SUBSTANCE EVALUATION REPORT

Public Name: Diethyl phthalate (DEP)

EC Number(s): 201-550-6

CAS Number(s): 84-66-2

Submitting Member State Competent Authority:

Federal Institute for Occupational Safety and Health, Friedrich-Henkel-Weg 1-25, D-44149 Dortmund, Germany, Tel: 049-231-9071-0, Fax: 049-231-9071-2611, Email: chemG@baua.bund.de

Directorate General of Health , |, Division of Environmental and Occupational Health, Alameda D. Afonso Henriques, 45, 1049-005 Lisboa, Portugal, Tel: +351218430500, Email: <u>www.dgs.pt</u>

Year of evaluation (as given in the CoRAP): 2014

VERSION NUMBER: 0.1 DATE: 23 September 2015

Conclusions of the most recent evaluation step*	Tick relevant box(es)
Concern not clarified; Need to request further information from the Registrant(s) with the draft decision	
Concern clarified; No need of further risk management measures	X
Concern clarified; Need for risk management measures; RMO analysis to be performed	
Other: [please specify]	

DISCLAIMER

The Substance evaluation report has been prepared by the evaluating Member State as a part of the substance evaluation process under the REACH Regulation (EC) No 1907/2006. The information and views set out in this document are those of the author and do not necessarily reflect the position or opinion of the European Chemicals Agency or other Member States. The Agency does not guarantee the accuracy of the information included in the document. Neither the Agency nor the evaluating Member State nor any person acting on either of their behalves may be held liable for the use which may be made of the information contained therein. Statements made or information contained in the document are without prejudice to any further regulatory work that the Agency or Member States may initiate at a later stage.

Executive summary

Grounds for concern

- Suspected CMR
- Suspected endocrine disruptor
- Consumer use (Wide dispersive use)

Procedure

Human Health

The evaluation of the toxicity of Diethyl phthalate (DEP) has been based on the registration dossiers as well as on reviews by a variety of international bodies/regulatory programs and original publications. Data available up to June 2014 for all endpoints have been assessed. The potential for DEP to act as an endocrine disruptor and the non-classification of DEP as provided by the lead registrant was reviewed.

Consumer Exposure

The Substance Evaluation is targeted towards consumers. DEP is neither considered as harmonised classified according Regulation (EC) No 1272/2008 (CLP), nor is it self-classified by the registrants. According to Article 14(4) of the REACH Regulation, exposure assessment (including the generation of exposure scenarios and exposure estimations) and risk characterization have to be provided by the registrants when they concluded that the substance fulfils the criteria for specific classes or categories set out in Annex I of the Regulation (EC) No 1272/2008. The registrants have determined that DEP did not fulfil these criteria. The exposure is therefore not recorded in their Registration dossiers. However, to identify possible consumer risks, public product information and national monitoring data were collected and evaluated with regard to potential consumer exposure. There are similarities between exposure situations of identified consumer uses under REACH and cosmetic products. Therefore product information as well as evaluation reports of cosmetics were considered.

Conclusions

Human Health

Evaluation of the existing information on the toxicity of DEP does not confirm the disruption of endocrine functions. Furthermore, following the requirements set down in Annex I of Regulation (EC) No 1272/2008 (CLP) and the data available, DEP does not appear to fulfil the criteria for classification.

Consumer Exposure

The assessed data do not indicate a concern based on consumer exposure to DEP via consumer uses.

Statement of reasons

Human Health

The existing information on DEP is sufficient to conclude that classification of DEP is not justified. In agreement with the CLP Regulation the changes in one out of eleven sperm parameters alone as seen in animals were not considered to warrant classification for fertility effects. According to 3.7.2.3.3 of Annex I, CLP Regulation effects of low or minimal toxicological significance (including small changes in semen parameters) should not lead to classification. The developmental findings such as reduced pup weight at weaning and reduced litter size occurred at doses above the limit dose of 1000 mg/kg bw/day. According to and 3.7.2.5.8 and 3.7.2.5.9, Annex I of the CLP Regulation, effects at such high doses would normally not lead to classification unless expected human response indicate the need for a higher dose level.

Finally, the low molecular weight phthalate DEP and the shorter side chain (C2) do not support that DEP could act as a potent testicular toxin and could induce developmental changes in the male reproductive system as observed after prenatal exposure to mid molecular weight (so-called 'transitional') phthalates with critical lengths of carbon side chains (C4-C6).

Overall, by means of a weight of evidence approach the eMSCA considers the effects observed on male fertility and the observed developmental effects as not sufficient for classification as Repr. 2 according to Annex I, Part 3 of Regulation (EC) No 1272/2008 (CLP).

The existing information on DEP is sufficient to conclude that DEP does not exhibit endocrine disrupting effects similar to those observed with other phthalate diesters. Predominantly negative results on the oestrogenic or anti-androgenic potency of DEP are reported and an endocrine disrupting mechanism cannot be attributed to the DEP effects on the male reproductive system.

Consumer Exposure

DEP is mainly used as a carrier for fragrances and therefore common as an ingredient in scented mixtures and articles, such as air care products or washing and cleaning products. Although DEP is in widespread use, the literature survey generally indicates only small concentrations of DEP, usually beneath 3 %. The results of exposure assessments derived from cosmetics can be adopted to those of consumers uses under REACH.

CONTENTS

1	IDE	ENTITY OF THE SUBSTANCE AND PHYSICAL AND CHEMICAL PROPERTIES	8
	1.1	Name and other identifiers of the substance	8
	1.2	Composition of the substance	9
	1.3	Physico-chemical properties	10
2	MA	NUFACTURE AND USES	12
	2.1	Quantities	12
	2.2	Identified uses	
		2.2.1 Uses by consumers	
3	CLA	ASSIFICATION AND LABELLING	14
	3.1	Harmonised Classification in Annex VI of the CLP Regulation	14
	3.2	Self classification	14
4	ENV	VIRONMENTAL FATE PROPERTIES	15
5 HUMAN HEALTH HAZARD ASSESSMENT			16
	5.1	Toxicokinetics (absorption, metabolism, distribution and elimination)	16
		5.1.1 Non-human information	16
		5.1.2 Human information	20
		5.1.3 Summary and discussion on toxicokinetics	21
	Dist	tribution	22
	5.2	Acute toxicity	24
		5.2.1 Non-human information	24
		5.2.1.1 Acute toxicity: oral	24
		5.2.1.2 Acute toxicity: inhalation	25
		5.2.1.3 Acute toxicity: dermal	25
		5.2.1.4 Acute toxicity: other routes	
		5.2.2 Human information	
		5.2.5 Summary and discussion of acute toxicity	20
	53	Irritation	27
	0.0	5.3.1 Skin	
		5.3.2 Eye	
		5.3.3 Respiratory tract	29
		5.3.4 Summary and discussion of irritation	29
	5.4	Corrosivity	29
	5.5	Sensitisation	
		5.5.1 Skin	
		5.5.2 Respiratory system	
		5.5.5 Summary and discussion on sensitisation	
	5.6	Repeated dose toxicity	

		5.6.1	Non-human information	31
			5.6.1.1 Repeated dose toxicity: oral	31
			5.6.1.2 Repeated dose toxicity: inhalation	38
			5.6.1.3 Repeated dose toxicity: dermal	39
			5.6.1.4 Repeated dose toxicity: other routes	40
		5.6.2	Human information	40
		5.6.3	Summary and discussion of repeated dose toxicity	41
	57	Mutao	enicity	42
	0.7	571	Non-human information	42
		0.7.1	5711 In vitro data	42
			5712 In vivo data	42
		572	Human information	42
		5.7.3	Summary and discussion of mutagenicity	42
	5.0	Contin		42
	3.8	Carcin	logenicity	43
		5.8.1	Non-numan information	43
			5.8.1.1 Carcinogenicity: oral	43
			5.8.1.2 Carcinogenicity: inhalation	43
			5.8.1.3 Carcinogenicity: dermal	43
		5.8.2	Human information	44
		5.8.3	Summary and discussion of carcinogenicity	44
	5.9	Toxici	ty for reproduction	44
		5.9.1	Effects on fertility	44
			5.9.1.1 Non-human information	44
			5.9.1.2 Human information	49
		5.9.2	Developmental toxicity	52
			5.9.2.1 Non-human information	52
			5.9.2.2 Human information	54
		5.9.3	Summary and discussion of reproductive toxicity	56
	5.10	Endoc	rine disrupting properties	59
	5 1 1	Other	effects	65
	5.11	5 11 1	Non-human information	
		5.11.1	5 11 1 1 Neurotoxicity	05
			5.11.1.2 Immunotovicity	05
			5.11.1.2 Initiations other studies	05
		5 1 1 2	Human information	05
		5.11.2	Summary and discussion of specific investigations	65
	5 10	Cont		(5
	5.12	Comb	inea effects	05
	5.13	Deriva	tion of DNEL(s) / DMEL(s)	65
		5.13.1	Overview of typical dose descriptors for all endpoints	65
		5.13.2	Selection of the critical DNEL(s)/DMEL(s) and/or qualitative/semi-quantitative descriptor for crit health effects	ical
	5.14	Conclu	usions of the human health hazard assessment and related classification and labelling	66
6	HUM	1AN H	EALTH HAZARD ASSESSMENT OF PHYSICO CHEMICAL PROPERTIES	68
7	ENV	IRON	MENTAL HAZARD ASSESSMENT	69
8	PBT	AND	VPVB ASSESSMENT	70
9	EXPO	OSUR	E ASSESSMENT	71
	91	Huma	n Health	71
	~ • •			

9.1.1 Exposure assessment for worker9.1.2 Exposure assessment for consumers	
10 RISK CHARACTERISATION	
11 OTHER INFORMATION	
12 REFERENCES	74
13 ABBREVIATIONS	

ERROR! BOOKMARK NOT DEFINED.

TABLES

Table 1: Substance identity	8
Table 2: Constituents	9
Table 3: Impurities	9
Table 4: Additives	9
Table 5: Overview of physicochemical properties	10
Table 6: Aggregated tonnage (per year)	12
Table 7: Classification and Labelling according to CLP criteria notified to the C&L Inventory	14
Table 8: Basic toxicokinetics according to registration dossier	16
Table 9: Overview of experimental studies on acute toxicity after oral administration according to registration de	ossier24
Table 10: Overview of experimental studies on acute toxicity after inhalation exposure according to registration	dossier25
Table 11: Overview of experimental studies on acute toxicity after dermal administration according to registration	on
dossier	25
Table 12: Overview of experimental studies on acute toxicity after intraperitoneal exposure according to registra	tion
dossier	26
Table 13: Overview of experimental studies on skin irritation as reported in theregistration dossier	27
Table 14: Overview of experimental studies on eye irritation as reported in theregistration dossier	28
The results of studies on skin sensitisation are summarised in the following table.	30
Table 16: Overview of experimental studies on skin sensitisation according to registration dossier	30
Table 17: Overview of experimental studies on repeated dose toxicity after oral exposure as reported in the	
registration dossier	31
Table 18: Overview of experimental studies on repeated dose toxicity after oral exposure according to original	
publications (such only partly reported in registration dossiers as well as additional publications)	32
Table 19: Overview of experimental studies on repeated dose toxicity after dermal exposure	39
Table 20: Overview of experimental studies on repeated dose toxicity after intraperitoneal exposure	40
Table 21: Overview of experimental in vitro genotoxicity studies	42
Table 22: Overview of experimental studies on carcinogenicity	43
Table 23: Overview of experimental studies on fertility as reported in the registration dossier	44
Table 24: Overview of experimental studies on fertility according to original publications	47
Table 25: Overview of human studies on fertility-related parameters according to original publications	50
Table 26: Overview of experimental studies on developmental toxicity as reported in the registration dossier	52
Table 27: Overview of experimental studies on developmental toxicity according to original publications	53
Table 28: Overview of human studies on developmental effects according to original publications	54
Table 29: Overview of studies on endocrine effects as reported in the registration dossier	59
Table 30: Overview of studies on endocrine effects according to original publications	62
Table 31: Overview of studies and dose descriptors per endpoint for DNEL derivation	66
Table 32: List of abbreviations	83

1 IDENTITY OF THE SUBSTANCE AND PHYSICAL AND CHEMICAL PROPERTIES

1.1 Name and other identifiers of the substance

Table 1: Substance identity

Public Name:	Diethyl phthalate	
EC number:	201-550-6	
EC name:	Diethyl phthalate	
CAS number (in the EC inventory):	84-66-2	
CAS number:	84-66-2	
CAS name:	1,2-Benzenedicarboxylic acid, 1,2-diethyl ester	
IUPAC name:	Diethyl benzene-1,2-dicarboxylate	
Index number in Annex VI of the CLP Regulation	-	
Molecular formula:	$C_{12}H_{14}O_4$	
Molecular weight range:	222.24 g/mol	
Synonyms:	Diethyl 1,2-benzenedicarboxylate	
	Phthalic acid, diethyl ester	
	DEP	

Structural formula:

1.2 Composition of the substance

Diethyl phthalate

Description: mono-constituent substance

Degree of purity: confidential

Table 2:Constituents

Constituents	Typical concentration	Concentration range	Remarks
Diethyl phthalate 201-550-6	confidential	confidential	For further information, please refer to the confidential Annex or rather IUCLID File.

Table 3: Impurities

Impurities	Typical concentration	Concentration range	Remarks
confidential	confidential	confidential	For further information, please refer to the confidential Annex or rather IUCLID File.

Table 4: Additives

Additives	Typical concentration	Concentration range	Remarks
confidential	confidential	confidential	For further information, please refer to the confidential Annex or rather IUCLID File.

201-550-6

1.3 Physico-chemical properties

Property	Value	Remarks
Physical state at 20°C and 101.3 kPa	organic, colourless to pale yellow liquid with faint odour	Handbook data/Experimental data (Test Guideline: EPA OPPTS 830.6303 (Physical State), EPA OPPTS 830.6302 (Colour), EPA OPPTS 830.6304 (Odour))
Melting/freezing point	-60 °C	Experimental data (Test Guideline: ASTM D 97-02)
Boiling point	297.3 °C	Experimental data (Test Guideline: EU Method A.2 (Boiling Temperature); OECD Guideline 103 (Boiling point/boiling range); EPA OPPTS 830.7220 (Boiling Point / Boiling Range); ASTM E 537-07)
Density	1.1181 g/cm ³ (20°C)	Experimental data (Test Guideline: EU Method A.3 (Relative Density); OECD Guideline 109 (Density of Liquids and Solids); EPA OPPTS 830.7300 (Density / Relative Density / Bulk Density); ASTM D 4052-96)
Vapour pressure	0.28 Pa (25°C)	Experimental data (Test Guideline: EU Method A.4 (Vapour Pressure))
Surface tension	-	In accordance with column 2 of REACH Annex VII section 7.6. the study only needs to be conducted if
		- based on structure, surface activity is expected or can be predicted, or
		- surface activity is a desired property of the material.
		The chemical structure of diethyl phthalate does not suggest that it may possess surface activity. Furthermore, surface activity is not a desired property of the substance.
Water solubility	932 mg/L (20°C and pH 7.2)	Experimental data (Test Guideline: EU Method A.6 (Water Solubility); OECD Guideline 105 (Water Solubility); EPA OPPTS 830.7840 (Water Solubility))
Partition coefficient n- octanol/water (log value)	Log Pow = $2.2 (40 \pm 1^{\circ}C)$	Experimental data (Test Guideline: EU Method A.8 (Partition Coefficient); OECD Guideline 117 (Partition Coefficient (n- octanol / water), HPLC Method); EPA OPPTS 830.7570 (Partition Coefficient, n- octanol / H ₂ O, Estimation by Liquid Chromatography))

Table 5:Overview of physicochemical properties1

Flash point	idem	idem
Flammability	idem	idem
Explosive properties	idem	idem
Self ignition temperature	idem	idem
Oxidising properties	idem	idem
Granulometry	-	In accordance with column 2 of REACH Annex VII section 7.14., the study does not need to be conducted if the substance is marketed or used in a non-solid or granular form. Diethyl phthalate is a liquid under ambient conditions. Therefore, granulometry is not applicable to diethyl phthalate.
Stability in organic solvents and identity of relevant degradation products	-	In accordance with column 1 of REACH Annex IX section 7.15., a study is only required if stability of the substance is considered to be critical. The stability of the substance diethyl phthalate in organic solvents is not considered to be critical.
Dissociation constant	-	The substance diethyl phthalate does not contain any functional groups that dissociate and therefore testing does not appear scientifically necessary.
Viscosity	Kinematic viscosity: 11.53 mm ² /s (20.0°C) 5.73 mm ² /s (40.0°C)	Experimental data (Test Guideline: ASTM D 445-06; OECD Test Guideline 114 (Viscosity of Liquids); EPA OPPTS 830.7100 (Viscosity))
Auto flammability	idem	idem
Reactivity towards container material	idem	idem
Thermal stability	idem	idem

2 MANUFACTURE AND USES

2.1 Quantities

Table 6:Aggregated tonnage (per year)

1 – 10 t	10 – 100 t	100 – 1000 t	1000- 10,000 t	10,000-50,000 t
-	-	-	Х	-

2.2 Identified uses

2.2.1 Uses by consumers

DEP is used as a solvent and softener. It is mainly used as a carrier for fragrances and therefore common as an ingredient in scented mixtures and articles.

According to information provided on the dissemination website within "Chemical Substance Search" on 2014-10-21 by ECHA (aggregated registration dossiers), consumer uses of DEP have been identified within the following chemical product categories (PC):

- PC 3: Air care products
- PC 9a: Coatings and paints, thinners, paint removes
- PC 9b: Fillers, putties, plasters, modelling clay
- PC 21: Laboratory chemicals
- PC 28: Perfumes, fragrances
- PC 29: Pharmaceuticals
- PC 31: Polishes and wax blends
- PC 32: Polymer preparations and compounds
- PC 35: Washing and cleaning products (including solvent based products)
- PC 39: Cosmetics, personal care products

Furthermore it is registered as AC 13: Plastic articles.

According to Article 14(4) of the REACH Regulation, exposure assessment (including the generation of exposure scenarios and exposure estimations) and risk characterization have to be provided by the registrants when they concluded that the substance fulfils the criteria for specific classes or categories set out in Annex I of the Regulation (EC) No 1272/2008. The registrants have determined that DEP did not fulfil these criteria. The exposure is therefore not recorded in their Registration dossiers.

However, to identify possible consumer risks, public product information and national monitoring data were collected and evaluated with regard to potential consumer exposure. There are similarities between exposure situations of identified consumer uses under REACH and cosmetic products. Therefore product information as well as evaluation reports of cosmetics were considered.

The product information is derived mainly from the Federal Office of Consumer Protection and Food Safety (BVL)², national product databases, German monitoring programs, the SPIN database³ and public available literature. Although some product categories are outside the scope of REACH, there were still considered to determine in general the concentration range of DEP in consumer products.

² written communication

³ <u>http://195.215.202.233/DotNetNuke/default.aspx</u>

The BVL has provided 231 measured samples: 151 samples of toys and joke articles, 50 articles of daily use with skin contact, 28 food contact materials, and two samples of personal care products. The detection of DEP was positive in seven samples. But the maximal concentration does not exceed 0.03 %.

The German GIFAS Database⁴ has listed DEP mainly as an ingredient in air care products, washing and cleaning agents, cosmetics, de-icers and biocides. In the majority of cases the concentration was below 1 %. A concentration above 5 % was only indicated in two single products.

The Swedish Commodity Guide⁵ systematizes the general knowledge available on the typical composition of commodities and materials providing an overview of commodities and material used in Sweden. DEP is likely to occur in several commodity groups, but it can be assumed that the content is below 1 %.

The entries of 2012 (latest version) in the SPIN database indicate a "very probable exposure" for consumers with a "very wide range of applications" and a "probable use in article productions". The SPIN database has listed the following use categories: softeners, cleaning/washing agents, odour agents, cosmetics, adsorbents, paints, lacquers and varnishes, surface treatments, impregnation materials, pharmaceuticals.

The Bavarian Health and Food Safety Authority (LGL) has measured a total of 51 alcohol-water based cosmetics (e.g. after shave, eau de toilette, eau de perfume) coming from the German market in 2003 and 2006 (LGL, 2012). In both series DEP was present in 50 % of the samples in a concentration of 0.1 to 0.5 %. Also, levels of > 1 % were rarely found in either study series, values above 5 % did not occur.

Dodson et al. (2012) analyzed 213 consumer products in a range of cosmetics, personal care products, cleaners, sunscreens, and vinyl products coming from the U.S. market. The highest contents of DEP were detected in fragrance/perfumes (1.4 %) and car air fresheners (0.8 %). Cohen et al. (2007) measured 14 samples of air fresheners. DEP was not detectable in two of the samples. The highest content was 0.73 %.

Hubinger and Havery (2006) also analyzed 48 consumer cosmetics products of the U.S. market (body lotion, hairspray, deodorant, fragrance, skin lotion, hair gel, hair mousse, body wash, shampoo, hand cream, nail enamel). Once again the highest concentration was found in fragrances: 38,663 ppm (3.9 %).

Koniecki et al. (2011) determined DEP levels in cosmetic and personal care products obtained from the Canadian market. Overall 252 products including 98 baby care products were collected in 2007. Here too, the fragrances have the highest contents of DEP: 1679 μ g/g as median and 25542 μ g/g (2.6 %) as maximum. The concentrations of all other cosmetic categories are about 100-fold smaller.

Babich and Carlson (2014) recorded data on personal care products, household products, and environmental media (indoor/outdoor air, dust). The presence of DEP in indoor air or house dust gives an indication of available exposure sources in households. The highest DEP content was found in perfume/fragrance with 2.7 %. The DEP concentration of 8 aerosol air fresheners was between 1 and 1100 μ g/g with a mean of 294 μ g/g (0.3%). The mean (and the 95th percentile) of the environmental media come from several publications: 0.57 (1.4) μ g/m³ for indoor air, 0.06 (0.16) μ g/m³ for outdoor air, 8.5 (11.0) μ g/g for dust.

In comparison to mixtures, the content of DEP in articles is much lower. Ionas et al. (2014) reported a maximum of 250 μ g/g (0.025 %) of 50 measured toys. The Danish Environmental Protection Agency carried out a survey for "mapping of perfume in toys and children's articles" (Glensvig & Ports, 2006). In doing so, DEP was detected in one of the ten selected samples with a content of 310 mg/kg (0.031 %).

In conclusion, there is a good match between the registered identified consumer uses by the registrants and information coming from the national product data bases. It seems that small concentration of DEP already fulfills the function as carrier for fragrances. At the moment there is no evidence that concentrations above 3 % are common.

⁴ Giftinformations- und Erfassungssystem GIFAS

⁵ <u>http://webapps.kemi.se/varuguiden/AmneVarugrupp.aspx</u>

3 CLASSIFICATION AND LABELLING

3.1 Harmonised Classification in Annex VI of the CLP Regulation

Diethyl phthalate is not listed in Annex VI of the CLP Regulation.

3.2 Self classification

No self classification is proposed by the lead registrant.

Deviating self classification of diethyl phthalate as notified to the "Classification and Labelling Inventory" of ECHA comprises the following endpoints and hazard categories from 21 notifications:

Table 7: Classification and Labelling according to CLP criteria notified to the C&L Inventory

	Classification		Labelling		
EC Name	Hazard Category	Hazard statement	Signal Words Hazard Pictogram Codes	Hazard statements	
diethyl	Acute Tox. 1	H311	Danger	H311: Toxic in contact with skin.	
phthalate		H331	Warning	H331: Toxic if inhaled.	
1		H302	C	H302: Harmful if swallowed.	
	STOT RE 2	H373	GHS02: Flame	H373: May cause damage to organs through prolonged or repeated	
			GHS03: Flame over circle	exposure.	
	Eye Irrit. 2	H319		H319: Causes serious eye irritation.	
	Skin Irrit. 2	H315	GHS05: Corrosion	H315: Causes skin irritation.	
	Skin Sens. 1	H317	GHS06: Skull and crossbones	H317: May cause an allergic skin reaction.	
	STOT SE 3	H335	GHS07: Exclamation mark	H335: May cause respiratory irritation.	
		H336	GHS08: Health hazard	H336: May cause drowsiness and dizziness	
	Repr. 2	H361		H361: Suspected of damaging fertility or the unborn child.	
	Aquatic	H400	GHS09: Environment	H400: Very toxic to aquatic life	
	Chronic 1	H410		H410: Very toxic to aquatic life with long lasting effects.	

