CLH report

Proposal for Harmonised Classification and Labelling

Based on Regulation (EC) No 1272/2008 (CLP Regulation), Annex VI, Part 2

International Chemical Identification:

tetramethrin (ISO); (1,3-dioxo-1,3,4,5,6,7-hexahydro-2*H*-isoindol-2-yl)methyl 2,2-dimethyl-3-(2-methylprop-1-en-1-yl)cyclopropanecarboxylate

EC Number: 231-711-6

CAS Number: 7696-12-0

Index Number:

Contact details for dossier submitter:

BAuA Federal Institute for Occupational Safety and Health Federal Office for Chemicals Friedrich-Henkel-Weg 1-25 44149 Dortmund e-mail: chemg@baua.bund.de

Version number: 2 (post Accordance Check) Date: September 2015

CONTENTS

1.	IDF	ENTITY OF THE SUBSTANCE	1
	1.1 N	VAME AND OTHER IDENTIFIERS OF THE SUBSTANCE	1
	1.2 0	COMPOSITION OF THE SUBSTANCE	3
2.	PR	OPOSED HARMONISED CLASSIFICATION AND LABELLING	7
	2.1 H	PROPOSED HARMONISED CLASSIFICATION AND LABELLING ACCORDING TO THE CLP CRITERIA	7
3.	HIS	STORY OF THE PREVIOUS CLASSIFICATION AND LABELLING	9
4	ШS	STIFICATION THAT ACTION IS NEEDED AT COMMUNITY LEVEL	Q
5	IDE		ر ۵
з. с			
6.	DA	IA SOURCES	9
7.	PH	YSICOCHEMICAL PROPERTIES	10
8.	EV	ALUATION OF PHYSICAL HAZARDS	13
	8.1 F	EXPLOSIVES	13
	8.1.	<i>1</i> Short summary and overall relevance of the provided information on explosives	13
	<i>8.1</i> .	2 Comparison with the CLP criteria	13
	8.1.	3 Conclusion on classification and labelling for explosive properties	13
	8.2 H	FLAMMABLE GASES (INCLUDING CHEMICALLY UNSTABLE GASES)	13
	8.2.	1 Hazard class not applicable	13
	8.3 (DXIDISING GASES	13
	8.4 (JASES UNDER PRESSURE	13
	1 C.8	LAMMABLE LIQUIDS	13
	1 0.6	¹ LAMMABLE SOLIDS	14 11
	0.0. 8.6	 Short summary and overall relevance of the provided information on flammable solids Comparison with the CLP criteria 	14 14
	8.0.	2 Comparison with the CLI Criteria	14 14
	87 5	Set F-REACTIVE SUBSTANCES	14
	8.7.	1 Short summary and overall relevance of the provided information on self-reactive substances	14
	8.7.	2 Comparison with the CLP criteria	15
	8.7.	3 Conclusion on classification and labelling for self-reactive substances	15
	8.8 I	PYROPHORIC LIQUIDS	15
	8.9 H	PYROPHORIC SOLIDS	15
	8. <i>9</i> .	1 Short summary and overall relevance of the provided information on pyrophoric solids	15
	8. <i>9</i> .	2 Comparison with the CLP criteria	15
	8. <i>9</i> .	3 Conclusion on classification and labelling for pyrophoric solids	15
	8.10	SELF-HEATING SUBSTANCES	16
	8.10	0.1 Short summary and overall relevance of the provided information on self-heating substances	16
	8.10	0.2 Comparison with the CLP criteria	16
	8.10	0.3 Conclusion on classification and labelling for self-heating substances	10
	SHOUL 8 11	D NOT BE CLASSIFIED AS SELF-HEATING SUBSTANCE ACCORDING TO ANNEX I PART 2 OF THE CLP	10 16
	0.11 8 1	SUBSTANCES WHICH IN CONTACT WITH WATER EMIT FLAMMABLE GASES	10 ct with
	wat	er emit flammable gases	16 יות 16
	81	1 Comparison with the CLP criteria	10 16
	8.1	1.3 Conclusion on classification and labelling for substances which in contact with water emit flam	mable
	gas	es 16	
	8.1	1.4 Oxidising liquids	17
	8.12	Oxidising solids	17
	8.12	2.1 Short summary and overall relevance of the provided information on oxidising solids	17
	8.12	2.2 Comparison with the CLP criteria	17
	8.12	2.3 Conclusion on classification and labelling for oxidising solids	17
	8.13	URGANIC PEROXIDES	17

	8.14 Cor	ROSIVE TO METALS	18
	8.14.1	Short summary and overall relevance of the provided information on corrosive to metals	18
	8.14.2	Comparison with the CLP criteria	18
	8.14.3	Conclusion on classification and labelling for corrosive to metals	18
9.	TOXICO	KINETICS (ABSORPTION, METABOLISM, DISTRIBUTION AND ELIMINATION)	19
	9.1 SHORT PROPOSED CL	SUMMARY AND OVERALL RELEVANCE OF THE PROVIDED TOXICOKINETIC INFORMATION ON THE ASSIFICATION(S)	22
1(). EVALUA	TION OF HEALTH HAZARDS	26
	10.1 Acu		28
	10.1.1 ACC	Short summary and overall relevance of the provided information on acute oral toxicity	20
	10.1.2	Comparison with the CLP criteria	29
	10.1.3	Conclusion on classification and labelling for acute oral toxicity	29
	10.2 Acu	TE TOXICITY - DERMAL ROUTE	30
	10.2.1	Short summary and overall relevance of the provided information on acute dermal toxicity	30
	10.2.2	Comparison with the CLP criteria	31 31
	10.2.5	TE TOXICITY - INHAL ATION ROUTE	
	10.3.1	Short summary and overall relevance of the provided information on acute inhalation toxicity	34
	10.3.2	Comparison with the CLP criteria	35
	10.3.3	Conclusion on classification and labelling for acute inhalation toxicity	35
	10.4 SKIN	CORROSION/IRRITATION	35
	10.4.1	Short summary and overall relevance of the provided information on skin corrosion/irritation	36
	10.4.2	Comparison with the CLP criteria	30 36
	10.4.5 10.5 Seri	OUS EYE DAMAGE/EYE IRRITATION	36
	10.5.1	Short summary and overall relevance of the provided information on serious eye damage/eye	
	irritation	37	
	10.5.2	Comparison with the CLP criteria	38
	10.5.3	Conclusion on classification and labelling for serious eye damage/eye irritation	38
	10.6 RESI	PIRATORY SENSITISATION	38 20
	10.0.1	Shori summary and overall relevance of the provided information on respiratory sensitisation Comparison with the CLP criteria	
	10.6.3	Comparison with the CLI criteria	40
	10.7 Skin	SENSITISATION	40
	10.7.1	Short summary and overall relevance of the provided information on skin sensitisation	41
	10.7.2	Comparison with the CLP criteria	42
	10.7.3	Conclusion on classification and labelling for skin sensitisation	42
	10.8 GER	M CELL MUTAGENICITY	42 15
	10.8.1	Comparison with the CLP criteria	45
	10.8.3	Conclusion on classification and labelling for germ cell mutagenicity	47
	10.9 Car	CINOGENICITY	48
	10.9.1	Short summary and overall relevance of the provided information on carcinogenicity	50
	10.9.2	Comparison with the CLP criteria	53
	10.9.3	Conclusion on classification and labelling for carcinogenicity	55
	10.10 KEPI	Adverse effects on sexual function and fertility	
	10.10.2	Short summary and overall relevance of the provided information on adverse effects on sexual	
	function a	nd fertility	59
	10.10.3	Comparison with the CLP criteria	60
	10.10.4	Adverse effects on development	60
	10.10.5	Short summary and overall relevance of the provided information on adverse effects on developn 65	ıent
	10.10.6	Comparison with the CLP criteria	67
	10.10.7	Adverse effects on or via lactation	67
	10.10.8	Short summary and overall relevance of the provided information on effects on or via lactation	67
	10.10.9	Comparison with the CLP criteria	67
	10.10.10	Conclusion on classification and labelling for reproductive toxicity	68

 10.11.1 Short summary and overall relevance of the provided information on specific target organ to: single exposure	xicity – 70 71 72 73)RGAN 76
single exposure	70 71 72 73)RGAN 76
10.11.2 Comparison with the CLP criteria	71 72 73)RGAN 76
10.11.3 Conclusion on classification and labelling for STOT SE 10.12 SPECIFIC TARGET ORGAN TOXICITY-REPEATED EXPOSURE 10.12 Specific Target organ toxicity repeated exposure	72 73)RGAN 76
10.12 SPECIFIC TARGET ORGAN TOXICITY-REPEATED EXPOSURE	73 DRGAN 76
10.10 0	DRGAN 76
10.13 SHORT SUMMARY AND OVERALL RELEVANCE OF THE PROVIDED INFORMATION ON SPECIFIC TARGET (76
TOXICITY – REPEATED EXPOSURE	
10.13.1 Comparison with the CLP criteria	83
10.13.2 Conclusion on classification and labelling for STOT RE	83
10.14 ASPIRATION HAZARD	84
11. EVALUATION OF ENVIRONMENTAL HAZARDS	85
11.1 ACUTE AQUATIC HAZARD	85
11.1.1 Acute (short-term) toxicity to fish	86
11.1.2 Acute (short-term) toxicity to aquatic invertebrates	87
11.1.3 Acute (short-term) toxicity to algae or other aquatic plants	87
11.1.4 Acute (short-term) toxicity to other aquatic organisms	88
11.2 LONG-TERM AQUATIC HAZARD	88
11.3 BIOACCUMULATION	88
11.3.1 Estimated bioaccumulation	88
11.3.2 Measured partition coefficient and bioaccumulation test data	89
11.4 RAPID DEGRADABILITY OF ORGANIC SUBSTANCES	95
11.4.1 Ready biodegradability	96
11.4.2 BOD ₅ /COD	96
11.4.3 Other convincing scientific evidence	96
11.4.3.1. Field investigations and monitoring data (if relevant for C&L)	96
11.4.3.2. Inherent and Enhanced Ready Biodegradability tests	
11.4.5.3. Soil and sediment degradation data	
11.4.3.4. Hydrolysis	
11 5 ENVIRONMENTAL FATE AND OTHER RELEVANT INFORMATION	100
11.5.1 Adsorption	
11.6 COMPARISON WITH THE CLP CRITERIA	
11.6.1 Acute aquatic hazard	
11.6.2 Long-term aquatic hazard (including bioaccumulation potential and degradation)	
11.7 CONCLUSION ON CLASSIFICATION AND LABELLING FOR ENVIRONMENTAL HAZARD	S 102
12. EVALUATION OF ADDITIONAL HAZARDS	102
12.1 HAZARDOUS TO THE OZONE LAYER	102
13. DETAILED STUDY SUMMARIES	102
14. REFERENCES	102
15. ANNEXES	105

1. IDENTITY OF THE SUBSTANCE

1.1 Name and other identifiers of the substance

Table 1: Substance identity and information related to molecular and structural formula of the substance

Name(s) in the IUPAC nomenclature	(1,3-dioxo-1,3,4,5,6,7-hexahydro-2 <i>H</i> -isoindol-2- yl)methyl 2,2-dimethyl-3-(2-methylprop-1-en-1- yl)cyclopropanecarboxylate
Other names (usual name, trade name, abbreviation)	Tetramethrin CAS name: Cyclopropanecarboxylic acid, 2,2- dimethyl-3-(2-methyl-1-propen-1-yl)-, (1,3,4,5,6,7- hexahydro-1,3-dioxo-2 <i>H</i> -isoindol-2-yl)methyl ester
	methyl-1-propenyl)-, (1,3,4,5,6,7-hexahydro-1,3- dioxo-2 <i>H</i> -isoindol-2-yl)methyl ester
ISO common name (if available and appropriate)	Tetramethrin
EC number (if available and appropriate)	231-711-6
	Isomer 1 (1R- <i>trans</i>): 214-619-0 Isomer 2 (1S- <i>trans</i>): - Isomer 3 (1R- <i>cis</i>): 257-144-4 Isomer 4 (1S- <i>cis</i>): -
EC name (if available and appropriate)	Tetramethrin
CAS number (if available)	7696-12-0 Isomer 1 (1R- <i>trans</i>): 1166-46-7 Isomer 2 (1S- <i>trans</i>): 1166-48-9 Isomer 3 (1R- <i>cis</i>): 51348-90-4 Isomer 4 (1S- <i>cis</i>): 51348-91-5
Molecular formula	C ₁₉ H ₂₅ NO ₄
Structural formula	Tetramethrin is a mixture of the following four isomers: (1R , trans)-Tetramethrin: CAS No: 1166-46-7

1.2 Composition of the substance

Constituent (Name and numerical identifier)	Concentration range (% w/w minimum and maximum)	Current CLH in Annex VI Table 3.1 (CLP)	Current self- classification and labelling (CLP)
Tetramethrin			
EC number: 231-711-6			

 Table 2: Constituents (non-confidential information)

For further information: Please refer to the confidential annex.

Table 3: Impurities (non-confidential information) if relevant for the classification of the substance

Impurity (Name and numerical identifier)	Concentration range (% w/w minimum and maximum)	Current CLH in Annex VI Table 3.1 (CLP)	Current self- classification and labelling (CLP)	The impurity contributes to the classification and labelling
For further information: Please refer to the confidential annex.				

Table 4: Additives (non-confidential information) if relevant for the classification of the substance

Additive (Name and numerical identifier)	Function	Concentration range (% w/w minimum and maximum)	Current CLH in Annex VI Table 3.1 (CLP)	Current self- classification and labelling (CLP)	The additive contributes to the classification and labelling
For further information: Please refer to the confidential annex.					

Table 5:Test substances (non-confidential information)

Identification of test substance	Purity	Impurities and additives (identity, %, classification if available)	Other information
[1 RS, trans]- tetramethrin	Chemical purity: Of ¹⁴ C-labelled substance > 99%; Non- radiolabelled: 98.1%		Shiba K., 1992, Sumitomo Report No. IM-20-0015: Metabolism of [1RS, trans]- tetramethrin in rats
[1RS, cis]- tetramethrin	Chemical purity: Of ¹⁴ C-labelled substance > 99%;		Shiba K, 1992, Sumitomo Report No. IM-20-0016 Metabolism of [1RS, cis] – tetramethrin in rats

	Non- radiolabelled: 98.8%	
[1R, trans]- and [1R, cis]- tetramethrin	Radiochemical purity 99%;	Kaneko H., Ohkawa H., Miyamoto J., 1981, Sumitomo Report No.IM-10- 0006, 1981
	unlabelled substance unknown	Metabolism of Tetramethrin Isomers in Rats, J. Pesticide Sci. 6 (4), p 425-435
[1RS, trans]- tetramethrin		Suzuki T, Miyamoto J, 1974, Pesticide Biochem. Physiol. 4(1): 86-97: Metabolism of tetramethrin in
		houseflies and rats in vitro
[1RS, trans]- tetramethrin	Radiochemical purity > 99.9%;	Miyamoto J et al., 1968, Sumitomo Report No. IM-80- 0003, 1968
	Purity of unlabelled substance unknown	Biochemical studies on the mode of action of Pyrethroidal Insecticides - Part I. Metabolic fate of Phthalthrin in mammals Agr. Biol. Chem. 32 (5): 628-640
tetramethrin	Neo-Pynamin, technical grade, Purity 94.8%	Hadfield, N., 2006, CTL Report No. JV1900, Sumitomo
		Neo-Pynamin: In Vitro Absorption from a 1% Neo- Pynamin Formulation through Human Epidermis.
d-tetramethrin	Neo-Pynamin Forte, technical grade Purity 95.8%	Hadfield, N., 2006, CTL Report No. JV1901, Sumitomo
		Neo-Pynamin Forte: In Vitro Absorption from a 1% Neo- Pynamin Forte Formulation through Human Epidermis.
tetramethrin	Technical grade;	Venugopala RK., 2002, Rallis Ltd, Study N° 3335/01
	96.6% w/w (declared by the sponsor) 97.2% w/w (analysed as	Acute oral toxicity study (acute toxic class method) with Tetramethrin tech. grade in Wistar rats.
	per certificate of analysis)	
tetramethrin	Neo-Pynamin, Purity: 94.9%	Kawasaki H, 1990, Sumitomo Report No. IT-00-0224.

		Acute oral toxicity study on Neo-Pynamin in rats
d-tetramethrin	Technical grade, Purity: 97.6%	Misaki Y., 1999, Sumitomo Report No. SVT-0008 Acute oral toxicity study of S- 1723TG in rats
d-tetramethrin	Neo-Pynamin- Forte; Purity: 95.3%	Kohda H et al., 1980, Sumitomo Report No. IT-00- 0086. Acute oral, subcutaneous, intraperitoneal and dermal toxicity of Neopynamin - Forte® in rats and mice
tetramethrin	Technical grade, Purity: 96.6% w/w (declared by the sponsor), 97.2% w/w (analysed as per certificate of analysis)	Venugopala RK, 2002, Rallis Ltd., Study N° 3336/01 Acute dermal toxicity study with tetramethrin tech. grade in Wistar rats.
d-tetramethrin	Neo-Pynamin- Forte Purity: 95.6%	Kohda H., Misaki Y., Suzuki T., 1980, Sumitomo Report No. IT-00-0086 Acute oral, subcutaneous, intraperitoneal and dermal toxicity of Neopynamin - Forte® in rats and mice.
Tetramethrin	Neo-Pynamin, Purity 94.6%	Suzuki, B et al., 1987, Sumitomo Report No. IT-70- 0207 Acute dermal toxicity of Neopynamin in rabbits
d-Tetramethrin	Neo-Pynamin Forte, Purity 95.6%	Kohda H et al., 1980, Sumitomo Chemical Co., Sumitomo Report No. IT-00- 0086 Acute oral, subcutaneous, intraperitoneal and dermal toxicity of Neopynamin - Forte® in rats and mice
Tetramethrin	Purity: 95.08 % (as per certificate of analysis provided by the sponsor), 95.5 % (as per certificate of analysis (analysed by	Venugopala RK, 2006, Endura Study N° 4414/05 Acute inhalation toxicity study with Tetramethrin in Wistar rats

	HPLC) on authenticity of test item); 50% (w/v) in cyclohexanone, aerosol	
d-Tetramethrin	Purity: 95.6 %, Dissolved in deodorised kerosene (up to 50 %)	Suzuki T et al., 1981, Sumitomo Report No. IT-10- 0144 Acute and subacute inhalation toxicity studies of Neopynamin Forte in rats
Tetramethrin	Technical grade, Purity: 96.6% (w/w, declared); 97.2% (w/w, analysed)	Mohan Kumar, 2002, Rallis Ltd., Study N° 3337/01 Acute dermal irritation/corrosion study with Tetramethrin Tech. Grade in New Zealand White rabbits.
Tetramethrin	Neo-Pynamin, Purity: 94.9%	Nakanishi. T, 1990, Laboratory of Biochemistry and Toxicology, Sumitomo Report No. IT-00-0217 <i>Primary eye and skin</i> <i>irritation tests with Neo-</i> <i>Pynamin in rabbits</i>
d-Tetramethrin	Neo-Pynamin Forte technical, Purity 95.6%	Hara S., Suzuki T., 1980, Research Department, Sumitomo Chemical Co., Sumitomo Report No. IT-00- 0073 Primary eye and skin irritation tests of Neopynamin forte® technical in rabbits

2. PROPOSED HARMONISED CLASSIFICATION AND LABELLING

2.1 Proposed harmonised classification and labelling according to the CLP criteria

Table 6: Proposed harmonised classification and labelling according to the CLP criteria

					Classifica	tion		Labelling			
	Index No	International Chemical Identification	EC No	CAS NoHazard Class and Category Code(s)Hazard statement Code(s)Pictogram, Signal Word Code(s)Hazard state- 	Specific Conc. Limits, M- factors	Notes					
Current Annex VI entry	-										
Dossier submitters proposal	607-RST- 00-Y	tetramethrin (ISO); (1,3-dioxo- 1,3,4,5,6,7- hexahydro-2 <i>H</i> - isoindol-2-yl)methyl 2,2-dimethyl-3-(2- methylprop-1-en-1- yl)cyclopropanecarb oxylate	231-711-6	7696-12-0	Acute Tox. 4 Carc. 2 STOT SE 2 Aquatic Acute 1 Aquatic Chronic 1	H332 H351 H371 H400 H410	Warning GHS07 GHS08 GHS09	H332 H351 H371 H410		M = 100 (acute) M = 100 (chronic)	
Resulting Annex VI entry if agreed by RAC and COM	607-RST- 00-Y	tetramethrin (ISO); (1,3-dioxo- 1,3,4,5,6,7- hexahydro-2 <i>H</i> - isoindol-2-yl)methyl 2,2-dimethyl-3-(2- methylprop-1-en-1- yl)cyclopropanecarb oxylate	231-711-6	7696-12-0	Acute Tox. 4 Carc. 2 STOT SE 2 Aquatic Acute 1 Aquatic Chronic 1	H332 H351 H371 H400 H410	Warning GHS07 GHS08 GHS09	H332 H351 H371 H410		M = 100 (acute); M = 100 (chronic)	

Hazard class	Reason for no classification	Within the scope of public consultation
Explosives	data conclusive but not sufficient for classification	Yes
Flammable gases (including chemically unstable gases)	hazard class not applicable	
Oxidising gases	hazard class not applicable	
Gases under pressure	hazard class not applicable	
Flammable liquids	hazard class not applicable	
Flammable solids	data conclusive but not sufficient for classification	Yes
Self-reactive substances	data conclusive but not sufficient for classification	Yes
Pyrophoric liquids	hazard class not applicable	
Pyrophoric solids	data conclusive but not sufficient for classification	Yes
Self-heating substances	data conclusive but not sufficient for classification	Yes
Substances which in contact with water emit flammable gases	data conclusive but not sufficient for classification	Yes
Oxidising liquids	hazard class not applicable	
Oxidising solids	data conclusive but not sufficient for classification	Yes
Organic peroxides	hazard class not applicable	
Corrosive to metals	hazard class not applicable	
Acute toxicity via oral route	Data conclusive but not sufficient for classification	Yes
Acute toxicity via dermal route	Data conclusive but not sufficient for classification	Yes
Acute toxicity via inhalation route	Harmonised classification proposed	Yes
Skin corrosion/ irritation	Data conclusive but not sufficient for classification	Yes
Serious eye damage/eye irritation	Data conclusive but not sufficient for classification	Yes
Respiratory sensitisation	Data lacking	Yes
Skin sensitisation	Data conclusive but not sufficient for classification	Yes
Germ cell mutagenicity	Data conclusive but not sufficient for classification	Yes
Carcinogenicity	Harmonised classification proposed	Yes
Reproductive toxicity	Data conclusive but not sufficient for classification	Yes
Specific target organ toxicity- single exposure	Harmonised classification proposed	Yes
Specific target organ toxicity- repeated exposure	Data conclusive but not sufficient for classification	Yes

Table 7: Reason for not proposing harmonised classification and status under public consultation

Aspiration hazard	Data lacking.	Yes
Hazardous to the aquatic environment	Harmonised classification proposed	Yes
Hazardous to the ozone layer	Hazard class not applicable	

3. HISTORY OF THE PREVIOUS CLASSIFICATION AND LABELLING

4. JUSTIFICATION THAT ACTION IS NEEDED AT COMMUNITY LEVEL

The substance is an active substance in the meaning of Directive 91/414/EEC (repealed by the Regulation EC 1107/2009) or Directive 98/8/EC (will be repealed by Regulation (EU) No 528/2012 on 1 September 2013) shall normally be subject to harmonised classification and labelling, and justification is not required. (Article 36 CLP Regulation)]

5. IDENTIFIED USES

6. DATA SOURCES

7. PHYSICOCHEMICAL PROPERTIES

Table 8: Summary of physicochemical properties

Property	Value	Reference	Comment (e.g. measured or estimated)
Physical state at 20°C and 101,3 kPa	solid crystalline powder (white to ivory) with a slight phenolic odour (Purity: 99.29 % w/w; <i>trans/cis</i> ratio of 3:1) (Endura)	Garofani S (2006)	Method: visual assessment
	White organic solid with a slightly phenolic odour. (Sumitomo)	Aventis, Sumitomo Report No. 1714.tif, 1999	Method: visual assessment
Melting/freezing point	result: 72 - 74 °C pressure: atmospheric pressure. (Purity: 99.29 % w/w; <i>trans/cis</i> ratio of 3:1) (Endura)	Garofani S. (2006)	measured Method: 92/69/EEC, A.1 (DSC)
	Result: 68 - 70°C Pressure: Atmospheric (Purity: 95%) (Sumitomo)	Pesselman R. L., Sumitomo Report No. IP-01-0066, 1990	measured Method: 92/69/EEC, A.1 (capillary method)
Boiling point	No boiling up to the decomposition (> 350 °C); pressure: 1013 hPa (Purity: 96.6 % w/w; <i>trans/cis</i> ratio of 4:1) (Endura)	Tognucci A. (2002)	measured Method: 92/69/EEC, A.2 (DSC)
	Result: 297 ± 1.15 °C (mean) (Purity: 99.9 %) (Sumitomo)	Lentz NR (2008)	measured Method: 92/69/EEC, A.2 (capillary method)
Relative density/ Bulk density	result: 0.44 g/mL (Purity: 99.29 % w/w; <i>trans/cis</i> ratio of 3:1) (Endura)	Garofani S. (2006)	measured Method: CIPAC MT 33
	1.1472 (Purity: 95%) (Sumitomo)	Pesselman R. L., Sumitomo Report No. IP-01-0067, 1990	measured Method: 92/69/EEC, A.3 (pycnometer method)
Vapour pressure	< 2.7 · 10 ⁻⁵ Pa (25°C) (Purity: 99.29 % w/w; <i>trans/cis</i> ratio of 3:1) (Endura)	Garofani S. (2006)	measured Method: 92/69/EEC, A.4 (gas saturation method)

			-
	Temperature: 20°C Result: 9.65 x 10 ⁻⁹ Pa (extrapolated) Temperature: 25°C Result: 7.68 x 10 ⁻⁸ Pa (extrapolated) (Sumitomo)	Lentz NR and Proctor KL (2009) Study no. 13048.6574	measured Method: 92/69/EEC, A.4 (gas saturation method)
Surface tension	result: 55.3 mN/m temperature: 20 °C concentration: 1.83 mg/l (The test concentration had been chosen from Pesticide Manual. The truly water solubility is lower than 1 mg/l.) (Purity: 95.08 % w/w) (Endura)	Pardo Martinez M. (2005)	measured Method: 92/69/EEC, A.5 (ring method)
	Results: 65.7 mN/m at 20.4°C (c = 0.820 mg/l) (Purity: 99.9 %) (Sumitomo)	Lentz NR (2008), Study No. 13048.6592	measured Method: 92/69/EEC, A.5 (ring method)
Water solubility	0.27 mg/l at 20 °C (Purity: 99.29 %; <i>trans/cis</i> ratio of 3:1) (Endura) Result: 0.898 mg/l at 20 °C	Garofani S. (2006) Lentz NR (2008)	measured Method: 92/69/EEC, A.6 (column elution method) measured
	(Purity: 99.9 %) (Sumitomo)	Study No. 13048.6568	Method: 92/69/EEC, A.6 (column elution method)
Partition coefficient n-octanol/water	result: logP _{ow} > 4.09 temperature: 20 °C (Purity: 99.29 %; <i>trans/cis</i> ratio of 3:1)	Garofani S. (2006)	estimated Method: 92/69/EEC, A.8 (estimation from the single solubilities in water and n- octanol)
	Result: log Pow 4.58 (T = 25 °C) (Sumitomo)	Lorence P. J., Sumitomo Report No. IP-01-0085, 1990	measured Method: 92/69/EEC, A.8 (in accordance to the shaking flask method)
Stability in organic solvents and identity of relevant degradation products	Not required since the Tetramethrin as manufactured does not include an organic solvent (Endura)	-	-
	The test substance is stable at 60°C for one month in Chloroform, Cyclohexane, Ethyl acetate, Methyl-isobutyl ketone and Xylene. (Sumitomo)	Sumitomo Chemical Co., Sumitomo Report No. IP-00- 0017	measured The analysis method was by GC. (No guideline. GLP : N)

Dissociation constant	It cannot be determined since TTM has no acidic or basic properties in water in the range pH 4 to 9. (Endura)	-	-
	Result: pKa = -2.55 +- 0.2 (Sumitomo)	-	calculated Method: Calculation (ACD/pKa 8.03)
Viscosity	The study is technically not possible to perform since the TTM is a solid. (Endura)	-	-
	Not applicable. (Sumitomo)	-	-

8. EVALUATION OF PHYSICAL HAZARDS

8.1 Explosives

Table 9: Summary table of studies on explosives

Method	Results	Remarks	Reference
92/69/EEC, A.14	not exhibit explosive properties (Purity: 95.08 % w/w) (Endura)	measured	Pardo Martinez M. ChemService S.r.I., Report No. CH-298/2005 (2006)
Justification for data waiving	Tetramethrin does not have any functional groups such as diazo, azide, polynitro or peroxide, which are found in chemically explosive compounds.		Sumitomo Chemical (2006)

8.1.1 Short summary and overall relevance of the provided information on explosives

Justification is acceptable because there are no chemical groups present in the molecule which are associated with explosive properties.

8.1.2 Comparison with the CLP criteria

The classification procedure needs not to be applied due to justification for data waiving.

From the experimental data obtained, it can be concluded that the sample of Tetramethrin (technical grade) does not exhibit explosive properties according to the criteria of Method 92/69/EEC, A.14.

8.1.3 Conclusion on classification and labelling for explosive properties

Should not be classified as explosives according to Annex I part 2 of the CLP regulation.

8.2 Flammable gases (including chemically unstable gases)

8.2.1 Hazard class not applicable.

8.3 Oxidising gases

Hazard class not applicable.

8.4 Gases under pressure

Hazard class not applicable.

8.5 Flammable liquids

Hazard class not applicable.

