Although there was an increased incidence in particular cancers, these cancers could not be attributed to metolachlor only. The industry representatives highlighted that the cohort study included pesticide applicators exposed to numerous plant protection products.

Industry provided a review of the epidemiological data in humans, a discussion on the acceptability of the mouse carcinogenicity study and a justification for the non-relevance of the liver tumours in rat.

The re-analysis of the epidemiological data concluded that there is no clear link between *S*-metolachlor exposure and incidence of cancer in human. In addition, the latest publication from the AGRICAN cohort (Leon *et al.*, 2019; Lerro *et al.*, 2018, 2019, 2020) were included as additional data to support the absence of a link between *S*-metolachlor exposure and increased tumour incidence.

Moreover, in order to support the acceptability of the mouse carcinogenicity study, additional detailed information on survival was provided (see table below). The industry representatives noted that the mouse study performed over 24 months instead of 18 months as recommended in the current OECD TG 453 (study performed prior to this OECD TG) was of unusual duration. They noted that following 18 months exposure, survival was acceptable and was not less than 73% in any group. Therefore, they considered that the study is valid for the assessment of the carcinogenic potential of the substance.

Sex		Ма	les		Females			
Dose levels (ppm)	0	300	1000	3000	0	300	1000	3000
Number*	60	60	60	60	60	60	60	60
Number dying prior to week 79	11	10	9	15	8	15	12	20
% survival until week 79	81.7	83.3	85	75	86.7	75	80	66.7

* Excluding animals scheduled for interim sacrifice in week 52.

In the position paper, no new information was provided on the MoA of rat liver tumours.

In response, the DS noted that the human data investigated the association of alachlor with cancer and that no association of <u>metolachlor</u> and cancer can be drawn from this study (Lerro et al., 2018). Similarly, as metolachlor was not specifically investigated in Lerro et al. (2019), this new study did not provide additional information on a potential association of <u>S-metolachlor</u> and cancer. The DS provided a critical assessment of the meta-analysis of Leon et al. (2019), suggesting the exposure to metolachlor may have been underestimated and also provided a more in-depth analysis of the results of Silver et al. (2015).
In addition, the DS provided the table of individual lifetime observations as reported in the original study report of the mice carcinogenicity study, which is reported in the section below.

Assessment and comparison with the classification criteria

Metolachlor has been studied for carcinogenicity potential in mice (Anonymous (38), 1982) and rats (Anonymous (39), 1983).

No treatment related carcinogenic effects were noted in the mouse study which was performed partly in compliance with OECD TG 451. RAC agrees with the DS that the acceptability of the study is questionable due to several limitations, including:

- Accidental water restriction during the first week of the study.
- Ethanol was used to prepare the diet (control as well as metolachlor diets) for the first 18 weeks. Small amounts of ethanol may have remained in the diet.
- Several investigations were conducted in too few animals (e.g., determination of feed intake in 10 animals/sex/dose only, determination of effects on haematological or clinical chemistry parameters, at month 12 and 18, only a limited number of organs were weighed).
- Sendai virus infection affected the survival rate in all dose groups at the beginning of the study and more particularly in females of the high dose group. The significant increase in mortality rate in the high dose group in females at the end of the study may have been the result of these early deaths.
- There is no information if the tissues of animals that died between weeks 79 and 105 were of sufficient quality. However, RAC assumes that this was the case as no statement was available in the study.
- In the OECD TG 451, for mice, a duration of 18 months is considered more appropriate than 24 months.

With regards to the survival rates in the study, RAC notes that survival was above 50% at all dose levels including controls at week 79. Therefore, the effect on survival may not have affected the validity of the study. However, RAC notes that there is no information available if histopathological examination was influenced by the high mortality rate in females after two years.

Table: Relative survival in the mice study (Anonymous (38), 1982) according to individual lifetime observations as reported in the original study report (provided by DE-CA during targeted public consultation)

	Ма	les	Females		
Dose level (ppill)	Week 79	eek 79 Week 105		Week 105	
N ¹	52	52	52	52	
0	79%	38%	85%	52%	
300	81%	48%	71%	38%	
1000	83%	56%	77%	44%	
3000	71%	54%	62%	33%*	
* p<0.05; ¹ The total number	of animals does not inc	ude the eight animals p	er groups sacrified at	12 and 18 months.	

In Anonymous (39) (1983), metolachlor was administered to Sprague-Dawley rats, for two years, in diet at 0, 20, 300 and 3000 ppm corresponding to about 0, 1.5, 15 and 150 mg/kg bw/d (60 rats/sex/group). In addition, five animals/sex/group were killed at week 53 for the toxicity study and at week 57 to investigate recovery. There were no treatment related effects on survival or clinical signs. During week 9, animals were affected with alodacryoadenitis virus (SDAV). Nevertheless, according to the authors, no histopathological findings would be attributed to this infection. At the top dose, a decreased in body weight gain was noted in males. In females, decreased body weight was noted during weeks 6-78 (by 5-10%). Based on total study duration, differences in body weight gain were about 13% in females and 7% in males. There was a slight trend in lower feed intake in females. Overall, RAC considers that there was no excessive toxicity in the study up to the highest dose.

Four types of tumours were discussed in the CLH dossier as potentially relevant for classification: liver, nasal turbinates, thyroid and pituitary tumours.

Liver tumours

Foci of cellular alteration (eosinophilic, clear cell and basophilic) were dose-dependently increased in both sexes. The increase was statistically significant in female rats. In addition, 'proliferative foci (neoplastic nodules)', was reported at the top dose in both male and female rats, positive in trend-test in both sexes. Although the terminology used is not standard, according to the study report terminology, 'proliferative foci (neoplastic nodules)' refers to primary benign neoplasms. As such, they were called 'adenoma' by the Co-RMS in the RAR.

The increase in hepatocellular carcinoma was statistically significant (one-sided trend-test) at the top dose in females. Total nodules and carcinoma were increased at the top dose in both males and females, with a positive trend-test and in a pairwise analysis in females in the original report. The increase in neoplastic nodules was above the provided HCD in males and females: maximum one incidence (2.1%) in females and two (4.4%) in males. The increase in adenocarcinoma was also outside historical controls for females. In males, the increase was also outside the HCD so as the negative controls. RAC notes that the HCD were very limited as only referring to one study from the same laboratory and strain with two controls (1982). Liver tumours were reassessed in 1984 following an EPA request and lead to a similar conclusion.

There was no evidence of reduced time latency as most of the tumours were observed at terminal sacrifice.

The table below presents the incidence of tumours in the rat carcinogenicity study available with metolachlor, re-evaluated in 1984. Similar results were observed in the re-evaluation.

Table: Liver tumour incidence in **female** rats treated with metolachlor for two years (terminal kill & moribund/died on test)

Dose (mg/kg bw/d) ¹	0	1.5	15	150	Control 1 /Control 2 ²
Number examined	60	60	60	60	47/46
Eosinophilic foci Re-evaluation, 1984	4 5	7 6	5 9	23* 17*	

Total number of animals with foci (eosinophilic+clear +basophilic)	13	15	18	34*	
Proliferative foci (Neoplastic nodules)	0	0	1 (1.7%)	4 (6.7%)#	1 (2.1%)/
Re-evaluation, 1984	0/60	1/60	2/60	6/60 (10%)*#	0
Hepatocellular carcinomas Re-evaluation, 1984	0	0	0	2 (3.3%)#	0/1 (2.2%)
	0	0	0	1 (1.7%)#	
Total nodules and carcinomas	0	0	1 (1.7%)	6 (10%)#*	
Do ovaluation 1001	0	1 (1 70/)	2 (2 20/)	7 / 1 1 70/ *	

 Re-evaluation, 1984
 0
 1 (1.7%)
 2 (3.3%)
 7 (11.7%)*

 ¹ Dose calculated using a default conversion factor of 20; ²HCD available from two controls of the same study; #

 Cochrane-Armitage Trend-Test, one-sided; *: Fisher's exact test.

Table: Liver tumour incidence in male rats treated with metolachlor for two years

Dose (mg/kg bw/d) ¹	0	1.5	15	150	Control 1 /Control 2 ²
Number examined (original/re- evaluation)	59/60	59/60	60/60	60/60	45/45
Eosinophilic foci Re-evaluation, 1984	10 12	15 13	14 19	21 22	
Total number of animals with foci (eosinophilic+clear+basophilic)	19 (32%)	24 (41%)	22 (37%)	29 (48%)	
Proliferative foci Neoplastic nodules (re- evaluation, 1984)	0 1	0 1	0 0	4 (6.7%)# 4 (6.7%)#	0/2 (4.4%)
Hepatocellular carcinoma Re-evaluation, 1984	2 (3.4%) 2 (3.4%)	1 (1.7%) 1 (1.7%)	3 (5%) 3 (5%)	2 (3.3%) 3 (5%)	0/1 (2.2%)
Total nodules and carcinoma Re-evaluation, 1984	2 (3.4%) 3 (5%)	1 (1.7%) 2 (3.3%)	3 (5%) 3 (5%)	6 (10%)# 7 (11.7%)	

¹ Calculated using default conversion factor of 20; ²HCD available from two controls of the same study; #: Cochrane-Armitage trend-test, one-sided.

Overall, the significant increase in combined liver adenoma and carcinoma in females and males may be treatment related and considered relevant for classification.

Mode of action of liver tumours

A MoA data package consisting of 11 studies was provided in the CLH dossier to assess the human relevance of the rat liver tumours. The postulated MoA is that the activation of CAR and PXR nuclear receptors in rats results in the increase in hepatic cell proliferation leading to hepatocellular tumours.

The mechanistic studies available in the CLH dossier are described in the in-depth analysis by RAC section below.

There are two events that should be considered in case of CAR-mediated MoA in rodent: activation of CAR/PXR nuclear receptors and hepatocellular proliferation.

Activation of CAR and PXR nuclear receptors

In vitro, S-metolachlor was able to activate human CAR and human PXR (hPXR) but not human Arylhydrocarbon receptor (AhR) (Kuelbeck et al., 2011) in a C3A hepatoma cells reporter assay. Similarly, no activation was observed on human AhR (hAhR) in a screening assay for agonistic activity in Takeuchi et al. (2008). Metolachlor was an agonist of hPXR and mice PXR (mPXR) in Kojima et al. (2011). In a transactivation assay (Anonymous (34), 2014), *S*-metolachlor was shown to be an agonist of rat (57-fold), human (9-fold) and mouse (27-fold) CAR nuclear receptor.

In vivo, CAR activation was investigated *in vivo* in a 7-d and 28-d study in rats up to 426 mg/kg bw/d in males and 435 mg/kg bw/d in females (Anonymous (35), 1995).

PROD (marker of CYP2B, CAR) enzyme activities were statistically significantly increased (8x) in males at \ge 242 mg/kg bw/d and in females (31x) at \ge 257 mg/kg bw/d in response to *S*-metolachlor, corresponding approximately to the top dose level used in the carcinogenicity study. In addition, EROD (marker of CYP1A1 or CYP1A2) was increased dose-dependently and was statistically significant in both sexes (2.2x in males and 2.3x in females at 257 and 242 mg/kg bw/d, respectively). After 28 days of exposure, there was no increase in the total number of hepatocellular nuclei or labelling index. There was a moderate increase of smooth endoplasmic reticulum.

An increase in CAR-dependent enzymes was observed in female rats exposed to *S*-metolachlor at 3000 ppm in diet (235 mg/kg bw/d) for 14 or 60 days, similar to the dose level used in the carcinogenicity study (Anonymous (27), 2006). BROD (marker of CYP2B and CYP3A, CAR/PXR) and PROD (marker of CYP2B, CAR) enzyme activities were strongly increased at 14 and 60 days, respectively. MROD and EROD activities were also significantly increased at 60 days only. Hepatic CYP2B1, CYP3S and CYP1A2 protein levels were increased (statistical significance not assessed). In females treated for 3, 5, 7, 14, 28 and 60 days, no treatment related effects were observed in hepatocellular proliferation. There was no positive control in this study.

Associated events of CAR/PXR activation, such as altered gene expression, were not assessed in the mechanistic studies. Nevertheless, associated events such as increased liver weights and hepatocellular hypertrophy was observed in the 28-d rat toxicity studies (Anonymous (12), 1995). RAC noted the absence of liver hypertrophy in both the 90-d and carcinogenicity studies.

Overall, activation of CAR and PXR as well as an increase in CAR-dependent enzyme activity in response to *S*-metolachlor/metolachlor was observed. The liver induction profile of *S*-metolachlor can be considered consistent with CAR/PXR activation.

Increased hepatocellular proliferation

In vitro, proliferation of female rat hepatocyte was observed (Anonymous (14), 2014). Inconsistent results were observed *in vivo*. Hepatocellular proliferation as shown by BrDU labelling of hepatocytes was not increased after 7, 14, or 60-d exposure in the *in vivo* rat studies (Anonymous (35), 1995; Anonymous (27), 2006). In these studies, dose levels were similar to the dose used in the carcinogenicity study. Nevertheless, in a cell proliferation assay in SD rat, an increase in DNA synthesis was observed 72 hours after gavage at 500 mg/kg bw in males and at 1000 mg/kg bw metolachlor (but not at 500 or 100 mg/kg bw) in females (Anonymous (17), 1994).

Although hepatocellular proliferation was not investigated in longer term studies, an increase in a pre-neoplastic lesion (altered foci) was observed in both males and females at the top dose in the rat carcinogenicity study, which was consistent with hepatocellular proliferation.

Human non-relevance of the MoA

There were two *in vitro* studies in human hepatocytes (Anonymous (11), 2014; Anonymous (5), 2019) and one *in vitro* study in female rat hepatocytes (Anonymous (10), 2014).

	Human h	epatocyte	es				Female ra	at
	Female d	onor ¹	Female d	onor ²	Female d	onor ²	hepatocytes	
Concentration s tested (µM)	<i>S</i> - metolac hlor	РВ	<i>S</i> - metolac hlor	РВ	<i>S</i> - metolach lor	РВ	S- metolach lor	РВ
Cell proliferation (by BrdU incorp.)	-	-	-	-	-	-	↑ (1.9x)	↑ (1.6x)
PROD activity (Cyp2b)	-	↑ (2.2x)	-	-	-	-	-	↑ (2.8x)
BROD activity (Cyp2b/Cyp3a)	↓ (0.19x)	↑ (3.1x)	-	↑ (2.0x)	-	↑ (2.1x)	↑ (1.3x)	↑ (4.7x)

Table: Comparative in vitro studies in human and rat primary hepatocytes

¹ Anonymous (11), 2014; ² Anonymous (5), 2019; PB: phenobarbital (100-1000µM); S-metolachlor: 5-75µM.

These studies showed that the increase in cell proliferation observed in rat hepatocytes was not observed in human donors. Epidermal growth factor (EGF) was used as a positive control and induced the expected cell proliferation. Overall, these studies showed that there were quantitative differences in the activation of CAR by *S*-metolachlor in rats and humans. RAC notes the lack of activation of BROD and/or PROD in human hepatocytes, as noted with the positive control, as an uncertainty of the proposed MoA.

Exclusion of alternative MoAs

There was no CARKO/PXRKO double knockout study or humanised CAR animals to show if the presence of CAR and/or PXR is essential in the initial hepatic proliferative response.

S-metolachlor is not genotoxic.

In the 90-d rat repeated-dose toxicity study, liver toxicity was observed but necrosis was not found. Therefore, cytotoxicity may not be the main MoA for rat liver tumours.

No evidence of activation of PPAR γ was noted in the *in vivo* mechanistic study.

Treatment with *S*-metolachlor had no effect on the CYP3A1, CYP3A2, CYP4A1/A- and CYP4A3content. Therefore, peroxisomal proliferation can be ruled out. The substance was not an agonist *in vitro* of hAhR. Nevertheless, EROD was increased dose-dependently in the 28-d *in vivo* study. In addition, CYP1A2 protein level was increase after 60 days exposure to *S*-metolachlor. Therefore, AhR activation *in vivo* cannot be fully ruled out.

There is no data in the CLH report suggesting that other MoA such as porphyria, statins/altered cholesterol synthesis, oestrogenic activity and immunosuppression would be likely for *S*-metolachlor.

Overall, RAC concludes that the proposed MoA is plausible in rats. However, the following uncertainties are noted:

- Inconsistency in the proliferative response in the *in vivo* studies at dose levels similar to the carcinogenicity study.
- Lack of activation of PROD and BROD in human hepatocytes.
- No *in vivo* CAR/PXR knock out animals or humanised-CAR animals were performed to confirm the *in vitro* results. This is especially needed as *S*-metolachlor is extensively metabolised, and no measures were taken to further stimulate the metabolism in the *in vitro* studies.
- Some of the alternative MoAs cannot be excluded.

Based on the above uncertainties, RAC agrees with the DS that the available data are not sufficient to conclude on human non-relevance.

Nasal turbinates

Treatment-related neoplastic findings (nasal turbinate tumours) have been observed with substances from the same chemical class (chloroacetanilide herbicides): alachlor, butachlor and acetochlor. The nasal olphactory tumours induced by acetochlor were determined to be secondary to local cytotoxicity due to the formation of quinone imine. These tumours were considered relevant to humans, although rats appeared to be more sensitive than humans. Therefore, a re-analysis of the incidence of nasal turbinates was performed to exclude potential class effect. There is no explanation why a lower number of animals was used in the re-examination study. The DS proposed that some of the tissues may not have been suitable for re-examination due to the time elapse between the study and the re-examination.

An increase in nasal turbinate tumour was noted in males at the top dose. The incidence was 2/69 males in the original study report and 1/59 in the re-evaluation report. The increase was not statistically significant and was not observed in females.

The HCD provided are limited: they were from six studies performed between June 1975 and June 1987 in the same laboratory. The rat carcinogenicity study was dated 1985. In these studies, nasal turbinates were only investigated in case of macroscopic lesions in two out of 397 males and two out of 398 females. No neoplastic findings were noted. Although the HCD are limited, they support that this type of tumour is very rare. During the consultation, the industry representatives also provided HCD from the RITA database. In 54 studies between 1984 and 2013, the HCD range was 0-1 (0-1.7%) in male Wistar or Sprague-Dawley rats. RAC notes that these controls were performed in other laboratories and during a period larger than the \pm 5-year preferred range. Nevertheless, these HCD also support that it is a rare tumour type.

Table: Nasal turbinate tumour incidence in male and females in the original study report or after reevaluation.

Dose (mg/kg bw/d) ¹	0	1.5	15	150
Males				
Adenomatous polyps	1/67 ¹	0/59	0/53	0/69
Re-evaluation	1/57	0/59	0/53	1/59
Adenocarcinoma	0/67	0/59	0/53	2/69#

Re-evaluation	0/57	0/59	0/53	1/59#
Fibroadenoma (original report)	0/67	0/59	0/53	1/69
Neurofibrosarcoma (re-evaluation)	0/57	0/59	0/53	1/59
Females				
Adenoma papilloma	0/67	0/58	1/59	0/69
Re-evaluation	0/57	0/57	1/59	0/59
Squamous cell papilloma	0/67	1/58	0/59	1/69
Re-evaluation	0/57	0/57	0/59	1/59
Odontoma	1/67	0/58	0/59	0/69
Re-evaluation	1/57	0/57	0/59	0/59

¹ Including animal of interim sacrifice; # Cochrane-Armitage trend-test, one-sided.

Overall, although the incidences were low and the increase only in males, RAC considers that the increase in nasal turbinates tumours is of concern, as it is a rare tumour. Nevertheless, RAC acknowledges that the low incidence raises some uncertainties about the toxicological relevance of the observed effect.

Pituitary tumours

In the pituitary, a significant increase in adenoma and carcinoma was observed at the top dose in females. The increase in adenoma was positive in both pairwise and trend-test and the increase in carcinoma was positive in a trend-test only. No HCD were provided for this type of tumour, but no carcinoma was noted in the control group.

There were no preneoplastic findings such as hyperplasia in the pituitary gland and no tumours were observed at the 12-month time point. Nevertheless, adenomas were also significantly increased in female rats at the top dose level.

During the consultation, HCD from the RITA database were provided. In 41 rat carcinogenicity studies conducted between 1985 and 2014, 62 female animals showed pituitary carcinoma (2.8%; range 0-10%) and 67 females invasive brain carcinoma (2.9%; 0-12%). Although the HCD are limited (not in the \pm 5-year range, different laboratories), the increase in malignant carcinoma in pituitary gland is slightly above the HCD range.

Dose (mg/kg bw/d)*	0	1.5	15	150					
Pituitary (terminal sacrifice) tumour in pituitary gland									
Benign adenoma	11	20	20	31#**					
Malignant carcinoma	1/32	0/27	1/27 (3.2%)	5/39 (12.8%)#					
Pituitary tumour in brain (terminal sacrifice)									
Invasive carcinoma	0/33	2/30	2/29	4/40 (10%)					

Table: Pituitary tumour incidence in female rats

Cochrane-Armitage trend-test, one-sided; ** p<0.001, Fisher exact test.

Therefore, RAC considers this type of tumour treatment related and that it should be taken into account for classification.

Thyroid

In addition, an increase in thyroid follicular cell adenoma was noted at the top dose in females (5%), above the HCD range from the study with two controls (maximum 1/45 in one of the controls, or 2.2%) performed at the same time as the study. However, as commented for the liver tumours, these HCD are very limited. No progression to malignancy was observed and

incidences were low. Therefore, RAC considers that this type of tumour could be incidental and provides insufficient evidence for classification.

Table: Thyroid tumour incidence in female rats

Dose (mg/kg)*	0	1.5	15	150					
Thyroid (total terminal kill and died on test and moribund)									
Clear cell adenoma	4	2	2	7					
Clear cell carcinoma	2	0	1	1					
Follicular cell adenoma	0	0	2 (3.5%)	3 (5%)#					

Cochrane-Armitage trend-test, one-sided; ** p<0.001, Fisher exact test.

Human data

In humans, epidemiological studies presented in the CLH dossier showed some associations of metolachlor exposure in particular for certain tumours: liver cancer, follicular cell lymphoma, lung cancer, colon cancer.

Liver tumours

Silver et al. (2015) evaluated cancer incidence in the prospective cohort Agricultural Health Study (AHS) through 2010-2011 for 49616 applicators, 53% of whom reported ever using metolachlor. The cohort included licensed private and commercial pesticide applicators in Iowa and North Carolina recruited in 1993-1997. The authors used the Poisson regression to evaluate relations between two metrics of metolachlor use (lifetime days, intensity-weighted lifetime days) and cancer incidence (risk ratio and 95% confidence intervals (CI)). Intensity-weighted lifetime days take into account exposure modifying factors like use of personal protective equipment, methods of pesticide application, whether the applicator also repaired or cleaned pesticide application equipment and whether the applicator themself mixed pesticides. The intensity weighting factors were further adjusted against exposure monitoring data from consequent field studies and those (slightly) modified factors were used in this study. RAC notes that such an exposure metric may be more relevant than the exposure lifetime days metric. The authors categorised the metrics with quartiles based on the distribution among the cancer cases.

The authors also compared tumour incidence either with the low exposed group (1st quartile) or with unexposed applicators as reference groups. The authors noted, as in a previous study (Rusiecki et al., 2006), that the demographic characteristics for groups with high metolachlor use were more similar than those using less metolachlor than the unexposed applicators. In particular, applicators reporting use of metolachlor were more likely to have consumed alcohol in the past year and to have at least a high school education. In addition, according to Rusiecki et al. (2006), 80% of the metolachlor exposed applicators were from Iowa and 20% North Carolina whereas for unexposed metolachlor applicators about 60% were from Iowa and 20% from North Carolina. In addition, Silver et al., 2015 reported that the applicators in the highest usage group of metolachlor (4th quartile) were also most likely to have used one or more of the highly correlated pesticides compared to the 'no use' group. There were little differences with respect to age, smoking rate, family history of cancer.

Table: Selected demographic and lifestyle characteristics of applicators by cumulative metolachlor use in the AHS cohort, 1993-2011 (selected from table 1 of the published paper)

	Nouse	Quartile 1	Quartile 4	
Characteristics	(n=23111)	(n=7866)	(n=6803)	
Alcohol consumption over past year	(((
(drinks/month)				
Never in past year	36.2%	28.8%	23%	
< 1.875	14.5%	15.3%	13.5%	
≥ 1.875 - < 14.5	25.5%	29.8%	31.4%	
≥ 14.5	21.3%	24.2%	30.7%	
Missing	2.4%	2.0%	1.3%	
Education				
> High school	10.1%	7.1%	4.7%	
High school graduate/GED	46.3%	48.6%	45.6%	
> High school	41.2%	42.4%	47.6%	
Missing	2.4%	1.8%	2.1%	
Use of dicamba				
No	64.6%	47%	27%	
Yes	32.3%	49.6%	69.8%	
Missing	3.2%	3.4%	3.2%	
Use of Alachlor				
No	64%	43%	25.5%	
Yes	33.7%	54.5%	72%	
Missing	2.2%	2.5%	2.5%	
Use of atrazine				
No	47%	27.6%	7.5%	
Yes	51%	71%	91.6%	
Missing	1.9%	1.4%	0.9%	
Use of trifluraline				
No	65.3%	43.5%	22.8%	
Yes	31%	53.2%	74.2%	
Missing	3.7%	3.3%	3.0%	
State of residence				
Iowa	57.1%	72.8%	75.9%	
North Carolina	42.9%	27.2%	20.6%	

For liver cancer, in analyses restricted to exposed workers ('low-metolachlor use' category used as referent), no significant differences were noted. However, trends for both lifetime and intensity-weighted lifetime days of metolachlor use were positive and statistically significant with the 'no use' category used as referent.

Table: Rate ratios^a for liver cancers with at least 20 exposed cases by quartiles of lifetime exposure days and intensity-weighted lifetime exposure days to metolachlor among AHS cohort applicators, with unexposed person-time as the referent, 5-year lag (Silver et al., 2015)

Concer site	Lifetim	e days		Intensity-weighted lifetime days				
cancer site	N ^b	RR (95% CI)	p-trend N		RR (95% CI)	p-trend		
Liver								
Unexposed	17	1.00		15	1.00			

Q4	10	3.99 (1.43-11.1)	< 0.01	9	3.18 (1.10-9.22)	0.03
Q3	7	3.06 (1.05-8.90)		8	3.14 (1.11-8.88)	
Q2	4	1.79 (0.54–5.93)		3	1.33 (0.35–4.99)	
Q1 ^c	2	0.97 (0.17-5.50)		3	1.65 (0.37-7.23)	

a Adjusted for age, smoking, alcohol, applicator status (private or commercial), family history of cancer (any site), state of residence and the pesticides most highly correlated with metolachlor (alachlor, atrazine, dicamba, imazethapyr, trifluralin). All cancers combined also adjusted for sex and race. Lung and prostate cancers also adjusted for race.

b Median number of cases over five imputations.

- c For lifetime days analyses with a 5-year lag, unexposed = 0 days, $Q1 > 0 \le 15$ days, $Q2 > 15 \le 38.75$ days, $Q3 > 38.75 \le 108.5$ days, Q4 > 108.5 days. For intensity-weighted lifetime days analyses, unexposed = 0 days, $Q1 > 0 \le 490$, $Q2 > 490 \le 1403$, $Q3 > 1403 \le 4103$, Q4 > 4103 units.
- CI = confidence interval; RR = rate ratio.

Table: Rate ratios^a for liver cancers with at least 20 exposed cases by quartiles of lifetime exposure days and intensity-weighted lifetime exposure days to metolachlor among AHS cohort applicators, with person-time in the low-metolachlor exposure category as referent, 5-year lag (Silver et al., 2015)

Company aite	Lifetin	ne days		Intensity-weighted lifetime days			
N ^b		RR (95% CI)	p-trend	N	RR (95% CI)	p-trend	
Q1	2	1.00		3	1.00		
Q2	4	1.86 (0.31-11.1)		3	0.85 (0.16-4.52)		
Q3	7	3.13 (0.56-17.4)		8	1.83 (0.42-8.02)		
Q4	10	4.01 (0.68-23.5)	0.1	9	1.71 (0.33-8.83)	0.44	

a Adjusted for age, smoking, alcohol, applicator status (private or commercial), family history of cancer (any site), state of residence and the pesticides most highly correlated with metolachlor (alachlor, atrazine, dicamba, imazethapyr, trifluralin). All cancers combined also adjusted for sex and race. Lung and prostate cancers also adjusted for race.

b Median number of cases over five imputations.

c For lifetime days analyses with a 5-year lag, unexposed = 0 days, $Q1 > 0 - \le 15$ days, $Q2 > 15 - \le 38.75$ days, $Q3 > 38.75 - \le 108.5$ days, Q4 > 108.5 days. For intensity-weighted lifetime days analyses, unexposed = 0 days, $Q1 > 0 - \le 490$, $Q2 > 490 - \le 1403$, $Q3 > 1403 - \le 4103$, Q4 > 4103 units.

CI = confidence interval; RR = rate ratio.

No association between metolachlor use and incidence of all cancers combined (n = 5701) with a 5-year lag or most site-specific cancers were seen.

RAC notes that in this study, an association was noted between metolachlor exposure and liver tumours. The study of Silver et al. (2015) has the strength that it is based on a large sample size and several confounding factors were taken into account and adjusted for. The statistically significant increase in liver cancer was noted to be dose-related and an association was noted both considering lifetime exposure days and intensity-weighted lifetime exposure days. In addition, liver tumours were observed in the rat carcinogenicity study, supporting a

biological plausibility. However, although a link was observed, the association may have been due to potential bias/chance or confounding factors that are discussed below.

- Reference groups

Evidence of a link between liver cancer and metolachlor exposure is only evident using the unexposed group as the referent. According to the authors, the group with higher metolachlor use (4th quartile) was more similar to those using less metolachlor than the unexposed applicators. There is no quantitative assessment or statistical analysis of the differences between the characteristics of the groups. On the one hand, RAC acknowledges that due to potential differences in some baseline parameters as potential confounding factors, the use of the most representative group (1st quartile group) as reference could be relevant. The absence of effects noted when the low-exposure group is used as referent may be due to several potential factors. Although rate ratios were adjusted for potential confounding factors such as alcohol use, full adjustment may have been challenging. On the other hand, given the relatively small numbers of liver cancers in the low metolachlor exposure categories (1st quartile), considering the low exposure group as reference also leads to uncertainties and may explain the observed difference.

- <u>Co-exposure with other pesticides</u>

Applicators in the highest usage group of metolachlor (4th quartile) were more likely to have used one or more of the highly correlated pesticides. It is noted that one of the correlated exposures adjusted for was dicamba. More recently, in the same AHS cohort, Lerro et al. (2020) reported a statistically significant increasing trend of risk of cancer of the liver and bile ducts (p < 0.001) by increasing intensity-weighted lifetime exposure days of dicamba. Also, the relative risk in the highest exposure quartile was statistically significantly increased with dicamba (RR = 1.80, 95% CI: 1.26 – 2.56). Adjustment has been performed in Silver et al., 2015 for potential confounding effect of exposure to dicamba. However, due to the relatively small numbers of liver cancers in the metolachlor exposure categories (e.g., two and three cases in the 1st quartile), a full adjustment for the confounding effect of the potentially highly correlated exposure to dicamba may have been challenging. It may also be noted that dicamba is currently not classified for carcinogenicity in Annex VI of the CLP Regulation. In RAC 61, June 2022, the CLH proposal for dicamba was discussed and RAC concluded on no classification for carcinogenicity for dicamba due to inconclusive data.

Alcohol use

In Lerro *et al.* (2019), a statistically significantly reduced risk of liver tumours was reported in the AHS cohort (SIR = 0.56, 95% CI: 0.45 - 0.70) based on 78 observed cases compared to the general population due to e.g., lower alcohol consumption. However, in this AHS follow-up study only cohort level risks were reported, without assessment of risk by different pesticide exposures or other risk factors. In Silver et al. (2015), alcohol consumption was only adjusted for alcohol use during the year before enrolment. Although a more detailed alcohol exposure characteristics would have been needed to control this potential factor, this could be a reasonable proxy of overall alcohol use.

Overall, RAC considers that this study may support the observed effect in the liver in the rat carcinogenicity study, acknowledging that it is not possible to fully exclude potential residual confounding factors such as co-exposure with other pesticides such as dicamba or other potential bias (e.g., alcohol exposure). RAC notes that Silver *et al.* (2015) considered that additional follow-up would facilitate assessment of whether the differences in the results reflect greater statistical power with a larger reference category or other exposure-related factors

that they were unable to control. Further follow-up would permit better assessment of the role of latency in these associations, as well as evaluation of the role of metolachlor exposure in other health outcomes, particularly those for which cases are sparse or for which a longer lag period may be more biologically plausible. RAC agrees that further studies assessing the association between metolachlor and liver cancer would be needed.

Follicular cell lymphoma

Silver et al. (2015) also reported a significant increasing trend in the incidence of follicular cell lymphoma in the AHS cohort. No effects were noted on other lymphoma subtypes. The association was only observed when the unexposed group was used as referent.

Table: Rate ratios^a for follicular cell lymphoma with at least 20 exposed cases by quartiles of lifetime exposure days and intensity-weighted lifetime exposure days to metolachlor among AHS cohort applicators, with person-time in the low-metolachlor exposure category or 'non-use' group as referent, 5-year lag (Silver et al., 2015).

Lifetime days			Trend	Inten: lifetin	sity-weighted ne days	Trend	
	N ^b	RR (95% CI)		NÞ	RR (95% CI)		
Follicular cell	lympho	oma: unexposed as re	ferent		•		
Unexposed	24	1.00		24	1.00		
Q1 ^c	4	0.93 (0.31–2.79)		6	1.37 (0.52–3.57)		
Q2	10	2.43 (1.07-5.52)		6	1.45 (0.56-3.78)		
Q3	7	1.76 (0.64-4.81)		10	2.67 (1.10–6.49)		
Q4	9	2.89 (1.13-7.38)	0.03	8	2.57 (0.95–6.95)	0.04	
Follicular cell lymphoma: low exposure group as referent							
Q1	5	1.00		7	1.00		
Q2	10	2.48 (0.84-7.32)		6	1.08 (0.36-3.24)		
Q3	7	1.84 (0.53-6.34)		10	2.04 (0.71-5.88)		
Q4	9	3.24 (0.96-11)	0.14	8	2.08 (0.61-2.12)	0.21	

a Adjusted for age, smoking, alcohol, applicator status (private or commercial), family history of cancer (any site), state of residence and the pesticides most highly correlated with metolachlor (alachlor, atrazine, dicamba, imazethapyr, trifluralin). All cancers combined also adjusted for sex and race. Lung and prostate cancers also adjusted for race.

b Median number of cases over five imputations.

c For lifetime-days analyses with a 5-year lag, unexposed = 0 days, $Q1 > 0 - \le 15$ days, $Q2 > 15 - \le 38.75$ days, $Q3 > 38.75 - \le 108.5$ days, Q4 > 108.5 days. For intensity-weighted lifetime-days analyses, unexposed = 0 days, $Q1 > 0 - \le 490$, $Q2 > 490 - \le 1403$, $Q3 > 1403 - \le 4103$, Q4 > 4103 units.

CI = confidence interval; RR = rate ratio.

Using intensity-weighed lifetime days as a metric, no dose-response was noted.

In a more recent study, Leon *et al.* (2019) investigated the relationship between the use of 14 selected pesticides, including metolachlor, and non-Hodgkin's lymphoid malignancies and major subtypes. In this study, the analysis combined two cohort studies: the French AGRICAN study, that enrolled 181747 men and women in 2005-2007 and followed-up until 2009 and the AHS cohort including linkage until 2010-2011. Leon et al. (2019) did not find a significant association with follicular lymphoma (43 cancer cases exposed to metolachlor, hazard ratio of 1.05 and 95% CI: 0.59 - 1.86) or other non-Hodgkin's lymphoid malignancies. However, as noted by the DS there were some limitations in this study. Leon et al. 2019 estimated the exposure to active substances for the AGRICAN cohort by country-specific crop-exposure matrices (CEM), which infers the exposure to a specific pesticide from the cultivated crop, pesticide sales and pesticide. Leon et al. (2019) considered the use of the CEM method as a limitation, as it might lead to lower specificity than self-reported pesticide use at the active ingredient level. The CEM likely lead to an overestimation of the exposure to metolachlor in the AGRICAN cohort. In addition, the DS noted that Leon et al. (2019) did not provide a separate analysis of the hazard ratio for the AHS and AGRICAN cohort.

Overall, RAC notes that the association between follicular cell lymphoma and metolachlor was weaker than for liver. In addition, considering the inconsistent results obtained for this type of tumour in human, the data are insufficient for classification.

Other tumour types

An increase in lung tumour was reported in two AHS cohort studies. In Alavanja et al. (2004), the authors evaluated cancer incidence through 2001. The odds ratio (OR) was 4.1 (95% CI: 1.1-9.22) using the no exposure group as referent and 5 (95% CI: 1.6-10.4) when the 'no use' was used as the referent group. In Rusiecki et al. (2006), the authors evaluated cancer incidence during a similar period, through 2002. Lung cancer showed a significant trend along the highest tertile of the lifetime exposure days (RR = 2.37, 95% CI: 0.97-5.82) using the low-metolachlor exposure group as referent. However, using the intensity-weighted lifetime days exposure, no association was found. As these earlier suggestions of increased lung cancer risk at high levels of metolachlor use in this cohort was not confirmed in the update published by Silver et al. (2015), including more comprehensive adjustment for potential confounding factors, the evidence is considered insufficient for classification.

In Andreotti et al. (2010), the authors evaluated cancer incidence through 2005 in the AHS cohort. A statistical increase in hazard ratio for colon cancer was published when body mass index (BMI) was \geq 30, showing that BMI is an interaction factor. In a nested case-control study of the AHS cohort, Koutros et al., 2010 evaluated cancer incidence through 2002 and showed increased colon cancer in person with 8q24 variants genetic factor for prostate cancer in the high exposure group to metolachlor. Association between colon cancer and metolachlor was not reported in other AHS cohort studies (Silver et al., 2015; Rusiecki et al., 2006; Lee et al., 2007). Thus, no consistent evidence on colon cancer is available for metolachlor.

No association or decreased risk was observed between metolachlor and pancreatic cancer (Andreotti et al., 2009), prostate cancer (Barry et al., 2011; Rusiecki et al., 2006), or childhood cancer (Flower et al., 2004).

Two case-control studies were also reported in the CLH report. No association was observed with the use of metolachlor with non-Hodgkin's lymphoma (De Roos et al., 2003). An increase

OR was noted for metolachlor and brain cancer but was not statistically significant (Lee et al., 2005).

Comparison with CLP criteria

There is limited evidence of carcinogenicity in humans for liver tumours and follicular cell lymphoma reported in one cohort study, including a high number of people in the US. Nevertheless, due to potential co-exposure, Category 1A is not considered justified.

Liver combined adenomas and carcinomas were significantly increased in female and male rats at the top dose only. Pre-neoplastic lesions and progression to malignancy has been noted. RAC considers that the incidence for carcinoma being low is an uncertainty. Based on the mechanistic data available in the dossier, a CAR/PXR mediated effect, which is not relevant to humans, is plausible although uncertainties have been noted. It was not possible to fully exclude potential other MoAs and some inconsistencies in the studies. Therefore, this type of tumour provides limited supportive evidence of carcinogenicity.

An increase in pituitary carcinoma in female rats was also noted. There were no relevant HCD available in the CLH dossier. Overall, RAC agrees with the DS that this type of tumour may have been treatment related.

With regard to the nasal turbinate malignant tumours, an increase incidence was noted in males. Although the incidence was very low (two males), this is a very rare tumour of concern.

Although the tumours were only recorded at the top dose, excessive toxicity was not observed in the rat carcinogenicity study and is thus not a potential confounding factor.

In addition, RAC notes that the mouse carcinogenicity study inadequately informs on liver, thyroid, pituitary and nasal turbinate due to the high mortality rate particularly in the high dose females.

In humans, Silver et al. (2015), reported an association between liver cancer and metolachlor exposure that may support the observed effect in rats. However, at present it is not possible to fully exclude potential confounding factors by co-exposure or alcohol use. Therefore, they only provide limited evidence of carcinogenicity.

Based on multiple tumours in rats in both sexes, classification of *S*-metolachlor as Carc. 1B could be warranted. However, RAC considers that there are several factors that justify downgrading the classification from Category 1B to Category 2:

- Tumours are observed in one species.
- A CAR-mediated MoA for liver tumours is plausible although some uncertainties remain.
- The incidence in nasal turbinate in rats was low, raising some uncertainties.
- *S*-metolachlor is not genotoxic.
- Human data do not clearly overlap except for liver tumours, and potential confounding factors cannot be excluded.

Therefore, RAC concluded that classification as Carc. 2; H351 is warranted.

Supplemental information - In depth analyses by RAC

(1) Mechanistic *in vivo* rat study with metolachlor (Anonymous (17), 1994)

- Single oral gavage study in Sprague-Dawley rats at 0, 150, 500 mg/kg bw in males and 0, 150, 500 and 1000 mg/kg bw in females; positive control dimethylnitrosamine.
- No effect on body weight, clinical signs or survival.
- Increased liver weight in males (+9%) and females (+19%).
- Increase in labelling index in male at 500 mg/kg bw and in females at 1000 mg/kg bw 72 hours after dosing.
- At necropsy, slight increase of mitotic cells at 500 mg/kg bw (2/10 animals), and reduction of glycogen content (8/10).

(2) 7-d and 28-d mechanistic *in vivo* rat studies with *S*-metolachlor and metolachlor (Anonymous (35), 1995)

- Three to five rats/sex/dose for one or four weeks with *S*-metolachlor or metolachlor.
- No increase of total number of hepatocellular nuclei or labelling index up to the highest dose tested for both time point and compounds (435 mg/kg bw/d with *S*-metolachlor and 433 mg/kg bw/d with metolachlor).
- Moderate proliferation of smooth endoplasmic reticulum at top dose in both sexes with both substances.
- Increased EROD, PROD, UDPGT activities in rats at 242 mg/kg bw/d in males and at 257 mg/kg bw/d in females for S-metolachlor.
- Statistically significant increase in PROD, UDPGT activities in rats at 264 mg/kg bw/d in males and at 264 mg/kg bw/d in females for metolachlor. EROD (mainly catalysed by CYP A1A) was slightly increase (range of 2.2- to 2.6-fold in both sexes)
- Treatment with *S*-metolachlor was without effect on CYP3A1, CYP3A2, CYP4A1/A2 and CYP4A3.
- Missing positive control in the study.

(3) Unscheduled DNA synthesis (UDS) assay in rats with S-metolachlor (Anonymous (22), 1995b)

- No increase in UDS up to 5000 mg/kg bw in males and 3200 mg/kg bw in females.
- Increase in DNA replication (% S-phase) in both sexes.

(4) 3-, 5-, 7-, 14-, 28- and 60-d *in vivo* female rat mechanistic dietary study with metolachlor (Anonymous, 2006)

- Female rats exposed to 0 or 235 mg/kg bw/d metolachlor.
- Increased PROD, BROD activities after 14 and 60 days and EROD and MROD activities after 60 days to a lower extent.
- Increased protein levels of CYP2B, CYP3S after 14 and 60 days of exposure. Protein level for CYP1A2 was weakly increased after 60 days of exposure. CYP1A1 protein level was not induced.
- No positive control included. No statistical analysis performed.
- (5) *In vitro* screening assay for AhR agonistic activity with metolachlor (Takeushi et al., 2008)
 - Luciferase reporter gene assay using DR-EcoScreen cells (mouse hepatoma Hepa1c1c7 cells).
 - No activation of hAhR in the condition of the study.
- (6) *In vitro* screening assay to detect selective CAR activator in human (Kuelbeck et al., 2011)
 - Reporter and cell toxicity assays in C3A cells for hCAR, hPXR and hAhR.
 - Metolachlor showed significant activation of hCAR and hPXR but not hAhR.

(7) *In vitro* screening assay for human and mouse pregnane X receptor (PXR) agonistic activity by metolachlor (Kojima et al., 2011)

- hPXR and mPXR agonistic activity evaluated by reporter gene assays using COS7 simian kidney cells.
- Potent hPXR agonistic activity and mPXR agonistic activity in the *in vitro* reporter gene assay. Based on β -galactosidase activity, metolachlor did not show cytotoxic effects at the screening dose tested.
- (8) In vitro CAR3 transactivation assay with S-metolachlor (Anonymous, 2014)
 - COS1-cells, cDNA expression vectors for CAR3 variants of human, mouse and rat were used.

- Activation of CAR3: 57-fold in rats (rCAR3), 27-fold in mice (mCAR3) and 9-fold in human (hCAR3).
- The activation of CAR3 by *S*-metolachlor in comparison to the positive controls of the study (CITCO, TCPOBOP, Clotrimazole) was between 59 and 83% (rat: 60%, mouse: 59%, human: 83%).

(9) *In vitro* study in female rat primary hepatocyte cultures treated with *S*-metolachlor (Anonymous (10), 2014)

- Isolated female Sprague Dawley rat hepatocyte cultures, six concentrations up to 75 μ M; phenobarbital sodium and EGF as positive controls. Perfusion from two independent perfusions were pooled.
- No increase in PROD activity (CYP2 marker) in response to treatment.
- Weak increase in BROD activity (1.3-fold).
- Increased cell proliferation at \geq 1 µM, up to 1.9-fold.
- Cytotoxicity observed at \geq 75 μ M.
- Phenobarbital induced cell proliferation, PROD and BROD activities.

(10) *In vitro* study in isolated female human primary hepatocyte cultures treated with *S*-metolachlor (Anonymous (11), 2014)

- Isolated female human rat hepatocyte cultures, six concentrations up to 75 μM; phenobarbital sodium salt and EGF as positive controls.
- Hepatocytes from one donor were used.
- Cytotoxicity observed at \geq 40 μ M
- No effect on cell proliferation
- No increase in CYP2B/3A activities (measured as PROD and BROD activities). Decreased in BROD activity.
- Effects with phenobarbital sodium salt showed an increase in BROD and PROD activities and no cell proliferation.

(11) *In vitro* study in isolated female human primary hepatocyte cultures treated with s-metolachlor (Anonymous (5), 2019)

- Isolated female human rat hepatocyte cultures, six concentrations up to 75 μM; phenobarbital sodium salt and EGF were included as positive controls.
- Hepatocytes from two donors were used.

- No effect on cell proliferation.
- No increase in PROD or BROD activity.
- Increased cytotoxicity at 40 μ M in one donor and 75 μ M in the other donor.
- Effect with phenobarbital sodium salt show an increase in BROD only and no increase in PROD. No effect on cell proliferation.
- One of the females was under chemotherapy just four days before the hepatocytes were prepared, and it is questionable if such data should be used.

10.10 Reproductive toxicity

10.10.1Adverse effects on sexual function and fertility

10.10.2 Short summary and overall relevance of the provided information on adverse effects on sexual function and fertility

The reproductive toxicity of metolachlor was assessed in a two-generation study in rats. Results of this study are summarised in Table 21. Further details regarding study design, guideline (and deviations, if any) and information on incidences and severities of findings and extent of changes relative to controls are given in the text below. For additional information, reference is made to Volume 3 Chapter B.6 of the RAR.

Study type, compound, guideline, deviations if any	Dose levels	NO(A)EL	Critical effects	Reference
2-generation study	0, 30, 300,	parental:	parental:	Anonymous (33),
in rats (CD rats)	1000 ppm	300 ppm (17.7 mg/kg	Food intake \downarrow (F1 females),	1981
metolachlor (batch	g to 1.8 17.7	DW/d)	rei. liver & thyroid wt ;	accentable
FL800362, purity	and 54.9			acceptable
95.4%,	mg/kg bw/d)	offspring:	offspring:	
enantiomeric		300 ppm (17.7 mg/kg	body weight in F1 and F2	
content: 47.7%		bw/d)	pups ↓	
w/w of each of the				
enantiomers)				
study performed				
according		reproductive:	no effects on reproduction	
"guidelines		1000 ppm (54.9 mg/kg	or fertility	
established in 43		bw/d)		
FR 3/336, Part				
is similar to OECD				
416 with some				
deviations (see text				
below)				
CL P (solf				
certification of the				
performing				
laboratory, internal				
quality assurance				
system)				

Table 21: Summary of reproductive toxicity studies

The study is similar to OECD 416 but has some deviations: Food intake was measured only during the premating period and the calculation of mean daily substance intake has been performed on that basis. Conversion values for ppm to mg/kg bw/d were based on food consumption during week 10 in F0 males. In addition, organ weights of parental animals were only determined in the F1 but not in the F0 generation. Oestrus cycle of the female rats was not investigated and the age of vaginal opening of preputial separation in F1 weanlings selected for further breeding were not determined. It is only stated that the pups were examined for "developmental anomalies at birth and again at weaning." The latter deficiencies are clearly due to the age of the study. When pups were weighed, sexes were regarded separately only on day 21 but not before.

There were no unscheduled deaths and no clinical signs of toxicity among the parental F0 animals up to the highest tested dose of 54.9 mg/kg bw/d. The same holds true for the F1 parental males. One mid dose and one high dose F1 female were found dead at an age of 32 or 52 days, respectively. The cause of these deaths could not be clearly established but, due to their isolated occurrence and to the absence of further clinical signs, a relation to treatment is unlikely. In addition, one control and one mid dose female were sacrificed in moribund condition for humane reasons, both at 170 days of age.

Body weight and body weight gain in the parental animals were not altered in any generation at any dose level. Food consumption was not compromised in the F0 generation. In the F1 generation high dose females displayed significant reductions as compared to the control group for 8 of the 17 measurement intervals (premating weeks) whereas such differences were only occasionally seen in the other dose groups. Thus, an adverse effect of the test substance on food intake at the top dose level became apparent.

Organ weight determinations in F1 parental animals revealed an increase in relative thyroid weight in males receiving 54.9 mg/kg bw/d (+ 26 %) which was, however, not accompanied by histopathological findings. Likewise, the relative liver weight was increased in both sexes at this dose (males: + 11 %, females: + 9 %), but, again, not related to histological changes. Gross and histopathological examination of other organs did not reveal findings that could be attributed to treatment.

Male fertility was further investigated by histology of the testes, which failed to demonstrate any adverse effect on spermatogenesis. Atrophy of spermatic cells and, in one case, also aspermia were noted at the low dose level in 2 out of 15 F0 males but were not confirmed at higher dose levels or in the F1 generation. Thus, these isolated findings were considered spontaneous.

In the F0 generation, the mating index appeared somewhat lower at 54.9 mg/kg bw/d group as compared to the control group (63.6 % vs. 81.1 %) but the difference was not statistically significant. Fertility and gestation index or average gestation length were not altered. No evidence of any differences in the reproductive parameters was observed in the F1 generation. The reproductive success in terms of litter size or number of totally delivered viable pups was not compromised.

10.10.3 Comparison with the CLP criteria

Table 22: Toxicological results concerning adverse effects on sexual function and fertility

Toxicological result	CLP criteria
2-generation reproduction study	Category 1A:
in rats, metolachlor administered	Known human reproductive toxicant
via diet (Anonymous (33),	
1981):	Category 1B:
	Presumed human reproductive toxicant largely based on data from animal
No effects on fertility or	studies
reproduction observed up to highest	- clear evidence of an adverse effect on sexual function and fertility in the
dose tested (1000 ppm, 54.9 mg/kg	absence of other toxic effects, or
bw/d)	- the adverse effect on reproduction is considered not to be a secondary
	non-specific consequence of other toxic effects
	Category 2:
	Suspected human reproductive toxicant
	- some evidence from humans or experimental animals, possibly
	supplemented with other information, of an adverse effect on sexual
	function and fertility and
	- where the evidence is not sufficiently convincing to place the substance
	in Category 1 (deficiencies in the study).
	- the adverse effect on reproduction is considered not to be a secondary
	non-specific consequence of the other toxic effects

No human data on adverse effects on sexual function and fertility are available, hence no classification with Cat. 1A according to CLP regulation is proposed.