Different notifications can be found in the inventory for DEP. The above listed notifications comprise all endpoints for which notifications have been made.

4 ENVIRONMENTAL FATE PROPERTIES

Not evaluated.

5 HUMAN HEALTH HAZARD ASSESSMENT

5.1 Toxicokinetics (absorption, metabolism, distribution and elimination)

The toxicokinetics of DEP have been studied in experimental animals following oral and dermal exposure. No data are available for inhalation exposure. A limited number of studies have also examined the toxicokinetics of DEP in humans.

5.1.1 Non-human information

Table 8: Basic toxicokinetics according to registration dossier

Method	Results	Remarks	Reference
<i>in vivo</i> studies Species: rats and mice Exposure route: oral gavage Doses/concentration: not stated Guidelines not specified Test material: ¹⁴ C-DEP	Oral absorption: Following oral administration of 14C-DEP to rats and mice (doses not stated), much of the radioactivity from the administered dose (90%) was excreted in the urine within 48 h, with the majority (82%) being eliminated during the first 24 h. Approximately 3% of the radioactivity was found in the faeces over the same period of time. Distribution: the radioactivity was widely distributed with the highest concentrations observed in kidney and liver, followed by blood, spleen and adipose tissue. Highest levels were noted within 20 minutes, followed by a rapid decrease to only trace amounts after 24 h. Metabolism: following oral dosing of rats and mice, MEP was the major urinary metabolite with phthalic acid as a minor secondary metabolite (Ioku et al., 1976; Api, 2001). Elimination& Excretion: DEP is rapidly eliminated and does not accumulate in tissues. The urine appears to be the major route of DEP excretion. Most (90%) of the oral dose administered to rats and mice was excreted in the urine within 48 h post-dosing, with the majority (82%)	RL 2 (with restrictions) Key study	Ioku T Mukaide A Kitanaka H Sakagami Y Kameevama T (1976) ⁶ Api AM (2000a) ⁷

⁶ Ioku T Mukaide A Kitanaka H Sakagami Y Kameevama T (1976). In vivo distribution of drugs. Labelled compounds. Yakuri To Chiryo 4 510-514

⁷ Api AM (2000a). Toxicological profile of diethyl phthalate: a vehicle for fragrance and cosmetic ingredients. Food and chemical toxicology 39: 97-108 2001

Species: rat Exposure route: stomach intubation Exposure regime: Single dose Doses/concentration: 100 mg/kg and 10 mg/kg Test material: ¹⁴ C-DEP	being eliminated during the first 24 h. Oral absorption: following administration of DEP (10 or 100 mg) by stomach intubation in rats, 85%-93% of the administered dose was excreted in the urine within 7 d. For both dose levels, approximately 78% of the administered dose was excreted in urine within 24 h as monoethyl phthalate (MEP) (~70%), phthalic acid (~9%) and parent compound (0.1%-0.4%). The overall results indicate that the oral absorption of DEP is extensive and rapid based on measurement of urinary and faecal excretion.		Kawano M (1980) ⁸ ;IPCS, 2003 Api AM (2000d) ⁷
Dermal route			
Species: rat (Fischer 344) male Coverage (dermal absorption study): semiocclusive Exposure regime: 7 days Doses/concentration: 30 - 40 mg/kg bw , approximating to 5 - 8 mg/cm2 (157 umol/kg), giving a radiolabel dose of 40 microcuries/kg bw Test material: ¹⁴ C-DEP	Dermal absorption: Urine and faeces were collected every 24 hours, and the amount of [14C] excreted was taken as an index of the percutaneous absorption. 24% and 1% of the applied dose to rat skin was excreted in the urine and faeces respectively, within 24 h; the metabolites were not characterized. Distribution: after a single dose of DEP was applied to rat skin, very little radioactivity was found in the tissues after 7 d of exposure. The amounts of radioactivity in the adipose tissue, muscle, skin, brain, lung, liver, spleen, small intestine, kidney, testis, spinal cord and blood were each less than 0.5% of the dose.	RL 2 Key study	Elsisi et al., 1989; IPCS, 2003
Species: rabbit (female) Exposure route: dermal under occlusion Dose: not stated	Dermal absorption: 49% and 1% of the dose applied was excreted in the urine and faeces respectively, after 4 days; the metabolites were not characterized. Distribution: when 14C-DEP was	RL 2 Key study	RIFM, 1973; Api, 2001

⁸ Kawano M (1980). Toxicological studies on phthalate esters 2: Metabolism accumulation and excretion of phthalate esters in rats. Japanese Journal for Hygiene 35: 693-701 1980

Test material: ¹⁴ C-DEP	applied to the female rabbit skin, very little radioactivity was found in tissues 4 d after exposure with the amounts as follows: liver (0.004% of dose), kidney (0.003% of dose) and blood (less than 1% of dose) (Api, 2001; RIFM, 1973*).		
Intraperitoneal route Species: rats Exposure route: ip Dose: not stated Test material: ¹⁴ C-DEP	Distribution: Following intraperitoneal (ip) injection of ¹⁴ C- DEP in pregnant rats on gestational day (GD) 5 or 10, radioactivity was detected in amniotic fluid, as well as in maternal, placental, and foetal tissues, indicating that the compound can pass through the placenta to the developing foetus. The half-life of the compound in foetal tissue was approximately 2.2 d.	RL 3 Supportive information	Singh et al., 1975*; IPCS, 2003
Dermal absorption study: a flow through diffusion cell system was performed to evaluate differences in percutaneous absorption	The receptor fluid was collected for up to 72hours and analyzed for radioactivity by liquid scintillation spectrometry. Results showed that dermal absorption of 14C-DEP through male rat dorsal skin was	<u>RL 2</u> <u>Key studies</u>	Hotchkis SAM
between rats and humans.Species: rat (Fischer 344) male/dorsal skin and human/breast skin	approximately 35.9%, while average absorption in human breast skin in vitro was approximately 3.9% after 72 h under occlusive conditions.		Mint A (1994) ⁹ ; IPCS, 2003 Api AM (2000b) 7
Exposure conditions: occlusive (4 replicates) and non-occlusive (3 replicates) Duration: 72 hours Doses/concentration: Nominal doses: 0.5 uL applied over a 0.32 cm2 area(16.3–20.6 mg/cm2) Solubility of test substance in receptor fluid: No data Flow-through system: Yes - flow rate 1.5 mL/hour	Metabolites identification in rat skin in vitro study: DEP was completely hydrolyzed and was not detected in the receptor fluid. DEP was mainly metabolized to monoethyl phthalate (~13.6 %) at 24h, with phthalic acid (~0.5 %) as a minor metabolite. Metabolism: hydrolysis to the monoester by skin was demonstrated in vitro for both rats and humans (Hotchkiss and Mint, 1994*; Api, 2001).		
	Another <i>in vitro</i> study performed under similar conditions (Scott et al, 1987) reported that the <i>in vitro</i>	Supportive information (Scott et al, 1987)	Scott et al, 1987; Scott et al,

⁹ Hotchkis SAM Mint A (1994). Metabolism of phthalic acid during percutaneous absorption through rat and human skin in vitro. Journal of Investigative Dermatology, 102(4): 647, 1994

	absorption of DEP through rat skin was more than 30 times higher than through human skin with the steady state absorption rate of 413.7vs. 12.8 μ g/cm2/h for rat and human skin respectively.		1989 ¹⁰
Species: mouse (ddN) male Exposure regime: Not specified Doses/concentration: Not specified	The major metabolic pathway of phthalate esters is the hydrolysis of diester to monoester. Hydrolytic activity for phthalate esters has been detected in pancreas, liver, kidney lung and the rat mucosa. The esterases or lipases involved have not been identified.	Supportive information	Kayano Y Watanabe K Matsunaga T Yamamoto I & Yoshimura H (1997) ¹¹ Api AM (2000c) ⁷
(Q)SAR method Test material: DEP		Supporting	AIHA Exposure
		mormation	Strategies
			Committee
			(EASC) -
			$(2011)^{12}$
			(2011),
			(2013h)

¹⁰ Scott RC et al, 1987 – In vitro absorption of some phthalate diesters through human and rat skins, Environmental Health Perspectives, 74:223-227; Scott RC et al, 1989 Errata, In vitro absorption of some phthalate diesters through human and rat skins, Environmental Health Perspectives, 79:323

¹¹ Kayano Y Watanabe K Matsunaga T Yamamoto I & Yoshimura H (1997). Involvement of novel mouse hepatic microsomal esterase, ES46.5k, in the hydrolysis of phthalate esters. Biological and Pharmaceutical Bulletin 20(7): 749-751, 1997

¹² AIHA Exposure Assessment Strategies Committee (EASC) - Dermal Project Team (DPT) in collaboration with Wil ten Berg (2011). IH SkinPerm v1.15. IH SkinPerm READ ME Help Manual - Tibaldi R. S., ten Berg W., Drolet D. - http://www.aiha.org/insideaiha/volunteergroups/EASC/Projectteams/Pages/DermalProjectTeam.aspx. Owner company: American Industrial Hygiene Association, 3141 Fairview Park Drive, Suite 777, Falls Church, VA

¹³ 2013h: skinPerm model; unpublished study record, confidential

5.1.2 Human information

Method	Results	Remarks	
Dermal absorption study in human males N: 26 Coverage: non-occlusive	The purpose of this blind study was to investigate whether diethyl phthalate (DEP), dibutyl phthalate (DBP), and butyl paraben (BP) were systemically absorbed and influenced endogenous reproductive and thyroid hormone levels in humans after topical application.	RL 2 (reliable with restrictions) Supporting evidence	Janjua NR, Mortensen GK, Andersson A-M, Skakkebaek NE and Wulf HC (2007) ¹⁴
Exposure duration: 1 week (5 d/week) Doses/concentration (nominal doses): 34 - 48 g of cream formulation applied over whole body surface, corresponding to 2 mg/cm2 of cream in accordance with FDA and COLIPA guidance. Test material: DEP concentration in cream formulation = 2% w/w, nominal DEP dose = 0.04 mg/cm2.	Twenty six healthy young male volunteers took part in a two week single-blinded study. Volunteers were assigned to daily whole-body topical application of 2 mg/cm2 basic cream formulation each without (first week) and with (second week) the three 2% (w/w) compounds, diethyl phthalate (DEP), dibutyl phthalate (DBP), and butyl paraben (BP). The concentrations of BP and the main phthalate metabolites monoethyl (MEP) and monobutyl phthalate (MBP) were measured in serum. Two hours after the first cream application containing approximately 800 mg DEP, serum concentrations of MEP peaked at 1000 μ g/L (corresponding to 6.9 mg or ~10% of absorbed DEP) and decreased to 23 μ g/L after 24 h just before the second application, but did not reach the baseline levels observed in the first week. Average daily recovery of DEP excreted in urine as MEP was 5.8%, ranging between 0.3%-13.9%, indicating large intra-individual variability		Janjua NR, Frederiksen H, Skakkebaek NE, Wulf HC and Andersson A-M (2008) ¹⁵

¹⁴ Janjua NR, Mortensen GK, Andersson A-M, Skakkebaek NE and Wulf HC (2007). Systemic Uptake of Diethyl Phthalate, Dibutyl Phthalate, and Butyl Paraben Following Whole-Body Topical Application and Reproductive and Thyroid Hormone Levels in Humans. Environ. Sci. Technol. 41: 5564-5570, 2007

¹⁵ Janjua NR, Frederiksen H, Skakkebaek NE, Wulf HC and Andersson A-M (2008). Urinary excretion of phthalates and paraben after repeated whole-body topical application in humans. International Journal of Andrology 31: 118-130, 2008

5.1.3 Summary and discussion on toxicokinetics

Absorption via the oral route

Available data indicate that the oral absorption of DEP is extensive and rapid based on measurement of urinary and faecal excretion. Following oral administration of ¹⁴C-DEP to rats and mice (doses not stated), much of the radioactivity from the administered dose (90%) was excreted in the urine within 48 h, with the majority (82%) being eliminated during the first 24 h. Approximately 3% of the radioactivity was found in the faeces over the same period of time (Ioku et al., 1976*; Api, 2001).

Following administration of DEP (10 or 100 mg) by stomach intubation in rats, 85%-93% of the administered dose was excreted in the urine within 7 d as measured by gas chromatography - mass spectroscopy (Kawano, 1980*; IPCS, 2003). For both dose levels, approximately 78% of the administered dose was excreted in urine within 24 h as monoethyl phthalate (MEP) (~70%), phthalic acid (~9%) and parent compound (0.1%-0.4%).

No information is available concerning differences in absorption and bioavailability of orally administered DEP between adult and immature animals or between animals and humans. However the oral bioavailability of diethylhexyl phthalate (DEHP) appears to be higher in young rats (Sjöberg et al., 1985). The higher proportion of intestinal tissue in relation to body weight (Younoszai & Ranshaw, 1973), and the relatively higher blood flow through the gastro-intestinal (GI) tract (Varga & Csaky, 1976) have been suggested as the likely factors causing an increased absorption in young animals. Therefore, for the purposes of this assessment, bioavailability of DEP via the oral route is assumed to be 100% (children and adults).

Absorption via the dermal route

When ¹⁴C-DEP was applied to male rat skin at 5-8 mg/cm² under occlusion, 24% and 1% of the applied dose was excreted in the urine and faeces respectively, within 24 h (Elsisi et al., 1989; IPCS, 2003). In a similar experiment where ¹⁴C-DEP (dose not stated) was applied to female rabbit skin, around 49% and 1% of the dose was excreted in the urine and faeces respectively, after 4 d (RIFM, 1973*; Api, 2001). The metabolites were not characterised for these studies.

In an in vitro study, the comparative percutaneous absorption of DEP between human and rat skin was evaluated in flow-through diffusion cells. Results showed that dermal absorption of ¹⁴C-DEP through male rat dorsal skin was approximately 35.9%, while average absorption in human breast skin in vitro was approximately 3.9% after 72 h under occlusive conditions (Mint et al., 1994*; IPCS, 2003). Scott et al. (1987; 1989 Errata) using a similar experimental system reported that the in vitro absorption of DEP through rat skin was more than 30 times higher than through human skin with the steady state absorption rate of 413.7 vs. 12.8 μ g/cm²/h for rat and human skin respectively.

In a 2-week single-blinded study, 26 healthy male Caucasians were given a whole body topical application (5 d/week) of 2 mg/cm² basic cream without (week 1–control week) and with (week 2) DEP, dibutyl phthalate (DBP), and butyl paraben at 2% w/w each. Two hours after the first cream application containing approximately 800 mg DEP, serum concentrations of MEP peaked at 1000 μ g/L (corresponding to 6.9 mg or ~10% of absorbed DEP) and decreased to 23 μ g/L after 24 h just before the second application, but did not reach the baseline levels observed in the first week. Average daily recovery of DEP excreted in urine as MEP was 5.8% (Janjua et al., 2007; 2008).

In conclusion, based on the use of urinary and faecal excretion as an index of absorption, DEP appears to be well absorbed via the skin with around 25% to 50% of administered doses excreted within 24 h and 4 d respectively in rats and rabbits. Recent human studies indicated a lower dermal absorption than that seen in rats, with approximately 10% and 5.8% of dermally applied DEP found in serum and urine, respectively within 24 h. The difference in dermal absorption between rats and humans may reflect species differences,

differences in vehicle (alcohol vs. skin cream), and/or differences in application (occlusive vs. non-occlusive) (Janjua et al., 2008). On a weight of evidence basis, a dermal bioavailability for DEP of 10% in humans is assumed for the purposes of this risk assessment.

Distribution

Following oral administration of ¹⁴C-DEP (doses not stated) to rats and mice, the radioactivity was widely distributed with the highest concentrations observed in kidney and liver, followed by blood, spleen and adipose tissue. Little radioactivity was found in the tissues 7 days following application of a single dose of DEP to the skin of the male rat. The amounts of radioactivity in the adipose tissue, muscle, skin, brain, lung, liver, spleen, small intestine, kidney, testis, spinal cord and blood were each less than 0.5% of the dose. Highest levels were noted within 20 minutes, followed by a rapid decrease to only trace amounts after 24 h (Ioku et al., 1976; Api, 2001).

In female rabbits, when ¹⁴C-DEP (dose not stated) was applied to the skin, very little radioactivity was found in tissues 4 d after exposure with the amounts as follows: liver (0.004% of dose), kidney (0.003% of dose) and blood (less than 1% of dose) (Api, 2001; RIFM, 1973*). When a single dose of DEP was applied to male rat skin, very little radioactivity was found in the tissues after 7 d of exposure. The amounts of radioactivity in the adipose tissue, muscle, skin, brain, lung, liver, spleen, small intestine, kidney, testis, spinal cord and blood were each less than 0.5% of the dose (Elsisi et al., 1989; IPCS, 2003).

Following intraperitoneal (ip) injection of ¹⁴C-DEP in pregnant rats on gestational day (GD) 5 or 10, radioactivity was detected in amniotic fluid, as well as in maternal, placental, and foetal tissues, indicating that the compound can pass through the placenta to the developing foetus. The half-life of the compound in foetal tissue was approximately 2.2 d (Singh et al., 1975*; IPCS, 2003).

Ioku et. al⁶ report that, following oral administration of ¹⁴C-DEP to rats and mice, the radioactivity was widely distributed with the highest concentrations observed in kidney and liver, followed by blood, spleen and adipose tissue. Highest levels were noted within 20 minutes, followed by a rapid decrease to only trace amounts after 24 hours.

Little radioactivity was found in the tissues 7 days following application of a single dose of DEP to the skin of the male rat. The amounts of radioactivity in the adipose tissue, muscle, skin, brain, lung, liver, spleen, small intestine, kidney, testis, spinal cord and blood were each less than 0.5% of the dose¹⁴.

Metabolism

Metabolism following oral administration of diethyl phthalate to rats was mainly as a result of hydrolysis, with the principal urinary metabolite being monoethyl phthalate and phthalic acid as a minor secondary urinary metabolite¹⁶. After systemic absorption hydrolysis to monoethyl phthalate, the monoester, can occur in the lumen of the gastrointestinal tract or in intestinal mucosal cells following oral administration

¹⁶ Chambon, P., Riotte, M., Daudon, M., Chambon-Mougenot, R., Bringuier, J. Etude du métabolisme des phtalates de dibutyle et du diéthyle chez le rat. Comptes Rendus des Seances de L'Académie des Sciences 273: 2165-2168, 1971.

inaddition to the liver, kidney and lung ⁹ ¹¹ ¹⁷ ¹⁸ ¹⁹. Hydrolysis to the monoester by skin has also been demonstrated during *in-vitro* percutaneous absorption studies using rat and adult human skin²⁰ ²¹.

It has been demonstrated that human plasma-derived arylesterase did not hydrolyse diethyl phthalate²² but the substance can be hydrolysed by purified carboxylesterase obtained from human liver and rat liver²³.

There is limited evidence for the induction of enzymes by diethyl phthalate. Preincubation in microsomal pellets and supernatant isolated from Sprague Dawley male rats treated with phenobarbital intraperitoneally for 3 days, had no effect on cytochrome P450 or on N-acetyl transferase activity in rat liver microsomal suspensions, but the activity of UDP glucuronyl transferase was reduced²⁴. Increased activity of peroxisomal enzyme carnitine acetyl transferase has been observed in rat primary hepatocyte cultures in the presence of diethyl phthalate²⁵

The mono-ester, MEP, was the major urinary metabolite identified following oral dosing of rats and mice⁶. Phthalic acid was identified as a minor secondary metabolite.

In another study, approximately 70% of the dose administered by stomach intubation in rats was excreted in urine within 24 hours as the mono-ester, MEP¹¹. Hydrolysis of the di-ester to the monoester in the skin has also demonstrated *in vitro* for both rats and humans by Hotchkiss and Mint⁹.

Excretion

In experimental animals, DEP is rapidly eliminated and does not accumulate in tissues. The urine appears to be the major route of DEP excretion.

Approximately 90% of the dose orally administered to rats and mice was excreted in the urine within 48 hours of dosing, with the majority (82%) being eliminated during the first 24 hours⁷. Administration by oral gavage to rats resulted in 85%-93% of the administered dose being excreted in the urine within 7 days¹¹. Elsisi et al report that 24% and 1% of the administered ¹⁴C-DEP dose was excreted in the urine and faeces respectively after 24 hours following application to the dorsal skin of rats¹⁴.

In humans, following daily whole body dermal application of DEP over one treatment week, the mean recovery rate of DEP in the urine was 5.8% as the mono-ester, MEP, with an unconjugated (free) fraction of up to 78%. The majority of MEP was excreted within the first 8 hours of application to the skin.

²⁰ Hotchkiss, SA. M., Mint, A. Metabolism of phthalic acid esters during percutaneous absorption through rat and human skin in vitro. Journal of Investigative Dermatology 102: 647, 1994.

²³ Mentlein, R., Butte, W. Hydrolysis of phthalate esters by purified rat and human liver carboxylesterases. Biochemical Pharmacology 38: 3126-3128, 1989.

¹⁷ Lake, B. G., Phillips, J. C., Hodgson, R. A., Severn, B. J., Gangolli, S. D., Lloyd, A. G. Studies on the hydrolysis in vitro of phthalate esters by hepatic and intestinal mucosal preparations from various species. Biochemical Society Transactions 4: 654-655, 1976.

¹⁸ Lake, B. G., Phillips, J. C., Linnell, J. C., Gangolli, S. D. The in vitro hydrolysis of some phthalate diesters by hepatic and intestinal preparations from various species. Toxicology and Applied Pharmacology 39: 239-248, 1977.

¹⁹ Rowland, I. R., Cottrell, R. C., Phillips, J. C. Hydrolysis of phthalate esters by the gastro-intestinal contents of the rat. Food and Cosmetics Toxicology 15: 17-21, 1977.

²¹ Hotchkiss, S. A. M. Absorption of fragrance ingredients using in vitro models with human skin. In: Frosch, P. J., Johansen, J. D., White, I. R. (Eds.), Fragrances. Beneficial and Adverse Effects. Springer-Verlag, Berlin, pp. 125-135, 1998.

²² Augustinsson, K-B., Ekedahl, G. On the specificity of arylesterases. Acta Chemica Scandinavica 16: 240-241, 1962.

²⁴ Gollamudi, R., Lawrence, W. H., Rao, R. H., Autian, J. Effects of phthalic acid esters on drug metabolizing enzymes of rat liver. Journal of Applied Toxicology 5: 368-371, 1985.

²⁵ Cray, T. J. B., Lake, B. C., Beamand, J. A., Foter, J. R., Peroxisomal effects of phthalate esters in primary cultures of rat hepatocytes. Toxicology 28: 167-179, 1983.

The recovery rates recorded daily were between 0.3%-13.9%, indicating large intra-individual variations³⁰.

5.2 Acute toxicity

5.2.1 Non-human information

5.2.1.1 Acute toxicity: oral

The results of studies on acute toxicity after oral administration are summarised in the table below.

Table 9: Overview of experimental studies on acute toxicity after oral administration according to registration dossier

Method	Results	Remarks	Reference
Species: rat (Wistar)	LD50: > 5 mL/kg bw	RL 2	Lewis CA
401 (Acute Oral Toxicity)		kev studv	(1978a)
Test material: Diethyl phthalate			
Species: rat	LD50: 8.2 mL/kg bw.	RL 3	L G Krauskopf
Test material: Diethyl		Supporting	(1973)
phthalate		evidence	
Species: rabbit	LD50: 1000 mg/kg bw	RL 3	Patty FA editor
No details reported Test material: Diethyl		Supporting	(1963) 29
phthalate		evidence	anon (1978a)
Species: mouse	LD50: 2500 mg/kg bw	RL 3	Patty FA Editor $(1062)^{28}$
Test material: Diethyl		Supporting	(1903)
phthalate		evidence	1978b: toxicity
			test, Mouse;
			study record,
			confidential

²⁶ Lewis CA (1978a). Oral LD50 Test in Rats of Diethyl Phthalate. US EPA. Testing laboratory: Consumer Product Testing Co Inc. Report no.: 78106-1 (78-032-02). Report date: 1978-03-31

²⁷ L G Krauskopf (1973). Studies on the toxicity of phthalates via ingestion. Environmental Health Perspectives, 3: 61-72, 1973

²⁸ Patty FA editor (1963). Industrial Hygeine and Toxicology 2nd revised edition Vol II 1963. Office of Toxic Substances. Testing laboratory: Unknown. Owner company: Unknown

²⁹ anon (1978a). Toxicity and Health hazard Summaty. Office of Toxic Substances. Testing laboratory: Unknown. Owner company: Unknown.