8.6 Flammable solids

Method	Results	Remarks	Reference
92/69/EEC, A.10	the test article is not flammable (Purity: 95.08 % w/w) (Endura)	measured	Pardo Martinez M. ChemService S.r.I., Report No. CH-295/2005 (2006)
92/69/EEC, A.10	Tetramethrin is not highly flammable as it failed to ignite in the preliminary screening test (Purity: 94.8 %) (Sumitomo)	measured	White D. F., Mullee D. M., SPL Project No: 0555/0075, 2006

Table 14: Summary table of studies on flammable solids

8.6.1 Short summary and overall relevance of the provided information on flammable solids

The test material has been determined to be not highly flammable as it failed to ignite in the preliminary screening test.

8.6.2 Comparison with the CLP criteria

Two tests were conducted according to EU Method A.10. Based on the experimental data it is concluded that Tetramethrin is not highly flammable as it failed to ignite in the preliminary screening test and therefore does not meet the criteria for classification as flammable solid according to Annex I part 2 of the CLP regulation.

8.6.3 Conclusion on classification and labelling for flammable solids

Should not be classified as flammable solid according to Annex I part 2 of the CLP regulation.

8.7 Self-reactive substances

Table 15: Summary table of studies on self-reactive substances

Method	Results	Remarks	Reference
Justification for data waiving	The classification procedure needs not to be applied because there are no chemical groups present in the molecule which are associated with explosive or self-reactive properties.		BAM 2.2 (2014)

8.7.1 Short summary and overall relevance of the provided information on self-reactive substances

Justification is acceptable.

8.7.2 Comparison with the CLP criteria

The classification procedure needs not to be applied due to justification for data waiving.

8.7.3 Conclusion on classification and labelling for self-reactive substances

Should not be classified as self-reactive substance according to Annex I part 2 of the CLP regulation.

8.8 Pyrophoric liquids

Hazard class not applicable.

8.9 Pyrophoric solids

Table 17: Summary table of studies on pyrophoric solids

Method	Results	Remarks	Reference
Justification for data waiving	The classification procedure needs not to be applied because the organic substance is known to be stable into contact with air at room temperature for prolonged periods of time (days).		BAM 2.2 (2014)

8.9.1 Short summary and overall relevance of the provided information on pyrophoric solids

Justification is acceptable.

8.9.2 Comparison with the CLP criteria

The classification procedure needs not to be applied due to justification for data waiving.

8.9.3 Conclusion on classification and labelling for pyrophoric solids

Should not be classified as pyrophoric solid according to Annex I part 2 of the CLP regulation.

8.10 Self-heating substances

Method	Results	Remarks	Reference
Justification for data waiving	The study does not need to be conducted because the substance is a solid having a melting point ≤ 160 °C.		BAM 2.2 (2014)

Table 18: Summary table of studies on self-heating substances

8.10.1 Short summary and overall relevance of the provided information on self-heating substances

Justification is acceptable.

8.10.2 Comparison with the CLP criteria

The classification procedure needs not to be applied due to justification for data waiving.

8.10.3 Conclusion on classification and labelling for self-heating substances

Should not be classified as self-heating substance according to Annex I part 2 of the CLP regulation.

8.11 Substances which in contact with water emit flammable gases

Table 19: Summary table of studies on substances which in contact with water emit flammable gases

Method	Results	Remarks	Reference
Justification for data waiving	The classification procedure needs not to be applied because the organic substance does not contain metals or metalloids.		BAM 2.2 (2014)

8.11.1 Short summary and overall relevance of the provided information on substances which in contact with water emit flammable gases

Justification is acceptable.

8.11.2 Comparison with the CLP criteria

The classification procedure needs not to be applied due to justification for data waiving.

8.11.3 Conclusion on classification and labelling for substances which in contact with water emit flammable gases

Should not be classified as substance which in contact with water emit flammable gases according to Annex I part 2 of the CLP regulation.

8.11.4 Oxidising liquids

Hazard class is not applicable.

8.12 Oxidising solids

Table 21: Summary table of studies on oxidising solids

Method	Results	Remarks	Reference
estimated by ASTM Program CHETAH 7.3 (ASTM 2002)	not exhibit an oxidizing behaviour		Pardo Martinez M. ChemService S.r.I., Report No. CH-299/2005 (2006)
Justification for data waiving	Tetramethrin does not have any functional groups associated with oxidising action. It does not undergo substitution, addition or elimination reactions. Therefore, oxidising action is considered not to occur under ordinary circumstances. A study to determine oxidising properties would therefore be scientifically unjustified.		Sumitomo Chemical (2006)

8.12.1 Short summary and overall relevance of the provided information on oxidising solids

Justification is acceptable because there are no chemical groups present in the molecule which are associated with oxidising properties. Based on the chemical structure is not necessary to perform the calculation using thermodynamic data by the computer software CHETAH (Chemical Thermodynamic And Hazard evaluation), version 7.3 (ASTM 2002).

8.12.2 Comparison with the CLP criteria

The classification procedure needs not to be applied due to justification for data waiving

8.12.3 Conclusion on classification and labelling for oxidising solids

The substance should not be classified as oxidising solid according to Annex I part 2 of the CLP regulation.

8.13 Organic peroxides

Hazard class is not applicable.

8.14 Corrosive to metals

Table 23: Summary table of studies on corrosive to metals

Method	Results	Remarks	Reference
Justification for data waiving	No established test method suitable for solid substances.		BAM 2.2 (2014)

8.14.1 Short summary and overall relevance of the provided information on corrosive to metals

Justification is acceptable.

8.14.2 Comparison with the CLP criteria

The classification procedure needs not to be applied due to justification for data waiving.

8.14.3 Conclusion on classification and labelling for corrosive to metals

Should not be classified as corrosive to metals according to Annex I part 2 of the CLP regulation.

9. TOXICOKINETICS (ABSORPTION, METABOLISM, DISTRIBUTION AND ELIMINATION)

Table 24: Summary table of	f toxicokinetic studies
----------------------------	-------------------------

Method, guideline	Species, strain, sex, no/group	Test sub- stance, reference to table 5	Dose levels, duration of exposure	Results	Remarks	Reference
Similar to OECD 417, oral, gavage	Rat, Sprague- Dawley, Low, high and repeated dose groups: 5 M + 5 F Controls: 3 M + 3 F	[1RS, trans]- tetramethr in in corn oil, C-14- labelled and unlabelled	Low single dose group with labelled material: 2 mg/kg bw High single dose group with labelled material: 250 mg/kg bw <u>Repeated dose group:</u> 14 days pre- treatment with unlabelled material at 2 mg/kg bw/day, followed by single dose of labelled material (2 mg/kg bw) <u>Control group:</u> 14 days pre- treatment with corn oil at 5 ml/kg/day, followed by single dose of labelled material (2 mg/kg bw)	Radiocarbon absorption 42-71 % (based on C- 14 excretion in urine), 94-100 % and 95-101 % excretion of radioactivity within 2 and 7 days, respectively (urine: 42.3-71.4 %, faeces: 29-57.9 %, air: < 0.1 %), 0.2-0.4 % C-14 tissue residues after 7 days, widely distributed, highest residues in blood cells Excreted at >5 % in urine plus faeces within 2 days after dosing of radioactive compound in any group: 1-sulfo- cyclohexane- dicarboximide, 3- hydroxy-cyclohexane- dicarboximide Excreted unmetabolised parent in urine plus faeces: 5-23 % in single dose groups, < 3 % in repeated dose groups	C-14 label at phthalimide moiety only (alcohol label) 48 % of radioactivity in unknown or non- extractable metabolites	Shiba K, 1992, Sumitomo Report No. IM-20-0015 Parts of study also published in: Tomigahara et al., 1994, Xenobiotica 24(12): 1205-1214
Sim. to OECD 417, Oral, gavage	Rat, Sprague- Dawley, Low, high and repeated dose groups: 5 M + 5 F	[1RS, cis]- tetramethr in in corn oil, C-14- labelled and unlabelled	Low single dose group with labelled material: 2 mg/kg bw High single dose group with labelled material:	Radiocarbon absorption 9-32 % (based on C-14 excretion in urine), 95-101 % and 96-102 % excretion of radioactivity within 2 and 7 days, respectively (urine: 8.5-32.4, faeces: 65.9-91.3, air: < 0.1 %).	C-14 label at phthalimide moiety only (alcohol label) 42-68 % unknown, non- extractable or other radioactive	Shiba K, 1992, Sumitomo Report No. IM-20-0016 Parts of study also published in: Tomigahara

Method, guideline	Species, strain, sex, no/group	Test sub- stance, reference to table 5	Dose levels, duration of exposure	Results	Remarks	Reference
	Controls: 3 M + 3 F		250 mg/kg bw <u>Repeated</u> <u>dose group:</u> 14 days pre- treatment with unlabelled material at 2 mg/kg bw/day, followed by single dose of labelled material (2 mg/kg bw) <u>Control</u> <u>group:</u> 14 days pre- treatment with corn oil at 5 ml/kg/day, followed by single dose of labelled material (2 mg/kg bw)	0.2-0.4 % C-14 tissue residues after 7 days, widely distributed, highest residues in blood cells Excreted at > 5 % in urine plus faeces within 2 days after dosing of radioactive compound in any group: 3- hydroxy-cyclohexane- dicarboximide, 1-sulfo- cyclohexane- dicarboximide, N- (hydroxymethyl)-3- hydroxy-1-sulfo- cyclohexane- dicaboximide, unknown compounds: 30, 34 and 39 Excreted unmetabolised parent in urine plus faeces: 13-34 % in single dose groups, < 4 % in repeated dose groups	metabolites	et al., 1994, Xenobiotica 24(12): 1205-1214
Supplement ary information Non guideline, non-GLP Oral and subcutaneo us	Rat, Sprague- Dawley, 3-4 M + 3-4 F	C-14 [1R, trans]- and [1R, cis]- tetramethr in, respective ly, each preparatio n suspended in 10% Tween 80	Single dose: 3.2 to 5.3 mg/kg bw	27-46 and 42-67 % radiocarbon absorption after oral administration of [1R, cis]- and [1R, trans]-isomer (urinary C-14 excretion); > 90 % C-14 excretion within 7 d of oral or subcutaneous administration (cis/trans in urine: 27-49/42-74 %, faeces: 45-68/21-55 %, air: < 1 - 3 %); 2-3-fold slower initial metabolism and C-14 elimination after s.c. application of the cis- isomer as compared to the trans-isomer, ~5-fold lower C-14 residues (day 7) for	C-14 label at phthalimide (alcohol) or chrysanthemic acid moiety	Sumitomo Report No: IM-10-0006 Summary of study published: Kaneko H, Ohkawa H, Miyamoto J, 1981, J. Pesticide Sci. 6 (4): 425- 435

Method, guideline	Species, strain, sex,	Test sub- stance, reference	Dose levels, duration of exposure	Results	Remarks	Reference
	no/group	to table 5	I the second sec			
				acid than alcohol labelled tetramethrin isomers		
Supplement ary information Non guideline, non-GLP <i>In vitro</i> (rat liver microso- mes)	Rat, Sprague- Dawley, male, (no. not specified, for microsom e preparatio n only)	[1RS, trans]- tetramethr in	1 mM (331 ppm), C-14 [RS, trans]- tetramethrin, 1 hour incubation (37 °C)	68.0/58.5 % of acid/ alcohol labelled substance degraded within 1 h by 7 mg protein eq. of rat liver microsomes in the presence of NADPH, ~50 % NADPH- dependent oxidation, ~50 % paraoxon- sensitive ester hydrolysis, non-enzymatic decomposition of N- (hydroxymethyl)- tetrahydrophthalimide to tetrahydrophthalimide	C-14 [1RS, trans]- tetramethrin, labelled at alcohol or acid moiety: Alcohol labelled: ¹⁴ C at the carbonyl group in the tetrahydrophth alimide moiety Acid labelled: ¹⁴ C at the carboxyl position in the chrysanthemu mic acid moiety	Suzuki T, Miyamoto J, 1974, Pesticide Biochem. Physiol. 4(1): 86-97
Supplement ary information Non guideline, non-GLP, oral and i.v.	Rat, Wistar, Male, (no. not specified)	C-14 [1RS, trans]- tetramethr in emulsion,	Single dose: 1.5 (i.v.) or 500 (oral) mg/kg bw	Oral radiocarbon absorption approx. 50 % (based on metabolites in urine); ~90 and > 95 % radiocarbon excretion within 2 and 5 d after oral admin., respectively (urine: 42.3-71.4, faeces: 29- 57.9, air: < 0.1 %); sustained oral C-14 absorption with $t_{1/2}$ of ~ 2 h, rapid systemic degradation of parent compound with $t_{1/2}$ of ~ 10 min (i.v.), limiting the percentage of parent compound to < 1 % of C-14 from 1 h after oral administration	C-14 label at phthalimide moiety (alcohol label)	Miyamoto J et al., 1968, Agr. Biol. Chem. 32(5): 628-640 Sumitomo Report No: IM-80-0003
Supplement ary information Non guideline, non-GLP	Mice, male albino, Rat, male albino (no not	C-14 tetramethr in	Single dose: 30µl/20 g mouse 150 µl/200 g rat	Tetramethrin underwent Michael addition with thiols, tetramethrin- gluthathione conjugate is formed in the	C-14 label at acid or alcohol moiety	Smith, I.H., Wood, E.J., & Casida, J.E., 1982,. J. agri. food Chem. 30: 598-600 (not

Method, guideline	Species, strain, sex, no/group	Test sub- stance, reference to table 5	Dose levels, duration of exposure	Results	Remarks	Reference
i. p.	specified)			presence of mouse liver homogenate, mercapturic acid or tetramethrin- gluthathion conjugates were not found in bile or urine of rats or mice, biliary excretion of C- 14 tetramethrin: 6% in 2 h and 51% in 24 h 50-66 % urinary excretion of C-14 tetramethrin within 24 h		submitted by applicant)
Dermal absorption study <i>in</i> <i>vitro</i> OECD 428	Heat separated human epidermis, <i>in vitro</i>	Tetrameth rin, dissolved in ethanol	20 μL/cm ² (200 μg/cm ² in ethanol), 24 h	22.3 μg/cm ² (11.2 % of dose) absorbed		Hadfield N, 2006, Central Toxicology Laboratory Report No. JV1900; Sumitomo
Dermal absorption study <i>in</i> <i>vitro</i> OECD 428	Heat separated human epidermis, <i>in vitro</i>	d- Tetrameth rin, dissolved in ethanol	20 μL/cm ² (200 μg/cm ² in ethanol), 24 h	12.4 µg/cm ² (6.2 % of dose) absorbed		Hadfield N, 2006, Central Toxicology Laboratory Report No. JV1901; Sumitomo

9.1 Short summary and overall relevance of the provided toxicokinetic information on the proposed classification(s)

A number of studies have been performed in the rat to address the toxicokinetics of tetramethrins using [1RS, trans]-, [1RS, cis]-, [1R, trans] and [1R, cis]-isomers labelled at their alcohol (phthalimide) or acid (chrysanthemic acid) moiety. From the absence of detectable differences between the 1RS- and the 1R-isomers, it may be concluded that the general toxicokinetic behaviour of the 1R- and the 1S-isomers is similar. Minor differences relating to the relative amount of radiocarbon metabolites excreted via urine and the initial elimination velocity were observed for the trans- and cis-isomers (Kaneko et al., 1981; Sumitomo). Considering the low content of cis-isomers of 20 % and 3 % in technical products of tetramethrin and d-tetramethrin, respectively, these minor differences appear not to be of significant practical relevance.

Radiocarbon absorption after administration of acid- and alcohol-labelled C-14 tetramethrin may be estimated from the relative amount excreted in urine and amounted to 42-74 and 9-46 % of transand cis-isomers, respectively, depending on dose and pre-treatment. Considering the prevalence of the trans-isomers in tetramethrin technical products (see Table 3-1), the oral absorption is estimated to be 50 % of C-14 tetramethrin. Radioactivity in blood and tissues suggests sustained absorption of orally administered tetramethrin isomers with an estimated absorption half-life of approx. 2 h. In the body tetramethrin is degraded very rapidly as indicated by a t_{max} of 1 h for the parent compound compared to 8 h for radiocarbon. Analysis of blood levels of the parent compound and metabolites following i.v. administration support rapid degradation with a $t_{1/2}$ of approx. 10 min. When administered orally, the percentage of undegraded a.s. was less than 1 % of total radiocarbon in blood as early as 1 hour following administration, although it remained unclear whether the responsible metabolic reactions occurred systemically or pre-systemically (Miyamoto et al., 1968).

The bioavailability of orally administered (d-)tetramethrin for the systemic circulation as undegraded substance presents a very rough estimate of 0.5 % to 50 %. Consequently, internal reference doses are extrapolated from inhalation rather than from oral studies.

Total excretion of orally or subcutaneously administered radiocarbon was generally ≥ 90 % after 2 days and ≥ 95 % after 1 week. Detectable amounts in exhaled air were reported for acid-labelled tetramethrin only: up to 3 % of the orally (but not subcutaneously) administered dose of cis- as well as trans-isomers were exhaled as CO₂ (Kaneko et al., 1981; Sumitomo). Remaining radioactive tissue residues 5-7 days after dosing were generally low with 0.2-0.4 % and widely distributed. Highest residue concentrations were found in blood cells. Residues after administration of acid-labelled tetramethrins were approx. 5 times lower than for alcohol-labelled isomers (Kaneko et al., 1981).

Initial metabolism and elimination of the cis-isomers after subcutaneous administration was 2-3 times slower than for the trans-isomers (Kaneko et al., 1981; Sumitomo).

Main metabolic reactions include ester hydrolysis yielding chrysanthemic acid (or its corresponding oxidation products, see below) and N-(hydroxymethyl)-3,4,5,6-tetrahydrophthalimide (MTI). MTI decomposed, presumably non-enzymatically (Suzuki and Miyamoto, 1974), into 3,4,5,6-tetrahydrophthalimide (TPI) which was subject to further extensive metabolic reactions, including reduction of the 1,2-double bond, hydroxylation at position 2 and 3, and full or partial hydrolysis of the carboxydimide moiety. Chrysanthemic acid was metabolised primarily by oxidation of the isobutenyl group. Subsequent conjugation reactions were reported for various phase I metabolites. *In vitro* studies using rat liver microsomes further demonstrated that oxidation reactions were NADPH-dependent, whereas a paraoxon-sensitive enzyme apparently mediated ester hydrolysis.

As a result of the extensive metabolism of tetramethrin, a large percentage of the resulting products (~50 %) remained unknown, unidentified or not extracted. Major labelled species identified at > 5 % in urine or faeces include the parent compound (5-30 % in faeces only), 3-hydroxy-cyclohexane-dicarboximide, 1-sulfo-cyclohexane-dicarboximide, N-(hydroxymethyl)-3-hydroxy-1-sulfo-cyclohexane-dicarboximide and three unknown metabolites. The sulfonic acid products were reported almost exclusively in faeces and result chemically from addition of sulfite to the 1,2-unsaturated bond of the tetrahydrophthalimide moiety.

Figure 1. Metabolic pathways of tetramethrin in mammals (adopted from Environmental Health Criteria 98, World Health Organisation, Geneva, 1990).

In summary, the studies indicate sustained absorption of tetramethrin isomers from the G.I. tract which is estimated to be 50 % at doses in the range of the relevant oral NOAELs. Moreover, a very rapid systemic and/or pre-systemic metabolic degradation by oxidation and ester hydrolysis has been shown which is slower for cis- than for trans-isomers. Hence, the resulting levels of undegraded a.s. in blood and nervous system remain very low after oral administration (below 1 % of total C-14 at 1 h). However, bioavailability and systemic levels of parental compound may be different with other routes of application (inhalative, dermal). Excretion occurs via faeces and urine. Sulfonated metabolites in faeces are suggested to be a product of (intra)intestinal metabolism. Radiocarbon excretion is almost completed after 2-3 days. After 1 week C-14 tissue residues decreased to 0.4 % or below. There is no information that would justify usage of other assessment factors for inter- and intraspecies variation in toxicokinetics than the default values of 4 and 3.2, respectively. Mechanistically, there is potential for interference of organophosphates (paraoxon) with tetramethrin toxicokinetics.

Percutaneous absorption

Sumitomo provided a study on percutaneous absorption of technical products containing d-tetramethrin or tetramethrin. Substances were tested with 1 % solutions in ethanol on human heat-

separated epidermis over 24 h, using a static diffusion cell set-up. Absorption into the receptor fluid (40 % acetone) was continuous over 24 h for d-tetramethrin but increased from 0.1 (0-8 h) to 0.3 (20-24 h) μ g/cm²/h for tetramethrin. As post-exposure separation of the upper stratum corneum from the remaining epidermis was not reliable due to deficiencies of the methodology (tissue samples disintegrated during tape stripping), both fractions were included in the calculation of overall skin absorption. For d-tetramethrin, a total of $12.4 \pm 9.8 \,\mu$ g/cm², corresponding to 6.2 ± 4.9 % of the applied dose, was absorbed into and through the skin. 1.1 ± 1.3 and 3.5 ± 5.3 % of the doses were found in tissue layers attributed to stratum corneum and remaining epidermis, respectively. Totals of absorbed and absorbable dose were higher for tetramethrin, with $22.3 \pm 5.8 \,\mu$ g/cm², corresponding to 11.2 ± 2.9 % of the applied dose, after 24 h. Apparent residues in the stratum corneum were higher than for d-tetramethrin with 13.8 μ g/cm² (6.9 %), but lower in the remaining epidermis with 3.5 μ g/cm² (1.8 %).

Applying the read-across concept established for d-tetramethrin and tetramethrin, and considering the limitations of the *in vitro* test system, an overall dermal absorption of 10 % is derived for tetramethrin and the technical product. Taking an estimated oral absorption of 50 % into account, the proposed value for dermal absorption (10 %) would also be supported by comparison of oral vs. dermal acute neurotoxicity of d-tetramethrin in the mouse (with adverse effects observed at 200-385 vs. 2500 mg/kg bw, see Evaluation of acute toxicity, Tables 25a and 26a).

Inhalative absorption

No experimental data are available for the derivation of internal doses achieved by absorption of inhaled tetramethrin or d-tetramethrin aerosol from the lung. Therefore, physiologically-based default assumptions must be used. As outlined in the corresponding Technical Guidance Document, respirable fractions of the test aerosol were calculated from measured aerodynamic particle sizes and, given the molecular weight of 331 g/mol and a logP of 4.3-4.6, 100 % of the respirable fraction was assumed to be the absorbable dose (European Commission, EUR 20418 EN/1, 2003). These assumptions are supported by experimental data obtained for other substances with similar physicochemical properties, e.g. prochlorperazine (MW 374 g/mol, LogP 4.6) with > 80 % inhalative absorption from a fine aerosol (Avram et al., 2007).

10. EVALUATION OF HEALTH HAZARDS

For assessment of human health hazards, read-across was performed between tetramethrin and dtetramethrin.

Justification for read-across between tetramethrin and d-tetramethrin

9.1-10.3

tetramethrin; Endura

Tetramethrins are esters of chrysanthemic acid with 3, 4, 5, 6-tetrahydrophthalimidomethyl alcohol and are classified as type I pyrethroids, which lack a cyano group within the alcohol moiety. Tetramethrin and d-tetramethrin are isomeric mixtures of [1R, cis], [1S, cis], [1R, trans] and [1S, trans]-tetramethrin, differing in the ratios of individual stereoisomers. The average isomeric composition of 5 batches of the technical products tetramethrin (Neo-Pynamin) and d-tetramethrin (Neo-Pynamin forte; both Sumitomo) as well as the range of isomeric composition derived from four batches of tetramethrin (Duracide A; Endura) are shown in the table below. [1R, trans] and [1S, trans]-isomers prevailed in an analysis of the average batch composition of the corresponding technical product tetramethrin, while [1R, trans] is the main component (> 90 %) in d-tetramethrin.

	.	<u> </u>	0		
(n=5; according to Fujita, Sum	itomo Report No.	SUP-0014, 2006;	Endura: range der	rived from 4 batch	ies)
Technical product	1 R, cis (%)	1S, cis (%)	1 R, trans (%)	1S, trans (%)	
d-tetramethrin; Sumitomo	2.8	0.2	93.1	3.9	
tetramethrin; Sumitomo	10.1	10.0	39.7	40.2	

Table 25a: Average isomeric composition of technical products containing d-tetramethrin and tetramet	thrin
(n=5; according to Fujita, Sumitomo Report No. SUP-0014, 2006; Endura: range derived from 4 batch	ies)

7.6-10.3

The [1R, trans] isomer has been reported to be the isomer displaying the highest potential for activation of invertebrate axonal sodium channels (Lund and Narahashi, NeuroTox (1982) 3: 11-24).

40.0-46.9

35.5-40.4

All toxicological studies in mammals relate to isomeric mixtures. Thus, in the absence of comparative toxicological studies on the four isolated isomers, the toxicological potential of individual isomers in mammals has not been defined.

A review comparing the physico-chemical and biological properties of d-tetramethrin and tetramethrin was provided by the applicant Sumitomo (H. Roth, 2007/03/05, Safepharm Laboratories Ltd., Shardlow, UK). It was concluded that the two substances are essentially similar and "data on each of the compounds may be used to predict the toxicology and fate of the other".

Indeed, a comparison of the submitted toxicological studies on d-tetramethrin and tetramethrin showed that, in cases in which both substances were investigated, the observed effects as well as NOAEL/LOAEL values were similar.

In rats, acute poisoning syndrome associated with type I pyrethroids typically is characterised by neurological effects such as aggressive sparring, whole body tremor and prostration (Verschoyle and Aldridge, 1980). Symptoms of neurotoxicity were observed for both tetramethrin and dtetramethrin as a result of acute exposure and as acute effects during repeated inhalative exposure, including irregular respiration, bradypnoe and decreased spontaneous activity, whereas symptoms such as tremor, muscular fibrillation, urinary incontinence, hyperexcitability, ataxia, and limb paralysis were only observed in the acute inhalative toxicity study with d-tetramethrin.

After single oral administration, both tetramethrin and d-tetramethrin displayed only low acute toxicity in rats, with similar LOAELs for neurotoxicity (>2000 (Endura) 2500 mg/kg bw and 5000 mg/kg bw, resp.; both Sumitomo).

Regarding inhalative toxicity in rats, the LOAECs (converted to inhaled doses) for acute neurotoxic effects observed during exposure were within overlapping ranges for tetramethrin (13 mg/kg bw/d, 7 days, neonate mouse; 29.8 mg/kg bw/d, 90 d, rat) and d-tetramethrin (16.8 mg/kg bw, acute, rat; 11.2 mg/kg bw/d, 28 d, rat).

In repeated-dose rat studies, relevant adverse effects involved neurotoxic effects (propioceptive alterations), liver changes (weight increase, enlargement) supported by alterations of parameters in haematology and clinical chemistry (e.g. cholesterol, liver enzymes), although acute neurotoxic effects were also observed during daily exposure in inhalation toxicity studies. Only few studies with d-tetramethrin are available on subchronic/chronic toxicity (one 3/6 month rat oral toxicity study and a 2-generation reproduction toxicity study). Notably, no carcinogenicity study has been provided for d-tetramethrin. However, on the basis of overlapping NOAEL-LOAEL intervals for tetramethrin and d-tetramethrin in medium-term (subacute/subchronic) and long-term studies, it can be concluded that tetramethrin and d-tetramethrin are of similar toxicological potency regarding liver changes and haematological findings.

For both tetramethrin and d-tetramethrin, no evidence for toxic effects on foetuses below doses causing maternal toxicity was provided in developmental toxicity studies.

Finally, neither tetramethrin nor d-tetramethrin met the criteria for classification as skin or eye irritating or as genotoxic. Both substances did not lead to sensitisation in guinea pig (Buehler) tests.

In summary, the comparison of the available data appears to scientifically justify risk assessment involving i) read-across of acute toxicity data, ii) unidirectional read-across from tetramethrin to d-tetramethrin for chronic toxicity, and iii) derivation of mutual NOAEL/LOAEL for all other types of toxicity.

Acute toxicity

10.1 Acute toxicity - oral route

Table 25b:	Summary	table of	animal	studies	on acute	oral to:	xicity

Method, guideline, deviation(s) if any	Species, strain, sex, no/group	Test substance, reference to table 5	Dose levels, duration of exposure	Value LD ₅₀	Reference
OECD 423 Oral, gavage	Rat, Wistar 3 F+3 M	Tetramethrin Vehicle: corn oil	2000 mg/kg bw	LD ₅₀ : > 2000 mg/kg bw No deaths and no toxic signs observed	Venugopala R K, 2002. Rallis Ltd, Endura Study No. 3335/01
Sim. to OECD 420 Oral, gavage	Rat, Sprague-Dawley, 5 M + 5 F	Tetramethrin Vehicle: corn oil	0-2500-5000 mg/kg bw	LD ₅₀ : > 5000 mg/kg bw No deaths ≥ 2500 mg/kg bw: Decrease in spontaneous activity, urinary incontinence, excretion of oily substance	Kawasaki H, 1990, Sumitomo Report No. IT- 00-0224
Sim. to OECD 420 Oral, gavage	Rat, Crj:CD (SD), 5 M + 5 F	d-Tetramethrin Vehicle: corn oil	0-2500-5000 mg/kg bw	LD ₅₀ : > 5000 mg/kg bw; 5000 mg/kg bw: tremor, urinary incontinence, ataxic gait; 1 single death in the high dose group	Misaki Y, 1999, Sumitomo Report No. SVT- 0008
Pre-guideline, sim. to OECD 401, non-GLP Oral, gavage	Mouse, ddY, 10 M + 10 F	d-Tetramethrin Vehicle: corn oil	0-100-150-200- 285-385-500- 650-845-1000- 1300-1700 mg/kg bw	LD ₅₀ : 1060/1040 mg/kg bw (M/F); 200 + 285 mg/kg bw/d: Slight decrease in spontaneous activity; \geq 385 mg/kg bw: Hyperexcitaion, muscular fibrillation, ataxic gait, irregular respiration; \geq 845 mg/kg bw: Whole body ataxia, weak respiration, salivation, mortalities	Kohda H, Misaki Y, Suzuki T, 1980, Sumitomo Report No. IT- 00-0086

Type of data/report	Test substance, reference to table 5	Relevant information about the study (as applicable)	Observations	Reference
No data		No cases of poisoning of humans with d- tetramethrin or tetramethrin have been reported		

Table 25c: Summary table of human data on acute oral toxicity

10.1.1 Short summary and overall relevance of the provided information on acute oral toxicity

In rats, tetramethrin displayed very low acute toxicity after oral administration, with no deaths at the limit dose of 2000 mg/kg bw ($LD_{50} > 2000$ mg/kg bw, Venugopala, 2002; Endura). This study was performed in accordance with OECD guideline 423 and confirmed the results of earlier studies in which d-tetramethrin and tetramethrin were tested up to oral doses of 5000 mg/kg bw and no mortality was observed ($LD_{50} > 5000$ mg/kg bw, Misaki, 1999; Kawasaki, 1990; both Sumitomo). Toxic effects were reversible within 3 days and comprised neurological symptoms (tremor, decrease in spontaneous activity, urinary incontinence) and excretion of oily substance.

