European Commission

Draft Renewal Assessment Report prepared according to the Commission Regulation (EU) N° 1107/2009 and Proposal for Harmonised Classification and Labelling (CLH Report) according to Regulation (EC) N° 1272/2008

FENPROPIDIN (ISO); (*R*,*S*)-1-[3-(4-tert-butylphenyl)-2-methylpropyl]piperidine

Volume 1

Rapporteur Member State: Czech Republic Co-Rapporteur Member State: Germany

May 2021

Version History

When	Version	What						
October 2020	Version 1	RMS (CZ) RAR after co-RMS and APPL comments						
May 2021	Version 2	RMS (CZ) RAR after EFSA and ECHA completeness check						

Table of contents

RAPPORT	EUR MEMBER STATE: CZECH REPUBLIC1
	MENT OF SUBJECT MATTER AND PURPOSE FOR WHICH THIS REPORT HAS BEEN RED AND BACKGROUND INFORMATION ON THE APPLICATION
1.1 Co	NTEXT IN WHICH THIS DRAFT ASSESSMENT REPORT WAS PREPARED
1.1.1	Purpose for which the draft assessment report was prepared
1.1.2	Arrangements between rapporteur Member State and co-rapporteur Member State
1.1.3	EU Regulatory history for use in Plant Protection Products
1.1.4	Evaluations carried out under other regulatory contexts
1.2 Api	PLICANT INFORMATION
1.2.1	Name and address of applicant(s) for approval of the active substance
1.2.2	Producer or producers of the active substance
1.2.3	Information relating to the collective provision of dossiers
1.3 IDE	ENTITY OF THE ACTIVE SUBSTANCE
1.3.1	Common name proposed or ISO-accepted and synonyms10
1.3.2	Chemical name (IUPAC and CA nomenclature)
1.3.3	Producer's development code number
1.3.4	CAS, EEC and CIPAC numbers
1.3.5	Molecular and structural formula, molecular mass
1.3.6	Method of manufacture (synthesis pathway) of the active substance
1.3.7	Specification of purity of the active substance in g/kg
1.3.8	Identity and content of additives (such as stabilisers) and impurities
1.3.8	
1.3.8 1.3.8	
1.3.8	B.3 Relevant impurities 11 Analytical profile of batches 11
1.4 INF	ORMATION ON THE PLANT PROTECTION PRODUCT 11
1.4.1	Applicant 11
1.4.2	Producer of the plant protection product
1.4.3	Trade name or proposed trade name and producer's development code number of the plant
1.4.4	protection product
1.4.4	product
1.4.4	1
1.4.4	
1.4.4	
1.4.5	Type and code of the plant protection product
1.4.6	Function
1.4.7	Field of use envisaged
1.4.8	Effects on harmful organisms
1.5 DE	TAILED USES OF THE PLANT PROTECTION PRODUCT
1.5.1	Details of representative uses
1.5.2	Further information on representative uses
1.5.3	Details of other uses applied for to support the setting of MRLs for uses beyond the representative
	uses
1.5.4	Overview on authorisations in EU Member States
2 SUMMA	ARY OF ACTIVE SUBSTANCE HAZARD AND OF PRODUCT RISK ASSESSMENT 15
2.1 IDE	NTITY

	2.1.1	Sum	nary or iden	tity									15
2.2			AND CHE										
	2.2.1 2.2.1. 2.2.2	1 Sum	nary of phys Evaluation on nary of phys	of physical sical and ch	hazards [e nemical pro	quivalent operties of	to section the plan	on 8 of nt prote	the CLF ection pr	I report	templa	ate]	17 20
2.3	3 DA1	A ON	APPLICATIO	N AND EFF	ICACY	••••••	••••••	••••••	••••••	•••••	••••••	•••••	20
	2.3.1 2.3.2 2.3.3 2.3.4	Sum Sum	nary of effeo nary of info nary of adve nary of obse	rmation on erse effects	the develo on treated	pment of crops	resistan	.ce					21 21
2.4	4 FUR	THER	INFORMATI	ON	•••••	••••••	••••••	•••••	••••••	•••••	••••••	•••••	21
	2.4.1 2.4.2 2.4.3	Sum	nary of metl nary of proc nary of eme	edures for	destruction	n or decon	taminat	ion		-			23
2.5	5 ME	FHODS	OF ANALYS	SIS	•••••	•••••	•••••	•••••	•••••	•••••		•••••	23
	2.5.1		ods used for										
	2.5.2		ods for post			••••							
2.0	6 EFF	ECTS	ON HUMAN A	AND ANIMA	L HEALTH	•••••	•••••		••••••	•••••	••••••	•••••	
	2.6.1		nary of abso he CLH repo										
	2.6.1. 2.6.2 2.6.2. 2.6.2. 2.6.2. 2.6.2. 2.6.2. 2.6.2. 2.6.2. 2.6.2. 2.6.2. 2.6.2.	Sum 1 2 3 4 5 6 7 8	Short summ proposed cla nary of acut Acute toxici Acute toxici Skin corrosi Serious eye Respiratory Skin sensitis Phototoxicit Aspiration h	assification e toxicity ity - oral ro ity - derma ity - inhalation/irritatio damage/ey sensitisatio sation [equ ty	(s) ute [equiva l route [equivale tion route [n [equivale re irritation on [equival ivalent to s	alent to se uivalent to equivalen ent to sect [equivale ent to sect section 10.	ection 10 o section at to sect ion 10.4 ent to sect tion 10.0 .7 of the).1 of th 10.2 o tion 10. 4 of the ction 10 6 of the cLH r	e CLH i f the CL 3 of the CLH rej 0.5 of th CLH re eport te	report te .H repor CLH rep port tem e CLH r eport ten mplate].	mplate t temp port te plate]. eport t nplate]	e] late]. mplat cempla	27 28 28 30 e]31 32 ate]34 35 37 38
	2.6.2. 2.6.2.	10	Specific tars	get organ to template].	oxicity-sin	gle expos	ure (ST	OT SE)	equiva	alent to	sectior	n 10.1	1 of the
	2.6.3 2.6.3.	repor	nary of repe t] Specific tar					-					41
	2.6.4		the CLH rep nary of gen ate]	otoxicity /	germ cell	mutagenic	city [equ	uivalent	t to sect	ion 10.8	of the	e CLH	H report
	2.6.4.	1	Short summ mutagenicit	ary and ov y	erall releva	ance of the	e provid	led info	rmation	on geno	otoxici	ty / ge	erm cell
	2.6.4. 2.6.4.	3	Comparison Conclusion	on classific	cation and 1	labelling f	for geno	otoxicity	/ germ	cell mut	tagenio	city	54
	2.6.5	temp	nary of long ate]	- 	•			••••••					54
	2.6.5. 2.6.5. 2.6.5 2.6.6 2.6.6	2 3 Sum	Short summ carcinogenic Comparison Conclusion nary of repr Adverse eff	city with the C on classific oductive to ects on sex	CLP criteria cation and l xicity [equ cual function	a regarding labelling f iivalent to on and fer	g carcin for carci section rtility –	ogenici nogenic 10.10 c generat	ty city of the Cl tional st	LH repo udies [e	rt temj quival	plate] ent to	56 58 64 64 64
			10.10.1 of tl	he CLH rep	oort templa	te]	•••••		••••••		•••••		64

2.6.6. 2.6.6.		
2.6.6.		91
2.6.7	Summary of neurotoxicity	
2.6.8	Summary of other toxicological studies	
2.6.8.	• •	
2.6.8.		
2.6.8.	3 Endocrine disrupting properties	96
2.6.9	Summary of medical data and information	
2.6.10	Toxicological end points for risk assessment (reference values)	
2.6.10	0.1 Toxicological end point for assessment of risk following long-term dietary exposure -	ADI
	(acceptable daily intake)	
2.6.10		
	(acute reference dose)	
2.6.10		
	AOEL (acceptable operator exposure level)	
2.6.10		
	AAOEL (acute acceptable operator exposure level)	
2.6.11	Summary of product exposure and risk assessment	. 148
2.7 RES	IDUE	. 149
071		1.40
2.7.1	Summary of storage stability of residues	
2.7.2	Summary of metabolism, distribution and expression of residues in plants, poultry, lacta	
272	ruminants, pigs and fish	
2.7.2. 2.7.2.		
2.7.3	Definition of the residue	
2.7.5	Summary of residue trials in plants and identification of critical GAP	
2.7.4	Summary of feeding studies in poultry, ruminants, pigs and fish	
2.7.5	Summary of effects of processing	
2.7.0	Summary of residues in rotational crops	
2.7.8	Summary of other studies	
2.7.9	Estimation of the potential and actual exposure through diet and other sources	
2.7.10	Proposed MRLs and compliance with existing MRLs	
2.7.11	Proposed import tolerances and compliance with existing import tolerances	
2.7.12	Pre-harvest intervals for envisaged uses	
2.7.13	Re-entry period (in days) for livestock, to area to be grazed	
2.7.14	Re-entry period (in hours or days) for man to crops, buildings, or spaces treated	
2.7.15	Withholding period (in days) for animal feedingstuffs	
2.7.16	Waiting period (in days) between last application and sowing or planting the crops to be prote	ected
		. 160
2.7.17	Waiting period (in days) between application and handling treated product	. 160
2.7.18	Waiting period (in days) between last application and sowing or planting succeeding crops	. 160
2.8 FAT	E AND BEHAVIOUR IN THE ENVIRONMENT	. 166
2.8.1	Summary of fate and behaviour in soil	166
2.8.2	Summary of fate and behaviour in water and sediment [equivalent to section 11.1 of the	
	report template]	
2.8.2.		
2.8.2.		
2.8.3	Summary of fate and behaviour in air	
2.8.3.		
2.8.4	Summary of monitoring data concerning fate and behaviour of the active substance, metabo	
	degradation and reaction products	
2.8.5	Definition of the residues in the environment requiring further assessment	
2.8.6	Summary of exposure calculations and product assessment	
2.9 EFF	ECTS ON NON-TARGET SPECIES	172
	EVID VIVINUTARVET DI EVIED	

2.	9.1	Summary of effects on birds and other terrestrial vertebrates	172
2.	9.2	Summary of effects on aquatic organisms [section 11.5 of the CLH report]	
	2.9.2.1		176
	2.9.2.2	2 Acute aquatic hazard [equivalent to section 11.5 of the CLH report template]	176
	2.9.2.3	3 Long-term aquatic hazard [equivalent to section 11.6 of the CLH report template]	181
	2.9.2.4		
	2.9.2.5		
2.	9.3	Summary of effects on arthropods	
	9.4	Summary of effects on non-target soil meso- and macrofauna	
	9.5	Summary of effects on soil nitrogen transformation	
	9.6	Summary of effects on terrestrial non-target higher plants	
	9.7	Summary of effects on other terrestrial organisms (flora and fauna)	
	9.8	Summary of effects on biological methods for sewage treatment	
	9.9	Summary of product exposure and risk assessment	
	2.9.9.1		
	2.9.9.2	1 8	
	2.9.9.3	1	
	2.9.9.4		
	2.9.9.5	8	
	2.9.9.6	6 Risk assessment for non-target plants	226
2.10	Pro	POSED HARMONISED CLASSIFICATION AND LABELLING ACCORDING TO THE CLP (CRITERIA
	[SEC	TIONS 1-6 OF THE CLH REPORT]	227
2	10.1	Identity of the substance [costion 1 of the CLII report]	227
Ζ.		Identity of the substance [section 1 of the CLH report]	
	2.10.1 2.10.1		
2		Proposed harmonized classification and labelling	
۷.	2.10.2		
	2.10.2		
		History of the previous classification and labelling	
		Identified uses	
		Data sources.	
2.11	RELI	EVANCE OF METABOLITES IN GROUNDWATER	232
2.	11.1	STEP 1: Exclusion of degradation products of no concern	232
2.	11.2	STEP 2: Quantification of potential groundwater contamination	232
2.	11.3	STEP 3: Hazard assessment - identification of relevant metabolites	232
	2.11.3	.1 STEP 3, Stage 1: screening for biological activity	232
	2.11.3	.2 STEP 3, Stage 2: screening for genotoxicity	233
	2.11.3	.3 STEP 3, Stage 3: screening for toxicity	233
2.	11.4	STEP 4: Exposure assessment – threshold of concern approach	
	11.5	STEP 5: Refined risk assessment	
2.	11.6	Overall conclusion	233
2.12	CON	SIDERATION OF ISOMERIC COMPOSITION IN THE RISK ASSESSMENT	233
2	12.1	Identity and physical chemical properties	722
	12.1	Methods of analysis	
	12.2	Mammalian toxicity	
	12.3	Operator, Worker, Bystander and Resident exposure	
		Residues and Consumer risk assessment	
		Environmental fate	
		Environmental face	
2.13		DUE DEFINITIONS	
		Definition of residues for exposure/risk assessment	
2.	13.2	Definition of residues for monitoring	234
3 PR	OPOS	ED DECISION WITH RESPECT TO THE APPLICATION	236
3.1	BAC	KGROUND TO THE PROPOSED DECISION	236

3.1.	1 Pro	posal on acceptability against the decision making criteria - Article 4 and ann	nex II of
	reg	ulation (EC) No 1107/2009	
3.	.1.1.1	Article 4	
3.	.1.1.2	Submission of further information	236
3.	.1.1.3	Restrictions on approval	
	.1.1.4	Criteria for the approval of an active substance	
3.1.2	2 Pro	posal – Candidate for substitution	244
3.1.		posal – Low risk active substance	
3.1.4		t of studies to be generated, still ongoing or available but not peer reviewed	
3.	.1.4.1	Identity of the active substance or formulation	
3.	.1.4.2	Physical and chemical properties of the active substance and physical, chemical and	
		properties of the formulation	
	.1.4.3	Data on uses and efficacy	
	.1.4.4	Data on handling, storage, transport, packaging and labelling	
	.1.4.5	Methods of analysis	
	.1.4.6	Toxicology and metabolism	
3.	.1.4.7	Residue data	
	.1.4.8	Environmental fate and behaviour	
3.	.1.4.9	Ecotoxicology	
3.1.		ues that could not be finalised	
3.1.0		tical areas of concern	
3.1.'		erview table of the concerns identified for each representative use considered	
3.1.8		ea(s) where expert consultation is considered necessary	
3.1.9	9 Cri	tical issues on which the Co RMS did not agree with the assessment by the RMS	250
3.2	PROPOS	ED DECISION	250
3.3	RATION	AL FOR THE CONDITIONS AND RESTRICTIONS TO BE ASSOCIATED WITH THE APPRO	OVAL OR
1	AUTHOR	RISATION(S), AS APPROPRIATE	250
3.3.	1 Par	ticular conditions proposed to be taken into account to manage the risks identified	250
3.4	APPEN	DICES	251
3.5	REFER	ENCE LIST	254

Level 1

FENPROPIDIN

1 <u>STATEMENT OF SUBJECT MATTER AND PURPOSE FOR WHICH THIS REPORT</u> <u>HAS BEEN PREPARED AND BACKGROUND INFORMATION ON THE</u> <u>APPLICATION</u>

1.1 CONTEXT IN WHICH THIS DRAFT ASSESSMENT REPORT WAS PREPARED

1.1.1 Purpose for which the draft assessment report was prepared

This Renewal Draft Assessment Report is submitted to support the application for the renewal of approval of the active substance fenpropidin in compliance with Regulation (EC) No 1107/2009.

Fenpropidin was initially included in Annex I of the EU Council Directive 91/414/EEC 1 July 2009 in accordance with Commission regulation EC 2008/66/ES of 30 June 2008 regarding the placement of plant protection products on the market, nowadays is approved according to the regulation Commision (EU) no. 540/2011 of 25 May 2011. In accordance with regulation Commission (EU) 844/2012 of 18 September 2012 notifiers Syngenta Crop Protection AG and ADAMA Agriculture B.V. (Fenpropidin Task Force leading by Syngenta) expressed interest in securing approval renewal for fenpropidin. Applicant submitted dossier to the Rapporteur Member State (RMS), the Czech Republic (CZ). The dossier was submitted by June 29, 2016 and after the completeness check it was found complete with regard to the data and information required by the above mentioned Commission regulations. Change of classification and labelling was required for renewal of fenpropidin. Applicant submitted new data and new proposal for classification.

The application for Classification & Labelling change was submitted to ECHA by Czech Ministry of Environment in January 2017.

1.1.2 Arrangements between rapporteur Member State and co-rapporteur Member State

Czech Republic was the Rapporteur Member State (RMS). Germany was the Co-RMS. The CZ evaluated all aspects of the AIR submission, Co-RMS was as a consultant and participated on commenting of the results. All Co-RMS comments were accepted and RAR proposal was appropriately ammended.

1.1.3 EU Regulatory history for use in Plant Protection Products

This Renewal Draft Assessment Report relied entirely on the dossier from Syngenta Crop Protection AG and ADAMA Agriculture B.V. (Fenpropidin Task Force leading by Syngenta) submitted for the active substance, fenpropidin, and a formulated product Tern 750 EC. The formulated product is a water emulsifiable concentrate [Code: EC] containing 750 g/l fenpropidin. This DRAR provides a discussion of relevant new studies and information submitted and evaluated since Annex I inclusion of fenpropidin, and how these data affect the human health and environmental risk assessments, residue definitions, and MRLs. Studies submitted for the original EU evaluation for Annex I inclusion have not been re-evaluated, but may have been reconsidered for context and to validate previous conclusions and/or calculations. Revisions to the risk assessments and MRLs provided in the original EU evaluation are accompanied by a rationale in support of the changes.

1.1.4 Evaluations carried out under other regulatory contexts

Not applicable.

1.2 APPLICANT INFORMATION

1.2.1 Name and address of applicant(s) for approval of the active substance

Name: Address:	Syngenta Crop Protection AG Postfach CH-4002 Basel Switzerland
Name: Address:	ADAMA Agriculture B.V. Arnhemseweg 87 3832 GK Leusden The Netherlands

Name: Address:	Syngenta Crop Protection AG Postfach CH 4002 Basel Switzerland
Name: Address:	ADAMA Makhteshim Ltd. P.O. Box 60 Beer Sheva, 8410001 Israel

1.2.2 Producer or producers of the active substance

1.2.3 Information relating to the collective provision of dossiers

Fenpropidin Task Force (Syngenta Crop Protection AG and ADAMA Agriculture B.V.)

Contact Point for the Task Force: Syngenta Crop Protection AG

1.3 IDENTITY OF THE ACTIVE SUBSTANCE

1.3.1 Common name proposed or ISO- accepted and synonyms	Fenpropidin
1.3.2 Chemical name (IUPAC and CA nomeno	clature)
IUPAC	(<i>R</i> , <i>S</i>)-1-[3-(4-tert-butylphenyl)-2-methylpropyl]- piperidine
CA	1-[3-[4-(1,1-dimethylethyl)phenyl]-2- methylpropyl]piperidine
1.3.3 Producer's development code number	Syngenta:CGA114900ADAMA:MCW-273
1.3.4 CAS, EEC and CIPAC numbers	
CAS	67306-00-7
EEC	-
CIPAC	520
1.3.5 Molecular and structural formula, molec	cular mass
Molecular formula	$C_{19}H_{31}N$
Structural formula	
Molecular mass	273.5 g.mol ⁻¹
1.3.6 Method of manufacture (synthesis pathway) of the active substance	Confidential information, data provided in Vol. 4.
1.3.7 Specification of purity of the active substance in g/kg	960.0 g/kg (racemate).
1.3.8 Identity and content of additives (such as	s stabilisers) and impurities

1.3.8.1 Additives	Confidential information, data provided in Vol. 4
1.3.8.2 Significant impurities	Confidential information, data provided in Vol. 4
1.3.8.3 Relevant impurities	None identified
1.3.9 Analytical profile of batches	Confidential information, data provided in Vol. 4

1.4 INFORMATION ON THE PLANT PROTECTION PRODUCT

1.4.1	Applicant	Syngenta Crop Protection AG
		Address: CH 4002 – Basel, Switzerland
1.4.2	Producer of the plant protection	Syngenta Crop Protection AG
	product	Address: CH 4002 – Basel, Switzerland
1.4.3	Trade name or proposed trade name	Trade name: Tern
	and producer's development code	Code number: A7516D
	number of the plant protection	
	product	
	product	
1.4.4	Detailed quantitative and qualitative	information on the composition of the plant
1.4.4	protection product	mormation on the composition of the plant
	protection product	
1.4.4.1	Composition of the plant protection	
1.4.4.1	1 9 1 1	
	product	
1 4 4 0	T (*), 1), 1)	
1.4.4.2	J	Content of pure fenpropidin: 750 g/L
1.4.4.3	<i>j</i>	Confidential information, data provided in Vol. 4
	and co-formulants	
1.4.5	Type and code of the plant protection	Type: Emulsifiable concentrate
	product	Code: EC
	-	
1.4.6	Function	fungicide
		-
1.4.7	Field of use envisaged	Fenpropidin is an agricultural fungicide used to control
		powdery mildews, rusts and Rynchosprium secalis in
		cereal crops.
		1
1.4.8	Effects on harmful organisms	Fenpropidin is a piperidine derivative and acts by
	0	inhibiting ergosterol biosynthesis, but by a different
		mechanism to the triazole fungicides. It is a systemic
		fungicide with both protectant and curative activity.

1.5 DETAILED USES OF THE PLANT PROTECTION PRODUCT

Plese refer to point 1.5.1

1.5.1 Details of representative uses

Сгор	Member State or Country		F	Pests or	Pre	paration		Applic	ation		Applicati	on rate per	treatment				
and/or situation (a)		Product name	G or I (b)	I	or I	or I	Group of pests controlled (c)	Type (d-f)	Conc. Fenpropidin. (i)	method kind (f-h)	range of growth stages & season (j)	number min-max (k)	Interval between application (min)	g a.s /hL min-max (l)	Water L/ha min-max	g a.s./ha min-max (1)	PHI (days) (m)
Wheat	EU	Tern (A7516D)	F	Erysiphe graminins	EC	750 g/L	Foliar spray	BBCH 31-69	2	14	562.5- 93.75	100- 300	562.5- 281.25	-	Min conc. 3g as/L when 281.25g as/ha is used		
Barley	EU	Tern (A7516D)	F	Erysiphe graminins	EC	750 g/L	Foliar spray	BBCH 31-65	2	14	562.5- 93.75	100- 300	562.5- 281.25	-	Min conc. 3g as/L when 281.25g as/ha is used		

(a) For crops, the EU and Codex classifications (both) should be taken into account; where relevant,	(i) g/kg or g/L. Normally the rate should be given for the active substance (according to ISO) and not
the use situation should be described (e.g. fumigation of a structure)	for the variant in order to compare the rate for same active substances used in different variants
(b) Outdoor or field use (F), greenhouse application (G) or indoor application (I)	(e.g. fluoroxypyr). In certain cases, where only one variant is synthesised, it is more
(c) <i>e.g.</i> biting and sucking insects, soil born insects, foliar fungi, weeds	appropriate to give the rate for the variant (e.g. benthiavalicarb-isopropyl).
(d) <i>e.g.</i> wettable powder (WP), emulsifiable concentrate (EC), granule (GR)	(j) Growth stage range from first to last treatment (BBCH Monograph, Growth Stages of Plants,
(e) CropLife International Technical Monograph no 2, 6th Edition. Revised May 2008. Catalogue of	1997, Blackwell, ISBN 3-8263-3152-4), including where relevant, information on season at time
pesticide	of application
(f) All abbreviations used must be explained	(k) Indicate the minimum and maximum number of applications possible under practical conditions
(g) Method, e.g. high volume spraying, low volume spraying, spreading, dusting, drench	of use
(h) Kind, e.g. overall, broadcast, aerial spraying, row, individual plant, between the plant- type of	(1) The values should be given in g or kg whatever gives the more manageable number (e.g. 200
equipment used must be indicated	kg/ha instead of 200 000 g/ha or 12.5 g/ha instead of 0.0125 kg/ha
	(m) PHI - minimum pre-harvest interval

1.5.2 Further information on representative uses

Plese refer to point 1.5.1

1.5.3 Details of other uses applied for to support the setting of MRLs for uses beyond the representative uses

Not applicable.

1.5.4 Overview on authorisations in EU Member States

Plese refer to CP Dossier, document D2 – list of currently authorised uses and extent of use.

Volume 1 – Level 2

May 2021

Level 2

FENPROPIDIN

2 <u>SUMMARY OF ACTIVE SUBSTANCE HAZARD AND OF PRODUCT RISK</u> <u>ASSESSMENT</u>

Summary of methodology proposed by the applicant for literature review and for all sections

2.1 IDENTITY

2.1.1 Summary or identity

All points of the data requirements regarding Section 1 have been addressed and the information supplied is acceptable. A full scale production 5-batch analyses was provided and was acceptable (please see confidential section for full information). Based on the documentation provided by the both Syngenta and ADAMA for the purpose of renewal, the minimum purity 960 g/kg is proposed. Fenpropidin is the racemic mixture of two enantiomers.

2.2 Physical and chemical properties [equivalent to section 7 of the CLH report template]

2.2.1 Summary of physical and chemical properties of the active substance

Property	Value	Reference	Comment (e.g. measured or estimated)
Physical state at 20°C and 101,3 kPa	PAS: Pale yellow liquid (Purity 99.5 %) TGAS: Pale yellow liquid (Purity 96.7 %)	Das, 2000 Rodler, 1993	Observed
Melting/freezing point	-64.6°C (Purity 99.5 %)	Nickler, 1999	Measured
Boiling point	Thermal decomposition starts before boiling occurs. Oxidative decomposition starts at 93°C (Purity 99.5 %). Boiling point at 1.1 Pa is 70.2°C	Das, 2000	Measured
Relative density	0.913 (20°C, Purity 99.5 %)	Das, 1999	Measured
Vapour pressure	1.7 x 10 ⁻² Pa (25°C, Purity 99.5 %)	Geoffroy, 1993	Measured
Surface tension	65.0 mN/m (90 % saturated solution, 20°C, Purity 99.5 %)	O'Connor B., 2015a	Measured
Water solubility	130 g/L at 25°C (pH 6.0) (Purity 99.3 %) 530 mg/L at 25°C (pH 7.0) (Purity 99.3 %) 6.2 mg/L at 25°C (pH 9.0) (Purity 99.3 %)	Rodler, 1993	Measured
Partition coefficient n-octanol/water	$log P_{OW} = 0.83 \text{ at } 25^{\circ}C \text{ (pH 4.2) (Purity 99.5 \%)} \\ log P_{OW} = 2.9 \text{ at } 25^{\circ}C \text{ (pH 7.0) (Purity 99.5 \%)} \\ log P_{OW} = 4.5 \text{ at } 25^{\circ}C \text{ (pH 9.0) (Purity 99.5 \%)} \\ \end{cases}$	Stulz, 1998	Measured
Henry's law constant	3.39 Pa. m ³ .mol ⁻¹ (25°C)	Kendall A., 2016	Calculated
Flash point	156°C (Purity 96.7 %) Not classified in terms of its flash point	Schürch, H., 1993	Measured
Flammability	Data not required, the active substance is a liquid		

Table 1: Summary of physicochemical properties of the active substance

Fenpropiain		v orunne 1	1 - Level 2			May 2021	
Property	Value			Reference	Comment (e.g. measured or estimated)		
Explosive properties	Not an explosive substance (Purity 96.7 %)				Schürch, H., 1993	Measured	
Self-ignition temperature	Self-ignition	Self-ignition temperature 265 °C (Purity 96.7 %)			Schürch, H., 1993	Measured	
Oxidising properties	Fenpropidin	is not consid	lered an o	kidizing substance	;	Angly, H., 1999	Measured
Granulometry	Data not req	uired, the act	tive substa	nce is a liquid			
Solubility in organic solvents and identity of relevant degradation products	Completely Dichloromet	Data not required, the active substance is a liquid Completely miscible in all tested solvents, Acetone, Dichloromethane, Ethyl Acetate, Hexane, Methanol, Octanol and Toluene (25°C, Purity 97.0 %)				Kettner, 2000	Measured
Dissociation constant	pKa = 9.62 (basic) (Purit	y 99.5 %)			O'Connor B., 2015	Measured
Viscosity	Not measure	d					
Spectra	UV/VIS (Pu	rity: 99.5%):	:			Käser, 1997	Measured
(UV/VIS, IR, NMR, MS),	solution	waveleng	th [nm]	$\epsilon [L / mol \cdot cm]$		Heintz K., 2013	
molar extinction	neutral	218	.2	10760			
at relevant wavelengths,	acidic	217	.9	9670			
optical purity	basic	219	9	9440			
	neutral	29	0	4			
	750 nm was	observed.		between 340 nm	and		
	IR spectrun		.5 %):				
	Wavenumb	er [cm ⁻¹]	Assigned	1 to			
	2934		C-H stre				
	2769			tch for N-CH ₂			
	1363			formation for –C(CH ₃)		
	All the result fenpropidin	ts support the	e proposed	l structure for			
	¹ H-NMR (300 MHz, DMSO) All the results from the spectral analysis support the proposed structure for fenpropidin						
	MS spectrum of fenpropidin (EI)						
	m/z Fragment ion 273 M ⁺						
	98	H ₂ C					
	55	C ₄ H	I 7				
	All the result fenpropidin.	ts support the	e proposed	l structure for			

2.2.1.1 Evaluation of physical hazards [equivalent to section 8 of the CLH report template]

2.2.1.1.1 Explosives [equivalent to section 8.1 of the CLH report template]

Table 2: Summary table of studies on explosive properties

Method	Results	Remarks	Reference
EEC A.14		Technical	
Effect of a flame	not thermally sensitive	Fenpropidin (batch-	Schürch, H., 1993
Effect of a shock (mechanical)	not shock sensitive	no: 5, purity 96.7%)	
	The test substance did not	Fenpropidin (batch	
EEC A.14	explode when exposed to heat	id. 14129997, purity	Jackson W., 2015
	or mechanical shock.	99.7 %)	

2.2.1.1.1.1 Short summary and overall relevance of the provided information on explosive properties

Under the condition of the test, fenpropidin is not explosive. Fenpropidin does not belong to the additional hazard class 'desensitised explosives' in terms of criteria of the 12th ATP and the UN Recommendations on the Transport of Dangerous Goods, Manual of tests and criteria.

2.2.1.1.1.2 Comparison with the CLP criteria

Fenpropidin is not classified as explosive nor a desensitised explosive based on results of the two studies performed as referenced above.

Based on the screening procedure according to Reg (EU) 1272/2008 Annex I 2.1.4.2 and 2.1.4.3, the substance is not classified as explosive if there are no chemical groups associated with explosive properties present in the molecule as given in the Table A6.1 in Appendix 6 of the UN recommendations. Chemical groups indicating explosive properties in organic materials:

Structural feature	Examples	
C-C unsaturation	Acetylenes, acetylides, 1,2-dienes	
C-Metal, N-Metal	Grignard reagents, organo-lithium compounds	
Contiguous nitrogen atoms	Azides, aliphatic azo compounds, diazonium salts, hydrazines, sulphonylhydrazides	
Contiguous oxygen atoms	Peroxides, ozonides	
N-0	Hydroxylamines, nitrates, nitro compounds, nitroso compounds, N-oxides, 1,2-oxazoles	
N-halogen	Chloramines, fluoroamines	
O-halogen	Chlorates, perchlorates, iodosyl compounds	

None of these groups associated with explosive properties in the molecule are present in fenpropidin.

With regard to classification procedure for desensitised explosives with reference to 12th ATP and the Reg. (EU) 2019/521, the procedure does not apply if the substances or mixtures contain no explosives according to criteria of section 2.1 of the CLP Reg. (EU) 1272/2008.

Fenpropidin contains no explosives therefore the classification procedure for desensitised explosives does not apply to fenpropidin.

2.2.1.1.1.3 Conclusion on classification and labelling for explosive properties Not classified.

2.2.1.1.2 Flammable gases (including chemically unstable gases) [equivalent to section 8.2 of the CLH report template]

Not relevant: the substance is a liquid.

2.2.1.1.3 Oxidising gases [equivalent to section 8.3 of the CLH report template] Not relevant: the substance is a liquid.

2.2.1.1.4 Gases under pressure [equivalent to section 8.4 of the CLH report template]

Fenpropidin

Volume 1 – Level 2

Not relevant: the substance is a liquid.

2.2.1.1.5 Flammable liquids [equivalent to section 8.5 of the CLH report template]

Table 3:Summary table of studies on flammable liquids

Method	Results	Remarks	Reference
EEC A.9 (DIN 51758, Pensky-	Flash point = $156^{\circ}C$	Technical Fenpropidin	Schürch, H., 1993
Martens)	(at 1013 mbar)	(batch-no: 5, purity 96.7%)	Schurch, H., 1995
EEC A.9 (ASTM D93, Pensky-	Flash point = $158 \pm 8 \ ^{\circ}C$	Fenpropidin (batch id.	Jackson W., 2015
Martens	(101.2 kPa)	14129997, purity 99.7 %)	Jackson W., 2015

2.2.1.1.5.1 Short summary and overall relevance of the provided information on flammable liquids

First test was carried out in accordance with EC Test A.9, DIN 51758 for Pensky-Martens closed-cup testing.

Second test was carried out in accordance with EC Test A.9, Reference 5.2, using ASTM D93 for Pensky-Martens closed-cup testing. The test was carried out twice with the same result.

2.2.1.1.5.2 Comparison with the CLP criteria

Flash point is above 60°C. Hence, not flammable according to CLP.

2.2.1.1.5.3 Conclusion on classification and labelling for flammable liquids

The substance is not flammable liquid. Data conclusive but not sufficient for classification.

2.2.1.1.6 Flammable solids *[equivalent to section 8.6 of the CLH report template]* Not relevant: the substance is a liquid.

2.2.1.1.7 Self-reactive substances [equivalent to section 8.7 of the CLH report template]

2.2.1.1.7.1 Short summary and overall relevance of the provided information on self-reactive properties

The classification procedures for self-reactive substances and mixtures need not be applied if there are no chemical groups present in the molecule associated with explosive or self-reactive properties. Examples of such groups are given in the Table A6.3 in Appendix 6 of the UN Recommendations on the Transport of Dangerous Goods, Manual of Tests and Criteria:

Structural feature	Examples
Mutually reactive groups	Aminonitriles, haloanilines, organic salts of oxidizing acids
S=O	Sulphonyl halides, sulphonyl cyanides, sulphonyl hydrazides
P-O	Phosphites
Strained rings	Epoxides, aziridines
Unsaturation	Olefins, cyanates

None of these groups associated with self-reactive properties are present in the molecule of fenpropidin.

2.2.1.1.7.2 Comparison with the CLP criteria

Fenpropidin does not contain groups associated with self-reactive properties.

2.2.1.1.7.3 Conclusion on classification and labelling for self-reactive substances

Fenpropidin is not classified as a self-reactive substance.

2.2.1.1.8 Pyrophoric liquids [equivalent to section 8.8 of the CLH report template]

2.2.1.1.8.1 Short summary and overall relevance of the provided information on pyrophoric liquids

No tests have been conducted but safe long-term use of fenpropidin demonstrates that it is not a pyrophoric liquid.

Fenpropidin does not spontaneously ignite in air.

2.2.1.1.8.2 Comparison with the CLP criteria

No tests have been conducted but safe long-term use is evidence that fenpropidin is not liable to ignite in contact with air.

According to the additional classification considerations in CLP Annex I, 2.9.4, the classification procedure for pyrophoric liquids need not be applied when experience in manufacture or handling shows that the liquid does not ignite spontaneously on coming into contact with air at normal temperatures (i.e. the liquid is known to be stable at room temperature for prolonged periods of time (days)).

2.2.1.1.8.3 Conclusion on classification and labelling for pyrophoric liquids

Not classified. Fenpropidin is not a pyrophoric liquid.

2.2.1.1.9 Pyrophoric solids [equivalent to section 8.9 of the CLH report template] Not relevant: the substance is a liquid.

2.2.1.1.10 Self-heating substances [equivalent to section 8.10 of the CLH report template]

 Table 4:
 Summary table of studies on self-heating substances

Method	Results	Remarks	Reference
EEC A.15 (DIN 51794)	The self-ignition temperature was measured to be 265°C	Fenpropidin (purity 96.7%)	Schürch, H., 1993
EEC A.15	Auto ignition temperature = $265 \pm 15^{\circ}C$	Fenpropidin (purity 99.7 %)	Jackson W., 2015

2.2.1.1.10.1 Short summary and overall relevance of the provided information on self-heating substances

Two studies on auto-ignition according to the EC test A.15 were provided. They show a self-heating temperature of 265°C.

2.2.1.1.10.2 Comparison with the CLP criteria

Following CLP guidance (ECHA, 2017), EEC A.15 method is generally inappropriate for a reliable assessment, and the findings do not lead to a classification. However, the result in this case (EEC A15 method), i.e. self-ignition temperature of 265°C, is sufficiently straightforward to conclude that fenpropidin will not be classified as self-heating liquid.

2.2.1.1.10.3 Conclusion on classification and labelling for self-heating substances Fenpropidin will not be classified as self-heating substance.

2.2.1.1.11 Substances which in contact with water emit flammable gases [equivalent to section 8.11 of the CLH report template]

2.2.1.1.11.1 Short summary and overall relevance of the provided information on substances which in contact

with water emit flammable gases

No tests have been conducted but safe long-term use of fenpropidin demonstrates that it does not a emit a gas (flammable or otherwise) when in contact with water.

2.2.1.1.11.2 Comparison with the CLP criteria

Based on provisions of the Reg. (EU) 1272/2008 on the classification criteria for the substances which in contact with water emit flammable gases (Annex I part 2, 2.12.4.1) the classification procedure to fenpropidin for this class does not need to be applied based on the following:

- the chemical structure of fenpropidin does not contain metals of metalloids

- experience in fenpropidin production and handling demonstrates fenpropidin does not react with water

- fenpropidin is soluble in water to form a stable mixture.

2.2.1.1.11.3 Conclusion on classification and labelling for substances which in contact with water emit

flammable gases

Not classified. Fenpropidin does not emit flammable gases in contact with water.

2.2.1.1.12 Oxidising liquids [equivalent to section 8.12 of the CLH report template]

 Table 5:
 Summary table of studies on oxidising liquids

Volume 1 – Level 2

Method	Results	Remarks	Reference
Transport of Dangerous Goods, Manual of Tests and Criteria. Part III, section 34. UN 1995	Not considered an oxidising substance according to the test	Fenpropidin (purity 97.0%)	Angly, H., 1999

2.2.1.1.12.1 Short summary and overall relevance of the provided information on oxidising liquids

Mean pressure rise time of a 1:1 mixture of fenpropidin and cellulose is 16.95 s.

2.2.1.1.12.2 Comparison with the CLP criteria

The pressure rise time of a 1:1 mixture of fenpropidin and cellulose is greater than 65% aqueous nitric acid (3.45 s). A substance is classified as an oxidising liquid when the pressure rise time of a sample to cellulose 1:1 mixture is less than or equal to the pressure rise time of 65% aqueous nitric acid. Therefore, the criteria for the classification are not met.

2.2.1.1.12.3 Conclusion on classification and labelling for oxidising liquids

Data conclusive but not sufficient for classification.

2.2.1.1.13 Oxidising solids [equivalent to section 8.13 of the CLH report template]

Not relevant: the substance is a liquid.

2.2.1.1.14 Organic peroxides [equivalent to section 8.14 of the CLH report template] Not relevant as the chemical structure of the active substance does not exhibit a peroxide moiety.

2.2.1.1.15 Corrosive to metals [equivalent to section 8.15 of the CLH report template]

2.2.1.1.15.1 Short summary and overall relevance of the provided information on the hazard class corrosive to metals

Fenpropidin is a liquid with a pKa = 9.62 (basic) (Purity 99.5 %). It has no strongly acidic moieties, it does not contain a halogen nor form complexes with metals.

Therefore, fenpropidin is unlikely to be corrosive to metals.

2.2.1.1.15.2 Comparison with the CLP criteria

Based on criteria of the Reg. (EU) 1272/2008 and the CLP guidance 2.16.4.1, fenpropidin is not the substance to be considered for classification of this class, i.e. corrosive to metals. It has no strongly acidic moieties, it does not contain a halogen nor form complexes with metals.

2.2.1.1.15.3 Conclusion on classification and labelling for corrosive to metals

Fenpropidin is not corrosive to metals

2.2.2 Summary of physical and chemical properties of the plant protection product

The plant protection product Tern (code A7516D) is emulsifiable concentrate. The appearance of the product is that of a yellow orange liquid with a thymol like odour. The density of the preparation at a temperature of 20°C is 0.914 g/ml and the pH of a 1% emulsion in water is 10.1. Surface tension of a 1% emulsion in water is 28.7 mN/m; formulation is regarded as surface active. There was no significant physical or chemical change during storage at 54°C for 14 days in f-HDPE packaging material. There was no significant physical or chemical change during storage at 20°C for two years in HDPE/PA and f-HDPE packaging material. The stability data indicate a shelf life of at least 2 years at ambient temperature when stored as recommended. HDPE/PA and f-HDPE packaging proved to be resistant to the product. Technical characteristics of the product are acceptable for an emulsion concentrate.

2.3 DATA ON APPLICATION AND EFFICACY

2.3.1 Summary of effectiveness

TERNTM 750 EC is an agricultural fungicide used to control powdery mildews, rusts and Rynchosprium secalis in cereal crops. Fenpropidin is a piperidine derivative and acts by inhibiting ergosterol biosynthesis, but by a different mechanism to the triazole fungicides. It is a systemic fungicide with both protectant and curative activity. TERNTM 750 EC is applied at 1 L/ha product in northern Europe and 0.75 L/ha product in southern Europe corresponding to 750 and 562 g ai/ha respectively. A maximum of two applications may be made per year. The

Fenpropidin

Volume 1 – Level 2

first application will be at the appearance of disease, likely to be close to growth stage 29 (end of tillering, maximum number of tillers detectable), the second application will be made not later than GS 65 (end of flowering, 50% of anthers mature). The interval between applications will typically be 21-35 days. The product will typically be applied at application volumes of 100-400 L/ha giving concentrations of fenpropidin of 140-750 g ai/hL in the diluted spray.

2.3.2 Summary of information on the development of resistance

Through its good activity fenpropidin provides a valuable anti-resistance strategy for powdery mildew either in mixture or alternation with fungicidal products having a different mode of action. Intensive and exclusive use of fenpropidin for the control of powdery mildew over many years can lead to a gradual decline of the efficacy of the compound. In practice the efficacy of fenpropidin has however, remained stable. To avoid a shift of the pathogen population towards less sensitive strains it is recommended to use fenpropidin in mixture/programs/alternation with compounds with different modes of action.

2.3.3 Summary of adverse effects on treated crops

No report of a particular varietal susceptibility was reported during the commercial use of the product.

2.3.4 Summary of observations on other undesirable or unintended side-effects

TERNTM 750 EC showed no phytotoxicity to a wide range of broad-leaved crops after multiple foliar application.

2.4 **FURTHER INFORMATION**

2.4.1 Summary of methods and precautions concerning handling, storage, transport or fire

Fenpropidin

Advice for safe handling

No special protective measures against fire required. Avoid contact with skin and eyes. When using do not eat, drink or smoke.

Conditions for safe storage

No special storage conditions required. Keep containers tightly closed in a dry, cool and well-ventilated place. Keep out of the reach of children. Keep away from food, drink and animal feeding stuffs.

Extinguishing media

Small fires: Use water spray, alcohol-resistant foam, dry chemical or carbon dioxide. Large fires: Alcohol-resistant foam or water spray

Specific hazards during firefighting

As the product contains combustible organic components, fire will produce dense black smoke containing hazardous products of combustion. Exposure to decomposition products may be a hazard to health

Special protective equipment for firefighters:

Wear full protective clothing and self-contained breathing apparatus. **Transport information Land transport (ADR/RID)** UN number: UN 3082 UN proper shipping name: ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. (FENPROPIDIN) Transport hazard class(es): 9 Packing group: III Labels: 9 Environmental hazards: Environmentally hazardous Tunnel restriction code: E

Fenpropidin

Sea transport (IMDG) UN number: UN 3082 UN proper shipping name: ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. (FENPROPIDIN) Transport hazard class(es): 9 Packing group: III Labels: 9 Environmental hazards: Marine pollutant

Air transport (IATA-DGR)

UN number: UN 3082 UN proper shipping name: Environmentally hazardous substance, liquid, n.o.s. (FENPROPIDIN) Transport hazard class(es): 9 Packing group: III Labels: 9

Tern (product)

Detailed handling procedures for storage:

No special storage conditions required. Keep containers tightly closed in a dry, cool and well-ventilated place. Keep out of the reach of children. Keep away from food, drink and animal feeding stuffs. No special protective measures against fire required. Avoid contact with skin and eyes. When using do not eat, drink or smoke.

Fire fighting measures

Suitable extinguishing media:

Extinguishing media - small fires: Use water spray, alcohol-resistant foam, dry chemical or carbon dioxide. Extinguishing media - large fires: alcohol-resistant foam or water spray.

Unsuitable extinguishing media: Do not use a solid water stream as it may scatter and spread fire.

Specific hazards during fire fighting: As the product contains combustible organic components, fire will produce dense black smoke containing hazardous products of combustion.

Exposure to decomposition products may be a hazard to health.

Special protective equipment for firefighters: Wear full protective clothing and self-contained breathing apparatus.

Transport

Land transport ADR/ RID:					
UN-Number:	3082				
Class:	9				
Labels:	9				
Packaging group	ÎII				
Proper shipping name:	ENVIRONMENTALLY	HAZARDOUS	SUBSTANCE,	LIQUID.	N.O.S.
(SOLVENT NAPHTHA A					
Sea transport					
IMDG:					
UN-Number:	3082				
Class:	9				
Labels:	9				
Packaging group: III					
Proper shipping name:	ENVIRONMENTALLY	HAZARDOUS	SUBSTANCE,	LIQUID,	N.O.S.
(SOLVENT NAPHTHA A	ND FENPROPIDIN				
Marine pollutant: Marine	pollutant				

Air transport

IATA-DGR					
UN-Number:	3082				
Class:	9				
Labels:	9				
Packaging group: III					
Proper shipping name:	ENVIRONMENTALLY	HAZARDOUS	SUBSTANCE,	LIQUID,	N.O.S.
(SOLVENT NAPHTHA AND FENPROPIDIN)					

2.4.2 Summary of procedures for destruction or decontamination

In the event of accidental spillage, neutralisation (with acid or base to neutral pH) is not an effective procedure for the destruction or decontamination of the formulation.

Therefore, the spilled liquid formulation should first be adsorbed onto a solid, such as sand, inert clay filler, saw dust or soil, before being swept up into a safe container to await disposal.

Both, fenpropidin and Tern can be disposed of safely by incineration in a modern incinerator, licensed to treat special contaminated waste, which fulfils the following conditions: $> 800^{\circ}$ C, minimum residence time within the incinerator, 2 seconds, equipped with a washing unit for flue gases. The ashes have to be disposed of at a suitable, approved waste disposal site. Wash water has to be disposed of via a suitable waste water treatment plant.

Environmental precautions:

Prevent further leakage or spillage if safe to do so. Do not flush into surface water or sanitary sewer system. If the product contaminates rivers and lakes or drains inform respective authorities.

Methods for cleaning up:

Contain spillage, and then collect with non-combustible absorbent material, (e.g. sand, earth, diatomaceous earth, vermiculite) and place in container for disposal according to local / national regulations.

2.4.3 Summary of emergency measures in case of an accident

Acceptable information has been provided, including safety data sheets of fenpropidine technical and TERNTM 750 EC. Please refer to Volume 3 CA and CP, Section B.4.

Containment of spillages:

Prevent entry into drains, waters or soil. Keep in suitable closed containers for disposal.

First aid measures:		
Skin contact:	Wash with plenty of water. Use soap if available.	
Grossly contaminated clothing:	Remove contaminated clothing. Wash before re-use.	
Eye contact:	Rinse immediately with plenty of potable water.	
Inhalation:	Move to fresh air.	
Ingestion:	Rinse mouth with water. Do not induce vomiting without medical advice.	
Medical advice:	Over-exposure symptoms unknown. Only minor local symptoms are expected. No specific antidote. Treat symptomatically.	

Protection of emergency workers:

Based on the toxicity of TERN 750 EC no specific protective clothing or equipment is required, however the following are recommended on the basis of good agricultural practice when handling pesticides.

Wear impermeable gloves, suitable protective clothing and suitable eye/face protection.

No information is provided on the suitability of such clothing as its using is recommended on the basis of general advice for all pesticides.

2.5 METHODS OF ANALYSIS

2.5.1 Methods used for the generation of pre-authorisation data

Syngenta technical material and formulation

A validated method for the determination of fenpropidin in the technical material is available. The active substance fenpropidin and impurities are determined using GC with FID detection. Analytical method were considered fully validated in accordance with SANCO/3030/99 rev. 4 for the determination of active substance and impurities content in the technical material. Identity of impurities were confirmed by comparing their retention times to those of reference substances. The MS spectra of active substance and impurities were recorded, confirming their structures.

A GC analytical method with FID detection was considered fully validated in accordance with SANCO/3030/99

Fenpropidin

Volume 1 – Level 2

rev. 4 for the determination of active substance content in the plant protection product.

ADAMA technical material

A validated method for the determination of fenpropidin in the technical material is available. The active substance fenpropidin is determined using HPLC with DAD detection. Analytical method was considered fully validated in accordance with SANCO/3030/99 rev. 4 for the determination of active substance content in the technical material. A validated method for the determination of impurities in the technical material is available. The impurities are determined using GC with FID detection. Analytical method was considered fully validated in accordance with SANCO/3030/99 rev. 4 for the determination of impurities content in the technical material. The confirmation of identity of the active ingredient and impurities was performed by GC/MS analysis.

Methods for risk assessment

Satisfactory methods of analysis for the detection of fenpropidin and its metabolite CGA 289267, in relevant matrices to support all areas of the risk assessment (including residues, ecotoxicology, mammalian toxicology and environmental fate and behaviour) have been provided. These methods have been assessed in accordance with SANCO/3029/99 rev. 4. The validation evaluation has been conducted in section B5 of the CA RAR documents. The applicability of these methods is addressed in the respective sections for these studies which these methods support.

2.5.2 Methods for post control and monitoring purposes

Active and impurities in the plant protection product: Analytical methods reported in 2.5.1 can be applied.

Methods for monitoring purposes: Satisfactory methods for the determination of all components included in the monitoring residue definition in matrices of plant/animal origin as well as in relevant environmental compartments have been provided. Analytical methods were considered fully validated for the determination of required components' content in the relevant matrices.

Matrix	Analyte	Method	LOQ	ILV	Fully validated
Plant, high water content	Fenpropidin	LC-MS/MS	0.01 mg/kg	Yes	Yes
Plant, acidic commodities	Fenpropidin	LC-MS/MS	0.01 mg/kg	Not required	Yes
Plant, dry commodities	Fenpropidin	LC-MS/MS	0.01 mg/kg	Yes	Yes
Plant, high oil content	Fenpropidin	LC-MS/MS	0.01 mg/kg	Not required	Yes
Commodities which are difficult to analyse	Not required for th	e intended GAP			
Meat	Fenpropidin and CGA 289267, CGA 289268	LC/MS-MS	0.01 mg/kg	Yes	Yes
Milk	Fenpropidin and CGA 289267, CGA 289268	289267, CGA LC-MS/MS 0.005 mg/kg Yes		Yes	Yes
Eggs	Fenpropidin and CGA 289267, CGA 289268	LC-MS/MS	0.01 mg/kg	Not required	Yes
Fat	Fenpropidin and CGA 289267, CGA 289268	LC-MS/MS	0.01 mg/kg	Yes	Yes
Liver, kidney	Fenpropidin and CGA 289267, CGA 289268	LC-MS/MS	0.01 mg/kg	Not required	Yes
Soil	Fenpropidin	LC-MS/MS	0.01 µg/kg*	Not required	Yes

Fenpropidin	V	olume 1 – Level 2	May 2021				
Matrix	Analyte	Method	LOQ	ILV	Fully validated		
Surface water Ground water Drinking water	Fenpropidin	LC/MS-MS	0.05 µg/L**	Yes	Yes		
Air	Fenpropidin	LC-MS/MS	0.15 µg/m ³ ***	Not required	Yes		
Body fluids	Fenpropidin and CGA 289267, CGA 289268	LC-MS/MS	0.01 mg/L	Not required	Yes		

*The LOQ of the method is in agreement with the NOEC for the most sensitive non-target organism of *Eisenia fetida* (NOEC = 10 mg a.s./kg dry weight soil.

** The LOQ of the method is in agreement with the endpoint for the most sensitive water organism of Desmodesmus subspicatus with an E_yC_{50} of 0.7 µg/L.

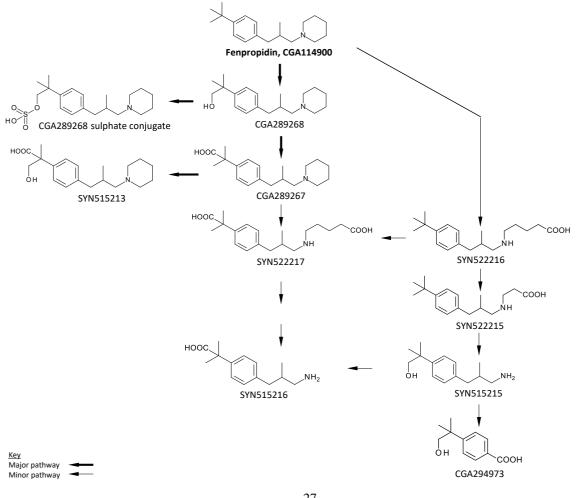
***LOQ of the method comply with the concentration (15 µg.m-3) calculated from AOEL (0.05 mg/kg).

2.6 EFFECTS ON HUMAN AND ANIMAL HEALTH

More detailed results of the studies are presented in Volume 3, section B.6.

2.6.1 Summary of absorption, distribution, metabolism and excretion in mammals [equivalent to section 9 of the CLH report template]

Method	Results	Remarks	Reference		
Toxicokinetics Sprague Dawley Rat (males, females, 3 – 12animals/group) Oral route: by gavage, low dose: 0.5 mg/kg bw of ¹⁴ C- fenpropidin (2.096 MBq/mg); high dose: 100 mg/kg bw of ¹⁴ C-fenpropidin diluted with non-radiolabelled fenpropidin to achieve a specific activity of 185 kBq/mg Repeated dosing: 14 doses of unlabelled fenpropidin followed by a single radiolabelled dose (0.5 mg/kg bw) Intravenous administration OECD TG 417	C _{max} : 30 min. and 1-2 hours after low and high dose administration, respectively Excretion: 82 – 102% within 48 h, predominantly in urine Residues in tissues: 0.4 – 1.7% of applied dose (7 days after application; predominantly in liver and kidney) Biliary elimination: 12% (low dose females) Single dose absorption: 57 – 93% (only high dose females bellow 80%); the overall estimated absorption: >80%	Test material: ¹⁴ C- fenpropidin Radiochemical purity: >98% Non-radiolabelled fenpropidin: 99% purity Acceptable study	(1994)		
Metabolism Samples from the study (1994) OECD TG 417	No parent substance was found in excreta Urine metabolite pattern: 14 metabolite fractions (major U6: 46-79% of the dose) Faeces metabolite pattern: 16 metabolite fractions (in females major F5: 6-27% ; in males 0.7- 1.7% of the dose) Bile metabolite pattern was similar to that of faeces	Acceptable study	Muller (1994)		
Metabolism Samples from the study (1994) OECD TG 417	2 metabolic pathways were proposed for fenpropidin, independent of sex, dose level, dose route and pre-treatment (see Figure 2.6.1.1-1)	Acceptable study	Molitor (1996)		
<i>In vitro</i> comparative metabolism study 10 μM of 2-methylpropyl-3- ¹⁴ C- fenpropidin was incubated with rat, dog and human	No unique human metabolite was identified Interspecies differences in extent of metabolism were observed	Test material: 2- methylpropyl-3- ¹⁴ C- fenpropidin (radiochemical purity: 98.9%, chemical purity: 98.4%)	Sayer (2017)		


 Table 6:
 Summary table of toxicokinetic studies

Method	Results	Remarks	Reference
hepatocytes for 0, 2 and 4 h			
No OECD TG		Positive control : [¹⁴ C]-7- ethocycoumarin	
		Acceptable study	

2.6.1.1 Short summary and overall relevance of the provided toxicokinetic information on the proposed classification(s)

Fenpropidin is rapidly and extensively absorbed after a single oral dose in rats (> 80%, excretion within 48 hours, 79% in urine and 12% via bile). The absorbed dose is distributed mainly between liver and kidney, the principal organs of metabolism and excretion. No tissue accumulation is observed and almost complete excretion of the administered dose occurs within 48 hours, predominantly in urine. Metabolism of fenpropidin is extensive as no parent compound is observed in excreta. The principal urine metabolite is CGA289267, accounting for 46-79% of the administered dose. Other urine metabolites individually account for up to 2.5% of the administered dose and include CGA289268 (\leq 0.3%), and its sulphate ester conjugate (\leq 1.5%) and SYN515213 (\leq 2.5%). The principal faces and bile metabolite in female rats is the sulphate ester conjugate of CGA289268, accounting for 6-27% and 6% of the administered dose.

Figure 2.6.1.1-1: Proposed metabolic pathway of fenpropidin

In vitro comparative study (2017) did not reveal any unique human metabolite. In rats as well as dogs, notable metabolism was observed. The proportion of chromatographic radioactivity attributable to the parent compound decreased from 98.7% and 97.6% (0 h) to 0.76% and 2.44% (4h) in male and female rat samples; and from 96.1% and 99.4% to 59.2% and 32.6% in male and female dog samples. On the other hand, in human samples, the proportion of chromatographic radioactivity attributable to the parent compound decreased from 97.0% (0h) to 89.7% (4h). Thus, the extent of metabolism in humans was low.

 Table 2.6.1.1-1: Summary of the notable metabolites (>1% total chromatographic radioactivity) in

Species	Incubation	Mean	% Chro	matogra	am radio	oactivity	•				
species	time [hour]	M5	M7	M10	M11	M12	M19	M21	M22	M24	Parent
	0	ND	ND	ND	ND	ND	ND	ND	ND	ND	98.69
Male rat	2	10.78	2.53	0.69	ND	64.80	1.12	1.29	0.98	ND	0.50
	4	7.88	2.96	1.52	ND	64.56	0.98	1.34	0.73	ND	0.76
Female	0	ND	ND	ND	ND	ND	ND	ND	ND	ND	97.62
rat	2	47.76	11.06	1.60	ND	11.17	ND	1.66	5.76	ND	2.49
Tat	4	50.96	8.97	0.57	ND	12.33	1.25	1.63	4.24	ND	2.44
Mala	0	ND	ND	ND	ND	ND	ND	ND	ND	ND	96.09
Male	2	ND	ND	4.66	ND	ND	2.29	5.90	8.72	5.30	67.24
dog	4	0.11	ND	6.24	ND	0.36	2.66	7.78	13.9	3.16	59.21
Female	0	ND	ND	ND	ND	ND	ND	ND	ND	ND	99.43
	2	0.62	0.11	8.09	1.25	0.54	4.66	8.09	13.23	10.01	40.37
dog	4	1.00	0.28	9.18	1.90	0.63	5.29	8.30	17.51	7.42	32.61
	0	ND	ND	ND	ND	ND	ND	ND	ND	ND	96.97
Human	2	ND	ND	3.52	ND	ND	ND	ND	ND	ND	93.27
	4	ND	ND	7.77	ND	ND	ND	ND	0.93	ND	89.65

```
rats, dogs, and humans; ND = not detected, (2017)
```

2.6.2 Summary of acute toxicity

2.6.2.1 Acute toxicity - oral route [equivalent to section 10.1 of the CLH report template]

 Table 7:
 Summary table of animal studies on acute oral toxicity

Method, guideline, deviations if any	Species, strain, sex, no/group	Test substance	Dose levels, duration of exposure	Value LD50	Reference
Acute oral (gavage) Predates, but compliant with, OECD TG 401 Predates GLP certification of laboratories but conducted according to GLP Acceptable study	Rat Outbred albino 10/sex/dose (not all dose levels were applied to both sexes)	Fenpropidin technical (purity 94%) Vehicle: gum Arabic 4% aqueous	0, 1872, 2136, 2401, 3205, 4273, or 5341 mg/kg bw (males) 0, 539, 1068, 1333, 1470, 1607, 1872, 2136, 3205 mg/kg bw (females) Single dose followed by 14 day observation period	Males = 2173 mg/kg bw Females = 1452 mg/kg bw Confidence limits not reported	(1981)
Acute oral (gavage)	Rat	Fenpropidin	0, 913, 1461, 2283	Males = 2009	

Method, guideline, deviations if any	Species, strain, sex, no/group	Test substance	Dose levels, duration of exposure	Value LD50	Reference
Predates, but compliant with, OECD 401 Deviations : purity of the test substance was not stated Non GLP Acceptable study	Sprague Dawley 10/sex/group	technical (purity not stated) Vehicle: distilled water	or 3652 mg/kg bw. Single dose followed by 14 day observation period	mg/kg bw Females = 2009 mg/kg bw (2.2 ml/kg bw 95% confidence limits 2.0 to 2.5 ml/kg bw)	(1981)

 Table 8:
 Summary table of human data on acute oral toxicity

No data available

 Table 9:
 Summary table of other studies relevant for acute oral toxicity

No data available

2.6.2.1.1 Short summary and overall relevance of the provided information on acute oral toxicity

In an acute oral toxicity study in rats (**1981**), mortality was observed at doses equivalent to 1872 – 5341 mg/kg bw in males and 1333 – 3205 mg/kg/bw in females. Deaths occurred from day 1 – 10. Clinical observations included rhinorrhoea, dacryorrhoea, lethargy, flaccidity, ataxia and piloerection. Convulsions, diarrhoea and anorexia were seen in some animals prior to death. Body weights were reduced during the first week, in all dose levels which caused mortalities. Surviving animals appeared to have recovered by study termination. Macroscopic findings in animals which were found dead included: gastritis and enteritis; enlarged lymph nodes; spleen adherent to the stomach with a reduced number of lymphocytes, and necrosis in one case. In animals which survived to termination, macroscopic findings included: cellular infiltrates in lungs, liver and/or kidneys; foci of necrosis in liver tissue; reduced numbers of lymphocytes in the spleen (1 female, 1068 mg/kg bw); pneumonitis (1 male, 1872 mg/kg bw). The LD50 of fenpropidin was calculated to be 2.38 and 1.59 mL/kg bw equivalent to 2173 and 1452 mg/kg bw for males and females, respectively.

In another acute oral toxicity study in rats (1981), mortality was observed at doses equivalent to 2283 - 3652 mg/kg by in males and females. Deaths occurred from day 1 - 7. Clinical observations included piloerection, hunched posture and lethargy. At doses equivalent to 1461 mg/kg bw and above, there were incidences of diarrhoea, reduced respiratory rate, body tremors, ataxia, reduced locomotor activity and collapsed condition. Piloerection was also seen in control animals. All surviving rats had apparently recovered within five days of dosing. Body weights were reduced during the first week in males and females. Macroscopic examination of the decedents revealed slight hyperaemia or congestion of the lungs, congestion of the liver and hyperaemia of the stomach walls. Macroscopic examination of the animals killed at termination revealed slight adherence between the stomach and spleen in 3 males and 3 females dosed at 2283 mg/kg bw. Histopathological examination of tissues from the 3652 mg/kg bw group revealed vacuolisation of liver cells and lesions in the forestomach and the glandular stomach, which are considered to be treatment related. Focal inflammatory lesions of liver, kidney and lung were also seen, but were attributed to a bacterial infection. The acute oral LD50 value of fenpropidin was calculated to be 2.2 mL/kg bw (95% confidence limits 2.0 to 2.5 ml/kg bw) for male and female rats, equivalent to 2009 mg/kg bw.

2.6.2.1.2 Comparison with the CLP criteria regarding acute oral toxicity

According to CLP criteria (Regulation (EC) No. 1272/2008, Annex 1, Table 3.1.1), the last acute toxicity category: Acute Toxicity Category 4, H302: Harmful if swallowed is characterized by the following value of LD_{50} : $300 < LD_{50} \le 2000$ mg/kg bw. Based on the acute oral toxicity studies, LD_{50} for fenpropidin is in the range 1452 - 2009 mg/kg bw. Therefore, classification is warranted.

2.6.2.1.3 Conclusion on classification and labelling for acute oral toxicity

The proposed classification for fenpropidin is Acute Toxicity Category 4, H302: Harmful if swallowed.

2.6.2.2 Acute toxicity - dermal route [equivalent to section 10.2 of the CLH report template]

Method, guideline, deviations if any	Species, strain, sex, no/group	Test substance	Dose levels duration of exposure	Value LD50	Reference
Acute dermal (semi-occlusive) OECD 402 GLP Acceptable study	Rat Tif:RAI f (SPF) 5/sex/dose	Fenpropidin technical (purity 97%)	4000 mg/kg bw 24 hour application followed by 19 or 21 day observation period	> 4000 mg/kg bw Males/females	(1993)

Table 10: Summary table of animal studies on acute dermal toxicity

Table 11: Summary table of human data on acute dermal toxicity

No data available

 Table 12:
 Summary table of other studies relevant for acute dermal toxicity

No data available

2.6.2.2.1 Short summary and overall relevance of the provided information on acute dermal toxicity

In an acute dermal toxicity study in rats (**1993**), there were no mortalities following a 24 hour application of 4000 mg/kg bw. Clinical signs of piloerection and hunched posture were seen in all animals but did not persist after day 5. Signs of skin irritation at the application site included erythema and oedema and, later on, necrosis. Scaling of the skin was observed only in females. All skin lesions had recovered by day 21. Two females lost weight during the first week but all other animals gained weight during the study. There were no macroscopic abnormalities at necropsy. The acute dermal median lethal dose for male and female rats was >4000 mg/kg bw.

2.6.2.2.2 Comparison with the CLP criteria regarding acute dermal toxicity

According to CLP criteria (Regulation (EC) No. 1272/2008, Annex 1, Table 3.1.1), the last acute toxicity hazard category: Acute Toxicity Category 4, H312: Harmful in contact with skin is characterized by the following value of LD_{50} : $1000 < LD_{50} \le 2000$ mg/kg bw. Based on the acute dermal toxicity study, LD_{50} for fenpropidin is higher than 2000 mg/kg bw.

2.6.2.2.3 Conclusion on classification and labelling for acute dermal toxicity

As LD₅₀ is higher than 2000 mg/kg bw, classification according CLP criteria (Regulation (EC) No.1272/2008) is

not required.

2.6.2.3 Acute toxicity - inhalation route [equivalent to section 10.3 of the CLH report template]

 Table 13:
 Summary table of animal studies on acute inhalation toxicity

Method, guideline, deviations if any	Species, strain, sex, no/group	Test substance, form and particle size (MMAD)	Dose levels, duration of exposure	Value LC50	Reference
Acute inhalation (nose-only) Predates, but compliant with, OECD 403 Deviation : purity of the test substance was not stated Non GLP Acceptable study	Rat CD (Sprague- Dawley) 8/sex/group	Fenpropidin (purity not reported). Aerosol MMAD: 0.47 mg/L – 1.89 μm, 0.68 mg/L – 1.78 μm 1.09 mg/L – 2.12 μm 1.34 mg/L – 2.32 μm 1.78 mg/L – 2.17 μm 2.39 mg/L – 2.28 μm	0, 0.47, 0.68, 1.09, 1.34, 1.78 or 2.39 mg/L (gravimetric concentration). 4 hour exposure, followed by 14 day observation period	1.22 mg/L (95% CL 1.03-1.44 mg/L) Males /females	(1981)

Table 14: Summary table of human data on acute inhalation toxicity

No data available

 Table 15:
 Summary table of other studies relevant for acute inhalation toxicity

No data available

2.6.2.3.1 Short summary and overall relevance of the provided information on acute inhalation toxicity

In the acute (nose-only) inhalation toxicity study in Sprague Dawley rats (1981), groups of 8 male and 8 female rats were exposed to aerosolised fenpropidin for 4 hours, at gravimetric concentrations of 0.47, 0.68, 1.09, 1.34, 1.78 or 2.39 mg/L. A control group was exposed to filtered air only. Deaths were observed at concentrations of 0.68 mg/L and higher; these generally occurred during exposure on day 1 but at 1.09 male deaths occurred on days 4 - 14. Rats that died during, or shortly after, exposure had respiratory difficulties and body staining. In other animals, clinical signs after exposure included: lethargy, prostration, cold to touch, ataxia and respiratory difficulties. As the study progressed, some animals had dry, scaly skin and body sores. Animals treated with ≥ 1.09 mg/L showed skin irritation leading to vocalisation and aggression. All treated animals showed reduced weight gain throughout the study. Macroscopic examination revealed dark patches in the lungs, indicative of pulmonary irritation, and alopecia and skin sores at $\geq 1.09 \text{ mg//L}$. Increased lung weights were observed at exposure levels of 1.34 mg/L and higher. Microscopic examination of the animals exposed to 1.78 mg/L that died on the day of exposure, revealed pulmonary congestion, oedema and /or tracheitis, indicative of pulmonary irritation. No significant pulmonary lesions were found in rats exposed to 1.78 mg/L which survived to the end of the study. The LC50 was calculated to be 1.22 mg/L (95% confidence limits 1.44 and 1.03 mg/L).

2.6.2.3.2 Comparison with the CLP criteria regarding acute inhalation toxicity

According to CLP criteria (Regulation (EC) No. 1272/2008, Annex 1, Table 3.1.1), the last acute toxicity hazard category Acute Toxicity Category 4, H332: Harmful if inhaled (dust and mists) is characterized by the following value of LC_{50} : $1 < LC_{50} \le 5$ mg/l. Based on the acute inhalation toxicity study, LC_{50} for fenpropidin is 1.22 mg/l. Therefore, CLP criteria for classification are met.

2.6.2.3.3 Conclusion on classification and labelling for acute inhalation toxicity

The proposed classification for fenpropidin is Acute Toxicity Category 4, H332: Harmful if inhaled.

2.6.2.4 Skin corrosion/irritation [equivalent to section 10.4 of the CLH report template]

 Table 16:
 Summary table of animal studies on skin corrosion/irritation

Method, guideline, deviations if any	Species, strain, sex, no/group	Test substance	Dose levels duration of exposure	Results -Observations and time point of onset -Mean scores/animal -Reversibility	Reference
Acute skin irritation (occlusive dressing instead of semi- occlusive; examinations of the application site were at 45 and 68 hours rather than 48 and 72 hours). Predates, but compliant with, OECD 404 GLP Acceptable study	Rabbit New Zealand white Male 6/group	Fenpropidin (purity not reported)	0.5 mL applied to shorn flank, under an occlusive dressing 4 hour application Irritation response assessed at 1 hour, 1, 2 & 3 days after removal of dressings and at intervals for up to 14 days	Irritating to skin Signs of skin irritation seen in all rabbits from 1 hour after decontamination which persisted until termination of the study on day 14. Severe oedema was seen in all animals 24 hours after decontamination and moderate skin thickening was present from 6 - 14 days. Mean scores for individual tested animals (calculated from scores at 24, 45 and 68 hours): Erythema: 3.0, 3.7, 3.0, 3.0, 4.0, 4.0 Oedema: 4.0, 4.0, 4.0, 4.0, 4.0, 4.0	(1984)
Acute skin irritation (semi- occlusive dressing) OECD 404 GLP Acceptable study	Rabbit New Zealand white Female 3/group	Fenpropidin (purity 99.5%)	0.5 mL applied to shorn flank, under a semi-occlusive dressing. Control patch – distilled water 4 hour application. Irritation response assessed at 1 hour, 1, 2 & 3 days after removal of dressings and at intervals for up to 21 days.	Mild irritant to skin. Signs of skin irritation (very slight to well defined erythema and very slight to slight oedema) present in 3/3 animals, all resolved by day 10. Scaling at the application site was seen in all animals on days 10 and 14, with slight scaling still present at day 17. All skin reactions were fully reversed by 21 days after patch removal. Mean scores for individual tested animals (calculated from scores at 24, 48 and 72 hours): Erythema: 2.0, 2.0, 2.0 Oedema: 1.0, 1.3, 1.3	(1999)

 Table 17:
 Summary table of human data on skin corrosion/irritation

No data available

Table 18: Summary table of other studies relevant for skin corrosion/irritation

No data available

2.6.2.4.1 Short summary and overall relevance of the provided information on skin corrosion/irritation

In the first skin irritation study in rabbits (**1984**), fenpropidin was applied under occlusive conditions to investigate the skin irritation potential. There were no mortalities and no signs of toxicity. Signs of skin irritation were seen in all animals from 1 hour following decontamination (very slight to well defined erythema and moderate to severe oedema). By day 6, all animals had severe erythema. Severe oedema was present in all animals 24 hours after decontamination and persisted until day 6 when moderate skin thickening obscured any oedema. Additional signs of skin irritation were seen in all animals and included scabbing, hardening, cracking, desquamation, staining and areas of blanched skin. Signs of skin irritation had not resolved by day 14 when the study was terminated, however, no full thickness destruction of the skin was observed.

In a subsequent skin irritation study in rabbits (**1999**), there were no mortalities but a slight weight loss was seen in all 3 rabbits during the first week. Very slight to well-defined erythema and very slight to slight oedema was observed in all animals, but these signs had regressed by day 10. Scaling at the application site was seen in all animals on days 10 and 14, with slight scaling still present at day 17. All skin reactions had resolved by day 21.

2.6.2.4.2 Comparison with the CLP criteria regarding skin corrosion/irritation

According to CLP criteria (Regulation (EC) No. 1272/2008, Annex 1, Table 3.2.1 and 3.2.2) there was no evidence of destruction of skin tissue (visible necrosis through the epidermis and into the dermis) in either study in any animal, classification as skin corrosive is not applicable.

The basis for a positive response with regard to skin irritation is the individual rabbit value averaged over days 1, 2, and 3. The mean score for each individual animal is used as a criterion for classification. Skin irritation Category 2 is used if:

- a) In a study with 3 rabbits at least 2 animals show a mean score of 2.3 or above.
- b) In case of 6 rabbits if at least 4 out of 6 rabbits show a mean score per animal of $\ge 2.3 \le 4.0$ for erythema/eschar or for oedema.

2.6.2.4.3 Conclusion on classification and labelling for skin corrosion/irritation

Classification according to CLP criteria (Regulation (EC) No. 1272/2008) is not required.

2.6.2.5 Serious eye damage/eye irritation [equivalent to section 10.5 of the CLH report template]

Table 19: Summary table of animal studies on serious eye damage/eye irritation

Method, guideline, deviations if any	Species, strain, sex, no/group	Test substance	Dose levels duration of exposure	Results - Observations and time point of onset - Mean scores/animal - Reversibility	Reference
Acute eye irritation Predates, but compliant with, OECD 405 except that animals were observed for 14 days and not 21 days and individual body weight data is not provided. Non GLP Acceptable study	Rabbit, New Zealand white 3/group	Fenpropidin (purity not reported) Vehicle: none	Single application of undiluted test substance Eyes examined after 1 hour and then at 1, 2, 3, 7 and 14 days after instillation, according to the Draize scheme.	Irritating to eyes Signs of irritation (conjunctival redness, chemosis, corneal opacity and iritis) were present in 3/3 rabbits from 1 – 72 hours after instillation. Mean scores with undiluted test substance at 24, 48 and 72 hours: Cornea: 1.3, 1.3, 1.3 Iris: 1.3, 1.3, 1.3 Conjunctivae (redness): 2.7, 3.0, 3.0 Conjunctivae (chemosis): 1.7, 2.0, 2.0 Signs of irritation had not resolved by day 14 (study termination).	and (1979)

Table 20: Summary table of human data on serious eye damage/eye irritation

No data available

 Table 21:
 Summary table of other studies relevant for serious eye damage/eye irritation

No data available

2.6.2.5.1 Short summary and overall relevance of the provided information on serious eye damage/eye irritation

The eye irritation potential was investigated in a study in rabbits (**Derived** and **Derive** 1979). Following instillation of the undiluted test substance, there was evidence of moderate ocular irritation. Corneal opacity (scores of 1-2) was observed from 1 hour post instillation and persisted until 14 days after instillation in one rabbit. Iritis (scores of 1 - 2) was observed from 1 hour - 72 hours post instillation in all animals. Conjunctival redness and swelling (chemosis) was also seen in all rabbits, from 1 hour - 7 days post instillation. By day 14, conjunctival redness (grade 1-2) persisted in all 3 rabbits and corneal opacity and chemosis was present in 1/3 rabbits.

Medical surveillance data on manufacturing plant personnel and monitoring studies conducted over 20 years indicate no evidence of significant adverse effects. The only reported cases of adverse effects in the eyes were two packing personnel reported smarting in the eyes in 1996.

Table 2.6.2.5.1-1: Eye irritation scores according to the Draize scheme (undiluted

test substance;	est substance; & 1979).												
Time		Cornea			Iris (Conjunctiva Redness			Chemosis		
Animal number	1	2	3	1	2	3	1	2	3	1	2	3	
after 1 hour	1	1	1	1	1	1	2	2	2	1	1	1	
after 24 hours	1	1	1	2	2	2	2	3	3	1	2	2	
after 48 hours	1	1	1	1	1	1	3	3	3	2	2	2	
after 72 hours	2	2	2	1	1	1	3	3	3	2	2	2	
mean scores 24-72h	s 1.3			1.3			2.9			1.9			
after 7 days after 14 days	1 0	1 0	3 3	0 0	0 0	0 0	3 1	3 1	3 2	2 0	2 0	2 1	

2.6.2.5.2 Comparison with the CLP criteria regarding serious eye damage/eye irritation

According to CPL criteria (Regulation (EC) No. 1272/2008 Annex I, Table 3.3.1), an active substance is considered to cause Serious eye damage Category 1, H318 if it produces: at least in one animal, effects on the cornea, iris or conjunctiva that are not expected to reverse or to have not fully reversed within an observation period of 21 days; and/or the following positive response (calculated as the mean scores following grading at 24, 48, and 72 hours after the instillation of the test material) is observed at least in 2 of 3 tested animals: corneal opacity \geq 3 and/or iritis \geq 1.5;

In the study of **and and and (1979)**, scores for corneal opacity and iritis did not exceed the criteria. However, conjunctival redness was still present in all animals on day 14, while corneal opacity and chemosis in one animal were also present on day 14. As no further observations were made it cannot be excluded that these reaction would have cleared by day 21. Consequently, fenpropidin is considered to cause serious eye damage.

2.6.2.5.3 Conclusion on classification and labelling for serious eye damage/eye irritation

The proposed classification for fenpropidin is Serious eye damage Category 1, H318: Causes serious eye damage.

2.6.2.6 Respiratory sensitisation [equivalent to section 10.6 of the CLH report template]

 Table 22:
 Summary table of animal studies on respiratory sensitisation

No studies available

 Table 23:
 Summary table of human data on respiratory sensitisation

No evidence of respiratory sensitisation in humans.

Table 24: Summary table of other studies relevant for respiratory sensitisation

No studies available

2.6.2.6.1 Short summary and overall relevance of the provided information on respiratory sensitisation

No formally recognised and validated animal tests currently exist for respiratory sensitisation. Although there is evidence of respiratory irritation in single and repeated dose inhalation studies in rats, there was no indication of sensitisation. In humans, based on medical surveillance data on manufacturing plant personnel and monitoring studies conducted over 20 years, no evidence of respiratory sensitisation has been reported.

Manufacturing employees in Switzerland are medically examined by a company physician at the beginning of their employment and then routinely on a regular bases according to the criteria of the Swiss Accident Insurance Institution (SUVA). Routine medical examinations include: anamnesis, physical examination, blood analysis (haemoglobin, erythrocytes, leukocytes, thrombocytes, complete blood count, blood sedimentation rate, blood sugar, blood pressure, cholesterol, triglycerides, ALT, AST, alkaline phosphatase, bilirubine, creatinine, uric acid) and urine analysis. The active ingredient is manufactured on Syngentas behalf by a 3rd Party (

Formulation and packaging is located in Syngenta's plant in Automatic Automa

to the managers of the sites and company physicians (last update by March 2003).

Since 1991 about 450 tonnes of fenpropidin per year were used in **Example**, involving 20-50 workers. No adverse health effects have been reported.

Since 1992 about 10 formulations containing fenpropidin were produced in **Example 1** Formulation is done in campaigns (e.g. 2 campaigns per year, 1 month per campaign, involving about 30 workers). There was one report of adverse health effects in 1996 involving 4 workers from the packaging line – general itchiness and smarting of eyes in two workers each. Unless other factors (e.g. other formulation ingredients) were involved, the observed effects might be related to fenpropidins well-known irritation potential perhaps in combination with not complete compliance to safety measures.

No adverse health effects have been reported from **Example**, involving 5 persons, 208 tonnes of material was used. In **Example** formulation of Fenpropidin products was done from 1989 to 1995 in about 10 campaigns per year (each campaign took 11 to 15 days each). A total of 30 persons were involved in the production. No compound related adverse effects were reported.

In summary except a confirmation that potential exposure to fenpropidin can lead to irritation reactions of the skin and eye, no adverse health effects have been observed. Following the report from France in 1996, changes in operating procedures to improve standards of hygiene and reduce exposure have resulted in no further adverse effects being observed in any of the production or formulation.

2.6.2.6.2 Comparison with the CLP criteria regarding respiratory sensitisation

Not relevant. No studies available.

2.6.2.6.3 Conclusion on classification and labelling for respiratory sensitisation

Not relevant. No studies available.

2.6.2.7 Skin sensitisation [equivalent to section 10.7 of the CLH report template]

Table 25: Summary table of animal studies on skin sensitisation

Method, guideline, deviations if any	Species, strain, sex, no/group	Test substance	Dose levels duration of exposure	Results	Reference
Maximisation study Predates, but compliant with OECD 406, except that the age of the animals was not reported. GLP Acceptable study	Guinea pig: Pirbright white (Tif: DHP) 10/sex –test group 5/sex – control group	Fenpropidin (purity 97%) Vehicle: <i>oleum</i> <i>arachidis /</i> vaseline	Induction: Intradermal: 5% in <i>oleum arachidis</i> ; 5% in FCA / physiological saline; and FCA / physiological saline (1:1). Topical: 30% in vaseline under an occlusive dressing for 48 hours. <u>Challenge</u> : 5% in vaseline under an occlusive dressing for 24 hours.	Sensitising Skin reactions (erythema) following challenge were observed at 24 and 48 hours in 5/20 and 8/20 test animals, respectively. No positive skin reactions were observed in the negative control animals. <u>% of animals with positive reactions at 24 and 48 hours</u> : Controls: Fenpropidin: 0%, 0% Vehicle: 0%, 0% Test group: Fenpropidin: 25%, 40% Vehicle: 0%, 0%	(1994a)
Buehler study Predates, but compliant with OECD 406, except that the age of the animals was not reported. GLP Acceptable study	Guinea pig Pirbright white (Tif: DHP) 10/sex –test group 5/sex – control group	Fenpropidin (purity 97%) Vehicle: oleum arachidis	Induction: Dermal occlusive application for 6 hours in weeks 1, 2 and 3. Test group: 60% fenpropidin in <i>oleum</i> <i>arachidis</i> Naive controls: <i>oleum arachidis</i> <u>Challenge</u> : dermal occlusive application for 6 hours in week 5 (13-15 days after induction). Test and naive controls - 30% fenpropidin in <i>oleum</i> <i>arachidis</i> and vehicle alone.	Sensitising Skin reactions following challenge were observed at 24 and 48 hours in 5/20 and 9/20 test animals, respectively. No positive skin reactions were observed in the negative control animals. <u>% of animals with positive reactions at 24 and 48 hours</u> : Controls: Fenpropidin: 0%, 0% Vehicle: 0%, 0% Test group: Fenpropidin: 25%, 45% Vehicle: 0%, 0%	(1994b)

Table 26:Summary table of human data on skin sensitisation

No evidence of skin sensitisation in humans.