5.2.1.2 Acute toxicity: inhalation

The results of studies on acute toxicity after inhalation exposure are summarised in the following table.

Table 10: Overview of experimental studies on acute toxicity after inhalation exposure according to registration dossier

Method		Results	Remarks	Reference
Species: rat		LC50 (6 h): \geq 511 ppm	RL 2	HSDB -
Test material:	Diethyl	LC50 (6 h): \geq 4.64 mg/L air	key study	http://toxnet.nlm.nih.go
phthalate		(nominal)		$v/(2008)^{30}$
				Confidental IUCLID
				information

5.2.1.3 Acute toxicity: dermal

The results of studies on acute toxicity after dermal administration are summarised in the following table.

Table 11: Overview of experimental studies on acute toxicity after dermal administration according to registration dossier

Method	Results	Remarks	Reference
Species: rat	LD50: > 10 mL/kg bw	RL 2	Lewis CA
Coverage: occlusive		key study	$(1978b)^{31}$
Test material: Diethyl			× ,
phthalate			
Hagan EC (1959) Acute			
toxicity in Appraisal of the			
Safety of chemicals in			
foods, drugs and cosmetics,			
pp 17-25			

5.2.1.4 Acute toxicity: other routes

The results of studies on acute toxicity (other routes) are summarised in the following table.

³⁰ HSDB - http: //toxnet. nlm. nih. gov/ (2008). EPA HPV Challenge Program's Robust Summaries and Test Plans. Available from the Database Query page at: http: //www. epa. gov/hpv/pubs/hpvrstp. htm on Phthalate Esters Category, Diethyl phthalate (84-66-2) p. 23 (2007) as of April 28, 2008 - peer reviewed

³¹ Lewis CA (1978b). Dermal LD50 (Rat). NTIS. Testing laboratory: Consumer Product Testing Co. Inc. Report no.: 78106-2. Report date: 1978-03-31

Method	Results	Remarks	Reference
Species: mouse (ICR) male intraperitoneal Test material: Diethyl phthalate Groups of 10 male ICR mice received undiluted DEP via the intraperitoneal route and were then observed for 7 days.	LD50: 3.22 g/kg bw (male) LD50: 2.87 mL/kg bw (male)	RL 4 (not assignable)	Lawrence WH, Malik M, Turner JE, Singh AR and Autian J (1975a) ³²
[A review paper presented more than 30 years ago with limited details of methodology and before the introduction of OECD guidelines & GLP]			

Table 12: Overview of experimental studies on acute toxicity after intraperitoneal exposure according to registration dossier

5.2.2 Human information

This information is not available from the registration dossiers.

5.2.3 Summary and discussion of acute toxicity

Acute toxicity following administration of a single oral dose has been investigated in the rat. The LD50 was found to be in excess of 5 mL/kg body weight (5591 mg/kg when corrected for density).

A poorly documented study by the inhalation route indicates no mortality to have occurred when rats were exposed to a saturated vapour of 511 ppm (4.64 mg/L) by the inhalation route for 6 hours.

Acute toxicity following administration of a single dermal dose over a 24 hour period has been investigated in the rat. The LD50 was determined to be in excess of 10 mL/kg body weight (11181 mg/kg when corrected for density). Acute oral toxicity: LD50: 5591 mg/kg bw

Acute dermal toxicity: LD50: 11181 mg/kg bw

Acute inhalation toxicity: LC50 (6 h): \geq 4.64 mg/L air (nominal)

In conclusion, DEP has been investigated for acute toxicant properties by the oral, dermal and inhalation routes of exposure. The outcome of the studies does not indicate a justification for classification according to the criteria of Regulation (EC) n.° 1272/2008.

³² Lawrence WH, Malik M, Turner JE, Singh AR and Autian J (1975c). A toxicological Investigation of some acute, short-term and chronic effects of administering Di 2 Ethylhexyl phthalate (DEHP) and other phthalate esters. Environmental Research Vol 9 pp 1-11, 1975. Testing laboratory: N/A review presented at the Society of Toxicology's 13th annual meeting Washington DC USA 1974

5.3 Irritation

5.3.1 Skin

Method/ Guideline	Species, Strain,	Average score 24, 48, 72 h		Reversibilit y	Results	Remarks	Reference
	Sex, No/grou p	Erythem a	Oedem a	yes/no			
Skin Irritation Test FHSA test methods occlusive	Rabbit albino 3 animals Strain, Sex not reported	0 throughou 3 rabbits	ut for all	not applicable (observation period: 72 hours)	exposure period 24 h: No response on intact or abraded skin	2 (reliable with restrictions) key study 0.5 mL DEP unchanged (no vehicle)	1978: Unpublished study record, confidential
Skin irritation / corrosion Designed to comply with OECD TG 404 (Acute Dermal Irritation / Corrosion)	Rabbit 3 animals Strain, Sex not reported	primary der irritation in (PDII) \oslash 0. animal calculated f sum of eryt grades at 2 ⁴ + the sum of grades at 2 ⁴ The maxim possible PI	rmal dex .17 per Trom the hema 4/48/72h of oedema 4/48/72h um I was 8.	As mean value no maximum score or reversibility indicated.	not irritating	3 (not reliable) weight of evidence 0.5 mL DEP undiluted	Bagley DM Gardener JR Holland G Lewis RW Regneri J-F Stringer DA & Walker AP Toxicology in vitro 10: 1-6, 1996

Table 13: Overview of experimental studies on skin irritation as reported in theregistration dossier

5.3.2 Eye

Method/ Guideline	Species, Strain.	Average Score 24 – 72 h		Reversibili tv	Results	Remarks	Reference
	Sex, No/grou	Cornea, Iris, Chemosis	Redness Conjunctiv a				
Acute eye irritation FHSA test methods equivalent or similar to OECD Guideline 405 (Acute Eye Irritation / Corrosion)	Rabbit albino 3 animals right eye with no further treatment untreated left eye as its own control	24 – 72- h: animal #1: 1.7 of max. 2 animal #2: 1.3 of max. 2 animal #3: 1.7 of max. 2 Ø 1.6 Draize scale	24 – 72- h: animal #1: 2.3 of max. 3 animal #2: 2 of max. 2 animal #3: 2.3 of max. 3 Ø 2.2 Draize scale	Chemosis 2 fully reversible within: 4 d, animal #1: not fully reversible within: 7 d Conjunctiv a all not fully reversible within: 7 d	severe conjunct tival irritatio n in all 3 animals day 7: slight hyper- aemia in conjunct tivae	2 (reliable with restric- tions) WoE single instillation: 0.1 mL: 12.5% DEP in 95% ethanol	; 1963: OECD 405; Unpublishe d study record, confidentia 1
Eye irritation Review paper Details on methods / results not available	Rabbit: Strain, Sex, Number not reported	0.5 – 48 h: 0	0.5 – 48 h: 0	no grossly obervable irritation seen	Basis not reported	3 (not reliable) weight of evidence DEP unchanged (no vehicle)	Lawrence WH, Malik M, Turner JE, Singh AR Autian J, Env Res9: 1-11, 1975

Table 14: Overview of experimental studies on eye irritation as reported in theregistration dossier

Table 15: Overview of experimental studies on eye irritation according to original publications and reviews (such only partly reported in registration dossiers as well as additional publications)

Method/	Species,	Average S	core	Rever-	Results	Remarks	Re-
Guideline	Strain,	24 – 72 h		sidinty			lerence
	Sex,	Cornea, Iris, Redness					
	No/group	Chemosis	Conjunctiva				
Eye irritation Details on methods/ results not available	Rabbit: 6 animals Strain, Sex not reported, untreated eye as a control	Average 1 mean valu 24 score Draize scal	eye injury: h: 3.2 e for 6 animals h: 1.5 for lesions e	not fully reversible within: 24 h	Irritation after 1 h decreased signifi- cantly by 24 hours	3 (not reliable) weight of evidence DEP unchanged (no vehicle)	Draize JH et al. 1944
Primary Eye irritation	Rabbit: Albino	No data	slight redness of the conjunctivae	not persistent	minimal irritation	no robust study summary	RIFM 1978

Method/ Guideline	Species, Strain, Sex, No/group	Average 24 – 72 h Cornea, In Chemosis	Score ris, Redness s Conjunctiva		Rever- sibility	Results	Remarks	Re- ference
with or without washing							available 0.1 mL DEP undiluted	
Eye irritation unwashed eyes	Rabbit: New Zealand	No data	No	data	Practical- ly non- irritating in washed eye	minimal irritation	0.1 mL DEP	ATSDR 1995

5.3.3 Respiratory tract

No specific studies are available from the registration dossiers.

5.3.4 Summary and discussion of irritation

The evidence for skin and eye irritation of DEP was obtained from animal testing. No standard guideline tests for skin or eye irritation in rabbits were submitted for DEP. However, by means of a weight of evidence approach the information provided in the registration dossiers is sufficient to conclude that the irritation potential of DEP is very low. This is supported by reviews of international bodies/regulatory programs (ATSDR 1995, WHO 2003, NTP 2006, NICNAS 2011, HSDB 2015). No signs of irritation were noted in the skin irritation studies with undiluted DEP and only slight irritation of rabbit eyes was reported in eye irritation studies with pure DEP.

In a primary skin irritation study according to FHSA test methods (Exp. Study skin irritation,1978) which was designed to comply with OECD TG 404 1981 or 1992 no significant irritating properties were reported. DEP was not irritating even to the abraded skin of the albino rabbit, although exposure was for a 24 hour period compared to 4 hours in current OECD/EU test methods.

Study results(Exp. Study eye irritation, 1963) seem to justify classification as eye irritant category 2 because the CLP criteria are met (at least 2/3 animals tested showed conjunctival redness mean score \geq 2 which was not fully reversible after 7 days). Although conducted similar to OECD Guideline 405 (Acute Eye Irritation/Corrosion) the study is not appropriate for evaluation of the eye irritating potential of DEP as ethanol is the main component (> 80 %) of the test solution used which itself causes eye irritation. All other non-reliable (Table 14) studies are not in conformity with actual test guidelines or GLP and describe only minimal eye irritation with undiluted DEP.

Based on the available data, classification of DEP as skin or eye irritant is not warranted under Regulation (EC) 1272/2008 on classification, labelling and packaging of substances and mixtures (CLP).

5.4 Corrosivity

No signs of corrosion were seen in the skin/eye irritation tests.

5.5 Sensitisation

5.5.1 Skin

The results of studies on skin sensitisation are summarised in the following table.

Table	16:	Overview	ofex	perimental	studies	on skin	sensitisation	according t	o registration	1 dossier
Labic	10.		UI UA	permental	studies	on skin	Sensitisation	uccording t	o registitutio	1 0055101

Method	Results	Remarks	Reference
Species: mouse (CBA/Ca) female LLNA 25 µL of 25%-100% DEP in	not sensitising Stimulation index: AOO =1:	RL 2	Ryan CA Gerberick GF
acetone-olive oil	25% v/v = 1.0; 50% V/V = 1.3;	Supporting	Cruse LW
OECD Guideline 429 (Skin	100% V/V = 1.5	evidence	Basketter DA
Sensitisation: Local Lymph Node			Lea L Blaikie L
Assay)			Dearman
Test material: Diethyl phthalate			$(2000)^{33}$
Species: guinea pig male	not sensitising	RL 2	Lewis CA
Buehler test	No. with positive reactions:		(1978c)
Induction: epicutaneous, occlusive	1st reading: 0 out of 11 (test	key study	
Challenge: epicutaneous, occlusive	group); 0 h after chall.; dose:		
Vehicle: water	50% w/v aqueous solution		
Test material: Diethyl phthalate	2nd reading: 0 out of 11 (test		
similar to OECD Guideline 406 (Skin	group); 24 h after chall.; dose:		
Sensitisation)	50% w/v aqueous solution		
Species: guinea pig (Himalayan white	not sensitising	RL 2	Klecak G
spotted guinea pigs) male/female	No. with positive reactions:	a	Geleick H &
Results of open epicutaneous test	OE1 1st reading: 0 out of 6 (test	Supporting	Frey JR (1977) ⁵¹
(DT) Movimisation (MT) and	group); 24 h after chall.; dose:	evidence	
(D1), Maximisation (M1) and Fround's complete educent (ECA) test	OET 2nd reading: 0 out of 6		
Induction: enjoyteneous, open	(test group): 48 h after shall :		
Challenge: enjoytaneous, open	dose 100%		
Vehicle: acetone water & ethanol	OFT 3rd reading: 0 out of 6 (test		
reported	group): 72 h after chall · dose:		
Test material. Diethyl phthalate	100%		
	MT: Allergenicity in guinea		
Based on results from Magnusson &	pigs: 0 out of 6 (test group); 48		
Kligman test DEP was tested in an	h after chall.; dose: 5%		
OET, DT and MT concurrently. To	FCAT: Allergenicity in guinea		
confirm an OET could reliably detect	pigs: 0 out of 6 (test group); 48		
skin irritation and contact	h after chall.; dose: 100%		
hypersensitivity in guinea pigs. A dose			
response curve was plotted and the			
irritant and/or allergenic activity was			

³³ Ryan CA Gerberick GF Cruse LW Basketter DA Lea L Blaikie L Dearman RJ Warbrick EV Kimber I (2000). Activity of human contact allergens in the murine local lymph node assay. Contact Dermatitis 43: 95-102, 2000

³⁴ Klecak G Geleick H & Frey JR (1977). Screening of fragrance materials for allergenicity in the guinea pig 1 Comparison of four testing methods. J Soc Cosmet Chem 28: 53-64, 1977

calculated as % concentration.		

5.5.2 Respiratory system

This information is not available from the registration dossiers.

5.5.3 Summary and discussion on sensitisation

Skin sensitisation

ſ

The skin sensitising potential of DEP has been investigated using a number of standardised guinea pig test methods and a local lymph node assay (mouse). Data for respiratory sensitisation are not available.

One Buehler study (Lewis CA (1978c) with DEP 50% w/v aqueous solution didn't show any skin sensitisation effect. Also, no dermal sensitisation responses were observed with undiluted DEP in an open epicutaneous test, the Draize intradermal test and the Freund's complete adjuvant test (Klecak et al., 1977).

In a local lymph node assay, DEP (25 μ L of 25%-100% DEP in acetone-olive oil) did not induce significant increases in thymidine incorporation into lymph nodes (Ryan et al., 2000*; IPCS, 2003).

Overall, data indicate that DEP is not a skin sensitiser. Classification is therefore not warranted.

Respiratory sensitisation

There are no alerts for respiratory sensitisations based on the information available from a number of dermal sensitisation assays.

5.6 Repeated dose toxicity

5.6.1 Non-human information

5.6.1.1 Repeated dose toxicity: oral

 Table 17: Overview of experimental studies on repeated dose toxicity after oral exposure as reported in the registration dossier

Method/ Guide- line	Route of exposure Duration	Species, Strain, Sex, No /group	Dose levels	NO(A)EL	LO(A)EL	Results Main effects/ Target organs	Remarks	Reference
Sub-	oral:	rat	0	no	0.1 %	↓ in wt gain,	3 (not	1954a:
chronic	feed,		(con-	NOAEL	in the	the effect	reliable)	Exp. Study
screen-		M/F	trol),	identi-	diet	was dose	weight of	repeated
ing test	4 months		0.1, 1.0	fied	(M/F)	related and	evidence	dose
			& 5 %			was at least	Test ma-	toxicity,co
assess-			(nomi-			the same or	terial: no	nfidential
ment of			nal in			more marked	data on	
the			diet)			when a	details	
toxicity			, , , , , , , , , , , , , , , , , , ,			dietary level	Common	
of di-iso-						of 1 % was	name:	
butyl						administered,	diethyl	

Method/	Route of	Species,	Dose			Results	Remarks	Reference
Guide-	exposure	Strain,	levels	EL	EL	Main effects/		
line	Duration	Sex,			A)]	Target		
		No		Õ	Ŏ	organs		
		/group		Z	Γ			
phthalate						the effect at	phthalate	
using						5% was very	mortality,	
diethyl						marked,	bw only	
phthalate						mortality was	in weeks	
for com-						similar in all	1-8 re-	
parison						groups	ported	
Sub-	oral in	dog	5 %, 1	0.1 %/	2 %/	Initially the	4 (not	1954b:
chronic	capsule		% & 2	kg by	kg	dose	assign-	Exp. Study
screen-			% DEP	capsule		administered	able)	repeated
ing test	2 months		(dog 1)			was 5 % /kg		dose
			dog 2:			and reduced	weight of	toxicity,co
assess-			0.1 %			to 1 %/kg	evidence	nfidential
ment of			DEP			DEP in the		
the			/kg by			diet. At both	experi-	
toxicity			capsule			levels dog 1	mental	
of di-			(conc.			refused to eat	result	
isobutyi			015 &			diet. Subse-	T (
phthalate			1 % in			quently given	Test ma-	
diather			incor-			2 % /kg dally	dete en	
alethyl			porated			by capsule	data on	
for com			diot)			which regulted in a	details	
norison			then			loss of an	Common	
parison			due to			nroy 1 kg in	commo:	
			contin			body weight	diethyl	
			ued			in approxi-	nhthalate	
			inanne-			mately 8	pinnanate	
			tance			weeks		
			dog 1			weeks.		
			was			The second		
			given 2			dog received		
			%/d by			0.1 % /kg for		
			capsule			6 weeks with		
			a 2^{nd}			no loss in		
			dog re-			body weight		
			ceived					
			0.1 %					
			/kg					
			by cap-					
			sule for					
			8 w					

Table 18: Overview of experimental studies on repeated dose toxicity after **oral exposure** according to **original publications** (such only partly reported in registration dossiers as well as additional publications)

Method/ Guide- line	Route of exposure Duration	Species, Strain, Sex, No	Dose levels	VO(A)EL	LO(A)EL	Results Main effects/ Target	Remarks	Reference
		/group		L	I	organs		

Method/	Route of	Species,	Dose	. 1		Results	Remarks	Reference
Guide-	exposure	Strain,	levels)EI)EI	Main		
line	Duration	Sex, No		V(A)(A	effects/ Target		
		/groun		NC	ΓC	organs		
Sub-	oral, feed	rat,	Nomi-	150	750	16 weeks:	2 (reliable	1978: Exp.
chronic	-	Sprague-	nal in	mg/kg	mg/kg	↓ bw F 1 %,	with	Study
study	16 weeks	Dawley	diet:	bw/d	bw/d	M/F 5 %	restric-	repeated
		5 M /	0 (con-	(0.2 %	(1.0 %	↓ overall	tions)	dose
	additional	5 F	trol),	in diet)	in diet)	food		toxicity,
not de-	groups for	2 + 6 w	0.2,			consumption	key study	confidential
signed to	2 and for	expo-	1.0			F 1 %, M/E 5 0/		
neet a	o weeks	$15 \mathrm{M}/$	and 5.0 %			IVI/F 3 70	Test	
lar		15 WI /	for			necronsy.	material [.]	
guide-		16 w	stan-			abs. wts of	DEP	
line		exposure	dard			brain, heart,	(99%)	
		Î.	study			spleen and		
						kidneys		
		6 M and	0,5%			statistically		
		6 F for	pair			significantly		
		pair	ing			lower than		
		study	nng study			M/E 5%		
Testi-	oral feed	Rat	0.2%		2000	↑ liver	mean	Oishi &
cular	orur, reeu	(Wistar)	in diet		mg/kg/	weight (12	DEP-	Hiraga.
toxicity	1 week	(d	%), no	intake M:	1980
after		male				changes in	2000 mg/	
repeat		n = 10				body wt,	kg/d	
admini-		/group				kidney wt or		
stration	1 C 1	D (0 1		2000	testis wt	.1	
Hepatic	oral, feed	(E_{244})	0 and $2.9/$ in		2000 ma/ka/	\uparrow liver wt (15	authors	Moody & Roddy
and	3 weeks	(1-344)	2 /0 III diet		d	70) marginally ↑	on	1978 1982
hepatic	5 WEEKS	male	mean		u	hepatic	marginal	1970, 1902
peroxi-		aantral	DEP-			catalase	response	
some		n=13	intake			activity and	for	
prolife-		treated	M:			carnitin	induction	
ration		n=4	2000			acetyltransfe-	of hepatic	
and			mg/			rase activity	perox1-	
peroxiso mal an			кд/а			significantly	somes	
Tumes						↓ seruin triglyceride		
after						with no		
repeat						change in		
admini-						serum cho-		
stration						lesterol		
Induc-	oral,	Rat,	1200			compared to	marginal	Okita &
tion of	gavage	Sprague	mg/			controls:	response	Okita, 1992
microso-	2 1	Dawley	kg/d			1.6 told ↑ in	(signify-	
mai lavals of	5 days	mala				laurate		
laurate		n=5				activity	notent	
hydro-		/group				1.3 fold \uparrow in	when	
xylase		- P				peroxisomal	compared	

Method/ Guide- line	Route of exposure Duration	Species, Strain, Sex, No	Dose levels	O(A)EL	O(A)EL	Results Main effects/ Target	Remarks	Reference
(marker for per- oxisome prolifer- ation) after repeat admin		/group		2	Ι	organs palmityl- CoA oxidation	to DEHP)	
istration Com- parative toxicolo- gical evalua- tion after repeat admin- istration accord- ing to OECD TG 407	oral, gavage 4 weeks	Rat, Sprague Dawley male n=5 /group	500 mg/ kg /d	500 mg/kg /d		no change in body wt, no changes in relative or- gan wts (thymus, heart, spleen, liver, kidney, adrenal, testis epidi- dymidis) no changes in hematology, serum bio- chemistry (except CA), urinalysis		Kwack et al., 2009
Sub- acute oral toxicity Guide- line ac- cording study (OECD TG 407, en- hanced)	Oral, gavage Prelimi- nary study: 14 days full study: 28 days (at least)	Rat, Sprague Dawley 10 M / 10 F n=10/sex /group	0, 40, 200 and 1000 mg/ kg/d vehicle con- trol: corn oil	200 mg/kg	1000 mg/kg/ d	terminal bw \downarrow in M of the 1000-mg group (↑ fre- quency of urination), slight ↑ in kidney wt in F of the 40- mg and 1000-mg group, and slight ↑ in adrenal wt in F of the 1000-mg group without any histopatho- logical changes in these organs, no changes in liver wt or	as an en- hance- ment hormone analysis, spermato- logy and oestros cycling were in- cluded, no indi- cations for endo- crine- mediated properties detected within this test design	Shiraishi et al., 2006

Method/	Route of	Species, Strain	Dose	T	Т	Results Main	Remarks	Reference
line	Duration	Stram,	levels	V)E	r)E	offocts/		
mit	Duration	No		¥)(V(A	Target		
		/group		ž	ΓC	organs		
		/Broup				liver histo-		
						pathology		
Two-	oral, feed	Rat,				bw \downarrow in M &		Fujii et al.,
genera-		Sprague				F at high-		2005
tion	prelimi-	Dawley	5000,			dose,		
repro-	nary dose	0.0.5.1	10000,			rel. liver wt ↑		
ductive	selection	8 M /	20000			$\ln M \geq 10000$		
toxicity	study	8 F	0r 40000			10000 ppm,		
study		n=8/sex/	40000			bwg of F1		
similar		group	ppm in diet			pups infid- ited > 20000		
to			ulei			$\frac{1100}{20000}$		
OFCD	main	24 M / 24	600			ppm		
TG 416	study	F	3000	15000		at		
10 110	study	-	or	ppm		15000ppm:		
		n=24/	15000	(1016-		F0 & F1 pa-		
		sex/	ppm in	1375		rental ani-		
		group	diet	mg/kg		mals:		
			(40-	bw/d),		no effects on		
			56,	deter-		bw, no histo-		
			197-	mined		pathological		
			267, or	by		effects in		
			1016-	study		liver		
			1375	au-		abs and/or		
			mg/kg	thors		rel. liver wts		
			bw/d)			T in both		
						F1 & F2		
						weanlings		
						suppression		
						of bwg, rel.		
						liver wts ↑ in		
						in both sexes		
						without any		
						histopatho-		
						logical		
						abnormalities	DED	D : 0
Toxicity	oral feed	Rat	50			no effects on	DEP was	Pereira &
of DEP	150 dava	(wistar)	ppm in			tio liver	uissolved	као, 2006,
III female	150 days	female	intaka			linid perovi	and	
Wistar			an-			dation in	mixed	
rats		n =	nroxi-			creased	with diet	
1413		6/group	mately			vacuolization	min urvi	
			2.9			& granular	21 dav	Pereira &
			mg/kg			deposits in	old F1-	Rao, 2007
			bw/d			hepatocytes,	offspring	,
						slight ↑ liver	pups	
						& serum	showed	
						ACP and	mild	