In mice, the LD_{50} value for d-tetramethrin was 1040 mg/kg bw after oral administration and signs of toxicity were seen at 200 mg/kg bw and above. No cases of poisoning of humans with d-tetramethrin or tetramethrin have been reported.

10.1.2 Comparison with the CLP criteria

Toxicological results	CLP criteria
Oral LD ₅₀ rat: > 2000 mg/kg bw (tetramethrin, d-tetramethrin)	Cat 4 (H302): $300 < LD_{50} \le 2000 \text{ mg/kg bw} (\text{acute oral})$
Oral LD ₅₀ mouse: 1040 mg/kg bw (F) (d-tetramethrin)	Cat 3 (H301): $50 < LD_{50} \le 300 \text{ mg/kg bw}$ (acute oral)
	Cat 2 (H300): $5 < LD_{50} \le 50 \text{ mg/kg bw}$ (acute oral)
	Cat. 1 (H300): LD ₅₀ \leq 5 mg/kg bw (acute oral)

Table 25d: Results of acute oral toxicity studies in comparison to the CLP criteria

10.1.3 Conclusion on classification and labelling for acute oral toxicity

Based on the available acute oral rat studies, tetramethrin / d-tetramethrin do not meet the criteria according to the CLP regulation for classification for acute oral toxicity. Although the oral LD_{50} value for mice was in the range for classification as Cat. 4, no classification for acute oral toxicity is proposed, taking into account that the single mouse study is a pre-guideline study and that results in mice are usually considered less relevant for classification. However, the final decision is within the remit of RAC/ECHA.

10.2 Acute toxicity - dermal route

Method, guideline, deviation(s) if any	Species, strain, sex, no/group	Test substance, reference to table 5	Dose levels duration of exposure	Value LD ₅₀	Reference
OECD 402, dermal	Rat, Wistar 5 M + 5 F	Tetramethrin Vehicle: corn oil	2000 mg/kg bw; 24 h	LD ₅₀ : > 2000 mg/kg bw No toxic signs observed	Venugopala RK, 2002, Rallis Ltd., Endura Study No.° 3336/01, 14
Pre-guideline, sim. to OECD 402, non-GLP, dermal	Rat, Sprague-Dawley, 10 M + 10 F	d-Tetramethrin Vehicle: corn oil	0-2500-5000 mg/kg bw; 24 h	LD ₅₀ : > 5000 mg/kg bw No deaths and no toxic signs observed	Kohda H, Misaki Y, Suzuki T, 1980, Sumitomo Report No. IT- 00-0086
Pre-guideline, sim. to OECD 402, non-GLP, dermal, occlusive	Rabbit, New Zealand White, 5 M + 5 F	Tetramethrin Vehicle: corn oil	0-2000 mg/kg bw; 24 h	LD ₅₀ : > 2000 mg/kg bw No deaths and no toxic signs observed	Suzuki T et al., 1987, Sumitomo Report No. IT- 70-0207
Pre-guideline, sim. to OECD 402, non-GLP, dermal	Mouse, ddY, 10 M + 10 F	d-Tetramethrin Vehicle: corn oil	0-1000-2500- 5000 mg/kg bw; 24 h	LD_{50} : > 5000 mg/kg bw; ≥ 2500 mg/kg bw: muscular fibrillation, irregular respiration	Kohda H, Misaki Y, Suzuki T, 1980, Sumitomo Report No. IT- 00-0086

Table 26a: Summary table of animal studies on acute dermal toxicity

Table 26b: Summary table of human data on acute dermal toxicity

Type of data/report	Test substance, reference to table 5	Relevant information about the study (as applicable)	Observations	Reference
No data		No cases of poisoning of humans with d- tetramethrin or tetramethrin have been reported		

10.2.1 Short summary and overall relevance of the provided information on acute dermal toxicity

Comparison with the CLP criteria Dermal exposure of rats or rabbits to tetramethrin yielded no toxic effects at the limit dose of 2000 mg/kg bw ($LD_{50} > 2000$ mg/kg bw, Venugopala, 2002; Suzuki et al. 1987). Dermal exposure of rats to d-tetramethrin yielded no relevant toxic effects up to 5000 mg/kg bw in rats (Kohda et al., 1980). By contrast, mice displayed toxicity after dermal exposure to 2500 mg/kg bw d-tetramethrin (muscular fibrillation, irregular respiration), but the LD_{50} was estimated to be above 5000 mg/kg bw (Kohda et al. 1980).

10.2.2 Comparison with the CLP criteria

Toxicological results	CLP criteria
Dermal LD_{50} rat: > 2000 mg/kg bw	Cat 4 (H312):
(tetramethrin)	$1000 < LD_{50} \le 2000 \text{ mg/kg bw}$ (acute dermal)
Dermal LD_{50} rat: > 5000 mg/kg bw	
(d-tetramethrin)	Cat 3 (H311):
	$200 < LD_{50} \le 1000 \text{ mg/kg bw}$ (acute dermal)
Dermal LD_{50} rabbit: > 2000 mg/kg bw	
(tetramethrin)	Cat 2 (H310):
	$50 < LD_{50} \le 200 \text{ mg/kg bw}$ (acute dermal)
Dermal LD ₅₀ mouse: > 5000 mg/kg bw	
(d-tetramethrin)	Cat. 1 (H310):
	$LD_{50} \le 50 \text{ mg/kg bw}$ (acute dermal)

Table 26d: Results of acute dermal toxicity studies in comparison to the CLP criteria

10.2.3 Conclusion on classification and labelling for acute dermal toxicity

Based on the submitted acute dermal toxicity studies, tetramethrin and d-tetramethrin do not meet the criteria for classification for acute dermal toxicity.

10.3 Acute toxicity - inhalation route

Table 27a: Summary table of animal studies on acute inhalation toxicity

Method, guideline, deviation(s) if any	Species, strain, sex, no/group	Test substance, reference to table 5, form and particle size (MMAD)	Dose levels, duration of exposure	Value LC ₅₀	Reference
OECD 403 Acute inhalation toxicity study with Tetramethrin in Wistar rats. Head and nose exposure Technical deficiencies: Volume of air chamber 500 L, suggesting long time to achieve steady-state of concentration; no indication of whether concentration measurements	Rat, Wistar Pre-study (G1): 2 M + 2 F Main study (G2): 5 M + 5 F	Tetramethrin aerosol in cyclohexanone (50% w/v); mean aerosol particle size: G1: 0.67 ± 0.26 μ m; G2: 0.68 ± 0.26 μ m	0-5.63 ± 0.86 mg/L; 4 h	LC ₅₀ : > 5.63 mg/L Slight lacrimation and nasal discharge on day 1 (all rats in G2), normal from day 2 onwards), otherwise no toxic signs observed Absence of signs of acute neurotoxicity in comparison to other studies suggests that concentration of 5.63 mg/L may not have been achieved in the	Venugopala RK, 2006, Toxicology Department, Advinus Therapeutics Private Limited., Endura Study N° 4414/05

Method, guideline, deviation(s) if any	Species, strain, sex, no/group	Test substance, reference to table 5, form and particle size (MMAD)	Dose levels, duration of exposure	Value LC ₅₀	Reference
performed in breathing zone; dense aerosol accumulation in chamber of G2 groups				breathing zone, study not appropriate for classification purposes	
Pre-guideline, non-GLP Acute inhalation, whole body 3 h exposure instead of 4 h; Dose-finding study for a subacute (28- day) study	Rat, Sprague-Dawley, 10 M + 10 F	d-Tetramethrin dissolved in: deodorised kerosene mist, particle size 1.23-1.51 µm	0-0.026-0.131- 0.243-0.595-1.18 mg/L (approx. 0-3.3- 16.8-32.3-76.3- 151 mg/kg bw); 3 h	LC_{50} : > 1.18 mg/L (151 mg/kg bw); ≥ 0.131 mg/L: Muscular fibrillation, urinary incontinence, limb paralysis, bradypnoe, irregular respiration (no. of affected animals and severity of findings not reported; toxic signs began to appear 15 to 30 min, after initiation of exposure and disappeared 1 to 2 hours after exposure) at 1.18 mg/L: 1/10 females died	Suzuki T, Kohda H, Misaki Y, Okuno Y, Koyama Y, Miyamoto J, 1981, Sumitomo Report No. IT- 10-0144
28-day inhalation, whole body 3 h / day exposure	Rat, Sprague-Dawley 10 M + 10 F	d-Tetra-methrin dissolved in: deodorised kerosene mist, particle size 1.23-1.51 µm	0-0.026-0.049- 0.087 mg/L 3 h / day exposure for 7 days a week	≥ 0.087 mg/L: Slight bradypnea, irregular respiration, salivation directly after exposure (no. of affected animals and severity of findings not reported), no cumulative effect	Suzuki T, Kohda H, Misaki Y, Okuno Y, Koyama Y, Miyamoto J, 1981, Sumitomo Report No. IT- 10-0144
Method, guideline, deviation(s) if any	Species, strain, sex, no/group	Test substance, reference to table 5, form and particle size (MMAD)	Dose levels, duration of exposure	Value LC ₅₀	Reference
---	---	---	---	--	-----------
				leucocyte and decrease in eosinophils count at 0.087 mg/l NOAEL: 0.049 mg/L	

Type of data/report	Test substance, reference to table 5	Relevant information about the study (as applicable)	Observations	Reference
No data		No cases of poisoning of humans with d- tetramethrin or tetramethrin have been reported.		

Table 27b: Summary table of human data on acute inhalation toxicity

10.3.1 Short summary and overall relevance of the provided information on acute inhalation toxicity

An acute rat inhalation toxicity study with d-tetramethrin and exposure time of 3 hours revealed moderate toxicity, with systemic effects occurring in the groups at 0.131 mg/L (corresponding to approx. 16.8 mg/kg bw) and above: decreases of spontaneous activity, salivation, hyperexcitability, hyperphoea, irregular respiration, urinary incontinence, muscular fibrillation, ataxia, limb paralysis and other toxic signs were observed (Suzuki et al. 1981) (number of affected animals and severity of findings not reported). The NOAEC of 0.026 mg/L was estimated to correspond to 3.3 mg/kg bw, the conversion of inhaled concentrations into inhaled doses being based on default assumptions regarding body weight, inhalation volume and 100 % availability. The LC₅₀ could only be estimated as being > 1.18 mg/L (> 151 mg/kg bw), with 1/20 mortality at this concentration. The RMS notes that the duration of exposure in the study was shorter than recommended according to OECD 403 (only 3 hours instead of 4) and that more severe effects might be anticipated for the standard exposure of 4 hours. Higher concentrations for refining the LC_{50} were not tested in this study by Suzuki et al. 1981, but appear technically feasible, since an almost linear relationship was recognised between substance concentration injection and aerial concentration. By contrast, the results of the study by Suzuki et al. 1981 were not confirmed in an acute rat inhalation toxicity study using tetramethrin and an exposure time of 4 hours in accordance with OECD guideline 403. No mortality was observed up to the highest concentration tested. Hence, the LC₅₀ was estimated to be > 5.63 mg/L. Slight lacrimation and nasal discharge occurred on day 1, which was not observed from day 2 post exposure onwards. No other clinical signs were observed (Venugopala 2006; Endura). Due to dense aerosol accumulation inside the chamber, observation of the animals during exposure was not possible. Thus, potential clinical signs that may occur only during but not after exposure could not have been recorded. In addition, it is not clear which aerosol concentrations were actually achieved in the breathing zone. In contrast to other inhalation studies performed with d-tetramethrin (the acute rat study by Suzuki et al. 1981 and the 28-day study by Suzuki et al. 1981) or tetramethrin (90-day study performed by Kawaguchi 1991; see Table 38d), no clinical signs of acute neurotoxicity were reported in the study by Venugopala. In conclusion, the acute rat inhalation study by Venugopala is regarded by the RMS as being less relevant to considerations concerning classification and labelling, due to deficiencies in conduction of the study and the total absence of expected acute neurotoxicity.

10.3.2 Comparison with the CLP criteria

Toxicological results	CLP criteria
Inhalative LD_{50} rat: > 1.18 mg/L,	Cat 4 (H332):
	$10 < LD_{50} \le 20 \text{ mg/L}$ (acute inhalation, vapours)
(d-tetramethrin mist; 1/20 mortality at 1.18	$1 < LD_{50} \le 5 mg/L$ (dusts and mists)
mg/L, exposure for only 3 h)	
	Cat 3 (H331):
	$2.0 < LD_{50} \le 10 \text{ mg/L} \text{ (vapours)}$
	$0.5 < LD_{50} \le 1 \text{ mg/L} \text{ (dusts and mists)}$
	Cat 2 (H330):
	$0.5 < LD_{50} \le 2$ mg/L (vapours)
	$0.05 < LD_{50} \le 0.5 \text{ mg/L}$ (dusts and mists)
	Cat. 1 (H330):
	$LD_{50} \leq 0.5 \text{ mg/L} \text{ (vapours)}$
	$LD_{50} \le 0.05 \text{ mg/L}$ (dusts and mists)
	Exposure generally for 4 h

Table 27d: Results of acute inhalation toxicity studies in comparison to the CLP criteria

10.3.3 Conclusion on classification and labelling for acute inhalation toxicity

From the data presented in the study by Suzuki et al. 1981 for d-tetramethrin, indicating an LD_{50} above 1.18 mg/L (observed mortality at 1.18 mg/L), and considering that rats were only exposed for 3 h, it cannot be ruled out that the LC_{50} is ≤ 5 mg/L. Thus, classification of d-tetramethrin and tetramethrin as Acute Tox 4 along with H332 is proposed.

10.4 Skin corrosion/irritation

Table 28a:Summary table of animal studies on skin corrosion/irritation

Method, guideline, deviations if any	Species, strain, sex, no/group	Test substance, reference to table 5	Dose levels duration of exposure	Results -Observations and time point of onset -Mean scores/animal -Reversibility	Reference
OECD 404	Rabbit, New Zealand White, 3 M	Tetra- methrin, as paste with corn oil	500 mg, 4 h	1, 24, 48, 72 h: No erythema, oedema or any other effects on skin observed; Reversibility: N/A Not irritating	Mohan Kumar, 2002, Rallis Ltd., Endura Study N° 3337/01
OECD 404	Rabbit, New Zealand White, 3 M + 3 F	Tetra- methrin, Moistened with corn oil	500 mg, 4h	0.5, 24, 48, 72 h: No erythema, oedema or any other effects on skin observed; Reversibililty: N/A Not irritating	Nakanishi T, 1990, Sumitomo Report No. IT-00-0217
Pre- guideline,	Rabbit, Albino,	d-Tetra-	0.5 ml of	24, 48, 72 h and 1 week:	Hara S, Suzuki T,

Method, guideline, deviations if any	Species, strain, sex, no/group	Test substance, reference to table 5	Dose levels duration of exposure	Results -Observations and time point of onset -Mean scores/animal -Reversibility	Reference
sim. to OECD 404, non-GLP	6 M	methrin	formulation 24 h, Intact and abraded skin, occlusive	No erythema, oedema or any other effects on skin observed; Reversibility: N/A Not irritating	1980, Sumitomo Report No. IT-00-0073

10.4.1 Short summary and overall relevance of the provided information on skin corrosion/irritation

Studies on skin irritation revealed that neither d-tetramethrin nor tetramethrin is irritating to the skin of rabbits.

10.4.2 Comparison with the CLP criteria

Table 28d: Results of skin irritation studies in comparison to the CLP criteria

Toxicological results	CLP criteria
No erythema, oedema or any other skin effects observed	Irritating to skin (Category 2, H315):
	at least in 2/3 tested animal a positive response of: Mean value of $\ge 2.3 - \le 4.0$ for erythema/eschar or for oedema

10.4.3 Conclusion on classification and labelling for skin corrosion/irritation

No classification/labelling for skin irritation is proposed for tetramethrin or d-tetramethrin

10.5 Serious eye damage/eye irritation

Method, guideline, deviations if any	Species, strain, sex, no/group	Test substance, reference to table 5	Dose levels duration of exposure	Results -Observations and time point of onset -Mean scores/animal -Reversibility	Reference
OECD 405	Rabbit, New Zealand white, 3 M	Tetra- methrin, mixed in corn oil	53 mg (equivalent to 0.1 ml, test substance mixted in corn oil) 24 h	1, 24, 48, 72 h: No ocular lesions observed; Reversibility: N/A Not irritating	Mohan Kumar SB, 2002, Rallis Ltd., Endura Study N° 3338/01
OECD 405	Rabbit,	Tetra-	100 mg	Observation times (times after	Nakanishi

Table 29a: Summary table of animal studies on serious eye damage/eye irritation

Method, guideline, deviations if any	Species, strain, sex, no/group	Test substance, reference to table 5	Dose levels duration of exposure	Results -Observations and time point of onset -Mean scores/animal -Reversibility	Reference
	New Zealand White, 3 M + 3 F	methrin	Exposure period: N/A	application): 1, 24, 48, 72 h; <u>Corneal opacity</u> : 2/6 animals with grade 1 at 24 h; <u>Iris</u> : No signs of irritation observed; <u>Conjunctival redness</u> : 6/6 animals with grade 1 at 1 h; 3/6 animals with grade 1 at 24 h; <u>Conjunctival chemosis</u> : 5/6 animals, grade 1 at 1 h; Reversibility of all effects: Yes, within 48 h of application Not irritating (below classification threshold)	T, 1990, Sumitomo Report No. IT-00-0217
Pre- guideline, non GLP	Rabbit, Albino, 6 M (eyes not washed after applicatio n) 3M (eyes washed applicatio n)	d-Tetra- methrin	0.1 ml instilled Exposure period: Eyes of 6 animals unwashed after application; Eyes of 3 animals washed 30 seconds after application	Observation times at 1, 24, 48 h and at 1weekCornea: No signs of irritation observedIris: No signs of irritation observedConjunctiva: slight hyperaemia and/orchemosis 1 h (grade 1) after application(unwashed group); slight hyperaemia(grade 1) 1 h after application in thewashed groupReversibility: Yes, within 48 hNot irritating (below classificationthreshold)	Hara S, Suzuki T, 1980, Sumitomo Report No. IT-00-0073

10.5.1 Short summary and overall relevance of the provided information on serious eye damage/eye irritation

When applied to rabbit eyes, tetramethrin displayed no eye irritation (Mohan Kumar, 2002) or minimal eye irritating potential (Naganishi, 1990). Similarly, in a pre-guideline study, d-tetramethrin elicited only minimal signs of irritation (Hara and Suzuki, 1980). Any slight effects observed in the rabbit studies (on cornea and conjunctiva for tetramethrin, or on conjunctiva for d-tetramethrin) were reversible by 48 hours after application.

10.5.2 Comparison with the CLP criteria

Table 29d: Results of eye irritation studies in comparison to the CLP criteria

Toxicological results	CLP criteria
Tetramethrin:	Irritating to eyes (Category 2, H319):
Study 1: Not irritating (Mohan Kumar, 2002);	
Study 2: 2/6 animals positive for corneal	at least in 2/3 tested animal a positive response of:
opacity, grade 1, at 24 h and 6/6 animals	corneal opacity: ≥ 1 and/or
positive for conjunctival redness and/or	iritis: ≥ 1 and/or
chemosis, grade 1, at 1 h (Nakanishi , 1990)	conjunctival redness: ≥ 2 and/or
	conjunctival oedema (chemosis): ≥ 2
d-Tetramethrin:	
Slight hyperaemia and/or chemosis, grade 1,	
1 h after application	

10.5.3 Conclusion on classification and labelling for serious eye damage/eye irritation

Based on the available data, classification of tetramethrin and d-tetramethrin for serious eye damage/eye irritation is not proposed.

10.6 Respiratory sensitisation

Table 30a: Summary table of animal studies on respiratory sensitisation

Method, guideline, deviations if any	Species Strain Sex no/group	Test substance, reference to table 5	Dose levels, duration of exposure	Results	Reference
No studies available					

Table 30b: Summary table of human data on respiratory sensitisation

Type of data/report	Test substance, reference to table 5	Relevant information about the study (as applicable)	Observations	Reference
Factory workers' surveillance data	Tetramethrin	Regular medical examination, blood, hepatic, renal and urine analysis, spirometry, biological monitoring, audiometry, ergovision 65 workers	No findings attributable to exposure	Dr. Savron L, 2006, Endura S.p.A Ravenna Plant Medical Data. Safety, Environment and quality department, 11 April 2006
Factory worker examination review		Regular medical check- up (bw, visual and auditory acuity, chest x- ray, blood pressure, urinalysis, serum	No findings attributable to exposure	Shono F, 2005, Sumitomo Report No. SVT-0009

Type of data/report	Test substance, reference to table 5	Relevant information about the study (as applicable)	Observations	Reference
		biochemistry), 7 workers exposed to pyrethroids incl. tetramethrin dermally and by inhalation during packaging		
Case report	Tetramethrin	Single case of professional (M) developing asthma after 6 years of work as exterminator <u>Inhalation challenges:</u> 1 st challenge: formulation containing tetramethrin + organophosphate; 2 nd challenge (5 mo. after first): Tetramethrin powder diluted 1/10 in lactose powder	Skin prick testing to tetramethrin negative Challenge-provoked reactions: Reduced respiratory function (reduced forced expiratory volume in 1 second; asthma) Patient treated with beta-agonist when required	Vandenplas O, Delwiche J P, Auverdin J, Caroyer U M, Cangh F B, 2000, Allergy 55(4): 417-418

10.6.1 Short summary and overall relevance of the provided information on respiratory sensitisation

Medical surveillance of workers exposed to pyrethroids, including d-tetramethrin and tetramethrin, did not provide evidence for significant adverse effects. A single case study (Vandenplas et al., 2000) indicates that individual asthmatic reactions against tetramethrin may be possible. However, with regard to tetramethrin, epidemiological studies on exposed populations are not available. No animal studies involving respiratory sensitisation are available.

10.6.2 Comparison with the CLP criteria

Table 30d: Information on respiratory sensitisation in comparison to the CLP criteria

Toxicological results	CLP criteria
One case study on single individual, showing	Cat 1:
reaction after challenge to tetramethrin-	Based on evidence in humans that the substance can lead to
containing formulation or tetramethrin	specific respiratory hypersensitivity and/or
powder (reduced respiratory function,	Positive results from appropriate animal test
asthma)	

10.6.3 Conclusion on classification and labelling for respiratory sensitisation

Due to paucity of data, no classification of tetramethrin or d-tetramethrin for respiratory sensitisation is proposed.

10.7 Skin sensitisation

Table 31a:	Summarv	table o	f animal	studies	on skin	sensitisation
1 4010 0 140	s anning			0000000	011 01111	

Method, guideline, deviations	Species, strain,	Test substance, reference	Dose levels duration of exposure	Results	Reference
if any	no/group	to table 5	exposure		
OECD 406, Buehler	Guinea pig, Albino, NIH (Dunkin Hartley), Vehicle: 5 M+5 F Pos.Co: 5 M+5 F Treatment group: 10 M+10 F	Tetra- methrin,	0.5 g, as paste in deionised water 6 h	No animals sensitised to tetramethrin (0/20); 2-MBT control: 08/10 Not sensitising	Prakash P.J., (2006). Toxicology Department, Advinus Therapeutics Private Limited, Endura Study N° 4415/05
Buehler, pre- guideline, non-GLP	Guinea pig, Hartley, 10 M	d-Tetra- methrin	50% (0.5 ml of test material diluted in acetone); Time of removal of test substance not specified	No animals sensitised to d- tetramethrin (0/10); DNCB control: 10/10 M+K test not possible due to strong irritation reaction after intradermal application Not sensitising	Hara S, Suzuki T, 1980, Sumitomo Report No. IT- 00-0082
Buehler, sim. to OECD 406 (deficienci es)	Guinea pig, Hartley, 10 M positive control: 3 M	Tetra- methrin	500 mg, applied undiluted, time of removal of test substance not specified	No animals sensitised to tetramethrin (0/10); positive control DNCB 3/3	Nakanishi T, 1990, Sumitomo Report No. IT- 00-0218
Pre- guideline, non-GLP Severe deviations from M + K protocol	Guinea pig, Hartley, 7 M positive control: 5 M	Tetra- methrin	1 % solution in corn oil, 10 intra- cutaneous injec- tions over 23 d, challenge 14 d later	No animals sensitised to tetramethrin (0/7); Positive control DNCB 5/5 Severe deviations from M + K protocol Not sensitising	Okuno Y et al., 1976, Sumitomo Report No. IT- 60-0013 Reviewed in WHO, IPCS, 1990, Environmental Health Criteria 98, Tetramethrin

Type of data/report	Test substance, reference to table 5	Relevant information about the study (as applicable)	Observations	Reference
Human patch test, modified Schwartz Peck method, pre- guideline, non-GLP	Tetra- methrin	Human 23 M + 177 F, Semi-occlusive Composition of test formulation and concentration of tetramethrin not clear	No cases of sensitisation observed Not reliable, due to ethic and scientific deficiencies No conclusion possible	Osbourn R, 1966, Sumitomo Report No. IT- 61-0008

Table 31b: Summary table of human data on skin sensitisation

10.7.1 Short summary and overall relevance of the provided information on skin sensitisation

No evidence for skin sensitisation potential of tetramethrin or d-tetramethrin was observed in a total of three Buehler tests (Prakash 2006; Hara and Suzuki, 1980; Nakanishi 1990). The test substances were applied diluted in acetone (d-tetramethrin, 0/10 animals sensitised), undiluted, apparently as solid substance (tetramethrin, 0/10 animals sensitised), and as paste in deionised water (tetramethrin, 0/20 animals sensitised). DNCB (2,4-dinitrochlorobenzene; 10/10 resp. 3/3 animals sensitised) and 2-MBT (2-mercaptobenzothiazole; 8/10 sensitised) were used as positive controls, respectively, and showed the expected skin reactions.

The application of (solid) tetramethrin to the skin in its undiluted form may have hampered skin penetration as a prerequisite for sensitisation. Nevertheless, lack of sensitising potential for tetramethrin is in line with the outcome of the test performed with d-tetramethrin. An additional study involving intracutaneous injections of tetramethrin diluted in corn oil yielded no indication for skin sensitisation (Okuno et al., 1976). However, low reliability is assigned to this study, since it shows severe deviations from the Magnusson-Kligman protocol in OEDC 406 (i. e. no use of adjuvant, no justification for selection of concentration).

A study with 200 humans (Osbourn 1966) was judged as not reliable. The substance tested was a tetramethrin formulation of unknown specification which was heated as well as autoclaved without analysing the actual tetramethrin content prior to application. Furthermore, use of the study is ethically not justifiable as no statement of informed consent of the study subjects (some of them pregnant women) was provided.

10.7.2 Comparison with the CLP criteria

Toxicological results	CLP criteria
No animals sensitised to tetramethrin (result	Guinea pig maximisation test
of pre-guideline study with deviations from	Category 1A (H317):
M+K protocol)	\geq 30 % responding at \leq 0.1 % intradermal induction dose or
	\geq 60 % responding at $>$ 0.1 % to \leq 1 % intradermal induction
	dose
	Cotocom 1D (11217).
	Category IB (H517): 20.0(1-1)(0.0)(1-1)
	\geq 30 % to < 60 % responding at > 0,1 % to \leq 1 % intradermal
	induction dose or
	\geq 30 % responding at > 1 % intradermal induction dose
No animals sensitised to tetramethrin or d-	Buehler assay
tetramethrin (results of 3 Buehler tests)	Category 1A (H317):
	\geq 15 % responding at \leq 0.2 % topical induction dose or
	≥ 60 % responding at > 0.2 % to ≤ 20 % topical induction dose
	Category 1B (H317):
	\geq 15 % to < 60 % responding at > 0.2 % to \leq 20 % topical
	induction dose or
	\geq 15 % responding at $>$ 20 % topical induction dose

Table 31d: Results of skin sensitisation studies in comparison to the CLP criteria

10.7.3 Conclusion on classification and labelling for skin sensitisation

No classification/labelling for skin sensitisation is proposed for tetramethrin or d-tetramethrin.