 Table 27:
 Summary table of other studies relevant for skin sensitisation

No studies available.

2.6.2.7.1 Short summary and overall relevance of the provided information on skin sensitisation

In a Magnusson and Kligman skin sensitisation study in guinea pigs (1994a), there was no significant skin irritation observed after induction and there were no signs of systemic toxicity. Challenge exposure to 5% fenpropidin in vaseline caused positive skin reactions (erythema) in 25%/40% of the animals 24/48 hours after removal of the dressings. No positive skin reactions were seen in the negative control group. In a separate positive control study with 2-mercaptobenzothiazole, 20/20 test animals exhibited signs of sensitisation, proving the sensitivity of the test system.

In a Buehler sensitisation study in guinea pigs (**1994b**), there were no signs of systemic toxicity following induction with 60% fenpropidin in *oleum arachidis*. Challenge exposure to 30% fenpropidin in *oleum arachidis* caused positive skin reactions in 9/20 test animals, corresponding to a sensitisation rate of 45%. There were no skin reactions in the naive control animals at challenge. In a separate positive control study with 2-mercaptobenzothiazole, 6/20 test animals showed positive skin reactions (sensitisation rate of 30%), proving the sensitivity of the test system.

2.6.2.7.2 Comparison with the CLP criteria regarding skin sensitisation

Substances are considered to be skin sensitisers and classified in sub-category 1B if in a guinea pig maximisation test \geq 30% animals respond at > 1% intradermal induction dose. In the study of (1994a) 40% of animals responded following intradermal injection at 5%.

For Buehler assays substances are classified in sub-category 1B if $\geq 15\%$ animals respond following a topical dose of > 20%. In the study of (1994b), 45% of animals responded following a topical application of 60%.

Both studies meet the criteria for classification and fenpropidin is considered to be a skin sensitiser.

2.6.2.7.3 Conclusion on classification and labelling for skin sensitisation

The proposed classification for fenpropidin is Skin Sensitiser Category 1B, H317: May cause an allergic reaction.

2.6.2.8 Phototoxicity

Table 28:Summary table of studies on phototoxicity

No studies available

Table 29:Summary table of human data on phototoxicity

No data available

Table 30:Summary table of other studies relevant for phototoxicity

No studies available

2.6.2.9 Aspiration hazard [equivalent to section 10.13 of the CLH report template]

 Table 31:
 Summary table of evidence for aspiration hazard

No data available

2.6.2.9.1 Short summary and overall relevance of the provided information on aspiration hazard

No information on aspiration hazard relating to fenpropidin is available.

2.6.2.9.2 Comparison with the CLP criteria regarding aspiration hazard

According to the CLP criteria (Regulation (EC) No. 1272/2008), an active substance is included in the hazard category (Category 1) for aspiration toxicity: (i) based on reliable and good quality human evidence or (ii) if it is a liquid hydrocarbon and has a kinematic viscosity of 20.5 mm²/s or less, measured at 40°C. Fenpropidin does not meet CLP criteria because no information on aspiration hazard relating to fenpropidin is available and the substance is a liquid of higher kinematic viscosity.

2.6.2.9.3 Conclusion on classification and labelling for aspiration hazard

No classification is proposed.

2.6.2.10 Specific target organ toxicity-single exposure (STOT SE) [equivalent to section 10.11 of the CLH report template]

 Table 32:
 Summary table of animal studies on STOT SE (specific target organ toxicity-single exposure)

Method, guideline,	Test substance,	Results	Reference
deviations if any,	route of exposure,	- NOAEL/LOAEL	
species, strain, sex,	dose levels, duration	- target tissue/organ	
no/group	of exposure	- critical effects at the LOAEL	
Acute inhalation Predates, but compliant with, OECD 403 Non GLP Rat: CD (Sprague- Dawley) 8/sex/group Acceptable study	Fenpropidin (purity not reported) Aerosol Vehicle: air Nose-only inhalation 0, 0.47, 0.68, 1.09, 1.34, 1.78 or 2.39 mg/L (gravimetric concentration). 4 hour exposure, followed by 14 day observation period	 2.39 mg/L. Mortality: 7/8 males and 8/8 females day 1 Clinical findings: respiratory difficulties and body staining Macroscopic examination: Increased lung weights, evidence of pulmonary irritancy 1.78 mg/L Mortality: 7/8 males (days 1-3), 6/8 females (day 1) Clinical findings: decedents: respiratory difficulties and body staining; survivors: lethargy, prostration, cold to touch, ataxia and respiratory difficulties, dry, scaly skin and body sores Macroscopic examination: Increased lung weights, evidence of pulmonary and dermal irritancy. Microscopic examination: Pulmonary congestion, oedema and /or tracheitis, indicative of pulmonary irritation, dermatitis. 1.34 mg/L Mortality: 8/8 males (day 1), 8/8 females (day 1) Clinical findings: respiratory difficulties and body staining Macroscopic examination: Increased lung weights, 	(1981)

		dark patches in the lungs suggestive of pulmonary irritancy. 1.09 mg/L <i>Mortality:</i> 3/7 males (days 4-14), 2/7 females (day 1) <i>Clinical findings</i> : decedents: respiratory difficulties and body staining; survivors: lethargy, prostration, cold to touch, ataxia and respiratory difficulties, dry, scaly skin and body sores, vocalisation and aggression <i>Macroscopic examination:</i> alopecia and skin sores present 0.68 mg/L <i>Mortality:</i> 1/7 males (day 1), 1/7 females (day 1) <i>Clinical findings</i> : decedents: respiratory difficulties and body staining; survivors: lethargy, prostration, cold to touch, ataxia and respiratory difficulties, dry, scaly skin and body sores.	
		0.47 mg/L Mortality: 0/7 males, 0/7 females	
		<i>Clinical findings</i> : lethargy, prostration, cold to touch, ataxia and respiratory difficulties, dry, scaly skin and body sores.	
Acute oral (gavage) Predates, but compliant with, OECD 401 Predates GLP certification of laboratories but conducted according to GLP Rat Outbred albino 10/sex/dose (not all dose levels were applied to both sexes)	Fenpropidin technical (purity 94%) Vehicle: gum Arabic 4% aqueous 0, 1872, 2136, 2401, 3205, 4273, or 5341 mg/kg bw (males) 0, 539, 1068, 1333, 1470, 1607, 1872, 2136, 3205 mg/kg bw (females) Single dose followed by 14 day observation period	<u>Mortality</u> : at dose levels of >1333 mg/kg bw <u>Clinical signs</u> : lethargy, ataxia and piloerection (after dosing); rhinorrhoea, dacryorrhoea, , flaccidity; convulsions, diarrhoea and anorexia were seen in some animals prior to death; the majority of survivors appeared normal at the study termination <u>Pathology:</u> cellular infiltrates in lungs (1 2401 mg/kg bw); pneumonitis (1 1872 mg/kg bw); foci of liver necrosis (1 2401 mg/kg bw and 2 1607 mg/kg bw); nephritis (1 2401 mg/kg bw); In animals found dead: gastritis, enteritis (2 2136 mg/kg bw)	(1981)
Acceptable study Acute oral (gavage)	Fenpropidin technical	LD ₅₀ : 2009 mg/kg bw	
Predates, but compliant with, OECD 401 Non GLP Rat Sprague Dawley 10/sex/group	(purity not stated) Vehicle: distilled water 0, 913, 1461, 2283 or 3652 mg/kg bw. Single dose followed by 14 day	Clinical signs: piloerection, hunched posture and lethargy (in all males and majority of females); diarrhoea, reduced respiratory rate (2283 and 3652 mg/kg bw), body tremors (2283 and 3652 mg/kg bw), ataxia (2283 and 3652 mg/kg bw), reduced locomotor activity (3652 mg/kg bw); recovery complete in survivors within 5 days;	(1981)
Acceptable study	observation period	<u>Pathology:</u> vacuolisation of liver cells, lesions in the forestomach and glandular stomach (3652 mg/kg bw)	
Acute dermal (semi-occlusive) OECD 402 GLP Rat Tif:RAI f (SPF)	Fenpropidin technical (purity 97%) 4000 mg/kg bw 24 hour application followed by 19 or 21 day observation	No mortality No abnormalities at necropsy Clinical findings during observation period: piloerection and hunched posture	(1993)

5/sex/dose	period	
Acceptable study		

 Table 33:
 Summary table of human data on STOT SE (specific target organ toxicity-single exposure)

No evidence of adverse effects

 Table 34:
 Summary table of other studies relevant for STOT SE (specific target organ toxicity-single exposure)

No studies available

2.6.2.10.1 Short summary and overall relevance of the provided information on specific target organ toxicity – single exposure (STOT SE)

In standard single dose oral and dermal toxicity studies there was not an evidence of specific target organ toxicity. In the acute inhalation study an atmosphere concentration of 1.78 mg/L produced marked signs of pulmonary and dermal irritancy, including microscopic pathology in decedents. Clinical signs of respiratory irritation were observed in all dose groups (≥ 0.47 mg/L), although there was no evidence significant pulmonary lesions in animals that survived to termination.

2.6.2.10.2 Comparison with the CLP criteria regarding STOT SE (specific target organ toxicity-single exposure)

According to CLP criteria (Regulation (EC) No. 1272/2008, Annex 1, Table 3.8.1), an active substance is classified in Specific target organ toxicity after single exposure Category 1, H370 or Category 2, H371, based on the results of animal studies if it elicits significant and/or severe toxic effects of relevance to the human health at generally low or moderate exposure concentrations, respectively. The toxic effects relating to STOT SE include changes which have affected the function or morphology of a tissue/organ, or have produced serious changes to the biochemistry or haematology of the organism. The Category 3 for STOT SE includes only narcotic effects and respiratory tract irritation. This special classification occurs only when more severe organ effects including in the respiratory system are not observed.

Evidence of significant lung toxicity (i.e. exposure concentrations that produced histopathological damage) was only noted in conjunction with acute mortality. Consequently the data do not warrant classification as Category 1 or 2. However, clinical signs of respiratory tract irritation were noted at a concentration of 0.47 mg/L in the absence of mortality. Therefore, fenpropidin is considered to be a respiratory tract irritant and to meet the criteria for classification.

2.6.2.10.3 Conclusion on classification and labelling for STOT SE (specific target organ toxicity-single exposure)

The proposed classification for fenpropidin is STOT-SE Category 3, H335: May cause respiratory irritation.

2.6.3 Summary of repeated dose toxicity (short-term and long-term toxicity) [section 10.12 of the CLH report]

2.6.3.1 Specific target organ toxicity-repeated exposure (STOT RE) [equivalent to section 10.12 of the CLH report template]

Table 35:Summary table of animal studies on repeated dose toxicity (short-term and long-term toxicity) STOT
RE (specific target organ toxicity - repeated exposure)

Fenpropidin

Method, guideline, deviations if any, species, strain, sex, no/group	Test substance, route of exposure, dose levels, duration of exposure	Results - NOAEL/LOAEL - target tissue/organ - critical effects at the LOAEL	Reference
28-day range finding study OECD 407 Deviation: brain weight not recorded GLP Rat: Tif: RAIf (SPF) 5/sex/group Acceptable study	Fenpropidin technical (purity 97%) Oral (diet) 0, 50, 200, 1000 and 2000 ppm equivalent to 5.40, 20.1, 104.6, 200.1 mg/kg bw/day (males), and 5.62, 19.9, 103.4, 212.2 mg/kg bw/day (females) 28 days continuous in diet	NOAEL: 1000 ppm (104.6 in males and 103.4 mg/kg bw in females) 2000 ppm (males 200.1 mg/kg bw/day, females 212.2 mg/kg bw/day): Body weight: 28% males, 14% females at end of study Food consumption: 23% males over course of study Haematology: ↑ red cell count: 6.9% males, 5.7% females; MCV: 6.2% males, 7.8% females; ↓ MCH: 5.9% males, globulin: 6.7% males, 9.7% females; ↑ A/G ratio: 10.1% males, globulin: 6.7% males, 9.7% females; ↑ A/G ratio: 10.1% males, tl.3% females; ↑ ASAT: 55.5% males, 27.1% females; ↑ ALAT: 122.6% males, 13.4% females; ↓ cholesterol: 11.4% males, 2.4.8% females 14.4% females; ↓ cholesterol: 11.4% males, 0.5 control); ↑ oesophagus hyperkeratosis 5/5 males, 0/5 females; (0/5 control); ↑ urinary bladder hyperplasia 4/5 males, 0/5 females; 1/5 females; 0/5 females; 1/5 males, 0/5 females; 1.05 control) 10 males, 1/5 males, 1/5 males	
90-day oral toxicity study OECD 408, minor deviations: no	Fenpropidin technical (purity 97%). Oral (diet)	NOAEL: 150ppm (9.84 and 10.1 mg/kg bw/day for males and females, respectively) 1500 ppm (89.9 mg/kg bw/day males, 97.3 mg/kg bw/day females)	(1995)

Method, guideline,	Test substance, route of	Results - NOAEL/LOAEL	Reference
deviations if any, species, strain, sex, no/group	exposure, dose levels, duration of exposure	- target tissue/organ - critical effects at the LOAEL	
epididymides or uterus weights, several organs/tissues were not examined GLP Rat: Tif: RAIf (SPF) 15/sex/group 10/sex control and high dose to assess recovery Acceptable study	0, 20, 150 and 1500 ppm (1.14, 9.84, 89.9 mg/kg bw/day (males), and 1.24, 10.1, 97.3 mg/kg bw/day (females) 90 day (dietary administration), recovery period for control and high dose 4 weeks	Clinical observations: 1/25 females had bilateral opaque eyes from day56 and bilateral limb paralysis from day76. Body weight: ↓ 16% males, 8% females week 13 Body weight gain: ↓ 29% males, 18% females weeks 1-13 Food consumption: ↓ 10% males, 5% females weeks 1-13 Water consumption: ↓ 20% males during whole treatment period Haematology: ↑ RBC 4.0% males; ↑ Hb 3.3% males; ↑ WBC 22.2% females (29.3% lymphocytes) Clinical chemistry: ↓ globulin 9.5% males, 5.8% females, partly reversible after recovery; ↓ glucose 12% males; ↓ triglycerides 29% males similar to control after recovery Organ weight: ↑ liver relative to body weight: 12% females Histopathology: ↑ oesophagus pathology: hyperkeratosis 10/10 males, 2/10 females (0/10 control) and acanthosis 6/10 males, 2/10 females (0/10 control); ↑ nonglandular stomach pathology: hyperkeratosis 8/10 males, 4/10 females (0/10 and 1/10 control) and acanthosis 7/10 males, 4/10 females (0/10 control); ↑ urinary bladder hyperplasia: 4/10 males, 7/10 females (control 0/10 males and 1/10 females); demyelination affecting especially nerve roots and spinal tracts 1/10 females (with hind limb paralysis); ↑ pulmonary foam cells: 9/10 males grading 1.7 (control 7/10 grade 1.3); 7/10 females grade 1.7 (control 6/10 grade 1.3). After 4 weeks there was partial recovery from pathology findings in stomach and oesophagus. 150 ppm (9.84 mg/kg bw/day males, 10.1 mg/kg bw/day females) Histopathology: ↑ oesophagus pathology: hyperkeratosis 4/10 males and 4/10 females (0/10 control); ↑ nonglandular stomach pathology: hyperkeratosis 3/10 males (0/10 control) 20 ppm (1.14 mg/kg bw/day males, 1.24 mg/kg bw/day females] No treatment related findings	
90-day oral toxicity study OECD 408 Deficiencies: recovery group 6/sex high dose no controls, clinical pathology limited parameter and only 8/sex, not full tissue list for pathology GLP	Fenpropidin (purity 94.7%) Oral (diet) 0, 20, 60, 120 mg/kg bw/day 90-days continuous in diet; high dose only satellite group 14 day recovery	NOAEL: 60mg/kg bw 120 mg/kg bw/day Clinical observations: rough fur, hunched posture, rhagades, loss of hair and necrosis of the tail Body weight: ↓ 30% males, 13% females week 13 Food consumption: ↓ 18.0% males weeks 1-13, 17.8% females week 1 Clinical pathology: ↓ Cholinesterase activity 64.9% females week 13; ↑ GOT (ASAT) 25.8% males, 54.5% females week 7. 60 mg/kg bw/day Body weight: ↓ 15% males, 8% females week 13 Food consumption: ↓ 7% males weeks 1-13 Clinical chemistry: ↓ Cholinesterase activity 40.9% females	(1981)

Fenpropidin

Method, guideline, deviations if any, species, strain, sex, no/group Rat: SPF-albino rats (outbred stock) 16/sex/group; satellite recovery group high dose only 6/sex Acceptable	Test substance, route of exposure, dose levels, duration of exposure	Results • NOAEL/LOAEL • target tissue/organ • critical effects at the LOAEL week 13; ↑ GOT (ASAT) 19.4% males, 15.2% females week 7. 20 mg/kg bw/day Body weight: ↓7% males, 6% females week 13 Clinical chemistry: ↑ GOT (ASAT) 33.3% females week 7.	Reference
study 90-day oral toxicity study OECD 408 Deviations: only 8/sex and limited parameters for clinical pathology; thymus and epididymides not weighed; several tissues not examined pathologically. GLP Mouse SPF- albino mice (outbred stock) 16/sex/group Supportive study	Fenpropidin (purity 99%) Oral (diet) 0, 625, 1250, 2500 and 5000 ppm; equivalent to 0, 58, 155, 359 and 547 mg/kg bw/day (males), and 0, 87, 179, 361 and 566 mg/kg bw/day (females) 90 days continuous in diet Due to mortalities in the 5000 ppm group, additional low dose group added to the study	NOAEL: 1250 ppm (155 in males and 179 mg/kg bw in females) 5000 ppm (547 mg/kg bw/day in males and 566 mg/kg bw/day in females) All animals died or killed for humane reasons, males by week 7, and females by week 4. In excess of MTD further differences from control not included. 2500 ppm (359 mg/kg bw/day in males and 361 mg/kg bw/day in females) Mortality: 5 females died by week 5, 1 male week 13 Clinical signs: ↑ signs of local skin irritation Body weight: ↓ 13.8% males, 10.4% females week 13 Food consumption: ↑ males (probably wastage) Clinical chemistry: ↑ ASAT approximately 100% in both sexes Macropathology: ↑ Skin hyperkeratosis 1250 ppm (155 mg/kg bw/day in males and 179 mg/kg bw/day in females) Clinical signs: ↑ Inflammation of the ears and of tail tips. Body weight: ↓ 8.3% females week 13 Food consumption: ↑ males (probably wastage) Clinical signs: ↑ Inflammation of the ears and of tail tips. Body weight: ↓ 8.3% females week 13 Food consumption: ↑ males (probably wastage) 625 ppm (58 mg/kg bw/day in males and 87 mg/kg bw/day in females) Body weight: ↓ 10.4% females week 13	(1981)
28-day dose ranging finding study in beagle dog. No guideline. non GLP Dog: Beagle 2/sex/group Supplementary study (due to limited number of animals and further deviations)	Fenpropidin technical (purity 97%) Oral in capsules 0, 5, 15, 25 mg/kg bw/day 28 days	NOAEL: 5mg/kg bw for males and 15 mg/kg bw for females Body weight differences not statistically significant (small group size), other results significant Jonkheere's trend test) 25 mg/kg bw/day <i>Clinical signs:</i> ↑ vomiting and salivation (transient) males and females Body weight: ↓ 9% males and females week 4 Food consumption: ↓ 54.9% week 1, 32.3% week 4 females only (note period of feeding extended after week 1) <i>Clinical chemistry:</i> ↓ cholesterol 30.9% males, 26.4% females <i>Organ weights:</i> ↑ relative kidney 30% males; ↑ relative liver 59% males, 20% females 15 mg/kg bw/day	(1993)

Method, guideline, deviations if any, species, strain, sex, no/group	Test substance, route of exposure, dose levels, duration of exposure	Results - NOAEL/LOAEL - target tissue/organ - critical effects at the LOAEL Clinical signs: ↑ vomiting and salivation (transient) in females	Reference
		<i>Body weight</i> : ↓ 3% males and 5% females week 4 <i>Food consumption</i> : ↓ 62.2% week 1 females only (period of feeding extended after week 1) <i>Clinical chemistry</i> : ↓ cholesterol 24.4% males <i>Organ weight</i> : ↑ relative kidney weights 17% males; ↑ relative liver weight 38% males <u>5 mg/kg bw/day</u> No treatment-related effects	
26-week oral toxicity study in dog Pre OECD guideline but similar to OECD 409 GLP Dog: Beagle 4/sex/ group 2/sex/group killed after 26 weeks, 2/sex/group after 4 week recovery Supportive information (due to many deviations)	Fenpropidin (purity 94.7%) Oral in capsules 0, 2, 5, 12 mg/kg/day 26 weeks, recovery period 4 weeks	NOAEL: 5mg/kg bw 12 mg/kg bw/day Mortality: One male died week 16 following weight loss from week 11 Clinical signs: One female conjunctivitis and keratitis of eye; ↑ salivation in females up to 2 hours after dosing; ↑ vomiting both sexes Body weight: ↓ 12% females (week 1-25) Clinical chemistry: ↑ ALP 93.6% males, 46.8% females week 26; ↓ cholesterol females weeks 19 and 26, not statistically significant. Histopathology: decedent: hepatitis with congestion and slight cholestasis; enteritis and diapedesis bleeding (relation to treatment unknown). 5 mg/kg bw/day Clinical signs: ↑ vomiting (incidence not reported) 2 mg/kg bw/day No treatment related effects.	(1981)
1-year oral toxicity study in dog OECD 452 Deviations: urine volume and ornithine decarboxylase not measured; femur with joint not taken GLP Dog: Beagle 4/sex/group Acceptable study	Fenpropidin technical purity 97%) Oral in capsules 0, 2, 5 and 20 mg/kg/day 1 year	NOAEL: 5mg/kg bw 20 mg/kg bw/day Mortality: 1 male with hind limb paresis killed week 38, pathology findings: demyelination of spinal cord Clinical observations: ↑ Indurated and inelastic pads 4/4 males and females; vomiting 4/4 females weeks 1-6; scale formation in inguinal and axillary regions 4/4 males and 3/4 females; reddening of skin 1/4 males and females Ophthalmoscopy: ↑ opacity of the lens: 4/4 males and females from week 22 Body weight: ↓ 15% females week 4, similar to control after initial weeks of study. Food consumption: ↓ 27% week 1 and 14% week 4 females Haematology: ↑ platelets 53.6% week 13, 40.8% week 26 males Clinical chemistry: ↑ ALP 42.4% males week 26, 43.4% and 115.9% females weeks 13 and 52; ↓ albumin:globulin ratio 20.6% males week 13; ↑ globulin 25.4% males and 33.5%	(1995)

Method, guideline, deviations if any, species, strain, sex, no/group	Test substance, route of exposure, dose levels, duration of exposure	Results - NOAEL/LOAEL - target tissue/organ - critical effects at the LOAEL	Reference
21-day dermal toxicity OECD 410 Deviations: some clinical pathology parameters not included, spleen was not examined Non GLP Rabbit: New Zealand white 5/sex/group (intact skin); plus 5/sex/group (abraded skin) Acceptable study	Fenpropidin (purity 94.7%) Dermal 0, 0.02, 0.2 and 1-2 mg/kg/day Treatment at 2 mg/kg stopped days 10-13 and continued at 1 mg/kg bw/day day 14 for further 10 days 6 hours/day occlusive dressing, 21 days Vehicle aqueous 0.5% CMC	females week 52 <i>Organ weight:</i> ↑ relative liver 27% males; ↑ relative kidney 26% females <i>Histopathology:</i> cataract of crystalline lens 4/4 males and females (0/4 control); acanthosis of epidermis 3/4 males, 4/4 females (0/4 control); chronic inflammation skin/dermis: 2/4 males and females (0/4 control); pigmentation of Kupffer cells 4/4 females (1/4 control); liver inflammatory cell infiltration 3/ 4 females (2/4 control); nenal tubular pigmentation 4/4 females (1/4 control); inclusion bodies urinary bladder epithelium 4/4 males, 2/4 females (0/4 control); cholesterol granulomas in lung 4/4 males, 1/4 females (0/4 control); 5 mg/kg bw/day <i>Clinical chemistry:</i> ↓ albumin:globulin ratio 12.5% males week 13 <i>Organ weight:</i> ↑ relative liver 16% males not significant <i>Histopathology:</i> hepatocyte hypertrophy 2/4 males (0/4 control) 2 mg/kg bw/day No treatment related effects <u>NOAEL</u> : cannot be stated No evidence of systemic toxicity. No difference in skin irritation response between abraded and intact skin in any group 1-2 mg/kg bw/day Marked skin irritation with severe fissuring. Epidermal ulceration, marked epidermal thickening, inflammation of the dermis and occasional dermal fibrosis 0.2 mg/kg bw/day Minimal to slight skin irritation was seen in the majority of animals (also controls). Leucocyte infiltration in treated skin	(1981)
28-day inhalation study OECD 412 Deviations: some clinical pathology parameters not	Fenpropidin (purity not reported) Inhalation (nose -only) Measured concentration: 0 20.4, 76.8, 237.4	NOAEL: cannot be stated due to pre-term sacrifice of high and intermediate dose level animals 237 mg/m ³ and 76.8 mg/m ³ Animals were sacrificed after the first week of treatment due to their poor condition. Local irritation in the upper respiratory tract and respiratory distress. Lower body weight and food consumption, some changes in haematology and clinical	(1981)

Method, guideline, deviations if any, species, strain, sex, no/group	Test substance, route of exposure, dose levels, duration of exposure	Results - NOAEL/LOAEL - target tissue/organ - critical effects at the LOAEL	Reference
measured	mg/m ³	chemistry.	
Non GLP	6 hours per day	20.4 mg/m ³ (measured concentration)	
Rat: CD	for four weeks	No evidence of systemic toxicity	
(Sprague- Dawley)		Skin irritation (chronic folliculitis and dermatitis) in nose 1/10 males, 2/10 females; 0/10 controls) and head region (1/10	
15/sex/group; of		males, 1/10 females; 0/10 controls)	
these			
10/sex/group for clinical pathology			
Supplementary study			

Table 36: Summary table of human data on repeated dose toxicity STOT RE (specific target organ toxicity-repeated exposure)

No evidence of adverse effects in humans

 Table 37:
 Summary table of other studies relevant for repeated dose toxicity STOT RE (specific target organ toxicity-repeated exposure)

No studies available

2.6.3.1.1 Short summary and overall relevance of the provided information on specific target organ toxicity – repeated exposure (short-term and long-term toxicity)

The most consistent effect of fenpropidin observed was <u>irritation</u>. Dietary administration of fenpropidin to rats caused signs of local irritation in the oesophagus, stomach and urinary bladder. Most of these effects were reversible when treatment was discontinued. In mice a dose level of 1250 ppm (155 mg/kg bw/day in males and 179 mg/kg bw/day in females) caused an increased incidence of inflammation of the ears. In dogs signs of local irritation were observed at several locations of the body surface (food pads, ear) in the 1-year study at a dose level of 20 mg/kg bw/day.

<u>Histopathological changes</u> compatible with morphological findings resulting from local irritation were found in treated animals of oral subchronic toxicity studies. The signs of local irritation were hyperkeratosis and acanthosis of keratinised, stratified squamous epithelium (skin, oesophagus, forestomach of rodents) and hyperplasia of the transitional epithelium of the urinary bladder. In addition, inflammation and ulceration were observed in some of these animals.

<u>Systemic effects</u> observed after exposure to fenpropidin were body weight reduction for both males and females in the 28-day study in the rat (1994). In the 90-day study in the rat (1995) reduced body weight development, increased relative liver weight in females and a marginal, non-reversible, increased occurrence of pulmonary foam cells were noted in high dose animals. A demyelination affecting especially nerve roots and spinal tracts was confined to one single high dose female that also had paralysed hind limbs. The same animal developed bilateral cataracts. In the 90-day mouse study (1995) and 1981) deaths, decreased body weight and changes in aspartate aminotransferase and liver histology were observed in animals administered 2500 ppm.

In the 28-day dog study (1993) clinical signs of vomiting and salivation were observed at dose levels of 15 mg/kg bw/day and above. Increases in absolute and relative liver and kidney weights were observed at dose levels of 15 mg/kg bw/day and above in males only. In females, decreased food consumption and changes in clinical chemistry were observed at 25 mg/kg bw/day. In the 26 week dog study (1981) increased incidences of vomiting, reduced body weight gain and mortality of a single dog was observed at 12 mg/kg bw/day.

In the one-year dog study (**1995**) liver effects, expressed as increased weight, hepatocyte hypertrophy and increased alkaline phosphatase were observed. In a high dose males (20 mg/kg bw/day) all animals had cataracts of the eyes, in one animal hind limb paralysis was observed and spinal cord toxicity expressed as minimal to marked demyelination was observed in three out of four dogs.

The target organ for fenpropidin was reported as the liver in some studies. In a 90-day rat study there was a small increase in relative liver weight in females at 1500 ppm (97.3 mg/kg bw/day). A more marked increase was noted in dogs after 28 days in both sexes at a dose of 25 mg/kg bw/day and males at 15 mg/kg bw/day and also in a 1 year study at 20 mg/kg bw/day in males. Pathology findings in the liver were confined to the 1-year study in dogs where hepatocyte hypertrophy was evident in all dogs and Kuppfer cell pigmentation in all females at 20 mg/kg bw/day. At a dose of 5 mg/kg bw/day 2/4 males also had hepatocyte hypertrophy. These findings were consistent with adaptive changes and do not represent severe organ toxicity as defined in the CLP guidance (ECHA, 2015). There was some evidence of <u>demyelination/paralysis</u> and eye effects in two separate studies and species. In a 1 year study in dogs one male treated with 20 mg/kg bw/day was found with hind limb paresis at week 38, which was associated with a demyelination of the thoracic spinal cord. Demyelination of different segments of the spinal cord was also found in the other males of this dose group. All dogs of both sexes developed cataracts (onset of opacity after 22 weeks) at 20 mg/kg bw/day. No cataracts/opacity had been seen in the 26-week study at dose levels up to 12 mg/kg bw/day. In a 90 day rat study one high dose female developed paralysis of the hind limbs after about 11 weeks of treatment with 1500 ppm (97.3 mg/kg bw/day). Histopathological examination revealed demyelination of the spinal cord and peripheral nerves. The same animal showed bilateral cataracts. There was no further evidence for neurological or behavioural effects in any other rat from any other study. It is postulated that both the cataract formation and the demyelination may be linked to impairment of cholesterol biosynthesis. Percutaneous administration of fenpropidin to rabbits revealed a series of skin irritation reactions at the application

site. The irritation of the compound precluded the administration of dose levels above 1-2 mg/kg bw/day. Dermal irritation was evident at dose levels of 0.02 and 0.2 mg/kg bw/day. In a rat inhalation study, animals were sacrificed after the first week of treatment at measured concentrations of 76.8 and 237.4 mg/m³ due to their poor condition. They showed local irritation in the upper respiratory tract and respiratory distress but no effects on the lower airways or lung tissue. In the surviving 20.4 mg/m³ group, there was no relevant systemic toxicity.

 Table 38:
 Extrapolation of equivalent effective dose for toxicity studies of greater or lesser duration than 90 days [if adequate, otherwise please delete]

Study reference	Effective dose (mg/kg/day)	Length of exposure	Extrapolated effective dose when extrapolated to 90- day exposure	Classification supported by the study
(1995)	20 mg/kg bw (1/4 males paralysis, 4/4 males spinal cord demyelination)	1 year	2.5 – 25 mg/kg bw	STOT-RE Category 2

2.6.3.1.2 Comparison with the CLP criteria regarding STOT RE (specific target organ toxicity-repeated exposure)

According to CLP criteria (Regulation (EC) No. 1272/2008, Annex I, Table 3.9.1), an active substance is classified in Specific target organ toxicity after repeated exposure Category 1, H372 or Category 2, H371 based on the results of animal studies if it elicits significant and/or severe toxic effects of relevance to the human health at generally low or moderate exposure concentrations, respectively. The toxic effects relating to STOT RE include changes which have affected the function or morphology of a tissue/organ (e.g. necrosis, fibrosis, granuloma formation, steatosis), or have produced serious changes in the biochemistry or haematology.

Local irritation is not considered to be evidence of specific target organ toxicity. However, the effects in the nose and upper respiratory tract in the rat inhalation study warrant classification as STOT-SE Cat 3 (see section 2.6.2.10).

Effects in the liver were considered to represent adaptive response rather than evidence of specific target organ toxicity and do not warrant classification.

Cataract was observed in both rats and dogs. Although, it is postulated that the effect may be due to a systemic effect (impairment of cholesterol biosynthesis), there was no other evidence of eye damage and is considered not to represent evidence of significant target organ toxicity.

Evidence of specific target organ toxicity to the nervous system was seen in both the rat and dog characterised by hind-limb paralysis accompanied by demyelination of the spinal cord (**1995**; **1995**). The effects are considered to represent significant adverse effects at dose levels below the relevant cut-off value for STOT-RE Category 2 and therefore classification is warranted.

2.6.3.1.3 Conclusion on classification and labelling for STOT RE (specific target organ toxicity-repeated exposure)

The proposed classification for fenpropidin is STOT-RE Category 2, H373: May cause damage to the nervous system through prolonged or repeated oral exposure.

2.6.4 Summary of genotoxicity / germ cell mutagenicity [equivalent to section 10.8 of the CLH report template]

Method, guideline, deviations if any	Test substance	Organisms/strain	Concentrations tested	Observations/Results	Reference
Reverse mutation in bacteria Predates, but compliant with OECD 471 Deviations: the number of cells per culture was not stated GLP Acceptable study	Fenpropidin technical (purity 97%) Vehicle: acetone	Salmonella typhimurium strains, TA98, TA100, TA1535 and TA1537 and Escherichia coli strain WP2uvrA.	31.25, 62.5, 125, 250 and 500 μg/plate (original experiment) 125, 250, 500, 1000 and 2000 μg/plate (confirmatory experiment). +/- metabolic activation 500 μg/plate initially selected as the highest concentration for the mutagenicity experiment, based on a toxicity test in 2 strains	+S9: negative -S9: negative Cytotoxic effects evident at concentrations of 1000 and 2000 μg/plate in all strains. Positive controls: valid	Hertner (1993a)
Gene mutation assay in mammalian cells Predates, but compliant with OECD 476 (except that only single cultures were used, the required level of toxicity was not achieved in each test and 2-	Fenpropidin technical (purity 91%) Vehicle: dimethylsulfoxide (DMSO)	V79 cells (Chinese hamster lung fibroblasts, clone 66 A/4)	- S9 : 10-90 μg/mL (exp. 1- 3) + S9 : 5-50 μg/mL (exp. 1), 20-60 μg/mL (exp. 2).	+S9: negative -S9: negative Positive controls valid. Relative survival was reduced to 10-58% and 8% in the presence and absence of S9, respectively, after treatment with 80 or 60 μg/mL	Strobel (1988)

 Table 39:
 Summary table of genotoxicity/germ cell mutagenicity tests in vitro

Fenpropidin

Method, guideline, deviations if any	Test substance	Organisms/strain	Concentrations tested	Observations/Results	Reference
acetyl aminofluorene was used as a reference substance) GLP					
Acceptable study					
<i>In vitro</i> chromosome aberration test Chinese hamster ovary cells. Predates, but compliant with OECD 473 Deviations: less than 300 well- spread metaphases were scored; a short-term treatment (3-6 hour incubation with test substance; sampling after 18 hours) in the absence of S9 mix was not performed GLP Acceptable study	Fenpropidin technical (purity 97%) Vehicle: acetone	Chinese hamster ovary cells (CHO, cell line ATCC CCL 61)	Up to 500 μ g/mL, (+/- metabolic activation) in original experiment Up to 62.5 μ g/mL, (+/- metabolic activation) concentration 125 μ g/mL was included but not scored due to toxicity in confirmatory experiments At least 200 metaphases from 2 cultures scored for mitotic index; 3 concentrations selected for chromosome analysis	+S9: negative -S9: negative Positive controls: valid	Hertner (1993b)
DNA repair (UDS assay) OECD 482 GLP Acceptable study	Fenpropidin technical (purity 97%) Vehicle: acetone	Rat hepatocytes freshly isolated from males	0.49/0.48, 0.98/0.97, 1.95/1.94, 3.91/3.88, 7.81/7.75, 15.63/15.5 µg/mL (original/ confirmatory exp. In the confirmatory experiment 31.0μ g/mL was included but not scored due to toxicity. 150 cells scored	Negative Positive control: valid	Hertner (1993c)

Method, guideline, deviations if any	Test substance	Organisms/strain	Concentrations tested	Observations/Results	Reference
			from 3 slides. Cells in S-phase excluded.		

Table 40: Summary table of genotoxicity/mutagenicity tests in mammalian somatic or germ cells in vivo

Method, guideline, deviations if any	Test substance	Organisms/strain	Concentrations tested	Observations/Results	Reference
Mouse bone marrow micronucleus test Consistent with OECD 474 except that micronuclei were evaluated at 2 doses only due to mortality. GLP Acceptable study	Fenpropidin technical (purity 97%) Vehicle: carboxymethyl cellulose (CMC) 0.5% aqueous solution	Tif: MAGF (SPF) mouse 5/sex/group, including vehicle and positive control groups In addition 3/sex and 2/sex treated with high and intermediate doses, respectively.	385, 770 or 1540 mg/kg bw Highest dose selected as suitable maximum tolerated dose based on a pre- experiment.	Negative Mortality at 1540 mg/kg bw, therefore micronucleus analysis only at 385 and 770 mg/kg bw. Positive and negative control groups valid.	(1993d)

 Table 41:
 Summary table of human data relevant for genotoxicity / germ cell mutagenicity

No data available.

2.6.4.1 Short summary and overall relevance of the provided information on genotoxicity / germ cell mutagenicity

Fenpropidin was tested both *in vitro* (in the presence and absence of metabolic activation) and *in vivo* for genotoxicity. Fenpropidin was negative *in vitro* for gene mutation (Ames test and mammalian forward mutation assay), DNA damage (unscheduled DNA synthesis), or chromosome aberrations in the Chinese hamster ovary cells (CHO), and did not show clastogenicity or an aneugenic potential in the *in vivo* mouse bone marrow.

Fenpropidin was negative in a reverse mutagenicity test with and without metabolic activation which indicates that fenpropidin does not induce point mutations by base substitutions or frame shift in the genome of *Salmonella typhimurium* or *Escherichia coli* (Hertner, 1993a).

In gene mutation assays in mammalian cells (Chinese hamster lung fibroblasts and L5178Y mouse lymphoma cells) fenpropidin did not increase the mean mutant frequency in the presence or absence of S9-mix. Fenpropidin is therefore considered non-mutagenic in cultured mammalian cells (Strobel, 1988).

The clastogenic effect of fenpropidin was tested in an *in vitro* chromosome aberration study in Chinese hamster ovary cells (Hertner, 1993b). Fenpropidin did not increase chromosomal aberrations.

Fenpropidin did not cause DNA damage in rat hepatocytes in vitro (unscheduled DNA synthesis assay).

In vivo fenpropidin was found negative in a study to detect clastogenicity (mouse bone marrow micronucleus test), there was no evidence of chromosome damage at 770 mg/kg bw (mortality was observed at 1540 mg/kg bw).

Overall the results indicate that fenpropidin does not possess any concern for genotoxicity.

Treatment/Strain	TA100-	TA1535-	WP2uvrA-	TA98-	TA1537-	TA100+	TA1535+	WP2	TA98+	TA1537+
								uvrA+		
31.25 ug/plate	83.3	11.0	23.7	26.7	10.7	120.3	15.0	21.7	51.0	13.0
62.5 ug/plate	101.3	15.7	20.7	23.3	5.0	128.0	13.0	32.3	61.7	10.7
125.0 ug/plate	103.7	13.3	25	26.3	8.7	110.3	17.7	30.7	50.7	11.0
250.0 ug/plate	98.7	12.3	23.7	32.7	18.3	115.0	17.3	31.0	56.7	16.0
500.0 ug/plate	101.7	13.0	23.3	35.3	15.7	124.7	17.0	23.3	46.7	16.3
Negative control	98.3	18.3	23.7	25.3	9.7	120.3	18.7	23.0	52.3	11.3
Positive controls			•							
Sodium azide	2127.3	1843.7								
4-nitroquinoline-N-			505.0							
oxide										
2-nitrofluorene				1914.3						
9-aminoacridine					2904.3					
aminoanthracene						2160.7		1035.3	2091.7	207.3
cyclophosphamide							482.0			

Table 2.6.4.1-1: **Bacterial reverse mutation assay;** Mean of revertant colony counts; Original experiment without⁻ and with⁺ metabolic activation (Hertner, 1993a)

Table 2.6.4.1-2: Bacterial reverse mutation assay; Mean of revertant colony counts; Confirmatory experiment

without and with⁺ metabolic activation (Hertner, 1993a)

Treatment/Strain	TA100-	TA1535-	WP2uvrA-	TA98-	TA1537-	TA100+	TA1535+	WP2	TA98+	TA1537+
								uvrA+		
125.0 ug/plate	85.0	8.7	18.7	15.7	10.0	109.7	10	29.7	34.7	11.3
250.0 ug/plate	101.0	10	17.7	19.0	7.3	124.0	12.0	22.7	37.0	15.3
500.0 ug/plate	75.0	13.3	19.3	18.0	10.3	109.00	10.7	19.3	54.3	14.3
1000.0 ug/plate	8.0	10.3	11.3	15.0	10.0	35.7	4.3	10.0	16.7	4.7
2000.0 ug/plate	0	5.3	2.0	7.7	1.7	1.0	0.7	2.3	3.0	0
Negative control	107.0	10.0	20.3	15.7	0	119.3	11.0	22.0	30.0	8.0
Positive controls										
Sodium azide	1047.3	933.3								
4-nitroquinoline-			646.7							
N-oxide										
2-nitrofluorene				1802.3						
9-aminoacridine					2705.0					
aminoanthracene						2198.7		1288.0	1811.3	202.3
cyclophosphamide							450.7			

Table 2.6.4.1-3: Total numbers of HPRT mutant cells, mutant frequency and viability of V79 cells

after 16-hour exposure without metabolic activation; (Strobel, 1988)

	Day	2	D	ay 7	Day 7
Dose ug/ml	Mean	RS %	Mean	Cloning efficiency %	HPRT mutations
	Experiment1/E	xperiment2	Experim	ent1/Experiment2	Experiment1/Experiment2
0	146.5/234.3	100/100	162.3/126	81/63	0.6 e-05/1.6 e-05
10	155.3/240.8	106/100	120.5/166.8	60/83	0/0
60	111.8/143.3	76/61	141.5/173.5	71/87	0/2.3 e-05
70	93.3/182.3	64/78	154.3/148.5	77/74	0/4.0 e-05
80	47.5/136.3	32/58	141.8/98.8	71/49	0/0
Reference Su	ibstance: Ethyl	methan sulph	ionate		
0	146.5/234.4	100/100	162.3/126	81/63	0.6 e-05/1.2 e-05

100	107.8/226.8	74/97	142.3/155	71/78	28.1 e-05/23.9 e-05

Table 2.6.4.1-4: Total numbers of HPRT mutant cells, mutant frequency and viability of V79 cells after 5-hour exposure with metabolic activation; (Strobel, 1988)

	Day 2		Da	ny 7	Day 7		
Dose ug/ml	Mean	RS %	Mean Cloning efficiency %		Mean Cloning efficiency %		cy % HPRT mutations
	Experiment1/Ex	xperiment2	Experiment1/Experiment2		Experiment1/Experiment2		
0	105.8/133	100/100	127.5/159.3	64/80	0/1.3 e-05		
5	74.8/-	71/-	122.8/-	61/-	0/-		
20	120.3/123.3	114/93	128.8/158	64/79	0.8 ^{e-05} /1.3 ^{e-05}		
30	111.8/-	106/-	145.5/-	73/-	1.4 ^{e-05} /-		
40	99.5/114.3	94/86	160.8/158	80/79	0/1.9 ^{e-05}		
50	120.5/56.8	114/43	129.3/167.3	65/84	0/1.2 e-05		
60	-/10.5	-/8	-/126	-/63	-/0.8 ^{e-05}		
Reference Su	bstance: 2-acetyl	aminofluorer	ne				
0	105.8/133	100/100	127.5/159.3	64/80	0/1.3 ^{e-05}		
100	96.8/125.8	91/95	158/1141.3	79/71	8.9 e-05/12.7 e-05		

Table 2.6.4.1-5: **Chromosomal aberration assay**; TCE: Total number of cells examined; CwA: Cells with aberrations, excluding gaps and numerical alterations (%); gaps: Chromatid and chromosome breaks; ct del: Chromatid deletions; ct exc: Chromatid exchanges; cs del: Chromosome deletions; cs exc: Chromosome exchanges; mab: Multiple aberrations; pol: Polyploid metaphases; end: Endoreduplications; hyp: Hyperploid metaphases; (Hertner, 1993b)

	TCE	CwA	gaps	ct	ct	cs	cs	mab	pol	end	hyp
			01	del	exc	del	exc		1		
Treatment: 18h; without metabol	ic activ	ation									
3.91 ug/ml - Fenpropidin	200	3.0	4	1		3	2		7		1
7.81 ug/ml- Fenpropidin	200	1.5	5	3					5		
15.63 ug/ml- Fenpropidin	200	3.5	5	4		2	1		9		
Negative control	200	4.0	7	7	1	1	2		10		
Mitomycin C	50	32.0	9	9	8		1		2		1
Treatment: 3h, harvest time: 15h	after t	he treat		with n	netabo	lic ac	tivatio	n			
15.63 ug/ml- Fenpropidin	200	4.0	5	1	1	3	3		4	2	
31.25 ug/ml- Fenpropidin	200	4.5	12	3	1	3	1	1	5	5	2
62.5 ug/ml - Fenpropidin	200	3.0	4	6		2			5		1
Negative control	200	3.5	9	3		3	1		5		
Cyclophosphamide	50	34.0	4	9	8	3	1				
Confirmatory experiment: Treat	ment: 1	8h; wit	hout m	etabo	lic acti	ivatio	n				
7.81 ug/ml - Fenpropidin	200	1.0	4			2			10		
15.63 ug/ml - Fenpropidin	200	1.0	1			1		1	4		
31.25 ug/ml - Fenpropidin	200	1.5	2	2		1			2		1
Negative control	200	2.0	3	1		2	1		3		
Mitomycin C	50	32.0	5	20	10	4	2		1		1
Confirmatory experiment: Treat	ment:	3h, har	vest ti	me: 1	5h aft	er th	e trea	tment;	; with	meta	bolic
activation											
15.63 ug/ml- Fenpropidin	200	6.0		2	1	6	3		4		
31.25 ug/ml- Fenpropidin	200	7.0	12	2	1	8	3		3		
62.5 ug/ml - Fenpropidin	200	6.5	8	6		5	3		6		1
Negative control	200	5.0	6	2		9	1		5	2	1
Cyclophosphamide	50	44.0	9	13	6	11	2		1		
Confirmatory experiment: Treat	nent: 4	2h; wit	hout m	etabo	lic acti	vatio	n				
7.81 ug/ml - Fenpropidin	200	1.0	1	2					3		1
15.63 ug/ml - Fenpropidin	200	1.5	2			2	1		3		

31.25 ug/ml - Fenpropidin	200	2.0	2			3	1		2		
Negative control	200	1.0	4		1	1			4		
Confirmatory experiment: Tre activation	atment:	3h, ha	rvest ti	me: 3	39h aft	er th	e trea	tment;	with	meta	bolic
15.63 ug/ml- Fenpropidin	200	2.0	5	1		2	1		4	1	1
31.25 ug/ml- Fenpropidin	200	1.5	10	1		1	1		3		
62.5 ug/ml - Fenpropidin	200	1.5	6	1		1	1		44		
Negative control	200	1.0	4			1	1		2		

Table 2.6.4.1-6: **Micronucleus test** *in vivo*; Incidence of micronuclei; CPA = cyclophosphamide; ° from 5 animals (1000 PCE per animal); °° mnPCE per 4000 PCE from 4 animals (1000 PCE per animal); *p<0.05 (Chi-Square test), (1993d)

Concentration	Sacrific e after [h]			PC	E/NCE		PCEs per 0 PCEs°	% mnPCE		
		M	F	М	F	М	F	Μ	F	pooled
negative	16	464	442	0.86	0.79	1	6	0.02	0.12	0.07
control	24	431	476	0.76	0.91	1	2	0.02	0.04	0.03
	48	466	470	0.87	0.89	2	1	0.04	0.02	0.03
СРА	24	444	463	0.80	0.86	93	64	1.86*	1.28*	1.57*
770 mg/kg bw	16	472	450	0.89	0.82	3	4	0.06	0.08	0.07
	24	461	467	0.86	0.88	3°°	4	0.08	0.08	0.08
	48	445	463	0.80	0.86	2°°	2	0.05	0.04	0.05
385 mg/kg bw	24	441	454	0.79	0.83	6	5	0.12	0.10	0.11*

2.6.4.2 Comparison with the CLP criteria regarding genotoxicity / germ cell mutagenicity

Germ cell mutagenicity was investigated according to the criteria stated in CLP (Regulation (EC) No. 1272/2008, Annex I, Table 3.5.1. A series of *in vitro* studies and an *in vivo* micronucleus assay for chromosome aberrations have been conducted with fenpropidin. None of the studies revealed any evidence for a mutagenic, clastogenic or aneugenic potential of the compound. Fenpropidin is, therefore, considered not to exert any genotoxic potential in prokaryotic and eukaryotic cells, *in vitro* and *in vivo*. Due to new impurity, further genotoxocity tests were conducted by the notifier, these are provided in the relevant section of VOL.4 – confidential. Following results were obtained - (Ames - negative, HPRT- negative, *In vitro* micronucleus test – Negative)

2.6.4.3 Conclusion on classification and labelling for genotoxicity / germ cell mutagenicity

No classification is proposed.

2.6.5 Summary of long-term toxicity and carcinogenicity [equivalent to section 10.9 of the CLH report template]

Method, guideline, deviations if any, species, strain, sex,	Test substance, dose levels duration of exposure	Results - NOAEL/LOAEL - target tissue/organ	Reference
no/group		- critical effects at the LOAEL	
2-year chronic toxicity/ carcinogenicity study EPA 83-1, consistent with OECD 453 Deviations: dose level changed after 7 weeks, survival below 50% at 2 years GLP Rat: CD-Crl: CD (SD) BR 70/sex/group except high dose 80 sex/group 10/sex/group interim kill after 12 months 10/sex/group for clinical pathology (20/sex for high dose group) Acceptable study	Fenpropidin (purity 91%). 0, 5/2, 25/10, 125/50, 625/250 ppm. Higher doses given week 1-7. 2 and 10 ppm from week 8. Groups at 125 and 625 ppm given control diet for 4 weeks and changed to 50 and 250 ppm for remainder of study. Equivalent to average : 0.07, 0.34, 1.68 and 8.53 mg/kg bw/day in males; 0.09, 0.45, 2.27 and 11.83 mg/kg bw/day in females Continuous in the diet for 24 months	NOAEL (systemic): 50 ppm equal to 2.27 mg/kg bw/day in females; no adverse effects in males, thus NOAEL for males cannot be set. Non-neoplastic findings 625/250 ppm (8.53 mg/ kg bw/day in males and 11.83 mg/kg bw/day in females) Mortality: No effect on survival. Clinical signs: Signs of local irritation until dose decreased and then later in study. Body weight: ↓ 12-18% weeks 1-7; 9-14% in females throughout study Body weight gain: ↓ 14% females (week 11-80) Haematology: ↑ red cell parameters (RBC, Hb and PCV) 13.2-18.3% males week 103. Clinical chemistry: ↑ potassium ion concentration 14.3% males and 15.6% females. 125/50 ppm (2.11 mg/ kg bw/day in males and 2.76 mg/kg bw/day in males and 0.56 mg/kg bw/day in males and 0.56 mg/kg bw/day in males and 0.11 mg/kg bw/day in males of increased incidence of increased incidence of tumours.	(1988)
Carcinogenicity study OECD 451 deviations: aorta and rectum not evaluated, individual clinical observations not reported GLP Mouse: Crl: Crl:CD-1	Fenpropidin (purity not reported) 0, 30, 100, 300 and 1000 ppm corresponding to 0, 4.12, 13.54, 41.90, 143.8 mg/kg bw/day for males and 0, 5.47, 17.70, 51.71, 166.1 mg/kg bw/day for females Continuous in the diet for 80 weeks	NOAEL (systemic): 300 ppm (41.9 mg/ kg bw/day in males and 51.7 mg/kg bw/day in females) Non-neoplastic findings 1000 ppm (143.8 mg/ kg bw/day in males and 166.1 mg/kg bw/day in females) Mortality: ↑ in males (45% survival in week 80; 51% survival	(1983)

 Table 42:
 Summary table of animal studies on long-term toxicity and carcinogenicity

Method, guideline, deviations if any, species, strain, sex, no/group	Test substance, dose levels duration of exposure	Results - NOAEL/LOAEL - target tissue/organ - critical effects at the LOAEL	Reference
(ICR)BR		week 65-76; > 71% in all other groups including control)	
63/sex/group Acceptable study		Clinical signs: \uparrow incidence of local irritation on forepaws and ears.	
		Body weight: $\downarrow 11\%$ males; 7% females (week 80).	
		Food consumption: $\downarrow 12\%$ in females	
		<i>Pathology:</i> ↑ irritation of GI tract (hyperkeratosis of oesophagus and forestomach)	
		<u>300 ppm (41.9 mg/ kg bw/day in</u> <u>males and 51.7 mg/kg bw/day in</u> females)	
		No treatment-related findings	
		<u>100 ppm (13.54 mg/ kg bw/day</u> <u>in males and 17.70 mg/kg</u> bw/day in females)	
		No treatment-related findings	
		<u>30 ppm (4.12 mg/ kg bw/day in</u>	
		males and 5.47 mg/kg bw/day in females)	
		No treatment-related findings	
		Neoplastic findings	
		No treatment-related neoplastic findings at any dose level.	

 Table 43:
 Summary table of human data on long-term toxicity and carcinogenicity

No data available

Table 44: Summary table of other studies relevant for long-term toxicity and carcinogenicity

No studies available

2.6.5.1 Short summary and overall relevance of the provided information on long-term toxicity and carcinogenicity

Two long-term toxicity/carcinogenicity studies in mice and rats were conducted with fenpropidin (1989; 1983). The long-term exposure produced signs of local irritation expressed as skin irritation in rats and as hyperkeratosis of the oesophagus in mice at doses below those causing systemic toxicity (decreased body weight). Fenpropidin did not induce changes in the incidence and distribution of neoplastic lesions in rats or mice.

Table 2.6.5.1-1: Tumour incidences (1989)

			Males			Females				
group	1	2	3	4	5	1	2	3	4	5
ppm	0	2°	10°	50°	250°	0	2°	10°	50°	250°
Pancreas islet cell										
adenoma§										
interim sacrifice	0/10	-	-	-	0/10	0/10	-	-	-	0/9
terminal sacrifice	2/17	5/19	4/21	4/17	10/32	6/30	6/31	4/25	1/30	4/40
unscheduled deaths	4/43	3/41	3/39	4/43	8/38	4/30	3/29	2/35	0/30	0/30
total (%)	6 (8.6)	8 (13)	7 (12)	8 (13)	18(23)	10(14)	9 (15)	6 (10)	1 (1.7)	4 (5.1)
Pancreas islet cell carcinoma [§]										
interim sacrifice	0/10	-	-	-	0/10	0/10	-	-	-	0/9
terminal sacrifice	0/17	0/19	0/21	0/17	0/32	0/30	0/31	1/20	0/30	0/40
unscheduled deaths	1/43	0/41	2/39	0/43	0/38	0/30	0/29	0/35	0/30	0/30
total	1/70	0/60	2/60	0/60	0/80	0/70	0/60	1/60	0/60	0/79
Animals [#]										
interim sacrifice	10	_	-	-	10	10	_	-	_	9
terminal sacrifice	10	16	18	14	32	30	25	20	24	40
unscheduled deaths	43	34	32	36	38	30	25	30	26	30
total	70	50	50	50	80	70	50	50	50	79
Benign neoplasms [#]										
interim sacrifice	1	-	-	-	1	2	-	-	-	1
terminal sacrifice	16	12	13	10	22	34	23	19	20	49
unscheduled deaths	41	19	19	25	33	31	24	25	24	29
total (per rat)	58	31	32	35	56	67	47	44	44	79
· · ·	(0.83)	(0.62)	(0.64)	(0.70)	(0.70)	(0.96)	(0.94)	(0.88)	(0.88)	(1.00)
Malign neoplasms [#]										
interim sacrifice	2	-	-	-	0	0	-	-	-	0
terminal sacrifice	2	4	5	4	7	9	4	5	4	12
unscheduled deaths	10	10	3	11	9	7	6	10	9	5
total (per rat)	14 (0.20)	14 (0.28)	8 (0.16)	15 (0.30)	16 (0.20)	16 (0.23)	10 (0.20)	15 (0.30)	13 (0.26)	17 (0.21)
Benign + malign neop.#										
interim sacrifice	3	-	-	-	1	2	-	-	-	1
terminal sacrifice	18	16	18	14	29	43	27	24	24	61
unscheduled deaths	51	29	22	36	42	38	30	35	33	34
total (per rat)	72	45	40	50	72	83	57	59	57	96
	(1.03)	(0.90)	(0.80)	(1.00)	(0.90)	(1.19)	(1.14)	(1.18)	(1.14)	(1.20)
Animals with neopl. ⁰⁰										
terminal sacrifice	12/15	13/16	15/18	11/14	21/24	26/26	23/25	20/20	20/24	27/28
unscheduled deaths	30/35	25/34	20/32	29/36	22/26	21/24	24/25	30/30	25/26	21/22
total (%)	42 (84)	38 (76)	35 (70)	40 (80)	43 (86)	47 (94)	47 (94)	50 (100)	45 (90)	48 (96)

° revised dietary levels administered from week 8/12 onwards

data from the neoplastic lesion table (carcinogenicity animals) + incidences from result tables for interim sacrifice and clinical pathology animals of groups 1 and 5

[#] data from the tumour summary table (carcinogenicity animals of groups 1-5) + incidences of benign/malign tumours from result tables (not separated between neoplastic and non-neoplastic lesions) for interim sacrifice and clinical pathology animals of groups 1 and 5

^{°°} animals of the carcinogenicity group only (50 per sex and group)

			Males					Females		
group ppm	1 0	2 30	3 100	4 300	5 1000	1 0	2 30	3 100	4 300	5 1000
Animals										
interim sacrifice	12	-	-	-	12	12	-	-	-	12
terminal sacrifice	34	-	-	-	23	22	-	-	-	24
unscheduled deaths	17	16	15	14	28	29	17	18	19	27
total	63	16	15	14	63	63	17	18	19	63
Benign neoplasms										
interim sacrifice	2	-	-	-	4	3	-	-	-	0
terminal sacrifice	24	-	-	-	11	14	-	-	-	13
unscheduled deaths	3	3	8	0	4	2	4	11	2	2
total (per rat)	29	3	8	0	19	19	4	11	2	15
•	(0.46)	(0.19)	(0.53)	(0.00)	(0.30)	(0.30)	(0.24)	(0.61)	(0.11)	(0.24)
Malign neoplasms°										
interim sacrifice	1	-	-	-	0	0	-	-	-	0
terminal sacrifice	0	-	-	-	2	5	-	-	-	1
unscheduled deaths	5	2	4	3	6	13	14	6	12	3
total (per rat)	6	2	4	3	8	18	14	6	12	4
	(0.10)	(0.13)	(0.27)	(0.21)	(0.13)	(0.29)	(0.82)	(0.33)	(0.63)	(0.06)
All neoplasms										
Interim sacrifice	3	-	-	-	4	3	-	-	-	0
terminal sacrifice	24	-	-	-	13	19	-	-	-	14
unscheduled deaths	8	5	12	3	10	15	18	17	14	5
total (per rat)	35	5	12	5	27	37	18	17	14	19
	(0.56)	(0.31)	(0.80)	(0.21)	(0.43)	(0.59)	(1.06)	(0.94)	(0.74)	(0.30)

Table 2.6.5.1-2: Tumour incidences (1983)

° all lymphomas were considered to be malignant; neoplastic 'leucosis' was considered to be equivalent to leukaemia and therefore malignant

2.6.5.2 Comparison with the CLP criteria regarding carcinogenicity

A substance is classified in Category 1 for carcinogenicity on the basis of epidemiological and/or animal data. A substance may be further distinguished as Category 1A or 1B. Category 1A, known to have carcinogenic potential for humans classification is largely based on human evidence. Classification is Category 1B, presumed to have carcinogenic potential for humans, classification is largely based on animal evidence. The placing of a substance in Category 2 is done on the basis of evidence obtained from human and/or animal studies, but which is not sufficiently convincing to place the substance in Category 1A or 1B. The carcinogenicity was investigated in rats and mice. There was no evidence of a carcinogenic potential in either species. The only effect observed which could be potentially attributed to the carcinogenic potential of the substance was the increased incidence (23%) of pancreatic islet adenoma in the study of 1983 in males at top dose. Based on this finding historical controls were requested from the notifier. As presented in the table below, it s true that the mean incidence of 13.9% was exceeded in this study (23%), however DS is of the opinion that this finding should not be considered as treatment related due to following reasons: 1) The incidence range from historical controls is relatively wide, with high extreme incidences of 54%, also as presented in the individual data table, incidences around 20% are not exceptional. 2) It is also important to note, that, at the interim sacrifice, there are no incidences of this finding when comparing top dose and control, therefore DS inclines to the think that this effect is of spontaneous origin related rather to aging rats.

The historical control data (HCD) for the performing laboratory (

is summarised as per the table below. The historical control data is compiled of studies conducted +/- 5 years of the date of the in-life phase of the 2-year rat study in rats of a similar age and strain. The study was initiated in January 1986 and completed in January 1988. The HCD for the incidence of pancreas islet β -cell adenoma +/-5 years from the date of the study (January 1981- December 1992) are presented in the table below

Historical Cotrol Data for Pancreas Islet Cell Adenoma in CRL:CD (SD) BR Rats from Jan 1981- Dec 1992 – overall values

Year	Sex of animals	No. studies	No. organs examined	Total Incidence of β- cell adenoma (mean)		Incidence Range low		Incidence Range high	
				Number	% incidence	Number	% incidence	Number	% incidence
Jan	Males	95	5397	751	13.9 %	0/50	0 %	27/50	54.0 %
1981- Dec 1992	Females	95	5405	259	4.8 %	0/60	0 %	11/55	20.0 %

Historical Cotrol Data for Pancreas Islet Cell Adenoma in CRL:CD (SD) BR Rats from Jan 1981- Dec 1992 –
invidivual values (frequencies) – Males

code numeber	Study Start	route	supplier	study duration (weeks)	number of animals	Pancreas No examined	B-Isled Cell Adenoma incidence	percentage
cdr 8102a	Feb-81	dt	crusa	108	100	98	9	9.2%
cdr 8102b	Feb-81	dt	crusa	104	50	50	5	10.0%
cdr 8104a	Apr-81	dt	crusa	112	100	100	12	12.0%
cdr 8104b	Apr-81	dt	crusa	104	100	100	11	11.0%
cdr 8106	Jun-81	dt	crusa	106	50	50	3	6.0%
cdr 8107	Jul-81	dt	crusa	105	100	97	19	19.6%
cdr 8201	Jan-82	og	crusa	104	50	50	7	14.0%
cdr 8203	Mar-82	og	crusa	111	105	104	12	11.5%
cdr 8207	Jul-82	dt	crusa	104	60	60	3	5.0%
cdr 8210a	Oct-82	dt	crusa	110	50	50	6	12.0%
cdr 8210b	Oct-82	dt	crusa	106	50	50	0	0.0%
cdr 8301	Jan-83	dt	crusa	111	50	49	5	10.2%
cdr 8304	Apr-83	og	crusa	104	55	55	10	18.2%
cdr 8305	May-83	dt	crusa	109	50	50	10	20.0%
cdr 8307	Jul-83	dt	crusa	104	50	49	7	14.3%
cdr 8311	Nov-83	dt	crusa	104	50	50	7	14.0%
cdr 8312	Dec-83	og	crusa	104	55	54	7	13.0%
cdr 8402	Feb-84	dt	crusa	104	100	100	12	12.0%
cdr 8407	Jul-84	dt	crusa	107	50	50	5	10.0%
cdr 8409	Sep-84	dt	crusa	102	50	50	7	14.0%
cdr 8409	Sep-84	dt	crusa	102	50	50	13	26.0%
cdr 8410a	Oct-84	dt	crusa	99	50	49	14	28.6%
cdr 8410b	Oct-84	og	crusa	104	55	55	12	21.8%
cdr 8502	Feb-85	dt	crusa	104	50	49	4	8.2%
cdr 8504	Apr-85	og	crusa	104	55	55	8	14.5%
cdr 8504	Apr-85	og	crusa	104	55	55	12	21.8%
cdr 8507	Jul-85	dt	crusa	108	50	50	4	8.0%
cdr 8508	Aug-85	og	crusa	104	60	60	14	23.3%

59

- J - 9509	A			104	(0	(0	15	25.00/
cdr 8508	Aug-85	og	crusa	104	60	60		25.0%
cdr 8509	Sep-85	og	crusa	112	55	51	11	21.6%
cdr 8509	Sep-85	og	crusa	112	55	54	15	27.8%
cdr 8510	Oct-85	dt	crusa	107	50	49	6	12.2%
cdr 8512	Dec-85	dt	crusa	102	50	50	9	18.0%
cdr 8602	Feb-86	og	cruk	104	55	55	4	7.3%
cdr 8602	Feb-86	og	cruk	104	55	55	4	7.3%
cd4 8603	Mar-86	og	crusa	104	50	45	2	4.4%
cdr 8607	Jul-86	ih	crusa	104	100	100	24	24.0%
cdr 8608	Aug-86	dt	crusa	105	50	50	11	22.0%
cdr 8609	Sep-86	ih	crusa	104	60	60	6	10.0%
cdr 8609	Sep-86	ih	crusa	104	60	60	13	21.7%
cdr 8610	Oct-86	dt	crusa	104	50	50	27	54.0%
cdr 8610	Oct-86	dt	crusa	104	50	50	19	38.0%
cdr 8612a	Dec-86	dt	crusa	104	50	50	8	16.0%
cdr 8612b	Dec-86	dt	crusa	104	100	100	15	15.0%
cdr 8704	Apr-87	dt	crusa	106	50	50	3	6.0%
cdr 8704	Apr-87	dt	crusa	106	50	50	4	8.0%
cdr 8707	Jul-87	dt	cruk	104	50	50	4	8.0%
cdr 8708	Aug-87	og	cruk	104	55	55	5	9.1%
cdr 8708	Aug-87	og	cruk	104	55	55	6	10.9%
cdr 8709	Sep-87	dt	cruk	104	50	50	4	8.0%
cdr 8710	Oct-87	og	crusa	104	55	55	12	21.8%
cdr 8710	Oct-87	og	crusa	104	55	55	12	21.8%
cdr 8711	Nov-87	dt	cruk	104	60	60	14	23.3%
cdr 8712a	Dec-87	dt	crusa	110	100	99	8	8.1%
cdr 8712b	Dec-87	dt	crusa	108	50	50	7	14.0%
cdr 8802	Feb-88	dt	crusa	110	50	50	4	8.0%
cdr 8802	Feb-88	dt	crusa	110	50	50	3	6.0%
cdr 8805a	May-88	og	crusa	104	60	60	10	16.7%
cdr 8805b	May-88	og	crusa	104	60	60	4	6.7%
cdr 8808	Aug-88	dt	crusa	101	60	60	9	15.0%
cdr 8905	May-89	dt	crusa	104	50	50	8	16.0%
cdr 8905	May-89	dt	crusa	104	50	50	2	4.0%
cdr 8906a	Jun-89	dt	crusa	107	50	50	5	10.0%
cdr 8906a	Jun-89	dt	crusa	107	50	50	1	2.0%
cdr 8906b	Jun-89	og	crusa	104	55	55	4	7.3%
cdr 8906c	Jun-89	dt	crusa	104	50	50	6	12.0%
cdr 8906c	Jun-89	dt	crusa	104	50	50	5	10.0%
cdr 8906d	Jun-89	dt	crusa	106	50	50	7	14.0%
cdr 8907a	Jul-89	dt	crusa	103	52	52	5	9.6%
cdr 8907b	Jul-89	dt	crusa	106	50	50	5	10.0%

	Range		max	54.0%				
		Tota	1		5424	5397	751 min	13.92% 0.0%
001 7212	Dec 72			105				
cdr 9212	Dec-92 Dec-92	dt	crusa crusa	103	50	50	7	14.0%
cdr 9211	Dec-92	dt		104	50	50	11	22.0%
cdr 9210	Nov-92	og dt	crusa cruk	104	50	50	11	22.0%
cdr 9208	Oct-92		crusa	104	55	55	7	12.7%
cdr 9207	Aug-92	dt	crusa	104	55	55	12	21.8%
cdr 9202	Jul-92	dt	crusa	104	50	50	4	8.0%
cdr 9201	Feb-92	dt	crusa	104	56	56	7	12.0%
cdr 9111	Jan-92	dt	crusa	104	50	50	6	11.7%
cdr 9109	Nov-91	dt	crusa	104	60	60	8	11.7%
cdr 9103	Sep-91	dt	crusa	104	50	50	8	16.0%
cdr 91040	May-91	dt	crusa	107	50	50	8	16.0%
cdr 9104a	Apr-91	dt		104	60	58	3	5.2%
cdr 9104a	Apr-91	dt	crusa	109	50	50	10	20.0%
cdr 9012	Dec-90	dt	crusa	109	50	50	10	20.0%
cdr 9011	Dec-90	dt	crusa crusa	104	50	50	9	18.0%
cdr 9011	Nov-90	dt		104	51	50	1	2.0%
cdr 9010	Oct-90	dt	crusa crusa	104	55	55	3	5.5%
cdr 9007	Aug-90	dt	crusa	104	50	50	5	10.0%
cdr 9004 cdr 9007	Apr-90 Jul-90	og dt	crusa	104 104	70 50	70 50	10 2	14.3% 4.0%
cdr 9003	Mar-90	dt	crusa	104	50	49	2	4.1%
		dt	crusa		-		6	12.0%
cdr 9002a cdr 9002b	Feb-90 Feb-90	dt	crusa	104	60 50	60 50		8.3%
cdr 8911	Nov-89	dt	crusa	104	25	25	4	16.0%
cdr 8909	Sep-89	dt	crusa	105	60	60	8	13.3%

Historical Cotrol Data for Pancreas Islet Cell Adenoma in CRL:CD (SD) BR Rats from Jan 1981- Dec 1992 –
invidivual values (frequencies) – Females

code	Study	route	supplier	study duration	number of	Pancreas	B-Isled Cell Adenoma	percentage
numeber	Start		~~ FF	(weeks)	animals	No examined	incidence	F
cdr 8102a	Feb-81	dt	crusa	108	100	100	6	6.0%
cdr 8102b	Feb-81	dt	crusa	110	50	50	1	2.0%
cdr 8104a	Apr-81	dt	crusa	115	100	99	5	5.1%
cdr 8104b	Apr-81	dt	crusa	104	100	100	3	3.0%
cdr 8106	Jun-81	dt	crusa	107	50	49	3	6.1%
cdr 8107	Jul-81	dt	crusa	105	100	100	6	6.0%
cdr 8201	Jan-82	og	crusa	104	50	50	2	4.0%
cdr 8203	Mar-82	og	crusa	111	105	105	6	5.7%

cdr 8207	Jul-82	dt	crusa	104	61	61	2	3.3%
cdr 8210a	Oct-82	dt	crusa	110	50	50	1	2.0%
cdr 8210b	Oct-82	dt	crusa	106	50	49	0	0.0%
cdr 8301	Jan-83	dt	crusa	111	50	50	2	4.0%
cdr 8304	Apr-83	og	crusa	104	55	55	1	1.8%
cdr 8305	May-83	dt	crusa	109	50	50	8	16.0%
cdr 8307	Jul-83	dt	crusa	104	50	50	3	6.0%
cdr 8311	Nov-83	dt	crusa	104	50	50	4	8.0%
cdr 8312	Dec-83	og	crusa	104	55	55	11	20.0%
cdr 8402	Feb-84	dt	crusa	104	100	100	4	4.0%
cdr 8407	Jul-84	dt	crusa	107	50	50	2	4.0%
cdr 8409	Sep-84	dt	crusa	102	50	50	5	10.0%
cdr 8409	Sep-84	dt	crusa	102	50	50	5	10.0%
cdr 8410a	Oct-84	dt	crusa	99	50	50	6	12.0%
cdr 8410b	Oct-84	og	crusa	104	55	54	1	1.9%
cdr 8502	Feb-85	dt	crusa	104	50	49	4	8.2%
cdr 8504	Apr-85	og	crusa	104	55	54	6	11.1%
cdr 8504	Apr-85	og	crusa	104	55	55	4	7.3%
cdr 8507	Jul-85	dt	crusa	108	50	50	2	4.0%
cdr 8508	Aug-85	og	crusa	104	60	60	4	6.7%
cdr 8508	Aug-85	og	crusa	104	60	60	3	5.0%
cdr 8509	Sep-85	og	crusa	112	55	55	4	7.3%
cdr 8509	Sep-85	og	crusa	112	55	55	2	3.6%
cdr 8510	Oct-85	dt	crusa	107	50	50	0	0.0%
cdr 8512	Dec-85	dt	crusa	102	50	48	2	4.2%
cdr 8602	Feb-86	og	cruk	104	55	55	2	3.6%
cdr 8602	Feb-86	og	cruk	104	55	54	0	0.0%
cd4 8603	Mar-86	og	crusa	104	50	49	4	8.2%
cdr 8607	Jul-86	ih	crusa	104	100	99	4	4.0%
cdr 8608	Aug-86	dt	crusa	105	50	50	5	10.0%
cdr 8609	Sep-86	ih	crusa	104	60	60	3	5.0%
cdr 8609	Sep-86	ih	crusa	104	60	60	3	5.0%
cdr 8610	Oct-86	dt	crusa	104	50	49	5	10.2%
cdr 8610	Oct-86	dt	crusa	104	50	50	8	16.0%
cdr 8612a	Dec-86	dt	crusa	104	50	50	3	6.0%
cdr 8612b	Dec-86	dt	crusa	104	100	100	7	7.0%
cdr 8704	Apr-87	dt	crusa	106	50	50	2	4.0%
cdr 8704	Apr-87	dt	crusa	106	50	50	4	8.0%
cdr 8707	Jul-87	dt	cruk	104	50	50	0	0.0%
cdr 8708	Aug-87	og	cruk	104	55	55	3	5.5%
cdr 8708	Aug-87	og	cruk	104	55	55	0	0.0%
cdr 8709	Sep-87	dt	cruk	104	50	50	2	4.0%
cdr 8710	Oct-87	og	crusa	104	55	55	2	3.6%
cdr 8710	Oct-87	og	crusa	104	55	55	1	1.8%

cdr 8711	Nov-87	dt	cruk	104	60	60	3	5.0%
cdr 8712a	Dec-87	dt	crusa	110	100	100	6	6.0%
cdr 8712b	Dec-87	dt	crusa	108	50	50	5	10.0%
cdr 8802	Feb-88	dt	crusa	110	50	50	3	6.0%
cdr 8802	Feb-88	dt	crusa	110	50	50	2	4.0%
cdr 8805a	May-88	og	crusa	104	60	60	4	6.7%
cdr 8805b	May-88	og	crusa	104	60	60	1	1.7%
cdr 8808	Aug-88	dt	crusa	101	60	60	1	1.7%
cdr 8905	May-89	dt	crusa	104	50	50	2	4.0%
cdr 8905	May-89	dt	crusa	104	50	50	0	0.0%
cdr 8906a	Jun-89	dt	crusa	107	50	49	1	2.0%
cdr 8906a	Jun-89	dt	crusa	107	50	50	0	0.0%
cdr 8906b	Jun-89	og	crusa	104	55	55	0	0.0%
cdr 8906c	Jun-89	dt	crusa	104	50	49	1	2.0%
cdr 8906c	Jun-89	dt	crusa	104	50	49	2	4.1%
cdr 8906d	Jun-89	dt	crusa	106	50	49	2	4.1%
cdr 8907a	Jul-89	dt	crusa	103	52	52	0	0.0%
cdr 8907b	Jul-89	dt	crusa	106	50	50	1	2.0%
cdr 8909	Sep-89	dt	crusa	105	60	60	0	0.0%
cdr 8911	Nov-89	dt	crusa	104	25	25	0	0.0%
cdr 9002a	Feb-90	dt	crusa	104	59	59	3	5.1%
cdr 9002b	Feb-90	dt	crusa	104	50	49	2	4.1%
cdr 9003	Mar-90	dt	crusa	104	50	50	1	2.0%
cdr 9004	Apr-90	og	crusa	104	70	70	5	7.1%
cdr 9007	Jul-90	dt	crusa	104	50	49	2	4.1%
cdr 9008	Aug-90	dt	crusa	104	50	49	1	2.0%
cdr 9010	Oct-90	dt	crusa	104	55	55	1	1.8%
cdr 9011	Nov-90	dt	crusa	104	51	51	2	3.9%
cdr 9012	Dec-90	dt	crusa	109	50	50	6	12.0%
cdr 9012	Dec-90	dt	crusa	109	50	50	3	6.0%
cdr 9104a	Apr-91	dt	crusa	104	50	50	5	10.0%
cdr 9104b	Apr-91	dt	crusa	107	60	60	2	3.3%
cdr 9105	May-91	dt	crusa	104	50	50	0	0.0%
cdr 9109	Sep-91	dt	crusa	104	50	50	0	0.0%
cdr 9111	Nov-91	dt	crusa	104	60	60	0	0.0%
cdr 9201	Jan-92	dt	crusa	104	50	50	1	2.0%
cdr 9202	Feb-92	dt	crusa	104	56	56	2	3.6%
cdr 9207	Jul-92	dt	crusa	104	50	50	5	10.0%
cdr 9208	Aug-92	dt	crusa	104	55	55	2	3.6%
cdr 9210	Oct-92	og	crusa	102	55	55	1	1.8%
cdr 9211	Nov-92	dt	cruk	104	50	50	2	4.0%
cdr 9212	Dec-92	dt	crusa	103	50	50	0	0.0%
cdr 9212	Dec-92	dt	crusa	103	50	50	3	6.0%
		Tota					-	

Dange of neurospice*	min	0.0%
Range of percentages*	max	20.0%

2.6.5.3 Conclusion on classification and labelling for carcinogenicity

No classification proposed

2.6.6 Summary of reproductive toxicity [equivalent to section 10.10 of the CLH report template]

2.6.6.1 Adverse effects on sexual function and fertility – generational studies [equivalent to section 10.10.1 of the CLH report template]

 Table 45:
 Summary table of animal studies on adverse effects on sexual function and fertility – generational studies

Method, guideline, deviations if any, species, strain, sex, no/group	Test substance, dose levels duration of exposure	Results	Reference
Reproduction study (two generations/ one litter) OPPTS 870.3800 (1998), OECD 416 (2001) GLP Rat, HanIbm:WIST 30/sex/group Acceptable study	Fenpropidin (purity 97%) 0, 25, 100, 500 and 1000 ppm Vehicle: laboratory animal diet Oral (continuous in diet)	NOAEL (parental): 100 ppm (11.4 mg/kg bw) Parental toxicity 1000 ppm (80 mg/kg bw/day) F0: ↓ body weight gain males 22%, females 24% (days 1-68); ↓ body weight gain gestation 16% (days 0-21); body weight loss lactation (-12.5 g; control +18.8 g), days 0- 21); ↑ relative liver weight (females 21%); ↓ liver lymphohistiocytic infiltration males 8/30 (control 19/30); ↓ spleen extramedullary haematopoiesis males 8/30 (control 20/30), females 2/30 (control 21/30); ↑ adrenal cortical fatty change females 26/30 (control 6/30); ↓ prostate lymphohistiocytic infiltration males 6/30 (control 12/30). F1: ↓ body weight gain (males 24%, females 5%; days 1-68); ↓ body weight gain gestation (19% days 0-21); ↓ body weight gain lactation (93%, days 0-21); ↓ food consumption (males 27%, females 16% pre- mating, 16% gestation, 17% lactation); ↑ relative liver weight (males 7.5%, females 8%); ↓ liver lymphohistiocytic infiltration males 11/30 (control 21/30), females 15/30 (control 22/30); ↓ spleen extramedullary haematopoiesis males 2/30 (control 16/30), females 3/30 (control 28/30); ↑ adrenal cortical fatty change females 21/30 (control 10/30); ↓ prostate lymphohistiocytic infiltration males 4/30 (control 17/30). 500 ppm (42 mg/kg bw/day) F0: ↓ body weight gain (males 18%, females 17%; days 1-68); ↓ body weight gain gestation (7% days 0-21); ↓ body weight gain	(2003)

Method, guideline,	Test substance, dose levels	Results	Reference
deviations if any,	duration of exposure		
species, strain, sex,			
no/group			
		lactation (15% days 0-21); ↓ liver lymphocytic infiltration males 9/30 (control 13/30); ↓ spleen extramedullary haematopoiesis females 11/30 (control	
		$(21/30); \uparrow$ adrenal cortical fatty change	
		females 14/30 (control 6/30); ↓ prostate lymphohistiocytic infiltration males 2/30 (control 12/30)	
		F1: ↓ body weight gain (males 9% days 1- 68); ↓ food consumption (males 7.5% pre- mating); ↑ relative liver weight (males 5%); ↓	
		spleen extramedullary haematopoiesis males 9/30 (control 16/30), females 13/30 (control 28/30); ↑ adrenal cortical fatty change females 19/30 (control 10/30); ↓ prostate	
		lymphohistiocytic infiltration males 6/30 (control 17/30)	
		100 ppm (8 mg/kg bw/day):	
		No treatment-related findings 25 ppm (2 mg/kg bw/day):	
		No treatment-related findings	
		The frequencies internet is a second se	
		Reproductive toxicity	
		No effects at any dose level	
		Offspring toxicity	
		NOAEL (offspring): 100 ppm (11.4 mg/kg bw)	
		1000 ppm (80 mg/kg bw/day)	
		F1: ↓ body weight gain evident from day 0 (males 37%, females 36%; days 0-21); ↓ sexual maturation males age 28 days (control	
		25.3 days), body weight 48 g (control 71 g); females age 42 days (control 32.5 days),	
		body weight 106 g (control 102 g); ↓ absolute liver weight (males 37%, females 34%), ↑ relative liver weight females (21%); ↓ liver	
		glycogen deposition males 12/28 (control 28/29); females 4/29 (control 12/28); ↓ liver	
		extramedullary haematopoiesis males 9/28 (control 21/29); females 7/29 (control 18/28); \$\ge\$ absolute / relative spleen weight	
		(males 54% / 29%; females 48% / 24%); ↓	
		grading of spleen extramedullary haematopoiesis males 2.2 (control 2.9);	
		females 2.3 (control 3.0); \downarrow absolute /	
		relative thymus weight (males 45% / 16%;	
		females 37% / 8%); ↑ thymus atrophy males 8/28 (control 0/29); ↑ thymus phagocytic	
		cells males 19/28 (control 5/29); ↑ relative	
		brain weight (males 42%, females 36%);↓	

Method, guideline,	Test substance, dose levels	Results	Reference
deviations if any,	duration of exposure		
species, strain, sex,			
no/group			
		absolute brain weight (males 8%, females	
		F2: ↓ number of implantation sites 10.3 (control 12.4), mean pups delivered 9.6	
		(control 12.4), mean pups derivered 5.0 (control 11.7) and live birth index 99.3%	
		(control 99.7%); \downarrow body weight gain (males	
		36%, females 36%; days 0-21); \downarrow absolute /	
		relative liver weight (males 40% / 7.5%,	
		females 34% / 4%); ↓ liver glycogen deposition males 5/30 (control 18/27);	
		females $2/30$ (control $15/27$); \downarrow liver	
		extramedullary haematopoiesis males 5/30	
		(control 24/27) females 13/30 (control	
		$25/27$; \downarrow absolute / relative spleen weight	
		(males 49% / 24%; females 49% / 27%); ↓ grading of spleen extramedullary	
		haematopoiesis males 1.9 (control 2.8);	
		females 2.2 (control 3.1); \downarrow absolute thymus	
		weight (males 35%; females 32%); ↑ thymus	
		phagocytic cells males and females 18/30	
		(control 6/27) both sexes; ↑ relative brain weight (males 40%, females 38%); ↓	
		absolute brain weight (males 7.5%, females	
		6%)	
		500 ppm (42 mg/kg bw/day)	
		F1: \downarrow body weight gain evident from day 4	
		(males 16%, females 17%; days 0-21); \downarrow	
		sexual maturation females age 37.1 days	
		(control 32.5 days), body weight 111 g (control 103 g); ↓ absolute liver weight	
		(males 20%, females 16%); ↓ liver glycogen	
		deposition males 13/24 (control 28/29),	
		females 4/25 (control 12/28); \downarrow liver	
		extramedullary haematopoiesis females 11/25 (control 18/28); ↓ absolute / relative	
		spleen weight males 25% / 11%; females	
		$21\% / 8\%; \downarrow$ grading of spleen	
		extramedullary haematopoiesis males 2.5	
		(control 2.9); ↓ absolute thymus weight males 19%, females 18%; ↑ thymus	
		phagocytic cells males 10/24 (control 5/29);	
		\uparrow relative brain weight males 15%, females	
		15%; \downarrow absolute brain weight males 3%.	
		F2: \downarrow body weight gain evident from day 4	
		(males 12%, females 14%; days 0-21); ↓	
		absolute liver weight (males 16%, females 13%); ↓ liver glycogen deposition (males	
		8/29 (control $18/27$), females $4/29$ (control	
		15/27); \downarrow absolute / relative spleen weight	
		(males 17% / 5%; females 20% / 8%); ↓	
		grading of spleen extramedullary	
		haematopoiesis males 2.3 (control 2.8); ↓ absolute thymus weight (males 14%); ↑	
		relative brain weight (males 12%, females	

Method, guideline, deviations if any, species, strain, sex, no/group	Test substance, dose levels duration of exposure	Results	Reference
		14%) 100 ppm (8 mg/kg bw/day): No treatment-related findings 25 ppm (2 mg/kg bw/day): No treatment-related findings	
Reproduction study (two generations/ one litter) OECD 416 (1983) notable deviation is lack of systemic toxicity at highest dose GLP Oral (continuous in diet) Rat, CD (Sprague Dawley origin) 30/sex/group Supplementary study	Fenpropidin (purity 91%) 0, 6.25, 25, 100 ppm corresponding to 0.4, 1.61, 6.43 and 0.50, 2.03, 8.02 mg/kg bw/day for F0 and F1 males respectively. 0.48, 1.91, 7.79 and 0.56, 2.35, 9.31 mg/kg bw/day for F0 and F1 females respectively. These values represent premating period only. Vehicle: laboratory animal diet	Parental toxicity No effects at any dose level Reproductive toxicity No effects at any dose level Offspring toxicity No effects at any dose level	<i>et al</i> (1987)

 Table 46:
 Summary table of human data on adverse effects on sexual function and fertility

No data available

Table 47: Summary table of other studies relevant for toxicity on sexual function and fertility

No studies available

2.6.6.1.1 Short summary and overall relevance of the provided information on adverse effects on sexual function and fertility – generational studies

Two, two generation reproduction studies of fenpropidin in the rat have been conducted. The most recent study (2003) is the most relevant study since it was conducted according to the more recent OECD guideline. Although conducted after the issue of the current OECD test guideline (OECD 416, 2001), there were a few minor omissions in sperm parameters and tissues examined microscopically and the post lactation ovary was not examined. Nevertheless, these minor omissions/deviations are considered unlikely to alter the conclusions reached. A previous study (2003) has a number of notable deviations. The results of this study are therefore acceptable as supplementary data only.