In the submitted multigeneration study, no findings with relevance for classification for adverse effects on sexual function and fertility were reported. Nevertheless, important parameters such as cyclicity, ovarian follicles or developmental landmarks in the offspring have not been investigated. Overall, no classification with Cat. 1B or 2 according to the CLP regulation is proposed.

10.10.4 Adverse effects on development

10.10.5 Short summary and overall relevance of the provided information on adverse effects on development

The developmental toxicity of S-metolachlor is assessed based on four teratology studies in rats and rabbits using metolachlor or S-metolachlor and one two-generation study using metolachlor in rats. An additional available teratology study in rats (Anonymous (15), 1976) was not taken into account: the study was considered not acceptable due to several deficiencies (non guideline-conform, test item was not adequately described, too low top dose level, no justification for dose setting, deficient study report). The results of the four acceptable/supplementary studies are summarised in Table 23. Further details regarding study design, guideline (and deviations, if any) and information on incidences and severities of findings and extent of changes relative to controls are given in the text below. For additional information, reference is made to Volume 3 Chapter B.6 of the RAR. For the pesticides procedure also information from published literature was assessed. The majority of these studies was performed using a formulated product containing S-metolachlor and is therefore not reported here, but results of one study using metolachlor are reported below.

For the pesticides procedure additional studies regarding developmental toxicity of two environmental metabolites of S-metolachlor were assessed. Both metabolites are primary metabolites in the environment and were not or only to an extent of 0.14 % recovered in rat excreta. They are not expected to enhance the toxicity of S-metolachlor and results of toxicity testing are therefore not reported here.

Study type, compound, guideline,	Dose levels	NO(A)EL	Critical effects	Reference
deviations if any Developmental toxicity study, rat (Tif:RAIf)	0, 5, 50, 500, 1000 mg/kg	<u>maternal:</u> 50 mg/kg bw/d	maternal: clinical signs, body weight ↓, body weight gain ↓, food consumption ↓	Anonymous (24), 1995
S-metolachlor (purity: 95.6%; batch no.: V4673/7; S- enantiomeric content: 84% w/w, R-enantiomeric content: 11.1% w/w) OECD 414, administration only from days 6	bw/d	developmental: 500 mg/kg bw/d	developmental: dumbbell shaped cervical vertebral centers↑	acceptable
through 15 post coitum. GLP				

Table 23: Summary of developmental toxicity studies

Study type, compound.	Dose levels	NO(A)EL	Critical effects	Reference
guideline,				
deviations if any				
deviations if anyDevelopmentaltoxicity study, rat(Crl:COBS CD (SD)BR)metolachlor (purity:96.4%, batchnumber FL-841697,enantiomeric contentnot reported)No guideline givenin the study. Study	0, 30, 100, 300, 1000 mg/kg bw/d	<u>maternal:</u> 100 mg/kg bw/d <u>developmental:</u> 300 mg/kg bw/d	maternal: body weight ↓, body weight gain ↓, food consumption ↓, clinical signs (convulsions, salivation, lacrimation, urine-stained abdominal fur) ↑ developmental: fetal weight ↓, delayed ossification ↑	Anonymous (26), 1985 Acceptable
design is similar to OECD 414 but pathological examination of the dams was rather limited and uterine weights were not determined at termination. Administration only from days 6 through 15 post coitum GLP				

Study type,	Dose	NO(A)EL	Critical effects	Reference
compound,	levels			
guideline,				
deviations if any				
Developmental	0, 20, 100,	maternal: 100	maternal:	Anonymous
toxicity study, rabbit	500 mg/kg	mg/kg bw/d	body weight (gain) \downarrow , food	(16), 1995
(New Zealand White	bw/d		consumption \downarrow	
rabbits				Acceptable
(Har:PF/CF(NZW)B				
R)		developmental:	developmental:	
		100 mg/kg bw/d	fetal malformations & variations \uparrow ,	
S-metolachlor			fetal weight↓	
purity: 89.6%,				
batch:				
FL830813,				
S-enantiomeric				
content of 93.7%,				
OECD 414				
stability of the test				
substance in the				
dosing formulation				
was not determined				
during the study, but				
confirmed years				
after when the test				
report was prepared.				
For this additional				
analytical work, a				
different lot of the				
test substance (FL-				
941255 with a purity				
of 94.4 %) was used.				
Administration only				
from day 7 through				
19 of presumed				
gestation.				
GLP				

Study type,	Dose	NO(A)EL	Critical effects	Reference
compound, guideline	levels			
guideline, deviations if any				
Developmental	0.26.120	motomol, 120	matamali	Anonymous
bevelopmental	0, 50, 120,	maternar: 120	linical signs 1 (missis yaging)	(25) 1080
New Zeelend White	500 mg/kg	ing/kg bw/d	discharge) chartions 1 hody	(23), 1980
(New Zealand White	Dw/d		discharge), abortions [, body	1
raddits, DLI:NZW)		1 1	weightioss, food consumption \downarrow	supplementary
. 1 . 1 1		developmental:	1 1 . 1	
metolachlor		120 mg/kg bw/d	developmental:	
(purity 95.4%,			malformations T	
batch:-FL-/911/4,				
contains 47.7% w/w				
of the R- and S-				
enantiomer)				
No guideline given in the study. Study design is similar to OECD 414, administration from day 6 through day 18 of presumed gestation. No precise data on food consumption, terminal sacrifice on day 30. No clear discrimination between malformations and variations.				
non GLP				

In both studies in rats maternal toxicity occurred at the two top dose levels of 500 and 1000 mg/kg bw/d Smetolachlor, or 300 and 1000 mg/kg bw/d metolachlor, respectively. Dose-related reductions in body weight (up to 8 % in the study using S-metolachlor and 5 % in the study using metolachlor on day 21 after treatment with 1000 mg/kg bw/d), bw gain, (-45 % compared to control for days 6-11) and food consumption were observed (Table 24, Table 25). Anonymous (26) (1985) reported clinical signs including clonic and/or tonic convulsions, excess salivation and/or lacrimation and urine-stained abdominal for which became severe at the limit dose of metolachlor, four dams died at this dose (Table 25). In Anonymous (24) (1995) all dams from 500 and 1000 mg/kg bw/d and nine dams from 50 mg/kg bw/d groups exhibited discomfort after S-metolachlor administration (pushing head through bedding for up to one hour following dosing). The NOAEL for maternal toxicity was set at 50 mg/kg bw/d (S-metolachlor) and 100 mg/kg bw/d (metolachlor), respectively.

Table 24: Maternal findings - study in rats using S-metolachlor (Anonymous (24), 1995)

Dose (mg/kg bw/day)	0	5	50	500	1000
Mean body weight (g with SD) Day 6 Day 9 Day 16	226.5 ± 10.3 241.5 ± 10.9 296.5 ± 16.6	225.5 ± 10.5 241.7 ± 12.7 295.0 ± 18.6	229.5 ± 12.0 243.0 ± 12.6 296.6 ± 16.4	227.7 ± 9.5 236.6 ± 11.5 $284.5 \pm 14.1^*$	$\begin{array}{c} 225.0 \pm 9.9 \\ 229.3 \pm 9.6^{**} \\ (-5\%) \end{array}$

Dose (mg/kg bw/day)	0	5	50	500	1000
Day 21	375.2 ± 25.6	369.8 ± 27.7	377.3 ± 29.4	(-4%) 357.9 ± 28.1 (-5%)	$275.5 \pm 14.7^{**} \\ (-7\%) \\ 345.3 \pm 29.0^{**} \\ (-8\%)$
Mean bw gain (g with SD) Days 6 -11 Days 11-16 Days 16-21 Days 6 -16 Days 6 - 21	$28.5 \pm 4.7 \\ 41.5 \pm 6.7 \\ 78.7 \pm 13.3 \\ 70 \pm 9.4 \\ 148.7 \pm 20.2$	$\begin{array}{c} 29.5 \pm 5.0 \\ 40.1 \pm 7.7 \\ 74.8 \pm 12.5 \\ 69.6 \pm 10.5 \\ 144.2 \pm 21.3 \end{array}$	$27.6 \pm 4.4 \\ 39.5 \pm 8.0 \\ 81.2 \pm 18.3 \\ 67.1 \pm 9.6 \\ 148 \pm 25.1$	$23.5 \pm 6.0^{*}$ (-17%) $33.3 \pm 4.8^{**}$ (-20%) 73.4 ± 19.3 (-7%) $56.8 \pm 9.5^{**}$ (-19%) $130.2 \pm 23.5^{*}$ (-12%)	$\begin{array}{c} 15.8\pm5.3^{**}\\ (-45\%)\\ 34.7\pm7.7^{*}\\ (-16\%)\\ 69.9\pm18.1\\ (-11\%)\\ 50.5\pm11.9^{**}\\ (-28\%)\\ 120.4\pm27.5^{**}\\ (-19\%)\end{array}$
Food consumption (g/animal/day, with SD) Days 6-11 Days 11-16 Days 16-21	26.0 ± 1.8 27.8 ± 2.7 26.9 ± 3.0	25.9 ± 2.3 27.8 ± 3.0 27.5 ± 3.7	25.3 ± 2.3 27.1 ± 2.2 28.2 ± 3.0	$22.5 \pm 2.3^{**}$ (-13%) $25.6 \pm 1.8^{*}$ (-8%) 28.4 ± 2.6	$20.3 \pm 1.7^{**}$ (-22%) $25.1 \pm 2.4^{**}$ (-10%) 27.3 ± 2.2

*p<0.05, **p<0.01, Anova + Dunnett-test

[#]only pregnant females included in calculations

- · · · · · · · · · · · · · · · · · · ·	Table 25: Maternal	findings - st	udy in rats	using metolachlor	(Anonymous	(26), 1985)
---	--------------------	---------------	-------------	-------------------	------------	-------------

Dose (mg/kg bw/day)	0	30	100	300	1000
Number of rats per group	25	25	25	25	25
Mortality	0	0	0	0	4**
Clonic or tonic convulsions (affected females/ observations [#])	0	0	0	0	11 / 11**
Excess salivation (affected females/observations *)	0	0	0	16 / 61**	25 / 214**
Excess lacrimation (affected females/observations [#])	0	0	0	0	8(21)**
Urine-stained fur (affected females/observations [#])	0	0	0	0	19 / 140**
Body weight [§] (g, \pm SD), day 6	276.6 ± 13.6	275.5 ± 13.3	277.0 ± 12.4	276.9 ± 18.0	272.6 ± 13.1
Body weight $(g, \pm SD)$, day 9	288.0 ± 14.8	290.0 ± 13.2	288.5 ± 13.1	285.7 ± 18.4	$276.9 \pm 17.9^{*} \\ (-4\%)$
Body weight (g, \pm SD), day 15	325.3 ± 19.4	329.8 ± 14.5	325.0 ± 18.0	323.5 ± 25.9	$\frac{309.0 \pm 15.5^{*}}{(-5\%)}$
Body weight (g, \pm SD), day 20	403.0 ± 25.8	409.4 ± 21.4	403.6 ± 23.0	397.4 ± 32.6	$380.8 \pm 18.6^{**}$

Dose (mg/kg bw/day)	0	30	100	300	1000
					(-6%)
Mean bw gain (g, \pm SD), days 6-11	25.0 ± 6.0	28.2 ± 8.0	24.7 ± 7.2	$\begin{array}{c} 20.5 \pm 6.3^{*} \\ (-18\%) \end{array}$	13.6 ± 7.7** (-46%)
Mean bw gain (g, \pm SD), days 6-15	48.7 ± 11.0	54.2 ± 11.8	48.0 ± 12.5	46.6 ± 11.5 (-4%)	$\begin{array}{c} 39.2 \pm 10.1^{*} \\ (-20\%) \end{array}$
Mean bw gain (g, \pm SD), days 6-20	126.3 ± 18.7	134.0 ± 18.8	126.6 ± 17.5	$\begin{array}{c} 120.5 \pm 20.1 \\ (-5\%) \end{array}$	$\begin{array}{c} 111.2 \pm 15.5^{*} \\ (-12\%) \end{array}$
Food consumption (g, \pm SD), days 6-11	87.2 ± 7.1	86.5 ± 7.7	84.5 ± 7.1	81.4 ± 9.7* (-7%)	77.1 ± 10.4** (-12%)

*p<0.05, **p<0.01 in Dunett's test

[#]frequency of observation of this sign, summed up over the entire study period and all animals

[§]body weight data exclude non-pregnant animals

The number of pregnant females and the mean number of Corpora lutea did not differ between the treated groups and the control and all rats, which were pregnant, had litters with viable fetuses.

Under the conditions of the teratology study conducted by Anonymous (24) (1995) using S-metolachlor, some external and visceral anomalies were reported which were mainly considered as not treatment-related as no dose response was apparent (Table 26). Skeletal anomalies mainly comprised irregular, poor or absent ossification of cranial bones, sternebrae, vertebral centres, ribs or phalanges and fused, asymmetric or bipartite sternebrae. A remarkable finding was a dose-dependent increase in the incidence of dumbbell shaped cervical vertebral centres gaining statistical significance at the top dose level of 1000 mg/kg bw/d for numbers of affected litters as well as fetuses. Both, the fetal incidence of 4.7 % as well as the litter incidence of 27.3 % was within the respective historical control ranges (0.6 - 8.4 % for fetuses and 4.2 - 47.8 % for litters), however, the respective means of 2.7 % or 15.4 % were clearly exceeded. The historical control database as provided as part of the study report included 5068 fetuses from 680 litters, which were produced in 20 studies in the same rat stock. These studies had been run between 1 January 1988 and 31 October 1994, and, thus, covered the in-life phase of the study under evaluation. The NOAEL for developmental toxicity was set at 500 mg/kg bw/d.

Dose (mg/kg bw/day)	0	5	50	500	1000
Number of litters	22	23	23	21	22
Mean number of live fetuses per litter (with SD)	15.0 ± 2.6	13.7 ± 2.8	14.9 ± 3.0	13.1 ± 4.0	12.8 ± 4.8
Mean fetal weight (g), males/females	5.4 / 5.1	5.5 / 5.1	5.4 / 5.1	5.5 / 5.2	5.4 / 5.2
Fetal external anomalies (% litter incidence)	4.5	0	4.3	4.8	0
Fetal visceral anomalies (% litter incidence)	31.8	30.4	26.1	23.8	38.1
Fetal skeletal anomalies (% litter incidence)	40.9	34.8	26.1	47.6	22.7
Dumbbell- shaped cervical vertebral centers (fetuses/fetuses evaluated)	1 / 168 (0.6%)	1 / 163 (0.6%)	2 / 177 (1.1%)	3 / 142 (2.1%)	7* / 148 (4.7%)
Dumbbell- shaped cervical vertebral centers (litters/litters evaluated)	1 / 22 (4.5%)	1 / 23 (4.3%)	2 / 23 (8.7%)	3 / 21 (14.3%)	6 [§] / 22 (27.3%)

Table 26: Fetal findings – study in rats using S-metolachlor (Khalil, 1995)

*p<0.05, Anova + Dunnett-test; §fetal and litter incidence within historical control range, above the means

Under the conditions of the teratology study conducted by Anonymous (26) (1985) using metolachlor, a slightly lowered fetal weight (- 4 %) was reported for the top dose group. Malformations included one hydrocephalus (vehicle control), one *Spina bifida* and exencephaly (at 300 mg/kg/day in the same litter) and one micrognathia (at 1000 mg/kg/d). These isolated findings were considered chance events because of their rareness, the lack of statistical significance and (apart from micrognathia that was confined to the highest dose) because there was no dose response. Visceral and skeletal variations did not occur often and were not dose-related. The only significant difference (p<0.01) was achieved for a variation that is considered to indicate some retardation in development: at the top dose level of 1000 mg/kg bw/d, an incompletely ossified ischium was observed in two fetuses in two litters. In the control or the other treated groups, this finding was not present. The NOAEL for developmental toxicity was set at 300 mg/kg bw/d.

Under the condition of the two-generation study in rats conducted by Anonymous (33) (1981) developmental effects were observed in terms of reduced fetal bodyweight. During lactation pup survival was not altered. However, mean pup body weight was lower in both generations at the top dose level of 54.9 mg/kg bw/d: at PND 21 in the F2 generation a statistically significant decrease of 8 % in females and 7 % in males was

observed and in the F1 body weight was reduced about 8 % in females and 9 % in males In female F2 pups, there was a statistically significant reduction (-6 %) in body weight on day 21 also in the mid dose group. Asimilar tendency was observed in the F1 generation but the difference had not achieved statistical significance (Table 27). Decreased body weight was already observed from day 4 (F2) and day 14 (F1) on at the top dose, however, at this time points no differentiation was made between sexes. Survival and normal morphological and functional development were not altered.

Table 27: Developmental effects of metolachlor in a 2-generation study in rats (Anonymous (33) (1981), pup weights at selected time points

		Dietary concentration (ppm)							
	F1	F1				F2			
	0	30	300	1000	0	30	300	1000	
Mean pup weight day 4	9.7	9.7	9.8	9.8	9.9	9.4*	9.7	9.2* (-7%)	
Mean pup weight day 14	27.6	27.8	27.7	26.4* (-4%)	27.3	26.4	26.5	25.9** (-5%)	
Mean male pup weight day 21	46.2	45.9	45.1	41.9** (-9%)	44.2	42.6	42.6	41.0** (-7%)	
Mean female pup weight day 21	43.9	43.9	41.6 (-5%)	40.5** (-8%)	42.7	41.8	40.3* (-6%)	39.2** (-8%)	

* Significantly different from control P < 0.05

** Significantly different from control P < 0.01

The results of two teratology studies with New Zealand White Rabbits were assessed. Effects of S-metolachlor (Har:PF/CF(NZW)BR) and metolachlor (DLI:NZW) were investigated. Under the conditions of the teratology study conducted by Anonymous (16) (1995) using S-metolachlor, maternal toxicity occurred at the top dose level (500 mg/kg bw/d) and reduced body weight, body weight gain and food intake were reported. Maternal findings are summarized inTable 28. Four unscheduled deaths were reported. One doe in the top dose group was found dead on day 25, following a period of body weight loss. Even though occurring after cessation of treatment, this death is considered treatment-related. In the low dose group treated with 20 mg/kg bw/d, one doe was sacrificed because it had aborted (day 21) and another one was found dead on day 28 showing also evidence of abortion. These cases were most likely not related to treatment since there were no further abortions at higher dose levels. The fourth animal, this time from the mid dose group receiving 100 mg/kg bw/d, was sacrificed on day 15 for humane reasons because of a fractured hindlimb. This isolated event was probably also not related to test substance administration. Gastrointestinal disturbances became apparent at 100 and 500 mg/kg bw/d since soft stool and/or reduced defecation were observed to occur more frequently as in the control and low dose groups. The difference achieved statistical significance. In addition, these signs were observed in the high dose group during the entire treatment period and not only or more frequently towards the end of the study. In 16 does of this group, they were observed for the first time on days 8 or 9 already whereas first observations were reported in the control group on day 17, in the low dose group on day 18, and in the mid dose group (but in one animal only) on day 11. There were no further clinical signs of toxicity and necropsy did not reveal any gross lesions that could be allocated to treatment.

Table 28: Maternal findings.	study in rabbits	using S-metolachlor	(Anonymous	(16), 1995)
Tuble 20. Muternar manga	, study in rubbits	using b metoluemor	(1 mony mous	(10), 1775)

Dose (mg/kg bw/day)	0	20	100	500
Found dead or sacrificed before scheduled termination	0	2	1	1
Abortion	0	1 (2)#	0	0

Dose (mg/kg bw/day)	0	20	100	500
Reduced or soft stool	6	11	14**	19**
Mean body weight (g, ±SD) Day 7 Day 14 Day 19 Day 29	3952 ± 75 3993 ± 76 4101 ± 86 4225 ± 92	3956 ± 101 4020 ± 103 4142 ± 110 4213 ± 94	4080 ± 90 4145 ± 95 4226 ± 95 4330 ± 97	3963 ± 62 3841 ± 60 $3782 \pm 68^{*}$ 4097 ± 74
Bw gain (g, ±SD) Days 7-14 Days 14-19 Days 19-21 Days 21-25	42 ± 19 108 ± 18 33 ± 9 79 ± 10	64 ± 10 123 ± 14 37 ± 7 39 ± 25	64 ± 22 81 ± 13 30 ± 11 68 ± 16	$-122 \pm 34^{*}$ - 59 ± 27 [*] 75 ± 19 ^{**} 153 ± 18 [*]
Food consumption (g, ±SD) Day 6 Day 7 Day 11 Day 19 Day 21 Day 28	$172 \pm 5 167 \pm 5 158 \pm 6 149 \pm 10 146 \pm 7 86 \pm 8$	$182 \pm 12 \\ 176 \pm 12 \\ 178 \pm 9 \\ 165 \pm 7 \\ 152 \pm 10 \\ 89 \pm 13$	$180 \pm 8 \\ 183 \pm 10 \\ 167 \pm 9 \\ 153 \pm 10 \\ 145 \pm 11 \\ 98 \pm 13$	174 ± 7 $75 \pm 7^{*}$ (-55%) $91 \pm 13^{*}$ (-42%) $78 \pm 15^{*}$ (-48%) 149 ± 13 $133 \pm 9^{*}$

*p<0.05, **p<0.01, Anova or covariance analysis

[#]one case confirmed, the other only presumed

The NOAEL for maternal toxicity was set at 100 mg/kg bw/d.

The mean number of Corpora lutea was similar among all the groups. There was no impact of treatment on resorptions or on the mean number of live foetuses. The fetal sex ratio was not affected. Fetal weight appeared slightly lower at the top dose level of 500 mg/kg bw/d even though the difference to the control was not statistically significant. A slightly higher litter incidence of external, visceral and skeletal malformations was observed in the high dose group receiving 500 mg/kg bw/d. The only variation which gained statistical significance was a skeletal one described as "fully formed ribs" (see Table 29). Most malformations, including all cleft palates, all cases of abnormally flexed limbs/paws, one of two cases of hydrocephalus, reduced trachea size (sometimes considered rather a variation) and all skeletal findings were found in the same litter (see Table 30) of the high dose group. The external limb malformations are most likely related to the skeletal finding of short and bowed ulna/radius. The heavily affected litter (BT14) consisted of five fetuses (four males and one female) whereas the median litter size in the same dose group was 8 and the mean 7.9. All five foetuses had multiple malformations. Also in this litter only, the variation of a curled tongue was noted in three foetuses. The doe producing this litter consumed only very little food over the whole treatment period (0 – 57 g on the individual days with less than 10 g on most of them) and had the lowest body weight in the high dose group between days 14 and 25.

The only skeletal malformation (agenesis of a vertebral centrum and its associated ribs) observed at 100 mg/kg bw/day did not exhibit a dose response and is, therefore and because of its isolated occurrence, not considered treatment-related.

Table 29: Fetal data – body weight, (litter) incidences of anomalies, study in rabbits using S-metolachlor (Anonymous (16), 1995)

Dose (mg/kg bw/d)				
0	20	100	500	

Litters evaluated	19	15	16	18
Mean body weight of male/female fetuses (g)	43.0 / 41.8	43.5 / 44.4	44.4 / 42.3	39.8 / 40.3 (-7%) / (-4%)
Malformations (litter incidence) external / visceral / skeletal	0 / 0 / 0	0/0/0	0/0/1	1/2/1
Variations (litter incidence) visceral / skeletal	1 / 15	1 / 7	0 / 12	3 / 15
Single variation "Fully formed ribs" (affected / total number of fetuses)	49 / 161	18 / 107	29 / 129	72** / 143

*p<0.05, **p<0.01, Anova or covariance analysis

Table 30: Summary of fetal malformations (litter incidence in brackets), study in rabbits using S-metolachlor (Anonymous (16), 1995)

T		Dose (mg/kg bw/day)				
туре	rinding	0	20	100	500	
Fetuses evaluated		161	107	129	143	
Litters evaluat	red	19	15	16	18	
External	Abnormal limb flexure	0	0	0	4 (1)	
Visceral	Cleft palate	0	0	0	4 (1)	
	Hydrocephalus	0	0	0	2 (2) 1.4% (11.1%)	
	Trachea size reduced				1 (1)	
Skeletal	Agenesis of vertebral centrum or of ribs	0	0	1	0	
	Short cranial bones (zygomas/squamosals)	0	0	0	5 (1)	
	Wavy clavicle	0	0	0	4 (1)	
	Short and bowed ulna/radius	0	0	0	5 (1)	
	Bowed scapula	0	0	0	1	

For the observed malformation hydrocephalus the DS requested historical control data during the pesticides procedure. Anonymous (29) (2017b) provided historical control data for NZW rabbits, obtained in the time period between 1983 and 1987, from the laboratory where the study by Anonymous (16) (1995) has been conducted in 1983 even though it was reported only in 1995. The historical database comprised 12 studies with a total of 196 litters and 1586 fetuses. In two out of these 12 studies, hydrocephalus was observed: in one study 1 out of 145 fetuses showed hydrocephalus and in a second study in total 2 out of 143 fetuses from two different litters were affected. These HCD demonstrates, that hydrocephalus is a very rare malformation. The observed incidence of hydrocephalus in the high dose group is far above the mean valuefrom the HCD, albeit the maximum was not exceeded.

The NOAEL for developmental toxicity was set at 100 mg/kg bw/d, based on observed anomalies at 500 mg/kg bw/d.

Under the conditions of the teratology study conducted by Anonymous (25) (1980) using metolachlor, two premature deaths were reported. A top dose female receiving 360 mg/kg bw/d died on day 29 following incomplete delivery of its litter. The two delivered fetuses were dead and malformed with hydrocephalus and small encephalocele. This doe had exhibited a strongly reduced food intake and body weight loss (by 9.9 %) from the beginning of treatment until death. One animal treated with 36 mg/kg bw/d was found dead on day 24, following a long-lasting period of reduced food consumption beginning on day 12 that continued also after cessation of treatment. The doe also exhibited body weight loss (5.6 % as compared to day 6) but had 8 fetuses, which were presumed to have been alive at the time of death of the mother. Hemorrhagic erosions and focal congestion of the stomach mucosa were noted. Since there was no dose response, the clinical signs and eventually the death of this female rabbit were not considered treatment-related. Two abortions were observed: in one animal treated with the top dose of 360 mg/kg bw/d on day 17 (one fetus aborted, 8 implantations sites found at sacrifice on day 20), i.e., during the treatment period, and in one female treated with 120 mg/kg bw/d on day 25 which aborted one early absorption but had no further fetuses. Taking into account these circumstances, the top dose case might be attributed to treatment but not the other. The aborting doe in the top dose group had exhibited clear signs of maternal toxicity (lower food consumption from day 10 onwards, body weight loss). A rather unusual and rare clinical sign was pupil constriction (miosis) observed in animals treated with 120 and 360 mg/kg bw/d within one hour after dosing, disappearing gradually thereafter. This sign that might be considered to indicate a vagotonic response was seen on at least one day but in a few animals occurred on up to 6 days during the treatment period. Another sign that could be due to parasympathic activation was excess salivation in one of the developmental studies on rats. Necropsy and (limited) histopathology did not reveal evidence of treatment-related adverse findings.

In the absence of precise data, no meaningful conclusion with regard to food consumption is possible. The only parameter given in the report is the number of days on which the individual animals consumed less than one-half of the offered amount of diet. In the control group, such a lower food intake was seen in 8 females, mostly in the post-observation period (apart from 2 does with occasional reduction during the treatment period). In the low dose group, 11 animals were affected. In five of them, this finding was noted during the administration period already. Similarly, 10 mid dose females had a lower food intake with six of them during treatment already. At the top dose level, such a low food consumption was quite common with 12 females affected and 11 of them showing the effect for the first time (and mostly frequently) during the administration period. Thus, at least in the group receiving 360 mg/kg bw/d, an adverse effect on food consumption can be assumed. Mean absolute body weight and body weight gain were significantly reduced in this dose group during the treatment period but normalised thereafter. In the dose groups receiving 120 and 360 mg/kg bw/d, body weight gain was markedly higher after cessation of treatment. Maternal findings are summarised in Table 31.

Dose (mg/kg bw/day)	0	36	120	360
Premature deaths	-	1	-	1
Abortions	-	-	1	1
Vaginal bleeding	0/16	0/16	0/16	4/16
Miosis (at least once during treatment period)	0/16	0/16	8/16	10/16
Mean body weight (kg, ± SD) [#] Day 6 Day 12 Day 18 Day 30	$\begin{array}{c} 4.53 \pm 0.36 \\ 4.54 \pm 0.35 \\ 4.57 \pm 0.33 \\ 4.53 \pm 0.38 \end{array}$	$\begin{array}{c} 4.36 \pm 0.38 \\ 4.35 \pm 0.42 \\ 4.39 \pm 0.41 \\ 4.42 \pm 0.39 \end{array}$	$\begin{array}{c} 4.53 \pm 0.38 \\ 4.50 \pm 0.43 \\ 4.55 \pm 0.45 \\ 4.73 \pm 0.41 \end{array}$	$\begin{array}{c} 4.48 \pm 0.33 \\ 4.40 \pm 0.33^{**} \\ 4.32 \pm 0.34^{**} \\ 4.48 \pm 0.35 \end{array}$
Mean bw gain (kg) Day 6 - 12	0.01	-0.01	-0.03	-0.08**

Table 31: Maternal findings - study in rabbits using metolachlor (Anonymous (25), 1980)

Dose (mg/kg bw/day)	0	36	120	360
Day 6 – 18	0.04	0.03	0.02	-0.16**
Day 0 – 30	0.06	0.07	0.21	0.05
Day 6 - 30	0.03	0.04	0.15	-0.01

**p<0.01, Covariance analysis; # pregnant animals only considered

The NOAEL for maternal toxicity was set at 120 mg/kg bw/d.

Table 32: Cesarea	an section data -	study in rabbit	ts using metola	chlor (Anony	mous (25), 198	0
						~

Dose (mg/kg bw/day)	0	36	120	360
Litters evaluated	14	13	12	12
Fetuses evaluated	83	92	78	65
Mean litter size	5.8	7.0	6.5	5.2
Mean fetal weight (g), male/female fetuses	52.5 / 50.2	50.7 / 46.9	52.2 / 53.2	53.6 / 50.5
Hydrocephalus (litter)	0	0	0	2 (1) 3.1% (8.3%)

There were no significant differences among the control and treatment groups with regard to Corpora lutea, implantations, resorption rate or litter size. Mean fetal weight or sex ratio of fetuses were not affected by treatment. There was no difference with regard to the frequency of external, visceral and skeletal malformations but for one exception: two delivered dead pups of the same litter in the group treated with 360 mg/kg bw/d had hydrocephalus with exencephaly and incompletely ossified, highly domed parietals. As described above the food and body weight of the doe was reduced. According to the author of the study, the historical control incidence in the performing laboratory was 1:1000 litters. This very low historical control incidence is not appropriate to exclude that the observed findings was treatment-related. To support the evaluation of these malformations, further historical control data on the spontaneous incidence of hydrocephaly was requested by the DS during the pesticides procedure and was provided by the applicant: Anonymous (28) (2017a) reported historical control data from the laboratory where the study by Anonymous (25) (1980, run in 1979) has been conducted from studies performed later (1980-1990) in the same rabbit strain. A total of 99 studies (1463 litters) were reported, in only 16 of them hydrocephalus was observed. In 15 of these studies one fetus was affected (number of fetuses affected/number of fetuses: 1/136, 1/94, 1/97, 1/132, 1/133, 1/150, 1/150, 1/138, 1/138, 1/112, 1/87, 1/111, 1/98, 1/140, 1/40) while in the remaining study, using unusualdosing via interuterine device during gestation, 3 fetuses in two litters displayed hydrocephalus 3/111). Therefore, the observed incidences of hydrocephalus in the high dose group are far above the mean value from the HCD.

In a study from Greenlee et al. (2004), isolated embryos from CD-1 mice were incubated with 0.1 μ g/ml metolachlor. The percentage of developing blastocysts was unaltered, the percentage of apoptosis was significantly increased and the mean number of cells per embryo was significantly reduced by 10 %. No human data on adverse effects on development are available.

10.10.6 Comparison with the CLP criteria

Table 33: Toxicological results concerning adverse effects on development

Toxicological result	CLP criteria	
Teratology study, rat, S-metolachlor (Anonymous (24), 1995)	Category 1A: Known human reproductive toxicant	
Maternal toxicity: lower body weight, body weight gain and food intake at 500 and 1000 mg/kg bw/d	Category 1B: Presumed human reproductive toxicant	
Developmental effects: Some external, visceral and skeletal anomalies in foetuses, which were not considered as adverse due to missing dose-response. Higher incidence of dumbbell shaped cervical vertebral centers at the highest dose (1000 mg/kg bw/d).	largely based on data from animal studies - clear evidence of an adverse effect on sexual function and fertility in the absence of other toxic effects, or	
Teratology study, rat, metolachlor (Anonymous (26), 1985)	- the adverse effect on reproduction is	
Maternal toxicity: lower body weight, body weight gain, food intake and clinical signs at 300 and 1000 mg/kg bw/d	considered not to be a secondary non- specific consequence of other toxic effects	
Developmental effects at the highest dose (1000 mg/kg bw/d): lower fetal weight and ossification delay	Category 2: Suspected human reproductive toxicant - some evidence from humans or experimental animals, possibly supplemented with other information	
2-generation reproduction study in rats, metolachlor administered via diet (Anonymous (33), 1981):		
Parental tocixity at 54.9 mg/kg bw/d: food intake \downarrow (F ₁ females), relative liver and thyroid wt \uparrow	of an adverse effect on sexual function and fertility and - where the evidence is not sufficiently convincing to place the substance in Category 1 (deficiencies in the study). - the adverse effect on reproduction is considered not to be a secondary non-	
No effects on fertility or reproduction observed up to highest dose tested (54.9 mg/kg bw/d)		
Developmental effects at 54.9 mg/kg bw/d: reduced mean pup body weigh		
Teratology study, rabbit, S-metolachlor (Anonymous (16), 1995)	specific consequence of the other toxic effects	
Maternal toxicity: lower body weight(gain), food intake at 500 mg/kg bw/d		
Developmental effects at the highest dose (500 mg/kg bw/d): lower fetal weight, higher incidence of fetal variation and malformations, mostly observed in a single litter. Two cases of hydrocephalus in different litters		
Teratology study, rabbit, metolachlor (Anonymous (25), 1980)		
Maternal toxicity: lower body weight (gain), food intake, clinical signs, abortions, death (presumed) at 360 mg/kg bw/d		
Developmental effects at 360 mg/kg bw/d: two pups (from the same litter) with hydrocephalus		

There are no appropriate epidemiological studies available on developmental effects in humans. Hence, classification with Category 1A according to CLP regulation is not possible.

The prenatal developmental toxicity of (S-)metolachlor was investigated in rats and rabbits complying with international test guidelines and GLP.

In rabbits, maternal toxicity (lower body weight, body weight gain, feed intake, clinical signs, abortions, death) was observed in animals treated with 360 mg/kg bw/d metolachlor and 500 mg/kg bw/d S-metolachlor. No treatment-related differences in the reproductive parameters number of pregnant females, mean number of Corpora lutea and live-births were reported. Developmental toxicity was confined to dose levels of 360 mg/kg bw/d metolachlor and 500 mg/kg bw/d S-metolachlor. After treatment with S-metolachlor fetal weight tended to be lowered and there was a higher incidence of a certain skeletal variation (fully formed ribs) and multiple malformations were observed in a single litter at the top dose level. Two cases of hydrocephalus were reported, one of them occurred in the heavily affected litter where several malformations were observed, the other one in a litter where no further malformations were observed. In the rabbit teratology study with metolachlor, also two cases of hydrocephalus were reported after treatment with 360 mg/kg bw/d. They were from the litter of a dam that died on day 29. Overall, 4 hydrocephaly were reported in three litters at the top dose levels tested. During the pesticides procedure, DS requested further historical control data on the spontaneous incidence of hydrocephaly to support the evaluation of this fetal malformation. This was provided by the applicants for both teratology studies in rabbits. On one hand, the historical control data suggest that the hydrocephalus in rabbit fetuses after administration of (S-)metolachlor might have occurred by chance, as it was reported in similar incidences, albeit in only a very low number of studies from the HCD. On the other hand, it must not be ignored that the same malformation was observed in two independent studies and that the mean incidence of the historical control database was exceeded.

During the pesticides procedure, the applicant provided, as part of the "additional information", further considerations on the developmental toxicity and the resulting classification proposal (Anonymous (42), 2019) which have been copied in full length, into Vol. 3, B.6.6.2, just for transparency and to allow informed discussion.

One of the applicant's arguments against classification is, again, the historical control data which, as discussed above, are not sufficient to put the study results into question even though they might raise some doubts.

Then, it is emphasised that there is no increase in further developmental findings in the rabbit but malformations may be, and often are, substance-specific and an increase in one severe finding might be sufficient for classification, in particular when, as in this case, it was observed in two independent studies. Malformations can be, and often are, also species-specific and, normally, it is not known which species is the better model for humans. Therefore, the additional argument that no teratogenic findings were observed in the rat must be rejected as well.

The applicant advocates separate and independent assessment of the two studies instead of combining the study results. However, this is just the approach taken by the DS. Occurrence of hydrocephalus in two separate and independent studies is a major argument for evaluation.

Occurrence of the same type of malformation in different strains is even of more concern.

Furthermore, the applicant argues that, in the study by Anonymus (25) (1980), in three litters sired by the same buck, various malformations were observed, including the high dose litter with two fetuses with hydrocephalus. A possible (genetic) impact of the male cannot be excluded but remains speculative. It must not be ignored that hydrocephalus was seen only at the highest dose level but not in the respective litters in the control or in the mid dose group even though the buck was the same. An effect of the test substance appears at least likely. Eventually, the applicant questioned the examination method in these old studies. If this is true, the acceptability of the studies in general must be put into question. Inadequate technique could have also resulted in overlooking of critical findings.

Overall, in one animal species, i.e., the rabbit, there was evidence of a teratogenic effect since hydrocephalus was observed in a small number of fetuses and litters in two independent studies in different strains at high dose levels. In principle, Carc. Cat. 1B might be considered but the developmental effects have been observed only in the presence of overt maternal toxicity. In the Guidance on the Application of CLP Criteria (Version 5.0 - July 2017), the following is stated: "Classification shall not automatically be discounted for substances

that produce developmental toxicity only in association with maternal toxicity, even if a specific maternallymediated mechanism has been demonstrated." The latter is not the case here, i.e., a possible association between maternal toxicity and teratogenicity has not been sufficiently investigated. However, as it is further said: "In such a case, classification in Category 2 may be considered more appropriate than in Category 1." It seems that this approach would be most appropriate for S-metolachlor taking into account, in addition, that effects worth for classification were seen at a low incidence only and that, indeed, historical control data might raise some doubts. Accordingly, Category 2 for developmental toxicity (H361d, "Suspected of damaging the unborn child") is proposed.

10.10.7Adverse effects on or via lactation

No data are available to judge whether there are specific effects on or via lactation (H362).

10.10.8 Conclusion on classification and labelling for reproductive toxicity

In summary, classification with Repr. 2 (H361d) is considered appropriate.

RAC evaluation of reproductive toxicity

Summary of the Dossier Submitter's proposal

Adverse effects on sexual function and fertility

The DS based its evaluation on a two-generation reproductive toxicity study in rats performed with metolachlor (Anonymous (33), 1981; GLP, similar to OECD TG 416). In this study, no effects on parameters investigating sexual function and fertility were observed. The main limitation pointed out by the DS was the absence of measurements of parameters such as oestrus cyclicity, ovarian follicles or developmental landmarks in offspring.

Overall, no classification was proposed by the DS for adverse effects on sexual function and fertility.

Adverse effects on development

The DS based its evaluation on five studies. Two teratogenicity studies in rats (Anonymous (24), 1995; Anonymous (26), 1985), two teratogenicity studies in rabbits (Anonymous (25), 1980; Anonymous (16), 1995) and the two-generation reproductive toxicity study (Anonymous (33), 1981).

The DS proposed to classify *S*-metolachlor as Repr. 2 (H361d) for developmental toxicity on the following basis:

- Hydrocephalus was observed in a small number of foetuses in two strains of rabbits in two independent studies.
- As the effects were observed in presence of overt maternal toxicity, Category 2 was considered more appropriate than Category 1B.

Adverse effects on or via lactation

No classification was proposed by the DS. The DS considered that no data were available to conclude whether there are specific effects on or via lactation.

Comments received during consultation

Comments were only received on developmental toxicity.

One MSCA agreed with the DS's proposal to classify *S*-metolachlor as Repr. 2; H361d. Another MSCA disagreed with the proposal and preferred no classification as hydrocephalus were likely a secondary consequence of maternal toxicity.

Industry representatives disagreed with the classification proposal. They proposed no classification since they considered that the two rabbit studies should be evaluated in isolation and the incidences of hydrocephaly should not be combined.

The DS responded that the hydrocephaly was not combined in the CLH report. The incidence of foetal hydrocephaly in both rabbit studies were within HCD range on a litter basis and observed at maternally toxic dose levels. The DS acknowledged that the HCD might raise doubt but show that hydrocephaly is a very rare malformation and the presence of these malformations in two studies with metolachlor and *S*-metolachlor raised concern.

The industry representatives highlighted that at the time of the study the two foetuses were reported to have "possible hydrocephaly". The technique may not have been sensitive enough and may produce possible artefactual alterations of the skull architecture and bone morphology.

The DS responded that either the results should be considered reliable, or a new rabbit study should have been performed, which was not the case.

Assessment and comparison with the classification criteria

Adverse effects on sexual function and fertility

No effects were seen on sexual function and fertility in the rat two-generation study. RAC notes that the top dose used in this study (Anonymous (33), 1981), around 55 mg/kg bw/d in males and 72 mg/kg bw/d in females, may have been insufficient to fulfil the requirements of OECD TG 416. There were no effects on body weight, clinical signs or mortality in parental animals. The effects on organ weights were of equivocal toxicological significance according to the DS. At the top dose in parental animals, there was only a slight but significant reduction in food intake in female of the F1 generation. In addition, RAC notes that several endpoints (e.g., oestrus cycle, sexual maturation) were not investigated as these endpoints were not recommended in the OECD TG available at the time of the study.

No relevant effects were noted in the repeated-dose toxicity studies.

In conclusion, RAC agrees with the DS's proposal that **no classification for adverse effects on sexual function and fertility is warranted**. Nevertheless, RAC considers the data inconclusive due to insufficient dose levels.
Adverse effects on development

In the two available prenatal developmental toxicity studies performed in rats with metolachlor or *S*-metolachlor (Anonymous (24), 1995; Anonymous (26), 1985), no effects relevant for classification were observed.

There are two rabbit developmental toxicity studies that raised concern on potential effects (Anonymous (25); 1980; Anonymous (16), 1995).

In the most recent study, dated 1995 (conducted in 1983), New Zealand White (NZW) rabbits (Har:PF/CF(NZW)BR) were exposed to *S*-metolachlor, by gavage at 0, 20, 100 or 500 mg/kg bw/d, during gestation days 7-19.

Dose (mg/kg bw/d)	0	20	100	500
Pups/litter	161/19	107/15	129/16	143/18
Visceral malformations	·		•	
Cleft palate	0/0	0/0	0/0	4/1*
Hydrocephaly	0/0	0/0	0/0	2/2 (1*)
Thymus enlarged	1/1	0/0	0/0	0/0
Gonad malpositioned	0/0	1/1	0/0	0/0
Trachea reduced in size	0/0	0/0	0/0	1/1*
Tongue curled	0/0	0/0	0/0	3/1*
Skeletal malformations				
Zygomas/squamosals short	0/0	0/0	0/0	5/1*
Wavy ribs	0/0	0/0	0/0	4/1*
Short and bowed ulna radius	0/0	0/0	0/0	5/1*
External malformations				
Abnormal limb flexure	0/0	0/0	0/0	4/1*

Table: Malformations observed in the rabbit study (Anonymous (16), 1995).

* Observations from same litter; n.a.: not available

Most of the malformations occurred in only one high dose litter (BT14), including only five foetuses having all the multiple malformations. The dam of this litter had the lowest body weight in the high dose group between days 14 and 25. It also consumed very little food (reduced by about 50%).

The increase in malformations was primarily due to hydrocephaly. This severe malformation was observed in one out of five multi-malformed foetuses in one litter and in one foetus in a second litter (dam BS14). The incidence of two foetuses with hydrocephaly out of 143 foetuses in two litters is above the mean of HCD. Nevertheless, the incidence of hydrocephaly is within the HCD range from the same time period from the laboratory and same strain of rabbits, consisting of 12 studies. One out of 145 foetuses had hydrocephalus in one study and two foetuses in two separate litters out of 143 foetuses in another study. RAC notes that one foetus was from a litter that had a cluster of multi-malformed foetuses. This may reflect a total failure of foetal developmental in this dam. The occurrence of one hydrocephalus in a second litter, within HCD is insufficient for classification.

There were no other significant treatment related effects in the study except a statistically significant increase in fully formed ribs (variations) at the top dose.

At the top dose, maternal toxicity was observed. There was a dose-related increase in reduced or soft stool. A marked reduction in food consumption with concomitant body weight loss and reduced body weight gain was also seen. This was also reflected by reduced food efficiency

during exposure. One death was also considered treatment related. Data on corrected body weight were not provided.

In the oldest study (Anonymous (25), 1980), female DLI:NZW rabbits were exposed to 0, 36, 120 or 360 mg/kg bw/d metolachlor on gestation days 6-18. The study was similar to OECD TG 414, but some deviations were noted (no distinction between malformation and variation in the study report, no precise data on food consumption, late terminal sacrifice on day 30 of gestation).

Two dead foetuses with hydrocephalus and small encephalocele were observed in the litter of one dam that died on day 29 of gestation. Although the study authors considered the death not related to treatment, it is not possible to exclude it. There was only one other death in the study at the low dose, not related to treatment. Industry representatives argued that in the Anonymous (25) (1980) study, in three litters sired by the same buck, various malformations were observed, including the high dose litter with the two malformed foetuses with hydrocephaly. Although a genetic effect cannot be excluded, RAC agrees that with the DS that this remains speculative.

At the mid and top dose, miosis and vaginal bleeding was noted in the dams. Mean absolute body weight were significantly reduced during the treatment period.

There was no difference with regards to frequency of external, visceral and skeletal malformations but hydrocephalus was observed in two pups of the same litter of the high dose group. According to the study report, the HCD for hydrocephalus in the laboratory showed an incidence of 1:1000 litters. Ninety-nine studies were available in a 10-year range (1980-1990) in the same laboratory and rabbit strain. In 15 of the studies, one foetus was affected (number of foetuses affected/number of foetuses: 1/136, 1/94, 1/97, 1/132, 1/150, 1/138, 1/112, 1/87, 1/111, 1/98, 1/140, 1/40, while in the remaining study, using unusual dosing via inter-uterine device during gestation, three foetuses in two litters displayed hydrocephalus).

The two foetuses with hydrocephalus were from the same litter in a dam that died, although rarely occurring, this finding may have been secondary to the high maternal toxicity observed in the dam.

RAC agreed with the DS that the presence of four hydrocephalus in three litters from two different strain of NZW rabbits in two independent studies is of concern. Nevertheless, one hydrocephalus occurred in a multi-malformed litter in the first study and the two cases of hydrocephalus in the other study occurred in a dam that died probably due to treatment. In the remaining litter, the presence of one case of hydrocephalus in one study, within HCD, is not sufficient for classification.

Therefore, RAC concludes that **no classification for adverse effects on development is warranted**.

Adverse effects on or via lactation

The small decrease in foetal weight during lactation is not considered sufficient for classification. Therefore, RAC concludes that **no classification for adverse effects on or via lactation is warranted**.

10.11 Specific target organ toxicity-single exposure

This endpoint is not addressed in this CLH report and is outside the scope of the public consultation.

10.12 Specific target organ toxicity-repeated exposure

10.12.1 Short summary and overall relevance of the provided information on specific target organ toxicity – repeated exposure

The specific target organ toxicity of S-metolachlor upon repeated exposure has been investigated in several regulatory 28 day and 90-day oral studies in rats, in 90-day and 1-year oral studies in dogs and in a 21-day dermal study in rabbits. Albeit deviations from the current test guidelines were noted, most of the studies could be considered for risk assessment. Results of this study are summarised in Table. Further details regarding study design, guideline (and deviations, if any) and information on incidences and severities of findings and extent of changes relative to controls are given in the text below or in the Volume 3 B.6 of the Renewal Assessment Report (RAR) provided as supplementary material. Two additional available studies regarding the specific target organ toxicity in rat and dog (Anonymous (7), 1974a and Anonymous 8, 1974b) were not taken into account: The studies were considered not acceptable due to several deficiencies (non guideline-, intermediary administration of higher doses to pre-treated animals, no overt signs of toxicity at top dose, incomplete report). For the pesticides procedure also studies regarding short-term toxicity of two environmental metabolites of S-metolachlor were assessed. Both metabolites are primary metabolites in the environment and were not or only to an extent of 0.14 % recovered in rat excreta. They are not expected to enhance the toxicity of S-metolachlor and results of toxicity testing are not reported here.