Method/	Route of	Species,	Dose	L	د	Results	Remarks	Reference
Guide-	exposure	Strain,	levels	I)EI)EI	Main offoots/		
me	Duration	No		V)(V(A	Target		
		/group		ž	ΓC	organs		
						LDH	vacuoli-	
						liver &	sation in	
						serum AST ↑	hepato-	
						liver chole-	cytes	
		-				sterol ↑		
Toxicity	oral feed	Rat (Wistow)	P-ge-			P- and F1-	DEP was	Pereira et
of DEP	150 days	(wistar)	nera-			generation:	in corn oil	al., 2007a
female	150 days	6 M /	50			adrenal &	and	
Wistar	(respec-	6 F	ppm.			thyroidal wts	mixed	
rats	tively in	n —	F1-gen			at 150 days,	with diet	
during	the	n = 6/sev/gro	25			P-, F1-, F2-		Pereira et
exposure	parental,		ppm,			generation:		al., 2007b
of	F1- and	чÞ	F2-gen			vacuoli-		
several	the F2-		10			zation,		
gene-	genera-		ppm in			granular deposite &		
Tations	tion)		ulet			fatty degen-		
			intake			eration in		
			~ 0.6.			hepatocytes		
			1.4			liver &		
			and			serum		
			2.9 mg			ALT/AST ↑,		
			/kg			liver &		
			bw/			serum		
			uay			tingiycerides ↑ serum		
						cholesterol in		
						$P \uparrow \& \text{ in } F2 \downarrow$		
chronic	oral feed	Rat	10, 25			↑ liver: body	DEP was	Pereira et
toxicity		(Wistar)	and 50			wt ratio and	dissolved	al., 2006a
of DEP	150 days	mala	ppm in			↑ serum	in corn oil	
in male		male	diet			ACP, LDH,	and	
Wistar		n =	intake			ALT for the	mixed	
Tais		6/group	ap-			group only	with diet	
			mately			liver tri-	Several	
			0.6,			glycerides ↑	inconsist-	
			1.4			and \uparrow lipid	encies in	
			and			peroxidation	the data	
			2.9			in liver of all	hampered	
			mg/kg/			treated	the inter-	
			a			groups,	pretation	
						drial prolife	or the re-	
						ration in	this nub-	
						hepatocytes.	lication	
						↑ numbers of		
						peroxisomes		
Gender-	oral,	Rat	50			no change in		Sinkar &
Method/ Guide- line	Route of exposure Duration	Species, Strain, Sex, No	Dose levels	VO(A)EL	.O(A)EL	Results Main effects/ Target	Remarks	Reference
---	--	--	---	---------	---------	--	--	--------------------------
based compara tive toxicity of DEP	drinking water <i>ad</i> <i>libitum</i> 180 days	/group (Wistar) male/ female n = not reported	ppm in drinkin g water	Ν	I	organs bw, liver wt, body: liver wt ratio, no changes in serum ALP, AST & SDH, vacuolization and de- generative changes in hepatocytes M: liver ACP & kidney gluthathione levels ↑, serum ACP & LDH ↓, F: serum		Rao, 2007
toxicity of DEP in male Sprague- Dawley rats	oral, drinking water <i>ad</i> <i>libitum</i> 120 days	Rat Sprague- Dawley male n=6/ group	50 ppm			LDH ↓ no change in bw, liver wt, body:liver wt ratio, ↑ serum AST,ALT, ALP levels, ↑ serum & liver ACP, ↑ liver LDH & glycogen levels, ↓ liver triglycerides and ↑ liver & serum chole- sterol levels, ↑ liver		Sonde et al., 2000
effects on liver & hepatic peroxi- some prolifera tion and on liver enzymes & lipid	oral, feed 90 days	mice (Swiss) female n=5/ group	10, 25 & 50 ppm in diet intake ap- proxi- mately 1.25, 3.1 &			no effects on bw or on abs. or rel. liver organ wt, intracellular vacuolization in all treated groups with additional degeneration and hypertro-	DEP dissolved in corn oil mixed with the diet	Mapuskar et al., 2007

Method/ Guide- line	Route of exposure Duration	Species, Strain, Sex,	Dose levels	(A)EL	(A)EL	Results Main effects/	Remarks	Reference
		NO /group		NO	ΓO	Target organs		
metabo- lism after repeat admi- nistra- tion			6.3 mg/kg bw/d			phy of the hepatocytes at 50 ppm, evidence for proliferation of mitochon- dria and per- oxisomes, ↑ serum liver glycogen, cholesterol & triglycerides, ↑ serum levels of ACP, ALT& AST		
Con- tinuous breeding	oral, feed	mice, (Swiss CD-1)						Lamb et al., 1987
	14-day doses setting (task I)	male/ female n=8/sex/ group	0.25, 0.5, 1.0, 2.5 and 5.0 % in feed			less body wt gain in high- dose group		
	con- tinuous breeding phase	n=20/sex /group	0.25, 1.25, 2.5 % in feed (340, 1770, 3640 mg/kg bw/d)			less body wt gain in high- dose group ↑ in liver wt in F in high- dose group		

5.6.1.2 Repeated dose toxicity: inhalation

This information is not available from the registration dossiers.

5.6.1.3 Repeated dose toxicity: dermal

Method/	Route of	Species,	Dose	. 1	. 1	Results	Remarks	Re-
Guide- line	expo- sure	Strain, Sex.	levels	V)EI	V)EI	Main effects/ Target organs		ference
	Dura-	No		10(7	, O (∤	Turger organis		
	tion	/group		Z				
Subacute	dermal	rat, Eiseber	0, 37.5,	75 μl	150	M/F, 300 μl, F	No derma-	NTP
study (4- week	4 weeks	Fischer $344/N$	75, 150, 300 µl	(92 mg)	(184)	$150 \ \mu l$: rel.	no adverse	(1995)
study)	(5 d/w)	J-1-/11	(0 46)	iiig)	(10+ mg)	M 150 µl 300	clinical	
study)	(5 4 / 11)	10 M /	92, 184,		iiig)	µl, F 150 µl: ↑	signs, no	
		10 F	369 µg)			rel. kidney wts	effects on	
			DEP			No other	bwg and	
			(>99%)			adverse effects	food con-	
2	1 1		neat			were observed	sumption.	NTD
2-year	dermal	rat, Fischer	0, 100			15 months:	no adverse	NIP (1005)
study	103	344/N				dosed rats	signs were	(1993)
	weeks	J-1-/11	μι			similar to	observed	
	(5d/w)	male/	(0; 123,			controls,	including	
	× /	female	or 369			2-year survival	no	
	up to 10		μg)			significantly	evidence of	
	animals/	n=60/				reduced in all M	dermato-	
	group	dose/sex				(survival	toxicity	
	evalu-					μ probabilities: 0		
	15					12% 300 µl		
	months					12%),		
						M, 300 μl: mean		
						bw slightly less		
						than controls		
						throughout the		
Subacute	dermal	mouse	0.12.5	12.5	251	$\frac{\text{study}}{M/\text{E}} 25 \cdot 100 \text{ m}^{12}$	No derma	NTP
study (4-	ucrinar	B6C3F1	25 50	12.5 ul	$(31)^{2.5 \ \mu}$	\uparrow liver wt (abs	totoxicity	(1995)
week	4 weeks	Bocori	100 µl	(15	(91 µg)	& rel.)	no adverse	(1990)
study)	(5 d / w)	10 M /	(0, 15,	μg)	1.07	,	clinical	
		10 F	31, 62,			No other	signs, no	
			123 μg)			adverse effects	effects on	
			DEP			were observed	bw and	
			(>99%) neat				sumption	
2-year	dermal	Mouse	0.7.5			2-year survival	no adverse	NTP
study		B6C3F ₁	15 or 30			of dosed mice	clinical	(1995)
-	103		μl			similar to	signs were	
	weeks	male/				controls: 43/50,	observed in	
	(5d/w)	female	(0, 9,			41/48, 46/50,	mice,	
	with a	m=60/	18, or			and $43/50$ (M),	including	
	recovery	n=00/ dose/	5/μg)			and 41/30, 38/51 37/40	and gross	
	period	sex				and 36/49 (F).	morpholo-	
	r v w					mean bw of	gical	

Table 19: Overview of experimental studies on repeated dose toxicity after dermal exposure

Method/ Guide- line	Route of expo- sure Dura- tion	Species, Strain, Sex, No /group	Dose levels	NO(A)EL	LO(A)EL	Results Main effects/ Target organs	Remarks	Re- ference
	up to 10 animals/ group evalu- ated after 15 months					dosed mice similar to con- trols throughout the study, feed consumption similar to or up to 13% greater than that by controls	evidence of dermato- toxicity	

5.6.1.4 Repeated dose toxicity: other routes

Table 20: Overview of experimental studies on repeated dose toxicity after intraperitoneal exposure

e Duration Strain, mg/m ³ mg/m ³ mg/m ³ effects/ Sex, Target	Method/ Guidelin	Route of	Species	Dose levels	NO(A)E	LO(A)E	Results Main	Remarks	Reference
No /group organs	e	Duration	, Strain, Sex, No /group	mg/m ³	mg/m ³	mg/m ³	effects/ Target organs		
Chronic, Method employeIntra- peritoneamouse (ICR)LD50: 2.87 ml/kg4 (not as- signable)Lawrer WH, Malik M based on: test mat.Lawrer weight of Turner test mat.dinjection malemalebased on: test mat.weight of rurner evidenceTurner WH, Malik M ased on: test mat.goyd as boyd as (daily for described 5(daily for (MondayMali M Boyd (MondayMali M ased on: test mat.EM 100- day d/week)-Friday) d/week)Test material 	Chronic, Method employe d essentiall y that of Boyd as described in Boyd EM 100- day LD50 index of chronic toxicity Clin Toxicol 4 pp,205-	Intra- peritonea 1 injection 14 w (daily for 5 (Monday -Friday) d/week)	mouse (ICR) male				LD50: 2.87 ml/kg (male) based on: test mat. (Previously calculated LD 50. Apparent LD50 at end of week 7 was 1.77 ml/kg, and reached in weeks 12- 14, of	4 (not as- signable) weight of evidence experime ntal result Test material (Commo n name): diethyl phthalate	Lawrence WH, Malik M, Turner JE, Singh AR and Autian J (1975)

5.6.2 Human information

This information is not available from the registration dossiers.

5.6.3 Summary and discussion of repeated dose toxicity

Information on possible repeated dose toxicity of DEP was obtained from studies performed in rats and mice with repeated administration via the oral and the dermal route of exposure for various periods of exposure duration. The liver appeared to be the primary target organ for DEP in short- and medium- to long-term studies. Observed effects were increased absolute and relative organ weight, vacuolisation, changes in serum and liver enzyme levels, and proliferation of mitochondria and peroxisomes. Furthermore, body weight was affected at higher exposure levels.

The studies with oral exposures and investigating several dose levels (Brown et al., 1978; Lamb et al., 1987; Fujii et al., 2005; Shiraishi et al., 2006) as well as the studies with guideline according test design (Fujii et al., 2005; Shiraishi et al., 2006; Kwack et al., 2009) are considered the most relevant for the assessment of possible repeat dose toxicity of DEP. As evidenced from these studies reduced body weights/body weight gain and increases in absolute and/or relative liver organ weight (without histopathological changes) occurred consistently and at oral exposures of 750 mg/kg bw/d (Brown et al., 1978), 1000 mg/kg bw/d (Shiraishi et al., 2006) or 1016-1375 mg/kg bw/d (Fujii et al., 2005) in rats and at 3640 mg/kg bw/d (Lamb et al., 1987) in mice after exposure periods above 4 weeks. No such effects were observed at exposures to 150 mg/kg bw/d (Brown et al., 1978), 197 – 267 mg/kg bw/d (Fujii et al., 2005), 200 mg/kg bw/d (Fujii et al., 2005) and 500 mg/kg bw/d (Kwack et al., 2009).

In other studies in rats and mice by Pereira et al., 2006 ff and Mapuskar et al., 2007, respectively, the reported liver effects of DEP were accompanied by evidence of peroxisome proliferation. This mechanism of toxicity is well known with the phthalate esters and has been extensively discussed in the literature including the NICNAS Phthalates Hazard Compendium (NICNAS 2008). In general, phthalate induced hepatomegaly in rodents, when related to peroxisome proliferative effects, is not considered relevant to humans.

From the available data the 16-week dietary study in rats by Brown et al., 1978 and the 28-day gavage study by Shiraishi et al., 2006 are considered the critical studies for defining the point of departure (PoD) for repeat dose toxicity risk assessment. In the study of Brown et al., 1978, relative kidney and liver weights were statistically significantly increased in both sexes at DEP concentrations of 5% in the diet. In females, increases in relative liver weights were dose-related and were statistically significantly increased across all doses. In male rats, small intestine weights were statistically significantly increased at the 5% concentration only, whereas stomach weights were increased at both the 1% and 5% dietary concentrations. There was no abnormal histopathology of the liver, kidney or digestive organs. Neither were there significant effects on haematology, serum enzyme levels or urinary parameters. A conservative **NOAEL** of 0.2 % (corresponding to **150 mg/kg bw/d**) can be established from this study based on dose-related **reductions in body weight gain** in females, dose-related **increases in relative liver weight** in females and dose-related **increases in stomach weight** in males at 1 % (**LOAEL** of **750-770 mg/kg bw/d**).

Overall, the observed organ weight changes are not sufficient for classification as STOT RE 2 according to Annex I, Part 3 of Regulation (EC) No 1272/2008 (CLH), since the observed changes have not affected the function or morphology of the organs nor have produced serious changes to the biochemistry or haematology of the organism which are toxicologically relevant.

Non-classification by the registrant is justified by the available data on effects after repeated dose administration which show a lack of significant toxicity.

5.7 Mutagenicity

5.7.1 Non-human information

5.7.1.1 In vitro data

Table 20: Overview of experimental <i>in vitro</i> genote	X1CITY	/ studies
--	--------	-----------

Method/	Test system	Concentrations	Results	5	Remarks	Reference
Guideline	(Organism, strain)	tested (give range)	+ S9	- S 9	give information on cvtotoxicity and	
	,	0 /			other	
Genetic toxicity	mouse	72.31 - 925	Nega-	Nega	key study	2010:
in vitro	lymphoma	µg/ml	tive	tive		Exp. Study
mammalian cell	L5178Y cells				1 (reliable without	genetic
gene mutation	TK+/-	Vehicle DMSO			restriction)	toxicity
assay	(Clone					01,
OECD 476	3.7.2C)				DEP 99.96 %	confidentia
GLP					Cytotoxicity: yes	1
Genetic toxicity	Lymphocytes	69.6 - 1780	Nega-	Nega	key study	2010: Exp.
in vitro	: Human	µg/ml	tive	tive		Study
mammalian					1 (reliable without	genetic
chromosome		corresponding to			restriction)	toxicity
aberration test		0.314 - 8.02 mM				02,
OECD 473					DEP 99.96 %	confidentia
GLP		Vehicle DMSO			Cytotoxicity: no	1
Genetic toxicity	S. typhimu-	0, 10, 33, 100,	Nega-	Nega	supporting study	NTP 1995
in vitro	rium TA	333, 667, 1000,	tive	tive	2 (reliable with	
bacterial reverse	1535, TA	3333, 10000			restrictions)	
mutation assay	1537, TA 98	µg/plate				
(e.g. Ames test)	and TA 100				DEP > 99 %	
OECD 471		Vehicle: no data			Cytotoxicity	
GLP					> 1000 µg/plate	
Genetic toxicity	S. typhimu-	50 - 5000	Nega-	Nega	key study	2014: Exp.
in vitro	rium TA	µg/plate	tive	tive	1 (reliable without	Study
bacterial reverse	1535, TA				restriction)	genetic
mutation assay	1537, TA 98	Vehicle DMSO				toxicity,
(e.g. Ames test)	and TA 100				DEP 99.97 %	confidentia
OECD 471	E. coli WP2				Cytotoxicity	1
GLP	uvr A				> 1250 µg/plate	

5.7.1.2 In vivo data

This information is not available from the registration dossiers.

5.7.2 Human information

This information is not available from the registration dossiers.

5.7.3 Summary and discussion of mutagenicity

The data on the genotoxic potential of DEP were obtained from *in vitro* testing. All of the four tests were carried out in accordance with EU Regulation (EC) No 440/2008 or current OECD guidelines for the testing

of chemicals and are GLP compliant. DEP shows neither gene mutations in bacterial and mammalian cells nor chromosome aberrations in human lymphocytes. Overall, these data do not support a genotoxic potential for DEP (NICNAS 2011). This is supported by reviews of international bodies/regulatory programs (ATSDR 1995, WHO 2003, NTP 2006, HSDB 2015).

Data available for germ cell mutagenicity do not warrant classification according to Regulation (EC) No. 1272/2008 and Directive 67/548/EEC.

5.8 Carcinogenicity

5.8.1 Non-human information

5.8.1.1 Carcinogenicity: oral

This information is not available from the registration dossiers.

5.8.1.2 Carcinogenicity: inhalation

This information is not available from the registration dossiers.

5.8.1.3 Carcinogenicity: dermal

Title/ Method/	Route of exposure,	Species, Strain,	Dose levels	Results Main effects/	Remarks	Reference
Guideline	duration	sex, No/ group	(mg/k g bw/d)	Tumours		
Carcino- genesis Study equiv. or similar to OECD 451 (Carcino- genicity Studies)	Dermal 103 w 5 d/w Post- exposure period: 1 w recovery	Mouse B6C3F1 60 M/ 60 F per dose	M: 0, 260, 520, 1050 F: 0, 290, 550, 1100	↑ incidence of hepatocellular neoplasms, primarily adenomas within historical range F: no clear dose- response-relationship no carcinogenic effect M: ≥ 1050 mg/kg bw/d F: ≥ 1100 mg/kg bw/d	supporting study 2 (reliable with restrictions) only two dose groups tested ↓ survival at end of study period DEP > 99 % Vehicle: acetone	NTP 1995
Carcino- genesis Study equiv. or similar to OECD 451 (Carcino- genicity Studies)	Dermal 103 w 5 d/w Post- exposure period: none	Rat Fischer 344/N 60 M/ 60 F per dose	M: 320, 1015 F: 520, 1050	no evidence of carcinogenic activity no carcinogenic effect $M: \ge 1015 \text{ mg/kg bw/d}$ $F: \ge 1050 \text{ mg/kg bw/d}$	key study 2 (reliable with restrictions) only two dose groups tested < 50 % survival M DEP > 99 % Vehicle: unchanged (no vehicle)	NTP 1995

 Table 21: Overview of experimental studies on carcinogenicity

5.8.2 Human information

This information is not available from the registration dossiers.

5.8.3 Summary and discussion of carcinogenicity

The data on carcinogenicity of DEP were obtained from animal testing. None of the tests on carcinogenicity was carried out in accordance with EU Regulation (EC) No 440/2008 or current OECD guidelines for the testing of chemicals. However, by means of a weight of evidence approach the available information is sufficient to support the conclusion that DEP is not likely to be a carcinogen. This is supported by reviews of international bodies/regulatory programs (ATSDR 1995, WHO 2003, NTP 2006, NICNAS 2011, HSDB 2015).

In mice effects were considered equivocal evidence of carcinogenic activity due to lack of dose-response relationship in females and similar incidence of combined hepatocellular adenomas and carcinomas in males at the highest dose compared to historical controls (Table 22). In rats no evidence of increased neoplasia was found other than treatment-related epidermal acanthosis at sites of DEP application, which was considered an adaptive response to irritation. No other lesions or neoplasms were noted in these 2-year studies both in mice and rats. Overall, the available data do not indicate a carcinogenic potential for DEP (NICNAS 2011).

Data available for carcinogenicity of DEP are conclusive but not sufficient for classification according to Regulation (EC) No. 1272/2008 and Directive 67/548/EEC.