In the main study (2003), there was a reduction in body weight gain in females during the premating period and during gestation and lactation at the highest dose of 1000 ppm (80 mg/kg bw/day) (see Table 2.6.6.1.1-1). For the F2 litters, there was a reduction in the number of uterine implantations, pups delivered and live born (see Table 2.6.6.1.1-3). For both the F1 and F2 litters, the body weight development of the pups was impaired from birth (day 0) with weight gain over the lactation period being 36% lower than for the control pups. It was this body weight decrement that was considered responsible for the apparent delay in sexual maturation (balanopreputial separation in F1 males and vaginal opening in F1 females; see Table 2.6.6.1.1-4) and for a number of differences in organ weights and microscopic findings in selected tissues examined at weaning (*see Table 2.6.6.1.1-5*). A similar effect was seen at the lower dose of 500 ppm (42 mg/kg bw/day) although there was no effect on the number of live born pups and the body weight development of the pups was impaired from post-natal day 4.

There was no evidence for a direct effect of fenpropidin on the development of the offspring; all treatment-related changes in offspring occurred in the presence of, and were attributable to, systemic toxicity in the parental generations.

Table 2.6.6.1.1-1: Parental body	weight development (2003)
----------------------------------	----------------------	-------

	0	25	F0 100	500	1000	0	25	F1 100	500	1000
ppm		-		500	1000	0	25	100	500	1000
		[g] / [% of c		100 7 /	100.1 /	112.5	115 0/102	107 1/04	90.1**/	(0.5**/
day 1°	190.3	190.5/100	187.9/99	188.7 / 99	188.1 / 99	113.5	115.8/102	107.1/94	90.1**/ 79	60.5**/ 53
day 68	413.0	407.6/99	399.0/97	371.4**/	362.5**/	393.4	399.7/102	380.6/97	344.7**/	273.6**/
				90	88				88	70
Cumulati	ve bodyw	eight gain [g	g] / [% of co	ntrol]						
d 1-	222.7	217.5/98	263.5/95	182.8**/	174.399/	279.9	283.9/101	273.5/98	254.6**/	213.1**/
68°				82	78				91	76
		ption [g/ani				I			1	
d 1-	24.1	24.2/101	23.7 / 98	23.8/99	23.4 / 97	25.2	25.5/101	24.0/95	23.3 / 93	18.4 / 73
68°										
	bodyweig	ght [g] / [% o	of control]	1	1	l			1	
Prem. day	152.0	152.0/100	151.7/100	151.8/	151.6/	102.1	105.5/103	99.0/97	92.6**/	68.0**/
1°	152.0	152.0/100	131.7/100	101.0/	101.0/	102.1	105.5/105	<i>))</i> .07 <i>)</i> 1	91	67
day 68	242.2	239.0/99	239.1/99	226.5**/	220.5**/	232.8	237.4/102	232.6/100	220.1*/	192.1**/
				94	91				95	83
Gest.										
day 0	242.4	239.3/99	241.0/99	227.7** 94	221.9**/ 92	235.6	240.2/102	234.6/100	222.4*/ 94	193.7**/ 82
0 day	364.6	359.4/99	361.8/99	94 340.7**/	92 324.7**/	346.1	353.1/102	345.7/100	94 330.4 /	82 283.5**/
21	504.0	557.4777	501.0/77	93	89	540.1	555.1/102	545.77100	96	82
Lact.										
Day	273.2	269.5/99	269.3/99	257.9**/	240.3**/	265.5	271.5/102	262.9 / 99	254.7 /	218.7**/
0				94	88				96	82
day 21	292.0	286.1/98	286.8/98	273.8**/ 94	227.8**/ 78	279.0	282.1/101	272.0/98	268.4 / 96	219.6**/ 79
21				-		F 7 / F0/	a (17		70	17
Prem. d			Cumul	ative body	weight gair	i [g] / [%	of control]			
1- 1-	90.2	85.9 / 95	87.4 / 97	74.7**/	68.8**/	130.7	131.8/101	133.6/102	127.5/	124.1/95
68°				83	76				98	
Gest. d										
0- 21	122.2	120.1/98	120.8/99	113.0/ 93	102.8**/ 84	110.5	112.8/102	111.1/101	106.1 / 96	89.8**/ 81
Lact.				95	04				90	01
d. 0-	18.8	16.6	17.5	15.9	-12.5**	13.4	10.6	9.2	13.7	0.9**
21										
			Mean food	consump	tion [g/anim	al/day] /	[% pf contro	ol]		
Prem. d		1.5.4.400	140.00	15 6 / 6 -	1	10 -	10.1.105	1		1.5.5.
1- 68°	17.4	17.1 / 98	16.9/97	17.3/99	17.1/98	18.7	18.4 / 98	17.6/94	17.7 / 95	15.7/94
Gest. d										
0-	22.9	22.7 / 99	22.6/99	23.5 /	23.0 / 101	22.5	22.9 / 102	22.0/98	22.1/98	18.9 / 84
21				103						
Lact.	52 2	50 C (101	F1 7 (00)	F1 4 (00)		50.0	50.4 / 100	40.0 / 0=	10 6 / 07	41.0.100
d. 0- 21	52.3	52.6 / 101	51.7/99	51.4/98	49.7 / 95	50.3	50.4 / 100	48.8 / 97	48.6 / 97	41.9 / 83
<i>L</i> 1										

 $^{\circ}$ bw were recorded on day 2 for the F1 generation; prem. = premating, gest. = gestation, lact. = lactation, d = day * p <0.05, ** p<0.01 (Dunnett test)

Table 2.6.6.1.1-2: Sperm counts	(2003)
---------------------------------	---	-------

	FO				F1						
ppm	0	25	100	500	1000	0	25	100	500	1000	
Sperm counts [1 x 10 ⁶ /g tissue]											
Testis spermatids	82.6	74.6**	76.6	77.9	66.0**	77.6	80.7	82.6*	84.1**	79.2	
Cauda epididymides sperm cells	182.6	193.8	204.8	217.7#	158.8#	176.0	162.1	164.2	155.8*	160.9	

* p <0.05, ** p<0.01 (Anova + Dunnett test); [#] p <0.05 (Kruskal-Wallis + Dunnett test)

ppm	0	25	100	500	1000
Litters	29	29	29	26	29
with liveborn pups [N / %]	29 / 100	29 / 100	29 / 100	26 / 100	29 / 100
with stillborn pups [N / %]	1/3.4	3 / 10.3	3 / 10.3	2 / 7.7	3 / 10.3
Implantation sites [total / mean]	410 / 14.1	361 / 12.4*	374 / 12.9	320 / 12.3*	357 / 12.3**
Pups delivered [total / mean]	381 / 13.1	386/13.3	384 / 13.2	313 / 12.0	345 / 11.9
Prenatal loss [%]	7.1	-6.9	-2.7	2.2	3.4
Pups liveborn [N] / Live birth index [%]	380/99.7	383/99.2	381/99.2	309 / 96.7	342/99.1
Pups stillborn [N] / Perinatal loss [%]	1/0.3	3 / 0.8	3 / 0.8	4 / 1.3	3 / 0.9
Pups d/m/c/es	0/3/1/58	3/9/0/58	2/7/0/58	2/6/8/49	9## / 4 / 0 /
					57
Litters not surviving day 21 (es)	0	0	0	1	0
Pups d/sm/m/c [N / %] day 0	0	0	0	0	0
day 1-4	4 / 1.1	12/3.1	9 / 2.4	8 / 2.6	13 / 3.8
day 5-7	0	0	0	0	0
day 8-14	0	0	0	8## / 2.6	0
day 15-21	0	0	0	0	0
Pups culled day 4 [N / %]	148/38.8	141/36.5	140/36.5	100/31.9	102 / 29.6
Pups surviving day 0-4 [total / mean %]	376/98.9	371/96.9	372/97.6	301 / 97.4	329/96.2
Pups surviving day 4-21 [total / mean %]	228 / 100	230 / 100	232 / 100	193**/96	227 / 100
Live pups per litter: day 0	13.1	13.2	13.1	11.9	11.8
day 4 (preculling)	13.0	12.8	12.8	116.	11.3*
day 4 (postculling)	7.9	7.9	8.0	7.7	7.8
day 21	7.9	7.9	8.0	7.7	7.8
Sex ratio day 0, % live males / females	48.4 / 51.8	46.2 / 53.8	54.1 / 45.9	51.5 / 48.5	50.0 / 50.0
day 21, % live males /	51.8/48.2	50.9 / 49.1	50.4 / 49.6	48.7 / 51.3	48.0 / 52.0

Table 2.6.6.1.1-3: **F1 litter data** (2003)

d/m/c/es = died, missing, cannibalised, elected sacrifice; d/sm/m/c = died, sacrificed moribund, missing, cannibalised * p<0.05, ** p<0.01 (Dunnett test); ^{##} p<0.01 (Chi-Square + Fisher test)

Table 2.6.6.1.1-4: Bodyweight development and sexua	I maturation in F1 pups (2003)
---	---------------------------------------

Males							Fe	Females				
ppm	0	25	100	500		1000	0	25	100	500		1000
Bodyweight [g] / [% of control]												
day 0	5.7		5.7 /		5.8/	5.7 /		5.4 5.4 /	5.4	L /	5.6/	5.4/
						69						

I		100	100	102	100		100	100	104	100
day 4°	9.7	9.6/	9.5 /	9.5 /	8.9**/	9.5	9.2 /	9.1/	9.2 /	8.5*/
day 4°°	9.7	99 9.6/	98 9.5 /	98 9.5 /	92 8.9**/	9.5	97 9.3 /	96 9.1 /	97 9.2 /	89 8.5**/
uay 4	9.7	9.07 99	9.57	9.57	92	9.5	9.37 98	9.17 96	9.27 97	8.5
day 7	15.9	15.4 /	15.4 /	14.9*/	13.0**/	15.5	14.9 /	14.8 /	14.2 /	12.6**/
		97	97	94	82		96	95	92	81
day 14	32.3	31.6 /	30.8 /	29.2**/	23.8**/	31.5	30.8 /	29.9 /	28.1**/	23.2**/
		98	95	90	74		98	95	89	74
day 21	52.4	51.9 /	49.9*/	45.2**/	35.3**/	50.4	50.0 /	47.9 /	43.1**/	34.0**/
		99	95	86	67		99	95	86	67
Bodyweight ga	in [g] / [%	6 of contro	ol]							
day 0-4	4.07	3.84 /	3.74 /	3.74 /	3.17**/	4.05	3.82 /	3.70 /	3.66 /	3.16**/
		94	92	92	78		94	91	90	78
day 4-7	6.16	5.82 /	5.92 /	5.35**/	4.15**/	5.98	5.64 /	5.71 /	5.03**/	4.12**/
		94	96	87	67		94	95	84	69
day 7-14	16.44	16.15/	15.41/	14.27**/	10.75**/	16.24	15.98/	15.25/	13.9**/	10.7**/
		98	94	87	65		98	94	85	66
day 14-21	20.08	20.32/	19.03/	15.95**/	11.47**/	18.94	19.3/	18.03/	14.9**/	10.9**/
		101	95	79	57		102	95	79	57
day 0-21	46.74	46.15/	44.14*/	39.39**/	29.54**/	45.00	44.6/	42.52/	37.5**/	28.7**/
		99	94	84	63		99	94	83	64
Sexual maturat	tion indic	es								
age [day]	25.3	24.8	25.6	26.1	28.0##	32.5	31.6	33.7	37.1##	42.0##
bw [g]	71.27	69.07	70.33	59.80**	48.37**	102.6	100.3	107.5	111.1*	105.8

* p <0.05, ** p <0.01 (Anova + Dunnett test);^{##} p <0.01 (Kruskal-Wallis + Dunnett test); ° preculling, °° postculling

Table 2.6.6.1.1-5: Organ weights and histopathological changes in F1 pups (2003)
---	-------

ppm	Males 0	25	100	500	1000	Females 0	25	100	500	1000
Carcass [g / % ctr]	53 / 100	53 / 100	51 / 96	45**/ 85	35**/ 66	53 / 100	53 / 100	50 / 94	45**/ 85	36**/ 68
Liver abs [g]	2.455	2.504	2.331	1.970##	1.547##	2.546	2.548	2.436	2.130**	1.677**
relative to bw [‰] rel to bw [% ctr]	45.76 100	47.26 99	45.43 96	43.78 92	44.64 94	39.7 100	40.3 102	40.2 101	41.4 104	48.1 ^{##} 121
Thymus abs [mg]	219	221	202	177##	120##	242	230	230	198**	152**
relative to bw [‰] rel to bw [% ctr]	4.097 100	4.148 101	3.946 96	3.946 96	3.441** 84	4.584 100	4.368 95	4.568 100	4.326 94	4.209 92
Spleen abs [mg]	279	274	258	209**	129**	294	306	270	233##	153##
relative to bw [‰] rel to bw [% ctr]	5.204 100	5.169 99	5.060 97	4.647* 89	3.702** 71	5.573 100	5.796 104	5.364 96	5.107 92	4.247 ^{##} 76
Brain abs [g]	1.511	1.521	1.504	1.467*	1.388**	1.468	1.472	1.472	1.438	1.348**
relative to bw [‰] rel to bw [% ctr]	28.47 100	28.94 102	29.57 104	32.86** 115	40.47** 142	27.93 100	28.11 101	29.34 105	32.25 ^{##} 115	38.06 ^{##} 136
Liver: glvcogen deposition°	28/29 (2.1)	25/29 (1.9)	24/29 (1.8)	13/24 (1.7)	12/28 (1.7)	12/28 (1.6)	15/29 (1.5)	11/29 (1.4)	4/25 (1.5)	4/29 (1.3)
extramedullary haematopoiesis°	21/2 9 (1.4)	17/2 9 (1.1	20/2 9 (1.3)	17/24 (1.2)	9/28 (1.0)	18/28 (1.2)	19/29 (1.3)	19/29 (1.4)	11/25 (1.1)	7/29 (1.0)
Spleen: extramed.	29/29	29/29	29/29	24/24	28/28	28/28	29/29	29/29	25/25	29/29

haematopoiesis°	(2.9)	(3.0)	(2.9)	(2.5)	(2.2)	(3.0)	(3.0)	(2.9)	(2.7)	(2.3)
Thymus: atrophy phagocytic cells°	0/29	0/29	0/29	0/24	8/28	0/28	0/29	0/29	0/25	0/29
	5/29	4/29	6/29	10/24	19/28	7/28	3/29	1/29	2/25	2/29
	(1.2)	(1.3)	(1.3)	(1.7)	(2.1)	(1.9)	(2.0)	(1.0)	(1.5)	(1.5)

* p <0.05, ** p <0.01 (Anova + Dunnett test); ^{##} p <0.01 (Kruskal-Wallis + Dunnett test) $^{\circ}$ incidence (grading); abs = absolute, rel = relative, ctr = control, extramed. = extramedullary

Table 2.6.6.1.1-6:	Mating	indices,	survival,	gestation,	and	delivery	parameters in I	1 females
(2003)								

ppm	0	25	100	500	1000	
Females						
placed with males and mated	30	30	30	30	30	
inseminated	28	29	30	30	30	
mating index [%]	93.3	96.7	100	100	100	
pregnant	28	29	29	29	30	
fertility index [%]	100	100	96.7	96.7	100	
with defined day 0 pc	27	28	30	29	30	
mating after days	2.6	2.8	2.4	2.9	3.0	
without evidence of mating:	3	2	0	1	0	
pregnant	1	1	0	1	0	
non pregnant	2	1	0	0	0	
died pregnant / non pregnant	0 / 0	0 / 0	0 / 0	0 / 0	0 / 0	
pregnant, not delivering	1	0	0	0	0	
delivering	27	29	29	29	30	
with liveborn pups	27	29	29	29	30	
with all pups stillborn	0	0	0	0	0	
with stillborn pups	1	2	1	2	2	
gestation index [%]	96.4	100	100	100	100	
parturition index [%]	96.4	100	100	100	100	
duration of gestation [day]	22.1	22.1	22.1	22.0	22.0	

Table 2.6.6.1.1-7: Mating indices in F1 males (2003)

Males placed with females mated mating index [%]	28	29	30	30	30 30 100
with females pregnant fertility index [%]	28 100	-			30 100

Table 2.6.6.1.1-8: Histopathological changes in F1 animals (2003)

	Males					Females				
ppm	0	25	100	500	1000	0	25	100	500	1000
Liver: Imphohistio- cytic infiltration°	21/30 (1.6)	19/30 (1.6)	17/30 (1.5)	18/30 (1.4)	11/30 (1.5)	22/30 (1.4)	24/30 (1.5)	21/30 (1.4)	20/30 (1.3)	15/30 (1.2)
Spleen: extramed. haematopoiesis°	16/30 (1.9)	24/30 (1.9)	20/30 (1.7)	9/30 (1.6)	2/30 (1.5)	28/30 (1.8)	26/30 (1.9)	24/30 (2.0)	13/30 (1.2)	3/30 (1.3)
Adrenals: cortical fatty change°	23/30 (1.5)	-	-	-	20/30 (1.4)	10/30 (2.0)	15/30 (1.7)	16/30 (2.4)	19/30 (2.6)	21/30 (2.8)
Prostate: lymphoh. infiltration°	17/30 (1.9)	10/30 (2.3)	17/30 (2.0)	6/30 (2.2)	4/30 (1.5)	-	-	_	-	-

* p <0.05, ** p <0.01 (Anova + Dunnett test); # p <0.05, ## p <0.01 (Kruskal-Wallis + Dunnett test) $^{\circ}$ incidence (grading); abs = absolute, rel = relative, ctr = control, extramed. = extramedullary, lymphoh. = lymphohistiocytic

ppm	0	25	100	500	1000
Litters	27	29	29	29	30
with liveborn pups [N / %]	27 / 100	29 / 100	29 / 100	29 / 100	30 / 100
with stillborn pups [N / %]	1/3.7	2 / 6.9	1/3.4	2 / 6.9	2 / 6.7
Implantation sites [total / mean]	335 / 12.4	360 / 12.4	370 / 12.8	339/11.7	310/10.3**
Pups delivered [total / mean]	316/11.7	337/11.6	352 / 12.1	321 / 11.1	288/9.6##
Prenatal loss [%]	5.7	6.4	4.9	5.3	7.1
Pups liveborn [N] / Live birth index [%]	315/99.7	334/99.1	351/99.7	319/99.4	286/99.3
Pups stillborn [N] / Perinatal loss [%]	1 / 0.3	3 / 0.9	1 / 0.3	2 / 0.6	2 / 0.7
Pups d/m/c/es	1 / 2 / 0 / 54	3 / 3 / 1 / 57	1 / 2 / 0 / 58	1 / 4 / 0 / 58	3 / 2 / 1 / 60
Litters not surviving day 21 (es)	0	0	0	0	0
Pups d/sm/m/c [N / %]:	0	0	0	0	0
day 1-4	2 / 0.6	7 / 2.1	2/0.6	5 / 1.6	4 / 1.4
day 5-7	1 / 0.3	0	0	0	0
day 8-14	0	0	1 / 0.3	0	0
day 15-21	0	0	0	0	2 / 0.7
Pups culled day 4 [N / %]	97 / 30.7	105/31.2	122/34.7	87 / 27.1	50°° / 29.6
Pups surviving day 0-4 [total / mean %]	313/99.4	327/97.9	349 / 99.4	314/98.4	282/98.6
Pups surviving day 4-21 [total / mean %]	215/99.5	222 / 100	226/99.6	227 / 100	230/99.1
Live pups per litter:	11.7	11.5	12.1	11.0	9.5##
day 4 (preculling)	11.6	11.3	12.0	10.8	9.4**
day 4 (postculling)	8.0	7.7	7.8	7.8	7.7
day 21	8.0	7.7	7.8	7.8	7.7
Sex ratio day 0, % live males / females	47.3 / 52.7	48.2 / 51.8	45.0 / 55.0	47.0 / 53.0	47.9 / 52.1
day 21, % live males / females	48.4 / 51.6	52.3 / 47.7	47.3 / 52.7	48.0 / 52.0	49.1 / 50.9

Table 2.6.6.1.1-9: F2 litter	data (2003)
------------------------------	--------	-------

			Males					Females		
ppm	0	25	100	500	1000	0	25	100	500	1000
Bodyweight	t [g] / [% o	f control]								
day 0	5.9	6.0 / 102	6.1 / 103	6.2 / 105	5.9 / 100	5.7	5.7 / 100	5.8 / 102	5.9 / 104	5.7 / 100
day 4°	10.1	9.9 / 98	10.0 / 99	10.3 / 102	9.3##/ 92	9.8	9.7 / 99	9.6/98	9.9 / 101	9.0 ^{##} / 92
day 4°° day 7	10.1	10.0 / 99	10.0 / 99	10.4 / 103	9.4##/ 93	9.8	9.7 / 99	9.6/99	9.9 / 101	9.0 ^{##} / 92
day 14	16.2	15.8/98	16.0/99	16.3 / 101	13.7 ^{##} / 85	15.7	15.4/98	15.4 / 98	15.6 / 99	13.3 ^{##} /
-	31.9	31.6/99	31.4 / 98	30.1 / 94	24.2 ^{##} / 76	31.3	31.0/99	30.6 / 98	28.9 [#] / 92	23.4 ^{##} / 75
day 21	51.6	52.0 / 101	49.9/97	46.5 ^{##} / 90	35.3 ^{##} /	50.3	50.4/100	48.5 / 96	44.1 ^{##} / 88	34.3 ^{##} /
Bodyweight	t gain [g] /	[% of contro	oll	I					I	
day 0- 4	4.1	4.0/98	3.9/95	4.1 / 100	3.4##/ 83	4.1	4.0/98	3.8/93	4.1 / 100	3.4 ^{##} / 83
day 4- 7	6.1	5.8/95	6.0/98	6.0/98	4.3##/ 70	5.9	5.7 / 97	5.8/98	5.6#/95	4.3 ^{##} / 73
day 7- 14	15.7	15.8 / 101	15.4/98	13.8 ^{##} / 88	10.5 ^{##} / 67	15.5	15.6/101	15.1 / 97	13.4 ^{##} / 86	10.1 ^{##} / 65
day 14-21 day 0-	19.7	20.4 / 104	18.5 / 94	16.4**/ 83	11.1**/ 56	19.0	19.4/102	17.9/94	15.2**/ 80	10.8* */ 57
21	45.6	46.0 / 101	43.8/96	40.2 ^{##} / 88	29.3 ^{##} / 64	44.5	44.7/100	42.7/96	38.2 ^{##} / 86	28.6 ^{##} / 64

Table 2.6.6.1.1-10: Bodyweight	development in F2 pups		2003)
--------------------------------	------------------------	--	-------

* p <0.05, ** p <0.01 (Anova + Dunnett test); ^{##} p <0.01 (Kruskal-Wallis + Dunnett test) ° preculling, °° postculling

	Males					Females				
ppm	0	25	100	500	1000	0	25	100	500	1000
Carcass[g/ %ctr]	55.0	54.5	52.4	48.3##	36.6##	51.8	52.9	51.1	45.2##	35.8##
Liver abs [g] relative to bw [‰]	2.56 45.5	2.59 47.3	2.38 45.3	2.15 ^{##} 44.4	1.54 ^{##} 42.1**	2.32 44.7	2.45 46.3	2.30 44.9	2.01** 44.3	1.54** 43.0
rel to bw [%ctr]	100	102	97	95	91	100	104	100	99	96
Thymus abs [mg] relative to bw [‰] rel to bw [%ctr]	237 4.34 100	238 4.34 100	223 4.25 98	204** 4.23 97	153** 4.16 96	236 4.54 100	244 4.59 101	233 4.56 100	211 4.67 103	161** 4.48 99
Spleen abs [mg] relative to bw [‰] rel to bw [%ctr]	290 5.25 100	299 5.46 104	266 5.07 97	241 4.99 95	147 ^{##} 3.99 ^{##} 76	279 5.38 100	282 5.31 99	263 5.16 96	224 ^{##} 4.96 92	142 ^{##} 3.93 ^{##} 73
Brain abs [g] relative to bw [‰] rel to bw [%ctr]	1.547 28.3 100	1.528 28.5 101	1.524 29.2 103	1.511 31.6 ^{##} 112	1.431** 39.6 ^{##} 140	1.465 28.3 100	1.469 28.2 100	1.475 29.1 103	1.452 32.4 ^{##} 114	1.378* * 39.1 ^{##} 138
Liver:glycogen deposition° extramedullary haematopoiesis°	18/27 (1.6) 24/27 (1.2)	17/29 (1.9) 19/29 (1.3)	18/29 (2.1) 25/29 (1.7)	8/29 (1.6) 20/29 (1.1)	5/30 (1.6) 5/30 (1.0)		15/28 (2.2) 26/28 (1.5)	12/29 (2.2) 28/29 (1.5)	4/29 (2.0) 27/29 (1.4)	2/30 (2.0) 13/30 (1.2)
Spleen: extramed. haematopoiesis°	27/27 (2.8)	29/29 (2.8)	29/29 (2.9)	29/29 (2.3)	30/30 (1.9)	27/27 (3.1)	28/28 (3.3)	29/29 (3.3)	29/29 (2.9)	30/30 (2.2)
Thymus: atrophy	0/27	0/29	0/29	0/29	1/30	0/27	0/28	0/29	0/29	0/30

Table 2.6.6.1.1-11: Organ weights and histopathological changes	in F2 pups (2	003)

phagocytic cells°	6/27	5/29	4/29	7/29	18/30	6/27	4/28	7/29	9/29	18/30
	(1.7)	(1.6)	(1.3)	(1.9)	(1.8)	(2.0)	(1.8)	(2.1)	(2.1)	(1.8)

* p < 0.05, ** p < 0.01 (Anova + Dunnett test); ## p < 0.01 (Kruskal-Wallis + Dunnett test) ° incidence (grading); abs = absolute, rel = relative, ctr = control, extramed. = extramedullary

2.6.6.1.2 Comparison with the CLP criteria regarding adverse effects on sexual function and fertility

According to CLP (Regulation (EC) No. 1272/2008, Annex I, Table 3.7.1a), an active substance meets the criteria for classification in relation to sexual function and fertility, if it induces alterations to the female and male reproductive system, adverse effects on onset of puberty, gamete production and transport, reproductive cycle normality, sexual behaviour, fertility, parturition, pregnancy outcomes, premature reproductive senescence, or modifications in other functions that are dependent on the integrity of the reproductive systems. In two-generation reproduction studies with fenpropidin, no treatment-related adverse effects on sexual function and fertility were observed. The treatment-related effects observed were considered attributable to or a consequence of the systemic toxicity effects.

Method, guideline, deviations if any, species, strain, sex, no/group	Test substance, dose levels duration of exposure	Results	Reference
Developmental toxicity OECD 414 (1981) Deviations: The test substance was administered only on day 6 to 15 of gestation. Food consumption was recorded with 5 days intervals on day 6, 11, 16 and 21. GLP Oral (gavage) Rat, Tif: RAI f (SPF) 24 mated females/group Acceptable study	Fenpropidin (purity 97%) 0, 10, 60 and 90 mg/kg bw/day on gestation days 6-15 Vehicle: 0.5% CMC	Maternal toxicityNOAEL: > 90 mg/kg90 mg/kg bw/day: \downarrow body weight gain (11%days 6-16, not significant); \downarrow food consumption(10% days 11-16)60 mg/kg bw/day: No effects10 mg/kg bw/day: No effectsDevelopmental toxicityNOAEL: > 90 mg/kg90 mg/kg bw/day: No effects60 mg/kg bw/day: No effects10 mg/kg bw/day: No effects	(1994)
Developmental toxicity Pre OECD 414 (1981) with several significant deviations, e.g. there was 17-18 instead of 20 pregnant rats per group. Food consumption was recorded only during treatment from day 7-16 of gestation. Dosing occurred only for day 7-16. Gravid uterine and cervix weight was not measured. Stability, homogeneity and achieved concentration of test substance in the diet were not reported. GLP Oral (diet) Rat, albino (SPF) 17 females /group with live foetuses (approx. 7 litters for	Fenpropidin (purity not reported) Mean achieved doses were 0, 19.5, 47.5, 87.8 mg/kg bw/day on gestation days 7-16. Vehicle: Nafag 850 diet	NOAEL (maternal): 19.5 mg/kg bwMaternal toxicity87.8 mg/kg bw/day:body weight loss -19.5 g(control +38.1 g) days 7-17; ↓ body weight gain35% (days 0-21); ↓ food consumption 22%(days 7-9), 58% (days 15-17)47.5 mg/kg bw/day: ↓ body weight gain 34%(days 7-17), 9% (days 0-21); ↓ foodconsumption 16% (days 7-9), 7% (days 15-17)19.5 mg/kg bw/day: No effectsDevelopmental toxicityNOAEL (developmental): 47.5 mg/kg bw87.8 mg/kg bw/day: skeletal anomaly: ↑number of incised neural arches (see Table2.6.6.2-7)47.5 mg/kg bw/day: No effects	(1981)

2.6.6.2 Adverse effects on development [equivalent to section 10.10.4 of the CLH report template]

Method, guideline, deviations if any, species, strain, sex, no/group	Test substance, dose levels duration of exposure		Results				Reference
foetal visceral examination and 10 litters for skeletal) Supplementary study		19.5 mg/kg bw/day:	: No effe	ects			
Developmental toxicity OECD 414 (2001) GLP Oral (gavage) Rabbit: New Zealand White, Hra:(NZW) SPF 25 mated females/group Acceptable study	Fenpropidin (purity 96.9%) 0, 5, 10 and 20 mg/kg bw/day on gestation days 7-28 Vehicle: 0.5% CMC	Maternal toxicity NOAEL (maternal): 20 mg/kg bw/day: ↓ significantly ↓ body 29); non-significantly (days 7-29) 10 mg/kg bw/day: No	, defaecat weight g y↓food No effects	tion d gain 64 consu	4% (da	ys 7-	(2011)
		Developmental toxic NOAEL (developmental toxic 20 mg/kg bw/day: ↑ truncus arteriosus (3/ within historical com severely malaligned 3/23 litters outside of 10 mg/kg bw/day: No 5 mg/kg bw/day: No	ental): 10 incidence /204 foet trol range sternebra f historic No effects	ce of p tuses, (e); \uparrow i ae (3/2 cal cor	persiste 3/23 li inciden 204 foe	tters ce of etuses,	
Developmental toxicity Pre OECD 414 Deviations: Animals were treated only on days 7-19 of gestation. The mortalities were high in the treated groups 15-25% resulting in 15 to 19 pregnant females. Gravid uterine weight was not determined, rationale for dose selection was not given, and details on test formulation (purity was not stated), food and water quality were not reported. Food consumption was not measured. Pre-GLP but with QA Oral (gavage) Rabbit: Swiss hare 20 mated females/group Supplementary study	Fenpropidin (purity not reported) 0, 5, 12 and 30 mg/kg bw/day on gestation days 7-19 Vehicle: 4% gum arabic	Maternal toxicity NOAEL (maternal): 30 mg/kg bw/day: b (control 129.3 g) day 24% (days 1-30) 12 mg/kg bw/day: No 5 mg/kg bw/day: No Developmental toxice NOAEL (developmental toxice NOAEL (developmental toxice) NOAEL (developmental toxice) Somg/kg bw/day: ↓ possibly a consequent consequence of large 5.7). Latter indicated Dose (mg/kg bw/day) Mean no. live foetuses Mean foetal body	12mg/kg pody weig ys 7-20; ↓ No effects o effects eity ental): 30 foetal bo nee of ma er litter si l by inver 0 £ 5.7 0	g bw ght los ↓ body s) mg/k ody w aterna ize 7.2	y weigh g bw veight (1 toxici 2 (contr	7%) – ity or a rol	and (1981)
		weight (g) <u>12 mg/kg bw/day:</u> No <u>5 mg/kg bw/day:</u> No				<u> </u>	

 Table 48:
 Summary table of human data on adverse effects on development

No data available.

 Table 49:
 Summary table of other studies relevant for developmental toxicity

No studies available

2.6.6.2.1 Short summary and overall relevance of the provided information on adverse effects on development

The developmental toxicity of fenpropidin was investigated in four prenatal developmental toxicity studies, two in rats (1994; 1981) and two in rabbits (, 2011; and 1981). Three of these studies predate the current OECD Test Guideline Number 414 (2001) and do not include the recommended extended dosing period (i.e. from implantation to one day prior to the day of scheduled kill). However, the rat study of (1994) is considered adequate and relevant for evaluation of the potential of fenpropidin to induce developmental effects in the rat. The other two studies, (1981; and 1981) have notable deviations from the current test guideline and are regarded as supplementary. The rabbit study of (2011) is compliant with the current test guideline requirements, fully adequate and relevant for evaluation of the potential of fenpropidin to induce developmental effects in the rabbit. Therefore, the key developmental toxicity study in the rat is (1994) and in the rabbit (2011).1994) the highest dose tested of 90 mg/kg bw/day induced maternal toxicity In the rat study ((reduced body weight and food consumption) without a consequential reduction in foetal body weight. Incidental malformations were seen in control (one foetus with encephalocele, protrusion of tongue and open eye; another foetus with acaudia) as well as at top dose (one foetus with anal atresia, hydronephrosis, uteral aplasia and aplasia of urinary bladder); (see Table 2.6.6.2-1and 2.6.6.2-2). No treatment-related effects on foetal development were observed and the NOEL for developmental toxicity was therefore set at 90 mg/kg bw/day.

group		1	2	3	4
	mg/kg bw/day	0	10	60	90
Foetuses / litters examined for external	306 / 22	337 / 24	312 / 21	284 / 23	
External malformations:					
Encephalocele (head):	foetal incidence: total /%	1/0.3	0 / 0	0 / 0	0 / 0
% litter incidence / % affecte	d foetuses per litter	4.5 / 0.3	0 / 0	0 / 0	0 / 0
Protrusion (tongue):	foetal incidence: total /%	1 / 0.3	0 / 0	0 / 0	0 / 0
% litter incidence / % affecte	d foetuses per litter	4.5 / 0.3	0 / 0	0 / 0	0 / 0
Open eye:	foetal incidence: total /%	1 / 0.3	0 / 0	0 / 0	0 / 0
% litter incidence / % affecte	d foetuses per litter	4.5 / 0.3	0 / 0	0 / 0	0 / 0
Anal atresia (trunk):	foetal incidence: total /%	0 / 0	0 / 0	0 / 0	1 / 0.4
% litter incidence / % affecte	d foetuses per litter	0 / 0	0 / 0	0 / 0	4.3 / 0.4
Acaudia missing (tail):	foetal incidence: total /%	1/0.3	0 / 0	0 / 0	0 / 0
% litter incidence / % affecte	d foetuses per litter	4.5 / 0.3	0 / 0	0 / 0	0 / 0
External anomalies and variations:	foetal incidence: total / %	0 / 0	0 / 0	0 / 0	0 / 0
	litter incidence: total / %	0 / 0	0 / 0	0 / 0	0 / 0
Total external observations:	foetal incidence: total / %	2/0.7	0 / 0	0 / 0	1/0.4
	litter incidence: total / %	2 / 9.1	0 / 0	0 / 0	1 / 4.3

 Table 2.6.6.2-1: Foetal external observations (1994)

Table 2.6.6.2-2: Foetal visceral observations	(1994)
---	---	-------

group	1	2	3	4
mg/kg bw/day	0	10	60	90
Foetuses / litters examined for visceral observations	148 / 22	163 / 24	150 / 21	137 / 23
Visceral malformations				
Hydronephrosis (kidney): foetal incidence: total /% litter incidence total / % / % affected foetuses per litter	0 / 0 0 / 0 / 0	0 / 0 0 / 0 / 0	0 / 0 0 / 0 / 0	1 / 0.7 1 / 4.3 / 0.9
Aplasia of urinary bladder: foetal incidence: total /% litter incidence total / % / % affected foetuses per litter	0 / 0 0 / 0 / 0	0 / 0 0 / 0 / 0	0 / 0 0 / 0 / 0	1 / 0.7 1 / 4.3 / 0.9
Ureteral aplasia: foetal incidence: total /% litter incidence total / % / % affected foetuses per litter	0 / 0 0 / 0 / 0	0 / 0 0 / 0 / 0	0 / 0 0 / 0 / 0	1 / 0.7 1 / 4.3 / 0.9
Visceral anomalies Blood stained fluid (abdom. cavity): foetal incidence: total /% litter incidence total / % / % affected foetuses per	0 / 0 0 / 0 / 0	1 / 0.6 1 / 4.3 / 1.4	0 / 0 0 / 0 / 0	1 / 0.7 1 / 4.3 / 1.1
litter Enlarged liver: foetal incidence: total /% litter incidence total / % / % affected foetuses per litter	1 / 0.7 1 / 4.5 / 0.6	0 / 0 0 / 0 / 0	0 / 0 0 / 0 / 0	0 / 0 0 / 0 / 0
Renal pelvic dilatation (kidney): foetal incidence: total /% litter incidence total / % / % affected foetuses per litter	2 / 1.4 2 / 9.1 / 2.2	2 / 1.2 2 / 8.7 / 1.0	0 / 0 0 / 0 / 0	0 / 0 0 / 0 / 0
Visceral variations Enlarged thymus: foetal incidence: total /% litter incidence total / % / % affected foetuses per litter	4 / 2.7 4 / 18.2 / 8.1	9 / 5.5 8 / 34.8 / 4.9	7 / 4.7 5 / 23.8 / 5.5	5 / 3.6 3 / 13.0 / 6.0
Accessory lobulet (liver): foetal incidence: total /% litter incidence total / % / % affected foetuses per litter	0 / 0 0 / 0 / 0	2 / 1.2 2 / 8.7 / 1.0	2 / 1.3 2 / 9.5 / 1.2	2 / 1.5 1 / 4.3 / 1.0
Total visceral observations: foetal incidence: total / % litter incidence: total / %	7 / 4.7 6 / 27.3	14 / 8.6 11 / 47.8	9 / 6.0 7 / 33.3	9 / 6.6 6 / 26.1

Table 2.6.6.2-3: Foetal skeletal observations (1994)

mg/kg bw/day	0	10	60	90
Foetuses / litters examined for skeletal observations	159 / 22	174 / 24	162 / 21	147 / 23
Total skeletal malformations: foetal incidence: total / % litter incidence: total / %	0 / 0 0 / 0	0 / 0 0 / 0	0 / 0 0 / 0	0 / 0 0 / 0
Total skeletal anomalies: foetal incidence: total / % litter incidence: total / %	8 / 5.0 5 / 22.7	7 / 4.0 7 / 29.2	13 / 8.0 11 / 52.4	12 / 8.2 8 / 34.8
Selected skeletal variations Absent ossification of metatarsal-1: foetal incidence: total / % litter incidence total / % / % affected foetuses per litter	17 /10.7 10 /45.5 / 11.2	23 /13.2 9 / 37.5 / 13.4	34*/21.0 10/47.6 /20.2	13 / 8.8 5 / 21.7 / 8.3
proximal phalanx, anterior digit-2: foetal incidence: total / % litter incidence total / % / % affected foetuses per litter	3 / 1.9 2 / 9.1 / 1.9	5 / 2.9 5 / 20.8 / 3.3	16**/9.9 7/33.3/10.1	6 / 4.1 3 / 13.0 / 4.3
proximal phalanx, anterior digit-5: foetal incidence: total / % litter incidence total / % / % affected foetuses per litter	12 / 7.5 8 / 36.4 / 7.6	11 / 6.3 7 / 29.2 / 7.0	26* / 16.0 9 / 42.9/15.8	11 / 7.5 6 / 26.1 / 7.5
distal phalanx, anterior digit-5: foetal incidence: total / % litter incidence total / % / % affected foetuses per litter proximal phalanx, posterior digit-3:	0 / 0 0 / 0 / 0	2 / 1.1 2 / 8.3 / 1.1	12**/7.4 5/23.8/8.0	3 / 2.0 3 / 13.0 / 2.2

foetal incidence: total / % litter incidence total / % / % affected foetuses per litter	46 / 28.9 14 / 63.6 / 27.4	39 / 22.4 12 / 50.0 / 22.6	76**/46.9 17/81.0/45.0	43 / 29.3 12 / 52.4 / 25.3
proximal phalanx, posterior digit-4:				
foetal incidence: total / % litter incidence total / % / % affected foetuses per litter	44 / 27.7 14 / 63.6 / 26.2	34 / 19.5 12 / 50.0 / 20.2	66* / 40.7 15 / 71.4 / 38.8	33 / 22.4 10 / 43.5 / 19.6
proximal phalanx, posterior digit-2: foetal incidence: total / % litter incidence total / % / % affected foetuses per litter	70 / 44.0 20 / 90.9 / 42.6	49** / 28.2 14 / 58.3 / 28.0	84 / 51.9 18 / 85.7 / 49.9	52 / 35.4 13 / 56.5 / 30.3
Poor ossification of proximal phalanx, anterior digit-2: foetal incidence: total / % litter incidence total / % / % affected foetuses per litter	1 / 0.6 1 / 4.5 / 0.6	3 / 1.7 2 / 8.3 / 1.5	9* / 5.6 7*/33.3 / 5.2	1 / 0.7 1 / 4.3 / 0.6
Shortened rib 13: foetal incidence: total / % litter incidence total / % / % affected foetuses per litter	4 / 2.5 4 / 18.2 / 2.2	15* / 8.6 9 / 37.5 / 7.6	3 / 1.9 2 / 9.5 / 2.0	6 / 4.1 5 / 21.7 / 3.4
Total skeletal variations:				
foetal incidence: total / % litter incidence: total / %	159 / 100 22 / 100	174 / 100 24 / 100	162 / 100 21 / 100	146 / 99.3 23 / 100

In the rabbit study of (2011), the highest dose tested (20 mg/kg bw/day) induced maternal toxicity (reduced body weight gain and food consumption). Therefore, the NOAEL for maternal toxicity was set at 10 mg/kg bw/day.

At the top dose, the increased incidence of severely malaligned sternebra(e) as well as persistent truncus arteriosus was observed (3 foetuses/3 litters vs. 0/0 in control; *see Table 2.6.6.2-4*). According to historical control data provided (studies performed during years 2006 - 2009 in the same laboratory (2011); (2011);

see Table 2.6.6.2-5), the skeletal variation malaligned sternebra(e) occurred in the range 0 - 1% per litter (mean 0.1%) and the visceral malformation persistent truncus arteriosus in the range 0 - 2.1% per litter (mean 0.1%). In the study with fenpropidin, the incidence of malaligned sternebra(e) (3 foetuses/3 litters; 1.6% per litter) was outside the historical control data range (0 - 1% per litter; the highest incidence: 2 foetuses/2 litters in 2 studies). Although the incidence of persistent truncus arteriosus (1.7% per litter) was within the historical control data range (0 - 2.1% per litter), it corresponded to the upper observed level, which was obviously rare in the historical control data set (the mean 0.1%, median 0%, 75th quartile 0%). In addition, the applicant admits in the Technical position statement provided, that the maximum observed value 2.1% was attributed to a single study, where the affected litter had only 2 viable foetuses (i.e. 50% incidence). The range without the aforementioned study was 0 - 1.1%, which is similar to the range based on the studies performed during years 2010 - 2014 (i.e. 0 - 1.4% per litter; *see Table 2.6.6.2-5*). Furthermore, the highest observed incidence of persistent truncus arteriosus in historical control data was 2 foetuses in one litter, whereas 3 affected foetuses from 3 litters were found in the study with fenpropidin.

The total number of foetuses with a malformation exerted dose-response relationship and was significantly increased comparing to the control (*see Table 2.6.6.2-4*). The NOAEL for developmental effects was set at 10 mg/kg bw/day based on the increased incidence of severely malaligned sternebra(e) and persistent truncus arteriosus.

2011)

In the Technical position statement of the applicant, two case studies performed in focusing on the incidence of persistent truncus arteriosus in the rabbit population are mentioned. In the first case study (2007), 4 foetuses from 4 litters with persistent truncus arteriosus were noted (3 foetuses from 3 litters in the low-dose group and 1 foetus in the mid-dose group). Six months later in the second case study, 3 foetuses from 3 litters with persistent truncus arteriosus in the mid-dose group were noted. The studies are not described in sufficient details (e.g. it is not clear, which doses were used). Based on these studies, the applicant does not consider the increased incidence of persistent truncus arteriosus to be treatment related. However it should be noted that considering both case studies, there were no incidences in the control group animals, therefore it is questionable if this can be considered as relevant for historical controls. It should suggest that the incidence of persistent truncus arteriosus is rather random and generally not treatment related, however this is in our opinion not sufficient evidence. It should be also noted that malaligned sternebrae have been downgraded from malformation to variation (devtox.com)

The statement of applicant on the increased incidence of severely malaligned sternebra(e): "Although no new data were identified to clarify the occurrence of severely maligned sternebrae, it was considered that the study incidence of 3 foetuses in 3 litters in the 20 mg/kg bw/day group was only just outside the highest historical control incidence of 2 foetuses in 2 litters, seen in two studies. In the absence of any other effect of fenpropidin on the rabbit foetal skeleton, it was considered that the occurrence of maligned sternebrae in isolation was more consistent with a spontaneous event rather than an effect of treatment".

		FOET	USES			LITTERS			
Dose (mg/kg bw/day)	0	5	10	20	0	5	10	20	
Number examined	222	224	197	204	23	24	20	23	
Carpal and/or tarsal flexure	0	1	0	0	0	1	0	0	
Microphthalmia and/or anophthalmia	0	0	1	0	0	0	1	0	
Hydrocephaly	0	1	0	0	0	1	0	0	
Persistent truncus arteriosus	0	0	0	3	0	0	0	3	
(% per litter)								(1.7 %)	
Interventricular septal defect	1	0	0	0	1	0	0	0	
Lungs – lobular agenesis	0	0	2	0	0	0	1	0	
Vertebral anomaly with/without associated rib anomaly	0	1	0	1	0	1	0	1	
Sternebra(e) malaligned (severe) **	0	0	0	3	0	0	0	3	
(% per litter)								(1.6%)	
Total number of malformations (excluding Malaligned strenbrae (variation)	<u>1</u>	<u>3</u>	<u>3</u>	<u>4</u>	<u>1</u>	<u>3</u>	<u>2</u>	<u>4</u>	

*significantly different from the control group at 0.05 using Fisher's exact test

**downgraded to variation

Historical control data

Table 2.6.6.2-5: Summary Incidence of Malformations and Variations in Developmental Toxicity Studies Conducted in the New Zealand White [Hra: (NZW) SPF] (CRP, Kalamazoo) between August 2006 and December 2009

NO. OF DATASETS Total No. of fetuses/litters examined externally	65									
Total No. of fetuses/litters examined viscerally	12086	1375								
Total No. of fetuses/litters examined	12000	1575								
skeletally	12086	1375							Nu	mber
MALFORMATIONS (% per litter)	Mean	S.D.	SEM	Median	Min	Max	25th Quartile	75th Quartile	Fetuses	Litters
TOTAL VISCERAL MALFORMATIONS	0.86	0.868	0.108	0.6	0	3.16	0	1.34		
TOTAL SKELETAL MALFORMATIONS	0.94	0.893	0.111	0.84	0	5.07	0.41	1.28		
VISCERAL										
Persistent Truncus Arteriosus	0.13	0.339	0.042	0	0	2.08	0	0	12	11
SKELETAL										
Sternebra(e)- Malaligned (Severe)	0.1	0.245	0.03	0	0	1.01	0	0	12	12

Table 2.6.6.2-6: Summary Incidence of Malformations and Variations in Developmental Toxicity Studies Conducted in the New Zealand White [Hra: (NZW) SPF] (CRP, Kalamazoo) between January 2010 and November 2014

NO. OF DATASETS Total No. of fetuses/litters examined externally Total No. of fetuses/litters examined viscerally	62 11415	1300								
Total No. of fetuses/litters examined skeletally	11415	1300							Nun	nber
MALFORMATIONS (% per litter)	Mean	S.D.	SEM	Median	Min	Max	25th Quartile	75th Quartile	Fetuses	Litters
TOTAL VISCERAL MALFORMATIONS	1.05	1.031	0.131	0.69	0	4.26	0.1	1.63		
TOTAL SKELETAL MALFORMATIONS	0.93	0.774	0.098	0.96	0	3.54	0.1	1.41	-	
VISCERAL										
Persistent Truncus Arteriosus	0.04	0.171	0.022	0	0	1.14	0	0	3	3
SKELETAL										
Sternebra(e)- Malaligned (Severe)	0.07	0.229	0.029	0	0	1.06	0	0	7	7

Table 2.6.6.2-7: Individial historical control data for persistent truncus arteriosus and malaligned sternebrae conducted in the New Zealand White [Hra:(NZW)SPF] (CRP, Kalamazoo) between August 2006 and December 2009

						VISCERA	AL.				SKELET	AL	
					Persisten	nt Truncus	Arteriosus			Sternebra	a - Malalig	med (Severe)	
Study Number	Day 0 of Gestation	Necropsy Date	Route of Administration	Number of Affected Foetuses	Number of Affected Litters	% per Litter	Total Fetuses Examined	Total Litters Examined	Number of Affected Foetuses	Number of Affected Litters	% per Litter	Total Fetuses Examined	Total Litters Examined
1	10/15/2006	11/17/2006	Gavage	0	0	0.000	209	23	0	0	0.000	209	23
2	10/15/2006	11/17/2006	Gavage	0	0	0.000	214	24	0	0	0.000	214	24
3	8/22/2006	9/22/2006	Gavage	0	0	0.000	183	20	0	0	0.000	183	20
4	9/19/2006	10/20/2006	Gavage	0	0	0.000	204	22	0	0	0.000	204	22
5	09/12/2006	10/13/2006	Gavage	0	0	0.000	205	23	1	1	0.543	205	23
6	1/29/2007	03/02/2007	Gavage	0	0	0.000	169	20	0	0	0.000	169	20
7	01/09/2007	02/09/2007	Gavage	0	0	0.000	204	23	1	1	0.395	204	23
8	11/17/2006	12/15/2006	Subcutaneous	0	0	0.000	177	19	0	0	0.000	177	19
9	03/11/2007	04/11/2007	Gavage	0	0	0.000	128	16	0	0	0.000	128	16
10	02/12/2007	3/16/2007	Gavage	0	0	0.000	219	25	0	0	0.000	219	25
11	04/08/2007	05/10/2007	Gavage	0	0	0.000	202	21	0	0	0.000	202	21
12	05/08/2007	06/10/2007	Gavage	1	1	0.952	182	21	2	2	1.005	182	21
13	4/16/2007	5/18/2007	IV	1	1	2.083	194	24	0	0	0.000	194	24
14	04/10/2007	05/11/2007	Gavage	0	0	0.000	146	17	0	0	0.000	146	17
15	06/01/2007	6/29/2007	Gavage	1	1	0.476	183	21	0	0	0.000	183	21

						VISCER	AL.				SKELET	AL	
					Persister	nt Truncus	Arteriosus			Sternebra	a - Malalig	gned (Severe)	
Study Number	Day 0 of Gestation	Necropsy Date	Route of Administration	Number of Affected Foetuses	Number of Affected Litters	% per Litter	Total Fetuses Examined	Total Litters Examined	Number of Affected Foetuses	Number of Affected Litters	% per Litter	Total Fetuses Examined	Total Litters Examined
16	06/10/2007	07/11/2007	Gavage	0	0	0.000	199	22	0	0	0.000	199	22
17	6/22/2007	7/20/2007	Gavage	0	0	0.000	163	20	0	0	0.000	163	20
18	07/06/2007	08/03/2007	Gavage	0	0	0.000	193	22	0	0	0.000	193	22
19	08/07/2007	8/31/2007	Gavage	1	1	0.595	195	21	0	0	0.000	195	21
20	08/01/2007	8/29/2007	Gavage	0	0	0.000	160	19	0	0	0.000	160	19
21	8/17/2007	9/14/2007	Subcutaneous	1	1	0.500	166	20	0	0	0.000	166	20
22	10/01/2007	10/26/2007	Gavage	0	0	0.000	200	23	0	0	0.000	200	23
23	9/21/2007	10/19/2007	Gavage	0	0	0.000	162	19	0	0	0.000	162	19
24	10/05/2007	11/02/2007	Dermal	0	0	0.000	178	20	0	0	0.000	178	20
25	10/12/2007	11/09/2007	Gavage	1	1	0.585	154	19	1	1	0.752	154	19
26	10/19/2007	11/16/2007	Gavage	0	0	0.000	208	23	1	1	0.483	208	23
27	10/24/2007	11/21/2007	Gavage	0	0	0.000	191	21	0	0	0.000	191	21
28	11/02/2007	11/30/2007	IV	0	0	0.000	211	23	0	0	0.000	211	23
29	11/09/2007	12/07/2007	Gavage	0	0	0.000	175	21	0	0	0.000	175	21
32	12/26/2007	01/10/2008	Dermal	0	0	0.000	165	20	0	0	0.000	165	20
34	8/13/2007	09/06/2007	Gavage	0	0	0.000	220	25	0	0	0.000	220	25
35	12/23/2007	1/15/2008	Gavage	0	0	0.000	166	22	1	1	0.758	166	22
									_				
36	12/04/2007	12/28/2007	Gavage	0	0	0.000	200	22	0	0	0.000	200	22
37	03/11/2008	04/11/2008	Gavage	0	0	0.000	188	21	0	0	0.000	188	21
38	1/13/2009	02/06/2009	Gavage	0	0	0.000	188	22	0	0	0.000	188	22
43	3/31/2009	4/24/2009	Gavage	0	0	0.000	168	20	0	0	0.000	168	20
44	02/12/2008	03/07/2008	Gavage	0	0	0.000	188	21	1	1	0.595	188	21
45	03/04/2008	3/28/2008	Gavage	0	0	0.000	186	21	0	0	0.000	186	21
46	05/06/2008	5/30/2008	Gavage	0	0	0.000	187	22	0	0	0.000	187	22
47	02/01/2008	2/27/2008	Gavage	0	0	0.000	137	17	0	0	0.000	137	17
48	09/05/2008	10/03/2008	Subcutaneous	2	1	0.784	151	17	0	0	0.000	151	17
50	03/04/2009	3/30/2009	Gavage	0	0	0.000	158	18	0	0	0.000	158	18
51	4/15/2008	05/09/2008	Gavage	0	0	0.000	182	21	0	0	0.000	182	21
52	7/21/2008	8/22/2008	Subcutaneous	0	0	0.000	164	19	0	0	0.000	164	19
54	5/21/2008	6/20/2008	Gavage	0	0	0.000	207	21	0	0	0.000	207	21
55	11/25/2008	12/19/2008	Subcutaneous	1	1	0.649	185	22	1	1	0.649	185	22
56	04/01/2008	4/25/2008	Gavage	0	0	0.000	190	22	0	0	0.000	190	22
57	07/07/2008	7/31/2008	Gavage	0	0	0.000	192	22	0	0	0.000	190	22
58	02/03/2009	2/27/2009	Subcutaneous	0	0	0.000	192	25	0	0	0.000	192	25
59	6/22/2008	7/16/2008	Subcutaneous	ů 0	ů 0	0.000	188	22	0	ů 0	0.000	188	22
60	11/18/2008	12/12/2008	Gavage	0	0	0.000	183	22	0	0	0.000	183	22
61	4/22/2008	5/16/2008	Gavage	0	0	0.000	185	22	1	1	0.483	185	22
62	01/11/2009	02/04/2009	Gavage	0	0	0.000	211	25	0	0	0.485	211	25
63	12/09/2008	02/04/2009		1	1	0.543	211 212	23	0	0	0.000	211 212	23
67	5/29/2008		Gavage Subcutaneous	0	0	0.043	193	23 19			0.000	193	19
67	05/01/2009	6/26/2009 5/29/2009		0	0	0.000	193	19 19	0	0	0.000	193	19
69	05/01/2009	06/03/2009	Gavage	0		0.000	171						
			Gavage		0			19	1	1	0.752	184	19
70	9/23/2008	10/17/2008	Gavage	0	0	0.000	217	24	0	0	0.000	217	24
72	1/20/2008	2/13/2008	Gavage	0	0	0.000	223	24	1	1	0.379	223	24
73	1/15/2008	02/09/2008	Gavage	0	0	0.000	198	21	0	0	0.000	198	21
74	8/19/2008	09/12/2008	Gavage	1	1	0.455	186	20	0	0	0.000	186	20
75	6/17/2008	07/11/2008	Gavage	1	1	0.680	203	21	0	0	0.000	203	21
86	10/09/2009	11/05/2009	GAVAGE	0	0	0.000	165	20	0	0	0.000	165	20
89	10/27/2009	11/20/2009	GAVAGE	0	0	0.000	221	24	0	0	0.000	221	24
97	12/22/2009	1/15/2010	GAVAGE	0	0	0.000	169	20	0	0	0.000	169	20

Volume 1 – Level 2

May 2021

Table 2.6.6.2-8: Individual historical control data for persistent truncus arteriosus and malaligned sternebrae Conducted in the New Zealand White [Hra:(NZW)SPF] (CRP, Kalamazoo) between January 2010 and November 2014

Study Number Day 0 of Gestation Necropsy Date Route of Administration Number of Administration Number of Fetuses Number Affected Foetuses Total Fetuses Litters Total Fetuses Examined Number of Affected Foetuses Number of Affected Foetuses Number of Administration 82 8/17/2010 09/10/2010 Gavage 0 0 0 164 20 1 1 1 1 83 7/20/2010 8/13/2010 Gavage 0 0 0 1 1 1	Total litters ed examined
Study Number Day 0 of Cestation Necropsy Date Route of Administration of Administration of Affected Litters of Affected Litters of Affected Fetuses Iotal Litters of Affected Fetuses of Affected Fetuses Number of Affected Fetuses % Protects Number of Fetuses % Protects Number of Affected Fetuses % Protects Number of Fetuses % Protects Affected Fetuses Affected Fetus Affected Fetus Affected Fetus Affected Fetus Affected Fetus Affected Fetus Affected Fetus Affected Fetus Affected Fetus Affected Fetus	litters d examined
84 10/31/2010 11/24/2010 Gavage 0 0 0 221 25 0 0 0 221 85 8/17/2010 09/10/2010 Gavage 0 0 0 164 20 1 1 1 164 87 01/05/2010 02/03/2010 Gavage 0 0 0 151 17 0 0 0 151 88 7/20/2010 8/13/2010 Gavage 0 0 0 176 20 2 2 1 176 90 8/24/2010 9/17/2010 Gavage 0 0 0 193 23 0 0 0 193 92 01/04/2010 1/28/2010 Intravenous 0 0 169 22 0 0 0 168 93 07/06/2010 7/30/2010 Gavage 0 0 169 20 0 0 168 94 <	
84 10/31/2010 11/24/2010 Gavage 0 0 0 221 25 0 0 0 221 85 8/17/2010 09/10/2010 Gavage 0 0 0 164 20 1 1 1 164 87 01/05/2010 02/03/2010 Gavage 0 0 0 151 17 0 0 0 151 88 7/20/2010 8/13/2010 Gavage 0 0 0 176 20 2 2 1 176 90 8/24/2010 9/17/2010 Gavage 0 0 0 193 23 0 0 0 193 92 01/04/2010 1/28/2010 Intravenous 0 0 169 22 0 0 0 168 93 07/06/2010 7/30/2010 Gavage 0 0 169 20 0 0 169 94 <	19
87 01/05/2010 02/03/2010 Gavage 0 0 151 17 0 0 151 88 7/20/2010 8/13/2010 Gavage 0 0 176 20 2 2 1 176 90 8/24/2010 9/17/2010 Gavage 0 0 193 23 0 0 0 193 92 01/04/2010 1/28/2010 Intravenous 0 0 169 22 0 0 0 169 93 07/06/2010 7/30/2010 Gavage 0 0 0 214 22 0 0 0 214 94 08/09/2010 09/02/2010 Gavage 0 0 0 169 20 0 0 0 169 95 10/12/2010 11/05/2010 Gavage 1 1 1.136 179 22 0 0 0 175 99 4/18/2011 5/1	25
88 7/20/2010 8/13/2010 Gavage 0 0 176 20 2 2 1 176 90 8/24/2010 9/17/2010 Gavage 0 0 193 23 0 0 0 193 92 01/04/2010 1/28/2010 Intravenous 0 0 169 22 0 0 0 169 93 07/06/2010 7/30/2010 Gavage 0 0 0 214 22 0 0 0 214 94 08/09/2010 09/02/2010 Gavage 0 0 0 169 20 0 0 0 169 95 10/12/2010 11/05/2010 Gavage 1 1 1.136 179 22 0 0 0 175 99 4/18/2011 5/13/2011 Subcutaneous 0 0 182 20 1 1 1 182	20
90 8/24/2010 9/17/2010 Gavage 0 0 193 23 0 0 193 92 01/04/2010 1/28/2010 Intravenous 0 0 169 22 0 0 0 169 93 07/06/2010 7/30/2010 Gavage 0 0 0 214 22 0 0 0 214 94 08/09/2010 09/02/2010 Gavage 0 0 0 169 20 0 0 0 169 95 10/12/2010 11/05/2010 Gavage 1 1 1.136 179 22 0 0 0 175 99 4/18/2011 5/13/2011 Subcutaneous 0 0 182 20 1 1 1 182	17
92 01/04/2010 1/28/2010 Intravenous 0 0 169 22 0 0 0 169 93 07/06/2010 7/30/2010 Gavage 0 0 0 214 22 0 0 0 214 94 08/09/2010 09/02/2010 Gavage 0 0 0 169 20 0 0 0 169 95 10/12/2010 11/05/2010 Gavage 1 1 1.136 179 22 0 0 0 175 99 4/18/2011 5/13/2011 Subcutaneous 0 0 182 20 1 1 1 182	20
93 07/06/2010 7/30/2010 Gavage 0 0 214 22 0 0 0 214 94 08/09/2010 09/02/2010 Gavage 0 0 169 20 0 0 169 20 0 0 169 20 0 0 169 20 0 0 169 20 0 0 0 169 20 0 0 0 169 20 0 0 0 169 20 0 0 0 169 20 0 0 0 169 20 0 0 0 175 20 1 1 132 1 1 182 20 1 1 1 182 1 1 1 182 1 1 1 182 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	23
94 08/09/2010 09/02/2010 Gavage 0 0 169 20 0 0 169 95 10/12/2010 11/05/2010 Gavage 1 1 1.136 179 22 0 0 0 175 99 4/18/2011 5/13/2011 Subcutaneous 0 0 182 20 1 1 1 182	22
95 10/12/2010 11/05/2010 Gavage 1 1 1.136 179 22 0 0 0 175 99 4/18/2011 5/13/2011 Subcutaneous 0 0 182 20 1 1 1 182	22
99 4/18/2011 5/13/2011 Subcutaneous 0 0 182 20 1 1 182	20
	22
100 5/24/2011 6/17/2011 Gavage 0 0 0 195 21 0 0 0 195	20
	21
101 8/30/2011 9/23/2011 Gavage 0 0 0 163 19 0 0 163	19
102 2/21/2011 4/15/2011 Intravenous 0 0 0 203 23 0 0 0 203	23
103 1/18/2011 3/30/2011 Gavage 0 0 0 157 19 0 0 157	19
104 07/05/2011 8/31/2011 Intravenous 1 1 0.505 189 22 0 0 0 189	22
105 06/07/2011 7/29/2011 Intravenous 0 0 0 212 22 0 0 0 212	22
106 6/24/2011 8/16/2011 Gavage 0 0 0 154 20 0 0 154	20
107 6/14/2011 8/15/2011 Gavage 0 0 0 170 20 0 0 170	20
108 02/08/2011 03/04/2011 Gavage 0 0 0 177 21 0 0 0 177	21
109 3/15/2011 04/08/2011 Gavage 0 0 0 192 22 0 0 0 192	22
110 08/02/2011 8/16/2011 Gavage 0 0 0 157 19 0 0 0 157	19
112 10/30/2011 11/23/2011 Intravenous 0 0 0 176 21 0 0 176	21
114 3/20/2011 4/15/2011 Gavage 0 0 0 176 21 0 0 176	21
115 2/14/2012 03/09/2012 Gavage 0 0 0 152 20 0 0 0 152	20
116 10/18/2011 11/11/2011 Intravenous 0 0 0 172 20 0 0 0 172	20
117 03/11/2012 04/04/2012 Gavage 0 0 0 187 21 0 0 0 187	21
119 02/07/2012 03/02/2012 Gavage 0 0 0 173 20 0 0 175	20
120 11/22/2011 12/16/2011 Gavage 0 0 0 182 21 0 0 0 182	21
121 09/07/2011 11/02/2011 Whole-Body 0 0 0 94 12 0 0 94 94	12
122 1/17/2012 02/10/2012 Subcutaneous 0 0 0 179 20 0 0 179	20
123 11/07/2011 12/02/2011 Dermal 0 0 0 214 25 0 0 0 214	25
128 10/02/2012 10/25/2012 Gavage 0 0 0 207 23 0 0 0 207	23
132 4/16/2013 05/10/2013 Intravenous 0 0 0 163 19 0 0 0 163	22

Fenpro	pidin		Vo	lume 1	– Level	2			Ν	Iay 2021			
133	7/29/2012	8/22/2012	Gavage	0	0	0	186	21	0	0	0	186	21
134	01/09/2013	03/08/2013	Whole-Body	0	0	0	214	23	0	0	0	214	23
135	8/27/2013	9/20/2013	Gavage	0	0	0	187	21	0	0	0	187	21
136	11/27/2012	12/28/2012	Gavage	0	0	0	220	25	0	0	0	220	25
138	10/12/2012	05/03/2013	Gavage	0	0	0	163	19	0	0	0	163	19
139	01/11/2013	3/15/2013	Gavage	0	0	0	167	19	0	0	0	167	19
145	1/28/2013	2/22/2013	Gavage	0	0	0	210	24	0	0	0	210	24
146	04/03/2012	4/27/2012	Gavage	0	0	0	186	21	0	0	0	186	21
147	8/14/2012	09/07/2012	Gavage	0	0	0	174	18	0	0	0	174	18
148	05/08/2012	06/01/2012	Gavage	0	0	0	195	23	0	0	0	195	23
149	10/09/2013	11/01/2013	Subcutaneous	0	0	0	170	19	0	0	0	170	19
150	09/10/2013	10/04/2013	Gavage	0	0	0	192	22	0	0	0	192	22
151	07/08/2013	08/01/2013	Gavage	0	0	0	200	22	0	0	0	200	22
152	12/11/2012	01/04/2013	Gavage	0	0	0	220	22	0	0	0	220	22
153	8/25/2014	9/18/2014	Gavage	0	0	0	220	25	0	0	0	220	25
154	9/15/2014	10/09/2014	Gavage	0	0	0	162	18	0	0	0	162	18
						VISCER						LETAL	
	r	-			Persist	ent Truncu:	s Arteriosus			Sternebra	- Malalig	ned (Severe)	
Study Number	Day 0 of			Number of Affected	Number of Affected	% per	Total Fetuses	Total Litters	Number of Affected	Number of Affeceted	% per	Total fetuses	Total litters
	Gestation	Necropsy Date	Route of Administration	Foetuses	Litters	Litter	Examined	Examined	Foetuses	Litters	litter	examined	examined
155						Litter 0				Litters	litter 0		examined
155 156	Gestation	Date	Administration	Foetuses	Litters		Examined	Examined	Foetuses			examined	
	Gestation 02/11/2014	Date 4/17/2014	Administration Gavage	Foetuses 0	Litters 0	0	Examined 203	Examined 24	Foetuses 0	0	0	examined 203	24
156	Gestation 02/11/2014 02/04/2014	Date 4/17/2014 2/28/2014	Administration Gavage Gavage	Foetuses 0 0	Litters 0 0	0 0	Examined 203 213	Examined 24 22	Foetuses 0 0	0	0	examined 203 213	24 22
156 157	Gestation 02/11/2014 02/04/2014 2/26/2014	Date 4/17/2014 2/28/2014 05/01/2014	Administration Gavage Gavage Subcutaneous	Foetuses 0 0 0	Litters 0 0 0	0 0 0	Examined 203 213 234	Examined 24 22 25	Foetuses 0 0 0	0 0 0	0 0 0	examined 203 213 234	24 22 25
156 157 158	Gestation 02/11/2014 02/04/2014 2/26/2014 6/30/2014	Date 4/17/2014 2/28/2014 05/01/2014 7/24/2014	Administration Gavage Gavage Subcutaneous Gavage	Foetuses 0 0 0 0	Litters 0 0 0 0	0 0 0 0	Examined 203 213 234 193	Examined 24 22 25 21	Foetuses 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0	0 0 0 0	examined 203 213 234 193	24 22 25 21
156 157 158 160	Gestation 02/11/2014 02/04/2014 2/26/2014 6/30/2014 5/13/2014	Date 4/17/2014 2/28/2014 05/01/2014 7/24/2014 06/06/2014	Administration Gavage Gavage Subcutaneous Gavage Subcutaneous	Foetuses 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Litters 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0	Examined 203 213 234 193 201	Examined 24 22 25 21 22	Foetuses 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0	0 0 0 0	examined 203 213 234 193 201	24 22 25 21 22
156 157 158 160 161	Gestation 02/11/2014 02/04/2014 2/26/2014 6/30/2014 5/13/2014 6/30/2014	Date 4/17/2014 2/28/2014 05/01/2014 7/24/2014 06/06/2014 7/25/2014	Administration Gavage Gavage Subcutaneous Gavage Subcutaneous Gavage	Foetuses 0 0 0 0 0 0 1	Litters 0 0 0 0 0 1	0 0 0 0 0 0.568	Examined 203 213 234 193 201 192	Examined 24 22 25 21 22 22 22	Foetuses 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0	examined 203 213 234 193 201 192	24 22 25 21 22 22
156 157 158 160 161 162	Gestation 02/11/2014 02/04/2014 2/26/2014 6/30/2014 5/13/2014 6/30/2014 09/02/2014	Date 4/17/2014 2/28/2014 05/01/2014 7/24/2014 06/06/2014 7/25/2014 9/17/2014	Administration Gavage Gavage Subcutaneous Gavage Gavage Gavage Gavage	Foetuses 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	Litters 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0.568 0	Examined 203 213 234 193 201 192 194	Examined 24 22 25 21 22 22 21	Foetuses 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0	examined 203 213 234 193 201 192 194	24 22 25 21 22 22 21
156 157 158 160 161 162 163	Gestation 02/11/2014 02/04/2014 2/26/2014 6/30/2014 5/13/2014 6/30/2014 9/02/2014 3/24/2014	Date 4/17/2014 2/28/2014 05/01/2014 7/24/2014 06/06/2014 7/25/2014 9/17/2014 04/09/2014	Administration Gavage Gavage Subcutaneous Gavage Gavage Gavage Gavage	Foetuses 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	Litters 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0.568 0 0	Examined 203 213 234 193 201 192 194 166	Examined 24 22 25 21 22 22 21 18	Foetuses 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	examined 203 213 234 193 201 192 194 166	24 22 25 21 22 22 21 18
156 157 158 160 161 162 163 164	Gestation 02/11/2014 02/04/2014 2/26/2014 6/30/2014 5/13/2014 6/30/2014 3/20/2014 3/24/2014 08/11/2014	Date 4/17/2014 2/28/2014 05/01/2014 7/24/2014 06/06/2014 7/25/2014 9/17/2014 04/09/2014 8/26/2014	Administration Gavage Gavage Subcutaneous Gavage Gavage Gavage Gavage Gavage	Foetuses 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	Litters 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0.568 0 0	Examined 203 213 234 193 201 192 194 166 177	Examined 24 22 25 21 22 21 18 19	Foetuses 0 0 0 0 0 0 0 0 0 1	0 0 0 0 0 0 0 0 1	0 0 0 0 0 0 0 0 0 1	examined 203 213 234 193 201 192 194 166 177	24 22 25 21 22 22 21 18 19

The original rat study (1981) was conducted in 1980 prior to OECD Guideline 414 issued in 1981. With respect to the study design, the dietary route of administration was selected and food consumption was recorded for the treatment period only, days 7-16 of gestation. The main guideline deviations relate to the lack of a full necropsy for the maternal animals, the use of only 7 litters per group for foetal visceral examination and 10 litters per group for skeletal examination. The achieved dose levels were 19.5, 47.5 and 87.8 mg/kg bw/day. At the two highest doses, a reduction in food consumption resulted in body weight loss (top dose) or decreased body weight gain during the treatment period (partly compensated after treatment between days 17-21). The marginal decrease in foetal body weights did not follow dose dependency and were therefore not considered as adverse (*see Table 2.6.6.2-5*). In treated rats, increased number of incised neural arches was observed with dose-response relationship. However, at the low dose increased number of incised neural arches lay within historical control data presented by the notifier. At the top dose increased numbers of split, poorly ossified and/or half present neural arches were also seen (*see Table 2.6.6.2-6*). The NOAEL (developmental) was set at 47.5 mg/kg based on the skeletal effects on neural arches. However due to the unknown purity, this study is considered only as supplementary material.

Volume 1 – Level 2

May 2021

	_
Table 2.6.6.2-9: Caesarean section data (1981)

mg/kg bw/day	0	19.5	47.5	87.8
Corpora Lutea: total / mean per dam	214 / 12.6	249/13.8	210/12.4	224 / 13.2
Implantation sites: total / mean per dam	212 / 12.5	222 / 12.3	195/11.5	225 / 13.2
Live foetuses: total / mean per litter	195 / 11.5	200/11.1	177 / 10.4	196/11.5
Dead foetuses: total	0	0	0	0
Early resorptions°: total / mean per dam	16/0.9	20 / 1.1	18 / 1.1	29 / 1.7
% of implantations	7.5	9.0	9.2	12.9
Late resorptions ^{oo} : total / mean per dam	1 / 0.1	2 / 0.1	0 / 0	0 / 0
% of implantations	0.5	0.9	0	0
Total resorptions: total / mean	17 / 1.0	22 / 1.0	18 / 1.1	29 / 1.7
per dam % of implantations	8.0	9.9	9.2	12.9
Ratio male / female foetuses (% males)	107 / 88 (54.9)	94 / 106 (47.0)	81 / 96 (45.8)	89 / 107 (45.4)
mean foetal body weight [g]	3.4	3.2**	3.5	3.3*
crown – rump length [cm]	3.8	3.7	3.8	3.7

Table 2.6.6.2-10: Foetal examinations (1981)

	mg/kg bw/day	0	19.5	47.5	87.8
Foetuses / litters e observations	examined for skeletal	104 / 10	120 / 11	105 / 10	112/10
Neural arches:	half present	0	0	0	15
	poorly ossified	4	1	0	20
	split	2	7	2	32
	incised	64	100	147	276
Foetuses / litters e observations	examined for visceral	91 / 7	80 / 7	72 / 7	84 / 7
renal pelvis enlarg	ged	0	2	1	2
testicles rudiment	ary	0	0	1	0
hydrocephalus int	ernal	0	0	0	1

Fenpropidin	Volume 1 – Level 2	May 2021
The rabbit study of	and (1981) was co	onducted in 1980 prior to the issue of
OECD Guideline 414	in 1981. The study was conducted us	ing the oral gavage route of exposure.
Although 20 mated fe	males per group were allocated to the s	study, there were non-treatment-related
deaths in all groups (1	, 5, 3 and 4 in the control, 5, 12 and 30	0 mg/kg/day group, respectively) and 4
occurrences of total re	sorption in the control group. Some of t	he deaths were due to application errors
(3 for the 5 mg/kg/da	ay group, one dam each for the 12 and 3	30 mg/kg/day groups), broken vertebral
column (1 dam each	for the 12 and 30 mg/kg/day groups) or	unknown causes. The high dose group
had a significantly re	duced body weight gain between day	vs 7-20 of gestation (they lost weight
compared to initial boo	dy weight). No maternal food consumpt	ion data were recorded. Whether or not
this dose had an effect	of foetal body weight is uncertain due to	o the imbalance in litter size; the weight
of evidence suggests	that the difference in foetal body we	ight is most likely attributable to the
difference in litter size		

Multiple defects were noted in one foetus from each of the 5 mg/kg and 30 mg/kg dose group; these were considered by the notifier to be spontaneous as they are observed quite frequently in control animals of this strain (no historical control data were presented). The findings were for the 5 mg/kg animal: omphalocele (liver and intestine), missing left ear, missing tail, rudimentary eyelid and maxilla, aplastic left forepaw, multiple skeletal anomalies and the 30 mg/kg animal: ectopia (liver, stomach, intestine), missing tail, torsion of left hindpaw at the knee-joint, skeletal anomalies. There were no significant findings (brain anomalies) in the foetal heads examined by the modified Wilson technique. The NOAEL developmental effects was set at 30 mg/kg based (top dose).

group mg/kg bw/day	1 0	2 5	3 12	4 30
Corpora Lutea: total / mean per dam	185 / 9.7	153 / 10.2	164 / 9.6	163 / 10.2
Implantation sites: total / mean per dam	151 / 7.9	124 / 8.3	136 / 8.0	126 / 7.9
Live foetuses: total / mean per litter	108 / 5.7	104 / 6.9	123 / 7.2	115 / 7.2
Dead foetuses: total / mean per litter	8 / 0.4	0 / 0	0 / 0	1 / 0.1
Early resorptions°: total / mean per dam	30 / 1.6	15 / 1.0	12/0.7	6 / 0.4
% of implantations	19.9	12.1	8.8	4.8
Late resorptions°°: total / mean per dam	5 / 0.3	5 / 0.3	1 / 0.1	4 / 0.3
% of implantations	3.3	4.0	0.7	3.2
Total resorptions: total / mean per dam	35 / 1.8	20 / 1.3	13 / 0.8	10 / 0.6
% of implantations	23.2	16.1	9.6	7.9
Ratio male / female foetuses (% males)	62 / 54 (53.4)	55 / 49 (52.9)	55 / 68 (44.7)	63 / 53 (54.3)
mean foetal body weight [g] / [% of control]	40.1 / 100	39.4 / 98	38.2 / 95	37.1 / 93
crown – rump length [cm] / [% of control]	8.0 / 100	7.9 / 99	7.8/98	7.7 / 96
Survival rate 24 h incubation [%]	95.4	93.3	95.1	93.0

 Table 2.6.6.2-11: Caesarean section data (
 and
 1981)

° embryonic, °° foetal

2.6.6.2.2 Comparison with the CLP criteria regarding adverse effects on development

Volume 1 – Level 2

May 2021

According to CLP criteria (Regulation (EC) No. 1272/2008, Annex I, Table 3.7.1a), the major manifestations of developmental toxicity include (1) death of the developing organism, (2) structural abnormality, (3) altered growth, and (4) functional deficiency.

