October 2023

Section A5 Effe		Effectiveness against target organisms and intended ses		
Subs (Ann	section ex Point)		Official use only	
5.1	Function (IIA5.1)	Bactericide		
5.2	Organism(s) to be controlled and products, organisms or objects to be protected (IIA5.2)			
5.2.1	Organism(s) to be controlled (IIA5.2)	Bacteria		
5.2.2	Products, organisms or objects to be	Table A5.2-1 provides an overview of uses of DBNPA and products and objects to be protected.		
	protected (IIA5.2)	DBNPA is used for short-term preservation of mineral slurries prior to use.		
5.3	Effects on target organisms, and likely concentration at which the active substance will be used (IIA5.3)			
5.3.1	Effects on target organisms (IIA5.3)	The active substance DBNPA is effective against bacteria. See Table A5.3.1-1.		
5.3.2	Likely concentrations at which the A.S. will be used (IIA5.3)	Please refer to Table A5.2-1. 2,2-Dibromo-3-nitrilopropionamide (DBNPA) is used in the paper industry for short-term preservation of mineral slurries prior to use. DBNPA may also be used to maintain a low microbial load during storage of the slurry in tanks at the paper mill. The applicant has claimed a recommended dosage of 50 ppm (0.005%). DBNPA is used as in-use 20% solution for short-term preservation of mineral slurries during manufacturing, transport and/or storage. A separate validated analysis of the degradation of DBNPA in		
		A separate validated analysis of the degradation of DBNPA in mineral slurry has been performed and shows that the decomposition of DBNPA is 80% from the mineral slurry over 4 hours (Askew (2020).		
5.4	Mode of action (including time delay) (IIA5.4)			
5.4.1	Mode of action	DBNPA acts via bromine, which inactivates enzymes by converting functional -SH groups to the oxidised S-S form. DBNPA is a fast acting biocide. The biocidal action is exerted		

Biocidal active substance: 2,2-Dibromo-2-cyanoacetamide (DBNPA)

Page 2-9

October 2023

Section A5		Effectiveness against target organisms and intended	
		uses	
		directly after application (Paulus, 2005 ¹). If some biocides have very specific target sites, DBNPA has a multisite effect. Some studies on the interaction of radioactively labelled [¹⁴ C] DBNPA with bacteria have shown that the ¹⁴ C label never penetrates the cell, as would be necessary to become involved with energy metabolism. Instead, it binds strongly and rapidly to the cell wall of the bacteria (Rossmore, 1991 ²). The easy reaction of DBNPA with sulphur-containing nucleophiles common to micro-organisms such as glutathione or cysteine, is the basis of its mode of antimicrobial action. DBNPA reacts through its bromine chemistry, i.e. via bromine, which inactivates thiol-based (R-SH) amino-acids and enzymes by converting their functional -SH groups to the oxidised S-S form and forming disulphide bridges:	
		$N \equiv C-CBr_2-CONH_2(DBNPA) + 2R-SH + 2HS-R' \Longrightarrow 2HBr + \underline{2R-S-S-R'} + N \equiv C-HCH-CONH_2$	
		Unlike other thiol-reactive biocides, its action is such that thiol-based amino acids, like cysteine, are oxidized beyond the formation of disulphide species. This reaction irreversibly disrupts the function of cell-surface components, interrupting transport across cell membranes, and inhibiting key biological functions (Gartner, 1998 ³).	
		DBNPA is therefore not a typical oxidizing or halogen-releasing biocide. It does not release bromine (Br ₂) or hypobromous acid (HOBr).	
5.4.2	Time delay	DBNPA is a fast-acting biocide and is exerting its biocidal action directly after its application.	
5.5	Field of use envisaged (IIA5.5)	Please refer to Table A5.2-1.	
5.6	User (IIA5.6)	Please refer to Table A5.2-1.	
	Industrial	Yes	
	Professional	Yes	
	General public	No	
5.7	Information on the occurrence or possible occurrence of the development of resistance and		

¹ Paulus W. (2005). Relationship between chemical structure and activity or mode of action of microbicides. In: Paulus W., editor. Directory of Microbicides for the Protection of Materials - a Handbook. Publ. Springer-Verlag; 2005.

² Rossmore, H.W (1991). Nitrogen Compounds. Disinfection, Sterilization and Preservation, Seymour S. Block, 4th edition chapter 7, 1991, pages 290- 333.

³ Gartner C. (1998). 2,2-Dibromo-3-Nitrilopropianamide (DBNPA): Proposed Mechanism of Activity. The Dow Chemical Company report number 981334.