5.9 Toxicity for reproduction

5.9.1 Effects on fertility

5.9.1.1 Non-human information

			- 500 0100	· · · · · · · · · · · · · · · · · · ·				
Method/	Route of	Species,	Dose	Critical	LO(A)	NO(A)	Remarks	Reference
Guideline	exposure,	Strain,	levels	effect	EL	EL		
	duration	Sex,		Parental,		Repro-		
		No/		Offspring		ductive		
		group		(F1, F2)		toxicity		
two	oral: feed	Rat	0,	F0 & F1 in	No	15000	2 (reliable	Fujii S
generatio	basal diet	Crj:CD	600,	parents:	adverse	ppm	with	Yabe K
n repro-	15 weeks	(SD)	3000,	Î.Î.	effects	(1016 -	restric-	Furukawa
ductive	for male	IGS	1500	abnormal	on	1297	tions)	M Hirata
toxicity	and 17	24 M/	0	sperm &	systemi	mg/kg/d		Μ
study	weeks for	24 F	ppm	tailless	c &)	key study	Kigouchi,
according	female	per dose	nomi-	sperm	repro-	no		Ikka T
to OECD	parents of		nal in	↑ liver wt	ductive	adverse	Test	(2005)
Guideline	the F0 &		diet	F0 M: ↓	para	effect on	material:	
416	F1			absolute	meters	repro-	DEP	
(Two-	genera-			adrenal &		ductive	(99.8%)	
Generatio	tions			epidymal		per-		
n Repro-	(Con-			wt		formanc	sperm	
duction	tinuously			F1 M:↓		e	effects in	
Toxicity	via the			rel adrenal			F0 only at	
Study),	diet)			wt			3000 ppm	
GLP				F1 F:				
				delayed			suggestio	

 Table 22: Overview of experimental studies on fertility as reported in the registration dossier

Method/ Guideline	Route of exposure,	Species, Strain,	Dose levels	Critical effect	LO(A) EL	NO(A) EL	Remarks	Reference
	duration	Sex, No/ group		Parental, Offspring (F1, F2)		Repro- ductive toxicity		
		9		vaginal opening ↓ uterine weight F1 & F2 pups: ↓ pup bwgbefore weaning	15000 ppm (1150 - 1375 mg/kg/d)	3000 ppm (222 - 267 mg/kg/d) develop- ment, pup growth	n effects do not arise from suppres- sion of androgen synthesis during develop- ment	
Repro- duction & Fertility Assessme nt NTP's Standard continuou s breeding design andproced ure for this type of study followed no guidline	oral: feed plain diet 15 weeks (Con- tinuously via the diet)	mouse CD-1 20 M/20 F per dose	F1: 0.0, 0.25, 1.25, 2.5 % equi- valen t to 0, 340, 1770, 3640 mg/k g bw/d; F2: 0.0, 2.5 %	F1 F: ↓ bwg ↑ liver weight F1 M: ↑ prostrate weight ↓ epididy- mal sperm conc. F1 litters: ↓ number of pups/litter F2: ↓ bwg ↓ liver weight	3640 mg/kg bw/day Repro- ductive effects, changes in bw, liver & prostate weights moderat e repro- ductive effects	F0: No effects	2 (reliable with restric- tions) weight of evidence Test material: DEP same study as described below	Api AM (2001) Lamb IV JC, Chapin RE Teague J, Lawton AD, Reel JR (1987)
one generatio n fertility NTP's Standard continuou s breeding design GLP	oral: feed plain diet 21 weeks (Con- tinuously via the diet)	mouse CD-1 M/ F	F1: 0.0, 0.25, 1.25, 2.5 % equi- valen t to 0, 460, 2440, 4400 mg/k g bw/d; F2: 0.0, 2.5 %	F0: No effects F1: ↓ bwg ↓ litter size F1 F: ↑ liver weight ↓ uterus weight ↓ pituitary weight F1 M: ↑ prostrate weight ↓ sperm conc.	4400 mg/kg bw/d ↓ bwg ↓ litter size when sexes combin ed but not when analyse d separate	> 4400 mg/kg bw/d < 4400 mg/kg bw/d	2 (reliable with restric- tions) weight of evidence Test material: DEP same study as described above	Api AM (2001) Morrisey RE, Lamb IV JC, Morris RW, Chapin RE, Dushyant KG, Heindel JJ (1987)
Testicular	oral: feed	rat	0, 2	Lower			4 (not	Api AM

Method/ Guideline	Route of exposure, duration	Species, Strain, Sex, No/ group	Dose levels	Critical effect Parental, Offspring (F1, F2)	LO(A) EL	NO(A) EL Repro- ductive toxicity	Remarks	Reference
toxicity in vivo	plain diet 7 d (Con- tinuously via the diet)	Wistar M	% / 0, 2000 mg/k g/d nomi- nal conc.	levels of testosteron e in testes & serum			assign- able) weight of evidence Test material: DEP	(2000e) Anon (2002b) Anon (1995) Anon (2006)
effects of diethyl phthalate on male repro- ductive function		rat M	up to 1600 mg/k g/d	Testicular, accessory gland weight, histo- pathology unaffected			no robust study summary available	Foster et al. 1980
Testicular toxicity				no effect on progester- one binding to testes mi- crosomes, testicular CYP con- tent, or testicular ster- oidogenic enzyme activity			no robust study summary available	Foster et al. 1983
Testicular toxicity	Acute administra tion	rat M	2000 mg/k g/d	Leydig cell mitochon- drial swelling, focal dilatation & vesiculatio n of smooth ER			4 (not assign- able) weight of evidence Test material: DEP	Api AM (2001)
Testicular toxicity of DEP <i>in vivo</i> of MEP <i>in vitro</i>	Oral 3 daily doses	rat, M Sprague- Dawley , 4-5 weeks of age	1600 mg DEP/ kg	DEP: no effect on two specific markers of Sertoli cell function			MEP: de- tachment of germ cells from a Sertoli cell mono- layer	Gray T & Gangolli S. 1986

Table 23: Overview of experimental studies on fertility accord	ling to original publications (such only
partly reported in registration dossiers as well as additional p	publications)

Method / Guide- line	Route of exposure duration	Species, Strain, Sex, No/ group	Dose levels (mg/ kg bw/d)	Critical effect Parental, Offspring (F1, F2)	LO(A)EL (mg/kg bw/d)	NO(A)EL (mg/kg bw/d)	Remarks	Re- ference
two genera- tion repro- ductive toxicity study compli- ant with OECD TG 416 and GLP	Oral: Diet 15-17 weeks per genera- tion (10 weeks prior to mating till weaning)	Rats SD 24 M / 24 F	0, 600, 3000, 15000 ppm (0, 40 -56, 197 - 267, 1016 - 1375) (M-F)	ParentalF0,F1: \uparrow liver wtF1 F: \downarrow uterus,rus, \uparrow kidney wtFertilityF0M:serum testosteroneF0, F1 M:f0, F1 M:abnormaland taillessspermsDevelop-mentalF1,F2:pup weightF1:detachmentFvaginalopening	Systemic: 1016-1375 Fertility F0, F1 M: 197 F1 M: sperm ef- fects dose- related at mid and high dose Develop- mental 1016-1375	<i>Systemic:</i> 197- 267 <i>Fertility</i> F0, F1 M: 40 F0, F1 F: 1375 <i>Develop-</i> <i>mental</i> 197-267	Test material: DEP <i>Fertility</i> F1 M: no data on testo- sterone F0 M: Stat. sign. sperm effects only at mid dose, normal at high dose, not dose- related	(<u>Fujii_et</u> <u>al., 2005</u>)
two- generati on con- tinuous breed- ing study	Oral: Diet 18 weeks (1 week prior to mating till weaning)	mouse CD-1 20 M / 20 F	0, 0.25, 1.25, 2.5 % (0, 340, 1770, 3640) F1: 0, 2.5 % only	ParentalF1:↓ bw,↑liverweightF1 F: ↓ pi-F1 F:↓ bwg $Fertility$ F1 F:4 %uterus wt ↓↓ litter sizeF1M:↓ spermcounts↑prostrateweight	Systemic: F1: 3640 Fertility F1 F: non-sign.	Systemic: F1: not estab- lished F0: \geq 3640 Fertility F1 F: 3640 F1 M: not estab-	Test material: DEP Fertility F1 F: due to \downarrow bwg	Lamb et al. 1997 (<u>Lamb Iv</u> <u>et al.</u> , <u>1987</u>) NTP 1984

Method / Guide- line	Route of exposure duration	Species, Strain, Sex, No/ group	Dose levels (mg/ kg bw/d)	Critical effect Parental, Offspring (F1, F2)	LO(A)EL (mg/kg bw/d)	NO(A)EL (mg/kg bw/d)	Remarks	Re- ference
				Develop- mental F2:↓ no. of live pups/ litter (com- bined sexes)	F1 M: 3640 <i>Develop</i> <i>mental</i> F2: 3640	lished Develop mental F1: 3640	F1 M: tailless sperm not determin- ed only 2.5 % tested No data on F2 pups	
Study on testes and tes- ticular function <i>in vivo</i>	Oral intubation Vehicle: corn oil 4 d	Rat young SD 12 M	0, 1600	no effect on testes weight or Zn content, no testicular lesions	<i>Fertility</i> not estab- lished	Fertility 1600	Test material: DEP (> 99 %)	Foster et al. 1980
Study on testes and tes- ticular function <i>in vivo</i>	Oral: diet 7 d	Rat 5 w old Wistar 10 M	0, 2% (~ 2000)	↓ serum and testis testosterone conc. by 40 %	Fertility 2000	<i>Fertility</i> not estab- lished	Test material: DEP (> 98 %)	Oishi & Hiraga, 1980
Study on testes and tes- ticular function <i>in vivo</i>	Oral gavage Vehicle: corn oil 2 d	Rat 6-8 w old Wistar 12 M	0, 2000	Ultra- structural changes in Leydig cells	Fertility 2000	<i>Fertility</i> not estab- lished	Test material: DEP	(<u>Jones et</u> <u>al., 1993</u>)
Study on testes and tes- ticular function <i>in vivo</i>	Oral: diet 150 d	Rat 7-8 w old Wistar 6 M	0, 10, 25, 50 ppm (0, 0.57, 1.43, 2.85)	dose-related ↓ bw (-6%, - 10%, -23%) ↓ abs. testis and epidi- dymis wt, ↓ testicular antioxidant enzymes, ↓ serum testosterone & andro- stenedione	<i>Fertility</i> 0.57 rel. wts not calculated serum andro- stenedione not dose- related	Fertility not estab- lished	Test material: DEP (99.99%) dose calcula- tion not compre- hensible no data on food consump- tion	Pereira et al., 2008

Method / Guide- line	Route of exposure duration	Species, Strain, Sex, No/ group	Dose levels (mg/ kg bw/d)	Critical effect Parental, Offspring (F1, F2)	LO(A)EL (mg/kg bw/d)	NO(A)EL (mg/kg bw/d)	Remarks	Re- ference
Study on testes and tes- ticular function <i>in vivo</i>	Oral gavage Vehicle: corn oil 28 d	Rat 5 w old SD 6 M	0, 250 MEP 500 DEP	↓ sperm counts & motility sperm motion: ↓ linearity	<i>Fertility</i> 250 (MEP) 500 (DEP)	Fertility not estab- lished	Test material: Mono- ethyl phthalate	Kwack et al., 2009
Testicu- lar toxi- city in vitro induc- tion of germ cell detach- ment	Incuba- tion tem- perature of 32 °C, 1 mM sodium pyruvate in culture medium	Rat M Primary cocul- tures of Sertoli & germ cells	0, 1, 3, 10 mM MEP	detached germ cells from a Sertoli cell monolayer: 210 % compared to control at 10 mM			Test material: Mono- ethyl phthalate (MEP)	Gray T & Gangolli S. 1986
Sub- acute toxicity study using a draft protocol for "en- hanced OECD Test Guide- line 407 – Re- peated dose toxicity study", GLP	Oral: gavage Vehicle: corn oil 28 d	Rat Crj:CD (SD) 8 w old 10 M 10 F	0, 40, 200, and 1000	no endocrine- mediated effects detected on any of the parameters examined, e.g. sperm count & morphology , estrous cycling, serum conc. of TSH, T4, T3, testo- sterone, FSH, LH, estradiol	1000 M : ↓ bw, ↓ estradiol F : ↑ adrenal weight, kidney weight (also at 40 mg/kg bw/d)	200	Test material: DEP (99.8 %)	Shiraishi et al. 2006

5.9.1.2 Human information

This information is not available from the registration dossiers.

Data	Species,	Dose levels	Results	Remarks	Reference
generation/	Sex,		Main effects/		
collection	No		Target organs		
Sperm preparations with DEP in acetone	Human M healthy donors	33, 330, 3300 μmol DEP/L	↓ sperm motility (10 %) at 3300 µmol/L	Test material: DEP (≥ 99 %)	Fredricsso n et al. 1993; WHO 2003
Dermal 1 w, daily whole body, 1 w vehicle cream	Human Caucasian 26 M aged 21-36 healthy volunteers	cream 2% w/w DEP	no differences in serum levels of reproductive hormones or thyroid hormones	Test material: DEP (≥ 99 %)	Janjua et al., 2007
single spot urine sample collected on the same day as the semen sample	Human 168 M 20-54 years of age	~180 ng MEP per mL Urine (Geometric Mean)	no dose- response relation between MEP and serum reproductive hormone levels, sperm conc., motility or morphology	DEP metabolite : Monoethyl phthalate (MEP)	Duty et al. 2003b; 2004; 2005
Urine, serum, and semen samples	Human 234 M age range, 18– 21 (median age 18 years) Swedish military recruits	120 ng MEP/ml urine (75 th percenttile)	highest quartile for MEP levels weakly associated with low sperm motility and low LH levels	DEP metabolite : Monoethyl phthalate (MEP)	Jönsson et al. 2005
single spot urine sample collected on the same day as the semen sample	Human 84 % white 463 M 20-54 years of age	180 ng MEP/mL urine (Geo- metric Mean)	no relationship between urinary MEP and sperm concentration, motility or morphology	DEP metabolite : Monoethyl phthalate (MEP)	Hauser et al., 2006 (re- analysis of Duty)
home first- morning void urine Semen specimens collected on-site by masturbatio n	Human 78 % Caucasian 5 % African American 5 % Other race 45 M 23 to 48 years (median 34 years) Human	121.9 μg MEP/L urine (Geo- metric Mean)	↓ sperm concentrations with above median concentrations of urinary MEP	DEP metabolite : Monoethyl phthalate (MEP)	Wirth et al. 2008
_	Data generation/ collection Sperm preparations with DEP in acetone Dermal 1 w, daily whole body, 1 w vehicle cream single spot urine sample collected on the same day as the semen sample Urine, serum, and semen samples Urine samples single spot urine sample collected on the same day as the semen samples Single spot urine sample collected on the same day as the semen sample home first- morning void urine Semen specimens collected on-site by masturbatio n Semen of	Data generation/ collectionSpecies, Sex, NoSperm preparations with DEP in acetoneHuman healthy donorsDermal 1 w, daily whole body, 1 w vehicle creamHuman Caucasian aged 21-36 healthy volunteerssingle spot urine sampleHuman 168 M 20-54 years of agesingle spot urine, sampleHuman 234 M age range, 18- 21 (median age 18 years) Swedish military recruitsUrine, serum, and semen sampleHuman 234 M age range, 18- 21 (median age 18 years) Swedish military recruitssingle spot urine sampleHuman 234 M age range, 18- 21 (median age 18 years) Swedish military recruitssingle spot urine sampleHuman 20-54 years of agesingle spot urine sampleHuman 20-54 years of agesomen sampleSo African American Semen on-site by 23 to 48 years (median 34 n years)Semen of Semen ofHuman	Data generation/ collectionSpecies, Sex, NoDose levelsSperm preparations with DEP in acetoneHuman healthy donors33, 330, 3300 µmol DEP/LDermal 1 w, daily whole body, 1 w vehicle creamHuman Caucasian 26 M aged 21-36 healthy volunteerscream 2% w/w DEPsingle spot urine sampleHuman 168 M 20-54 years of age~180 ng MEP per mL Urine (Geometric Mean)Urine, serum, and semen samplesHuman 234 M age range, 18- 21 (median age 18 years) Swedish military recruits120 ng MEP/ml urine (Geo- metric) Mean)single spot urine samplesHuman 234 M age range, 18- 21 (median age 18 years) Swedish military recruits180 ng MEP/ml urine (Geo- metric Mean)single spot urine sampleHuman 84 % white 463 M 20-54 years of age180 ng MEP/mL urine (Geo- metric Mean)single spot urine sampleHuman 5 % African American 5 % Other race 45 M 23 to 48 years (median 34 years)121.9 µg MEP/L urine (Geo- metric Mean)semen sample5 % African American 5 % Other race 45 M 23 to 48 years (median 34 years)121.9 µg MEP/L urine (Geo- metric Mean)	Data generation/ collectionSpecies, NoDose levelsResults Main effects/ Target organsSperm with DEP in acetoneHuman healthy donors33, 330, 3300 µmol DEP/L‡ sperm motility (10 %) at 3300 µmol/LDermal t w, daily whole body, uhole body, u w vehicle creamHuman caucasian aged 21-36 healthy volunteerscream 2% w/w DEPno differences in serum levels of reproductive hormones or thyroid hormonessingle spot urine sampleHuman 168 M 20-54 years of age~180 ng MEP per mL Urine (Geometric Mean)no dose- response response relation relation reproductive hormonesUrine, semen sampleHuman 120 ng mg erum, and serum, and semen sample120 ng mutine age range, 18- 21 (median age 18 years) Swedish military recruits120 ng MEP/ml urine (Geo- metric metric metric metric metric moribility and low LH levelsno relationship weakly associated with low sperm motility and low LH levelssingle spot urine sampleHuman 20-54 years of age180 ng metric metric metricno relationship between weakly associated with low sperm motility and low LH levelssingle spot the same day as the semen sampleHuman 20-54 years of age121.9 µg MEP/L urine (Geo- metric Mean)121.9 µg moring void urine 5 % African American specimens 5 % Other race collected 45 M on-site by 23 to 48 years (median 34 n121.9 µg MEP/L urine (Geo- metric	Data generation/ collectionSpecies, Sex, collectionDose levels NaResults Main effects/ Target organsRemarks Main effects/ material: (D %) at 300 µmol/LRemarks Main effects/ material: (D %) at 300 µmol/LRemarks material: material: (D %) at 300 µmol/LRemarks material: (D %) at 300 µmol/LRemarks material: material: (D %) at 300 µmol/LRemarks material: (D %) at 300 µmol/LRemarks µmotility µmotility of motility of motility of motility of motility of motility of motility of motility of mateboliteRemarks µmotility µmot

Table 24: Overview of **human studies on fertility**-related parameters according to original publications (**not reported in registration dossiers**)

Title/Metho d/	Data generation/	Species, Sex,	Dose levels	Results Main effects/	Remarks	Reference
Guideline investigating the Correlation of phthalate exposures with semen quality	collection volunteers was collected by masturbatio n	No 300 M 21–40 years old (mean 28-29 years) healthy men from rural/urban areas of Lucknow, India	μg DEP/mL	Target organs significant negative correlation between semen DEP levels and sperm conc.	of DEP	2008
Phthalate exposure and human semen quality in Shanghai: a cross- sectional study		Human 52 M Shanghai, China	mean = 0.47 μg MEP/ mL	Stat. significant positive association between semen liquefaction time and semen conc. of MEP	DEP metabolite : Monoethyl phthalate (MEP) small study	Zhang et al., 2006* NICNAS 2011
relationship between adverse reproductive health effects in women and exposure to DEP	Interview, 137 urine specimen prior to a laparoscopi c diagnosis of endometrio- sis	Human 166 F 57 cases, 80 controls	Median 21.4, 39.6 μg MEP /L	urinary MEP showed no significant association with endometriosis	DEP metabolite : Monoethyl phthalate (MEP)	Itoh et al. 2009
cross- sectional study US National Health and Nutrition Examination Survey		Human 1227 F aged 20-54		no associations between urinary MEP and endometriosis or uterine leiomyomata (fibroids)	DEP metabolite : Monoethyl phthalate (MEP)	2010: unpublishe d study record, confidenti al
Urinary phthalate monoesters concentration in couples with infertility problems	spot urine samples questionnair e	Human cases: 56 M, 56 F mean age 39.57 years controls: 56 M, 56 F mean age: 39 42 v	mean = 531.59 (cases), 203.23 (controls) µg/g creatinine	urinary MEP concentrations are significantly higher for cases with respect to controls	DEP metabolite : Monoethyl phthalate (MEP)	Tranfo et al. 2012

5.9.2 Developmental toxicity

5.9.2.1 Non-human information

Table 25: Overview of experimental studies on developmental toxicity as reported in the registratio	n
ossier	

Method/ Guideline	Route of exposure, duration	Species, Strain, Sex, No/grou P	Dose levels	Critical effects 1) dams 2) foetuses	NO(A) EL Matern al toxicity	NO(A)E L Develop- mental Toxicity	Remark s	Referen ce
Developm ental toxicity evaluation equivalent or similar to OECD Guideline 414 (Prenatal Developm ental Toxicity Study), GLP	Oral: feed morning of GD6 to morning of GD15. (Con- tinuously in the diet)	rat (Crl: CD (SD) BR VAF/ Plus outbred Sprague Dawley rats) 25-32 gravid F	0, 0.25, 2.5, 5.0 % nomi- nal in diet	 1) ↓ bwg at 2.5 % DEP (transient) & 5 % DEP 2) ↑ incidence of super- numery ribs 	0.25 % based on: test material (equi- valent to 200 mg/kg)	2.5 % based on: test material (equi- valent to 1910 mg/kg bw/day)	2 (reliable with restric- tions) key study Test material : DEP (> 99 %)	Field EA, Price CJ, Sleet RB, George JD, MarrMC , Myers CB, Schwetz BA & Morrisey RE (1993)
Developm ental toxicity / teratogeni city Teratologi cal Evaluatio n Following Dermal Applicatio n of DEP to Pregnant Mice	Dermal GD 0-17 (daily)	mouse Jcl:ICR 17-20 pregnant F	0, 500, 1600, 5600 mg/ kg/d nomi- nal conc.	 1) ↓ thymus/ spleen weights, ↑ adrenal gland weights 2) ↓ foetal bw, ↑ rib variations 	< 500 mg/kg bw/day (nomina l) based on: test material	1600 mg/kg bw/day (nominal) based on: test material	2 (reliable with restric- tions) weight of evidenc e Test material : DEP	Api AM (2001) Tanaka C, Siratori K, Ikegami K, Wakisak a Y (1987)
Developm ental toxicity / teratogeni city equivalent or similar to OECD Guideline 414 (Prenatal Developm	Dermal GD 6-18 (daily during treatment period) Duration of test: 29 d	rabbit (New Zealand White) 12 F	0, 5, 15, 50 % in 0.5% CMC nomi- nal conc. (w/w)	No effects 50% DEP was the highest conc. adminis- tered (treated animals received 2 ml/Kg bw)	50 % based on: test material at a dose volume of 2 mL/kg bw (equi- valent to 1 mL	1000 mg/kg bw/day no adverse effects on foetal develop- ment 2/84 malforme d foetuses	1 (reliable without restric- tion) suppor- ting study Test material	Exp. Study develop mental toxicity 1985

Method/	Route of	Species,	Dose	Critical	NO(A)	NO(A)E	Remark	Referen
Guideline	exposure,	Strain,	levels	effects	EL	L	S	ce
	duration	Sex,		1) dams	Matern	Develop-		
		No/grou		2) foetuses	al	mental		
		р			toxicity	Toxicity		
ental					DEP/kg)		: DEP	
Toxicity								
Study),								
GLP								

Table 26: Overview of **experimental studies on development**al toxicity according to original publications (such only partly reported in registration dossiers as well as additional publications)

Method/ Guideline	Route of exposur e, duratio n	Species, Strain, Sex, No/group	Dose levels (mg/k g bw/d)	Critical effects 1) dams 2) foetuses	NO(A)E L Materna l toxicity	NO(A)E L Develop- mental Toxicity	Remark s	Reference
Prenatal developm ental toxicity study	Intra- peritone al GD 5, 10, 15	Rat SD 5 F	0, 0.51, 1.01, 1.69 mL/kg (0, 500, 1000, 1500)	 no data) ↓ pup weight, ↑ skeletal abnormali ties 		not estab- lished LOAEL 500 mg DEP/kg bw/day	small sample size, no statistica l analysis, injection route	Singh et al. 1972
Prenatal developm ental toxicity study	Dermal GD 0-17	mouse Jcl:ICR 17-20 F	0, 500, 1600, 5600	 1) ↑ adrenal & kidney weights 2) ↓ pup weight, ↑ skeletal variations 	1600 mg/kg bw/day small re- duction in thymus/ spleen weights not con- sidered adverse	1600 mg/kg bw/day LOAEL 5600 mg DEP/kg bw/day slight develop- mental effects	Only the study's summa- ries available in English Test material: DEP	Tanaka et al. 1987* (reviewed by SCCNFP, 2002; WHO 2003)
Prenatal developm ental toxicity study	Oral gavage Vehicle: corn oil GD 6-13	mouse CD-1 50 F	0, 4500	1) no effect on bw		4500 mg/kg bw/day	Prelimi- nary screen test with DEP	Hardin et al., 1987
Prenatal developm ental toxicity study GLP	Oral: Diet GD 6-13	rat SD outbred CD 27-32 F	0, 0.25, 2.5, 5% (0, 200, 1900, 3200)	1) ↓ bw & food con- sumption 2) ↑ skeletal variations	200 mg/kg bw/day relation to rudimen- tary lum- bar ribs	1900 mg/kg bw/day	Test material: DEP (> 99 %)	Field et al. 1993
Gene	Urai	rat	0, 300	2) INO	Dose	300	rest	Liu et al.

Method/ Guideline	Route of exposur e, duratio n	Species, Strain, Sex, No/group	Dose levels (mg/k g bw/d)	Critical effects 1) dams 2) foetuses	NO(A)E L Materna l toxicity	NO(A)E L Develop- mental Toxicity	Remark s	Reference
Expressio n Following In Utero Exposure	gavage Vehicle: corn oil GD 12- 19	CD 10 F control 5 F DEP		changes in testes gene expressio n or on AGD	chosen not to induce maternal toxicity	mg/kg bw/day	material: DEP	2005
Fetal Testicular Testo- sterone Productio n	Oral gavage Vehicle: corn oil GD 8-18	rat SD 5 F	0, 100, 300, 600, 900	1) no effect on bwg or 2) fetal te- stosterone	900 mg/kg bw/day	900 mg/kg bw/day	Test material: DEP (99 %)	Howdeshe ll et al. 2008
Perinatal Exposure	Oral gavage Vehicle: corn oil GD 14 – PND 3	rat SD 5 F	0, 750	2) no al- teration of male rat sexual differen- tiation	No maternal toxicity or reduced litter sizes	750 mg/kg bw/day	Test material: DEP (99 %)	Gray et al. 2000

5.9.2.2 Human information

This information is not available from the registration dossiers.