Table 34: Summary table of animal studies on STOT RE

Study type, compound, guideline, deviations if any	Dose levels	NOAEL mg/kg bw/d (M/F)				R	esults / (Critical o	effects					Reference
28d, p.o., rat, S-metolachlor (purity:	0, 30, 300, 3000, 5000	24.5/26.4	liver weight ↑	; centril	obular h	ypertropl	ıy							Anonymous (12), 1995
95.6%, batch: V4673/7, S- enantiomeric content: 78%)	ppm (equal to 0, 2.65, 24.5, 242, 426.0 mg/kg		Dose (mg/kg bw/d)	0	0	2.65	2.73	24.5	26.4	242	257	426	435	
78%)	420.0 mg/kg bw/d (M)		sex	М	F	М	F	М	F	М	F	М	F	
test method B.8 of 92/69/EEC some investigations	and 0, 2.73, 26.4, 257.0, 435.0 mg/kg bw/d (F)		absolute liver weight (wk 4)	15.14	8.33	14.63	8.34	15.14	8.09	16.72	9.42*	15.91	8.74	
were skipped (e.g., FOB regarding neuro toxicological properties, detailed			relative liver weight (bw) (wk 4)	46.74	40.91	45.42	40.67	46.95	40.08	52.93*	46.01*	55.94*	44.43	
clinical assessment, determination of			histopathol ogy liver ^a	0/5	0/5	0/5	0/5	0/5	0/5	5/5	2/5	4/5	3/5	
several organ weights, histopathological evaluation of several organs)			*: statistically s a: incidence of	significan animals v	t (Wilcox with sligh	t hepatic o	<0.05) or centrilobu	Jonckeer Ilar hypert	e test (p - trophy	< 0.01));				
28d, p.o., rat, metolachlor (purity: 97.3%, batch: P111072, 48.8% w/w of each of the	0, 3000, 5000 ppm (equal to 0, 265, 447 mg/kg	Not estab- lished	liver weight †	`; centril	obular h <u>i</u>	ypertropł	ıy							Anonymous (12), 1995

Study type, compound, guideline, deviations if any	Dose levels	NOAEL mg/kg bw/d (M/F)				ŀ	Results /	Critical	effects						Reference
enantiomers) test method B.8 of	bw/d (M) and 0, 264, 433 mg/kg bw/d (E)		Dose (mg/kg bw/d)	0	0	265	264	447	433						
92/09/EEC	0w/u (1)		sex	М	F	М	F	М	F						
some investigations were skipped (e.g., FOB regarding neuro toxicological			absolute liver weight (wk 5)	15.14	8.331	14.90	9.262	19.20*	10.12*						
properties, detailed clinical assessment, determination of			relative liver weight (bw) (wk 5)	46.74	40.91	48.54	45.07*	57.87*	47.09*						
several organ weights, histopathological			histopathol ogy liver ^a	0/5	0/5	5/5	0/5	3/5	5/5						
organs) non GLP			*: statistically a: incidence of (liver)	significar animals	nt (Wilco: with sligh	xon test (j nt hyaline	o<0.05) or cytologic	r Jonckee al change	re test (p es (kidney	< 0.01)); y) and hep	patic cent	rilobular ł	nypertroph	ıy	
90d, p.o., rat, S-metolachlor (purity:	0, 30, 300, 3000, 10000	18.5/24	↓b.w. and b.v	v. gain; a	altered c	linical cł	nemistry	paramet	ers; liver	∙wt↑&	histopat	hology, k	kidney wt	t	Anonymous (4), 1995
89.6%, batch: FL830813)	ppm. Achieved doses males:		Dose (mg/kg bw/d)	()	1.9	2.3	18.5	24	187.9	237.8	624.7	763.9		
compliance with test	187.9, 624.7			М	F	М	F	М	F	М	F	М	F		
method B.26 of directive 92/69/EEC. Some investigations	mg/kg bw and females: 0, 2.3, 24, 237 8, 763 9		body weight (wk 13)	551.5	290.0	553.4	273.3	543.6	279.3	502.8*	260.4	477.9* *	240.3		
determination of	mg/kg bw		bw gain	140.08	68.66	140.27	64.44	133.00	66.6	117.33	55.82*	104.15	40.74*		

Study type, compound, guideline, deviations if any	Dose levels	NOAEL mg/kg bw/d (M/F)				I	Results /	Critica	l effects					Reference
several organ weights, FOB regarding neuro			(wk 13; % wk 0)							*	*	**	*	
non GLP			feed consumpt ion (mean; g/day	26.4	18.8	27.0	17.7	25.9	18.7	24.7*	17.6	23.5**	16.4**	
			Haematolo	gy	•	•	•	•		•	•			
			leukocyte s	19.38	9.83	13.49	9.27	14.69	8.51	13.34	8.16	13.35	5.89**	
			Blood cher	nistry	1	1							•	
			SGOT	110.4	79.5	81.3	81.3	93.9	81.1	93.5	67	68.1**	60.9**	
			SGPT	30.4	39.7	29.3	34.6	23	30.1	19.6**	20.6**	16.1**	15.9**	
			γGT	0	0	0	0	0	0	0.2	0	3.1**	2.7**	
			AP	56	35	61.3	36.1	48.6	25.5	43.3**	30.8	37.9**	34.8	
			cholestero l	79	77.8	69.9	67.1	66.1	74.6	67.6	75.7	74.0	89.2	
			bilirubin	0.298	0.255	0.196	0.191*	0.223	0.215*	2.9	0.181*	.23*	.213*	
			prot	6.75	7.18	6.91	7.05	6.93	7.04	7.19**	7.32	7.44**	7.54*	
			A/G-ratio	1.94	2.03	1.68**	1.96	1.73**	1.97	1.64**	1.84*	1.47**	1.66**	
			Urinalysis:	no com	pound re	elated eff	ect			•	•			
			Organ wei	ght (wk	13)									
			Liver	13.8	8.3	17.2	9	18.3	5	14.3	9.3	15.2	7.9	

Study type, compound, guideline, deviations if any	Dose levels	NOAEL mg/kg bw/d (M/F)				I	Results /	(Critica)	l effects					Reference
			(absolute)											
			Liver (relative)	2.543	2.834	3.111*	3.288	3.347* *	2.87	2.842*	3.579* *	3.274* *	3.367* *	
			Kidney (absolute)	2.8	1.9	3.2	1.9	3.1	1.8	3.3**	2	3.3**	1.8	
			Kidney (relative)	0.521	0.642	0.577	0.678	0.570	0.654	0.654* *	0.767* *	0.717* *	0.773* *	
			Adrenals (absolute)	0.054	0.064	0.057	0.065	0.052	0.064	0.049	0.061	0.042* *	0.053*	
			Adrenals (relative)	0.010	0.022	0.010	0.024	0.010	0.023	0.010	0.024	0.009	0.023	
			Histopatho	logy liv	er (wk 1	3)		-	•					
			glycogen accumulat ion	1	0	6	4	9	2	0	0	1	2	
			eosinophi lic inclusions	0	0	0	0	0	0	1	0	7	0	
			statistically s	ignifican	t change ((*, p<0.05	or **, p	<0.01);					<u> </u>]	
90d, p.o., rat, S-metolachlor (purity: 98.5%, batch: P501001, S- enantiomer content: 87.2% w/w)	30, 300, 3000 ppm. Achieved doses in males: 0, 1.90, 20.4,	20.4/23.9	liver weight parameters (i	↑; ↑; kid .e. leuko	ney weig ocyturia)	ght ↑, b.v	v. gain ↓	, altered	l clinical	chemist	ry and u	rine anal	ysis	Anonymous (13), 1999

Study type, compound, guideline, deviations if any	Dose levels	NOAEL mg/kg bw/d (M/F)]	Results / (Critical ef	fects				
Protocol in compliance with test	208 mg/kg bw/d and in females: 0,		Dose (mg/kg bw/d)		0	1.9	2.13	20.4	23.9	208	236	
method B.26 of	2.13, 23.9,			М	F	М	F	М	F	М	F	
Some investigations	bw/d		Haematology									
were skipped (e.g.,			MetHb	0.008	0.008	0.008	0.008	0.008	0.009	0.009*	0.009*	
toxicological			Blood chemistry	·								
properties, detailed			glucose	7.399	7.309	7.127	6.786	6.747*	7.932	6.327**	7.357	
			urea	4.921	5.557	5.076	4.990	5.280	5.412	5.543**	5.387	
non GLP			creatinine	21.44	23.98	22.55	21.42	21.23	23.29	18.47**	22.49	
			cholesterol	1.705	1.994	1.936	2.065	1.644	2.121	2.272*	2.014	
			bilirubin	1.807	2.373	1.790	2.786	1.664	2.276	1.484*	1.698**	
			ASAT (GOT)	80.41	84.76	76.51	106.8	79.89	64.01*	66.74*	60.59**	
			globulin	36.91	35.85	37.39	35.61	37.47	36.90	40.48**	37.91*	
			A/G-ratio	0.951	1.117	0.928	1.143	0.919	1.088	0.882*	1.049**	
			Urinalysis									
			leukocyturia	82.50	15.79	55.00	20.00	77.50	27.50	212.5*	30.00	
			Organ weight (w	vk 13)		•	•				·	
			Liver abs (g)	18.68	10.26	17.21	9.945	19.1	9.954	20.29	10.3	
			Liver rel (‰)	38.94	38.04	37.08	37.56	39.37	36.34*	45.24**	40.89**	
			Kidney abs (g)	3.265	1.952	2.942	2.026	3.347	2.01	3.49	1.985	

Study type, compound, guideline, deviations if any	Dose levels	NOAEL mg/kg bw/d (M/F)			J	Results / (Critical ef	fects				Reference
			Kidney rel (‰)	6.803	7.282	6.356	7.662	6.908	7.351	7.807**	7.523	
			Spleen abs (g)	0.756	0.558	0.784	0.716	0.853*	0.567	0.781	0.513	
			Spleen rel (‰)	1.577	2.083	1.695	2.707	1.775*	2.082	1.755**	2.033	
			statistically signific	ant chang	e (Wilcoxo	n test or Le	epage test o	r Jonckhee	re test: *, p	<0.05 or **	*, p<0.01);	
90d, p.o., rat, metolachlor (purity:	0, 30, 300, 3000 ppm.	20.2/23.4	↓b.w. and b.w. gain	n, leukocy	yturia							Anonymous (14), 1999
97.7%, batch: P111072, 48.8% w/w of each of the	Achieved doses in males: 0,		Dose (mg/kg bw/d)		0	1.9	2.13	20.4	23.9	208	236	
enantiomers)	1.99, 20.2,			М	F	М	F	М	F	М	F	
Protocol in	bw/d and in		Haematology						·			
compliance with test method B 26 of	females: 0, 2 32 23 4		MetHb	0.008	0.008	0.008	0.008	0.008	0.008	0.008	0.009	
directive 92/69/EEC.	259.3 mg/kg		Blood chemistry									
Some investigations were skipped (e.g.,	bw/d		glucose	7.050	7.793	6.787	6.462**	6.812	7.845	7.138	7.627	
FOB regarding neuro			urea	5.401	6.077	5.012	5.902	5.642	6.485	5.723	5.989	
toxicological properties, detailed			creatinine	21.77	26.58	22.56	21.83**	20.86	24.91	22.41	24.27*	
clinical assessment).			cholesterol	1.779	2.398	1.773	2.296	1.951	2.125	2.049*	2.249	
non GLP			bilirubin	1.651	2.153	1.684	2.791**	1.439	2.568**	1.43*	1.855	
			ASAT (GOT)	77.11	76.44	78.82	74.76	80.73	74.46	63.41**	60.76	
			ALAT (GPT)	34.20	32.86	38.66	34.68	43.80	28.66	30.74	23.80*	
			globulin	37.64	37.08	36.67	37.04	37.38	34.93	39.29	36.65	

Study type, compound, guideline, deviations if any	Dose levels	NOAEL mg/kg bw/d (M/F)				Re	sults / C	Critical e	ffects						Reference
			A/G-ratio	0.934	4 1.0	98 (.938	1.122	0.951	1.16	9* (0.901	1.097	7	
			Urinalysis												
			leukocyturia	102.5	5 17.	.5 1	11.1	17.5	117.5	17.5		172.5*	32.5*		
			Organ weight (v	wk 13)					-						
			Liver abs (g)	18.27	7 11.	.00 1	8.59	9.737*	19.46*	9.63	1	18.36	10.48		
			Liver rel (‰)	38.83	3 38.	.32 3	7.50	36.79	40.99*	37.2	1 4	40.22	41.65*	*	
			Kidney abs (g)	3.233	3 2.0	21 3	.366	2.027	3.477	2.02	1	3.285	2.004		
			Kidney rel (‰)	6.889	7.0	37 6	.798	7.653*	7.338	7.80	6** 7	7.185	7.976*	*	
			Spleen abs (g)	0.758	3 0.5	67 (.801	0.541	0.834	0.56	0 0	0.742	0.544		
			Spleen rel (‰)	1.622	2 1.9	74 1	.633	2.053	1.772	2.15	5	1.625	2.167		
			statistically signific	cant cha	nge (Wil	coxon te	st or Lep	bage test o	r Jonckhe	ere test:	*, p<0).05 or **	, p<0.01);	
90d, p.o., dog, S-metolachlor (purity: 95.4%, batch:	0, 300, 500, 1000, 2000 ppm.	15.1/17.2	relative liver weig epididymis	ht ↑, bo	ody weig	ght ↓, fo	od cons	sumption	↓, histo	patholo	ogical	findings	in liver	and	Anonymous (3), 1995
FL941255, S- enantiomer content:	Achieved doses:		Dose (mg/kg bw/d)	()	9	10	15.1	17.2	31.1	31.	5 62	2 74	ļ	
enantiomer content:	9.0, 15.1,			М	F	М	F	М	F	М	F	М	F		
11.1% w/w)	31.1, 62 mg/kg bw/d		body weight (wk 13)	11.33	9.88	10.83	9.45	11.23	9.1	9.7	9.25	11.5	5 9.25		
GLP	0, 10.0, 17.2, 31.5,		bw gain (wk 13; % wk 0)	116.3	123.5	109.7	119.2	112.3	115.9	96.5	113.	8 118	.9 117.	1	
	74 mg/kg		Organ weight (w	wk 13)									·		

Study type, compound, guideline, deviations if any	Dose levels	NOAEL mg/kg bw/d (M/F)				Res	sults / Cı	ritical ef	fects					Reference
	bw/d		Liver (absolute)	310.61	286.20 3	293.84 8	260.71 8	336.63	239.73 8	316.59 8	230.26 8*	358.09 5	285.21 8	
			Liver (relative)	2.688	2.791	2.683	2.755	2.917	2.603	3.263*	2.579	2.968	3.112	
			Histopathology	(wk 13)									
			Liver: Perivascu	ılar infa	Immati	on, acut	e		_	_	_	-		
			R lateral lobe	0/4	1/4	0/4	0/4	1/4	1/4	0/4	0/4	0/4	3/4	
			L lateral lobe	0/4	1/4	0/4	0/4	1/4	0/4	0/4	0/4	0/4	3/4	
			Epididymis, deg	generati	ve cells	in tubu	les							
			Right	0/4		0/4		0/4		0/4		1/4		
			Left	0/4		0/4		0/4		0/4		3/4		
			*significant diffe	rent fro	om conti	rol, p<=	0.05, Du	nnet's t-	Test, tw	o tailed				
3 month, p.o., dog, S-metolachlor (purity:	200 mg/kg bw/d (only	LOAEL: 200 mg/kg	liver weight ↑, AP	††, GG	Т↑				_					Anonymous (43), 1999
98.5%, batch: P.501001, S- enantiomer	one dose tested)	bw/d	Dose (mg/kg bw/d)		0		20	0						
content: 87.2% w/w)				М	F	N	Л	F						
			ALP activity (U/L) – week 7	74.8	63.	75 2	65.4*	211.9*						
			ALP activity (U/L) – week 13	68.35	62.	08 3	08.7*	256.1*						
			GGT activity (U/L) – week 7	2.750) 2.8	25 6	5.350*	5.250*						

Study type, compound, guideline, deviations if any	Dose levels	NOAEL mg/kg bw/d (M/F)				R	esults / C	Critical	l effects				Reference
			GGT ac (U/L) – Liver w Liver:b weight * Wilcoxe +/- Jonck	ctivity week 13 reight (g) ody ratio % on $p < 0.0$ heere $p < 0$	3.575 344.2 30.81 4 0.01	1.800 288.1 26.03	13.01* 470.2* 40.10	8.525 429.5 40.02	5* 5* 2*				
6 month, p.o. , dog, metolachlor; purity not reported, batch: FL-781314)	0, 100, 300, 1000 ppm. Achieved doses:	2.92 / 2.97	body wei	ght ↓, bod	y weight §	gain ↓, AF	P↑, haem Dietary	atologi concei	cal chang	es ppm)			Anonymous (44), 1980,
Study was performed	males: 0,		Week	Males					Females				
prior to the	29.61 mg/kg			0	100	300	100	0	0	100	300	1000	
publication of regulatory guidelines	bw/d and females: 0.		Body w	eight and	body wei	ght gain							
non GLP	2.97, 8.77, 29.42 mg/kg		1	11.6	11.8	10.7 (92%)) (96	1 %)	8.4	8.7	8.6	8.6	
	bw/d		4	12.3	12.5	11.1 (90%)) (94	5 %)	9.2	9.3	9.3	9.1	
			8	12.8	12.6	11.9 (93%)) 12. (95	1 %)	9.5	9.5	9.9	9.5	
			16	13.4	13.1	12.6 (94%)) 12.2	2 %)	10.0	10.2	10.6	9.8	
			24	13.6	13.0	12.6 (93%)) 12.3	3 %)	10.1	10.3	10.4	9.7	

Study type, compound, guideline, deviations if any	Dose levels	NOAEL mg/kg bw/d (M/F)					Resul	ts / Critic	al effect	S				Reference
			26	14.2	13.6	1	12.8 (90%)	12.4 (87%)	10.5	10.	8 1	0.5	10.0	
			30	12.5	-	-	-	11.5 (92%)	10.1	-	-		8.5	
			1–13	1.60	1.25 (78%)	1	1.57 (98%)	0.75 (47%)	1.39	1.0	8 1	.58 114%)	0.95 (68%)	
			1–26	2.44	1.80 (74%)	2 (2.18 (89%)	1.34 (55%)	2.06	2.0	8 1	.88 91%)	1.40 (68%)	
			No stat	istically sigr	nificant	diffe	erences fro	om contro	l values;	% of co	ntrol]
			ALP ac	No statistically significant differences from control values; % of control ALP activity (IU/L)										
			Month 6	56	77		78** (139%)	87* (155%)	69	96	8	33 120%)	100 (145%)	
			* Statis sig from c	tically signi gnificant dif ontrol group	ficant d ference mean,	p<0.	ence from .01, % of o	control g	roup me	an, p<0.0)5, ** Si	tatistically	7	
1 year p.o., dog, metolachlor; purity:	0, 100, 300, 1000 ppm.	3.5/3.6	AP ↑; kid	ney wt↓										Anonymous (20), 1989
97%, batch:	Achieved		Dese	(ma/ka huu	(4)		0	3.5	3.6	9.7	9.7	32.7	33.0	
12801708	9.7, 32.7		Dose	(iiig/kg Uw/	u)	Μ	F	М	F	М	F	М	F	
Protocol partly in compliance with test	mg/kg bw/d		Body w	eight chang	e				-		-			
method B.30 of	3.6, 9.7,		Bw (kg) Baseline	7	.03	6.45	6.86	5.98	7.19	6.24	6.77	6.34	
directive 92/69/EEC. Bodyweight variation	33.0 mg/kg bw/d in		Bw (kg) Day 364	9	.8	8.98	10.83	8.53	9.75	8.4	9.58	8.45	
at start of trial > 20 %,	females		% Char	nge Bw	1	00	100	143.1	100.7	92.5	85.4	101.6	83.3	

Study type, compound, guideline, deviations if any	Dose levels	NOAEL mg/kg bw/d (M/F)			Result	s / Critic	cal effect	s				Reference
no GT dosages												
GLP			Kidney (absolute, day 365)	56.022	35.71	47.007	37.912	45.580* (-19%)	36.192	41.007* * (- 27%)	35.572	
			Kidney (relative to bw, % bw, day 365)	0.563	0.400	0.444* (-21%)	0.449	0.481 (-15%)	0.439	0.443* (-21%)	0.429	
			Kidney (relative to brain, % brain, day 365)	65.063	45.844	55.121* (-15%)	\$ 46.675	54.235* (-17%)	44.397	50.075* * (- 23%)	44.409	
			Mean Alkaline Phospha	tase (U/L	L)							
			Day -16	119	115	129	126	135	107	124	109	
			Day 82	80	73	81	82	90	77	99	103*	
			Day 180	50	41	50	55	62	58	71	75*	
			Day 278	35	34	39	46	45	44	53	56*	
			Day 358	37	56	43	55	49	46	60	72	
			*0.01 <p<= 0.05,="" tailed<br="" two="">**P<= 0.01, two tailed Dur</p<=>	l Dunnet t nnet t-Test	-Test on ration ration ration ration rational distribution rationa	aw data. ata.						
21d, dermal, rabbit, metolachlor (purity:	0, 10, 100, 1000 mg/kg	Systemic: 100/100	liver weight ↑, local derma	al effects	at 10 mg	g/kg bw/d	l					Anonymous (30), 1987
96.4%, batch: FL841697)	bw	Local: <					Dos	se (mg/kg	g bw/d)			
Protocol partially in		10/<10			0		10	10	0	1000		
compliance with test					М	F	M F	M	F	М	F	
method B.9 of			Clinical chemistry									

Study type, compound, guideline, deviations if any	Dose levels	NOAEL mg/kg bw/d (M/F)	Results / Critical effects									
directive 92/69/EEC. 21 days instead of 28 days treatment			Bilirubin (mg/dL, day 19)	0.240 0	0.142 0	0.214 0	0.172 0	0.262 0	0.238 0*	0.248 0	0.2440 *	
days treatment			Organ weights									
GLP			Liver (absolute, g) (% of control)	82.6 (100)	83.4 (100)	98.0 (119)	84.0 (101)	101.9 (123)	68.2 (82)	135.8 * (164)	108.2 (130)	
			Liver (relative to bw, %bw) (% of control)	2.579 (100)	2.428 (100)	3.042 (118)	2.610 (107)	3.283 (127)	2.310 (95)	4.132 * (160)	3.307 (136)	
			Liver (relative to brain wt, %brain wt) (% of control)	921 (100)	863 (100)	1064 (116)	944 (109)	1174 (127)	712 (83)	1531 * (166)	1132 (131)	
			Kidney (absolute, g) (% of control)	18.5 (100)	17.0 (100)	17.5 (95)	16.7 (98)	17.8 (96)	15.2 (89)	21.8 (118)	19.8 (116)	
			Kidney (relative to bw, %bw) (% of control)	0.581 8 (100)	0.500 6 (100)	0.540 1 (93)	0.529 5 (106)	0.577 9 (99)	0.519 3 (104)	0.667 4 (115)	0.6120 * (122)	
			Kidney (relative to brain wt, %brain wt) (% of control)	205.6 (100)	175.1 (100)	177.7 (86)	186.9 (107)	203.0 (99)	159.2 (91)	246.1 (120)	208.1 (119)	
			Gross pathology						•			
			erythema	0	0	5	5	5	5	5	5	
			dry skin	0	0	5	5	5	5	5	5	
			fissuring	0	0	0	1	2	2	5	5	

Study type, compound, guideline, deviations if any	Dose levels	NOAEL mg/kg bw/d (M/F)	Results / Critical effects										
			wrinkles	0	0	0	0	0	0	5	5		
			Histopathology (dermis, back)										
			Hyperkeratosis (minimal)	0	0	5*	3	5*	5*	5*	5*		
			Parakeratosis (minimal)	0	0	1	3	3	4^*	2	5*		
			subacute lymphocytic inflammation (focal)	0	0	0	3	3	3	5*	4*		
			Congestion (focal)	0	0	1	3	3	4	5*	5*		
			: incidence on 5 animals/examined tissues; significance: Fisher=s exact test * p<0.05										

In the short-term 28-day toxicity studies in the rat, liver was detected as being the primary target organ, as reflected by modifications of clinical chemistry parameters such as increased cholesterol, protein and globulin levels, and decreased A/G-ratio from 242 mg/kg bw/d on. At this feeding level, an increased liver weight was observed, while histopathology revealed a slight hepatic centrilobular hypertrophy. A similar toxicological profile was established for metolachlor within the same study. In the 90 day feeding study in the rat, hepatotoxicity starting at doses of approx. 188 mg/kg bw/d was confirmed by the modifications of cholesterol, protein and A/G-levels, and by increased γ GT-activity at approx. 625 mg/kg bw/d. Other signs of toxicity included liver and kidney weight increase, and lowered body weight, body weight gain and food consumption from 188 mg/kg bw/d onwards. The histopathological appearance of eosinophilic hepatocytic inclusions at this dose was confined to male animals, suggesting a higher susceptibility for liver injury in this sex. Increased leucocyturia was observed in both sexes.

In dogs, the main effects reported at doses from approx. 9 mg/kg bw/d were decreased body weight, increased AP-activity (6-month and 1-year study) and decreased kidney weight (1-year study). Increased liver weight was observed from approx. 31 mg/kg bw/d (90-d study). The dog was detected as being the most sensitive species.

Dermal systemic toxicity in the rabbit confirmed the liver as the target organ, with increased weight at 1000 mg/kg bw/d. In females, an increase of relative kidney weight was observed at 1000 mg/kg bw/d. However, significant local effects including dry skin and erythema (generally Draize score 1 besides to one occurrence of score 2 in one male in mid dose group, test day 5) and fissuring were seen in treated skin of all dose groups starting at 10 mg/kg bw/d. At this dose erythema were observed as early as test day 6, dry skin as early as test day 9, fissuring as early as test day 11. Wrinkling of the skin was observed in animals receiving 1000 mg/kg bw/d from day 6 on. Histopathological skin lesions included hyper- and parakeratosis at all dose-levels in both sexes. Additionally, congestion and subacute lymphocytic dermal inflammation of the dermis was observed in both sexes.

Human data on adverse effects after repeated dermal exposure is not available.

10.12.2 Comparison with the CLP criteria

After oral administration, no effects of sufficient severity were reported in available studies that would lead to a classification for STOT RE; the results of these studies are therefore not included in the comparison with the CLP criteria in Table 35.

Toxicological results	CLP criteria
21-day dermal toxicity study in rabbits (Anonymous	Category 1 (H372):
(30), 1987)	Substances that have produced significant toxicity in humans
	or
skin effects (erythema, dry skin, fissuring, minimal	that, based on evidence from studies in experimental animals,
hyperkeratosis and parakeratosis, focal subacute	can be presumed to have the potential to produce significant
lymphocytic inflammation and focal congestion)	toxicity in humans following repeated exposure.
starting at dose levels of 10 mg/kg bw/d	Substances are classified in Category 1 for target organ
	toxicity (repeat exposure) on the basis of:
	reliable and good quality evidence from human cases or
	epidemiological studies; or observations from appropriate
	studies in experimental animals in which significant and/or
	severe toxic effects, of relevance to human health, were
	produced at generally low exposure concentrations.
	Equivalent guidance values for 28-day and 90-day studies:
	Dermal, rat:
	$28\text{-day:} \le 60 \text{ mg/kg bw/d}$
	90 -day: $\leq 20 \text{ mg/kg bw/d}$
	Category 2 (H373):

Table 35: Toxicological results concerning adverse effects after repeated dermal exposure

Toxicological results	CLP criteria
	Substances that, based on evidence from studies in
	experimental animals can be presumed to have the potential
	to be harmful to human health following repeated exposure.
	Substances are classified in category 2 for target organ
	toxicity (repeat exposure) based on observations from
	appropriate studies in experimental animals in which
	significant toxic effects, of relevance to human health, were
	produced at generally moderate exposure concentrations.
	In exceptional cases, human evidence can also be used to
	place a substance in Category 2.
	Equivalent guidance values for 28-day and 90-day studies:
	Dermal, rat:
	28 -day: $\leq 600 \text{ mg/kg bw/d}$
	90 -day: $\leq 200 \text{ mg/kg bw/d}$

After dermal administration, effects in skin were seen in rabbits at dose levels of 10 mg/kg bw/d and above. Effects included erythema (generally Draize score 1 besides to one occurrence of score 2 in one male in mid dose group), dry skin and fissuring after gross examination and after histopathological examination minimal hyperkeratosis, minimal parakeratosis, focal subacute lymphocytic inflammation and focal congestion. At higher dose levels (100 or 1000 mg/kg bw/d) higher incidences of animals were affected but the severity grading did not aggravate. There are no appropriate epidemiological studies available on specific target organ toxicity from repeated exposure in humans. According to the criteria in CLP regulation, severe effects observed at generally low exposure dose levels (below 20 mg/kg bw/d for a 90-day study and below 60 mg/kg bw/d for a 28-day study) need to be considered for a categorisation into Cat. 1, while significant effects observed at generally moderate exposure dose levels (between 20 and 200 mg/kg bw/d for a 90-day study and between 60 to 600 mg/kg bw/d for a 28-day study) need to be considered for a categorisation into Cat. 2.

While effects were observed already at dose levels compatible with Cat. 1, the reported effects (especially fissuring, inflammation and congestion) are considered more as signs of significant toxicity than those of severe toxicity. Hence, a classification with STOT RE 2 (skin) is proposed.

As bridging from metolachlor to S-metolachlor is accepted, the observed effects of metolachlor in the 21-day dermal toxicity study in rabbits are also taken to conclude on classification with STOT RE for S-metolachlor. While metolachlor is a 50:50 mixture of the S- and R-isomer, S-metolachlor contains the S-isomer at higher levels, typically >84 % and the R-isomer at lower levels, typically <13 %. Even when assuming that the observed effects was caused only by the R-isomer and considering the difference in R-isomer content between metolachlor and S-metolachlor, a conversion of the observed effect dose of 10 mg/kg bw/d metolachlor would result in an extrapolated dose of 40 mg/kg bw/d for S-metolachlor. In view of the same reasoning as for metolachlor, this also leads to a proposal of classification into Cat. 2 (STOT RE 2 (skin)).

10.12.3 Conclusion on classification and labelling for STOT RE

In summary, classification with STOT RE 2 (H373) is considered appropriate for skin effects.

RAC evaluation of specific target organ toxicity – repeated exposure (STOT RE)

Summary of the Dossier Submitter's proposal

Oral rat repeated-dose toxicity studies were available with *S*-metolachlor or metolachlor. The DS described one 28-d (Anonymous (12), 1995) and two 90-d rat toxicity studies (Anonymous (4), 1995; Anonymous (13), 1999) with *S*-metolachlor, and one 28-d (Anonymous (12), 1995) and one 90-d (Anonymous (14), 1999) toxicity studies in rats with metolachlor. In addition, two 90-d oral toxicity studies in dogs were available with *S*-metolachlor (Anonymous (3), 1995; Anonymous (43), 1999) and a 6-month (Anonymous (44), 1980) and a 1-year oral dog toxicity study (Anonymous (20), 1989) were included with metolachlor. Moreover, a 21-d dermal rabbit toxicity study (Anonymous (30), 1987) was available with metolachlor.

Oral exposure

After oral administration, no effects of sufficient severity were reported in the available rat or dog studies to justify classification for STOT RE.

Dermal exposure

In the 21-d dermal repeated-dose toxicity study, similar to OECD TG 410, metolachlor was administered at dose levels of 0, 10, 100 and 1000 mg/kg bw/d in male and female rabbits. Significant local effects including dry skin, erythema and fissuring were observed in treated animal of all dose groups at \geq 10 mg/kg bw/d. Microscopical examination revealed changes in the skin at all dose levels (minimal hyper- and parakeratosis, congestion, and subacute dermal inflammation of the dermis) in both sexes. Wrinkling of the skin was only noted at the top dose level.

The DS noted that the effects observed at 10 mg/kg bw/d occurred at a dose level relevant for STOT RE 1 (\leq 86 mg/kg bw/d for a 21-d dermal study). Nevertheless, as the effects were considered more as a sign of significant rather than severe toxicity, STOT RE 2 (H373) was proposed for skin effects.

Comments received during consultation

One Member State Competent Authority (MSCA) commented that the skin effects observed in the dermal toxicity study were not severe enough for classification. The MSCA noted that the congestion and subacute dermal inflammation may have been related to skin sensitisation for which the substance is already classified.

Assessment and comparison with the classification criteria

In the 21-d repeated-dose dermal toxicity study (Anonymous (30), 1987), rabbits were exposed to metolachlor by dermal application on skin for six hours per day at 10, 100 or 1000 mg/kg bw/d (five/sex/group). There was no treatment related mortality in the study. Kidney

and liver weight changes were noted at the top dose. Bilirubin concentrations were significantly increased in females at the mid and high dose levels.

Dry skin and erythema were observed at the site of application in all dose groups. Erythema was graded as Draize score 1 except in one male in the mid dose group having a score of 2. Fissuring was only noted in one female at 10 mg/kg bw/d and in both sexes at \geq 100 mg/kg bw/d. Wrinkles of the skin was only noted at 1000 mg/kg bw/d. No other gross macroscopic pathologies were observed. Histopathological skin lesions included hyper- and parakeratosis at all dose-levels in both sexes and were reported to be of minimal grade by the DS. Additionally, congestion and subacute lymphocytic dermal inflammation of the dermis was observed in both sexes at \geq 10 mg/kg bw/d.

Macroscopic findings were seen first around day 4-8 depending on the finding, with little differences between the dose groups.

Dose (mg/kg bw/d)		0	1	0	1(00	1000		
	М	F	М	F	М	F	М	F	
Macroscopical pathology									
Erythema (grade 1)	0	0	5	5	5	5	5	5	
Erythema (grade 2)	0	0	0	0	1	0	0	0	
Dry skin	0	0	5	5	5	5	5	5	
Fissuring	0	0	0	1	2	2	5	5	
Wrinkles	0	0	0	0	0	0	5	5	
Histopathology (dermis, bac	:k)								
Skin – back:	0	0	5*	3	5*	5*	5*	5*	
hyperkeratosis									
Skin – back: parakeratosis	0	0	1	3	3	4*	2	5*	
Skin - dermis back: focal	0	0	0	3	3	3	5*	4*	
subacute lymphocytic									
inflammation									
Skin - dermis back: focal	0	0	1	3	3	4	5*	5*	
congestion									
Skin - dermis back: focal	0	0	1	0	0	0	1	1	
haemorrhage									
Skin - dermis back: focal	0	0	0	0	0	3	1	2	
oedema									

Table: Dermal observations in the 21-d dermal rabbit toxicity study

Metolachlor up to 20000 mg/kg bw and *S*-metolachlor at 2000 mg/kg bw were not acutely toxic by the dermal route in rabbits and there is no classification for acute dermal toxicity. Slight to moderate dermal irritation appeared in these studies.

In the skin irritation studies available in the renewal assessment report (RAR), six rabbits were exposed to *S*-metolachlor for four hours. The test material produced very slightly to well-defined erythema (Score: 1-2) and very slight to slight oedema (Score: 1-2) within four to 96 hours. All irritations were cleared by day 7. No classification was warranted based on the CLP criteria. Based on this irritation study, single dermal exposure produced noticeable skin inflammation in rabbits, lasting at least for a few days, although their severity did not meet the classification criteria for Skin Irrit. 2. Therefore, it is possible that repeated, occlusive dermal exposure to *S*-metolachlor could lead to significant skin irritation over time.

Skin erythema noted in the 21-d dermal rabbit toxicity study were mainly graded 1. No increase in severity was reported over time. According to the DS, hyperkeratosis and

parakeratosis were only graded minimal. Therefore, RAC concluded that the effects may not be severe enough for classification.

In addition, RAC notes that consideration of local skin effects under STOT RE for classification purposes is not straightforward. According to the CLP Regulation (section 3.9.1.1), the target organ toxicity (repeated exposure) does not include other specific toxic effects that are addressed in sections 3.1 to 3.8 and 3.10 of the CLP Regulation and this includes skin irritation.

When taking the lack of (acute) skin irritation/corrosion classification and the proposed Skin Sens. 1 (H317) classification into account, RAC considers that the skin effects observed in this study in this specific case **do not warrant classification for STOT RE**.

However, as in the repeated-dose toxicity study skin dryness was noted in all exposed animals and fissuring was seen in some animals, RAC concludes that an additional warning for the local skin effects is necessary and that *S*-metolachlor meets the CLP criteria for the **additional hazard phrase EUH066** "Repeated exposure may cause skin dryness or cracking".

Aspiration hazard

This endpoint is not addressed in this CLH report and is outside the scope of the public consultation.

11 EVALUATION OF ENVIRONMENTAL HAZARDS

All the information on ready biodegradability are taken from the RAR (Rev.1 –January 2018) and list of endpoints (January 2018) for S-Metolachlor. Additional information on aqueous photolysis in natural water is taken from the RAR (Rev.1-21 August 2020).

11.1 Rapid degradability of organic substances

Table 36: Summary of relevant information on rapid degradability

Method			Remarks	Reference							
OECD	Ready biodeg	gradabi	ility							The study is	Grade
301/B	mineralization	n of S-m	netola	chlor un	der th	ne test	condit	tions	was 0 % in 29	considered	(1996)
	days									acceptable	
	S-Metolachlo	r is not	readil	y degra	dable						
				0.17						Reliability 1	
OECD 111	Hydrolytic d	egrada	tion o	of the a	ctive	subst	ance a	and r	netabolites >		Keller
	10 %	. no do	ana da	tion wit	hin 2(14					(1996)
	pH 3 at 23 C pH 7 at 25 °C	: no de									
	pH 9 at 25 °C	no de									
OECD 309	Aerobic mine	<u>ralisat</u>	ion in	surfac	e wat	er:				The study is	Crabtree
OLCD 509	S-Metolachlo	r:	1011 111	Surrue	c mat					considered	(2014)
	DT_{50} values a	re norm	alised	l to 20 $^{\circ}$	С					acceptable	()
	System* 1	оН р	Н	DT50	St.	DT	50	St.	Method of	1	
	, i i i i i i i i i i i i i i i i i i i	wat se	ed ^{a)}	whole	(χ ²)	Wa	ater ((χ^2)	calculation	Reliability 1	
	6	er		sys					950		
	$10 \mu g/L$ 8	3.6 7	.6	74 d		NA NA	1		SFO		
	* Fresh water n	lus susp	.0 ended	sedimen	t t	INP	1		360		
	^{a)} Measured in	calcium	chloric	le solutio	on						
	^{b)} Temperature	of incul	oation=	tempera=	ture t	hat the	e enviro	onmei	ntal media was		
	collected or std	tempera									
	NA: not applica	able									
	Matabolita Cl	31/017	77.								
	Max in total s	vstem 9) 1 %	after 58	davs						
	DT ₅₀ -values v	vere not	t appli	cable	aays	•					
	2 1 50 1 41 400 1		. uppn	•							
	Mineralisatio	n:									
	Fresh water p	lus susp	ended	l sedime	ent [1	0 μg/I]: 4.5	% af	ter 58 d		
	Fresh water p	lus susp	endec	l sedime	ent [9	5 µg/I	.]: 3.9	% af	ter 58 d		
	Non-extracta	ble resi	dues:								
	Not detected i	n both :	systen	ns							2.5
BBA	Degradation	in wate	er/sed	iment s	ysten	1:				The study is	Mamouni
Guideline Dort IV: 5	S-Metolachio	<i>r:</i>	пЦ	DT.	C+	DT	DT	C+	Mathod of	considered	(1997)
Part 1V; 5-	sediment	wate	рп sed	D150	SL	D150	DT_{50}	$\int (\gamma^2)$	calculation	acceptable	Seyfried
1	system*	r	sea	, DT90)	, DT90	0)	culculation	S-	(1997)
	5	phas		whol	<i>,</i>	wate	sed	ĺ		S- Metolachlor	
		e		e sys.		r				is not readily	
	River	7.7	8.3	54.8	1.9	NA	NA		SFO	biodegradable	
	(Killie),			u/ 182 d						in the tested	
	(Mamouni)			102 u						systems	
	Pond	7.3	8.1	42.0	3.5	NA	NA		SFO		
	(Ormalingen))		d/						Reliability 1	
	, silt loam			140 d							
	(Mamouni)							1			

Method			Remarks	Reference								
	River	7.7	8.3	45.4	3.1	NA	NA		SFO			
	(Rhine), sandy loam			d/ 151 d								
	(Seyfried)			151 u								
	Pond	7.3	8.1	33.6	3.8	NA	NA		SFO			
	(Ormalingen)			d/ 112 d								
	(Seyfried)			112 u								
	Geometric me											
	* temperature d	uring st	udv 20	0°C								
	NA: not applica	ble										
	<i>Metabolites</i>											
	Max in water	8.2 % :										
	total system 1	7.8 % ;										
	Under anaerol	oic con										
	system											
	<u>CGA51202 (C</u>	DXA):										
	Max in water 362 days	16.8 %	after 3	362 d. N	Aax in	ı tota	l system	n 21.2	% after			
	CGA354743 (ESA):										
	Max in water	6.7 % a										
	days.											
	CGA217498:											
	Max in water	2.7 % :	after 30	52 d. M	ax in t	total	system	5.6 %	after 362			
	days.											
					-							
	Mineralisation	n and i	non-ex	tractab	le rest	idues	S: atabla	Non	avtro at a b la			
	system	int	n	alisatio	resid	ues in	n sed	resid	ues in sed.	•		
	-,		(end o	f the	(max	i)		(end	of the			
			study)			40.0		study	r)			
	River (Rhine),	sandy	max 4	.5 % 62 d	max.	40.3	% 1	max	39.7 % 362 d			
	Mamouni)		arter 5	102 u	anci	1750	J	arter	502 u			
	Pond (Ormalin	igen),	max 1	.8 %	max	58.8	% after	max	60.8 % afte	er		
	silt loam (stud	У	after 3	62 d	175 0	d		362 0	1			
	River (Rhine).	sandy	max 3	1 %	max	35.8	% after	max	34.8 % afte	er		
	loam (study		after 1	80 d	91 d			180 0	l			
	Seyfried)			0.01		50.0	o.()					
	Fond (Ormalin	igen),	max 2 after 1	.0% 5.08	max 91 d	52.9	% after	max	56.5 % afte	er		
	silt loam (study after 180 d 91 d 180 d Seyfried)											
EPA	Degradation in soil: Aerobic degradation (Laboratory studies)									The studies	Clark	
guideline	S-Metolachlo	r:									are	(1995);
No. 162-1	Soil type	paren	pH ^{a)}	t. °C /	DT	50 D	T ₅₀ (d)	St.	Method		considered	Morgenroth
SETAC		t		%	/	20)°C	(χ^2)) of	.	acceptable	(1997);
(1995)				MWH		90 p	F2/10kPa	ı	calculat	10	Reliability 1	Kitschmann
BBA Part	Sandy alor	c	57	20	(d)	2 0	1.2	1 4	n us di	\neg	Kenability I	(1997a)
IV, 4-1	loam (18	o- meto	5.7	$\frac{20}{\text{nF}^2}$	97	2 9	1.2	1.4	пэ "/			Kaller
Dutch	Acres)	lachl		Pr								(1997)
Registratio		or										
n								-				Simmonds & Simmonds

Method					Remarks	Reference				
Guideline, Section G.1	Sandy clay loam (18	S- meto	6.3	20, pF2	84.8	84.8	1.9	HS ^{d)}		(2013 & 2014)
	Acres)	or								Hardy (2014, 2014)
OPPTS	Geometric mea	n 18 Ac	cres		90.8	87.9				(2014, 2014a) & 2014b)
835.4100	Loamy sand	S-	5.6	20, 40	38.6	24.5	4.2	FOMC d)		L vege (1006)
(2008)	(Birkenheide)	meto	(KCl)	%						Lucas (1990)
OECD 307		lachl or		MWH C						Hein (2007)
FOCUS	Loamy sand	S-	5.3	20,	175	173	1.0	SFO		(2001)
Kinetics	(Borstel)	meto		pF2						(2001)
(2006)		lachl								
(2000)	Loomy cond	or	6.1	20	221	221	17	LIC d)		
	(Borstel)	s- meto	0.1	20, pF2	221	221	1./	по 7		
	(Boister)	lachl		P1 2						
		or								
	Geometric mea	n Borst	el (n=2)	196. 7	195.5				
	Sandy loam	S-	8.0 ^{c)}	25, 75	13.2	15.3	4.9	FOMC d)		
	(Buckeystow	meto		% 1/3						
	n)	lachl		bar						
		or					_			
	Sandy loam	meto	8.0 ^{c)}	25, 75	10.1	11.7	4.3	FOMC ^{d)}		
	(Buckeystow	lachl		% 1/3						
	n)	or		bar	11.7	12.4				
	Geometric mea	n Buck		n (n=2)	11.5	13.4	2.6	GEO.		
	Sandy Ioam	lachl	/.4 (KCl	20, 40	11.2	11.2	3.0	SFO		
	(Cononibey)	or		⁷⁰ MWH						
		01	/	C						
	Silt loam	S-	7.6	20,	91.6	79.5	1.0	SFO		
	(Gardner)	meto		pF2						
		lachl		^						
		or								
	Sandy loam	S-	7.5	20,	91.7	91.7	3.5	SFO		
	(Gardner)	meto		pF2						
		lachl								
		or			01.6	07.4				
	Geometric mea	n Gardi	$\frac{1}{2}$	2)	91.6	85.4	10	GEO.		
	Loam	S-	/.5	20, 75	13.2	12.6	10.	SFO		
	(Gartenacker)	lachl		% 1/3 bar			5			
		or)	Uai						
	Loam	Meto	7.3	20.75	15.2	14.6	4.6	SFO		
	(Gartenacker)	lachl	(KCl	% 1/3	10.2	1.1.0				
		or)	bar	L					
	Loam	S-	7.3	20,	26.2	24.7	3.2	Lag		
	(Gartenacker)	meto		pF2				phase,		
		lachl						overall		
		or						DT ₅₀ HS		

			Res	ults				Remarks	Refere
Silt loam	S-	7.5	20,	35.5	30.8	3.2	Lag		
(Gartenacke	r) meto		pF2				phase		
	lachl		-				overall		
	or						DT ₅₀ HS		
Silt loam	S-	73	20 60	163	12.5	6.8	SEO		
(Gartenacke	r) meto	(KCl	20,00 % FC	1010	1210	0.0	51.0		
(Gartenaeke	lachl		7010						
	or	,							
Geometric 1	nean Garte	enacker	(n=5)	19.8	17.7				
Loamy sand	S-	5.7 ^c)	20.40	48.8	48.8	5.3	FOMC ^{d)}		
(Standard se	oil meto	017	<u>2</u> 0, 10 %			0.0	1 01110		
(3)	lachl		MWH						
2.2)	or		C						
Loomy con	meto	57	20.40	24	24	2.5	FOMC ^d		
(Standard a	il lachl	J. /	20,40	24	24	2.5	TOMC /		
			70 MAXVII						
2.2)	or)	MWH						
Geometric 1	nean Gern	nan stan	dard	34.2	34.2				
soil 2.2 (n=	2)	in star	auro	02	0				
Sandy loam	S-	5.2	20, 40	49.9	32.9	6.9	SFO		
(Lorsch)	meto	(KCl	%						
	lachl)	MWH						
	or	,	С						
Sandy loam	S-	7.6 ^{c)}	20,40	25.3	15.3	4.5	FOMC ^{d)}		
(Pappelacke	r) meto		%						
(lachl		MWH						
	or		С						
Sandy loam	Meto	7.6	20,40	11.8	11.8	4.3	SFO		
(Weide)	lachl	(KCl	%				~~ ~		
(or)	MWH						
	01	/	C						
Sandy loam	S-	7.6 ^{c)}	20,40	16.4	10.3	4.5	FOMC ^{d)}		
(Weide)	meto		%						
(()) 0100)	lachl		MWH						
	or		С						
Geometric 1	nean Weid	le (n=2))	13.9	11.0				
Geometric	mean (n =	= 11)			30.1				
pH depend	ence				no				
* geometric	nean of D	T50 (sar	ne soils)						
a) Measured i	n H2O unl	ess othe	erwise sta	ted					
^{b)} Normalize	l using a (Q10 of 2	2.58 and V	Walker	equation of	oefficien	t of 0.7		
c) medium no	t stated								
^{d)} HS: slow p	hase DT ₅₀	; FOMO	C: DT50=	DT90/3	.32				
NA: not appl	icable								
Motal - 124									
		r 12 d							
$(n=19) \cdot 23$	<u>5,00A38</u> 6 % (10 °	°C) afte	<u>esa):</u> n er 120 d	11ax. 21 (n=1)		C) alto	u 42 u,		
CGA51202	/ CG A 24	3101 <i>6</i> ($(\mathbf{X}_{\mathbf{X}})$	(<u></u>)	1104 oft	or 152 d	(n - 10)		
CGA/0172	- COASS	5 % of	or 14 d	пал. 2	1.1 /0 all	ci 155 u	, (n – 1 <i>3)</i>		
CGA50720	- шал. О.) % off	or 3 mor	ath					
$\frac{CGA30720}{CGA30720}$	пах. 0.4	2 70 all	CI 5 11101	iui a					
<u>CGA36820</u>	<u>s</u> : max. 7	.6 % at	tter 120	a					

Method				Remarks	Reference						
	<u>CGA377</u>	<u>35</u> : max.	7.1 %	after 18	1 d						
	<u>NOA436</u>	<u>611</u> : ma	x. 9.1 9	% after	153 d						
	<u>CGA357</u>	<u>/04:</u> max	. 21.9	% after	28 d						
	0.3 - 29.0	<i>sation af</i> 0 % after	<i>ter 100</i> 3 mon	<i>days:</i> 1th, (n =	= 19)						
	<i>Non-extr</i> 4.6 – 44.:	<i>actable r</i> 5 % after	<i>esidue</i> 3 mon								
FAO	Degrada	tion in so	oil: Ae	The studies	Mostert						
on producing pesticide residue data from	Soil type	Locatio n	рН	Depth (cm)	DT ₅₀ (d) actua l	DT90(d) actual	St. (χ ²)	DT ₅₀ (d) Norm	Method calculation	considered acceptable (new evaluation according to	1997, 1997c, 1997h, 1997i, 1997n, 1997n, 1997o and
supervised trails	Silt loam (bare)	DE	6.5 ^{a)}	0-30	24.1	183	6.2 8	NA	FOMC	FOCUS Degradation	1997r) Stolze
BBA part IV, 4-1	Sandy Ioam (bare)	СН	7.4 ^{a)}	0-30	3.55	50.4	4.7 7	NA	HS	[2006, 2011 and 2017] by Ford [2014]	(1997a and amendment) Stolze
IVA Guidelines on residue studies (1994)	Sandy Ioam (maize cover)	СН	7.5 ^{a)}	0-30	22.9	76.1	3.7 9	NA	SFO	and RMS [2016]) Reliability 1	Evans (2004, 2004a) Ford (2014)
SETAC (1995)	Silt loam (bare)	СН	7.9 ^{a)}	0-30	18.6	61.9	1.6 5	NA	SFO		
FOCUS Degradatio n Kinetics (2006,	Sandy Ioam (maize cover)	СН	7.8 ^{a)}	0-30	11.4	37.9	1.9 6	NA	SFO		
2011, 2014)	Loam (bare)	FR	7.15 ^a	0-30	30.8	102	4.4 5	NA	SFO		
	Silt clay Ioam (bare)	FR	7.45ª	0-30	12.8	256	21. 7	NA	DFOP		
	Silty sand (bare)	DE	6.1 ^{a)} .	0-30	26.1	86.8	11. 7	NA	SFO		
	Loamy silt (bare)	DE	7.4 ^{a)}	0-30	4.62	27.6	10. 7	NA	FOMC		
	Silt loam (bare)	IT	7.6 ^{b)}	0-20	43.9	146	13	NA	SFO		
	Clay loam (bare)	FR	7.3 ^{b)}	0-30	21	69.9	15	NA	SFO		
	Sandy Ioam (bare)	DE	6.2 ^{a)}	0-20	17.2	244	5.2 9	NA	DFOP		

Method						Remarks	Reference				
	Clayey silt (bare)	DE	6.2 ^{a)}	0-20	7.66	62	8.1 0	NA	DFOP		
	Loamy sand (bare)	DE	6.0 ^{a)}	0-20	38.2	127	6.0	NA	SFO		
	Loamy silt (bare)	DE	6.0 ^{a)}	0-20	24.1	80.1	9.3 7	NA	SFO		
	Sandy silt loam (bare)	DE	5.7 ^{a)}	0-20	31.3	104	21. 1	NA	SFO		
	Silty sand (bare)	DE	4.8 ^{a)}	0-20	55.7	185	7.3 7	NA	SFO		
	Maximum DT50	non-norm	alized	field	55.7				SFO		
	^{b)} Measure	ed in CaCl	,								
OECD 316	Aqueous at pH7, s DT ₅₀ : 140	s photoch terile buff 6 days	The study is considered acceptable	Oddy (2013)							
	Quantum	n vield of	direct	nhotot	ransfor	s mation	in wat	er at >	• 790 nm•	Reliability 1	
	Not relev	vant	uneci	pnotot	runsjorr	nuuon	m wai	cr ui ≤	_ 270 nm.		
	molar ab	sorptivity	at wa	ve leng	$ths \ge 29$	0 nm: <	10 L·	mol ⁻¹ ·	cm ⁻¹		
	→ direct process f	t phototra for S-meto	nsforn lachlo	nation or unde	in water r enviror	is no imental	signifi condi	icant d tions	legradation		
OECD 316	Aqueous at pH : DT ₅₀ :12. latitudes	photoch 1 d, corre 30° - 50°	emica spond N	l degra	adation i	in steri atural su	le nat	ural w r sunli _s	ater ght days at	The study is considered as additional information	Berdat, Nicollier (2008)
	45 photo Metaboli	degradate tes: CGA	fracti 13656	ons (U , CGA	1 to U45 41638/ C): all fra CGA401	action 72: e	< 5.8 ° ach \leq 0	%).3%		
US-EPA,	Soil phot	tolysis								The study is	Simmonds
OPPTS 835-2410 (2008)	Soil		Deg (day	gT ₅₀ ys)	DegT ₉₀ (days)	D co D	ark ontrol egT50/9	90	Reference	considered acceptable Reliability 1	(2012)
OECD						(0	lays)			Photodegrada	
for soil photolysis (2002)	Borstel, loamy soil	Germany, sand, dry	126 158 169	, / * / **	418 / 52 559**	3*/ 6 10	17 / 000	> \$	Simmonds, 2012	tion on soil is no significant route of	
	Borstel, loamy s soil	Germany, and, moist	78.5 210 225	5 / */ **	261 / 69 746**	8*/ 12	27 / 42	1		degradation	
	* correcter rate consta ** conver	d by subtra ant ted to days	equiva	of the da	urk soil ra mmer sun	te consta light 30	unt fror -50°NI	n the ir Field stu	radiated soil adies		
	<i>Metaboli</i> <u>CGA416</u>	i tes <u>38:</u> max. :									

Method	Results	Remarks	Reference
	Mineralisation after 100 days: 1.4 – 1.5 % after 40 d Non-extractable residues after 100 days:		
	8.3 - 10.4 % after 40 d		
Theoretica 1 estimation	Photochemical oxidative degradation in air DT_{50} of 2.3 hours derived by the Atkinson model (version 1.91). OH- radical concentration assumed = 1.5^{6} (12 h).	long-range transport is not considered to be relevant	Stamm, (1997)

11.1.1 Ready biodegradability

Grade, 1996 (study evaluated in DAR, 2000)

Author:	Grade, R.
Title:	Report on the Test for ready biodegradability of S-metolachlor (CGA 77102) tech. in the carbon dioxide evolution test.
Date:	19/12/1996
Doc ID:	Report No. 961567
Guidelines:	OECD guideline 301/B
Deviation:	Only one CO ₂ scrubber was used.
GLP:	Yes
Validity:	Yes

Materials and methods:

The aim of the study was the determination of the biodegradability of the test substance S-metolachlor by measurement of the carbon dioxide formation in percent of ThCO2 (theoretical carbon dioxide) calculated from the ThOC (theoretical organic carbon) or TOC (total organic carbon). The test substance S-metolachlor (chemical purity 98.5 %) was mixed with mineral medium in order to obtain 1.5 L of inoculated mineral medium containing 39.3 resp. 38.3 mg/L (16.6 resp. 16.5 mg ThOC/L) as the nominal sole source of organic carbon. The inoculated mineral medium is aerated by the passage of carbon dioxide-free air at the controlled rate in diffuse light. Degradation is followed over 29 days by determining the carbon dioxide produced, which is trapped in sodium hydroxide and which is measured as inorganic carbon by a carbon analyser. The amount of carbon dioxide produced from the test substance (corrected for that derived from blank inoculum) is expressed as a percentage of theoretical carbon dioxide.

