

# Committee for Risk Assessment RAC

# **Opinion Development Document**

proposing harmonised classification and labelling at EU level of

Chlorsulfuron (ISO); 2-chloro-N-[[(4-methoxy-6-methyl-1,3,5triazin-2-yl)amino]carbonyl]benzenesulphonamide

> EC number: 265-268-5 CAS number: 64902-72-3

CLH-O-000001412-86-48/F

Adopted

4 December 2014



# OPINION OF THE COMMITTEE FOR RISK ASSESSMENT ON A DOSSIER PROPOSING HARMONISED CLASSIFICATION AND LABELLING AT EU LEVEL

In accordance with Article 37 (4) of Regulation (EC) No 1272/2008, the Classification, Labelling and Packaging (CLP) Regulation, the Committee for Risk Assessment (RAC) has adopted an opinion on the proposal for harmonised classification and labelling (CLH) of:

Chemicals name: Chlorsulfuron (ISO); 2-chloro-N-[[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino]carbonyl]benzenesulphonamide

EC number: 265-268-5

CAS number: 64902-72-3

The proposal was submitted by **Poland** and received by the RAC on **19 February 2014.** 

In this opinion, all classifications are given in the form of CLP hazard classes and/or categories.

# **PROCESS FOR ADOPTION OF THE OPINION**

**Germany** has submitted a CLH dossier containing a proposal together with the justification and background information documented in a CLH report. The CLH report was made publicly available in accordance with the requirements of the CLP Regulation at *http://echa.europa.eu/harmonised-classification-and-labelling-consultation* on **20 May 2014**. Concerned parties and Member State Competent Authorities (MSCA) were invited to submit comments and contributions by **4 July 2014**.

## ADOPTION OF THE OPINION OF THE RAC

Rapporteur, appointed by RAC: Marian Rucki

Co-rapporteur, appointed by RAC: -

The opinion takes into account the comments provided by MSCAs and concerned parties in accordance with Article 37(4) of the CLP Regulation. The comments received are compiled in Annex 2.

The RAC opinion on the proposed harmonised classification and labelling was reached on **4 December 2014**.

The RAC opinion was adopted by **consensus**.

# **OPINION OF RAC**

RAC adopted the opinion that **Chlorsulfuron** should be classified and labelled as follows: **Classification and labelling in accordance with the CLP Regulation (Regulation (EC) 1272/2008)** 

|                                                       |                               |                                                                                                                                |                                         |                                | Classification Labelling Speci           |                                     | Labelling                                |                                   | Specific |                        |  |
|-------------------------------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------|------------------------------------------|-------------------------------------|------------------------------------------|-----------------------------------|----------|------------------------|--|
|                                                       | Index<br>No<br>Identification | CAS<br>No                                                                                                                      | Hazard Class<br>and Category<br>Code(s) | Hazard<br>statement<br>Code(s) | Pictogram<br>, Signal<br>Word<br>Code(s) | Hazard<br>state-<br>ment<br>Code(s) | Suppl.<br>Hazard<br>statement<br>Code(s) | Conc.<br>Limits,<br>M-<br>factors | Notes    |                        |  |
| Current<br>Annex VI<br>entry                          | 613-121-<br>00-4              | chlorsulfuron (ISO);<br>2-chloro-N-[[(4-me<br>thoxy-6-methyl-1,3<br>,5-triazin-2-yl)amin<br>o]carbonyl]benzene<br>sulphonamide | 265-26<br>8-5                           | 64902-7<br>2-3                 | Aquatic Acute 1<br>Aquatic Chronic 1     | H400<br>H410                        | GHS09<br>Wng                             | H410                              |          |                        |  |
| Dossier<br>submitters<br>proposal                     | 613-121-<br>00-4              | chlorsulfuron (ISO);<br>2-chloro-N-[[(4-me<br>thoxy-6-methyl-1,3<br>,5-triazin-2-yl)amin<br>o]carbonyl]benzene<br>sulphonamide | 265-26<br>8-5                           | 64902-7<br>2-3                 |                                          |                                     |                                          |                                   |          | Add<br>M=1000<br>M=100 |  |
| RAC<br>opinion                                        | 613-121-<br>00-4              | chlorsulfuron (ISO);<br>2-chloro-N-[[(4-me<br>thoxy-6-methyl-1,3<br>,5-triazin-2-yl)amin<br>o]carbonyl]benzene<br>sulphonamide | 265-26<br>8-5                           | 64902-7<br>2-3                 | Aquatic Acute 1<br>Aquatic Chronic 1     | H400<br>H410                        | GHS09<br>Wng                             | H410                              |          | M=1000<br>M=100        |  |
| Resulting<br>Annex VI<br>entry if<br>agreed by<br>COM | 613-121-<br>00-4              | chlorsulfuron (ISO);<br>2-chloro-N-[[(4-me<br>thoxy-6-methyl-1,3<br>,5-triazin-2-yl)amin<br>o]carbonyl]benzene<br>sulphonamide | 265-26<br>8-5                           | 64902-7<br>2-3                 | Aquatic Acute 1<br>Aquatic Chronic 1     | H400<br>H410                        | GHS09<br>Wng                             | H410                              |          | M=1000<br>M=100        |  |