Table 27: Overview of human studies on developmental effects according to original publications (such
only partly reported in registration dossiers as well as additional publications)

Title/Metho	Data	Species,	Dose	Results	Remarks	Reference
d/	generation/	Sex,	levels	Main effects/		
Guideline	collection	No		Target organs		
multicenter	completed	Human	53.3 -	Urinary MEP	maternal	Swan et
pregnancy	questionnaire	85 mother-	436.9	concentration	urinary	al., 2005
cohort study,	blood	son pairs	ng	was statistically	phthalate	
at prenatal	samples,	baby was 2–	MEP/m	significantly	conc. was not	
clinics from	urine	36 months of	l urine	and inversely	normalised	
September	collection	age		related to AGI =	for urine	
1999 through	midway			AGD)/wt	volume	
August 2002	through the					
	study.					

d/ generation/ Sex, levels Main effects/	
Guideline collection No. Target organs	
multicenter Estimated Human 6.64 Urinary AGDs were Swan	et
pregnancy daily 106 mother- (median concentrations corrected al., 20	08
cohort study, exposure son pairs) and of MEP were using weight Marse	e et
human health using 2 112.3 statistically percentiles al. 200)6
endpoints in different PK (95 th significantly (weight for	
relation to models and percenti and inversely age) data	
environmenta urinary MEP le) µg related to from US	
1 phthalateconc. fromDEP/kgcorrected AGDpopulation	
exposure 214 pregnant bw/d datasets	
women	
Danish-Breast milkHumanMedianMEP showedNoMain description	et
Finnish samples were 130 newborn 0.95 positive, stat. associations al., 20	06
cohort study analysed for 3-month old (minim sign. between	
Human MEP, serum boys um 0.07 correlations MEP and	
Breast Milk measurement (62 – with levels of cryptorchidis	
Con- s for gonado- cryptorchid maximu sex hormone- m (testis	
tamination tropins, and 68 m 41.4) binding globulin maldescent)	
lates and Δ1 say hormone MED/L testosterone	
terations of binding	
Endogenous globulin and of Levdig cell	
Reproductive testosterone function	
Hormones	
prospective Maternal Human median Pos., stat. sign. unresolved Wolff	et
ethnically urinary MEP 352 mother- of 380 associations of confounding al. 200)8
diverse birth concentration infant pairs in µg MEP with with maternal	
cohort study, s during third New York MEP/L gestational age anthropometr	
prenatal trimester of City and infant head ic factors	
phthalate pregnancy, circumference,	
exposures size of no with birth	
and birth infants at weight or length	
outcomes birth	•
Prenatal spot urine Human geometr relationships Suzuk	1 et
exposure to samples 149 Japanese 1c mean between urinary al. 201	0
printilate collected pregnant of 9.76 MEP conc. and	
esters and from women and $\mu g/g$ birth outcomes	
outcomes women newborns ne 7.42	
multiethnic urinary Human Positive trend authors noted Wolff	et
longitudinal exposure multiethnic for low that the al. 201	0
study biomarkers cohort molecular w peripubertal	
Relationships measured at 1 151 girls (LMW) period was	
between visit 1 and aged 6-8 phthalates (i.e. probably not	
Urinary Bio-associationsyearssum of urinarythe only	
markers of with breast living in New metabolites critical	
Phyto-and pubicYork City,MEP, MBP-window of	
estrogens, hair New York, monobutyl exposure for	
Phthalates, development greater phthalate, and pubertal	
and Prienois (present or Cincinnati, MIBP- development or Chicago and Public development of the chicago and th	
Stages in assessed 1 northern nothelate) with	

Title/Metho d/	Data generation/	Species, Sex,	Dose levels	Results Main effects/	Remarks	Reference
Guideline	collection	No		Target organs		
Girls	year later	California (2004–2007)		both breast and pubic hair development		
Association between prenatal exposure to phthalates and the health of newborns	urine samples 15–20min before amnio- centesis during 2005 and 2006 AGD of the newborns	Human 65 pregnant F 65 fetuses/ newborn (33 M, 32F)	Median materna l urinary MEP (ng/mL) : 22.8 F 19.1 M	no association between either AGD or AGI in male newborns and prenatal DEP exposure <i>in utero</i>	longitudinal study median levels of MEP in amniotic fluid not detectable	Huang et al. 2009
Copenhagen Puberty Study cross- sectional study 2006-2008	clinical examination on same day as blood sampling and urine collection	Human 555 boys (age 6.07– 19.83 years) healthy, 514 Caucasian	9.56 – 12655 ng MEP/ mL	urinary levels of MEP not associated with age at pubertal onset, serum testosterone levels or presence of gynaecomastia	Pubic hair, genital stages, Testicular volume, Pubertal onset, Gynae- comastia, Testosterone	Mieritz et al. 2012
Copenhagen Puberty Study cross- sectional study 2006-2008	full first morning urine sample on the morning of the examination	Human 725 girls (age 5.6–19.1 years) healthy, 618 Danish	2.2 – 11490 ng MEP/ mL	urinary levels of MEP not associated with age at pubarche or breast development	Pubic hair, breast stages, serum FSH, LH, oestradiol and testosterone	Frederikse n et al. 2012

5.9.3 Summary and discussion of reproductive toxicity

The evidence of possible reproductive toxicity of DEP was obtained from multi-generation studies in rats and mice, specific studies on testicular function, prenatal and postnatal developmental toxicity studies and epidemiological data. In conclusion, the results on the reproductive toxicity of DEP are inconsistent.

Fertility

A GLP compliant 2-generation dietary study in rats according to OECD Guideline 416 is available in the registration dossiers as the key study for assessment of effects on fertility and developmental toxicity. Dietary exposure of up to 15000 ppm DEP (1016-1375 mg /kg bw/d) did not reveal any impairment of reproductive performance or fertility outcome. No significant differences in sperm counts or motility were observed in F0 and F1 males between the control and DEP-treated groups. Reduced testosterone levels were observed in F0 males from 3000 ppm (197 mg/kg bw/d). However, the extent of reduction in testosterone levels was not dose-related and the observed reduction did not affect the reproductive capacity to produce the progeny. Data on testosterone levels were not available for F1 males. There was a slight but statistically significant and dose-related increase in the frequency of abnormal (mainly tailless) sperm in the F1 generation at doses of 3000 ppm (222 mg/kg bw/d) which did also not affect fertility outcomes. No consistent or dose-related effect was observed in F0 males as a significant increase in the abnormal sperm rate was only seen at the mid dose level of 3000 ppm (197 mg/kg bw/d) in F0 males. A **NOAEL of 600 ppm**

(**46 mg/kg bw/d**) was established for **fertility-related parameters** based on the increased incidence of abnormal sperms at 222 mg/kg bw/d for F1 males (Fujii et al., 2005).

In a non-guideline experiment to examine the long-term effects of nominal doses up to 2.85 mg/kg bw/d DEP in the diet on the rat testicular antioxidant system, a small number of 6 male Wistar rats were fed a diet containing DEP for 150 d. Body weight, absolute testis weight, absolute epididymis weight and the serum testosterone and androstenedione levels were significantly decreased in all treated groups. However, data on the relative weights of testis and epididymis were not available. The final body weights of high dose males were 23 % lower compared to control values. Since no information on the food consumption was given, lower body weights could be related to the test substance or to lower food consumption. Testicular lipid peroxidation showed a significant dose-dependent increase and was observed in parallel with a dose-dependent decrease in testicular antioxidant enzymes (such as superoxide dismutase, glutathione peroxidase and reductase). This suggests an impairment of the testicular defence system following chronic exposure to DEP (Pereira et al. 2008). A NOAEL for this study could not be determined as effects were seen at the lowest doses tested. This study is considered to be of limited reliability since no actual doses were estimated and an impact of reduced food consumption on the growth and indirectly on the organ weights could not be excluded.

In conclusion, there are some weak indications on fertility related effects such as lower testosterone levels or increased rates of tailless sperms from animal studies. These effects were either not dose-related (testosterone) or not consistent across generations (tailless sperms). In addition, these findings were not accompanied by other morphological lesions in the male reproductive organs and did not affect the fertility outcomes. No effect on testis weight at doses up to 1016 mg/kg bw/d in the available two-generation study (Fujii et al. 2005, Table 22 and Table 23) was seen.

No consistent effects were observed in **human** studies on **fertility-related parameters** (Table 24). Some studies reported adverse effects associated with DEP exposures (reflected by MEP levels) on particular adult human sperm parameters, whilst other studies failed to find such effects. The results in the human male are limited and remained questionable due to limitations of the study design and to the fact that effects could also result from exposure to other phthalates than DEP. Findings were not consistent among human studies (either no effect was estimated, or inconsistent effects (on sperm motility or sperm concentration) were observed) and were not consistent with rat studies which demonstrated increased rates of tailless sperms. With regard to the potential to cause female fertility effects, levels of DEP or MEP in plasma or urine were not associated with risk of endometriosis or uterine leiomyomata (fibroids) in other also limited human studies (Itoh et al. 2009, Weuve et al. 2010).

Developmental

Concerning developmental toxicity, the numbers of implants, pups delivered and pup weights were unaffected at birth from the F0 and F1 parents as well as pup survival and viability. The only developmental effects of DEP were significantly reduced pup weight (up to 19 %) in F1 and F2 pups of both sexes on postnatal day (PND) 21 associated with delayed onset of pinna detachment and vaginal opening in the high dose rats (1016-1375 M-F mg/kg bw/d). The effects on the body weight in F1 female pups already started at PND 4. These effects could not be interpreted as related to reduced body weights in dams. The **developmental NOAEL** was determined to be 3000 ppm (**197-267 mg/kg bw/d**) and the LOAEL was 15000 ppm (1016-1375 mg/kg bw/d) based on decreased pup weight and developmental delay. It remains unclear whether the retarded development at the end of the lactation period was a direct effect or mediated via lactation. The observation in F1 female pups that lower body weights occurred from PND 4 onwards supports the conclusion on a lactation-related effect. However, a classification is not deemed to be warranted due to the high dose level above the limit dose for testing of 1000 mg/kg bw/day (Fujii et al. 2005).

Evaluations of potential DEP toxicity to the **developing male** rat **reproductive system** have consistently found no effect on testis weight or testis integrity (testes atrophy) at doses up to 1016 mg/kg bw/d in the available two-generation study (Fujii et al. 2005, Table 22 and Table 23). There was also no **foetal or neonatal toxicity** (e.g. epididymal malformations or absence of the epididymis, increased incidence of cryptorchidism, hypospadias, decreased AGD, delayed preputial separation, and retained areolas/nipples as commonly noted with the transitional phthalates of C4-6 backbone) after pre-/perinatal exposure to DEP at

oral doses up to 3200 mg/kg bw/d (Field et al. 1993, Gray et al. 2000, Howdeshell et al. 2008, Table 25 and Table 26).

After prenatal exposure in rats and mice at higher doses (3200 mg/kg bw/d orally and 5600 mg/kg bw/d dermally, respectively), an increased frequency of skeletal variations such as rudimentary cervical and/or lumbar ribs was reported but no dose response was evident and these effects generally occurred at or above maternally toxic doses (Tanaka et al. 1987; Field et al. 1993). The increase in supernumerary ribs (either cervical or lumbar) is one of the common anomalies seen in developmental toxicity studies in rodents (Chernoff & Rogers 2004; Daston & Seed 2007; NICNAS 2008). In view of the lack of conclusive evidence to assign the skeletal defects to maternal toxicity, these skeletal variations in rodents could be interpreted as indicative of slight developmental effects at doses well above 3000 mg/kg bw/d.

Singh et al. (1972) reported some skeletal malformations (not skeletal variations) such as incomplete skull bones from gestational exposure at a lower dose of 500 mg/kg bw/d administered intraperitoneally in rats (Table 26). However, the effects were considered inconsistent with findings in the above studies that used a larger sample size and more relevant administration routes (oral and dermal).

In a two-generation continuous breeding study in mice a significantly lower number of live pups per litter (14% lower than the control value) were seen in F1 females that received 2.5 % DEP in the diet (3640 mg/kg bw/day). The NTP abstract for RACB83092 (NTP 1984, corresponding to the data of Lamb et al.) clarified that the control values for pups per litter were abnormally low (about 25 % lower) for the F0 dams. Taking the historical control data into account the litter size in high dose F0 dams would also be decreased (by 21%). As the effects on litter size were seen at extremely high doses of 3640 mg/kg bw/day, these effects should not be relevant for classification purposes.

Several studies in **humans** have explored the association between DEP exposures and **developmental outcomes** (Table 27). These human findings are limited by certain aspects, such as the reliability of spot urine/breast milk samples as indicators of DEP exposures, other confounding factors, e.g. the measured presence of other phthalate metabolites indicating a co-exposure to other (possibly reprotoxic) phthalates. NICNAS (2011) concluded that the current human data provide contradictory evidence of developmental effects from DEP exposure. The available epidemiological studies do not provide sufficient evidence for a causal relationship between exposure to DEP (measured as urinary MEP) and possible health effects and the relevance is limited by the presence of metabolites from toxicologically more potent phthalates. Therefore, no consistent picture of effects was observed in humans, and uncertainties with regards to DEP as the source of exposure do not allow a firm conclusion on the potential for developmental toxicity.

In agreement with the CLP Regulation the changes in one out of eleven sperm parameters seen in animals were not considered to warrant classification for fertility effects. According to 3.7.2.3.3 of Annex I, CLP Regulation effects of low or minimal toxicological significance (including small changes in semen parameters) should not lead to classification. The developmental findings such as reduced pup weight at the end of weaning and reduced litter size occurred at doses above the limit dose of 1000 mg/kg bw/day. According to and 3.7.2.5.8 and 3.7.2.5.9, Annex I of the CLP Regulation, effects at such high doses would normally not lead to classification unless expected human response indicate the need for a higher dose level.

Finally, the low molecular weight phthalate DEP and the shorter side chain (C2) do not support that DEP could act as a potent testicular toxin and could induce developmental changes in the male reproductive system as observed after prenatal exposure to mid molecular weight (so-called 'transitional') phthalates with critical lengths of carbon side chains (C4-C6).

Overall, by means of a weight of evidence approach the eMSCA considers the effects observed on male fertility and the observed developmental effects as not sufficient for classification as Repr. 2 according to Annex I, Part 3 of Regulation (EC) No 1272/2008 (CLP).

5.10 Endocrine disrupting properties

Method/ Guideline	Route of exposure, duration	Test system (Organism, strain)	Concen trations tested	Results, Critical effect	Remarks	Reference
Oestrogen receptor- binding characteristic s	<i>in vitro</i> displacing [³ H]17β- estradiol	recombinant human estrogen receptor expressed on Sf9 vaculovirus	DEP	no binding to human oestrogenic receptor (ER)	no robust study summary available	Nakai M, Tabira Y, 1999
Oestrogen receptor- binding affinity	<i>in vitro</i> ability to inhibit 17β- estradiol (E2) binding	Ligand Screening Assay	DEP 10-3 to 10-8 M	no detectable binding to either ERα or ERβ	no robust study summary available	Toda C, 2004
oestrogenic activity	yeast two- hybrid assay	Human	DEP	negative for oestrogenic activity	no robust study summary	Nishihara T, 2000
oestrogenic activity	recombinant yeast assay estrogenic responses in other estrogen	human estrogen receptor gene mammalian breast cancer cell lines	DEP 10-3 to 5 × 10-7 M 10-5, 10-6, 10-7 M	weak oestrogenic activity little activity in MCF-7 cells, no proliferation of ZR-75 cells	no robust study summary Potency 5 \times 10 ⁻⁷ and 30 % of E2	Harris CA, 1997
oestrogenic activity	assays Human ERα and ERβ reporter gene assay	CHO-K1 cells transfected with expression vectors for human ERα, ERβ receptor	DEP various concen- trations in DMSO	no oestrogenic activity	no robust study summary available	Takeuchi S, 2005
stably transfected transcriptiona l activation (STTA) assay OECD test guideline 455	<i>in vitro</i> ability to function as an ER α ligand and activate agonistic response	hERα-HeLa- 9903 cell line (HeLa9903) which is a stably trans- fected human ERα gene	DEP up to 10-5 M	no estrogenic activity relative binding affinity examined using the ER binding assay: negative	no robust study summary available mentioned only in ED assessment	Lee & Kim, 2012(Lee et al., 2012)
standardised estrogen receptor (ER) competitive- binding assay	<i>in vitro</i> ER affinity in competition with [3H]- estradiol	Uteri from ovariectomise d Sprague- Dawley rats were the ER source		authors were unable to determine IC50 values for any of the phthalates	no robust study summary available	Blair et al. 2000
Anti- oestrogenic	<i>in vitro</i> effect on	MCF-7 cells	various concen-	DEP: no cell proliferative	Test material: DEP,	Okubo et al. 2003

 Table 28: Overview of studies on endocrine effects as reported in the registration dossier

Method/	Route of	Test system	Concen	Results,	Remarks	Reference
Guideline	exposure, duration	(Organism, strain)	trations	Critical effect		
activity by inhibition of cell prolifera- tion assay	cell proliferation in the presence of 17β- estradiol		trations of DEP or MEP	effects MEP: inactive	Monoethyl phthalate (MEP)	
oestrogenic activity in in vitro model	<i>in vitro</i> incubation of 6 d: DEP in 0.1 % DMSO	MCF-7 cells	DEP	no significant increase of cell growth was observed	no robust study summary available	Hong EJ 2005
Effects of DEP on laurate hydroxylation in rat liver microsomes		Rat liver micro- somes	0, admi- nistra- tion of DEP	increased specific activity of laurate hydroxylase by 1.6 times more than in control	laurate hydroxylase: (marker for CYP 4 responsible for testosterone metabolism)	Okita R & Okita JR 1992
Oestrogenic effects <i>in vivo</i>	oral Vehicle: peanut oil 3 d daily Rats were killed 24 h after 3rd dose	Rat Crl (WI) BR 10 F per dose	0, 50, 150, 500 mg/kg/d (nomina l conc.)	no effects on clinical observations, bw or uterus weight NOAEL > 500 mg/kg/d	4 (not assignable) weight of evidence Test material: DEP	Api AM 2001 SCCNFP/0 411/01
oestrogenic activity in <i>in</i> <i>vivo</i> model related to expression of Calbindin- D9k	oral treatment for 3 days	Rat 7 days old SD F	600 mg DEP/kg	Expression of CaBP-9k mRNA, a gene highly regulated by 17β-oestradiol, not increased	no robust study summary available	Hong EJ, 2005
Prenatally altered sexual differentiatio n	Oral GD 14 to PND 3	rodent	0.75 g/kg DEP	no impaired sexual function and no shortened AGD	no robust study summary available	Gray et al. 2000
global gene expression in the fetal testis following in utero exposure	Oral gavage Vehicle: corn oil, daily GD 12-19	rat Sprague Dawley F	0, 500 DEP mg/kg per day	No significant changes in gene expression, no significant effect on AGD	no robust study summary available	Liu et al. 2005
dose- response effects on test. testosterone production	Oral gavage Vehicle: corn oil GD 8-18	rat SD F	0, 100, 300, 600, 900 mg/kg/d	DEP did not affect GD 18 testosterone production	no robust study summary available	Howdeshell et al. 2008

Method/ Guideline	Route of exposure, duration	Test system (Organism, strain)	Concen trations tested	Results, Critical effect	Remarks	Reference
Subacute toxicity study based on the draft Enhanced OECD Test Guideline 407	Oral: gavage Vehicle: corn oil 28 d	Rat Crj:CD (SD) 8 w of age 10 M/10 F	0, 40, 200, and 1000 mg DEP/kg /day	1,000 mg/kg M: ↓ estradiol no abnormal spermatologica l findings, no abnormalities in estrous cycles.	1,000 mg/kg F: ↑ adrenal weight NOEL 200 mg/kg/day no endocrine- mediated properties	Shiraishi et al. 2006
links between adverse health effects in humans and phthalate exposure	prenatal urine samples (n = 85)	Human 134 boys 2–36 months of age	Environ mental levels	Urinary MEP concentration inversely related to AGI = AGD/wt	no robust study summary available mentioned only in ED assessment	Swan et al. 2005
Association between urinary levels of MEP and Human Serum Testosterone levels		Human	DEP metabo- lite: Mono- ethyl phthalat e (MEP)	positive asso- ciation between increased uri- nary MEP levels and increased serum levels of testosterone, possible antiandrogen effect	no robust study summary available mentioned only in ED assessment	Duty et al. 2005
Prospective Danish- Finnish cohort study on cryptorchidis m from 1997 to 2001	breast milk samples 1–3 months post- natally (n = 130) Serum samples (74% of all boys - cryptorchid, n = 50; normal boys, $n =$ 46)	Human 130 M (62 cryptorchid/ 68 healthy boys)	Median 0.95 (mini- mum 0.07 – maxi- mum 41.4) µg MEP/L	MEP showed positive correlation with levels of sex hormone- binding globulin ($r = 0.323$, $p = 0.002$) and with LH:free testosterone ratio	No association between MEP levels and cryptorchidism no robust study summary available mentioned only in ED assessment	Main et al. 2006
Semen Parameters of sub-fertile couples between January 2000 and May 2004	phthalate metabolites measured in single spot urine sample from each man	Human 463 M	DEP metabo- lite: Mono- ethyl phthalat e (MEP) DEP	no relationship of MEP and sperm concentration, motility or morphology	no robust study summary available mentioned only in ED assessment	Hauser et al. 2006
between hu-	metabolites	168 M	metabo-	correlations	study	2003a

Method/ Guideline	Route of exposure, duration	Test system (Organism, strain)	Concen trations tested	Results, Critical effect	Remarks	Reference
man exposure to DEP at en- vironmental levels and male repro- ductive effects	Sperm parameters adjusting for age, absti- nence time, and smoking		lite: Mono- ethyl phthalat e (MEP)	were found for monoethyl phthalate (MEP).	summary available mentioned only in ED assessment	
urinary levels of phthalate metabolites association with DNA strand breaks in sperm cells	urinary levels of MEP neutral comet assay adjusting for age and smoking status	Human	DEP metabo- lite: Mono- ethyl phthalat e (MEP)	statistically significant positive association between urinary levels of MEP and mean comet extent (DNA migration) in sperm	no robust study summary available mentioned only in ED assessment	Duty et al. 2003b

Table 29: Overview of studies on **endocrine effects** according to original publications (**such only partly reported in registration dossiers as well as additional publications**)

Method/ Guideline	Route of exposure,	Test system (Organism,	Concen tration	Results, Critical effect	Remarks	Referenc e
	duration	strain)	tested			
Oestrogen receptor binding assay	<i>in vitro</i> incubation of 1 h at 25 °C: receptor with DEP solution and $[^{3}H]17\beta$ - estradiol	recombinant human oestro- gen receptor expressed on Sf9 vaculovirus	DEP	DEP was unable to bind to human oestrogenic receptor (hER)	Solvent 1 % DMSO (dimethyl sulfoxide) in aqueous buffer	Nakai M, Tabira Y, 1999
Oestrogen receptor binding assay	<i>in vitro</i> incubation of 1 h at 4 °C: ER α or β with DEP and 17 β -estradiol	human ERs	up to 1 mM DEP	no detectable binding to either ERα or β	Low binding activity for 4- OH-DEP (10,000 x less than DES)	Toda C, 2004
Screening of oestrogenic activity by yeast two- hybrid assay	<i>in vitro</i> incubation of 4 h at 30 °C: ERα with DMSO solution of DEP	Yeast (Saccharomyc es cerevisiae Y190) with ERa	up to 1 mM DEP	negative for oestrogenic activity	Test material: DEP	Nishihara T, 2000
Screening of oestrogenic activity by recombinan t yeast assay	<i>in vitro</i> incubation of 6 d at 32 °C: hER with DEP	Gene for the hER integrated into the main yeast genome	up to 1 mM DEP	extremely weak oestrogenic activity, maximum response 30 % relative to	Test material: DEP (> 99.7 %) slight mito- genic activity in MCF-7	Harris CA, 1997

Method/ Guideline	Route of exposure, duration	Test system (Organism, strain)	Concen tration tested	Results, Critical effect	Remarks	Referenc e
				17β-estradiol	assay	
Human estrogen receptors α and β , and androgen	<i>in vitro</i> incubation of 24 h: hERα, hERβ, and hAR with DEP in	CHO-K1 cells transfected with expression vectors for	< 10 µM DEP	no hERα- and hERβ- mediated oestrogenic activities nor	Test material: DEP (> 99.5 %)	Takeuchi S, 2005
receptor reporter gene assay	0.1 % DMSO	ERα, ERβ or androgen receptor		antiandrogeni c activity demonstrated		
oestrogenic effects by MCF-7 cell proliferatio n assay	<i>in vitro</i> incubation of 6 d: ERα mediating a mitotic effect	MCF-7 human breast adeno- carcinoma cells	up to 10 mM DEP	increased pro- liferation of MCF-7 cells (10 ⁻⁷ times relative to estradiol)	EC_{50} max. 22 μ M (no more than 75 % of cell proliferat. of estradiol)	van Meeuwe n et al. 2008
oestrogenic activity in <i>in vitro</i> model	<i>in vitro</i> incubation of 6 d: DEP in 0.1 % DMSO	MCF-7 human breast cancer cell line	up to 100 μM DEP	no significant increase of cell growth was observed	Test material: DEP (99.5 %)	Hong EJ, 2005
oestrogenic activity by MCF-7 cell proliferatio n assay	<i>in vitro</i> incubation of 6 d: vehicle (0.1% ethanol)	Human breast cancer estrogen- sensitive MCF-7 cells	up to 1 mM DEP or MEP	no cell proliferative effects	Test material: DEP, Monoethyl phthalate (MEP)	Okubo et al. 2003
oestrogenic activity by gene expression profiling by DNA mi- croarray containing estrogen responsive genes	<i>in vitro</i> Proliferation of cells by sulforhodamine B assay incubation of 3 d at 37 °C: DEP in DMSO	Estrogen receptor– positive human breast cancer MCF-7 cells	up to 100 μM DEP	moderate cor- relation between DEP and 17β - oestradiol (endogenous oestrogen) in gene expression profiles of MCF-7 cells	Test material: DEP maximal activity at 100 µM no enhance- ment of cell proliferation with 10 µM	Parveen et al. 2008
H295R steroido- genesis assay (OECD 456)	<i>in vitro</i> 48 h DEP exposure 17β- oestradiol (E ₂), testosterone (T) conc. determined	human H295R adreno- carcinoma cell line	0.01, 0.1, 1, 10 mg DEP/L	10mg/L: 2.3- fold greater conc. of E ₂ compared to solvent control	Test material: DEP 0.1 mg/L: 60% lesser conc. of testosterone	Mankidy 2013
Subacute toxicity study using a draft protocol for "enhanced OECD Test Guideline	Oral: gavage Vehicle: corn oil 28 d	Rat Crj:CD (SD) 8 w old 10 M/10 F	0, 40, 200, and 1000 mg/kg bw/d	no endocrine- mediated effects detected on any of the parameters examined, e.g. sperm count &	Test material: DEP (99.8 %) 1000 mg/kg bw/d M: \downarrow bw, \downarrow estradiol	Shiraishi et al. 2006

Method/	Route of	Test system	Concen	Results,	Remarks	Referenc
Guideline	exposure,	(Organism,	tration	Critical effect		e
	duration	strain)	tested			
407 –				morphology,	\mathbf{F} : \uparrow adrenal	
Repeated				estrous	wt, kidney wt	
dose				cycling, serum	(also at 40	
toxicity				conc. of TSH,	mg/kg bw/d)	
study",				T4, T3,	NOAEL 200	
GLP				testosterone,	mg/kg bw/d	
				FSH, LH,		
				estradiol		

The evidence of possible endocrine disrupting properties of DEP was obtained from *in vitro* studies, animal testing and epidemiological data. The extent to which the mode of action for transitional phthalates is reflective of the mode of action for low molecular weight phthalates such as DEP is not certain. Compared to certain transitional phthalates, there is a paucity of information to examine the mode of action of DEP with respect to reproductive effects.