The test system is described in the table below:

Test conditions	
pH	7.9 (after collection)
Test system	Activated sludge collected from a sewage treatment plant, CH-4153 Reinach, Switzerland.
Inoculum	24.6 mg sludge/L
Duration:	29 days

Table 37: Test system for carbon dioxide evolution test

Temperature	21 ± 2 °C
Test water:	Distilled water

Results and Discussion:

The mineralization of S-metolachlor under the test conditions was 0 % in 29 days; therefore, the test substance was not biodegradable in this test. S-metolachlor did not inhibit the biodegradation of the reference substance (Sodium benzoate).

Conclusion:

The study was considered acceptable for the first Annex 1 approval of S-metolachlor. After re-evaluation of the study, it was concluded that it is still considered acceptable. Based on the results of this test, S-metolachlor can be classified as "not readily biodegradable".

11.1.2 BOD5/COD

No data available.

11.1.3 Hydrolysis

Keller, 1996 (study evaluated in DAR, 2000)

Author:	Keller, A.
Title:	Hydrolysis of 14C-labelled metolachlor (CGA 24705) under laboratory conditions
Date:	14/10/1996
Doc ID:	Report No 96AK02
Guidelines:	OECD Guideline No. 111 for testing chemicals, hydrolysis as a function of pH, adopted: 12 May 1981, Paris /France
Deviation:	None
GLP:	Yes
Validity:	Acceptable

Materials and methods:

The hydrolytic stability of ¹⁴C-phenyl-labelled metolachlor with a specific radioactivity of 1.50 MBq/mg and a radiochemical purity of 98.6 % was investigated in the laboratory by incubation in aqueous solution at different pH values. The pre-test was conducted in buffer solutions of pH 1, 5, 7 and 9 at 50 °C for 7 days and the final test was conducted at 25 °C in buffer solutions of pH 5, 7 and 9 for 30 days. The concentration of the substance in the buffer solution was 10 mg/L.

Results and Discussion:

No degradation was observed under the conditions of the pre-test and the final test.

Conclusion:

The study was already accepted in the DAR (2000) of S-metolachlor. Under a wide pH range (1-9), metolachlor is hydrolytically stable showing a degradation half-life far above 200 days. No relevant metabolites were found.

11.1.4 Other convincing scientific evidence

No data available.

11.1.4.1 Field investigations and monitoring data (if relevant for C&L)

Not relevant for C & L.

11.1.4.2 Inherent and enhanced ready biodegradability tests

No data available.

11.1.4.3 Water, water-sediment and soil degradation data (including simulation studies)

11.1.4.3.1 Aerobic mineralisation in surface water

Crabtree, 2014 (new study)

Author:	Crabtree, G.
Title:	S-Metolachlor - Aerobic mineralization of ¹⁴ C-S-Metolachlor in surface water
Date:	19/05/2014
Doc ID:	Report No. 3200234, Syngenta file No. CGA077102_11208
Guidelines:	OECD Guidelines for the Testing of Chemicals, 309, Aerobic Mineralization in Surface Water – Simulation Biodegradation Test (13 April 2004)
Deviation:	
GLP:	Yes
Validity:	Acceptable

Materials and methods:

The mineralisation rate and route of degradation of ¹⁴C-S-metolachlor was investigated in Calwich Abbey (large perennial lake in Northern Europe) natural water, which had been inoculated with suspended sediment at a concentration of 0.02 g/L under a diffuse non-UV light/dark cycle. Prior use the water was sieved through a 100 μ m mesh and the sediment was sieved to 2 mm. ¹⁴C- S-metolachlor was applied to the water at nominal rates of 10 and 95 μ g/L (low and high, respectively). The 95 μ g/L rate was also applied to sterilised test system (natural water plus 0.02 g/L suspended sediment). The systems were incubated under aerobic conditions and maintained under a diffuse non-UV light/dark cycle (16 hours/8 hours) at 20 °C for up to 58 days. For each system, duplicate samples were taken for analysis at up to seven intervals.

At each sampling time, the quantity of radioactivity in the water was determined by liquid scintillation counting (LSC). Samples were either directly analysed or subjected to solid phase extraction (SPE) and eluted with acidified acetonitrile prior to LSC and chromatographic analysis. Any volatile radioactivity was continuously flushed from the vessels, collected in traps and analysed. A mass balance was determined for each sample.

Separate reference samples (treated with sodium ¹⁴C benzoate at 10 μ g/L) of natural water plus 0.02 μ /L suspended sediment were prepared to determine whether a viable microbial population was present in the test system.

Separate blank control samples were similarly incubated to allow water quality measurements at each sampling interval and chlorophyll-an assay at the start and end of incubation period.

The half-lives (DegT₅₀) of 14 C-S-metolachlor (from the HPLC analysis) were determined using a Single First Order (SFO) kinetic model.

Results and Discussion:

The mean mass balance for the low and high-test concentration natural water samples plus sus-pended sediment samples were 96.6 % and 94.0 % of applied radioactivity (AR) with ranges of 95.7 to 97.5 % and 92.3 to 95.2 % respectively. The mean mass balances for the sterilised incubation group was 95.5 % AR.

Over the duration of the study (58 DAT), the mean levels of parent compound decreased to between 54.0 and 62.2 % AR for the water plus suspended sediment. For the sterilised samples, the mean level of parent compound was 92.4 % AR at 58 DAT. The major degradate of S-metolachlor was found to be CGA40172 which reached a maximum of 9.1 % of applied radioactivity after 58 days (10 μ g/L rate). In addition, a number of discrete known and unknown degradates were also observed, none exceeding 3.5 % of applied activity. Ultimately, S-metolachlor was mineralised to carbon dioxide (< 5 % AR).

The degradation rates ($DegT_{50}$) of S-metolachlor were determined using non-linear regression and a single first-order kinetic model (SFO, CAKE). The results are summarized below:

	Test	SFO – kinetic							
System	concentration (µg/L)	DegT50 (days)	k	Chi ²	R ²	Prob > t			
Natural water plus suspended sediment	10	74	0.0094	2.41	0.9601	2.2E-17			
Natural water plus suspended sediment	95	97	0.0072	1.23	0.9681	3.4E-19			

Conclusion:

The extent of mineralisation and the rate and route of degradation of ¹⁴C-S-metolachlor were investigated in Calwich Abbey natural water plus 0.02 g/L suspended sediment under a diffuse light/dark light cycle. The mean mass balances for all incubation groups were 94.0 % to 96.6 % AR. For the non-sterilised, viable test systems, the mean levels of parent compound decreased to between 54.0 and 62.2 % AR at the end of the incubation period (58 DAT), with resultant DegT₅₀ values ranging from 74 to 97 days. For the sterilised samples, S-metolachlor was found to be stable with 92.4 % AR (mean) remaining at 58 DAT.

CGA40172 was the only metabolite found at \geq 5 % AR, reaching a maximum level of 9.1 % AR at 58 DAT.

Ultimately, S-metolachlor was mineralised to carbon dioxide (< 5 % AR).

11.1.4.3.2 Water/sediment studies

Mamouni, 1997 (study evaluated in DAR, 2000)

Author:	Mamouni, A.							
Title:	S-Metolachlor (¹⁴ C-CGA77102): Degradation and Metabolism in Aquatic Systems under various Experimental Conditions							
Date:	08.04.97							
Doc ID:	Report No. RCC 603551							
Guidelines:	BBA Guideline Part IV; 5-1							
Deviation:	-							
GLP:	Yes							
Validity:	Acceptable							

Materials and methods:

Analytical grade ¹⁴C-labelled S-metolachlor with a specific radioactivity of 1.90 MBq/mg and a radiochemical purity of > 99.0 % was investigated in two different water/sediment systems under various experimental conditions (aerobic 20 °C; anaerobic 20 °C; aerobic 9 °C, anaerobic 9 °C; aerobic sterile 20 °C). The water/sediment characteristics are shown in the table below. Water was sampled down to a depth of 10-30 cm and sediment was sampled from the top 5-10 cm. Prior to the start of the study water was filtered (0.2 mm) and the sediment was sieved (2.0 mm). The sediment was filled into the flasks to a height of about 2 cm and water was added to achieve a layer of about 6 cm. The test system was acclimated in the dark for one month before treatment. During this time the measured pH values, redox potentials, and oxygen concentrations in water and redox potential in sediment had reached constant values. The test substance was applied thereafter in a concentration of 0.676 mg/L corresponding to an application rate of 2.0 kg active ingredient/ha. This concentration was obtained by applying a field rate of 2 kg/ha assuming that the active ingredient is homogeneously distributed in natural water of 30 cm depth. Samples were incubated for up to one year.

Sediment	Rhine river, Mumpf - Zeltplatz, Aargau, Switzerland	Pond water, Ormalingen, Rothenfluh, Baselland,
classification (USDA)	Sandy loam	Silt loam
sand [%]:	68.7	36.3
silt [%]:	22.5	62.0
clay [%]:	8.8	1.7
pH [H ₂ O]:	8.3	8.1
pH (KCl) / pH(H2O)	7.7/8.3	7.5/8.1
Redox potential (mV)	-112	-163
N-total (Kjeldahl) (g/kg sediment)	0.8	4.9
P-total (g/kg sediment)	2.04	1.56
organic carbon [%]:	0.22	1.74
CEC [mVal/100g]:	7.8	28.9
Biomass [mg C/100g dry soil]:	63.9	261.8

Table 38: Water / sediment characteristics of river and pond systems

Results and Discussion:

Results of this study are summarised in Table 39 and in Table 40. The average recoveries ranged from 97.8 % to 98.2 % of the totally applied radioactivity for the river system and from 95.6 % to 98.2 % for the pond system.

Kinetic calculations were based on a pseudo first order kinetic using a non-linear correlation function.

S-metolachlor as well as the different metabolites were distributed to both sediment and water phases. The degradation of S-metolachlor under aerobic and anaerobic conditions showed significant differences. Under aerobic conditions major metabolites identified as CGA41507 (11.6-17.8 %), CGA51202 (OXA) (6.9-21.2 %), CGA354743 (ESA) (4.7-8.5 %) and numerous minor metabolites, each below 5 % (CGA46129, CGA4807, and CGA354743) were detected. For the metabolite CGA217498 the maximum of formation was not yet reached at the end of the study. The maximum amount of CGA217498 after 362 days was 5.6 % in the total system. Under anaerobic conditions, only one major metabolite identified as CGA 41507 (37.1-54.7 %) was observed.

Based these results, oxidation and reduction are two major degradation pathways of S-metolachlor which occur in the water/sediment system. Aerobic microorganisms degrade S-metolachlor by oxidation reactions to

hydroxy and acid metabolites. On the oxidative pathway, sulphur-containing metabolites are also formed (CGA354743/CGA380168 (ESA) and CGA217498. Anaerobic microorganisms transformed S-metolachlor by reductive dechlorination to CGA41507. This metabolite can then be further degraded by oxidation reactions when oxygen is available in the water/sediment.

Amounts of bound residue reached levels of 15.8-55.8 % of applied radioactivity after 91-99 days. The amount of bound residues was rather similar for all the incubation scenarios.

Table 39: Recovery and distribution of radioactivity in the river water/sediment system (% applied radioactivity)

Radioactive	Type of	Incubation time (days)										
fraction	sample	0	3	7	14	28	62	99	175	271	362	
S-metolachlor	water	102.7	60.3	57.9	46.3	37.8	22.5	8.9	2.5	<0.1	< 0.1	
	sediment	1.5	35.4	35.1	37.4	34.2	24.3	21.2	7.1	1.6	1.3	
	Total system	104.3	95.7	93.0	83.7	72.0	46.8	30.1	9.6	1.6	1.3	
CGA41507	water	< 0.1	< 0.1	< 0.1	< 0.1	2.2	3.0	6.1	8.2	3.9	1.0	
	sediment	< 0.1	< 0.1	0.4	2.2	2.8	7.0	6.5	9.6	9.2	5.6	
	Total system	<0.1	<0.1	0.4	2.2	5.0	10.0	12.6	17.8	13.1	6.6	
CGA51202	water	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	4.7	7.3	10.8	13.8	16.8	
(OXA)	sediment	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	1.1	2.3	5.1	4.5	
	Total system	<0.1	<0.1	< 0.1	<0.1	<0.1	4.7	8.4	13.0	18.8	21.2	
CGA46129	water	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	1.8	2.5	2.8	1.9	1.8	
	sediment	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	1.9	0.7	
	Total system	<0.1	<0.1	< 0.1	<0.1	<0.1	1.8	2.5	2.8	3.8	2.5	
CGA354743	water	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	1.8	3.7	3.9	5.5	6.7	
(ESA)	sediment	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	1.7	< 0.1	1.8	
	Total system	<0.1	< 0.1	<0.1	<0.1	<0.1	1.8	3.7	5.6	5.5	8.5	
CGA48087	water	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	1.0	1.1	0.9	0.4	
	sediment	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.7	< 0.1	1.0	0.9	
	Total system	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	1.7	1.1	1.9	1.3	
CGA217498	water	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.9	0.8	1.5	2.7	
	sediment	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	0.7	1.1	2.9	
	Total system	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	0.9	1.5	2.6	5.6	
Unknown (up to 7 fractions)	Total system	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1.5	4.0	7.3	5.0	
total (water)	water	102.7	60.3	57.9	46.3	39.9	33.9	31.9	32.8	34.7	33.1	
total (extractables)	sediment	1.5	35.4	35.5	39.6	37.0	31.3	29.6	22.5	19.9	19.0	
total ¹⁴ C-CO ₂	volatiles	not	< 0.1	< 0.1	0.1	0.2	0.5	0.6	1.7	3.0	4.5	
Other volatiles		deter- mined	< 0.1	<0.1	<0.1	<0.1	<0.1	0.3	0.1	0.1	0.1	
total non-	sediment	< 0.1	2.7	5.3	13.0	19.8	29.2	34.1	40.3	37.4	39.7	

extractables										
Total average	104.3	98.4	98.8	99.0	97.0	94.9	96.5	97.4	95.1	96.5

Table 40: Recovery and distribution of radioactivity in the pond/sediment system (% applied radioactivity)

Radioactive	Type of		Incubation time (days)								
fraction	sample	0	3	7	14	28	62	99	175	271	362
S-metolachlor	water	104.2	65.6	51.3	37.0	26.4	9.8	3.5	0.6	< 0.1	< 0.1
	sediment	1.5	31.2	39.5	44.0	44.4	25.3	15.9	3.7	1.9	< 0.1
	Total system	105.8	96.8	90.8	81.1	70.9	35.1	19.4	4.3	1.9	< 0.1
CGA41507	water	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	2.5	2.5	2.5	2.3	0.6
	sediment	< 0.1	0.3	< 0.1	< 0.1	2.2	6.4	6.7	10.0	12.1	4.8
	Total system	<0.1	0.3	<0.1	<0.1	2.2	9.0	9.2	12.6	14.3	5.5
CGA51202	water	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	2.1	4.0	7.2	6.4	7.5
(OXA)	sediment	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	1.3	2.2	4.8
	Total system	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	2.1	4.0	8.5	8.6	12.3
CGA46129	water	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.3	1.0	0.5	0.6	0.7
	sediment	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	1.3	< 0.1	0.5
	Total system	<0.1	<0.1	<0.1	<0.1	<0.1	0.3	1.0	1.8	0.6	1.2
CGA354743	water	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	1.4	2.0	1.6	2.0
(ESA)	sediment	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	1.5	0.7	2.7
	Total system	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	1.4	3.5	2.3	4.7
CGA48087	water	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.6	0.8	< 0.1	0.5
	sediment	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	2.7	1.3	1.2
	Total system	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.6	3.4	1.3	1.6
CGA217498	water	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.4	0.6
	sediment	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.7	2.1
	Total system	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1	1.1	2.7
(up to 8 fractions)	Total system	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1.6	<0.1	1.8	3.7
total (water)	water	104.2	65.6	51.3	37.0	26.4	14.8	13.2	13.6	13.1	13.8
total (extractables)	sediment	1.5	31.5	39.5	44.0	46.6	31.7	24.0	20.6	19.0	18.0
total ¹⁴ C-CO ₂	volatiles	not	<0.1	< 0.1	0.1	0.3	0.9	0.7	1.4	1.3	1.8
Other volatiles		deter- mined	< 0.1	<0.1	<0.1	<0.1	<0.1	0.1	< 0.1	0.1	0.1

total non- extractables	<0.1	2.3	7.5	13.6	22.9	46.2	55.8	58.8	60.2	60.8
Total	105.8	99.4	98.3	94.7	96.3	93.6	93.7	94.3	93.7	94.4

n.d.: not determined

The river and pond sediments of the aerobic incubation part (20 °C) of incubation day 271 were submitted to organic matter fractionation. The results are summarised in *Table 41*, show that the majority of the radioactivity was bound to the insoluble humin fraction, which is immobile in nature.

Soil Organic Matter Fraction	aerobic conditi river	ons / 20 °C/ day 271 • sediment	aerobic conditions / 20°C/ day 271 pond sediment		
	% of non-extr.	% applied radioact.	% of non-extr.	% applied radioact.	
Fulvic acid fraction	32.6	12.2	17.6	10.6	
Humic acid fraction	16.7	6.2	37.8	22.8	
Humin (immobile) fraction	50.7	18.9	44.6	26.8	
Total	100.0	37.4	100.0	60.2	

Table 41: Result of organic matter fractionation of non-extractables of sediment from both systems

Under aerobic and anaerobic incubation conditions, the same range of $DT_{50/90}$ values of between 42 and 53 days for DT_{50} and 138-176 days for DT_{90} at 20°C were determined. At temperatures below 10 °C the degradation half-life was by a factor of three longer. The results are presented in the table below.

study part conditions	part 1 aerobic, 20 °C		2 anaerobic, 20 °C		3 aerobic, 9 °C		4 anaerobic, 9 °C		5 aerobic sterile 20 °C			
system	river	pond	river	pond	river	pond	river	pond	river	pond		
water phase												
DissT ₅₀ (days)	12	6	32	18	30	23	73	62	101	17		
DissT ₉₀ (days)	99	60	119	82	> 200	176	> 200	> 200	> 200	> 200		
R ²	0.999	0.999	0.995	1.00	1.00	1.00	0.996	0.993	0.950	0.997		
total system												
DegT ₅₀ (days)	53	42	53	43	147	150	146	149	>200	193		
DegT ₉₀ (days)	176	138	175	142	>200	> 200	> 200	>200	> 200	>200		
R ²	0.999	0.998	0.995	0.999	0.998	0.998	0.996	0.990	0.802	0.945		

Table 42: S-metolachlor degradation half-life in water/sediment systems under various conditions

Conclusion:

The study was considered acceptable for the first Annex 1 approval of S-metolachlor. After re-evaluation of the study, the RMS concluded that it also fulfils the requirements of current guidelines and is thus still considered acceptable.
A new kinetic evaluation of the study results for aerobic conditions at 20 °C has been submitted (Hardy, 2014) for the renewal of the EU approval of S-metolachlor. Therefore, the study $DT_{50/90}$ values were not re-assessed by RMS.

Seyfried, 1997 (study evaluated in DAR, 2000)

Author:	Seyfried, B.
Title:	Metolachlor (CGA24705) (Phenyl-U- ¹⁴ C): Degradation and Metabolism in Aquatic Systems
Date:	14.04.97
Doc ID:	Report No. RCC 603562
Guidelines:	BBA Guideline Part IV; 5-1, December 1990, EC-Directive 95/36/EEC; July 14, 1995
Deviation:	None
GLP:	Yes
Validity:	Acceptable

Materials and methods:

Analytical grade ¹⁴C-phenyl-labelled metolachlor with a specific radioactivity of 1.56 MBq/mg. and a radiochemical purity of \geq 98.0 % was investigated in two different water/sediment systems under aerobic conditions at 20 °C. The water sediment systems from river and pond were the same as those used in the study of Mamouni (1997) discussed above. The water/sediment characteristics are shown in Table 38. Water was sampled down to a depth of 10-30 cm and sediment was sampled from the top 5-10 cm. Prior to the start of the study water was filtered (0.2 mm) and the sediment was sieved (2.0 mm). The sediment was filled into the flasks to a height of about 2 cm and water was added to achieve a layer of about 6 cm. The test system was acclimated to the incubation conditions in the dark for one month before treatment. During this time the measured pH values, redox potentials, and oxygen concentrations in water and re-dox potential in sediment reached constant values. The test substance was applied thereafter in a concentration of 0.680 mg/L corresponding to an application rate of 2.04 kg active ingredient/ha. Samples were incubated for up to 180 days.

Results and Discussion:

The results of this study are summarised in Table 43 and in Table 44. The total recoveries of the radioactivity applied averaged 96.3 ± 1.7 % in the river system and 94.4 ± 2.4 % in the pond system.

Non-extractable radioactivity in the sediments increased and reached a maximum concentration of 35.8 % (day 91) in the river sediment and 56.5 % (day 180) in the pond system. The amount of bound residues in the sediment were thus in the same range when compared to results from the parallel study performed with S-metolachlor at equivalent incubation conditions.

In the water phase, the concentration of metolachlor decreased to 1.4 % and 0.5 % for the river and the pond, respectively, at the end of the study (180 days).

The degradation pattern of metolachlor was the same than for S-metolachlor in the study Mamouni (1997). In the river and pond systems, six metabolites were identified under aerobic condition by co-chromatography with reference standards. Two major metabolites, CGA41507 and CGA51202/CGA351916 (OXA), were detected.

For CGA41507 the maximum concentrations were found after 180 (river) and 92 (pond) days after incubation. No degradation half-life could be calculated due to the limited data set. CGA51202/CGA351916 (OXA)

reached its maximum concentration 180 days (river) and 119 (pond) days after incubation. No degradation half-life could be calculated due to the limited data set.

Additional metabolites found were CGA46129, CGA354743/CGA380168 (ESA), CGA48087 and CGA217498. None of these exceeded 5.9 % of the applied dose.

After 180 days, eight unknown radioactive fractions were found none of these exceeded 1.5 %.

Mineralisation was not a significant process and reached 3.1 % and 2.0 % of the applied radioactivity until the end of the study for the river and pond system, respectively.

Table 43: Recovery and distribution of radioactivity in the river/sediment system (% of applied radioactivity)

Radioactive	Type of	Incubation time (days)								
fraction	sample	0	3	7	14	28	62	91	119	180
metolachlor	water	95.7	70.8	60.1	42.8	31.7	16.6	8.0	5.1	1.4
	sediment	2.7	22.7	32.4	33.1	33.9	20.5	16.7	10.0	5.2
	Total system	98.4	93.5	92.5	75.9	65.6	37.1	24.7	15.1	6.6
CGA41507	water	< 0.1	< 0.1	<0.1	1.0	2.1	3.6	4.4	3.9	4.0
	sediment	< 0.1	< 0.1	0.7	1.8	2.7	6.0	6.3	7.0	8.9
	Total system	< 0.1	< 0.1	0.7	2.8	4.8	9.6	10.7	10.9	12.9
CGA51202	water	< 0.1	<0.1	<0.1	1.2	2.8	5.5	7.7	9.6	13.9
(OXA)	sediment	< 0.1	< 0.1	<0.1	< 0.1	0.6	1.0	1.4	2.0	3.3
	Total system	< 0.1	< 0.1	< 0.1	1.2	3.4	6.5	9.1	11.6	17.2
CGA46129	water	< 0.1	< 0.1	<0.1	0.4	2.1	2.0	4.2	3.8	3.2
	sediment	< 0.1	< 0.1	<0.1	< 0.1	<0.1	0.6	0.5	0.8	0.7
	Total system	< 0.1	< 0.1	<0.1	0.4	2.1	2.6	4.7	4.6	3.9
CGA354743 (ESA)	water	< 0.1	< 0.1	<0.1	0.3	1.4	2.1	2.8	4.8	4.5
	sediment	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.4	< 0.1	1.1	2.0
	Total system	< 0.1	< 0.1	< 0.1	0.3	1.4	2.5	2.8	5.9	6.5
CGA48087	water	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	1.0	1.6	1.8	2.2
	sediment	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.4	1.1	0.7	1.2
	Total system	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	1.4	2.7	2.5	3.4
CGA217498	water	< 0.1	< 0.1	<0.1	< 0.1	<0.1	< 0.1	0.5	0.8	1.4
	sediment	< 0.1	< 0.1	<0.1	< 0.1	<0.1	< 0.1	< 0.1	0.3	0.7
	Total system	< 0.1	< 0.1	<0.1	< 0.1	<0.1	< 0.1	0.5	1.1	2.1
(up to 8 fractions)	Total system	0.1	0.8	0.8	1.2	0.4	4.6	4.6	7.3	4.2
total (water)	water	95.7	70.8	60.1	45.9	40.5	31.8	31.3	33.4	32.6
total (extractables)	sediment	2.8	23.5	33.9	35.8	37.2	32.4	28.4	25.6	24.3
total 14C-CO2	volatiles	n.d.	< 0.1	< 0.1	0.2	0.5	1.0	1.4	2.4	3.1
total volatiles		n.d.	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
total non-	sediment	< 0.1	1.4	4.8	11.7	18.4	29.5	35.8	35.2	34.8

extractables									
Total	98.5	95.7	98.8	93.7	96.6	94.8	97.0	96.5	94.8

n.d.: not determined

Radioactive	Type of	Incubation time (days)								
fraction	sample	0	3	7	14	28	62	91	119	180
metolachlor	water	96.9	64.2	56.5	30.4	19.6	6.1	2.9	1.4	0.5
	sediment	2.6	27.6	35.2	40.9	35.3	21.1	12.4	7.3	1.9
	Total system	99.5	91.8	91.7	71.3	54.9	27.2	15.3	8.7	2.4
CGA41507	water	< 0.1	< 0.1	< 0.1	< 0.1	0.8	2.0	1.9	2.1	1.5
	sediment	< 0.1	< 0.1	< 0.1	0.9	3.8	7.6	9.9	7.0	8.2
	Total system	< 0.1	< 0.1	< 0.1	0.9	4.6	9.6	11.8	9.1	9.7
CGA51202	water	< 0.1	< 0.1	< 0.1	0.9	1.1	2.1	4.3	5.7	5.4
(OXA)	sediment	< 0.1	< 0.1	< 0.1	< 0.1	0.2	0.8	0.7	2.5	2.6
	Total system	< 0.1	< 0.1	< 0.1	0.9	1.3	2.9	5.0	8.2	8.0
CGA46129	water	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	1.1	1.3	1.0	1.0
	sediment	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	0.3	0.3
	Total system	< 0.1	<0.1	< 0.1	< 0.1	<0.1	1.1	1.3	1.3	1.3
CGA354743 (ESA)	water	< 0.1	<0.1	< 0.1	< 0.1	<0.1	0.3	1.1	1.7	1.8
	sediment	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.2	1.4
	Total system	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	0.3	1.1	1.9	3.2
CGA48087	water	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	0.4	0.6	0.5	0.7
	sediment	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.8	0.3	1.0
	Total system	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.4	1.4	0.8	1.7
CGA217498	water	< 0.1	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	0.6
	sediment	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.4	1.2
	Total system	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.4	1.8
(up to 8 fractions)	Total system	<0.1	1.0	0.5	0.8	0.8	1.5	1.6	6.1	6.1
total (water)	water	96.9	64.2	56.5	31.3	21.5	12.3	12.4	13.5	13.2
total (extractables)	sediment	2.6	28.6	35.7	42.6	40.1	30.7	25.1	22.8	21.0
total ¹⁴ C-CO2	volatiles	n.d.	< 0.1	< 0.1	0.1	0.3	0.8	1.1	1.7	2.0
total volatiles		n.d.	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
total non- extractables	sediment	<0.1	2.6	4.4	19.1	32.5	49.4	52.9	55.3	56.5
Total		99.5	95.4	96.6	93.2	94.4	93.2	91.5	93.5	92.7

Table 44: Recovery and distribution of radioactivity in the pond/sediment system (% of applied radioactivity)

n.d.: not determined.

Conclusion:

The study was considered acceptable for the first Annex 1 approval of S-metolachlor. After re-evaluation of the study, the RMS concluded that it also fulfils the requirements of current guidelines and is thus still considered acceptable.

The aerobic incubation of metolachlor showed equivalent results in kinetic of degradation and degradation pattern when compared to S-metolachlor. Two major metabolites identified as CGA41507 and CGA51202/CGA351916 (OXA) as well as several minor metabolites were detected. Based on the results shown, oxidation and reduction are two major degradation pathways for metolachlor and S-metolachlor. Besides the two major metabolites, bound residues were the main degradation products in the water / sediment system.

A new kinetic evaluation of the study results for aerobic conditions at 20 °C has been submitted (Hardy, 2014) for the renewal of the EU approval of S-metolachlor. Thus, the DT_{50} and DT_{90} values determined in the study are not presented here.

Hardy, 2014 (new, re-evaluation study)

Author:	Hardy, I.
Title:	Metolachlor/S-Metolachlor – Kinetic Modelling Analysis of Data from Water Sediment Studies to Derive Modeling and Persistence Endpoint DT_{50} values
Date:	2014
Doc ID:	Report No. NC/13/056B
Guidelines:	FOCUS (2006) "Guidance Document on Estimating Persistence and Degradation Kinetics from Environmental Fate Studies on Pesticides in EU Registration"
	Report of the FOCUS Work Group on Degradation Kinetics, EC Document Reference Sanco/10058/2005 version 2.0, 434 pp
Deviation:	-
GLP:	not applicable
Validity:	Acceptable

The aim of this evaluation was to conduct a kinetic modelling analysis of the data from aerobic water sediment degradation studies with metolachlor and S-metolachlor in order to derive total system DT_{50} values for use as modelling and trigger endpoints.

For the determination of DT_{50} values for metolachlor and S-metolachlor, all datasets were evaluated according to FOCUS Kinetics guidance using the water sediment Level P-I flowcharts for modelling and trigger endpoints [FOCUS, 2006].

Materials and methods:

The behaviour of metolachlor in water sediment systems has been investigated in two degradation studies conducted on two different water sediment systems under aerobic conditions. ¹⁴C-phenyl labels were utilised in the studies for both metolachlor and S-metolachlor. Two sediment systems, River Rhine and Ormalingen Pond, were investigated in both studies.

The metolachlor and S-metolachlor residue data at time zero was set to the total percent recovered radioactivity multiplied by the radiochemical purity. Raw data are available in the original study reports (Mamouni, 1997; Seyfried, 1997). Values <LOQ were set to $\frac{1}{2}$ LOQ (0.05) for the first occurrence.

Kinetic modelling strategy:

All datasets were evaluated using SFO and FOMC kinetics with free optimisation of all parameters.

 DT_{50} and DT_{90} values were determined for the degradation of S-metolachlor / metolachlor. The determination of the kinetic values followed the recommendations of FOCUS rules and was aimed at deriving DT_{50} values for use as persistence and model input endpoints according to the FOCUS guidance document on degradation kinetics [FOCUS, 2006]. The kinetic evaluations were performed according to the respective decision flowcharts for the determination of level P-I parent persistence and modelling endpoints.

The kinetic evaluations and the statistical calculations were conducted with CAKE version 1.4 using iteratively re-weighted least-squares (IRLS) optimisation.

Optimisation statistics:

The model fits were evaluated using a chi-square ($\chi 2$) error statistic and visual inspection of residual plots. The kinetic analyses and optimisations were carried out using the residue data.

Results and Discussion:

The kinetic evaluations were performed according to the respective decision flowcharts for the determination of level P-I parent trigger and modelling endpoints. The degradation data for all datasets were entered into CAKE. Optimisations using SFO kinetics showed both visually and statistically acceptable fits (minimum Chi² error 1.9 - 3.8 %, t-test > 99 %). Optimisations using FOMC kinetics showed both visually and statistically acceptable (minimum Chi² error 4.2 - 7.2 %).

Accordingly, SFO kinetics were applied to all datasets as an initial step and checked for FOCUS acceptability criteria (minimum Chi² error <15 %, t-test parameter significance >95 % and visually acceptable). For the total systems degradation of S-metolachlor/metolachlor the FOMC kinetics showed no improvement over SFO kinetics, therefore SFO kinetics were determined to be appropriate for use as modelling and trigger endpoints.

The table below summarises the calculated SFO DT₅₀ values for S-metolachlor/metolachlor.

Total System Modelling	Substance	Kinetic	DT ₅₀ (days)	DT ₉₀ (days)	Chi ² (%)	t-test (-)	Visual
River	S-Metolachlor	SFO	54.8	182	1.9	8.76E-11	Excellent
Pond	S-Metolachlor	SFO	42.0	140	3.5	7.49E-09	Excellent
River	Metolachlor	SFO	45.4	151	3.1	2.74E-08	Excellent
Pond	Metolachlor	SFO	33.6	112	3.8	1.00E-07	Excellent

Table 45: SFO DT₅₀ values for S-metolachlor/metolachlor

Conclusion:

This study was submitted for the renewal of the approval and is considered acceptable.

Kinetic modelling analysis of datasets from aerobic water sediment degradation studies for metolachlor and S-metolachlor showed good model fits when determining modelling endpoints.

11.1.4.3.3 Degradation in soil

11.1.4.3.3.1 Laboratory studies, aerobic

For the initial EU review, the route and degradation on soil of radiolabelled metolachlor (CGA24705) and Smetolachlor (CGA77102) were evaluated in several studies (Clark, 1995; Morgenroth, 1997, Kitschmann, 1997, Keller, 1997). However, these studies were conducted when the trigger for identification and further assessment of metabolites was 10 % of the applied radioactivity. Therefore for the renewal of S-metolachlor

two new aerobic soil metabolism studies (Simmonds & Simmonds 2013 and 2014) with S-metolachlor were submitted in order to elucidate whether there were any additional metabolites, which represent > 5 % of applied radioactivity. Additionally, three new soil degradation studies (Lucas, 1996, Phaff, 2001 and Hein, 2007) were newly submitted.

In two studies (Clark, 1995 and Keller, 1997) the route and rate of degradation of S-metolachlor was compared to the behaviour of metolachlor under the same experimental conditions. The results showed that there was no significant difference in the degradation pattern of metolachlor and S-metolachlor. Thus, both the studies performed with metolachlor and S-metolachlor are considered suitable for the environmental fate assessment of S-metolachlor.

For the aerobic route of degradation of S-metolachlor, two principal routes were identified: oxidation and glutathione conjugation. Both routes yield the major soil metabolites ethane sulfonic acid CGA354743 (ESA) with up to 21.3 % applied radioactivity (AR) and oxalic acid CGA51202 (OXA) with up to 21.1 %. The subsequent degradation of CGA354753 (ESA) and CGA51202 (OXA) was found to proceed via NOA436611 (9.2 % AR), CGA368208 (7.6 % AR), CGA50720 (8.2 % AR), CGA37735 (7.1 % AR), CGA40172 (6.5 % AR) and CGA357704 (21.9 %). The mineralization to CO2 ranged to 0.3 - 29 % after 120 days and the non-extractable residue amounted to 4.6 - 44.5 % after 120 days. In the new studies (Simmonds & Simmonds, 2013 & 2014), the same overall profile of metabolism was observed although the final levels of these metabolites were lower than observed in previous studies. Although a number of minor metabolites were observed, none were observed to have exceeded 5 % applied radioactivity.

In addition to aerobic soil metabolism studies on S-metolachlor itself, studies on a number of metabolites were submitted. For the major metabolites CGA51202/CGA351916 (OXA) and CGA354743 (ESA) two soil degradation studies (Kitschmann, 1997b; Mamouni, 1997b) were submitted for the initial EU review and several new studies (Hein, 2004 and 2005; Nicollier, 2003; Nicollier & Glänzel, 2003) were conducted with for the renewal of S-metolachlor.

The degradation behaviour were investigated for further metabolites in order to generate degradation rates for leaching assessment, but also to validate steps within the proposed biotransformation pathway in soil. Specifically,

A soil metabolism study was conducted on CGA37735 in order to test whether this metabolite was metabolized to CGA50720.

A soil metabolism study was conducted on NOA436611 (in its racemic form, SYN546829) to test whether this metabolite was metabolized to CGA354743 (ESA).

A soil metabolism study was conducted on SYN542607 to test whether it was metabolized to SYN542490, as anticipated.

In addition to those metabolites observed in the aerobic laboratory degradation studies, analysis of the leachates from outdoor lysimeter studies identified a number of additional metabolites. For completeness, a number of these metabolites have also been considered in the proposed metabolic pathway for S-metolachlor in soil, which is shown in *Figure 11-1*.

Blue : Only observed in lysimeter leachate

Figure 11-1: Proposed metabolic pathway for S-metolachlor in soil

A new kinetic evaluation according to FOCUS Degradation Kinetics 2006 was submitted for S-metolachlor and its metabolites CGA354743 (ESA), CGA51202 (OXA) CGA368208, CGA37735, CGA40172, CGA50720 and NOA436611 for the data from all previous and new studies. For modelling endpoints the recalculated SFO - DT50 values were normalized to reference conditions of 20 °C and pF2. The overall geometric mean modelling endpoint was calculated by firstly calculating the geometric mean DT50 values of the replicate soils.

The non-normalized best fit DT_{50} values for S-metolachlor varied in a wide range between 6.2 d and 257 days and the corresponding DT_{90} values between 33.8 d and > 1000 d following biphasic kinetics.

The normalized recalculated SFO – DT_{50} values for S-metolachlor varied between 11.2 days and 195.5 days. S-metolachlor shows no dissociation in the pH-range 2 – 12 and no clear pH de-pendency is observed. The longest DT_{50} of 195.5 days was determined in a sandy loam soil Borstel, which had a very low biomass in comparison to other soils.

The geometric mean of the DT_{50} values for S-metolachlor normalized to reference conditions of 20 °C and pF2 is 30.5 d.

Under anaerobic conditions, the major metabolite found was CGA41507, the dechlorinated parent compound, with a maximum of 44.2 % RA after 120 days. The degradation of ¹⁴C-CGA41507 was studied in one soil Gartenacker under aerobic conditions at 20 °C and 40 % MWHC in the dark for 124 days. CGA41507 was degraded with a DT₅₀ value of 51.5 days (SFO)

11.1.4.3.3.2 Field studies

The soil degradation behaviour of S-metolachlor/metolachlor was investigated in field studies conducted on several European sites. For deriving trigger endpoints, a new kinetic re-evaluation of 18 field trials according to FOCUS Degradation Kinetics (2006, 2011, 2014) was performed for the EU renewal. For site Riepsdorf, Germany, no acceptable fit could be obtained. The resulting DT_{50} values of 17 field trials are in a range between 3.55 and 55.7 days.

The maximum dissipation rate of 55.7 d following SFO kinetic can be used as soil degradation trigger endpoint DT_{50} .

11.1.4.4 Photochemical degradation

Oddy, 2013 (new study)

Author:	Oddy, A.
Title:	¹⁴ C-S-Metolachlor - Aqueous photolysis of 14C-S-Metolachlor. Final report
Date:	07/07/2013
Doc ID:	Syngenta File No CGA077102_11128
Guidelines:	OECD Guidelines for Testing of Chemicals. Test No. 316: Phototransformation of Chemicals in Water- Direct Photolysis (October 2008)
Deviation:	
GLP:	Yes
Validity:	Acceptable

Materials and methods:

The direct photolysis of ¹⁴C phenyl-labelled-S-metolachlor was investigated in sterile, pH 7 buffer solution. ¹⁴C-S-metolachlor was applied, at a nominal concentration of 1 mg/L, to the buffer solution in individual photolysis vessels. The treated solutions were irradiated using light from a xenon arc lamp, which emitted light that was filtered to give a spectral distribution close to that of natural sunlight at a mean intensity of 22.13 W/m². The samples were attached to a series of trapping solutions to collect any volatile products evolved, maintained at $25^{\circ} \pm 2$ °C and continuously irradiated for periods up to the equivalent of approx. 32.8 days summer sunlight exposure at latitudes between 30 °N (Florida) and 50 °N, assuming 12 hours of daylight. Conversion of artificial irradiation to equivalent days of natural summer sunlight was performed as recommended in the Draft OECD Guideline: "Phototransformation of Chemicals on Soil Surfaces" (January

2002), based on the intensity of radiation in the 300 - 400 nm range, since this is most relevant to the phototransformation of chemicals in the environment. Treated samples were also incubated under the same conditions but in the dark as controls.

In the irradiated test, duplicate samples were taken for analysis at seven intervals during irradiation. A single dark control sample was taken for analysis at intervals equivalent to that of the irradiation test.

Aqueous samples were radioassayed using LSC and analysed by HPLC to determine the levels of parent and significant photodegrades in each sample. Confirmation analysis by TLC was carried out on representative aqueous extracts.

Structural assignment was initially made by co-chromatography with authenticated reference standards (where available). Confirmation of the presence of any degradation product and the potential identity of unknown degradation products present ≥ 5 % of applied radioactivity was demonstrated by LC-MS-MS. All samples were initially analysed by HPLC within 1 day of sampling.

The half-lives (DegT₅₀) of ¹⁴C-S-metolachlor in pH 7 buffer (from the HPLC analysis) were determined using a Single First Order (SFO) kinetic model with calculations performed according to the FOCUS guidance document on degradation kinetics.

Results and Discussion:

The mean recovery of radioactivity from the irradiated samples was 98.4 % AR (range 96.30 - 101.27 % AR) and from the dark controls was 97.32 % AR (range 93.82 - 100.53 % AR).

In sterile buffer ¹⁴C-S-metolachlor degraded slowly with means of 81.75 % AR and 93.13 % AR (irradiated and dark controls respectively) remaining after 894 hours. Half-lives (DegT50) of 129 days (irradiated) and 624 days (dark control) of summer sunlight using SFO kinetics were determined. The results are presented in the table below.

	SFO		
	DegT50 [days]	DegT90 [days]	χ^2
Irradiated (experimental result)	146	485	1.4
Irradiated (equivalent to summer sunlight, mean for latitude 30°N -50°N)	129	427	
Dark control (experimental result)	624	> 1000	1.1

Table 46: DegT₅₀ and DegT₉₀ values for S-metolachlor in irradiated and dark control solutions

The major degradate of S-metolachlor was found to be degradate A (MW 265) which reached 7.39 % AR (mean value) at 894 hours. In addition, a number of discrete unknown photodegrades were also observed, none exceeding 3.36 % AR.

Carbon dioxide was a minor product of photolysis reaching a maximum of 0.7 % AR by the end of the irradiation period.

No degradation was apparent in the 'dark controls' indicating that the degradation in irradiated samples was due to photodegradation only.

Conclusion:

The study is considered acceptable by the RMS.

Berdat T, Nicollier G, 2008 (new study)

Author:	Berdat T, Nicollier G.
Title:	Amended No.1 to Final Report on Study T017314-04 - CGA24705: Aqueous Photolysis of 14C-Phenylring Labelled CGA24705 (Metolachlor) in Sterile Natural Water under Laboratory Conditions.
Date:	25/01/2008
Doc ID:	No. T017314-04
Guidelines:	JMAFF 12 Nousan No. 8147
Deviation:	
GLP:	Yes
Validity:	Acceptable

Materials and methods:

¹⁴C-radiolabelled CGA24705 at the phenylring moiety was applied at a concentration of 1.9 ppm to the sterile natural water and was irradiated with a xenon light source. The mean temperature of the samples was kept at 25 ± 1 °C for a maximum of 25 days of irradiation with artificial light. The 25 days of continuous Suntest irradiation (artificial light) corresponded to 44.4 natural summer sunlight days at latitudes 30 to 50°N according to the lamp irradiation intensity. Duplicate irradiated samples were taken for analysis at evenly spaced intervals over the irradiation period. Corresponding duplicate samples were incubated at 25 ± 1 °C for a maximum of 25 days in the dark.

The DegT₅₀ and DegT₉₀ of ¹⁴C-CGA24705 in natural water (from the HPLC analysis) were determined using Single First Order (SFO) and First Order Two Compartment (FOTC) kinetic models.

Results and Discussion:

The amount of ¹⁴C-CGA24705 decreased to 26.9% (mean value) of the applied radioactivity after 25 days of irradiation. The concentration of ¹⁴CO₂ reached a maximum of 20.2% at the end of study. No degradation was observed in the dark controls.

Around 45 photodegradate fractions (U1 to U45) were separated by HPLC and all fractions were below 5.8%. Only the metabolites CGA13656, CGA41638/ CGA40172 could be identified in small amounts of $\leq 0.3\%$ of applied ¹⁴C-radioactivity.

The rate of photodegradation of ¹⁴C-CGA24705 was described using first order kinetics (SFO) and first order two-compartment (FOTC) kinetics. The results are presented in the table below.

Table 47. Deg 150 and Deg 150 values for 14C-CGA24705 in infaulated and dark control solutions
--

Test system	SFO			FOTC			
	DegT50 [days]	DegT90 [days]	r ²	DegT50 [days]	DegT90 [days]	r ²	
Irradiated (experimental result)	12.11	40.22	0.94	10.05	69.45	0.98	
Summer Sunlight (30-50°N)	21.5	71.4		17.8	123.3		

Conclusion:

RMS considers the study only as additional information, as no harmonized guidance exist until now, how to determine indirect phototransformation in natural water. According to the OECD GD No.316 -

Phototransformation in Water, indirect phototransformation of substances in natural water is influenced by many different processes and methods for evaluating the relevance of these processes are not well tested yet. However, the study results indicate that indirect phototransformation of metolachlor can be occurred in natural waters under influence of sunlight.

11.1.4.4.1 Soil photolysis

The soil photolysis rate of S-metolachlor/metolachlor was investigated in two studies. The first study (Merritt, 1995) was evaluated during the initial EU review (DAR, 2000). No significant difference of the degradation rates was observed between the irradiated and non-irradiated soil samples.

For the renewal a new study (Simmonds, 2012) was submitted to investigate the photodegradation of S-metolachlor in dry and moist soil. Photodegradation of S-metolachlor was slow in both moist and dry soil layers. The major degradation product observed was CGA41638, reaching a maximum level of 5.6 % and 5.4 % (mean values) of the applied dose in dry and moist soil photolysis experiments, respectively. No other single metabolite was observed at > 2.9 % of the applied dose. Low levels of radiolabelled carbon dioxide were produced during incubation for the irradiated samples for both the dry and moist soil photolysis. Accumulated levels reached a maximum of 1.5 % of the applied dose in both the dry and moist soil photolysis. Bound residues slowly increased throughout the incubation period to 4.7 % AR and 2.9 % AR at the end of the air dried soil layer experiment (irradiated and dark control series respectively). The bound residues for the moist soil layer experiment increased throughout the incubation period 9.4 % AR and 8.2 % AR at the end of the study (irradiated and dark control series respectively).

The results show that photodegradation on soil is no significant route of degradation under environmental conditions.

11.2 Environmental transformation of metals or inorganic metals compounds

Not relevant for this dossier.

11.3 Environmental fate and other relevant information

11.3.1 Adsorption and desorption in soil

Already during the first Annex 1 approval of S-metolachlor, two studies (Spare, 1995; Ellgehausen, 1997) on the soil adsorption and desorption for the active substance were considered acceptable. Three new studies (Glaenzel, 1999; Nicollier, 2000; Hein, 2004) for the active substance were submitted and considered acceptable for the renewal of S-metolachlor.

Parent (S-metolachlor, 771						
Soil Type	OC %	Soil pH	K _F	KFoc	1/n	Reference
			(mL/g)	(mL/g)		
Leland Mississippi (clay)	1.276	7.2 ^{a)}	4.7	368	0.934	Spare, W.C.
Lime Kiln Maryland (sandy loam)	1.160	8.0 ^{a)}	1.4	121	0.909	(1995)
Middletown Maryland (silt loam)	0.986	7.0 ^{a)}	1.1	112	0.914	
Collombey (loamy sand)	0.8	7.3 ^{c)}	1.4	175	0.909	Ellgehausen, H.
Speyer 2.1 (sand)	0.3	6.8 ^{c)}	1.0	333	0.887	(1997)
Gartenacker (silt loam)	2.0	7.1 ^{c)}	4.6	230	0.971	
Vetroz (silt loam)	4.7	7.2 ^{c)}	11.5	245	1.002	

Table 48: Freundlich adsorption coefficients and exponents of S-metolachlor

Illarsaz (humic silt loam)	19.8	6.7 ^{c)}	44.8	226	0.926	
Bahus 1 0-10cm (silt loam)	5.91	3.42 ^{b)}	10.82	183	0.927	Glänzel, A.
Bahus 2 10-20cm (silt loam)	3.02	3.75 ^{b)}	7.63	253	0.925	(1999)
Birkenheide, (loamy sand)	0.65	3.42 ^{b)}	1.09	168	0.952	Nicollier, G. (2000)
Soil Lorsch Horizon I (sandy loam)	1.63	5.17 ^{b)}	2.37	145	0.9629	Hein, W. (2004)
Geometric mean (if not pH	t)	3.63	200.24	0.93		
Arithmetic mean (if not pH dependent)		t)	77	213	0.935	
pH dependence, No					0.755	

a) Measured in CaCl₂

^{b)} Measured in KCl

c) Medium in which the pH measurements were performed is not reported in study

11.3.2 Fate and behaviour in air

S-metolachlor has a vapour pressure of 3.7 $\times 10^{-3}$ Pa at 25 °C (extrapolated from higher temperatures) and a Henry's Law's constant of 2.20 $\times 10^{-03}$ Pa $\times m^3$ /mol at 25 °C. These values, especially the relatively high vapour pressure suggest that a volatilisation of S-metolachlor may occur after application.