# SCIENTIFIC GROUNDS FOR THE OPINION

# HUMAN HEALTH HAZARD ASSESSMENT

# **RAC general comment**

During public consultation several Member States proposed the (re)evaluation of human health hazard classes. Since they were not addressed by the dossier submitter they were not subject to evaluation by RAC.

### **RAC evaluation of environmental hazards**

### Summary of the Dossier submitter's proposal

Chlorosulfuron is a herbicide and is listed in Annex VI of CLP Regulation since 2008. The dossier submitter (DS) reviewed classification for environmental hazards to include the 2<sup>nd</sup> ATP changes and proposed that the current classification (Aquatic Acute 1 - H400 and Aquatic Chronic 1 - H410) should be kept, and an acute M-factor of 1000 and a chronic M-factor of 100 should be added to the entry.

The DS concluded that chlorosulfuron is not readily biodegradable. It was also considered as very toxic to algae and aquatic plants, the latter being the most sensitive species in both acute and chronic tests as was confirmed by two studies on *Lemna gibba*. In the first GLP experiment (Boeri *et al.*, 2002), the inhibition values on frond count after 14 days of exposure were the following:  $EC_{50} = 0.00035 \text{ mg/L}$  and NOEC = 0.00024 mg a.s./L. In the second GLP experiment (Porch *et al.*, 2010a), chlorosulfuron toxicity was tested after four periods of exposure (4, 8, 24, and 48 hours), each with six nominal concentrations ranging from 0.033 to  $500 \mu \text{g a.s./L}$ . The lowest NOEC based on frond count was equal to 0.00036 mg a.s./L.

In conclusion, the DS proposed to add an acute M-factor of 1000 and a chronic M-factor of 100 to the current Annex VI entry.

#### **Comments received during public consultation**

Two Member States agreed with the proposed M-factors, but requested further information on the studies or had minor comments on the data presented. Two member states, suggested to recalculate data from the Boeri *et al.* (2002) study and for classification purposes to use the 7-day  $E_rC_{50}$  and NOEC and the 14-day  $E_rC_{50}$  and corresponding NOEC.

#### Assessment and comparison with the classification criteria

All available studies on fate and behaviour of chlorsulfuron in the environment were performed under GLP and according to US EPA, OECD or equivalent guidelines.

#### Degradability

#### Hydrolysis

Chlorsulfuron is essentially stable at pH 7 and pH 9. At pH 5 chlorfsulfuron hydrolyses significantly with a calculated first-order half-life of  $\sim$ 23 days at 25 °C (Dietrich, 1989).

#### Aqueous photolysis

Photolysis is not considered a major degradation process for chlorsulfuron at pH 5, pH 7, or pH 9 at 25 °C (Dietrich, 1989).

#### Soil photolysis

Chlorsulfuron degrades in dry irradiated alkaline soil with  $DT_{50}$  and  $DT_{90}$  values of 62.2 and 207 days and is relatively stable in non irradiated systems (Hawkins, 1990).

#### **Biodegradation**

Not readily biodegradable according to the criteria of OECD 301B (Barnes, 2001).

#### Aerobic water/sediment

Chlorsulfuron degrades in an alkaline aerobic sediment system with  $DT_{50}$  and  $DT_{90}$  values of 21 and 69 days in the water phase and 26 and 87 days in the total system.

In conclusion, RAC agrees with the DS that chlorsulfuron should be considered not rapidly degradable according to CLP.

#### Aquatic bioaccumulation

The only available information on bioaccumulation potential was the measured log  $K_{ow}$ , which is below the trigger value of  $\geq$  4 (pH = 7: log  $K_{ow}$  = 0.102). RAC agrees with the DS that chlorsulfuron has a low potential for bioaccumulation.