DEP did not bind to human oestrogen receptor (hER) *in vitro* (Nakai et al., 1999; Toda et al. 2004) and showed extremely weak oestrogenic activity in both recombinant and two-hybrid yeast assays (Harris et al. 1997; Nishihara et al. 2000). DEP also did not demonstrate hER α - and hER β -mediated oestrogenic activities, nor antiandrogenic activity in reporter gene assays using CHO-K1 cells transfected with respective expression vectors (Takeuchi et al. 2005). DEP increased proliferation of human breast cancer MCF-7 cells in one assay (van Meeuwen et al. 2008) but not in others (Okubo et al. 2003; Hong et al. 2005). There was a moderate correlation between DEP and 17 β -oestradiol (endogenous oestrogen) in gene expression profiles of MCF-7 cells using a DNA microarray assay (EstrArray) (Parveen et al. 2008). MEP was shown to induce detachment of germ cells from a Sertoli cell monolayer *in vitro*, but was 10 000-fold less potent than mono-2-ethylhexyl phthalate (MEHP – a metabolite of DEHP) (Gray & Gangolli, 1986).

In vivo, expression of CaBP-9k mRNA (a gene highly regulated by 17β-oestradiol) was not increased in immature female Sprague-Dawley rats following oral treatment with 600 mg DEP/kg bw/d for 3 d (Hong et al. 2005). In OECD compliant toxicity tests (i.e. in the OECD two-generation reproductive toxicity study), DEP was positive for endocrine-mediated effects (such as reduced testosterone, abnormal sperm, and delayed physical and sexual post-natal development) in rats exposed to DEP continuously for 15 weeks at 197 and 1016 mg/kg bw/d (Fujii et al. 2005), but negative in rats dosed up to 200 mg/kg bw/d for 28 days using a draft protocol for "enhanced OECD Test Guideline 407 – Repeated dose toxicity study" (Shiraishi et al. 2006).

The above literature reporting potential links between adverse health effects in humans and phthalate exposure have been considered for assessment of endocrine disrupting effects of DEP, but the **epidemiological studies** do not to provide sufficient information to decide whether the observed associations are true causal relationships or whether they were fortuitous. Lifestyle practices that are both associated with DEP exposure and the effect are possible confounders. In particular smoking is associated both with several reproductive effects in humans, i.e. reduced sperm count in males exposed to smoking *in utero* and estrogenic effects (Jensen 2004, Storgaard 2003) and apparently also with urinary MEP (Duty 2005a,b). The median urinary concentration of MEP was higher in current smokers (236 ng/ml) and former smokers (231 ng/ml) than in never smokers (135 ng/ml) (VKM 2005).

In conclusion, the results on the oestrogenic or anti-androgenic potency of DEP are inconsistent and limited, and hence the exact mechanism of DEP effects on the male reproductive system such as reduced testosterone, sperm concentration and sperm quality cannot be determined although it appears to interfere with endocrine function (NICNAS 2011).

5.11 Other effects

5.11.1 Non-human information

5.11.1.1 Neurotoxicity

This information is not available from the registration dossiers.

5.11.1.2 Immunotoxicity

This information is not available from the registration dossiers.

5.11.1.3 Specific investigations: other studies

This information is not available from the registration dossiers.

5.11.2 Human information

This information is not available from the registration dossiers.

5.11.3 Summary and discussion of specific investigations

There are no specific investigations on other effects available from the registration dossiers.

5.12 Combined effects

This information is not available from the registration dossiers.

5.13 Derivation of DNEL(s) / DMEL(s)

5.13.1 Overview of typical dose descriptors for all endpoints

The lead registrant has given an overview of available dose-descriptors per endpoint. The dose-descriptors have been gathered from the available and relevant experimental animal studies in the registration dossier. Out of this database together with the information published in reviews of international bodies/regulatory programs (ATSDR 1995, WHO 2003, VKM 2005, NICNAS 2011) suitable studies and typical dose descriptors for derivation of DNEL values are selected.

In agreement with the assessment of NICNAS (2011) the critical toxicity endpoints for DEP in animal studies are repeated dose toxicity (dose-dependent increase in liver and stomach weights, Brown et al., 1978) and reproductive and developmental toxicity (reduced testosterone, increased abnormal and tailless sperm, decreased pup weight and developmental delays, Fujii et al., 2005)) observed in rodents. The NOAELs identified for risk characterisation are 150 mg/kg bw/d (repeated dose toxicity), 40 mg/kg bw/d (reproductive toxicity) and 197 mg/kg bw/d (developmental toxicity) as listed in Table 30.

Endpoint	Study used	Dose descriptor	Remarks on study
Repeated dose toxicity: sub-acute / sub-chronic / chronic (organ weights)	A non-guideline oral toxicity study in SD rats exposed via diet for 16 weeks (Brown et al. 1978)	NOAEL: 150 mg/kg bw/d	LOAEL: 750 mg/kg bw/d ↑ relative weights of liver (f) & stomach (m),
Reproductive toxicity: male fertility (effects on testosterone and sperm)	Two-Generation Reproduction Toxicity Study in SD rats (Fujii et al. 2005)	NOAEL: 46 mg/kg bw/d	LOAEL: 222 mg/kg bw/d ↑ abnormal and tailless sperms (F1)
Reproductive toxicity: developmental toxicity (post-natal development effects)	Two-Generation Reproduction Toxicity Study in SD rats (Fujii et al. 2005)	NOAEL: 197-267 mg/kg bw/d	LOAEL: 1016-1375 mg/kg bw/d ↓ pup weight on PND 21 (m-f, F1, F2) and PND 4-21 (f, F1), delayed pinna detachment (m, F1) and vaginal opening (f, F1)

Table 30: Overview of studies and dose descriptors per endpoint for DNEL derivation

Although some studies reported the association between liver toxicity and peroxisome proliferation, there is no microscopical or biochemical evidence to explain the mechanism of digestive organs enlargement seen in the critical study following repeated DEP dietary exposure. On this basis, these organ effects could not be excluded and therefore are considered relevant to humans for this risk assessment.

Reduced testosterone production and altered Leydig cell ultra structure by DEP has been reported. In addition, the frequency of abnormal and tailless sperms in the F0 and F1 generations (although that did not alter reproductive performance or affect sperm count and sperm motility) was dose-related slightly but statistically significantly increased at exposures to 197-267 and 1016-1375 mg/kg bw/day (Fujii et al. 2005). Decreased pup weight at weaning and developmental delay (delayed onset of vaginal opening and pinna detachment) were also observed in the high dose group at exposures to 1016-1375 mg/kg bw/day (Fujii et al. 2005). The effects on testosterone and sperm levels and sperm quality observed in several rodent studies are regarded as relevant to human risk assessment.

Overall, the epidemiological studies available do not provide sufficient evidence for a causal relationship between exposure to DEP and adverse health effects in humans. However, elements of the plausible mode of action for DEP effects on the developing male reproductive system are considered likely to be parallel in rats and humans if the exposure level to DEP is high and within a critical window of development. Therefore, in agreement with the assessment of NICNAS (2011) the effects on developmental toxicity observed in animal studies such as decreased pup weight, delayed onset of vaginal opening and pinna detachment are regarded as relevant to human risk assessment.

5.13.2 Selection of the critical DNEL(s)/DMEL(s) and/or qualitative/semi-quantitative descriptor for critical health effects

5.14 Conclusions of the human health hazard assessment and related classification and labelling

Based on the submitted data the lead registrant concluded on the non-classification of DEP.

Evaluation of the existing information on the toxicity of DEP indicated that the non-classification of DEP is justified. Following the requirements set down in Annex I of Regulation (EC) No 1272/2008 (CLP) and the data available, DEP does not appear to fulfil the criteria for classification.

6 HUMAN HEALTH HAZARD ASSESSMENT OF PHYSICO CHEMICAL PROPERTIES

Not evaluated.

7 ENVIRONMENTAL HAZARD ASSESSMENT

Note evaluated.

8 PBT AND VPVB ASSESSMENT

Not evaluated.

9 EXPOSURE ASSESSMENT

9.1 Human Health

9.1.1 Exposure assessment for worker

9.1.2 Exposure assessment for consumers

Several product categories were addressed in the registration dossiers (see 2.2.1). However, it can be assumed that the proportion of exposure derives mainly from scented mixtures, especially air care products or washing and cleaning products, where DEP functions as carrier for fragrances. These consumer products are widely used in households. For example, the German Federal Statistical Office reported a production of 511,000 t of universal cleaning agents and 358,000 t in dish washing agents in 2013 (Statistisches Bundesamt, 2014).

Although the concentration of DEP is low, the widespread use of such consumer products could lead to exposure predominantly by inhalation and dermal contact. The exposure situation should be similar to that of cosmetics. Therefore cosmetic exposure assessment is also considered in this chapter.

Modelled exposure, measured internal exposure via human biomonitoring and correlations are described in various publications. Koo and Lee (2004) have estimated the exposure due to the use of cosmetics with different approaches, considering the use of several products during a day. Even for high frequency cosmetic users, and using a conservative approach, the 90 percentile of the exposure did not exceed the reference value.

The Scientific Committee on Cosmetic and Non-Food Products Intended for Consumers (SCCNFP) is of the opinion "that the safety profile of Diethyl-phthalate supports its use in cosmetic products at current levels. At present the SCCNFP does not recommend any specific warnings or restrictions under the currently proposed conditions of use" (SCCNFP, 2002).

DEP was also measured in indoor air (Adibi et al., 2008; Fromme et al., 2013; Hofmann & Plieninger, 2008). Although the concentration is low, it indicates possible sources and potential exposure. All reported values are below the DNEL for long-term-systemic effects recorded by the registrants. Adibi et al. (2008) addressed the associations between DEP in indoor and personal air and its metabolite MEP, but DEP metabolites averaged has a low specificity.

The U.S. Environmental Protection Agency (U.S. EPA) has published a report about the assessment of several phthalates (CHAP, 2014). For DEP they concluded that no Commission action is currently needed, but they recommended further studies.

Under the assumption of similar use conditions for cosmetics and REACH regulated products like air care products and cleaning agents, as well as the missing need for classification, the eMSCA does not see a concern and the need for requesting further information.

10 RISK CHARACTERISATION

Not evaluated.
11 OTHER INFORMATION

The evaluation of the toxicity of DEP has been based on the registration dossiers as well as on reviews by a variety of international bodies/regulatory programs and original publications. Available data for all endpoints have been assessed. DEP has been evaluated by the U.S. Department of Health and Human Services (ATSDR 1995), the International Programme on Chemical Safety (WHO 2003), the Norwegian Scientific Committee for Food Safety (VKM 2005), and the Australian Department of Health and Aging (NICNAS 2011). Where relevant, the original publications were reviewed and evaluated as indicated in the text. In addition literature was searched in the on-line databases DIMDI, ToxNet (HSDB, Toxline incl. PubMed), ISI Web of Knowledge, and Scopus, latest search June 2014.

12 **REFERENCES**

Adibi, J. J., Whyatt, R. M., Williams, P. L., Calafat, A. M., Camann, D., Herrick, R., Nelson, H., Bhat, H. K., Perera, F. P., Silva, M. J., and Hauser, R. (2008): Characterization of phthalate exposure among pregnant women assessed by repeat air and urine samples. Environmental health perspectives, 116(4); 467-473.

AIHA Exposure Assessment Strategies Committee (EASC) - Dermal Project Team (DPT) in collaboration with Wil ten Berg (2011). IH SkinPerm v1.15. IH SkinPerm READ ME Help Manual - Tibaldi R. S., ten Berg W., Drolet D.

Anon (1978): Primary Eye Irritation Study in the Albino Rabbit. RIFM, Submission to EPA. Doc No: 12327.

Anon (1978a). Toxicity and Health hazard Summaty. Office of Toxic Substances. Testing laboratory: Unknown. Owner company: Unknown.

Anon (2002): Opinion of the Scientific Committee on Cosmetic Products and Non Food Products Intended for Consumers. Report no. SCCNFP0411/01.

Anon (2006): Chemical Information Profile for Diethyl Phthalate. National Toxicology Program National Institute of Environmental Health Services National Institute of Health Research Triangle Park NC USA; NTP.

Api, A. M. (2001): Toxicological profile of diethyl phthalate: a vehicle for fragrance and cosmetic ingredients. Food and Chemical Toxicology 39 (2); 97-108.

ATSDR (1995): Toxicological profile for diethyl phthalate. Agency for Toxic Substances and Disease Registry. Atlanta, GA, US Department of Health and Human Services – Public Health Service. http://www.atsdr.cdc.gov/toxprofiles/tp73.pdf

Babich, M. A., and Carlson, K. R. (2014). Appendix E1: Modeling consumer exposure to phthalate esters. In: Report to the US Consumer Product Safety Commission by the Chronic Hazard Advisory Panel on Phthalates and Phthalate Alternatives (pp. 74). Bethesda MD, USA: United States Consumer Product Safety Commission.

Bagley, D.M., Gardener, J.R., Holland, G., Lewis, R.W., Regneri, J.-F., Stringer, D.A. and Walker, A.P. (1996): Skin irritation: Reference Chemicals Data Bank. Toxicology in vitro 10: 1-6.

Blair, Robert M., Fang, Hong, Branham, William S., Hass, Bruce S., Dial, Stacey L., Moland, Carrie L., Tong, Weida, Shi, Leming, Perkins, Roger and Sheehan, Daniel M. (2000): The Estrogen Receptor Relative Binding Affinities of 188 Natural and Xenochemicals: Structural Diversity of Ligands. Toxicological Sciences. 54(1); 138-153.

Brown, D., Butterworth., K.R., Gaunt, I.F., Grassso, P., Gangolli, S.D. (1978): Short-term oral toxicity study of diethyl phthalate in the rat. Fd Cosmet. Toxicol. Vol 16; 415-422.

Chambon, P., Riotte, M., Daudon, M., Chambon-Mougenot, R., Bringuier, J. Etude du métabolisme des phtalates de dibutyle et du diéthyle chez le rat. Comptes Rendus des Seances de L'Académie des Sciences 273: 2165-2168, 1971.

CHAP, Chronic Hazard Advisory Panels. (2014): Chronic Hazard Advisory Panels on Phthalates and Phthalate Alternatives (pp. 597). Bethesda, MD 20814: U.S. Consumer Product Safety Commission.

Chernoff, N. and Rogers, J. M. (2004): Supernumerary ribs in developmental toxicity bioassays and in human populations: incidence and biological significance. J Toxicol Environ Health B Crit Rev. 7(6); 437-449.

Cohen, A., Janssen, S., and Solomon, G. (2007): Hidden Hazards of Air Fresheners (pp. 16): Natural Resources Defense Council.

Cray, T. J. B., Lake, B. C., Beamand, J. A., Foter, J. R., Peroxisomal effects of phthalate esters in primary cultures of rat hepatocytes. Toxicology 28: 167-179, 1983.

Daston, G. P. and Seed, J. (2007): Skeletal malformations and variations in developmental toxicity studies: interpretation issues for human risk assessment. Birth Defects Res B Dev Reprod Toxicol 80(6); 421-424.

Dodson, R. E., Nishioka, M., Standley, L. J., Perovich, L. J., Green Brody, J., and Rudel, R. A. (2012): Endocrine disrutors and asthma-associated chemicals in consumer products. Environmental Health Perspectives, 120(7); 935-943.

Draize, J.H. (1944): Methods for the study of irritation & toxicity of substances applied topically to the skin and mucous membranes. Testing laboratory: Division of pharmacology FDA federal Security Agency Washington DC USA. Journal of Pharmacology and Experimental Therapeutics (82); 377-390.

Duty, S. M., Singh, N. P., Silva, M. J., Barr, D. B., Brock, J. W., Ryan, L., Herrick, R. F., Christiani, D. C. and Hauser, R. (2003a): The relationship between environmental exposures to phthalates and DNA damage in human sperm using the neutral comet assay. Environ Health Perspect 111 (9); 1164-9.

Duty, S. M., Silva, M. J., Barr, D. B., Brock, J. W., Ryan, L., Chen, Z. Y., Herrick, R. F., Christiani, D. C. and Hauser, R. (2003b): Phthalate exposure and human semen parameters. Epidemiology 14 (3); 269-277.

Duty, S. M., Calafat, A. M., Silva, M. J., Brock, J. W., Ryan, L., Chen, Z., Overstreet, J. and Hauser, R. (2004): The relationship between environmental exposure to phthalates and computer-aided sperm analysis motion parameters. J Androl 25 (2); 293-302.

Duty, S. M., Calafat, A. M., Silva, M. J., Ryan, L. and Hauser, R. (2005a): Phthalate exposure and reproductive hormones in adult men. Human Reprod 20(3); 604-610.

Duty SM, Ackerman RM, Calafat AM, Hauser R (2005b): Personal care product use predicts urinary concentrations of some phthalate monoesters. Environ Health Perspect 113; 1530-1535.

European Chemicals Agency (ECHA) (2012): Guidance on information requirements on Chemical Safety Assessment. Chapter R.8a: Characterisation of dose [concentration]–response for human health, Version 2.1 August 2012.

European Chemicals Agency (ECHA) (2013a): Information site on registered substances, <u>http://echa.europa.eu/de/information-on-chemicals/registered-substances</u>; last access ; status: last updated on

European Chemicals Agency (ECHA) (2013b): Guidance on information requirements on Chemical Safety Assessment, Chapter R.7a: Endpoint specific guidance, Version 2.2 August 2013.

Field, E. A., Price, C. J., Sleet, R. B., George, J. D., Marr, M. C., Myers, C. B., Schwetz, B. A. and Morrissey, R. E. (1993): Developmental toxicity evaluation of diethyl and dimethyl phthalate in rats. Teratology 48 (1); 33-44.

Foster, P. M., Thomas, L. V., Cook, M. W. and Gangolli, S. D. (1980): Study of the testicular effects and changes in zinc excretion produced by some n-alkyl phthalates in the rat. Toxicol Appl Pharmacol 54 (3); 392-8.

Foster, P. M. D., Thomas, L. V., Cook, M. W. and Walters, D. G. (1983): Effect of Di-n-pentyl phthalate treatment on testicular steroidogenic enzymes and cytochrome P-450 in the rat. Toxicology Letters 15 (2–3); 265-271.

Frederiksen, H., Sorensen, K., Mouritsen, A., Aksglaede, L., Hagen, C. P., Petersen, J. H., Skakkebaek, N. E., Andersson, A. M. and Juul, A. (2012): High urinary phthalate concentration associated with delayed pubarche in girls. International Journal of Andrology 35 (3); 216-226.

Fredricsson, B., Moller, L., Pousette, A. and Westerholm, R. (1993): Human Sperm Motility Is Affected by Plasticizers and Diesel Particle Extracts. Pharmacology & Toxicology 72 (2); 128-133.

Fromme, H., Lahrz, T., Kraft, M., Fembacher, L., Dietrich, S., Sievering, S., Burghardt, R., Schuster, R., Bolte, G., and Volkel, W. (2013): Phthalates in German daycare centers: occurrence in air and dust and the excretion of their metabolites by children (LUPE 3). Environ Int, 61; 64-72.

Fujii, S., Yabe, K., Furukawa, M., Hirata, M., Kiguchi, M. and Ikka, T. (2005): A two-generation reproductive toxicity study of diethyl phthalate (DEP) in rats. J Toxicol Sci 30 Spec No. 97-116.

Glensvig, D., Ports, J. (2006): Mapping of perfume in toys and children's articles. Danish Environmental Protection Agency, Survey of Chemical Substances in Consumer products 68.

Gollamudi, R., Lawrence, W. H., Rao, R. H., Autian, J. Effects of phthalic acid esters on drug metabolizing enzymes of rat liver. Journal of Applied Toxicology 5: 368-371, 1985.

Gray, L. E., Ostby, J., Furr, J., Price, M., Veeramachaneni, D. N. R. and Parks, L. (2000): Perinatal Exposure to the Phthalates DEHP, BBP, and DINP, but Not DEP, DMP, or DOTP, Alters Sexual Differentiation of the Male Rat. Toxicological Sciences 58 (2); 350-365.

Gray, T. J. B. and Gangolli, S. D. (1986): Aspects of the Testicular Toxicity of Phthalate-Esters. Environmental Health Perspectives 65 229-235.

Hardin, B. D., Schuler, R. L., Burg, J. R., Booth, G. M., Hazelden, K. P., MacKenzie, K. M., Piccirillo, V. J. and Smith, K. N. (1987): Evaluation of 60 chemicals in a preliminary developmental toxicity test. Teratogenesis, Carcinogenesis, and Mutagenesis 7 (1); 29-48.