In the rabbit developmental toxicity study with fenpropidin (2011), the increased incidence of severely malaligned sternebra(e) and persistent truncus arteriosus (skeletal variation and visceral malformation, respectively) was observed at the top dose (20 mg/kg bw/day). In the rat study with fenpropidin (2011), increased number of incised neural arches was observed in treated animals with dose-response relationship. In addition, at the top dose (87.8 mg/kg bw) increased numbers of split, poorly ossified and/or half present neural arches were seen. Since the study of was considered as supplementary it should not be considered for classification purposes

According to CLP criteria (Regulation (EC) No. 1272/2008), the classification of a substance in Category 1B (presumed human reproductive toxicant) is largely based on data from animal studies. Such data shall provide clear evidence of an adverse effect on development in the absence of other toxic effects, or if occurring together with other toxic effects, the adverse effect on reproduction is considered not to be a secondary non-specific consequence of other toxic effects. However, when there is mechanistic information that raises doubt about the relevance of the effect for humans, classification in Category 2 may be more appropriate. Based on the results of developmental studies with fenpropidin, classification as a reproductive toxicant Category 2 (H361d: Suspected to damaging unborn child) is proposed. However, the DS is of the opinion that observed effects which could be clearly attributed to the test substance are not convincing and generally are the results borderline between the category 2 and no classification for development.

2.6.6.3 Adverse effects on or via lactation [equivalent to section 10.10.7 of the CLH report template]

Method, guideline, deviations if any, species, strain, sex, no/group	Test substance, dose levels duration of exposure	Results	Reference
Reproduction study (two generations/ one litter) OPPTS 870.3800 (1998), OECD 416 (2001) GLP Rat, HanIbm:WIST 30/sex/group Acceptable study	Fenpropidin (purity 97%) 0, 25, 100, 500 and 1000 ppm Vehicle: laboratory animal diet Oral (continuous in diet)	Parental toxicity <u>NOAEL (parental)</u> : 100 ppm (11.4 mg/kg bw) <u>1000 ppm (80 mg/kg bw/day)</u> F0: ↓ body weight gain males 22%, females 24% (days 1-68); ↓ body weight gain gestation 16% (days 0- 21); body weight loss lactation (- 12.5 g (control +18.8 g), days 0- 21); ↑ relative liver weight (females 21%); ↓ liver lymphohistiocytic infiltration males 8/30 (control 19/30); ↓ spleen extramedullary haematopoiesis males 8/30 (control 20/30), females 2/30 (control 21/30); ↑ adrenal cortical fatty change females 26/30 (control 6/30); ↓ prostate lymphohistiocytic infiltration males 6/30 (control 12/30).	(2003)

 Table 50:
 Summary table of animal studies on effects on or via lactation

Fenpropidin	Volume 1 – Level 2	May 2021	
Method, guideline, deviations if any, species, strain, sex, no/group	Test substance, dose levels duration of exposure	Results	Reference
	exposure	F1: \downarrow body weight gain (males 24%, females 5%; days 1-68); \downarrow body weight gain gestation (19% days 0-21); \downarrow body weight gain lactation (93%, days 0-21); \downarrow food consumption (males 27%, females 16% pre-mating, 16% gestation, 17% lactation); \uparrow relative liver weight (males 7.5%, females 8%); \downarrow liver lymphohistiocytic infiltration males 11/30 (control 21/30), females 15/30 (control 22/30); \downarrow spleen extramedullary haematopoiesis males 2/30 (control 16/30), females 3/30 (control 28/30); \uparrow adrenal cortical fatty change females 21/30 (control 10/30); \downarrow prostate lymphohistiocytic infiltration males 4/30 (control 17/30). 500 ppm (42 mg/kg bw/day) F0: \downarrow body weight gain (males 18%, females 17%; days 1-68); \downarrow body weight gain gestation (7% days 0-21); \downarrow body weight gain lactation (15% days 0-21); \downarrow liver lymphocytic infiltration males 9/30 (control 13/30); \downarrow spleen extramedullary haematopoiesis females 11/30 (control 21/30); \uparrow adrenal cortical fatty change females 14/30 (control 6/30); \downarrow prostate lymphohistiocytic infiltration males 2/30 (control 12/30) F1: \downarrow body weight gain (males 9% days 1-68); \downarrow food consumption (males 7.5% pre-mating); \uparrow relative liver weight (males 5%); \downarrow spleen extramedullary haematopoiesis males 9/30 (control 16/30), \downarrow prostate lymphohistiocytic infiltration males 2/30 (control 12/30) F1: \downarrow body weight gain (males 9% days 1-68); \downarrow food consumption (males 7.5% pre-mating); \uparrow relative liver weight (males 5%); \downarrow spleen extramedullary haematopoiesis males 9/30 (control 16/30), females 13/30 (control 28/30); \uparrow adrenal cortical fatty change females 19/30 (control 10/30); \downarrow prostate lymphohistiocytic infiltration males 6/30 (control 17/30)	
		<u>100 ppm (8 mg/kg bw/day):</u>	

Fenpropidin	Volume 1 – Level 2	May 2021	
Method, guideline, deviations if any, species, strain, sex, no/group	Test substance, dose levels duration of exposure	Results	Reference
		No treatment-related effects	
		25 ppm (2 mg/kg bw/day):	
		No treatment-related effects	
		Reproductive toxicity	
		No effects at any dose level	
		<i>Offspring toxicity</i> <u>NOAEL (offspring):</u> 100 ppm (11.4	
		mg/kg bw)	
		<u>1000 ppm (80 mg/kg bw/day)</u>	
		F1: \downarrow body weight gain evident from day 0 (males 37%, females 36%; days 0-21); \downarrow sexual maturation males age 28 days (control 25.3 days), body weight 48 g (control 71 g); females age 42 days (control 32.5 days), body weight 106 g. (control 102 g); \downarrow absolute liver weight (males 37%, females 34%), \uparrow relative liver weight females (21%); \downarrow liver	
		glycogen deposition males 12/28 (control 28/29); females 4/29 (control 12/28); ↓ liver	
		extramedullary haematopoiesis males 9/28 (control 21/29); females 7/29 (control 18/28);↓ absolute / relative spleen weight (males 54% / 29%; females 48% /	
		24%); ↓ grading of spleen extramedullary haematopoiesis males 2.2 (control 2.9) ; females 2.3 (control 3.0); ↓ absolute / relative	
		thymus weight (males 45% / 16%; females 37% / 8%); ↑ thymus atrophy males 8/28 (control 0/29); ↑ thymus phagocytic cells males 19/28 (control 5/29; ↑ relative brain weight (males 42%, females 36%); ↓ absolute brain weight	
		(males 8%, females 8%) F2: ↓ number of implantation sites	
		10.3 (control 12.4), mean pups delivered 9.6 (control 11.7) and live birth index 99.3% (control 99.7%); \downarrow body weight gain (males	

Volume 1 – Level 2	May 2021	
Test substance, dose levels duration of exposure	Results	Reference
	36%, females 36%; days 0-21); \downarrow absolute / relative liver weight (males 40% / 7.5%, females 34% / 4%); \downarrow liver glycogen deposition males 5/30 (control 18/27); females 2/30 (control 15/27); \downarrow liver extramedullary haematopoiesis males 5/30 (control 24/27) females 13/30 (control 25/27); \downarrow absolute / relative spleen weight (males 49% / 24%; females 49% / 27%); \downarrow grading of spleen extramedullary haematopoiesis males 1.9 (control 2.8); females 2.2 (control 3.1); \downarrow absolute thymus weight (males 35%; females 32%); \uparrow thymus phagocytic cells males and females 18/30 (control 6/27) both sexes; \uparrow relative brain weight (males 40%, females 38%); \downarrow absolute brain weight (males 7.5%,	
	remales 6%) 500 ppm (42 mg/kg bw/day) F1: \downarrow body weight gain evident from day 4 (males 16%, females 17%; days 0-21); \downarrow sexual maturation females age 37.1 days (control 32.5 days), body weight 111 g (control 103 g); \downarrow absolute liver weight (males 20%, females 16%); \downarrow liver glycogen deposition males 13/24 (control 28/29); females 4/25 (control 12/28); \downarrow liver extramedullary haematopoiesis females 11/25 (control 18/28); \downarrow absolute / relative spleen weight males 25% / 11%; females 21% / 8%; \downarrow grading of spleen extramedullary haematopoiesis males 2.5 (control 2.9); \downarrow absolute thymus weight males 19%; females 18%; \uparrow thymus phagocytic cells males 10/24 (control 5/29); \uparrow relative brain weight males 15%, females 15%; \downarrow absolute brain weight males 3%.	
	Test substance, dose levels duration of	Test substance, dose levels duration of exposureResults36%, females 36%; days 0-21); \downarrow absolute / relative liver weight (males 40% / 7.5%, females 34% / 4%); 1 liver glycogen deposition males 5/30 (control 18/27); females 2/30 (control 15/27); \downarrow liver extramedullary haematopoiesis males 5/30 (control 24/27) females 13/30 (control 25/27); \downarrow absolute / relative spleen weight (males 49% / 24%; females 49% / 27%); \downarrow grading of spleen extramedullary haematopoiesis males 1.9 (control 2.8); females 2.2 (control 3.1); \downarrow absolute thymus weight (males 35%; females 32%); \uparrow thymus phagocytic cells males and females 18/30 (control 6/27) both sexes; \uparrow relative brain weight (males 40%, females 38%); \downarrow absolute brain weight (males 7.5%, females 6%)500 ppm (42 mg/kg bw/day) F1: \downarrow body weight gain evident from day 4 (males 16%, females 17%; days 0-21); \downarrow sexual maturation females age 37.1 days (control 3.2.5 days), body weight 111 g (control 128/29); females 13/24 (control 128/29); females 13/24 (control 128/29); females 13/24 (control 128/29); females 13/24 (control 128/29); females 11/25 (control 18/28); \downarrow absolute / relative spleen weight males 25% / 11%; females 21% / 8%; \downarrow grading of spleen extramedullary haematopoiesis males 2.5 (control 2.9); \downarrow absolute thymus weight males 15%, females 10/24 (control 5/29); \uparrow relative brain weight males 15%, females 15%; \downarrow brows phagocytic cells males 15%, females 15%; \downarrow

Fenpropidin	Volume 1 – Level 2	May 2021	
Method, guideline, deviations if any, species, strain, sex, no/group	Test substance, dose levels duration of exposure	Results	Reference
Reproduction study (two	Fennronidin (nurity 91%)	14%; days 0-21); ↓ absolute liver weight (males 16%, females 13%); ↓ liver glycogen deposition (males 8/29 (control 18/27), females 4/29 (control 15/27); ↓ absolute / relative spleen weight (males 17% / 5%; females 20% / 8%); ↓ grading of spleen extramedullary haematopoiesis males 2.3 (control 2.8); ↓ absolute thymus weight (males 14%); ↑ relative brain weight (males 12%, females 14%) 100 ppm (8 mg/kg bw/day): No treatment related findings 25 ppm (2 mg/kg bw/day): No treatment related findings 25 ppm (2 mg/kg bw/day):	et al
Reproduction study (two generations/ one litter) OECD 416 (1983) notable deviation is lack of systemic toxicity at highest dose GLP Oral (continuous in diet) Rat, CD (Sprague Dawley origin) 30/sex/group Supplementary study	Fenpropidin (purity 91%) 0, 6.25, 25, 100 ppm corresponding to 0.4, 1.61, 6.43 and 0.50, 2.03, 8.02 mg/kg bw/day for F0 and F1 males respectively. 0.48, 1.91, 7.79 and 0.56, 2.35, 9.31 mg/kg bw/day for F0 and F1 females respectively. These values represent premating period only. Vehicle: laboratory animal diet	 Parental toxicity No effects at any dose level Reproductive toxicity No effects at any dose level Offspring toxicity No effects at any dose level 	<i>et al</i> (1987)
Developmental toxicity Pre OECD 414 (1981) with several significant deviations, e.g. there was 17-18 instead of 20 pregnant rats per group. Food consumption was recorded only during treatment from day 7-16 of gestation. Dosing occurred only for day 7-16. Gravid uterine and cervix weight was not measured. Stability, homogeneity and achieved concentration of test substance in the diet were not reported. GLP Oral (diet)	Fenpropidin (purity not reported) Mean achieved doses were 0, 19.5, 47.5, 87.8 mg/kg bw/day on gestation days 7-16. Vehicle: Nafag 850 diet	Maternal toxicityNOAEL (maternal): 19.5 mg/kg bw87.8 mg/kg bw/day: body weightloss -19.5 g days 7-17 (control+38.1 g); \downarrow body weight gain (35%days 0-21); \downarrow food consumption(22% days 7-9, 58% days 15-17)47.5 mg/kg bw/day: \downarrow body weightgain (34% days 7-17, 9% days 0-21); \downarrow food consumption (16% days7-9, 7% days 15-17)19.5 mg/kg bw/day: No effectsDevelopmental toxicityNOAEL (developmental): 47.5	(1981)

Fenpropidin	Volume 1 – Level 2	May 2021	
Method, guideline, deviations if any, species, strain, sex, no/group	Test substance, dose levels duration of exposure	Results	Reference
Rat, albino (SPF)		mg/kg bw	
17 females /group with live foetuses (approx. 7 litters for foetal visceral examination and		87.8 mg/kg bw/day: skeletal anomaly: ↑ number of incised neural arches (<i>see Table 2.6.6.2-6</i>)	
10 litters for skeletal) Supplementary study		47.5 mg/kg bw/day: No effects 19.5 mg/kg bw/day: No effects	

Table 51: Summary table of human data on effects on or via lactation

No evidence of adverse effects on or via lactation in humans

 Table 52:
 Summary table of other studies relevant for effects on or via lactation

No relevant studies

2.6.6.3.1 Short summary and overall relevance of the provided information on effects on or via lactation

The rat two generation study of fenpropidin (2003) and the systemic toxicity induced in parental animals has been described earlier in this section (2.6.6.1). Systemic parental toxicity was observed at 500 and 1000 ppm (42 and 80 mg/kg bw/day) which in turn resulted in impaired pup growth. Although the effect on pup growth was apparent from day 0 at 1000 ppm and from day 4 at 500 ppm there was no indication of decreased pup viability during lactation. For the high dose F0 females during lactation, a body weight loss of 12.5 g was noted compared with a gain of 18.8 g in control animals (days 0-21) and for the high dose F1 females, body weight gain was 93% lower than controls. Despite these significant effects on the lactating females, the quality of the milk and the ability of the mothers to nurse their young were not impaired. The results of a rat developmental toxicity study (2003) 1981) with a littering phase did not provide evidence of an adverse effect on lactation due to fenpropidin at dose levels up to 87.8 mg/kg bw/day.

2.6.6.3.2 Comparison with the CLP criteria regarding effects on or via lactation

According to CLP criteria (Regulation (EC) No. 1272/2008, Annex I, Table 3.7.1b). The classification is intended to indicate when a substance may cause harm due to its effects on or via lactation and is independent of consideration of the reproductive or developmental toxicity of the substance. There were no effects to warrant classification of fenpropidin for effects on or via lactation.

2.6.6.4 Conclusion on classification and labelling for reproductive toxicity

Based on the results of the developmental studies, i.e. increased incidence of malformation in rabbits (persistent truncus arteriosus) and in compliance with CLP criteria (Regulation (EC) No. 1272/2008), fenpropidin is proposed to be classified to as a reproductive toxicant Category 2 (H361d: Suspected to damaging unborn child).

2.6.7 Summary of neurotoxicity

npropidin		lume 1 – Level 2 May 202	
Method, guideline, deviations if any, species, strain, sex, no/group	Test substance, dose levels duration of exposure	Results: - NOAEL/LOAEL - target tissue/organ -critical effect at LOAEL	Reference
Developmental neurotoxicity study OECD TG 426 30 Crl:WI (Han) female rats/group Acceptable study	Fenpropidin (96.9%) 0, 40, 100, 400 ppm (equal to 0, 3, 7, 27 mg/kg bw) in diet Duration of exposure: from gestation day 6 to lactation day 21	 NOAEL (maternal neurotoxicity): ≥400 ppm (27 mg/kg bw) NOAEL (developmental neurotoxicity): ≥ 400 ppm (27 mg/kg bw) No effects on nervous system: no changes in brain weights, dimensions; no histopathological alterations in central or peripheral nervous system tissues. <u>Maternal toxicity</u>: no effect on survival, bw (gain), food consumption, gestation length, number of implantations; no findings at necropsy; <u>Offspring:</u> no effect on the mean number of born pups, litter size, postnatal survival; mean pup body weight slightly ↓ (by 6.96% compared to controls, days 7-21); no findings at necropsy 	(2011
90-day oral toxicity study OECD 408, Deviations: no epididymides or uterus weights, several organs/tissues were not examined GLP Rat: Tif: RAIf (SPF) 15/sex/group 10/sex control and high dose to assess recovery Acceptable study	Fenpropidin technical (purity 97%). Oral (diet) 0, 20, 150 and 1500 ppm (1.14, 9.84, 89.9 mg/kg bw/day (males), and 1.24, 10.1, 97.3 mg/kg bw/day (females) 90 day (dietary administration), recovery period for control and high dose 4 weeks	NOAEL: 150ppm (9.84 and 10.1 mg/kg bw/day for males and females, respectively) 1500 ppm (89.9 mg/kg bw/day males, 97.3 mg/kg bw/day females) Clinical observations:1/25 females had bilateral opaque eyes from day56 and bilateral limb paralysis from day76.Body weight:↓ 16% males, 8% females week 13 Body weight gain:↓ 29% males, 18% females weeks 1-13Food consumption:↓ 10% males, 5% females weeks 1-13Water consumption:↓ 20% males during whole treatment periodHaematology:↑ RBC 4.0% males;↑ Hb 3.3% males;↑ WBC 22.2% females (29.3% lymphocytes)Clinical chemistry:↓ globulin 9.5% males, 5.8% females, partly reversible after recovery;↓ glucose 12% males;12%	(1995)

enpropidin		lume 1 – Level 2 May 2021	
Method, guideline, deviations if any, species, strain, sex, no/group	Test substance, dose levels duration of exposure	Results: - NOAEL/LOAEL - target tissue/organ -critical effect at LOAEL	Reference
		Histopathology: ↑ oesophagus pathology: hyperkeratosis 10/10 males and 10/10 females (0/10 control) and acanthosis 6/10 males, 2/10 females (0/10 control); ↑ nonglandular stomach pathology: hyperkeratosis 8/10 males, 5/10 females (0/10 and 1/10 control) and acanthosis 7/10 males, 4/10 females (0/10 control); ↑ urinary bladder hyperplasia: 4/10 males, 7/10 females (control 0/10 males and 1/10 females); demyelination affecting especially nerve roots and spinal tracts 1/10 females (with hind limb paralysis); ↑ pulmonary foam cells: 9/10 males grading 1.7 (control 7/10 grade 1.3); 7/10 females grade 1.7 (control 6/10 grade 1.3). After 4 weeks there was partial recovery from pathology findings in stomach and oesophagus. 150 ppm (9.84 mg/kg bw/day males, 10.1 mg/kg bw/day females) Histopathology: ↑ oesophagus pathology: hyperkeratosis 4/10 males and 4/10 females (0/10 control); ↑ nonglandular stomach pathology: hyperkeratosis 3/10 males (0/10 control) 20 ppm (1.14 mg/kg bw/day males, 1.24 mg/kg bw/day females) No treatment related findings	
1-year oral toxicity study in dog OECD 452 Deviations: urine volume and ornithine decarboxylase not measured; femur with joint not taken GLP Dog: Beagle 4/sex/group Acceptable study	Fenpropidin technical purity 97%) Oral in capsules 0, 2, 5 and 20 mg/kg/day 1 year	NOAEL: Smg/kg bw 20 mg/kg bw/day Mortality: 1 male with hind limb paresis killed week 38, pathology findings: demyelination of spinal cord Clinical observations: ↑ Indurated and inelastic pads 4/4 males and females; vomiting 4/4 females weeks 1-6; scale formation in inguinal and axillary regions 4/4 males and females; reddening of skin 1/4 males and 3/4 females; reddening of skin 1/4 males and females Ophthalmoscopy: ↑ opacity of the lens: 4/4 males and females from week 22 Body weight: ↓ 15% females week 4, similar to control after initial weeks of study. Food consumption: ↓ 27% week 1 and 14% week 4 females Haematology: ↑ platelets 53.6% week 13, 40.8% week 26 males Clinical chemistry: ↑ ALP 42.4% males week 26,	(199

Fenpropidin	Vo	lume 1 – Level 2 May 202	1
Method, guideline, deviations if any, species, strain, sex, no/group	Test substance, dose levels duration of exposure	Results: - NOAEL/LOAEL - target tissue/organ -critical effect at LOAEL	Reference
		43.4% and 115.9% females weeks 13 and 52; ↓ albumin:globulin ratio 20.6% males week 13; ↑ globulin 25.4% males and 33.5% females week 52 <i>Organ weight:</i> ↑ relative liver 27% males; ↑ relative	
		kidney 26% females <i>Histopathology:</i> cataract of crystalline lens 4/4 males and females (0/4 control); acanthosis of epidermis 3/4 males, 4/4 females (0/4 control); chronic inflammation skin/dermis: 2/4 males, 3/ 4 females (0/4 control); hepatocyte hypertrophy 4/4 males and females (0/4 control); pigmentation of Kupffer cells 4/4 females (1/4 control); liver inflammatory cell infiltration 3/ 4 females (2/4 control); renal tubular pigmentation 4/4 females (1/4 control); inclusion bodies urinary bladder epithelium 4/4 males, 2/4 females (0/4 control); cholesterol granulomas in lung 4/4 males, 1/ 4 females (0/4 control); demyelination of spinal cord 3/4 males (0/4 control)	
		<u>5 mg/kg bw/day</u>	
		<i>Clinical chemistry:</i> ↓ albumin:globulin ratio 12.5% males week 13	
		<i>Organ weight</i> : ↑ relative liver 16% males not significant	
		<i>Histopathology:</i> hepatocyte hypertrophy 2/4 males (0/4 control)	
		2 mg/kg bw/day	
		No treatment related effects	

Fenpropidin does not belong to a chemical class, which is suspected to cause delayed neurotoxic effects (e.g. organophosphates, carbamates). Therefore, specific studies on delayed neurotoxicity were not deemed necessary. No acute neurotoxicity study was performed, since the toxicity studies conducted with fenpropidin did not indicate that such a study was necessary. 90-day oral toxicity study in the rat (1995) and 1-year oral toxicity study in dog (1995), described in more detail in section 2.6.3.1.1, revealed the specific toxicity to the nervous system characterised by hind-limb paralysis accompanied by demyelination of the spinal cord. The effects were observed at dose levels below the CLP cut-off values, therefore classification STOT-RE Category 2 (H373: May cause damage to the nervous system through prolonged or repeated oral exposure) was proposed (see 2.6.3.1.2).

One developmental neurotoxicity study in rats is available (2011). In this new study, fenpropidin-related effects were not present. NOAEL in this study was set to \geq 400 ppm (equal to 27 mg/kg bw), representing the top dose evaluated.

May 2021

Fenpropidin

2.6.8 Summary of other toxicological studies

2.6.8.1 Toxicity studies of metabolites and impurities

Genotoxicity studies on GW metabolite CGA289267 have been performed to support an assessment of the toxicological relevance of the metabolite in groundwater. These studies have not been previously submitted for EU review.

All three genotoxicity studies met the requirements for a clearly negative response therefore CGA289267 is not considered to be toxicologically relevant. The results are summarised below. For further details, please refer to section B.6.8.1 in CA B6

Assay(Guideline)	Test System	Result	Reference
<i>In vitro</i> bacterial reverse mutation assay (Ames; OECD 471, 1997)	<i>S. typhimurium</i> strains TA1535, TA1537, TA98 and TA100, and <i>E. coli</i> strain WP2 uvrA pKM101	Negative +/- S9	Woods I. (2017).
Gene mutation assay (HPRT; OECD 476, 2016)	(Chinese hamster ovary CHO cells)	Negative +/-S9	Gilby B. (2017)
<i>In vitro</i> micronucleus (OECD 487, 2016)	Human lymphocytes	Negative +/- S9	Gilby B (2017)

2.6.8.2 Supplementary studies on the active substance

<u>An immunotoxicity study with fenpropidin (*Eapen, 2011*)</u> evaluating anti-sheep red blood cell response in mice is available. Fenpropidin (purity: 96.9%) at the concentration of 125, 400, and 1250 ppm (equal to 0, 26, 90, and 258 mg/kg) was administered to CD-1 female mice (10 animals/group) in diet for 28 consecutive days. On Day 24, all animals were immunized with a single intravenous dose of sheep red blood cells (SRBCs). The concurrent negative control group as well as positive control group were offered the basal diet on a comparable regimen to the fenpropidin-treated groups. Cyclophosphamide, the immunomodulatory positive control, was injected to animals intraperitoneally during days 24 - 28. All animals were euthanized on study day 28.

Clinical examinations were performed once daily for all animals. Detailed physical examinations were performed once weekly and on the day of the scheduled necropsy. Individual body weights were recorded twice weekly and food consumption was recorded approximately weekly. Complete necropsies were conducted on all animals. The mesenteric lymph node, Peyer's patches, spleen, and thymus were collected at the scheduled necropsy. Spleen and thymus was weighed. Spleen cell suspensions were prepared, spleen cell counts performed, and the number of specific IgM antibody-forming cells directed towards the SRBC antigen determined to measure the humoral immune response (splenic Antibody-Forming Cell (AFC) assay).

All animals survived to the scheduled necropsy with the exception of an early death at 1250 ppm that was not considered treatment-related. There were no fenpropidin-related clinical observations, macroscopic findings, or effects on body weight, food consumption, or organ weights. There were no significant effects on spleen cell number, and fenpropidin did not suppress significantly the humoral immune response when evaluated as

Volume 1 – Level 2

May 2021

either specific activity (AFC/10⁶ Spleen Cells) or as total activity (AFC/Spleen) of splenic IgM to the T-cell dependent antigen SRBC. In the positive control group, statistically significantly lower spleen weight, spleen cell numbers (35%), specific activity (100%), and total spleen activity (100%) of IgM antibody-forming cells were noted when compared to the vehicle control group. These effects were consistent with the known immunosuppressive effects of cyclophosphamide and validated the functionality of the assay. Based on the results of this study, the NOAEL for the AFC assay (humoral immune response) was set at 1250 ppm (equivalent to 258 mg/kg of body weight/day), which was the top dose group evaluated.

In addition, a detailed review of parameters related to immune function has been conducted on the toxicity database for fenpropidin. Repeat-dose studies in rats, mice and dogs were reviewed for any treatment-related changes in a variety of indicators of potential immunotoxicity including leukocyte counts, lymphocyte counts, globulin concentration, macroscopic findings (adrenals, lymph nodes, thymus, and spleen), organ weights (spleen, thymus and adrenals), and microscopic findings (bone marrow, lymph nodes, spleen, thymus and adrenals).

A thorough review of the toxicology database for fenpropidin has shown no evidence of adverse effects on the immune system in rats, mice or dogs. In addition, fenpropidin does not belong to a class of chemicals (e.g., the organotoxins, heavy metals, or halogenated aromatic hydrocarbons) that would be expected to be immunotoxic. Therefore, it can be concluded that fenpropidin has no immunotoxic potential.

2.6.8.3 Endocrine disrupting properties

The assessment strategy is based on the three conditions stipulated in the ED criteria (adversity, endocrine activity and a biologically plausible link between the two) and the grouping of the parameters described above, as recommended in the EFSA-ECHA (2018) Guidance. The assessment strategy is applicable to both humans and non-target organisms, and is illustrated in Figure 2.1. The remainder of this report is structured as follows:

Gather information & assess the evidence

Data reviews

Integration and assessment of lines of evidence

Initial analysis of the evidence (WoE)

MoA analysis

Conclusion on the ED criteria

Following an outline of the methodology (Section 3), the data reviews in Section 4 are organised around the OECD's Conceptual Framework for the Testing and Assessment of Endocrine Disrupting Chemicals (Table 2.1 and Table 2.2). In accordance with the Guidance (EFSA-ECHA, 2018), data from the various Conceptual Framework levels have differing applications and implications, e.g. providing mechanistic information (Levels 2 and 3) or providing data on adverse effects on endocrine relevant endpoints (Levels 4 and 5). Section 5 integrates and assesses the lines of evidence, whereas Section 6 evaluates all of the available evidence in a weight of evidence assessment, considering the availability of "EATS mediated" parameters. Where EATS mediated parameters are not sufficiently investigated according to the EFSA-ECHA Guidance (2018), potential endocrine modalities and testing strategies are outlined in Section 7. Section 8 provides a conclusion on the ED criteria.

FenpropidinVolume 1 – Level 2May 2021Each Section considers effects relevant to both human health and non-target organisms. It should be noted that

Each Section considers effects relevant to both human health and non-target organisms. It should be noted that non-EATS modalities and potential for endocrine disrupting properties in invertebrate organisms are not currently within the scope of the Guidance (EFSA-ECHA 2018).

 Table 6.8.3-1 OECD Conceptual Framework for Testing and Assessment of Endocrine Disruptors relevant for mammalian toxicology

Level 1 Existing data and non-test information	 Physical & chemical properties, e.g., MW reactivity, volatility, biodegradability. All available toxicological data from standardized or non-standardized tests. Read across, chemical categories, QSARs and other <i>in silico</i> predictions, and ADME model predictions. 	
Level 2 In vitro assays providing data about selected endocrine mechanism(s)/pathways(s)	 Estrogen or androgen receptor binding affinity Estrogen receptor transactivation (OECD TG 455) Androgen or thyroid transactivation (If/when TGs are available) Steroidogenesis <i>in vitro</i> (OECD TG 456) MCF-7 cell proliferation assays (ER ant/agonist) Other assays as appropriate 	
Level 3 – Mammalian Species In vivo assays providing data about selected endocrine mechanism(s)/pathway(s)	 Uterotrophic assay (OECD TG 440) Hershberger assay (OECD TG 441) 	
Level 4 – Mammalian Species <i>In vivo</i> assays providing data on adverse effects on endocrine relevant endpoints	 Repeated dose 28-day study (OECD TG 407) Repeated dose 90-day study (OECD TG 408) 1-generation reproduction toxicity study (OECD TG 415) Male pubertal assay (see GD 150 Chapter C4.3) Female pubertal assay (see GD 150 Chapter C4.4) Intact adult male endocrine screening assay (see GD 150 Chapter 	

Fenpropidin	Volume 1 – Level 2 May 2021
	 Annex 2.5) Prenatal developmental toxicity study (OECD TG 414) Chronic toxicity and carcinogenicity studies (OECD TG 451-3) Reproductive screening test (OECD TG 421 if enhanced) Combined 28-day/reproductive screening assay (OECD TG 422 if enhanced) Developmental neurotoxicity (OECD TG 426)
Level 5 – Mammalian Species In vivo assays providing more comprehensive data on adverse effects on endocrine relevant endpoints over more extensive parts of the life cycle of the organism	 Extended one-generation reproductive toxicity study (OECD TG 443) 2-Generation reproduction toxicity study (OECD TG 416)

Volume 1 – Level 2

May 2021

This section assembles all the lines of evidence for endocrine activity and adversity.

Following the OECD Conceptual Framework and the four groupings specified in the EFSA-ECHA (2018) Guidance, the lines of evidence are organised according to their contribution to their assessment. The available data for fenpropidin has been compiled using the spreadsheet recommended by the EFSA-ECHA (2018) Guidance (appendix E in that document), and is supplied alongside this report.

In Vitro and In Silico Mechanistic Data

In silico data in OECD Conceptual Framework level 1

Reference: Devillers J. *et al.*, 2015. Prediction of the endocrine disruption profile of pesticides. *SAR QSAR Environ. Res.* **26(10)**: 831-852.

Guidelines: Not applicable.

GLP: No.

Study design: The ability of fenprodidin to bind and act as an agonist/antagonist of androgen receptor (AR), oestrogen receptor α (ER α), oestrogen receptor β (ER β), thyroid hormone receptor α (TR α) and thyroid hormone receptor β (TR β) was predicted using an *in silico* molecular docking approach. The authors provide limited information on the methodology, protein preparation or protocol generation (i.e. docking target). Predicted binding potentials were scored 1 to 4, with 1 representing a low probability of binding and 4 representing a high probability of binding. The degree of inappropriate penetration into the docking site (i.e. crash score) was not considered, the sensitivity and specificity of the models were not detailed and bootstrap analysis was not conducted.

Binding affinities with receptors not directly involved with the endocrine system were also estimated. These data are outside the scope of this review and are not discussed further.

Results:

Receptor:	AR	ARa*	ERα	ERaa*	ERβ	ERβa*	TRα	TRβ
Score:	1	3	1	1	1	1	2	2-3**

*: 'a' denotes antagonist mode

**: When the different runs led to various probability values, the most frequent one was reported first. Thus, the code 2-3 means that the studied chemical showed more frequently binding scores leading to its allocation in class 2 rather than in class 3.

Overall, the results of these *in silico* predictions indicate that fenpropidin has a low potential to interact with the estrogen (α , β) receptors, but may bind to the thyroid (α , β) receptors may have antagonistic activity on the androgen receptor. It is important to note that these scores reflect theoretical binding potential, calculated via *in silico* docking to protein structures and are of questionable relevance to *in vitro* and *in vivo* activity. X-ray crystallography selectively favours the protein confirmations most likely to crystalise. Consequently, most structures are ligand-bound dimers (LBD) with associated cofactors, rather than monomeric ligand binding domains stabilised by heat-shock proteins (HSP). Thus, cofactors and ligands should be removed and the protein

FenpropidinVolume 1 – Level 2May 2021structure optimised for physiological pH. The authors also failed to minimise and prepare the database for
screening, which can lead to docking performance scores worse than random (Jain 2007; Peng *et al.* 1996).

CONCLUSIONS

Reliability score	2: Reliable with restrictions	
Relevance score	Medium (Endpoint is based on simulated receptor binding potential an <i>in silico</i> model). Note: The CEFIC EMSG does not give criteria relevance of <i>in silico</i> data. Relevance has been assigned in line with criteria for <i>in vitro</i> data.	
Overall significance	Low – Limited evidence of effects relevant to the assessment of the A and T pathways.	

In vitro data in OECD Conceptual Framework level 2

No in vitro mechanistic data in OECD conceptual framework level 2 was identified for inclusion in this review.

In Vivo Mechanistic Data - Mammalian Species

Short term mechanistic studies in OECD Conceptual Framework level 3

No in vivo mechanistic data in OECD conceptual framework level 3 was identified for inclusion in this review

In Vivo Data - Mammalian Species

Short term studies in OECD Conceptual Framework level 4

Report:	1980. Ro 12-3049/000 - 21 Day percutaneous toxicity study in the rabbit. Report
	number: CGA114900_0128.

Guidelines: OECD 410.

GLP: Yes.

Study design: Fenpropidin was administered dermally to groups of 5 New Zealand White rabbits/sex/dose for 21 days at inclusion levels of 0 (control), 0.02, 0.2 and 2 (reduced to 1) mg/kg/day.

Endpoints relevant for assessment of potential for endocrine disruption

Gross macroscopic observations

Organ weights: Adrenal glands, ovary, pituitary gland, testes and thyroid

Histopathological evaluation: Adrenal glands, ovary, pituitary gland, prostate, testes and thyroid

Deviations from the current guideline relevant for assessment of potential for endocrine disruption: None.

FenpropidinVolume 1 – Level 2May 2021Effects on endpoints relevant for assessment of potential for endocrine disruption:

None.

CONCLUSIONS

Reliability score	1: Reliable without restrictions
Relevance score	Medium (Standard repeat dose toxicity study, with endpoints that may be influenced by the endocrine system, but are also known to be affected by other factors, e.g. toxicity, etc.)
Overall significance	Indicative – No evidence of an effect relevant to the assessment of endocrine disruption

Report:	1981. 28 Day inhalation study in the rat with Ro 12-3049/000. Report number:	
	. Syngenta file number: CGA114900_0126.	

Guidelines: OECD 412.

GLP: Yes.

Study design: Group of 15 Sprague Dawley rats/sex/dose were exposed daily to fenpropidin via inhalation (nose-only) for 6 hours per day for 28 days at dose levels of 0 (control), 20, 80 and 240 mg/m³.

Endpoints relevant for assessment of potential for endocrine disruption

Gross macroscopic observations

Organ weights: Adrenal glands, ovary, pituitary gland and testes

Histopathological evaluation: Adrenal glands, epididymis, mammary gland, ovary, pituitary gland, prostate, seminal vesicles, testes, thyroid and uterus

Deviations from the current guideline: No weights of the thyroid and the uterus were recorded in this study. However, histopathology was performed on these organs. Therefore, the lack of these organ weights is not considered to affect the validity of this GLP and Guideline compliant study.

Effects on endpoints relevant for assessment of potential for endocrine disruption:

None.

Lower mean absolute and relative to brain testes weights were noted in males exposed to 240 mg/m³. These differences reflected the lower bodyweights in this group and not a direct effect on the testes as there was no statistically significant difference in organ/body weight ratio and there were no correlating histopathological findings.

Higher mean relative to brain adrenal glands weights were noted in females exposed to 240 mg/m³. As there were statistically significant effects on absolute adrenal glands weight and no correlating histopathological findings,

Volume 1 – Level 2

May 2021

these differences reflect the lower body and absolute brain weights noted for this group and not a direct effect on the adrenal glands.

CONCLUSIONS

Reliability score	1: Reliable without restrictions	
	Madium (Standard repeat does to visity study, with and points that may be	
Relevance score	Medium (Standard repeat dose toxicity study, with endpoints that may be influenced by the endocrine system, but are also known to be affected by other factors, e.g. toxicity, etc.)	
Overall significance	Indicative – No evidence of an effect relevant to the assessment of endocrine disruption	
Report: 1994. 28-days range finding study in rats (administration in food). Report number		
. Syngenta file number: CGA114900_0316.		

Guidelines: OECD 407.

GLP: Yes.

Study design: Fenpropidin was administered to groups of 5 Tif: RAIf (SPF) rats/sex/dose for 28 days via the diet at inclusion levels of 0 (control), 50, 200, 1000 and 2000 ppm. Animals were sacrificed at the end of the treatment period and all animals were subject to a detailed gross pathological examination. Specified organ weights and selected tissues were examined histopathologically.

Endpoints relevant for assessment of potential for endocrine disruption

Gross macroscopic observations

Organ weights: Adrenal glands, ovary, testes and thyroid (with parathyroid)

Histopathological evaluation: Adrenal glands, epididymis, ovary, pituitary gland, testes, thyroid (with parathyroid), uterus and vagina.

Deviations from the current guideline: The OECD 407 guideline was updated on 3 October 2008, to include endocrine organs, vaginal lavage at necropsy and optional thyroid hormone measurements (T3, T4 and TSH). Relative to the current guideline, the current study omitted histopathological examination of the prostate and seminal vesicles with coagulating glands and did not stage the oestrous cycle at termination via an assessment of vaginal cytology.

Effects on endpoints relevant for assessment of potential for endocrine disruption:

None.

Increased adrenal weights relative to body weight were noted at 2000 ppm in males and females and increased testis and thyroid weights relative to body weight were observed at 2000 ppm in males. The corresponding absolute organ weights were within the expected range. The changes in relative organ weights are a consequence of the decreased body weight of high dose group (28 % lower body weights in males, 14% lower in females) and, therefore not considered treatment related.

Fenpropidin CONCLUSIONS	Volume 1 – Level 2	May 2021
Reliability score	1: Reliable without restrictions	
Relevance score	Medium (Standard repeat dose toxicity study, influenced by the endocrine system, but are a other factors, e.g. toxicity, etc.)	• •
Overall significance	Indicative – No evidence of an effect rele endocrine disruption	evant to the assessment of

Report:	1981. Tolerance study following an oral administration of the plant fungicide Ro		
	12-3049/000 in rats during 13 weeks. Report number: Syngenta file number:		
	CGA114900_0108.		

Guidelines: OECD 408.

GLP: Yes.

Study design: Fenpropidin was administered to groups of 16 SPF albino rats /sex/dose for 13 weeks via the diet at nominal dose levels of 0 (control), 20, 60 and 120 mg/kg/day.

Endpoints relevant for assessment of potential for endocrine disruption:

Gross macroscopic observations

Organ weights: Adrenal glands, ovary, pituitary gland, prostate, seminal vesicles, testes, thyroid and uterus.

Histopathological evaluation: Adrenal glands, epididymis, ovary, pituitary gland, prostate, seminal vesicles, testes, thyroid and uterus.

Deviations from the current guideline: The OECD 408 guideline was updated on 25 June 2018, to include thyroid hormones (T_3 , T_4 and TSH), sperm parameters and vaginal cytology, none of which were considered. The tissues preserved for histopathological examination were limited, omitting the mammary glands and the vagina.

Effects on endpoints relevant for assessment of potential for endocrine disruption:

None.

CONCLUSIONS

Reliability score	1: Reliable without restrictions
Relevance score	Medium (Standard repeat dose toxicity study, with endpoints that may be influenced by the endocrine system, but are also known to be affected by other factors, e.g. toxicity, etc.)
Overall significance	Indicative – No evidence of an effect relevant to the assessment of endocrine disruption

Volume 1 – Level 2

May 2021

Report:1995. CGA 114900 tech: 3-Month oral toxicity study in rats (administration in
food). Report number: .food). Report number: .Syngenta file number: CGA114900_0388.

Guidelines: OECD 408.

GLP: Yes.

Study design: Fenpropidin was administered to groups of 15 Tif: RAIf (SPF) rats/sex/dose for 3 months via the diet at inclusion levels of 0 (control), 20, 150 and 1500 ppm. An additional 10 animals per sex of the control group and the high dose group were kept on control diet for a 4 week recovery period before sacrifice.

Endpoints relevant for assessment of potential for endocrine disruption

Gross macroscopic observations

Organ weight: Adrenal glands, ovary, testes and thyroid (with parathyroid)

Histopathological evaluation: Adrenal glands, epididymis, ovary, pituitary gland, testes, thyroid (with parathyroid), uterus and vagina.

Deviations from the current guideline: The OECD 408 guideline was updated on 25 June 2018, to include thyroid hormones (T_3 , T_4 and TSH), sperm parameters and vaginal cytology, none of which were considered. The recorded weights of organs were limited, omitting the epididymis, the pituitary gland, the uterus and the prostate. Histopathological examination did not include the prostate (including seminal vesicles) and the mammary gland.

Effects on endpoints relevant for assessment of potential for endocrine disruption:

None.

Small testes with corresponding tubular atrophy was noted in two high dose males. These effects were considered to be incidental and unrelated to treatment. This conclusion is supported by the lack of effects on the testes in a previously conducted 13 week rat dietary study (**1981**, see above) at dose levels up to 120 mg/kg/day, i.e. up to higher doses than those used in this study (the dietary inclusion level of 1500 ppm in this study corresponded to an estimated achieved intake of 89.9 mg/kg/day).

CONCLUSIONS

Reliability score	1: Reliable without restrictions
Relevance score	Medium (Standard repeat dose toxicity study, with endpoints that may be influenced by the endocrine system, but are also known to be affected by other factors, e.g. toxicity, etc.)
Overall significance	Indicative – No evidence of an effect relevant to the assessment of endocrine disruption

Fenpropidin	Volume 1 – Level 2	May 2021
Report:	and 1981. Tolerance study	with Ro 12-3049/000 administered orally as
	feed admixture to mice over 13 weeks. Report CGA114900_0107.	number: Example . Syngenta file number:

Guidelines: OECD 408.

GLP: Yes.

Study design: Fenpropidin was administered to groups of 16 SPF albino mice /sex/dose for 13 weeks via the diet at inclusion levels of 0 (control), 625, 1250, 2500 and 5000 ppm.

Endpoints relevant for assessment of potential for endocrine disruption

Gross macroscopic observations

Organ weights: Adrenal glands, ovary, prostate (including seminal vesicles), testes, and uterus.

Histopathological evaluation: Adrenal glands, epididymis, ovary, prostate, seminal vesicles, testes, and uterus.

Deviations from the current guideline: The OECD 408 guideline was updated on 25 June 2018, to include thyroid hormones (T_3 , T_4 and TSH), sperm parameters and vaginal cytology, none of which were considered. The recorded weights of organs were limited, omitting the epididymis, the thyroid and the pituitary gland. Histopathological examination did not include the pituitary, the thyroid and the vagina.

Effects on endpoints relevant for assessment of potential for endocrine disruption:

None.

Statistically significantly lower mean absolute prostate weights (males) and adrenal glands and ovary weights (females) were noted in animals receiving 2500 ppm (highest surviving dose level). These differences reflected the lower bodyweights in these groups and were not direct effects on these organs as there were no statistically significant differences in organ/body weight ratios (Table 4.3-1) and there were no correlating histopathological findings.

Table 6.8.3-2 90-day mouse study with fenpropidin: selected organ weights

		Males				Females				
	ppm	0	625	1250	2500	0	625	1250	2500	
Adrenals	absolute [mg]	8.0	9.1	9.5	11.1	16.5	15.7	15.0	13.2**	
	relative to bw [‰]	0.127	0.142	0.153	0.198	0.344	0.374	0.341	0.307	
Ovaries	absolute [mg]	-	-	-	-	45.5	43.3	39.7	37.4*	
	relative to bw [‰]					0.95	1.03	0.90	0.87	
Prostate°	absolute [mg]	559	651	649	477*	-	-	-	-	
	relative to bw [‰]	8.87	10.17	10.47	8.52					

* p<0.05, **p<0.01 (Student's t-test, difference from control group mean) ° including seminal vesicles

Volume 1 – Level 2

CONCLUSIONS

Reliability score	1: Reliable without restrictions					
Relevance score	Medium (Standard repeat dose toxicity study, with endpoints that may be influenced by the endocrine system, but are also known to be affected by other factors, e.g. toxicity, etc.)					
Overall significance	Indicative – No evidence of an effect relevant to the assessment of endocrine disruption					

Report:	1993. 28-Day range finding toxicity study in Beagle dogs. Report number:					
	Syngenta file number: CGA114900_0270.					

Guidelines: None, adapted from OECD 409

GLP: No. The study was performed according to GLP-principles, but without Quality Assurance.

Study design: Fenpropidin was administered to groups of 2 Beagle dogs/sex/dose for 28 days via gelatine capsules at dose levels of 0 (control), 5, 15 and 25 mg/kg/day.

Endpoints relevant for assessment of potential for endocrine disruption:

Gross macroscopic observations

Organ weights: Adrenals glands, ovary, testes and thyroid (with parathyroid)

Histopathological evaluation: Adrenal glands, ovary, testes and thyroid (with parathyroid)

Deviations from the current guideline: Deviations from the current OECD guideline 409 include the lack of organ weights of epididymides and uterus. Histopathological evaluation was limited, omitting the pituitary, uterus, accessory sex organs and the prostate.

Effects on endpoints relevant for assessment of potential for endocrine disruption:

None.

CONCLUSIONS

Reliability score	1: Reliable without restrictions					
Relevance score	Medium (Standard repeat dose toxicity study, with endpoints that may be influenced by the endocrine system, but are also known to be affected by other factors, e.g. toxicity, etc.)					
Overall significance	Indicative – No evidence of an effect relevant to the assessment of endocrine disruption					

Volume 1 – Level 2

May 2021

Report:1981. Toxicity study following oral administration of Ro 12-3049/000 to dogs for a
period of 26 weeks. Report number:Syngenta file number: CGA114900_0120.

Guidelines: OECD 409.

GLP: Yes.

Study design: Fenpropidin was administered to groups of 4 Beagle dogs/sex/dose for 26 weeks via gelatine capsules at dose levels of 0 (control), 2, 5 and 12 mg/kg/day.

Endpoints relevant for assessment of potential for endocrine disruption:

Gross macroscopic observations

Organ weights: Adrenal glands, ovary, pituitary gland, prostate, testes, thyroid and uterus

Histopathological evaluation: Adrenal glands, epididymis, mammary area, ovary, pituitary gland, prostate, testes, thyroid and uterus

Deviations from the current guideline: Deviations from the current OECD guideline 409 include the lack of organ weights of epididymides. Histopathological evaluation was did not consider accessory sex organs.

Effects on endpoints relevant for assessment of potential for endocrine disruption:

None.

CONCLUSIONS

Reliability score	1: Reliable without restrictions					
Relevance score	Medium (Standard repeat dose toxicity study, with endpoints that may be influenced by the endocrine system, but are also known to be affected by other factors, e.g. toxicity, etc.)					
Overall significance	Indicative – No evidence of an effect relevant to the assessment of endocrine disruption					

Volume 1 – Level 2

May 2021

Chronic and carcinogenicity studies in OECD Conceptual Framework level 4

 Report:
 1995. Fenpropidin: 12-Month chronic oral toxicity study in Beagle dogs. Report number:

 Syngenta file number:
 CGA114900_0427.

Guidelines: OECD 452.

GLP: Yes.

Study design: Fenpropidin was administered to groups of 4 Beagle dogs/sex/dose for 52 weeks via gelatine capsules at dose levels of 0 (control), 2, 5 and 20 mg/kg/day.

Endpoints relevant for assessment of potential for endocrine disruption:

Gross macroscopic observations

Organ weights: Adrenal glands, ovary, testes and thyroid (with parathyroid).

Histopathological evaluation: Adrenal glands, epididymis, ovary, pituitary gland, prostate, testes, thyroid (with parathyroid), uterus and vagina

Deviations from the current guideline: Deviations from the current OECD guideline 452 include the lack of organ weights of epididymides and uterus.

Effects on endpoints relevant for assessment of potential for endocrine disruption:

None.

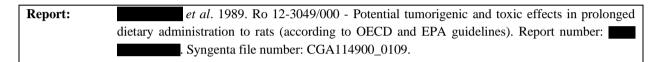

Increased adrenal weights in the low and mid dose group males as well as increased absolute thyroid weights in high dose males are not considered of toxicological relevance in the absence of a dose-response and pathological correlates.

Table 6.8.3-3 12-month dog study with fenpropidin: selected organ weights

		Males				Females			
		0	2	5	20	0	2	5	20
Carcass [kg]		10.85	11.55	10.63	11.25	11.53	10.55*	11.16	10.44
Adrenal	absolute [g]	1.399	1.282	1.712*	1.619	1.697	1.825	2.054	1.967
	relative to bw [‰]	0.130	0.111*	0.161*	0.144	0.147	0.173	0.185	0.188
Thyroid	absolute [g]	0.801	0.843	0.875	1.080*	0.957	0.860	1.156	1.062
	relative to bw [‰]	0.076	0.073	0.083	0.096	0.083	0.091	0.103	0.105

* p<0.05 (Wilcoxon test, difference from control group mean)

Fenpropidin CONCLUSIONS	Volume 1 – Level 2	May 2021
Reliability score	1: Reliable without restrictions	
Relevance score	Medium (Standard repeat dose toxicity study, influenced by the endocrine system, but are a other factors, e.g. toxicity, etc.)	
Overall significance	Indicative – No evidence of an effect rele endocrine disruption	evant to the assessment of

Guidelines: OECD 453.

GLP: Yes.

Study design: Fenpropidin was administered to groups of 70 (80 at high dose) CrI:CD (SD) BR rats/sex/dose for up to 104 weeks via the diet at inclusion levels of 0 (control), 5, 25, 125 and 625 ppm. Owing to excessive toxicity at the high dose, the dose levels were reduced to 2, 10, 50 and 250 ppm from week 8 onwards. 10 animals/sex/group were used for an interim kill at 52 weeks, 10 animals/sex/group were used for blood sampling and urine analysis, the remaining animals were sacrificed at the end of the study.

Endpoints relevant for assessment of potential for endocrine disruption:

Gross macroscopic observations

Organ weights: Adrenal glands, ovary, pituitary gland, testes and thyroid (with parathyroid)

Histopathological evaluation: Adrenal glands, epididymis, mammary gland, ovary, pituitary gland, prostate, seminal vesicles, testes, thyroid (with parathyroid) and uterus.

Deviations from the current guideline: The recorded weights of organs were limited, omitting the epididymis, and uterus. Histopathological examination did not include the vagina.

Effects on endpoints relevant for assessment of potential for endocrine disruption

None.

At the terminal sacrifice lower pituitary weights were noted in 50 and 250 ppm females and significantly lower when adjusted for body weight. The absolute values had a broad range (11-406 mg, 17-451 mg, 17-301 mg, 8-376 mg, 12-272 mg for the individual groups of females). However, in absence of any corroborative histopathological changes in the pituitary gland, the observed weight variations are considered to be of no toxicological relevance.

FenpropidinVolume 1 – Level 2May 2021Higher mean absolute ovary weights compared to control were noted in females of the three highest dose groups.

Higher mean absolute ovary weights compared to control were noted in females of the three highest dose groups. There was no apparent dose-response and the weights were demonstrated to be within the historical control range for this organ. Therefore, these apparent differences were considered incidental and unrelated to treatment.

CONCLUSIONS

Reliability score	1: Reliable without restrictions
Relevance score	Medium (Standard chronic toxicity/carcinogenicity study, with endpoints that may be influenced by the endocrine system, but are also known to be affected by other factors, e.g. toxicity, etc.)
Overall significance	Indicative – No evidence of an effect relevant to the assessment of endocrine disruption

Report:	1983. Ro-12-3049/000: 80 Week oral (dietary) combined carcinogenicity and toxicity
	study in the mouse. Report number: CGA114900_0110 . Syngenta file number: CGA114900_0110.

Guidelines: OECD 453.

GLP: Yes.

Study design: Fenpropidin was administered to groups of 63 Crl:CD-1(ICR)BR mice/sex/dose for up to 80 (males) / 90 (females) weeks via the diet at inclusion levels of 0 (control), 30, 100, 300 and 1000 ppm. 12 animals/sex/group were sacrificed after 52 weeks of treatment and the same parameters were investigated as for the terminal kill.

Endpoints relevant for assessment of potential for endocrine disruption:

Gross macroscopic observations

Organ weights: Ovary and testes

Histopathological evaluation: Adrenal glands, epididymis, mammary gland, ovary, pituitary gland, prostate, seminal vesicles, testes, thyroid (with parathyroid) and uterus

Deviations from the current guideline: Relative to the current OCED 453 guideline, the organ weights of adrenals, thyroid, epididymis, ovaries and uterus were not recorded.

Effects on endpoints relevant for assessment of potential for endocrine disruption:

None.

CONCLUSIONS

Fenpropidin	Volume 1 – Level 2 May 2021
Reliability score	1: Reliable without restrictions
Relevance score	Medium (Standard chronic toxicity/carcinogenicity study, with endpoints that may be influenced by the endocrine system, but are also known to be affected by other factors, e.g. toxicity, etc.)
Overall significance	Indicative – No evidence of an effect relevant to the assessment of endocrine disruption

Developmental studies in OECD Conceptual Framework level 4

Report:	1981. Embryotoxicity study in rats with oral administration of Ro 12-3049/000 - Phase
	II teratology study. Report number: Syngenta file number: CGA114900_0124.

Guidelines: Equivalent to OECD 414 (1981).

GLP: No. This study was performed prior to the GLP certification of laboratories but was conducted according to the principles and practices of Good Laboratory Practice. A Quality Assurance statement is included in the report.

Study design: Groups of 40 mated female Füllinsdorf albino (SPF) rats/dose were administered fenpropidin via the diet at nominal dose levels of 0 (control), 20, 50 and 125 mg/kg/day from gestation days 7-16, inclusive to assess pre- and post- natal development. The dams were divided into 2 subgroups. One cohort was sacrificed on gestation day 21 for full examinations of the uterine contents and foetal examination (external, visceral and skeletal). The other subgroup was allowed to litter and dams and pups were sacrificed on postnatal day 23.

Endpoints relevant for assessment of potential for endocrine disruption:

Gross macroscopic observations

Pregnancy parameters (e.g. % pregnant)

Number of corpora lutea

Number of implantations

Number of abortions/resorptions/intra-uterine deaths

Sex ratio

Foetal abnormalities

Deviations from the current guideline: The OECD 414 guideline was updated on 25 June 2018, to include measurement of maternal thyroid hormones (T4, T3 and TSH) and ano-genital distance (AGD) in rats, neither of which were considered in the current study. Gravid uterus weights were not recorded. Furthermore, there were some deviations relative to the contemporaneous 2001 guideline, including the length of treatment, which

FenpropidinVolume 1 – Level 2May 2021

considered the major period of organogenesis rather than the full length of gestation. The skeletons were also only singly stained with Alizarin red, rather than double stained with Alcian blue. However, any significant changes in cartilage development would have been detected under light microscope. Furthermore, contrary to the current guideline, the study provided a robust assessment of postnatal development, as cohorts of animals were maintained to weaning.

Effects on endpoints relevant for assessment of potential for endocrine disruption:

None.

An increased number of incised neural arches compared to controls was observed at the mid and high dose. Although the low dose was also increased compared to controls, it was within historical control limits according to historical data. These findings can be considered as signs of a retarded ossification as a results of a decreased body weight gain in the dams. The bodyweight development of the mid dose dams was moderately reduced during treatment (gestation day 7-16), whereas the high dose dams lost bodyweight (the absolute body weights day 0-21were decreased by 3 and 10% for mid and high dose, respectively, when compared to controls).

In the second subgroup no effects were observed on the reproductive parameters, body weights, weight development, or viability. Organ weights were not affected by treatment.

CONCLUSIONS

Reliability score	1: Reliable without restrictions
Relevance score	Medium (Standard developmental toxicity study, with endpoints that may be influenced by the endocrine system, but are also known to be affected by other factors, e.g. toxicity, etc.)
Overall significance	Indicative – No evidence of an effect relevant to the assessment of endocrine disruption

 Report:
 1994. CGA 114900 Technical: rat oral teratogenicity. Report number:
 Syngenta

 file number: CGA114900_0324.
 Syngenta
 Syngenta

Guidelines: OECD 414.

GLP: Yes.

Study design: Groups of 24 pregnant female Tif:RAIf (SPF) rats/dose were administered fenpropidin by oral gavage at dose levels of 0 (control), 10, 60 and 90 mg/kg/day from gestation days 6-15, inclusive. Dams were sacrificed on gestation day 21 and there were full examinations of the uterine contents/pups.

Endpoints relevant for assessment of potential for endocrine disruption:

Gross macroscopic observations

Pregnancy parameters (e.g. % pregnant)

Fenpropidin Number of *corpora lutea* Volume 1 – Level 2

May 2021

Number of implantations

Number of abortions/resorptions/intra-uterine deaths

Sex ratio

Foetal abnormalities

Deviations from the current guideline: The OECD 414 guideline was updated on 25 June 2018, to include measurement of maternal thyroid hormones (T4, T3 and TSH) and ano-genital distance (AGD) in rats, neither of which were considered in the current study.

Effects on endpoints relevant for assessment of potential for endocrine disruption:

None.

CONCLUSIONS

Reliability score	1: Reliable without restrictions
Relevance score	Medium (Standard developmental toxicity study, with endpoints that may be influenced by the endocrine system, but are also known to be affected by other factors, e.g. toxicity, etc.)
Overall significance	Indicative – No evidence of an effect relevant to the assessment of endocrine disruption

Report:	and	1981. Embryotoxicity study in rabbits wit	h oral administration of
	Ro 12-3049/000. Phase II - tera	atological study. Report number:	. Syngenta file number:
	CGA114900_0123.		

Guidelines: OECD 414.

GLP: No. This study was performed prior to the GLP certification of laboratories but was conducted according to the principles and practices of Good Laboratory Practice. A Quality Assurance statement is included in the report.

Study design: Groups of 20 time-mated female Swiss Hare rabbits/dose were administered fenpropidin by oral gavage at dose levels of 0 (control), 5, 12 and 30 mg/kg/day from gestation days 7-19, inclusive. Dams were sacrificed on gestation day 30 and there were full examinations of the uterine contents/pups.

Endpoints relevant for assessment of potential for endocrine disruption:

Gross macroscopic observations

Pregnancy parameters (e.g. % pregnant)

Number of *corpora lutea*

FenpropidinVolume 1 – Level 2Number of implantations

May 2021

Number of abortions/resorptions/intra-uterine deaths

Sex ratio

Foetal abnormalities

Deviations from the current guideline: There were some deviations relative to the contemporaneous 2001 guideline, including the length of treatment, which considered the major period of organogenesis rather than the full length of gestation. The skeletons were also only singly stained with Alizarin red, rather than double stained with Alcian blue. Despite the lack of cartilage staining in this study, any significant changes would have been detected under light microscope.

Effects on endpoints relevant for assessment of potential for endocrine disruption:

None.

CONCLUSIONS

Reliability score	1: Reliable without restrictions
Relevance score	Medium (Standard developmental toxicity study, with endpoints that may be influenced by the endocrine system, but are also known to be affected by other factors, e.g. toxicity, etc.)
Overall significance	Indicative – No evidence of an effect relevant to the assessment of endocrine disruption

Report:	2011. Fenpropidin - A prenatal developmental toxicity study in New Zealand
	White rabbits. Report number: . Syngenta file number: CGA114900_10474.

Guidelines: OECD 414.

GLP: Yes.

Study design: Groups of 25 time-mated female New Zealand White rabbits/dose were administered fenpropidin by oral gavage at dose levels of 0 (control), 5, 10 and 20 mg/kg/day from gestation days 7-28, inclusive. Dams were sacrificed on gestation day 29 and there were full examinations of the uterine contents/pups.

Endpoints relevant for assessment of potential for endocrine disruption

Gross macroscopic observations

Pregnancy parameters (e.g. % pregnant)

Number of *corpora lutea*

Number of implantations

Number of abortions/resorptions/intra-uterine deaths

Fenpropidin Sex Volume 1 – Level 2

May 2021

Foetal abnormalities

Deviations from the current guideline: None.

Effects on endpoints relevant for assessment of potential for endocrine disruption:

None.

Skeletal malformations were noted in 0 (0), 1 (1), 0 (0), and 4 (4) foetuses (litters) in the control, 5, 10, and 20 mg/kg bw/day groups, respectively. Three foetuses in the 20 mg/kg bw/day group had severely malaligned sternebra(e). The foetal and litter incidences of this finding were not statistically significant when compared to the concurrent control group, however, the mean litter proportion of this finding in the 20 mg/kg bw/day group (1.6 % per litter) exceeded the maximum mean value in the WIL historical control data for definitive studies (1.0% per litter). None-the-less, the incidence of this single finding is only slightly outside the background range, is occurring in the absence of any other foetal malformations, and was not observed in the original developmental toxicity studies in Swiss Hare rabbits (**100** and **100** and **108**). It can therefore be concluded that the incidence of this finding in this study is very unlikely to be related to treatment and can be considered to be a spontaneous finding.

CONCLUSIONS

Reliability score	1: Reliable without restrictions
Relevance score	Medium (Standard developmental toxicity study, with endpoints that may be influenced by the endocrine system, but are also known to be affected by other factors, e.g. toxicity, etc.)
Overall significance	Indicative – No evidence of an effect relevant to the assessment of endocrine disruption

Report:	2011. Fenpropidin - A dietary developmental neurotoxicity study in Wistar Han rats.
	Report number: Syngenta file number: CGA114900_50018.

Guidelines: OECD 426.

GLP: Yes.

Study design: Fenpropidin was offered on a continuous basis as a dietary admixture to 3 groups of female Crl:WI(Han) rats (consisting of up to 30 rats/group) from gestation day 6 through lactation day 21 at dietary concentrations of 0 (control) 40, 100, and 400 ppm. All females were allowed to deliver and rear their offspring to lactation day 21.

Endpoints relevant for assessment of potential for endocrine disruption:

Gross macroscopic observations

Volume 1 – Level 2

May 2021

% Pregnant

Duration of gestation

Parturition

Implantation sites

Litter size (reductions in litter size can be indicative of abortions/resorptions/intra-uterine deaths)

Sex ratio

Sexual maturation

Age and weight at preputial separation

Age and weight at vaginal opening

Motor activity (including habituation), motor and sensory function, learning and memory in offspring

Deviations from the current guideline: None.

Effects on endpoints relevant for assessment of potential for endocrine disruption

None.

CONCLUSIONS

Reliability score	1: Reliable without restrictions
Relevance score	Medium (Standard developmental neurotoxicity toxicity study, with endpoints that may be influenced by the endocrine system, but are also known to be affected by other factors, e.g. toxicity, etc.)
Overall significance	Indicative – No evidence of an effect relevant to the assessment of endocrine disruption

Reproductive studies in OECD Conceptual Framework level 5

Report: et al. 1987. RO 12-3049/000: Effects upon reproduction performance of rats treated continuously throughout two successive generations. Report number: Syngenta file number: CGA114900_0125.

Guidelines: OECD 416.

GLP: Yes.

Study design: Groups of 30 Sprague-Dawley derived CD rats/sex/dose were fed diet containing 0, 6.25, 25 or 100 ppm fenpropidin. Exposure started about 13 weeks (92 and 100 days for the F0 and F1, respectively) before the first mating period in both generations (1:1 mating). The F1A and F2A pups were reared to day 25 *post partum*. Then the parental animals were given at least 10 days before second mating. The F1 parental generation

Fenpropidin Volume 1 – Level 2 May 2021 was selected from the E1D litters. To standarding litter size, litters with more than 0 mms were called by some 0

was selected from the F1B litters. To standardize litter size, litters with more than 9 pups were culled by random selection to yield 4 males and 4 females per litter, whenever possible on day 4 *post partum*.

Endpoints relevant for assessment of potential for endocrine disruption

Gross macroscopic observations

Reproductive performance:

Pre-coital interval

Mating

Fertility

Duration of gestation

Parturition

Litter size (reductions in litter size can be indicative of abortions/resorptions/intra-uterine deaths)

Oestrus cyclicity

Sex ratio

Organ weights: Adrenal glands, epididymis, ovary, pituitary gland, prostate, seminal vesicles, testes, thyroid, uterus and vagina

Histopathological evaluation: Epididymis, ovary, prostate, seminal vesicles, testes, thyroid, uterus and vagina

Deviations from the current guideline: Relative to OECD 416 (2001), no systemic effects were accomplished at the highest dose (which is in disagreement with the guideline). Food consumption was only recorded during the premating period. Number of implantations, corpora lutea and post-implantation loss was not investigated. Ovarian primordial follicle count, sperm parameters and sexual maturation were not specifically investigated in this study.

Effects on endpoints relevant for assessment of potential for endocrine disruption:

None.

CONCLUSIONS

Reliability score	1: Reliable without restrictions
Relevance score	Medium (Standard repeat dose toxicity test, with endpoints that may be influenced by the endocrine system, but are also known to be affected by other factors, e.g. toxicity, etc.)
Overall significance	Indicative – No evidence of an effect relevant to the assessment of endocrine disruption

Fenpropidin	Volume 1 – Level 2	May 2021
Report:	2003. Rat dietary two-generation	reproduction study. Report number:
	Syngenta file number: CGA114900_4693.	

Guidelines: OECD 416.

GLP: Yes.

Study design: Groups of 30 HanIbm: WIST rats/sex/dose were fed diet containing 0, 25, 100, 500 and 1000 ppm fenpropidin. Animals were exposed continuously in two successive generations. Exposure started 10 weeks before the mating period in both generations (1:1 mating). The F1 generation was selected from the litters of the F0 generation. To standardize litter size, litters with more than 9 pups were culled by random selection to yield 4 males and 4 females per litter, when ever possible on day 4 *post partum*.

Endpoints relevant for assessment of potential for endocrine disruption

Gross macroscopic observations

Reproductive performance:

Pre-coital interval

Mating

Fertility

Duration of gestation

Parturition

Litter size (reductions in litter size can be indicative of abortions/resorptions/intra-uterine deaths)

Sexual maturation

Age and weight at preputial separation

Age and weight at vaginal opening

Oestrus cyclicity

Sperm analysis

Motility

Count (spermatids per testis weight, sperm per cauda epididymis)

Morphology

Sex ratio

Organ weights: Adrenal glands, epididymis, ovary, pituitary gland, prostate, seminal vesicles, testes, thyroid (with parathyroid) and uterus

FenpropidinVolume 1 – Level 2May 2021

Histopathological evaluation: Adrenal glands, epididymis, ovary, pituitary gland, prostate, seminal vesicles, testes, thyroid (with parathyroid), vagina and uterus

Deviations from the current guideline: Only minor deviations i.e body weights of F1 generation was first recorded day 2 instead of day 1, data on food efficiency and *corpora lutea* was not included in the report.

Effects on endpoints relevant for assessment of potential for endocrine disruption:

In F1 male pups, balanopreputial separation was statistically significantly delayed at 1000ppm (25.3 days for control and 28.0 days). At PND 21 mean bodyweights of the high dose group were 33% lower than controls and these pups were still lighter than controls at the time of maturation. In F1 female pups of the 500ppm and 1000 ppm groups, a delay in vaginal opening was noted (32.5 days for control and 37.1 and 42.0 days for 500 ppm and 1000ppm, respectively). The mean bodyweight gains of these dose groups were significantly lower during lactation, resulting in reduced bodyweights of 14% and 33% below controls at PND21. At the day of vaginal opening, bodyweights were not relevantly different between controls and treated groups. Therefore, the observed delays in sexual maturation are considered secondary to the lower bodyweight in these groups. This is further discussed in the assessment of lines of evidence in section 5.1.

Changes in absolute and relative organs weights were observed in F0 and F1 high dose animals and were mainly related to decreased bodyweight in these animals. No histopathological correlates were observed and therefore, these changes are not considered to have toxicologically significance.

Increased incidences and severity of cortical fatty change of the adrenal glands were noted in F0 and F1 adult females receiving 500 and 1000 ppm. This most likely represents a stress response, with significant reductions in body weight gain noted for females in these groups, particularly throughout lactation (i.e. the period immediately prior to termination and collection of tissue for histopathology). The lack of any direct effect on the adrenals on this study is supported by the lack of any effect on adrenal histopathology in adult males and the lack of any effects on adrenal pathology in F1 and F2 pups of either sex (Table 4.3-3).

Lymphohistiocytic infiltration in the prostate was decreased in F0 and F1 adult males receiving 500 and 1000 ppm and considered to be secondary to the depressed bodyweight development.

			males					female	S			
		ppm	0	25	100	500	1000	0	25	100	500	1000
F0	adrenals: cortical	incidence	12/30	11/30	8/30	9/30	9/30	6/30	7/30	8/30	14/30	26/30
	fatty change	grading	(2.3)	(1.8)	(1.9)	(1.7)	(2.1)	(1.5)	(1.7)	(2.1)	(2.3)	(2.1)
	Prostate: lymph.	incidence	12/30	12/30	10/30	2/30	6/30					
	Inflitration	grading	(2.3)	(2.1)	(2.8)	(2.0)	(2.0)					
F1	adrenals: cortical	incidence	23/30	-	-	-	20/30	10/30	15/30	16/30	19/30	21/30
	fatty change	grading	(1.5)	-	-	-	(1.4)	(2.0)	(1.7)	(2.4)	(2.6)	(2.8)

Table 6.8.3-4Two generation reproduction study with fenpropidin: histopathological findings inendocrine organs in adult F0 and F1 animals

Fen	propidin		Vo	olume 1	– Level	2	
	Prostate:	incidence	17/30	10/30	17/30	6/30	4/30
	lymph.						
	Inflitration	grading	(1.9)	(2.3)	(2.0)	(2.2)	(1.5)

Lower mean sperm counts noted for F0 males (lower spermatids per gram testis in the 25 and 1000 ppm groups and lower sperms per epididymis in the 1000 ppm group) were attributed to the higher than normal mean values for the control animals (compared to control data from previous studies which reported 71.9 million spermatids per g testis and 134.2 million sperms per g cauda epidermis) and not considered an effect of treatment. This is supported by the lack of any effects on sperm motility and morphology, any histopathological effects on the testes and the absence of any treatment-related effects on sperm counts of F1 males (Table 4.3-4).

Table 6.8.3-5Two generation reproduction study with fenpropidin: sperm counts

	FO					F1				
ppm	0	25	100	500	1000	0	25	100	500	1000
Sperm counts [1 x 106/g	tissue]	1	<u> </u>		1		1	1	
Testis (spermatids)	82.6	74.6**	76.6	77.9	66.0**	77.6	80.7	82.6*	84.1**	79.2
Causa epididymides (sperm cells)	182.6	193.8	204.8	217.7#	158.8#	176	162.1	164.2	155.8*	160.9

* p <0.05, ** p<0.01 (Anova + Dunnett test); # p <0.05 (Kruskal-Wallis + Dunnett test)

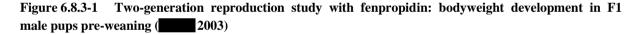
Lower implantation sites compared to control were noted in F0 dams receiving 25, 500 and 1000 ppm. This was not considered an effect of treatment as they were within the range of historical controls, while the concurrent control is near the upper limit of historical controls (14.1 vs. 12.2-14.2) and all the treatment groups towards the lower end with no dose-response (12.4, 12.3 and 12.3 for 25, 500 and 1000ppm, respectively). In addition the mean number of pups delivered in the 25, 100 ppm groups was higher than the mean implantation sites, due to a few uncountable *corpora lutea* in these groups. The slightly higher incidence of pup loss during days 1-4 *post partum* in the high dose group was mainly due to one dam that lost 8 pups and is therefore considered unrelated to treatment. The lower number of pups surviving from day 4 to 21 *post partum* in the 500 ppm group was due to one total litter loss and was therefore considered to be unrelated to treatment.

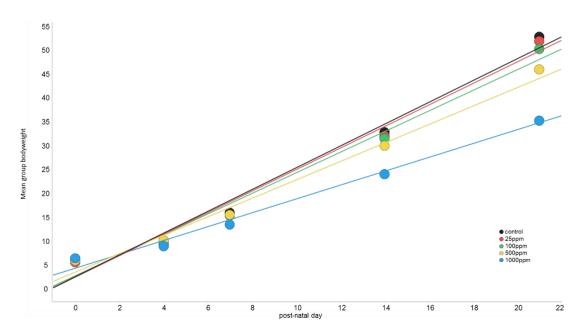
Lower implantation sites and a corresponding lower number of pups delivered compared to control were noted in F1 dams receiving 1000 ppm. However, owing to the lack of any effect on any other reproductive parameters, including number of successful matings/pregnant animals, fertility index, live birth index and pup survival, this was not considered an effect of treatment.

CONCLUSIONS

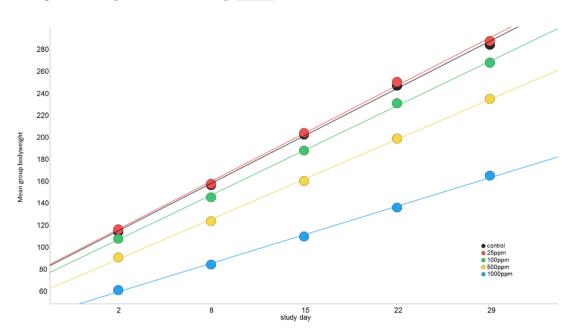
Reliability score	1: Reliable without restrictions
Relevance score	Medium (Standard repeat dose toxicity test, with endpoints that may be influenced by the endocrine system, but are also known to be affected by

Fenpropidin	Volume 1 – Level 2 May 2021
	other factors, e.g. toxicity, etc.)
Overall significance	Indicative –Evidence of an effect potentially relevant to the assessment of endocrine disruption
Effects of potential relevance	Delay in sexual maturation


INTEGRATION AND ASSESSMENT OF LINES OF EVIDENCE


Lines of evidence for endocrine disrupting potential relevant to humans

The following line of evidence has been assembled through interrogation of the data assessed in Section 4 of this document:


Delay in sexual maturation in a two-generation reproductive toxicity study

Sexual maturation was delayed with statistical significance for male F1 pups in the 1000 ppm dose group (25.3 days for control and 28.0 days for 1000 ppm). F1 males in the 1000 ppm group had consistently lower body weights compared with controls in the period leading up to the point of sexual maturation At weaning on day 21 *post partum* mean bodyweights of males F1 pups were 14% and 33% below control levels at 500 and 1000 ppm, respectively. F1 male pups were lighter than controls at the time of maturation (group mean body weight of 71.27 g and 48.37 g for control and 1000 ppm males respectively). Therefore, the observed delays are considered secondary to bodyweight effects. Figures 5.1-1 and 5.1-2 show the mean group bodyweight development of F1 males pups before and after.

FenpropidinVolume 1 – Level 2May 2021Figure 6.8.3-2Two-generation reproduction study with fenpropidin: bodyweight development in F1male post-weaning selected for mating (2003)

A delay in vaginal opening in female F1 pups in the 500ppm and 1000 ppm groups was observed (32.5 days for control and 37.1 and 42.0 days for 500 ppm and 1000ppm, respectively). This is considered to be secondary to a reduction in body weight gain during the lactation phase (i.e. postnatal day (PND) 1 to 21), which showed a statistically significant reduction from PND 4 onwards for 500ppm and from PND 0 for 1000ppm (p<0.01). The group mean pup body weight at weaning was 14% and 33% below control levels at 500 and 1000 ppm, respectively. At the day of sexual maturation the bodyweights in these F1 females were not relevantly higher than controls (102.6 g for control and 111.1 g and 105.8 g for 500 ppm and 1000ppm, respectively). Figure 6.1-2 shows the mean group bodyweight development of F1 females pups and the mean age and bodyweight at vaginal opening. Therefore, the observed delays reflect excessive reductions in bodyweight. Figures 5.1-3 and 5.1-4 show the mean group bodyweight development of F1 males pups before and after.

Figure 6.8.3-3 Two-generation reproduction study with fenpropidin: bodyweight development in F1 female pups pre-weaning (2003)

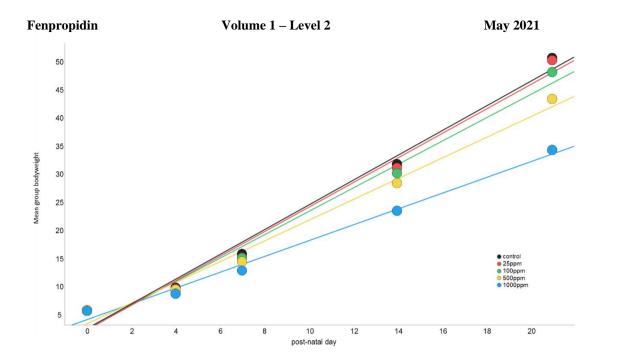
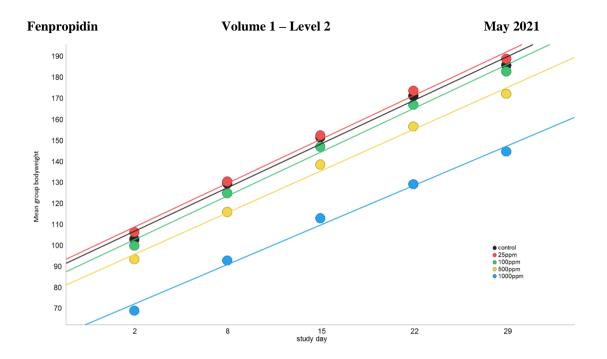



Figure 6.8.3-4 Two-generation reproduction study with fenpropidin: bodyweight development in F1 females post-weaning selected for mating (2003)

The age and weight of F1 pups reaching sexual maturation landmarks is presented in Table 5.1-1. Table 5.1-2 presents the reproduction parameter of the F1 parental generation. Table 5.1-3 assembles the lines of evidence for delays in sexual maturation and EAS-mediated adversity in accordance with the ECHA-EFSA (2018) guidance.