The experimental data on the fate and behaviour of S-metolachlor in air confirms this view. A wind tunnel experiment (Bourry and Nicollier, 2005) demonstrated that S-metolachlor can enter surface waters by volatilization and subsequent deposition (the maximum concentrations in water bodies 1 m away was $0.75\mu g/L$). In a field experiment (Gish et al, 2011) the cumulative volatilisation losses were measured over an 8-year study period. Volatilization losses were high: ca. 5 - 63 % or 6 - 23 % if one atypical year is excluded. Average of volatilisation losses during the 7-year is about 9 % with a CV = 80 %. The volatilisation losses correlated well with moisture of the soils, with the highest volatilisation value observed in the year of most intense rainfall. Metolachlor volatilisation losses were clearly greater during daytime when compared with the estimated for nighttime. Local effects of S-metolachlor application due to volatilization and subsequent deposition can therefore not be excluded and should be assessed with suitable tools.

The estimated half-life of S-metolachlor in the atmosphere (by hydroxyl radical oxidation) is 2.3 h (calculated with 1.5 x 10^6 OH-radicals/cm³ and 12 h day). Due to the short persistence in the atmosphere, the PEC_{air} is expected to be negligible and global effects as a result of long-range transport are not expected to be of relevance.

11.4 Bioaccumulation

Method	Results	Remarks	Reference
OECD (1996). Proposal for Updating Guideline 305	The lipid-corrected steady state BCF for whole fish in the lower concentration (worst-case) is 255.	<i>Lepomis macrochirus</i> ; 28 d uptake, 14 d depuration; Reliability 1	Anonymous (2001) CGA77102/0580
Partition coefficient n-octanol/water	at 25 °C : log Pow = 3.05	The log Pow is below the cut-off value of ≥ 4	Section 7 of this report (physicochemical properties)

Table 49: Summary of relevant information on bioaccumulation

11.4.1 Measured bioaccumulation test data

Anonymous (2001)

Author:	Anonymous
Title:	Accumulation and elimination of [Phenyl-(U)-14C] CGA77102 by bluegill sunfish
	(Lepomis macrochirus) in a dynamic flow-through system

Date:	2001
Doc ID:	Syngenta File No. CGA77102/0580
Guidelines:	OECD (1996). OECD Guidelines for Testing of Chemicals, Proposal for Updating
	Guideline 305, Bioconcentration: Flow-through Fish Test. Paris, France.
	EPA 540/09-82-021, Section 165-4 (1982)
	EPA 540/09-88-051, Addendum 8 on data reporting (1988)
GLP:	Yes
Validity:	Yes
Previous evaluation	In DAR (2018)

Executive Summary

The study was undertaken to determine the bioconcentration and subsequent depuration of $[Phenyl-(U)-{}^{14}C]$ CGA77102 in bluegill sunfish (Lepomis macrochirus). Bioconcentration factors (measured and calculated) were based on analyses of water and fish tissues for total radioactive residues. The study was conducted with nominal concentrations of 0.03 and 0.003 mg CGA77102/L, and a solvent control.

CGA77102 residues were rapidly concentrated in fish tissues, reaching a steady-state concentration within approximately 7 days.

The measured bioconcentration factor (BCF_{ss}) for the 0.03 mg CGA77102/L treatment, based on ¹⁴C-residues, was 169, 17 and 94 in non-edible tissues, edible tissues and whole fish tissues respectively. At the lower concentration (0.003 mg/L) these values were 202, 20 and 112 respectively. Thus, the mean BCF_{ss} for CGA77102 is 103 for whole fish.

The depuration of accumulated residues was rapid, with approximately 91 % depuration after 10 days. The whole fish DT_{90} was 5.4 days at 0.03 mg/L and 7.4 days at 0.003 mg/L.

Validity of the study

The study is considered valid as temperature variations were less than $+1^{\circ}$ C, the dissolved oxygen remained above 60 % ASV, test item concentrations were maintained within + 20 % of the mean measured values during the accumulation phase, mortality of the batch of fish used was less than 5 % during the 7 days preceding the test and were low (1 fish) during the accumulation phase, and no symptoms of sub-lethal toxicity were observed.

Conclusions

CGA77102 residues were rapidly concentrated in fish tissues, reaching a steady-state concentration within about 7 days.

The whole fish uptake rate constant (K_u) was 40.3/day, and the depuration rate constant (K_d) was 0.42/day. The depuration of accumulated residues was rapid, with approximately 91 % depuration after 10 days. The whole fish DT_{90} was 5.4 days at 0.03 mg/L and 7.4 days at 0.003 mg/L.

The study has the following shortcomings:

- The study was not performed according to newest guideline OECD 305 of October 2nd, 2012 •
- It is stated in OECD 305 that "the increase in fish mass during the test will result in a decrease of • test substance concentration in growing fish (so-called growth dilution), and thus the kinetic BCF will be underestimated if not corrected for growth" This was not done in the study.
- In the study report and the summary provided by the applicant it is not clear if BCF was based on • CGA 77102 or total radioactivity.
- Lipid content for whole fish at day 28 is not reported but needed to express the BCF based on 5 % • lipid content as laid out in OECD 305. Lipid normalisation will therefore be based on initial Lipid content.
- Feeding was relatively high in the study (2 % of wet body weight per day). This may have led to a • relatively high increase of the Lipid content and a dilution of S-metolachlor in fat.

To derive a BCF for the assessment of bioaccumulation, the worst-case BCF value of 112 (whole fish, low dose) is normalised to 5% lipid using the lipid content of 2.2 measured at the first day of exposure as a reference. This yields a BCF_{ss} of 255.

Overall, from this study it can be concluded that S-metolachlor BCF in fish is 255, which is below the CLP criteria of 500. A bioconcentration potential for classification purposes is not indicated. This is supported by the log P_{ow} of 3.05, which is below the cut-off value of 4.

11.5 Acute aquatic hazard

Please note that solely studies for S-metolachlor (CGA-77102) are considered for classification. Studies for metolachlor (CGA 24705) are listed for completeness.

Based on the aquatic toxicity tests with S-metolachlor and its general degradability degradation products are not assumed to cause the observed toxicity. Additionally, degradation products of S-metolachlor are clearly less toxic compared to the parent (please refer to the RAR of S-metolachlor). Degradation products of Smetolachlor do not need to be considered for classification.

Mathod	Species	Tost	Recults ¹	Romarks	Reference
Wiethou	species	material	Results	Keinai KS	Reference
U.S. EPA, 1975	Oncohrynchus mykiss (Salmo gairdneri)	CGA 24705 (metolachlor)	LC ₅₀ (96 h) = 3.9 mg a.s./L (nominal)	No analytical verification of test concentrations Reliability 2	Anonymous (1978a)
US Federal Department of the Interior, Fish and Wildlife Services: Procedure for evalu-ation of acute toxicity of Pesticides to fish and wildlife (1964)	Oncohrynchus mykiss (Rainbow trout), Carassius carassius (Crucian carp), Ictalurus punctatus (Channel catfish), Lepomis macrochirus (Bluegill), Poecilia reticulata (Guppy)	CGA 24705 (metolachlor)	$\begin{array}{l} LC_{50} \ (96 \ h) = \\ 2 \ mg \ a.s./L \\ (nominal) \\ LC_{50} \ (96 \ h) = \\ 4.9 \ mg \ a.s./L \\ (nominal) \\ LC_{50} \ (96 \ h) = \\ 4.9 \ mg \ a.s./L \\ (nominal) \\ LC_{50} \ (96 \ h) = \\ 15 \ mg \ a.s./L \\ (nominal) \\ LC_{50} \ (96 \ h) = \\ 8.6 \ mg \ a.s./L \\ (nominal) \end{array}$	No analytical verification of test concentrations Reliability 2	Anonymous (1974)
U.S. EPA, 1975	Lepomis macrochirus	CGA 24705 (metolachlor)	$LC_{50} (96 h) =$ 10 mg a.s./L (nominal)	No analytical verification of test concentrations Reliability 2	Anonymous (1978b)
EPA guidelines 72-5	Pimephales promelas	CGA 24705 (metolachlor)	LC ₅₀ (96 h) = 9.2 mg a.s./L (mean measured)	Analytical verification of test concentrations based on data from days 0, 7 and 14	Anonymous (1993)

Table 50: Summary of relevant information on acute aquatic toxicity

				Reliability 2	
American Society for Testing and Materials Committee E-35 on Pesticides, 1980	Leiostomus xanthurus	CGA 24705 (metolachlor)	$LC_{50} (96 h) =$ 4.2 mg a.s./L (initial measured)	No analytical verification at test end. Reliability 2	Anonymous (1980a)
ASTM Standard E- 35 Standard practice for conducting basic acute toxicity tests with fishes, macroinvertebrates, and amphibians (1980)	Cyprinodon variegatus	CGA 24705 (metolachlor)	LC ₅₀ (96 h) = 7.5 mg a.s./L (mean measured)	Study details not fully reported. Reliability 2	Anonymous (1980b)
EPA-660/3-75- 009; 1975	Oncorhynchus mykiss (Salmo gairdneri)	CGA 77102 (S- metolachlor)	LC_{50} (96 h) = 1.23 mg a.s./L (initial measured)	Key study Minor deviation from validity Reliability 2	Anonymous (1983a)
EPA-660/3-75- 009; 1975	Lepomis macrochirus	CGA 77102 (S- metolachlor)	$LC_{50} (96 h) =$ 3.16 mg a.s./L (initial measured)	Minor deviation from validity Reliability 2	Anonymous (1983b)
FIFRA Guideline 72-3/72-1	Cyprinodon variegatus	CGA 24705 (metolachlor)	$LC_{50} (96h) =$ 9.8 mg a.s./L (mean measured)	Reliability 1	Anonymous (1994a)
FIFRA Guideline 72-1	Oncohrynchus mykiss	CGA 77102 (S- metolachlor)	$LC_{50} (96 h) =$ 12 mg a.s./L (Minor deviation from validity Reliability 2	Anonymous (1995a)
OECD 203	Cyprinus carpio	CGA 77102 (S- metolachlor)	$LC_{50} (96 h) =$ 20 mg a.s./L (mean measured)	Reliability 1	Anonymous (2006)
OPPTS 850.1075	Cyprinodon variegates	CGA 77102 (S- metolachlor)	$LC_{50} (96 h) =$ 17 mg a.s./L (mean measured)	Reliability 1	Anonymous (2004)
ASTM 1980	Palaemonetes pugio	CGA 24705 (metolachlor)	LC_{50} (96 h) = 17 mg/L (initial measured)	Reliability 2	Heitmuller, T. (1980a)
ASTM 1980	Penaeus duorarum	CGA 24705 (metolachlor)	$LC_{50} (96 h) =$ 8.3 mg/L (initial measured)	Multiple deviations from the Guideline Reliability 3	Heitmuller, T. (1980b)
US EPA-600/9-78- 010	Acartia tonsa	CGA 24705 (metolachlor)	LC_{50} (96 h) = 1.5 mg/L (initial measured)	No analytical verification of test concentrations at the end of the test. Reliability 2	Hollister, T.A. and Ward, G.S. (1980a)

ASTM Draft No.7	Crassostrea virginica	CGA 24705 (metolachlor)	$EC_{50} (96 h) =$ 18 mg/L (initial measured)	No analytical verification of test concentrations at the end of the test. Reliability 2	Hollister, T.A. and Ward, G.S. (1980b)
ASTM 1981; EPA- 660/3-75-009	Daphnia magna	CGA 77102 (S- metolachlor)	$EC_{50} (48 h) =$ 11.24 mg/L (initial measured)	No analytical verification of test concentrations at the end of the test. Reliability 2	Spare, W.C. (1983c)
EPA 850.1035, 72- 3	Mysidopsis bahia	CGA 77102 (S- metolachlor)	$LC_{50} (96 h) =$ 1.4 mg/L (mean measured)	Key study Reliability 1	Spare, W.C. (1983d)
FIFRA Guideline Number 72-3(b)	Crassostrea virginica	CGA 24705 (metolachlor)	$EC_{50} (96 h) =$ 1.8 mg/L (mean measured)	Reliability 1	Dionne, E. (1994)
FIFRA Guideline Number 72-3(c)	Mysidopsis bahia	CGA 24705 (metolachlor)	$LC_{50} (96 h) =$ 4.9 mg/L (mean measured)	Reliability 1	Machado, M.W. (1994b)
ASTM	Uca pugilator	CGA 24705 (metolachlor)	LC ₅₀ (96 h) > 47 mg/L (initial measured)	Only initial measured concentartions; test system with sand. Reliability 3	Heitmuller, T. (1980c)
FIFRA Guideline Number 72-2(a)	Daphnia magna	CGA 77102 (S- metolachlor)	$LC_{50} (48 h) =$ 26 mg/L (mean measured)	Exceedance of the allowed solvent concentration. Reliability 2	Collins, M.K. (1995b)
OPPTS Number 850.1025	Crassostrea virginica	CGA 77102 (S- metolachlor)	$EC_{50} (96 h) = 4 mg/L (mean measured)$	Reliability 1	Palmer, S.J.; Kendall, T.Z. and Krueger, H.O. (2004b)
FIFRA Guideline number 122-2 and 123-2	Navicula pelliculosa	CGA 24705 (metolachlor)	$E_{r}C_{50} (96 h) =$ 4.982 mg/L $E_{r}C_{10} (96 h) =$ 0.104 mg/L (mean measured)	Validity criteria not met. Reliability 3	Hoberg, J.R. (1995a)
FIFRA Guideline number 122-2 and 123-2	Skeletonema costatum	CGA 24705 (metolachlor)	$E_{r}C_{50} (72 h) = 0.423 mg/L E_{r}C_{10} (72 h) = 0.007 mg/L (nominal)$	Reliability 1	Hoberg, J. R. (1994)

OECD 201	Skeletonema	CGA 77102	ErC50 (72 h)	Minor deviation	Hoberg, J. R.
	costatum	(S-	= 0.340 mg/L	from validity	(1995b)
		metolachlor)	$E_r C_{10} (72 h) =$	criteria	
			0.013 mg/L		
			(mean	Reliability 2	
			measured)		
U.S. EPA FIFRA	Anabaena flos-	CGA 24705	ErC50 (120 h)	Several validity	Hoberg J.R.
Guideline No. 122-	aquae	(metolachlor)	= 1.1 mg/L	criteria not met	(1995c)
2 and 123-2			ErCI0 =	Dellish:11:4-2	
EIED & Cuidalina	Color activity	Matalaahlar	0.000 mg/L	Severe violation	Hohana I D
number 122-2 and	capricornutum	Wietoraciiior	= 0.0278	of validity criteria	(1995d)
123-2	capricornatian		= 0.0270 mg/L	or validity efficitia	(19950)
123 2			NOEC = 0.8	Reliability 3	
			mg/L		
FIFRA Guideline	Selenastrum	CGA 77102	ErC50 (72 h)	Severe violation	Hoberg J.R.
number 122-2 and	capricornutum	(S-	= 0.024 mg/L	of validity criteria	(1995e)
123-2		metolachlor)	ErC10 (72 h)		
			= 0.0036	Reliability 3	
			mg/L		
OECD 201	Desmodesmus	CGA 24705	ErC50 (72 h)	Severe violation	Rufli, H. (1095)
	subspicatus	(metolachior)	= 0.24 / mg/L	of validity criteria	(1985)
			(nominal)	Reliability 3	
LIS FPA	A.C	Metolachlor	FrC50(72 h)	Reliability 4	Hollister T A
1974/1978	Microcystis	Metoluellior	13.3 mg/L	Renderinty	and Ward, G.S.
	aeruginosa		0.071 mg/L		(1980)
	Selenastrum		6.09 mg/L		、 <i>´</i>
	Chlorelle		-		
	Chlorella		0.97 mg/L		
			0.436 mg/L		
	Dunaliella		-		
			All endpoints		
	Skeletonema		haded on		
			nominal		
	Isochrysis galbana Bornhyridium		concentrations		
	r orpnyrtatum cruentum				
OECD 201	Pseudokirchneriella	CGA 77102	$E_{r}C_{50}(72 h) =$	Key study	Memmert U
	subcapitata	(S-	0.056 mg/L	1109 80009	(2006)
	1	metolachlor)	NOEC	Reliability 1	、 <i>,</i>
			(growth, 72 h)		
			= 0.012 mg/L		
			(mean		
		004 77102	measured)		
OECD 201	Navicula	CGA 7/102	$E_r C_{50} (72 h) =$	Keliability I	Desjardins, D.;
	peniculosa	(S- Metolachlor)	ST IIIg/L NOEC		Kelluali, T.Z., Krueger, H.O.
		metoraciii01)	(growth 72 h)		(2003)
			= 9.7 mg/L		(2003)
			(mean		
			measured)		
OECD 201	Anabaena flos-	CGA 77102	ErC50 (72h)	Severe violation	Desjardins, D.;
	aquae	(S-	= > 30 mg/L	of validity criteria	Kendall, T.Z.;
		Metolachlor)	EC10(72 h) =	.	Krueger, H.O.
			13 mg/L	Reliability 3	(2004)

OPPTS 850.4450	Elodea canadensis	CGA 77102 (S- Metolachlor)	$E_{r}C_{50} (7 d) = 0.062 mg/L E_{r}C_{10} (7 d) = 0.0049 mg/L (mean measured)$	Key study Reliability 2	Teixeira, D. (2006a)
OPPTS 850.4450	Myriophyllum heterophyllum	CGA 77102 (S- Metolachlor)	$E_rC_{50} (7 d) =$ 0.065 mg/L NOEC (growth, 7 d) = 0.01 mg/L (mean measured)	Supplemental information	Teixeira, D. (2006b)
FIFRA Guideline number 122-2 and 123-2	Lemna gibba	CGA 24705 (metolachlor)	$E_rC_{50} (14 d) =$ 0.0367 mg/L NOEC (growth, 14 d) = 0.0022 mg/L (mean measured)	Minor deviation from validity criteria Reliability 2	Hoberg, J. R. (1995f)
FIFRA Guideline number 122-2 and 123-2	Lemna gibba	CGA 77102 (S- metolachlor)	$E_rC_{50} (14 d) =$ 0.039 mg/L NOEC (growth, 14 d) = 0.0076 mg/L (mean measured)	Severe violation of validity criteria Reliability 3	Hoberg, J. R. (1995g)
OECD 221	Lemna gibba	CGA 77102 (S- metolachlor)	$E_rC_{50} (7 d) =$ 0.133 mg/L NOEC (growth, 7 d) = 0.0021 mg/L (mean measured)	Reliability 1	Eckenstein, H. (2014)
OECD 221	Lemna gibba	CGA 77102 (S- metolachlor)	ErC50 (7 d) = 0.149 mg/L NOEC = 0.00384 mg/L (mean measured)	Reliability 1	Kümmrich F. (2019)

11.5.1 Acute (short-term) toxicity to fish

Anonymous (1978a)

Author:	Anonymous
Title:	Acute toxicity of CGA 24705 to rainbow trout (Salmo gairdneri)
Date:	1978
Doc ID:	Report Number BW-78-6-186
Guidelines:	U.S. EPA, 1975
GLP:	No
Validity:	Yes
Previous evaluation:	DAR (2018)

Executive Summary

Rainbow trouts were exposed to the test substance with 10 fish per concentration at nominal concentrations of 0.8, 1.3, 1.9, 2.88, 4.1, 6.0 and 8.8 mg a.s./L, a control and a solvent control for a period of 96 hours in a static test design. No chemical analysis to verify test concentrations was performed.

No mortalities at concentrations up to 2.88 mg a.s/L. Mortality was 70 % in the 4.1 mg a.s./L test concentration and 100 % in the 6.0 and 8.8 mg a.s./L test concentrations.

Conclusions:

LC50 (96 h) = 3.9 mg/L NOEC (96 h) = 2.8 mg/L

As it was shown in recent studies with comparable static test design that no major decline of test concentrations has to be expected over the test duration the study is considered valid and acceptable to be used for classification even without chemical analysis.

Due to the missing analytical verification at the start and end of the test, the study is considered reliable with restrictions.

Anonymous (1974)

Author: Title:	Anonymous Acute toxicity to rainbow trout, crucian carp, channel catfish, bluegill and guppy of technical CGA 24705
Date:	1974
Doc ID:	Report Number SISS-3516
Guidelines:	None
GLP:	No
Validity:	Yes
Previous evaluation:	DAR (2018)

Executive Summary

Five different fish species (rainbow trout, crucian carp, channel catfish, bluegill and guppy) were exposed to the test substance at nominal concentrations of 0.65, 1.0, 6.5 and 10 mg a.s./L and solvent control for a period of 96 hours in a static test design. 12 fish per concentration were used. No chemical analysis to verify test concentrations was performed.

Conclusions

The following endpoints were derived:

Species	96h-LC ₅₀ (mg a.s./L)
rainbow trout	2
crucian carp	4.9
channel catfish	4.9
bluegill	15

guppy 8.6

It was shown in recent studies with comparable static test design that no major decline of test concentrations has to be expected over the test duration. However, as no guideline is reported, the study is not conducted under GLP and more reliable data is available, the study is just considered as supplemental information for the purpose of classification.

Due to the missing analytical verification at the start and end of the test, the study is considered reliable with restrictions.

Anonymous (1978b)

Author:	Anonymous
Title:	Acute toxicity of CGA 24705 to bluegill (Lepomis macrochirus)
Date:	1978
Doc ID:	Report Number BW-78-6-181
Guidelines:	U.Ś. EPA, 1975
GLP:	No
Validity:	Yes
Previous evaluation:	DAR (2018)

Executive Summary

Bluegill were exposed to the test substance with 10 fish per concentration at nominal concentrations of 1.9, 2.9, 4.1, 6.0, 8.8, 13, 19 and 28 mg a.s./L, a control and a solvent control for a period of 96 hours in a static test design. No chemical analysis to verify test concentrations was performed.

No mortalities at concentrations up to 6.0 mg a.s/L. Mortality was 10 % in the 8.8 mg a.s./L test concentration and 100 % in the 13, 19 and 28 mg a.s./L test concentrations.

Conclusions

LC50 (96 h) = 10 mg a.s./L NOEC (96 h) = 6.0 mg a.s./L

As it was shown in recent studies with comparable static test design that no major decline of test concentrations has to be expected over the test duration the study is considered valid and acceptable to be used for classification without chemical analysis.

Due to the missing analytical verification at the start and end of the test, the study is considered reliable with restrictions.

Anonymous (1993)

Author:	Anonymous
Title:	Chronic toxicity of CGA 24705 to the Fathead minnow (Pimephales promelas). EG&G
	Bionomics
Date:	1993
Doc ID:Unpubl	ished report No. BW-78-11-341
Guidelines:	EPA guidelines 72-5
GLP:	No
Validity:	Cannot be checked due to missing information

Executive summary and methods

A preliminary acute flow-thorugh study with CGA 24705 was conducted sumarised here. For a summary of the chronic study please refer to the respective section.

A preliminary 14-day exposure of fathead minnow juveniles was conducted in a flow-through system using a proportional diluter with a 0.25 dilution factor. Thirty 0.19 g fish were exposed to each of seven unreplicated concentrations of CGA-24705 and a solvent control. The amount of acetone in the solvent control was equal

to the 0.028 mg/L acetone in the highest test concentraionts of CGA-24705. Using the mortality of juvenile fish and mean measured concentrations of CGA-24705, a 96-hour LC50 and 95% confidence intervals were calculated by a moving average method (Stephan, 1978). Juvenile fathead minnows for the acute toxicity tests were obtained from the Newton Fish Toxicology Station, EPA, Cincinnati, Ohio. Newly hatched fry was taken from brood stock at EG & G, Bionomics, Aquatic Toxiciology Laboratory, Warenham, Massachusetts.

Results

Results for 96 h are based on mean measured concentrations derived from water samples taken on days 0, 7 and 14.

Toxicity after 96 h

Mean measured concentration (mg/L)	Juvenile % dead after 96 h
13	70
7.5	40
4.7	10
4.8	7
4.2	23
3.1	0
2.6	3
Solvent control	0

The LC50 96 h and 95% confidence interval were calculated to be 9.2 (7.9 - 11) mg/L

Conclusions

The LC50 96 h is 9.2 (7.9 – 11) mg/L

The study shows the following shortcomings:

- No oxygen concentration is reported. The validity criteria for >60% DO cannot be verified.
- Mean measured concentrations are based on 0, 7 and 14 days instead of considering the for acute effects relevant study duration of 4 d
- Only a solvent control and no negative control was included.
- Detailed information about material and methods is missing
- The study is not conducted under GLP

Despite the shortcomings the study is considered reliable with restrictions. It was conducted under flow-through conditions and the dissolved oxygen concentration is supposed to be above 60%. Also, the mean

measured concentrations based on 0, 7 and 14 days should not influence the result. Even though some information is missing, the study can be used for classification purpose.

Anonymous (1980a)

Author:	Anonymous
Title:	Acute toxicity of metolachlor (CGA 24705) (DUAL7) to spot (Leiostomus xanthurus)
Date:	1980
Doc ID:	Report Number BP-80-3-59
Guidelines:	American Society for Testing and Materials Committee E-35 on Pesticides, 1980
GLP:	No, but complies with sound scientific standards
Validity:	Yes
Previous evaluation:	DAR (2004, 2018)

Executive Summary

4 replicates of 3 fish per concentration, *Leiostomus xanthurus*, (body length 30-36 mm; body weight 0.44-0.89 g) were exposed to the test substance at concentrations of 1.3, 2.2, 3.6, 6 and 10 mg a.s./L for a period of 96 hours in a static test design per concentration and water control. The concentrations in test media ranged on day 0 from 84 to 104 % of the nominal. The concentrations after 96 hours were not mentioned. Results are based on initial measured concentrations.

No mortalities at the concentrations 1.2, 2.3 and 3.3 ppm. Mortality was 92 % in the 5.4 ppm test concentration and 100 % in the 8.4 ppm test concentration.

Conclusions

LC50 (96 h) = 4.2 mg a.s./L NOEC (96 h) = 3.3 mg a.s./L

Despite the shortcoming of no analytical verification of test concentrations at the test end the study is considered reliable with restrictions. The study is considered valid and acceptable to be used for classification.

Anonymous	(1980b)
Author:	Anonymous
Title:	Effects of metolachlor (Dual [®]) on survival, growth, and development of sheepshead minnows (<i>Cyprinodon variegatus</i>)
Date:	1980
Doc ID:Repo	ort Number BP-80-5-80
Guidelines:	ASTM Standard E-35 Standard practice for conducting basic acute toxicity tests with fishes, macroinvertebrates, and amphibians (1980)
GLP:	No
Validity:	Yes

Executive Summary

The main study was a chronic fish study. Some of the initial work included an acute fish study with sheepshead minnow (*Cyprinodon variegatus*). This is reported in this summary. The main study is summarised separately.

The acute toxicity of metolachlor to sheepshead minnow (*Cyprinodon variegatus*) was determined. Fish were exposed to the following range of nominal concentrations of 0.62, 1.2, 2.5, 5.0 and 10 mg metolachlor/L (mean measured concentrations 0.59, 1.0, 2.2., 4.4 and 9.4 mg metolachlor/L), a solvent control and a dilution seawater control. Based on mean measured concentrations, the 96-hour LC_{50} for metolachlor to sheepshead minnow (*Cyprinodon variegatus*) was 7.5 mg/L.

Study Design and Methods

Experimental dates: 11th to 15th March 1980

A flow-through test system was employed. A stock solution consisting of metolachlor in triethylene glycol, with a nominal concentration 80.825 mg metolachlor/L, was delivered to the mixing chamber where it was diluted and made up to a set volume with seawater before being delivered to the test vessels to give the test concentrations. The blank control consisted of seawater only and the solvent control consisted of triethylene glycol and dilution seawater.

At the start of the test 10 fish were placed in each duplicate tank for the test concentrations and each control. Mortality and any abnormal characteristics were recorded at 0, 24, 48, and 96 hours.

Daily measurements of the test solutions were undertaken throughout the 96-hour period for pH, temperature and dissolved oxygen concentration.

The test concentrations were verified by chemical analysis of metolachlor at the beginning and at the end of the test.

The median lethal concentration (LC₅₀) was graphically interpolated (Apha et al., 1976).

Results and Discussion

The concentrations of metolachlor technical were determined in the test solutions. The mean measured concentrations ranged from 83 - 95% of nominal concentrations. The mean measured concentrations were used for calculating and reporting the results.

Analytical results

Nominal concentration (mg metolachlor/L)	Measured concentration (mg metolachlor/L) 0 hours	Measured concentration (mg metolachlor/L) 96 hours	% of nominal 96 hours	Mean measured concentration (mg metolachlor/L)
Control	n.d.	n.d.	-	-
Solvent Control	n.d.	n.d.	-	-
0.62	0.56	0.62	95	0.59
1.2	0.95	1.1	83	1.0
2.5	2.0	2.4	88	2.2
5.0	4.4	4.3	88	4.4
10	8.7	10	94	9.4

n.d.: Not Detected

Mortalities were observed at a mean measured concentration of 9.4 mg metolachlor/L. No mortality was observed in the control and solvent control.

The mortality data and estimated LC_{50} values are shown in the table below:

Mean measured concentration (mg/L)	% Mortality observed (Cumulative number of dead fish)			
	24 hours	48 hours	72 hours	96 hours
Control	0	0	0	0
Solvent Control	0	0	0	0
0.59	0	0	0	0
1.0	0	0	0	0
2.2	0	0	0	0
4.4	0	0	0	0
9.4	0	5	25	70
LC ₅₀ mg metolachlor/L	-	-	-	7.5

Effects of metolachlor on the survival of Cyprinodon variegatus

5% confidence limits were not reported

Validity Criteria

- Mortality in the controls was $\leq 10\% (0\%)$
- The dissolved oxygen concentrations were maintained above 60 % (actual recorded was 6.7 to 8.3 mg/L).

Conclusions

Based on mean measured concentrations, the 96-hour LC50 for metolachlor to sheepshead minnow (*Cyprinodon variegatus*) was 7.5 mg/L. The study is reliable with restrictions as details of the study are not full reported, and the study was not performed according to the principles of GLP. The acute phase of the study does meet the validity criteria for acute toxicity testing of fish and is regarded reliable for classification purposes.

•	
Author:	Anonymous
Title:	The acute toxicity of S-Metolachlor (CGA 77102 Technical) to rainbow trout (Salmo gairdneri (Oncorhynchus mykiss))
Date:	1983
Doc ID:	Report Number 83-E-168R
Guidelines:	Committee on Methods for Toxicity Test with Aquatic Organisms, 1975, EPA-660/3-75-009
GLP:	No, but complies with sound scientific standards
Validity:	No (minor deviation)
Previous evaluation:	DAR (2004, 2018)

Anonymous (1983a)

Executive Summary

The acute toxicity of CGA77102 to rainbow trout was determined under static conditions. Fish were exposed to a range of nominal concentrations of CGA77102, 1.3, 2.2, 3.6, 6.0 and 10.0 mg/L, alongside a dilution water control and a solvent control (dilution water plus acetone at the same level as the highest test concentration). Based on measured initial concentrations, the 96 hour LC_{50} for CGA77102 to rainbow trout was 1.23 mg a.s./L

(95% confidence intervals 0-5.16 mg a.s./L). The 96 hour no observed effect concentration (NOEC) was <1.08 mg a.s./L.

Study Design and Methods

Experimental dates: 6th to 17th June 1983.

A stock solution was made up at 20 mg/mL in acetone. Treatment solutions were prepared by dilution of appropriate amounts of the stock solution with dilution water to make up to 15 L of test solution in each test vessel. One control vessel consisted of dilution water only and a solvent control vessel contained dilution water plus acetone at the same level as the highest test concentration.

At the start of the test, ten fish were randomly allocated to each of the test concentrations and the controls.

All test vessels were examined at 24, 48, 72 and 96 hours of exposure. Mortalities were recorded and symptoms of abnormal behavioural responses were made.

During the 96 hour test period, daily measurements of the test solutions were undertaken throughout for pH, temperature and dissolved oxygen concentration.

The test concentrations of active ingredient were verified by chemical analysis of CGA77102 at the start of exposure using a residue analysis method.

The initial measured concentrations were used to estimate 24-, 48-, 72- and 96-hour LC_{50} and 95% confidence intervals.

The LC_{50} was determined using the moving average and binomial probability methods. The NOEC was determined by visual inspection of the data.

Results and Discussion

The measured concentrations of active ingredient are shown in the table below in relation to nominal concentrations. Measured concentrations were used for the calculation and reporting of results.

Nominal concentration (mg /L)	Measured concentrations (mg a.s./L)
0 (Dilution water control)	0
0 (Solvent control)	0
1.3	1.08
2.2	1.93
3.6	3.07
6.0	5.16
10.0	9.46

Analytical results for CGA77102

There were no mortalities or sublethal effects in the dilution water or solvent controls. At 96 hours there was 30, 100, 80, 100 and 100% mortality in the 1.08, 1.93, 3.07, 5.16 and 9.46 mg a.s./L groups, respectively. Sublethal effects were present in many of the surviving fish exposed to CGA77102 technical.

The mortality data, LC_{50} values are shown in the table below:

Initial measured concentration (mg a.s./L)	Cumulative mortalities (%) (n = 10)			
	24 hours	48 hours	72 hours	96 hours
Dilution water control	0	0	0	0
Solvent control	0	0	0	0
1.08	0	0	0	30
1.93	0	90	100	100
3.07	0	80	80	80
5.16	60	100	100	100
9.46	80 ^a	100	100	100
LC ₅₀ mg a.s./L	5.53	1.64	1.44	1.23
95% confidence interval	4.34 - 7.25	1.23 - 2.02	1.08 - 5.16	0 - 5.16
NOEC	3.07	1.08	<1.08	<1.08

Cumulative mortality of CGA77102 to rainbow trout

^a all dead fish had dark pigmentation

Validity Criteria

The following validity criteria, based on current guidance were met:

• Mortality in the negative control and solvent control was $\leq 10 \% (0 \%)$.

 $DO \ge 60\%$ ASV (60% saturation at 12°C = 6.5 mg/L; measured range at 0-24 hours was 7.5 to 8.6 mg/L). Values dropped below 60% ASV between 48 and 96 hours in all test vessels (4.9 mg/L). This validity criteria is not fully met.

Conclusions

Based on initial measured concentrations, the 96 hour LC_{50} for CGA77102 to **rainbow trout** was 1.23 mg a.s./L (95% confidence intervals 0-5.16 mg a.s./L). The 96 hour NOEC was < 1.08 mg a.s./L.

The dissolved oxygen concentration after 96 h was below the validity criteria of 60% (45%). Due to the missing analytical measurement at the end of the test and the low oxygen concentration the study is regarded as reliable with restrictions. The study can be considered for classification purposes.

1111011.911100115 (12) 00%	
Author:	Anonymous
Title:	The acute toxicity of S-Metolachlor (CGA 77102) to Bluegill Sunfish (Lepomis macrochirus)
Date:	1983
Doc ID:	Report Number 83-E-168B
Guidelines:	Committee on Methods for Toxicity Test with Aquatic Organisms, 1975, EPA-660/3-75-009
GLP:	No, but complies with sound scientific standards
Validity:	No (minor deviation)
Previous evaluation:	DAR (2004, 2018)

Anonymous (1983b)

Executive Summary

10 fish per concentration, *Lepomis macrochirus*, (mean body length 42.3 mm; mean body weight 0.85 g, 7 months old) were exposed to the test substance at concentrations of 1.3, 2.2, 3.6, 6 and 10 mg/L for a period of 96 hours in a static test design per concentration and water control. The concentrations after 96 hours were not mentioned. The concentrations for the LC50 and NOEC calculations were converted according to initial measured concentrations.

No mortality in both controls and the 0.66 and 1.50 ppm group. In the 2.59 ppm group mortality was 10 % after 96 hours. In the 3.29 group mortality was 60 % after 96 hours. There was 100 % mortality in the 8.51 group after 96 hours. The *Lepomis macrochirus* showed a surfacing behaviour in group 3.29 and 8.51 ppm.

Validity criteria

The following validity criterion was met:

Mortality in the controls was $\leq 10\%$ (observed was 0%)

The following validity criterion was not fulfilled by the study:

The dissolved oxygen concentration maintained above 60% (actual measured was approximately 46%)

Conclusions

LC50 (96 h) = 3.16 mg a.s./L NOEC (96 h) = 1.5 mg a.s./L

Due to the missing analytical measurement at the end of the test and the low oxygen concentration the study is regarded as reliable with restrictions. As it was shown in recent studies with comparable static test design that no major decline of test concentrations has to be expected over the test duration the study is considered acceptable to be used for classification purpose.

Anonymous (1994a)

Author:	Anonymous
Title:	Metolachlor technical (CGA 24705) - Acute toxicity to sheepshead minnow
	(Cyprinodon variegatus) under flow-through conditions
Date:	1994
Doc ID:	Report Number 94-7-5378
Guidelines:	FIFRA Guideline 72-3
GLP:	Yes
Validity:	Yes
Previous evaluation:	DAR (2004, 2018)

Executive Summary

2 replicates of 10 fish/concentration, *Cyprinodon variegatus*, (mean body length 23 mm; mean body weight 0.22 g) were exposed to the test substance at concentrations of 2.6, 4.3, 6.2, 12 and 20 mg/L for a period of 96 hours in a flow-through test design per concentration and water control. The concentrations in the test media ranged on day 0 from 77-108 % of the nominal. The range after 96 hours was from 81-100 %. The concentrations for the LC50 and NOEC calculations were converted according to these analyses.

There were no mortalities at the solvent control and the 3.6 ppm level. There was 5 % mortality in the control 2.8 and 6.2 ppm group. 60 % mortality was observed at the 11 ppm level and 100 % mortality at the 19 ppm level.

Several fish were observed to be lethargic, to be swimming erratically or exhibited partial loss of equilibrium.

Conclusions

LC50 (96 h) = 9.8 mg a.s./L NOEC (96 h) = 3.6 mg a.s./L

The study is considered reliable without restrictions and acceptable to be used for classification.

Anonymous (1995a)

Author:	Anonymous
Title:	S-Metolachlor (CGA 77102) - Acute toxicity to rainbow trout (Oncohrynchus mykiss)
	under static conditions
Date:	1995
Doc ID:	Report Number 95-9-6117
Guidelines:	FIFRA Guideline 72-1
GLP:	Yes
Validity:	No (minor deviation)
Previous evaluation:	DAR (2004, 2018)

Executive Summary

Metolachlor (CGA 24705), technical – purity 97.3 %: 10 fish/concentration, *Oncohrynchus mykiss*, (mean body length 42 mm; mean body weight 0.65 g) were exposed to the test substance at concentrations of 3.8, 6.5, 11, 18, 30 and 50 mg/L for a period of 96 hours in a static test design per concentration and water control. The concentrations in the test media ranged on day 0 from 82-90 % of the nominal. The range after 96 hours was from 50-78 %. The concentrations for the LC50 and NOEC calculations were converted according to these analyses.

There were no mortalities after 96 hours in both control groups, the 2.5, 5.3 and 8.3 ppm group. The 15 ppm group showed 90 % mortality after 96 hours while there was 100 % mortality in groups 25 and 42 ppm, also after 96 hours.

Several fish were observed to be lethargic and some surviving fish showed partial or complete loss of equilibrium.

Validity criteria

The following validity criterion was met:

• Mortality in the controls was $\leq 10\% (0\%)$

The following validity criterion was not fulfilled by the study:

• The dissolved oxygen concentration was not maintained above 60% (lowest observed was 35%)

Conclusions

 LC_{50} (96 h) = 12 mg a.s./L NOEC (96 h) = 2.5 mg a.s./L

The study did not meet both of the required validity criteria. However, the control survival was acceptable and

the low oxygen concentrations were only observed in highest concentration where measurements were performed (15 mg/L). The study is considered as reliable with restrictions and is used for classification purposes.

Anonymous (2006)	
Author:	Anonymous
Title:	S-metolachlor (CGA77102) technical: Acute toxicity to carp (<i>Cyprinus carpio</i>) under static conditions
Date:	2006
Doc ID:	Report Number T001970-06-REG
Guidelines:	OECD Guideline for testing of chemicals 203 'Fish Acute Toxicity Test'. Adopted 17 July 1992
GLP:	Yes
Validity:	Yes
Previous evaluation:	DAR (2018)

Executive Summary

The acute toxicity of S-metolachlor (CGA77102) technical to Carp (*Cyprinus carpio*) was determined. Fish were exposed to mean measured concentrations of 1.3, 2.8, 6.2, 14 and 29 mg a.s./L, and a control (dilution water). The measured concentrations at the start of the test ranged from 90 to 93 % of nominal and at the end of the test ranged from 75 to 86 % of nominal. Mean measured concentrations were used for the calculation and reporting of the results.

There was 100 % mortality observed in the highest test concentration of 29 mg/L. In the concentrations below no mortality was observed. Sub-lethal effects were observed at nominal concentrations of 14 mg/L and above. Symptoms of toxicity observed included unusual swimming, increased pigmentation and moribund fish. No mortality or symptoms of toxicity were observed in the control.

Conclusions

The 96 hour LC_{50} for S-metolachlor (CGA77102) technical to carp (*Cyprinus carpio*) is 20 mg a.s./L (95 % confidence interval 14 - 29 mg a.s./L), based on the mean measured concentrations. The study is considered reliable without restrictions and acceptable to be used for classification.

Anonymous (20)04a)
Author:	Anonymous
Title:	A 96-hour static-renewal toxicity test with the Sheepshead Minnow (<i>Cyprinodon variegates</i>)
Date:	2004
Doc ID:	528-A162
Guidelines:	US EPA Ecological Effects Test Guidelines, OPPTS 850.1075: Fish Acute Toxicity Test, Freshwater and Marine (1996)
	US EPA, Standard Evaluation Procedure, Acute Toxicity Test for Estuarine and
	Marine Organisms (Estuarine Fish 96-hour Acute Toxicity Test), EPA-540/9-85-006 (1985)
	ASTM Standard E729-88a, Standard Guide for Conducting Acute Toxicity Test with

Fishes, Macroinvertebrates and Amphibians (1994) Yes Yes Previous evaluation: DAR (2018)

Executive Summary

GLP:

Validity:

The acute toxicity of CGA77102 to sheepshead minnow, Cyprinodon variegatus, was determined under static renewal conditions. Fish were exposed to a range of nominal concentrations of 3.8, 7.5, 15, 30 and 60 mg CGA77102/L, alongside dilution water and solvent controls. The measured concentrations in the freshly prepared medium at the start of the test and after renewal at 48 hours ranged from 70 to 96 % of nominal. After 48 hours before renewal and at the end of the test the measured concentrations ranged from 64 to 81 % of nominal. The mean measured concentrations, calculated from the analysed concentrations, were used for the calculation and reporting of the results.

Mortalities were observed at mean measured concentrations of 23 mg CGA77102/L and above (100 % after 96 hours). Symptoms of toxicity were observed at concentrations \geq 12 mg CGA77102/L and included discolouration, surfacing and lying on the bottom of the tank. No mortality or symptoms of toxicity were observed in the control.

Conclusions

Based on mean measured concentrations, the 96-hour LC₅₀ to sheepshead minnow (*Cyprinodon variegatus*) was 17 mg CGA77102/L with 95 % confidence intervals of 12-23 mg CGA77102/L. The 96-hour no-mortality concentration was 12 mg CGA77102/L and the NOEC was 6 mg CGA77102/L. The study is reliable without restrictions and considered acceptable to be used for classification.

11.5.2 Acute (short-term) toxicity to aquatic invertebrates

Heitmuller, T. (1980a)

Author:	Heitmuller, T.
Title:	Acute toxicity of metolachlor (CGA 24705) to grass shrimp (Palaemonetes pugio)
Date:	1980
Doc ID:	Report Number BP-80-3-62
Guidelines:	ASTM 1980
GLP:	No
Validity:	Yes
Previous evaluation:	DAR (2004, 2018)

Executive Summary

The acute toxicity of CGA 24705 to Palaemonetes pugio was determined under static conditions over 96 hours. The following nominal concentrations were tested alongside a dilution water control: 6.7, 11, 18, 30 and 50.0 mg/L. In addition, a control with the solvent (triethylene glycol) was included. The concentrations in the test media ranged from 82-90 % of the nominal at test initiation, however, concentrations in the test media at test end were not determined. The effect concentrations were based on initial concentrations. There were no mortalities after 96 hours in both controls and at 6.9 mg/L (initial). There were 20, 60, 90 and 100 % mortality observed at 11, 17, 33 and 38 mg/L (initial), respectively, after 96 hours. The LC₅₀ (96 h) is 17 mg/L, the NOEC (96 h) is 6.9 mg/L based on initial concentrations.

Validity criteria:

This study broadly complies with the current validity criteria for acute toxicity testing with the grass shrimp:

- Mortality in the negative control and solvent control was $\leq 10\%$ (observed was 0%).
- Treatments and organisms were indiscriminately assigned.
- All test vessels were identical.

A surfactant or dispersant was not used in the preparation of the stock/test solution.

Conclusions

 $LC_{50}(96 h) = 17 mg/L$

As it was shown in recent studies with comparable static test design that no major decline of test concentrations has to be expected over the test duration the study is considered valid and acceptable to be used for classification even without chemical analysis at study end.

As solely initial concentrations were measured, the study is considered as reliable with restrictions.

Heitmuller, T. (1980b)

A	
Author:	Heitmuller, T.
Title:	Acute toxicity of metolachlor (CGA 24705) to pink shrimp (Penaeus duorarum)
Date:	1980
Doc ID:	Report Number BP-80-4-64
Guidelines:	ASTM 1980
GLP:	No
Validity:	Yes
Previous evaluation:	DAR (2004, 2018)

Executive Summary

The acute toxicity of CGA 24705 to *Penaeus duorarum* was determined under static conditions over 96 hours. The following nominal concentrations were tested alongside a dilution water control: 4, 6.7, 11, 18 and 30.0 mg/L. In addition, a control with the solvent (triethylene glycol) was included. The concentrations in the test media ranged from 97 - 124 % of the nominal at test initiation, however, concentrations in the test media at test end were not determined. The effect concentrations were based on initial concentrations. There were no mortalities after 96 hours in both controls and at 4.4 mg/L (initial). There was 60, 70 and 2 x 100 % mortality observed at 8.3, 12, 20 and 29 mg/L (initial), respectively, after 96 hours.

For the parameter mortality, a dose-response curve was fitted to the data to derive ECx values. The LC_{50} (96 h) is 8.3 mg/L and the NOEC (96 h) is 4.4 mg/L based on initial concentrations.

Validity criteria

This study broadly complies with the current validity criteria for acute toxicity testing with the Penaeid Shrimp. Despite some test conditions not being reported and some deviations, the study is reliable and still valid for use in the risk assessment.

- Mortality in the negative control and solvent control was $\leq 10\%$ (observed was 0%).
- Treatments and organisms were indiscriminately assigned.
- All test vessels were identical.

• A surfactant or dispersant was not used in the preparation of the stock/test solution.

The following deviations were noted:

- 5 shrimp per replicate (20 recommended).
- The maximum concentration of vehicle solvent used was 0.3 mL/L (should not exceed 0.1 mL/L.
- Dissolved oxygen concentration dropped below 60% (36 to 54% ASV at 96 hours).

Test temperature was 21 to 22°C (23 ± 1 °C recommended).

Conclusions

 LC_{50} (96 h) = 8.3 mg a.s./L

Due to the multiple deviations mentioned above the study is not considered as reliable and will not be used for calssification.

Hollister, T.A. and Ward, G.S. (1980a)

Author:	Hollister, T.A. and Ward, G.S.
Title:	Acute toxicity of metolachlor (Dual) to Calanoid copepods (Acartia tonsa)
Date:	1980
Doc ID:	Report Number BP-80-6-97
Guidelines:	US EPA-600/9-78-010; ASTM STP 634
GLP:	No
Validity:	Yes
Previous evaluation:	DAR (2004, 2018)

Executive Summary

The acute toxicity of CGA 24705 to *Acartia tonsa* was determined under static conditions over 96 hours. The following nominal concentrations were tested alongside a dilution water control: 0.6, 1.2, 2.5, 5 and 10.0 mg/L. In addition, a control with the solvent (triethylene glycol) was included. The concentrations in the test media ranged from 62 - 74 % of the nominal at test initiation, however, concentrations in the test media at test end were not determined. The effect concentrations were based on initial concentrations. There was 7, 10, 13, 30, 97 and 100 % mortality observed after 96 hours in the control, 0.4, 0.8, 1.7, 3.7 and 6.2 mg/L group, respectively. The LC50 after 96 hours is 1.5 mg/L, the NOEC after 96 hours is below 0.4 mg/L based on initial measured concentrations.

Conclusions

LC50 (96h) = 1.5 mg/L

It was shown in recent studies with comparable static test design that no major decline of test concentrations has to be expected over the test duration. The study is considered reliable with restrictions due to missing analytical verification of test concentrations at the end of the study and can be used for classification.

Hollister, T.A. and Ward, G.S. (1980b)

Author: Title:	Hollister, T.A. and Ward, G.S. Acute toxicity of metolachlor (Dual) to embryos-larvae of eastern oysters (<i>Crassostrea virginica</i>).
Date:	1980
Doc ID:	Report Number BP-80-6-99
Guidelines:	ASTM Draft No.7
GLP:	No
Validity:	Yes
Previous evaluation:	DAR (2004, 2018)

Executive Summary

The acute toxicity of CGA 24705 to embryos-larvae of *Crassostrea virginica* was determined under static conditions over 96 hours. The following nominal concentrations were tested alongside a dilution water control: 3, 6, 12, 25 and 50 mg/L. In addition, a control with the solvent (triethylene glycol) was included. The concentrations in the test media ranged from 72 - 133 % of the nominal at test initiation, however, concentrations in the test media at test end were not determined. The effect concentrations were based on initial concentrations. Significant reduction of embryo/larvae which developed normally to the straight-hinged veliger larvae stage after 48 hours occurred at concentrations of 26 and 36 mg/L. The 96-h EC₅₀ value for embryo/larvae of eastern oyster exposed to metolachlor in static unaerated sea-water was 18 mg/L. The NOEC was 13 mg/L.

Conclusions

 $EC_{50} (96 h) = 18 mg/L$

It was shown in recent studies with comparable static test design that no major decline of test concentrations has to be expected over the test duration. The study is considered reliable with restrictions due to missing analytical verification of test concentrations at the end of the study and can be used for classification.

Spare, W.C. (1983c)

Author:	Spare, W.C.
Title:	The acute toxicity of CGA 77102 (technical) to Daphnia magna Straus
Date:	1983
Doc ID:	Report Number 83-E-168D
Guidelines:	ASTM 1981; EPA-660/3-75-009
GLP:	No
Validity:	Yes
Previous evaluation:	DAR (2004, 2018)

Executive Summary

The acute toxicity of CGA 77102 to *Daphnia magna* was determined under static conditions over 48 hours. Daphnids were exposed to a range of nominal concentrations of 4, 6.6, 11, 18 and 30 mg/L alongside a dilution water control. In addition, a control with the solvent (acetone) was included. The concentrations in the test media ranged from 79 - 131% of the nominal at test initiation, however, concentrations in the test media at test end were not determined. The effect concentrations were based on initial measured concentrations. There was

5, 20, 35, 90 and 100 % mortality after 48 hours in the control, 6.44, 11.23, 23.66 and 30.44 mg/L (initial) group, respectively. The EC_{50} (48 h) is 11.24 mg/L and the NOEC (48 h) is 3.15 mg/L based on initial concentrations.

Conclusions

 EC_{50} (48 h) = 11.24 mg/L

It was shown in recent studies with comparable static test design that no major decline of test concentrations has to be expected over the test duration. The study is considered valid and acceptable to be used for classification even without chemical analysis at study end.