Harris, C. A., Henttu, P., Parker, M. G. and Sumpter, J. P. (1997): The estrogenic activity of phthalate esters in vitro. Environ Health Perspect 105 (8); 802-11.

Hauser, R., Meeker, J. D., Duty, S., Silva, M. J. and Calafat, A. M. (2006): Altered semen quality in relation to urinary concentrations of phthalate monoester and oxidative metabolites. Epidemiology 17 (6); 682-91.

Hofmann, H., and Plieninger, P. (2008). Bereitstellung einer Datenbank zum Vorkommen von flüchtigen organischen Verbindungen in der Raumluft WaBuLU-Hefte (pp. 161): Umweltbundesamt.

Hong, E. J., Ji, Y. K., Choi, K. C., Manabe, N. and Jeung, E. B. (2005): Conflict of estrogenic activity by various phthalates between in vitro and in vivo models related to the expression of Calbindin-D9k. J Reprod Dev 51 (2); 253-63.

Hotchkiss SAM Mint A (1994). Metabolism of phthalic acid during percutaneous absorption through rat and human skin in vitro. Journal of Investigative Dermatology, 102(4): 647, 1994

Hotchkiss, S. A. M. Absorption of fragrance ingredients using in vitro models with human skin. In: Frosch, P. J., Johansen, J. D., White, I. R. (Eds.), Fragrances. Beneficial and Adverse Effects. Springer-Verlag, Berlin, pp. 125-135, 1998.

Howdeshell, K. L., Wilson, V. S., Furr, J., Lambright, C. R., Rider, C. V., Blystone, C. R., Hotchkiss, A. K. and Gray, L. E., Jr. (2008): A mixture of five phthalate esters inhibits fetal testicular testosterone production in the sprague-dawley rat in a cumulative, dose-additive manner. Toxicol Sci 105 (1); 153-65.

HSDB - http: //toxnet. nlm. nih. gov/ (2008). EPA HPV Challenge Program's Robust Summaries and Test Plans. Available from the Database Query page at: http://www.epa.gov/hpv/pubs/hpvrstp. htm on Phthalate Esters Category, Diethyl phthalate (84-66-2) p. 23 (2007) as of April 28, 2008 - peer reviewed

Huang, P. C., Kuo, P. L., Chou, Y. Y., Lin, S. J. and Lee, C. C. (2009): Association between prenatal exposure to phthalates and the health of newborns. Environment International 35 (1); 14-20.

Hubinger, J. C., and Havery, D. C. (2006): Analysis of consumer cosmetic products for phthalate esters. Journal of Cosmetic Science, 57(2); 127-137.

Ionas, A. C., Dirtu, A. C., Anthonissen, T., Neels, H., and Covaci, A. (2014): Downsides of the recycling process: harmful organic chemicals in children's toys. Environment international, 65; 54-62.

Ioku T Mukaide A Kitanaka H Sakagami Y Kameevama T (1976). *In vivo* distribution of drugs. Labelled compounds. Yakuri To Chiryo 4 510-514

Itoh, H., Iwasaki, M., Hanaoka, T., Sasaki, H., Tanaka, T. and Tsugane, S. (2009): Urinary phthalate monoesters and endometriosis in infertile Japanese women. Science of the Total Environment 408 (1); 37-42.

Janjua NR, Frederiksen H, Skakkebaek NE, Wulf HC and Andersson A-M (2008). Urinary excretion of phthalates and paraben after repeated whole-body topical application in humans. International Journal of Andrology 31: 118-130, 2008

Janjua, N. R., Mortensen, G. K., Andersson, A. M., Kongshoj, B., Skakkebaek, N. E. and Wulf, H. C. (2007): Systemic uptake of diethyl phthalate, dibutyl phthalate, and butyl paraben following whole-body topical application and reproductive and thyroid hormone levels in humans. Environmental Science & Technology 41 (15); 5564-5570.Jensen T.K., Jørgensen N., Punab M. (2004): Association of in utero exposure to maternal Smoking with reduced semen quality and testis size in adulthood: A cross-sectional study of 1,770 young men from the general population in five European countries. Am. J. Epidemiol. 159: 49-58.

Jones, H. B., Garside, D. A., Liu, R. and Roberts, J. C. (1993): The Influence of Phthalate Esters on Leydig Cell Structure and Function in Vitro and in Vivo. Experimental and Molecular Pathology 58 (3); 179-193.

Jonsson, B. A. G., Richthoff, J., Rylander, L., Giwercman, A. and Hagmar, L. (2005): Urinary phthalate metabolites and biomarkers of reproductive function in young men. Epidemiology 16 (4); 487-493.

Kawano M (1980). Toxicological studies on phthalate esters 2: Metabolism accumulation and excretion of phthalate esters in rats. Japanese Journal for Hygiene 35: 693-701 1980

Kayano Y Watanabe K Matsunaga T Yamamoto I & Yoshimura H (1997). Involvement of novel mouse hepatic microsomal esterase, ES46.5k, in the hydrolysis of phthalate esters. Biological and Pharmaceutical Bulletin 20(7): 749-751, 1997

Kay, V.R., Chambers, C., Foster, W.G. (2013): Reproductive and developmental effects of phthalate diesters in females. Crit Rev Toxicol; 43(3): 200–219.

Klecak G Geleick H & Frey JR (1977). Screening of fragrance materials for allergenicity in the guinea pig 1 Comparison of four testing methods. J Soc Cosmet Chem 28: 53-64, 1977

Kwack, S. J., Kim, K. B., Kim, H. S. and Lee, B. M. (2009): Comparative Toxicological Evaluation of Phthalate Diesters and Metabolites in Sprague-Dawley Male Rats for Risk Assessment. Journal of Toxicology and Environmental Health, Part A 72 (21-22); 1446-1454.

Koniecki, D., Wang, R., Moody, R. P., and Zhu, J. (2011): Phthalates in cosmetic and personal care products: concentrations and possible dermal exposure. Environmental Research, 111(3); 329-336.

Koo, H. J., and Lee, B. M. (2004): Estimated exposure to phthalates in cosmetics and risk assessment. Journal of toxicology and environmental health Part A, 67(23-24); 1901-1914.

Korn W-D (1985): Teratogenicity study on E-2426.01 by dermal application in rabbits. NTIS/Office of Toxic Substances, study report, Report no. 4-3-407-84.

Lamb, J.C, Chapin, R. E., Teague, J., Davis Lawton, A. and Reel, J. R. (1987): Reproductive effects of four phthalic acid esters in the mouse. Toxicology and Applied Pharmacology 88 (2); 255-269.

Lake, B. G., Phillips, J. C., Hodgson, R. A., Severn, B. J., Gangolli, S. D., Lloyd, A. G. Studies on the hydrolysis in vitro of phthalate esters by hepatic and intestinal mucosal preparations from various species. Biochemical Society Transactions 4: 654-655, 1976.

Lake, B. G., Phillips, J. C., Linnell, J. C., Gangolli, S. D. The in vitro hydrolysis of some phthalate diesters by hepatic and intestinal preparations from various species. Toxicology and Applied Pharmacology 39: 239-248, 1977.

Lawrence WH, Malik M, Turner JE, Singh AR and Autian J (1975b). A toxicological Investigation of some acute, short-term and chronic effects of administering Di 2 Ethylhexyl phthalate (DEHP) and other phthalate esters. Environmental Research (9); 1-11, 1975. Testing laboratory: N/A review presented at the Society of Toxicology's 13th annual meeting Washington DC USA 1974.

1978; Unpublished study record, confidential

Lee, H. K., Kim, T. S., Kim, C. Y., Kang, I. H., Kim, M. G., Kyung Jung, K., Kim, H. S., Han, S. Y., Yoon, H. J. and Rhee, G. S. (2012): Evaluation of in vitro screening system for estrogenicity: comparison of stably transfected human estrogen receptor-α transcriptional activation (OECD TG455) assay and estrogen receptor (ER) binding assay. The Journal of Toxicological Sciences 37 (2); 431-437.

Lewis CA (1978a). Oral LD50 Test in Rats of Diethyl Phthalate. US EPA. Testing laboratory: Consumer Product Testing Co Inc. Report no.: 78106-1 (78-032-02). Report date: 1978-03-31.

LGL, Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit. (2012, last update 2012-01-03). Diethylphthalat in kosmetischen Mitteln - Untersuchungsergebnisse 2003 und 2006. Retrieved 2015-03-11, from

http://www.lgl.bayern.de/global/script/drucken.php?www.lgl.bayern.de/produkte/kosmetika/kosmetische_mi ttel/ue_2006_diethylphthalat_kosmetika.htm

L G Krauskopf (1973). Studies on the toxicity of phthalates via ingestion. Environmental Health Perspectives, 3: 61-72, 1973

Liu, K. J., Lehmann, K. P., Sar, M., Young, S. S. and Gaido, K. W. (2005): Gene expression profiling following in utero exposure to phthalate esters reveals new gene targets in the etiology of testicular dysgenesis. Biology of Reproduction 73 (1); 180-192.Main, K. M., Mortensen, G. K., Kaleva, M. M., Boisen, K. A., Damgaard, I. N., Chellakooty, M., Schmidt, I. M., Suomi, A. M., Virtanen, H. E., Petersen, D. V., Andersson, A. M., Toppari, J. and Skakkebaek, N. E. (2006): Human breast milk contamination with phthalates and alterations of endogenous reproductive hormones in infants three months of age. Environ Health Perspect 114 (2); 270-6.

Mankidy, R., Wiseman, S., Ma, H. and Giesy, J. P. (2013): Biological impact of phthalates. Toxicology Letters 217 (1); 50-58.

Mapuskar, K; Pereira, C; Rao, CV. (2007). Dose-dependent sub-chronic toxicity of diethyl phthalate in female Swiss mice. Pestic Biochem Physiol 87: 156-163.

Marsee, K., Woodruff, T. J., Axelrad, D. A., Calafat, A. M. and Swan, S. H. (2006): Estimated daily phthalate exposures in a population of mothers of male infants exhibiting reduced anogenital distance. Environmental Health Perspectives 114 (6); 805-809.

Mentlein, R., Butte, W. Hydrolysis of phthalate esters by purified rat and human liver carboxylesterases. Biochemical Pharmacology 38: 3126-3128, 1989.

Mieritz, M. G., Frederiksen, H., Sorensen, K., Aksglaede, L., Mouritsen, A., Hagen, C. P., Skakkebaek, N. E., Andersson, A. M. and Juul, A. (2012): Urinary phthalate excretion in 555 healthy Danish boys with and without pubertal gynaecomastia. Int J Androl 35 (3); 227-35.

Moody, D; Reddy, J. (1978). Hepatic peroxisome (microbody) proliferation in rats fed plasticizers and related compounds. Toxicol Appl Pharmacol 45: 497-504. NTP. (1984). Toxicology and carcinogenesis studies of tris(2-ethylhexyl)

Moody, D; Reddy, J. (1982). Serum triglyceride and cholesterol contents in male rats receiving diets containing plasticizers and analogues of the estar 2-ethylhexanol. Toxicology Letters, 10, 379-383.

Nakai, M., Tabira, Y., Asai, D., Yakabe, Y., Shimyozu, T., Noguchi, M., Takatsuki, M. and Shimohigashi, Y. (1999): Binding characteristics of dialkyl phthalates for the estrogen receptor. Biochem Biophys Res Commun 254 (2); 311-4.

NICNAS (2008): Existing Chemical Hazard Assessment Report: Phthalates hazard compendium. National Industrial Chemicals Notification and Assessment Scheme, Series Editor, Department of Health and Ageing, Australian Government.

NICNAS (2011): Priority Existing Chemical Hazard Assessment Report No. 33, Diethyl Phthalate. National Industrial Chemicals Notification and Assessment Scheme, Series Editor, Department of Health and Ageing, Australian Government.

Nishihara, T., Nishikawa, J., Kanayama, T., Dakeyama, F., Saito, K., Imagawa, M., Takatori, S., Kitagawa, Y., Hori, S. and Utsumi, H. (2000): Estrogenic activities of 517 chemicals by yeast two-hybrid assay. Journal of Health Science 46 (4); 282-298.

NTP Technical Report (1995): Toxicology and Carcinogenrsis studies of diethyl phthalate. National Toxicology Program. Testing laboratory: Hazelton laboratories America Inc Rockville MD USA. Report no.: NTP TR 429. National Toxicology Program. Report date: 1995-05-29.

Oishi, S. and Hiraga, K. (1980): Testicular Atrophy Induced by Phthalic-Acid Esters - Effect on Testosterone and Zinc Concentrations. Toxicology and Applied Pharmacology 53 (1); 35-41.

Okita, R. and Okita, J. (1992): Effects of Diethyl Phthalate and Other Plasticizers on Laurate Hydroxylation in Rat Liver Microsomes. Pharmaceutical Research 9 (12); 1648-1653.

Okubo, T., Suzuki, T., Yokoyama, Y., Kano, K. and Kano, I. (2003): Estimation of Estrogenic and Antiestrogenic Activities of Some Phthalate Diesters and Monoesters by MCF-7 Cell Proliferation Assay *in Vitro*. Biological and Pharmaceutical Bulletin 26 (8); 1219-1224.

Pant, N., Shukla, M., Patel, D. K., Shukla, Y., Mathur, N., Gupta, Y. K. and Saxena, D. K. (2008): Correlation of phthalate exposures with semen quality. Toxicology and Applied Pharmacology 231 (1); 112-116.

Parveen, M., Inoue, A., Ise, R., Tanji, M. and Kiyama, R. (2008): Evaluation of estrogenic activity of phthalate esters by gene expression profiling using a focused microarray (EstrArray). Environ Toxicol Chem 27 (6); 1416-25.

Patty FA editor (1963). Industrial Hygeine and Toxicology 2nd revised edition Vol II 1963. Office of Toxic Substances. Testing laboratory: Unknown. Owner company: Unknown

Pereira, C; Rao, CV. (2006). Combined and individual administration of diethyl phthalate and polychlorinated biphenyls and its toxicity in female Wistar rats. Environ Toxicol Pharmacol 21: 93-102.

Pereira, C., Rao, C. V. (2006a). Chronic toxicity of diethyl phthalate in male Wistar rats--a dose-response study. Regul Toxicol Pharmacol 45: 169-177.

Pereira, C., Rao, C. V. (2007). Toxicity study of maternal transfer of polychlorinated biphenyls and diethyl phthalate to 21-day-old male and female weanling pups of Wistar rats. Ecotoxicol Environ Saf 68: 118-125.

Pereira, C; Mapuskar, K; Rao, CV. (2007a). A two-generation chronic mixture toxicity study of Clopehn A60 and diethyl phthalate on histology of adrenal cortex and thyroid of rats. Acta histochemica 109: 29-36

Pereira, C; Mapuskar, K; Rao, CV. (2007b). Chronic toxicity of diethyl phthalate--A three generation lactational and gestational exposure study on male Wistar rats. Environ Toxicol Pharmacol 23: 319-327.

Pereira, C., Mapuskar, K. and Rao, C. V. (2008): Effect of diethyl phthalate on rat testicular antioxidant system: A dose-dependent toxicity study. Pesticide Biochemistry and Physiology 90 (1); 52-57.

Rowland, I. R., Cottrell, R. C., Phillips, J. C. Hydrolysis of phthalate esters by the gastro-intestinal contents of the rat. Food and Cosmetics Toxicology 15: 17-21, 1977.

Ryan CA Gerberick GF Cruse LW Basketter DA Lea L Blaikie L Dearman RJ Warbrick EV Kimber I (2000). Activity of human contact allergens in the murine local lymph node assay. Contact Dermatitis 43: 95-102, 2000

SCCNFP (2002): Opinion concerning diethyl phthalate, adopted during the 20th plenary meeting of 4 June 2002. The Scientific Committee on Cosmetic Products and Non-Food Products intended for Consumers, SCCNFP/0411/01.

Scott RC et al, 1987 – In vitro absorption of some phthalate diesters through human and rat skins, Environmental Health Perspectives, 74:223-227; Scott RC et al, 1989 Errata, In vitro absorption of some phthalate diesters through human and rat skins, Environmental Health Perspectives, 79:323

Shiraishi, K., Miyata, K., Houshuyama, S., Imatanaka, N., Umano, T., Minobe, Y. and Yamasaki, K. (2006): Subacute oral toxicity study of diethylphthalate based on the draft protocol for "Enhanced OECD Test Guideline no. 407". Arch Toxicol 80 (1); 10-6.

Singh, A. R., Lawrence, W. H. and Autian, J. (1972): Teratogenicity of Phthalate Esters in Rats. Journal of Pharmaceutical Sciences 61 (1); 51-55.

Sinkar, PU; Rao, CV. (2007). Gender-based comparative toxicity of di-ethyl phthalate in Wistar rats. Toxicol Environ Chem 89: 173-183.

Sonde, V; D'Souza, A; Tarapore, R; Pereira, L; Khare, MP; Sinkar, P; Krishnan, S; Rao, CV. (2000). Simultaneous administration of diethylphthalate and ethyl alcohol and its toxicity in male Sprague-Dawley rats. Toxicology 147: 23-31.

Statistisches Bundesamt. (2014). Statistisches Jahrbuch Deutschland und Internationales 2014. Wiesbaden: Statistisches Bundesamt.

Storgaard, L., Bonde, J. P., Ernst, E., Spano, M., Andersen, C. Y., Frydenberg, M. and Olsen, J. (2003): Does smoking during pregnancy affect sons' sperm counts? Epidemiology 14(3); 278-286.

Suzuki, Y., Niwa, M., Yoshinaga, J., Mizumoto, Y., Serizawa, S. and Shiraishi, H. (2010): Prenatal exposure to phthalate esters and PAHs and birth outcomes. Environ Int 36 (7); 699-704.

Swan, S. H. (2008): Environmental phthalate exposure in relation to reproductive outcomes and other health endpoints in humans. Environmental Research 108 (2); 177-184.

Swan, S. H., Main, K. M., Liu, F., Stewart, S. L., Kruse, R. L., Calafat, A. M., Mao, C. S., Redmon, J. B., Ternand, C. L., Sullivan, S., Teague, J. L., Drobnis, E. Z., Carter, B. S., Kelly, D., Simmons, T. M., Wang, C., Lumbreras, L., Villanueva, S., Diaz-Romero, M., Lomeli, M. B., Otero-Salazar, E., Hobel, C., Brock, B., Kwong, C., Muehlen, A., Sparks, A., Wolf, A., Whitham, J., Hatterman-Zogg, M. and Maifeld, M. (2005): Decrease in anogenital distance among male infants with prenatal phthalate exposure. Environmental Health Perspectives 113 (8); 1056-1061.

Takeuchi, S., Iida, M., Kobayashi, S., Jin, K., Matsuda, T. and Kojima, H. (2005): Differential effects of phthalate esters on transcriptional activities via human estrogen receptors alpha and beta, and androgen receptor. Toxicology 210 (2-3); 223-33.

Tanaka, C., Siratori, K., Ikegami, K. and Wakisaka, Y. (1987): A teratological evaluation following dermal application of diethyl phthalate to pregnant mice. Oyo Yakuri 33 (PHARMACOMETRICS); 387-392.

TL 1 (1963): OECD 405; unpublished study record, confidential

TL 2 (2010): Chromosome Aberrations in Human Lymphozytes; unpublished study record, confidential

TL 3 (1997): Reproductive toxicology; unpublished study record, confidential

TL 4 (1978b): Dermal LD50, Rat; unpublished study record, confidential

TL 5 (1993): Toxicology and Carcinogenesis Studies of Diethylphthalate, Rats and Mice; unpublished study record, confidential

TL 6 (2010): Mutation, mouse; unpublished study record, confidential

TL 7 (2014): Bacterial Mutation Assay; unpublished study record, confidential

Toda, C., Okamoto, Y., Ueda, K., Hashizume, K., Itoh, K. and Kojima, N. (2004): Unequivocal estrogen receptor-binding affinity of phthalate esters featured with ring hydroxylation and proper alkyl chain size. Arch Biochem Biophys 431 (1); 16-21.

Tranfo, G., Caporossi, L., Paci, E., Aragona, C., Romanzi, D., De Carolis, C., De Rosa, M., Capanna, S., Papaleo, B. and Pera, A. (2012): Urinary phthalate monoesters concentration in couples with infertility problems. Toxicology Letters 213 (1); 15-20.

van Meeuwen, J. A., van Son, O., Piersma, A. H., de Jong, P. C. and van den Berg, M. (2008): Aromatase inhibiting and combined estrogenic effects of parabens and estrogenic effects of other additives in cosmetics. Toxicol Appl Pharmacol 230 (3); 372-82.

VKM (2005) Risk assessment of diethyl phthalate (DEP) in cosmetics - Opinions of the panel on food additives, flavourings, processing aids, materials in contact with food and cosmetics. The Norwegian Scientific Committee for Food Safety (Vitenskapskomiteen for mattrygghet), 05/406-8 final.

Wirth, J. J., Rossano, M. G., Potter, R., Puscheck, E., Daly, D. C., Paneth, N., Krawetz, S. A., Protas, B. M. and Diamond, M. P. (2008): A pilot study associating urinary concentrations of phthalate metabolites and semen quality. Systems Biology in Reproductive Medicine 54 (3); 143-154.

Wolff, M. S., Engel, S. M., Berkowitz, G. S., Ye, X., Silva, M. J., Zhu, C., Wetmur, J. and Calafat, A. M. (2008): Prenatal phenol and phthalate exposures and birth outcomes. Environ Health Perspect 116 (8); 1092-7.

Wolff, M. S., Teitelbaum, S. L., Pinney, S. M., Windham, G., Liao, L., Biro, F., Kushi, L. H., Erdmann, C., Hiatt, R. A., Rybak, M. E. and Calafat, A. M. (2010): Investigation of relationships between urinary biomarkers of phytoestrogens, phthalates, and phenols and pubertal stages in girls. Environ Health Perspect 118 (7); 1039-46.

WHO (2003): Concise International Chemical Assessment Document 52: Diethyl phthalate. Geneva, World Health Organisation, International Programme on Chemical Safety.

Zhang, Y. H., Zheng, L. X. and Chen, B. H. (2006): Phthalate exposure and human semen quality in Shanghai: a cross-sectional study. Biomed Environ Sci 19 (3); 205-9.

2014: Exp. Study genetic toxicity, confidential

2013h: skinPerm model; unpublished study record, confidential

2010: Exp. Study genetic toxicity 01, confidential

2010: Exp. Study genetic toxicity 02, confidential

2010: unpublished study record, confidential

2006: Confidental IUCLID information

1978: subcronic study, rat; unpublished study record, confidential

- 1978b: toxicity test, Mouse; unpublished study record, confidential
- 1963: eye irritation, rabbit; unpublished study record, confidential
- 1962: unpublished study record, confidential
- 1954a: sub-chronic screening test, rat; unpublished study record, confidential
- 1954b: sub-chronic screening test, dog; unpublished study record, confidential

13 ABBREVIATIONS

 Table 31: List of abbreviations

4-OH-DEP	4-Hydroxy diethyl phthalate
AGD	Anogenital distance
ATE	Acute toxicity estimate
Bw(g)	Body weight (gain)
C&L	Classification and Labelling
СНО	Chinese hamster ovary
СМС	carboxymethyl cellulose
conc.	concentration
d	day(s)
DEP	diethyl phthalate
DES	Diethylstilbestrol
DMSO	dimethyl sulfoxide
EC	Effective Concentration
ED	Endocrine disruptor
ER	endoplasmic reticulum
F	Female
FSH	follicle-stimulating hormone
GD	Gestation Day
GLP	Good laboratory praxis
h	hour(s)
HPLC	High Performance Liquid Chromatography
i.v.	intravenous
LH	luteinising hormone
LTW(A)	Lifetime-weighted average
М	Male
MBP	monobutyl phthalate
MEP	Monoethyl phthalate
MIBP	monoisobutyl phthalate
NO(A)EL	no-observed (adverse) effect level
РК	pharmacokinetic
PND	postnatal day
PROC	Process category
RCR	Risk characterization ratio
RMO	Risk management options
SD	Sprague Dawley
SMR	Standardized mortality ratio
SVHC	Substances of very high concern
TSH	thyroid-stimulating hormone
T4	thyroxin
T3	triiodothy-ronine
W	week
WHO	World Health Organization