FenpropidinVolume 1 – Level 2May 2021Table 6.8.3-6Two-generation reproduction study with fenpropidin: bodyweight development and
sexual maturation in F1 pups (2003)

		males					females				
ppm		0	25	100	500	1000	0	25	100	500	1000
Body	weight										
day 0	bodyweight [g]	5.7	5.7	5.7	5.8	5.7	5.4	5.4	5.4	5.6	5.4
0	% of control		100	100	102	100		100	100	104	100
day 4°	bodyweight [g]	9.7	9.6	9.5	9.5	8.9**	9.5	9.2	9.1	9.2	8.5*
7	% of control		99	98	98	92		97	96	97	89
day 4°°	bodyweight [g]	9.7	9.6	9.5	9.5	8.9**	9.5	9.3	9.1	9.2	8.5**
	% of control		99	98	98	92		98	96	97	89
day 7	bodyweight [g]	15.9	15.4	15.4	14.9*	13.0**	15.5	14.9	14.8	14.2	12.6**
	% of control		97	97	94	82		96	95	92	81
day 14	bodyweight [g]	32.3	31.6	30.8	29.2**	23.8**	31.5	30.8	29.9	28.1**	23.2**
	% of control		98	95	90	74		98	95	89	74
day 21	bodyweight [g]	52.4	51.9	49.9*	45.2**	35.3**	50.4	50	47.9	43.1**	34.0**
	% of control		99	95	86	67		99	95	86	67
body	weight gain										
day 0-4	bodyweight gain [g]	4.07	3.84	3.74	3.74	3.17**	4.05	3.82	3.7	3.66	3.16**
	% of control		94	92	92	78		94	91	90	78
day 4-7	bodyweight gain [g]	6.16	5.82	5.92	5.35**	4.15**	5.98	5.64	5.71	5.03**	4.12**
	% of control		94	96	87	67		94	95	84	69
day 7- 14	bodyweight gain [g]	16.44	16.15	15.41	14.27**	10.75**	16.24	15.98	15.25	13.9**	10.7**
	% of control		98	94	87	65		98	94	85	66
day 14- 21	bodyweight gain [g]	20.08	20.32	19.03	15.95**	11.47**	18.94	19.3	18.03	14.9**	10.9**
	% of control		101	95	79	57	1	102	95	79	57
day 0-	bodyweight gain [g]	46.74	46.15	44.14*	39.39**	29.54**	45	44.6	42.52	37.5**	28.7**

Fen	propidin		Volu	me 1 – Le	evel 2			May	2021		
21	% of control		99	94	84	63		99	94	83	64
sexua	al maturation			<u> </u>						<u> </u>	
age [o	days]	25.3	24.8	25.6	26.1	28.0##	32.5	31.6	33.7	37.1##	42.0##
body	weight [g]	71.27	69.07	70.33	59.80**	48.37**	102.6	100.3	107.5	111.1*	105.8

* p <0.05, ** p <0.01 (Anova + Dunnett test); ## p <0.01 (Kruskal-Wallis + Dunnett test); ° preculling, °° postculling

Table 6.8.3-7Two-generation reproduction study with fenpropidin: F1 - mating indices, survival,gestation and delivery parameters females (2003)

ppm	0	25	100	500	1000
Females					
placed with males and mated	30	30	30	30	30
inseminated	28	29	30	30	30
mating index [%]	93.3	96.7	100	100	100
pregnant	28	29	29	29	30
fertility index [%]	100	100	96.7	96.7	100
with defined day 0 pc	27	28	30	29	30
mating after days	2.6	2.8	2.4	2.9	3.0
without evidence of mating:	3	2	0	1	0
	_	_			
pregnant non pregnant	1	1	0	1	0
died pregnant / non pregnant	0 / 0	0 / 0	0 / 0	0 / 0	0 / 0
pregnant, not delivering	1	0	0	0	0
delivering	27	29	29	29	30
with liveborn pups with all pups	27	29	29	29	30
stillborn with stillborn pups	0	0	0	0	0
gestation index [%]	96.4	100	100	100	100
parturition index [%]	96.4	100	100	100	100
duration of gestation [day]	22.1	22.1	22.1	22.0	22.0
Males					
placed with females					
mated	28	29	30	30	30
mating index [%]	93.3	96.7	100	100	100
with females pregnant	28	29	30	29	30
fertility index [%]	100	100	96.7	96.7	100

May 2021

Integrating and assembling the lines of evidence for delays in sexual maturation and EAS-mediated adversity can be found in Appendix_E

Dataset sufficiency in mammals

A dataset is considered to have sufficiently investigated EAS related adversity in relation to mammals if the parameters investigated in a two-generation reproductive toxicity study (OECD TG 416) conducted to the 2001 revision of this guideline have been assessed (EFSA-ECHA, 2018). A compliant study is available for fenpropidin. In conclusion, the potential of EAS related adversity is sufficiently investigated for fenpropidin.

Table 6.8.3-8: Comparison of the parameters sensitive to perturbation of the endocrine system required in
the 2001 revision of OECD 416 and the two-generation toxicity study with fenpropidin.

Parameter	Assessed in the two-generation study with fenpropidin
Gross necropsy (macroscopic) observations	Yes
Reproductive performance:	Yes
Pre-coital interval	
Mating (copulation indices)	
Fertility	
Gestation index	
Duration of gestation	
Parturition	
Litter size (reductions in litter size can be indicative of abortions/resorptions/intra-uterine deaths)	
Number of implantations	
Number of <i>corpora lutea</i>	Yes
Sex ratio	Yes
Oestrus cyclicity	Yes
Sexual maturation (vaginal opening and preputial separation)	Yes

Fenpropidin	Volume 1 – Level 2	May 2021
Parameter		Assessed in the two-generation study with fenpropidin
Ano-genital distance		Not triggered (delay in sexual maturation was considered bodyweight related)
Sperm analysis (number, motility a	and morphology)	Yes
Organ weights: uterus, ovaries, tes with coagulating glands, pituitary,	tes, epididymides, prostate, seminal vesicles thyroid and adrenal glands	Yes
Histopathological examination: va epididymis, seminal vesicles, prost	agina, uterus (with cervix), ovaries, testis, ate (and coagulating gland)	Yes

A dataset is considered to have sufficiently investigated thyroid related adversity in relation to mammals if the parameters investigated in OECD TG 407, 408, 409 (and/or the one-year dog study, if available), 416, and 453 have been assessed. Assessment of the potential for fenpropidin to alter thyroid related parameters (histology and/or weight) has been conducted in studies spanning a range of durations (from 28-days to 104-weeks), in the mouse, rat and dog, and through multiple exposure routes (see data reviews in Section 4). It is therefore determined that the potential for thyroid related effects in relation to mammals has been sufficiently addressed.

Assessment of endocrine related adversity in mammals

Overall, no adversity based on EATS-mediated parameters is observed and thus, the first condition of the ED criteria is not met. Therefore, it is possible to conclude that the substance does not meet the ED criteria according to scenario 1a of the EFSA-ECHA guidance (2018).

Moa analysis

Not relevant. No effect on any parameter described as '*EATS-mediated*' or '*sensitive to, but not diagnostic of EATS*' in the guidance document was identified in the fenpropidin mammalian database.

Conclusions

The available data on fenpropidin do not indicate effects consistent with endocrine disruption. In accordance with the EFSA-ECHA (2018) Guidance, EATS-mediated parameters have been sufficiently investigated *in vivo*. Applying this Guidance Document, the conclusion can be drawn that fenpropidin does not meet the criteria for endocrine disruption with respect to humans.

RMS comments and conclusion: Regarding the data sufficiency, the RMS agrees with the notifier's conclusion, that the ED data set can be considered as complete. The RMS is also in agreement with the conclusion that the ED criteria are not met and therefore Fenpropidin can be considered as non-ED substance.

NON-MAMMALIAN SPECIES

1. Data review

FenpropidinVolume 1 – Level 2May 2021In Vivo Data – Non-Mammalian Species

1.1 Existing Data in OECD Conceptual Framework level 1

The following studies conducted as part of the regulatory data package for registration of fenpropidin were not specifically designed for detection of endocrine disrupting properties, but as they cover life stages and endpoints relevant to growth and development they have been included in the current evaluation.

Report:	(1989) The pr	rolonged toxicity of RO12-3049/000 to Rainbow	v trout (Salmo gairdneri).,
	Project number CGA114900/0071		Syngenta File Number

Guidelines: OECD 204

GLP: Yes

Study design: Rainbow trout were exposed in groups of 10 to nominal concentrations of 0.032, 0.1, 0.32, 1.0 and 3.2 mg fenpropidin/L in a flow-through test system for 21 days at 14.0 °C. A dilution water control group and a solvent control group were also employed. Actual concentrations of fenpropidin were determined by chemical analysis on 9 occasions during the 21-day study. Mortality and symptoms of toxicity were recorded daily.

Endpoints relevant for assessment of potential for endocrine disruption

• growth

Effects on endpoints relevant for assessment of potential for endocrine disruption

None

CONCLUSIONS

Reliability score	1 – Reliable without restrictions					
Relevance score	Medium (endpoint in a repeat dose toxicity test, which may be influenced by the endocrine system, but is also known to be affected by other factors, e.g. toxicity)					
Overall significance	Low					

Report:	2016. Fenpropidin T. G. Early Life-Stage Toxicity Test with Fathead Minnow (<i>Pimephales promelas</i>). Study No.
	(Syngenta File No. CGA114900/10666)

Guidelines: OCSPP 850.1400, OECD 210, ASTM 1241-05

Fenpropidin GLP: Yes

Volume 1 – Level 2

May 2021

Study design: Newly fertilised *Pimephales promelas* embryos (30 per replicate, 4 replicates) were exposed under flow-through conditions to fenpropidin technical at nominal concentrations of 0.15, 0.38, 0.96, 2.4, 6.0 and 15 μ g a.s/L (measured 0.079, 0.26, 0.82, 1.6, 3.8 and 10 μ g a.s./L – 52 to 86% of nominal) as well as a dilution water control. Embryos were exposed for 4 days and after hatching thinned to 20 fry per replicate and exposed for a further 28 days. Effects on embryo survival, larval survival and larval growth (length and wet/dry weight) were recorded.

Endpoints relevant for assessment of potential for endocrine disruption

- Hatching success
- Larval growth (length and wet/dry weight)

Effects on endpoints relevant for assessment of potential for endocrine disruption

• Larval growth (length only) was significantly reduced at $10 \,\mu\text{g/L}$

Effects on larval growth (length only) were observed the highest concentration tested of $10 \mu g/L$ without associated effects on survival.

CONCLUSIONS

Reliability score	1 – Reliable without restriction
	Medium (Endpoint in a multi-generation test, or other repeat dose standard
Relevance score	toxicity test, which may be influenced by the endocrine system, but is also
	known to be affected by other factors, e.g. toxicity, etc.)
	Indicative for evidence of effects relevant for the assessment of
Overall significance	endocrine disruption (Screening assay studies of medium relevance and
	with reliability scores of 1 or 2)
Effects of potential relevance	Reduced growth

A mesocosm study conducted with a solo formulation of fenpropidin (A-7516 A) is also considered, as fish included in the study underwent chronic exposure to the active ingredient.

Report:Neumann CH. 1997. CGA 114900 EC 750 (A-7516 A): Outdoor aquatic mesocosm study of the
environmental fate and ecological effects. Report No. 95N001. Novartis Crop Protection AG,
Basle, Switzerland (Syngenta File No. CGA114900/0500)

Fenpropidin Guidelines:

Volume 1 – Level 2

May 2021

Guidance Document on Testing Procedures for Pesticides in Freshwater Mesocosms. From the Workshop "A meeting of Experts on Guidelines for Static Field Mesocosm Tests", held at Monks Wood Experimental Station, Huntingdon, UK, July 3-4, 1991.

Workshop on Aquatic Microcosms for Ecological Assessment of Pesticides held at Wintergreen, Virginia, USA, Oct. 6-11, 1991.

European Workshop on Freshwater Field Tests (EWOFFT) held in Potsdam, Germany, June 25-26, 1991. Draft OECD TG; Proposal for Freshwater lentic Field Testing of Xenobiotic Chemicals, issued by the Aquatic Model Ecosystem Advisory Committee under the auspices of SETAC Foundation for Environmental Education, Pensacola, Florida, USA, 1993.

GLP: Yes

Study design: Ecological effects mesocosm study conducted in 12 foil-basins coated with clay (10 cm) buried in the ground, each with a volume of about 20 000 l, length 6 m (surface)/1 m (bottom), width 6 m (surface)/1 m (bottom), height: about 1.5 m (deep water zone)/0.5 m (shallow water zone). Three mesocosms were used as controls, one mesocosm for the highest test concentration, the other treatment groups consisted of two replicates. The mesocosms were randomly assigned to treatment. The mesocosms were filled with water and sediment from a natural pond. Sediment and water in the microcosm was introduced from a nearby supply pond. The sediment of each mesocosm and microcosm was characterised separately. Algae, zooplankton and other organisms were introduced with the water from the supply pond. Periphyton developed from natural populations on glass slides about 30-40 cm below the surface of each mesocosm (introduced March, 28). Macrophytes (Myriophyllum spicatum, Potamogeton natans, Chara intermedia) developed from rhizomes left from a study one year before or grew from the border of each pond where they had not been removed. Macroinvertebrates entered the mesocosms via egg deposition of adult insects. Invertebrate refugia were placed in the center of each mesocosm (April, 11) to allow colonisation. 20 juvenile bluegill sunfish (Lepomis macrochirus) about 2.0-2.5 cm in size were stocked into the meso/microcosms (April, 11). The test substance was applied to mesocosms as over-spray using a Knapsack sprayer, in sequence from the lowest to the highest treatment level. The study duration was 25 weeks after 1st application (i.e. from April until October).

Endpoints relevant for assessment of potential for endocrine disruption

- Fish length and weight
- Gonadal weight/gonadosomatic index

Effects on endpoints relevant for assessment of potential for endocrine disruption

Volume 1 – Level 2

May 2021

• none

While the study was conducted with a (solo) formulation containing fenpropidin, the study was of a duration where it can be expected that chronic exposure of the fish was predominantly to the active substance, and the study can be considered to be 'as a.s.'. There were no effects on fish growth (length and weight) or gonadosomatic index, though the degree of variability in this parameter (combined with the low degree of replication in the study) means that it is likely only large effects on this parameter could have been detected. The study did not report sex (and consequently sex ratio) of the fish sampled at the end of the study, and it is not clear from the report whether the fish had undergone sexual maturation. Combining gonadosomatic index for mixed sex groups would increase variability in this parameter. In conclusion, the responses reported for Bluegill sunfish from this chronic study did not indicate any endocrine-mediated adversity, though the endpoints measured lacked the diagnostic capacity that would be expected of a study designed for assessing endocrine effects.

CONCLUSIONS

Reliability score	1 – Reliable without restriction
Relevance score	Medium (Endpoint in a multi-generation test, or other repeat dose standard toxicity test, which may be influenced by the endocrine system, but is also known to be affected by other factors, e.g. toxicity, etc.)
Overall significance	Indicative for no evidence of effects relevant for the assessment of endocrine disruption (repeat dose studies of medium relevance and with reliability scores of 1 or 2)
Effects of potential relevance	none

1.2. Non-mammalian studies in OECD Level 4

Report:	and 1992. Ro 12-3049/000 The Effect of Dietary Inclusion on
	Reproduction in the Bobwhite Quail Volume I. Study report no.
	(Syngenta
	File No. CGA114900/0133)

Guidelines: OECD 206

GLP: Yes

Study design: Adult 40 week old bobwhite quails (*Colinus virginianus*) were exposed to dietary concentrations of fenpropidin (nominal 0, 30, 180 and 1080 ppm). Measured concentrations in diets were stable at 93.0-100.1% of nominal. Birds were exposed for 21 weeks (11 weeks prior to egg production and 10 weeks during

FenpropidinVolume 1 – Level 2May 2021

egg production). Twenty replicates per treatment with 1 male:1 female per replicate. Birds were observed for signs of mortality, abnormal behaviour (daily), body weight, egg production, egg shell thickness, egg quality, viability of embryos, hatchability, number and weight of hatchlings, hatchling survival and gross pathology.

Endpoints relevant for assessment of potential for endocrine disruption

- Egg production, egg shell thickness, egg quality
- Viability of embryos
- Hatchability, number and weight of hatchlings
- Gross pathology

Effects on endpoints relevant for assessment of potential for endocrine disruption

- Egg production, mean egg weight, viable embryos as a proportion of eggs set, hatchlings of eggs set, 14 day survivors per female and initial bodyweight of hatchlings were all significantly reduced at the top concentration of 1080 ppm
- The proportion of female birds laying eggs showed a decreasing trend across the dose range

Observations of reduced reproduction were seen in the highest concentration tested of 1080 ppm without associated effects on systemic toxicity. The day 14 chick body weights were also significantly reduced at 30, 180 and 1080 ppm, although the significance level at 30 and 180 ppm was reduced, compared to the significance level at 1080 ppm. Since the differences reported between the 30 and 180 ppm groups and the control were relatively small and no differences were observed in any of the other reproductive parameters, these effects were not considered as biologically significant, with a NOEL of 180 ppm reported.

Reliability score	1 – Reliable without restrictions
	Medium (Endpoint in a multi-generation test, or other repeat dose
Relevance score	standard toxicity test, which may be influenced by the endocrine system,
	but is also known to be affected by other factors, e.g. toxicity, etc.)
	Indicative for evidence of effects relevant for the assessment of
Overall significance	endocrine disruption (Screening assay studies of medium relevance and
	with reliability scores of 1 or 2)
Effects of potential relevance	Reduced reproduction

CONCLUSIONS

2. Integration and assessment of lines of evidence for endocrine disrupting potential relevant to nontarget organisms

FenpropidinVolume 1 – Level 2May 20212.1 Lines of evidence for adversity

According to the Criteria an adverse effect relevant to non-target organisms "is a change in the morphology, physiology, growth, development, reproduction or life span of an organism, system or (sub)population that results in an impairment of functional capacity, an impairment of the capacity to compensate for additional stress or an increase in susceptibility to other influences"

Effect on endpoints relevant to survival, growth, development and reproduction in available ecotoxicology studies may therefore be regarded as relevant to establishing evidence for adverse effects. However, as indicated in the Guidance document with respect to validated test guidelines informative for endocrine disrupting properties (Table 15), such endpoints can only be considered '*Sensitive to, but not diagnostic of, EATS*'.

2.1.1 Survival

One avian reproduction study (OECD 206) is available for fenpropidin, in the Bobwhite quail (**1990**) and **1992**). No effects on parental survival were reported at any dose, while in offspring there were reductions in % viable embryos/eggs set, % hatchlings/eggs set, and number of 14 day survivors per female in the top dose, 1080 ppm.

Three studies in fish are available: a prolonged toxicity study (OECD 204) in Rainbow trout (**1989**), a fish early life stage (ELS, OECD 210) study in the Fathead minnow (**2016**), and the mesocosm study including Bluegill sunfish (Neumann 1997). In the prolonged toxicity test by **2016** (1989), survival was significantly affected at the top two test concentration (1.0 and 3.2 mg/L). Behaviour was also affected at these test concentrations, with observations of lethargy and increased pigmentation. These observations indicate that the reduced survival in fish exposed to fenpropidin test was due to overt/systemic toxicity, in a study designed to determine NOEC/LOECs for risk assessment. In the early life stage test in the Fathead minnow there was no effect on survival reported, which is not inconsistent with the OECD 204 test, considering the concentration range tested. No mortality or behavioural alterations in the Bluegill sunfish exposed for 25 weeks in the mesocosm study was reported by Neumann (1997)

2.1.2 Growth

Hatchling body weight is the apical endpoint relevant to growth in avian reproduction studies (OECD 206 and similar). In the study on effects of fenpropidin on Bobwhite quail (**1992**), there was a significant reduction in hatchling bodyweight at the top test concentration (1080 ppm) on day 0 (hatching) and day 14. This was concurrent with a reduction in hatchling survival at this test concentration (see above), and is clearly an indication of the onset of systemic toxicity in the offspring.

Length and wet/dry weight are the apical endpoints relevant to growth in the fish prolonged toxicity test (OECD 204). In the study in Rainbow trout by (1989), no effects on length or body weight were reported at

134

FenpropidinVolume 1 – Level 2May 2021any test concentration. In contrast, in the fish early life-stage test (OECD 210) by(2016), there was asignificant reduction in body length, but not wet weight, at the top test concentration $(10^-g/L)$. Differences ingrowth/survival responses in these two studies may represent different life stage and or species sensitivity, andshould be considered as part of a continuum of indications of systemic toxicity (growth, behaviour, survival)with increasing exposure to fenpropidin. No effects on length or weight of fishes were observed in themesocosm study by Neumann (1997).mesocosm study by Neumann (1997).

Growth was therefore affected by fenpropidin in birds and fish, but in studies not specifically designed for identification of endocrine disrupting properties. Moreover, the growth endpoints in these ecotoxicity test guidelines are well established indicators of systemic toxicity, and toxicity through other non-endocrine modes of action, as acknowledged by the classification of such endpoints in the Appendix E spreadsheet as 'Sensitive to but not diagnostic of'. These studies therefore provide no evidence of effects of fenpropidin on growth in fish or birds through endocrine disruption.

2.1.3 Development

Hatchability is the apical endpoint relevant to development in the avian reproduction test (OECD 206), though this endpoint also integrates embryonic survival. In the study in Bobwhite quail (**1992**) there was a reduction in the percentage eggs hatched/eggs set, though no significant reduction in the absolute number of eggs hatched, at the top test concentration. This correlated with the % of viable embryos/eggs set and the reduction in hatchling body weight, suggesting that the response was indicative of offspring systemic toxicity. Hatching success is the apical endpoint relevant to development in the fish early life-stage test (OECD 210). In the study in the Fathead minnow (**1999**), there was no effect of fenpropidin exposure on hatching success at any of the test concentrations.

The available studies in fish and birds therefore provide no evidence of effects of fenpropidin on development through endocrine disruption.

2.1.4 Reproduction

Apical endpoints relevant to reproduction in the avian studies include egg production, egg viability, egg quality (size, cracking), and gross pathology. In the study in the Bobwhite quail, there were reduced numbers of eggs laid, number eggs per female and reduced numbers of females laying at the top test concentration. The fish early life stage study (FIFRA 72-4) does not cover the relevant life stage to be informative on reproduction. Reproductive activity and sex ratio of fish in the mesocosm study were not reported, and there were no effects on gonadosomatic index in the fish sampled at the end of the study (Neumann 1997) The only available information on reproductive effects of fenpropidin in non-target organisms is therefore the single bird reproduction study. Considering the dose-concordance of effects on egg laying in the parental

Volume 1 – Level 2

May 2021

generation with effects on offspring viability, it is reasonable to assume that these responses are collectively indicative of systemic toxicity.

	Grouping	Line(s) of Evidence	Species	Exposure	Route of exposure	Effect Concent ration	Observed effects	Assessment	Assessment of integrated line of evidence	Modali ty
Integrated line of evidence for endocrine activity	No data ava	ilable								
Integrated line of evidence for adversity	EATS- mediated parameters	None availab	le							
	Sensitive-to- but not diagnostic of EATS		Colinus virginianus	21 w	Diet	1080 ppm	Reduced chick bodyweights on Day 0 and Day 14 at 1080 ppm; highest dose 1080 ppm	Not indicative of endocrine disruption – endpoint is sensitive to but not diagnostic of endocrine mediated effect, concurrent with reduced embryo viability, hatching rate and 14 day survival		
		Growth	Pimephales promelas	32 d	Water	10 μg/L	Decreased mean total length of surviving larvae at 10^{-} g/L; no effect on body weight; highest dose 10^{-} g/L	Endpoint is sensitive to but not diagnostic of endocrine mediated effect	No evidence for endocrine mediated adverse effects – all effects occurring in context of systemic toxicity	-
			Oncorhynch us mykiss	21 d	Water	n/a	No effect on body weight and length; highest dose 3.2 mg/L	No evidence		
			Lepomic macrochirus	25 w	Water	n/a	No effect on body weight or length of fish sampled at the end of the study	No evidence		

May 2021

FenpropidinVolume 1 – Level 2Table 2.6.8.3-9Assembled lines of evidence non-target organisms

Fenpropidi	in		1 – Level 2		Μ	lay 2021		
		Development	Colinus virginianus Pimephales promelas	21 w 32 d	Diet Water	1080 ppm n/a	Reduction in the %hatchlings of eggs set at 1080 ppm; highest dose 1080 ppm No effect on the hatching success; highest dose 1080 ppm	Not indicative of endocrine disruption – endpoint is sensitive to but not diagnostic of endocrine mediated effect, concurrent with reduced embryo viability, hatchling bodyweight and 14 day survival No evidence
		Reproduction (fecundity)	Colinus virginianus	21 w	Diet	1080 ppm	Reduced egg production at 1080 ppm; highest dose 1080 ppm	Not indicative of endocrine disruption – endpoint is sensitive to but not diagnostic of endocrine mediated effect, concurrent with reduced embryo viability, hatching rate, hatchling bodyweight and 14 day survival
		Reproduction (fertility)	Colinus virginianus	21 w	Diet	1080 ppm	Reduction in the % of viable embryos of egg set and in the number of 14- day survivors per female and mean egg weight (g) at 1080 ppm; highest dose 1080 ppm	Not indicative of endocrine disruption – endpoint is sensitive to but not diagnostic of endocrine mediated effect, concurrent with reduced hatching rate, hatchling bodyweight and 14 day survival
		Reproduction	Lepomis macrochirus	25 w	Water	n/a	No effect on gonadosomatic index	No evidence
Evidence of general toxicity	Mortality		Colinus virginianus	21 w	Diet	n/a	No mortality (F0); highest dose 1080 ppm	No evidence
						1080 ppm	Decreased embryo	Indicates that embryo/hatchling MTC is lower than for adults

Fenpropidir	n Volume	1 – Level 2		Ma	y 2021			
						viability and 14 d survival of offspring at highest dose 1080 ppm		
		Pimephales promelas	32 d	Water	n/a	No effect on the larvae survival at test termination; highest dose 10 $^{-}$ g/L	No evidence	Sufficient evidence of systemic toxicity to exclude endocrine mechanism as plausible mode of action for observed effects on
		Oncorhynch us mykiss	21 d	Water	1 mg/L	Increased mortality at 1.0 and 3.2 mg/L; 100% mortality at 3.2 mg/L; highest dose 3.2 mg/L	Test concentration evidently around/above MTC	development (embryo viability, hatching), reproduction and growth.
	Behaviour	Colinus virginianus	21 w	Diet	n/a	No abnormal behaviour; highest dose 1080 ppm	No evidence	
		Oncorhynch us mykiss	21 d	Water	1 mg/L	Increased lethargy and pigmentation at 1.0 and 3.2 mg/L; highest dose 3.2 mg/L	Test concentration evidently around/above MTC	

Volume 1 – Level 2

2.2 Lines of evidence for EATS-related endocrine activity

No in vivo mechanistic studies in non-target organisms are available for fenpropidin.

3. Analysis of evidence relevant to ED potential in non-target organisms

Studies recommended in the guidance document as sufficient for investigation of 'EATS-mediated adversity' in non-target organisms: fish full life study (MEOGRTS or equivalent and LAGDA) are not available for fenpropidin. Consequently, with reference to Figure 1 in the Guidance document, it is not possible to conclude from the available dataset that fenpropidin does not meet the ED criteria (Scenario 1a). In assembling the lines of evidence for adversity in non-target organisms in the preceding section, it is clear that there is no evidence of EATS-mediated adversity in the available ecotoxicology studies. Parameters relevant to survival, growth, development and reproduction in the fish prolonged toxicity and early life stage toxicity studies, and the bird reproduction study may be considered 'sensitive to, but not diagnostic of, EATS', and were evidently indicative of systemic/overt toxicity. With reference to Figure 1, Scenario 2b is not relevant in the present evaluation.

As noted in Section 2, endocrine activity has not been observed in non-target organisms. With reference to Figure 2.1, Scenario 2b is not relevant in the present evaluation.

The Guidance states in Section 3.4.2. that 'to consider the EAS modalities for non-target organisms sufficiently investigated, preferably the fish short-term reproduction assay (FSTRA; OECD 229) should have been conducted, and to consider the T-modality sufficiently investigated, an Amphibian Metamorphosis Assay (AMA; OECD 231), should have been conducted.

4. MOA Analysis - Non-Target Organisms

Not relevant at present time. No effect on any parameter described as "EATS-mediated" in the guidance document was identified in the fenpropidin ecotoxicology database currently available.

5. Conclusions – Non-Target Organisms

Available ecotoxicology data do not indicate effects consistent with endocrine disruption, however, considering the available data in accordance with the EFSA-ECHA Guidance document (2018), there is not currently a fully adequate dataset to conclude on whether fenpropidin exhibits endocrine disrupting properties in non-target organisms according to the Endocrine Disruption Criteria (2018/605).

As first steps to make sufficient data available to reach a conclusion, Syngenta proposes to conduct the following studies:

- 1) Fish short-term reproduction assay (OECD 229) in the Fathead minnow.
- 2) Amphibian Metamorphosis Assay (OECD 231).

Volume 1 – Level 2

RMS comments and conclusion (RAR 2020):

Wild mammals

For the ED assessment for humans provided in Volume 3 CA B.6, it was concluded that EATS mediated parameters were sufficiently investigated and fenpropidin does not meet ED criteria. This also applies to wild mammals as non-target organisms.

Non-target organisms other than mammals

1) T-modality

For the ED assessment through the T-modality for non-target organisms other than mammals, no specific studies were available. According to OECD 150, the ELS study with fish can provide some information for the T-modality when parameters like swim bladder inflation and time to metamorphosis are measured and reported. In the case of fenpropidin, time to hatch was measured and reported, however, no delays in hatch were observed at any treatment level.

Based on available information, it is concluded that the available evidence is not sufficient to conclude either on T-mediated endocrine activity or on the T-mediated adversity. Further data need to be generated.

According to the ECHA/EFSA GD (2018), scenario 2a (iii) should be selected:

Adversity based on T-mediated parameters	Positive mechanistic OECD CF level 2/3 Test	Scenario	Next step of the assessment	Scenario selected (indicate with an "x" the scenario selected based on the assessed lines of evidence)
No (not sufficiently investigated)	No (not sufficiently investigated)	2a (iii)	Generate missing level 2 and 3 information. Alternatively, generate missing "EATS-mediated" parameters. Depending on the outcome move to corresponding scenario	X

According to the guidance, additional information should be generated. A level 3 study according to OECD TG 231 (AMA) is required.

However, considering that no T-mediated adversity was observed in mammals based on a complete dataset, a Xenopus Eleutheroembryonic Thyroid Assay (XETA) according to OECD TG 248 might be sufficient, instead of the AMA.

2) EAS-modality

For the ED assessment through the EAS-modality for non-target organisms other than mammals, one reproductive toxicity studies on birds (OECD TG 206), one prolonged toxicity study on fish (OECD TG 204) and one toxicity study with early life stages of fish (ELS) (OECD TG 210) was available.

However, these studies are only considered supportive for the lack of EAS-related adversity since they provide little information concerning potential EAS-related effects. Parameters relevant to survival, growth, development and reproduction in the fish prolonged toxicity and early life stage toxicity studies, and the bird reproduction study may be considered 'sensitive to, but not diagnostic of, EATS',

Overall, for EAS-modalities, in line with ECHA/EFSA GD (2018), the dataset is considered not sufficient for the assessment of E, A and S rndocrine activity and adversity.

Volume 1 – Level 2

According to the ECHA/EFSA GD (2018), scenario 2a (iii) should be selected:

Adversity based on T-mediated parameters	Positive mechanistic OECD CF level 2/3 Test	Scenario	Next step of the assessment	Scenario selected (indicate with an "x" the scenario selected based on the assessed lines of evidence)
No (not sufficiently investigated)	No (not sufficiently investigated)	2a (iii)	Generate missing level 2 and 3 information. Alternatively, generate missing "EATS-mediated" parameters. Depending on the outcome move to corresponding scenario	X

According to the guidance, additional information should be generated (Scenario 2a(iii)). A level 3 study according to OECD TG 229 (FSTRA) is required.

2.6.9 Summary of medical data and information

Manufacturing employees in Switzerland are medically examined by a company physician at the beginning of their employment and then routinely on a regular bases according to the criteria of the Swiss Accident Insurance Institution (SUVA). Routine medical examinations include: anamnesis, physical examination, blood analysis (haemoglobin, erythrocytes, leukocytes, thrombocytes, complete blood count, blood sedimentation rate, blood sugar, blood pressure, cholesterol, triglycerides, ALT, AST, alkaline phosphatase, bilirubin, and creatinine) and urine analysis. The active ingredient is manufactured on Syngentas behalf by a 3rd Party (

. No reports of adverse health effects have been made.

Formulation and packaging is located in Syngenta's plant in **Section** and in **Section**, in the past also in **Section**. Questionnaires have been sent out to the managers of the sites and company physicians (last update by March 2003).

Since 1991 about 450 tonnes of fenpropidin per year were used in **Example**, involving 20-50 workers. <u>No adverse</u> health effects have been reported.

Since 1992 about 10 formulations containing fenpropidin were produced in **Example 1**. Formulation is done in campaigns (e.g. 2 campaigns per year, 1 month per campaign, involving about 30 workers). <u>There was one report of adverse health effects in 1996 involving 4 workers from the packaging line – general itchiness and smarting of eyes in two workers each.</u> Unless other factors (e.g. other formulation ingredients) were involved, the observed effects might be related to fenpropidins well-known irritation potential perhaps in combination with not complete compliance to safety measures.

<u>No adverse health effects have been reported</u> from **Example**, involving 5 persons, 208 tonnes of material was used. In **Example** formulation of Fenpropidin products was done from 1989 to 1995 in about 10 campaigns per year (each campaign took 11 to 15 days each). A total of 30 persons were involved in the production. <u>No compound related adverse effects were reported</u>.

In summary, except a confirmation that potential exposure to fenpropidin can lead to irritation reactions of the skin and eye, no adverse health effects have been observed. Following the report from France in 1996, changes in operating procedures to improve standards of hygiene and reduce exposure have resulted in no further adverse effects being observed in any of the production or formulation.

No case of poisoning has been reported to the company. No cases of poisoning have been reported to the company.

In 1986 a survey of the use of Patrol 750 EC (A-7516 A; contains 750 g/L fenpropidin) among 65 farmers was performed in the UK. A questionnaire was sent to the farmers asking for information about use rates, mixing partners, description of activity (e.g. mixing and/or spraying; area sprayed), safety measures and whether adverse health effects were observed. While compliance to the recommended safety measures was relatively good – e.g. 78% and 32% of the farmers wore gloves and eye protection, respectively, during mixing/loading - none of the farmers reported any adverse health effect.

A literature search on human data / human exposure for fenpropidin has been performed.

In summary no cases of poisoning by exposure to fenpropidin or adverse health effects associated with exposure to the compound were found in the public literature. There is also no investigation published, reporting health effects on the general population due to exposure to fenpropidin.

2.6.10 Toxicological end points for risk assessment (reference values)

Table 53:	Overview of relevant studies for derivation of reference values for risk assessment	t
1 4010 55.		

Species		Test	Critical effect	NOAEL	LOAEL	Cross
	length, route of exposure)	substance				reference
Rat	28-day oral toxicity study Oral route: in diet	Fenpropidin (purity: 97%) Dose levels: 0, 50, 200, 1000, 2000 ppm (5.40, 20.1, 104.6, 200.1 mg/kg bw/day in M and 5.62, 19.9, 103.4, 212.2 mg/kg bw/day in F)	Increased hyperkeratosis of Esophagus (5/5 males, 5/5 females, 0/5 control) and non-glandular stomach (5/5 males, 2/5 females, 0/5 control); body weight reduction (28% males, 14% females at end of study); decreased food consumption (23% males over course of study)	1000 ppm (104.6 and 103.4 mg/kg bw/day in males and females, respectively)	2000 ppm (200.1 and 212.2 mg/kg bw/day in males and females, respectively)	(1994)
Dog	28-day oral toxicity study Oral route: in capsules	Fenpropidin (purity: 97%) Dose levels: 0, 5, 15, 25 mg/kg bw/day	Males: Mean relative liver weight (↑ 38%); mean relative kidney weight (↑ 17%); clinical chemistry parameters (↓ cholesterol 24.4%); vomiting, salivation Females: Decreased food consumption (54.9% week 1, 32.3% week 4); changes in clinical chemistry (↓ cholesterol 26.4%); vomiting, salivation	Males: 5 mg/kg bw/day Females: 15 mg/kg bw/day	Males: 15 mg/kg bw/day Females: 25 mg/kg bw/day	(1993)

Volume 1 – Level 2

May 2021

enpropidin		Volume 1 – Level 2		May		
Species	Study (method/type, length, route of exposure)	Test substance	Critical effect	NOAEL	LOAEL	Cross reference
Rat	90-day oral toxicity study Oral route: in diet	Fenpropidin (purity: 94.7%) Dose levels: 0, 20, 60, 120 mg/kg bw/day	Body weight decrease (↓ 30% males, 13% females week 13)	60 mg/kg bw/day	120 mg/kg bw/day	(1981)
Rat	90-day oral toxicity study Oral route: in diet	Fenpropidin Dose levels: 0, 20, 150, 1500 ppm (1.14, 9.84, 89.9 mg/kg bw/day in males and 1.24, 10.1, 97.3 mg/kg bw/day in females)	Food consumption(↓ 10% males, 5% females weeks 1-13); body weight (↓ 16% males, 8% females week 13); demyelination of spinal cord (one female), hindlimb paralysis (one female), cataracts (one female); pulmonary foam cells; changes in blood parameters and clinical chemistry parameters; relative liver weight (↑ 12% females)	150 ppm (9.84 and 10.1 mg/kg/day for males and females, respectively)	1500 ppm (89.9 and 97.3 mg/kg/day for males and females, respectively)	(1995)
Mouse	90-day oral toxicity study Oral route: in diet	Fenpropidin (purity: 99%) Dose levels: 0, 625, 1250, 2500, 5000 ppm (58, 155, 359, 547 mg/kg bw/day in males and 87, 179, 361 and 566 mg/kg bw/day in females)	Deaths (5 females died by week 5, 1 male week 13); reduced body weight (13.8% males, 10.4% females) week 13; enzyme change (↑ ASAT approximately 100% in both sexes)	1250 ppm (155 and 179 mg/kg bw/day for males and females, respectively)	2500 ppm (359 and 361 mg/kg bw/day for males and females, respectively)	(1981)
Dog	26-week oral toxicity study Oral route: in capsules	Fenpropidin Dose levels: 0, 2, 5, 12	Mortalities (one male); conjunctivitis and keratitis of	5 mg/kg/day	12 mg/kg/day	(1981)

Volume 1 – Level 2

May 2021

Species						
-	Study (method/type, length, route of	Test substance	Critical effect	NOAEL	LOAEL	Cross reference
1	exposure)	mg/kg/day	eye (one female); body weight development (↓ 12% females, week 1-25); overall body weight gain; vomiting; salivation			
	1-year oral toxicity study Oral route: in capsules	Fenpropidin Dose levels: 0, 2, 5 and 20 mg/kg/day	Hind limb paresis and demyelination of spinal cord (one male); indurated and inelastic pads (4/4 males and females); vomiting (4/4 females weeks 1-6); opacity of the lens (4/4 males and females from week 22); food consumption (↓ 27% week 1 and 14% week 4 females); relative renal weight (↑26% females); pigmentation of renal cells; granuloma of the lungs; skin irritation	5 mg/kg/day	20 mg/kg/day	(1995)
1	2-year chronic toxicity/carcinogenicity study Oral route: in diet	Fenpropidin Dose levels: 0, 5/2, 25/10, 125/50, 625/250 ppm (0.07, 0.34, 1.68, 8.53 mg/kg bw/day in males; 0.09, 0.45, 2.27, 11.83 mg/kg bw/day in females	Decreased body weight in females (12- 18% weeks 1-7; 9-14% throughout the study)	NOAEL (systemic): 50 ppm equal to 2.27 mg/kg bw/day for females; for males not stated	LOAEL (systemic): 250 ppm (equal to 11.83 mg/kg bw/day) in females	(1989)
		101110105				

Volume 1 – Level 2

May 2021

Species	Study (method/type,	Test	Critical effect	NOAEL	LOAEL	Cross
	length, route of exposure)	substance				reference
	carcinogenicity study Oral route: in diet	(purity not reported) Dose levels: 0, 30, 100, 300 and 1000 ppm (0, 4.12, 13.54, 41.90, 143.8 mg/kg bw/day for males and 0, 5.47, 17.70, 51.71, 166.1 mg/kg bw/day for females)	males (45% survival in week 80; 51% survival week 65-76; > 71% in all other groups including control) local irritation of upper gastro- intestinal tract and skin; reduced bodyweight development (11% males, 7% females, week 80)	300 ppm (41.9 mg/ kg bw/day in males and 51.7 mg/kg bw/day in females)	1000 ppm (143.8 mg/ kg bw/day in males and 166.1 mg/kg bw/day in females)	(1983)
Rat	two-generation study Oral route: in diet	Fenpropidin (purity 97%) 0, 25, 100, 500 and 1000 ppm (0, 2, 8, 42, 80 mg/kg bw/day)	Absolute body weight and body weight gain reduction, organ weights and histopathology changes (↑ adrenal cortical fatty change females 14/30 (control 6/30); delayed sexual maturation	Parental and offspring: 100 ppm (12 mg/kg bw/day)	Parental and offspring: 500 ppm (80 mg/kg bw/day)	(2003)
Rat	Developmental toxicity study Oral route: in diet	Fenpropidin (purity not reported) 0, 19.5, 47.5, 87.8 mg/kg bw/day	Decreased body weight and body weight gain (34% days 7-17; 9% days 0-21); decreased skeletal ossification on neural arches	Maternal: 19.5 mg/kg bw Developmental:47.5 mg/kg bw	Maternal: 47.5 mg/kg bw Developmental:87.8 mg/kg bw	(1981)
Rat	Developmental toxicity study Oral route: by gavage	Fenpropidin (purity 97%) 0, 10, 60, 90 mg/kg bw/day	decreased body weight gain (11% days 6- 16, not significant); decreased food consumption (10% days 11- 16)	Parental: > 90 mg/kg bw/d Offspring: > 90 mg/kg bw/d	-	(1994)

Volume 1 – Level 2

May 2021

enpropia		volume 1 – L		May		
Species	Study (method/type, length, route of exposure)	Test substance	Critical effect	NOAEL	LOAEL	Cross reference
	study Oral route: by gavage	(purity 96.9%) 0, 5, 10 and 20 mg/kg bw/day	toxicity: Decreased food consumption (11% days 7- 29), body weight gain (64% days 7- 29), defaecation	bw Developmental: 10 mg/kg bw	bw Developmental: 20 mg/kg bw	(2011)
			Developmental toxicity: ↑ incidence of persistent truncus arteriosus (3/204 foetuses, 3/23 litters) and incidence of severely malaligned sternebrae (3/204 foetuses, 3/23 litters outside of historical control range)			
Rabbit	Developmental toxicity study Oral route: by gavage	Fenpropidin (purity not reported) 0, 5, 12 and 30 mg/kg bw/day	Reduced body weight gain (24% days 1- 30), reduced foetal body weight (7% possibly a consequence of maternal toxicity or a consequence of larger litter size 7.2 vs. 5.7 in control)	Maternal: 12mg/kg bw Developmental: 30 mg/kg bw	Maternal: 30 mg/kg bw Developmental: > 30 mg/kg bw	and (1981)
Rat	Developmental neurotoxicity study Oral route: in diet	Fenpropidin (96.9%) 0, 40, 100, 400 ppm (0, 3, 7, 27 mg/kg bw)	No adverse effects	Maternal neurotoxicity: ≥400 ppm (27 mg/kg bw) Developmental neurotoxicity: ≥400 ppm (27 mg/kg bw)	-	(2011)
Mouse	Immunotoxicity study Oral route: in diet	Fenpropidin (purity: 96.9%) 125, 400, and 1250 ppm (0, 26,	No adverse effects	Immunotoxicity: 1250 ppm (258 mg/kg)	Immunotoxicity: >1250 ppm (258 mg/kg)	(2011)

Fenpropidin			Volume 1 – I	Level 2	May	2021				
	Species	Study	(method/type,	Test	Critical effect	NOAEL	LOAEL	Cross		

length, route of exposure)	substance		reference
	90, and 258 mg/kg)		

2.6.10.1 Toxicological end point for assessment of risk following long-term dietary exposure – ADI (acceptable daily intake)

The estimation of the Acceptable Daily Intake (ADI) is based on the lowest no observed adverse effect level (NOAEL) estimated from chronic toxicity/carcinogenicity studies. The lowest NOAEL was obtained from rat chronic toxicity/carcinogenicity study with a NOAEL of 2.27 mg/kg bw/day for females. This with an assement factor of 100 gives an ADI of 0.02 mg/kg bw/day. Therefore the ADI is proposed to be 0.02 mg/kg bw/day.

2.6.10.2 Toxicological end point for assessment of risk following acute dietary exposure - ARfD (acute reference dose)

The acute effects after ingestion of fenpropidin is expected to be related to fenpropidins irritative potential. Several studies strengthen this assumption. Hyperkeratosis of the esophagus was observed in the 28-days oral treatment of rats with fenpropidin with a NOAEL of 5.40 mg/kg bw/day. Vomiting and salivations occur in dogs after administration with fenpropidin in capsules in both the 28 days study and the 26 weeks study with a NOAEL of 5 mg/kg bw/day. In view of the fact that 28 day and 26 week studies in dogs are both considered as supplementary, the ARFD is derived from 28 day oral study in rats. Lowest local NOAEL from this study was 5.4 mg/kg bw/day, this with an assessment factor of 100 gives an **ARfD of 0.05 mg/kg bw/day**.

2.6.10.3 Toxicological end point for assessment of occupational, bystander and residents risks – AOEL (acceptable operator exposure level)

AOEL is based on the results from one year dog study. At top dose 20 mg/kg a spinal chord demyelination and hind limb paralysis were observed and were considered as critical effects for setting the NOAEL. Thus, the NOAEL was set at 5 mg/kg/bw, the second highest dose group evaluated. At this dose some effects in the liver are noted (increased liver weight, hepatocyte hypertrophy), however these effects are considered not to be adverse and are rather adaptive to the administration of the test substance. Thus, AOEL is based on NOAEL of 5 mg/kg/bw. This together with an assessment factor of 100 gives the **proposed AOEL of 0.05 mg/kg bw/day**. No correction factor for systemic availability is used since the oral absorption is considered to be more than 80 %.

2.6.10.4 Toxicological end point for assessment of occupational, bystander and residents risks – AAOEL (acute acceptable operator exposure level)

Acute AOEL is based on the NOAEL of 5.4 mg/kg bw/day from the 28 day oral rat study = the same basis as ARFD. No correction factor for systemic availability is used, therefore the proposed AAOEL is 0.05 mg/kg bw/day.

2.6.11 Summary of product exposure and risk assessment

The representative uses of fenpropidin in the EU for renewal of Annex I approval are cereals. The representative product A7516D (TERN 750 EC) will be applied as foliar spray with tractor mounted equipment and will be used with a rate of 562.5 g/ha of fenpropidin equal to 0.75 L/ha of the product. The worst case scenario is given by two treatments per season.

Operator exposure

The operator risk assessment was estimated using the EFSA AOEM model. Predicted systemic longer term and acute operator exposure to fenpropidin is acceptable (3.9 and 41 % of AOEL) when gloves and workwear are used

during mixing/loading

Worker exposure

The worker exposure was estimated using the EFSA AOEM model. According to the risk assessment, it can be concluded that the risk for workers performing inspection of cereal crops treated with A7516D is acceptable (49 % of AOEL without PPE (with adequate work clothing, but no gloves). As a standard rule, it should be mentioned on the label that treated crops should not be re-entered before spray deposits on leaf surfaces have completely dried.

Bystander and resident exposure

Estimates of bystander and resident exposure have been made using the EFSA model and a UK DEFRA study. It is concluded that there is no undue risk to bystanders or residents during and following field applications of A7516D.

2.7 **Residue**

2.7.1 Summary of storage stability of residues

The potential for degradation of residues during storage has been previously assessed in the framework of the peer review for fenpropidin (Sweden, 2005) and in the case of eggs, a new study (**2016**) was performed. Fenpropidin is the only component of the proposed residue definitions for monitoring and risk assessment with food of plant origin, and stability has been demonstrated in representative uses (wheat grain and straw). Fenpropidin and the metabolite CGA 289267 comprise the proposed residue definition for monitoring with food of animal origin. The stability of fenpropidin and CGA 289267 in cattle and egg commodities has been demonstrated with other components of the proposed residue definition for monitoring with food of animal origin accounted for through conversion factors based on metabolism studies.

Stability of relevant fenpropidin residues in plant and animal comodities is presented in Table 2.7.1-1.

Plant products	Commodity	Т		Stability (M	Ionths)			
(Category)	Commonly	(°C)		Fenpropi	idin			
High Water Content	Banana	< -18		24				
High Starch Content	Wheat, ears	< -18°		24				
High Acid Content	Grapes	< -18°		24				
Dry	Wheat, straw	< -18°		24				
Processed products	Wine	< -18°		24				
	Animal	т		Stabili	ty			
Animal	commodity	(°C)	Fenpropidin	CGA 289267	CGA 289268			
Cattle	Muscle	< -18°	112 days	24 months	30 months			
Cattle	Liver	< -18°	118 days	24 months	30 months			
Cattle	Milk	< -18°	69 days	24 months	30 months			
Poultry	Egg	< -18°	136 days	136 days	136 days			
Cattle	Kidney	< -18°	117 days	24 months	30 months			
Cattle	Blood	< -18°	29 days	24 months	30 months			
Cattle	Fat	< -18°	101 days	24 months	30 months			

 Table 2.7.1-1 Summary of the stability of fenpropidin residues in plant and animal comodities

2.7.2 Summary of metabolism, distribution and expression of residues in plants, poultry,

lactating ruminants, pigs and fish

2.7.2.1. Plant metabolism

Foliar applied fenpropidin plant metabolism studies have been undertaken in four crops, representing three crop groupings - cereals (spring wheat), root vegetable (sugar beet) and fruits (grape and banana). The representative use for fenpropidin in the EU is cereals.

Spring wheat metabolism studies have been conducted using two study designs. The first of these designs involved two applications of fenpropidin (500g ai/ha per application separated by 20 days) at rates and timings which were generally representative of the proposed GAP in the EU (study data previously evaluated during the 91/414/EEC review). The second design involved a single early application of 1125 g ai/ha which was not representative of the proposed GAP in the EU (new study data not previously reviewed).

In the first wheat study design total radioactive residues in the human edible portion of the wheat crop (grain) were 0.185-0.202 mg fenpropidin equivalents/kg and in the straw (animal feed) were 14.5-19.1 mg fenpropidin equivalents/kg. Fenpropidin was well metabolised and accounted for 37.5-55.7% TRR (0.076-0.103 mg/kg) in grain. Significant proportions of the remaining grain residue, comprising mainly of solvent unextractable components, was demonstrated to be associated with naturally incorporated radioactivity (starch). No individual extractable metabolite in grain exceeded 2.5% TRR (0.005 mg/kg) with the largest identified metabolite, CGA289263, accounting for 2.0-2.4% TRR (0.004 mg/kg).

The proportions of the total radioactive residue present as parent fenpropidin in forage (74-79% TRR; 4.97-7.02 mg/kg) and straw (52-54% TRR; 7.58-10.32 mg/kg) were higher than for grain. The remainder of the residue comprised either numerous minor metabolites, the largest identified residue of which was CGA289263 (forage: 1.8-2.0% TRR; 0.121-0.177 mg/kg; straw: 6.8-6.9% TRR; 0.987-1.319 mg/kg), or solvent unextractable residue.

In the second wheat study design total radioactive residues in the human edible portion of the wheat crop (grain) were 0.025-0.224 mg/kg and in the straw (animal feed) were 7.10-8.52 mg/kg. Fenpropidin was extensively metabolised and accounted for only 0.7 TRR (0.002 mg/kg) in grain. As in the first study design significant proportions of the remaining grain residue were associated with the unextractable components which were likely to be similarly associated with naturally incorporated radioactivity within endogenous material. The largest identified metabolite in grain, CGA289263, accounted for 1% TRR (0.004 mg/kg).

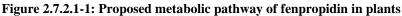
Residue levels of fenpropidin in wheat forage (19.5-26.3% TRR; 0.664-1.78 mg/kg) and straw (4.8-4.9% TRR; 0.346-0.401 mg/kg) were higher than that of grain. The remainder of the residue in these commodities comprised numerous metabolites, the largest identified residue of which was CGA289268, present in forage and straw at levels of 13.7-28.4% TRR (0.925-0.965 mg/kg) and 8.0-12.8% TRR (0.679-0.903 mg/kg) respectively and was found in both the free and glycoside conjugated forms of the metabolite.

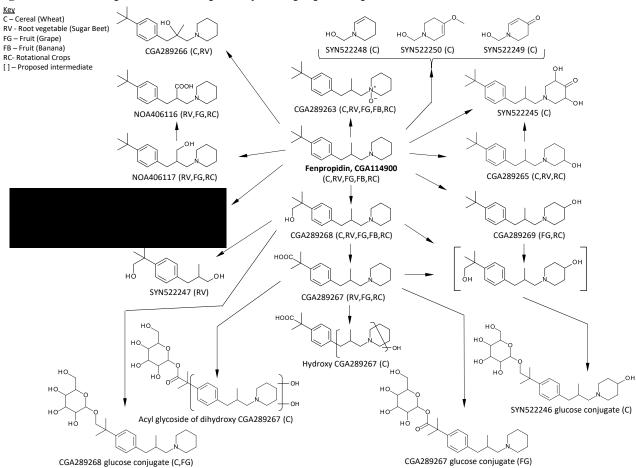
More minor metabolites identified in forage and straw were CGA289263 (4.4-4.5% TRR; 0.145-0.304 mg/kg and 6.9-7.6% TRR; 0.581-0.539 mg/kg respectively), a dihydroxy CGA289267 metabolite (3.1-7.1% TRR; 0.216-0.455 mg/kg found, exclusively in its acyl glycoside conjugated form in both commodities), and a monohydroxylated CGA289267 metabolite (1.8-2.4% TRR; 0.081-0.158 mg/kg; found exclusively in the free form of the metabolite).

Fenpropidin was similarly metabolised in the other three crop metabolism studies undertaken (sugar beet, grape and banana), with fenpropidin being the predominant residue component detected in commodities in each case. Levels of metabolites were generally one order of magnitude lower than the amount of parent compound. In sugar beet roots approximately 20% of the radioactivity was due to the incorporation of radioactive carbon into natural plant sugars.

Metabolic processes observed in the four crops involved:

- oxidations of the piperidinyl ring to CGA289263, CGA289269, CGA289265 and SYN522245
- successive oxidations of the tertiary butyl sidechain to CGA289268 and CGA289267
- oxidation of the 2-methylpropyl chain to CGA289266, NOA406117 and NOA406116
- additional non-specified hydroxylations


Volume 1 – Level 2


SYN522247,

cleavage of the piperidinyl bond (a minor process) to form SYN522249, SYN522248 and SYN522250

Glucose conjugation of the tertiary butyl oxidation metabolites was also observed.

The proposed metabolic pathway for the biotransformation of fenpropidin in plants is given in Figure 2.7.2.1-1.

2.7.2.2. Livestock metabolism

Fenpropidin is extensively metabolised and rapidly excreted in the lactating goat. Following oral dosing for four consecutive days with fenpropidin at a level of 150 mg ai equivalents per day (3.06 mg/kg bw/d; 87.4x the maximum dairy cows dietary burden), the majority of the administered dose was found in urine and faeces (63.3%). Only small amounts of the dosed radioactivity were found in milk (0.09%) and edible tissues (1.2%) demonstrating that fenpropidin and its metabolites do not bioaccumulate and are rapidly excreted.

Total radioactive residue levels were highest in the principal metabolising and excretion organs, liver (7.65 mg/kg) and kidney (4.37 mg/kg) but were lower in milk (0.196 mg/kg), muscle (0.164 mg/kg) and fat (0.042 mg/kg).

Parent fenpropidin was detected in the liver and fat only, at concentrations of 0.084 mg/kg and 0.003 mg/kg respectively.

The principal primary metabolites found in all tissues and milk were CGA289267 (8.4-38.4% TRR; 0.007-0.645 mg/kg) and SYN515213 (6.5-30.0% TRR; 0.007-0.713 mg/kg).

The major secondary metabolites observed were the sulphate ester conjugates of SYN515213, CGA289286 and SYN515215, accounting individually for 5.2-13.0% TRR (0.228-0.568 mg/kg) in kidney, \leq 33.4% TRR (\leq 0.066 mg/kg) in milk (predominantly as the CGA289268 conjugate) and 12.6-13.3% TRR (0.961-1.02 mg/kg) in liver. A glucuronide conjugate of CGA289267 was also observed in liver and fat at low levels (ca 1% TRR).

Other primary metabolites, including CGA289268 (present in fat only:1.2% TRR; 0.001 mg/kg), SYN515214 (\leq 3.7% TRR) and SYN515216 (liver and kidney: 8.3-9.8% TRR; 0.427-0.631 mg/kg, muscle and fat: 0.8-3.7% TRR; \leq 0.006 mg/kg), were also detected but were present at generally low proportions of the total radioactive residue.

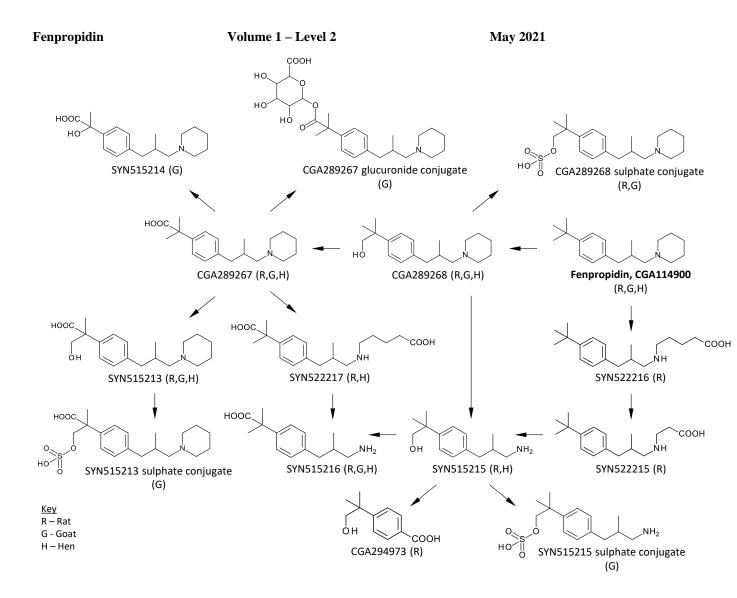
In laying hens, fenpropidin is also extensively metabolised and rapidly excreted. Following oral dosing for four consecutive days with fenpropidin at levels of 1.16 - 1.319 mg ai equivalents per day (0.77 and 0.88 mg/kg bw/d; 22.7 and 25.9x the maximum laying hens dietary burden), the majority of the administered dose (88-92%) was found in the excreta. Only small amounts of the administered dose were found in the eggs (0.1%) and tissues (1%) demonstrating that fenpropidin and its metabolites do not bioaccumulate and are rapidly excreted.

Total radioactivie residue levels were highest in the principal metabolising and excretion organs, liver (0.46-0.52 mg/kg) and kidney (0.61-0.62 mg/kg) but were lower in muscle (0.076-0.083 mg/kg), fat+skin (0.041-0.046 mg/kg), egg white (0.039-0.053 mg/kg) and egg yolk (0.028 mg/kg).

Parent was detected in eggs and all tissues. The highest absolute residues were detected in liver (0.037-0.045 mg/kg) with the remaining tissues and eggs containing only lower levels (< 0.01 mg/kg). The principal metabolite found was CGA289267 accounting for 35.5-91.7% TRR in eggs and all tissues. The highest absolute residues of CGA289267 were greatest in liver (0.182-0.212 mg/kg; 35.5-46.5% TRR) but were lower in other tissues and eggs (0.017-0.067 mg/kg). Other metabolites (including CGA289268: 2.7-2.8% TRR; 0.013-0.014) were found at generally significantly lower proportions of the total radioactive residue. Identified residues were found exclusively in their free (unconjugated) form of the residue.

The primary metabolic processes in hens and goats involved:

- Successive oxidations of the tertiary butyl sidechain to CGA289268, CGA289267, SYN515213 and SYN515214 (goat only)
- Successive oxidations of the piperidinyl ring to SYN522217, SYN515216 and SYN515215


Suphate ester and glucuronide conjugation were observed as secondary metabolism processes in the lactating goat.

The proposed metabolic pathway for the biotransformation of fenpropidin in animals is given in Figure 2.7.2.2-1.

As the metabolism of fenpropidin in the lactating goat and laying hen does not significantly differ from the rat, a pig study was not required.

There are currently no definitive triggers in Regulation (EC) No. 283/2013 on which to base a decision as to whether a "fish metabolism" study is required or not. Consequently no fish metabolism studies have been conducted for fenpropidin.

Figure 2.7.2.2-1: Proposed metabolic pathway of fenpropidin in livestock animals

<u>APPENDIX 1</u> Consumer Risk Assessments for Fenpropidin

										Prepar	e workbook for refine	u
				Status of the activ		ENPROP AIR 3	Code no.				calculations	
				LOQ (mg/kg bw):		0.01	proposed LOQ:					
				ADI (mg/kg bw/day		kicological en 0,02	d points ARfD (mg/kg bw):	0,02		Undo	refined calculations	
				Source of ADI:	().	Dir 08/66	Source of ARfD:	Dir 08/66				
nlain (choice of toxicologic	al reference values		Year of evaluation:		2007	Year of evaluation	2007				
e risk a	assessment has be	en performed on the ba	isis of the MRLs	collected from Men	nber States in April	2006. For each p	esticide/commodity	the highest national N	IRL was identified	(proposed temporar	y MRL = pTMRL).	
a pTM	IRLs have been subr	mitted to EFSA in Sept	ember 2006.		C	hronic risk	assessmen	•				
_					U		e) in % of ADI		1			-
							n - maximum					
				No of diets excee	ding ADI:		15					
	Highest calculated			Highest contributo			2nd contributor to			3rd contributor to		pTMRLs at
	TMDI values in % of ADI	MS Diet		to MS diet (in % of ADI)	Commodity / group of commod	lities	MS diet (in % of ADI)	Commodity / group of commoditie	s	MS diet (in % of ADI)	Commodity / group of commodities	LOQ (in % of ADI)
		UK Infant FR toddler		12,2 12,5	Milk and cream, Milk and cream,		1,3 1,3	Wheat Wheat		1,0 0,2	Bovine: Liver Bovine: Meat	
	13,4	NL child		9,3	Milk and cream,		2,4	Wheat		0,8	Bovine: Liver	
		UK Toddler FR infant		6,5 8,1	Milk and cream, Milk and cream,		2,0 0,4	Wheat		0,2 0,1	Bovine: Liver Bovine: Meat	
	8,3	IE adult DK child		3,7	Barley		2,4	Sheep: Liver Wheat		1,1	Wheat	
	7,4	WHO Cluster diet B		4,0 4,3	Milk and cream, Wheat		2,8 1,0	Milk and cream,		0,8	Bovine: Liver Barley	
		ES child DE child		4,0 4,5	Milk and cream, Milk and cream.		2,2 2,1	Wheat		0,3	Swine: Liver Birds' eggs	
	5,9	WHO cluster diet E		2,4	Barley		2,0	Wheat		0,9	Milk and cream,	
-		WHO cluster diet D SE general population	90th percentile	3,3 3,9	Wheat Milk and cream,		1,6 1,6	Milk and cream, Wheat			Barley Birds' eggs	
_	5,4	WHO Cluster diet F		1,8	Barley		1,8	Wheat		1,3	Milk and cream,	
	4,8	NL general ES adult		2,1 1,6	Milk and cream, Milk and cream,		1,1 1,5	Barley Barley			Wheat Wheat	
	4,6	WHO regional Europea DK adult	in diet	1,5	Milk and cream, Milk and cream,		1,5 1.0	Wheat Wheat		1,0	Barley Bovine: Liver	
	3,4	IT kids/toddler		3,3	Wheat		0,0	Barley			FRUIT (FRESH OR FROZEN)	
-		FR all population LT adult		1,6 1,3	Wheat Milk and cream,		0,8	Milk and cream, Wheat			Bovine: Meat Barley	
	2,4	FI adult		1,8	Milk and cream,		0,5	Wheat		0,1	Barley	
	2,1	UK vegetarian IT adult		1,0 2,1	Milk and cream, Wheat		1,0 0,0	Wheat Barley			Barley FRUIT (FRESH OR FROZEN)	
		PT General population UK Adult		2,0 0,9	Wheat Milk and cream,		0,1	Barley Wheat		0,1	FRUIT (FRESH OR FROZEN) Bovine: Liver	
		PL general population		0,9	FRUIT (FRESH C	R FROZEN)	0,0	FRUIT (FRESH OR	ROZEN)		FRUIT (FRESH OR FROZEN)	
7	For each commodity	Acute risk a ssment is based on the the calculation is base	ARfD. ed on the highes		umption per kg bw	and the correspor	ding unit weight fro	Acute risk as			weight was available from that M	S an average
	The acute risk asse: For each commodity European unit weigh In the IESTI 1 calcu In the IESTI 2 calcu	ssment is based on the	ARfD. ed on the highes Tl calculation. tors were 10, 7 of actors of 10 and 3	t reported MS cons or 5 (according to JI 7 were replaced by	MPR manual 2002) 5. For lettuce the c	, for lettuce a varia	ability factor of 5 wa	m the MS with the crit				S an average
	The acute risk asset For each commodity European unit weigh In the IESTI 1 calcu In the IESTI 2 calcu Threshold MRL is t	ssment is based on the the calculation is bas it was used for the IES' lation, the variability far lations, the variability far the calculated residue s for which ARfD/ADI	ARfD. ed on the highes Tl calculation. tors were 10, 7 of actors of 10 and 3	t reported MS cons or 5 (according to JI 7 were replaced by	MPR manual 2002) 5. For lettuce the c ure equivalent to 10 es for which	, for lettuce a varia	ability factor of 5 wa	m the MS with the crit s used. bilty factor of 3. es for which		If no data on the unit	weight was available from that M s for which ARfD/ADI is	S an average
	The acute risk asset For each commodity European unit weigh In the IESTI 1 calcu In the IESTI 2 calcu Threshold MRL is I No of commodities	ssment is based on the the calculation is bas it was used for the IES' lation, the variability far lations, the variability far the calculated residue s for which ARfD/ADI	ARfD. ed on the highes Tl calculation. tors were 10, 7 of actors of 10 and 3	t reported MS cons or 5 (according to JI 7 were replaced by d leads to an expos No of commoditie	MPR manual 2002) 5. For lettuce the c ure equivalent to 10 es for which	, for lettuce a varia	ability factor of 5 wa formed with a varia No of commoditi	m the MS with the crit s used. bilty factor of 3. es for which		If no data on the unit	weight was available from that M s for which ARfD/ADI is	S an average
commodities	The acute risk asses For each commodily European unit weigh In the IEST 1 calcu In the IEST 1 calcu Threshold MRL is t No of commodities is exceeded (IEST IESTI 1	ssment is based on the the calculation is bas it was used for the IES' lation, the variability far lations, the variability far the calculated residue s for which ARfD/ADI	ARID. ad on the highess tors were 10, 7 / actors of 10 and 3 level which would **) pTMRL/	t reported MS cons or 5 (according to JJ 7 were replaced by 3 leads to an exposed No of commoditie ARTD/ADI is exce IESTI 2	MPR manual 2002) 5. For lettuce the c ure equivalent to 10 es for which	, for lettuce a varia calculation was pe 00 % of the ARfD. 	ability factor of 5 wa formed with a varia No of commoditi ARfD/ADI is exce IESTI 1	m the MS with the crit s used. bilty factor of 3. es for which	cal consumption.	If no data on the unit No of commodities exceeded (IESTI 2	weight was available from that M s for which ARfD/ADI is	 **) pTMRL/
commodities	The acute risk assee For each commodity European unit weigh In the IEST1 c aclou Threshold MRL is t Threshold MRL is t No of commodities is exceeded (IESTI IESTI 1 Highest % of ARD/ADI	ssment is based on the the calculation is bas- tt was used for the ES' lation, the variability far the calculated residue is for which ARfD/ADI 1 1: *) Commodities	e ARID. ed on the highess it calculation. tors were 10, 7 of tors of 10 and ' level which would **) pTMRL/ threshold MRL (mg/kg)	t reported MS cons or 5 (according to JJ were replaced by No of commoditii ARfD/ADI is exce IESTI 2 Highest % of ARfD/ADI	MPR manual 2002) 5. For lettuce the c ure equivalent to 10 as for which eded (IESTI 2): *) Commodities	, for lettuce a varia calculation was pe 00 % of the ARfD. **) pTMRL/ threshold MRL (mg/kg)	ability factor of 5 wa formed with a varia No of commoditi ARfD/ADI is exce IESTI 1 Highest % of ARID/ADI	m the MS with the crit s used. bilty factor of 3. es for which eded (IESTI 1): *) Commodities		If no data on the unit No of commodities exceeded (IESTI 2 IESTI 2 Highest % of ARID/ADI	weight was available from that M s for which ARID/ADI is b Commodities	+*) pTMRL/ threshold MRI (mg/kg)
commodities	The acute risk assee For each commodity European unit weigh In the IESTI 1 calcu In the IESTI 1 calcu In the IESTI 2 calcu Throshold MRL is 1 No of commodities is exceeded (IESTI 1 Highest % of ARD/ADI 2,9	ssment is based on the the calculation is bas- tt was used for the IES' lation, the variability fa- talions, the variability fa- the calculated residue s for which ARfD/ADI 1 1): *)	P ARID. ed on the highess in calculation. :tors were 10, 7 of cctors of 10 and 1 level which would 	t reported MS cons or 5 (according to JI vere replaced by d leads to an expos No of commoditie ARTD/ADI is exce IESTI 2 Highest % of	MPR manual 2002) 5. For lettuce the c ure equivalent to 10 es for which eded (IESTI 2): *)	, for lettuce a varia alculation was pe 00 % of the ARID. 	ability factor of 5 wa formed with a varia No of commoditi ARfD/ADI is exce IESTI 1 Highest % of	m the MS with the crit s used. bilty factor of 3. es for which eded (IESTI 1):	cal consumption.	If no data on the unit No of commodities exceeded (IESTI 2 IESTI 2 Highest % of ARID/ADI	weight was available from that M s for which ARfD/ADI is);	 **) pTMRL/ threshold MRI
	The acute risk assee For each commodity European unit weigh In the IEST1 1 calcu In the IEST1 2 calcu Threshold MRL isi No of commodities is exceeded (IEST IEST1 1 Highest % of ARD/ADI 2,9 1,2 1,1	ssment is based on the y the calculation is base twas used for the IES' tations, the variability fac tations, the variability fac the calculated residue s for which ARTDADI 1): ") Commodities Wheat Bovine: Liver Birds' eggs	ARID. ARID. Add on the highes The calculation. Stors were 10, 7 d cators of 10 and 1 level which would **) pTMRL/ threshold MRL (mg/kg) 0,04 /- 0,0286 /- 0,0179 /-	t reported MS cons or 5 (according to JI) were replaced by J leads to an expos No of commoditil ARfD/ADI is exce IESTI 2 Highest % of ARID/ADI 2,9 1,2 1,1	MPR manual 2002) For lettuce the c ure equivalent to 11 as for which eded (IESTI 2): *) Commodities Wheat Bovine: Liver Birds' eggs	, for lettuce a variation was pe alculation was pe 00 % of the ARID. 	ability factor of 5 wa formed with a varia No of commoditi ARID/ADI is excer IESTI 1 Highest % of ARID/ADI 3,3 1,7 1,6	m the MS with the crit s used. ality factor of 3. es for which eded (IESTI 1): 7 Commodities Barley Sheep: Liver Wheat		If no data on the unit No of commodifies exceeded (IESTI 2 Highest % of ARD/ADI 3,3 1,7 1,6	weight was available from that M s for which ARfD/ADI is : ' ' Commodities Barley Sheep: Liver Wheat	 pTMRL/ threshold MRI (mg/kg) 0,09 / - 0,5 / - 0,04 / -
commodities	The acute risk assee For each commodity European unit weigh in the IESTI 1 calcu in the IESTI 2 calcu Threshold MRL is t No of commodities is exceeded (IESTI IESTI 1 Highest % of <u>ARD/ADI</u> 2,9 1,2 1,1 1,0	sament is based on the the calculation is base twas used for the ICS lation, the variability fa lations, the variability fa the calculated residue s for which ARID/ADI 1): ") Commodities Wheat Bowine: Liver	ARID. ed on the highes II calculation. tors were 10, 7 / tors were 10, 7 / tors of 10 and level which would pTMRL/ threshold MRL (mg/kg) 0,024 / - 0,028 / -	t reported MS cons or 5 (according to J) 7 were replaced by 1 leads to an expos No of commoditile ARTD/AD is excee IESTI 2 Highest % of ARTD/ADI 2,9 1,2	MPR manual 2002) 5. For lettuce the c ure equivalent to 11 es for which eded (IESTI 2): *) Commodities Wheat Bovine: Liver	, for lettuce a varia alculation was pe 00 % of the ARID. pTMRL/ threshold MRL (mg/kg) 0,04 / - 0,0286 / -	ability factor of 5 wa formed with a varia No of commoditi ARfD/ADI is exce IESTI 1 Highest % of ARID/ADI 3,3 1,7	m the MS with the crit s used. bilty factor of 3. es for which eded (IESTI 1):) Commodities Barley Sheep: Liver		If no data on the unit No of commodifies exceeded (IESTI 2 Highest % of ARID/ADI 3,3 1,7	weight was available from that M s for which AR(D/ADI is); Commodities Barley Sheep: Liver	 pTMRL/ threshold MRI (mg/kg) 0,09 / - 0,05 / -
commodities	The acute risk assee For each commodity European unit weigh in the IEST1 1 calcu in the IEST1 2 calcu Threshold MRL is t No of commodities is exceeded (IEST IEST 1 Highest % of <u>ARID/ADI</u> 2,9 1,2 1,1 1,0	ssment is based on the the calculation is base twas used for the IES alton, the variability far the calculated residue s for which ARTDADI 1): 	ARID. ed on the highes The calculation. tors were 10, 7 d. tors were 10, 7 d. tors of 10 and 1 level which would pTIMRL/ threshold MRL (mg/kg) 0,04 / - 0,0286 / - 0,0179 / - 0,0016 / -	t reported MS cons or 5 (according to J) 7 were replaced by 1 leads to an expos No of commodified ARID/ADI is exce IESTI 2 Highest % of ARID/ADI 2,9 1,2 1,1 1,0	MPR manual 2002) 5. For lettuce the c ure equivalent to 11 es for which eded (IESTI 2): *) Commodities Wheat Bovine: Liver Birds' eggs Milk and milk	, for lettuce a varia- talculation was pe 00 % of the ARID. 	bility factor of 5 wa formed with a varia ARID/ADI is exce IESTI 1 Highest % of ARID/ADI 1,7 1,6 1,0	m the MS with the crit s used. bity factor of 3. es for which eded (IESTI 1): 7 Commodities Barley Sheep: Uver Wheat Poultry: Meat	**) **) PTMRL/ threshold MRL (mg/kg) 0,09 / - 0,05 / - 0,016 / -	No of commodities exceeded (IESTI 2 Highest % of ARRD/ADI 3.3 1.7 1.6 1.0	weight was available from that M s for which AR(D/ADI is): Commodities Barley Barley Sheep: Liver Wheat Poultry: Meat	 pTMRL/ threshold MRI (mg/kg) 0,09 / - 0,04 / - 0,0168 / -
commodities	The acute risk assee For each commodity European unit weigh in the IEST1 1 calcu in the IEST1 2 calcu Threshold MRL is t No of commodities is exceeded (IEST IEST 1 Highest % of <u>ARID/ADI</u> 2,9 1,2 1,1 1,0	ssment is based on the the calculation is base twas used for the IES alton, the variability far the calculated residue s for which ARTDADI 1): 	ARID. ed on the highes The calculation. tors were 10, 7 d. tors were 10, 7 d. tors of 10 and 1 level which would pTIMRL/ threshold MRL (mg/kg) 0,04 / - 0,0286 / - 0,0179 / - 0,0016 / -	t reported MS cons or 5 (according to J) 7 were replaced by 1 leads to an expos No of commodified ARID/ADI is exce IESTI 2 Highest % of ARID/ADI 2,9 1,2 1,1 1,0	MPR manual 2002) 5. For lettuce the c ure equivalent to 11 es for which eded (IESTI 2): *) Commodities Wheat Bovine: Liver Birds' eggs Milk and milk	, for lettuce a varia- talculation was pe 00 % of the ARID. 	bility factor of 5 wa formed with a varia ARID/ADI is exce IESTI 1 Highest % of ARID/ADI 1,7 1,6 1,0	m the MS with the crit s used. bity factor of 3. es for which eded (IESTI 1): 7 Commodities Barley Sheep: Uver Wheat Poultry: Meat	**) **) PTMRL/ threshold MRL (mg/kg) 0,09 / - 0,05 / - 0,016 / -	No of commodities exceeded (IESTI 2 Highest % of ARRD/ADI 3.3 1.7 1.6 1.0	weight was available from that M s for which AR(D/ADI is): Commodities Barley Barley Sheep: Liver Wheat Poultry: Meat	 pTMRL/ threshold MR: (mg/kg) 0,09 / - 0,04 / - 0,0168 / -
commodities	The acute risk assee For each commodity European unit weigh in the IEST1 1 calcu in the IEST1 2 calcu Threshold MRL is t No of commodities is exceeded (IEST IEST 1 Highest % of <u>ARID/ADI</u> 2,9 1,2 1,1 1,0	ssment is based on the the calculation is base twas used for the IES alton, the variability far the calculated residue s for which ARTDADI 1): 	ARID. ed on the highes The calculation. tors were 10, 7 d. tors were 10, 7 d. tors of 10 and 1 level which would pTIMRL/ threshold MRL (mg/kg) 0,04 / - 0,0286 / - 0,0179 / - 0,0016 / -	t reported MS cons or 5 (according to J) 7 were replaced by 1 leads to an expos No of commodified ARID/ADI is exce IESTI 2 Highest % of ARID/ADI 2,9 1,2 1,1 1,0	MPR manual 2002) 5. For lettuce the c ure equivalent to 11 es for which eded (IESTI 2): *) Commodities Wheat Bovine: Liver Birds' eggs Milk and milk	, for lettuce a varia- talculation was pe 00 % of the ARID. 	bility factor of 5 wa formed with a varia ARID/ADI is exce IESTI 1 Highest % of ARID/ADI 1,7 1,6 1,0	m the MS with the crit s used. bity factor of 3. es for which eded (IESTI 1): 7 Commodities Barley Sheep: Uver Wheat Poultry: Meat	**) **) PTMRL/ threshold MRL (mg/kg) 0,09 / - 0,05 / - 0,016 / -	No of commodities exceeded (IESTI 2 Highest % of ARRD/ADI 3.3 1.7 1.6 1.0	weight was available from that M s for which AR(D/ADI is): Commodities Barley Barley Sheep: Liver Wheat Poultry: Meat	 pTMRL/ threshold MRI (mg/kg) 0,09 / - 0,04 / - 0,0168 / -
Unprocessed commodities	The acute risk assee For each commodity European unit weigh in the IEST1 1 calcu in the IEST1 2 calcu Threshold MRL is t No of commodities is exceeded (IEST IEST 1 Highest % of <u>ARID/ADI</u> 2,9 1,2 1,1 1,0	ssment is based on the / the calculation is base trans used for the ICS lation, the variability far the calculated residue to revitich ARTD/ADI 11):) Commodities Wheat Donte: Liver Birds' eggs Milk and milk Poultry: Meat	ARID. ed on the highes The calculation. tors were 10, 7 d. tors were 10, 7 d. tors of 10 and 1 level which would pTIMRL/ threshold MRL (mg/kg) 0,04 / - 0,0286 / - 0,0179 / - 0,0016 / -	t reported MS cons or 5 (according to J) 7 were replaced by 1 leads to an expos No of commodified ARID/ADI is exce IESTI 2 Highest % of ARID/ADI 2,9 1,2 1,1 1,0	MPR manual 2002) 5. For lettuce the c ure equivalent to 11 es for which eded (IESTI 2): *) Commodities Wheat Bovine: Liver Birds' eggs Milk and milk	, for lettuce a varia- talculation was pe 00 % of the ARID. 	bility factor of 5 wa formed with a varia ARID/ADI is exce IESTI 1 Highest % of ARID/ADI 1,7 1,6 1,0	m the MS with the crit s used. silly factor of 3. es for which eded (ESTI 1): 7 Commodities Batey Steep: Liver Wheat Bovine: Liver	**) **) PTMRL/ threshold MRL (mg/kg) 0,09 / - 0,05 / - 0,016 / -	No of commodities exceeded (IESTI 2 Highest % of ARRD/ADI 3.3 1.7 1.6 1.0	weight was available from that M s for which AR(D/ADI is): Commodities Barley Barley Sheep: Liver Wheat Poultry: Meat	 pTMRL/ threshold MRI (mg/kg) 0,09 / - 0,04 / - 0,0168 / -
Unprocessed commodifies	The acute risk assee For each commodity European unit weigh in the IEST1 1 calcu In the IEST1 2 calcu In the IEST1 2 calcu No of commodities is acceeded (IEST IEST1 1 Highest % of ARD/AD1 2,9 1,2 1,1 1,0 0,9	ssment is based on the / the calculation is base trans used for the ICS lation, the variability far the calculated residue to revitich ARTD/ADI 11):) Commodities Wheat Donte: Liver Birds' eggs Milk and milk Poultry: Meat	ARID. ed on the highes The calculation. tors were 10, 7 d. tors were 10, 7 d. tors of 10 and 1 level which would pTIMRL/ threshold MRL (mg/kg) 0,04 / - 0,0286 / - 0,0179 / - 0,0016 / -	t reported MS cons or 5 (according to J) 7 were replaced by 1 leads to an expos No of commodified ARID/ADI is exce IESTI 2 Highest % of ARID/ADI 2,9 1,2 1,1 1,0	MPR manual 2002) 5. For lettuce the c ure equivalent to 11 es for which eded (IESTI 2): *) Commodities Wheat Bovine: Liver Birds' eggs Milk and milk	, for lettuce a varia- talculation was pe 00 % of the ARID. 	ability factor of 5 wa formed with a varia No of commoditi ARID/ADI is exce IESTI 1 Highest % of ARID/ADI 3,3 1,7 1,6 1,0 0,4	m the MS with the crit s used. silly factor of 3. es for which eded (ESTI 1): 7 Commodities Batey Steep: Liver Wheat Bovine: Liver	**) **) PTMRL/ threshold MRL (mg/kg) 0,09 / - 0,05 / - 0,016 / -	No of commodities exceeded (IESTI 2 Highest % of ARRD/ADI 3.3 1.7 1.6 1.0	weight was available from that M s for which AR(D/ADI is): Commodities Barley Barley Sheep: Liver Wheat Poultry: Meat	 pTMRL/ threshold MRI (mg/kg) 0,09 / - 0,04 / - 0,0168 / -
Unprocessed commodifies	The acute risk assee For each commodity European unit weigh in the IEST1 1 calcu In the IEST1 1 calcu In the IEST1 2 calcu IEST1 1 Highest % of ARD/ADI 2,9 1,2 1,1 1,0 0,9 0,9 0,9 0,9 0,9 0,9 0,0 0,9 0,0 0,0	ssment is based on the / the calculation is base trans used for the ICS lation, the variability far the calculated residue to revitich ARTD/ADI 11):) Commodities Wheat Donte: Liver Birds' eggs Milk and milk Poultry: Meat	ARID. ed on the highes The calculation. tors were 10, 7 d. tors were 10, 7 d. tors of 10 and 1 level which would pTIMRL/ threshold MRL (mg/kg) 0,04 / - 0,0286 / - 0,0179 / - 0,0016 / -	t reported MS cons or 5 (according to J) 7 were replaced by 1 leads to an expos No of commodified ARID/ADI is exce IESTI 2 Highest % of ARID/ADI 2,9 1,2 1,1 1,0	MPR manual 2002) 5. For lettuce the c ure equivalent to 11 es for which eded (IESTI 2): *) Commodities Wheat Bovine: Liver Birds' eggs Milk and milk	, for lettuce a varia- talculation was pe 00 % of the ARID. 	ability factor of 5 wa formed with a varia No of commoditi ARD/ADI is exce IESTI 1 Highest % of ARD/ADI 3,3 1,7 1,6 1,0 0,4 No of critical MR No of critical MR	m the MS with the crit s used s factor of 3. es for which eded (IESTI 1): 7 Commodities Barley Date: User Wheat Bovine: Liver Wheat Bovine: Liver User Bovine: Liver Science: Liver Science: Liver Science: Scienc	**) **) PTMRL/ threshold MRL (mg/kg) 0,09 / - 0,05 / - 0,016 / -	No of commodities exceeded (IESTI 2 Highest % of ARRD/ADI 3.3 1.7 1.6 1.0	weight was available from that M s for which AR(D/ADI is): Commodities Barley Barley Sheep: Liver Wheat Poultry: Meat	 pTMRL/ threshold MRI (mg/kg) 0,09 / - 0,04 / - 0,0168 / -
Unprocessed commodifies	The acute risk assee For each commodity European unit weigh in the IEST1 1 calcu In the IEST1 2 calcu Threshold MRL is to the socceded (IEST I Highest % of ARIDADI 2,9 1,2 1,1 1,0 0,9	ssment is based on the the calculation is base twas used for the IES allon, the variability far the calculated residue s for which ARTD/ADI 1):) Commodilies Wheat Bovine: Liver Birds' eggs Mik and mik Poultry: Meat s (IESTI 1)	ARID. ed on the highes The calculation. tors were 10, 7 d. tors were 10, 7 d. tors of 10 and 1 level which would pTIMRL/ threshold MRL (mg/kg) 0,04 / - 0,0286 / - 0,0179 / - 0,0016 / -	t reported MS cons or 5 (according to J) 7 were replaced by 1 leads to an expos No of commodified ARID/ADI is exce IESTI 2 Highest % of ARID/ADI 2,9 1,2 1,1 1,0	MPR manual 2002) 5. For lettuce the c ure equivalent to 11 es for which eded (IESTI 2): *) Commodities Wheat Bovine: Liver Birds' eggs Milk and milk	, for lettuce a varia- talculation was pe 00 % of the ARID. 	ability factor of 5 wa formed with a varia No of commoditi ARID/ADI is exce IESTI 1 Highest % of ARID/ADI 3.3 1.7 1.6 1.0 0.4 No of critical MR	m the MS with the crit s used s factor of 3. es for which eded (IESTI 1): 7 Commodities Barley Date: User Wheat Bovine: Liver Wheat Bovine: Liver User Bovine: Liver Science: Liver Science: Liver Science: Scienc	**) **) PTMRL/ threshold MRL (mg/kg) 0,09 / - 0,05 / - 0,016 / -	No of commodities exceeded (IESTI 2 Highest % of ARRD/ADI 3.3 1.7 1.6 1.0	weight was available from that M s for which AR(D/ADI is): Commodities Barley Barley Sheep: Liver Wheat Poultry: Meat	**) pTMRL/ threshold MRL (mg/kg) 0,09 / - 0,5 / - 0,04 / - 0,04 / -
Unprocessed commodifies	The acute risk assee For each commodity European unit weigh in the IEST1 1 calcu in the IEST1 2 calcu in the IEST1 2 calcu is exceeded (IEST IT) Highest % of ARD/ADI 2,9 1,2 1,1 1,0 0,9	sment is based on the the calculation is base twas used for the IES staton, the variability far the calculated residue s for which ARID/ADI 1): ") Commodities Wheat Borlne: Luer Birds 'eggs Mik and mik Poultry: Meat (IESTI 1) s for which ARID/ADI	ARID. ARID. d on the highes II calculation. To conswers 10, 7 to totos wers 10, 7 totos of 10 and level which would pTMRL/ threshold MRL (mg/kg) 0,047 - 0,0286 / - 0,0168 / -	t reported MS cons or 5 (according to J) 7 were replaced by 1 leads to an expos No of commodified ARID/ADI is exce IESTI 2 Highest % of ARID/ADI 2,9 1,2 1,1 1,0	MPR manual 2002) 5. For lettuce the c ure equivalent to 11 es for which eded (IESTI 2): *) Commodities Wheat Bovine: Liver Birds' eggs Milk and milk	, for lettuce a varia- talculation was pe 00 % of the ARID. 	ability factor of 5 wa formed with a varia No of commoditi ARID/ADI is exce IESTI 1 Highest % of ARID/ADI 1,7 1,6 1,0 0,4 No of critical MR No of commoditi ARID/ADI is exce	m the MS with the crit s used. sily factor of 3. es for which eded (IESTI 1): 7 Commodities Barley Sheep: Liver Wheat Bovine: Liver Wheat Bovine: Liver Ls (IESTI 2) es for which eded:		No of commodities exceeded (IESTI 2 Highest % of ARRD/ADI 3.3 1.7 1.6 1.0	weight was available from that M s for which AR(D/ADI is): Commodities Barley Barley Sheep: Liver Wheat Poultry: Meat	 pTMRL/ threshold MR: (mg/kg) 0,09 / - 0,04 / - 0,0168 / -
Unprocessed commodities	The acute risk assee For each commodity European unit weigh in the IEST1 1 calcu in the IEST1 2 calcu in the IEST1 2 calcu is exceeded (IEST IT) Highest % of ARD/ADI No of critical MRLs No of critical MRLs No of commodities is exceeded: Highest % of ARD/ADI	ssment is based on the the calculation is base twas used for the IES allon, the variability far the calculated residue s for which ARTD/ADI 1):) Commodilies Wheat Bovine: Liver Birds' eggs Mik and mik Poultry: Meat s (IESTI 1)	ARID. ad on the highes IT calculation. To close were 10, 7 - toctors of 10 and 1 evel which would "" pTMRL/ threshold MRL (mg/kg) 0,041 - 0,0286 /- 0,0168 /- 0,0168 /-	t reported MS cons or 5 (according to J) 7 were replaced by 1 leads to an expos No of commodified ARID/ADI is exce IESTI 2 Highest % of ARID/ADI 2,9 1,2 1,1 1,0	MPR manual 2002) 5. For lettuce the c ure equivalent to 11 es for which eded (IESTI 2): *) Commodities Wheat Bovine: Liver Birds' eggs Milk and milk	, for lettuce a varia- talculation was pe 00 % of the ARID. 	ability factor of 5 wa formed with a varia No of commoditi ARD/ADI is exce IESTI 1 Highest % of ARD/ADI 3,3 1,7 1,6 1,0 0,4 No of critical MR No of critical MR	m the MS with the crit s used s factor of 3. es for which eded (IESTI 1): 7 Commodities Barley Date: User Wheat Bovine: Liver Wheat Bovine: Liver User Bovine: Liver Science: Liver Science: Liver Science: Scienc		No of commodities exceeded (IESTI 2 Highest % of ARRD/ADI 3.3 1.7 1.6 1.0	weight was available from that M s for which AR(D/ADI is): Commodities Barley Barley Sheep: Liver Wheat Poultry: Meat	 pTMRL/ threshold MR: (mg/kg) 0,09 / - 0,04 / - 0,0168 / -
Unprocessed commodifies	The acute risk assee For each commodity European unit weigh in the IEST1 1 calcu in the IEST1 2 calcu in the IEST1 2 calcu is exceeded (IEST IT) Highest % of ARD/ADI No of critical MRLs No of critical MRLs No of commodities is exceeded: Highest % of ARD/ADI	sment is based on the the calculation is base it was used for the IES2 staton, the variability far the calculated residue s for which ARID/ADI 1):) Commodities Wheat Borkne: Liver Birds' eggs Mik and mik Poultry: Meat (IESTI 1) s for which ARID/ADI Processed commodities	ARID. ARID. d on the highes II calculation. To save 10, 7 / totos wet 10, 7 / totos wet 10, 7 / totos wet 10, 7 / pTMRL/ mg/kg) 0,047 - 0,0286 / - 0,0286 / - 0,0168 / - 0,0	t reported MS cons or 5 (according to J) 7 were replaced by 1 leads to an expos No of commodified ARID/ADI is exce IESTI 2 Highest % of ARID/ADI 2,9 1,2 1,1 1,0	MPR manual 2002) 5. For lettuce the c ure equivalent to 11 es for which eded (IESTI 2): *) Commodities Wheat Bovine: Liver Birds' eggs Milk and milk	, for lettuce a varia- talculation was pe 00 % of the ARID. 	ability factor of 5 wa formed with a varia No of commoditi ARID/ADI is exce IESTI 1 Highest % of ARID/ADI 0.4 No of critical MR No of commoditi ARID/ADI is exce Highest % of ARID/ADI	m the MS with the crit s used. sily factor of 3. es for which eded (IESTI 1): 		No of commodities exceeded (IESTI 2 Highest % of ARRD/ADI 3.3 1.7 1.6 1.0	weight was available from that M s for which AR(D/ADI is): Commodities Barley Barley Sheep: Liver Wheat Poultry: Meat	 pTMRL/ threshold MR: (mg/kg) 0,09 / - 0,04 / - 0,0168 / -
Unprocessed commodifies	The acute risk assee For each commodity European unit weigh in the IEST1 1 calcu in the IEST1 2 calcu in the IEST1 2 calcu is exceeded (IEST IT) Highest % of ARD/ADI No of critical MRLs No of critical MRLs No of commodities is exceeded: Highest % of ARD/ADI	sment is based on the the calculation is base it was used for the IES2 staton, the variability far the calculated residue s for which ARID/ADI 1):) Commodities Wheat Borkne: Liver Birds' eggs Mik and mik Poultry: Meat (IESTI 1) s for which ARID/ADI Processed commodities	ARID. ARID. d on the highes II calculation. To save 10, 7 / totos wet 10, 7 / totos wet 10, 7 / totos wet 10, 7 / pTMRL/ mg/kg) 0,047 - 0,0286 / - 0,0286 / - 0,0168 / - 0,0	t reported MS cons or 5 (according to J) 7 were replaced by 1 leads to an expos No of commodified ARID/ADI is exce IESTI 2 Highest % of ARID/ADI 2,9 1,2 1,1 1,0	MPR manual 2002) 5. For lettuce the c ure equivalent to 11 es for which eded (IESTI 2): *) Commodities Wheat Bovine: Liver Birds' eggs Milk and milk	, for lettuce a varia- talculation was pe 00 % of the ARID. 	ability factor of 5 wa formed with a varia No of commoditi ARID/ADI is exce IESTI 1 Highest % of ARID/ADI 0.4 No of critical MR No of commoditi ARID/ADI is exce Highest % of ARID/ADI	m the MS with the crit s used. sily factor of 3. es for which eded (IESTI 1): 		No of commodities exceeded (IESTI 2 Highest % of ARRD/ADI 3.3 1.7 1.6 1.0	weight was available from that M s for which AR(D/ADI is): Commodities Barley Barley Sheep: Liver Wheat Poultry: Meat	 pTMRL/ threshold MR: (mg/kg) 0,09 / - 0,04 / - 0,0168 / -
Processed commodities	The acute risk assee For each commodity European unit weigh in the IEST1 1 calcu In the IEST1 1 calcu In the IEST1 1 calcu In the IEST1 2 calcu In the IEST1 2 calcu In the IEST1 2 calcu In the IEST1 1 Highest % of ARID/ADI 2,9 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2	sment is based on the the calculation is base that uses used for the IES allon, the variability far the calculated residue of the variability for the calculated residue of the variability for the calculated residue of the variability for the variab	ARID. ARID. ad on the highes IT calculation. Ticos were 10,7 incos were 10,7 incos were 10,7 incos pTMRL/ threshold MRL (mg/kg) 0,0286 /- 0,0168 /- 0,0168 /- pTMRL/ threshold MRL (mg/kg) 0,04 /- 0,04 /-	It reported MS cons or 5 (according to J) Were replaced by I leads to an expose No of commoditil ARTD/ADI is exce IESTI 2 Highest % of ARTD/ADI 2,9 1,2 1,1 1,0 0,9	MPR manual 2002) 5. For lettuce the c ure equivalent to 11 so for which eded (IESTI 2): 7 Commodities Wheat Borkne: Liver Birds' eggs Mik and mik Poultry: Meat 	, for lettuce a variation was people of the second	ability factor of 5 wa formed with a varia formed with a varia No of commoditi ARID/ADI 3.3 1.7 1.6 1.0 0.4 No of critical MR No of critical MR No of critical MR No of commoditi ARID/ADI 0.9 Highest % of <i>ARID/ADI</i> 0.9	m the MS with the crit s used. billy factor of 3. es for which eded (IESTI 1): 7 Commodities Barley Sheep: Liver Wheat Poultry: Meat Bovine: Liver Es (IESTI 2) Es (IESTI 2) es for which eded: Processed commodities Bread/pizza		No of commodities exceeded (IESTI 2 Highest % of ARR0/K of 1,7 1,6 1,0 0,4	weight was available from that M s for which AR(D/ADI is): Commodities Barley Barley Sheep: Liver Wheat Poultry: Meat	 pTMRL/ threshold MRI (mg/kg) 0,09 / - 0,04 / - 0,0168 / -
Processed commodities	The acute risk assee For each commodity European unit weigh in the IEST1 1 calcu In the IEST1 1 calcu In the IEST1 1 calcu In the IEST1 2 calcu In the IEST1 2 calcu In the IEST1 2 calcu In the IEST1 1 Highest % of ARID/ADI 2,9 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2	sment is based on the the calculation is based that was used for the IES station, the variability fac tations, the variability fac the calculated residue of or which ARID/ADI 1): *) Commodities Wheat Commodities Wheat Sorie: Lvar Borlos: Lvar Bor	ARID. ARID. ad on the highes IT calculation. Ticos were 10,7 incos were 10,7 incos were 10,7 incos pTMRL/ threshold MRL (mg/kg) 0,0286 /- 0,0168 /- 0,0168 /- pTMRL/ threshold MRL (mg/kg) 0,04 /- 0,04 /-	It reported MS cons or 5 (according to J) Were replaced by I leads to an expose No of commoditil ARTD/ADI is exce IESTI 2 Highest % of ARTD/ADI 2,9 1,2 1,1 1,0 0,9	MPR manual 2002) 5. For lettuce the c ure equivalent to 11 so for which eded (IESTI 2): 7 Commodities Wheat Borkne: Liver Birds' eggs Mik and mik Poultry: Meat 	, for lettuce a variation was people of the second	ability factor of 5 wa formed with a varia formed with a varia No of commoditi ARID/ADI 3.3 1.7 1.6 1.0 0.4 No of critical MR No of critical MR No of critical MR No of commoditi ARID/ADI 0.9 Highest % of <i>ARID/ADI</i> 0.9	m the MS with the crit s used. billy factor of 3. es for which eded (IESTI 1): 7 Commodities Barley Sheep: Liver Wheat Poultry: Meat Bovine: Liver Es (IESTI 2) Es (IESTI 2) es for which eded: Processed commodities Bread/pizza		No of commodities exceeded (IESTI 2 Highest % of ARR0/K of 1,7 1,6 1,0 0,4	weight was available from that M s for which AR(D/ADI is): Commodities Barley Barley Sheep: Liver Wheat Poultry: Meat	 pTMRL/ threshold MRI (mg/kg) 0,09 / - 0,04 / - 0,0168 / -