The study is considered reliable with restrictions.

Spare, W.C. (1983d)

-	
Author:	Spare, W.C.
Title:	The acute toxicity of S-Metolachlor (CGA 77102) (Technical) to Mysidopsis bahia
	(Bay Shrimp)
Date:	1983
Doc ID:	Report Number 83-E-168M
Guidelines:	EPA 850.1035, 72-3
GLP:	No
Validity:	Yes
Previous evaluation:	DAR (2004, 2018)

Executive Summary

The acute toxicity of CGA77102 technical to the bay shrimp *Mysidopsis bahia* was determined under static conditions. Mysid shrimps were exposed to a range of nominal concentrations of CGA77102 mg/L alongside a dilution water control and a solvent control (acetone). Based on mean measured concentrations, the 96-hour LC_{50} was 1.40 mg a.s./L (95% confidence interval 1.16-1.67 mg a.s./L). The 96 hour no observed effect concentration (NOEC) was < 0.51 mg a.s./L.

Study Design and Methods

Experimental dates: 10th to 14th August 1983

A 10 mg/mL stock solution was prepared in acetone. Test solutions were prepared by adding measured volumes of the stock solution to the dilution water and mixing thoroughly. The volume of each replicate per concentration was 200 mL. The controls consisted of dilution water only and solvent controls. Five juvenile mysids (1-5 days old) were randomly added to each test vessel.

Mortalities were recorded after 24 and 48 hours of exposure. Mysids were classed as dead when no movement of appendages was noted upon disturbance of the organism.
Dissolved oxygen and pH were determined initially and at termination and temperature was recorded daily.

The test concentrations were verified by chemical analysis of CGA77102 using a residue analysis method (gas chromatography) at the start of exposure and after 96 hours (50 mL from each of the 4 replicates combined into a single composite sample for residue analysis).

The LC_{50} was calculated for the 24 hour exposure period using the binomial probability method and for the 48, 72 and 96 hour exposure periods using the moving average method. All calculations were based on mean measured concentrations. The NOEC was determined by visual inspection of the data.

Results and Discussion

The mean measured concentrations were 0.51, 0.96, 1.67.3.13 and 4.61 mg a.s./L. Mean measured concentrations were used for the calculation and reporting of results.

Analytical results

Nominal concentrations of AI (mg/L)	Measured concentration at 0 hours (mg ai/L)	Measured concentration at 96 hours (mg ai/L)	Mean measured concentration (mg ai/L)
Dilution water control	< 0.01	< 0.01	< 0.01
Solvent control	< 0.01	< 0.01	< 0.01
0.24	0.468	0.547	0.51
0.40	1.01	0.909	0.96
0.66	1.62	1.72	1.67
1.1	3.08	3.17	3.13
1.8	4.68	4.53	4.61

Effects of CGA77102 on Mysidopsis bahia following exposure for 96-hours in a static test

Mean measured	Cumulative percent mortality (n=20)				
concentration(mg a.s./L)	after 24 hours	after 48 hours	after 72 hours	after 96 hours	
Dilution water control	0	0	0	0	
Solvent control	0	0	0	0	
0.51	5	5	5	5	
0.96	10	10	10	10	
1.67	10	40	70	70	
3.13	10	40	75	95	
4.61	45	75	75	100	
LC50 mg a.s./L	>4.61	2.82	1.81	1.40	
95% Confidence limits	N/A	2.15-4.12	1.36-2.43	1.16-1.67	
NOEC	< 0.51	< 0.51	< 0.51	< 0.51	

N/A not applicable

Conclusions

Based on mean measured concentrations, the 96-hour LC_{50} was 1.40 mg a.s./L (95% confidence interval 1.16-1.67 mg a.s./L). The 96 hour no observed effect concentration (NOEC) was < 0.51 mg a.s./L.

This study complies with the current validity criteria for acute toxicity testing with the saltwater mysid (US EPA OCSPP 850.1035 (2016)). Despite some test conditions not being reported and minor deviations, the study is reliable without restrictions and can be used for classification.

- Mortality in the negative control and solvent control was $\leq 10\%$ (0%).
- Treatments and organisms were indiscriminately assigned.
- All test vessels were identical.
- A surfactant or dispersant was not used in the preparation of the stock/test solution.

 $DO \ge 60\%$; 4.3 mg/L represents 60% saturation at 25 °C in saltwater with a salinity of 25‰ (4.2 to 7.9 mg/L).

Dionne, E.
Metolachlor technical (CGA 24705) - Acute toxicity to eastern oyster (Crassostrea
virginica) under flow-through conditions
1994
Report Number 94-7-5365
U.S. EPA FIFRA Guideline Number 72-3(b)
Yes
Yes
DAR (2004, 2018)

Executive Summary

The acute toxicity of CGA 24705 to embryo/larvae of *Crassostrea virginica* was determined under flow-through conditions over 96 hours. The following nominal concentrations were tested alongside a dilution water control: 0.71, 1.2, 2.0, 3.3 and 5.5 mg/L. In addition, a control with the solvent (acetone) was included. The concentrations in the test media ranged from 85-94 % of the nominal at test initiation and from 78-104 % of the nominal after 96 hours. The effect concentrations were based on mean measured concentrations. Significant reduction of shell deposition of eastern oysters 96 hours occurred at 1.1, 1.7, 2.9 and 4.5 mg/L.

The 96-h EC_{50} value for embryo/larvae of eastern oyster exposed to metolachlor was 1.8 mg/L and the NOEC was 0.71 mg/L based on reduction of shell deposition.

Conclusions

 EC_{50} (96 h) = 1.8 mg/L

The study is considered reliable without restrictions and acceptable to be used for classification.

Authom	Machada M W
Author:	Machado, M. W.
Title:	Metolachlor technical (CGA 24705) - Acute toxicity to mysid shrimp (Mysidopsis
	bahia) under flow-through conditions
Date:	1994
Doc ID:	Report Number 94-7-5402
Guidelines:	U.S. EPA FIFRA Guideline Number 72-3(c)
GLP:	Yes
Validity:	Yes
Previous evaluation:	DAR (2004, 2018)

Machado, M. W. (1994b)

Executive Summary

The acute toxicity of CGA 24705 to *Mysidopsis bahia* was determined under flow-through conditions over 96 hours. The following nominal concentrations were tested alongside a dilution water control: 0.5,1, 2, 4 and 8 mg/L. In addition, a solvent control was included. The concentrations in the test media were measured on day 0 and 4 in all aquaria. The mean range from both analyses was 89 - 120 %. The effect concentrations were

based on mean measured concentrations. There were no mortalities after 96 hours in both control groups and the 0.61, 1.0 and 2.3 mg/L group (mean measured). In the 4.0 and 7.1 mg/L group (mean measured), respectively, 35 and 80 % mortality occurred after 96 hours. The LC50 (96 h) is 4.9 mg/L the NOEC (96 h) is 2.3 mg/L based on mean measured concentrations.

Conclusions

 LC_{50} (96 h) = 4.9 mg/L

The study is considered reliable without restrictions and acceptable to be used for classification.

Heitmuller, T. (1980c)

Author:	Heitmuller, T.
Title:	Acute toxicity of metolachlor (Dual) to fiddler crabs (<i>Uca pugilator</i>)
Date:	1980
Doc ID:	Report Number BP-80-3-61
Guidelines:	ASTM
GLP:	No
Validity:	Yes
Previous evaluation:	DAR (2018)

Executive Summary

The acute toxicity of CGA 24705 to *Uca pugilator* was determined under static conditions over 96 hours. The study was conducted as a limit test with a limit test concentration of 50 mg/L nominal alongside a dilution water control. In addition, a control with the solvent (triethylene glycol) was included. The measured concentration in the test medium was 94 % of the nominal at test initiation; however, the concentration at test end was not determined. The effect concentrations were based on initial concentrations. There were no mortalities after 96 hours at 47 mg/L (initial). The LC₅₀ (96h) is above 47 mg/L based on initial measured concentrations.

Validity criteria

This study does not comply with current recognised methods for acute toxicity testing with marine invertebrates. Solely initial measured concentrations are available. The presence of sand in the test system does have unknown effects on the concentration of metolachlor during the course of the study.

Conclusions

In an acute toxicity test in which fiddler crabs (*Uca pugilator*) were exposed to metolachlor for 96 h, the NOEC was determined to be 47 ppm based on the initial measured concentration.

The study is considered as not reliable and is not further considered for classification.

Collins, M.K. (1995b)

Author:	Collins, M.K.
Title:	Acute toxicity to daphnids (Daphnia magna) under static conditions
Date:	1995

Doc ID:	Report Number 95-9-6082
Guidelines:	U.S. EPA FIFRA Guideline Number 72-2(a)
GLP:	Yes
Validity:	Yes
Previous evaluation:	DAR (2004, 2018)

Executive Summary

The acute toxicity of CGA 77102 to *Daphnia magna* was determined under static conditions over 48 hours. Daphnids were exposed to a range of nominal concentrations of 3.8, 6.5, 11, 18, 30 and 50 mg/L alongside a dilution water control. In addition, a solvent control was included. The concentrations in the test media were measured at the beginning and the end of the exposure time. The mean range from both analyses was 72-83 %. The effect concentrations were based on mean measured concentrations. There was 10 % mortality in the control and 5 % mortality in the solvent control after 48 hours. There were no mortalities in the 2.9, 4.8, 7.9 and 15 mg/L group (mean measured). The EC₅₀ (48 h) is 26 mg/L and the NOEC (48 h) is 15 mg/L based on mean measured concentrations.

It should be noted that the solvent concentration exceeded the allowed limit of 0.1 mL/L five times (0.5 mL/L acetone).

Conclusions

 LC_{50} (48 h) = 26 mg/L

The study is considered reliable with restrictions due to exceedance of the allowed solvent concentration. The study can be used for classification.

Palmer S.J., Kendall T.Z. and Krueger H.O. (2004b)

Author: Title:	Palmer, S.J. et al. A 96-hour shell deposition test with the Eastern Oyster (Crassostrea virginica).
Date:	2004
Doc ID:	Report Number 528A-127
Guidelines:	U.S. EPA 1996. Series 850 – Ecological Effects Test Guidelines (draft), OPPTS Number 850.1025: Oyster Acute Toxicity Test (Shell Deposition).
GLP:	Yes
Validity:	Yes
Previous evaluation:	DAR (2018)

Executive Summary

The acute toxicity of CGA77102 to the eastern oyster (*Crassostrea virginica*) was determined under flowthrough conditions. Oysters were exposed to a range of nominal concentrations of 0.31, 0.63, 1.3, 2.5 and 5.0 mg/L alongside a filtered seawater control and a solvent control. Mean measured concentrations calculated from the average of all samples ranged from 102 to 112 % of nominal concentrations and were used for the reporting of the results. Oysters in the controls appeared normal throughout the test. Based on mean measured concentrations the 96-hour EC₅₀ value is 4.0 mg CGA77102 /L with 95 % confidence intervals of 3.5 - 4.1 CGA77102/L.

Conclusions

 $EC_{50} (96 h) = 4 mg/L$

The study is considered reliable without restrictions and acceptable to be used for classification.

11.5.3 Acute (short-term) toxicity to algae or other aquatic plants

Hoberg, J. R. (1995a)

Author:	Hoberg, J.R.
Title:	Metolachlor technical (CGA 24705) - 5-day toxicity to the freshwater diatom,
	Navicula pelliculosa, using acetone as a carrier solvent
Date:	1995
Doc ID:	Report Number 94-12-5627
Guidelines:	FIFRA Guideline number 122-2 and 123-2
GLP:	Yes
Validity:	No
Previous evaluation:	DAR (2004, 2018)

Executive Summary

Unicellular diatom inoculum (*Navicula pelliculosa*, strain # 667, class Bacillariophyceae), three days old since previous transfer from Springborn stock culture, was exposed to metolachlor technical (purity 97.3 %), in a static shaken test system for a period of 5 days. Six concentrations ranging from nominal 3.6 - 1500 μ g a.s./L were employed in the test with three replicates per treatment level and the controls. At intervals of 24-hours cell counts were made on one sample from each replicate culture. Mean measured concentrations were used for reporting the results. Endpoints are presented in the table below.

Table 51:	Endpoints	relating to	vield and	average	specific	growth	rate
1 abic 51.	Lindpoints	Terating to	y y iciu and	average	specific	growin	raic

Parameter	After 96 h	
	Growth rate	Yield
EC50 [µg a.s./L]	4982	240
95 % CL	(3313-8909)	(157-384)
EC20 [µg a.s./L]	393	33
95 % CL	(303-493)	(14-58)
EC10 [µg a.s./L]	104	12
95 % CL	(64-148)	(3-25)

CL: Confidence Limits

After 4-day exposure, all validity criteria were met. Therefore, only endpoints derived after 4-day exposure are acceptable.

Validity criteria

The following validity criteria were not met:

- Control biomass did not increase by a factor of at least 16 within 72 hours (factor of 4 observed).
- The mean coefficient of variation for section-by-section specific growth rate exceeded 35%.

The coefficient of variation of average specific growth rates during the whole test period in replicate control cultures must not exceed 7%.

Conclusions

 E_rC_{50} (96 h) = 4.982 mg/L

 $E_r C_{10} (96 h) = 0.104 mg/L$

All endpoints are based on mean measured concentrations. The 4-day E_bC_{50} value based on cell density was calculated to be 170 µg a.s./L. The 4-day E_rC_{50} and E_rC_{10} based on average specific growth rate were calculated to be 4982 and 234 µg a.s./L, respectively.

Due to several validity criteria being not met, the study is regarded as not reliable and should not be considered for classification.

Hoberg, J. R. (1994)

Author:	Hoberg, J.R.
Title:	Metolachlor Technical - 5-Day Toxicity to the Marine Diatom, Skeletonema costatum
Date:	1994
Doc ID:	Report Number 94-7-5382
Guidelines:	FIFRA Guideline number 122-2 and 123-2
GLP:	Yes
Validity:	Yes, after 3-day exposure
Previous evaluation:	DAR (2018)

Executive Summary

The toxicity of CGA24705 to the marine diatom *Skeletonema costatum* was determined. Algae were exposed to nominal concentrations of 0.0015, 0.0049, 0.016, 0.054, 0.18, 0.60 and 2.0 mg CGA24705/L (mean measured: 0.0017, 0.0048, 0.014, 0.043, 0.15, 0.56 and 1.7 mg CGA24705/L) alongside a culture medium control. Based on mean measured concentrations, the 72-hour EC_{50} based on growth rate was 0.423 mg CGA 247105/L.

Study Design and Methods

Experimental dates: 8th to 13th June 1994.

A primary stock solution with a nominal concentration of 20 mg CGA24705/mL was prepared by dissolving 0.0105 g of CGA24705 in 500 mL of sterile AES medium, stirring overnight with a magnetic stir bar and stirplate. Appropriate volumes of the stock solution were diluted to give the test concentration series. The control consisted of culture medium only.

An aliquot of test solution was placed into each test vessel and the test was started by inoculation of 10,000 algal cells per mL of test medium. Test solutions were constantly shaken and were held in a temperature-controlled chamber under continuous illumination.

Small volumes of all test concentrations and controls were taken from all test flasks after 24, 48, 72, 96 and 120 hours of exposure. The algal cell densities in these samples were determined using a haemocytometer and a compound microscope. Observations of the health of the algal cells were made at each 24-hour interval.

The pH was measured at the start and at the end of the test. The water temperature was measured continuously in a flask incubated under the same conditions as the test flasks.

The test concentrations were verified by chemical analysis of metolachlor at 0 and 120 hours, using GC with nitrogen phosphorus detection.

The algal cell densities were measured at 24, 48, 72, 96 and 120 hours and cell densities calculated. The 120hour EC_{50} and the 95% confidence intervals were determined by linear regression. For determination of the NOEC values, William's test was used to identify significant differences in the treatments compared to the

control data. The data were first checked for normality using Shapiro-Wilks' Test and homogeneity of variance using Bartlett's Test.

Results and Discussion

At the start of the test, the analytically determined concentrations of CGA24705 were in the range 87.5 to 109% of the nominal values and at the end of the test were in the range 70.2 to 129% (see table below). The limit of quantification in this study was $0.388 \ \mu g \ CGA24705/L$. Mean measured concentrations were used for the calculation and reporting of results.

Cell density

The cell densities were calculated for each replicate at 24, 48, 72, 96 and 120 hours and the means are shown below, alongside the estimated EC_{50} values.

Mean values at each concentration of CGA24705 for the cell density at 24, 48, 72, 96 and 120 hours for *Skeletonema costatum*

Mean measured		Inhibition at				
concentrations (mg CGA24705/L)	24 h	48 h	72 h	96 h	120 h	120 hours (%)
Control	3 (1)	9 (2)	24 (7)	31 (1)	99 (7)	n.a.
0.0017	3 (1)	7 (2)	15 (7)	29 (2)	101 (6)	-2.0
0.0048	3 (1)	7 (3)	19 (11)	23 (12)	79 (3)*	20
0.014	3 (<1)	6 (1)	13 (2)	27 (3)	73 (7)*	26
0.043	1 (<1)	5 (2)	11 (5)	30 (4)	44(4)*	55
0.15	2 (1)	4 (2)	13 (9)	31 (6)	43 (6)*	56
0.56	1 (<1)	2 (1)	7(1)	9 (1)	17 (7)*	83
1.7	1 (<1)	1 (<1)	2 (1)	4 (1)	8 (1)*	92
NOEC		72 h: <	0.0017		0.0017	-

* significantly reduced as compared to the control, based on Williams test n.a. = not applicable

No cell abnormalities were observed in the controls. At test termination cell fragments and bloated cells were observed in treatment levels ≥ 0.15 , mg CGA24705/L.

Effect concentrations relating to yield and average specific growth rate were calculated using the drc package in R (Weibull-model). Calculations are solely conducted for 72 h, as the test is only regarded valid after this period of time. Endpoints based on mean measured concentrations are presented in **Error! Reference source not found.**:

Endpoints relating to yield and average specific growth rate

Parameter	After 72 h		
	Growth rate	Yield	
EC50 [µg a.s./L]	423	39	
95% CL	(145-701)	(-17 - 94)	
EC20 [µg a.s./L]	36	n.d.	
95% CL	(-18-89)		
EC10 [µg a.s./L]	7	n.d.	
95% CL	(-9 - 23)		

n.d.: not determined due to inappropriate data

CL: Confidence Limits

Validity criteria

All validity criteria were met after 72 h

Conclusions

According to validity criteria, endpoints derived after 3-day exposure are acceptable. All endpoints are based on nominal concentrations. The 3-day EyC50 value was calculated to be 39 μ g a.s./L. The 3-day ErC50 value was calculated to be 423 μ g a.s./L. The study results after 72 h are reliable without restrictions.

Hoberg, J. R. (1995b)

Author:	Hoberg, J.R.
Title:	CGA 77102 - 5-Day toxicity to the marine diatom <i>Skeletonema costatum</i>
Date:	1995
Doc ID:	Report Number 95-8-6062
Guidelines:	OECD Guideline 201; US EPA FIFRA Guideline No. 122-2 and 123-2
GLP:	Yes
Validity:	No (minor deviation)
Previous evaluation:	DAR (2004, 2018)

Executive Summary

The marine alga *Skeletonema costatum* (strain CCMP 1332, class Bacillariophyceae) was exposed to S-metolachlor (CGA 77102) in a static test system over 5 days. The following test concentrations plus a control and a solvent control were employed in the test with three replicates each: 2.4, 8.1, 27, 90, 300 and 1000 μ g CGA77102 /L (nominal). The cell density in each flask was determined at the beginning of the test and after each 24-hour interval using a haemocytometer.

Effect concentrations relating to yield and average specific growth rate were calculated using ToxRat Professional version 2.10.05. Endpoints based on mean measured concentrations are presented in the Table below:

Table 52: Endpoints relating to yield and average specific growth rate

Parameter	After 72 h	
	Growth rate	Yield
EC50 [µg a.s./L]	340	53
95 % CL	(200-710)	(35-64)
EC20 [µg a.s./L]	40	34
95 % CL	(11-76)	(15-45)
EC10 [µg a.s./L]	13	27
95 % CL	(2-32)	(10-38)

CL: Confidence Limits

There was a minor deviation from the validity criteria of the current OECD guideline 201 after 72 h exposure (37.7 % section-by-section growth rate instead of 35 %).

Conclusions

 E_rC_{50} (72 h) = 0.340 mg/L E_rC_{10} (72 h) = 0.013 mg/L

The EyC50 (72 h) was calculated to be 53 μ g a.s./L. The E_rC₅₀ and E_rC₁₀ after 72 h were calculated to be 340 and 13 μ g a.s./L, respectively. Considering the overall quality of the study, this deviation is considered not to influence the study results. The study is considered reliable with restriction and acceptable to be used for classification.

Memmert, U. (2006)

Memmert, U.
S-Metolachlor (CGA77102): Toxicity to Pseudokirchneriella subcapitata (formerly
Selenastrum capricornutum) in a 96-hour algal growth inhibition test, suppl. with
testing for algicidal/algistatic effects
2006
Report Number 859258
OECD Guideline 201; US EPA OPPTS 850.5400
Yes
Yes, only after 3-day exposure
DAR (2018)

Executive Summary

The toxicity and of CGA77102 (S-metolachlor) to *Pseudokirchneriella subcapitata* was determined under static conditions. Also, recovery of affected cultures was observed in order to determine whether the effects observed were algicidal or algistatic. Algae were exposed to a range of nominal concentrations of 2, 4, 8, 16, 32, 64 and 128 µg a.s./L alongside a dilution water control. As the mean coefficient of variation for section-by-section specific growth rates in the control was 46.3 % after 96 h exposure, the validity criteria were only fulfilled after 72 h and effect concentrations were based on 72 h exposure. At the start of the test the concentration of S-metolachlor were in the range 85 to 89 % of the nominal values. Over the 96 h test period the concentrations were used for the calculation and reporting of results. All statistical determinations were calculated using ToxRat Professional, ToxRat Solutions GmbH, Version 2.10.05.

There were no abnormalities observed in any of the treatment levels or controls after 96 hours of exposure. The effect concentrations derived for yield and average specific growth rate based on mean measured concentrations are presented in the table below.

	after 72 h		after 96 h			
Parameter	AUC	Growth rate	Yield	AUC	Growth rate	Yield
EC50 [µg/L]	21	56	17	19	61	19
95% CI	18-26	50-63	16-19	18-22	53-70	18-21
EC ₂₀ [μg/L] 95% CI	12	23	13	13	25	14
	9.9-14	19-27	12-14	12-14	20-30	14-15
EC ₁₀ [μg/L] 95% CI	9.3	14	11	11	16	12
	6.6-11	11-17	9.3-12	9.2-12	12-20	11-13
NOEC [µg/L]	6.6	12	6.6	6.6	12	6.6
LOEC [µg/L]	12	17	12	12	17	12

Table 53: Endpoints relating to biomass and average specific growth rate

95% CI: 95% confidence interval

Based on mean measured concentrations of CGA77102 (6.6, 12, 17, 53 and 126 μ g a.s./L), the E_rC₅₀ and E_yC₅₀ (72 h) were determined to be 56 and 17 μ g a.s./L, respectively. The NOEC (72 h) was 12 μ g a.s./L and 6.6 μ g a.s./L for growth rate and biomass, respectively.

Conclusions

 $E_r C_{50} (72 h) = 0.056 mg/L$ NOEC (growth, 72 h) = 0.012 mg/L

The study is only valid after 3 day-exposure. Based on mean measured concentrations the E_rC_{50} and E_yC_{50} (72 h) of CGA77102 for *Pseudokirchneriella subcapitata* were determined to be 56 and 17 µg a.s./L, respectively. The NOEC (72 h) was 12 µg a.s./L and 6.6 µg a.s./L for growth rate and biomass, respectively. The study results after 3 days are reliable without restriction and considered acceptable for classification.

Hoberg, J. R. (1995c)

Author:	Hoberg, J.R.
Title:	Metolachlor technical (CGA 24705) - 5-day toxicity to the freshwater green alga, Anabaena
	flos-aquae
Date:	1995
Doc ID:Report	Number 94-7-5383
Guidelines:	U.S. EPA FIFRA Guideline No. 122-2 and 123-2
GLP:	Yes

Validity: No

Executive Summary

The toxicity of CGA24705 to the freshwater blue-green alga Anabaena flos-aquae was determined. Algae were exposed to nominal concentrations of 0.024, 0.081, 0.27, 0.90, 3.0 and 10.0 mg CGA24705/L (mean

measured concentrations of 0.019, 0.063, 0.19, 0.72, 2.1 and 6.8 mg CGA24705/L), alongside a culture medium control.

Based on growth rate and mean measured concentrations, the 120-hour EC_{50} was 14.8 mg CGA24705/L. Due to several validity criteria being not met, the study should not be considered for classification purposes.

Study Design and Methods

Experimental dates: 9th to 14th June 1994

A stock solution with a nominal concentration of 100 mg CGA24705/L was prepared by dissolving 0.0512 g of the test item in 500 mL of test medium. The stock solution was stirred overnight with a magnetic stir bar and stirplate. Appropriate volumes of the stock solution were diluted with test medium to give the test concentration series. The control consisted of culture medium only.

An aliquot of test solution was placed into each test vessel and the test was started by inoculation of 10,000 algal cells per mL of test medium. Test solutions were constantly shaken at 100 rpm and were held in an environmental chamber under continuous illumination.

Small volumes of all test concentrations and controls were taken from each replicate solution after 24, 48, 72, 96 and 120 hours of exposure. The algal cell densities in these samples were determined using a haemocytometer and a compound microscope. Observations of the health of the algal cells were examined microscopically in these samples.

The pH was measured at the start and at the end of the test. The water temperature was measured continuously in a flask incubated under the same conditions as the test flasks.

The test concentrations were verified by chemical analysis of CGA24705 at 0 and 120 hours, using gas chromatography with nitrogen phosphorus detection. For sampling at the end of the test, the test medium of the treatment replicates was pooled. A sample of the stock solution was also analysed.

The algal cell densities were measured at 24, 48, 72, 96 and 120 hours Effect concentrations relating to yield and average specific growth rate were calculated using ToxRat Professional version 2.10. Probit analysis with linear maximum likelihood regression was used to determine the concentration response function. Chi² was used as a goodness of fit measure. For determination of the NOEC value, a William's test was used to identify significant differences in the mean cell density of test item treatments compared to the pooled control.

Results and Discussion

The mean measured concentrations were in the range 68 to 91 % of the nominal values (see table below). The limit of quantitation in this study was based on that obtained for CGA24705 in Hoagland's medium, in a separate method validation study conducted prior to the initiation of this test, which was 0.407 μ g CGA24705/L. Mean measured concentrations were used for the calculation and reporting of results.

At 120 hours, cell fragments were observed among algae exposed to concentrations > 0.72 mg CGA24705/L and bloated cells were observed at 6.8 mg CGA24705/L only.

Cell density at 24, 48, 72, 96 and 120 hours was determined for each replicate culture and the means are shown below, alongside the estimated EC values.

Mean values at each concentration of CGA24705 for cell density at 24, 48, 72, 96 and 120 hours for *Anabaena flos-aquae*

Mean measured concentrations	Mean cell density (SD) (x 10 ⁴ cells/mL)					Percentage inhibition (%)
(mg CGA24705/L)	0 – 24 hrs	0 – 48 hrs	0 – 72 hrs	0 – 96 hrs	0 – 120 hrs	0 – 120 hrs
Control	1 (1)	3 (2)	4 (2)	32 (3)	87 (5)	n.a.

NOEC	0.063						
6.8	< 1 (< 1) ^b	< 1 (< 1) ^b	< 1 (< 1) ^b	7 (2)*	16(3) ^{ab} *	82	
2.1	1 (1) ^b	1 (< 1) ^b	2 (1) ^b	9 (2) ^b	37 (3) ^b *	56	
0.72	1(1)	1 (1) ^b	3 (1) ^b	19 (2) ^b	49 (5) ^b *	44	
0.19	2 (< 1)	2 (< 1)	2 (2)	25 (2)	73 (8)*	16	
0.063	1 (< 1)	2 (< 1)	2(1)	34 (4)	83 (6)	5.3	
0.019	2(1)	3 (2)	3 (1)	36 (7)	86 (5)	1.2	

NOEC

Mean and standard deviation were calculated from original raw data, not from the rounded values presented in this table * Statistically significant difference compared to the control (according to Williams' Test, $p \le 0.05$)

^a Bloated cells observed

^b Cell fragments were observed

" Cell fragments were of

n.a. Not applicable

The effect concentrations (based on mean measured concentrations) are presented in the table below:

Endpoints relating to yield and average specific growth rate

Parameter	After 120 h		
	Growth rate	Yield	
EC50 [µg a.s./L]	14807	1148	
95% CL	(11714-19984)	(943-1404)	
EC20 [µg a.s./L]	1816	222	
95% CL	(1531-772)	(155-294)	
EC10 [µg a.s./L]	606	94	
95% CL	(445-772)	(57-137)	

n.d.: Not Determined

CL: Confidence Limits

Validity criteria

Compliance with OECD 201 Algal test guideline criteria

	Call dansita	Coefficient of variation			
Exposure	(multiplication factor ≥ 16)	Section-by-section growth rate (≤ 35 %)	Average specific growth rate $(\leq 10 \%)$		
72 h	3.67	115.3	46.5		
120 h	87	97.9	1.3		

Conclusions

The 5-day E_bC_{50} value based on cell density was calculated to be 1100 µg a.s./L. The 5-day ErC50 based on average specific growth rate was calculated to be 14807 µg a.s./L. The NOEC for cell density was found to be 63 µg a.s./L. However, the study is not valid according to the validity criteria of the current OECD guideline 201.

The following validity criteria were not met:

- Control biomass did not increase by a factor of at least 16 within 72 hours (factor of 4 observed).
- The mean coefficient of variation for section-by-section specific growth rate exceeded 35%.
- The coefficient of variation of average specific growth rates during the whole test period in replicate control cultures must not exceed 7%.

Due to several validity criteria being not met, the study should not be considered for classification. The study is not reliable

Horberg J. R. (1995d)

Author: Title:	Hoberg, J.R. Metolachlor Technical - 5-Day Toxicity to the Freshwater Green Alga,
	Selenastrum capricornutum, using Acetone as a Carrier
Date:	1995
Doc ID:Report	Number 94-12-5621
Guidelines:	FIFRA Guideline number 122-2 and 123-2
GLP:	Yes
Validity:	No

Executive Summary

The toxicity of CGA24705 to the green alga *Pseudokirchneriella subcapitata* was determined. Algae were exposed to nominal concentrations of 0.00080, 0.0016, 0.0031, 0.0063, 0.013 and 0.025 mg CGA24705/L (mean measured: 0.00070, 0.0014, 0.0025, 0.0059, 0.014 and 0.023 mg CGA24705/L) alongside culture medium and solvent controls.

The 3-day EyC50 was calculated to be 6.9 μ g a.s./L. The 4-day ErC50 value was calculated to be 27.8 μ g a.s./L. The NOEC for cell density was found to be 0.8 μ g a.s./L. However, the study is not valid according to the validity criteria of the current OECD guideline 201.

Conclusions

The 3-day EyC50 was calculated to be $6.9 \ \mu g$ a.s./L. The 4-day ErC50 value was calculated to be $27.8 \ \mu g$ a.s./L. The NOEC for cell density was found to be $0.8 \ \mu g$ a.s./L. However, the study is not valid according to the validity criteria of the current OECD guideline 201.

This study does not comply with the current validity criteria toxicity testing with algae in that the mean coefficient of variation for section-by-section specific growth rate of 65% at 72 h exceeded clearly the guideline maximum (35%). The study is not reliable and should not be used for classification.

Hoberg J.R. (1995e)

Author:Hoberg, J.R.Title:CGA 77102 - 5-day toxicity to the freshwater green alga Selenastrum capricornutumDate:1995Doc ID:Report Number 95-8-6031Guidelines:FIFRA Guideline number 122-2 and 123-2GLP:Yes

Validity: No

Executive Summary

The toxicity of CGA77102 to the green alga *Pseudokirchneriella subcapitata* was determined. Algae were exposed to nominal concentrations of 0.00081, 0.0016, 0.0031, 0.0063, 0.013, 0.025 and 0.050 mg

CGA77102/L (mean measured concentrations of 0.00091, 0.0015, 0.0030, 0.0055, 0.011, 0.022 and 0.047 mg CGA77102/L), alongside a culture medium control and a solvent control.

The 3-day EyC50 value based on cell density was calculated to be 5.6 μ g a.s./L. The 3-day ErC50 value based on average specific growth rate was calculated to be 24 μ g a.s./L. The NOEC for cell density was found to be 3.0 μ g a.s./L. However, the study is not valid according to the validity criteria of the current OECD guideline 201.

Conclusions

The 3-day EyC50 value based on cell density was calculated to be 5.6 μ g a.s./L. The 3-day ErC50 value based on average specific growth rate was calculated to be 24 μ g a.s./L. The NOEC for cell density was found to be 3.0 μ g a.s./L. However, the study is not valid according to the validity criteria of the current OECD guideline 201.

This study does not comply with the current validity criteria toxicity testing with algae in that the mean coefficient of variation for section-by-section specific growth rate of 52% at 72 h exceeded the guideline maximum (35%). Therefore, the study is not reliable and cannot be used for classification.

Rufli, H. (1985)

Author:Rufli, H.Title:Acute toxicity of CGA 24705 technical to algaeDate:1985Doc ID:Report Number 84 01 99Guidelines:OECD Guideline 201GLP:NoValidity:No

Executive Summary

The toxicity of CGA24705 to the alga *Desmodesmus subspicatus* was determined. Algae were exposed to nominal concentrations of 0.1, 0.3, 0.9, 2.7 and 8.1 mg CGA24705/L alongside a water control. Based on nominal concentrations, the estimated 72-hour E_rC_{50} of CGA24705 to *Desmodesmus subspicatus subspicatus* was 0.247 mg a.s./L. The study is not valid and should not be used for classification.

Validity criteria

The section-by-section growth rate after 72 h was 56.8% instead of the required < 35%. All other validity criteria were met.

Conclusions

Based on nominal concentrations, the estimated 72-hour E_rC_{50} of CGA24705 to *Desmodesmus subspicatus* subspicatus was 0.247 mg a.s./L.

This study does not comply with the current validity criteria toxicity testing with algae in that the mean coefficient of variation for section-by-section specific growth rate of 57% at 72 h exceeded the guideline maximum (35%). Therefore, the study should not be used for classification.

Hollister, T.A and Ward, G.S. (1980)

Author:Hollister, T.A and Ward, G.S.Title:Effects of metolachlor (Dual) on two freshwater and five marine algaeDate:1980Doc ID:Report Number BP-80-4-73Guidelines:US EPA 1974/1978GLP:NoValidity:Validity according to OECD 201 could not be checked

Executive Summary

The toxicity of metolachlor to seven algal species (two freshwater and five marine) was tested. Algae were exposed to the test concentrations and a dilution water control over 5 days and a minimum algistatic concentration (MAC-5) was estimated. After a 9 day recovery period, the growth of cultures previously exposed to 250 and 500 ppb was significantly less than growth of the control. Due to missing information validity criteria could not be examined.

Results

The endpoints are listed below:

Algal species	E _y C ₅₀ (mg/L)		ErC50 (mg/L)	
	72 hr	120 hr	72 hr	120 hr
Freshwater				
Microcystis aeruginosa	-	8.35	13.3	11.4
Selenastrum capricornutum*	-	0.065	0.071	-
Marine				
Chlorella pyrenoidosa	4.72	-	6.09	4.47
Dunaliella tertiolecta	-	3.62	-	6.11
Skeletonema costatum	0.500	0.364	0.970	0.714
Isochrysis galbana	0.220	0.241	0.436	0.591
Porphyridium cruentum	-	3.15	-	4.29

Conclusion

Cell numbers were not reported for each day for any of the species, hence it is not possible to calculate the coefficient of variation for section-by-section specific growth rate. Furthermore, only stock solutions were analysed and there is no verification of test concentrations. The study is not regarded valid and will not be used for classification. Due to missing information the reliability of the study is not assignable.

Desjardins, D., Kendall, T.Z., Krueger, H.O. (2003)

Author:	Desjardins, D.; Kendall, T.Z.; Krueger, H.O.
Title:	CGA77102: A 96-hour toxicity test with the freshwater diatom (Navicula pelliculosa)
Date:	2003
Doc ID:	Report Number 528A-129
Guidelines:	OECD Guideline 201; US EPA OPPTS 850.5400
GLP:	Yes
Validity:	Yes, only after 3-day exposure
Previous evaluation:	DAR (2018)

Executive Summary

The toxicity of CGA77102 to the freshwater diatom *Navicula pelliculosa* was determined. Algae were exposed to nominal concentrations of 2.5, 5.0, 10, 20 and 40 mg a.s./L (2.3, 4.0, 9.7, 19 and 33 mg a.s./L, mean measured) alongside a culture medium control and a solvent control. Mean measured (2.3, 4.0, 9.7, 19 and 33 mg a.s./L) concentrations were used for the calculation and reporting of results. As the validity criteria set in OECD 201 were only met after 72 h exposure, as the mean coefficient of variation for section-by-section specific growth rates in the control was 63 % after 96 h exposure (required < 35 %), effect concentrations are related to 72 h exposure. Based on mean measured concentrations, the 72-hour E_rC_{50} for CGA77102 for *Navicula pelliculosa* was 31 mg a.s./L and the E_yC_{50} was 16 mg a.s./L. The 72- hour NOEC for growth rate and yield was 9.7 mg a.s./L.

Conclusions

 $E_rC_{50}(72 h) = 31 mg/L$ NOEC (growth, 72 h) = 9.7 mg/L

The study is only valid after 72 h of exposure. Based on mean measured concentrations, the 72-hour E_rC_{50} for *Navicula pelliculosa* was 31 mg a.s./L and the E_yC_{50} was 16 mg a.s./L. The 72-hour NOEC for growth rate and yield was 9.7 mg a.s./L. The study results after 3 d are reliable without restriction and considered acceptable for classification.

Desjardins, D., Kendall, T.Z., Krueger, H.O. (2004)

Author:	Desjardins, D., Kendall, T.Z., Krueger, H.O.
Title:	CGA77102: A 96-hour toxicity test with the freshwater alga (Anabaena flos-aquae)
Date:	2004
Doc ID:Report	Number 528A-128A
Guidelines:	OECD Guideline 201; US EPA OPPTS 850.5400
GLP:	Yes
Validity:	No

Executive Summary

The toxicity of CGA77102 to the freshwater alga *Anabaena flos-aquae* was determined. Algae were exposed to nominal concentrations of 2.5, 5.0, 10, 20 and 40 mg a.s./L (2.4, 4.8, 9.6, 19 and 30 mg a.s./L, mean measured) alongside culture medium and solvent controls. Based on mean measured concentrations, the 96-hour ErC50 for CGA77102 for *Anabaena flos-aquae* was > 30 mg a.s./L and the EbC50 was 24 mg a.s./L. The 96-hour NOEC for growth rate and biomass was 9.6 mg a.s./L. However, the study is not valid according to the validity criteria of OECD guideline 201 and should not be used for classification.

Results and Discussion

At the start of the test, the analytically determined concentrations of CGA77102 were in the range 76.6 to 98.9% of the nominal values and at the end of the test were in the range 74.9 to 95.7%. Mean measured concentrations were used for the calculation and reporting of results.

The validity criteria set in OECD guideline 201 were not met, as the mean coefficient of variation for sectionby-section specific growth rates in the control was 43 % after 96 h exposure and 53 % after 72 h (required < 35 %). Therefore, the study is not valid.

There were no abnormalities observed in any of the treatment levels or controls after 96 hours of exposure.

Conclusions

Based on mean measured concentrations, the 96-hour ErC50 of CGA77102 for *Anabaena flos-aquae* was > 30 mg a.s./L and the EbC50 was 24 mg a.s./L. The 96- hour NOEC for growth rate and biomass was 9.6 mg a.s./L. Due to not meeting the validity criteria the study is not reliable and should not be used for classification.

Teixeira, **D.** (2006a)

Author:	Teixeira, D.
Title:	The Toxicity of S-Metolachlor to Elodea canadensis during a 7-day Exposure
	Followed by a 14-day Recovery Period.
Date:	2006
Doc ID:	Report Number 1781.6638
Guidelines:	US EPA Ecological Effects Test Guidelines, OPPTS 850.4450; EPA 712-C-96-157
GLP:	Yes
Validity:	Not applicable
Previous evaluation:	DAR (2018)

Executive Summary

The toxicity of CGA 77102 to the aquatic plant *Elodea canadensis* was determined in a 7-day semi-static test, with medium renewal on day 3. The *Elodea* were exposed to nominal concentrations of 0.0081, 0.027, 0.090, 0.30 and 1.0 mg CGA 77102/L (0.0089, 0.029, 0.11, 0.36 and 1.1 mg CGA 77102/L, mean measured), alongside a solvent control. Recovery, whereby *Elodea* was transferred to culture medium without the test material present after 7 days of exposure, was assessed at 21 days from test commencement, for all treatment levels. For the purpose of classification, just the 7-day exposure phase is of interest.

For shoot length, the 7-day E_yC_{50} for CGA 77102 to *E. canadensis* was 0.049 mg CGA 77102/L and 0.1 mg CGA 77102/L for plant biomass (wet weight), based on mean measured concentrations. The 7-day E_rC_{50} for CGA 77102 was 0.062 mg CGA 77102/L for shoot length and 0.12 mg CGA 77102/L for plant biomass (wet

weight), based on mean measured concentrations. The NOEC based on growth rate and the E_rC_{10} after 7 days were 0.029 and 0.0049, respectively.

Study Design and Methods

Experimental dates: 7th to 28th June 2005

A stock solution with a nominal concentration of 30 mg CGA 77102/L was prepared by dissolving 1.5164 g of the test item in 50 mL acetone. Secondary stock solutions were prepared from dilutions of the primary stock solution and refrigerated (4 °C) when not in use. Individual exposure solutions were prepared at test initiation (day 0) and on day 3. Following application of the stock solution to each aquarium, the test solutions were mixed gently for one minute to avoid disturbing or uprooting the plants. The control consisted of culture medium containing acetone (1 mL/30L dilution water).

Twenty-four 37.5 L glass aquaria were placed on a bench in a greenhouse and filled with 30 L (23 cm depth) of water. Twelve pots each containing one plant were placed in each replicate aquarium. The sides of the aquaria were covered with black plastic to limit light penetration to the water surface.

Following 7 days of exposure, all plants were carefully rinsed to remove epiphytic algal growth. Maximum length and wet weight were then determined for each plant before being transferred to clean dilution water for the recovery phase. Following 14 days of recovery in clean water, maximum length and wet weight of plants were determined for each remaining plant. An inspection of their appearance (e,g., necrosis, chlorosis, damage) and mortality was made throughout the testing period.

Temperature was continually monitored in the solvent control and replicate 2 with a minimum-maximum thermometer. Whenever natural light intensity in the greenhouse fell below 8600 lux, sodium vapour lights automatically turned on until natural light intensity increased or until the end of the light period. The pH, measured in composite samples from all replicates of each test solution concentration and the solvent control was measured at the start and end of each medium renewal period. The test concentrations were verified by chemical analysis of CGA 77102 on freshly prepared and aged test media of all test concentrations and from the solvent control on days 0, 3 and 7 of exposure and in the 1.0 mg/L nominal concentration on Day 1 of recovery using HPLC/UV.

Data for shoot length and wet weight biomass were used to calculate growth rates for the solvent control and each exposure concentration. The 7-days EC10, EC20 and EC50 values for the inhibition of yield and average growth rate and their 95% confidence intervals for the exposure period were calculated by Probit Analysis using linear maximum likelihood regression. All statistical determinations were calculated using ToxRat Professional (version 2.10.05). For the NOEC and the LOEC, a Dunnett's Test (one sided, $\alpha = 0.05$) was used to determine values significantly different from the solvent control.

Results and Discussion

Mean measured concentrations ranged from 110-120% of nominal concentrations. Day 1 recovery samples from the 1.0 mg CGA 77102/L (nominal) treatment level ranged from 0.053-0.067 mg CGA 77102/L. Mean measured concentrations were used for the calculation and reporting of results. All test media were clear throughout the test period. There are no validity criteria set in OPPTS 850.4450. However, the validity criteria of the current OECD guideline 239 for doubling of the mean total shoot length and mean total shoot fresh weight in control plants during the exposure phase was met. No mortalities were observed during this study. Several plants exposed to ≥ 0.30 mg CGA 77102/L were observed to be chlorotic during the exposure period. Several plants exposed to ≥ 0.30 mg CGA 77102/L were also observed to have insect damage Endpoints based on mean measured concentrations are presented in the following tables:

Table 54:	Endpo	ints relatir	ng to shoo	t length	for exposure	and reco	verv period
	r ~		-0				· / r

	Shoot length			
Parameter	Exposure to CGA 77102		Reco	overy
	yield	growth rate	yield	growth rate
EC ₅₀ [mg a.s./L]	0.049	0.062	n.a.	0.066
95% CL	0.029-0.078	0.029-0.093		0.026-0.074
EC20 [mg a.s./L]	0.0083	0.013	n.a.	n.a.
95% CL	(0.0026-0.016)	(0.0048-0.023)		
EC10 [mg a.s./L]	0.0033	0.0049	n.a.	n.a.
95% CL	(0.0007-0.0076)	(0.0013-0.011)		
NOEC	0.0089	0.029	n.a.	0.029

CL: Confidence Limits

n.a. not applicable

Table 55: Endpoints relating to wet weight for exposure and recovery period

	Wet weight			
Parameter	Exposure to CGA 77102		Reco	overy
	yield	growth rate	yield	growth rate
EC50 [mg a.s./L]	0.1	0.12	n.a.	0.092
95% CL	0.067-0.15	0.027 – 0.19		0.021 - 0.53
EC ₂₀ [mg a.s./L]	0.12	0.029	n.a.	n.a.
95% CL	(0.0048-0.022)	(0.0069-0.060)		
EC10 [mg a.s./L]	0.0041	0.0081	n.a.	n.a.
95% CL	(0.0011-0.0089)	(0.0009-0.023)		
NOEC	0.0089	0.0089	n.a.	0.0089

Conclusions

 $E_r C_{50} (7 \text{ d}) = 0.062 \text{ mg/L}$

 $E_r C_{10} (7 \text{ d}) = 0.0049 \text{ mg/L}$

The duration chosen for the exposure phase (7 days) was considerably shorter than recommended in OECD guideline 239 (14 days), whose test design was particularly developed to investigate effects on higher aquatic plants. Therefore, additional effects may have been overlooked due to the short exposure phase. The study reliable with restrictions and considered acceptable for the purpose of classification.

Teixeira, **D.** (2006b)

Author:	Teixeira, D.
Title:	The toxicity of S-Metolachlor to <i>Myriophyllum heterophyllum</i> during a 7-day exposure followed by a 14-day recovery period
Date:	2006
Doc ID:	Report Number 1781.6639
Guidelines:	US EPA Ecological Effects Test Guidelines, OPPTS 850.4450; EPA 712-C-96-157
GLP:	Yes
Validity:	No
Previous evaluation:	DAR (2018)

Executive Summary

The toxicity of CGA 77102 to the aquatic plant *Myriophyllum heterophyllum* was determined in a 7-day semistatic test, with medium renewal on day 3. The *Myriophyllum* plants were exposed to nominal concentrations of 0.0081, 0.027, 0.090, 0.30 and 1.0 mg CGA 77102/L (0.010, 0.029, 0.080, 0.30 and 1.0 mg CGA 77102/L, mean measured), alongside a solvent control. Recovery, whereby *Myriophyllum* was transferred to culture medium without the test material present after 7 days of exposure, was assessed at 21 days from test commencement, for all treatment levels. For the purpose of classification, just the 7-day exposure phase is of interest.

For shoot length, the 7-day E_rC_{50} for CGA 77102 to *M. heterophyllum* was >1.0 mg CGA 77102/L and 0.065 mg CGA 77102/L for plant biomass (wet weight), based on mean measured concentrations. Due to the low biomass growth in the control (no doubling of biomass parameters during the exposure phase) and several other deficiencies of the study (such as no clear dose/response and the short exposure phase) the reliability of the results has to be questioned.

Conclusions

 E_rC_{50} (7 d) = 0.065 mg/L

NOEC (7 d) = 0.01 mg/L

Due to the low biomass growth in the control and several other deficiencies of the study (such as no clear dose/response and the short exposure phase), the study is regarded as supplementary information for the purpose of classification.

Hoberg, J. R. (1995f)

Author:	Hoberg, J.R.
Title:	Metolachlor technical - Toxicity to duckweed Lemna gibba
Date:	1995
Doc ID:	Report Number 94-8-5404
Guidelines:	FIFRA Guideline number 122-2 and 123-2
GLP:	Yes
Validity:	No (minor deviation)
Previous evaluation:	DAR (2018)

Executive Summary

The freshwater aquatic plant *Lemna gibba* was exposed to metolachlor technical (CGA 24705) in a static test system over 14 days. The test design consisted of seven concentrations of the test substance with nominal concentrations of 0.0016, 0.0031, 0.0063, 0.013, 0.025, 0.050 and 0.10 mg alongside a control treatment. Mean measured concentrations (0.0005; 0.001; 0.0016; 0.0022; 0.0036; 0.0071; 0.0187) were used for the calculation and reporting of results as measured concentrations at the end of the test were in the range of only 5.7 to 20.5 % of initially measured concentrations. The frond production was determined at the beginning of the test and after on Day 3, 6, 9, 12 and 14. The frond biomass (dry weight) was determined at the end of the test. The 14-day EC₁₀, EC₂₀ and EC₅₀ values for the inhibition of the frond numbers (growth rate and yield) and the end dry weights and their 95 % confidence limits were calculated by Probit Analysis using linear maximum likelihood regression. According to the current validity criteria set in OECD GL 221 the study is not valid after the test period of 14 d as the doubling time for front number is 2.86 (required < 2.5) over the test period of 14 d. However, the deviation from the validity criteria is only minor and additionally, the study fulfils the validity criteria for doubling time after 7 d.

Based on mean measured concentrations the 14-day E_yC_{50} (fronds) value was determined to be 0.0148 mg a.s./L and the EC50 (dry weight) was 0.0132 mg a.s./L. The 14-day ErC50 value (fronds) was calculated to be 0.0367 mg a.s./L. The 14-day NOEC (fronds yield and growth rate) was found to be 0.0022 mg a.s./L and the

14-day NOEC (dry weight) was 0.0019 mg a.s./L.

Conclusions

 $E_r C_{50} (14 \text{ d}) = 0.0367 \text{ mg/L}$

NOEC (growth, 14 d) = 0.0022 mg/L

The study is reliable with restrictions and should be considered for classification.

Hoberg, J. R. (1995g)

Author:	Hoberg, J.R.
Title:	Toxicity to duckweed Lemna gibba
Date:	1995
Doc ID:	Report Number 95-8-6068
Guidelines:	FIFRA Guideline number 122-2 and 123-2
GLP:	Yes
Validity:	No
Previous evaluation:	DAR (2004, 2018)

Executive Summary

The freshwater aquatic plant *Lemna gibba* was exposed to S-metolachlor technical (CGA 77102) in a semistatic test system over 14 days with solution renewal on day 6. The test design consisted of seven concentrations of the test substance (nominally 0.0016, 0.0031, 0.063, 0.013, 0.025, 0.050 and 0.10 mg CGA77102/L) and a control as well as a solvent control. The frond production was determined at the beginning of the test and after on Day 3, 6, 9, 12 and 14. The frond biomass (dry weight) was determined at the end of the test. The 14-day EC10, EC20 and EC50 values for the inhibition of the frond numbers (growth rate and yield) and the end dry weights and their 95 % confidence limits were calculated by Probit Analysis using linear maximum likelihood regression. Endpoints are based on mean measured concentrations. All statistical calculations were performed using ToxRat Professional (version 2.10.05).