10.8 Germ cell mutagenicity

Method, guidelin e, Devi-	Test system (Organism, strain)	Test substance, reference to table 5	Concentr ations tested	Res + S9	oults - S9	Remarks (information on cytotoxicity)	Reference
ations if any			(range)				
Bacterial reverse mutation test OECD 471	<u>Salmonella</u> <u>typhimurium</u> : TA98 TA100 TA102 TA1535 TA1537	Tetramethrin, dissolved in DMSO	Pre- test: 50-5000 µg/plate Main assay: 313-5000 µg/plate	+/- TA100 Neg. for all other strains	-	TA100: two-fold increase in the number of revertant colonies (+S9), no dose-response relationship No cytotoxicity up to the highest concentration tested Outcome inconclusive	Scarcella O, 2004, Research Toxicology Centre S.p.A., Endura Study No. 9324
Ames test, pre- guideline	<u>S.</u> <u>typhimurium</u> :	d- Tetramethrin, dissolved in	10-5000 μg/plate	-	-	No cytotoxicity up to the highest dose tested	Kishida F, Suzuki H, 1980,

Table 32a: Summary table of mutagenicity/genotoxicity tests in vitro

, sim. to OECD 471, non-GLP	TA98 TA100 TA1535 TA1537 TA1538 <u>E. coli</u> : WP2 <u>uvr</u> A	DMSO				Negative for genotoxicity	Sumitomo report No. IT- 00-0101
Bacillus subtilis rec assay, pre- guideline , sim. to OECD 471, non-GLP	<u>B. subtilis</u> : M45 rec ⁻ H17 (wild type)	d- Tetramethrin, dissolved in DMSO	1-500 mg/ml (10-5000 μg/plate)	-	-	No cytotoxicity up to the highest dose tested Negative for genotoxicity	Kishida F, Suzuki H, 1980, Sumitomo report No. IT- 00-0101
Bacterial reverse mutation test Non- GLP, pre- guideline , sim. to OECD 471	<u>S.</u> <u>typhimurium</u> <u>:</u> TA1535, TA1537, TA97, TA98, TA100 <u>E. coli:</u> WP2 <u>uvr</u> A	Tetramethrin, dissolved in DMSO	100-5000 μg/plate	-	-	Precipitations of test substance on plates at ≥ 2000 μ g/plate (without S9) and at 5000 μ g/plate (with S9) <u>Cytotoxicity:</u> TA97 (-S9): (> 500 μ g/plate) Negative for genotoxicity	Kogiso S, Yoshitake A, 1987, Sumitomo Report No. IT- 70-0205
DNA- repair test Non- guideline , Non- GLP	<u><i>E. coli:</i></u> W3110/pol A ⁺ and p3478/polA ⁻	Tetramethrin, dissolved in DMSO	100- 33333 μg/ plate	-	-	No cytotoxicity up to the highest concentration tested Negative for genotoxicity	McGregor DB, 1984, Inveresk Research International, Endura Report No. 2988
Chromos omal aberratio n test OECD 473	Chinese hamster Ovary (CHO) cells	Tetramethrin, dissolved in DMSO	Experime nt I: 0.781-200 µg/ml, treatment time 3 h Experime nt II: 1.56-200 µg/ml, treatment time 21 h	+/-	+/-	Genotoxicity: Increase in CA at: $\pm S9$: $\geq 50 \ \mu g/mL$ $\geq 50 \ \mu g/mL$ $\geq 100 \ \mu g/mL$ (Exp. I), $\geq 50 \ \mu g/mL$ (Exp. II)Cytotoxicity: $\pm S9$: $\geq 100 \ \mu g/ml$, $-S9 \geq 50 \ \mu g/ml$ Result: equivocal	Cilutti P, 2004, Research Toxicology Centre S.p.A., Endura Study No. 9325
omal	hamster	dissolved in	-59: 15.1- 80.3	+	-	$\leq 20.1 \mu \text{g/ml} (-\text{S9},)$	Sumitomo

aberratio n study, sim. to OECD 473	ovary (CHO) cells	ethanol	μg/ml + S9: 50.2-151 μg/ml			20 h, \geq 75.3 µg/ml (+S9, 20 h) \geq 101 µg/ml (+S9, 30h) Test considered positive under metabolic activation conditions	Report No. IT- 91-0216
Gene mutation assay OECD 476	Mouse lymphoma L5178Y TK [±] cells	Tetramethrin, dissolved in DMSO	Cytotoxici ty assay: 1.56-400 µg/ml Experime nt I: 1.56-40 µg/ml, treatment for 3 h Experime nt II: 3.13-75 µg/ml, treatment for 3 or 24 h	+/-	-		Cinelli S, 2004, Research Toxicology Centre S.p.A., Endura Study No. 9326
Mutation test, sim. OECD 476, non-GLP	Chinese hamster V79 cells	Tetramethrin, dissolved in DMSO	- \$9: 3.75- 30 µg/ml + \$9: 25- 200 µg/ml	-	-	$\frac{\text{Cytotoxicity:}}{\geq 3.75 \ \mu\text{g/ml} (-S9),} \\ \geq 100 \ \mu\text{g/ml} (+S9)$ Test result: negative	Kogiso S, 1989, Sumitomo Report No. IT- 90-0214
UDS assay, sim. to OECD 482 non-GLP	Primary rat hepatocytes	Tetramethrin, dissolved in DMSO	0.2-100 μg/ml	N/A	-	<u>Cytotoxicity:</u> 30-33 % viability at 100 µg/ml Test result: negative	Kogiso S, 1988, Sumitomo Report No. IT-80-0213

Method, guideline, deviation s if any	Species, strain, sex, No/group	Test substance, reference to table 5	Route and frequency of application	Dose levels and sampling times	Results	Reference
Micro- nucleus test OECD 474	Mice, Swiss albino NsdOla: MF1 5 M+5 F	Tetramethrin 200 mg/ml in vehicle (0.5% aqueous carboxymethyl celluose with Tween 80, 1 mL/L)	Oral gavage, twice at interval of 24 h	2000 mg/kg bw (Limit dose) Sampling at 24 h after 2 nd treatment	Negative, At all sampling times	Badarinath J.C., (2006). Toxicology Department, Advinus Therapeutics Private Limited, Endura Study No. 4416/05
Chromos omal aberration test, sim. to OECD 475, non- GLP	Mouse, ICR, 4-6 M	d-Tetramethrin, vehicle: corn oil	Single intraperito- neal dose	Sampling times: 6, 12, 24, 48 h Doses: 150, 300 mg/kg bw (24 h), 600 mg/kg bw (all sampling times)	Negative, at all doses and sampling times	Hara M, Suzuki H, 1981, Sumitomo Report No. IT- 10-0102
Chromo- somal aberration test, sim. to OECD 475	Mouse, IRC, 5 M + 5 F	Tetramethrin, Vehicle: corn oil	Single intraperito- neal dose	0-500-1000- 2000 mg/kg bw Sampling 6, 18, 30 h after injection	Negative, at all doses and sampling times	Murli H, 1992, Sumitomo Report No. IT- 21-0254

Table 32b: Summary table of mutagenicity/genotoxicity tests in mammalian somatic or germ cells in vivo

Table 32c: Summary table of human data relevant for germ cell mutagenicity

Type of data/report	Test substance, reference to table 5	Relevant information about the study (as applicable)	Observations	Reference	
No data					

10.8.1 Short summary and overall relevance of the provided information on germ cell mutagenicity

Summary of results obtained in vitro:

In general, negative results were obtained with d-tetramethrin and tetramethrin in bacterial mutation assays, irrespective of metabolic activation (Kishida and Suzuki 1980, Kogiso and Yoshitake 1987, both Sumitomo; McGregor 1984, Scarcella 2004; both Endura). Only one exception was reported in the study by Scarcella 2004, Endura, in that inconclusive results for the tester strain TA 100 were obtained with metabolic activation.

Regarding *in vitro* testing with mammalian cell systems, negative results for tetramethrin were supported by one *in vitro* test using Chinese hamster ovary (CHO) cells (Kagiso 1989; Sumitomo). None of the concentrations tested exhibited chromosomal aberrations, irrespective of metabolic activation. In addition, an UDS assay in primary rat hepatocytes (Kogiso 1988; Sumitomo) showed negative results without S9-mix (not tested with S9 mix).

By contrast, test results for tetramethrin were considered positive in a chromosomal aberrations assay in CHO cells after metabolic activation (Murli 1989; Sumitomo). Equivocal results were obtained in a further chromosomal aberration assay using CHO cells (Cilutti 2004; Endura) as well as in one mouse lymphoma assay using L5178Y TK^{\pm} cells (Cinelli 2004; Endura). In the study performed by Cilutti, 2004, increases of chromosomal aberrations were observed at the highest concentrations tested with and without metabolic activation, and were accompanied by increasing cytotoxicity.

In the gene mutation assay by Cinelli, 2004, a statistically significant increase in mutant frequency was observed in the presence of S9-mix at the highest tetramethrin concentrations tested (50 and 75 μ g/mL). At 50 μ g/mL a 1.7-fold increase in mutant frequency was observed with a calculated survival rate of 81 %. At 75 μ g/mL, mutant frequency increased to 1.9-fold of the control values but cytotoxicity was also high (57 % survival rate). As the results were observed with increasing cytotoxicity and the experiment was not repeated with the two highest concentrations, the results were regarded as equivocal. Increases of mutant frequency in the assay without metabolic activation at \geq 50 μ g/mL are not considered positive, as they were only observed at cytotoxic levels (relative survival of 25 and 0 % at 50 resp. 75 μ g/mL).

In summary, there is some indication for a slight mutagenic potential of tetramethrin in *in vitro* test systems involving mammalian cells. However, as effects were observed at increasing cytotoxic dose levels, the results are regarded as equivocal.

Summary of results obtained in vivo:

Tetramethrin and d-tetramethrin showed negative results in all *in vivo* genotoxicity assays performed. Tetramethrin displayed negative results in the Mammalian Erythrocyte Micronucleus test following oral administration of 2x 2000 mg/kg bw (limit dose) at an interval of 24 hours (Badarinath 2006; Endura). The results were supported by two earlier chromosomal aberration studies with tetramethrin (Murli 1992; Sumitomo) and d-tetramethrin (Hara and Suzuki 1981; Sumitomo). In both assays no chromosomal aberrations were observed in mammalian bone marrow after single intraperitoneal application of dose levels between 150 and 600 mg/kg bw (d-tetramethrin) and between 500 and 2000 mg/kg bw (tetramethrin).

However, the negative results for tetramethrin in the micronucleus assay have to be interpreted with care, as no data for the oral bioavailability of tetramethrin were provided in the study. Moreover, vehicle effects on oral absorption cannot be excluded. Carboxymethyl cellulose was used as the dosing vehicle which has been found to decrease the absorption rate of pyrethroids (e.g. deltamethrin) and may thereby reduce the toxic potential of pyrethroid compounds (Crofton et al. 1995; USEPA, 2007). Indeed, the limit dose used in the micronucleus assay (2x 2000 mg/kg) is above the oral LD₅₀ of d-tetramethrin for mice (LD₅₀ ~ 1000 mg/kg; Kohda et al. 1980; Sumitomo) and no significant toxic effects were observed (Badarinath 2006; Endura). By contrast, toxic signs were observed in all dosage groups of mice (500, 1000, 2000 mg/kg bw) after single i.p. application of tetramethrin in corn oil (Murli 1992, Sumitomo). The maximal tolerated dose after single i.p. application of d-tetramethrin was 600 mg/kg (7/10 deaths at 1200 mg/kg bw; Hara and Suzuki, 1981; Sumitomo). Consequently, the validity of the two *in vivo* studies carried out with i.p. application is regarded as being higher with respect to assessment of the genotoxic potential

(negative) of tetramethrin, although effects of corn oil as vehicle for intraperitoneal application cannot be ruled out completely.

Overall, negative *in vivo* findings for chromosomal aberrations and micronucleus formations outweigh the positive test results of the above mentioned inconclusive or positive *in vitro* tests, although results of *in vivo* testing after oral application of tetramethrin can only be considered reliable if evidence is provided in the assay for the systemic bioavailability of tetramethrin after oral application.

10.8.2 Comparison with the CLP criteria

Toxicological results	CLP criteria
Testing in vitro:	The classification in Category 1A is based on positive evidence
	from human epidemiological studies. Substances to be regarded
Bacterial mutation assays:	as if they induce heritable mutations in the germ cells of humans.
Generally negative for tetramethrin and d-	
tetramethrin	In classification in Category IB is based on: - positive result(s) from <i>in vivo</i> heritable germ cell mutagenicity
Tests involving mammalian cells:	tests in mammals: or
- Negative (mutation test with CHO cells.	— positive result(s) from <i>in vivo</i> somatic cell mutagenicity tests
UDS test with rat hepatocytes, tetramethrin)	in mammals, in combination with some evidence that the
	substance has potential to cause mutations to germ cells. It is
- Positive with S9-mix (chromosomal	possible to derive this supporting evidence from
aberration test, tetramethrin)	mutagenicity/genotoxicity tests in germ cells in vivo, or by
	demonstrating the ability of the substance or its metabolite(s) to
- Equivocal (chromosomal aberration test,	interact with the genetic material of germ cells; or
totramethrin)	— positive results from tests showing mutagenic effects in the
	progeny: for example an increase in the frequency of aneuploidy
	in sperm cells of exposed people.
Testing in vivo (experiments in mammals):	
	The classification in Category 2 is based on:
Negative (micronucleus test and	- positive evidence obtained from experiments in mammals
chromosomal aberration test, tetramethrin;	and/or in some cases from <i>in vitro</i> experiments, obtained from:
chromosomal aberration test, d-tetramethrin)	— somatic cell mutagenicity tests <i>in vivo</i> , in mammals; or
	— other <i>in vivo</i> somatic cell genotoxicity tests which are
	supported by positive results from <i>in vitro</i> mutagenicity assays.
	Note: Substances which are positive in <i>in vitro</i> mammalian
	mutagenicity assays, and which also show chemical structure
	activity relationship to known germ cell mutagens, shall be
	considered for classification as Category 2 mutagens.

Table 32d: Results of genotoxicity studies in comparison to the CLP criteria

10.8.3 Conclusion on classification and labelling for germ cell mutagenicity

No human data are available for tetramethrin or d-tetramethrin, hence a classification in category 1A is not possible.

On the basis of the negative results from *in vivo* animal studies (especially after i.p. administration), no further classification or labelling of tetramethrin and d-tetramethrin for genotoxicity is proposed.

10.9 Carcinogenicity

Method, guideline,	Species, strain,	Test sub- stance,	Dose levels duration of	Results	Reference
deviations if any	sex, no/group	reference to table 5	exposure		
Sim. to OECD 453, Oral, dietary, 104 weeks	Mouse, B6C3F1, 50 M + 50 F, satellite group: 40 M + 40 F	Tetrameth rin	0-12-60- 300-1500 ppm (0-2.4/3.5- 12/17- 61/85- 300/430 mg/kg bw/d (M/F)), 104 weeks	No non-neoplastic effects No neoplastic effects, no increased tumour rate	Cox R, 1986, Sumi- tomo Re- port No. IT- 61-0193
Sim. to OECD 453, non-GLP, Oral, dietary, 104 weeks	Rat, CRL:SD:C OBS, 50 M + 50 F, controls: 60 M + 60 F F1A litters from a one- generation study (animals exposed also throughout gestation and weaning)	Tetrameth rin	0-1000- 3000-5000 ppm (0-42/55- 125/165- 230/300 mg/kg bw/d (M/F) 104 weeks post weaning	Non-neoplastic effects: ≥ 3000 ppm: Cytoplasmic vacuolation of midzonal hepatocytes (M), testes enlarged (M), reduced bw and food consumption Neoplastic effects ≥ 3000 ppm: Increased incidence of interstitial adenomas of the testis 5000 ppm: Decrease in mammary tumour incidence (F) (see Table 33a - 1) Tetramethrin was administered with the diet to rats at levels of 0, 1000, 3000, and 5000 ppm for 104 weeks post-weaning. These treated rats were obtained as F _{1a} weanlings from parental animals which had been treated with the compound at levels of 0, 1000, 3000, and 6000 ppm until sexual maturity prior to mating and which continued to receive the test compound during mating and throughout the gestation and nursing	Rutter H A, 1974, Sumi- tomo Re- port No. IT- 41-0024
Sim. to OECD 453, non-GLP, Oral, dietary, 104 weeks	Rat, CR CD and Long Evans Hooded, 50 M per strain/dose group	Tetrameth rin	0-200- 1000-5000 ppm (CR CD: 0- 7.5-35-180 mg/kg bw/d, Long Evans Hooded: 0- 8-40-205 mg/kg bw/d) Parental:	Non-neoplastic effects:5000 ppm: Reduced bw gain, slight increase inincidence of testicular degeneration withassociated hypospermatogenesis oraspermatogenesis; increased weight of testis withepididymis (LE), increased absolute and relativeliver weightNeoplastic effects:5000 ppm: Statistically significant increasedincidence of interstitial tumours of the testis(see Table 33a - 2)Rats were exposed to the test substancematernally from conception to weaning and via	Pence, D H, 1981, Sumi- tomo Re- port No. IT- 11-0097

Table 33a: Summary table of animal studies on carcinogenicity

Method, guideline, deviations if any	Species, strain, sex, no/group	Test sub- stance, reference to table 5	Dose levels duration of exposure	Results	Reference
			0-1000- 3000-6000 ppm	diet for 104 weeks thereafter Follow-up on the results of the study by Rutter 1974	

Table 33a - 1: Supplementary Information: Incidences of testicular and mammary gland tumours (Rutter, 1974; Report No. IT-41-0024)

Parameter	Control		1000 ppm		3000 ppm		5000 ppm	
	Μ	F	Μ	F	Μ	F	Μ	F
Number of animals examined (after 2 years / interim sacrifice)	50/10	50/10	40/10	40/10	40/10	40/10	40/10	40/10
Mortality after 2 years	17/50	14/50	23/40	14/40	11/40	9/40	18/40	17/40
No. of animals with neoplasms (including interim sacrifice)	30/60	44/60	19/50	31/50	19/50	28/50	22/50	31/50
No. of animals with only benign tumours	26	41	17	26	17	23	19	24
No. of animals with malignant tumours	4	3	2	5	2	5	3	7
Interstitial cell adenoma in the testis	2/50	-	3/40	-	9/40	-	14/40	
Tumours in the mammary gland	1/50	31/50	0/40	26/40	0/40	21/40	1/40	12/40

No statistical analysis performed.

Table 33a – 2: Supplementary Information: Incidences of interstitial cell tumors in the testis (Pence, 1981, Report No. IT-11-0097)

Parameter	Control		200 ppm		1000 ppm		5000 ppm	
	CRCD	LE	CRCD	LE	CRCD	LE	CRCD	LE
Survival data at week 104	30/50	37/50	26/50	37/50	26/50	34/50	30/50	34/50
Interstitial cell tumour in the testis, unilateral	3	4	5	3	1	2	5	10
Interstitial cell tumour in the testis, bilateral	4	0	2	0	2	2	11	12
Total interstitial tumours of testes	7	4	7	3	3	4	16	22

No statistical significance reported

CRCD: Sprague-Dawley derived male rats LE: Male rats of Long Evans hooded strain

Type of data/report	Test substance, reference to table 5	Relevant information about the study (as applicable)	Observations	Reference			
No data							

Table 33b: Summary table of human data on carcinogenicity

10.9.1 Short summary and overall relevance of the provided information on carcinogenicity

In a chronic (2 years) oral toxicity study on tetramethrin in mice, no adverse effects (neither neoplastic nor non-neoplastic) were observed up to the highest dose of 1500 ppm (300/430 mg/kg bw/d; Cox 1986; Sumitomo).

Two pre-guideline chronic toxicity studies were performed on tetramethrin with F_{1A} rat weanlings. In the first study by Rutter (1974, Sumitomo), F_{1A} litters from a one-generation study were further exposed to tetramethrin via the diet for 104 weeks. Since parental animals had already been orally exposed to tetramethrin, it is assumed that the F_{1A} animals were exposed from conception onward (*in utero*, via milk), although the extent of exposure prior to weaning is not known. In the second study by Pence (1981, Sumitomo), which was conducted as a follow-up on the results of the Rutter study, only male animals of two rat strains (CR:CD and Long Evans Hooded) were exposed to tetramethrin from conception to two years after birth. The exposure estimates in both of the chronic studies refer to the two year dietary period.

The results of both chronic rat studies are essentially consistent: For the study by Rutter (1974), the LOAEL was set to 3000 ppm (125/165 mg/kg bw/d) for non-neoplastic effects (lower bw gain and histological abnormalities in liver) and for neoplastic effects in males. Testicular tumours were observed already at the lowest dose (1000 ppm), but achieved statistical significance at \geq 3000 ppm (\geq 125 mg/kg bw/d). Apart from the dose-dependent incidence, interstitial cell adenoma occurred bilaterally only at the medium and high doses. In addition, female rats displayed a significantly decreased incidence in benign mammary tumours (i. e. fibroadenomas) at the highest tetramethrin dose (5000 ppm).

In the study by Pence, a statistically significant increase in testicular interstitial cell tumours was confirmed in both rat strains for groups receiving the high dose (5000 ppm). Furthermore, a slight increase in the incidence of testicular degeneration with hypospermatogenesis and aspermatogenesis as compared to control rats as well as an increase in testis and liver weight were observed (group-wise incidences not reported in the original report). The NOAELs of 35 and 40 mg/kg bw/d derived for non-neoplastic and neoplastic effects in male rats are in agreement with the results of Rutter (1974). In contrast to the chronic toxicity studies performed with tetramethrin, no striking tumour-related effects were seen in a two-generation reproduction toxicity study conducted with d-tetramethrin in rats (see Pence, 1986). However, indirect parameters for hyperplasia or neoplastic effects such as testis enlargement were not specified in the two-generation). In the chronic (2 year) toxicity study by Rutter (1974), the time at which testicular interstitial cell tumours were suspected (from external signs) did not pre-date week 83 of dietary exposure. The inability of the two-generation toxicity study by Pence (1986) to detect tumourigenic effects may therefore also be due to an insufficient duration in individual animal exposure.

Rats appear to be particularly susceptible towards induction of Leydig cell adenomas, and exhibit a relatively high spontaneous incidence as compared to humans (Clegg et al., 1997). However, the mode of action by which tetramethrin leads to Leydig cell adenoma has not been specified. From the presented data for tetramethrin and d-tetramethrin concerning genotoxicity testing, it appears unlikely that tetramethrin acts tumourigenic via a genotoxic mechanism. A common basis for several groups of other non-genotoxic Leydig cell adenoma-inducing agents comprises disturbance of endocrine homeostasis, e. g. perturbation of the hypothalamic-pituitary-gonadal axis. Mechanisms leading to disruption of the hypothalamic-pituitary-gonadal axis in rodents may include a decrease in circulating sex (steroid) hormones, anti-estrogenic activity or enhancement of central dopamine receptor-dependent signalling (Clegg et al., 1997; ECBI/61/03 ("thought starter" for developing an agreed position on the relevance of Leydig cell tumours in rats to humans).

Limited evidence exists that one or more of these listed mechanisms may be involved in the mode of action by which tetramethrin enhances testicular interstitial cell tumour incidence in rats. Although the effect of tetramethrin on hepatic cytochrome P-450 expression has not been investigated, pyrethrins and individual synthetic pyrethroids have been identified as inducers in rat liver enzymes (Price et al., 2007; <u>Krechniak</u> and <u>Wrzesniowska</u>, 1991). Possible enzyme induction by tetramethrin would be consistent with the observation of liver weight increase in repeated-dose studies, including the study by Pence (1981). Hepatic enzyme induction would be expected to lead to enhanced androgen catabolism, resulting in a decrease in circulating androgen levels. As a consequence, androgen-dependent negative feed-back at the hypothalamic/anterior pituitary level would be deminished, and thus enhanced secretion of GnRH and LH would occur, ultimately leading to stimulation of Leydig cell proliferation.

Substances exhibiting anti-estrogenic or selective estrogen receptor modulating activity such as tamoxifen have been associated with Leydig cell tumours in mice (Clegg et al., 1997). A disruption of the negative feed-back exerted by estrogens on the hypothalamic-pituitary system, resulting in elevation of circulating LH, may provide an explanation for anti-estrogen-dependent increase in Leydig cell tumours. A possible anti-estrogenic activity of tetramethrin is indicated by the finding within the study by Rutter (1974), that occurrence of mammary tumours was reduced in the tetramethrin high dose group. In this case, tetramethrin would be mimicking effects of the selective estrogen receptor modulator tamoxifen. Furthermore, while estradiol showed a uterotrophic action in immature female rats, tetramethrin suppressed uterine weight as compared to untreated controls, also suggesting an anti-estrogenic activity (Kim et al., 2005), although an earlier study indicated that tetramethrin did not directly compete with estradiol concerning estrogen receptor binding (Kim et al., 2004).

Furthermore, for the rat, dopamine receptor agonists have been associated with Leydig cell tumours (reviewed by Clegg et al., 1997), presumably by causing a decrease in pituitary prolactin secretion. Since the number of LH receptors on rat Leydig cells is regulated by prolactin, a reduction in circulating prolactin results in a reduction in functional LH receptors and thus to a decreased stimulation of testosterone synthesis, which ultimately leads to enhanced GnRH release and stimulation of Leydig cell proliferation. This mechanism is regarded as not being relevant for the development of Leydig cell tumours in humans (Clegg et al., 1997; ECBI/61/03; ECBI/08/04 Add.4), since LH receptor density in humans appears not to depend on prolactin stimulation. Although dopaminergic system modulation by pyrethroids has been suggested (Hossain et al., 2006), it is unknown whether tetramethrin itself leads to stimulation of dopamine receptor-dependent pathways. Therefore, it is unclear whether this mechanism is relevant in tetramethrin-dependent support of Leydig cell tumour development.

In summary, several mechanisms by which tetramethrin enhances Leydig cell tumour incidence in male rats may be considered, but additional information is required to define the precise mode(s) of

action and to specify whether or not these mechanisms are of relevance to human health. As long as the mode(s) of action has/have not been specified and their relevance to humans has not been ruled out, tetramethrin should be classified as a Category 2 carcinogen based on the findings in rats. This conclusion is in accordance with recommendations along the IPCS framework for analysing the relevance of a cancer mode of action for humans (Boobis et al., 2006), with ECBI/08/04 Add. 4 (Conclusions from the Specialised Experts Meeting concerning Leydig cell tumours) and ECBI/61/03 ("thought starter" for developing an agreed position on the relevance of Leydig cell tumours in rats to humans).

Species and strain	Tumour type and back- ground incidence	Multi-site responses	Progression of lesions to malignancy	Reduced tumour latency	Responses in single or both sexes	Confounding effect by excessive toxicity?	Route of exposure	MoA and relevance to humans
Rat, CRL:SD:COBS	Leydig cell tumours	Increase in Leydig cell tumours in males; Decrease in female mammary tumours	Based on microscopic evaluation at week 104, no apparent capsular invasion or metastasis of adenomas observed		Male (Decrease in female mammary tumours)	No	oral	Not specified
Rat, CR and Long Evans Hooded	Leydig cell tumours		No differentiation between adenomas and carcinomas in the report		Male	No	Oral	Not specified

 Table 33d: Compilation of factors to be taken into consideration in the hazard assessment

10.9.2 Comparison with the CLP criteria

Table 33e: Results of carcinogenicity studies in comparison to the CLP criteria

Toxicological results	CLP criteria
No data on carcinogenicity of tetramethrin or d-tetramethrin in humans, e. g. in form of epidemiological studies, are available.	A substance is classified in Category 1 (known or presumed human carcinogens) for carcinogenicity on the basis of epidemiological and/or animal data. A substance may be further distinguished as:
Two independent rat studies show evidence for a tumourigenic effect of tetramethrin in animals (rat males, 3 rat strains, statistically significant increase in interstitial tumours of	Category 1A, known to have carcinogenic potential for humans, classification is largely based on human evidence, or
the testes).	Category 1B, presumed to have carcinogenic potential for humans, classification is largely based on animal evidence.
	The classification in Category 1A and 1B is based on strength of evidence together with additional considerations (see section 3.6.2.2). Such evidence may be derived from: — human studies that establish a causal relationship between
	human exposure to a substance and the development of cancer (known human carcinogen); or — animal experiments for which there is sufficient (1) evidence to demonstrate animal carcinogenicity (presumed human carcinogen)
	In addition, on a case-by-case basis, scientific judgement may warrant a decision of presumed human carcinogenicity derived from studies showing limited evidence of carcinogenicity in humans together with limited evidence of carcinogenicity in experimental animals.
Despite the statistically significant increase in testicular interstitial cell tumours in two independent rat studies, evidence is not considered sufficient to place tetramethrin in Category 1B.	The placing of a substance in Category 2 (suspected human carcinogens) is done on the basis of evidence obtained from human and/or animal studies, but which is not sufficiently convincing to place the substance in Category 1A or 1B, based on strength of evidence together with additional considerations (see section 3.6.2.2). Such evidence may be derived either from limited (1) evidence of carcinogenicity in human studies or from
As the mode of action leading to Leydig cell tumours in rats has not been specified, relevance to humans is unclear. However, in the absence of information demonstrating non-relevance to humans, relevance is	limited (i) evidence of carcinogenicity in animal studies. []
assumed by default. Based on the available animal studies, there is some uncertainty as to which extent	
promotion of adenomas may have occurred to malignancy (no differentiation between adenoma and carcinomas in the study by Pence).	
	3.6.2.2.3. Strength of evidence involves the enumeration of
	tumours in human and animal studies and determination of their
	demonstrates causality between human exposure and the
	development of cancer, whereas sufficient evidence in animals
	shows a causal relationship between the substance and an
	increased incidence of tumours. Limited evidence in humans is demonstrated by a positive association between exposure and
	cancer, but a causal relationship cannot be stated. Limited
	evidence in animals is provided when data suggest a carcinogenic

Toxicological results	CLP criteria
	effect, but are less than sufficient. The terms 'sufficient' and 'limited' have been used here as they have been defined by the International Agency for Research on Cancer (IARC) and read as follows: (a) Carcinogenicity in humans The evidence relevant to carcinogenicity from studies in humans is classified into one of the following categories: — sufficient evidence of carcinogenicity: a causal relationship has been established between exposure to the agent and human cancer. That is, a positive relationship has been observed between the exposure and cancer in studies in which chance, bias and confounding could be ruled out with reasonable confidence; — limited evidence of carcinogenicity: a positive association has been observed between exposure to the agent and cancer for which a causal interpretation is considered to be credible, but chance, bias or confounding could not be ruled out with reasonable confidence. (b) Carcinogenicity in experimental animals Carcinogenicity in experimental animals Carcinogenicity in experimental animals can be evaluated using conventional bioassays, bioassays that employ genetically modified animals, and other in-vivo bioassays or from assays with neoplasia as the end-point, consistently positive results in several models that address several stages in the multistage process of carcinogenesis should be considered in evaluating the degree of evidence of carcinogenicity in experimental animals. The evidence relevant to carcinogenicity: a causal relationship has been established between the agent and an increased incidence of malignant neoplasms or of an appropriate combination of benign and malignant neoplasms in (a) two or more species of animals or (b) two or more independent studies in one species or animals or (b) two or more independent studies in one species or animals or (b) two or more independent studies in one species or animals or (b) two or more independent studies in one species or animals or (b) two or more independent studies in one species or animals or (b) two or mo
	 — limited evidence of carcinogenicity: the data suggest a carcinogenic effect but are limited for making a definitive evaluation because, e.g. (a) the evidence of carcinogenicity is restricted to a single experiment; (b) there are unresolved questions regarding the adequacy of the design, conduct or interpretation of the studies; (c) the agent increases the incidence only of benign neoplasms or lesions of uncertain neoplastic potential; or (d) the evidence of carcinogenicity is restricted to studies that demonstrate only promoting activity in a narrow range of tissues or organs. 3.6.2.2.4. Additional considerations (as part of the weight of

Toxicological results	CLP criteria
Toxicological results	CLP criteria evidence approach (see 1.1.1)). Beyond the determination of the strength of evidence for carcinogenicity, a number of other factors need to be considered that influence the overall likelihood that a substance poses a carcinogenic hazard in humans. The full list of factors that influence this determination would be very lengthy, but some of the more important ones are considered here. 3.6.2.2.5. The factors can be viewed as either increasing or decreasing the level of concern for human carcinogenicity. The relative emphasis accorded to each factor depends upon the amount and coherence of evidence bearing on each. Generally there is a requirement for more complete information to decrease than to increase the level of concern. Additional considerations should be used in evaluating the tumour findings and the other
	factors in a case-by-case manner. 3.6.2.2.6. Some important factors which may be taken into consideration, when assessing the overall level of concern are: (a) tumour type and background incidence;
	 (b) multi-site responses; (c) progression of lesions to malignancy; (d) reduced tumour latency; (e) whether responses are in single or both sexes; (f) whether responses are in a single species or several species; (g) structural similarity to a substance(s) for which there is good evidence of carcinogenicity;
	 (h) routes of exposure; (i) comparison of absorption, distribution, metabolism and excretion between test animals and humans; (j) the possibility of a confounding effect of excessive toxicity at test doses;
	 (k) mode of action and its relevance for humans, such as cytotoxicity with growth stimulation, mitogenesis, immunosuppression, mutagenicity. Mutagenicity: it is recognised that genetic events are central in the overall process of cancer development. Therefore evidence of mutagenic activity <i>in vivo</i> may indicate that a substance has a potential for carcinogenic effects.