October 2023

Document IIIA, Section A5

Section A5		Effectiveness against target organisms and intended uses		
	appropriate management strategies (IIA5.7)			
5.7.1	Development of resistance	No cases of the development of resistance are known to the applicants (Buske, 2008 ⁴), (Gartner, 1998 ³). The development of resistance is unlikely, as DBNPA is a fast-acting biocide and hydrolyses rapidly (Exner et al., 1973 ⁵). Therefore, microbes are not exposed over a longer time period to DBNPA to allow the development of resistance. Microbes will not come in contact with DBNPA in a natural environment.		
		DBNPA has multiple reaction sites on the surfaces of microorganisms. As a result, organisms have great difficulty in developing an effective resistance mechanism because multiple reactions and reaction sites are involved.		
		Developing resistance to an antimicrobial is a direct function of a combination of the mode-of-action and the reactions that occur on/in a microorganism. If an antimicrobial has a specific reaction with a specific cell component, the organism often develops a resistance mechanism. For example, antibiotics will have a target cellular component or metabolic reaction that will be blocked. A prime example of this is penicillin, which blocks a specific reaction involved in cell wall formation in bacteria; organisms can develop resistance to such specific reactions. Organisms have great difficulty in developing an effective resistance mechanism against DBNPA, because multiple reactions and reaction sites are involved. However, if the organisms are in a biofilm, they can be protected from the action of DBNPA because it will react with exopolymeric materials that act as the framework of the biofilm (Grobe, et al., 2002 ⁶). The cells are not resistant to DBNPA – they are simply protected from its inhibitory effect because the biocide reacts with the exopolymeric materials rather than the cells (Gartner, 1998) ³ .		
5.7.2	Management strategies	If resistance would be observed, another biocide should be used.		
5.8	Likely tonnage to be placed on the market per year (IIA5.8)	See confidential part of the dossier.		

nitrilopropionamide, J. Agric. Food. Chem. 21: 838-842.

⁴ Buske A. (2008). Biocidal Activity of DBNPA. Dow ICM-Research Intelligence Group Research bibliography.

⁵ Exner J.H., Burk G. A. and Kyriacou, D. (1973). Rates, and products of decomposition of 2, 2-dibromo-3-

⁶ Grobe K.J., Zahller J., Stewart P. S. (2002). Role of dose concentration in biocide efficacy against *Pseudomonas aeruginosa* biofilms. Center for Biofilm Engineering and Department of Chemical Engineering, Montana State University, Bozeman, MT, 59717-3980, USA SO, Journal of Industrial Microbiology & Biotechnology, 29(1), 10-15.

October 2023

Section A5	Effectiveness against target organisms and intended
	uses

	Evaluation by Competent Authorities		
	Use senarete "evaluation boxes" to provide transparency as		
	to the comments and views submitted		
	to the comments and views submitted		
	EVALUATION BY RAPPORTEUR MEMBER STATE		
Date	30.10.2022		
Materials and methods	The applicant's version is acceptable.		
Conclusion	Applicant's version is adopted.		
	Based on the submitted efficacy studies the use of 50 ppm DBNPA is sufficiently effective for short-term preservation of mineral slurry for up to 7 days. For uses longer than 7 days new efficacy data must be submitted. It is considered that Tier 2 testing (ageing studies) are not relevant for the representative use as submitted Tier 1 testing covers the short-term preservation (\leq 7 days).		
Reliability	Not relevant		
Acceptability	acceptable		
Remarks			
	COMMENTS FROM		
Date	Give date of comments submitted		
Results and discussion	Discuss additional relevant discrepancies referring to the (sub)heading numbers and to applicant's summary and conclusion. Discuss if deviating from view of rapporteur member state		
Conclusion	Discuss if deviating from view of rapporteur member state		
Reliability	Discuss if deviating from view of rapporteur member state		
Acceptability	Discuss if deviating from view of rapporteur member state		
Remarks			

Document IIIA, Section A5

Table A5.2-1: Overview on biocidal uses of DBNPA in PT6

РТ	Use	Typical micro- organisms to be controlled	Likely concentrations at which the A.S. will be used	User category
6	Short-term preservation of mineral slurries prior to use.	Bacteria	50 ppm DBNPA	Industrial

Biocidal active substance: 2,2-Dibromo-2-cyanoacetamide (DBNPA)

Page 6-9

October 2023

Document IIIA, Section A5

Table A5.3.1-1: Summary of experimental data on the effectiveness of DBNPA against target organisms at different fields of use envisaged