2.7.3 Definition of the residue

Proposed residue definition (food of plant origin)

Endpoint	Proposed EU endpoints
Residue definition in food of plant origin for monitoring purposes	sum of fenpropidin and its salts, expressed as fenpropidin
Residue definition in food of plant origin for risk assessment purposes	sum of fenpropidin and its salts, expressed as fenpropidin

Proposed residue definition (food of animal origin)

Endpoint	Proposed EU endpoints
Residue definition in food of animal origin for monitoring purposes	sum of fenpropidin, CGA 289267, and their salts, expressed as fenpropidin
Residue definition in food of animal origin for risk assessment purposes	sum of fenpropidin, CGA 289267, SYN515213, CGA 289268 and their conjugates, expressed as fenpropidin

2.7.4 Summary of residue trials in plants and identification of critical GAP

Critical GAP:

Critical GAP for the proposed uses for fenpropidin in the EU is presented in Table 2.7.4-1.

	Сгор	Outdoor/ Protected	Growth stage	Maximum number of applications	Minimum application interval (days)	Maximum Rate per application (g a.s./ha)	Water (L/ha)	Minimum PHI (days)
	Wheat	Outdoor	BBCH 31-69	2	14	562.5	100-300	-
l	Barley	Outdoor	BBCH 31-65	2	14	562.5	100-300	-

Table 2.7.4-1 Summary of the critical GAP for the proposed uses for fenpropidin

Residue trials:

Residue trials quantifying parent fenpropidin in barley and wheat conducted in the EU to support the proposed EU GAP are presented in Table 2.7.4-2.

Table 2.7.4-2: Summary of residues data from the supervised residue trials

Сгор	Region/ Indoor (a)	Residue levels (mg/kg) observed in the supervised residue trials relevant to the supported GAPs (b)	MRL calculation (mg/kg) (c)	HR (mg/kg) (c,d)	STMR (mg/kg) (c,e)
Wheat grain	NEU	5× <0.01, 2× 0.01, 0.04	0.06	0.04	0.01
(500090)	SEU	4× <0.01, 2× 0.01, 2× 0.02, 0.03, 0.04	0.06	0.04	0.01
	Combined	9× <0.01, 4× 0.01, 2x 0.02, 0.03, 2x 0.04	0.06	<u>0.04</u>	<u>0.01</u>
Barley grain	NEU	$5 \times < 0.01; 2 \times 0.01; 0.04$	0.15	0.07	0.05
(500010)	SEU	<0.01, 2× 0.03, 0.05, 2× 0.06, 2× 0.07, 0.08, 0.09	0.2	0.09	0.06
	Combined	<0.01, 2× 0.02, 2× 0.03, 2× 0.04, 0.05, 4× 0.06, 4× 0.07, 0.08, 0.09	<u>0.15</u>	<u>0.09</u>	<u>0.06</u>
Wheat straw	NEU	0.40, 0.46, 0.48, 0.61, 0.62, 0.91, 1.1, 2.5	-	2.5	0.62
	SEU	0.26, 0.40, 0.46, 0.65, 0.77, 0.92, 0.95, 1.0,	-	3.71	0.85

Fenpropidin		Volume 1 – Level 2	May 2021			
Сгор	Region/ Indoor (a)	Residue levels (mg/kg) observed in the supervised residue trials relevant to the supported GAPs (b)	MRL calculation (mg/kg) (c)	HR (mg/kg) (c,d)	STMR (mg/kg) (c,e)	
		1.19, 3.71				
	Combined	0.26, 2× 0.40, 2× 0.46, 0.48, 0.61, 0.62, 0.65, 0.77, 0.91, 0.92, 0.95, 1.0, 1.1, 1.19, 2.5, 3.71	-	<u>3.71</u>	<u>0.71</u>	
Barley straw	NEU	0.30, 0.51, 0.62, 2× 0.74, 0.82, 1.5, 2.2	-	2.2	0.74	
	SEU	0.01, 0.13, 0.45, 0.47, 0.55, 0.67, 0.72, 0.79, 1.29, 1.56	-	1.56	0.61	
	Combined	0.01, 0.13, 0.30, 0.45, 0.47, 0.51, 0.55, 0.62, 0.67, 0.72, 2× 0.74, 0.79, 0.82, 1.29, 1.5, 1.56, 2.2	-	<u>2.2</u>	<u>0.70</u>	

(a): NEU or SEU for northern or southern outdoor trials in EU member states (combined merges both zones).

(b): Residue levels in trials conducted according to GAP; proposed residue definitions for monitoring and risk assessment are the same.

(c): Proposed STMRs, HRs and MRLs (underlined values) are derived from the combined datasets, after determining NEU and SEU residue values were similar.

(d): **HR**: Highest residue.

(e): **STMR:** Supervised Trials Median Residue.

2.7.5 Summary of feeding studies in poultry, ruminants, pigs and fish

The maximum dietary burden of fenpropidin in poultry (laying hens) is shown to be 0.034 mg/kg bw/day (equivalent to 0.50 mg/kg dry matter). The magnitude of fenpropidin in poultry was investigated in a new feeding study with laying hens presented in Volume 3 CA – B.7.4.1. The mean fenpropidin residue in liver specimens from hens in Group D (42N rate) was 0.04 mg/kg. A fenpropidin residue of 0.01 mg/kg was detected in a single replicate of hens in Group C (12N), but the mean fenpropidin residue in liver from the hens in Group C was below the LOQ. No fenpropidin residues above the LOQ were detected in any other tissue specimens, or in eggs from any of the treatment groups.

Residues of CGA289267 were found in egg specimens from hens in Group D only with a maximum mean level of 0.02 mg/kg. The mean CGA289267 residue in muscle specimens from hens from Group D was 0.02 mg/kg. Mean CGA289267 residues in liver were 0.02 mg/kg in hens from Group B (3.9N), 0.06 mg/kg in hens from Group C and 0.08 mg/kg in hens from Group D. A CGA289267 residue in skin/fat of 0.01 mg/kg was detected in a single replicate of hens from Group D, but the mean CGA289267 residue in skin/fat was below the LOQ in hens from Group D. No CGA289267 residues above the LOQ were detected in any other tissue specimens. No residues of CGA289268 were detected in egg or tissue specimens from the hens in any treatment group. Residues of fenpropidin and CGA289267 in eggs and tissues from hens in the depuration group declined rapidly after withdrawal of fenpropidin from the hens' diet. Residues were below the LOQ in eggs after 3 days and in tissues after 5 days following withdrawal of fenpropidin from the hens' diet.

The maximum dietary burden of fenpropidin in cattle (dairy) and sheep (lambs) were shown to be 0.035 and 0.075 mg/kg bw/day, respectively (equivalent to 0.91 and 1.77 mg/kg dry matter, respectively). The magnitude of fenpropidin in ruminants was investigated in a previously-reviewed feeding study with lactating cows but in line with the conclusions of the Review of existing MRLs (EFSA Journal 2011;9(8):2333), this submission utilises the previous-reviewed goat metabolism study for risk assessment purposes (see conclusion below, Volume 3 CA – B.7.4.2, and section 2.7.2.2 above).

Parent fenpropidin was detected in the liver and fat only, at concentrations of 0.084 and 0.003 mg/kg, respectively. The major primary metabolites found were CGA 289267 and SYN 515213, which occurred at levels up to 38.4% TRR (0.063 mg/kg) and 30.0% TRR (0.049 mg/kg), respectively in muscle. The major secondary metabolites observed were sulphate ester conjugates of SYN 515213, CGA 289268 and SYN 515215, accounting individually for up to 13.0% TRR (0.568 mg/kg) in kidney, 33.4% TRR (0.066 mg/kg) in milk and 12.7% TRR (0.975 mg/kg) in liver. A glucuronide conjugate of CGA 289267 was also observed in liver and fat at low levels (*ca* 1% TRR). Other metabolites, including CGA 289268, SYN 515214 and SYN 515216, also occurred at low levels, less than 10% of the TRR (maximum 0.631 mg/kg).

In regard to swine, the maximum dietary burden of fenpropidin (finishing swine) was shown to be below the threshold of 0.004 mg/kg bw/d (0.0024 mg/kg bw/day; equivalent to 0.08 mg/kg dry matter).

Animals	Median burden / mg/kg bw (mg/kg DM)	Maximum burden / mg/kg bw (mg/kg DM)	Above 0.004 mg/kg bw/d?	Highest contributing commodities
Beef cattle	0.007 (0.303)	0.022 (0.918)	Yes	Wheat straw
Dairy cattle	0.012 (0.303)	0.035 (0.91)	Yes	Wheat straw
Ram/Ewe	0.018 (0.539)	0.059 (1.767)	Yes	Wheat straw
Lamb	0.023 (0.539)	0.075 (1.767)	Yes	Wheat straw
Pig (breeding)	0.002 (0.08)	0.002 (0.08)	No	Wheat milled bypdts
Pig (finishing)	0.002 (0.08)	0.002 (0.08)	No	Wheat milled bypdts
Poultry broiler	0.005 (0.068)	0.005 (0.068)	Yes	Wheat gluten meal
Poultry layer	0.011 (0.155)	0.034 (0.496)	Yes	Wheat straw
Turkey	0.004 (0.054)	0.004 (0.054)	No	Wheat gluten meal

Table 2.7.5-1:	Results	of the	dietary	burden	calculation
----------------	---------	--------	---------	--------	-------------

2.7.6 Summary of effects of processing

The effects of processing on the nature (see Table 2.7.6-1) and magnitude (see Table 2.7.6-2) of fenpropidin residues have been investigated and previous reviewed (Sweden, 2005).

Conditions	Relative occurrence level of identified chemical species (%TRR)
Pasteurisation (20 min, 90 °C, pH 4.3)	Fenpropidin (97.1%)
Baking, boiling, brewing (60 min, 100 °C, pH	Fenpropidin (97.1%)
5.1)	
Sterilisation (20 min, 120 °C, pH 6.3)	Fenpropidin (96.1%)

Table 2.7.6-2: Summary of processing studies

Crop (RAC)/Edible part or	Number	Processing Factor (PF)		
Crop (RAC)/Processed product	of studies	Individual values	Median PF	

Fenpropidin	Volume 1 – Level 2	May 2021	
Crop (RAC)/Edible part or	Number	Processing Factor (PF)	
Crop (RAC)/Processed product	of studies	Individual values	Median PF
Wheat, whole-meal flour	4	1.20, 1.00, 1.20, 1.00	1.10
Wheat, whole meal bread	4	1.00, 0.90, 1.10, 1.00	1.00
Wheat, white flour	4	0.20, 0.20, 0.20, 0.20	0.20
Wheat, bran	4	4.30, 4.40, 3.90, 4.00	4.15
Barley, brewing malt	2	1.5, 0.8	1.15 ^(a)
Barley, beer	2	0.2, 0.5	0.35

^(a): Residues of fenpropidin were slightly higher in the processed malt (1.5, 0.8) and the calculated mean transfer factor was 1.15. However, this factor cannot be considered as an increase of fenpropidin residues in processed malt, since the residues in unprocessed grain and processed malt were close to the LOQ in the commodities (grain: 0.05, 0.02; malt: 0.04, 0.03).

2.7.7 Summary of residues in rotational crops

Following two applications of 750 g a.s./ha to bare soil (separated by a 21 day interval reflecting the proposed GAP), total radioactive residues in rotated crops planted 28 to 365 days after the second application (DA2A) ranged from 0.003 - 3.1 mg/kg.

Residues present in 28 DA2A commodities in general decreased progressively and markedly in commodities of subsequent rotational intervals, the one exception being wheat grain where the residue level in the 28 DA2A plantback wheat grain increased in the subsequent 76 DA2A commodity before markedly reducing in the 365 DA2A grain.

Residues levels were greatest in cereal (spring wheat) commodities of mature straw (0.023-3.1 mg/kg), immature wheat plants (0.004-0.568 mg/kg) and mature grain (0.007-0.039 mg/kg) and were lower in root crop (radish) foliage (0.007-0.090 mg/kg) and root (0.003-0.029 mg/kg) commodities and leafy (lettuce) foliage (0.005-0.070 mg/kg).

The metabolic pattern observed in residues was similar to that observed in primary crops with fenpropidin being the major constituent of the residue accompanied by a complex mixture of more minor metabolites.

Residue extractability was high (73-87% TRR) for most 28 DA2A harvested commodities with the exception of wheat straw (slightly lower; 67-71 % TRR) and wheat grain (lower still; 23% TRR).

In spring wheat, the extractable radioactivity comprised mainly fenpropidin and up to 19 discrete metabolites including CGA289268, CGA289263, CGA289269, CGA289267, NOA406117, CGA289265, and (tentatively) NOA406116.

In radish commodities, extractable radioactivity comprised mainly fenpropidin together with smaller residues of NOA406117, NOA406116, CGA289263, CGA289268, CGA289267 and CGA289269.

In lettuce, extractable radioactivity comprised mainly fenpropidin together with smaller residues of NOA406117, CGA289268 and CGA289267.

Identified metabolites were present in the free (unconjugated) form of the residue.

Major proportions of the unextracted residue present in wheat grain and straw were characterised to comprise naturally incorporated radioactivity.

The proposed metabolic pathway for the biotransformation of fenpropidin in rotated crops is given in Figure 2.7.2.1-1.

Due to the very low residue levels observed in the confined rotational crop studies, limited field studies are not required.

2.7.8 Summary of other studies

No further studies have been conducted.

2.7.9 Estimation of the potential and actual exposure through diet and other sources

Volume 1 – Level 2

Chronic (long-term) and acute (short-term) exposure calculations for all crops proposed for fenpropidin were performed using revision 2 of the EFSA Pesticide Residues Intake Model (PRIMo). Guidance on pairing estimated dietary burdens with appropriate domestic animal species within EFSA (2015a) was followed when calculating HRs and STMRs for animal commodities.

For the TMDI (Theoretical Maximum Daily Intake) calculation, and IESTI (International Estimate of Short-Term Intake) calculations with mammalian commodities, animal metabolism studies were used to derive CFs for calculating animal commodity residues according to the $RD_{(RA)}$ from residues according to the $RD_{(Mo)}$. Although a CF-approach was not necessary for IESTIs with mammalian commodities, due to them being based on the goat metabolism study scaled to the 1N rate, the CF approach was taken to support monitoring. For IESTI calculations with poultry commodities, the hen feeding study was used to derive CFs for calculating residues according to the $RD_{(RA)}$, from residues according to the sum of the $RD_{(Mo)}$ and CGA289268 (measured alongside $RD_{(Mo)}$ structures by the method used in the feeding study).

The TMDI calculation is derived based on existing EU MRLs for the representative uses (barley and wheat grain) and edible animal products. The chronic risk assessment (TMDI) results ranged to a maximum value representing 14.7% of the ADI (for the UK Infant consumer group). The IESTI calculations are based on residue levels assumed to be present at the value of the highest residues (HR) observed in barley and wheat supervised field trials and highest residues (HR) for livestock commodities. Only the representative uses and animal commodities are considered for the calculation. The highest acute exposure was calculated for barley at 3.3% of the ARfD (for the NL Adults consumer group). Thus it can be concluded that unacceptable acute or chronic risks to human health arise from the application of fenpropidin to barley and wheat in accordance with the uses considered.

2.7.10 Proposed MRLs and compliance with existing MRLs

EU MRLs for fenpropidin are currently detailed in Annex II of Regulation (EC) No 396/2005. No changes are proposed to the MRLs for representative uses and animal commodities.

2.7.11 Proposed import tolerances and compliance with existing import tolerances

No import tolerances proposed.

2.7.12 Pre-harvest intervals for envisaged uses

The applications of plant protection products containing fenpropidin in accordance with representative uses are growth stage-dependent and therefore a pre-harvest interval (PHI) in days is not applicable for these crop types.

2.7.13 Re-entry period (in days) for livestock, to area to be grazed

Livestock grazing is not relevant to field crops.

2.7.14 Re-entry period (in hours or days) for man to crops, buildings, or spaces treated

Under practical conditions of use, there is no reason for workers to enter the crop shortly after treatment. Assessments conducted for the representative formulation demonstrate that exposure is within the level which does not pose a risk to human safety without any additional re-entry interval. The general approach of avoiding re-entry until the spray solution has dried is recommended.

2.7.15 Withholding period (in days) for animal feedingstuffs

A dietary burden calculation has been performed; taking into account the highest residues in animal feed items at harvest. Therefore a withholding period is not necessary.

2.7.16 Waiting period (in days) between last application and sowing or planting the crops to be protected

Not applicable since application is made after sowing.

2.7.17 Waiting period (in days) between application and handling treated product

The general approach of avoiding handling until the spray solution has dried is recommended.

2.7.18 Waiting period (in days) between last application and sowing or planting succeeding crops

No specific plant-back restriction is required when fenpropidin is applied according to GAP.

APPENDIX 2

Codes, chemical names and	l chemical structures of fe	enpropidin its metabolites	and their occurence

Code Number (Synonyms)	Description	Compound found in:	Structure
ISO common name: Fenpropidin Development codes: CGA114900 (Ciba Geigy) Ro 12-3049 (Maag) I ₁₁ I ₁₆ IA ₇ M18	IUPACname:1-[3-(4-tertbutylphenyl)-2-methylpropyl]-piperidineChemicalAbstractsname:1-[3-[4-(1,1-dimethylethyl)phenyl]-2-methylpropyl]-piperidine[CAS 67306-00-7]	Wheat(immature crop, mature straw, grain)Sugar beet(foliage, root)Grape (fruit, leaves)Banana (pulp, leaves)Rotational crops (cereal, root vegetable and leafy)Goat (liver, fat)Hen (liver, muscle, skin+fat, egg white, egg yolk)RatSoilAerobic mineralizationAerobic aquatic sediment	
CGA289268 Ro 15-6046 Metabolite I4 Metabolite I13 Metabolite I13a Metabolite IA6a Metabolite 4U	IUPACname:2-methyl-2-[4-(2-methyl-3-piperidin-1-yl-propyl)-phenyl]-propan-1-ol[CAS not available]	Wheat(immature crop, mature straw)Sugarbeet(foliage)Grape(fruit, leaves)Banana (leaves)Rotational crops	HO

	• 1•
Fenpro	pidin
	P

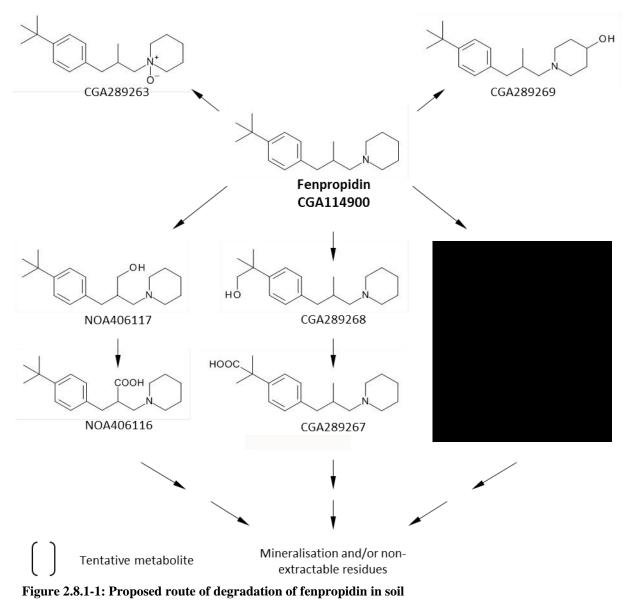
	1	ſ	
Code Number (Synonyms)	Description	Compound found in:	Structure
Metabolite M19		(cereal,rootvegetableandleafy)Goat (fat)Hen(liver,muscle,skin+fat,eggwhite,eggyolk)RatSoilAerobicMineralizationAerobic aquaticsedimentsediment	
CGA289268 sulphate conjugate Metabolite M10 Metabolite 2U	IUPAC name: 2-methyl-2-[4-(2- methyl-3-piperidin-1- yl-propyl)-phenyl]- propan-1-ol sulphate conjugate	Goat (liver, kidney, muscle, fat, milk) Rat	
CGA289265 Metabolite I ₆ Metabolite I ₁₄	[CAS not available] 1-[3-(4- <i>tert.</i> - butylphenyl)-2- methylpropyl]- piperidin-3-ol [CAS not available]	Wheat(immature crop, mature straw)Sugarbeet(foliage)Rotational crops (cereal)	И ПОН
CGA289263 Ro 12-7124 Metabolite I7 Metabolite I12	IUPAC name: 1-[3-(4- <i>tert</i> butylphenyl)-2- methylpropyl]- piperidine-1-oxide Chemical Abstracts name: 1-[3-[4-(1,1- dimethylethyl)phenyl]- 2-methylpropyl]- piperidine-1-oxide [CAS 67306-64-3]	Wheat(immaturecrop,maturestraw,grain)straw,Sugarbeet(foliage)fruit,Grape(fruit,leaves)granaBanana(pulp,leaves)cropsRotational crops(cereal, rootvegetableandleafy)Soil	
SYN522245 Metabolite I9	IUPAC name: 1-[3-(4- <i>tert</i> butylphenyl)-2- methylpropyl]-3,5- dihydroxy-piperidin-4- one [CAS not available]	Wheat (immature crop, mature straw, grain)	ОН
CGA289266 Metabolite I10	IUPACname:1-(4-tertbutylphenyl)-2-methyl-3-piperidinyl-1-yl-propan-2-ol[CAS not available]	Wheat (immature crop, mature straw) Sugar beet (foliage)	HONN

Fenpropidin	Volume 1 – Level 2		May 2021
Code Number (Synonyms)	Description	Compound found in:	Structure
CGA289267 Metabolite I6 Metabolite IA5a Metabolite 1U Metabolite M20	IUPAC name: 2-methyl-2-[4-(2- methyl-3-piperidin-1- yl-propyl)-phenyl]- propionic acid [CAS not available]	Sugarbeet(foliage)Grape(fruit,leaves)Rotationalcrop(cereal,rootvegetableandleafy)Goat(liver,kidney,muscle,fat,milk)Hen(liver,muscle,skin+fat,eggwhite,eggyolk)RatSoilAerobicmineralizationAerobic aquaticsediment	HOOC
Hydroxy CGA289267 (location of hydroxylation unspecified)	-	Wheat (immature crop, mature straw)	ноос
CGA289267 glucuronide conjugate Metabolite I4	IUPAC name: 2-methyl-2-[4-(2- methyl-3-piperidin-1- yl-propyl)-phenyl]- propionic acid glucuronide conjugate [CAS not available]	Goat (liver, fat)	
SYN515215 Metabolite IA _{3a} Metabolite 7U	IUPACname:2-[4-(3-amino-2- methyl-propyl)- phenyl]-2-methyl- propyl-1-ol[CAS not available]	Hen (liver, egg white, egg yolk) Rat	OH NH2
SYN515213 Metabolite IA _{4a2} Metabolite 8U Metabolite M12	IUPAC name: 3-hydroxy-2-methyl-2- [4-(2-methyl-3- piperidin-1-yl-propyl)- phenyl]-propionic acid [CAS not available]	Goat(liver,kidney,muscle,fat, milk)HenHen(liver,skin+fat)Rat	HOOC OH
SYN515213 sulphate conjugate Metabolite M5	IUPACname:3-hydroxy-2-methyl-2-[4-(2-methyl-3-piperidin-1-yl-propyl)-phenyl]-propionicacidsulphateconjugate	Goat (liver, kidney, muscle, fat, milk)	

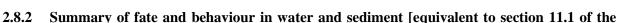
Fenpropidin	Volume 1 – Level 2		May 2021
Code Number (Synonyms)	Description	Compound found in:	Structure
SYN515214 Metabolite M11	IUPAC name: 2-hydroxy-2-[4-(2- methyl-3-piperidin-1- yl-propyl)-phenyl]- propionic acid	Goat (liver, kidney, muscle, fat, milk)	HOOC
SYN515215 sulphate conjugate	[CAS not available] IUPAC name: 2-[4-(3-amino-2- methyl-propyl)- phenyl]-2-methyl- propyl-1-ol sulphate conjugate [CAS not available]	Goat (liver, kidney)	
SYN522215 Metabolite 3U	IUPAC name: 3-[3-(4- <i>tert.</i> - butylphenyl)-2-methyl- propylamino]-propionic acid [CAS not available]	Rat	Соон
SYN5222216 Metabolite 5U	IUPAC name: 5-[3-(4-tert- butylphenyl)-2-methyl- propylamino]- pentanoic acid [CAS not available]	Rat	Соон
CGA294973 Metabolite 11U	IUPAC name: 4-(2-hydroxy-1,1- dimethyl-ethyl)- benzoic acid [CAS not available]	Rat	он соон
SYN515216 Metabolite IA _{4a1} Metabolite 9U Metabolite M28	IUPACname:2-[4-(3-amino-2- methyl-propyl)- phenyl]-2-methyl- proprionic acid[CAS not available]	Goat(liver, muscle, fat)Hen(liver, skin+fat, white)Rat	HOOC NH2
SYN522217 Metabolite IA4b Metabolite 10U	IUPAC name: 5-(3-[4-(1-carboxy-1- methyl-ethyl)-phenyl]- 2-methyl- propylamino)- pentanoic acid	Hen (liver, muscle, skin+fat, egg white) Rat	ноос
CGA289269 Metabolite I _{13b}	[CAS not available]IUPACname:1-[3-(4-tertbutylphenyl)-2-methylpropyl]-piperidin-4-ol[CAS not available]	Grape (fruit) Rotational crops (cereal, root vegetable and leafy) Soil	ОН

Fenpropidin	Volume 1 – Level 2		May 2021
Code Number (Synonyms)	Description	Compound found in:	Structure
NOA406117 Metabolite I ₁₅	IUPAC name: 3-[4- <i>tert</i> butylphenyl]- 2-piperidin-1-ylmethyl- propan-1-ol [CAS not available]	Sugarbeet(foliage)Grape (leaves)Rotational crops(cereal, rootvegetableandleafy)Soil	OH
NOA406116 Metabolite I ₁₁ Metabolite I _{10a}	IUPAC name: 3-[4- <i>tert</i> butylphenyl]- 2-piperidin-1-ylmethyl- propionic [CAS not available]	Sugarbeet(foliage)Grape (leaves)Rotational crops(cereal and rootvegetable)Soil	COOH N
Metabolite I _{6a}	IUPAC name:	Wheat Rotational crops (cereal) Soil	
CGA289268 glucose conjugate Metabolite I2a	IUPAC name: 2-hydroxymethyl-6-{2- methyl-2-[4-(2-methyl- 3-piperidin-1- ylpropyl)-phenyl]- propoxy}-tetrahydro- pyran-3,4,5-triol [CAS not available]	Wheat (immature crop, mature straw) Grape (leaves)	
CGA289267 glucose conjugate	IUPAC name: 2-methyl-2-[4-(2- methyl-3-piperidin-1- yl-propyl)-phenyl]- propionic acid glucose conjugate [CAS not available]	Grape (leaves)	
SYN522246 glucose conjugate Metabolite I _{2b}	IUPAC name: 1-[3-[4-(2-hydroxy-1,1- dimethyl-ethyl)phenyl]- 2-methyl- propyl]piperidin-4-ol glucose conjugate [CAS not available]	Wheat (mature straw)	
Metabolite I19 Lilial	IUPAC name: [CAS not available]	Grape (leaves) Sugar beet (foliage) Soil (tentative assignment)	

Fenpropidin	Volume	e 1 – Level 2	May 2021
Code Number (Synonyms)	Description	Compound found in:	Structure
Acyl glycoside of dihydroxy CGA289267	-	Wheat (immature crop, mature straw)	
SYN522247 Metabolite H-12	IUPAC name: 2-[4-(2- hydroxypropyl)- phenyl]-2-methyl- propan-1-ol [CAS not available]	Sugar beet (foliage)	НО
SYN522248 Metabolite I13b	IUPAC name: (3,4-dihydro-2 <i>H</i> - pyridin-1-yl)-methanol [CAS not available]	Wheat (immature crop, mature straw)	HON
SYN522249 Metabolite I _{13c}	IUPAC name: 1-hydroxymethyl-2,3- dihydro- <i>1H</i> -pyridin-4- one [CAS not available]	Wheat (immature crop, mature straw)	HON
SYN522250 Metabolite I3	IUPACname:(4-methoxy-3,6-dihydro-2H-pyridin-1-yl)-methanol[CAS not available]	Wheat (immature crop, mature straw)	HONN


Volume 1 – Level 2

May 2021


2.8 FATE AND BEHAVIOUR IN THE ENVIRONMENT

2.8.1 Summary of fate and behaviour in soil

The comparative aerobic and anaerobic metabolism study and the sterile degradation study demonstrated that biodegradation occurs mainly under oxidative conditions; photochemical transformation is not an important route of degradation on soil. This is consistent with the range of metabolites identified in the aerobic studies. CGA 289269 (4-hydroxy derivative of fenpropidin) and CGA 289263 (N-oxide derivative of fenpropidin) were characterised as products of oxidation of the piperidine ring. The hydroxylated intermediate metabolite CGA 289268 and which is subsequently oxidised to CGA 289267 were both characterised as oxidative products of the tertiary butyl side chain. In all cases the majority of the residue was subsequently mineralised to carbon dioxide. CGA 289269, CGA 289263 and CGA 289268 were identified but none of them represented > 5% of applied radioactivity in viable soils at standard laboratory conditions. The metabolite CGA 289267 was identified at a maximum of 4.6% of applied radioactivity.

A scheme on the proposed route of degradation is given in Figure 2.8.1-1.

Fenpropidin Volume 1 – Level 2 CLH report template]

May 2021

Under sterile aquatic conditions, fenpropidin was stable to hydrolysis at pH 3, 7 and 9. The photolytic degradation of fenpropidin in water has been investigated under sterile conditions in aqueous buffer solution at pH 6. Photochemical transformation in water is not considered to be a significant route of degradation of fenpropidin.

In a new aerobic mineralisation study (OECD 309) the fate of fenpropidin was investigated in natural water at pH 8.4. The degradation rate was dependent on concentration and slower in the sterile system than the biotic systems. The only major degradate of fenpropidin was found to be CGA289267 which reached a maximum mean level of 25.5% of applied radioactivity at the higher rate treatment. CGA289267 was not detected in sterilised samples. Mineralization was a minor route of degradation.

In four water / sediment systems (pH of water phases between 6.5 and 7.4) fenpropidin rapidly dissipated from the water phase to the sediment in all systems. Degradation of fenpropidin in the whole water/sediment systems was relatively slow. Once deposited in the sediment, parent remained relatively stable maximum as evidenced by the slow degradation over time and the lack of formation of significant metabolites. Fenpropidin reached a maximum of 58.2% of applied radioactivity in the sediment at day 44 before declining to 28.5% at 106 days. The only major degradate of fenpropidin was found to be CGA289267 which reached a maximum mean level of 19.4% of applied radioactivity in the sediment phase. Carbon dioxide was a major product of metabolism in all systems reaching a maximum value of 45.4%.

2.8.2.1 Rapid degradability of organic substances

 Table 54:
 Summary of relevant information on rapid degradability

Method	Results*	Key or Supportive study	Reference
Aerobic Mineralisation of ¹⁴ C- Fenpropidin in Surface Water, OECD 309	Mineralisation of fenpropidin not significant, mean ${}^{14}CO_2$ levels never exceeded 6.2% AR for all of the incubation groups tested.	Key	Williams, D. (2016)
Aerobic transformation of ¹⁴ C-labelled Fenpropidin in water/sediment	DT50 = 53.7 - 129 days in whole system for fenpropidin	Key	Klöppel, H. (2006c)
Aerobic Aquatic- Sediment Metabolism of ¹⁴ C- Fenpropidin, Aerobic Aquatic- Sediment Metabolism of ¹⁴ C- Fenpropidin: Additional Confirmatory Analyses, OECD 308	DT50 = 27.8 days in whole system for fenpropidin	Key	Adam, D. (2016), Adam, D. (2016a)
Degradation of Ro 12-3049/031 in soil/aquatic systems. RCC, Itingen, Switzerland	The current value of the unknown metabolite of 5.7 % AR is only slightly above 5 % AR, therefore, it is likely that this would be below 5% AR if the	Key	Van Dijk, A. (1987)

F	enpropidin	Volume 1 – I	Level 2	May 2021
	Method	Results*	Key or Supportive	Reference
			study	
		entire chromatogram		
		had been quantified.		

* data on full mineralization should be reported

2.8.2.1.1 Ready biodegradability

Fenpropidin seemed to be degraded in at least two steps, seen as two lag phases. A plateau of the biodegradation curve was not reached at day 41. The shapes of the curves were similar at both test concentrations, but degradation was slower at the higher test concentration. Since >20% biodegradability was observed fenpropidin may be classified as "inherently biodegradable". The positive control was degraded by 87% within 141 hours.

 Table 55:
 Summary of relevant information on ready degradability

Method	Results	Remarks	Reference
Ready Biodegradability (modified Sturm Test) of Ro 12- 3049 {1-(3-[p-tert-butylphenyl]- 2-methylpropyl)-piperidene} according to OECD Test Guideline 301B.	Not readily biodegradable according to the OECD criteria	Key study	Lebertz, H. (1990)

2.8.2.1.2 BOD5/COD

Data not available

2.8.2.2 Other convincing scientific evidence

Data not available

2.8.2.2.1 Aquatic simulation tests

Data not available

2.8.2.2.2 Field investigations and monitoring data (if relevant for C&L)

Data not available

2.8.2.2.3 Inherent and enhanced ready biodegradability tests

Data not available

2.8.2.2.4 Soil and sediment degradation data

Data on soil degradation are reported under 2.8.1, whilst sediment degradation data are presented under 2.8.2

2.8.2.2.5 Hydrolysis

Data on hydrolysis are reported under 2.8.2.

2.8.2.2.6 Photochemical degradation

Data on photochemical degradation are reported under 2.8.1 and 2.8.2.

Volume 1 – Level 2

2.8.2.2.7 Other / Weight of evidence

None

2.8.3 Summary of fate and behaviour in air

The photochemical-oxidative half-life of fenpropidin in air is 3.4 hours. The vapour pressure of fenpropidin is 0.019 Pa, which is in excess of the triggers for volatilisation of 10^{-5} Pa from plants and 10^{-4} Pa from soil. The volatilisation of fenpropidin from plant and soils surfaces has therefore been investigated as well as the deposition of fenpropidin following volatilisation in wind tunnels under semi field conditions. As the vapour pressure of fenpropidin is in excess of the triggers for volatilisation from plant and soil surfaces, the volatilisation/re-deposition values of fenpropidin have been used for the aquatic risk assessment.

2.8.3.1 Hazardous to the ozone layer

Data not available

2.8.3.1.1 Short summary and overall relevance of the provided information on hazards to the ozone layer

Data not available

2.8.3.1.2 Comparison with the CLP criteria

The substance is not mentioned in Annexes of the Montreal Protocol.

2.8.3.1.3 Conclusion on classification and labelling for hazardous to the ozone layer

Not classified

2.8.4 Summary of monitoring data concerning fate and behaviour of the active substance, metabolites, degradation and reaction products

No monitoring data are available for fenpropidin

2.8.5 Definition of the residues in the environment requiring further assessment

The residue definition relevant for environmental risk assessment is as follows:

Soil	Fenpropidin and CGA289267
Groundwater	Fenpropidin and CGA289267
Surface water	Fenpropidin and CGA289267
Sediment	Fenpropidin and CGA289267
Air	Fenpropidin

2.8.6 Summary of exposure calculations and product assessment

Exposure via Soil

The predicted environmental concentrations in soil (PEC_{soil}) for the active substance fenpropidin and its metabolite CGA289267 were calculated based on a simple first tier approach (Microsoft® Excel spreadsheet) assuming even distribution of the compound in the upper 0-5 cm soil layer. A standard soil density of 1.5 g/cm³ was assumed. The interception rates follow the recommendations of the FOCUS groundwater guidance paper (FOCUS 2014) for cereals (BBCH 31-69): 80/90% interception). According to the use pattern, multiple foliar spray applications of fenpropidin at rates of 281.25 and 562.5 g fenpropidin/ha to winter and spring cereals between BBCH 31 and 69 were considered.

Volume 1 – Level 2

May 2021

The new kinetic evaluations of field studies resulted in a maximum DT_{50} for fenpropidin of 1000 days (SFO, unnormalised); hence the calculation of a $PEC_{plateau}$ is triggered.

For the metabolite CGA289267 the max DT_{50} was 55.8 days (SFO, un-normalised); a PEC_{plateau} calculation was also calculated.

Details of the calculations are given in Volume 3_CP_B-8, Section B.8.2 for fenpropidin.

Exposure via Groundwater

Predicted environmental concentrations in groundwater (PEC_{gw}) for fenpropidin and its metabolite

CGA 289267 were calculated for the use in Europe, using the simulation model FOCUS PEARL (version 4.4.4), PELMO (version 5.5.3) and MACRO (version 5.5.4). PEC_{gw} were evaluated as the 80th percentile of the mean annual leachate concentration at 1 m soil depth. Model parameters and scenarios consisting of weather, soil, and crop data were used as proposed by FOCUS.

All PEC_{gw} values for fenpropidin for use in spring and winter cereals were $<0.1\mu g/L$. Based on FOCUS groundwater calculations with PEARL and PELMO models, it can be concluded that the representative use of fenpropidn on cereals poses no unacceptable risk to groundwater at 1 m depth. The metabolite CGA289267, present a PECgw values clearly above the 0.1 $\mu g/L$.

Details of the calculations are given in Volume 3_CP_B-8, Section B.8.3 for fenpropidin.

Table 2.8.6-1: PECgw at 1 m soil depth for fenpropidin following two applications of fenpropidin to winter and spring cereals (FOCUS-PELMO)

	FOCUS-PELMO						
Seemen:		winter cereals ha (80/90% CI)	Application to spring cereals 2 x 562.5 g a.s./ha (80/90% CI)				
Scenario	Fenpropidin	CGA 289267	Fenpropidin	CGA 289267			
	PEC _{gw} [μg/L]	PEC _{gw} [μg/L]	PEC _{gw} [μg/L]	PEC _{gw} [μg/L]			
Châteaudun	< 0.001	0.023	< 0.001	0.017			
Hamburg	< 0.001	0.376	< 0.001	0.338			
Jokioinen	< 0.001	0.223	< 0.001	0.160			
Kremsmünster	< 0.001	0.224	< 0.001	0.211			
Okehampton	< 0.001	0.421	< 0.001	0.386			
Piacenza	< 0.001	0.221	-	-			
Porto	< 0.001	0.346	< 0.001	0.315			
Sevilla	< 0.001	0.004	-	-			
Thiva	< 0.001	0.014	-	-			

- Scenario not relevant for the crop

 Table 2.8.6-2: PECgw at 1 m soil depth for fenpropidin following two applications of fenpropidin to winter and spring cereals (FOCUS-PEARL)

Fenpropidin	Volun	ne 1 – Level 2	May	2021		
	FOCUS-PEARL Application to winter cereals Application to spring cereals					
а ·		winter cereals ha (80/90% CI)		ha (80/90% CI)		
Scenario	Fenpropidin	CGA 289267	Fenpropidin	CGA 289267		
	PEC _{gw} [μg/L]	PEC _{gw} [µg/L]	PEC _{gw} [µg/L]	PEC _{gw} [μg/L]		
Châteaudun	< 0.001	0.035	< 0.001	0.030		
Hamburg	< 0.001	0.389	< 0.001	0.430		
Jokioinen	< 0.001	0.189	< 0.001	0.189		
Kremsmönster	< 0.001	0.224	< 0.001	0.242		
Okehampton	< 0.001	0.418	< 0.001	0.391		
Piacenza	< 0.001	0.134	-	-		
Porto	< 0.001	0.208	< 0.001	0.288		
Sevilla	< 0.001	0.005	-	-		
Thiva	< 0.001	0.015	-	-		

- Scenario not relevant for the crop

Table 2.8.6-3: PEC_{GW} of fenpropidin and CGA289267 following two applications of fenpropidin to winter and spring cereals (FOCUS-MACRO)

Application				PEC _{Gw} at 1 m so	il depth [µg/L]	
rate	Number of applications	Scenario	Winter cereals		Spring cereals	
[g a.s./ha]	upplications		Fenpropidin	CGA 289267	Fenpropidin	CGA 289267
562.5	2	Châteaudun	< 0.001	< 0.001	< 0.001	< 0.001

Exposure via Surface Water and Sediment

Predicted environmental concentrations of the active substance fenpropidin and its metabolite CGA289267 in surface water (PEC_{sw}) and sediment (PEC_{sed}) were calculated for the use in Europe, employing the tiered FOCUS Surface Water (SW) approach (FOCUS 2001, 2015). All relevant entry routes of a compound into surface water (principally a combination of spray drift and runoff/erosion or drain flow) were considered in these calculations.

The FOCUS tool SWASH (v 5.3), including the operational models FOCUS-MACRO (v 5.5.4), FOCUS-PRZM (v 4.3.1) and FOCUS-TOXSWA (v 4.4.3), were used in the modelling study for Step 3 simulations. The ECPA tool SWAN (v 4.0.1) was used to implement mitigation options at Step 4. With a vapour pressure of 0.019 Pa dry deposition of fenpropidin following volatilisation was included in the Step 4 calculations.

For the use of fenpropidin on cereals (winter and spring), FOCUS Steps 1-4 were performed for its metabolite CGA289267, FOCUS steps 1-2 were performed.

According to the use pattern, multiple foliar spray applications of fenpropidin at rates of 281.25 and 562.5 g fenpropidin/ha to winter and spring cereals between BBCH 31 and 69 were considered.

Details of the calculations are given in Volume 3_CP_B-8, Section B.8.5 for fenpropidin.

Other routes of exposure

There are no other routes of exposure if the product is used according to good agricultural practice.

FenpropidinVolume 1 – Level 22.9EFFECTS ON NON-TARGET SPECIES

Metabolites

According to the results presented in Volume 3 CA B.7 (7.1 - 7.3), the only metabolite considered requiring an ecotoxicological risk assessment is CGA289267:

Fenpropidin metabolites identified as requiring an ecotoxicological risk assessment

Compartment	Metabolite
Soil	Fenpropidin, CGA289267
Surface water	Fenpropidin, CGA289267
Sediment	Fenpropidin, CGA289267
Groundwater	Fenpropidin, CGA289267

2.9.1 Summary of effects on birds and other terrestrial vertebrates

Effects on birds

The results of avian toxicity studies for fenpropidin are summarised in the table below.

Test species	Test substance	Test system	Endpoint	Toxicity (mg/kg bw/day)	Reference ^a
Mallard duck (Anas platyrhynchos) [#]	Fenpropidin	Acute, oral 14 d	LD ₅₀	1899 mg/kg bw	(1980a) CGA114900/0062
Pheasant (Phasianus colchicus) #	Fenpropidin	Acute, oral 14 d	LD ₅₀	n.a.	(1980b) CGA114900/0063
Japanese quail (Coturnix coturnix japonica)	Fenpropidin	Acute, oral 14 d	LD ₅₀	n.a.	(1997a) CGA114900/1061 8
Bobwhite quail (Colinus virginianus) [#]	A7516B	Acute, oral 14 d	LD ₅₀	568 mg form./kg bw 431 mg a.s./kg bw	et al. (2001) CGA114900/4652
Bobwhite quail (Colinus virginianus) ^{# a}	Fenpropidin	Short-term dietary, 5 day feeding	LC ₅₀ LDD ₅₀	>6594 ppm >1417 mg/kg bw/d	(1986) CGA114900/0065
Mallard duck (Anas platyrhynchos) ^{#a}	Fenpropidin	Short-term dietary, 5 day feeding	LC ₅₀ NOEL ²	3762 ppm 103 mg/kg bw/d	et al. (1986) CGA114900/0064
Japanese quail (Coturnix coturnix japonica)	Fenpropidin	Short-term dietary, 5 day feeding	LC ₅₀ LDD ₅₀	>5000 ppm >630 mg/kg bw/d	(1997a) CGA114900/1062 1
Bobwhite quail (Colinus virginianus) [#]	Fenpropidin	Subchronic and reproductive, 21 weeks feeding	NOEC NOEL	180 ppm 14.6 mg/kg bw/d	(1992) CGA114900/0133

 Table 2.9.1-1
 Summary of avian toxicity studies for fenpropidin

[#] Study evaluated in old DAR (2005).

^a Study evaluated or re-evaluated in old Addendum (2007)

¹ The study is not considered valid or suitable for regulatory use.

 2 The NOEL of 103 mg/kg bw/day based on mortality was set as an endpoint to replace the LDD50 which could not be reliably calculated due to high mortality at higher tested doses.

n.a. not applicable

Endpoints used in the regulatory risk assessment included in bold.

Effects on terrestrial vertebrates other than birds

A summary of the key mammalian toxicity studies relevant to the ecotoxicological risk assessment is given in the table below. These data were evaluated in Section B.6 where further discussion can be found.

Substance	Species	Type of study, dose range tested	Study endpoint	Value, adverse effects at LOAEL	Reference
Acute oral tox	icity			LUALL	
Fenpropidin	Rat	Acute oral, OECD 401; Males: 2.05, 2.34, 2.63, 3.51, 4.68, 5.85 ml/kg bw (1872, 2136, 2401, 3205, 4273, 5341 mg/kg bw) Females: 0.59, 1.17, 1.46, 1.61, 1.76, 2.05, 2.34, 3.51 ml/kg bw (539, 1068, 1333, 1470, 1607, 1872, 2136, 3205 mg/kg bw)	LD ₅₀	2173 mg/kg bw (2.38 ml/kg bw) (M) 1452 mg/kg bw (1.59 ml/kg) (F)	1981
Fenpropidin	Rat	Acute oral, OECD 401; 0, 1.0, 1.6, 2.5, 4.0 ml/kg bw (corresponding to 913, 1461, 2283, 3652 mg/kg bw)	LD ₅₀	2009 mg/kg bw (2.2 ml/kg)	1987
Long-term tox		The second secon	NOATI	D . 1	(2002)
Fenpropidin	Rat	Two-generation reproduction,; OECD 416; 0, 25, 100, 500 and 1000 ppm M: 2-3, 8-10, 42-58 and 80-126 mg/kg bw/d F: 2-5, 8-18, 45-96 and 88-205 mg/kg bw/d Overall grand mean values (mean of grand means per period, sex and generation): 2.9, 11.4, 60.3 and 123 mg/kg bw/day	NOAEL [NOAEC]	Parental toxicity: 11.4 mg/kg bw/d [100 ppm]Body weight gainreduction, decreased foodconsumption,organ weights andhistopathologychanges,Reproductive toxicity:123 mg/kg bw/d[1000 ppm]No effects at any doselevel.Offspring toxicity: 11.4 mg/kg bw/d [100 ppm]Body weight gainreduction, delayed sexual	(2003)

Table 2.9.1-2A summary of the key mammalian toxicity studies relevant to the ecotoxicological riskassessment

Fenpropidin		Volume 1 –	Level 2	May 2021		
				maturation.		
Fenpropidin ¹	Rat	Two-generation reproduction,; OECD 416; 0, 6.25, 25, 100 ppm corresponding to 0.4, 1.61, 6.43 and 0.50, 2.03, 8.02 mg/kg bw/day for F0 and F1 males respectively. 0.48, 1.91, 7.79 and 0.56, 2.35, 9.31 mg/kg bw/day for F0 and F1 females respectively (premating period only).	NOAEL [NOAEC]	Parental, reproductive and offspring toxicity: 7.9 mg/kg bw/d ² (overall mean value for both sexes) [100 ppm] No effects at any dose level.	et al (1987)	
Fenpropidin ¹	Rat	Developmental (in diet), OECD 414, F: 0, 19.5, 47.5 and 87.8 mg/kg bw/d	NOAEL	Maternal:47.5 mg/kg bw/dDecreased body weightsand body weight gain.Developmental:47.5 mg/kg bw/dSkeletal effects on neuralarches.	(1981)	
Fenpropidin	Rat	Developmental (gavage), OECD 414, F: 0, 10, 60, 90 mg/kg bw/d	NOAEL	Maternal and developmental: 90 mg/kg bw/d Not significant decrease in maternal body weight gain and significant decrease of food consumption but no treatment-related foetal abnormalities.	(1994)	
Fenpropidin ¹	Rabbit	Developmental (gavage), OECD 414, F: 0, 5, 12, 30 mg/kg bw/d	NOAEL	<u>Maternal:</u> 12 mg/kg bw/d Reduced body weight gain. <u>Developmental:</u> 30 mg/kg bw/d Reduced mean litter weight.	and (1981)	
Fenpropidin	Rabbit	Developmental (gavage), OECD 414, F: 0, 5, 10, 20 mg/kg bw/d	NOAEL	<u>Maternal:</u> 10 mg/kg bw/d Reduced body weight gain. <u>Developmental:</u> 10 mg/kg bw/d	(2011)	

Fenpropidin	Volume 1 –	Volume 1 – Level 2		May 2021		
			Increased incidence of			
			persistent truncus			
			arteriosus and severely			
			malaligned sternebrae.			

¹ Supplementary study.

 2 No effects observed up to the highest dose tested in this study. It is not the defining study in this area, because there was similar and more robust study testing to higher doses.

Selection of acute toxicity endpoint

The lowest acute endpoint LD_{50} of 1452 mg a.s./kg bw determined for female rats from the study by (1981) is used in the acute risk assessment.Since the difference in acute LD_{50} between male and female rats in this study was greater than 25 % the geometric mean could not be taken into account.

Selection of reproductive toxicity endpoint

For the long-term risk assessment, the Notifier suggested the endpoint of 500 ppm (calculated as mean 60.25 mg a.s./kg bw/d) from 2-generation rat study (2003) based on the EFSA report for fenpropidin (EFSA Scientific Report No. 124, 2007) where the following was concluded:

"The endpoint NOAEL of 60.25 mg/kg bw/d from a 2-generation reproduction study in rats was discussed since effects on body weight gain were observed. No other adverse effects were observed in the study at this concentration. The experts agreed to the use of the endpoint since the magnitude of effects was low and at least partly caused by reduced maternal food consumption."

However, based on the RMS evaluation of the study by (2003) in Volume 3 B.6 CA, the following conclusion was provided:

"The only effect on reproduction was a significant delay in sexual maturation at doses above 500 ppm for F1 females and 1000 ppm for F1 males. The number of pups delivered and the number of implantations was significantly reduced at 1000 ppm for the F2 pups only. **The NOAEL for effects on offspring and reproduction is 100 ppm.**

The body weights, both absolute and relative were reduced for all generations at doses above 500 ppm. Effects on organ weights and histopathology were also observed at doses above 500 ppm for all generations. The **NOAEL** for the parental effects is 100 ppm.

The effects on thymus weights and spleen weights that occurred in all generations and the histological evidences of reduced extramedullary hematopoesis, reduced lymphohistiocytic infiltration of the liver, and atrophy of phagocytic cells in thymus might indicate an immunosuppressive effect of fenpropidin. However, the effects were less severe in the F1 pups generation than in the F1 parent generation. Also no consistent similar effects were observed in any of the sub chronic toxicity studies in rats (or mice) at similar dose levels. In the 90 day rat study decreased thymus weights occurred but without histopathological evidence of damage. Since these effects were confined to this study and only at high doses in the presence of reduced body weights, these effects are considered as incidental."

Hence, taking into account effects on sexual maturation which are considered as relevant for reproductive performance according to EFSA GD (2009), RMS has proposed the ecotoxicologically relevant endpoint derived from this study NOEL of 11.4 mg a.s./kg bw/day from 2-generation rat study (2003).

In addition, a new developmental study in rabbit was submitted (2011). The maternal and developmental NOAEL derived from this study is 10 mg a.s./kg bw/day, based on reduced body weight gain of mothers and on increased incidence of persistent truncus arteriosus and severely malaligned sternebrae. All these adverse effects are considered as ecotoxicologically relevant.

Overall, RMS has proposed as the ecotoxicologically relevant endpoint to be used in the reproductive risk assessment for wild mammals **NOEL of 10 mg a.s./kg bw/day** from developmental study in rabbit (2011).

For details see Volume 3 CP B.9, Section B.9.1.2.

The selection of ecotoxicologically relevant endpoint to be used in the reproductive risk assessment for wild mammals should be discussed in peer review.

2.9.2 Summary of effects on aquatic organisms [section 11.5 of the CLH report]

FenpropidinVolume 1 – Level 2May 20212.9.2.1Bioaccumulation [equivalent to section 11.4 of the CLH report template]

Method	Species	Results	Key or Supportive study*	Remarks	Reference
Not stated	Lepomis macrochirus	BCF 163	Acceptable Key study	-	(1989)
OECD 305	Danio rerio	BCF 62 – 14 (mean 103.5)	Acceptable Key study	-	(2006)

Table 56: Summary of relevant information on bioaccumulation

2.9.2.1.1 Estimated bioaccumulation

No data available.

2.9.2.1.2 Measured partition coefficient and bioaccumulation test data

(1989): In a bio-concentration study, groups of Bluegill sunfish (*Lepomis macrochirus*) (50 in the control and 60 in each of the duplicate test substance treatment) were exposed to 0.19 mg/L of ¹⁴C-fenpropidin for a period of 28 days under flow-through conditions (uptake phase), followed by a period of 14 days in test medium without test substance (depuration phase). An untreated control group was run concurrently.

Mortality and behaviour of the fish were recorded. Temperature, pH and oxygen concentrations were measured daily in all test vessels. From the treatment tanks 10 fish, 5 from each tank, were sampled at day 0 (1 hour after start of treatment), 3, 7, 14, 21 and 28 of the exposure phase. During the depuration phase 6 fish per sampling interval were taken at day 1, 3, 7, 10 and 14. From the control tank fish were taken at day 0 (1 hour after treatment) and 28 of the exposure phase, and at day 14 of the depuration phase. Water samples were taken at day 0 (1 hour after start of treatment), 1, 3, 7, 14, 21 and 28 of the exposure phase. Water samples were taken at day 0 (1 hour after start of treatment), 1, 3, 7, 14, 21 and 28 of the exposure phase and at day 1, 7 and 14 of the depuration phase. From the control tank water samples were taken at day 0 (1 hour after start of treatment), 14 and 28 of the exposure phase. The test concentrations in the water phase were within \pm 20 % of nominal values throughout the uptake phase.

Steady state concentrations were reached within 3 days of exposure. The steady state residue values divided by the average concentration in both tanks, 0.19 mg parent equivalents/l, resulted in BCF of 25, 259 and 163 for edible parts, non-edible parts and whole fish respectively. The half-lives calculated from the slope of the line passing through the points corresponding to day 0 and day 1 of the depuration phase were 17.3, 14.6 and 16.8 hours for edible, non-edible and whole fish tissues, respectively.

The study is considered valid and acceptable for regulatory use.

(2006): In a bio-concentration study, groups of 50 zebra fish were exposed to 42 and 140 μ g/L of ¹⁴C-fenpropidin for a period of 4 days under flow-through conditions (uptake phase), followed by a period of 4 days in test medium without test substance (depuration phase). An untreated control group was run concurrently.

Mortality and behaviour of the fish were recorded. Temperature, pH and oxygen concentrations were measured daily in all test vessels. Four fish per group were sampled during the uptake phase at 0, 7, 14, 28, 48, 56, 72, 76, 84, 96 and 100 hours and during the depuration phase at 7, 20, 35 and 70 hours. Water samples were taken concurrently during the uptake phase and at the first sampling time of the depuration phase. The test concentrations in the water phase were within \pm 20 % of nominal values throughout the uptake phase.

BCF values related to whole body weight were calculated as mean BCF derived from BCF_{SS} and BCF_k values at 62 and 145 for environmental concentrations around 40 μ g/L and 120 μ g/L, respectively. The BCF was dependent on the exposure concentration due to slow net uptake which is counteracted by fast test item depuration and metabolism. Depuration and/or metabolic degradation in fish is rapid as demonstrated by a mean clearance rate DT₉₅ = 0.85 days.

The study is considered valid and acceptable for regulatory use.

The fish bioconcentration studies showed a rapid depuration of residues of the active substance. The results do not indicate a potential for bioaccumulation of fenpropidin (BCF in fish < 500).

2.9.2.2 Acute aquatic hazard [equivalent to section 11.5 of the CLH report template]

Table 57: Summary of relevant information on acute aquatic toxicity

npropidin Method	Species	Volume 1 – Level 2 Test Results ¹		Kow or	May 2021 Remarks	Reference
Method	Species	material	Kesuns	Key or Supportive study*	Kemarks	Kelerence
Not stated	Rainbow trout (Oncorhynchus mykiss)	Fenpropidin	96 h LC ₅₀ 2.57 mg/L (mm)	Acceptable Key study	-	(1981b
EU method C.1 (92/69/EEC)	Rainbow trout (Oncorhynchus mykiss)	Fenpropidin	96 h LC ₅₀ 2.84 mg/L (mm)	Acceptable Key study	-	(2006)
Not stated	Bluegill sunfish (Lepomis macrochirus)	Fenpropidin	96 h LC ₅₀ 1.93 mg/L (mm)	Acceptable Key study	-	(1981a
Not stated	Common carp (<i>Cyprinus</i> <i>carpio</i>)	Fenpropidin	96 h LC ₅₀ 3.55 mg/L (mm)	Acceptable Key study	-	(1981c
EU method C.1 (92/69/EEC)	Zebra fish (Danio rerio)	Fenpropidin	96 h LC ₅₀ 5.37 mg/L (mm)	Acceptable Key study	-	(2006a)
Not stated	Daphnia magna	Fenpropidin	48 h EC ₅₀ 0.54 mg/L (mm)	Acceptable Key study	-	Hill (1981d
OECD 202	Daphnia magna	Fenpropidin	48 h EC ₅₀ 6.15 mg/L (mm)	Acceptable Key study	-	Noack (2007a)
OECD 201	Freshwater green (<i>Desmodesmus</i> <i>subspicatus</i>)	Fenpropidin	96 h ErC ₅₀ n.a. 96 h E _b C ₅₀ n.a.	Not valid	Validity criteria not met for the mean coefficient of variation for section-by section specific growth rate and for the specific growth rate in control	Handley (1989)
ASTM guideline E 1218-90	Freshwater green (<i>Microcystis</i> <i>aeruginosa</i>)	Fenpropidin	96 h E _r C ₅₀ n.a. 96 h E _b C ₅₀ n.a.	Not valid	Validity criteria not met for the mean coefficient of variation for section-by section specific growth rate and for the specific growth rate in control	Grade (1993a)
OECD 201	Freshwater green (Desmodesmus subspicatus)	Fenpropidin	96 h E _r C ₅₀ >0.001 mg/L 96 h E _b C ₅₀ n.d.	Acceptable Key study	-	Pupp & Wydra (2008)
OECD 201	Freshwater green (Desmodesmus subspicatus)	Fenpropidin	72 h E _r C ₅₀ 0.000688 mg/L	Acceptable Key study	-	Scheerbaur (2007a) Pickering &

F <u>enpropidin</u>		Volume 1 – Le			May 2021	
			72 h E _y C ₅₀			Allen
			0.000044			(2018a)
			mg/L			
OECD 221			(mm)	Acceptable	-	Bebon &
OLCD 221			Frond number:	Key study	-	Wydra
			7 d E_rC_{50}	1109 50009		(2017)
		Fenpropidin	$7 \text{ u } \text{E}_{r} \text{C}_{50}$ 0.0789 mg/L			
			$7 \text{ d } \text{E}_{y}\text{C}_{50}$			
			0.00367			
	Duckweed		0.00507 mg/L			
	(Lemna gibba)		Dry weight:			
			$7 \text{ d } \text{E}_{r}\text{C}_{50}$			
			0.293 mg/L			
			$7 \text{ d } \text{E}_{y}\text{C}_{50}$			
			0.00819			
			mg/L			
			(mm)			
OECD 239			Shoot	Acceptable	-	Kirkwood
	Myriophyllum spicatum	Fenpropidin	length:	Key study		(2018)
			14 d E _r C ₅₀			
			2.0 mg/L			
			14 d E _y C ₅₀			
			1.8 mg/L			
			Shoot wet			
			weight:			
			$14 \text{ d} \text{E}_{r}\text{C}_{50}$			
			0.77 mg/L			
			$14 d E_y C_{50}$			
			0.77 mg/L			
			Shoot dry weight:			
			14 d E_rC_{50}			
			0.91 mg/L			
			14 d E _y C ₅₀			
			0.88 mg/L			
			(mm)			

Acute toxicity studies on fish, daphnia and alga were available also for metabolite CGA289267, indicating that its toxicity is considerably lower than the toxicity of parent (100-100000x lower). For details see Table 9.4.1-1 in Volume 3 CP B.9 of RAR.

2.9.2.2.1 Acute (short-term) toxicity to fish

Five valid studies performed with active substance fenpropidin were available:

(1981b):

A 96 hours test on the acute toxicity of fenpropidin (purity: 94.7 % w/w) to the rainbow trout was performed under flow-through conditions at eight nominal test concentrations (0.32, 0.56, 0.75, 1.0, 1.8, 2.4, 3.2, and 5.6 mg a.s./L), one control and one solvent control (acetone). Twenty fishes were exposed to each test concentration. Observations of mortality only were made at 24, 48, 72, and 96 hours. In addition, observations of mortality and sublethal effects (loss of equilibrium, quiescence, surfacing, darkening in colour, laboured respiration, coughing) were made at 5.25, 21.5, 29.25, 45.5, 53.25, 69.5, 77.25, and 93.5 hours, respectively. Analytical determinations of the test substance concentrations were made daily throughout the exposure period (except following 100%)

Volume 1 – Level 2

mortality).

The mean measured test substance concentrations were in the range of 74-88% of nominal. The mean measured concentrations were used in the calculation and reporting of results. The concentrations in the controls were below the detection limit (< 0.01 mg a.s./l).

The study is considered valid and acceptable for regulatory use.

The 96-hour LC_{50} is 2.57 mg fenpropidin /L and the 96-hour no-observed-effect concentration (NOEC) is 0.26 mg fenpropidin /L, based on mean measured concentrations.

(2006):

Groups of 7 rainbow trout were exposed to 0.50, 0.89, 1.58, 2.81 and 5.00 mg/L fenpropidin technical (purity: 97.8%) for 96 hours under static conditions. The fish were observed for symptoms of intoxication and mortality after approximately 3, 24, 48, 72 and 96 hours.

Analytical verification of test item concentrations was performed at test start and test end. The recovery rates were in a range of 102 - 114 % of nominal at test start and 59 - 89 % at test end.

The study is considered valid and acceptable for regulatory use.

The 96-hour LC_{50} is 2.84 mg fenpropidin /L and the 96-hour no-observed-effect concentration (NOEC) is 0.745 mg fenpropidin /L, based on mean measured concentrations.

(1981a):

A 96 hours test on the acute toxicity of fenpropidin (purity: 94.7 % w/w) to the bluegill sunfish (*Lepomis macrochirus*) was performed under flow-through conditions at six nominal test concentrations (0.56, 0.75, 1.0, 1.8, 3.2, and 5.6 mg a.s./L), one control and one solvent control. Twenty fishes were exposed to each test concentration. Analytical determinations of the test substance concentrations were made daily throughout the exposure period (except following 100% mortality). Observations of mortality only were made at 24, 48, 72, and 96 hours. In addition, observations of mortality and sublethal effects (e.g. loss of equilibrium, quiescence, surfacing, weak fish, darkening in colour, decrease in respiration rates) were made at 4, 21, 28, 45, 52, 69, 76, and 93 hours, respectively.

The mean measured test substance concentrations were in the range of 73-90.6% of nominal. The mean measured concentrations were used in the calculation and reporting of results. The concentrations in the controls were below the detection limit (< 0.02 mg a.s./l).

The study is considered valid and acceptable for regulatory use.

The 96-hour LC_{50} is 1.93 mg fenpropidin /L and the 96-hour no-observed-effect concentration (NOEC) is <0.44 mg fenpropidin /L, based on mean measured concentrations.

(1981c):

A 96 hours test on the acute toxicity of fenpropidin (purity: 94.7 % w/w) to the mirror carp (*Cyprinus carpio*) was performed under flow-through conditions at eight nominal test concentrations (0.56, 1.0, 1.8, 2.4, 3.2, 5.6, 7.5, and 10 mg a.s./L), one control and one solvent control. Ten fishes were exposed to each test concentration. Analytical determinations of the test substance concentrations were made daily throughout the exposure period (except following 100% mortality). Observations of mortality only were made at 24, 48, 72, and 96 hours. In addition, observations of mortality and sublethal effects (loss of equilibrium, quiescence, surfacing, weak fish, darkening in colour, decrease in respiration rates) were made at 4.5, 21, 28.5, 45, 52.5, 69, 76, and after 93 hours, respectively.

The mean measured test substance concentrations were in the range of 78-90.9% of nominal. The mean measured concentrations were used in the calculation and reporting of results. The concentrations in the controls were below the detection limit (< 0.02 mg a.s./l).

The study is considered valid and acceptable for regulatory use.

The 96-hour LC_{50} is 3.55 mg fenpropidin /L and the 96-hour no-observed-effect concentration (NOEC) is 0.46 mg fenpropidin /L, based on mean measured concentrations.

(2006a):

Groups of 7 zebrafish were exposed to 1, 2, 4, 8 and 16 mg/L fenpropidin technical (purity: 97.8 %) for 96 hours under static conditions. The fish were observed for symptoms of intoxication and mortality after approximately 3, 24, 48, 72 and 96 hours.

Analytical verification of test item concentrations was performed at test start and test end. The recovery rates were in a range of 95 - 118 % of nominal at test start and 89 - 120 % at test end.

The study is considered valid and acceptable for regulatory use.

The 96-hour LC_{50} is 5.37 mg fenpropidin /L and the 96-hour no-observed-effect concentration (NOEC) is 1.60 mg fenpropidin /L, based on mean measured concentrations.

2.9.2.2.2 Acute (short-term) toxicity to aquatic invertebrates

Two valid studies performed with active substance fenpropidin were available:

Hill RW (1981d):

Groups of 20 *Daphnia magna* (4 replicates of 5 animals per test concentration) were exposed to 0.056, 0.1, 0.18, 0.32, 0.56, 1.0, 1.8, 3.2 and 5.6 mg/L of fenpropidin for 48 hours under static conditions. The invertebrates were observed for immobilisation after 24 and 48 hours of exposure.

Analytical verification of test item concentrations was performed at test start and test end. At the start of the test the measured concentrations ranged from 80.6-100% of the nominal values and at the end of the test they ranged from 78.6-97.2% of the nominal values (overall mean 85.0-96.3%). Mean measured concentrations were used in the calculation and reporting of results.

The study is considered valid and acceptable for regulatory use.

The 48-hour LC_{50} is 0.54 mg fenpropidin /L and the 48-hour no-observed-effect concentration (NOEC) is 0.048 mg fenpropidin /L, based on mean measured concentrations.

Noack M. (2007a):

Groups of 20 *Daphnia magna* were exposed to 1.03, 2.07, 4.03, 8.70 and 16.6 mg/L of fenpropidin technical for 48 hours under static conditions. The invertebrates were observed for immobilisation after 24 and 48 hours of exposure.

Analytical verification of test item concentrations was performed at test start and test end. The results showed that the test concentrations were maintained above 80 % of initial concentrations.

The study is considered valid and acceptable for regulatory use.

The 48-hour EC_{50} is 6.15 mg fenpropidin /L and the 48-hour no-observed-effect concentration (NOEC) is 2.07 mg fenpropidin /L, based on mean measured concentrations.

2.9.2.2.3 Acute (short-term) toxicity to algae or aquatic plants

Two valid studies on algae (delivering EC_{50}) and two valid study on aquatic plants performed with active substance fenpropidin were available:

Pupp & Wydra (2008):

The toxicity of fenpropidin to the green alga *Desmodesmus subspicatus* was determined. Algae were exposed to nominal concentrations of 0.001, 0.0032, 0.01, 0.032, 0.1, 0.32 and 1.0 μ g test item/L alongside a medium control. The algal cell densities were measured at 24, 48, 72 and 96 hours and the mean biomass (are under the growth curve), growth rate and yield calculated. At the start of the test, test item concentrations were measured in the range 105 to 115 % of the nominal concentrations, after 96 hours, values were 81 - 93 % of nominal concentrations. The lower test concentrations were below the limit of detection or limit of quantification. All reported results are related to nominal concentrations of the test item.