10.9.3 Conclusion on classification and labelling for carcinogenicity

Classification/labelling of tetramethrin and d-tetramethrin for carcinogenicity, category 2, is proposed, based on two independent rat studies demonstrating a statistically significant increase in incidence in Leydig cell tumours in male rats, without the knowledge whether the underlying mode of action may be of non-relevance to humans.

10.10 Reproductive toxicity

10.10.1 Adverse effects on sexual function and fertility

Method	Deviation (s) from	Species	Test	Dose levels	Results	Reference
Guideline	the guideline (if	Strain	substance,	duration of		
	any)	Sex	reference to	exposure		
		no/group	table 5			
Pre- guideline Sim. to OECD 415 non-GLP One- generation. Repro- duction test of Neo- Pynamin, Part 1: Fertility study in rats,	The test substance was not administered to maternal animals beyond implantation (day 7 of pregnancy), and was not administered throughout pregnancy and nursing periods. Dosing of males started 9 weeks prior to the mating period. Dosing of females commenced 2 weeks prior to the mating period.	Rat; Slc:SD 20 male and 20 female per dose group	Tetramethrin (Sumitomo) in 0.5% sodium carboxy- methylcellu- lose (vehicle)	0, 100, 300 or 1000 mg/kg bw/d gavage Dosing started at 6 weeks of age (males) or 11 weeks (females). Continued to confirmation of mating success (males) or day 7 of pregnancy (females).	Parental: 1000 mg/kg bw/d: Increase in liver weight (M), lower body weight gain after tetramethrin withdrawal (F) Reproduc- tive: 1000 mg/kg bw/d: Delayed mating, lower numbers of corpora lutea and implanta- tion sites Offspring (F1) 1000 mg/kg bw/d: Number of surviving fetuses significantly reduced; number of corpora lutea and number of implantations reduced, lower pup weight and body length, delayed ossification Parental and offspring NOAEL 300	Sato T, Tagewa G, Narama K, (1980), Sumitomo Report No. IT- 01-0075

Table 34a: Summary table of animal studies on adverse effects on sexual function and fertility

Method Guideline	Deviation(s) from the guideline (if any)	Species Strain Sex no/group	Test substance, reference to table 5	Dose levels duration of exposure	Results	Reference
Preguide- line Sim. to OECD 415 Non-GLP		Rat Slc: SD (SPF) Male (for mating) and 11-13 (pretest)/20	Tetramethrin in 0.5% carboxy- methylcellu- lose	100, 300 and 1000 mg/kg bw/d gavage day 7 of pregnancy to day 21 of lactation	mg/kg b w/d 300 and 1000 mg/kg bw: <u>Dams:</u> slight liver swelling and statisti- cally sign. increased absolute liver weight at	Sato T, Tagawa G and Narama K, (1980), Reproduction test of Neo-Pynamin, Part 4: Perinatal and postnatal study in rats, Sumitomo Banart Na LT
		(main study) females			autopsy at weaning.Report No. I' 01-0078Offspring::Sign. increase of stillborn pups, post- implantation loss in the high-dose group in pre- study	Report No. IT- 01-0078
					No embryotoxic effects in main study Maternal NOAEL: 300 mg/kg bw/d	
					Offspring NOAEL: 100 mg/kg bw/d	

Method	Deviation (s) from	Species	Test	Dose levels	Results	Reference
Guideline	the guideline (if	Strain	substance,	duration of		
	any)	Sex	reference to	exposure		
		no/group				
Two- generation repro- duction toxicity Sim. to OECD 416, non- GLP	Sperm parameters not determined, longer pre-mating dose period	Rat, Sprague- Dawley, 13 male + 26 female (F_0) 15 male + 26 female (F_1)	d-Tetra- methrin	0-100-500-3000 ppm 0, 7, 35, 210 mg/kg bw/d (M) 0, 9, 45, 270 mg/kg bw/d (F) Duration of exposure not mentioned	3000 ppm: Parental: Reduced bw gain (F: F0/F1) during all stages (F1): Bile duct hyperplasia in maternal females Offspring (F1/F2): Reduced body weight gain during lactation (M/F) Parental and offspring	Pence D (1986) Two generation reproduction study in rats, Sumitomo Report No. IT- 61-0201
					NOAEL: 500 ppm NOAEL reproductive : 3000 ppm	
Pre-guide- line, non- GLP One- generation repro- duction toxicity	Suppl. study with deficiencies, e.g. parental weight development after pre-mating, pathology/histo- pathology not reported	Rat, Sprague- Dawley, 15 male + 30 female per dose group Controls: 20 males + 40 females	Tetramethrin	0, 1000, 3000, 6000 ppm 0, 65, 185, 390 mg/kg bw/d (M) 0, 75, 227,482 mg/kg bw/d (F) Dietary administration Duration of exposure not mentioned.	Parental: None Offspring (F1): ≥ 3000 ppm: Pup weight at weaning reduced 6000 ppm: Lower lactation index NOAEL reproductive	Rutter H A (1974) One generation reproduction study – Rats, Sumitomo Report No. IT- 41-0042

10.10.2 Short summary and overall relevance of the provided information on adverse effects on sexual function and fertility

Of the submitted rat reproduction toxicity studies, one represents a two-generation study on d-tetramethrin (Pence, 1986; Sumitomo). No effects on reproductive performance were observed within this study up to the highest dose tested (3000 ppm, 210/270 mg/kg bw/d). The parental (maternal) NOAEL of 500 ppm (35/45 mg/kg bw/d) was based on reduced body weight gain in maternal animals and on bile duct hyperplasia in maternal F1 females. The offspring toxicity NOAEL of 45 mg/kg bw/d was based on reduced body weight gain in F1 and F2 generations during lactation and after feeding of 3000 ppm to maternal animals.

The other rat studies represented one-generation studies conducted with tetramethrin, administered orally either by gavage (Sato et al., 1980; Report No. 01-0075 and 01-0078, Sumitomo) or with the diet (Rutter, 1974; Sumitomo). Lower numbers of *corpora lutea* and of resulting implantations/live foetuses were reported in females at the highest dose of 1000 mg/kg bw/d in the one-generation study (01-0075), which may point to a tendency for inhibition of ovulation. However, this effect was slight (about 10 % difference) and occurred only at the highest dose applied. A reduction in litter size is not confirmed by read-across from the two-generation study for d-tetramethrin (Pence, 1986; Sumitomo). Delayed ossification in offspring in this study is attributed to reduced growth and appears to be secondary in nature, since tetramethrin was not administered to maternal animals beyond day 7 of gestation. Beside slight liver swelling and increases of liver weight as maternal toxicity at 300 and 1000 mg/kg bw/, no embryotoxic effects were seen in the second 1-generation study (01-0078).

The study conducted by Rutter (1974) is considered supplemental only. Due of lack of detail to the study report, it is unknown whether parental effects might have occurred. For example, weight development of parental animals was not recorded after the pre-mating phase and pathology/histopathology was not performed. Due to lack of detail to study, the assignment of a parental NO(A)EL is impeded. Anyhow, male and female pup weights at weaning was significantly lower in the 3000 and 6000 ppm groups. At 6000 ppm lactation index (number of pups weaned / number of pups left to nurse) was reduced.

In summary, the available data does not provide evidence for toxic effects of tetramethrin on fertility below doses causing maternal toxicity.

10.10.3Comparison with the CLP criteria

CLP criteria
Category 1A:
Known human reproductive toxicant
Category 1B:
Presumed human reproductive toxicant largely based on data
- clear evidence of an adverse effect on sexual function and
fertility in the absence of other toxic effects, or
- the adverse effect on reproduction is considered not to be a
secondary non-specific consequence of other toxic effects
Category 2:
Suspected human reproductive toxicant
- some evidence from humans or experimental animals, possibly supplemented with other information of an adverse effect on
sexual function and fertility
- where the evidence is not sufficiently convincing to place the
substance in Category 1 (deficiencies in the study).
- the adverse effect on reproduction is considered not to be a secondary non-specific consequence of the other toxic effects

10.10.4 Adverse effects on development

Table 35a: Summary table of animal studies on adverse effects on development

Method	Deviation (s) from	Species	Test	Dose levels	Results	Reference
Guideline	the guideline (if	Strain	substance,	duration of		
	any)	Sex	reference to	exposure		
		no/group	table 5			
Teratogeni	Loss of a data	Rabbit,	Tetramethrin	0, 30, 100, 300,	In a range	Robinson K,
city study	book concerned	New	in 0.5%	500 mg/kg bw/d	finding study	Washer G and
in the	with logging the	Zealand	Carbox ymeth		(500, 1000,	Noveroske J W,
rabbit	quantities of test	white,	ylcellulose	gavage	1500 mg/kg	(1991) An oral
	article used. This	20/21			bw/d) lack of	teratology study
	deviation does not	females per		day 7-19 of	bw gain (\geq	of Neo-Pynamin
OECD 414	affect the	dose group		gestation	500 mg/kg	in the Rabbit,
GLP	interpretation of				bw/d), deaths	Sumitomo
OL	this study.				(1, 4, 1 from	Report No. IT-
					500 mg/kg	11-0234
					bw/d onwards	
					and abortions	
					(2, 4, 5 from	
					500 mg/kg	
					bw/d	
					onwards) in	
					females	
					NOAEL	

Method Guideline	Deviation(s) from the guideline (if	Species Strain	Test substance,	Dose levels duration of	Results	Reference
	any)	Sex no/group	reference to table 5	exposure		
					maternal: 300 mg/kg bw/d NOAEL developmenta l: 500 mg/kg bw/d	
Teratogeni city study in the rat OECD 414 GLP	None	Rat, Crl:COBS VAF CD(SD)BR 25 females per dose group	Tetramethrin in 0.5% Carboxymeth ylcellulose	0, 150, 500, 1000 mg/kg bw gavage day 6-15 of gestation	No treatment- related effects NOAEL maternal/deve lopmental: 1000 mg/kg bw/d	Robinson K, Washer G and Noveroske J W, (1991), An oral teratology study of Neo-Pynamin in the Rat, Sumitomo Report No. IT- 11-0241
Preguidelin e Sim. to OECD 414 Non-GLP		Rat Slc: SD (SPF) rats 11-13 females (preliminar y test), 20 females (main study)	Tetramethrin in 0.5% Carboxy- methylcellu- lose	0, 100, 300, 1000 mg/kg bw gavage day 7 of pregnancy to day 21 of lactation	Slightly lower food consumption and higher liver weights at 1000 mg/kg bw/d NOAEL maternal 300 mg/kg bw/d NOAEL developmenta l: 1000 mg/kg bw/d	Sato T, Tagawa G and Narama K (1980), Reproduction test of Neo-Pynamin, Part 4: Perinatal and postnatal study in rats, Sumitomo Report No. IT- 01-0078
Preguidelin e Sim. to OECD 414 GLP	Subcutaneous administration of the test compound, number of animals insufficient, reporting lacks details on visceral examinations of foetuses	Rabbit New Zealand white 11 females per dose group	d-Tetra- methrin in corn oil	0, 30, 100, 300 mg/kg bw/d s.c. injection once daily day 6-18 of gestation	In a range finding study (3 pregnant dams), daily dosing on days 6-18 resulted in all dams dying at 1000 and 2000 mg/kg bw/d. At 500 mg/kg bw/d lower maternal bw,	Satoh R., Kashima M., Takahashi M. and Satoh H.(1982), Teratogenicity study of Neo- Pynamin Forte in rabbits, Sumitomo Report No IT-11- 0142

Method Guideline	Deviation(s) from the guideline (if any)	Species Strain Sex no/group	Test substance, reference to table 5	Dose levels duration of exposure	Results	Reference
					lesser food consumption, and lower number of live foetuses. No effects at 250 mg/kg bw/d.	
					Main study: No effects in dams and offspring.	
					NOAEL maternal/ developmenta l: 300 mg/kg bw/d	
Preguidelin e Sim. to OECD 414 GLP	Subcutaneous administration of d-Tetramethrin. 23 dams for examination at term (day 21) and 14 dams for examination of offspring at weaning. Additional groups in which post natal development was examined	Rat Sprague Dawley 37 females per dose group	d-Tetra- methrin in corn oil	0, 100, 300, 1000 mg/kg bw/d s.c. injection once daily day 7-17 of gestation	1000 mg/kg bw/d: clonic convulsions, lower food consumption and decreases in bw, increases in liver and kidney weights of dams. 300 mg/kg bw/d: Lower food consumption No treatment- related effects in fetuses. NOAEL maternal: 300 mg/kg bw/d NOAEL	Satoh R., Kashima M., Takahashi M. and Satoh H.(1982), Teratogenicity study of Neo- Pynamin Forte in rats, Sumitomo Report No IT-11- 0141
		2			l: 1000 mg/kg bw/d	a
Preguidelin e		Rat, SD (SPF) 30 females	Tetramethrin in 0.5% carboxy-	0, 100, 300, 1000 mg/kg bw/d	1000 mg/kg bw/d: Lower bw gain; liver:	Sato T and Narama K, (1980b), Reproduction

Method	Deviation (s) from	Species	Test	Dose levels	Results	Reference
Guideline	the guideline (if	Strain	substance,	duration of		
	any)	Sex	reference to	exposure		
Sim to		no, gi oup	mathad		avalling	Test of
OECD		group	methyl- cellulose	gavage	sweining, weight	Neopynamin Part
414,			centarose	day 7-17 of gesta-	increase of	2: Teratology
non-GLP		(20 females:		tion	liver and kidney	study in rats, Sumitomo
		Sacrifice at			Kidiley.	Report No. IT-
		Caesarean			No treatment-	01-0076
		section, 10			in fetuses.	
		sacri-fice at				
		wean-ing)			NOAEL	
		Ċ,			maternal: 300 mg/kg bw/d	
					NOAEL	
					developmenta 1: 1000 mg/kg	
					bw/d	
Preguidelin		Rabbit,	Tetramethrin	0, 50, 150, 500	Range-	Sato T and
e,		Japanese White,	ın 0.5%	mg/kg bw/d (main study)	at 1500	Narama K, (1980c),
Sim. to		10 6	carboxy-		mg/kg bw/d:	Reproduction
OECD 414.		per dose	cellulose	(range finding study: 0, 150, 500,	In dams, decreased bw	Test of Neopynamin Part
		group		1500 mg/kg bw/d)	gain	3: Teratology
non-GLP		Range-		gavage	500 and 1500	study in rabbits, Sumitomo
		<u>finding</u>		6	mg/kg bw/d:	Report No. IT-
		females per		day 6-18 of	Liver weight increase	01-0077
		dose group		gestation		
					Main study at 500 mg/kg	
					bw/d: In	
					dams, decreased bw	
					gain	
					Main study at	
					500 mg/kg bw/d: Lower	
					bw of fetuses	
					Skeletal	
					anomalies	
					significant: 3	
					litter (1 foetus	
					different	
					anomalies at	
					bw/d)	

Method Guideline	Deviation(s) from the guideline (if any)	Species Strain Sex no/group	Test substance, reference to table 5	Dose levels duration of exposure	Results	Reference
Preguide- line, non-GLP		Rabbit, New Zealand white, 9 females per dose group	Tetramethrin in corn oil Dosing lower than for expected effects	0-30-90 mg/kg bw/d (in add. 90 mg/kg bw/d Pyrthrin) Oral, capsule, day 8-16 of gestation	NOAEL maternal / developmenta l: 150 mg/kg bw/d No treatment- related critical effects NOAEL maternal/deve lopmental: 90 mg/kg bw/d	Dudeck T (1978), Reproduction Study Neo- Pynamin and Pyrethrin – Rabbits, Sumitomo Report No. IT- 61-0009

Type of study/data	Test substance, reference to table 5	Relevant information about the study (as applicable)	Observations	Reference
OECD rodent uterotrophic and Hershberger assays Non-GLP	Tetramethrin in corn oil	Uterotrophic assay administration was subcutaneous injection Hershberger assay administration was oral gavage Rats Sprague-Dawley, Number of animals not specified. 5 to 800 mg/kg in the uterotrophic assay 10, 50 or 100 mg/kg in the Hershberger assay	Tetramethrin may exert endocrine-disrupting effects on female rats through anti- estrogenic action. No indications for androgenic or antiandrogenic effects	Kim, S. S. et al. (2005) Assessment of estrogenic and androgenic activities of teramethrin in vitro and in vivo assays. Journal of Toxicology and Environmental Health, 68: 2277- 2289.
Soto's E- screen assay (estrogen receptor affinity), Non- guideline Non-GLP	Tetramethrin	In vitro MCF-7 BUS human breast cancer cells	No evidence for estrogenic activity or estrogen receptor affinity	Kim Y. et al. (2004), Assessing Estrogenic Activity of Pyrethroid Insecticides Using In Vitro Combination assays. Journal of Reproduction and development, 50 (2): 245-255

T-11. 25	4 - 1 - 1 - 1	Co
Laple 35C. Summary	Table of other studies relevant i	for developmental toxicity
radie 5500. Dumma	tuble of other studies fele fulle	of developmental tometty

10.10.5 Short summary and overall relevance of the provided information on adverse effects on development

From pre-guideline developmental toxicity studies in rabbits subcutaneously exposed to d-tetramethrin (Satoh et al., 1982b and respective range-finding study 1982c), a maternal and fetal NOAEL of 300 mg/kg bw/d was defined, based on mortality of all pregnant dams at 1000 and 2000 mg/kg bw/d daily subcutaneous dosing. At 500 mg/kg bw/d lower maternal body weight, lesser food consumption, and lower number of live foetuses were noted. Subcutaneous dosing of 250 mg/kg bw/d d-tetramethrin resulted in no effects. In the main study daily subcutaneous injections of 0, 30, 100, 300 mg/kg bw/d d- tetramethrin during days 6-18 of gestation no toxicological effects were seen in dams and in the offspring.

Abnormal kidney position was observed in a foetus in the 30 mg/kg group and in 3 foetuses in the 300 mg/kg group but the frequencies were not of statistical significance and therefore considered not *substance-related*. Therefore, the NOAEL (maternal / developmental) was set at 300 mg/kg bw/d.

Two further studies involving tetramethrin administration to rabbits via the oral (gavage) route support a LOAEL of 500 mg/kg bw/d for maternal toxicity and a NOAEL of 300 mg/kg bw/d. In the study by Robinson et al., (1991 a), maternal animals exhibited weight loss at this dose level, one

death and two abortions occurred at 500 mg/kg bw/d in the corresponding dose range-finding study. In the study by Sato and Narama (1980c), decreased body weight gain and an increase in liver weight were observed for dams at 500 mg/kg bw/d.

In the studies by Robinson et al. (1991a, 1991, Sumitomo), oral administration of tetramethrin revealed no developmental toxicity up to 500 mg/kg bw/d and 1000 mg/kg bw/d. Likewise, administration of 1000 mg/kg/day resulted in no maternal toxicity.

A statistically non-significant increase in the incidence of rabbit foetal skeletal anomalies was noted at 500 mg/kg bw/d tetramethrin per os (Sato and Namara, 1980c) which were not observed in the control group. As the study was not performed according to GLP and OECD guidelines (e.g. 10 animals per group only) and due to insufficient reporting and recording the study cannot be regarded as a key study. However, the results are regarded as supportive and the NOAEL of 150 mg/kg bw/d is used to establish the lowest NOAEL for developmental toxicity since it cannot be excluded that the rabbit strain used (Japanes White) is the most sensitive. In addition, the study supports the fetal LOAEL demonstrated for subcutaneously administered d-tetramethrin. Thus, from the developmental toxicity studies performed in rabbits, an overall NOAEL of 300 mg/kg bw/d was established for maternal toxicity whereas the lowest NOAEL for developmental toxicity was established at 150 mg/kg bw/d (Sato and Namara, 1980c) of tetramethrin/d-tetramethrin in the rabbit.

Four rat developmental toxicity studies were compared, one involving subcutaneous administration of d-tetramethrin and three dealing with orally administered tetramethrin. In the pre-guideline study with subcutaneous d-tetramethrin (Satoh et al., 1982a), clonic convulsions, indications for liver and kidney toxicity, as well as reduced body weight gain were reported for the dams at 1000 mg/kg bw/d, yielding a maternal NOAEL of 300 mg/kg bw/d.

Although no substance-related maternal toxicity was observed up to 1000 mg/kg bw/d in two of the studies with oral tetramethrin (Robinson et al., 1991b; Sato et al., 1980), lower body weight gain and liver/kidney weight increase at this dose in the study by Sato and Narama (1980b) are in line with the LOAEL of 1000 mg/kg bw/d set for subcutaneous d-tetramethrin. Thus, an overall maternal NOAEL of 300 mg/kg bw/d for d-tetramethrin/tetramethrin was established in rats, which is in accordance with the rabbit NOAEL for maternal toxicity.

In all of the four rat developmental toxicity studies, no treatment-related embryotoxic or teratogenic effects were noted up to the highest dose of 1000 mg/kg bw/d. Thus, the developmental NOAEL was set at 1000 mg/kg bw/d for rats, which is higher than the developmental toxicity NOAEL established for rabbits (300 mg/kg bw/d), indicating that susceptibility towards fetal toxicity may differ between species.

Evidence for an antiestrogenic activity of tetramethrin at doses of 5 mg/kg bw/d and above in female Sprague Dawley rats was provided by Kim, S.S. et al. (2005). However, antagonism to oestrogenic actions may not be mediated by binding of tetramethrin to oestrogen receptors, but rather be functional or indirect in nature as tetramethrin appeared not to compete with estradiol for estrogen receptor binding (Kim, I. Y. et al., 2004).

10.10.6 Comparison with the CLP criteria

Table 35d: Results of developmental toxicity studies in comparison to the CLP criteria

Toxicological results	CLP criteria
No human data are available for tetramethrin or d-tetramethrin, hence a classification in category 1A is not possible. On the basis of the absence of embryotoxic effects and effects on sexual function and fertility especially below maternal toxicity, no classification or labelling of tetramethrin and d-tetramethrin for reproductive toxicity is	Category 1A: Known human reproductive toxicant Category 1B: Presumed human reproductive toxicant largely based on data from animal studies - clear evidence of an adverse effect on development in the absence of other toxic effects, or - the adverse effect on reproduction is considered not to be a secondary non specific consequence of other toxic effects.
proposed.	Category 2: Suspected human reproductive toxicant - some evidence from humans or experimental animals, possibly supplemented with other information, of an adverse effect on development and - the evidence is not sufficiently convincing to place the substance in Category 1 (deficiencies in the study). - the adverse effect on reproduction is considered not to be a secondary non-specific consequence of the other toxic effects

10.10.7 Adverse effects on or via lactation

Table 36a: Summary table of animal studies on effects on or via lactation

Method Guideline	Deviation(s) from the guideline (if any)	Species Strain Sex no/group	Test substance, reference to table 5	Dose levels duration of exposure	Results	Reference	
Refer to reproductive studies with oral application							

10.10.8 Short summary and overall relevance of the provided information on effects on or via lactation

Refer to reproductive studies with oral (dietary or gavage) application

10.10.9 Comparison with the CLP criteria

No data

10.10.10 Conclusion on classification and labelling for reproductive toxicity

No human data are available for tetramethrin or d-tetramethrin, hence a classification in category 1A is not possible.

On the basis of the absence of embryotoxic effects and effects on sexual function and fertility especially below maternal toxicity, no further classification or labelling of tetramethrin and d-tetramethrin for reproductive toxicity is proposed.

10.11 Specific target organ toxicity-single exposure

Method Guideline,	Test substance,	Species Strain	Route of exposure	Dose levels duration of	Results	Reference
from the	to table 5	Sex no/group		exposure		
guideline (if						
any)		D	XX 1 1	0.5.(20.0)		
OECD 403 Acute inhalation toxicity study with Tetramethrin in Wistar rats. GLP Technical deficiencies: Volume of air chamber 500 L, suggesting long time to achieve stea- dy-state of	Tetra- methrin aerosol in cyclo- hexanone (50% w/v); mean aerosol particle size: G1: 0.67 ± 0.26 μ m; G2: 0.68 ± 0.26 μ m	Rat, Wistar Pre-study (G1): 2 M + 2 F Main study (G2): 5 M + 5 F	Head and nose exposure	0-5.63 ± 0.86 mg/L 4 h	LC ₅₀ : > 5.63 mg/L Slight lacrimation and nasal discharge on day 1 (all rats in G2), normal from day 2 onwards, otherwise no toxic signs observed. Absence of signs of acute toxicity in comparison to other studies suggests that concentration of 5.63 mg/L may not have been achieved in the breathing zone, study not appropriate for classification purposes	Venugopala RK, 2006, Toxicology Department, Advinus Therapeutics Private Limited., Endura Study N° 4414/05
concentra-						
tion; no indi- cation of whether con- centration measure- ments per- formed in breathing zone; dense aerosol accumu- lation in chamber of G2 groups Pre-	d-Tetra-	Rat,	Inhalative,	0-0.026-	LC ₅₀ : > 1.18 mg/L (151	Suzuki T,

Table 37a: Summary table of animal studies on STOT SE
Method Guideline, Deviation(s) from the guideline (if any)	Test substance, reference to table 5	Species Strain Sex no/group	Route of exposure	Dose levels duration of exposure	Results	Reference
guideline OECD 403, non-GLP. Acute study, inhalative, whole body 3 h exposure instead of 4 h in TG 403, 1981; Dose-finding study for a subacute (28 day) study	methrin dissolved in: deodorised kerosene mist, particle size 1.23-1.51 μm	Sprague- Dawley 10 M + 10 F	whole body	0.131-0.243- 0.595-1.18 mg/L (approx. 0- 3.3-16.8- 32.3-76.3-151 mg/kg bw); 3 h	mg/kg bw); ≥ 0.131 mg/L: Muscular fibrillation, urinary incontinence, limb paralysis, bradypnoe, irregular respiration (no. of affected animals and severity of findings not reported; toxic signs began to appear 15 to 30 min, after initiation of exposure and disappeared 1 to 2 hours after exposure) at 1.18 mg/L: 1/10 females died	Kohda H, Misaki Y, Okuno Y, Koyama Y, Miyamoto J, 1981, Sumitomo Report No. IT-10-0144 (Doc III 6.1.3)
Pre- guideline OECD 412 Non-GLP 28 day inhalation 3 h / day exposure	d-Tetra- methrin dissolved in: deodorised kerosene mist, particle size 1.23-1.51 μm	Rat, Sprague- Dawley 10 M + 10 F	Inhalative, whole body	0-0.026- 0.049-0.087 mg/L 3 h / day exposure for 7 days a week	≥ 0.087 mg/L: Slight bradypnoe, irregular respiration, salivation directly after exposure (no. of affected animals and severity of findings not reported), no cumulative effect. Increase in leucocyte and decrease in eosinophils count at 0.087 mg/l NOAEL: 0.049 mg/L	Suzuki T, Kohda H, Misaki Y, Okuno Y, Koyama Y, Miyamoto J, 1981, Sumitomo Report No. IT-10-0144 (Doc III 6.1.3)
90 day inhalation OECD 413 GLP	Tetra- methrin in corn oil Mist particles size 0.65 – 0.95 μm	Rat, Crj:CD(SD) 10 M + 10 F	Inhalative, whole body	0-0.020- 0.134-0.824 mg/L (~0-4.5-29.8- 183 mg/kg bw/d) 6 h/day for 5 days a week over 13- weeks	≥ 0.020 mg/L: increased liver and kidney weights (M/F) In addition at ≥ 0.134 mg/L (29.8 mg/kg bw/d): irregular respiration bradypnea, decrease bw, changes of haematological (increased fibrinogen, prolongation of blood clotting activities) and blood chemistry parameters (increase in cholesterol and phospholipid levels (M) increased GGT and leucine aminotransferase levels (M)), dark-red discoloration of liver; soft and large liver, hepatocellular hypertrophy, hvaline droplets in renal	Kawaguchi (1991) IT-10-0239 ((Doc III 6.4.3.(1)) Sumitomo

Method Guideline, Deviation(s) from the guideline (if any)	Test substance, reference to table 5	Species Strain Sex no/group	Route of exposure	Dose levels duration of exposure	Results	Reference
					tubules (M). In addition at 0.824 mg/L: decrease spontaneous activity. Nasal discharge, salivation, red tears, urinary incontinence. Increased AIP, AST (M), and gamma-GT (M + F) levels, increased cholesterol levels (M + F), focal necroses in liver, hyaline casts in renal tubules (M) NOAEC: 0.02 mg/L (4.5 mg/kg bw/d) (for incidences and severity see Table 38d)	
90 day inhalation Determin- ation of the NOEL OECD 413 GLP	Tetra- methrin in corn oil Mist particles size 0.65 – 0.95 μm	Rat, Crj:CD(SD) 10 M + 10 F	Inhalative, whole body	0-0.002- 0.004-0.02 mg/L (0-0.42-0.98- 4.4 mg/kg bw/d) 6 h/day for 5 days a week over 13- weeks	Beside increase of liver weights in F (absolute and relative), no adverse effects observed NOAEC: 0.02 mg/L (4.5 mg/kg bw/d)	Kawaguchi (1991 b) IT-10-0238 (Doc III 6.4.3.(2)) Sumitomo

10.11.1 Short summary and overall relevance of the provided information on specific target organ toxicity – single exposure

Clinical signs of neurotoxicity were observed in the acute inhalation study performed by Suzuki et al. (1981; Sumitomo) with d-tetramethrin and have to be considered for classification as some of them were also observed in the 28-day study by Suzuki et al. (1981; Sumitomo) with d-tetramethrin as well as in the 90-day study performed by Kawaguchi (1991; Sumitomo) with tetramethrin. Significant neurotoxic effects (e.g. muscular fibrillation, urinary incontinence, limb paralysis, bradypnoe, irregular respiration) were observed in the acute and 90-day inhalative toxicity study with d-tetramethrin at concentrations of 0.131 mg/L or higher.