Test substance	Test organism(s)	Test system / concen	trations applied / exposure	Test results: effects, mode of action, resistance	Reference*)
		time			
[REDACTED]	Klebsiella aerogenes	The minimum inhibit	ory concentration (MIC) and	The bacteria tested showed a minimum inhibitory	Iredale, G and Allison,
20% DBNPA	NCIMB 10102	the minimum biocida	l concentration (MBC) were	concentration (MIC) for the mixture of microorganisms	K. (2020): Report
(2,2-Dibromo-2-	Alcaligenes faecalis	tested according to m	odified ISO 20776-1:2019:	of 0.0063% of [REDACTED] in both cases equivalent	number;
cyanoacetamide)	NCIMB 13147	Susceptibility testing	of infectious agents and	to 12.5 ppm DBNPA.	IMSL2020/02/009.2C1,
solution,	Providencia rettgeri	evaluation of perform	ance of antimicrobial	[REDACTED] presented a MIC of $\geq 0.8\%$.	B5.10/01.
[REDACTED]	NCIMB 10842	susceptibility test dev	ices – Part 1: Broth micro-		
	Pseudomonas putida	dilution reference me	thod for testing the in vitro	The bacteria tested showed a minimum biocidal	
	NCIMB 9494	activity of antimicrob	ial agents against rapidly	concentration (MBC) for the mixture of	
	Pseudomonas	growing aerobic bacto	eria involved in infectious	microorganisms of 0.0125% of [REDACTED] in both	
	aeruginosa NCIMB	diseases.		cases equivalent to 25 ppm DBNPA.	
	15442	a		[REDACTED] presented a MBC of $\geq 0.8\%$.	
	Micrococcus luteus	Concentrations tested			
	NCIMB 9278	Product	DBNPA in [REDACTED]	Both DBNPA formulations tested ([REDACTED])	
	Staphylococcus	concentration in test	1600	demonstrated the same microbial effect; the products	
	aureus AICC 6538	0.8000%	1600 ppm	are therefore accepted as equivalent.	
	Myrolaes oaoralus	0.4000%	800 ppm		
	ATCC 4031	0.2000%	400 ppm	Furthermore, the results show that the co-formulants	
	Organisms	0.1000%	200 ppm	[REDACTED] does not demonstrate antimicrobial	
	Organishis	0.0500%	100 ppm	activity.	
	mineral slurries	0.0250%	50 ppm		
	mineral siumes	0.0125%	25 ppm		
		0.0063%	12.50 ppm		
		0.0031%	6.25 ppm		
		0.0016%	3.125 ppm		
		0.0008%	1.5625 ppm		
		0.0004%	0.7813 ppm		
		E	5 1		
		Exposure time: 24hrs	, 5 days		
		Test temperature: 30°	$C \pm 2^{\circ}C$		

Joint dossier : DuPont/ICL

Biocidal active substance: 2,2-Dibromo-2-cyanoacetamide (DBNPA)

Page 7-9

October 2023

Test substance	Test organism(s)	Test system / concentrations applied / exposure	Test results: effects, mode of action, resistance	Reference*)
		time		
[REDACTED]	Klebsiella aerogenes	The efficacy of DBNPA as a short-term preservative	Growth was observed in the un-treated control	Iredale, G and Webb, R
(20% DBNPA	NCIMB 10102	in ground calcium carbonate mineral slurry was	following the first incubation, while no growth was	(2020): Report number;
solution),	Alcaligenes faecalis	tested according to the IBRG Tier 1 Method for	observed for up to 7 days in the GCC mineral slurry	IMSL2020/02/009.2A.1,
Ground calcium	NCIMB 13147	Determining the Basic Efficacy of Biocidal Active	treated with 5, 10, 25 and 50 ppm DBNPA after the	B5.10/02
carbonate	Providencia rettgeri	Substances used to Preserve Aqueous-Based	first inoculation following a 7-day incubation period.	
(GCC) mineral	NCIMB 10842	Products; Version IBRG PDG 16-007.03 (April		
slurry	Pseudomonas putida	2019).	Growth was observed in the GCC mineral slurry	
(Hydrocarb 75	NCIMB 9494		treated with 5, 10, 25 and 50 ppm DBNPA following	
ME-78%)	Pseudomonas	The test was performed using multiple challenges of	the 2nd inoculation. No growth was observed in the	
(solids 78%, pH	aeruginosa NCIMB	the consortium of bacteria. Mineral slurries prepared	untreated control after the second inoculation.	
10.10)	15442	without a preservative were treated with different		
	Micrococcus luteus	concentrations of DBNPA or sterile distilled water.		
	NCIMB 9278	The pass criterion was no growth in treated samples		
	Staphylococcus	and growth in the untreated controls.		
	aureus ATTC 6538			
	Myroides odoratus	Concentrations tested: 0 ppm (untreated control), 5,		
	ATCC 4651	10, 25, 50 ppm		
		Exposure time: < 5 minutes, 1 and 7 days (inoculated		
		twice, 7 days apart)		
		Test temperature: $30^{\circ}C \pm 2^{\circ}C$		