Table 56: Endpoints relating to fronds (yield/ growth rate) and dry weight after 14 d

Parameter	fronds growth rate	fronds yield	dry weight
EC50 [mg a.s./L]	0.039	0.016	0.021
95 % CL	0.034-0.045	0.014-0.018	0.010 - 0.044
EC20 [mg a.s./L]	0.014	0.0099	0.01
95 % CL	0.011-0.017	0.0074-0.012	0.00055 - 0.017
EC10 [mg a.s./L]	0.0081	0.0077	0.0068
95 % CL	0.0058-0.010	0.0052-0.0096	0.00009 - 0.013
NOEC	0.0076	0.0076	0.0076

CL: Confidence Limits

The 14-day EC_{50} values for inhibition of the growth rate and yield based on frond numbers were calculated to be 0.039 and 0.016 mg a.s./L, respectively. The 14-day EC_{50} for inhibition of frond biomass (dry weight) was calculated to be 0.021 mg a.s./L. The 14-day NOEC was 0.0076 mg a.s./L for all parameters.

The validity criterium of OECD 221 is clearly not met. The doubling time is shown below

· · ·	~	
Day	Average specific growth rate	Doubling time d
	fronds (1/d)	Required < 2.5 d
	Required > 0.275	
3	0.23	3
6	0.12	3.51
9	0.22	3.18
12	0.22	3.15
14	0.21	3.29

Average specific growth rates and doubling times fronds

Conclusions

 $E_r C_{50} (14 \text{ d}) = 0.039 \text{ mg/L}$ NOEC (growth, 14 d) = 0.0076 mg/L

The study is not reliable and should not be considered acceptable for the purpose of classification.

Eckenstein, H. (2014)

Author:	Eckenstein H.
Title:	S-metolachlor - Toxicity to the Aquatic Higher Plant Lemna gibba in a 7-Day Growth
	inhibition Test Supplemented with Testing for Recovery of Growth.
Date:	2014
Doc ID:	Report Number D67101
Guidelines:	OECD 221; US EPA OPPTS 850.4450;
GLP:	Yes
Validity:	Yes
Previous evaluation:	DAR (2018)

Executive Summary

The toxicity of S-metolachlor to the aquatic plant *Lemna gibba* was determined in a 7-day semi-static test followed by testing for recovery of growth. The *Lemna* were exposed to concentrations of 2.2, 10, 22, 100, 220, 340, 730 and 1000 μ g ai/L for 7 days alongside a dilution water control. In the freshly prepared and aged test solutions the test item was found to be in the range 82 and 109 % of the nominal values. Endpoints are based on mean measured concentrations. For frond number, the 7-day EC₅₀ for yield (E_yC₅₀) and growth rate (E_rC₅₀) for S-metolachlor to *Lemna gibba* were 37 and 133 μ g ai/L respectively. For dry weight, the 7-day EC₅₀ for yield (E_yC₅₀) and growth rate (E_rC₅₀) were 75 and > 916 μ g ai/L respectively. The NOEC based on dry weight after 7 days for growth rate is 0.0021 mg/L.

Table 57: Effect of S-metolachlor	on growth rate and y	yield (frond number)	of Lemna gibba
-----------------------------------	----------------------	----------------------	----------------

Mean Measured	Mean No. fronds/replicate	Based on Frond	Number (0-7 days)		
concentration (µg/L)	(day 7)	Growth Rate	Inhibition of Growth Rate (%)	Yield	Inhibition of Yield (%)
Control	158.0	0.368	.0.	146.0	0.0
2.1	163.0	0.373	-1.2	151.0	-3.4
9.8	122.0	0.331*	10.0	110.0*	24.7
22	97.7	0.299*	18.8	85.7*	41.3

Mean Measured	Mean No. fronds/replicate	Based on Frond	Number (0-7 days)	
concentration (µg/L)	(day 7)	Growth Rate	Inhibition of Growth Rate (%)	Yield	Inhibition of Yield (%)
96	44.3	0.187*	49.3	32.3*	77.9
204	33.7	0.147*	60.0	21.7*	85.2
322	31.0	0.135*	63.2	19.0*	87.0
683	29.3	0.127*	65.4	17.3*	88.1
916	27.3	0.118*	68.1	15.3*	89.5
EC ₅₀ µg/L			133		37
95 % confidence	limits	154	- 113	4	4-31

*: mean value significantly lower than in the control (Dunnett's t-test, one sided smaller, $\alpha = 0.05$)

Conclusions

 $E_r C_{50} (7 \text{ d}) = 0.133 \text{ mg/L}$

NOEC (growth, 7 d) = 0.0021 mg/L

Not all colonies per replicate were included for final dry weight determination at test concentration levels up to $22 \ \mu g \ ai/L$ as 12 fronds were removed from these test vessels for use in the following recovery phase before dry weight determination. It remains unclear whether also in the control fronds were removed for the recovery phase. Due to these deviations, the results for dry weight may not be reliable and should be regarded with caution.

The study results based on dry weight are regarded as reliable without restrictions and the relevant endpoints are considered acceptable for classification.

Kümmrich (2019)

Author:Kümmich F.Title:Toxicity to the Duckweed Lemna gibba in a 7-day Semi-Static Test under Laboratory
ConditionsDate:2019Doc ID:Report Number S18-00204Guidelines:OECD 221GLP:YesValidity:Yes

Executive Summary

The toxicity of CGA77102 to the aquatic plant *Lemna gibba* was determined in a 7-day semi-static test. *Lemna* were exposed to nominal concentrations of 1.00, 3.20, 10.3, 32.8, 105 and 336 μ g CGA77102/L alongside a dilution water control. Based on mean measured concentrations, the 7-day EC₅₀ values for yield (EyC₅₀) were 29.6 and 36.6 μ g CGA77102/L based on frond number and dry weight, respectively. The 7-day EC₅₀ values for growth rate (ErC₅₀) were 149 and 250 μ g CGA77102/L based on frond number and dry weight, respectively.

Study Design and Methods

Experimental dates: 21st May to 29th October 2018

At the start of the test, a $33600 \ \mu g \ CGA77102/L$ stock solution was prepared by placing $33.6 \ mg \ CGA77102$ in a volumetric flask and bringing it to a volume of $1000 \ mL$ with test medium. The solution was homogenised by intense shaking and afterwards the solution was clear and transparent. Test concentrations were prepared by serial dilution of appropriate solutions with test medium. The control consisted of test medium only.

150 mL of the test solutions were transferred into 250 mL glass flasks and inoculated with *Lemna* plants. Cultures were maintained under the conditions indicated above.

Assessments of frond number were made on days 0, 2, 4 and 7. Fronds were harvested for measurement of dry weight after 7 days, and the initial dry weight was determined using six representative batches of plants with in total 12 fronds from the culture used in the test. Test plants were moved to fresh test solutions on days 2 and 4.

Temperature was measured continuously in a separate vessel and recorded on days 0, 2, 4 and 7. pH was measured on days 0 (fresh solutions), 2 (aged and fresh solutions), 4 (aged and fresh solutions) and 7 (aged solutions) and light intensity was measured at test start.

The test concentrations were verified by chemical analysis of CGA77102 at days 0, 2, 4 and 7, using high performance liquid chromatography (HPLC) with MS-MS detection.

Data for frond number and dry weight were used to calculate growth rates and yield for the control and each exposure concentration. A test for normality was performed by calculating the Shapiro-Wilk's statistic, a test for homogeneity of the data was performed according to Levene. The NOEC and LOEC were determined by using a multiple comparison method (Dunnett's-t-test, left sided). The $EC_{10, 20, 50}$ -values were determined by probit analysis following logistic distribution (yield and growth rate of frond numbers and yield of dry weight) and normal distribution (growth rate of dry weight), which resulted in the best fit of the data.

Results and Discussion

At the start of the test at each media renewal, the analytically determined concentrations of CGA77102 were in the range 83 to 197% of the nominal values and at the end of each media renewal were in the range 82 to 196% (see table below). The limit of quantification in this study was 0.1 μ g CGA77102/L. Since not all measured concentrations in the test solutions were between 80 – 120% of nominal, mean measured concentrations of the test item were used for the calculation and reporting of results.

Parameter	Frond (µg CGA	number 177102/L)	Dry weight (µg CGA77102/L)	
	Growth rate	Yield	Growth rate	Yield
EC10	11.6	4.80	9.87	2.85
95% CI	1.89 - 26.1	0.965 - 10.0	5.81 - 14.7	0.635 - 6.30
EC ₂₀	29.8	9.39	29.9	7.32
95% CI	9.41 - 58.1	2.96 - 17.4	20.8 - 41.1	2.56 - 13.7
EC50	149	29.6	250	36.6
95% CI	76.6 – 433	15.7 – 57.2	170 - 415	20.7 - 68.5
NOEC	3.84	3.84	3.84	3.84
LOEC	11.7	11.7	11.7	11.7

Summary of biological results for toxicity of CGA77102 to Lemna gibba

Validity criteria

The test was considered valid:

• The doubling time of frond number in the control was 35.6 hours (must be <2.5 days)

Conclusions

For frond number, the 7-day EC_{50} for yield (EyC₅₀) and growth rate (ErC₅₀) for CGA77102 to *Lemna gibba* were 29.6 and 149 µg CGA77102/L, respectively, based on mean measured concentrations.

For dry weight, the 7-day EC_{50} for yield (EyC₅₀) and growth rate (ErC₅₀) for were 36.6 and 250 µg CGA77102/L, respectively, based on mean measured concentrations.

The 7-day NOEC was determined to be 3.84 μ g CGA77102/L and the 7-day LOEC was determined to be 11.7 μ g CGA77102/L.

The study is reliable without restrictions and shoud be considered for classification.

11.5.4 Acute (short-term) toxicity to other aquatic organisms

No information available. All the information on acute toxicity is taken from the RAR and list of endpoints for S-metolachlor, January 2018.

11.6 Long-term aquatic hazard

Please note that solely studies for S-metolachlor (CGA-77102) are considered for classification. Studies for metolachlor (CGA 24705) are listed for completeness.

Based on the aquatic toxicity tests with S-metolachlor and its general degradability degradation products are not assumed to cause the observed toxicity. Additionally, degradation products of S-metolachlor are clearly less toxic compared to the parent (please refer to the RAR of S-metolachlor). Degradation products of S-metolachlor do not need to be considered for classification.

Method	Species	Test material	Results ¹	Remarks	Reference
FIFRA	Pimephale	CGA 77102	NOEC $(35 \text{ d}) = 0.03$	Key study	Anonymous (1999)
Guideline 72-	s promelas	(S-metolachlor)	mg/L (mean		
4			measured)	Reliability 1	
ASTM, Draft	Cyprinodo	CGA 24705	NOEC $(26 \text{ d}) = 2.2$	Reliability 3	Anonymous (1980)
No. 3	n		mg/L (mean		
	variegatus		measured)		
OPPTS	Pimephale	CGA 24705	NOEC $(35 \text{ d}) = 1.3$	Reliability 2	Anonymous (2006)
850.1400	s promelas	(metolachlor)	mg/L (mean		
			measured)		
FIFRA	Cyprinodo	CGA 77102	NOEC $(34 \text{ d}) = 1.3$	Reliability 1	Anonymous (2000)
Guideline	<i>n</i> .	(S-metolachlor)	mg/L (mean		
Reference No.	variegatus		measured)		
72-4	D' 1 1	CC + 24705	NOTE: (25.1) 0.70	D 11 1 11 1	(1002)
EPA	Pimephale	CGA 24705	NOEC $(35 \text{ d}) = 0.78$	Reliability I	Anonymous (1993)
guidelines 72-	s prometas	(metolachior)	mg/L		
5			EC10(04 u) = 0.934		
			(mean measured)		
OECD 204	Oncorhync	CGA 77102	NOFC $(28 \text{ d}) = 0.89$	Supplemental	Δ nonymous (1997)
OLCD 204	hus mykiss	(S-metolachlor)	mg/L (mean	information	Anonymous (1997)
	nus myruss	(5 metolaemor)	measured)	information	
OECD 204	Oncorhync	CGA 77102	NOEC $(28 \text{ d}) = 1.9$	Supplemental	Anonymous (2001)
	hus mykiss	(S-metolachlor)	mg/L (nominal)	information	
		(<i>6</i> , (<i>i i i j</i>		
OECD 204	Oncorhync	CGA 24705	NOEC (21 d) = 0.25	Supplemental	Anonymous (1990)
	hus mykiss	(metolachlor)	mg/L (nominal)	information	
OECD 202	Daphnia	CGA 24705	NOEC $(21 \text{ d}) = 0.6$	Minor deviation	Rufli, H. (1989)
	magna	(metolachlor)	mg/L	from validity	
	Ŭ		$E\bar{C}_{10}$ (21 d) = 0.56		
			mg/L (nominal)	Reliability 2	

Table 58: Summary of relevant information on chronic aquatic toxicity

EPA 850.1300, 72- 4(b)	Daphnia magna	CGA 24705 (metolachlor)	NOEC $(21 \text{ d}) = 5.9 \text{ mg/L}$ EC ₁₀ $(21 \text{ d}) = 6 \text{ mg/L}$ (mean measured)	Reliability 1	Putt, A.E. (1995)
OECD 202	Daphnia magna	CGA 24705 (metolachlor)	NOEC $(21 \text{ d}) = 2.5$ mg/L (nominal)	Reliability 2	Müllerschön H. (1990)
OECD 211	Daphnia magna	CGA 77102 (S-metolachlor)	NOEC $(21 \text{ d}) = 5.2 \text{ mg/L}$ EC ₁₀ $(21 \text{ d}) = 1.29 \text{ mg/L}$ (mean measured)	Reliability 1	Palmer, S.J.; Kendell, T.Z; Krueger, H.O. (2004)
EPA 850.1300, 72- 4	Mysidopsi s bahia	CGA 77102 (S-metolachlor)	NOEC $(28 \text{ d}) = 0.15$ mg/L EC ₁₀ $(28 \text{ d}) = 0.182$ mg/L (nominal)	Key study Reliability 1	Lima, W. (1999)
BBA Guideline Proposal 1995	Chironomu s riparius	CGA 77102 (S-metolachlor)	NOEC (28 d) = 2.38 mg/L EC10 (28 d) = 5.4 mg/L (mean measured)	Reliability 1	Grade, R. (1998)
FIFRA Guideline number 122-2 and 123-2	Navicula pelliculosa	CGA 24705 (metolachlor)	$E_{r}C_{50} (96 h) = 4.982$ mg/L $E_{r}C_{10} (96 h) = 0.104$ mg/L (mean measured)	Reliability 3	Hoberg, J.R. (1995a)
FIFRA Guideline number 122-2 and 123-2	Skeletonem a costatum	CGA 24705 (metolachlor)	$ \begin{array}{l} E_r C_{50} \ (72 \ h) = 0.423 \\ mg/L \\ E_r C_{10} \ (72 \ h) \ = 0.007 \\ mg/L \ (nominal) \end{array} $	Reliability 1	Hoberg, J. R. (1994)
OECD 201	Skeletonem a costatum	CGA 77102 (S-metolachlor)	ErC50 (72 h) = 0.340 mg/L $E_rC_{10} (72 h) = 0.013$ mg/L (mean measured)	Minor deviation from validity criteria Reliability 2	Hoberg, J. R. (1995b)
U.S. EPA FIFRA Guideline No. 122-2 and 123-2	Anabaena flos-aquae	CGA 24705 (metolachlor)	ErC50 (120 h) = 1.1 mg/L ErC10 = 0.606 mg/L	Several validity criteria not met Reliability 3	Hoberg J.R. (1995c)
FIFRA Guideline number 122-2 and 123-2	Selenastru m capricornu tum	Metolachlor	ErC50 (96 h) = 0.0278 mg/L NOEC = 0.8 mg/L	Severe violation of validity criteria Reliability 3	Hoberg J.R. (1995d)
FIFRA Guideline number 122-2 and 123-2	Selenastru m capricornu tum	CGA 77102 (S-metolachlor)	ErC50 (72 h) = 0.024 mg/L ErC10 (72 h) = 0.0036 mg/L	Severe violation of validity criteria Reliability 3	Hoberg J.R. (1995e)
OECD 201	Desmodes mus subspicatu s	CGA 24705 (metolachlor)	ErC50 (72 h) = 0.247 mg/L (nominal)	Severe violation of validity criteria Reliability 3	Rufli, H. (1985)

US EPA 1974/1978	Microcysti s aeruginosa Selenastru m capricornu tum Chlorella pyrenoidos a Dunaliella tertiolecta Skeletonem a costatum Isochrysis galbana Porphyridi um cruentum	Metolachlor	ErC50 (72 h): 13.3 mg/L 0.071 mg/L 6.09 mg/L - 0.97 mg/L 0.436 mg/L - All endpoints baded on nominal concentrations	Reliability 4	Hollister, T.A and Ward, G.S. (1980)
OECD 201	Pseudokirc hneriella subcapitat a	CGA 77102 (S-metolachlor)	$E_rC_{50}(72 h) = 0.056$ mg/L NOEC (growth, 72 h) = 0.012 mg/L (mean measured)	Key study Reliability 1	Memmert, U. (2006)
OECD 201	Navicula pelliculosa	CGA 77102 (S-Metolachlor)	$E_{r}C_{50} (72 h) = 31$ mg/L NOEC (growth, 72 h) = 9.7 mg/L (mean measured)	Reliability 1	Desjardins, D.; Kendall, T.Z.; Krueger, H.O. (2003)
OECD 201	Anabaena flos-aquae	CGA 77102 (S-Metolachlor)	ErC50 (72h) = > 30 mg/L EC10 (72 h) = 13 mg/L	Severe violation of validity criteria Reliability 3	Desjardins, D.; Kendall, T.Z.; Krueger, H.O. (2004)
OPPTS 850.4450	Elodea canadensis	CGA 77102 (S-Metolachlor)	E_rC_{50} (7 d) = 0.062 mg/L E_rC_{10} (7 d) = 0.0049 mg/L (mean measured	Reliability 2	Teixeira, D. (2006a)
OPPTS 850.4450	Myriophyll um heterophyll um	CGA 77102 (S-Metolachlor)	E_rC_{50} (7 d) = 0.065 mg/L NOEC (growth, 7 d) = 0.01 mg/L (mean measured)	Supplemental information	Teixeira, D. (2006b)
FIFRA Guideline number 122-2 and 123-2	Lemna gibba	CGA 24705 (metolachlor)	$E_rC_{50} (14 d) = 0.0367$ mg/L NOEC (growth, 14 d) = 0.0022 mg/L (mean measured)	Minor deviation from validity criteria Reliability 2	Hoberg, J. R. (1995f)
FIFRA Guideline number 122-2 and 123-2	Lemna gibba	CGA 77102 (S-metolachlor)	$E_rC_{50} (14 d) = 0.039$ mg/L NOEC (growth, 14 d) = 0.0076 mg/L (mean measured)	Severe violation of validity criteria Reliability 3	Hoberg, J. R. (1995g)
OECD 221	Lemna gibba	CGA 77102 (S-metolachlor)	$E_r C_{50} (7 d) = 0.133$ mg/L	Key study	Eckenstein, H. (2014)

			NOEC (growth, 7 d) = 0.0021 mg/L	Reliability 1	
			(mean measured)		
OECD 221	Lemna gibba	CGA 77102 (S-metolachlor)	ErC50 (7 d) = 0.149 mg/L NOEC = 0.00384 mg/L (mean measured)	Reliability 1	Kümmrich F. (2019)

11.6.1 Chronic toxicity to fish

Anonymous (1999)

Author:	Anonymous
Title:	S-metolachlor (CGA77102) - Early Life-Stage Toxicity Test with Fathead Minnow
	(Pimephales promelas), Report Number 1781.6576, Springborn Laboratories Inc.,
	790 Main St., Wareham, Massachusetts, 02571-1075, USA. (Syngenta File No.
	CGA77102/0516)
Date:	1999
Doc ID:	Report Number 1781.6576
Guidelines:	FIFRA Guideline 72-4
GLP:	Yes
Validity:	Yes
Previous evaluation:	DAR (2018)

Executive Summary

The toxicity of CGA77102 to early-life stages of fathead minnow (*Pimephales promelas*) was determined in a flow-through test system. Fish were exposed to a range of nominal concentrations of 31, 63, 130, 250, 500 and 1000 μ g a.s./L, and a dilution water control. The mean measured concentrations ranged from 84 to 96 % of their nominal concentrations (mean measured 30, 56, 110, 220, 450 and 870 μ g a.s./L). Endpoints are based on mean measured concentrations.

Based on the results of this study, statistical effects on larval growth (wet weight and dry weight) were evident in the 5 highest treatment levels. Therefore, the NOEC for S-metolachlor (CGA77102) and fathead minnow (*P. promelas*) was determined to be 30 μ g a.s./L. Hatchability, post-hatch survival and fish length in the treated groups were significantly different to the control, however, as there was no meaningful dose response for any of these parameters, EC₁₀ and EC₂₀ values could not be calculated.

Results for survival at hatch, larval survival and growth (total length, wet weight and dry weight are presented in the table below.

Mean measured concentration (µg a.s./L)	Hatching success (%) ^a	Fry survival day 5 to test end (%)	Total length (mm) (SD)	Wet weight (mg) (SD)	Dry weight (mg) (SD)
Control	85	93	33.4 (1.9)	399 (77)	101 (20)
30	90	95	33.1 (1.9)	396 (77)	99.1 (20)
56	88	99	32.9 (1.7)	375 (72) ^c	94.4 (18) ^c
110	89	100	32.9 (1.6)	373 (69) ^c	93.6 (18) ^c
220	87	95	32.7 (1.6) ^c	355 (64) ^c	90.7 (17) ^c
450	85	96	32.2 (1.8) ^c	343 (67) ^c	86.4 (17) ^c
870	85	98	31.6 (2.1) ^c	334 (71) ^c	83.4 (18) ^c

Table 59: Effects of CGA77102 on the growth of Pimephales promelas

a The number of live larvae on the day they are transferred from the egg cups to the test vessels (day 5), expressed as a percentage of the number of eggs added at the start of the test (day 0).

b The number of surviving larvae at the end of the test (day 35), expressed as a percentage of the number of live larvae on day 5.

c Significantly reduced when compared to the control (Williams test)

There were significant differences between the wet weights and dry weights of control and treated groups, suggesting the effects were treatment related. The calculated EC_{10} and EC_{20} values for larval weights and larval lengths are shown below:

Parameter	EC10 (95 % CL) µg/L	EC ₂₀ (95 % CL) μg/L
Wet Weight	264 (139 – 404)	1435 (840 – 4621)
Dry Weight	220 (145 – 298)	1284 (877 – 2384)

CL: Confidence Limits

Conclusions

NOEC 0.03 (35 d) mg/L

The 35-day No-Observed Effect Concentration (NOEC) for S-metolachlor (CGA77102) and fathead minnow (*P. promelas*) was determined to be 30 µg a.s./L.

The study is reliable without restrictions and considered acceptable for classification.

Anonymous (1980)

Author: Title:	Anonymous Effects of metolachlor (CGA 24705, Dual) on survival, growth and development of sheepshead minnows (<i>Cynrinodon variegatus</i>)		
Date:	1980		
Doc ID:Repor	t Number BP-80-5-80		
Guidelines: Standard Practice for Conducting Toxicity Tests with the Early Life Stages of Fishes (AS Draft No. 3)			
GLP:	No		
Validity:	No		

Executive Summary

The toxicity of metolachlor to early-life stages of sheepshead minnow (*Cyprinodon variegatus*) was determined. Fish were exposed to the following range of nominal concentrations of 0.62, 1.2, 2.5, 5 and 10 mg metolachlor/L (mean measured concentrations 0.55, 1.0, 2.2, 4.1, and 8.6 mg metolachlor/L), a solvent control and a dilution seawater control.

Based on the significantly reduced survival and length of juveniles at concentrations ≥ 4.1 mg metolachlor/L, the MATC was estimated to be > 2.2 and < 4.1 mg metolachlor/L.

Study Design and Methods

Experimental dates: 19th March to 21st April 1980

A flow-through test system was employed. 4 hours after visual confirmation of fertilization, embryos were randomly allocated to incubation cups. Each treatment received four groups of 25 embryos. Embryo mortality and time to hatch were recorded. After hatch, juveniles were transferred to growth chambers. Observations of survival, time to hatch, and any behavioural or physical changes of juveniles were made daily. At the end of the test, lengths and wet weights of the surviving juveniles were measured.

Embryos and fish were exposed to measured concentrations of 0.55, 1.0, 2.2, 4.1, and 8.6 mg metolachlor/L, a solvent control and a dilution water control.

A stock solution consisting of metolachlor in triethylene glycol, with a nominal concentration 80.825 mg metolachlor/L, was delivered to the mixing chamber where it was diluted and made up to a set volume with seawater before being delivered to the test vessels to give the test concentrations. The blank control consisted of seawater only and the solvent control consisted of triethylene glycol and dilution seawater.

Salinity, temperature, pH and dissolved oxygen concentrations were measured in all treatment replicates at the beginning of the test, and then daily in one duplicate set of test containers.

The MATC was estimated from the data obtained as follows:

Quantal responses

Hatching success: ratio between the number of embryos which hatched and the number of embryos per replicate (n=25), or the number of embryos per treatment (n=4)

Survival: ratio between the number of juveniles that died throughout the test and the number that hatched, examined on test day 22

Non-quantal responses

Length: mean length of surviving juveniles per replicate was measured on test day 26.

Wet weight: mean wet weight of juveniles per replicate was measured on test day 26.

Statistical analysis

Data for hatching success, juvenile survival and growth were subjected to analysis of variance (p = 0.05). The Williams's test was used to identify significant differences between each treatment and solvent control.

Results and Discussion

Analytical data

The concentrations of metolachlor were determined in the test solutions. The mean measured concentrations ranged from 82 - 89% of nominal concentrations. The mean measured stock concentration was 99% of nominal throughout the study. The mean measured concentrations were used for calculating and reporting the results.

Biological data

Exposure to mean measured concentrations ≤ 8.6 mg metolachlor/L had no significant effect on the hatching success of fish embryos. No delay in hatch was observed in any treatment.

Exposure to concentrations \geq 4.1 mg metolachor/L significantly increased the mortality of juvenile fish after 8, 15, and 22 days post-hatch. By day 8 post-hatch, 94% of the fish exposed to 8.6 mg metolachlor/L had died and 100% were dead at day 15.

There was a significant effect of metolachlor on growth of juvenile fish based on length, but no significant effect based on weight.

The MATC was estimated to be > 2.2 < 4.1 mg metolachlor/L.

Validity Criteria

Although this study broadly complies with the current validity criteria for early life-stage testing with fish (OECD 210; 2013), an error in salt addition after day 22 resulting in mortality invalidates the study. Therefore, the study is regarded as not reliable and should not be used for classification. Also, measured values for dissolved O_2 (DO) were 19 to 108% of ASV (guideline states that DO concentration should be >60% of ASV throughout the test.

Conclusions

The toxicity of metolachlor to early-life stages of sheepshead minnow (*Cyprinodon variegatus*) was determined. Based on the significantly reduced survival and length of juveniles to concentrations ≥ 4.1 mg metolachlor/L, the MATC was estimated to be > 2.2 and < 4.1 mg metolachlor/L. The study is not reliable and should not be used for classification.

Anonymous (2006)

Author:	Anonymous
Title:	Metolachlor (CGA24705) – The Toxicity to Fathead Minnow (<i>Pimephales promelas</i>)
	during an Early Life-Stage Exposure, Report Number 1781.6631, Springborn
	Laboratories Inc., 790 Main St., Wareham, Massachusetts, 02571-1037, USA.
	(Syngenta File No. CGA24705/2840)
Date:	2006
Doc ID:	Report Number 1781.6631
Guidelines:	Ecological Effects Test Guidelines OPPTS 850.1400 "Fish, Early-life Stage Toxicity
	Test", Public Draft, (April 1996)
GLP:	Yes
Validity:	Yes
Previous evaluation:	(DAR 2018)

Executive Summary

The toxicity of metolachlor to early-life stages of fathead minnow (*Pimephales promelas*) was determined. Fish were exposed in a flow-through test-system to the following range of nominal concentrations: 0.094, 0.19, 0.38, 0.75 and 1.5 mg a.s./L, and a dilution water control. The mean measured concentrations ranged from 80 to 87 % of their nominal concentrations. Endpoints were related to measured concentrations (0.083, 0.15, 0.31, 0.67 and 1.3 mg a.s./L).

There were significant effects on the survival fathead minnow larvae for at 0.15 mg metolachlor/L (m.m.).

However, effects did not follow a dose response relationship as they were not observed in higher concentrations. Therefore, the 35-day NOEC for larval survival, total length, wet and dry weights was determined to be 1.3 mg metolachlor/L (m.m.).

. There was no statistical difference in egg viability between the control and any of the test treatments. As statistical analysis revealed no significant dose response for any of the parameters and effects observed were <10 %, EC₁₀ and EC₂₀ values could not be derived.

Study Design and Methods

Experimental dates: 17th December 2001 to 21st January 2002.

A stock solution (90 μ g a.s./mL) was prepared daily by diluting 0.6482 g metolachlor in 7000 mL of reagent grade water. The diluter was used for introduction of test solution (test item and dilution water) into the test vessels. A set volume of the stock solution was delivered to the mixing chamber and made up to a set volume with dilution water to give a nominal concentration of 1.5 mg a.s./L. Appropriate volumes of the mixing chamber solution were then dispensed into the test solution chambers and appropriate volumes of dilution water added to achieve the required test concentrations. These then emptied into the test vessels and this cycle was repeated such that the daily replacement rate of medium in the test aquaria was 6.8 aquarium volumes.

A flow-through test system was employed. At the start of the test 60 eggs were randomly allocated to egg cups and one egg cup suspended in each of two replicate test vessels at each test and control treatment. Hence, 120 eggs were exposed at each treatment. The test was undertaken in a temperature controlled water-bath.

Eggs and fry were exposed to mean measured concentrations of 0.083, 0.15, 0.31, 0.67 and 1.3 mg a.s./L, and a dilution water control.

The concentrations of metolachlor in the test solutions were measured at 0, 4, 10, 17, 24, 31 and 35 days using a gas chromatography method.

Observations for time to hatch, hatching success, larval mortality and other symptoms of toxicity were made daily during the pre and post-hatch phases, as appropriate. At the end of the test, lengths, and wet and dry weights of the surviving fry were measured.

Statistical analysis

At test termination the survival at hatch, larval survival and growth (total length, wet weight and dry weight) were analysed to identify significant differences between treatment and control organisms. Analyses were performed using the mean organism response in each treatment group. The data were arcsine square-root percentage transformed in order to check for homogeneity of variance (Bartlett's Test), and to confirm they were normally distributed (Shapiro-Wilk's Test). The NOECs were estimated from the data obtained by comparing the response for the test item treatments with the control using a Williams' test with a 95% level of certainty. The mean total length, mean wet weight and mean dry weight of surviving fish at 35 days were analysed separately.

 EC_x calculations were carried out in ToxRat Professional version 2.10 (ToxRat Solutions GmbH, 2001-2010). The effective concentrations for hatching and post-hatch survival were assessed. Probit analysis with linear maximum likelihood regression was used to determine the concentration response function. Chi² was used as a goodness of fit measure. The effective concentrations for weight and length were assessed. Probit analysis with linear maximum likelihood regression was used to determine the concentration response function. Chi² was used as a goodness of fit measure, and the proportion of variance explained by the dose/response function was determined. Where no meaningful concentration/response was found (p(F) > 0.05) the calculated EC_x's were not valid.

Results and Discussion

The concentrations of metolachlor were determined in the test solutions. The mean measured concentrations ranged from 80 to 87 % of their nominal concentrations. The limit of quantification was 0.407 μ g/L. The mean measured concentrations were used for calculating and reporting the results.

Nominal	Measu			
concentration mg a.s./L)	Day 0	Day 35	Mean	% of nominal
0	<0.03	<0.026	0	NA
0.094	0.087	0.069	0.083	86
0.19	0.16	0.15	0.15	80
0.38	0.33	0.31	0.31	81
0.75	0.65	0.59	0.67	87
1.5	1.4	1.2	1.3	87

Table 60:Analytical results

Embryo survival - There was no statistical difference in egg viability between the control and any of the test treatments.

There were significant effects on larval survival at 0.15 mg metolachlor/L (m.m.). Therefore, the 35-day NOEC for larval survival, total length, wet and dry weights was determined to be 0.083 mg metolachlor/L (m.m.), and the LOEC is determined to be 0.15 mg metolachlor/L (m.m.). As statistical analysis revealed no significant dose response for any of the parameters and effects observed were <10 %, EC₁₀ and EC₂₀ values could not be derived.

Table 61:Effects of metolachlor on the growth of fathead minnow

Mean measured concentration (mg a.s./L)	Hatching success (%) ¹	Larval survival (day 35) (%) ²	Mean length (mm) ± SD ³	Mean wet weight $(mg) \pm SD^3$	Mean dry weight (mg) ± SD ³
0.0 (control)	84	98	30.1 (2.6)	269 (67)	66.0 (17)
0.083	84	94	30.2 (2.0)	270 (59)	67.0 (15)
0.15	86	88*	31.1 (2.1)	296 (61)	73.0 (14)
0.31	86	90*	31.2 (2.0)	302 (60)	70.0 (14)
0.67	88	99*	30.0 (2.2)	267 (57)	65.9 (14)
1.3	86	91*	30.0 (2.8)	272 (68)	67.1 (16)

¹ The number of live larvae on the day they are transferred from the egg cups to the test vessels (day 5), expressed as a percentage of

the number of eggs added at the start of the test (day 0), mean of two replicates.

² The number of surviving larvae at the end of the test (day 35), expressed as a percentage of the number of eggs added on day 0, mean of two replicates.

³ Mean of two replicates

* Statistically significant, based on William's test

As there was no significant dose response for any of the parameters and effects observed were <10 % for all parameters, EC_{10} and EC_{20} values could not be calculated.

Considering the minimum acceptable post-hatch survival criteria for this type of test (75 %, OECD TG210) as well as the non-monotonous response, the NOEC is determined to be >1.3 mg a.s./L

Conclusions

There were significant effects on the survival fathead minnow larvae for at 0.15 mg metolachlor/L (m.m.). However, effects on survival did not follow a dose-response relationship and the underlying assumptions of the statistical method applied (William's test) are not fulfilled. Using the more appropriate Dunnett's test instead only the 0.15 and 0.31 mg/L treatments were significantly different from the control. Therefore, the 35-day NOEC for larval survival, total length, wet and dry weights was determined to be >1.3 mg metolachlor/L (m.m.). As statistical analysis revealed no significant dose response for any of the parameters and effects observed were <10%, EC₁₀ and EC₂₀ values could not be derived. Due to the missing dose-response relationship and the significant effects observed in lower concentrations, the study is considered reliable with restrictions and acceptable for classification.

•	
Author:	Anonymous
Title:	S-Metolachlor (CGA 77102) - Early Life-Stage Toxicity Test with Sheepshead
	Minnow (<i>Cyprinodon variegatus</i>)
Date:	2000
Doc ID:	Report Number 1781.6613
Guidelines:	FIFRA Guideline Reference No. 72-4
	US EPA. 1986. Office of Pesticide Programs. Standard evaluation procedure for fish
	early life-stage. EPA540/9-86. July 1986. U. S. Environmental Protection Agency,
	Washington, DC.
	ASTM. 1995. Standard Guideline for Conducting Early-Stage Toxicity Tests with
	Fishes. ASTM designated E 1241-92.
GLP:	Yes
Validity:	Yes
Previous evaluation:	DAR (2018)

Anonymous (2000)

Executive Summary

The effects of CGA77102 to early-life stages of sheepshead minnow (*Cyprinodon variegatus*) embryos and larvae were determined under flow-through conditions. Fish were exposed to nominal concentrations of 94, 190, 370, 750 and 1500 μ g CGA77102/L and a dilution water control. Results were based on the mean measured concentrations of 87, 180, 330, 710 and 1300 μ g CGA77102/L.

No statistically significant adverse effects, as compared to the control, were observed in any of the treatment levels for any of the monitored end points (survival at hatching and at 28 days post-hatch, larvae total length, dry and wet weight at test termination).

Based on the above data, the 34-day NOEC for CGA77102 was determined to be 1300 μ g CGA77102/L, and the 34-day LOEC was determined to be > 1300 μ g CGA77102/L, the highest concentration tested. As statistical analysis revealed no significant dose response for any of the parameters and effects observed were below 10 %, EC₁₀ and EC₂₀ values could not be derived.

Conclusions

NOEC = 1.3 mg/L

The study is reliable without restriction and considered acceptable for classification.

Anonymous (1993)	
Author:	Anonymous
Title:	Chronic toxicity of CGA 24705 to the Fathead minnow (Pimephales promelas). EG&G Bionomics
Date:	1993
Doc ID:	Unpublished report No. BW-78-11-341
Guidelines:	EPA guidelines 72-5
GLP:	No
Validity:	Yes
Previous evaluation:	DAR (2004, 2018)

Executive summary

Fathead minnows (*Pimephales* promelas) were continuously exposed to five concentrations of CGA-24705 throughout a complete life cycle. Data was compiled on the survival, growth and reproduction success of first generation (F_0) fish and on the hatching success, survival and growth of their progeny (F_1). The study is summarized in the original monograph and still considered valid and acceptable. EC₁₀ and EC₂₀ for the response variables of embryo hatch success, survival, total length and total weight in both the F_0 and F_1 generations, and reproductive success of the F_0 generation have been re-analysed for the DAR 2018 in order to estimate these values. Results were based on the mean measured concentrations of 0.2, 0.37, 0.78, 1.6 and 3.4 mg/L.

F₀ Generation

Hatchability, length at days 35 and 64, survival at day 181, male and female lengths and weights on day 266, eggs per female and eggs per spawn in the treated groups were not significantly different to the control groups, therefore no EC_{10} and EC_{20} values could be calculated.

There were statistically significant differences in fry survival at days 35 (p(F) = 0.000) and 64 (p(F) = 0.000) between control and treated groups. The calculated EC₁₀ and EC₂₀ values for F₀ survival are shown below:

Parameter	EC10 (95 % CL) mg/L	EC20 (95 % CL) mg/L
E. auminal day 25	0.967	1.108
Fosurvival day 55	(0.827 – 1.074)	(0.981 - 1.210)
E. auminal day 64	0.934	1.057
rosurvival day 64	(0.804 – 1.034)	(0.939 – 1.151)

cl: confidence limits

F₁ Generation

Hatchability, length and weight on day 34 were not significantly different to the control groups, therefore no
EC_{10} and EC_{20} values could be calculated.

There was a statistically significant difference in fry survival on days 34 (p(F) = 0.003) between control and treated groups. The calculated EC₁₀ and EC₂₀ values for F₁ survival are shown below:

Parameter	EC ₁₀ (95 % CL) mg/L	EC ₂₀ (95 % CL) mg/L
E. curringl day 34	1.47	1.78
F1 Sul vival uay 54	(1.05 – 1.77)	(1.38 – 2.06)

CL: confidence limits

Conclusions

NOEC (35 d) = 0.78 mg metolachlor/L (mean measured) EC_{10} (64 d) = 0.934 mg metolachlor/L (mean measured)

The study is reliable without restrictions and considered acceptable for classification.

Anonymous (1997)

Author:	Anonymous
Title:	Prolonged toxicity test of CGA 77102 tech. to Rainbow Trout (Oncorhynchus mykiss) in the
	flow-through system
Date:	1997
Doc ID:Report	Number 971605
Guidelines:	OECD Guidelines for Testing Chemicals. Section 2: Effects on Biotic Systems Method. 204,
	Fish, Prolonged Toxicity Test (1984).
GLP:	Yes
Validity:	Yes

Executive Summary

The prolonged toxicity of CGA77102 to rainbow trout *Oncorhynchus mykiss* was determined under flow-through conditions. Fish were exposed to a range of nominal concentrations of 0.10, 0.17, 0.30, 0.56, 1.0 and 1.8 mg CGA77102/L (0.12, 0.13, 0.28, 0.49, 0.89 and 1.7 mg CGA77102/L mean measured), alongside a dilution water control.

Based on mean measured concentrations, the 28-day NOEC was 0.89 mg CGA77102 /L, the highest concentration tested.

Validity criteria

The validity criteria for the study were met:

Control fish mortality $\leq 10 \%$ (0 % observed)

Oxygen concentration in the test media should not drop below 60 % of air saturation during test (75 - 105 % saturation observed)

Conclusions

At the highest concentration one fish died and another fish showed persistent sublethal signs of toxicity that did not recover at the end of the test. Even though not statistically significant, these effects are considered to be biologically relevant. Therefore, based on mean measured concentrations, the 28-day NOEC was 0.89 mg CGA77102 /L. The fish prolonged toxicity test is considered as supplemental information for the purpose of

classification.

Anonymous (2001)

Author:	Anonymous
Title:	Prolonged Toxicity test of CGA77102 tech. to Rainbow Trout (Oncorhynchus mykiss)
	under Flow-Through Conditions, Report Number 2011771, Syngenta Crop Protection
	AG, Ecological Sciences, CH-4002, Basel, Switzerland. (Syngenta File No.
	CGA77102/0594)
Date:	2001
Doc ID:	Report Number 2011771
Guidelines:	OECD Guidelines for Testing of Chemicals 215, Fish Juvenile Growth Test.
	OECD Guidelines for Testing of Chemicals 204, Fish Prolonged Toxicity Test.
GLP:	Yes
Validity:	Yes
Previous evaluation:	DAR (2018)

Executive Summary

The effects of CGA77102 on mortality and growth of rainbow trout (*Oncorhynchus mykiss*) were determined over a 28-day study period under flow-through conditions. Fish were exposed to a range of nominal concentrations of 1.2, 1.9, 3.0, 4.8 and 7.7 mg a.s./L and a dilution water control. The mean measured concentrations were 1.2, 2, 3.2, 4.9 and 8.1 mg CGA77102/L.

Endpoints are related to nominal concentrations. The 28-day NOEC was estimated to be 1.9 mg CGA77102/L since there was no statistically significant difference compared to the control considering mortality, growth and sublethal effects. The LC₅₀ was calculated to be 4.6 mg CGA77102/L.

Conclusions

NOEC (28 d) = 1.9 mg/L

The study is reliable without restrictions. The fish prolonged toxicity test is considered as supplemental information for the purpose of classification.

Anonymous (1990) Author: Anonymous Metolachlor: 21-day prolonged toxicity study in the rainbow trout under flow-Title: through conditions 1990 Date: Doc ID: Report Number 234652 Guidelines: OECD Guidelines for Testing of Chemicals 204, Fish Prolonged Toxicity Test. GLP: Yes Validity: Yes Previous evaluation: DAR (2018)

Executive Summary

The prolonged toxicity of CGA24705 to rainbow trout *Oncorhynchus mykiss* was determined under flowthrough conditions. Fish were exposed to a range of nominal concentrations of 0.016, 0.063, 0.25, 1 and 4 mg/L, alongside a dilution water control. Mean measured concentrations were in the range of 87 - 98.5 % of nominal. Mortalities were observed at nominal concentrations of 1.0 mg/L and above. Symptoms of toxicity observed included lethargy and were observed in treatments of 1 mg/L and above. No mortality or symptoms of toxicity were observed in the control. Based on nominal concentrations, the 21 day NOEC was 0.25 mg/L and the LOEC was determined to be 1 mg/L. The LC₅₀ was determined to be 1.23 mg/L.

Conclusions

NOEC (21 d) = 0.25 mg/L

The study is reliable without restrictions. The fish prolonged toxicity test is considered as supplemental information for the purpose of classification.

11.6.2 Chronic toxicity to aquatic invertebrates

Rufli, H. (1989)

Author:	Rufli, H.
Title:	Report on the Daphnia, reproduction test with CGA 24705 technical
Date:	1989
Doc ID:	Report Number 891103
Guidelines:	OECD-Guideline No. 202, Part 2, Paris 1984, modified according to EEC/OECD ring
	test 1985/86
GLP:	No, but complies with sound scientific standards
Validity:	No (minor deviation)
Previous evaluation:	DAR (2004, 2018)

Executive Summary

Chronic toxicity of metolachlor to *Daphnia magna* has been evaluated in a 21-day reproduction test. Daphnids were exposed to nominal concentrations of 0.024, 0.12, 0.60, 3.0 and 15 mg/L, alongside a solvent control in a semi-static test design. The mean measured concentrations were 0.023, 0.12, 0.54, 2.78 and 13.9 mg/L and the results are based on nominal concentrations. Ten daphnia per concentration and control with one daphnia each per test vessel were employed in the study. Observations made during the test included immobilization, cumulative number of young per female, fraction of dead young and length of time for appearance of first brood. At the highest concentration tested the number of immobilized daphnia was statistically significantly increased and the cumulative number of offspring produced per female was statistically significantly reduced after 21 days. At 3.0 mg/l the fraction of dead young per female was significantly increased and the number of young were affected although these effects were not statistically significant. The EC₅₀ after 21 days was 6.8 mg ai/l. A NOEC of 0.60 mg/L was determined for the fraction of dead young per female. The same NOEC could be assumed based on the number of immobilized adults and the decreased number of offspring. The EC₁₀ and EC₂₀ values for living young per female have been calculated to be 0.56 and 1.21 mg/L, respectively.

Validity criteria

The study does not meet all the current validity criteria for chronic toxicity testing with *Daphnia magna* (OECD 211; 2012):

- Mortality of the parent female *Daphnia* should not exceed 20% at the end of the test (0% in the control).
- DO concentrations were >3 mg/L throughout the study (93 to 128% ASV).

• Mean number of living offspring produced per parent animal surviving at the end of the test should be > 60 (54 observed).

Conclusions

All results are based on nominal concentrations. It was concluded that the 21-day EC_{50} , EC_{20} and EC_{10} reproduction for CGA24705 to *Daphnia magna* was > 3.0 mg, 1.21 mg and 0.56 mg CGA24705/L, respectively. The 21-day NOEC values were 3.0 mg CGA24705/L based on total cumulative number of young and length of time for appearance of first brood, and 0.60 mg CGA24705/L based on fraction of dead young.

This study is considered to be reliable with restrictions and to provide valid and useful data for classification.

NOEC (21 d) = 0.6 mg/LEC₁₀ (21 d) = 0.56 mg/L

Putt, A.E. (1995)

Author:	Putt. A.E.
Title:	Metolachlor technical - the chronic toxicity to Daphnia magna under flow-through conditions.
Date:	1995
Doc ID:	Report Number 95-8-6061
Guidelines:	EPA 850.1300, 72-4(b)
GLP:	Yes
Validity:	Yes
Previous evaluation:	DAR (2004, 2018)

Executive Summary

Chronic toxicity of metolachlor to *Daphnia magna* has been evaluated in a 21-day reproduction test under flow-through conditions. Daphnids were exposed to nominal concentrations of 2.5, 5, 10, 20, 40 mg/L alongside a control and a solvent control. Mean measured concentrations of metolachlor were 0.87, 1.8, 2.9, 5.9 and 12 mg/L and results are based on mean measured values. Forty daphnia per concentration and control with ten daphnia each per test vessel were employed in the study. Observations made during the test included immobilization, cumulative number of young per female, and length of time for appearance of first brood. Furthermore, the length and the dry weight of the parental daphnids were measured at the end of the test. No significant test substance dependent mortality was found during the test period among adult and offspring. At the highest concentration tested (12 mg/l), however, the cumulative number of young per female and the physical constitution of the parental daphnids were impaired after 21 days. None of these effects were found at concentration levels \leq 5.9 mg/l mm. The EC₅₀ after 21 days was > 12 mg ai/l and the LOEC with regard to the number of offspring and the physical constitution of the adults was 12 mg. The NOEC of this study was found to be 5.9 mg/l mm. The derived EC₁₀ for reproduction is 6 mg/L.

Conclusions

NOEC (21 d) = 5.9 mg/LEC₁₀(21 d) = 6 mg/L

The study is reliable without restrictions and considered acceptable for classification.

Müllerschön H. (1990)

Author:	Müllerschön, H.
Title:	Influence of Metolachlor on the reproduction of Daphnia magna
Date:	1990
Doc ID:Report	Number 164204
Guidelines:	OECD Guidelines for Testing of Chemicals, No. 202. Daphnia magna Reproduction test.
	Adopted 21 September 1998
GLP:	Yes
Validity:	No, after 6 day of explosition half oft the 20 daphnia were separated. That means, that half of
the animals wer	e removed.

Executive Summary

The effect of CGA24705 on the survival and reproduction of *Daphnia magna* was determined over 21 days under semi-static conditions. The study was run with a culture medium control, a solvent control and nominal concentrations of 0.25, 0.625, 1.25, 2.5 and 5.0 mg ai/L. Based on nominal concentrations, the 21-day NOEC for reproduction was 2.5 mg ai/L.

Study Design and Methods

Experimental dates: 14th February to 7th March 1990

The test medium was treated with the test article before the introduction of *Daphnia*. The test concentrations were based on the 48 hour EC_{50} value. The final stock was prepared freshly immediately prior to the preparation of the test concentrations. At the respective test days, dilutions of the test article stock were performed. The final concentrations of the test article were: 0.25, 0.625, 1.25, 2.5 and 5.0 mg ai/L. The concentration of Acetone in all test samples amounted to 0.01%. The test medium was renewed at day 3, 6, 8, 10, 13, 15, 17, and 20 of the exposure period.

The *Daphnia* were fed with the same time intervals as test medium renewal on the green alga (*Scenedesmus subspicatus*).

The mortality of adults and the number of young was controlled three times per week before renewal of the test media. Dead animals and offsprings were removed at the observation dates.

The concentration of the test article was determined at the first and the last treatment period directly after treatment and at the end of the respective period. Analyses were performed in duplicate with low, medium and high test concentrations. Test concentrations were determined by Nitrogen-phosphate detection.

The pH and concentration of dissolved oxygen were measured in one replicate at the start and end of the test and in the new and old solutions at each medium renewal. At the same time the temperature was measured in one of the control replicates. The room temperature was continually monitored. The appearance of the test medium was visually recorded for the old and new media at the beginning and end of each medium renewal.

Results and Discussion

The measured concentration of the test item in the new test media were in the range 96.4 to 117.8% of the nominal values and the measured concentrations in the old media were in the range 92.0 to 112.0 % (see table below). Therefore, the test item was stable in the test medium over the renewal periods of 48 hours. Nominal concentrations were used for the calculation and reporting of the results.

Survival of the parent animals was 100 % in the solvent control and in the water control and in all test concentrations up to and including 0.250 mg ai/L. At the highest concentration (5.00 mg ai/L) all parent daphnids survived until the end of the test.

The first brood juveniles were observed on day10 in the controls and all test concentrations up to and including 2.50 mg ai/L. Hence, time to first brood was unaffected at these concentrations.

The NOEC (No Observed Effect Concentration) is defined as the highest tested concentration at which there

was no observed effect on the reproduction of the parent Daphnia within the period of the test and was determined directly from the data.

Conclusions

It was concluded that the 21-day EC₅₀ reproduction for CGA24705 to *Daphnia magna* was > 5.000 mg ai/L, based on the nominal concentrations. The 21-day NOEC was 2.5 mg ai/L. Estimation of EC10 and EC20 values was not conducted.

The study is reliable with restrictions and should be considered for classification.