Slight bradypnoe, irregular respiration and salivation directly after exposure were noted in the 28-day inhalative study (Suzuki et al., 1981) at \geq 0.087 mg/L. A cumulative effect was not noted.

The observed effects can be presumed to have the potential to produce significant toxicity in humans on the basis of evidence from studies in experimental animals at a moderate concentration (in accordance with

Guidance to Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of substances and mixtures; November 2013). Hence the proposed classification is "STOT SE 2; H371" for inhalative exposure.

According to guidance values in the above cited guidance document to Regulation (EC) No 1272/2008, classification as "STOT SE 1; H370" (inhalation rat: dust/mist/fume cat. 1: $C \le 1.0$ mg/L; Cat. 2: $5.0 \ge C > 1.0$) might be considered. However, since the severity of the effects was not clearly documented in the acute inhalation study (study was performed to estimate the LC₅₀), classification as "STOT SE 2; H371" is proposed. Although neurotoxic effects may have been responsible for the observed mortality resulting in the LC₅₀ > 1.18 mg/L additional classification as STOT SE is justified as the neurotoxic effects were already observed at approximately 10-fold lower concentrations. The severity of the effects cannot be estimated from the provided data.

10.11.2 Comparison with the CLP criteria

Table 37d: Results of toxicity studies relevant for STOT SE in comparison to the CLP criteria

Toxicological results	CLP criteria			
Data on significant toxicity in humans are lacking.	Category 1 (H370)	Substances that have produced significant toxicity in humans		
	Oral (rat): $C \le 300 \text{ mg/kg bw}$	or that, on the basis of evidence from studies in experimental animals, can be presumed to		
	Dermal (rat or rabbit): $C \le 1000$ mg/kg bw	have the potential to produce significant toxicity in humans following single exposure		
Since the severity of neurotoxic effects was not clearly documented in the acute inhalation	Inhalative (rat, dust/mist/fume): $\leq 1 \text{ mg/L/4 h}$	- reliable and good quality evidence from human cases or epidemiological studies; or		
study (study was performed to estimate the LC_{50}), classification as "STOT SE 1; H370" is not proposed.		- observations from appropriate studies in experimental animals in which significant and/or severe toxic effects of relevance to human health were produced at generally low exposure concentrations.		
On the basis of evidence from studies in	Category 2 (H371)	Substances that, on the basis of		
concentration (especially noted under specific target organ toxicity – repeated exposure), the observed neurotoxic effects were essentially acute effects and can be presumed to have the potential to produce significant toxicity in	Oral (rat): $2000 \ge C > 300$ mg/kg bw	evidence from studies in experimental animals can be presumed to have the potential to be harmful to human health following single exposure		
humans (in accordance with Guidance to Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of substances and mixtures; November 2013). Hence the proposed classification is "STOT SE 2: H371" for inhalative exposure	Dermal (rat or rabbit): 2000 ≥ C > 1000 mg/kg bw	- observations from appropriate studies in experimental animals in which significant toxic effects, of relevance to human health, were produced at generally moderate exposure		
, <u></u> ,	Inhalative (rat, dust/mist/fume): $5 \ge C > 1 \text{ mg/L/4 h}$	concentrations.		
	Category 3 (H335/H336)	Transient target organ effects		

Toxicological results	CLP c	riteria
	Guidance values do not apply (mainly based on human data)	This category only includes narcotic effects and respiratory tract irritation. These are target organ effects for which a substance does not meet the criteria to be classified in Categories 1 or 2 indicated above. These are effects which adversely alter human function for a short duration after exposure and from which humans may recover in a reasonable period without leaving significant alteration of structure or function.

10.11.3 Conclusion on classification and labelling for STOT SE

STOT SE 2; H371 (May cause damage to the central nervous system if inhaled).

10.12 Specific target organ toxicity-repeated exposure

Table 38a: Summary table of animal studies on STOT RE

Method Guideline, Deviation(s) from the	Test substance, reference to table 5	Species Strain Sex no/group	Route of exposure	Dose levels duration of exposure	Results	Reference
guideline (if any)						
Sim. to OECD 407, non-GLP	d-Tetra- methrin	Rat, CRJ:CD (SD), 10 M + 10 F / dose group	Oral, dietary,	0-300-3000- 10000 ppm (0-30- 290/295- 965/940 mg/kg bw/d (M/F)) 28 days	From 3000 ppm onwards: Increased cholesterol, albumin, total protein, and glucose levels , increased liver weights (regarded as adaptive) 10000 ppm: increased ALT and AST levels; Liver: Focal necrosis, (M), enlargement (M + F), peripheral lobular hypertrophy of parenchymal cells Haematology: Increased thrombocyte levels (M), decreased haematocrit and haemoglobin (M) Other: Increased urinary protein levels (M), de- creased bw gain NOAEL: 3000 ppm (290/295 mg/kg bw/d (M/F))	Hosokawa, S. (1985) Sumitomo report No. IT-20-0188 (Su: Doc III- A6.3.1)
OECD 408	Tetra- methrin	Rat, Wistar	Oral, dietary,	0-500-1000- 2000 ppm	1000 + 2000 ppm: Increased liver weights	Malleshappa, H.N. (2002).
GLP	in food	/group	Including 4- week recovery period	(0-38-76-151 mg/kg bw/d), Recovery group at 0 + 2000 ppm 90 days	(rel./abs; M) and cholesterol (M/F), hypertrophy of hepatocytes (M) 2000 ppm: Neurological effects: significant increase in landing foot splay (M) increased liver weight (F) NOAEL: 1000 ppm (76 mg/kg bw/d)	Endura Study N°3343/01, 24 (En: Doc III- A6.4.1.1)
Sim. to OECD 408, non-GLP	d-Tetra- methrin in corn oil	Rat, Sprague- Dawley, 3 mo: 12 M	Oral, dietary	0-100-300- 1000-3000 ppm (0-5.8/7-	1000 ppm onwards: Slightly increased urinary protein and cholesterol levels (M/F), increased liver (M/F) and kidney weights	Hosokawa S, Hiromori T, Seki T, Okuno Y, Miyamoto J,

Method	Test	Species	Route of	Dose levels	Results	Reference
Guideline	substance	Strain	exposure	duration of	Results	Reference
Deviation(s)	reference	Sex	exposure			
from the	to table 5	no/group		chiposui c		
guideline (if		no, group				
anv)						
					2.5	1000
		+ 12 F/dose		17/21-58/71-	(M) In addition at 3000 ppm:	1980, Sumitomo
		(satellite		mg/kg bw/d	Increased kidney weights	Report No.
		groups)		(M/F))	(MF), significant reduced	IT-00-0139
					bw (M/F) , swelling and	(Su: Doc III-
		6 mo: 20 M		3 months +	'luster surface' <u>of the liver</u>	A6.4.1)
		+ 20 F /		o monuis	(M), cosmophine bodies in renal tubular epithelium	
		(main			(M)	
		groups)				
					NOAEL: 1000 ppm $(58/71)$	
Sim. to	Tetra-	Rat,	Oral, dietary	0-500-1500-	<u>5000 ppm:</u>	Suzuki, T,
OECD 408,	methrin	Sprague-		5000 ppm	Increased cholesterol levels	Okuno Y.,
non-GLP		Dawley,		(0-30-95-325	(M/F), increase in absolute (M) and relative (M/F) liver	1977, Sumitomo
		16 M + 16		mg/kg bw/d	weight, decreased	Report No.
		F/dose			haemoglobin levels (M),	IT-60-0015
		group		6 months	decreased AIP and ALAT	(Su: Doc III-
					(M), decreased body weight gain $(M+F)$	A6.4.1(2))
					gain (m+r)	
					NOAEL 1500 ppm (95	
~		-			mg/kg bw/d)	
Sim. to	Tetra- methrin	Dog, Beagle	Oral, dietary	0-1250-2500-	2500 ppm onwards:	Pence D,
non-GLP	meanm	6 M + 6 F /	cietar y	5000 ppm	albumin/globulin ratio	Sumitomo
		dose group		(0-45-90-180	(M/F), increase in	Report No.
				mg/kg bw/d)	cholesterol (F)	IT-11-0098
				6 months	increased liver weight (M),	(Su: Doc III - A6 4 1(1))
				o monuis	tremors (M+F)	110.1.1(1))
					5000	
					<u>Decrease in total protein</u>	
					(M/F), albumin (M/F);	
					increase in cholesterol	
					(M/F); decrease blood urea	
					nitrogen (M), decreased	
					counts (M); relative liver	
					weight increase (M/F);	
					decrease in absolute +	
					relative ovary weight; Ovary mammary gland:	
					absence of	
					histopathological changes	
					associated with oestrus (i.e.	
					hypertrophy: mammary	
					gland hyperplasia, secretary	

Method	Test	Species	Route of	Dose levels	Results	Reference
Guideline,	substance,	Strain	exposure	duration of		
Deviation (s)	reference	Sex	_	exposure		
from the	to table 5	no/group				
guideline (if						
any)						
					activity, and stromal and ductal proliferation)	
					mg/kg bw/d)	
Sim. to OECD 452 GLP	Tetra- methrin	Dog, Beagle, 4 M + 4 F/dose group	Oral, dietary	0-300-1200- 5000-10000 ppm (0-8/9-36/36- 147/157- 286/325 mg/kg bw/d (M/F)) 1 year	1200 ppm: Slightly increased cholesterol and phospholipids (M), increased liver weight (M) ≥ 5000 ppm: Lower bw (F), increased cholesterol, phospholipid and AIP levels (M+F), decreased albumin levels (F), decreased erythrocyte count, haemoglobin and haematocrit levels (F), increased liver weight (M) NOAEL: 1200 ppm (36 mg/kg bw/d) Slight changes in liver physiology and clinical chemistry were already observed at 1200 ppm in males. However, the deduced NO(A)EL is based on aggravation of liver effects (increase in liver weight also in females, increase in AIP) and on occurrence of haematological effects	Walker M D, 1996, Sumitomo Report No. IT-0276 (Doc. III- A6.5.4)
90 dav	Tetra-	Rat.	Inhalative.	0-0.020-	> 0.020 mg/L: increased	Kawaguchi
inhalation	methrin	Crj:CD(SD)	whole body	0.134-0.824	liver and kidney weights (M/F)	(1991 a)
OECD 413	in corn oil	10 M + 10			In addition at $> 0.124 \text{ mg/I}$	IT-10-0239
		F		(~0-4.5-29.8-	(29.8 mg/kg bw/d):	(Doc. III
GLP	Mist			bw/d)	irregular respiration,	0.4.3.1)
	particles				bradypnoe, decrease bw,	Sumitomo
	size 0.65 – 0.95 μm			6 h/day for 5 days a week over 13- weeks	(increased bilirubin and urobilinogen) and blood chemistry parameters (increased cholesterol and	
					phospholipid levels (M) increased GGT and leucine aminotransferase levels	
					(M)), dark-red discoloration of liver, soft and large liver,	
					hepatocellular hypertrophy,	

Method Guideline, Deviation(s) from the guideline (if any)	Test substance, reference to table 5	Species Strain Sex no/group	Route of exposure	Dose levels duration of exposure	Results	Reference
					hyaline droplets in renal tubules (M) In addition at 0.824 mg/L: decrease spontaneous activity. Nasal discharge, salivation, red tears, urinary incontinence. Increased AIP, AST (M), and gamma-GT (M + F) levels, increased cholesterol levels (M + F), focal necroses in liver, hyaline casts in renal tubules (M) NOAEC: 0.02 mg/L (4.5 mg/kg bw/d)	

Table 38b: Summary table of human data on STOT RE

Type of data/report	Test substance, reference to table 5	Route of exposure	Relevant information about the study (as applicable)	Observations	Reference	
No Data						

Table 38c: Summary table of other studies relevant for STOT RE

Type of study/data	Test substance, reference to table 5	Relevant information about the study (as applicable)	Observations	Reference			
None							

10.13 Short summary and overall relevance of the provided information on specific target organ toxicity – repeated exposure

Toxicity of orally administered substance was tested in rats over 4 weeks in a study with dtetramethrin (Hosokawa, 1985; Sumitomo), in a 90-day study with tetramethrin (Malleshappa, 2002; Endura) as well as in one 3-6-month study in rats with d-tetramethrin (Hosokawa, 1980; Sumitomo) and in a study over 6 months with tetramethrin (Suzuki et al., 1977; Sumitomo). Common effects observed in these studies included a decrease in body weight gain, haematological alterations, changes in clinical chemistry, increased liver weight and dose-dependent liver toxicity. The LOAELs were predominantly based on liver toxicity (gross and histopathology and clinical chemistry) and haematological findings. The derived subacute and subchronic NOAELs were 290 mg/kg bw/d for exposure over 4 weeks (d-tetramethrin; Hosokawa 1985, Sumitomo), 90 mg/kg bw/d (2500 ppm) and 36 mg/kg bw/d (1200 ppm) for exposure of Beagle dogs to tetramethrin over one year (Walker 1986; Sumitomo) and 6 months (Pence, 1981, Sumitomo).

Changes in blood chemistry (decreased albumin/globulin ratio, decrease in total protein and albumin, increased cholesterol levels) and haematological parameters (decreased blood urea nitrogen decreased haematocrit and erythrocyte counts), increased liver weight as well as increased nervousness and tremors were noted at 36 mg/kg bw/d (Walker, 1996) and 90 mg/kg bw/d (Pence 1981). In the study conducted by Pence (1981) female dogs showed a decrease in absolute + relative ovary weight as well as absence of histopathological changes associated with oestrus (i.e. corpora lutea; endometrial hypertrophy; mammary gland hyperplasia, secretary activity, and stromal and ductal proliferation) at the highest dose of 5000 ppm (180 mg/kg bw/d). This finding was not reproducible in the study performed by Walker (1996).

Increased AIP levels, increased liver weights, and decreased erythrocyte count, haemoglobin and hematocrit levels, were observed from dose level of 5000 ppm (147/157 mg/kg bw/d; M/F) onwards.

These values were supported by NOAELs of 76 mg/kg bw (1000 ppm; Malleshappa 2002; Endura) and 95 mg/kg bw (1500 ppm; Suzuki and Okuno 1977; Sumitomo) in subchronic toxicity studies between 3 and 6 months in rats.

Furthermore, two overlapping studies were performed to test subchronic (3 months) inhalative toxicity of tetramethrin in Sprague Dawley Crj:CD rats (Kawaguchi, 1991a and b; Sumitomo), the study IT-10-238 (Kawaguchi 1991 b) displaying a refined spacing of the low concentration range as compared to the study IT-10-239 (Kawaguchi 1991 a). In the study No. -238 no adverse effects were observed up to a concentration of 0.02 mg tetramethrin /L air (4.4 mg/kg bw/d). In the study -0239 (Kawaguchi 1991 a), adverse effects relevant for the LOAEC of 0.134 mg/L comprised lower body weight gain (males, mid and high dose; females high dose without statistical significance), changes in clinical chemistry (higher total protein, lower albumin, higher alpha2-globulin resulting in lower A/G ratio in both sexes of the high dose group, higher cholesterol, phospholipid and Γ -Glutamyl transpeptidase in males of the mid and high dose and in females of the high dose),, urinalysis (significantly increased blirubin and urobilinogen in both sexes, mid and high dose), haematology (prolonged prothrombin time, higher activated partial thromboplastin time (APTT) and fibrinogen in both sexes, high dose) organ toxicity (increased absolute and relative liver weights in both sexes from the low dose onwards), macro- (dark red liver, soft and large liver in males of the mid and high dose, with lesser extent also in females of these dose groups), and histolopathological organ abnormalities (In the liver: focal necrosis and bile duct hyperplasia in males of the high dose group, massive necrosis in 1/10 female of the high dose group, hepatocellular hypertrophy in both sexes from the mid and high dose group. In the kidney: Basophilic tubules, eosinophilic bodies, hyaline casts and hyaline droplets in tubules with higher incidence and/or severity grading in males of the mid and high dose). Acute clinical signs occurred during the daily exposure period (irregular respiration, bradypnoe). Both 3-month studies pointed to a NOAEC of 0.02 mg/L (approximate daily dose of 4.5 mg/kg bw) and a LOAEC of 0.134 mg/L. (29.8 mg/kg bw/d). Conversion of inhaled concentrations into inhaled daily doses was based on default assumptions regarding body weight, inhalation volume and 100 % availability and suggests a significantly higher sensitivity to d-tetramethrin and tetramethrin by the inhalative than the oral route of administration in the rat (NOAEL for tetramethrin of 4.5 mg/kg bw/d, 3 months inhalative versus 95 mg/kg bw/d, in subchronic oral study in rats (6 months; Suzuki et al. 1977; Sumitomo).

The effects in the 3-month inhalation toxicity study (Kawaguchi 1991; see table 38d) were more pronounced in male rats of the mid and high dose groups than in female rats of these dose groups and were considered adverse. Anyhow, in comparison with the criteria for specific target organ

toxicity after repeated exposure, on the basis of the weight of evidence and by the use of expert judgement the observed changes in liver physiology and clinical chemistry were considered not adequate for a classification of tetramethrin as specific target organ toxicants following repeated exposure (STOT RE). The observed neurotoxic effects seen in the 28-day and 90-day studies were essentially acute effects and they were considered relevant for classification as specific target organ toxicant – single exposure (STOT SE) (for neurotoxicity). In the 90-d rat study with inhalative exposure (Kawaguchi et al. 1991a) concentration dependent incidences of irregular respiration were observed in mid- and high concentration groups (LOAEC: 0.134 mg/L) over the entire period of exposure. Bradypnoea and decrease of spontaneous activity occurred in a concentration dependent manner and were considered adverse in the highest exposure group (animals affected per exposure day, days with affected animals). Bradypnoea was observed up to day 12 (males) resp. day 45 (females), decrease of spontaneous activity up to day 45 of exposure (males and females). The results are summarised in Table 38d. The severity of effects was not reported.

Table 38 d: Summary table of selected adverse effects in the 3-month inhalative toxicity study in rats (Kawaguchi; 1991 a)

Males	Dose groups				
Effect	0 mg/L	0.02 mg/L	0.134 mg/L	0.824 mg/L	
	(Vehicle control)	(4.5 mg/kg bw/D)	30 mg/kg bw/d)	183 mg/kg bw/d)	
Mean body weight on day $89 \pm SD(g)$	552 ± 52.5	550 ± 62.4	494 * ± 31.8	454 ** ± 43.4	
Final body weight (g)	524 ± 51.2	521 ± 61.9	470* ± 28.4	422** ± 39.9	
Prothrombin time (sec)	17.7 ± 1.64	17.3 ± 1.95	18.9 ± 2.94	21.3** ± 3.35	
Activated partial thromboplastin time (sec)	24.0 ± 1.62	23.3 ± 2.93	24.9 ± 2.37	27.3** ± 2.79	
Fibrinogen (mg/dl)	233.9 ± 14.85	234.9 ± 15.48	235.2 ± 16.77	261.2** ± 22.75	
Total protein (g/dl)	6.0 ± 0.25	6.2* ± 0.28	6.2* ± 0.24	6.5** ± 0.25	
Albumin (%)	54.0 ± 1.54	51.5* ± 0.23	52.0 ± 1.93	50.0** ± 3.46	
A2- Globulin (%)	4.8 ± 0.43	5.2 ± 0.47	5.4* ± 0.58	5.9** ± 0.96	
A/G ratio	1.18 ± 0.075	1.07 ± 0.117	1.09 ± 0.085	1.05* ± 0.150	
Cholesterol (mg/dl)	70 ± 18.8	72 ± 14.9	92* ± 20.3	114** ± 29.9	
Phospholipid (mg/dl)	105 ± 21.8	110 ± 21.0	135* ± 29.5	172** ± 44.6	
Г-Glutamyl transpeptidase (U/l)	1 ± 1.2	1 ± 1.2	4** ± 2.1	13** ± 3.6	
Liver weight (abs., g)	14.20 ± 1.945	15.58 ± 2.532	$16.00* \pm 1.480$	17.68** ± 2.212	
Liver weight (rel., g%)	2.71 ± 0.156	2.98* ± 0.217	3.42** ± 0.194	4.19** ± 0.369	
Gross pathological ch	anges	L	I		
Liver: Dark red	0/10	0/10	4/10	9/10	
Liver: Soft	0/10	0/10	3/10	3/10	
Liver: Large	0/10	0/10	4/10	6/10	
Histopathological exa	mination	L	I		
Liver: Focal necrosis	1/10	0/10	0/10	3/10	
Liver: Hepatocelluar hypertrophy	0/10	0/10	5/10 (slight)	5/10 (slight) 4/10 (mild)	
Liver: Bile duct hyperplasia	0/10	0/10	0/10	4/10 (slight)	
Kidney: hyaline droplets in tubules	2/10 (slight)	4/10 (slight)	3/10 (slight) 4/10(mild) 1/10 (severe)	2/10 (slight) 3/10(mild) 5/10 (severe)	
Clinical signs in first 2	2 weeks (10 days of exp	osure)			
Bradypnoea days with ≥ 1 animal affected/days with exposure	1/10 (0)	0/10 (0)	0/10 (0)	10/10 (6)	

Males	Dose groups			
Effect	0 mg/L	0.02 mg/L	0.134 mg/L	0.824 mg/L
	(Vehicle control)	(4.5 mg/kg bw/D)	30 mg/kg bw/d)	183 mg/kg bw/d)
(mean animals affected per day)				
Exposure: days 1 - $14^{\$}$				
Irregular respiration:	7/10	9/10	10/10	10/10
# days with ≥ 1 animal affected/days with exposure (mean animals affected per day) Exposure: days 1 - $14^{\$\$}$	(2)	(2)	(7)	(10)
Decrease of	1/10	1/10	8/10	10/10
spontaneous activity # days with ≥ 1 animal affected/days with exposure (mean animals affected per day)	(0)	(0)	(2)	(9)
Exposure: days 1 - 14 ^{§§§}				

§: days 6, 7, 13, 14: non-exposure, bradypnoea occurred only incidental after day 12 of exposure

§§: days 6,7, 13, 14: non-exposure, irregular respiration: all animals in the two highest exposure groups affected on every exposure day during entire treatment period, groups vehicle control and lowest concentration: incidental following approx. 2 wks of exposure §§§: days 6, 7, 13, 14: non-exposure, decrease in spontaneous activity, decreases in spontaneous activity observed at highest concentration up to day 45 of exposure, afterwards no more incidences reported

Females		Dose groups					
Effect	0 mg/L	0.02 mg/L (4.5 mg/kg bw/D)	0.134 mg/L 30 mg/kg bw/d)	0.824 mg/L 183 mg/kg bw/d)			
Mean body weight on day $89 \pm SD$ (g)	310 ± 30.2	305 ± 27.7	296 ± 24.3	288 ± 22.8			
Final body weight (g)	291 ± 27.9	287 ± 27.1	274 ± 22.7	259 ± 21.6			
Prothrombin time (sec)	14.0 ± 0.25	13.9 ± 0.23	14.1 ± 0.25	14.5** ± 0.76			
Activated partial thromboplastin time (sec)	20.7 ±1.46	20.2 ± 1.43	20.6 ± 1.50	22.4** ± 1.59			
Fibrinogen (mg/dl)	173.7 ± 17.32	161.1 ± 18.44	163.8 ± 13.49	190.8* ± 16.86			
Total protein (g/dl)	6.5 ± 0.35	6.5 ± 0.45	6.6 ± 0.28	7.1** ± 0.20			
Albumin (%)	59.3 ± 3.49	50.4 ± 2.26	58.3 ± 3.07	53.0** ± 2.39			
A2- Globulin (%)	5.0 ± 0.77	5.5 ± 0.48	5.3 ± 0.41	6.1 ± 0.78			
A/G ratio	1.47 ± 0.204	1.47 ± 0.139	1.41 ± 0.183	1.16** ± 0.109			
Cholesterol (mg/dl)	80 ± 10.1	83 ± 14.1	91 ± 17.9	117** ± 17.8			
Phospholipid (mg/dl)	148 ± 21.5	158 ± 35.1	162 ± 23.4	196 ± 25.4			
Г-Glutamyl transpeptidase (U/l)	1 ± 1.2	1 ± 1.2	2 ± 1.1	9** ± 7.5			
Liver weight (abs., g)	7.48 ± 0.885	7.96 ± 1.341	8.78**±0.811	10.24** ± 0.639			
Liver weight (rel., g%)	2.57 ± 0.135	2.77* ± 0.288	3.21** ± 0.071	3.97** ± 0.273			
Gross pathological ch	anges	I	1				
Liver: Dark red	0/10	0/10	1/10	7/10			
Liver: Soft	0/10	0/10	0/10	1/10			
Liver: Large	0/10	0/10	2/10	7/10			
Histopathological exa	mination	I					
Liver: Massive necrosis	0/10	0/10	0/10	1/10			
Liver: Hepatocelluar hypertrophy	0/10	0/10	2/10 (slight)	9/10 (slight)			
Liver: Bile duct hyperplasia	0/10	0/10	0/10	1/10 (slight)			
Clinical signs in first 2	2 weeks (10 days of exp	osure)					
Bradypnoea # days	0/10	0/10	1/10	10/10			
with ≥ 1 animal affected/days with exposure (mean animals affected per day)	(0)	(0)	(2)	(5)			
Exposure: days 1 - 14 [§]							
Irregular respiration:	7/10	6/10	10/10	10/10			

Females		Dose groups			
Effect	0 mg/L	0.02 mg/L (4.5 mg/kg bw/D)	0.134 mg/L 30 mg/kg bw/d)	0.824 mg/L 183 mg/kg bw/d)	
# days with ≥ 1 animal affected/days with exposure (mean animals affected per day) Exposure: days 1 - $14^{\$\$}$	(1)	(1)	(3)	(10)	
Decrease of	0/10	0/10	3/10	10/10	
spontaneous activity # days with ≥ 1 animal affected/days with exposure (mean animals affected per day) Exposure: days 1 - $14^{\$\$\$}$	(0)	(0)	(0)	(6)	

** Significantly different from vehicle control (P<0.01)

* Significantly different from vehicle control (P<0.05)

§: days 6, 7, 13, 14: non-exposure, bradypnoea occurred only incidental after day 12 of exposure

§§: days 6,7, 13, 14: non-exposure, irregular respiration: all animals in the two highest exposure groups affected on every exposure day during entire treatment period, groups vehicle control and lowest concentration: incidental following approx. 2 wks of exposure §§§: days 6, 7, 13, 14: non-exposure, decrease in spontaneous activity, decreases in spontaneous activity observed at highest concentration up to day 45 of exposure, afterwards no more incidences reported

Study reference	Effective dose (mg/kg/d)	Length of exposure	Correction of the effective dose when extrapolated to 90- day exposure	Classification supported by the study
Not necessary				

Table 38e: Correction of the effective dose

10.13.1 Comparison with the CLP criteria

Table 39d: Results of toxicity studies relevant for STOT RE in comparison to the CLP criteria

Toxicological results	CLP criteria
Data on significant toxicity in humans are lacking and guidance values are not applicable.	Category 1 (H372): Substances that have produced significant toxicity in humans or that, on the basis of evidence from studies in experimental animals, can be presumed to have the potential to produce significant toxicity in humans following repeated exposure. Substances are classified in Category 1 for target organ toxicity (repeat exposure) on the basis of: reliable and good quality evidence from human cases or epidemiological studies; or observations from appropriate studies in experimental animals in which significant and/or severe toxic effects, of relevance to human health, were produced at generally low exposure concentrations. Equivalent guidance values for 28-day and 90-day studies: Inhalation dust/mist/fume, rat: 28-day: ≤ 0.06 mg/L/6 h/d 90-day: ≤ 0.02 mg/L/6 h/d
On the basis of evidence from studies with repeated exposure in experimental animals at a moderate concentration, the observed effects (liver) can be presumed to represent adaptative effects only and not to have the potential to produce significant toxicity in humans (in accordance with Guidance to Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of substances and mixtures; November 2013). Hence, no classification for "STOT-RE" for oral exposure is proposed.	Category 2 (H373): Substances that, on the basis of evidence from studies in experimental animals can be presumed to have the potential to be harmful to human health following repeated exposure. Substances are classified in category 2 for target organ toxicity (repeat exposure) on the basis of observations from appropriate studies in experimental animals in which significant toxic effects, of relevance to human health, were produced at generally moderate exposure concentrations. Guidance dose/concentration values are provided below (see 3.9.2.9) in order to help in classification. In exceptional cases human evidence can also be used to place a substance in Category 2. Equivalent guidance values for 28-day and 90-day studies: Inhalation dust/mist/fume, rat: $28-day: \leq 0.6 \text{ mg/L/6 h/d}$

10.13.2 Conclusion on classification and labelling for STOT RE

Classification and labelling for STOT RE is not proposed.