Joint dossier : DuPont/ICL

Biocidal active substance: 2,2-Dibromo-2-cyanoacetamide (DBNPA)

Page 8-9

October 2023

Document IIIA, Section A5

Test substance	Test organism(s)	Test system / concentrations applied / exposure	Test results: effects, mode of action, resistance	Reference*)
		time		
[REDACTED]	Klebsiella aerogenes	The efficacy of DBNPA as a short-term preservative	Growth was observed in the un-treated control	Iredale, G and Webb, R
(20% DBNPA	NCIMB 10102	in kaolin slurry was tested according to the IBRG	following the first incubation, while no growth was	(2020): Report number;
solution), Kaolin	Alcaligenes faecalis	Tier 1 Method for Determining the Basic Efficacy of	observed for up to 7 days in the kaolin mineral slurry	IMSL2020/02/009.2B.1,
Mineral Slurry	NCIMB 13147	Biocidal Active Substances used to Preserve	treated with 5, 10, 25 and 50 ppm DBNPA after the	B5.10/03
(Hydragloss 90	Providencia rettgeri	Aqueous-Based Products; Version IBRG PDG 16-	first inoculation following a 7-day incubation period.	
Clay-ML 71%)	NCIMB 10842	007.03 (April 2019).		
	Pseudomonas putida		Following the second inoculation, growth was	
	NCIMB 9494	The test was performed using multiple challenges of	observed in the kaolin mineral slurry treated with 5, 10	
	Pseudomonas	the consortium of bacteria. Mineral slurries prepared	and 25 ppm DBNPA. No significant growth was	
	aeruginosa NCIMB	without a preservative were treated with different	observed in the slurry preserved with 50 ppm DBNPA,	
	15442	concentrations of DBNPA or sterile distilled water.	however, growth was observed in one of three replicate	
	Micrococcus luteus	The pass criterion was no growth in treated samples	sub-samples treated with 50 ppm DBNPA. This	
	NCIMB 9278	and growth in the untreated controls.	resulted in the difference between the < 5 minutes	
	Staphylococcus		observations and the 7 days observations being	
	aureus ATTC 6538	Concentrations tested: 0 ppm (untreated control), 5,	statistically non-significant. Growth in one sub-sample	
	Myroides odoratus	10, 25, 50 ppm	is regarded as an outlier by the applicant and assumed	
	ATCC 4651	Exposure time: < 5 minutes, 1 and 7 days (inoculated	to be the result of the 50 ppm application rate being at	
		twice)	the limit of efficacious treatment of kaolin mineral	
		Test temperature: $30^{\circ}C \pm 2^{\circ}C$	slurry for up to 14 days. However, using IQR on the	
			data from the 7 days observations, the eCA did not	
			identify the sub-sample with growth as an outlier, the	
			absence of significance is therefore considered as the	
			pass criteria not being met. Growth was observed in the	
			untreated control after the second inoculation.	

*) References:

Iredale, G and Allison, K. (2020): MINIMUM INHIBITORY CONCENTRATION AND MINIMUM BIOCIDAL CONCENTRATION OF TWO DBNPA BIOCIDES (20% SOLUTIONS), [REDACTED], Industrial Microbiological Services Ltd, Pale Lane, Hartley Wintney, Hampshire, UK, Report number IMSL2020/02/009.2C1, Section Point B5.10/01

Joint dossier : DuPont/ICL	Biocidal active substance:	Page 9-9
	2,2-Dibromo-2-cyanoacetamide	
	(DBNPA)	October 2023
Document IIIA, Section A5		

- Iredale, G and Webb, R. (2020): DETERMINATION OF EFFICACY OF DBNPA BIOCIDE FOR USE AS A SHORT-TERM PRESERVATIVE IN A CALCIUM CARBONATE MINERAL SLURRY, Industrial Microbiological Services Ltd, Pale Lane, Hartley Wintney, Hampshire, UK, Report number. IMSL2020/02/009.2A.1, Section Point B5.10/02
- Iredale, G and Webb, R (2020), DETERMINATION OF EFFICACY OF DBNPA BIOCIDE FOR USE AS A SHORT-TERM PRESERVATIVE IN A KAOLIN SLURRY, Industrial Microbiological Services Ltd, Pale Lane, Hartley Wintney, Hampshire, UK, Report number IMSL2020/02/009.2B.1, Section Point B5.10/03