#### **Aquatic Toxicity**

Both acute and chronic toxicity tests were conducted for three trophic levels. The 96 hour acute  $LC_{50}$  values for two species of fish (*Oncorhynchus mykiss* and *Lepomis macrochirus*) are greater than 122 mg a.s./L and 128 mg a.s./L, respectively. The flow-through 77 day chronic fish test resulted in a NOEC of 32 mg a.s./L.

The 48 hour  $EC_{50}$  for aquatic invertebrates (*Daphnia magna*) is greater than 112 mg a.s./L with a chronic 21 day NOEC = 12 mg a.s./L.

Two species of algae were tested with the most sensitive endpoint belonging to *Selenastrum* capricornutum. The  $E_rC_{50}$  for cell count is 0.068 mg a.s./L.

The most sensitive species is *Lemna gibba* (Boeri *et al.*, 2002) with a 7 day  $E_rC_{50}$ , a 7 day NOE<sub>r</sub>C, a 14 day  $E_rC_{50}$ , and a 14 day NOE<sub>r</sub>C for average specific growth rate, based on nominal and geometric mean concentrations, which are presented in Table 1.

|      | Expos<br>Initiat<br>Day<br>0: | ure<br>ted: | Nominal<br>Chlorsulfuron |         |         |          |      |      |                     |
|------|-------------------------------|-------------|--------------------------|---------|---------|----------|------|------|---------------------|
|      |                               |             | Ćou                      | nt (Fro | nds) by | Test Day |      |      | Concentration       |
| Rep. | 0                             | 1           | 4                        | 6       | 8       | 11       | 13   | 14   | μg/L                |
| 1    | 15                            | 22          | 86                       | 134     | 240     | 415      | 482  | 529  |                     |
| 2    | 15                            | 22          | 80                       | 143     | 322     | 710      | 812  | 1018 | Blank Control       |
| 3    | 15                            | 20          | 80                       | 152     | 359     | 584      | 716  | 965  |                     |
|      |                               |             |                          |         |         |          |      |      |                     |
|      | 15                            | 21          | 82                       | 143     | 307     | 570      | 670  | 837  | Mean                |
|      | 0                             | 1           | 3                        | 9       | 61      | 148      | 170  | 268  | Std. Dev.           |
|      | 0.0                           | 5.4         | 4.2                      | 6.3     | 19.8    | 26.0     | 25.3 | 32.0 | Coeff. of Variation |
| 1    | 15                            | 22          | 66                       | 119     | 214     | 344      | 432  | 493  |                     |
| 2    | 15                            | 23          | 100                      | 167     | 333     | 607      | 756  | 784  | 0.06                |
| 3    | 15                            | 20          | 81                       | 125     | 235     | 395      | 520  | 594  |                     |
|      |                               |             |                          |         |         |          |      |      |                     |
|      | 15                            | 22          | 82                       | 137     | 261     | 449      | 569  | 624  | Mean                |
|      | 0                             | 2           | 17                       | 26      | 64      | 139      | 168  | 148  | Std. Dev.           |
|      | 0.0                           | 7.1         | 20.7                     | 19.1    | 24.4    | 31.1     | 29.4 | 23.7 | Coeff. of Variation |
|      | 0                             | -2          | 0                        | 4       | 15      | 21       | 15   | 26   | % Inhibition        |
| 1    | 15                            | 21          | 81                       | 150     | 320     | 597      | 712  | 1059 |                     |
| 2    | 15                            | 25          | 80                       | 151     | 268     | 434      | 548  | 576  | 0.12                |
| 3    | 15                            | 21          | 72                       | 129     | 231     | 407      | 516  | 546  |                     |
|      |                               |             |                          |         |         |          |      |      |                     |

Table 1. 7 and 14 day  $E_rC_{50}$  and NOE<sub>r</sub>C values based on growth rate