10.14 Aspiration hazard

Type of study/data	Test substance, reference to table 5	Relevant information about the study (as applicable)	Observations	Reference
		Not applic	able	

11. EVALUATION OF ENVIRONMENTAL HAZARDS

11.1 ACUTE AQUATIC HAZARD

Method	Species	Test (endpoint, design, duration)	Results ¹	Key or Supportive study	Remarks	Reference
EPA OPP 72-1	Lepomis macrochir us	Mortality flow-through 96 h	LC ₅₀ = 16 µg/l (m)	supportive	Solvent DMF used; sublethal/behaviour al responses observed: quiescence, fish on bottom of the test chamber.	Bowman, 1990; Tetramethri n_14.4.1_03 _short-term toxicity fish_Sumito mo
EPA OPP 72-1	Oncorhyn chus mykiss	Mortality flow-through 96 h	LC ₅₀ = 3.7 μg/l (m)	key	Solvent DMF used; sublethal/behaviour al responses observed: loss of equilibrium, surfacing, erratic swimming, laboured respiration.	Bowman, 1990; Tetramethri n_14.4.1_04 _short-term toxicity fish_Sumito mo
OECD 203	Zebra fish (Danio rerio)	Mortality semi-static 96 h	LC ₅₀ = 33 μg/l (m)	key	Other effects: tumbling during swimming; solvent DMF used	Seyfried B, 2002; Tetramethri n_14.4.1_01 _short-term toxicity fish_Endura
OECD 203	Zebra fish (<i>Danio</i> <i>rerio</i>)	Mortality flow-through 96 h	$LC_{50} = 34.9 \ \mu g/l$ (m)	supportive	Solvent ethanol used	Croce V., 2006; Tetramethri n_14.4.1_02 _short-term toxicity fish_Endura
EPA OPP 72-2	Daphnia magna	Immobility flow-through 48 h	EC ₅₀ = 0.11 mg/l (m)	key	Solvent DMF used; abnomal behaviour observed: surfacing, daphnids on bottom of the vessel, trailing extraneous material, moveing slower.	Blasberg, 1993; Tetramethri n_14.4.2_02 _short-term toxicity invertebrate s_Sumitomo
OECD 202	Daphnia magna	Immobility static 48 h	EC ₅₀ = 0.16 mg/l (m)	key	Solvent DMF used	Seyfried, 2002; Tetramethri n_14.4.2_01 _short-term toxicity invertebrate s_Endura
OECD 201	Pseudokir chneriella	growth inhibition	$ErC_{50} > 0.25$ mg/l (m)	кеу	Solvent DMF used	Hoberg 2002;

Table 40: Summary of relevant information on acute aquatic toxicity

	subcapitat	static	NOErC = 0.25			Tetramethri
	a	72 h	mg/L (m)			n_14.4.3_02 _growth inhibition algae_Sumit omo
OECD 201	Scenedes mus subspicat us	growth inhibition static 72 h	ErC ₅₀ > 0.33 mg/l (m) NOErC = 0.33 mg/l (m)	key	Solvent DMF used	Seyfried, 2002; Tetramethri n_14.4.3_01 _growth inhibition algae_Endur a

Indicate if the results are based on the measured (m) or on the nominal (n) concentration

11.1.1 Acute (short-term) toxicity to fish

From one applicant two acute toxicity studies with fish are available for Tetramethrin ((both Bowman (1990), cf. table 40). Both studies were performed in flow-through systems according to EPA guideline with analytical monitoring of the test substance concentration at test start and end. 20 fish were exposed to 5 test concentrations $(2.5 - 40 \,\mu\text{g/l} \text{ nominal for } O. mykiss; 25 - 400 \,\mu\text{g/l}$ nominal for L. macrochirus), a control and a solvent control. Dimethylformamide (DMF) was used as a solvent. The solvent control chamber received an aliquot of 0.1 ml of DMF which was approximately equivalent to that received by the highest test concentration. The results from both studies are based on mean measured concentration as the measured concentrations significantly deviate from the nominal concentrations. In the acute toxicity test with Lepomis macrochirus the mean measured concentrations represent 45 (+3.3) % of the nominal concentrations. In the study with Oncorhynchus mykiss the mean measured concentrations represent 71 (\pm 10) % of the nominal concentrations. In both studies mortality occurs already after 24 h of exposure and increases only slightly with increasing exposure time. This is also reflected by the LC_{50} for the different exposure times: For Lepomis macrochirus, the LC₅₀ values were 18 μ g/l (24 and 48 h), 17 μ g/l (72 h) and 16 μ g/l (96 h); for Oncorhynchus mykiss the respective values were 7 μ g/l (24 h), 4.6 μ g/l (48 h), 3.9 μ g/l (72 h) and 3.7 μ g/l (96 h). The lowest effect value is therefore the 96 h-LC₅₀ 3.7 μ g/L.

Two acute fish tests with *Danio rerio* (Seyfried (2002) and Croce (2006), cf. table 40) were provided by a second applicant, The study from Seyfried (2002) was performed in a semi-static system with daily test medium renewal and with analytical monitoring of the test substance concentration. DMF was used as a solvent at a concentration of 100 μ g/L test water. For each test concentration (4.6, 10, 21, 46, 100 and 210 μ g/L nominal) seven fish were exposed over a period of 96 hours. The test substance concentration decreased during the test medium renewal periods of 24 hours to 2 to 20 % of the nominal values. Tumbling during swimming could be observed for a test substance concentration of 21 μ g/L nominal (mean measured 7.8 μ g/L) and higher. Mortality occurred first at a concentration of 46 μ g/L nominal (mean measured 22 μ g/L). A LC₅₀ of 33 μ g/L was obtained after 96 h based on mean measured concentrations.

A second study from Croce (2006) used a flow-through system with analytical monitoring of the test substance concentration. The test substance was dissolved in 95% ethanol (stock solution) resulting in a solvent concentration of 0.06% in the aquaria. For each test concentration (30, 63, 134, 286 and 600 μ g/L nominal) seven fish were exposed over a period of 96 hours. The concentration of the test substance decreased during the exposure time from less than 20% of the nominal value for the lowest test concentrations, to 40 - 58% for the highest concentrations. Mortality and sublethal behaviour (signs of distress like apathy and lateral swimming) fist occurred

at a test substance concentration of 63 μ g/L nominal (10.3 μ g/L mean measured). A LC₅₀ of 34.9 μ g/L was obtained after 96 h based on mean measured concentrations. For both studies the LC₅₀ values are nearly identical. The lowest effect value for *Danio rerio* is 33 μ g/l.

The lowest available aquatic endpoint, taking into account the studies of both applicants, is the $LC_{50} = 3.7 \mu g/l$ for *Oncorhynchus mykiss*. The classification of Tetramethrin should be based on this endpoint.

11.1.2 Acute (short-term) toxicity to aquatic invertebrates

An acute toxicity study with *Daphnia magna* according to EPA guideline was performed for Tetramethrin using a flow-through system (Blasberg, 1993). The test substance concentration was measured at test start and end. 20 daphnids divided in 2 replicates were exposed to 5 test substance concentrations (0.06 - 1 mg/l nominal), a control and a solvent control. DMF was used as a solvent. The solvent control chamber received an aliquot of 0.1 m/l of DMF which was approximately equivalent to that received by the highest test concentration. The result is based on mean measured concentrations significantly deviate from the nominal concentrations The mean measured concentrations was 31 (\pm 5) % of the nominal concentrations. The 24h-EC₅₀ was > 0.38 mg/l, the highest concentration tested. The 48 h-EC₅₀ was 0.11 mg/L.

In a second study, (Seyfried, 2002) *Daphnia magna* were exposed to Tetramethrin over a period of 48 h in a static test system with analytical monitoring of the test substance. The test substance concentration decreased to 2 to 5 % of the nominal values at the end of the test, the endpoints were therefore based on mean measured concentrations. Dimethylformamide (DMF) was used as a solvent at a concentration of 100 μ g/L test solution. 20 daphnids divided in 2 replicates were exposed to 5 test substance concentrations (0.23, 0.5, 1.1, 2.3 and 5.0 mg/l nominal), a control and a solvent control. Immobile daphnids were first observed at a concentration of 1.1 mg/L nominal (0.46 mg/L mean measured) and the EC₅₀ based on mean measured concentration is 0.16 mg/l.

11.1.3 Acute (short-term) toxicity to algae or other aquatic plants

An algae growth inhibition test according to OECD 201 is available for Tetramethrin (Hoberg, 2002). Green algae *Pseudokirchneriella subcapitata* were exposed to 5 test concentrations (0.25 mg/l – 4 mg/l nominal), a control and a solvent control (3 replicates each) over 72 h. Dimethylformamide (DMF) was used as a solvent. The solvent control chamber received an aliquot of 0.1 ml/l of DMF which was approximately equivalent to that present in the test solutions. Test substance concentration was measured at test start and end. At test start measured concentrations were in the range of 24 - 73 % of nominal. After 72 hours at the 3 highest test concentrations the concentration at test end was 20 - 22 % of nominal. Due to the strong deviation between measured and nominal concentrations, the effect values have to be based on mean measured concentration. According to the OECD Guidance Document on Difficult Substances (OECD, 2002) half of the limit of quantitation should be used, if the concentration at test end cannot be quantified. No effects on growth rate or biomass could be found up to the highest concentration tested. Therefore, the NOE_RC is 0.25 mg/l and the ErC₅₀ > 0.25 mg/l.

Furthermore, a limit test (Seyfried, 2002) was performed with *Scenedesmus subspicatus* with 5 mg/l (nominal) or 1.36 mg/l (initial measured concentration) of test substance. During the test period (72h), the test substance concentration decreased to 6 % of the initial value. This decrease can be due to photolytic or hydrolytic degradation. DMF was used as a solvent at a concentration of 100 μ g/L test solution. The density of algal cells (cell number x 10⁴/mL) was measured after 24, 48 and 72 h. The eCA decided to use the geometric mean measured concentration, which corresponds to a

NOEC of 0.33 mg/l. EC_{50} values could not be calculated due to the absence of adverse effects at the tested concentration of 1.36 mg/l, therefore the E_rC_{50} is > 0.33 mg/l.

11.1.4 Acute (short-term) toxicity to other aquatic organisms

No studies with other aquatic organisms in addition to the above mentioned are available.

11.2 LONG-TERM AQUATIC HAZARD

No long term aquatic endpoints are available for Tetramethrin.

11.3 BIOACCUMULATION

Table 41: Summary of relevant information on bioaccumulation

Method	Species	Results	Key or Supportive study	Remarks	Reference
OECD 305	Bluegill Sunfish (Lepomis macrochirus)	827 L*kg _{wet fish} ⁻¹	Key	Information is only available for trans- isomers of Tetramethrin, information on the cis- isomers is lacking	SUMITOMO: Saito S, Miyamoto M, Tagawa Y and Hagino S (1994); Report No. IM-40-0019
QSAR (according to TGD, 2003)	-	1560 L*kg _{wet fish} ⁻¹	Supportive	Log K _{ow} : 4.58 (25°C)	SUMITOMO:R oth, H. (2006)
QSAR (according to TGD, 2003)	-	>598 L*kg _{wet fish} -1	Supportive	Log K _{ow} : >4.09 (20°C)	ENDURA: Technical Guidance Document on Risk Assessment, part II, 2003, formula 74

11.3.1 Estimated bioaccumulation

Table 42: Estimations on aquatic bioconcentration

Basis for estimation	log P _{OW} (measured)	Estimated BCF for fish (freshwater)	Reference
Standard equation (74), TGD on Risk Assessment (2003), Part II, chapter 3.8.3.2	4.58	1560 L*kg _{wet fish} ⁻¹	SUMITOMO: Roth, H. (2006)
Standard equation (74), TGD on Risk Assessment (2003), Part II, chapter 3.8.3.2	>4.09	$>598 L*kg_{wet fish}^{-1}$	ENDURA: Technical Guidance Document on Risk Assessment, part II, 2003, formula 74

Based on the physicochemical properties an approximate estimation of the bioconcentration factor BCF can be calculated according to TGD (EC 2003, part II, chapter 3, equation 74, p. 126). Taking into account the log K_{OW} value of 4.58 given by the company Sumitomo the BCF_{fish} amounts to:

 $log BCF_{fish} = 0.85 * log K_{OW} - 0.70$ $Log BCF_{fish} = 0.85 \cdot (4.58) - 0.70$ $Log BCF_{fish} = 3.193$ $BCF_{fish} = 1560 L*kg_{wet fish}^{-1}$ K_{OW} Octanol-water partition coefficient

BCF_{fish} Bioconcentration factor for fish on wet weight basis

The validated log K_{OW} value given by Endura is >4.09 resulting in a BCF value >598 L*kg_{wet fish}⁻¹. As a second log K_{OW} value of 4.58 is available submitted from the company Sumitomo, which is more precise and suits to the stated log K_{OW} value of >4.09 from Endura, the log K_{OW} value of 4.58 will be used for assessment of the bioaccumulation potential of tetramethrin.

Summarised the calculated BCF_{fish} for tetramethrin amounts to 1560 L*kg_{wet fish}⁻¹.

11.3.2 Measured partition coefficient and bioaccumulation test data

Table 43: Measurements of aquation	bioconcentration/depuration
------------------------------------	-----------------------------

Guideline/ Test method	Exposure [days]	Initial concentr. (nominal)	Measured Steady state BCF _L ¹	Calculated Kinetics BCF _L ¹	T _{1/2} for clearance [days]	Identified Metabolites ≥10%	Reference	
				[Alc- ¹⁴ C]-(1RS)-trans-tetramethrin				
			827	642	6.06	Whole fish and edible portion: THPI, HPI		
US EPA Subdivision N, § 165-4, Laboratory Studies of 28 Pesticide Accumula- tion in Fish (1982	8 1 μg/L -				1 Unknown	SUMI- TOMO:		
		[/	Saito, S., Miyamoto, M.,					
		μg/L 722	695	1 37	Whole fish: CRA, COOH-CRA	Tagawa, Y. and Hagino, S. (1994);		
					Edible portion: CRA, CH ₂ OH-CRA	DocNo. IM-40-0019		
							Non-edible portion: CRA, CRA conj., COOH-CRA, COOH-CRA conj1 & conj2	

In consequence of the log K_{OW} above 3 an experimental study with fish is required. A study on bioaccumulation in aquatic organisms is missing for the active substance tetramethrin (isomeric ratio: 4:4:1:1 of 1R-trans-tetramethrin, 1S-trans-tetramethrin, 1R-cis-tetramethrin, 1S-cis-tetramethrin). Instead an aquatic bioaccumulation study with (1RS)-trans-tetramethrin (1:1 mixture of the both trans-isomers) was delivered by the company Sumitomo, meaning that information on the cis-isomer ratios in the samples of the available study and toxicokinetics of the cis- and trans-isomers in rat read-across of the BCF value derived for (1RS)-trans-tetramethrin to tetramethrin including the cis-isomers is possible (explanation see below).

A dynamic 42-day study was conducted to evaluate the accumulation and the elimination of (1RS)trans-tetramethrin as well as its metabolism in bluegill sunfish (Lepomis macrochirus). All test fish were from the same year class (less than 1 year of age) and held 8 months prior to testing. Their initial mean body weight was 1.9 ± 0.2 g, they had an initial mean standard body length of 4.1 ± 0.1 cm, and a mean fat content of 3.7%. The fish sampled during the study had a body weight and a standard body length of 2.49 ± 0.47 g and 4.4 ± 0.2 cm. Further information on weight, length and fat content are not available. Due to this a growth correction of the resulting BCF values is not possible (see Annex V of OECD 305). The lipid normalisation to 5% was related to the initial mean fat content of 3.7% as further information on fat content is not available. In the uptake phase 85 fish were exposed each to either $[Alc-{}^{14}C]$ - or $[Acid-{}^{14}C]$ - (1RS)-trans-tetramethrin at the concentration of 1 µg/L under a flow-through test condition for 28 days at 25 °C. The measured concentrations for 14 C and (1RS)-trans-tetramethrin in water were 0.899 – 1.10 µg/L and 0.549 – 0.766 µg/L for [Alc-¹⁴C] preparation, and $0.922 - 1.10 \ \mu g/L$ and $0.536 - 0.792 \ \mu g/L$ for [Acid-¹⁴C] preparation, respectively. On day 28 the fish were transferred to fresh running water to determine elimination rates. For analysis of the ¹⁴C compounds in fish, 3 fish for whole fish analysis and 3 additional fish for edible portion (body, muscle, skin and skeleton) and non-edible portion (fin, head and internal organs) analyses were randomly picked up from the treated aquaria on days 3, 7, 14, 21 and 28 of exposure. On days 1, 3, 7, 10 and 14 of the recovery, three fish for whole fish analysis and additional 3 fish for edible portion and non-edible portion analyses were randomly sampled from the treated and control aquaria.

For whole fish and total radioactivity the uptake rate and depuration rate constants were estimated with BIOFAC at 54.2 L kg⁻¹ day⁻¹ in fish and 0.114 day⁻¹ for [Alc-¹⁴C]- (1RS)-trans-tetramethrin and 260 L kg⁻¹ day⁻¹ and 0.506 day⁻¹ for [Acid-¹⁴C]- (1RS)-trans-tetramethrin, respectively.

The values of BCF_{SSL} and the kinetic BCF_L related to total radioactive residues, whole fish and a lipid content of 5% derived for [Alc-¹⁴C]- (1RS)-trans-tetramethrin amounts to 827 and 642 L*kg_{wet} $_{fish}^{-1}$, respectively.

The values of BCF_{SSL} and the kinetic BCF_L related to total radioactive residues, whole fish and a lipid content of 5% derived for [Acid-¹⁴C]- (1RS)-trans-tetramethrin amounts to 722 and 695 $L^*kg_{wet fish}^{-1}$, respectively.

A stable steady state concentration was reached in the study conducted with $[Alc-^{14}C]-(1RS)$ -transtetramethrin, but not in the study conducted with $[Acid-^{14}C]-(1RS)$ -trans-tetramethrin. As additionally the BCF values derived from the study conducted with $[Alc-^{14}C]-(1RS)$ -transtetramethrin are higher than the BCF values derived for $[Acid-^{14}C]-(1RS)$ -trans-tetramethrin the environmental risk and hazard assessment for tetramethrin will be based on the BCF values determined for $[Alc-^{14}C]-(1RS)$ -trans-tetramethrin as a worst-case approach. The BCF_{SSL} results with 827 L*kg_{wet fish}⁻¹ in a higher value than the BCF_{KL} with 642 L*kg_{wet fish}⁻¹. Due to this the BCF_{SSL} of 827 L*kg_{wet fish}⁻¹ related to total radioactive residues, whole fish and lipid content of 5% derived for (1RS)-trans-tetramethrin will be used as a worst case in the environmental risk and hazard assessment.

For edible portion and total radioactivity the uptake and depuration rate constants were estimated at 34.0 L kg⁻¹ and 0.09 day⁻¹ for [Alc-¹⁴C] preparation as well as 46.5 L kg⁻¹ and 0.270 day⁻¹ for [Acid-¹⁴C] preparation, respectively. For BCF in edible portion a steady state was only reached in the approach with [Alc-¹⁴C] preparation. Moreover, the derived BCF values for the [Alc-¹⁴C] preparation are higher than that derived for the [Acid-¹⁴C] preparation, so the results from the [Alc-¹⁴C] preparation are used for BCF derivation related to edible portion. The BCF_{KL} is with 511 L*kg_{wet fish}⁻¹ higher than the BCF_{SSL} with 453 L*kg_{wet fish}⁻¹ and can be used as the worst-case value for edible portion. Both BCF values are normalised to a fat content of 5%.

For non-edible portion and total radioactivity the uptake and depuration rate constants were estimated at 99.1 L kg⁻¹ and 0.144 day⁻¹ for [Alc-¹⁴C] preparation as well as 424 L kg⁻¹ and 0.380 day⁻¹ for [Acid-¹⁴C] preparation, respectively.Regarding BCF in non-edible portion steady state was only reached in the approach with [Acid-¹⁴C] preparation. As additionally the resulting BCF values for the [Acid-¹⁴C] preparation are higher than that derived for the [Alc-¹⁴C] preparation, the BCF derivation for non-edible portion is based on the results derived for [Acid-¹⁴C] preparation. The BCF_{KL} is with 1508 L*kg_{wet fish}⁻¹ higher than the BCF values are normalised to a fat content of 5%.

Despite the study on bioaccumulation was conducted with (1RS)-trans-tetramethrin (1:1 mixture of the both trans-isomers) the derived BCF values can be used for the active substance tetramethrin containing also cis-isomers (isomeric ratio: 4:4:1:1 of 1R-trans-tetramethrin, 1S-trans-tetramethrin, 1R-cis-tetramethrin, 1S-cis-tetramethrin), if taking the available information on optical trans-isomer ratios in the samples and toxicokinetics of the cis- and trans-isomers in rat into account for read-across between cis- and trans-isomers.

Measurement of the ratios of the both isomers R-trans-tetramethrin and S-trans-tetramethrin verifies that they remain at ca. 1/1 ratio in water and fish during the study (see table 4-15). This means that the BCF value of 827 $L^{*}kg_{wet fish}^{-1}$ derived for (1RS)-trans-tetramethrin is also valid for the single trans-isomers.

Label position	Sample	R/S ratio
	Water (exposure 0 days)	53 / 47
[Acid- ¹⁴ C]	Water (exposure 28 days)	48 / 52
	Fish, non edible (exposure 21 days)	54 / 46
	Fish, edible (exposure 21 days)	51 / 49

 Table 44: Optical isomer ratio in the samples

	Fish, whole (exposure 14 days)	40 / 60
	Fish, whole (exposure 28 days)	46 / 54
[Alc- ¹⁴ C]	Fish, non-edible (exposure 21 days)	53 / 47
	Fish, whole (exposure 28 days)	52 / 48

Toxicokinetics of the cis- and trans-isomers of tetramethrin in rat were almost identical. For details see chapter 3.2 "Toxicokinetics, Metabolism and Distribution". Minor differences relating to the relative amount of radiocarbon metabolites excreted via urine and the initial elimination velocity were observed for the trans- and cis-isomers. Very rapid systemic and/or pre-systemic metabolic degradation by oxidation and ester hydrolysis has been shown which is slower for cis- than for trans-isomers. However, for cis- as well as trans-isomers a rapid elimination from the body could be observed with excretion of >94% of the dosed ¹⁴C into faeces and urine within 2-7 days. As only observed difference trans-isomers are more excreted via urine (trans: 42 - 74%, cis: 9 - 49%) and cis-isomers more via faeces (trans: 21 - 58%, cis: 45 - 91%). For cis- and trans-isomers the remaining ¹⁴C tissue residues were widely distributed with highest concentrations in blood cells and generally low, with 0.2 - 0.4% after 7 days.

The major metabolic pathway of [Alc-¹⁴C]-trans-tetramethrin was confirmed to be common between fish and rat. Following cleavage of the ester linkage, the liberated alcohol moiety was further transformed by N-dealkylation, followed by reduction of the 1,2-double bond and/or cleavage of the imide linkage.

Taking the information on similarity of rapid elimination from the body and low remaining ¹⁴C tissue residues of cis- and trans-isomers in rat as well as the common major metabolic pathway shown for the trans-isomer in rat and fish into account, read-across between cis- and trans-isomers related to bioaccumulation behaviour in fish seems reasonable. Additionally, the similar K_{OC} values of the cis- (2045 mL/g) and trans-isomers (2754 mL/g) may indicate, that BCF values of the trans-and cis-isomers might also be similar. QSAR calculation related to single isomers for support of this conclusion is not possible, as SMILES codes are unable to indicate isomerism. More complex structure activity investigations were not possible as well, due to non availability of suitable tools.

For the reasons described above the BCF values derived for (1RS)-trans-tetramethrin (1:1 mixture of the both trans-isomers) are also valid for the active substance tetramethrin (isomeric ratio: 4:4:1:1 of 1R-trans-tetramethrin, 1S-trans-tetramethrin, 1R-cis-tetramethrin, 1S-cis-tetramethrin).

The half-life for clearance related to total radioactive residues and whole fish amounts to 6.06 days and 1.37 days for $[Alc-^{14}C]-(1RS)$ -trans-tetramethrin and $[Acid-^{14}C]-(1RS)$ -trans-tetramethrin,

respectively. The time to reach 90% of steady-state related to total radioactivity was determined to be 20.1 days for [Alc-¹⁴C]- (1RS)-trans-tetramethrin and 4.55 days for [Acid-¹⁴C]- (1RS)-trans-tetramethrin.

For edible portion half-life for clearance related to total radioactive residues was determined to be 7.70 days and 2.57 days for [Alc-¹⁴C] and [Acid-¹⁴C] preparation, respectively. The time to reach 90% of steady-state related to total radioactivity was determined to be 25.6 days for [Alc-¹⁴C]-(1RS)-trans-tetramethrin and 8.52 days for [Acid-¹⁴C]- (1RS)-trans-tetramethrin.

For non-edible portion half-life for clearance related to total radioactive residues was determined to be 4.81 days and 1.82 days for [Alc-¹⁴C] and [Acid-¹⁴C] preparation, respectively. The time to reach 90% of steady-state related to total radioactivity was determined to be 16.0 days for [Alc-¹⁴C]-(1RS)-trans-tetramethrin and 6.06 days for [Acid-¹⁴C]- (1RS)-trans-tetramethrin.

The metabolites in whole fish, edible and non-edible portions were analysed by TLC for the fish samples on days 3, 7, 14, 21, and 28 of exposure. Metabolites detected for both ¹⁴C preparations in whole fish throughout the uptake phase with ≥ 10 % of total radioactivity are THPI (max. 13.1%, day 3), HPI (max. 13.0%, day 3), CRA (max. 20.1%, day 3) and COOH-CRA conj.-1 (max. 15.6%, day 7) and conj.-2 (max. 10.8%, day 7). All metabolites detected with ≥ 10 % in whole fish decreased to levels between 2.3 and 8.0 at the end of uptake phase and 0.3% and not detectable between day 7 and day 10 of depuration phase. In edible portion 4 metabolites $\geq 10\%$ were detected for both ¹⁴C preparations during the uptake phase, THPI (max. 22.0%, day3), HPI (max. 20.8%, day 3), CRA (max. 50.4%, day 3) and CH₂OH-CRA with unknown metabolite A (max. 14.6%, day 7). At the end of the uptake phase all metabolites were observed with 3.3 - 11.0%. After 7 - 10 days of depuration levels of these metabolites decreased to 5.3% and not detectable in edible portion. In non-edible portion detected metabolites ≥ 10 % during the uptake phase are Unknown (maximum value of the single 14 unidentified spots pooled in Unknown is 10.1%, day 3 of depuration phase), CRA (max. 16.1%, day 3), CRA conj. (max. 11.2%, day 7), COOH-CRA (10.6%, day 7), COOH-CRA conj.-1 (21.1%, day 7) and COOH-CRA conj.-2 (11.3%, day 3) for both ¹⁴C preparations. All these metabolites decrease to levels between 4.5 - 8.1% at the end of uptake phase and 3.4% and not detectable after 7 - 10 days of depuration. Based on these results further investigation on the bioaccumulation behavior of the observed metabolites seems not to be necessary.

Information about metabolites detected in the bioaccumulation study conducted with (1RS)-transtetrametrin may also be used for the assessment of the active substance tetramethrin as it is not expected that the metabolisation process will result in building of different metabolites for the single isomers. However, it cannot be excluded that the built amounts will be different and that different isomers of the metabolites built of the chrysanthemic acid part might occur regarding bioaccumulation of tetramethrin (containing cis- and trans-isomers).

In a publication of Corcellas et al. (Environment International 75 (2015) 110–116) bioaccumulation of 12 pyrethroides including tetramethrin were investigated in wild river fish collected in 4 different Iberian rivers. Pyrethroids were detected in all analysed samples, detection frequency of tetramethrin was 83%. Evaluation of the enantiomeric contribution of tetramethrin was not possible, but in general an accumulation preference of the cis-isomers could be observed according to this publication. Levels of pyrethroids was compared with those of other pollutants like flame retardants, personal care products, hormones and pharmaceuticals. Pyrethroids were detected more

frequently in the samples than most other compounds and were also found in higher concentrations. The results of this publication should be kept in mind in future in case of renewal of the authorization procedure. Until then maybe further information might be available on monitoring data regarding tetramethrin that should then be taken into account for the environmental risk and hazard assessment.

Summarised measured data on bioaccumulation behaviour in fish are only available for the transisomers of tetramethrin. Taking the information on similarity of cis- and trans-isomers regarding K_{OC} values, rapid elimination from the body and low remaining ¹⁴C tissue residues in rat as well as the common major metabolic pathway shown for the trans-isomer in rat and fish into account, readacross between cis- and trans-isomers related to bioaccumulation behaviour in fish seems reasonable.

Therefore, a BCF_{SSL} of 827 L*kg_{wet fish}⁻¹ related to total radioactive residues, whole fish and lipid content of 5% will be used as a worst case in the environmental risk and hazard assessment for tetramethrin. Based on this result tetramethrin has to be considered as bioaccumulative.