T.Z, Krueger H.O. (2004)
Palmer S.J.; Kendall T.Z.; Krueger H.O.
A Flow-Through Life-Cycle Toxicity Test with the Cladoceran (Daphnia magna)
2004
Report Number 528A-130
OECD (1984). OECD Guidelines for Testing of Chemicals, No. 211. Daphnia magna
Reproduction test. Adopted 21 September 1998
Yes
Yes
DAR (2018)

D-1-CI Vandall T7 V

Executive Summary

The effect of CGA77102 on the survival, growth and reproduction of *Daphnia magna* was determined over 21 days. The study was run with a dilution water control, a solvent control and nominal concentrations of 2.5, 5.0, 10, 20 and 40 mg a.s./L. Mean measured concentrations at the start and the end of the study were 90.6 - 104% of nominal. Based on mean measured concentrations, the 21-day NOEC and EC10 for first generation growth (lowest endpoint obtained) was 5.2 mg a.s./L and 1.29 mg/L, respectively.

Conclusions

NOEC (21 d) = 5.2 mg/L $EC_{10} (21 \text{ d}) = 1.29 \text{ mg/L}$

The study is reliable without restrictions and considered acceptable for classification.

Lima, W., (1999)	
Author:	Lima, W.
Title:	S-metolachlor (CGA 77102) – Life-cycle toxicity test with mysid (Mysidopsis bahia)
	Novartis Crop Protection AG, Basel
Date:	1999
Doc ID:	Report N° 1781.6575
Guidelines:	EPA 850.1300, 72-4
GLP:	Yes
Validity:	Yes
Previous evaluation:	DAR (2018)

Executive summary

The chronic toxicity of CGA77102 to the mysid (*Mysidopsis bahia*) was determined under flow-through conditions. Mysids were exposed to nominal concentrations of 19, 38, 75, 150, 300 and 600 μ g CGA77102/L (18, 37, 62, 130, 250 and 510 μ g CGA77102/L, mean measured), together with a dilution water control. Based on statistical analysis of female mysid length (determined to be the most sensitive performance criteria), the 28-day LOEC was 300 μ g CGA77102/L. The results are reported using nominal concentrations as the mean measured concentrations are in the range 82 – 97 % of nominal values.

Study Design and Methods

The life-cycle toxicity test was conducted under flow-through conditions. An intermittent-flow proportional diluter was used to deliver the test substance at a rate of approximately 7.7 aquarium volume additions per day to provide a 90% test solution replacement rate of 7 hours. Each day a 90 µg CGA77102/L stock solution was prepared by diluting 0.73 g of test material in NANOpure® water to a total volume of 8L. This was pumped into the mixing chamber at 13.2 mL/cycle together with 1.975 L of dilution water per cycle. The solution in the mixing chamber constituted the highest nominal test concentration (600 μ g/L) and was diluted (50%) to provide the remaining nominal test concentrations (300, 150, 75, 38 and 19 µg CGA77102/L). The test chambers were impartially positioned within a water bath to maintain temperature. Two replicate tanks were prepared for the controls and each test solution. After 4 days of test system equilibration, 15 mysids were randomly allocated to each retention chamber. When a sufficient number of mysids reached sexual maturity (day 14) one mature male and one mature female were randomly assigned to each of the pairing chambers. Observations were made daily for mortality and clinical symptoms of toxicity throughout the test. The number of offspring produced per female per reproductive day was recorded after pairing. At test termination total body length (to the nearest 0.1mm) using a dissecting microscope with calibrated stage micrometer, and total dry body weight for each mysid was determined (to the nearest 0.01 mg). Temperature, dissolved oxygen concentration, pH and salinity were measured daily in each replicate of each treatment level and the control solutions. The concentrations of test material in the dilution water control and the high, middle and low test concentrations before test initiation and test solutions from alternating replicates of each treatment level and control were measured at test day 0, 7, 14, 21 and 28 using HPLC/UV analysis. Effects on survival, reproduction and growth were analysed using William's Test. The percentage survival data underwent angular (arcsine square-root percentage) transformation before significant differences were determined. The Bartlett's test was used to analyse the homogeneity of variance.

Results and Discussion

All validity criteria set out in the guideline were met. The analytically determined mean measured concentrations of CGA77102 ranged from 82 to 97% of nominal values (see table below). The limit of quantification in this study was 0.00223 mg CGA77102/L. Mean measured concentrations were used for the calculation and reporting of results

Nominal concentrations	Mean measured concentrations	% Number of surviving	Offspring/ female/ reproductive day ^a	Mean dr (m	y weight g) ^a	Mean bo (mi	dy length m) ^a
(µg CGA77102/L)	(µg CGA77102/L)	adults ^a		Male	Female	Male	Female
Control	Control	73	0.98	0.94	1.4	7.7	8.1
19	18	75	0.85	0.99	1.3	8.0	8.0
38	37	73	1.1	0.94	1.2	7.5	8.0
75	62	80	1.0	1.0	1.3	7.9	8.0
150	130	90	1.1	1.0	1.4	7.9	7.9
300	250	85	0.59	0.93	1.2	7.7	7.7 ^b

Table 62: Effects on reproduction, growth and survival of the adult generation

	600	510	83	0.17 ^b	0.88	1.1 ^b	7.4	7.5 ^b
a	Values presented have	been rounded to two sig	gnificant figures					

b Significantly different ($p \le 0.05$) from the control (Williams' Test)

Survival of the parent animals was 73 % in the control and the survival rate was equal to or higher than this in all test concentrations. A statistically significant inhibitory effect on the reproductive success of mysids over 28 days, together with decrease in mean dry weight, was observed at 600 μ g CGA-77201/L (see table below). However, at 300 μ g CGA-77201/L a 40 % reduction of reproductive success was observed but not statistically significant. A statistically significant decrease in mean dry weight and mean body length of female mysids was observed at concentrations of 600 μ g CGA77102/L and 300 μ g CGA77102/L, respectively. The 28-day NOEC based on female body length was determined to be 150 μ g CGA77102/L. The derived EC₁₀ value for reproduction results in 182 μ g CGA77102/L.

Conclusions

NOEC (28 d) = 0.15 mg/LEC₁₀ (28 d) = 0.182 mg/L

The study is reliable without restrictions and considered acceptable for classification.

Grade, R., (1989)

Author: Title:	Grade, R. Acute toxicity test of CGA 77102 tech. on sediment-dwelling Chironomus riparius (syn. Chironomus thummi) under static conditions
Date:	1998
Doc ID:	Report N° 971562
Guidelines:	BBA Guideline Proposal 1995; Guideline for toxicity test with Chironomidae was proposed in November 1997
GLP:	Yes
Validity:	Yes
Previous evaluation:	DAR (2018)

Executive summary

The purpose of these tests is to determine the effects of CGA 77102 tech. on the day of test, first emergence, the time distribution (peak) of emergence of male and female midges, and the total number of fully emerged male and female midges (Chironomus riparius larvae (1st instar, 1-3 days old).

For the assessment of possible effects of such substances on sediment dwelling organisms an OECD

Guideline for toxicity test with Chironomidae was proposed in November 1997. Two exposure scenarios are included in the Test Guideline. Therefore, the study was extended to cover both types of exposure, i.e. CGA 77102 was tested with exposure scenario A and exposure scenario B in separate test vessels. The test was performed with:

Exposure scenario A: By applying a range of concentrations of CGA 77102 to the water column ofsedimentwater systems containing 25 first instar larvae of Chironomus riparius each under static conditions. 24 hours after addition of the test organisms, 10 mL of test substance (in stock solu-tions) was introduced by pipette below the surface into the water column of the test system.

Exposure scenario B: By mixing CGA 77102 directly into aged artificial sediment at a range of concentrations prior to introduction of Chironomus larvae. Spiked sediment and water were added to the test vessels 23 hours prior to test initiation.

The studies were conducted in 1 L glass beakers containing about 1.5 cm artificial sediment and a water column of a height of approximately 8 cm at the beginning of the lest and about 6 cm at the end of the test (samples for chemical analysis were taken during the test). The tests were performed at a constant temperature of $20 \pm 2^{\circ}$ C with a photoperiod of 16 hours light (intensity 800 ± 200 lux) and 8 hours dark (twice/day ca. 30 minutes transition period). The biological assessment was based on impacts on full maturation of the larvae to adult midge. Main parameters examined were the rate and time of emergence and the total number of fully emerged male and female midges.

Study Design and Methods

Water spiked:

1 L glass beakers (tall form. 9 cm diameter) were filled with a layer of 1-2 cm of artifical sediment (corresponding to 86 g sediment (moist weight); for composition of the sediment see Table below).

The sediment was overlaid with reconstituted water of a height of approximately 8 cm. The water level was marked outside on the test beaker. The test beakers were then covered with parafilm to reduce evaporation throughout the test and to allow collection of emerged midges. Gentle aeration was provided through a glass pasteur pipette situated about 2 to 3 cm above the sediment.

The test beakers were prepared 15 days before the start of the definitive test (test substance application) to allow stabilization of the systems under test conditions.

One day before treatment, 25 larvae of the first larval stage were allocated randomly to each test vessel with a blunt pipette. After addition of the larvae aeration was stopped for the following 24 hours.

The application of the test substance was carried out one day later.

The stock solutions (see 2.4.1) were added to the water column of the test vessels below the water surface by using a pipette and gently mixing the upper water Jayer to ensure homogeneous distribution without disturbing the sediment.

Foreach test concentration and for the control three replicates were carried out. The test system was kept in a temperature controlled room at 20 $^{\circ}$ C, a relative air humidity of > 70% under a light:dark rhythm (16-8h) and a light intensity of 800 to 1000 Iux.

Results and Discussion

The nominal test concentrations added to the water column were 0.5, 1, 2, 4, 8, 16 and 32 mg/L. The actual measured test concentrations in the water phase were 0.57, 1.14, 2.16, 4.25, 8.59, 12.8 and 13.9 mg/L at test day 0 (1-3 hours after application). At the end of the test (test day 28) water concentrations had decreased to average values of 0.06, 0.12, 0.25, 0.49, 0.66, 2.82 and 8 mg/L, respectively. The substance concentrations in sediment were analyzed from samples with the highest administration rates, i.e. 32 mg/L. The measured test substance concentrations in sediment (incl. interstitial water) were 28.8, 26.2 and 21.5 mg/kg fresh weight at day 0, 7 and 28, respectively.

Calculations of effect concentrations in the study report for the rate of emergence, the delevopment time and the rate of development (reciprocal of the development time) were based on nominal concentrations in the water phase. Recalculated effect concentrations for emergence rate and development rate are based on mean measured concentrations using the drc package 3.0.1 and R version 3.5.1.

As the test substance was disappearing from the test system over time (37% in the highest concentration), results should be preferably based on mean measured concentrations.

Based on mean measured concentrations the effect concentrations are as follows:

- Emergence rate (log-normal model):

 $\begin{array}{l} EC_{10}: 5.4 \; (CI: \; 3.7 - 7.1) \\ EC_{20}: 5.7 \; (CI: \; 4.8 - 6.6) \\ EC_{50}: \; 6.3 \; (CI: \; 5.4 - 7.2) \end{array}$

 Development rate (log-logistic model): EC₁₀ 5.8 (CI: 4.6 – 7) EC₂₀ 6.1 (CI: 5.3 – 6.9) EC₅₀ 6.8 (CI: 2.3 – 11.3)

Based on mean measured concentrations the NOEC is determined as 2.38 mg/L and 6.01 mg/L for emergence rate and development rate, respectively.

Conclusions

The EC-50 values for emergence rate and development rate of Chironomus riparus were 6.3 and 6.8 mg/L respectively, for organisms exposed to CGA 77102 via spiking of the water column based on mean measured concentrations in the water phase. The corresponding NOEC values based on mean measured concentrations in the water phase were 2.38 and 6.01 mg/L for emergence rate and development rate, respectively. The study is reliable without restrictions and can be used for classification.

11.6.3 Chronic toxicity to algae or other aquatic plants

Please refer to section 11.5.3. Endpoints used for acute and chronic classification regarding algae and other aquatic plants do not differ and are not repeatedly listed in this section.

11.6.4 Chronic toxicity to other aquatic organisms

No information available. All the information on chronic toxicity is taken from the RAR and list of endpoints for S-metolachlor, January 2018.

11.7 Comparison with the CLP criteria

Please note that solely studies for S-metolachlor (CGA-77102) are considered for classification. Studies for metolachlor (CGA 24705) are listed in this CLH-report for completeness.

Based on the aquatic toxicity tests with S-Metolachlor and its general degradability degradation products are not assumed to cause the observed toxicity. Additionally, degradation products of S-metolachlor are clearly less toxic compared to the parent (please refer to the RAR of S-metolachlor). Degradation products of S-metolachlor do not need to be considered for classification.

11.7.1 Acute aquatic hazard

Suitable data is available for all three trophic levels. S-metolachlor fulfils the classification criteria for Aquatic Acute 1. The acute toxicity to algae and aquatic plants is pivotal with E_rC_{50} values of 0.056 mg/L (*P. subcapitata*) and 0.062 mg/L (*E. canadensis*), respectively. The lowest observed acute toxicities to fish and crustaceans are located between 1 and 10 mg/L (most sensitive species for fish and crustaceans are *O. mykiss* and *M. bahia* with LC₅₀ of 1.23 and 1.4 mg/L, respectively).

11.7.2 Long-term aquatic hazard (including bioaccumulation potential and degradation)

S-metolachlor fulfils the criteria for classification as Aquatic Chronic 1 since its chronic toxicity to aquatic species from two out of three trophic levels is below 0.1 mg/L and the substance is not rapidly biodegradable. The most sensitive species for fish is *P. promelas* with a NOEC of 0.03 mg/L, the most sensitive species for crustaceans is *M. bahia* with an EC₁₀ of 0.182 mg/L and most sensitive species for algae and aquatic plants is *L. gibba* with a NOEC of 0.0021 mg/L.

Based on the experimentally determined BCF in fish of 255, S-metolachlor is not considered to have a potential to bioconcentrate for classification purposes.

11.8 CONCLUSION ON CLASSIFICATION AND LABELLING FOR ENVIRONMENTAL HAZARDS

S-metolachlor can be classified as Aquatic Acute 1 with an M-factor of 10 (0.01 mg/L < L(E)C₅₀ \le 0.1 mg/L) based on the acute toxicity to algae.

S-metolachlor can be classified as Aquatic Chronic 1 with an M-factor of 10 ($0.001 < \text{NOEC} \le 0.01 \text{ mg/L}$) based on the long-term toxicity to aquatic plants and the substance being not rapidly biodegradable.

RAC evaluation of aquatic hazards (acute and chronic)

Summary of the Dossier Submitter's proposal

The information presented by the DS is taken from the RAR (Rev. 1 – January 2018) and list of endpoints (January 2018) for *S*-metolachlor. Additional information on aqueous photolysis in natural water is taken from the RAR (Rev. 1 - 21 August 2020). Solely studies for *S*-metolachlor are considered for classification. Studies for metolachlor are listed by the DS for completeness.

Data are available for all three trophic levels. For acute toxicity, the primary producers, algae and aquatic plants are the most sensitive species with E_rC_{50} values of 0.056 mg/L (*P. subcapitata*) and 0.062 mg/L (*E. canadensis*). The lowest observed acute toxicities to fish and crustaceans are located between 1 and 10 mg/L (most sensitive species for fish and crustaceans are *O. mykiss* and *M. bahia* with LC₅₀ of 1.23 and 1.4 mg/L, respectively).

For chronic toxicity, the most sensitive species for fish is *P. promelas* with a NOEC of 0.03 mg/L, the most sensitive species for crustaceans is *M. bahia* with an EC₁₀ of 0.182 mg/L and most sensitive species for algae and aquatic plants is *L. gibba* with a NOEC of 0.0021 mg/L.

Based on Grade (1996), S-metolachlor is not readily degradable, where the mineralization of S-metolachlor under the test conditions was 0% in 29 d, based on an OECD TG 301B study.

Based on the experimentally determined BCF in fish of 255, S-metolachlor is not considered to have a potential to bioconcentrate for classification purposes.

The DS concluded that S-metolachlor can be classified as Aquatic Acute 1 with an M-factor of 10 (0.01 mg/L < $L(E)C_{50} \le 0.1$ mg/L) based on the acute toxicity to algae and as Aquatic Chronic 1 with a M-factor of 10 (0.001 mg/L < NOEC ≤ 0.01 mg/L) based on the long-term toxicity to aquatic plants and the not rapidly degradable property.

Comments received during consultation

During the consultation, one MSCA supported the DS classification proposal and a National Authority agreed on the DS proposal and asked for clarifications about:

 The OECD TG 239 validity criteria, regarding the mean coefficient of variation for yield based on measurements of shoot fresh weight in the control not exceeding 35% between replicates in Teixeira (2006a), is met. The DS confirmed that the coefficient of variation

for yield based on shoot wet weight was 19.91% and then, the validity criteria given in OECD TG 239 (< 35%) was met.

- To compare the robustness of E_rC10 and E_rC20 endpoints with the coefficient of variations which should not exceed the level effect value and to determine if the NOEC should be preferred in Teixeira (2006a) study. The DS agreed that according to OECD TG 239 the 7-d E_rC_{10} of 0.0049 mg/L (mean measured: mm) is not reliable, as the Coefficient of Variance is 19.91% (> 10%). However, it is noted that (i) OECD TG 239 for *Myriophyllum spicatum* is only used as surrogate guideline for the study with *Elodea canadensis*, (ii) the width of the confidence interval of the E_rC_{10} (0.0013 - 0.011 mg/L) is acceptable and below the E_rC_{20} (0.029 mg/L) and (iii) the 7-d E_rC_{10} of 0.0049 mg/L is not a relevant endpoint for the classification of *S*-metolachlor. Therefore, a change to the NOE_rC as relevant long-term endpoint is not considered by the DS sufficiently justified and they would retain the current classification.
- A need to report the EC_{10} and EC_{20} values in Lemna gibba study (Eckenstein, 2014) as they are preferred over NOEC values for the classification purposes. As fronds were removed from test vessels for use in the recovery phase before the final dry weight determination, the National Authority emphasised these uncertainties and considers that dry weight endpoints should not be used for classification and that the endpoints based on frond number are more relevant. The DS presented the dose-response curve and considered that as all replicates of the second and third lowest treatment level are above the value predicted by the model, the uncertainty in the model itself and the derivation of an E_rC_{10} is considered to be high. As the NOEC can unambiguously be set at 0.0021 mg/L, the DS considered that this endpoint is the most reliable endpoint relevant for classification purposes. The DS considered that endpoints related to dry weight are reliable and can be used for classification purposes. Twelve fronds were taken at the end of the 7-d exposure phase for a subsequent study of the recovery. In the treatments with expected low frond numbers (100 - 1000 µg a.s./L) three additional treatments were available to conduct the recovery study. In the lower treatments (control, 2.1, 9.8 and 22 μ g a.s./L), the amount of fronds observed in the replicates were between 87 and 167. The dry weights were corrected for the missing 12 fronds. Due to the high amount of fronds in the affected treatments, the DS considered that the missing 12 fronds randomly taken from each replicate were not expected to modify the overall results.

Assessment and comparison with the classification criteria

Degradation

The table below summarised the relevant information on rapid degradability.

Method	Results	Reference
OECD TG 301B	Ready biodegradability	Grade, 1996
	CO ₂ formation	
	0% in 29 d	
	S-metolachlor is not readily degradable	
	Deviation: one scrubber used	
	Reliability = 1	
OECD TG 111	Hydrolytic degradation of the active substance	Keller, 1996
	and metabolites > 10%	

Table: Relevant information on degradation

	pH 5 at 25°C: no degradation within 30 d pH 7 at 25°C: no degradation within 30 d pH 9 at 25°C: no degradation within 30 d	
OECD TG 309	Aerobic mineralisation in surface water S-metolachlor DT_{50} values are normalised to 20°C DT_{50} whole system = 74 d [at 10 µg/L] DT_{50} whole system = 97 d [at 95 µg/L]	Crabtree, 2014
	Metabolite CGA40172: Max in total system 9.1% after 58 days. DT ₅₀ -values were not applicable Mineralisation: Fresh water plus suspended sediment [10 μ g/L]: 4.5% after 58 d Fresh water plus suspended sediment [95 μ g/L]: 3.9% after 58 d Reliability 1	
BBA Guideline Part IV; 5-1	Degradation in water/sediment system: DT_{50} between 33.6 and 54.8 days at 20°C Mineralisation 2% max after 180 days Not readily biodegradable Reliability = 1	Mamouni, 1997

Under a pH range (1-9), S-metolachlor is found to be hydrolytically stable in a valid OECD TG 111 assay, with a degradation half-life far above 200 days.

The ready biodegradability of S-metolachlor is measured by CO_2 production in a valid OECD TG 301B assay during 29 days at 21 ± 2°C (Grade, 1996). No inhibition of the test reference (sodium benzoate) was observed with S-metolachlor.

The mineralisation rate and route of degradation of ¹⁴C-*S*-metolachlor was investigated in natural water with a valid OECD TG 309 assay. The systems were incubated under aerobic conditions and maintained under a diffuse non-UV light/dark cycle (16 hours/8 hours) at 20°C for up to 58 days. The mean mass balances for all incubation groups were 94.0% to 96.6%. For the non-sterilised, viable test systems, the mean levels of parent compound decreased to between 54.0 and 62.2% at the end of the incubation period (58 days), with resultant DegT₅₀ values ranging from 74 to 97 days. For the sterilised samples, *S*-metolachlor was found to be stable with 92.4% applied radioactivity (AR, mean) remaining at 58 DAT. CGA40172 was the only metabolite found at \geq 5%, reaching a maximum level of 9.1% AR at 58-d. Less than 5% of *S*-metolachlor was mineralised to carbon dioxide.

The mineralisation rate and route of degradation of ${}^{14}C-S$ -metolachlor was investigated in river and pond in water/sediment system in a valid BBA guideline assay. For river and pond, under aerobic and anaerobic incubation conditions the same range of DT₅₀ values of between 42 and 53 days at 20°C were determined. At temperatures below 10°C, the degradation half-life was by a factor of three longer. Two main metabolites were detected.

The DS presented in the CLH report studies regarding degradation of *S*-metolachlor in soil with a metabolic pathway proposal. This information is not used for classification purpose.

RAC concludes that S-metolachlor was found not to be readily biodegradable in the OECD TG 301B and limited mineralisation was observed in the water surface simulation and

water/sediment simulation studies. Thus, RAC concurs with the DS conclusion and considers **S-metolachlor as not rapidly degradable**.

Bioaccumulation

Bioconcentration factors of *S*-metolachlor were measured and calculated in bluegill sunfish (*Lepomis macrochirus*) assay (Anonymous, 2001). Bioconcentration factors (measured and calculated) were based on analyses of water and fish tissues for total radioactive residues. The study was conducted with nominal concentrations of 0.03 and 0.003 mg/L *S*-metolachlor. The study is considered valid as temperature variations were less than $\pm 1^{\circ}$ C, the dissolved oxygen remained above 60% air saturation value (ASV), test item concentrations were maintained within $\pm 20\%$ of the mean measured values during the accumulation phase, mortality of the batch of fish used was less than 5% during the 7 days preceding the test and were low (1 fish) during the accumulation phase.

Nevertheless, the study was not performed according to the newest guideline OECD TG 305 of October 2nd, 2012. It is stated in OECD TG 305 that "*the increase in fish mass during the test will result in a decrease of test substance concentration in growing fish (so-called growth dilution), and thus the kinetic BCF will be underestimated if not corrected for growth"; this was not done in the study. In the study report and the summary provided by the applicant it is not clear if BCF was based on the S-isomer or total radioactivity. Lipid content for whole fish at day 28 was not reported but needed to express the BCF based on 5% lipid content as laid out in OECD TG 305. Lipid normalisation will therefore be based on initial lipid content. Feeding was relatively high in the study (2% of wet body weight per day). This may have led to a relatively high increase of the lipid content and a dilution of <i>S*-metolachlor in fat.

To derive a BCF for the assessment of bioaccumulation, the worst-case BCF value of 112 (whole fish, low dose) is normalised to 5% lipid using the lipid content of 2.2 measured at the first day of exposure as a reference. This yields a BCFss of 255.

Overall from this study RAC and the DS concluded that *S*-metolachlor BCF in fish is 255, which is below the CLP criteria of 500 that indicates **a low bioconcentration potential for classification purposes**.

Acute aquatic toxicity

The DS presented metolachlor and *S*-metolachlor data. RAC considers that for classification purpose of *S*-metolachlor and as the dataset is complete, only data on this substance is taken into account and data on metolachlor is considered as additional data.

The table below presents a summary of relevant valid information on acute aquatic toxicity of S-metolachlor.

Table: Relevant information on acute aquatic toxicity

Method	Species	Test material	Results	Remarks	Reference
Fish					
EPA- 660/3- 75009; 1975	Oncorhynchus mykiss (Salmo gairdneri)	CGA 77102 (<i>S</i> - metolachlor)	LC₅₀ (96 h) = 1.23 mg a.s./L (initial	Key study Minor deviation from validity	Anonymou s, 1983a

			Measured, im)	Reliability 2	
EPA-660/3- 75009; 1975	Lepomis macrochirus	CGA 77102 (S- metolachlor)	$LC_{50} (96 h)$ = 3.16 mg a.s./L (im)	Minor deviation from validity Reliability 2	Anonymous, 1983b
FIFRA Guideline 72-1	Oncorhynchus mykiss	CGA 77102 (S- metolachlor)	LC ₅₀ (96 h) = 12 mg a.s./L	Minor deviation from validity Reliability 2	Anonymous, 1995a
OECD TG 203	Cyprinus carpio	CGA 77102 (S- metolachlor)	LC ₅₀ (96 h) = 20 mg a.s./L (mm)	Reliability 1	Anonymous, 2006
OPPTS 850.1075	Cyprinodon variegates	CGA 77102 (S- metolachlor)	LC ₅₀ (96 h) = 17 mg a.s./L (mm)	Reliability 1	Anonymous, 2004
Invertebrat	es				
ASTM 1981; EPA660/3- 75-009	Daphnia magna	CGA 77102 (S- metolachlor)	EC ₅₀ (48 h) = 11.24 mg/L (im)	No analytical verification of test concentration s at the end of the test.	Spare, 1983c
EPA 850 1035	Mysidopsis bahia	CGA 77102	LC ₅₀ (96 h)	Reliability 2 Key study	Spare,
723		(S- metolachlor)	= 1.4 mg/L (mm)	Reliability 1	19830
FIFRA Guideline Number 72- 2(a)	Daphnia magna	(S- metolachlor) CGA 77102 (S- metolachlor)	= 1.4 mg/L (mm) LC ₅₀ (48 h) = 26 mg/L (mm)	Reliability 1 Exceedance of the allowed solvent concentration Reliability 2	Collins, 1995b
FIFRA Guideline Number 72- 2(a) OPPTS Number 850.1025	Daphnia magna Crassostrea virginica	(S- metolachlor) CGA 77102 (S- metolachlor) CGA 77102 (S- metolachlor)	= 1.4 mg/L (mm) LC ₅₀ (48 h) = 26 mg/L (mm) EC ₅₀ (96 h) = 4 mg/L (mm)	Reliability 1 Exceedance of the allowed solvent concentration Reliability 2 Reliability 1	Collins, 1995b Palmer et al., 2004b
FIFRA Guideline Number 72- 2(a) OPPTS Number 850.1025 Algae and a	Daphnia magna Crassostrea virginica quatic plants	(S- metolachlor) CGA 77102 (S- metolachlor) CGA 77102 (S- metolachlor)	= 1.4 mg/L (mm) LC ₅₀ (48 h) = 26 mg/L (mm) EC ₅₀ (96 h) = 4 mg/L (mm)	Reliability 1 Exceedance of the allowed solvent concentration Reliability 2 Reliability 1	Collins, 1995b Palmer et al., 2004b
FIFRA Guideline Number 72- 2(a) OPPTS Number 850.1025 Algae and a OECD TG 201	Daphnia magna Crassostrea virginica quatic plants Skeletonema costatum	(S- metolachlor) CGA 77102 (S- metolachlor) CGA 77102 (S- metolachlor) CGA 77102 (S- metolachlor)	= 1.4 mg/L (mm) LC ₅₀ (48 h) = 26 mg/L (mm) EC ₅₀ (96 h) = 4 mg/L (mm) Er _C ₅₀ (72 h) = 0.340 mg/L E _r C ₁₀ (72 h) = 0.013 mg/L (mm)	Reliability 1 Exceedance of the allowed solvent concentration Reliability 2 Reliability 1 Minor deviation from validity criteria Reliability 2	Collins, 1995b Palmer et al., 2004b Hoberg, 1995b

			= 0.012 mg/L (mm)		
OECD TG 201	Navicula pelliculosa	CGA 77102 (S- metolachlor)	E_rC_{50} (72 h) = 31 mg/L NOEC (growth, 72 h) = 9.7 mg/L (mm)	Reliability 1	Desjardins et al., 2003
OPPTS 850.4450	Elodea canadensis	CGA 77102 (<i>S</i> - metolachlor)	$E_{r}C_{50} (7 d) = \\0.062 \\mg/L \\E_{r}C_{10} (7 d) \\= \\0.0049 \\mg/L \\(mm)$	Key study Reliability 2	Teixeira, 2006a
OPPTS 850.4450	Myriophyllum heterophyllum	CGA 77102 (<i>S</i> - metolachlor)	E_rC_{50} (7 d) = 0.065 mg/L NOEC (growth, 7 d) = 0.01 mg/L (mm)	Supplemental information	Teixeira, 2006b
OECD TG 221	Lemna gibba	CGA 77102 (S- metolachlor)	E_rC_{50} (7 d) = 0.133 mg/L NOEC (growth, 7 d) = 0.0021 mg/L (mm)	Reliability 1	Eckenstein, 2014
OECD TG 221	Lemna gibba	CGA 77102 (<i>S</i> - metolachlor)	E _r C ₅₀ (7 d) = 0.149 mg/L NOEC = 0.00384 mg/L (mm)	Reliability 1	Kümmric, 2019

Valid results for the three trophic levels (fish, invertebrates and primary producers) are available. For fish and invertebrates, the L(E)C₅₀ are above 1 mg/L and the most sensitive fish species is the *O. Mykiss* (rainbow trout, $LC_{50} = 1.23 \text{ mg/L}$) and *M. Bahia* (EC₅₀ = 1.4 mg/L) is the most sensitive invertebrates. As expected for an herbicide, primary producers are the most sensitive and the reference values are below 1 mg/L for *P. subcapitata* and *E. canadensis*, E_rC₅₀ = 0.056 mg/L and 0.062 mg/L respectively.

RAC concurs with the DS proposal that S-metolachlor fulfils the classification criteria for Aquatic Acute 1 with an M-factor of 10 as 0.01 mg/L < $L(E)C_{50} \leq 0.1$ mg/L based on the acute toxicity to algae.

Chronic aquatic toxicity

The DS presented metolachlor and S-metolachlor data. RAC considers that for classification purpose of *S*-metolachlor and as the dataset is complete only data on this substance is taken into account and data on metolachlor is considered as additional data.

The table below presents a summary of relevant valid information on chronic aquatic toxicity of S-metolachlor.

Method	Species	Species Test material		Remarks	Reference	
Fish	sh					
FIFRA Guideline 72-4	Pimephales promelas	CGA 77102 (S- metolachlor)	NOEC (35 d) = 0.03 mg/L (mm)	Key study Reliability 1	Anonumous, 1999	
FIFRA Guideline Reference No. 72-4	Cyprinodon variegatus	CGA 77102 (S-metolachlor)	NOEC (34 d) = 1.3 mg/L (mm)	Reliability 1	Anonymous, 2000	
Invertebrat	tes	•	•	•		
OECD TG 211	Daphnia magna	CGA 77102 (S-metolachlor)	NOEC (21 d) = 5.2 mg/L EC ₁₀ (21 d) = 1.29 mg/L (mm)	Reliability 1	Palmer et al., 2004	
EPA 850.1300, 72-4	Mysidopsis bahia	CGA 77102 (S- metolachlor)	NOEC (28 d) = 0.15 mg/L EC ₁₀ (28 d) = 0.182 mg/L (nominal)	Key study Reliability 1	Lima, 1999	
Guideline Proposal 1995	Chironomus riparius	CGA 77102 (S-metolachlor)	NOEC (28 d) = 8 mg/L (nominal)	Reliability 1	Grade, 1998	
Algae and a	quatic plants	·	· · · · · · · · · · · · · · · · · · ·	•		
OECD TG 201	Skeletonema costatum	CGA 77102 (S-metolachlor)	ErC50 (72 h) = 0.340 mg/L $E_rC_{10} (72 h) =$ 0.013 mg/L (mm)	Reliability 1	Hoberg, 1995b	
OECD TG 201	Pseudokirchneriella subcapitata	CGA 77102 (S-metolachlor)	E_rC_{50} (72 h) = 0.056 mg/L NOEC (growth, 72 h) = 0.012 mg/L (mm)	Reliability 1	Memmert, 2006	
OECD TG 201	Navicula pelliculosa	CGA 77102 (S-metolachlor)	E_rC_{50} (72 h) = 31 mg/L NOEC (growth, 72 h) = 9.7 mg/L (mm)	Reliability 1	Desjardins et al., 2003	
OPPTS 850.4450	Elodea canadensis	CGA 77102 (S-metolachlor)	E_rC_{50} (7 d) = 0.062 mg/L E_rC_{10} (7 d) = 0.0049 mg/L (mm)	Reliability 2	Teixeira, 2006a	
OPPTS 850.4450	Myriophyllum heterophyllum	CGA 77102 (S-metolachlor)	E_rC_{50} (7 d) = 0.065 mg/L NOEC (growth, 7 d) = 0.01 mg/L (mm)	Supplemental information	Teixeira, 2006b	

FIFRA Guideline number 122-2 and 123-2	Lemna gibba	CGA 77102 (S-metolachlor)	E_rC_{50} (14 d) = 0.039 mg/L NOEC (growth, 14 d) = 0.0076 mg/L (mean measured)	Reliability 1	Hoberg, 1995d
OECD TG 221	Lemna gibba	CGA 77102 (S- metolachlor)	E _r C ₅₀ (7 d) = 0.133 mg/L NOEC (growth, 7 d) = 0.0021 mg/L (mm)	Key study Reliability 1	Eckenstein, 2014

Valid results for the three trophic levels (fish, invertebrates and primary producers) are available. *P. promelas* (NOEC = 0.03 mg/L) and *M. Bahia* ($EC_{10} = 0.182$ mg/L) are the most sensitive species for fish and invertebrates respectively. Primary producers are the most sensitive and the reference values are below 0.01 mg/L for *L. gibba* and *E. canadensis*.

As S-metolachlor is considered as not rapidly degradable, RAC concurs with the DS proposal that S-metolachlor fulfils the classification criteria for Aquatic Chronic 1 with a M-factor of 10 as 0.001 mg/L < NOEC, $\text{EC}_{10} \le 0.01 \text{ mg/L}$ based on the acute toxicity to algae

Conclusion on classification

RAC concluded that a classification for Aquatic Acute 1 with an M-factor of 10 as 0.01 mg/L $< L(E)C_{50} \le 0.1$ mg/L and Aquatic Chronic 1 with an M-factor of 10 as 0.001 mg/L < NOEC, $EC_{10} \le 0.01$ mg/L is warranted for S-metolachlor.

12 EVALUATION OF ADDITIONAL HAZARDS

12.1 Hazardous to the ozone layer

This endpoint is not addressed in the CLH report.

13 REFERENCES

Author(s)	Year	Title
		Report no. published or not
Alavanja, M. C. Dosemeci, M., Samanic, C., Lubin, J., Lynch, C.F., Knott, C., Barker, J., Hoppin, J.A., Sandler, D.P., Coble, J., Thomas, K., Blair, A.	2004	Pesticides and lung cancer risk in the agricultural health study cohort. American Journal of Epidemiology 160(9): 876-885. Published.
Alavanja, M. C., Samanic, C., Dosemeci, M., Lubin, J., Tarone, R., Lynch, C.F., Knott, C., Thomas, K., Hoppin, J.A., Barker, J., Coble, J., Sandler, D.P., Blair, A.	2003	Use of Agricultural pesticides and prostate cancer risk in the agricultural health study cohort. American Journal of Epidemiology 157(9): 800-814. Syngenta File No. NA_15123. Unpublished
Andreotti, G., Freeman, L.E., Hou, L., Coble, J., Rusiecki, J., Hoppin, J.A., Silverman, D.T., Alavanja, M.C.	2009	Agricultural pesticide use and pancreatic cancer risk in the Agricultural Health Study. Cohort. International Journal of Cancer 124(10): 2495-2500. Published.
Andreotti, G., Hou, L., Beane Freeman, L.E., Mahajan, R., Koutros, S., Coble, J., Lubin, J., Blair, A., Hoppin, J.A., Alavanja, M.C.	2010	Body mass index, agricultural pesticide use, and cancer incidence in the Agricultural Health Study cohort. Cancer Causes & Control 21(11): 1759-1775. Published.
Anonymous (1)	1984	Mouse lymphoma mutagenicity test. Report N° 831500. Unpublished
Anonymous (2)	2014	S-Metolachlor tech In Vitro Chromosome Aberration Test in Human. Unpublished
Anonymous (3)	1995	90-day dietary toxicity study in dogs, Report N° F-00193. Unpublished
Anonymous (4)	1995	13-week oral toxicity study in rats, Report N° F-00191. Unpublished
Anonymous (5)	2019	S-Metolachlor: Enzyme and DNA-synthesis induction in cultured female human hepatocytes from two independent donors. Unpublished
Anonymous (6)	1988	Evaluation of metolachlor technical in the in vivo/in vitro rat hepatocyte unscheduled DNA synthesis assay. Report N° 20991. Unpublished
Anonymous (7)	1974a	Three-month oral toxicity test of CGA 24705 in dog. Report N° 740119. Unpublished
Anonymous (8)	1974b	Three-month oral toxicity trial of CGA 24705 in rats. Report N° IC-DREB-R 740120. Unpublished

Anonymous (9)	2014	S-metolachlor tech Micronucleus Assay in Bone Marrow Cells of the Mouse. Germany, 1650000. Unpublished
Anonymous (10)	2014	S-metolachlor – Enzyme and DNA synthesis induction in cultured female rat hepatocytes. Report No. CXR1334. Unpublished
Anonymous (11)	2014	S-metolachlor – Enzyme and DNA synthesis induction in cultured female human hepatocytes. Report No. CXR1336. Unpublished
Anonymous (12)	1995	28 days subacute oral toxicity study in rats (administration in food) - Comparison of toxicity profiles between CGA 77102 tech and CGA 24705 tech. Report N° 941059. Unpublished
Anonymous (13)	1999	S-Metolachlor: 3-month oral toxicity study in rats (administration in food), Report number: 971144 / 452. Unpublished
Anonymous (14)	1999	Metolachlor: 3-Month oral toxicity study in rats (administration in food), Report number: 971143 / 2731. Unpublished
Anonymous (15)	1976	Reproduction study of CGA 24705 tech., Rat Seg. II (Test for teratogenic or embryotoxic effects); Report number: PH 2.632 / 227625 / 1901. Unpublished
Anonymous (16)	1995	A Teratology Study of CGA 77102 Technical in New Zealand White Rabbits. Report No. F-00192. Unpublished
Anonymous (17)	1994	Metolachlor: Test for other genotoxic effects in a cell proliferation assay in rat liver cells. Report No. 483-290. Unpublished
Anonymous (18)	1994	CGA 24705 - Test for other genotoxic effects in the in vivo/in vitro assay for unscheduled DNA in rat primary hepatocytes. Report N° 15881-0-494. Unpublished
Anonymous (19)	1984	Two year chronic oral toxicity and oncogenicity study with Metolachlor in albino rats - Evaluation of liver tissues from male and female rats; Report number: 80030 / 24705/2667. Unpublished
Anonymous (20)	1989	Metolachlor Technical - 13/52-week oral toxicity study in dogs. Report N° 88086. Unpublished
Anonymous (21)	1995a	Micronucleus test, mouse. Report N° 941061. Unpublished
Anonymous (22)	1995b	In vivo/in vitro unscheduled DNA synthesis in rat hepatocytes. Unpublished
Anonymous (23)	1995c	Salmonella and Escherichia/mammalian-microsome mutagenicity test. Report N° 941060. Unpublished
Anonymous (24)	1995	CGA 77102 - Rat Oral Teratogenicity. Report No. 941058. Unpublished
Anonymous (25)	1980	Teratogenic potential of CGA-24705 in New Zealand White Rabbits (Segment II evaluation). Report No. 203-001. Unpublished

Anonymous (26)	1985	Embryo/Fetal Toxicity and Teratogenic Potential Study of CGA-24705. Report No. 203-004. Unpublished
Anonymous (27)	2006	Assessment of hepatic cell proliferation, apoptosis and liver enzyme induction in female rats upon treatment for up to sixty days. Report No. XR7116-RES. Unpublished
Anonymous (28)	2017a	Metolachlor - Additional Historical Control Data to Support Prenatal Developmental Toxicity Studies in the Rabbit. TK0338500. Not GLP. Unpublished
Anonymous (29)	2017b	S-metolachlor - Additional Historical Control Data to Support Prenatal Developmental Toxicity Studies in the Rabbit. TK0055790. Not GLP. Unpublished
Anonymous (30)	1987	Metolachlor Technical - 21-day dermal toxicity study in rabbits. Report N° 86141. Unpublished
Anonymous (31)	1988	Two year chronic oral toxicity and oncogenicity study with Metolachlor in albino rats - Evaluation of nasal passages from male and female rats; Report number: 80030 / 24705/2070. Unpublished
Anonymous (32)	2019	S-Metolachlor tech. (Fortified): Micronucleus test in human lymphocytes in vitro. TK0376153. Unpublished
Anonymous (33)	1981	Two-generation reproduction study in albino rats with metolachlor technical. Report No. 450-0272. Unpublished
Anonymous (34)	2014	S-metolachlor: CAR3 Transactivation assay with mouse, rat and human CAR. Report No. TK0219524. Unpublished
Anonymous (35)	1995	CGA 24705 and CGA 77102: Assessment of replicative liver DNA synthes and effects on selected ultramorphological and biochemical liver parameters in the course of a 28-day subacute, oral toxicity study in male and female rats. Report No. CB 94/35. Unpublished
Anonymous (36)	2018	S-Metolachlor tech. (Fortified): Gene mutation assay in chinese hamster V79 cells in vitro. TK0376152. Unpublished
Anonymous (37)	1990	CGA 24705 - Chromosome studies on Chinese hamster ovary cell line CCL 61 in vitro. Report N° 891513. Unpublished
Anonymous (38)	1982	Carcinogenicity study with Metolachlor in albino mice - incl. Appendix A-E; Report number: 79020 / 24705/1878. Unpublished
Anonymous (39)	1983	Two-year chronic oral toxicity and oncogenicity study with Metolachlor in albino rats - incl. Appendix A-G + Amendment 1+2; Report number: 80030 / 24705/1876. Unpublished
Anonymous (40)	2014	S-Metolachlor tech Cell Mutation Assay at the Thymidine Kinase Locus (TK+/-) in Mouse Lymphoma L5178Y Cells. Germany, 1582703. Unpublished
Anonymous (41)	2017	S-Metolachlor - Oral (Gavage) Proof of Exposure Study in the Mouse. Issue date: 22 September 2017. Unpublished.
Anonymous (42)	2019	S-Metolachlor – Technical Position on the Classification of S-metolachlor for Developmental Toxicity in Rabbits, Unpublished
Anonymous (43)	1999	CGA 354743 tech / CGA 77102 tech 3 Month subchronic, comparative oral toxicity study in beagle dogs. Unpublished

-

Anonymous (44)	1980	6-month chronic oral toxicity study in beagle dogs, Report number: FL 781314 / 2094/78, Report date: 1980/05/21 Unpublished
Barry, K.H., Koutros, S., Berndt, S.I., Andreotti, G., Hoppin, J.A., Sandler, D.P., Burdette, L.A., Yeager, M., Freeman, L.E., Lubin, J.H., Ma, X., Zheng, T., Alavanja, M.C.	2011	Genetic Variation in Base Excision Repair Pathway Genes, Pesticide Exposure, and Prostate Cancer Risk. Environ Health Perspect 119(12): 1726-1732. Published.
Das, R.	1995a	Report on boiling point / boiling range, Rep. No. 30843, Unpublished
Das, R.	1995c	Report on general physico-chemical properties (colour, aspect, odour) - pure active ingredient, Rep. No. 30847, Unpublished
Das, R.	1995d	Report on general physico-chemical properties (colour, aspect, odour) - techn. active ingredient, Rep. No. 30851, Unpublished
De Roos, A. J., Zahm, S.H., Cantor, K.P., Weisenburger, D.D., Holmes, F.F., Burmeister, L.F., Blair, A.	2003	Integrative assessment of multiple pesticides as risk factors for non-Hodgkin's lymphoma among men.Occup Environ Med 60(9): e11. Published
Flower, K. B., Hoppin, J.A., Lynch, C.F., Blair, A., Knott, C., Shore, D.L., Sandler, D.P.	2004	Cancer risk and parental pesticide application in children of Agricultural Health Study participants. Environ Health Perspect 112(5): 631-635. Published
Geoffroy, A.	1995	Report on melting / freezing temperature, Rep. No. PP- 95/8P.MPR, Unpublished
Greenlee, A. R., Ellis, T.M., Berg, R.L.	2004	Low-dose agrochemicals and lawn-care pesticides induce developmental toxicity in murine preimplantation embryos. Environmental Health Perspectives 112(6): 703-709. Published
Jackson W.	2013	S-metolachlor - Oxidising properties, Syngenta File No CGA077102_11069, Unpublished
Kojima, H., Sata, F., Takeuchi, S., Sueyoshi, T., Nagai, T.	2011	Comparative study of human and mouse pregnane X receptor agonistic activity in 200 pesticides using in vitro reporter gene assays. Page: 77-87 ! 2011/1278451. Toxicology 280 (2011) 77-87. Published
Koutros, S., Beane Freeman, L.E., Berndt, S.I., Andreotti, G., Lubin, J.H., Sandler, D.P., Hoppin, J.A., Yu, K., Li, Q., Burdette, L.A., Yuenger, J., Yeager, M., Alavanja, M.C.	2010	Pesticide use modifies the association between genetic variants on chromosome 8q24 and prostate cancer. Cancer Res 70(22): 9224-9233. Published
Kublbeck, J.; Laitinen, T.; Jyrkkarinne, J.; Rousu, T.; Tolonen, A.; Abel, T.;	2011.	Use of comprehensive screening methods to detect selective human CAR activators

Kortelainen, T.; Uusitalo, J.; Korjamo, T.; Honkakosk, P.; Molnàr, F.		NA_15121.Biochemical Pharmacology 82,1994-2007. Published
Lee, W. J., Colt, J,S,, Heineman, E.F., McComb, R., Weisenburger, D.D., Lijinsky, W., Ward, M.H.	2005	Agricultural pesticide use and risk of glioma in Nebraska, United States. Occupational and Environmental Medicine 62(11): 786-792. Published
Lee, W. J., Sandler, D.P., Blair, A., Samanic, C., Cross, A.J., Alavanja, M.C.	2007	Pesticide use and colorectal cancer risk in the Agricultural Health Study. Int J Cancer 121(2): 339-346. Published
Metayer, C., Colt JS, Buffler PA, Reed HD, Selvin S, Crouse V, Ward MH.	2013	Exposure to herbicides in house dust and risk of childhood acute lymphoblastic leukemia. Journal of Exposure Science and Environmental Epidemiology 23(4): 363-370. Published
O'Connor B.	2013	S-metolachlor - Determination of Surface Tension, Syngenta File No CGA077102, 11112, Unpublished
Roloff, B., Bellck, D., Meisner, L	1992	Cytogenetic effects of cyanazine and metolachlor on human lymphocytes exposed in vitro, Mutation Research Letters 281 (4) 295-298. Published
Rusiecki, J. A., Hou, L., Lee, W.J., Blair, A., Dosemeci, M., Lubin, J.H., Bonner, M., Samanic, C., Hoppin, J.A., Sandler, D.P., Alavanja, M.C.	2006	Cancer incidence among pesticide applicators exposed to metolachlor in the Agricultural Health Study. International Journal of Cancer 118(12): 3118-312. Published
Schulz, M.	2018	S-Metolachlor tech. (fortified): Salmonella typhimurium and escherichia coli reverse mutation assay, CGA077102_11655 ! 1883100 ! TK0376151, Syngenta - Jealott's Hill, Bracknell, United Kingdom. Unpublished
Schürch, H.	1995b	Report on auto-ignition temperature of liquids, Rep. No. PP- 95/8T.AFG, Unpublished
Schürch, H.	1995c	Report on determination of flash-point, Rep. No. PP- 95/8T.FLP, Unpublished
Schürch, H.	1995d	Report on explosive properties, Rep. No. PP-95/8T.EXP, Unpublished
Silver, S. R., Bertke, S.J., Hines, C.J., Alavanja, M.C., Hoppin, J.A., Lubin, J.H., Rusiecki, J.A., Sandler, D.P., Beane Freeman, L.E.	2015	Cancer incidence and metolachlor use in the Agricultural Health Study: An update. International Journal of Cancer 137(11): 2630-2643. Published
Sokolowski, A.	2014.	S-Metolachlor tech Salmonella Typhimurium and
		Escherichia Coli Reverse Mutation Assay, Syngenta, Harlan Cytotest Cell Research GmbH (Harlan CCR), Germany, 1582701, Syngenta File No CGA077102_11292. Unpublished
Stulz, J.	1995a	Escherichia Coli Reverse Mutation Assay, Syngenta, Harlan Cytotest Cell Research GmbH (Harlan CCR), Germany, 1582701, Syngenta File No CGA077102_11292. Unpublished Report on water solubility, Rep. No. 30846, Unpublished
Stulz, J. Stulz, J.	1995a 1995b	Escherichia Coli Reverse Mutation Assay, Syngenta, Harlan Cytotest Cell Research GmbH (Harlan CCR), Germany, 1582701, Syngenta File No CGA077102_11292. Unpublished Report on water solubility, Rep. No. 30846, Unpublished Report on solubility in organic solvents, Rep. No. 30853, Unpublished

Stulz, J.	1995c	Report on octanol / water partition coefficient, Rep. No. 30845, Unpublished
Stulz, J.	1995d	Report on dissociation constant in water, Rep. No. 37822, Unpublished
Takeuchi, Sh.; Iida, M.; Yabushita, H.; Matsuda, T.; Kojima, H.	2008	In vitro screening for aryl hydrocarbon receptor agonistic activity in 200 pesticides using a highly sensitive reporter cell line, DR-EcoScreen cells, and in vivo mouse liver cytochrome P450-1A induction by Propanil, Diuron and Linuron, Page: 155-165 ! 2011/1262291 ! M-459484-01-1 ! 0045-6535 ! doi: 10.1016/j.chemosphere.2008.08.015 ! 2013/1347911. Chemosphere 74, 155-165. Published
Thorpe, N.; Shirmohammadi A.	2005	Herbicides and Nitrates in Groundwater of Maryland and Childhood Cancers: A Geographic Information Systems Approach. Journal of Environmental Science and Health - Part C Environmental Carcinogenesis and Ecotoxicology Reviews 23(2): 261-278. Published
Widmer, H.	1995	Report on vapour pressure, Rep. No. 95W129, Unpublished

Additional references

- Leon et al., 2019. Pesticide use and risk of non-Hodgkin lymphoid malignancies in agricultural cohorts from France, Norway and the USA: a pooled analysis from the AGRICOH consortium. Int J Epidemiol. 2019;48:1519-1535
- Lerro et al., 2018. Use and Cancer Incidence in the Agricultural Health Study: An Updated Analysis. J Natl Cancer Inst. 2018;110:950-958

Lerro et al., 2019. Cancer incidence in the Agricultural Health Study after 20 years of follow-up. Cancer Causes Control. 2019;30:311-322

Lerro et al., 2020. Dicamba use and cancer incidence in the agricultural health study: an updated analysis. Int J Epidemiol. 2020;49:1326-1337