The algal growth inhibition based on the average growth rate was less than 50% at all treatment levels up to and including the highest nominal test concentration of 1.0 μ g/L, after 72 and 96 hours test duration. Therefore it was concluded that the 72-hour and 96-hour ErC₅₀ values were greater than the highest test concentration of 1.0 μ g/L, as confirmed by the analytical measurement of the test item concentration.

The study is considered valid and acceptable for regulatory use.

96-hour E_rC_{50} is greater than 1.0 µg a.s./L.

Due to the issue of fenpropidin concentrations insufficiently maintained in most of the test concentrations, no other endpoint could be derived from the study (neither NOEC or EC_{10} , nor E_vC_{50}).

Scheerbaum, D. (2007a) (for further details see Volume 3 CA B.9 of RAR, Section B.9.2.6.1.1 iv))

A growth inhibition test was performed with the green algae (*Desmodesmus subspicatus*). Three replicates with $2 - 5 \times 10^3$ algal cells per mL test medium were exposed to fenpropidin technical (purity: 97.8 %) at mean measured concentrations of 1.29, 0.639, 0.288, 0.097, 0.049 and 0.024 µg test item/L for 72 hours under static conditions (for the two lowest dilution levels no measured concentrations are available since the concentrations were below the LOQ). Therefore, fenpropidin concentrations were calculated under consideration of the mean measured concentration of the lowest measured dosage level and the dilution factor of 2. Cell densities in defined volumes of algal suspensions from all replicates were determined after 24, 48 and 72 hours of exposure. The inhibition of algae growth was determined from the average specific growth rate μ and the yield (= biomass

Volume 1 – Level 2

at the end of the test minus the starting biomass).

Analytical verification was performed at test start and test end. Recovery rates in were in the range of 76 - 107 % of initial concentrations. For the two lowest dilution levels no measured concentrations are available since the concentrations were below the LOQ. Therefore, fenpropidin concentrations were calculated under consideration of the mean measured concentration of the lowest measured dosage level and the dilution factor of 2 but this approach was not accepted by RMS. All effect concentrations were based on mean measured test concentrations.

The results of the study were re-calculated by Pickering & Allen (2018a) using top four concentrations only as mean measured concentrations. It is noted that E_yC_{50} should be considered with caution because the inhibition of yield was 66% at the lowest treatment level in which the fenpropidin concentration could be measured. However, it seems to be low enough to be sufficiently protective. This approach was accepted by RMS.

The study is considered valid and acceptable for regulatory use.

72-hour E_rC_{50} is 0.688 μg a.s./L, 72-hour E_yC_{50} is 0.044 μg a.s./L.

Due to the issue of fenpropidin concentrations insufficiently maintained in the two lowest dilution levels, neither NOEC nor EC_{10} could be derived from the study.

Bebon R. & Wydra V. (2017): (for further details see Volume 3 CA B.9 of RAR, Section B.9.2.7 i))

The toxicity of fenpropidin to the aquatic plant *Lemna gibba* was determined in a 7-day semi-static test followed by testing for recovery of growth. *Lemna* plants were exposed to nominal concentrations of fenpropidin of 1000, 320, 100, 32, 10, 3.2 and 1.0 μ g/L for 7 days alongside a dilution water control and a solvent control. The biological results were based on the geometric mean measured concentrations which were 981, 317, 92.6, 29.7, 8.77, 2.71 and 0.599 μ g/L, respectively.

The study is considered valid. Endpoints based on the exposure phase can only be considered for regulatory use. The 7-day E_rC_{50} based on frond number is 78.9 µg a.s./L, the 7-day E_yC_{50} based on frond number is 3.67 µg a.s./L, the 7-day E_rC_{50} based on dry weight is 293 µg a.s./L, the 7-day E_yC_{50} based on dry weight is 8.19 µg a.s./L. The 7-day NOEC based on growth rates (frond number and dry weight) is 0.599 µg a.s./L, all based on mean measured concentrations. The 7-day NOEC based on yield (frond number and dry weight) could not be determined.

Kirkwood, A. (2018):

The toxicity of fenpropidin to the aquatic macrophyte *Myriophyllum spicatum* was determined in a 14 day static test. *Myriophyllum* plants were exposed to nominal concentrations of fenpropidin of 0.12, 0.37, 1.1, 3.3, and 10 mg/L equivalent to 0.0013, 0.0045, 0.025, 0.14, and 2.0 mg/L, respectively, based on geometric mean measured concentrations.

The study is considered valid and acceptable for regulatory use.

The 14-day E_rC_{50} based on shoot length is 2.0 mg a.s./L, the 14-day E_yC_{50} based on shoot length is 1.8 mg a.s./L a.s./L, the 14-day E_rC_{50} and E_yC_{50} based on shoot wet weight is 0.77 mg a.s./L, the 14-day E_rC_{50} based on shoot dry weight is 0.91 mga.s./L, the 14-day E_yC_{50} based on shoot dry weight is 0.88 mg a.s./L. The 14-day NOEC for all parameters is 0.14 mg a.s./L, all based on mean measured concentrations.

2.9.2.2.4 Acute (short-term) toxicity to other aquatic organisms

No relevant study was available.

2.9.2.3 Long-term aquatic hazard [equivalent to section 11.6 of the CLH report template]

Table 58:	Summary of relevant information on chronic aquatic to	xicity

Method	Species	Test material	Results ¹	Key or Supportive study*	Remarks	Reference
OECD 204	Rainbow trout (Oncorhynch us mykiss)	Fenpropidin	21 d NOEC 0.32 mg/L (nom)	Acceptable Key study	-	(1989a)
OECD 210, EPA OPPTS 850.1400	Rainbow trout (Oncorhynch us mykiss)	Fenpropidin	32 d NOEC 0.0038 mg/L (mm)	Acceptable Key study	-	(2016)

Fenpropidin		Volume 1 – L	evel 2		May 2021	
OECD 202, Part II (1984)	Daphnia magna	Fenpropidin	21 d NOEC 0.32 mg/L (nom)	Acceptable Key study	-	Handley (1989b)
OECD 211	Daphnia magna	Fenpropidin	21 d NOEC 0.050 mg/L (nom)	Acceptable Key study	-	Noack (2007b)
BBA - Guideline Proposal 1995, OECD (1998)	Chironomus riparius	Fenpropidin	28 d NOEC 1.0 mg/L (ini nom)	Acceptable Key study	spiked water	Grade (1999a)
BBA - Guideline Proposal 1995, OECD (1998)	Chironomus riparius	Fenpropidin	28 d NOEC 40 mg/kg dw (ini nom)	Acceptable Key study	spiked sediment	Grade (1999a)
OECD 218	Chironomus riparius	Fenpropidin	28 d NOEC 47.06 mg/kg dw 28 d EC ₁₀ 67.1 mg/kg dw	Acceptable Key study	spiked sediment	Scheerbaum (2007) Pickering & Allen (2018)
OECD 201	Freshwater diatom (Navicula pelliculosa)	Fenpropidin	72 h NOE _r C 0.0008 mg/L 72 h NOE _y C 0.0008 mg/L (mm)	Acceptable Key study	-	Grade (1993b) Taylor & Howells (2015b)
OECD 221	Duckweed (Lemna gibba)	Fenpropidin	7 d NOErC 0.000599 mg/L 7 d NOEyC <0.000599 mg/L (mm)	Acceptable Key study	-	Bebon & Wydra (2017)
OECD 239	Myriophyllu m spicatum	Fenpropidin	14 d NOE _r C 0.14 mg/L 14 d NOE _y C 0.14mg/L (mm)	Acceptable Key study	-	Kirkwood (2018)

A chronic toxicity study on alga was available also for metabolite CGA289267, indicating that its toxicity is considerably lower than the toxicity of parent (cca 100000x lower). For details see Table 9.4.1-1 in Volume 3 CP B.9 of RAR.

2.9.2.3.1 Chronic toxicity to fish

Two valid studies performed with active substance fenpropidin were available:

(1989a):

The toxicity of fenpropidin to rainbow trout was assessed under flow through conditions over a 21-day exposure period. The study was conducted according to OECD 204 TG. The juvenile fishes were exposed to five nominal concentrations (0.032, 0.10, 0.32, 1.0, and 3.2 mg/L), one dilution water control and one solvent control. Ten trouts were used per treatment and control. Observations of mortality, and sublethal effects (increased pigmentation and lethargy) were made on a daily basis throughout the study. Analytical determinations of the test substance concentrations were made on days 0, 4, 6, 8, 11, 13, 15, 18 and 21. Mean measured concentrations

Volume 1 – Level 2

May 2021

ranged from 98 - 145% of the nominal concentrations. Therefore, the nominal concentrations were used in the calculation and reporting of results.

The study is considered valid and acceptable for regulatory use.

The 21-day no-observed-effect concentration (NOEC) is 0.32 mg fenpropidin/L, based on nominal concentration. No reliable EC_x values could be calculated for survival, length and weight.

(2016):

The toxicity of fenpropidin to early-life stages of fathead minnow (*Pimephales promelas*) was determined. Fish were exposed to the following range of nominal concentrations of 0.15, 0.38, 0.96, 2.4, 6.0 and 15 μ g/L (0.079, 0.26, 0.82, 1.6, 3.8 and 10 μ g/L mean measured), and a dilution water control. Four replicates with 30 embryos each per treatment were used. Observations for time to hatch, hatching success, larval mortality, deformed larvae and other symptoms of toxicity were made daily during the pre and post-hatch phases, as appropriate. At the end of the test, lengths and dry weights of the surviving fry were measured. The concentrations of fenpropidin in test solutions were measured at 0, 4, 13, 19, 25 and 32 days. Mean measured concentrations ranged from 52 to 86 % of nominal concentration. The results are based on mean measured concentrations.

The study is considered valid and acceptable for regulatory use. The no-observed-effect concentration (NOEC) is 0.0038 mg fenpropidin /L, based on mean measured concentrations. No reliable EC_x value could be calculated for for any parameter.

2.9.2.3.2 Chronic toxicity to aquatic invertebrates

Two valid studies on *Daphnia* and two valid studies on *Chironomus* performed with active substance fenpropidin were available:

Handley JW (1989b):

The chronic effects of fenpropidin on the survival, growth and reproduction of *Daphnia magna* were determined. Four replicates of 10 daphnids (< 24 hours old) were incubated under semi-static conditions for 21 days. Immobility, general condition and size of the parental (P_1) *Daphnia* were recorded daily. The number of *Daphnia* with eggs or young in the brood pouch was determined at each test media renewal together with the numbers of live and dead filial *Daphnia* (F_1). The number of discarded unhatched eggs was also recorded at this time. Test substance concentrations were measured day 0 in fresh media and day 2, 5, 7, 9, 12, 14, 16, 19 and 21 in old media. The medium was renewed 3 times/week (days 2, 5, 7, 9, 12, 14, 16 and 19). Mean measured concentrations were 0.034, 0.10, 0.28, 1.08 and 2.25 mg/l, i.e. 106, 102, 88.2, 101 and 70.4% of the nominal values respectively. The measured concentrations in 0.032, 0.10 and.3.2 mg/l treatment group were below 80% of the nominal values but there was no impact on the results of the study since the 0.32 mg/l (NOEC) and 1.0 mg/l (LOEC) test concentrations remained near nominal.

The study is considered valid and acceptable for regulatory use.

The 21-day no-observed-effect concentration (NOEC) is 0.32 mg fenpropidin /L, based on nominal concentrations.

No reliable ECx values could be calculated for number of surviving adults, number of gravid adults and number of living offspring.

Noack M. (2007b) :

Ten *Daphnia* per test group were exposed for 21 days under semi-static conditions to fenpropidin technical (purity: 97.8 %) at nominal concentrations of 0.050, 0.100, 0.200 and 0.400 mg test item/L. A control with test medium without test substance was run concurrently. Ten animals per treatment group were used. Immobilisation, abnormalities (e.g. swimming behaviour, number of males and winter eggs), the appearance of juveniles, the number of neonates (alive and dead) and the number of aborted eggs were recorded regularly during the study. Upon study termination total length and body weight of surviving parental *Daphnia* were determined. Analytical verification was performed in fresh media (day 2, 7, 14, 19) and old media (day 5, 9, 16, 21) of all test concentrations. The results showed that the test concentrations were maintained above 80 % of nominal concentrations.

The study is considered valid and acceptable for regulatory use.

The 21-day no-observed-effect concentration (NOEC) is 0.050 mg fenpropidin /L, based on nominal concentrations.

No reliable ECx values could be calculated for the number of offspring per replicate, adult mortality, length and dry weight.

Grade R (1999a):

Exposure scenario A: Control, solvent control (0.05 ml DMF/l) and nominal test concentrations of 1.0, 2.0, 4.0,

8.0 and 16 mg/l.

Exposure scenario B: Control (aged sediment), solvent control (aged sediment with acetone treated sand) and nominal concentrations of 5.0, 10, 20, 40, 80 and 160 mg/kg d.w. sediment.

20 midge larvae (2-3 days old) per test vessel were used. Duration of the test was 28 days.

Two exposure scenarios were tested separately in a water/sediment system. In scenario A, fenpropidin was applied to the water phase. In scenario B, fenpropidin was added to the sediment.

The tests were performed in a static test system with 1 l glass beakers containing 1-2 cm artificial sediment and reconstituted bi-distilled water of approximately 8 cm height.

Samples for analytical determinations of the test substance concentrations in the water column were taken after 0, 2, 7, 14 and 28 days, for both exposure scenarios. At the beginning, after 7 days and at the end of the test, the concentration of the test substance in the sediment was determined in the two highest concentrations for both exposure scenarios A and B.

The test vessels were visually inspected daily for larval behaviour, mortality and emergence of midges (except day 3, 4, 6, 8, 10, 11, 18, 23 and 25 for scenario A and day 3, 4, 6, 8, 10, 11, 18 and 25 for scenario B). The number, time and the sex of emerged adults were recorded, and the adults were removed afterwards. Biological parameters observed were: gender rate, emergence rate, mean development time, mean development rate, mean weight of larvae on day 9.

Exposure scenario A: The measured test concentrations in the water phase were 1.12, 2.07, 3.13, 6.18 and 8.45 mg/l at day 0 (1-3 hours after application) corresponding to 112, 104, 78, 77 and 53% of the nominal concentrations. At the end of the test (day 28) water concentrations had decreased to <LOD, <LOD, 0.04, 0.17 and 0.66 mg/l, respectively. Fenpropidin concentrations in sediment were analysed from the two highest nominal concentrations. For the nominal concentration of 8.0 mg/l, at day 0, 7 and 28 the measured concentrations in the sediment (including interstitial water, water just above the sediment and test substance adsorbed on the inner surface of the test vessel) were 0.3, 1.8 and 1.9 mg per 0.12 kg wet sediment respectively. For the nominal concentrations of 16 mg/l, at day 0, 7 and 28 the measured concentrations in the sediment were 0.41, 2.8 and 3.5 mg per 0.12 kg wet sediment, respectively. Calculations of effect concentrations for the rate of emergence, the development time and the rate of the development (reciprocal of the development time) were based on nominal concentrations in the water phase.

Exposure scenario B: The measured test concentrations in the water phase were <LOD, <LOD, <LOD, 0.1, 0.2 and 0.6 mg/l at day 0. At the end of the test (day 28) water concentrations were <LOD in all treatments except at the highest nominal concentration where 0.3 mg/l was measured. Fenpropidin concentrations in sediment were analysed from the two highest nominal concentrations. For the nominal concentration of 80 mg/kg dry weight (equivalent to 61 mg/kg sediment wet weight) at day 0, 7 and 28 the mean measured concentrations in the sediment (including interstitial water) were 8.0, 7.5 and 7.2 mg per 0.16 kg wet sediment, respectively (50, 47 and 45 mg/kg sediment wet weight) at day 0, 7 and 28 the mean measured concentrations in the sediment to 122 mg/kg sediment wet weight) at day 0, 7 and 28 the mean measured concentrations in the sediment were 10.4, 6.5 and 15.0 mg per 0.16 kg wet sediment, respectively (65, 41 and 94 mg/kg sediment wet weight, respectively). Calculations of effect concentrations for the rate of emergence, the development time and the rate of the development (reciprocal of the development time) were based on nominal concentrations in the spiked sediment.

The main part of the study is judged to be of acceptable quality but there are some shortcomings. The concentration changes in water and sediment during the study were only described and not satisfactorily discussed in the report. The determinations of EC_{50} (logit analysis) were not reliable. In scenario A the mortality was high in all test groups including controls (i.e., few larvae found), obviously not reflected in the main test system determining development and emergence. No conclusion regarding weight could be drawn. In scenario B the mortality was much lower in all test groups (i.e., high number of larvae found), except for the highest test concentration (160 mg/kg sediment) where no larvae could be found. However, no influence of the test substance on weight could be established by the test.

However, the derived NOEC values are considered sufficiently conservative to be used in the risk assessment. The study is still considered valid and acceptable for regulatory use.

The 28-day no-observed-effect concentration (NOEC) is 1.0 mg fenpropidin/L for spiked water exposure scenario and 40 mg fenpropidin/kg dw for spiked sediment exposure scenario, based on initial nominal concentrations.

Scheerbaum D. (2007):

Sixty first instar larvae of Chironomus riparius were exposed to fenpropidin technical (purity: 97.8 %) for 28 days under static conditions in a water/sediment system. The artificial sediment was spiked at nominal concentrations of 10, 20, 40, 80, 160 and 320 mg test item/kg dw. A control and a solvent control without test substance were run concurrently. Water quality parameters (pH value, oxygen concentration, temperature) were measured weekly. Observations for behaviour of the larvae and emergence were made daily from day 14

Volume 1 – Level 2

onwards.

Samples of water, pore water and sediment for test item analysis were taken after 0, 7 and 28 days and the concentrations of fenpropidin were determined by LC-MS/MS. Test item concentrations in the water layer and in the pore-water were negligible throughout the test. Excluding the 20 mg/kg dw treatment (due to an application error), initial test concentrations in the sediment layer were in a range of 69 to 92 % of the applied concentrations, and recoveries on day 28 were in a range of 26 - 40 %. The effect concentrations were based on nominal concentrations in the sediment layer.

After 28 days of exposure, a corrected mortality of 79.5 % was observed in the 320 mg/kg dw treatment, whereas mortalities in the lower treatments were < 10 % and statistically not significantly different from the control. Statistically significant effects on emergence were found at 320 mg/kg dw and the development rate was significantly reduced at 320 mg/kg dw and 160 mg/kg dw.

The study is considered valid and acceptable for regulatory use.

The 21-day no-observed-effect concentration (NOEC) is 80 mg/kg dw, based on nominal concentrations, equivalent to 47.06 fenpropidin /kg dw, based on mean measured concentrations.

Based on re-analysis of the results by Pickering, F. & Allen, M. (2018), only the EC_{10} of 67.1 mg/kg dw for development rate could be reliably determined. EC_{20} and EC_{50} values for development rate and EC_{10} , EC_{20} and EC_{50} values for emergence rate could not be reliably calculated due to the lack of suitable responses to treatment.

2.9.2.3.3 Chronic toxicity to algae or aquatic plants

One valid study on algae (delivering NOEC) and two valid study on aquatic plants performed with active substance fenpropidin were available:

Grade R (1993b) :

The toxicity of fenpropidin to the diatom *Navicula pelliculosa* was determined. Algae were exposed to nominal concentrations of 0.4, 1.2, 3.7, 11, 33 and 100 μ g /L alongside a medium control and solvent control. The algal cell densities were measured at 24, 48, 72 and 96 hours. The measured concentrations at test start could not be determined because a background signal was present. The measured concentration after 96 h was not quantifiable in the lowest test concentration and ranged between 45-65% of the nominal concentrations in the other test concentrations (see the table below). The results were therefore based on measured concentrations.

The dose response curve was very steep therefore the E_rC_{50} value could be underestimated. E_rC_{10} at 72 and 96 hours could not be calculated.

The 96-hour NOE_rC and NOE_vC is 0.8 µg a.s./L, based on final measured concentrations.

Bebon R. & Wydra V. (2017):

For summary see point 2.9.2.2.3 above.

The 7-day NOEC based on growth rates (frond number and dry weight) is 0.599 μ g a.s./L, all based on mean measured concentrations. The 7-day NOEC based on yield (frond number and dry weight) could not be determined.

Kirkwood, A. (2018):

For summary see point 2.9.2.2.3 above The 14-day NOEC for all parameters is 0.14 mg a.s./L, all based on mean measured concentrations.

2.9.2.3.4 Chronic toxicity to other aquatic organisms

No relevant study was available.

2.9.2.4 Comparison with the CLP criteria

2.9.2.4.1 Acute aquatic hazard

 Table 59:
 Summary of information on acute aquatic toxicity relevant for classification

Method	Species	Test material	Results ¹	Remarks	Reference
Not stated	Bluegill sunfish Fenpropidin		96 h LC ₅₀	-	(1981a)
	(Lepomis		1.93 mg/L		
	macrochirus)		(mm)		
Not stated	Daphnia	Fenpropidin	48 h EC ₅₀	-	Hill (1981d)
	magna		0.54 mg/L		

F <u>enpropidin</u>	Ve	olume 1 – Level 2		May 2021	-
OECD 201	Freshwater green (Desmodesmus	Fenpropidin	(mm) 72 h ErC ₅₀ 0.000688 mg/L	-	Scheerbaum (2007a)
	subspicatus)		72 h E _y C ₅₀ 0.000044 mg/L		Pickering & Allen (2018a)

Aquatic acute toxicity data for all three trophic levels were available for active substance fenpropidin. Based on the lowest acute endpoint EC50 < 1 mg a.s./L (*Desmodesmus subspicatus* $E_rC_{50} = 0.000688$ mg a.s./L), aquatic acute category 1 (H400) is required. A M-factor of 1000 is applicable based on $0.0001 < E_rC_{50} \le 0.001$ mg/L.

2.9.2.4.2 Long-term aquatic hazard (including bioaccumulation potential and degradation)

Table 60: Summary of information on long-term aquatic toxicity relevant for classification

Method	Species	Test material	Results ¹	Remarks	Reference
OECD 210,	Rainbow trout	Fenpropidin	32 d NOEC	-	(2016)
EPA OPPTS	(Oncorhynchus		0.0038 mg/L		
850.1400	mykiss)		(mm)		
OECD 211	Daphnia	Fenpropidin	21 d NOEC	-	Noack (2007b)
	magna		0.050 mg/L		
			(nom)		
OECD 221	Duckweed	Fenpropidin	7 d NOErC	-	Bebon &
	(Lemna gibba)		0.000599 mg/L		Wydra
			7 d NOEyC		
			< 0.000599		
			mg/L		
			(mm)		

Aquatic long-term toxicity data for all three trophic levels were available for active substance fenpropidin. Based on the lowest long-term endpoint NOEC ≤ 0.1 mg a.s./L (*Lemna gibba* NOE_rC = 0.000599 mg a.s./L) and the fact that the active substance is not rapidly degradable, aquatic chronic category 1 (H410) is required. A M-factor of 100 is applicable based on $0.0001 < NOE_rC \leq 0.001$ mg/L.

2.9.2.5 Conclusion on classification and labelling for environmental hazards

Classification for acute aquatic hazards:

Classification categories:	Aquatic acute 1
M-factor (acute/chronic)	1000
Hazard statements	H400: Very toxic to aquatic life

Classification for chronic aquatic hazards:

Classification categories:	Aquatic chronic 1
M-factor (acute)	100
Hazard statements	H410: Very toxic to aquatic life with long lasting effects.

Pictogram

Signal word	Warning
Precautionary statements	P273 Avoid release to the environment
	P501 Dispose of contents/ container to (in accordance with local/ regional/ national/ international regulation (to be
	specified))

Summary of effects on arthropods 2.9.3

Effects on bees

Fenpropidin

Table 2.9.3-1 Summary of reported laboratory bee toxicity studies with technical and formulated fenpropidin

Species	Test substance	Time scale/type of	End point	Toxicity	Reference				
	Substance	endpoint							
Laboratory tests									
Apis mellifera [#]	Fenpropidin	Acute	Oral toxicity (LD ₅₀)	>10 µg a.s./bee					
Apis mellifera [#]	Fenpropidin	Acute	Contact toxicity (LD ₅₀)	46.0 µg a.s./bee	Gough et al.				
Apis mellifera [#]	A7516 A	Acute	Oral toxicity (LD ₅₀)	99.9 µg a.s./bee	(1984) CGA114900/0176				
Apis mellifera [#]	A7516 A	Acute	Contact toxicity (LD ₅₀)	55.3 μg a.s./bee					
Apis mellifera	A7516 D	Chronic	10 d chronic toxicity (LDD ₅₀)	0.174 μg form./bee/day 0.144 μg a.s/bee/day	Noël (2016) A7516D/10257				
Apis mellifera	A7516 D	Chronic, repeated exposure	Oral toxicity (LD ₅₀) (NOED)	 >150 μg form./larva* >124.5 μg a.s./larva* 1.86 μg form./larva* 1.544 μg a.s./larva* 	Deslandes (2016) A7516D/10264				
		Semi	i-field tests	I					
BBA VI, 23-1 (19 Germany Test substance: CG Application rate: 1 crop during daily b Duration: 72 hours Assessment: Morta No residue measure Results: Increased	Kleiner (1992) [#] CGA114900/0512								

Fenpropidin	Volume 1 – Level 2 Ma	y 202	1
treatment but not in the second foraging activity and behaviour w	l repetition. Otherwise, no adverse effects on mort ere noted.	ality,	
	erm (72 hours) and only mortality, foraging activity e, the results can only be used as additional informatio oneybees.		
BBA VI, 23-1 (1991) Honey b Germany	ee (Apis mellifera) cage test in Phacelia tanacetifol	<i>ia</i> in	
Test substance: CGD 20160 F (fer	npropidin 750 g/L EC)		
Application rate: 1.5 L product/h crop during daily bee flight	a, corresponding to 1125 g a.s./ha, applied on flow	ering	
Duration: 5-11 days			Tornier (1993) #
Assessment: Mortality, flight dens	sity and behaviour.		CGA114900/0511
No residue measurements.			
Results: No adverse effects on mo	rtality, foraging activity and behaviour were noted.		
	ort-term (5-11 days) and only mortality, foraging act e results can only be used as additional information pneybees.	•	
BBA VI, 23-1 (1991) Honey b Germany	ee (Apis mellifera) cage test in Phacelia tanacetifol	<i>ia</i> in	
Test substance: CGD 20160 F (fer	npropidin 750 g/L EC)		
Application rate: 1.5 L product/h crop during daily bee flight	a, corresponding to 1125 g a.s./ha, applied on flow	ering	
Duration: 3 days			Muehlen et al.
Assessment: Mortality, flight dens	sity and behaviour.		(1993) #
No residue measurements.			CGA114900/0510
Results: Increased adult mortality not in the first repetition.	was observed in the second repetition after treatment	it but	
	term (3 days) and only mortality, foraging activity e, the results can only be used as additional information pneybees.		

Study evaluated in old DAR (2005)* Per developmental period

Effects on non-target arthropods other than bees

Species	Life stage	Test	Study type	Dose		Sublethal effects	References
		substance		$(L/ha)^2$	Corr.		
					mortality (%)		
Laboratory tests	5						
Aphidius	Adult	A7516A	Tier I			No. of pupae / %	Mead-Briggs
rhopalosiphi [#]			Glass plate			adverse effects ³	(1995);
			Limit test	Control	6.7	-	CGA114900/0
				1.0 L form.	100	-	373
				(750 g a.s.)			
					LR50 <1.0 L		(ext. lab. test
					form./ha		also included in
					(<750 g a.s.)		the report)

Table 2.9.3-2 Laboratory and semi-field tests with non-target arthropods

Fenpropidin		Ve	lume 1 – Le	evel 2		May 2021	
Species	Life stage	Test substance	Study type	Dose (L/ha) ²	Mortality/ Corr.	Sublethal effects	References
Aleochara bilineata [#]	Adult	A7516B	Tier I Sand		mortality (%)	No. of eggs per female / % adverse effects ²	Taruza (2002) CGA114900/4 683
				Control 0.04 L form. (30 g a.s.)	36 28 / 0	70 66 / 5%	085
				0.5 L form. (375 g a.s.)	25 / 0	58 / 16%	
				1.0 L form. (750 g a.s.)	39 / 5	58 / 16%	
				2.0 L form. (1500 g a.s.)	33 / 0	61 / 12%	
					n.a.	ER ₅₀ >2.0 L form./ha (>1500 g a.s./ha)	
Chrysoperla carnea [#]	Larva	A7516B	Tier I Glass plate			No. of eggs per female per day / % adverse effects:	
				Control 0.04 L form. (30 g a.s.)	3.3 10.0 / 6.9	29.4 26.1 / 11.2	632
				1.0 L form. (750 g a.s.)	86.7 / 86.2	26.8 / 8.8	
					$LR_{50} > 0.040$ and <1.0 L	form./ha	
					form./ha (>30 and <750 g a.s./ha)	(>750 g a.s./ha)	
Coccinella septempunctata [#]	Larva	A7516B	Tier I Glass plate			No. of eggs per female per day / % adverse effects:	
				Control 0.04 L form. (30 g a.s.)	2.2 6.7 / 4.6	7.6 6.1 / 19.7%	634
				(750 g a.s.)	26.7 / 25.0	6.5 / 14.5%	
				2.0 L form. (1500 g a.s.)	80.0 / 79.6	0.7 / 90.8%	
1					LR ₅₀ >1.0 and <2.0 L form./ha	ER ₅₀ >1.0 and <2.0 L form./ha (>750 and <1500	
						g a.s./ha)	
	Larva	A7516A	Tier I Glass plate		u.o./11u/	No. of eggs per female per day / %	
			Limit test	Control 0.75 L form. (562.5 g a.s.)	11.1 6.7 / -4.9	adverse effects: 2.24 2.7 / -20.5%	215
				(502.5 g d.S.)	LR ₅₀ >0.75 L form./ha (>562.5 g a.s./ha)	ER ₅₀ >0.75 L form./ha (>562.5 g a.s./ha)	

Fenpropidin		Vo	olume 1 – Le	evel 2		May 2021	
Species	Life stage	Test substance	Study type	Dose (L/ha) ²	Mortality/ Corr. mortality (%)	Sublethal effects	References
Bembidion tetracolum [#]	Adult	A7516A	Tier I Sand Limit test	Control 1.0 L form. (750 g a.s.)	0 43.3 LR ₅₀ >1.0 L form./ha	No. of pupae consumed / % adverse effects ³ 10.6 11.3 / -6.0% ER ₅₀ >1.0 L form./ha	Mead-Briggs (1994) CGA114900/0 312
Poecilus cupreus #	Adult	A7516A	Tier I Sand Limit test	Control 0.75 L form. (562.5 g a.s.)	0 0 LR ₅₀ >0.75 L form./ha	consumed / % adverse effects ³ 5.33 5.49 / -3.0%	Pietrzik (1991) CGA114900/0 212
Poecilus cupreus #	Adult	A7516B	Tier I Sand	Control 0.04 L form. (30 g a.s.) 1.0 L form. (750 g a.s.) 2.0 L form. (1500 g a.s.)	3.3 0 / -3.4 0 / -3.4 0 / -3.4 LR ₅₀ >2.0 L form./ha	consumed / % adverse effects ³ 6.0 6.0 / 0% 6.0 / 0% 6.0 / 0%	Schmitzer (2000) CGA114900/4 630
Extended labora	tory tests			1		1	
Aphidius rhopalosiphi [#]	Adult	A7516A	Tier II Barley seedlings (3-D)	Control 1.0 L form. (750 g a.s.)	0 13.3 LR ₅₀ >1.0 L form./ha (>750 g a.s.)	No. of pupae / % adverse effects ³ 4.6 5.1 /-10.9% ER ₅₀ >1.0 L form./ha (>750 g a.s.)	Mead-Briggs (1995); CGA114900/0 373 (lab. test also included in the report)

Fenpropidin		Vo	olume 1 – Le	evel 2	May 2021		
Species	Life stage	Test substance	Study type	Dose (L/ha) ²	Mortality/ Corr. mortality (%)	Sublethal effects	References
Aphidius rhopalosiphi [#]	Adult	A7516B	Tier II Barley seedlings (3-D)	Control 0.1 L form. (75 g a.s.) 0.5 L form. (375 g a.s.) 1.0 L form. (750 g a.s.) 2.0 L form. (1500 g a.s.)	4 20 / 17 8 / 4 5 / 1 16 / 13 LR ₅₀ >2.0 L form./ha	No. of pupae / % adverse effects ³ 10.8 10.5 /2.7% 10.9 /-1.0% 9.5 /-12.0% 10.3 /4.6%	Vinall (2001a) CGA114900/4 650
Typhlodromus pyri ^{# 1}	Protonymph	A7516A	Tier II Bean leaves (2-D)	Control 0.53 L form. (400 g a.s.)	18.3 88.3 / 85.7 LR ₅₀ <0.53 L form./ha	No. of eggs per female / % adverse effects ³ 3.03 2.20 / 27.4 The reproduction part of the test not considered reliable	CGA114900/0 533
Phytoseiulus persimilis [#]	Protonymph	A7516A	Tier II Bean leaves (2-D)	Control 0.53 L form. (400 g a.s.)	1.7 85 / 84.7 LR ₅₀ <0.53 L form./ha	No. of eggs per female / % adverse effects ³ 16.9 11.1 / 34.3	(1992b) CGA114900/0 262

Fenpropidin		Vo	olume 1 – Le	evel 2		May 2021	
Species	Life stage	Test substance	Study type	Dose (L/ha) ²	Mortality/ Corr. mortality (%)	Sublethal effects	References
Phytoseiulus persimilis	Protonymph	A7516D	Tier II Bean leaves (2-D)			No. of eggs per female / % adverse effects ³	Vinall (2010) A7516D/10000
			(2-D)	Control	18	16.1	
				0.0404 L form. (30.8 g a.s.)	18 / 0	16.3 / -1%	
				0.1039 L form. (77.9 g a.s.)	27 / 10	13.8 / 15%	
				0.1385 L form. (103.9 g a.s.)	42 / 29	13.0 / 20%	
				0.2023 L form. (151.7 g a.s.)	60 / 51	11.6 / 28%	
				0.750 L form. (562.5 g a.s.)	48 / 37	16.2 / 0%	
				1.0 L form. (750 g a.s.)	63 / 55	14.5 / 10%	
					LR ₅₀ = 0.3771 L form./ha	form./ha	
					(282.8 g a.s./ha)	(>750 g a.s./ha)	
Bembidion tetracolum [#]	Adult	A7516A	Tier II Sandy soil				Vinall (2001b) CGA114900/4 659
				Control	0	7.77	
				2 x 0.04 L form. (2 x 30 g a.s.) 2 x 1.0 L form.	6.7	7.30 / 6.0%	
				$(2 \times 750 \text{ g a.s.})$	3.3	8.07 / -3.9%	
					LR ₅₀ >2 x 1.0 L form./ha	ER ₅₀ >2 x 1.0 L form./ha	
						$(>2 \times 750 \text{ g a.s.})$	
Extended labo	oratory / aged	l residue	I	1		1	1

Fenpropidin		Vo	lume 1 – Le	evel 2	May 2021		
Species	Life stage	Test substance	Study type	Dose (L/ha) ²	Mortality/ Corr. mortality (%)		References
Typhlodromus pyri [#]	Protonymph	A7516B	Barley seedlings	<u>0 DAT</u> Control 1 x 1.0 L form. (1 x 750 g a.s.) 2 x 0.04 L form. (2 x 30 g a.s.) 2 x 1.0 L form.	26 26 / 0 31 / 7 36 / 14	No. of eggs per female / %	Taruza (2001) CGA114900/4 660
				(2 x 750 g a.s.) <u>1 DAT</u> Control 1 x 1.0 L form. 2 x 0.04 L form. 2 x 1.0 L form. <u>3 DAT</u> Control 1 x 1.0 L form. 2 x 0.04 L form.	34 40 / 9 27 / 0 15 / 0 27 29 / 3 30 / 4	4.9 4.7 / 4% 4.6 / 4% 5.8 / -18% 6.5 2.8 / 57% 7.1 / -9%	
				$2 \times 1.0 L \text{ form.}$ $\frac{5 \text{ DAT}}{\text{Control}}$ $1 \times 1.0 L \text{ form.}$ $2 \times 0.04 L \text{ form.}$ $2 \times 1.0 L \text{ form.}$ $\frac{8 \text{ DAT}}{\text{Control}}$ $1 \times 1.0 L \text{ form.}$ $2 \times 0.04 L \text{ form.}$ $2 \times 1.0 L \text{ form.}$ $2 \times 1.0 L \text{ form.}$	31 / 6 37 35 / 0 35 / 0 14 / 0 25 36 / 15 28 / 4 21 / 0	6.8 / -5% 4.3 6.2 / -44% 4.5 / -5% 4.8 / -12% 4.9 3.9 / 20% 4.6 / 6% 3.5 / 29%	

Fenpropidin			lume 1 – Le		May 2021			
Species	Life stage	Test	Study type	Dose	Mortality/	Sublethal effects	References	
		substance		$(L/ha)^2$	Corr.			
					mortality (%)			
Phytoseiulus	Protonymph	A7516B	Tier II with			No. of eggs per		
persimilis [#]			aged				CGA114900/4	
			residues	<u>0 DAT</u>		adverse effects ³	674	
			Sweet	Control	36	17.7		
			pepper	1 x 1.0 L form.	75 / 60	n.a.		
			plants	(1 x 750 g a.s.)				
				2 x 0.04 L form.	59 / 35	15.6 / 11.9%		
				(2 x 30 g a.s.)				
				2 x 1.0 L form.	85 / 77	n.a.		
				(2 x 750 g a.s.)				
				1 DAT				
				Control	32	14.5		
				1 x 1.0 L form.	40 / 12	16.3 / -12.4%		
				2 x 0.04 L form.	36/6	15.8 / -9.0%		
				2 x 1.0 L form.	48 / 24	18.7 / -29.0%		
				<u>3 DAT</u>				
				Control	24	15.0		
				1 x 1.0 L form.	31/9	15.9 / -6.0%		
				2 x 0.04 L form.	21 / 0	15.7 / -4.7%		
				2 x 1.0 L form.	37 / 18	18.2 / -21.3%		
				5 DAT				
				Control	34	14.3		
				1 x 1.0 L form.	36/3	15.8 / -10.5%		
				2 x 0.04 L form.	24 / 0	15.4 / -7.7%		
				2 x 1.0 L form.	30 / 0	15.8 / -10.5%		
				8 DAT				
				Control	38	16.1		
				1 x 1.0 L form.	28 / 0	16.2 / -0.6%		
				2 x 0.04 L form.	36 / 0	14.5 / 9.9%		
				$2 \times 1.0 L$ form.	24 / 0	12.8 / 20.5%		
					, •			

ield tests

Study evaluated in old DAR (2005).
 ¹ the reproduction part of the test not considered reliable
 ² form. – formulation; a.s. - active substance
 ³ positive percentages relate to adverse effects in comparison with control n.a. – not applicable

Fenpropidin Volume 1 – Level 2 May 2021 2.9.4 Summary of effects on non-target soil meso- and macrofauna

Effects on earthworms

Table 2.9.4	-1 Summary of s	tudies on toxicit	y to earthw	orms

Test organism	Test substance	Application method of test a.s./ OM content	Time scale	End point	Toxicity	Reference	
Eisenia	Fenpropidin	Mixed through soil / 10% OM	Acute	Mortality	1000 < LC ₅₀ < 3200 mg a.s./kg dws	Edwards (1984)	
fetida [#]			Mixed through soil / 10% OM	Acute	ute Mortality < 32	1000 < LC ₅₀ < 3200 mg form./kg dws	CGA114900/0070
Eisenia fetida [#]	Metabolite CGA289267	Mixed through soil / 10% OM	Acute	Mortality	LC ₅₀ < 1000 mg/kg dws	Candolfi & Grimm (1998) CGA289267/0006	
Eisenia fetida [#]	A7516B	Mixed through soil / 10% OM	Chronic	Growth, reproduction, behaviour	NOEC = 13.3 mg form./kg dws NOEC = 10 mg a.s./kg dws ¹ NOECcorr = 5 mg a.s./kg dws ¹	Gillham (2002) CGA114900/4662	
Eisenia fetida	Metabolite CGA289267	Mixed through soil / 10% OM	Chronic	Growth, reproduction, behaviour	NOEC = 1000 mg/kg dws	McCormac (2015) CGA289267/10003	
Field tests -							

⁻
 [#] Study evaluated in old DAR (2005).
 ¹ EPPO correction factor is required as fenpropidin has log Pow value >2 Endpoints in bold have been considered in the risk assessment

Test organism	Test substance	Application method of test a.s./ OM ¹	Time scale	End point	Toxicity	Reference
Folsomia candida [#]	A7516B	Mixed through soil / 10% OM	Chronic	Mortality, reproduction, behaviour	NOEC = 124 mg form./kg soil dw EC ₁₀ = 121.52 mg form./kg soil dw NOEC = 93 mg a.s./kg soil dw NOEC _{corr} = 46.5 mg a.s./kg soil dw EC ₁₀ = 91.37 mg a.s./kg soil dw EC ₁₀ = 91.37 mg a.s./kg soil dw EC ₁₀ = 91.37 mg a.s./kg soil dw EC ₁₀ = 91.37 mg a.s./kg soil dw	Barth (2001) CGA114900/4684 EC _x estimate by: Taylor & Allen (2015a) A7516B/10020
Folsomia candida	Metabolite CGA289267	Mixed through soil / 5% OM	Chronic	Mortality, reproduction, behaviour	NOEC = 1000 mg/kg soil dw	Geary (2015) CGA289267/10002
Hypoaspis aculeifer	A7516D	Mixed through soil / 5% OM	Chronic	Mortality, reproduction, behaviour	NOEC = 1000 mg form./kg soil dw NOEC = 830 mg a.s./kg soil dw NOECcorr = 415 mg a.s./kg soil dw	Parsons (2015) A7516D/10235
Hypoaspis aculeifer	Metabolite CGA289267	Mixed through soil / 5% OM	Chronic	Mortality, reproduction, behaviour	NOEC = 1000 mg/kg soil dw	Vinall (2015) CGA289267/10004

[#] Study evaluated in old DAR (2005).

 $^{\rm a}$ Estimated using the actual active substance content of 83 % (w/w) fenpropidin Endpoints in bold have been considered in the risk assessment

2.9.5 Summary of effects on soil nitrogen transformation

Table 2.9.5-1 EU Endpoint: Effects on soil nitrogen transformation - Ecotoxicological endpoints for soil micro-organisms

Test item	Test type	Endpoint	Reference
A7516A #	C & N trans- formation	No significant effect >25 % at up to 5.6-6.0 mg a.s./kg soil	Askew et al (1985) CGA114900/0046
A7516B [#]	N trans-formation & dehydrogenase activity	Short-term transient effect on N transformation (27 %) at 1.0 mg a.s./kg. No significant effect >25 % on dehydrogenase activity up to 2.5 mg a.s./kg soil	Lang (1993) CGA114900/0513
Metabolite CGA289267 [#]	C & N trans- formation	No significant effect >25 % up to 10 mg/kg soil	Grade (1999b) CGA289267/0007
Metabolite CGA289267 (fenpropidin acid)	C & N trans- formation	No significant effect >25 % up to 10.36 mg/kg soil	Schulz (2008) CGA289267/10011

[#] Study evaluated in old DAR (2005).

2.9.6 Summary of effects on terrestrial non-target higher plants

Test substance	Species	Test type	Endpoint	Proposed endpoint for risk assessment	Reference		
47516B #	Cucumber, wild oat,	Screening, seedling emergence (dose-response)	No significant effects on seedling emergence at rates up to 1000 mL product/ha	Seedling emergence: NOER = 1000 mL product/ha (750 g a.s./ha) ER ₅₀ >1000 mL product/ha (>750 a.s./ha)	Waelder (2003)		
ATTION	A7516B [#] onion, sugar beet, oilseed rape, soybean	beet, oilseed Screening,		Some effects on vegetative vigour noted at all rates. Effects >50 % at the rate of 1000 mL product/ha	Vegetative vigour: ER50 >500 mL product/ha (>375 g a.s/ha)	CGA114900/4788	
MCW-273 750 EC	Oilseed rape, sugar beet, soybean, carrot, onion, oat	Vegetative vigour (dose-response)	NOER = 93.8 mL product/ha (70.3 g a.s./ha) ER ₅₀ = 1495 mL product/ha (1121 g a.s./ha)	Vegetative vigour: ER ₅₀ = 1495 mL product/ha (1121 g a.s./ha)	Siemoneit-Gast (2007) CGA114900/10883		

[#] Study evaluated in old DAR (2005).

2.9.7 Summary of effects on other terrestrial organisms (flora and fauna)

Not applicable.

2.9.8 Summary of effects on biological methods for sewage treatment

Test type/organism	Test substance	end point

Fenpropidin	Volume 1 – Level 2	May 2021
Activated sludge	Fenpropidin	EC ₅₀ (3 h) > 100 mg a.s./L
Activated sludge	A7516B	$EC_{50} (3 h) = 228 mg A7516B/L$
		(171 g a.s./L).

2.9.9 Summary of product exposure and risk assessment

2.9.9.1 Risk assessment for birds and other terrestrial vertebrates

An ecological risk assessment in relation to the risk to birds has been undertaken in accordance with the 'Guidance of EFSA Risk Assessment for Birds and Mammals', EFSA Journal 2009 7(12):1438. Intended application pattern relevant to the use of fenpropidin is given in the table below.

Table 2.9.9-1 Intended application pattern

	Application				Application rate			
Crop	Method/kind ^a	stage applications		Minimum application interval (days)	Individual application rate (L product/ha)	Individual application rate (g a.s./ha)		
Wheat	Foliar spray (F)	BBCH 31-69	2	14	0.750 - 0.375	562.5 - 281.25		
Barley	Foliar spray (F)	BBCH 31-65	2	14	0.750 - 0.375	562.5 - 281.25		

^a Field (F)

In bold maximum individual application rate

2.9.9.1.1 Risk assessment for birds

Screening assessment

Table 2.9.9-2 Screening level estimates of the acute and long-term exposure to fenpropidin

Сгор	Indicator species	No. of applica- tions x application rate (kg a.s./ha)	Risk	Shortcut value	TWA	DDD for a single application(mg a.s./kg bw/day)	MAF	DDD for a multiple application(mg a.s./kg bw/day)
	Small	2 x 0.5625	Acute	158.8	-	89.3	1.2	107.2
Cereals	omnivorous bird		Long-term	64.8	0.53	19.3	1.4	27.1

Table 2.9.9-3	Screening TER calculations for the acute and long-term exposure to fenpropidin

Сгор	Indicator species	Risk	Toxicity value (mg a.s./kg b.w./day)	DDD for a multiple application(mg a.s./kg bw/day)	TER	Trigger value
Cereals	Small	Acute	LD ₅₀ 431	107.2	4.02	10
Cereais	omnivorous bird	Long-term	NOEL 14.6	27.1	0.54	5

Since TER values remain below the relevant triggers, Tier 1 assessment is required.

Tier 1 assessment

Volume 1 – Level 2

May 2021

A Tier 1 acute and long-term risk assessment has been conducted and the TER values for the generic focal species are presented in the tables below.

Crop Application rate	Scenario	Generic focal species	Shortcut value	MAF	TWA	DDD (mg/kg bw)	TERA	Trigger value
Cereals 2 x 0.5625 kg a.s./ha	Cereals BBCH 30-39	Small omnivorous bird 'lark'	12.0	1.2	-	8.1	53.2	10
0	Cereals BBCH≥ 40	Small omnivorous bird 'lark'	7.2	1.2	-	4.86	88.7	10

Table 2.9.9-4Tier 1 acute risk assessment for birds

Table 2.9.9-5Tier 1 reproductive risk assessment for birds

Crop Application rate	Scenario	Generic focal species	Shortcut value	MAF	TWA	DDD (mg/kg bw)	TERLT	Trigger value
Cereals 2 x 0.5625	Cereals BBCH 30-39	Small omnivorous bird 'lark'	5.4	1.4	0.53	2.25	6.5	5
kg a.s./ha	Cereals BBCH≥ 40	Small omnivorous bird 'lark'	3.3	1.4	0.53	1.38	10.6	5

All TER values for fenpropidin exceed the relevant trigger values, indicating low acute and long-term dietary risk to birds.

Risk assessment for drinking water exposures

Puddle scenario

Table 2.9.9-6Screening step for drinking water acute risk assessment (puddle scenario) - ratio of
effective application rate to relevant endpoint for birds

Crop group	Compound	Soil DT ₅₀ ^a (days)	K _{oc} ** (L/kg)	AR (g a.s./ha)	MAFm	AR _{eff} (g a.s./ha)	LD ₅₀ (mg a.s./kg bw)	Ratio (AR _{eff} / LD ₅₀)	No concern ratio
Cereals	Fenpropidin	84.9	3770	562.5	1.89	1063	431	2.47	≤3000

^a Soil DT₅₀ based on laboratory studies (geomean), as used for PECgw and PECsw calculation (refer to Volume 3 CP B.8) **Geomean Koc value (refer to Volume 3 CP B.8)

Table 2.9.9-7Screening step for drinking water long-term risk assessment (puddle scenario) - ratio of
effective application rate to relevant endpoint for birds

Crop group	Compound	Soil DT ₅₀ ^a (days)	K _{oc} ** (L/kg))	AR (g a.s./ha)	MAFm	AR _{eff} (g a.s./ha)	NOAEL (mg a.s./kg bw/day)	Ratio (AR _{eff} / NOAE L)	No concern ratio
Cereals	Fenpropidin	84.9	3770	562.5	1.89	1063	14.6	72.8	≤3000

^a Soil DT₅₀ based on laboratory studies (geomean), as used for PECgw and PECsw calculation (refer to Volume 3 CP B.8)

**Geomean Koc value (refer to Volume 3 CP B.8)

The ratios of the application rates to the toxicity endpoints are clearly less than 3000 indicating low concern for acute and long-term exposure to birds drinking water from puddles and hence there is no need to carry out further calculations of exposure in puddle water.

In conclusion, the risk through drinking water from the intended use of fenpropidin according to the use pattern is acceptable.

Risk for Bioaccumulation and Secondary Poisoning

Fenpropidin has a log P_{OW} of 4.5 (at pH 9.0) indicating a potential risk of secondary poisoning, therefore a risk assessment is provided.

The main soil and water metabolite of fenpropidin (CGA289267) has a log P_{OW} value in the range from -0.1 to 0.1 indicating low potential for bioaccumulation. Given that the metabolite will be found at lower concentrations in soil than the parent active substance, the risk assessment for the parent is considered to cover the metabolite.

1) Risk to earthworm-eating birds

Table 2.9.9-8 Long-term risk from secondary poisoning to earthworm-eating birds

Compound	Appl. rate (g a.s./ha)	PEC _{soil} (mg a.s./kg)	Kow	foc	Кос	BCF	PEC _{worm} (mg a.s./kg)	DDD (mg a.s./kg bw/day)	NOAEL (mg a.s./kg bw/day)	TER _{worm}
Fenpropidin	562.5	0.420	794	0.02	3770	0.138	0.0578	0.0606	14.6	241

The TER value exceeds the long-term trigger value of 5, indicating that A7516D poses an acceptable risk to earthworm eating birds.

2) Risk to fish eating birds

Table 2.9.9-9Long-term risk from secondary poisoning to fish-eating birds

Compound	Application rate (g a.s./ha)	PEC _{sw, max} Step 3 (mg a.s./L)	BCFfish	PEC _{fish} (mg a.s./kg)	DDD (mg a.s./kg bw/day)	NOAEL (mg a.s./kg bw/day)	TER _{fish}
Fenpropidin	562.5	0.00356	163 ^a	0.580	0.0923	14.6	158

^a The lowest BCF (whole fish) determined in bluegill sunfish.

The TER value exceeds the long-term trigger value of 5, indicating that A7516D poses an acceptable risk to fish eating birds.

Dietary risk to birds from metabolites

Plant metabolism studies in wheat, sugar beet, grape and banana showed that fenpropidin was extensively metabolised in the plants (refer to Volume 3 CP B.7). The pathway of metabolism was very similar in these crops with fenpropidin being the main compound detected. Twenty metabolites were identified in forage, straw or grain at low levels. The maximum residues were found for CGA289268 (max. 9.2 % of total radioactive residue in wheat straw) and its glycoside (max. 22 % in immature wheat) in a wheat metabolism study. The residues of other individual metabolites in treated plants did not exceed 7.6 % of applied parent compound. Further studies in rotational crops showed that residues of formed metabolites in succeeding crops are low.

In fish, the main compounds detected in the whole fish extracts were fenpropidin (18.8 % of radioactive residues) and the metabolite CGA289268 (16.1 %). The radioactivity in the water phase could not be extracted indicating that fenpropidin had been metabolised extensively to very polar metabolites or conjugates (Point B.9.2.3 of the DAR (2006).

Several metabolites were identified in soil, but only CGA289267 was detected at a maximum amount of 10.4 % of the applied radioactivity in one study (refer to Volume 3 CP B.8). All other individual metabolites in soil represent less than 10 % of applied fenpropidin. In water, the only major metabolite was found to be CGA289267 at the maximum of 27.2 % of applied fenpropidin in water-sediment systems. Thus, CGA289267 is the only metabolite that occurs in environmental compartments and birds and mammals could potentially be exposed to.

Metabolism studies in hen, rat and goat showed that fenpropidin is rapidly metabolised and excreted in birds and mammals (refer to Volume 3 CP B.6 and B.7). The primary metabolic process in each animal involved oxidation

Fenpropidin Volume 1 – Level 2 May 2021

of the tertiary-butyl side chain of the fenpropidin molecule to CGA289268 and subsequent formation of CGA289267, SYN515213 and other metabolites or conjugates. Thus, the metabolite CGA289268 found as residue in plants and fish, and CGA289267 and SYN515213 (and its conjugates) that may occur as metabolites in prey animals are part of the major metabolic pathway of fenpropidin in birds and mammals, and occurred at significant levels in the animal metabolism studies. The glycoside of CGA289268 that was found at the maximum of 22 % in wheat plants is expected to be rapidly broken down in birds and mammals to CGA289268 that is further metabolised to CGA289267 and other compounds.

According to the EFSA GD (2009) it can be assumed that these metabolites observed in the hen metabolism study were present in the avian toxicity tests with the parent and thus the studies with the parent fenpropidin adequately covers the potential toxicity of these metabolites.

It can therefore be concluded that the risk posed by the metabolites to birds will be covered by the risk assessment for the parent and hence is low and no further risk assessment is required.

Conclusion – risk to birds:

Low acute and long-term risks to birds can be concluded following applications of fenpropidin according to the proposed GAP. Low risk to birds is also expected from fenpropidin metabolites.

2.9.9.1.2 Risk assessment for mammals

herbivorous

mammal

Screening assessment

Cereals

Table 2.9	.9-10 Screen	ng level esti	mates of the	acute and loi	ng-term	exposure to fen	propidi	n
Сгор	Indicator species	No. of applica- tions x application rate (kg a.s./ha)	Risk	Shortcut value	TWA	DDD for a single application(mg a.s./kg bw/day)	MAF	DDD for a multiple application(mg a.s./kg bw/day)
	Small	2 x 0.5625	Acute	118.4	-	66.6	1.2	79.9

48.3

T 11 200 10 C • 1•

Table 2.9.9-11	Screening TER calculations for the acute and long-term exposure to fenpropidin
----------------	--

Long-term

Сгор	Indicator species	Risk	Toxicity value (mg a.s./kg b.w./day)	DDD for a multiple application(mg a.s./kg bw/day)	TER	Trigger value
Canada	Small	Acute	LD ₅₀ 1452	79.9	18.2	10
Cereals	herbivorous mammal	Long-term	NOAEL 10	20.2	0.50	5

0.53

14.4

1.4

20.2

Acute TER value is above the trigger of 10 indicating low acute risk to mammals from application of fenpropidin according to proposed GAP. However, long-term TER value remain below the triggers of 5, indicating high longterm risk. Therefore, the Tier 1 reproductive assessment is required.

Tier 1 assessment

 Table 2.9.9-12
 Tier 1 reproductive risk assessment for mammals

Crop Application rate	Scenario	Generic focal species	Shortcut value	MAF	TWA	DDD (mg/kg bw)	TER _{LT}	Trigger value
Cereals	Cereals BBCH≥ 20	Small insectivorous mammal 'shrew'	1.9	1.4	0.53	0.793	12.6	5
kg a.s./ha	Cereals BBCH≥ 40	Small herbivorous mammal 'vole'	21.7			9.06	1.1	

Fenpropidin		Volume 1	– Level 2	 May	2021	
	Cereals BBCH 30-39	Small omnivorous mammal 'mouse'	3.9	1.63	6.1	
	Cereals BBCH≥ 40	Small omnivorous mammal 'mouse'	2.3	0.960	10.4	

All TER_{LT} values for fenpropidin exceeded the trigger values of 5, except for the TER_{LT} value for the small herbivorous mammal scenario "vole". Further consideration is needed.

The Notifier proposed the refinement of the deposition factor. In default shortcut value, the deposition factor of 0.3 is incorporated. According to the FOCUS ground water guidance document (version 2.2, May 2014), interception of 90% should be considered for winter cereals, BBCH 40-69. Therefore, the relevant deposition factor is 0.1. The refined calculation of DDD and TER is provided below.

Refined vole risk assessment using	FOCUSgw crop inter	ception for cereals at BBCH >40

Generic focal species	RUD (mg a.s./kg)	FIR/bw	App. rate (kg a.s./ha)	MAFm	f _{twa}	DF	DDD (mg a.s./kg bw/day)	NOEL	TER
Small herbivorous mammal 'vole' – cereals BBCH >40	54.2	1.33	0.563	1.4	0.53	0.1	3.01	10	3.32

DF: Deposition factor based on FOCUSgw crop interception (90% interception for cereals at BBCH 40-69)

The refined TER_{LT} value for fenpropidin for the small herbivorous mammal scenario "vole" remains below the trigger of 5, when the maximum intended application rate of fenpropidin (i.e. 2 x 562.5 g a.s./ha) was used in the risk assessment. No further refinement was available.

Therefore, the minimum intended application rate (i.e. 2 x 281.25 g a.s./ha) was also considered in the long-term risk assessment for mammals, for small herbivorous mammal scenario. The calculation is provided below.

Refined vole risk assessment using FOCUSgw crop interception for cereals at BBCH >40 (2 x 281.25 g a.s./ha)

Generic focal species	RUD (mg a.s./kg)	FIR/bw	App. rate (kg a.s./ha)	MAFm	f _{twa}	DF	DDD (mg a.s./kg bw/day)	NOEL	TER
Small herbivorous mammal 'vole' – cereals BBCH >40	54.2	1.33	0.28125	1.4	0.53	0.1	1.50	10	6.67

DF: Deposition factor based on FOCUSgw crop interception (90% interception for cereals at BBCH 40-69)

The TER_{LT} value for fenpropidin for the small herbivorous mammal scenario "vole" exceeded the trigger value of 5, when the minimum intended application rate of fenpropidin (i.e. 2×281.25 g a.s./ha) was used in the risk assessment.

The selection of ecotoxicologically relevant endpoint to be used in the reproductive risk assessment for wild mammals will be discussed in peer review.

Risk assessment for drinking water exposures

Puddle scenario

FenpropidinVolume 1 – Level 2May 2021Table 2.9.9-13Screening step for drinking water acute risk assessment (puddle scenario) - ratio of
effective application rate to relevant endpoint for mammals

Crop group	Compound	Soil DT ₅₀ ^a (days)	K _{oc} ** (L/kg)	AR (g a.s./ha)	MAFm	AR _{eff} (g a.s./ha)	LD ₅₀ (mg a.s./kg bw)	Ratio (AR _{eff} / LD ₅₀)	No concern ratio
Cereals	Fenpropidin	84.9	3770	562.5	1.89	1063	1452	0.73	≤3000

^a Soil DT₅₀ geometric mean of normalised (pF 2, 20 °C) laboratory and field DT50 (n =17), as used for PECgw and PECsw calculation (refer to Volume 3 CP B.8)

**Geomean Koc value (refer to Volume 3 CP B.8)

Table 2.9.9-14Screening step for drinking water long-term risk assessment (puddle scenario) - ratio of
effective application rate to relevant endpoint for mammals

Crop group	Compound	Soil DT ₅₀ ^a (days)	K _{oc} ** (L/kg))	AR (g a.s./ha)	MAFm	AR _{eff} (g a.s./ha)	NOAEL (mg a.s./kg bw/day)	Ratio (AR _{eff} / NOAE L)	No concern ratio
Cereals	Fenpropidin	84.9	3770	562.5	1.89	1063	10	106	≤3000

^a Soil DT₅₀ geometric mean of normalised (pF 2, 20 °C) laboratory and field DT50 (n =17), as used for PECgw and PECsw calculation (refer to Volume 3 CP B.8)

**Geomean Koc value (refer to Volume 3 CP B.8)

The ratios of the application rates to the toxicity endpoints are below 3000 indicating low concern for acute and long-term exposure to mammals in drinking water from puddles and hence there is no need to carry out further calculations of exposure in puddle water.

In conclusion, the risk through drinking water from the intended use of fenpropidin according to the use pattern is acceptable.

Risk for Bioaccumulation and Secondary Poisoning

Fenpropidin has a log P_{OW} of 4.5 (at pH 9.0) indicating a potential risk of secondary poisoning, therefore a risk assessment is provided.

The main soil and water metabolite of fenpropidin (CGA289267) has a log P_{OW} value in the range from -0.1 to 0.1 indicating low potential for bioaccumulation. Given that the metabolite will be found at lower concentrations in soil than the parent active substance, the risk assessment for the parent is considered to cover the metabolite.

1) Risk to earthworm-eating mammals

 Table 2.9.9-15
 Long-term risk from secondary poisoning to earthworm-eating mammals

Compound	Appl. rate (g a.s./ha)	PEC _{soil} (mg a.s./kg)	Kow	foc	Кос	BCF	PEC _{worm} (mg a.s./kg)	DDD (mg a.s./kg bw/day)	NOAEL (mg a.s./kg bw/day)	TERworm
Fenpropidin	562.5	0.420	794	0.02	3770	0.138	0.0578	0.0739	10	135

The TER value exceeds the long-term trigger value of 5, indicating that A7516D poses an acceptable risk to earthworm eating mammals.

2) Risk to fish eating mammals

 Table 2.9.9-16
 Long-term risk from secondary poisoning to fish-eating mammals

Compound	Application rate (g a.s./ha)	PEC _{sw, max} Step 3 (mg a.s./L)	BCFfish	PEC _{fish} (mg a.s./kg)	DDD (mg a.s./kg bw/day)	NOAEL (mg a.s./kg bw/day)	TER _{fish}
Fenpropidin	562.5	0.00356	163 ^a	0.580	0.0824	10	121

^a The lowest BCF (whole fish) determined in bluegill sunfish.

The TER value exceeds the long-term trigger value of 5, indicating that A7516D poses an acceptable risk to fish eating mammals.

Risk to mammals from metabolites

Metabolites of fenpropidin that were found in potential food items for wild mammals (CGA289267, CGA289268 (glycoside) and SYN515213) are part of the major metabolic pathway of fenpropidin in mammals and occurred at significant levels in the rat and goat metabolism studies (see B.9.2.1 for further details).

According to the EFSA GD (2009) it can be assumed that these metabolites observed in the rat and goat metabolism studies were present in the mammalian toxicity tests with the parent compound and thus the studies with the parent fenpropidin adequately covers the potential toxicity of these metabolites.

It can therefore be concluded that the risk to wild mammals will be covered by the risk assessment for the parent and hence is low and no further risk assessment is required.

Conclusion – risk to vertebrates other than birds:

Low acute and long-term risks to mammals can be concluded following applications of fenpropidin according to the proposed GAP, except for long-term dietary risk to small herbivorous mammal scenario "vole". Low risk to mammals is expected from fenpropidin metabolites.

It is noted that the selection of ecotoxicologically relevant endpoint to be used in the reproductive risk assessment for wild mammals will be discussed in peer review.

2.9.9.2 Risk assessment for aquatic organisms

Endpoints of technical and formulated fenpropidin and its metabolite used in risk assessment

Test organism	Test substance	Time scale, study type	Endpoint	Toxicity (mg a.s./L)	Reference	
FISH						
Bluegill sunfish (Lepomis macrochirus)	Fenpropidin	Acute, 96h (flow- through)	Mortality, LC50	1.93 (mm)	(1981a) CGA114900/0069	
Rainbow trout (Oncorhynchus mykiss)	Metabolite CGA289267	Acute, 96h (static)	Mortality, LC ₅₀	>100 (nom)	(1995) CGA289267/0003	
Rainbow trout (Oncorhynchus mykiss)	Fenpropidin	Chronic, 32d ELS (flow- through)	Growth and mortality, NOEC	0.0038 _(mm)	(2016) CGA114900/10666	
AQUATIC INVERTEBRA	ATES					
Daphnia magna	Fenpropidin	Acute, 48h (static)	Immobility, EC ₅₀	$0.54_{(mm)}$	Hill (1981d) CGA114900/0074	
Daphnia magna	Metabolite CGA289267	Acute, 48h (static)	Immobility, EC ₅₀	>123.45 (mm)	Grade (1994a) CGA289267/0002	
Daphnia magna	Fenpropidin	Chronic, 21d (semi-static)	Reproduction and development, NOEC	0.050 (nom)	Noack (2007b) CGA114900/10626	
SEDIMENT-DWELLING	INVERTEBRA	TES				
		Chronic, 28 d (static) spiked water	Development, NOEC	1.0 (ini nom)	Grade (1999a)	
Chironomus riparius	Fenpropidin	Chronic, 28 d (static) spiked sediment	Development, NOEC	40 mg/kg dw (ini nom)	CGA114900/4591	
ALGAE	ALGAE					
Freshwater green (Desmodesmus subspicatus)	Fenpropidin	72 h (static)	Growth rate: E _r C ₅₀	0.000688 (mm)	Scheerbaum (2007a) CGA114900/10620	
1 /					Pickering & Allen	

	volum	e 1 – Level 2	May 2021					
Test organism	Test substance	Time scale, study type	Endpoint	Toxicity (mg a.s./L)	Reference			
					(2018a) CGA114900/10913			
Freshwater green (Desmodesmus subspicatus)	Metabolite CGA289267	72 h (static)	Growth rate: ErC ₅₀	69 (mm)	Grade (1994b) CGA289267/0001 Taylor & Radford (2015a) CGA289267/10009			
AQUATIC PLANTS	1	1	1					
Duckweed (Lemna gibba)	Fenpropidin	7 d (static- renewal)	Frond number: E _r C ₅₀	0.0789 (mm)	Bebon & Wydra (2017) CGA114900/10893			
			ments and to include	ine associated	i m joi me			
			memb and to memae	ine associated				
representative use and exp Mesoocosm	lain the reason (NOEC	0.00013	Neumann (1997) Statistical analysis			
Mesoocosm (phytoplankton, periphyton, macrophytes, zooplankton,		(briefly)] 2	1		Neumann (1997)			
Mesoocosm (phytoplankton, periphyton, macrophytes,	A7516A (750 g/L	<i>(briefly)]</i> 2 applications, 14 d interval,	NOEC	0.00013	Neumann (1997) Statistical analysis: Ashwell et al.			

(nom) nominal concentration; (ini nom) initial nominal concentration; (mm) mean measured concentration; (initial mm) initial measured concentration; form.: formulation; a.s.: active substance

n.a. not applicable

* The NOEAEC considered in deriving of the overall NOEAEC from mesocosms but finaly not used in the risk assessment, see the explanation below.

<u>Mesocosm studies - RMS Overall summary and conclusion on mesocosm endpoints and RACs for aquatic organisms (RAR 2018):</u>

Three mesocosm studies were available. Two of them are considered suitable for regulatory use (Neumann, 1997 and Wellmann, 2006). Both studies are considered as being reliable and of high quality. The results of both studies indicate that there are species of algae that are very sensitive to fenpropidin also at low concentrations.

A NOEC could only be derived from the study by Neumann (1997):

NOEC = $0.13 \ \mu g \ a.s./L$

The study by Neumann (1997) is considered as being reliable and of high quality. Parameters related to phytoplankton community and populations were identified as being the most sensitive. Some uncertainty is connected with presence of fish that might have fed on zooplankton. It is noted that considering the ecological relevance and richness of species of the community tested the study by Neumann is considered as substantially more valuable than the study by Wellmann based on a rich number of sensitive/vulnerable taxa classified as Category 1.

Further it is noted the endpoints derived from the study by Neumann (1997) are considered as rather conservative since they are based on initial measured concentrations sampled few hours after first and second application.

As mentioned above, no NOEC could be derived from the other mesocosm study Wellmann (2007). However, this study indicates that the NOEC is below the lowest concentration tested (i.e. $< 0.3 \ \mu g \ a.s./L$), which confirms result of the study Neumann (1997).

FenpropidinVolume 1 – Level 2May 2021Taking these into accountassessment factor of 2 is proposed by RMS in combination with NOEC of 0.13 μga.s./L, resulting in ETO-RAC of 0.065 μg a.s./L.

A NOEAEC could be derived from both studies (Neumann, 1997 and Wellmann, 2007).

Neumann (1997) : NOEAEC = 0.39 μg a.s./L (LOEAEC = 1.4 μg a.s./L);

Wellman (2007): NOEAEC = 1.0 μg a.s./L (LOEAEC = 3.0 μg a.s./L)

The study by Wellmann (2007) is considered as being reliable and of high quality. Phytoplankton and periphyton taxa were identified as being the most sensitive. The endpoint is based on nominal concentrations since measured concentrations in mesocosms were 84-133% of nominal values after first and second application.

It is noted that the lowest available NOEAECof $0.39 \ \mu g$ a.s./L from the study by Neumann (1997) is considered as rather conservative since it is based on initial mean measured concentrations sampled few hours after first and second application.

Further, the highest NOEAEC of 1.0 μ g a.s./L from the study by Wellmann (2007) is lower than the lowest LOEAEC of 1.4 μ g a.s./L from the study by Neumann (1997). However, it is noted that the study by Wellmann does not have the same value as the study by Neumann, considering the ecological relevance and richness of species of the community tested. The study by Wellmann has only the minimum of 8 sensitive/vulnerable taxa (i.e. algal taxa) with acceptable MDD, while the study by Neumann includes much more such taxa. As regards to green algae, only 3 taxa with acceptable MDD were included in the study by Wellmann (2007) while 9 taxa were included in the study by Neumann (1997). However, it is noted that the results of the study by Wellmann (2007) indicates that the NOEC is below the lowest concentration tested (i.e. < 0.3 μ g/L), which confirms the result of the study by Neumann (1997).

Overall, considering the concerns mentioned about the limited richness of the community most at risk in study Wellmann (2007), it seems thus more appropriate in terms of protectiveness to select the most conservative of the 2 different NOEAEC derived from these two mesocosm studies.

Thus, the overall NOEAEC of 0.39 µg a.s./L is proposed by RMS.

Since two reliable and high quality mesocosm studies were available, it is assumed that very little uncertainty is associated with the overall NOEAEC of 0.39 μ g a.s./L. Therefore, <u>an assessment factor of 3 is proposed by</u> **RMS, resulting in ERO-RAC of 0.13 \mug a.s./L.**

The selection of endpoints from mesocosm studies and their use in the risk assessment should be discussed in peer-review.

PEC/RAC comparisons for aquatic species for active substance and its metabolites

PEC/RAC comparisons for aquatic organisms based on FOCUSsw Step 1, 2 and 3

Scenario	PEC global max (μg /L)	fish acute	fish chronic	Aquatic invertebrates	Aquatic invertebrat es prolonged	Algae	Higher plant	Sed. dweller prolonged Spiked water	Sed. dweller prolonged Spiked sediment		cosm / ocosm
			Oncorhynchuss	Daphnia	Daphnia	Desmodesmus	Lemna	Chironomus	Chironomus	Meso	cosm
		macrochirus	mykiss	magna	magna	subspicatus	gibba	riparius	riparius		
		LC ₅₀	NOEC	EC_{50}	NOEC	E_rC_{50}	ErC ₅₀	NOEC	NOEC	NOEC	NOEAEC
		1930 µg/L	3.8 μg/L	540 μg/L	50 µg/L	0.688 µg/L	78.9 μg/L	1000 µg/L	40000 µg/kg	0.13 µg/L	0.39 µg/L
RAC Assessment fact	or**	19.3 μg/L 100	0.38 μg/L 10	5.4 μg/L 100	5.0 μg/L 10	0.0688 μg/L 10	7.89 μg/L 10	100 μg/L 10	4000 μg/kg 10	0.065 μg/L 2	0.13 μg/L 3
FOCUS Step 1	72.57 μg/L /2350 μg/kg	72.57	72.57	72.57	72.57	72.57	72.57	72.57	2350	-	-
FOCUS Step 2											
North Europe	11.19	11.19	11.19	11.19	11.19	11.19	11.19	-	-	-	-
South Europe	20.30	20.30	20.30	20.30	20.30	20.30	20.30	-	-	-	-
FOCUS Step 3*											
D1 / ditch	3.560 ^a	3.560	3.560	3.560	3.560	3.560	3.560	-	-	3.560	3.560
D1 / stream	3.039 ª	3.039	3.039	3.039	3.039	3.039	3.039	-	-	3.039	3.039
D2 / ditch	3.555 ^a	3.555	3.555	3.555	3.555	3.555	3.555	-	-	3.555	3.555
D2 / stream	2.978 ^a	2.978	2.978	2.978	2.978	2.978	2.978	-	-	2.978	2.978
D3 / ditch	3.521 ^a	3.521	3.521	3.521	3.521	3.521	3.521	-	-	3.521	3.521
D4 / pond	0.136	0.136	0.136	0.136	0.136	0.136	0.136	-	-	0.136	0.136
D4 / stream	2.781 ^a	2.781	2.781	2.781	2.781	2.781	2.781	-	-	2.781	2.781
D5 / pond	0.161	0.161	0.161	0.161	0.161	0.161	0.161	-	-	0.161	0.161
D5 / stream	2.811 a	2.811	2.811	2.811	2.811	2.811	2.811	-	-	2.811	2.811
D6 / ditch	3.543 ^a	3.543	3.543	3.543	3.543	3.543	3.543	-	-	3.543	3.543
R1 / pond	0.190	0.190	0.190	0.190	0.190	0.190	0.190	-	-	0.190	0.190
R1 / stream	2.319 ª	2.319	2.319	2.319	2.319	2.319	2.319	-	-	2.319	2.319
R3 / stream	3.260 a	3.260	3.260	3.260	3.260	3.260	3.260	-	-	3.260	3.260
R4 / stream	2.319 ª	2.319	2.319	2.319	2.319	2.319	2.319	-	-	2.319	2.319

FenpropidinVolume 1 – Level 2May 2021Table 2.9.9-17FOCUSsw step 1-3 - PEC/RAC comparisons for fenpropidin – winter cereals at 562.5 g a.s./ha x 2

values in bold exceed the relevant RAC, indicating an unacceptable risk

^a PEC_{sw} for a single application as a worse case

*[Only scenarios where the trigger is not met at FOCUSsw step 1-2 should be included in step 3.]

FenpropidinVolume 1 – Level 2May 2021

**[If the Trigger value has been adjusted during the risk assessment, it should always be clear on what basis the risk assessment has been performed, i.e. what the AF value is and for which organism and endpoint it refers.]

Scenario	PEC global max (μg /L)	fish acute	fish chronic	Aquatic invertebrates	Aquatic invertebrates prolonged	Algae	Higher plant	Sed. dweller prolonged Spiked water	Sed. dweller prolonged Spiked sediment	Microo Meso	
		Lepomis	Oncorhynchus	Daphnia	Daphnia	Desmodesmus	Lemna	Chironomus	Chironomus	Meso	cosm
		macrochirus	mykiss	magna	magna	subspicatus	gibba	riparius	riparius	IVIES0	cosiii
		LC ₅₀	NOEC	EC_{50}	NOEC	E_rC_{50}	ErC_{50}	NOEC	NOEC	NOEC	NOEAEC
		1930 µg/L	3.8 μg/L	540 μg/L	50 μg/L	0.688 μg/L	78.9 μg/L	1000 µg/L	40000 µg/kg	0.13 µg/L	0.39 µg/L
RAC		19.3 μg/L	0.38 μg/L	5.4 μg/L	5.0 μg/L	0.0688 µg/L	7.89 μg/L	100 µg/L	4000 µg/kg	0.065 µg/L	0.13 μg/L
Assessment facto	or ^{**}	100	10	100	10	10	10	10	10	2	3
FOCUS Step 1	72.57 μg/L /2350 μg/kg	72.57	72.57	72.57	72.57	72.57	72.57	72.57	2350	-	-
FOCUS Step 2 North Europe	11.19	11.19	11.19	11.19	11.19	11.19	11.19				
South Europe	20.30	20.30	20.30	20.30	20.30	20.30	20.30				
FOCUS Step 3*											
D1 / ditch	4.111	4.111	4.111	4.111	4.111	4.111	4.111	-	-	4.111	4.111
D1 / stream	3.119 ^a	3.119	3.119	3.119	3.119	3.119	3.119	-	-	3.119	3.119
D3 / ditch	3.528 ^a	3.528	3.528	3.528	3.528	3.528	3.528	-	-	3.528	3.528
D4 / pond	0.136	0.136	0.136	0.136	0.136	0.136	0.136	-	-	0.136	0.136
D4 / stream	2.882 ª	2.882	2.882	2.882	2.882	2.882	2.882	-	-	2.882	2.882
D5 / pond	0.153	0.153	0.153	0.153	0.153	0.153	0.153	-	-	0.153	0.153
D5 / stream	3.064 ^a	3.064	3.064	3.064	3.064	3.064	3.064	-	-	3.064	3.064
R4 / stream	2.329 ^a	2.329	2.329	2.329	2.329	2.329	2.329	-	-	2.329	2.329

Table 2.9.9-18	8 FOCUS _{sw} step 1-3 - PEC/RAC comparisons for fenpropidin – spring cereals at 562.5 g a.s./ha x 2
----------------	--

values in bold exceed the relevant RAC, indicating an unacceptable risk

^a PEC_{sw} for a single application as a worse case

*[Only scenarios where the trigger is not met at FOCUSsw step 1-2 should be included in step 3.]

Volume 1 – Level 2

May 2021

Table 2.9.9-19	FOCUS _{sw} step 1-3	 PEC/RAC compariso 	ns for fenpropidin -	 winter cereals at 	: 281.25 g a.s./ha x 2
----------------	------------------------------	---------------------------------------	----------------------	---------------------------------------	------------------------

Scenario	PEC global max (μg /L)	fish acute	fish chronic	Aquatic invertebrates	Aquatic invertebrat es prolonged	Algae	Higher plant	Sed. dweller prolonged Spiked water	Sed. dweller prolonged Spiked sediment		cosm / ocosm
		Lepomis macrochirus	Oncorhynchuss mykiss	Daphnia magna	Daphnia magna	Desmodesmus subspicatus	Lemna gibba	Chironomus riparius	Chironomus riparius	Meso	ocosm
-		LC ₅₀	NOEC	EC ₅₀	NOEC	ErC ₅₀	ErC ₅₀	NOEC	NOEC	NOEC	NOEAEC
		1930 µg/L	3.8 μg/L	540 μg/L	50 µg/L	0.688 µg/L	78.9 µg/L	1000 µg/L	40000 µg/kg	0.13 μg/L	0.39 µg/L
RAC Assessment fact	or ^{**}	19.3 μg/L 100	0.38 μg/L 10	5.4 μg/L 100	5.0 μg/L 10	0.0688 μg/L 10	7.89 μg/L 10	100 μg/L 10	4000 μg/kg 10	0.065 μg/L 2	0.13 μg/L 3
FOCUS Step 1	36.29 μg/L /1170 μg/kg	36.29	36.29	36.29	36.29	36.29	36.29	36.29	1170	-	-
FOCUS Step 2					0						
North Europe South Europe	5.59 10.15	5.59 10.15	<u>5.59</u> 10.15	<u>5.59</u> 10.15	<u>5.59</u> 10.15	<u>5.59</u> 10.15	5.59 10.15	-	-	-	-
FOCUS Step 3*		10.15		10.13		10.15					
D1 / ditch	1.777 ^a	-	1.777	1.777	1.777	1.777	1.777	-	-	1.777	1.777
D1 / stream	1.516 ^a	-	1.516	1.516	1.516	1.516	1.516	-	-	1.516	1.516
D2 / ditch	1.774 ^a	-	1.774	1.774	1.774	1.774	1.774	-	-	1.774	1.774
D2 / stream D3 / ditch	1.486 ^a 1.757 ^a	-	1.486 1.757	1.486 1.757	1.486 1.757	1.486 1.757	1.486 1.757	-	-	1.486 1.757	1.486 1.757
D3 / ditch D4 / pond	0.067	_	0.067	0.067	0.067	0.067	0.067	-	-	0.067	0.067
D4 / stream	1.408 ^a	-	1.408	1.408	1.408	1.408	1.408	-	-	1.408	1.408
D5 / pond	0.080	-	0.080	0.080	0.080	0.080	0.080	_	-	0.080	0.080
D5 / stream	1.403 ^a	-	1.403	1.403	1.403	1.403	1.403	_	_	1.403	1.403
D6 / ditch	1.768 ^a	-	1.768	1.768	1.768	1.768	1.768	-	-	1.768	1.768
R1 / pond	0.081	-	0.081	0.081	0.081	0.081	0.081	-	-	0.081	0.081
R1 / stream	1.157 ^a	-	1.157	1.157	1.157	1.157	1.157	-	-	1.157	1.157
R3 / stream	1.627 a	-	1.627	1.627	1.627	1.627	1.627	-	-	1.627	1.627
R4 / stream	1.157 ª	-	1.157	1.157	1.157	1.157	1.157	-	-	1.157	1.157

values in bold exceed the relevant RAC, indicating an unacceptable risk

^a PEC_{sw} for a single application as a worse case

FenpropidinVolume 1 – Level 2May 2021

*[Only scenarios where the trigger is not met at FOCUSsw step 1-2 should be included in step 3.]

**[If the Trigger value has been adjusted during the risk assessment, it should always be clear on what basis the risk assessment has been performed, i.e. what the AF value is and for which organism and endpoint it refers.]