A test with an appropriate invertebrate species (Doc III-A 7.4.3.3.2) was not required because no direct release to marine/brakish waters occurs. If once the application scenario is changing and release to marine/brackish water occurs an accumulation study with invertebrates might be necessary.

Name of compound used in reports	Structural formula	Maximum concentration ¹	Concentration at end of uptake phase (day 28) ¹	Concentration at end of depuration phase (day 7 or day 10) ¹	Related to:
TIDI		13.1 % (day 3)	2.3%	0.3%	Whole fish
(3,4,5,6-	HN	22.0% (day 3)	3.3%	0.2%	Edible portion
tetranyerophtnammide)	// 0	-	-	-	Non-edible portion
1101	0	13.0 % (day 3)	2.4%	n.d.	Whole fish
(cyclohexane-1,2-	HN	20.8% (day 3)	3.6%	n.d.	Edible portion
dicarboxymide)		-	-	-	Non-edible portion
CRA (1B, 2B) 2.2 dimethal 2 (2		20.1% (day 3)	8.0%	n.d.	Whole fish
(1R, 3R)-2,2-dimethyl-3-(2- methylprop-1- enyl)cyclopropane-carboxylic acid)	<u>\</u>	50.4% (day 3)	11.0%	n.d.	Edible portion
	Тү ^{он}	16.1% (day 3)	5.9%	n.d.	Non-edible portion
	/\ö	-	-	-	Whole fish
UKA CONJ.		-	-	-	Edible portion

Table 45: List of metabolites found in bioaccumulation study with (1RS)-trans-tetramethrin in whole fish, edible
and non-edible portion:

Name of compound used in reports	Structural formula Maximum concentration ¹		Concentration at end of uptake phase (day 28) ¹	Concentration at end of depuration phase (day 7 or day 10) ¹	Related to:
		11.2% (day 7)	4.5%	n.d.	Non-edible portion
COOH-CRA		-	-	-	Whole fish
(1R, 3R)-2,2-dimethyl-3-(E-2- carboxyprop-1-		-	-	-	Edible portion
acid)		10.6% (day 7)	5.3%	3.4%	Non-edible portion
	HOOC	15.6% (day 7)	5.2%	n.d.	Whole fish
COOH-CRA conj1	Ху ^{он}	-	-	-	Edible portion
		21.1% (day 7)	8.1%	n.d.	Non-edible portion
		10.8% (day 7)	4.9%	n.d.	Whole fish
COOH-CRA conj-2		-	-	-	Edible portion
		11.3% (day 3)	7.8%	n.d.	Non-edible portion
		-	-	-	Whole fish
(1R, 3R)-2,2-dimethyl-3-(E-2- hydroxymethylprop-1- enyl)cyclo-propanecarboxylic	нон₂с	14.6% (day 7, inclusive unknown metabolite A)	9.4%	n.d.	Edible portion
	•	-	-	-	Non-edible portion
		-	-	-	Whole fish
Unknown (14 unidentified spots pooled)		-	-	-	Edible portion
	-	10.1% (day 3 of depuration phase, max. of single 14 unidentified spots)	Not applicable	3.3%	Non-edible portion

11.4 RAPID DEGRADABILITY OF ORGANIC SUBSTANCES

Table 46: Summary of relevant information on rapid degradability

Method Results	Key or Supportive study	Remarks	Reference
----------------	-------------------------	---------	-----------

OECD 301 F	Not readily biodegradable (23% degradation within 28 days)	Кеу	None	SUMITOMO: Grūtzner, I. (2002); DocNo IM-0021
OECD 301 F	Not readily biodegradable (24% degradation within 28 days)	Кеу	None	ENDURA: Seyfried, B. (2002); DocNo 841692

11.4.1 Ready biodegradability

Table 47: Ready biodegradability tests

Method		Test	Tost Inoculum Tost		Test	Degra	dation			
/Guide- line	Test type ¹	para- meter	Туре	Conc. ³	Adap- tation	Additional substrate	substance conc.	Incuba- tion period	Degree [%]	Reference
OECD 301 F	ready	BOD ²	Acti- vated sludge - pre- domi- nantly do- mestic	30 mg/L dw	No	No	104 mg/L	28 days	23	SUMITOMO: Grützner, I (2002); DocNo IM-0021
OECD 301 F	ready	BOD ²	Acti- vated sludge - pre- domi- nantly do- mestic	30 mg/L dw	No	No	100 mg/L	28 days	24	ENDURA: Seyfried, B (2002); DocNo 841692

A test on ready biodegradability of tetramethrin was submitted from the companies Sumitomo and Endura, respectively. Both tests were conducted according to OECD testguideline 301 F investigating ready biodegradability by measurement of biochemical oxygen demand. The results of these tests coincides with a biodegradation of 23% (Sumitomo) and 24% (Endura) within 28 days. The beginning of relevant biodegradation processes could be observed after 15 days (Sumitomo) and 16 days (Endura). This delayed degradation may be a sign of adaption procedures. Based on these results tetramethrin can be considered to be not readily biodegradable.

11.4.2 BOD₅/COD

BOD5/COD tests are not available.

11.4.3 Other convincing scientific evidence

Aquatic simulation tests are not available.

11.4.3.1. Field investigations and monitoring data (if relevant for C&L)

Field investigations and monitoring data are not available.

11.4.3.2. Inherent and Enhanced Ready Biodegradability tests

Valid inherent and enhanced biodegradability test data are not available.

11.4.3.3. Soil and sediment degradation data

In a laboratory study (OECD 307) the route and rate of aerobic degradation of [¹⁴C]-tetramethrin in three soils was investigated using a radiolabel at the alcohol moiety of the molecule. The first-order DT_{50} values (12°C) were calculated to be 4.0 – 8.0 days for the active substance tetramethrin, 4.4 – 7.6 days for the isomer 1R-trans-tetramethrin (contained with 89 % in the active substance d-trans-tetramethrin), 2.5 – 4.9 days for 1S-trans-tetramethrin, 15.2 – 36.4 days for 1R-cis-tetramethrin and 13.3 – 21.6 days for the isomer 1S-cis-tetramethrin. Mineralisation of the active substance tetramethrin accounted for a maximum of 57.6 % AR (applied radioactivity) for the silt loam soil (day 30), 33.3 % AR for the loam soil (day 62) and 40.7 % AR for the sandy clay loam soil (day 30).

In a second laboratory study (US-EPA 162-1) the route and rate of aerobic degradation of [¹⁴C]-(1RS)-trans-tetramethrin (1:1 mixture of the both trans-isomers) labeled at the alcohol as well as on the acid moiety of the molecule was investigated. In the sandy loam soil (1RS)-trans-tetramethrin undergoes degradation under aerobic dark conditions with first order DT₅₀ values of 35.6 – 50.6 days (12°C). Carbon dioxide evolution amounts to 49.6% and 49.8% after 122 days of incubation and to 69.8% and 65.0% after 365 days of incubation for [THP-¹⁴C]- (1RS)-trans-tetramethrin and [Cyclopropyl-¹⁴C] – (1RS)-trans –tetramethrin, respectively. As the DT₅₀ value of tetramethrin is obviously determined by the degradation of the both trans-isomers, which was shown in the first study, the results of the study conducted with (1RS)-trans-tetramethrin can be used for the assessment of the active substance tetramethrin.

Although the results of the simulation studies demonstrate a rapid to moderate primary degradation, the ultimate degradation has to be considered as rather low due to mineralisation rates below 60% (33.3 – 57.6%) after 30 to 122 days of incubation and below 70% (65.0 – 69.8%) after 365 days of incubation. This supports the classification met by the screening test that tetramethrin must be considered as not readily biodegradable.

11.4.3.4. Hydrolysis

Method /Guideline	рН	Temp eratur e [°C]	Initial con- centratio n, C ₀ , [µg/L]	Reaction rate constant, K _h [days ⁻¹]	Half-life, DT ₅₀	Coefficie nt of correlatio n, r ²	Referen ce	Key or Support ive study
OECD 111	4	50 ±	1805	Not	Not	Not	Tognucc	Supporti
	7	0.5	560	calculated	calculated	calculated	1 A., (2002)	ve
Sec. C.7	9		<177				~ /	

Table 48a: Ready biodegradability tests

Method /Guideline	рН	Temp eratur e [°C]	Initial con- centratio n, C ₀ , [µg/L]	Reaction rate constant, K _h [days ⁻¹]	Half-life, DT ₅₀	Coefficie nt of correlatio n, r ²	Referen ce	Key or Support ive study
Trans-Neo-Pynamin [3,4,5,6- tetrahydrophthalimid	5	25	300	$\begin{array}{r} 3.514 x 10^{-2} - \\ 4.364 x 10^{-2} \end{array}$	15.9-19.7 days	n.s.	Katagi T. et al,	Key
omethyl (1RS)-trans-	7	25	300	0.653 – 0.778	21.4-25.5 hrs	n.s.	Sumito mo Report	
(1RS)-trans- tetramethrin] US EPA Pesticide Assessment Guidelines Subdivision N 161-1	9	25	300	44.2 - 75.6	13.2-21 min	n.s.	No: IM- 10-0012, 1991	

A preliminary study on hydrolysis of Tetramethrin was conducted according to OECD 111. The degradation of Tetramethrin at 50°C was about 34% at pH 4.0 after 120 hours and 50% at pH 7.0 after 2.4 hours. At pH 9.0 the hydrolysis was fast and the test item was not detected in the sample solutions.

The definitive hydrolysis study on degradation products and kinetics was conducted with (1RS)trans-Tetramethrin at pH 5, 7 and 9 at 25 °C according to US EPA N 161-1. The temperature dependence of hydrolysis has not been determined in this study. The eCA considers the data as sufficient to characterise the route of degradation and the mayor degradation products of cis-Tetramethrin, as water is a non-chiral solvent and (1RS)-trans-Tetramethrin is hydrolytically cleaved at the imide and carboxylate ester moiety representing non-chiral centres. Hence, the results can be used to read across to Tetramethrin.

The mayor degradation products of (1RS)-trans-Tetramethrin are (1RS)-Trans-crysamtemic acid (trans-CRA) and 3,4,5,6-Tetrahydrophthalamic acid (THAM) that is finally hydrolysed to 3,4,5,6-Tetrahydrophthalic acid (THPA). Trans-CRA increased to 68.85% of the applied radioactivity at pH 5, 98.42% at pH 7 and 100% at pH 9 at day 30. THMA peaked after one day to 15.43% at pH7 and to 80.6% at pH9. THPA increased to 66.07% at pH5, 95.78% at pH 7, and 68.07% at pH9. The degradation products trans-CRA and THPA are assumed to be hydrolytic stable.

The hydrolysis half-lives of (1RS)-trans-Tetramethrin were recalculated to reflect an average EU outdoor temperature of 12° C for fresh water (based on EU TGD (2003), chapter 2.3.6.1). The half-lives amount to 45.0 - 55.7 days at pH 5, 66.5 - 72.1 hours at pH 7, and 37.3 - 59.4 min at pH 9.

11.4.3.5. Photochemical degradation

Table 48b: Photolysis in water

Method /Guidelin e	Initial molar TS concentrat ion	Total recovery of test substance [% of appl. a.s.]	Photolysis rate constant (k ^c _p)	Direct photolys is sunlight rate constant (k _{pE})	Reaction quantu m yield (\Box^c_E)	Half-life DT ₅₀ [days]	Reference	Key or Supportive study
--------------------------	--	--	--	--	---	---	-----------	-------------------------------

Method /Guidelin e	Initial molar TS concentrat ion	Total recovery of test substance [% of appl. a.s.]	Photolysis rate constant (k ^c _p)	Direct photolys is sunlight rate constant (k _{pE})	Reaction quantu m yield (□ ^c _E)	Half-life DT ₅₀ [days]	Reference	Key or Supportive study
US EPA OPPTS 835.2210	0.2 μg/mL	95.6±7.0%	0.147 h ⁻¹	n.s.	0.19	0.46 US summer days; 0.38 Global summer days	Lopez A., PTRL Report No. 1762W-1, 2003	Key

A preliminary study according to US EPA guideline OPPTS 835.2210 was conducted in sterile pH 5 buffer for (1R)-cis and (1R)-trans-Tetramethrin. The definitive study was conducted with (1R)-trans-Tetramethrin, as the preliminary study showed a similar degradation pattern for both stereoisomere. Additionally, the eCA does not expect enantiomerism to affect significantly the aqueous photolysis of the parent compound under environmental conditions and, consequently, considers the data as sufficient to characterise the route and kinetic of photodegradation and the mayor degradation products of the S-isomer. Hence, the results can be used to read across to Tetramethrin.

(1R)-trans-Tetramethrin undergoes photodegradation in aqueous media at pH 5. A degradation rate constant of 0.147 hours⁻¹ and a half-life of $DT_{50} = 0.46$ days for a US summer day was determined. Photo-induced isomerisation to the cis-isomer was minor in light exposed samples. The other main degradation products observed were not known and were assigned as D-1, D-3 and D-6. Based on LC/MS data proposed structures are given (see confidential annex 'Tetramethrin_14.4.17_03`). D-1 represented an average of 24.1% of the initial dose at the end of the irradiation period (304 hours). D-3 and D-6 reached after 144 hours of irradiation 32.2% and 20.1% of the applied dose, respectively.

(1R)-trans-Tetramethrin degraded significantly in dark control samples. After 312 hours of incubation at 25°C, 47% of the initial dose occurred in the non-irradiated samples. The major degradation product was THPA, reaching an average of 55.7% of the applied dose at the end of the incubation period. The corresponding half-life in dark controls was 12.3 days of incubation. Since (1R)-trans-Tetramethrin degraded more rapidly when exposed to light, its hydrolytic degradation without irradiation had no significant effect on the light exposed set.

Indirect photolysis in water bodies of the active substance has not been measured. However, information on indirect photolysis is not regarded to be scientifically necessary as other degradation process (hydrolysis, direct photolysis) are not regarded to be slow.

Guideline / Test method	Time-dependent OH radical concentration [OH radicals cm ⁻³]	Overall reaction rate constant k [cm ³ molecule ⁻¹ s ⁻¹]	Half-life DT ₅₀ [h]	Chemica l lifetime [h]	Reference	Key or Supportive study
AOPWIN calculation v. 1.92	5x10 ⁵ 24 h avarage	127.3092 E ⁻¹²	3.025	4.36	(CA's estimation)	Key

Table 48c: Phototransformation in air

Tetramethrin is expected to degrade in the atmosphere by reaction with photochemically-produced hydroxyl radicals. The half-life of Tetramethrin in air is estimated to be 3.025 h using the generally accepted estimation program AOPWIN, version 1.92. Referring to the vapour pressure of 0.0021 Pa and a Henry's Law constant of 0.38 Pa m⁻³ mol⁻¹ Tetramethrin is not expected to volatilize. Therefore, emissions to air are expected to be low. In conclusion, due to the low volatility, the fast degradation by OH radicals in air, the hydrolysis in the presence of water, accumulation and long range transport in air are not to be expected under environmentally relevant conditions.

11.5 ENVIRONMENTAL FATE AND OTHER RELEVANT INFORMATION

11.5.1 Adsorption/desorption

Table 48d: Screening test

Method /Guideline	Adsorbe d a.s. [%]	K ¹	K_{aOC}^2	K _d ³	K _{dOC}	Degradatio n products	Reference	Key or Supportive study
OECD 121	-	-	$\label{eq:Koc} \begin{split} &\log K_{oc} = 3.31 \text{ equal} \\ &to \ K_{oc} = 2045 \\ &log \ K_{oc} = 3.44 \text{ equal} \\ &to \ K_{oc} = 2754 \end{split}$	-	-	none	Tognucci A., (2002)	Key

 $^{1)}$ K_a = Adsorption coefficient, mean value of duplicate measure

 $^{2)}$ K_{aOC} = Adsorption coefficient based on organic carbon content, mean value of duplicate measure

³⁾ K_d = Desorption coefficient, mean value of duplicate measure

 $^{4)}$ K_{dOC} = Desorption coefficient based on organic carbon content, mean value of duplicate measure

 $^{5)}$ K_a / K_d = Adsorption / Desorption distribution coefficient, mean value of duplicate measure

An adsorption/desorption screening test was conducted according to OECD121 using HPLC. A racemitic mixture of the cis-trans isomers of the test substance Tetramethrin was analyzed and two peaks were determined. K_{oc} values of 2045 and 2754 mL/g were determined and log K_{oc} of 3.31 and 3.44 mL/g were calculated, respectively. A mean K_{oc} value of 2400 mL/g and a log K_{oc} of 3.38 mL/g was derived from both peaks. Neither the composition of the racemic mixture of the test substance prior the test, nor an allocation of each peak to the respective cis- or trans-isomer after the test was reported. However, as both peaks and their corresponding K_{oc} values deviate only slightly from one another, this deviation was regarded as minor deficiency. Consequently, the result of the OECD guideline study indicated that Tetramethrin has a low mobility in soil.

Method /Guidelin e	Tested Soils	Adsor bed a.s. [%]	Ka1	K _{aOC} ²	K _d ³	K _{dOC} ⁺	$\mathbf{K}_{\mathrm{a}}/\mathbf{K}_{\mathrm{d}}^{5}$	Degradatio n products	Referenc e	Key or Supporti ve study
US EPA Pesticide Assessme nt Guideline s Subdivisi on N 163-	A13 = Sandy loam B7 = Loamy sand	64.4 59.7	11.47 12.03	1289 2933	13.61 12.99	1529 3167	0.84 0.93	none	Yoshimur a J., Sumitom o Report No: IM- 10-0013, 1991	Supportiv e
1	F6 = Sandy clay loam	59.9	19.27	1407	21.06	1537	0.92			

Table 48e: Adsorption/desorption in five soils

Method /Guidelin e	Tested Soils	Adsor bed a.s. [%]	K _a ¹	K _{aOC} ²	\mathbf{K}_{d}^{3}	K _{dOC} ⁴	K _a / K _d ⁵	Degradatio n products	Referenc e	Key or Supporti ve study
	Hanford = Sandy Loam	47.2	8.54	1857	8.03	1746	1.06			
	J11= Clay	59.3	10.71	1552	11.92	1728	0.90			

¹⁾ $K_a = Adsorption$ coefficient, mean value of duplicate measure

²⁾ K_{aOC} = Adsorption coefficient based on organic carbon content, mean value of duplicate measure

³⁾ K_d = Desorption coefficient, mean value of duplicate measure

 $^{4)}$ K_{dOC} = Desorption coefficient based on organic carbon content, mean value of duplicate measure

 $^{5)}$ K_a / K_d = Adsorption / Desorption distribution coefficient, mean value of duplicate measure

A study on adsorption/desorption of (1RS)-trans-Tetramethrin in five different soils was conducted according to EPA 163-1. Deviations from the OECD guideline 106 were determined regarding reporting on soil sampling and use of standard methods for soil characterisation. Deficiencies were further determined regarding soil classification. Moreover, deficiencies were determined regarding the range of the five different soils as the selection does not comprises acidic soil types with a pH <6.5, soil types of high OC content >1.5% and the soil types do not comprise five different soils according to the OECD guideline 106. Therefore, the study was considered as screening study.

Radiolabeld (1RS)-trans-Tetramethrin was stable in the test system during the study as more than 99 % was identified to be (1RS)- trans-Tetramethrin at the end of the study. The adsorption equilibrium coefficient Ka ranged from 8.54 to 19.32 mL/g and the desorption equilibrium coefficient Kd ranged from 8.03 to 21.06 mL/g. The Ka_{oc} value was calculated to range from 1289 to 2933 mL/g and the Kd_{oc} value was calculated to range from 1529 to 3167 mL/g. K_{oc} values did not correlate with the OC content. The arithmetic mean K_{oc} is 1807 mL/g, with a mean log K_{oc} of 3.26 mL/g. From the average K_{oc} values for adsorption and desorption it can be concluded that (1RS)-trans-Tetramethrin is considered of low mobility in four types of soil and as slight mobility in one soil type tested.

Conclusion

Together, two studies on adsorption/desorption are available. Due to the determined deviation and deficiencies in the study on adsorption/desorption in five soils this study is considered as supportive study. Based on the OECD 121 guideline study an adsorption coefficient log $K_{oc} = 3.38$ mL/g was considered for risk characterisation. The K_{oc} derived from the OECD guideline study is based on a mean value from two peaks corresponding to a racemitic mixture of the cis-trans isomers of the test substance Tetramethrin and is corroborated by the study in five soils. Both studies showed that Tetramethrin is considered to be low mobile in soils.

11.6 COMPARISON WITH THE CLP CRITERIA

11.6.1 Acute aquatic hazard

For Tetramethrin only acute aquatic studies with fish, invertebrates and algae are available. The most sensitive endpoint is a $LC_{50} = 3.7 \ \mu g/l$ for *Oncorhynchus mykiss* (cf. chapter 11.1.1). A substance has to be classified as **H400** (acute category 1), if the L/EC_{50} is $\leq 1 \ mg/l$. This criterium is fulfilled for Tetramethrin. The corresponding **M-factor is 100**.

11.6.2 Long-term aquatic hazard (including bioaccumulation potential and degradation)

No long-term aquatic toxicity data are available for Tetramethrin. According to the CLP regulation, aquatic acute data (L/EC_{50}) can be considered for chronic classification, if the substance is not readily degradable and/or has the potential to bioaccumulate. Tetramethrin has shown a biodegradation of only 23% in 28 days in a test according to OECD guideline 301 F and has therefore to be regarded as not readily biodegradable (cf. chapter 11.4.1).

With an estimated BCF_{fish}, based on the log $K_{ow} = 4.58$, of 1560 L*kg_{wet fish}⁻¹ and a measured BCF_{fish} value of 827 L*kg_{wet fish}⁻¹ for the trans-isomers (cf. chapter 11.3) Tetramethrin is considered to be bioaccumulative. However, information on measured BCF_{fish} values is only available for trans-isomers of Tetramethrin, information on the cis-isomers is lacking. Taking into account the lowest acute effect value (LC₅₀ = 3.7 µg/l for fish) Tetramethrin has to be classified as **H410** (chronic category 1), as the LC₅₀ is ≤ 0.1 mg/l. As there are no chronic effect data available, the acute M-factor of 100 has to be applied for the chronic category as well.

11.7 CONCLUSION ON CLASSIFICATION AND LABELLING FOR ENVIRONMENTAL HAZARDS

Tetramethrin should be classified as H400 - "Very toxic to aquatic organisms" (M = 100) and H410 - "Very toxic to aquatic organisms with long lasting effects" (M = 100) for the environment. This leads to a proposed labelling of H410 (Very toxic to aquatic life with long lasting effects), which triggers the pictogram GHS09 and the signal word "Warning" on the label. The following precautionary statements are indicated: P272, P391 and P501.

12. EVALUATION OF ADDITIONAL HAZARDS

12.1 Hazardous to the ozone layer

According to Regulation EC (No) 1272/2008 a substance has to be considered as hazardous to the ozone layer if it is listet in Regulation EC (No) 2037/2000. As this is not the case for Tetramethrin, no additional labelling is necessary.

13. DETAILED STUDY SUMMARIES

The detailed study summaries can be found in the confidential annexes

14. REFERENCES

Author(s)	Year	Title.	Owner
		Source (where different from company)	
		Company, Report No.	
		GLP (where relevant) / (Un)Unpublished	
Aventis	1999	Information for Registration: Tetramethrin (AE F074194) Country,	Sumitomo
		Aventis CropScience GmbH, Sumitomo Report No. 1714.tif, (Un)	Chemical Co.,
			Ltd

Blasberg	1993	Acute flow-through toxicity of Neo-Pynamin to <i>Daphnia Magna</i> , ABC Laboratories, Inc. Sumitomo Report No. IW-31-0017, 1993	Sumitomo Chemical Co., Ltd
Bowman	1990	Acute flow-through toxicity of Neo-Pynamin to Bluegill (<i>Lepomis macrochirus</i>)	Sumitomo Chemical Co., Ltd
Bowman	1990	Acute flow-through toxicity of Neo-Pynamin to Rainbow Trout (<i>Oncorhynchus mykiss</i>), Analytical Bio-chemistry Laboratories, Inc. Sumitomo Report No. IW-01-0011, 1990	Sumitomo Chemical Co., Ltd
Croce	2006	Acute toxicity of tetramethrin to zebra fish (<i>Danio rerio</i>) determined under flow-through exposure. ChemService S.r.l., study number CH - E - 002/200, (Un)	Endura S.p.A.
Garofani S.	2006	Tetramethrin (pure active substance): Determination of the Physico- Chemical Properties ChemService s.r.l., Study No. CH-006/2006 GLP, (Un)	Endura S.p.A.
Grūtzner I	2002	Ready biodegradability of Neo-Pynamin in a manometric respirometry test, Environmental chemistry and pharmanalytics division, Sumitomo Report No. IM-0021, GLP, (Un)	Sumitomo Chemical Co., Ltd
Hohberg	2002	Neo-Pynamin – Toxicity to the Freshwater Green Alga (<i>Pseudokirchneriella subcapitata</i>), Springborn Smithers Laboratories, Sumitomo Report No. IW-0020, 2002	Sumitomo Chemical Co., Ltd
Katagi	1991	Hydrolysis of trans-Neopynamin in buffered aqueous solution, Environmental health science laboratory, Sumitomo Report No. IM- 10-0012, 1991	Sumitomo Chemical Co., Ltd

Lentz NR	2008	Final: Neo-Pynamin PAI – Determination of the boiling point following OECD Guideline 103 and the Official Journal of the European Communities, L383A, Method A2, Springborn Smithers Laboratories, Study No. 13048.6569, GLP, (Un)	Sumitomo Chemical Co., Ltd
Lentz NR and Proctor KL	2009	Final: Determination of the Vapor Pressure of Neo-Pynamin Following OECD guideline 104 and the Official Journal of the European Communities, L383A, Method A4, Springborn Smithers Laboratories, Study No. 13048.6574, GLP, (Un)	Sumitomo Chemical Co., Ltd
Lentz NR	2008	Final: Neo-Pynamin PAI – Determination of surface tension using a ring tensiometer following OECD Guideline 115, Springborn Smithers Laboratories, Study No. 13048.6592, GLP, (Un)	Sumitomo Chemical Co., Ltd
Lentz NR	2008	Final: Neo-Pynamin PAI – Determination of the water solubility of a test substance following OECD Guideline 105 and the Official Journal of the European Communities, L383A, Method A6, Springborn Smithers Laboratories, Study No. 13048.6568, GLP, (Un)	Sumitomo Chemical Co., Ltd
Lopez	2009	Phototransformation of [14C] Tetramethrin in Sterile Water Buffered at pH5. PTRL West, Inc., 625-B Alfred Nobel Drive, Hercules, CA 94547. PTRL Report No. 1762W-1	Sumitomo Chemical Co., Ltd
Lorence P. J.	1990	Final Neo-Pynamin® - Determination of Octanol/water partition coefficient, Department of Analytical Services, Sumitomo Report No. IP-01-0085, GLP, (Un)	Sumitomo Chemical Co., Ltd
Pardo Martinez M.	2005	Tetramethrin technical: Determination of the Surface Tension. ChemService s.r.l., Report No. CH-296/05 GLP, (Un)	Endura S.p.A.
Pesselman R. L.	1990	Final Density Determination of Neo-Pynamin®, Hazleton Laboratories America, Inc, Sumitomo Report No. IP-01-0067, GLP, (Un)	Sumitomo Chemical Co., Ltd
Pesselman R. L.	1990	Final Melting Point/Melting Range Determination of Neo- Pynamin®, Hazleton Laboratories America, Inc, Sumitomo Report No. IP-01-0066, GLP, (Un)	Sumitomo Chemical Co., Ltd
Poncipe	2006	Tetramethrin. Estimation of indirect photolysis in air, Safepharm laboratories	Sumitomo Chemical Co., Ltd
Roth H	2006	Estimation of the Bioconcentration factor. Safepharm Laboratories Ltd., (Un)	Sumitomo Chemical Co., Ltd
Saito S, Miyamoto M, Tagawa Y and Hagino S	1994	Bioconcentration and metabolism of 14C-trans-Neo-Pynamin in Bluegill Sunfish (<i>Lepomis macrochirus</i>), Environmental Health Science Laboratory, Sumitomo Report No. IM-40-0019, GLP, (Un)	Sumitomo Chemical Co., Ltd
Seyfried	2002	Acute toxicity of Tetramethrin to <i>Daphnia magna</i> in a 48-hour immobilization test. RCC Ltd, study number 841687 (Un)	Endura S.p.A.
Seyfried	2002	Acute toxicity of tetramethrin to zebra fish (<i>Brachydanio rerio</i>) in a 96- hour semi static test. RCC Ltd, study number 841685 (Un)	Endura S.p.A.
Seyfried	2002	Toxicity of Tetramethrin to <i>Scenedesmus subspicatus</i> in a 72-hour. RCC Ltd, Study N° 841689, 5 August 2002 (Un)	Endura S.p.A.
Seyfried	2002	Ready biodegradability of Tetramethrin in a manometric respirometry test. RCC Ltd, Study N° 841692, July 24 2002 (Un).	Endura S.p.A.
CLH REPORT FOR TETRAMETHRIN

Sumitomo	N/A	Final Stability of Neo-Pynamin® Technical Material, Sumitomo	Sumitomo
Chemical Co.		Chemical Co., Sumitomo Report No. IP-00-0017, (Un)	Chemical Co.,
			Ltd
Tognucci A.	2002	Hydrolysis determination of Tetramethrin at different pH values. RCC Ltd, Environmental Chemistry & Pharmanalytics Division, CH-4452 Itingen/Switzerland, Report No. 841693, GLP, (Un)	Endura S.p.A.
Tognucci A.	2002	Estimation of the Adsorption Coefficient of Tetramethrin on soil using High Performance Liquid Chromatography (HPLC). RCC Ltd, Study N° 841694, (Un)	Endura S.p.A.
Yoshimura	1991	Adsorption and desorption of tetramethrin in water-soil suspension systems, Environmental Health Science Laboratory, Sumitomo Report No. IM-10-0013, 1991	Sumitomo Chemical Co., Ltd

15. ANNEXES

Confidential Annexes