Scenario	PEC global max (μg /L)	fish acute	fish chronic	Aquatic invertebrates	Aquatic invertebrates prolonged	Algae	Higher plant	Sed. dweller prolonged Spiked water	Sed. dweller prolonged Spiked sediment	Microo Meso	
		Lepomis	Oncorhynchus	Daphnia	Daphnia	Desmodesmus	Lemna	Chironomus	Chironomus	Meso	cosm
		macrochirus	mykiss	magna	magna	subspicatus	gibba	riparius	riparius	WICSO	cosin
		LC ₅₀	NOEC	EC_{50}	NOEC	E_rC_{50}	ErC_{50}	NOEC	NOEC	NOEC	NOEAEC
		1930 µg/L	3.8 µg/L	540 μg/L	50 μg/L	0.688 μg/L	78.9 μg/L	1000 µg/L	40000 µg/kg	0.13 µg/L	0.39 μg/L
RAC		19.3 μg/L	0.38 μg/L	5.4 μg/L	5.0 μg/L	0.0688 μg/L	7.89 μg/L	100 μg/L	4000 μg/kg	0.065 μg/L	0.13 μg/L
Assessment facto	or**	100	10	100	10	10	10	10	10	2	3
FOCUS Step 1	36.29 μg/L /1170 μg/kg	36.29	36.29	36.29	36.29	36.29	36.29	36.29	1170	-	-
FOCUS Step 2 North Europe	5.59	5.59	5.59	5.59	5.59	5.59	5.59	-	-	-	
South Europe	10.15	10.15	10.15	10.15	10.15	10.15	10.15	-	-	-	-
FOCUS Step 3*											
D1 / ditch	2.028	2.028	2.028	2.028	2.028	2.028	2.028	-	-	2.028	2.028
D1 / stream	1.556 ^a	1.556	1.556	1.556	1.556	1.556	1.556	-	-	1.556	1.556
D3 / ditch	1.761 ^a	1.761	1.761	1.761	1.761	1.761	1.761	-	-	1.761	1.761
D4 / pond	0.067	0.067	0.067	0.067	0.067	0.067	0.067	-	-	0.067	0.067
D4 / stream	1.438 ^a	1.438	1.438	1.438	1.438	1.438	1.438	-	-	1.438	1.438
D5 / pond	0.076	0.076	0.076	0.076	0.076	0.076	0.076	-	-	0.076	0.076
D5 / stream	1.529 ^a	1.529	1.529	1.529	1.529	1.529	1.529	-	-	1.529	1.529
R4 / stream	1.162 ^a	1.162	1.162	1.162	1.162	1.162	1.162	-	-	1.162	1.162

Table 2.9.9-20	FOCUS _{sw} step 1-3	3 - PEC/RAC comparison	s for fenpropidin – spri	ng cereals at 281.25 g a.s./ha x 2
	1000000 000 P 10		s tot tother option option	

values in bold exceed the relevant RAC, indicating an unacceptable risk

^a PEC_{sw} for a single application as a worse case

*[Only scenarios where the trigger is not met at FOCUSsw step 1-2 should be included in step 3.]

FenpropidinVolume 1 – Level 2May 2021

Based on a comparison of the results of the standard laboratory toxicity studies with FOCUS Step 3 maximum PEC_{sw} values for fenpropidin for use on winter and spring cereals, the long-term TER values for fish and algae remain below the relevant triggers, indicating that further consideration of the risk is required (see below).

The TER calculations for metabolite CGA289267 are presented in the tables below.

Table 2.9.9-21PEC/RAC comparisons for the most sensitive aquatic organisms (Regulation (EU) N° 284/2013, Annex Part A, point 10.2):
FOCUSsw step 1 - TERs for metabolite CGA289267– winter/spring cereals at 562.5 g a.s./ha x 2

Scenario	PEC global max (µg L)	fish acute	fish chronic	Aquatic invertebrates	Aquatic invertebrates prolonged	Algae	Higher plant	Sed. dweller prolonged	Microcosm / Mesocosm
		Oncorhynchus mykiss	-	Daphnia magna	-	Desmodesmus subspicatus	-	-	
		LC50	NOEC	EC50	NOEC	ErC50	EyC50	NOEC	NOEC
		>100 000 µg/L	-	>123 450 µg/L	-	69 000 μg/L	-	-	-
RAC		>1 000 µg/L	-	>1234.5 µg/L	-	6 900 μg/L	-	-	-
Assessment factor**		100	-	100	-	10	-	-	-
FOCUS Step 1									
	148.0	148.0	-	148.0	-	148.0		-	-

Bold figures fall below the Regulation (EU) 546/2011trigger value

*[Only scenarios where the trigger is not met at FOCUSsw step 1-2 should be included in step 3.]

Based on a comparison of the results of the standard laboratory toxicity studies with FOCUS Step 1 maximum PEC_{sw} values for metabolite CGA289267, all TER values are greater than the relevant triggers for all uses, indicating low risk.

FenpropidinVolume 1 – Level 2May 2021PEC/RAC comparisons for aquatic organism based on FOCUSsw Step 4

Table 2.9.9-22 FOCUS_{sw} step 4 - PEC/RAC comparisons for fenpropidin – winter cereals at 562.5 g a.s./ha x 2 – Mesocosm ETO-RAC 0.065 µg a.s./L

Organisms: Mesocosm **Toxicity endpoint:** NOEC 0.13 µg a.s /L, AF: 2 **RAC:** 0.065 µg a.s./L

Mitigation options	[x] m non-spray buffer zone (corresponding to ≤ 95 % drift reduction)	[x] m vegetated buffer strip (corresponding to ≤ 90 % run-off reduction)	PECsw
FOCUS Step 4*	(corresponding to $\leq 95\%$ drift reduction)		(x.xx µg/L)
D1 / ditch	20	-	0.264 ^a
D1 / stream	20	-	0.303 a
D2 / ditch	20	-	0.263 ^a
D2 / stream	20	-	0.297 ^a
D3 / ditch	20	-	0.261 ^a
D4 / pond	15	-	0.0646
D4 / stream	20	-	0.278 ^a
D5 / pond	20	-	0.0640
D5 / stream	20	-	0.281 ^a
D6 / ditch	20	-	0.262 ^a
R1 / pond	20	20	0.0602
R1 / stream	20	20	0.2627
R3 / stream	20	20	0.326 ^a
R4 / stream	20	20	1.784

Bold figures fall below the Regulation (EU) 546/2011trigger value

*[Only scenarios where the trigger is not met at FOCUSsw step 3 should be included in step 4].

^a PEC_{sw} for a single application as a worse case

FenpropidinVolume 1 – Level 2May 2021Table 2.9.9-23FOCUSsw step 4 - PEC/RAC comparisons for fenpropidin – winter cereals at 562.5 g a.s./ha x 2 – Mesocosm ETO-RAC 0.13 μg a.s./L

Organisms: Mesocosm **Toxicity endpoint:** NOEAEC 0.39 μg a.s /L, AF: 3 **RAC:** 0.13 μg a.s./L

Mitigation options	[x] m non-spray buffer zone	[x] m vegetated buffer strip (corresponding to \leq 90 % run-off reduction)	PECsw
	(corresponding to \leq 95 % drift reduction)		(x.xx µg/L)
FOCUS Step 4*			
D1 / ditch	20	-	0.264 ^a
D1 / stream	20	-	0.303 ^a
D2 / ditch	20	-	0.263 ^a
D2 / stream	20	-	0.297 ^a
D3 / ditch	20	-	0.261 ^a
D4 / pond	15	-	0.0646
D4 / stream	20	-	0.278 ^a
D5 / pond	15	-	0.0769
D5 / stream	20	-	0.281 ^a
D6 / ditch	20	-	0.262 ^a
R1 / pond	20	-	0.0602
R1 / stream	20	20	0.2627
R3 / stream	20	20	0.326 ^a
R4 / stream	20	20	1.784

Bold figures fall below the Regulation (EU) 546/2011trigger value

*[Only scenarios where the trigger is not met at FOCUSsw step 3 should be included in step 4].

^a PEC_{sw} for a single application as a worse case

FenpropidinVolume 1 – Level 2May 2021Table 2.9.9-24FOCUSsw step 4 - PEC/RAC comparisons for fenpropidin – spring cereals at 562.5 g a.s./ha x 2 – Mesocosm ETO-RAC 0.065 μg a.s./L

Organisms: Mesocosm **Toxicity endpoint:** NOEC 0.13 μg a.s /L, AF: 2 **RAC:** 0.065 μg a.s./L

Mitigation options	[x] m non-spray buffer zone	[x] m vegetated buffer strip (corresponding to \leq 90 % run-off reduction)	PECsw
	(corresponding to \leq 95 % drift reduction)	(corresponding to _) o / o run on reduction)	$(x.xx \mu g/L)$
FOCUS Step 4*			
D1 / ditch	20	-	0.269
D1 / stream	20	-	0.311 ^a
D3 / ditch	20	-	0.261 ^a
D4 / pond	20	-	0.054
D4 / stream	20	-	0.288 ^a
D5 / pond	20	-	0.061
D5 / stream	20	-	0.306 ^a
R4 / stream	20	20	0.232

Bold figures fall below the Regulation (EU) 546/2011trigger value

*[Only scenarios where the trigger is not met at FOCUSsw step 3 should be included in step 4].

^a PEC_{sw} for a single application as a worse case

Table 2.9.9-25 FOCUS_{sw} step 4 - PEC/RAC comparisons for fenpropidin – spring cereals at 562.5 g a.s./ha x 2 – Mesocosm ETO-RAC 0.13 µg a.s./L

Organisms: Mesocosm

Toxicity endpoint: NOEAEC 0.39 μg a.s /L, AF: 3 **RAC:** 0.13 μg a.s./L

Mitigation options	[x] m non-spray buffer zone	[x] m vegetated buffer strip (corresponding to \leq 90 % run-off reduction)	PECsw
	(corresponding to \leq 95 % drift reduction)		$(x.xx \mu g/L)$
FOCUS Step 4*			
D1 / ditch	20	-	0.269
D1 / stream	20	-	0.311 ^a
D3 / ditch	20	-	0.261 ^a
D4 / pond	15	-	0.065

Fenpropidin	Volume 1 – Level 2	May 2021	
D4 / stream	20	-	0.288 ^a
D5 / pond	15	-	0.073
D5 / stream	20	-	0.306 ^a
R4 / stream	20	20	0.232

Bold figures fall below the Regulation (EU) 546/2011trigger value

*[Only scenarios where the trigger is not met at FOCUSsw step 3 should be included in step 4].

^a PEC_{sw} for a single application as a worse case

Table 2.9.9-26 FOCUSsw step 4 - PEC/RAC comparisons for fenpropidin – winter cereals at 281.25 g a.s./ha x 2 – Mesocosm ETO-RAC 0.065 µg a.s./L

Organisms: Mesocosm **Toxicity endpoint:** NOEC 0.13 µg a.s /L, AF: 2 **RAC:** 0.065 µg a.s./L

Mitigation options	[x] m non-spray buffer zone	[x] m vegetated buffer strip (corresponding to ≤ 90 % run-off reduction)	PECsw
FOCUS Step 4*	(corresponding to \leq 95 % drift reduction)		(x.xx µg/L)
D1 / ditch	20	-	0.131 ^a
D1 / stream	20	<u> </u>	0.151 ^a
D2 / ditch	20	-	0.131 ^a
D2 / stream	20	-	0.148 ^a
D3 / ditch	20	-	0.130 ^a
D4 / pond	15	-	0.032
D4 / stream	20	-	0.138 ^a
D5 / pond	15	-	0.038
D5 / stream	20	-	0.140 ^a
D6 / ditch	20	-	0.131 ^a
R1 / pond	10	10	0.046
R1 / stream	20	20	0.115 ^a
R3 / stream	20	20	0.162 ^a
R4 / stream	20	20	0.175

Bold figures fall below the Regulation (EU) 546/2011trigger value

*[Only scenarios where the trigger is not met at FOCUSsw step 3 should be included in step 4].

^a PEC_{sw} for a single application as a worse case

Table 2.9.9-27 FOCUS_{sw} step 4 - PEC/RAC comparisons for fenpropidin – winter cereals at 281.25 g a.s./ha x 2 – Mesocosm ETO-RAC 0.13 µg a.s./L

Organisms: Mesocosm **Toxicity endpoint:** NOEAEC 0.39 μg a.s /L, AF: 3 **RAC:** 0.13 μg a.s./L

Mitigation options	[x] m non-spray buffer zone	[x] m vegetated buffer strip (corresponding to ≤ 90 % run-off reduction)	PECsw
FOCUS Step 4*	(corresponding to \leq 95 % drift reduction)		(x.xx μg/L)
•			
D1 / ditch	20	-	0.131 ^a
D1 / stream	20	-	0.151 ^a
D2 / ditch	20	-	0.131 ^a
D2 / stream	20	-	0.148 ^a
D3 / ditch	20	-	0.130 a
D4 / stream	20	-	0.138 ^a
D5 / stream	20	-	0.140 ^a
D6 / ditch	20	-	0.131 ^a
R1 / stream	20	20	0.115 a
R3 / stream	20	20	0.162 ^a
R4 / stream	20	20	0.175

Bold figures fall below the Regulation (EU) 546/2011trigger value

*[Only scenarios where the trigger is not met at FOCUSsw step 3 should be included in step 4].

^a PEC_{sw} for a single application as a worse case

FenpropidinVolume 1 – Level 2May 2021Table 2.9.9-28FOCUSsw step 4 - PEC/RAC comparisons for fenpropidin – spring cereals at 281.25 g a.s./ha x 2 – Mesocosm ETO-RAC 0.065 μg a.s./L

Organisms: Mesocosm **Toxicity endpoint:** NOEC 0.13 µg a.s /L, AF: 2 **RAC:** 0.065 µg a.s./L

Mitigation options	[x] m non-spray buffer zone	[x] m vegetated buffer strip (corresponding to \leq 90 % run-off reduction)	PECsw	
	(corresponding to \leq 95 % drift reduction)	(corresponding to _ > 0 / 0 run of reduction)	$(x.xx \mu g/L)$	
FOCUS Step 4*				
D1 / ditch	20	-	0.133	
D1 / stream	20	-	0.155 ^a	
D3 / ditch	20	-	0.130 ^a	
D4 / pond	5	-	0.058	
D4 / stream	20	-	0.143 ^a	
D5 / pond	10	-	0.046	
D5 / stream	20	-	0.152 ^a	
R4 / stream	20	20	0.116 ^a	

Bold figures fall below the Regulation (EU) 546/2011trigger value

*[Only scenarios where the trigger is not met at FOCUSsw step 3 should be included in step 4].

^a PEC_{sw} for a single application as a worse case

FenpropidinVolume 1 – Level 2May 2021Table 2.9.9-29FOCUSsw step 4 - PEC/RAC comparisons for fenpropidin – winter cereals at 281.25 g a.s./ha x 2 – Mesocosm ETO-RAC 0.13 μg a.s./L

Organisms: Mesocosm **Toxicity endpoint:** NOEAEC 0.39 μg a.s /L, AF: 3 **RAC:** 0.13 μg a.s./L

Mitigation options	[x] m non-spray buffer zone	[x] m vegetated buffer strip (corresponding to \leq 90 % run-off reduction)	PECsw	
	(corresponding to \leq 95 % drift reduction)		(x.xx µg/L)	
FOCUS Step 4*				
D1 / ditch	20	-	0.133	
D1 / stream	20	-	0.155 ^a	
D3 / ditch	20	-	0.130 ^a	
D4 / stream	20	-	0.143 ^a	
D5 / stream	20	-	0.152 ^a	
R4 / stream	20	20	0.116 ^a	

Bold figures fall below the Regulation (EU) 546/2011trigger value

*[Only scenarios where the trigger is not met at FOCUSsw step 3 should be included in step 4].

^a PEC_{sw} for a single application as a worse case

Conclusion – risk to aquatic organisms

No risks were identified for fish, aquatic invertebrates and aquatic macrophytes. Algae were identified as the most sensitive group of organisms and two mesocosm studies were used to refine the risk for them. Two RAC options were proposed by the RMS and should be discussed in peer-review:

- Mesocosm ETO-RAC 0.065 µg a.s./L
- Mesocosm ERO-RAC 0.13 µg a.s./L

Considering ETO-RAC 0.065 µg a.s./L, the following scenarios passed:

Scenario		FOCUS Step 4
	[x] m non-spray buffer zone	[x] m vegetated buffer strip
		(corresponding to \leq 90 % run-off reduction)
Winter cereal	ls at 562.5 g a.s./ha x 2	
D4 / pond	15	
D5 / pond	20	
R1 / pond	20	20
Spring cereal	s at 562.5 g a.s./ha x 2	
D4 / pond	20	
D5 / pond	20	
Winter cereal	ls at 281.25 g a.s./ha x 2	
D4 / pond	15	
D5 / pond	15	· ·
R1 / pond	10	10
Spring cereal	s at 281.25 g a.s./ha x 2	
D4 / pond	5	
D5 / pond	10	

Considering ERO-RAC 0.13 µg a.s./L, the following scenarios passed:

Scenario		FOCUS Step 4			
	[x] m non-spray buffer zone	[x] m vegetated buffer strip			
		(corresponding to \leq 90 % run-off reduction)			
Winter cerea	ls at 562.5 g a.s./ha x 2				
D4 / pond	15				
D5 / pond	15	· .			
R1 / pond	20	20			
Spring cereal	s at 562.5 g a.s./ha x 2				
D4 / pond	15				
D5 / pond	15				
Winter cereal	ls at 281.25 g a.s./ha x 2				
D4 / pond	Step 3				
D5 / pond	Step 3	· .			
R1 / pond	Step 3	· .			

Fenpropidin	Volume 1 – Level 2	May 2021		
R1 / stream	20	20		
Spring cereals at 281.25 g a.s./ha x 2				
D4 / pond	Step 3			
D5 / pond	Step 3			
R4 / stream	20	20		

2.9.9.3 Risk assessment for arthropods

2.9.9.3.1 Risk assessment for bees

Risk assessment for honeybees from contact and oral dietary exposure for cereals at 562.5 g a.s./ha x 2,	
BBCH 31-69	

Species	Test substance	Scenario	Risk quotient	HQ/ETR	Trigger
Screening level as	ssessment				
Apis mellifera	a.s.	Not relevant	HQ _{contact}	12.2	42
Apis mellifera	a.s.	Not relevant	ETRacute adult oral	0.04	0.2
Apis mellifera	a.s.	Not relevant	ETR _{chronic} adult oral	29.69	0.03
Apis mellifera	a.s.	Not relevant	ETR _{chronic} larva oral	1.60	0.2
Tier 1 level assess	sment – BBCH 30-39				
Apis mellifera	a.s.	treated crop	ETR _{chronic} adult oral	2.588	0.03
Apis mellifera	a.s.	weeds	ETR _{chronic} adult oral	4.078	0.03
Apis mellifera	a.s.	field margin	ETR _{chronic} adult oral	0.075	0.03
Apis mellifera	a.s.	adjacent crop	ETR _{chronic} adult oral	0.054	0.03
Apis mellifera	a.s.	succeeding crop	ETR _{chronic} adult oral	1.519	0.03
Apis mellifera	a.s.	treated crop	ETR _{chronic larva oral}	0.05	0.2
Apis mellifera	a.s.	weeds	ETR _{chronic} larva oral	0.34	0.2
Apis mellifera	a.s.	field margin	ETR _{chronic larva oral}	0.01	0.2
Apis mellifera	a.s.	adjacent crop	ETR _{chronic} larva oral	0.00	0.2
Apis mellifera	a.s.	succeeding crop	ETR _{chronic larva oral}	0.12	0.2
Tier 1 level assess	sment – BBCH 40-69				
Apis mellifera	a.s.	treated crop	ETR _{chronic} adult oral	2.588	0.03
Apis mellifera	a.s.	weeds	ETR _{chronic} adult oral	2.447	0.03
Apis mellifera	a.s.	field margin	ETR _{chronic} adult oral	0.075	0.03
Apis mellifera	a.s.	adjacent crop	ETR _{chronic} adult oral	0.054	0.03
Apis mellifera	a.s.	succeeding crop	ETR _{chronic} adult oral	1.519	0.03
Apis mellifera	a.s.	treated crop	ETR _{chronic larva oral}	0.05	0.2
Apis mellifera	a.s.	weeds	ETR _{chronic larva oral}	0.20	0.2
Apis mellifera	a.s.	field margin	ETR _{chronic} larva oral	0.01	0.2
Apis mellifera	a.s.	adjacent crop	ETR _{chronic larva oral}	0.00	0.2
Apis mellifera	a.s.	succeeding crop	ETR _{chronic larva oral}	0.12	0.2

Volume 1 – Level 2

Risk assessment for honeybees from consumption of contaminated water

Species	Test substance	Test substance Risk quotient		Trigger	
Risk assessment from exposure to residues in guttation fluid (water solubility = 530 mg/L)					
Apis mellifera	a.s.	ETR _{acute adult oral}	0.06	0.2	
Apis mellifera	a.s.	ETR _{chronic} adult oral	22.658	0.03	
Apis mellifera	a.s.	ETR _{chronic larva oral}	27.43	0.2	
Risk assessment	from exposure to residues	n surface water (FOCUS Step 3	PECsw of 0.00356	2 mg/L)	
Apis mellifera	a.s.	ETR _{acute adult oral}	0.00	0.2	
Apis mellifera	a.s.	ETR _{chronic} adult oral	0.000	0.03	
Apis mellifera	a.s.	ETR _{chronic} larva oral	0.00	0.2	
Risk assessment	from exposure to residues	n puddle water (FOCUS Step 3 I	PECsw of 0.003262	2 mg/L)	
Apis mellifera	a.s.	ETR _{acute adult oral}	0.00	0.2	
Apis mellifera	a.s.	ETR _{chronic} adult oral	0.00	0.03	
Apis mellifera	a.s.	ETR _{chronic larva oral}	0.00	0.2	

* value not calculated by excel sheet

Risk assessment for honeybees from contact and oral dietary exposure for cereals at 281.25 g a.s./ha x 2, BBCH 31-69

Species	Test substance	Scenario Risk quotient		HQ/ETR	Trigger
Screening level as	ssessment				
Apis mellifera	a.s.	Not relevant	Not relevant HQ _{contact}		42
Apis mellifera	a.s.	Not relevant	ETR _{acute adult oral}	0.02	0.2
Apis mellifera	a.s.	Not relevant	ETR _{chronic} adult oral	14.84	0.03
Apis mellifera	a.s.	Not relevant	ETR _{chronic} larva oral	0.80	0.2
Tier 1 level assess	sment – BBCH 30-39				
Apis mellifera	a.s.	treated crop	ETR _{chronic} adult oral	1.294	0.03
Apis mellifera	a.s.	weeds	ETR _{chronic} adult oral	2.039	0.03
Apis mellifera	a.s.	field margin	ETR _{chronic} adult oral	0.039	0.03
Apis mellifera	a.s.	adjacent crop	ETR _{chronic} adult oral	0.027	0.03
Apis mellifera	a.s.	succeeding crop	ETR _{chronic} adult oral	0.759	0.03
Apis mellifera	a.s.	treated crop	ETR _{chronic} larva oral	0.02	0.2
Apis mellifera	a.s.	weeds	ETR _{chronic} larva oral	0.17	0.2
Apis mellifera	a.s.	field margin	ETR _{chronic} larva oral	0.00	0.2
Apis mellifera	a.s.	adjacent crop	ETR _{chronic} larva oral	0.00	0.2
Apis mellifera	a.s.	succeeding crop	ETR _{chronic} larva oral	0.16	0.2

Volume 1 – Level 2

Tier 1 level assess	Tier 1 level assessment – BBCH 40-69						
Apis mellifera	a.s.	treated crop	ETR _{chronic} adult oral	1.294	0.03		
Apis mellifera	a.s.	weeds	ETR _{chronic} adult oral	1.223	0.03		
Apis mellifera	a.s.	field margin	ETR _{chronic} adult oral	0.038	0.03		
Apis mellifera	a.s.	adjacent crop	ETR _{chronic} adult oral	0.027	0.03		
Apis mellifera	a.s.	succeeding crop	ETR _{chronic} adult oral	0.759	0.03		
Apis mellifera	a.s.	treated crop	ETR _{chronic} larva oral	0.02	0.2		
Apis mellifera	a.s.	weeds	ETR _{chronic} larva oral	0.10	0.2		
Apis mellifera	a.s.	field margin	ETR _{chronic} larva oral	0.00	0.2		
Apis mellifera	a.s.	adjacent crop	ETR _{chronic} larva oral	0.00	0.2		
Apis mellifera	a.s.	succeeding crop	ETR _{chronic} larva oral	0.06	0.2		

Risk assessment for honeybees from consumption of contaminated water

Species	Test substance	Risk quotient	ETR	Trigger			
Risk assessment fro	Risk assessment from exposure to residues in guttation fluid (water solubility = 530 mg/L)						
Apis mellifera	a.s.	ETR _{acute adult oral}	0.06	0.2			
Apis mellifera	a.s.	ETR _{chronic} adult oral	22.658	0.03			
Apis mellifera	a.s.	ETR _{chronic} larva oral	27.43	0.2			
Risk assessment fro	om exposure to residues in	surface water (FOCUS Step 3 PEC	sw of 0.003562 mg	g/L)			
Apis mellifera	a.s.	ETRacute adult oral	0.00	0.2			
Apis mellifera	a.s.	ETR _{chronic} adult oral	0.000	0.03			
Apis mellifera	a.s.	ETR _{chronic} larva oral	0.00	0.2			
Risk assessment fro	om exposure to residues in	puddle water (FOCUS Step 3 PEC	sw of 0.003262 mg	/L)			
Apis mellifera	a.s.	ETRacute adult oral	0.00	0.2			
Apis mellifera	a.s.	ETR _{chronic} adult oral	0.00	0.03			
Apis mellifera	a.s.	ETR _{chronic} larva oral	0.00	0.2			

The HQ and ETR values met the relevant triggers at screening assessment, except for the chronic oral risk to adult honeybees and chronic oral risk to honeybee larvae. Therefore, Tier 1 assessment was performed, for both maximum (i.e. 2 x 562.5 g a.s./ha) and minimum (i.e. 2 x 281.25 g a.s./ha) intended application rate of fenpropidin.

All the ETR values for honeybee larvae met the relevant triggers at Tier 1 assessment, except for scenario "weeds" for application rate 562.5 g a.s./ha x 2.

No chronic ETR value for adult honeybees met the relevant triggers at Tier 1 assessment, except for the scenario "adjacent crop" for application rate 281.25 g a.s./ha x 2, indicating high chronic risk to adult honeybees.

Moreover, based on the risk assessment from exposure to residues in guttation fluid, the ETR values do not met the relevant triggers for the chronic oral risk to adult honeybees and chronic oral risk to honeybee larvae, for both maximum and minimum intended application rate.

It is noted that the exposure to bees via flowering weeds scenario in cereals is considered of rather low relevance (see EFSA Conclusion on confirmatory data for clothianidin and imidacloprid, EFSA Journal 2016;14(11):4606, EFSA Journal 2016;14(11):4607). Therefore, the chronic risk to honeybee larvae is considered to be low also for scenario "weeds".

However, further consideration is needed for chronic risk to adult honeybees and the risk from exposure to residues in guttation fluid.

Higher tier studies

In addition to the laboratory tests, three semi-field studies (tunnel tests) were conducted according to BBA VI, 23-1 (1991). However, the studies are only short-term (observation period: 72 hours, 5-11 days and 3 days) and mortality, foraging activity and behaviour was only assessed. Therefore, the results can only be used as additional information for evaluation of acute risk to adult honeybees and cannot be used for refinement of the chronic risk to adult honeybees.

Risk assessment for bumblebees and solitary bees:

No data were available and no risk assessment was performed by RMS.

Risk assessment for exposure to metabolites

No data were available and no risk assessment was performed by RMS.

Conclusion – risk to bees:

Based on the results of the standard laboratory toxicity studies and screening calculations, low risk was concluded for acute contact and oral risk to adult honeybees for all bee exposure scenarios considered.

Based on Tier 1 calculations, low risk was concluded for chronic risk to honeybee larvae for all bee exposure scenarios considered, except for scenario "weeds". However, since the exposure to bees via flowering weeds scenario in cereals is considered of rather low relevance (see EFSA Conclusion on confirmatory data for clothianidin and imidacloprid, EFSA Journal 2016;14(11):4606, EFSA Journal 2016;14(11):4607), the chronic risk to honeybee larvae is considered to be low also for scenario "weeds".

No chronic ETR value for adult honeybees met the relevant triggers at Tier 1 assessment, indicating high chronic risk to adult honeybees.

Moreover, the risk assessment from exposure to residues in guttation fluid indicated high risk to honeybees.

In addition to the laboratory tests, three semi-field studies (tunnel tests) were conducted according to BBA guideline. However, the studies are only short-term (observation period: 72 hours, 5-11 days and 3 days) and mortality, foraging activity and behaviour was only assessed. Therefore, the results can only be used as additional information for evaluation of acute risk to adult honeybees and cannot be used for refinement of the chronic risk to adult honeybees.

To refine the risk to bees, the Notifier provided the consideration based on the EPPO 2010 scheme.

It is concluded the that chronic risk assessment for adult honeybees and risk assessment for honeybees from consumption of guttation fluid and from metabolites could not be finalized, as well as the risk assessment for bumblebees and solitary bees.

The risk assessment for bees should be discussed in peer review.

2.9.9.3.2 Risk assessment for non-target arthropods other than bees

Ter 1 risk assessment

According to ESCORT 2 guidance (2001) and Guidance Document on Terrestrial Ecotoxicology (SANCO/10329/2002) details should be provided for glass plate residue toxicity tests conducted with the indicator species *Aphidius rhopalosiphi* and *Typhlodromus pyri*. The Tier 1 study for *Aphidius rhopalosiphi* was only available. However, it was performed as a limit test and resulted in 100% mortality in test substance treatment, indicated high risk.

Thus, no Tier 1 quantitative risk assessment could be performed for standard indicator species *Aphidius rhopalosiphi* and *Typhlodromus pyri*. Further consideration is needed.

Higher Tier risk assessment Extended laboratory studies

Volume 1 – Level 2

Сгор	Species	Appl. rate [g a.s./ha]	MAF	PER _{in-field} [g a.s./ha]	LR50; ER50 [g a.s./ha]	Risk acceptable?
Cereals	Phytoseiulus persimilis	2 x 562.5	1.7	956	282.8	No
	Aphidius rhopalosiphi	2 X 302.3		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	>1500	Yes

 Table 2.9.9-30
 In-field risk assessment based on extended laboratory studies

Table 2.9.9-31 Off-field risk assessment based on extended laboratory studies

Сгор	Species	Appl. rate [g/ha]	MAF	Drift factor ^a	VDF	Correc- tion factor	PER _{off-filed} [g a.s./ha]	LR50; ER50 [g a.s./ha]	Risk acceptable?
Cereals	Phytoseiulus persimilis	2 x 562.5	1.7	0.0238	38 1	5	113.8	282.8	Yes
Cereais	Aphidius rhopalosiphi	2 x 562.5	1.7	(1 m)	(3-D)	5	113.8	>1500	Yes

^a An overall 90th percentile drift value was used and hence for each application an 82nd percentile drift was considered

Based on comparison of toxicity endpoints for *Aphidius rhopalosiphi* and *Phytoseiulus persimilis* and in-field and off-field predicted exposure rate, low in-field and off-field risk for *Aphidius rhopalosiphi* and low off-field risk for *Phytoseiulus persimilis* has been concluded. However, high in-field risk for *Phytoseiulus persimilis* has been indicated and further consideration is required.

Additional species tested - Tier 1 risk assessment

In addition to laboratory and/or extended laboratory studies on *Aphidius rhopalosiphi, Typhlodromus pyri* and *Phytoseiulus persimilis*, laboratory studies on *Aleochara bilineata, Chrysoperla carnea, Coccinella septempunctata, Bembidion tetracolum* and *Poecilus cupreus* were available.

Table 2.9.9-32In-field and off-field Tier 1 hazard quotients (HQs) for terrestrial arthropods other than T.pyri and A. rhopalosiphi

Сгор	Test species	LR50/ ER50 (g a.s./ha)	Exposure scenario	Estimated exposure (L/ha)	HQ [Trigger = 2]
Cereals	AT T 1.11.	. 1500	In-field	956	<0.64
	Aleochara bilineata	>1500	Off-field	11.4	< 0.015
	Chrysoperla carnea	>30 and <750	In-field	956	<31.87 and >1.37
			Off-field	11.4	<0.76 and >0.03
	Coccinella septempunctata	>750 and <1500	In-field	956	<1.27 and >0.64
			Off-field	11.4	<0.03 and >0.015
	Bembidion tetracolum	>750	In-field	956	<1.27
			Off-field	11.4	<0.03
	Descilus summers	1.500	In-field	956	<0.64
	Poecilus cupreus	>1500	Off-field	11.4	< 0.015

All HQ values for *Aleochara bilineata, Coccinella septempunctata, Bembidion tetracolum* and *Poecilus cupreus* met the trigger of 2, indicating low in-field and off-field risk. For *Chrysoperla carnea,* HQ value for off-field risk met the trigger only, while HQ value for in-field risk was not met. Therefore, further consideration is required for in-field risk for *Chrysoperla carnea*.

Refined in-field risk assessment for Typhlodromus pyri, Phytoseiulus persimilis and Chrysoperla carnea

Aged residue study on *Typhlodromus pyri* and *Phytoseiulus persimilis*

Extended laboratory studies with aged residues were performed in which *Typhlodromus pyri* (Taruza, 2001) or *Phytoseiulus persimilis* (Vinall, 2002) were exposed to intact sweet pepper plant leaves after 2 applications of A7516B, each at 750 g a.s./ha and a 14 day interval between applications. Exposure just after the maximum recommended number of applications per season and with a spray interval recommended resulted in < 50% lethal and sub-lethal effects of *T. pyri*. Therefore a low risk to this indicator species is expected following the recommended use of fenpropidin. Subsequent bioassays starting 1, 3, 5 and 8 days after the second application and bioassays commencing after only one application yielded results that are consistent with an estimation of low risk.

Exposure of *P. persimilis* commencing just after the maximum recommended number of applications per season resulted in > 50% lethal effects. However, in subsequent bioassays conducted 1, 3, 5 and 8 days after the second application <50% lethal and sub-lethal effects were observed. Therefore within 1 day of the final application of A7516B, the predatory mites, *P. persimilis* demonstrated a potential for recolonisation of in-field habitats. Bioassays commencing after only one application yielded results that are consistent with this potential for recolonisation of *P. persimilis*.

Regarding in-field risk to *Chrysoperla carnea*, no additional data were available. However, the results of Tier 1 studies showed that *A. rhopalosiphi* (also a leaf-dwelling insect) is similarly or slightly more sensitive than *C. carnea*, therefore, the risk assessment for *A. rhopalosiphi* can be considered as sufficiently protective also for *C.carnea*. Moreover, extended laboratory studies with aged residues discussed above indicated that he residues of fenpropidin dropped to acceptable levels very rapidly.

Taking all this information into account, the in-field risk to *Typhlodromus pyri*, *Phytoseiulus persimilis and Chrysoperla carnea* can be considered as low.

Conclusion - risk to non-target arthropods other than bees:

Low in-field and off-field risk to non-target arthropods can be concluded for A7516D following the proposed use pattern.

The risk assessment for non-target arthropods should be discussed in peer review.

2.9.9.4 Risk assessment for non-target soil meso- and macrofauna

2.9.9.4.1 Risk assessment for earthworms

Application rate	Compound	NOEC (mg/kg)	NOEC _{corr} (mg/kg)	Maximum PECs (mg/kg)	TER _{LT}	Trigger
5(2) 5 (h)	Fenpropidin ^a	10	5	0.420	1.19	F
562.5 g a.s./h)	CGA289267	1000	-	0.0236	42373	3

^a Tested as A7516B

The long-term TER values exceed the trigger value of 5, indicating that low risk to earthworms following use of A7516D according to the proposed use pattern.

Conclusion – risk to earthworms

Low risk to earthworms for use of fenpropidin according to proposed GAP can be concluded.

	2.9.9.4.2	Risk assessment for non-target soil meso- and macrofauna (other than earthworms)
--	-----------	--

Test organisms	Test substance	NOEC / EC ₁₀ (mg/kg)	NOEC _{corr} / EC _{10corr} (mg/kg)	Maximum PEC _S (mg/kg)	TER _{LT}	Trigger
Folsomia	Fenpropidin ^a	91.37	45.69	0.420	109	
candida	CGA289267	1000	-	0.024	41667	5
Hypoaspis	Fenpropidin ^a	830	415	0.420	993	5
aculeifer	CGA289267	1000	-	0.024	41667	

 Table 2.9.9-34
 Long-term TER values for Folsomia candida and Hypoaspis aculeifer

^a Tested as A7516B

The long-term TER values exceed the trigger value of 5, indicating that low risk to *Folsomia candida* and *Hypoaspis aculeifer* following use of A7516D according to the proposed use pattern.

Conclusion - risk to soil meso- and macrofauna (other than earthworms)

Low risk to non-target soil meso- and macrofauna (other than earthworms) for use of fenpropidin according to proposed GAP can be concluded.

2.9.9.5 Risk assessment for soil nitrogen transformation

Table 2.9.9-35	Risk assessment fo	r effects on so	il micro-organisms
----------------	--------------------	-----------------	--------------------

Application rate (g a.s./ha)	Compound	NOEC (mg/kg)	Maximum PECs (mg/kg)	Ratio of NOEC:PECs
5(2)5	Fenpropidin ^a	6.0	0.420	14
562.5	CGA289267	10	0.0236	424

^a Tested as A7516A

Fenpropidin had no significant effect on soil micro-organisms at 6.0 mg a.s./kg soil. This is approximately 14 times higher than the maximum PEC_s of 0.420 mg a.s/kg when accounting multi-year uses of A7516D. This indicates that the risk to non-target soil micro-organisms is acceptable following use of A7516D according to the proposed use pattern.

Furthermore, the NOEC for the soil metabolite CGA289267 is 420 times higher than the maximum soil concentration.

It is concluded that the use of A7516D will not pose an unacceptable risk to non-target soil micro-organisms, if applied according to the recommended use pattern.

2.9.9.6 Risk assessment for non-target plants

TER value for effects of A7516D on non-target plants

	Endp	ooints			
Application rate (g a.s./ha)	ER50 Vegetative vigour (g a.s. /ha)	ER50 Seedling emergence (g a.s./ha)	PER _{off-field} (g a.s./ha)	TER	Trigger
562.5	>375	>750	15.6	>24	5

The TER values are well in excess of the trigger value of 5, indicating that the risk to non-target plants is acceptable following use of A7516D according to the proposed use pattern.

In conclusion, A7516D poses no unacceptable risk to terrestrial non-target plants in off-crop areas following the proposed uses.

2.10 PROPOSED HARMONISED CLASSIFICATION AND LABELLING ACCORDING TO THE CLP CRITERIA [SECTIONS 1-6 OF THE CLH REPORT]

2.10.1 Identity of the substance [section 1 of the CLH report] *2.10.1.1* Name and other identifiers of the substance

 Table 61:
 Substance identity and information related to molecular and structural formula of the substance

Name(s) in the IUPAC nomenclature or other international chemical name(s)	(<i>R</i> , <i>S</i>)-1-[3-(4-tert-butylphenyl)-2-methylpropyl]- piperidine
Other names (usual name, trade name, abbreviation)	Fenpropidin
ISO common name (if available and appropriate)	Fenpropidin (ISO)
EC number (if available and appropriate)	-
EC name (if available and appropriate)	-
CAS number (if available)	67306-00-7
Other identity code (if available)	CIPAC No. 520 Development codes: Syngenta: CGA114900 ADAMA: MCW-273
Molecular formula	C19H31N
Structural formula	
SMILES notation (if available)	-
Molecular weight or molecular weight range	273.5 g.mol ⁻¹
Information on optical activity and typical ratio of (stereo) isomers (if applicable and appropriate)	Fenpropidin has two enantiomers, R (CGA344628) and S (CGA276059). The R-enantiomer has the following stereochemistry: $\begin{array}{c} & & \\$
Description of the manufacturing process and identity of the source (for UVCB substances only)	Not relevant

Degree of purity (%) (if relevant for the entry in	min. 960 g/kg
Annex VI)	

2.10.1.2 Composition of the substance

 Table 62:
 Constituents (non-confidential information)

Constituent (Name and numerical identifier)	Concentration range (% w/w minimum and maximum in multi- constituent substances)	Current CLH in Annex VI Table 3.1 (CLP)	Current self- classification and labelling (CLP)
None			

Table 63: Impurities (non-confidential information) if relevant for the classification of the substance

Impurity (Name and numerical identifier)	Concentration range (% w/w minimum and maximum)	Current CLH in Annex VI Table 3.1 (CLP)	Current self- classification and labelling (CLP)	The impurity contributes to the classification and labelling
None				

Table 64: Additives (non-confidential information) if relevant for the classification of the substance

Additive (Name and numerical identifier)	Function	Concentration range (% w/w minimum and maximum)	Current CLH in Annex VI Table 3.1 (CLP)	Current self- classification and labelling (CLP)	The additive contributes to the classification and labelling
None					

Table 65:Test substances (non-confidential information)

dentification of est substance	Purity	Impuritiesandadditives (identity,%, classification ifavailable)	The study(ies) in which the test substance is used

The purity of the material tested is stated in the relevant sections of the dossier.

FenpropidinVolume 1 – Level 2May 20212.10.2Proposed harmonized classification and labellingMay 2021

2.10.2.1 Proposed harmonised classification and labelling according to the CLP criteria

 Table 66:
 Proposed harmonised classification and labelling according to the CLP criteria

					Classificati	Classification		Labelling			
	Index No	International Chemical Identification	EC No	CAS No	Hazard Class and Category Code(s)	Hazard stateme nt Code(s)	Pictogram, Signal Word Code(s)	Hazard statement Code(s)	Suppl. Hazard statement Code(s)	Specific Conc. Limits, M- factors	Notes
Current Annex VI entry	No current Annex VI entry										
Dossier submitters proposal		Fenpropidin (ISO); (<i>R</i> , <i>S</i>)-1-[3- (4-tert- butylphenyl)-2- methylpropyl]pip eridine	-	67306-00- 7	Acute tox 4 Acute tox 4 Eye Dam. 1 Skin Sens 1B STOT SE 3 STOT RE 2 Repr. 2 Aquatic Acute 1 Aquatic Chronic 1	H302 H332 H318 H317 H335 H373 (nervous system) H361d H400 H410	GHS08 GHS09 Dgr	H302 H332 H318 H317 H335 H373 (nervous system) H361d H410		M-factor (acute/chronic) 1000/100	
Resulting Annex VI entry if agreed by RAC and COM		Fenpropidin (ISO); (<i>R</i> , <i>S</i>)-1-[3- (4-tert- butylphenyl)-2- methylpropyl]pip	-	67306-00- 7	Acute tox 4 Acute tox 4 Eye Dam. 1	H302 H332 H318	GHS08 GHS09 Dgr	H302 H332 H318		M-factor (acute/chronic) 1000/100	

Fenpropidin	Volume 1	– Level 2	May 2	021				
	eridine		Skin Sens. 1B	H317	Н	I317		
			STOT SE 3	H335	Н	1335		
			STOT RE 2	H373	,	1373		
			Repr. 2	(nervous system)	`	ervous stem)		
			Aquatic Acute 1	H361d	H	361d		
			Aquatic Chronic 1	H400	Н	I410		
				H410				

Volume 1 – Level 2

2.10.2.2 Additional hazard statements / labelling

Table 67: Reason for not proposing harmonised classification and status under CLH public consultation

Hazard class	Reason for no classification	Within the scope of CLH public consultation
Explosives	data conclusive but not sufficient for classification	Yes
Flammable gases (including chemically unstable gases)	hazard class not applicable	No
Oxidising gases	hazard class not applicable	No
Gases under pressure	hazard class not applicable	No
Flammable liquids	data conclusive but not sufficient for classification	Yes
Flammable solids	hazard class not applicable	No
Self-reactive substances	data conclusive but not sufficient for classification	Yes
Pyrophoric liquids	data conclusive but not sufficient for classification	Yes
Pyrophoric solids	hazard class not applicable	No
Self-heating substances	data conclusive but not sufficient for classification	Yes
Substances which in contact with water emit flammable gases	data conclusive but not sufficient for classification	Yes
Oxidising liquids	data conclusive but not sufficient for classification	Yes
Oxidising solids	hazard class not applicable	No
Organic peroxides	hazard class not applicable	No
Corrosive to metals	data conclusive but not sufficient for classification	Yes
Acute toxicity via oral route	-	Yes
Acute toxicity via dermal route	Conclusive, but not sufficient for classification	Yes
Acute toxicity via inhalation route	-	Yes
Skin corrosion/irritation	Conclusive, but not sufficient for classification	Yes
Serious eye damage/eye irritation	-	Yes
Respiratory sensitisation	Conclusive, but not sufficient for classification	Yes
Skin sensitisation	-	Yes
Germ cell mutagenicity	Conclusive, but not sufficient for classification	Yes
Carcinogenicity	Conclusive, but not sufficient for classification	Yes
Reproductive toxicity	-	Yes
Specific target organ toxicity-single exposure	-	Yes
Specific target organ toxicity-repeated exposure	-	Yes
Aspiration hazard	Hazard class not applicable	Yes

Volume 1 – Level 2

Hazard class	Reason for no classification	Within the scope of CLH public consultation
Hazardous to the aquatic environment	-	Yes
Hazardous to the ozone layer	Data not available	None

2.10.3 History of the previous classification and labelling

Not applicable. Fenpropidin has no previous CLP classification and labelling.

2.10.4 Identified uses

Fenpropidin is an agricultural fungicide used to control powdery mildews, rusts and Rynchosprium secalis in cereal crops.

Fenpropidin is a piperidine derivative and acts by inhibiting ergosterol biosynthesis, but by a different mechanism to the triazole fungicides. It is a systemic fungicide with both protectant and curative activity.

2.10.5 Data sources

The data submitted in the context of renewal of pesticide active substances under Regulation no. 1107/2009 concerning the placing of plant protection products on the market. The data was evaluated in the Renewal Assessment Report (RAR) Vol. 1-4.

2.11 RELEVANCE OF METABOLITES IN GROUNDWATER

Predicted environmental concentrations in groundwater (PEC_{gw}) for fenpropidin and its metabolite CGA 289267 were calculated for the use in Europe, using the simulation model FOCUS PEARL (version 4.4.4), PELMO (version 5.5.3) and MACRO (version 5.5.4). PEC_{gw} were evaluated as the 80th percentile of the mean annual leachate concentration at 1 m soil depth. Model parameters and scenarios consisting of weather, soil, and crop data were used as proposed by FOCUS.

The metabolite CGA289267, present a PECgw values clearly above the $0.1 \mu g/L$.

No data were submitted by the applicant for the evaluation of relevance of the metabolite CGA289267. Data requirement.

2.11.1 STEP 1: Exclusion of degradation products of no concern

Metabolite CGA289267 does not meet the criteria for products of no concern as defined in step 1 of the guidance and therefore needs further assessment.

2.11.2 STEP 2: Quantification of potential groundwater contamination

PECgw calculations after leaching from soil for metabolite CGA289267 were performed (see Volume 3_CP_B-8, Section B.8.3 for fenpropidin). The critical GAP leads to PECGW exceeding 0.1 μ g/L for the metabolite. Details are given in Volume 3_CP_B-8, Section B.8.3 for fenpropidin.

2.11.3 STEP 3: Hazard assessment – identification of relevant metabolites

2.11.3.1 STEP 3, Stage 1: screening for biological activity

No data were submitted by the applicant for the evaluation of relevance of the metabolite CGA289267. Data requirement.

2.11.3.2 STEP 3, Stage 2: screening for genotoxicity

Genotoxicity studies on GW metabolite CGA289267 have been performed to support an assessment of the toxicological relevance of the metabolite in groundwater. These studies have not been previously submitted for EU review.

All three genotoxicity studies met the requirements for a clearly negative response therefore CGA289267 is not considered to be toxicologically relevant. The results are summarised below. For further details, please refer to section B.6.8.1 in CA B6

Assay(Guideline)	Test System	Result	Reference	
<i>In vitro</i> bacterial reverse mutation assay (Ames; OECD 471, 1997)	<i>S. typhimurium</i> strains TA1535, TA1537, TA98 and TA100, and <i>E. coli</i> strain WP2 uvrA pKM101	Negative +/- S9	Woods I. (2017).	
Gene mutation assay (HPRT; OECD 476, 2016)	(Chinese hamster ovary CHO cells)	Negative +/-S9	Gilby B. (2017)	
<i>In vitro</i> micronucleus (OECD 487, 2016)	Human lymphocytes	Negative +/- S9	Gilby B (2017)	

2.11.3.3 STEP 3, Stage 3: screening for toxicity

No data were submitted by the applicant for the evaluation of relevance of the metabolite CGA289267, however based on the proposed classification CGA 289 267 can be considered as preliminarily relevant metabolite.

2.11.4 STEP 4: Exposure assessment – threshold of concern approach

No data were submitted by the applicant for the evaluation of relevance of the metabolite CGA289267

2.11.5 STEP 5: Refined risk assessment

No data were submitted by the applicant for the evaluation of relevance of the metabolite CGA289267

2.11.6 Overall conclusion

No data were submitted by the applicant for the evaluation of relevance of the metabolite CGA289267

2.12 CONSIDERATION OF ISOMERIC COMPOSITION IN THE RISK ASSESSMENT

2.12.1 Identity and physical chemical properties

Not relevant.

2.12.2 Methods of analysis

Not relevant.

2.12.3 Mammalian toxicity

Volume 1 – Level 2

May 2021

The R and S enantiomers are non-superimposable mirror images that have identical physicochemical as well as toxicological properties.

2.12.4 Operator, Worker, Bystander and Resident exposure

Not relevant

2.12.5 Residues and Consumer risk assessment

Not relevant.

2.12.6 Environmental fate

The R and S enantiomers are non-superimposable mirror images that have identical physicochemical as well as EFATE properties.

2.12.7 Ecotoxicology

The R and S enantiomers are non-superimposable mirror images that have identical physicochemical as well as ecotoxicological properties.

2.13 **Residue definitions**

2.13.1 Definition of residues for exposure/risk assessment

Food of plant origin: Sum of fenpropidin and its salts, expressed as fenpropidin.

Food of animal origin: Sum of fenpropidin, CGA 289267, SYN515213, CGA 289268 and their conjugates, expressed as fenpropidin.

Soil: Fenpropidin

Groundwater: Fenpropidin

Surface water: Fenpropidin

Sediment: Fenpropidin

Air: Fenpropidin

2.13.2 Definition of residues for monitoring

Food of plant origin: Sum of fenpropidin and its salts, expressed as fenpropidin.

Food of animal origin: Sum of fenpropidin, CGA 289267, and their salts, expressed as fenpropidin

Soil: Fenpropidin

Groundwater: Fenpropidin

Surface water: Fenpropidin

Sediment: Fenpropidin

Air: Fenpropidin

Level 3

FENPROPIDIN

3 PROPOSED DECISION WITH RESPECT TO THE APPLICATION

3.1 BACKGROUND TO THE PROPOSED DECISION

3.1.1 Proposal on acceptability against the decision making criteria – Article 4 and annex II of regulation (EC) No 1107/2009

3.1.1.1	Article 4			
		Yes	No	
i)	It is considered that Article 4 of Regulation (EC) No 1107/2009 is complied with. Specifically the RMS considers that authorisation in at least one Member State is expected to be possible for at least one plant protection product containing the active substance for at least one of the representative uses.	X		
3.1.1.2	2 Submission of further information			
J.1.1.2	2 Submission of further information	Yes	No	
i)	It is considered that a complete dossier has been submitted	X	110	
ii)	It is considered that a complete dossier has been submitted It is considered that in the absence of a full dossier the active substance may be approved even though certain information is still to be submitted because:			Not relevant.
	(a) the data requirements have been amended or refined after the submission of the dossier; or			
	(b) the information is considered to be confirmatory in nature, as required to increase confidence in the decision.			
3.1.1.3	8 Restrictions on approval			
		Yes	No	
	It is considered that in line with Article 6 of Regulation (EC) No 1107/2009 approval should be subject to conditions and restrictions.			the minimum degree of purity of the active substance is 960 g/kg
3.1.1.4	<i>Criteria for the approval of an active substance</i>			
Dossie	r			
		Yes	No	
	It is considered the dossier contains the information needed to establish, where relevant, Acceptable Daily Intake (ADI), Acceptable Operator Exposure Level (AOEL) and Acute Reference Dose (ARfD).	X		The provided data are sufficient for establishing reference values.
	It is considered that the dossier contains the information necessary to carry out a risk assessment and for enforcement purposes (relevant for	Х		The provided data are sufficient for risk assessment.

	substances for which one or more representative uses includes use on feed or food crops or leads indirectly to residues in food or feed). In particular it is considered that the dossier:			
	-			
	(a) permits any residue of concern to be defined;			
	(b) reliably predicts the residues in food and feed, including succeeding			
	crops			
	(c) reliably predicts, where relevant, the corresponding residue level reflecting the effects of processing and/or mixing;			
	(d) permits a maximum residue level to be defined and to be determined by appropriate methods in general use for the commodity and, where appropriate, for products of animal origin where the commodity or parts of it is fed to animals;			
	(e) permits, where relevant, concentration or dilution factors due to processing and/or mixing to be defined.			
	It is considered that the dossier submitted is sufficient to permit, where relevant, an estimate of the fate and distribution of the active substance in the environment, and its impact on non-target species.			The information provided is sufficient to describe the fate and behaviour of fenpropidin in soil, water and air, and to estimate the exposure in soil, groundwater, surface water, sediment and air for all sustained uses.
				Appropriate mitigation measures should be considered to protect aquatic organisms.
Effica	XV		<u></u>	
	•	Yes	No	
	It is considered that it has been established for one or more representative uses that the plant protection product, consequent on application consistent with good plant protection practice and having regard to realistic conditions of use is sufficiently effective.			The required information has been presented and deemed acceptable.
Releva	nce of metabolites	1	1	
		Yes	No	
	It is considered that the documentation submitted is sufficient to permit the establishment of the toxicological, ecotoxicological or environmental relevance of metabolites.	Х		
Comp				
-		Yes	No	
	It is considered that the specification defines the minimum degree of	Yes		Sufficient information has been provided to satisfactorily establish the
	purity, the identity and maximum content of impurities and, where			identity of Fenpropidin, the nature and levels of impurities in the technical
	relevant, of isomers/diastereo-isomers and additives, and the content of			material (refer to Volume 4 – Confidential Information sections).

	1		
impurities of toxicological, ecotoxicological or environmental concern			
within acceptable limits.			
It is considered that the specification is in compliance with the relevant			No FAO specification
Food and Agriculture Organisation specification, where such			
specification exists.			
It is considered for reasons of protection of human or animal health or			No FAO specification
the environment, stricter specifications than that provided for by the			1
FAO specification should be adopted			
Methods of analysis			
	Yes	No	
It is considered that the methods of analysis of the active substance	Yes	110	Adequate methods are available to analyze fenpropidin and impurities in
It is considered that the methods of analysis of the active substance,	res		
safener or synergist as manufactured and of determination of impurities			technical material.
of toxicological, ecotoxicological or environmental concern or which			
are present in quantities greater than 1 g/kg in the active substance,			
safener or synergist as manufactured, have been validated and shown			
to be sufficiently specific, correctly calibrated, accurate and precise.			
It is considered that the methods of residue analysis for the active	Yes		Adequate methods are available to monitor the respective current residue
substance and relevant metabolites in plant, animal and environmental			definition in plant material, food of animal origin, soil, drinking water,
matrices and drinking water, as appropriate, shall have been validated			surface water, air and body fluids and tissues.
and shown to be sufficiently sensitive with respect to the levels of			
concern.			
It is confirmed that the evaluation has been carried out in accordance			
with the uniform principles for evaluation and authorisation of plant			
protection products referred to in Article 29(6) of Regulation			
1107/2009.			
Impact on human health			
Impact on human health - ADI, AOEL, ARfD			
	Yes	No	
It is confirmed that (where relevant) an ADI, AOEL and ARfD can be		110	The estimation of the Acceptable Daily Intake (ADI) is based on the lowest no
established with an appropriate safety margin of at least 100 taking into	Λ		observed adverse effect level (NOAEL) estimated from chronic
account the type and severity of effects and the vulnerability of specific			toxicity/carcinogenicity studies. The lowest NOAEL was obtained from rat
groups of the population.			chronic toxicity/carcinogenicity study with a NOAEL of 2.27 mg/kg bw/day
			for females. This with an assement factor of 100 gives an ADI of 0.02 mg/kg
			bw/day. Therefore the ADI is proposed to be 0.02 mg/kg bw/day
			AOEL is based on the results from one year dog study. AOEL is based on
			NOAEL of 5 mg/kg/bw. This together with an assessment factor of 100
			gives the proposed AOEL of 0.05 mg/kg bw/day. No correction factor for
			systemic availability is used since the oral absorption is considered to be more

May 2021

				than 80 %. The acute effects after ingestion of fenpropidin is expected to be related to fenpropidins irritative potential. Several studies strengthen this assumption. Hyperkeratosis of the esophagus was observed in the 28-days oral treatment of rats with fenpropidin with a NOAEL of 5.40 mg/kg bw/day, this with an assessment factor of 100 gives an ARfD of 0.05 mg/kg bw/day
Impac	t on human health – proposed genotoxicity classification			
	It is considered that, on the basis of assessment of higher tier genotoxicity testing carried out in accordance with the data requirements and other available data and information, including a review of the scientific literature, reviewed by the Authority, the substance SHOULD BE classified or proposed for classification , in accordance with the provisions of Regulation (EC) No 1272/2008, as mutagen category 1A or 1B.	Yes	No X	Test results are not indicative to genotoxic potential.
Impac	t on human health – proposed carcinogenicity classification		1	
		Yes	No	
i)	It is considered that, on the basis of assessment of the carcinogenicity testing carried out in accordance with the data requirements for the active substances, safener or synergist and other available data and information, including a review of the scientific literature, reviewed by the Authority, the substance SHOULD BE classified or proposed for classification , in accordance with the provisions of Regulation (EC) No 1272/2008, as carcinogen category 1A or 1B .		X	Test results are not indicative to carcinogenic potential.
ii)	Linked to above classification proposal.		Х	
	It is considered that exposure of humans to the active substance, safener or synergist in a plant protection product, under realistic proposed conditions of use, is negligible, that is, the product is used in closed systems or in other conditions excluding contact with humans and where residues of the active substance, safener or synergist concerned on food and feed do not exceed the default value set in accordance with Article 18(1)(b) of Regulation (EC) No 396/2005.			
Impac	t on human health – proposed reproductive toxicity classification			
i)	It is considered that, on the basis of assessment of the reproductive	Yes	No X	There were no effects observed in relevant studies to justify this
,	it is considered that, on the basis of assessment of the reproductive			classification.

	toxicity testing carried out in accordance with the data requirements for the active substances, safeners or synergists and other available data and information, including a review of the scientific literature, reviewed by the Authority, the substance SHOULD BE classified or proposed for classification , in accordance with the provisions of Regulation (EC) No 1272/2008, as toxic for reproduction category 1A or 1B.			
ii)	Linked to above classification proposal.		Х	
	It is considered that exposure of humans to the active substance, safener or synergist in a plant protection product, under realistic proposed conditions of use, is negligible, that is, the product is used in closed systems or in other conditions excluding contact with humans and where residues of the active substance, safener or synergist concerned on food and feed do not exceed the default value set in accordance with Article 18(1)(b) of Regulation (EC) No 396/2005.			
Impac	t on human health – proposed endocrine disrupting properties classified	cation		
		Yes	No	
i)	It is considered that the substance SHOULD BE classified or proposed for classification in accordance with the provisions of Regulation (EC) No 1272/2008, as carcinogenic category 2 and toxic for reproduction category 2 and on that basis shall be considered to have endocrine disrupting properties		X	Fenpropidin is proposed for Repr. 2 (H361d) only. ED criteria are not met in complete dataset.
ii)	It is considered that the substance SHOULD BE classified or proposed for classification in accordance with the provisions of Regulation (EC) No 1272/2008, as toxic for reproduction category 2 and in addition the RMS considers the substance has toxic effects on the endocrine organs and on that basis shall be considered to have endocrine disrupting properties		X	Fenpropidin is proposed for Repr. 2 (H361d) only. ED criteria are not met in complete dataset.
iii)	Linked to either i) or ii) immediately above.		Х	
	It is considered that exposure of humans to the active substance, safener or synergist in a plant protection product, under realistic proposed conditions of use, is negligible, that is, the product is used in closed systems or in other conditions excluding contact with humans and where residues of the active substance, safener or synergist concerned on food and feed do not exceed the default value set in accordance with Article 18(1)(b) of Regulation (EC) No 396/2005.			

Fate and behaviour in the environment			
Persistent organic pollutant (POP)	Yes	No	
It is considered that the active substance FULFILS the criteria of a persistent organic pollutant (POP) as laid out in Regulation 1107/2009 Annex II Section 3.7.1.	X	X	3.7.1.1 Persistence: Yes Normalised laboratory soil DT50 to $12^{\circ}C = 21.2 - 1171.5$ days Trigger un-normalised field soil DT50 = $5.58 - 94$ days Normalised field soil DegT50 ($20^{\circ}C$) = $26.3 - 233$ days Whole system trigger water/sediment DT50 = $59.1 - 274.1$ days (normalised to $12^{\circ}C$) Aerobic mineralisation in surface water = $51 - 87.1$ days (normalised to $12^{\circ}C$) 3.7.1.3 Potential for long-range environmental transport: No DT50 in air: 3.4 hours 3.7.1.2 Bioaccumulation: Bioaccumulation criterion not fulfilled: The bioconcentration factor (BCFfish = 163) and the partition co-efficient (log POW = 4.5) are below the trigger of 5000 and > 5, respectively.
Persistent, bioaccumulative and toxic substance (PBT)			
	Yes	No	
It is considered that the active substance FULFILS the criteria of a persistent, bioaccumulative and toxic (PBT) substance as laid out in Regulation 1107/2009 Annex II Section 3.7.2.	X		3.7.2.1 Persistence: Yes Normalised laboratory soil DT50 to $12^{\circ}C = 21.2 - 1171.5$ days Trigger un-normalised field soil DT50 = $5.58 - 94$ days Normalised field soil DegT50 ($20^{\circ}C$) = $26.3 - 233$ days Whole system trigger water/sediment DT50 = $59.1 - 274.1$ days (normalised to $12^{\circ}C$) Aerobic mineralisation in surface water = $51 - 87.1$ days (normalised to $12^{\circ}C$) 3.7.2.2 Bioaccumulation: Bioaccumulation criterion not fulfilled: The bioconcentration factor (BCFfish = 163) is below the trigger of 2000. 3.7.2.3 Toxicity: The toxicity criterion (T) fulfilled: The NOEC values for marine and freshwater species are below the trigger of 0.01 mg a.s./L (<i>Oncorhynchus mykiss</i> NOEC = 0.0038 mg a.s./L; <i>Desmodesmus subspicatus</i> NOEC <0.000688 mg a.s./L).
Very persistent and very bioaccumulative substance (vPvB).		1.5.7	
It is considered that the active substance FULFILS the criteria of a a very persistent and very bioaccumulative substance (vPvB) as laid out in Regulation 1107/2009 Annex II Section 3.7.3.	Yes X	No	3.7.3.1 Persistence: Yes Normalised laboratory soil DT50 to $12^{\circ}C = 21.2 - 1171.5$ days Trigger un-normalised field soil DT50 = $5.58 - 94$ days Normalised field soil DegT50 ($20^{\circ}C$) = $26.3 - 233$ days

			Whole system trigger water/sediment $DT50 = 59.1 - 274.1$ days (normalised to $12^{\circ}C$) Aerobic mineralisation in surface water = $51 - 87.1$ days (normalised to $12^{\circ}C$)
			3.7.3.2 Bioaccumulation: Bioaccumulation criterion not fulfilled: The bioconcentration factor is below the trigger of 5000 (BCFfish = 163).
Ecotoxicology			
Leotosteology	Yes	No	
It is considered that the risk assessment demonstrates risks to be acceptable in accordance with the criteria laid down in the uniform principles for evaluation and authorisation of plant protection products referred to in Article 29(6) under realistic proposed conditions of use of a plant protection product containing the active substance, safener or synergist. The RMS is content that the assessment takes into account the severity of effects, the uncertainty of the data, and the number of organism groups which the active substance, safener or synergist is expected to affect adversely by the intended use.			No acute or reproductive risks were identified for birds. No acute risk was identified for mammals. <u>High reproductive dietary risk was identified for small herbivorous mammal scenario</u> <u>"vole"</u> . No reproductive risk was identified for other mammal scenarios. No risks were identified as the most sensitive group of organisms and two mesocosm studies were used to refine the risk for them. Two RAC options were proposed by the RMS and should be discussed in peer-review. Considering these two options most of scenarios failed based on comparison with FOCUS Step 4 PEC values. No acute risk to adult honeybees and no chronic risk to honeybee larvae was identified <u>High chronic risk to adult honeybees and high risk from exposure to residues in guttation fluid was identified. In addition, the risk assessment from metabolites could not be finalized, as well as the risk assessment for bumblebees and solitary bees. No risks to non-target arthropods other than bees were identified. No risks were identified for earthworms and other macro soil dwelling organisms. No risks were identified for soil micro-organisms. Risks to other non-target flora were concluded to be low. For further information on risks to non-target flora and fauna, see Vol 1 Level 2.6.</u>
It is considered that, on the basis of the assessment of Community or internationally agreed test guidelines, the substance HAS endocrine disrupting properties that may cause adverse effects on non-target organisms.		X	Based on the provided datasest, the substance is not ED.
Linked to the consideration of the endocrine properties immediately			Not relevant.

	bove.			
su	ubstance in a plant protection product under realistic proposed onditions of use is negligible.			
as gu pr sy	 is considered that it is established following an appropriate risk ssessment on the basis of Community or internationally agreed test uidelines, that the use under the proposed conditions of use of plant rotection products containing this active substance, safener or ynergist: will result in a negligible exposure of honeybees, or has no unacceptable acute or chronic effects on colony survival and development, taking into account effects on honeybee larvae and honeybee behaviour. 			The risk assessment for honeybees could not be finalized. The risk assessment for bees should be discussed in peer review.
Residue d	lefinition			
		Yes	No	
es pı	is considered that, where relevant, a residue definition can be stablished for the purposes of risk assessment and for enforcement urposes.	X		Definition of residues for exposure/risk assessment: Soil: Fenpropidin and CGA289267 Surface water: Fenpropidin and CGA289267 Sediment: Fenpropidin and CGA289267 Ground water: Fenpropidin and CGA289267 Air: Fenpropidin
Fate and	behaviour concerning groundwater			
		Yes	No	
re pr pr de re au	t is considered that it has been established for one or more epresentative uses, that consequently after application of the plant rotection product consistent with realistic conditions on use, the redicted concentration of the active substance or of metabolites, egradation or reaction products in groundwater complies with the espective criteria of the uniform principles for evaluation and uthorisation of plant protection products referred to in Article 29(6) of tegulation 1107/2009.	X		PECgw values for fenpropidin were <0.1 μ g/L in all scenarios, for all intended uses. Max. PECgw value for fenpropidin metabolite CGA289267 is 0.421 μ g/L in Okehampton scenario for use in winter cereals. A relevance assessment for CGA289267 is therefore required.

3.1.2 Proposal – Candidate for substitution

Candi	Candidate for substitution				
		Yes	No		
	It is considered that the active substance shall be approved as a candidate for substitution		Х		

3.1.3 Proposal – Low risk active substance

ow-risk active substances					
	Yes	No			
It is considered that the active substance shall be considered of low risk.In particular it is considered that the substance should NOT be classified or proposed for classification in accordance with Regulation (EC) No 1272/2008 as at least one of the following: 		X	Fenpropidin is persistent in soil Normalised laboratory soil DT50 to $12^{\circ}C = 21.2 - 1171.5$ days Trigger un-normalised field soil DT50 = $5.58 - 94$ days Normalised field soil DegT50 ($20^{\circ}C$) = $26.3 - 233$ days The bioconcentration factor (BCFfish = 163) is above the trigger of 100.		

3.1.4 List of studies to be generated, still ongoing or available but not peer reviewed

Data gap	Relevance in relation to representative use(s)		Study status	
		No confirmation that study available or on- going.	Study on-going and anticipated date of completion	Study available but not peer-reviewed
3.1.4.1 Identity of the active substance or j	Formulation			
None				
3.1.4.2 Physical and chemical properties of	f the active substance and physical, cl	nemical and technical p	roperties of the formula	ition
None				
3.1.4.3 Data on uses and efficacy				
None				
3.1.4.4 Data on handling, storage, transpo	rt, packaging and labelling	I		
None				
3.1.4.5 Methods of analysis				
None				
3.1.4.6 Toxicology and metabolism				
None				
3.1.4.7 Residue data		·		
None				

3.1.4.8 Environmental fate and behaviour					
Assessment of relevance of metabolite CGA 289267 in groundwater	all	X			
Address the effect of water treatment processes on the nature of residues present in surface and groundwater, when surface water or groundwater is abstracted for drinking water	all	X			
3.1.4.9 Ecotoxicology					
Further studies addressing ED properties should be performed.	all	Х			

3.1.5 Issues that could not be finalised

An issue is listed as an issue that could not be finalised where there is not enough information available to perform an assessment, even at the lowest tier level, for the representative uses in line with the Uniform Principles, as laid out in Commission Regulation (EU) No 546/2011, and where the issue is of such importance that it could, when finalised, become a concern (which would also be listed as a critical area of concern if it is of relevance to all representative uses).

Area of the risk assessment that could not be finalised on the basis of the available data	Relevance in relation to representative use(s)
EFATE: Effect of water treatment processes on the nature of residues present in surface and groundwater, when surface water or groundwater are abstracted for drinking water.	All
ECOTOX: Reproductive dietary risk assessment for wild mammals.	All
ECOTOX: Chronic risk to adult honeybees, risk from exposure to residues in guttation fluid and metabolites, risk to solitary bees and bumblebees.	All

3.1.6 Critical areas of concern

An issue is listed as a critical area of concern:

(a) where the substance does not satisfy the criteria set out in points 3.6.3, 3.6.4, 3.6.5 or 3.8.2 of Annex II of Regulation (EC) No 1107/2009 and the applicant has not provided detailed evidence that the active substance is necessary to control a serious danger to plant health which cannot be contained by other available means including non-chemical methods, taking into account risk mitigation measures to ensure that exposure of humans and the environment is minimised, or

(b) where there is enough information available to perform an assessment for the representative uses in line with the Uniform Principles, as laid out in Commission Regulation (EU) 546/2011, and where this assessment does not permit to conclude that for at least one of the representative uses it may be expected that a plant protection product containing the active substance will not have any harmful effect on human or animal health or on groundwater or any unacceptable influence on the environment.

An issue is also listed as a critical area of concern where the assessment at a higher tier level could not be finalised due to a lack of information, and where the assessment performed at the lower tier level does not permit to conclude that for at least one of the representative uses it may be expected that a plant protection product containing the active substance will not have any harmful effect on human or animal health or on groundwater or any unacceptable influence on the environment.

Critical area of concern identified	Relevance in relation to representative use(s)
None	

representative of the technical specification.

3.1.7 Overview table of the concerns identified for each representative use considered

(If a particular condition proposed to be taken into account to manage an identified risk, as listed in 3.3.1, has been evaluated as being effective, then 'risk identified' is not indicated in this table.) All columns are grey as the material tested in the toxicological studies has not been demonstrated to be

Use "A" Use "B" **Representative use** (X^1) (X^1) Risk identified _ _ **Operator risk** Assessment not finalised Risk identified _ _ Worker risk Assessment not finalised _ -Risk identified --**Bystander risk** Assessment not finalised --Risk identified _ _ **Consumer risk** Assessment not finalised Х Х Risk identified **Risk to wild non target** terrestrial vertebrates Assessment not finalised Х Х **Risk to wild non target** Risk identified Х Х terrestrial organisms Х Х Assessment not finalised other than vertebrates Risk identified **Risk to aquatic** organisms Assessment not finalised _ _ Legal parametric value no no **Groundwater exposure** breached active substance Assessment not finalised no no Legal parametric value у у breached **Groundwater exposure** Parametric value of 10µg/L^(a) metabolites no no breached Assessment not finalised у у **Comments/Remarks**

The superscript numbers in this table relate to the numbered points indicated within chapter 3.1.5 and 3.1.6. Where there is no superscript number, see level 2 for more explanation.

(a): Value for non relevant metabolites prescribed in SANCO/221/2000-rev 10-final, European Commission, 2003

3.1.8 Area(s) where expert consultation is considered necessary

It is recommended to organize a consultation of experts on the following parts of the assessment report:

Area(s) where expert consultation is considered necessary

ECOTOX	Reproductive dietary risk assessment for wild mammals- the selection of ecotoxicologically relevant endpoint to be used in the reproductive risk assessment for wild mammals.
ECOTOX	Mesocosm studies - the endpoints from mesocosm studies and their use in the risk assessment.
ECOTOX	Risk assessment for bees and other non-target arthropods

3.1.9 Critical issues on which the Co RMS did not agree with the assessment by the RMS

Points on which the co-rapporteur Member State did not agree with the assessment by the rapporteur member state. Only the points relevant for the decision making process should be listed.

Issue on which Co-RMS disagrees with RMS	Opinion of Co-RMS	Opinion of RMS
None		

3.2 PROPOSED DECISION

- **3.3** RATIONAL FOR THE CONDITIONS AND RESTRICTIONS TO BE ASSOCIATED WITH THE APPROVAL OR AUTHORISATION(S), AS APPROPRIATE
- 3.3.1 Particular conditions proposed to be taken into account to manage the risks identified

3.4 APPENDICES

GUIDANCE DOCUMENTS USED IN THIS ASSESSEMENT

<u>General</u>

COMMISSION IMPLEMENTING REGULATION (EU) No 844/2012 of 18 September 2012 setting out the provisions necessary for the implementation of the renewal procedure for active substances, as provided for in Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market (L 252/26, Official Journal of the European Union)

COMMISSION IMPLEMENTING REGULATION (EU) No 686/2012 of 26 July 2012

allocating to Member States, for the purposes of the renewal procedure, the evaluation of the active substances whose approval expires by 31 December 2018 at the latest (L 200/5, Official Journal of the European Union)

COMMISSION REGULATION (EU) No 283/2013 of 1 March 2013

setting out the data requirements for active substances, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market (L 93/1, Official Journal of the European Union)

COMMISSION REGULATION (EU) No 284/2013 of 1 March 2013

setting out the data requirements for plant protection products, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market (L 93/85, Official Journal of the European Union)

Section identity, physical chemical and analytical methods

Section physico chemical properties

None

Section analytical methods

European Commission, 2000. Residues: Guidance for generating and reporting methods of analysis in support of pre-registration data requirements for Annex II (part A, Section 4) and Annex III (part A, Section 5) of Directive 91/414 (SANCO/3029/99 rev. 4)

European Commission, 2000. Technical Material and Preparations: Guidance for generating and reporting methods of analysis in support of pre- and post-registration data requirements for Annex II (part A, Section 4) and Annex III (part A, Section 5) of Directive 91/414 (SANCO/3030/99 rev. 4)

European Commission, 2010. Guidance document on pesticide residue analytical methods (SANCO/825/00 rev. 8.1)

Section Data on application and efficacy

None

Section Toxicology

OECD Test guideline 401: Acute oral Toxicity OECG Test guideline 402: Acute Dermal Toxicity OECD Test guideline 403: Acute Inhalation toxicity OECD Test Guideline 404: Acute Dermal Irritaton/Corrosion OECD Test Guideline 405: AcuteEye Irritation/Corrosion OECD Test Guideline 406: Skin Sensitisatin OECD Test Guideline 408: Subchronic Oral Toxicity – Rodent: 90 day Study OECD Test Guideline 409: Subchronic Oral Toxicity – Non-rodent: 90 day Study OECD Test Guideline 412: Repeated Dose Inhalation Toxicity: 28-day or 14-day study

OECD Test Guideline 410: Repeated Dermal Toxicity 21/28 day Study

OECD Test Guideline 414: Teratogenicity

OECD Test Guideline 416: Two-Generation Reproduction Toxicity

OECD Test Guideline 417: Toxicokinetcs

OECD Test Guideline 424: Neurotoxicity Study In Rodents

OECD Test Guideline 425: Acute Oral Toxicity – Up-and-Down Procedure

OECD Test Guideline 451 Carcinogenicity studies

OECD Test Guideline 453: Combined Chronic Toxicity/Carcinogenicity Studies

OECD Test Guideline 471: Genetic Toxicology: Salmonella typhimurium, Reverse mutation Assay

OECD Test Guideline 472: Genetic Toxicology: Escherichia coli, Reverse mutation Assay

OECD Test Guideline 473: Genetic Toxicology: In vitro Mammalian Cytogenetic Test

OECD Test Guideline 474 Genetic Toxicology: Micronucleus test

OECD Test Guideline 476: Genetic Toxicology: In vitro Mammalian Cell Gene Mutation Tests

OECD Test Guideline 486: Unscheduled DNA Synthesis (UDS) Test with Mammalian Liver Cells in vivo

OPPTS 870.7800: Immunotoxicity

Section Residue and consumer risk assessment

OECD GUIDELINE FOR THE TESTING OF CHEMICALS 501: Metabolism in Crops (adopted in 2007)

OECD GUIDELINE FOR THE TESTING OF CHEMICALS 502: Metabolism in Rotational Crops (adopted in 2007)

OECD GUIDELINE FOR THE TESTING OF CHEMICALS 503: Metabolism in Livestock (adopted in 2007)

OECD GUIDELINE FOR THE TESTING OF CHEMICALS 504: Residues in Rotational Crops (Limited Field Studies) (adopted in 2007)

OECD GUIDELINE FOR THE TESTING OF CHEMICALS 505: Residues in Livestock (adopted in 2007)

OECD GUIDELINE FOR THE TESTING OF CHEMICALS 506: Stability of Pesticide Residues in Stored Commodities (adopted in 2007)

OECD GUIDELINE FOR THE TESTING OF CHEMICALS 507: Nature of the Pesticide Residues in Processed Commodities - High Temperature Hydrolysis (adopted in 2007)

OECD GUIDELINE FOR THE TESTING OF CHEMICALS 508: Magnitude of the Pesticide Residues in Processed Commodities (adopted in 2008)

OECD GUIDELINE FOR THE TESTING OF CHEMICALS 509: Crop Field Trial (adopted in 2009)

OECD GUIDANCE DOCUMENT ON THE DEFINITION OF RESIDUE (as revised in 2009), SERIES ON TESTING AND ASSESSMENT No. 63 and SERIES ON PESTICIDES No. 31 (ENV/JM/MONO(2009)30)

OECD Guidance Document on Magnitude of Pesticide Residues in Processed Commodities Series on Testing and Assessment, No. 96 (ENV/JM/MONO(2008)23)

OECD Guidance Document on Residues in Livestock Series on Pesticides No. 73 (ENV/JM/MONO(2013)8)

GUIDANCE DOCUMENT SANCO 7525/VI/95, Guidelines on comparability, extrapolation, group tolerances and data requirements for setting MRLs, Rev. 10.3, 13 June 2017

Section fate and behavior in environment

European Commission, 2003. Guidance Document on Assessment of the Relevance of Metabolites in Groundwater of Substances Regulated under Council Directive 91/414/EEC. SANCO/221/2000-rev. 10 - final, 25 February 2003.

EC (2014). Assessing Potential for Movement of Active Substances and their Metabolites to Ground Water in the EU. Report of the FOCUS Ground Water Work Group, EC Document Reference SANCO/13144/2010, version 3

EC (2014). Generic Guidance for Tier 1 FOCUS Ground Water Assessments. Version 2.2

EC (2015). Generic Guidance for FOCUS surface water scenarios. Version: 1.4

EC (2015). Generic Guidance for Estimating Persistence and Degradation Kinetics from Environmental Fate Studies in Pesticides in EU Registration. Version 1.1

EFSA (2014). EFSA Guidance Document for evaluating laboratory and field dissipation studies to obtain DegT50 values of active substances of plant protection products and transformation products of these active substances in soil. EFSA Journal 2014;12(5):3662

FOCUS (2007). Landscape and Mitigation Factors in Aquatic Risk Assessment. Volume 1. Extended Summary and Recommendations. Report of the FOCUS Working Group on Landscape and Mitigation Factors in Ecological Risk Assessment, EC Document Reference SANCO/10422/2005, version 2.0

FOCUS, 2006. "Guidance Document on Estimating Persistence and Degradation Kinetics from Environmental Fate Studies on Pesticides in EU Registration" Report of the FOCUS Work Group on Degradation Kinetics, EC Document Reference Sanco/10058/2005 version 2.0, 434 pp.

FOCUS, 2000. "FOCUS Groundwater Scenarios in the EU review of active substances". Report of the FOCUS Groundwater Scenarios Workgroup, EC Document Reference SANCO/321/2000-rev.2. 202 pp, as updated by the Generic Guidance for FOCUS groundwater scenarios, version 1.1 dated April 2002.

FOCUS, 2001. "FOCUS Surface Water Scenarios in the EU Evaluation Process under 91/414/EEC". Report of the FOCUS Working Group on Surface Water Scenarios, EC Document Reference SANCO/4802/2001-rev.2. 245 pp., as updated by the Generic Guidance for FOCUS surface water scenarios, version 1.1 dated March 2012

European Food Safety Authority; Submission of scientific peer-reviewed open literature for the approval of pesticide active substances under Regulation (EC) No 1107/2009 (OJ L 309, 24.11.2009, p. 1-50). EFSA Journal 2011;9(2):2092. [49 pp.]. doi:10.2903/j.efsa.2011.2092.

Section ecotoxicology

EFSA (European Food Safety Authority), 2009. Guidance Document on Risk Assessment for Birds and Mammals on request of EFSA. EFSA Journal 2009; 7(12):1438.

European Commission, 2002a. Guidance Document on Terrestrial Ecotoxicology Under Council Directive 91/414/EEC. SANCO/10329/2002 rev.2 final, 17 October 2002.

European Commission, 2002b. Guidance Document on Aquatic Ecotoxicology Under Council Directive 91/414/EEC. SANCO/3268/2001 rev 4 (final), 17 October 2002.

European Commission, 2003. Guidance Document on Assessment of the Relevance of Metabolites in Groundwater of Substances Regulated under Council Directive 91/414/EEC. SANCO/221/2000-rev. 10 - final, 25 February 2003.

SETAC (Society of Environmental Toxicology and Chemistry), 2001. Guidance Document on Regulatory Testing and Risk Assessment procedures for Plant Protection Products with Non-Target Arthropods. ESCORT 2.

European Food Safety Authority, 2013. EFSA Guidance Document on the risk assessment of plant protection products on bees (*Apis mellifera*, *Bombus* spp. and solitary bees). EFSA Journal 2013;11(7):3295, 268 pp., doi:10.2903/j.efsa.2013.3295

3.5 REFERENCE LIST

Section identity, physical chemical and analytical methods

No references should be included

Section data on application and efficacy

No references should be included

Section toxicology

No references should be included

Section residue and consumer risk assessment

No references should be included

Section fate and behavior in environment

No references should be included

Section ecotoxicology

No references should be included