| Mean                | 727  | 592  | 479  | 273  | 143  | 78   | 22   | 15  |   |
|---------------------|------|------|------|------|------|------|------|-----|---|
| Std. Dev.           | 288  | 105  | 103  | 45   | 12   | 5    | 2    | 0   |   |
| Coeff. of Variation | 39.6 | 17.8 | 21.4 | 16.4 | 8.7  | 6.4  | 10.3 | 0.0 |   |
| % Inhibition        | 13   | 12   | 16   | 11   | 0    | 5    | -5   | 0   |   |
|                     | 625  | 576  | 445  | 284  | 144  | 88   | 26   | 15  | 1 |
| 0.24                | 608  | 592  | 433  | 244  | 134  | 75   | 19   | 15  | 2 |
|                     | 562  | 536  | 446  | 259  | 145  | 79   | 21   | 15  | 3 |
|                     |      |      |      |      |      |      |      |     |   |
| Mean                | 598  | 568  | 441  | 262  | 141  | 81   | 22   | 15  |   |
| Std. Dev.           | 33   | 29   | 7    | 20   | 6    | 7    | 4    | 0   |   |
| Coeff. of Variation | 5.4  | 5.1  | 1.6  | 7.7  | 4.3  | 8.3  | 16.4 | 0.0 |   |
| % Inhibition        | 29   | 15   | 23   | 15   | 1    | 2    | -3   | 0   |   |
|                     | 273  | 206  | 109  | 62   | 44   | 31   | 19   | 15  | 1 |
| 0.48                | 238  | 196  | 116  | 61   | 50   | 32   | 23   | 15  | 2 |
|                     | 414  | 350  | 206  | 84   | 49   | 36   | 21   | 15  | 3 |
|                     |      |      |      |      |      |      |      |     |   |
| Mean                | 308  | 251  | 144  | 69   | 48   | 33   | 21   | 15  |   |
| Std. Dev.           | 93   | 86   | 54   | 13   | 3    | 3    | 2    | 0   |   |
| Coeff. of Variation | 30.2 | 34.4 | 37.7 | 18.8 | 6.7  | 8.0  | 9.5  | 0.0 |   |
| % Inhibition        | 63   | 63   | 75   | 78   | 67   | 60   | 2    | 0   |   |
|                     | 30   | 31   | 31   | 29   | 34   | 22   | 18   | 15  | 1 |
| 0.96                | 38   | 37   | 40   | 37   | 26   | 24   | 18   | 15  | 2 |
|                     | 43   | 40   | 41   | 39   | 31   | 28   | 17   | 15  | 3 |
|                     |      |      |      |      |      |      |      |     |   |
| Mean                | 37   | 36   | 37   | 35   | 30   | 25   | 18   | 15  |   |
| Std. Dev.           | 7    | 5    | 6    | 5    | 4    | 3    | 1    | 0   |   |
| Coeff. of Variation | 17.7 | 12.7 | 14.8 | 15.1 | 13.3 | 12.4 | 3.3  | 0.0 |   |
| % Inhibition        | 96   | 95   | 93   | 89   | 79   | 70   | 17   | 0   |   |

In toxicity studies for algal and aquatic plants,  $E_rC_{50}$  and  $NOE_rC$  values at concentrations  $\leq 1$  mg a.s./L were observed. In addition, chlorsulfuron is not readily biodegradable, and is unlikely to bio-accumulate in aquatic organisms (log Kow < 4). As a consequence, and according to the CLP Regulation, due to its acute effects on algae and aquatic plants at concentrations < 1 mg a.s./L and its low degradability, RAC confirms the current chlorsulfuron classification, i.e. Aquatic Acute 1 and Aquatic Chronic 1.

RAC agrees with the DS proposal of an **acute M-Factor of 1000** based on the following criteria:

- A 14 day static study conducted on *Lemna gibba*, with a calculated 7 day  $E_rC_{50}$  of 0.60 µg a.s./L (0.0006 mg/L) (7 day calculation based on frond count data collected on day 6 and day 8, (Boeri *et al.*, 2002). Calculations were conducted outside of study report, see also Supplemental Information In depth analysis by RAC).
- The CLP Regulation states that an M-factor of 1000 is to be used if the acute toxicity is in the range of 0.0001 <  $EC_{50} \leq 0.001$  (mg/L).

RAC agrees with the DS proposal of a **chronic M-Factor of 100** based on the following criteria:

- A 14 day static study conducted on *Lemna gibba*, with a calculated 7 and 14 day NOEC value, based on growth rate, of 0.24 µg a.s./L (0.00024 mg/L) (Boeri *et al.*, 2002, additional calculations conducted outside of study report, see also Supplemental Information In depth analysis by RAC).
- Chlorsulfuron is not ready biodegradable, determined from the results of a modified Sturm Test, according to the criteria of OECD 310B, and summarized in Barnes (2001).
- The CLP Regulation states that an M-factor of 100 is to be used if the chronic toxicity for non-readily biodegradable substances is in the range of  $0.0001 < \text{NOEC} \le 0.001$  (mg/L).

In conclusion in agreement with DS proposal, RAC recommends that Chlorsulfuron should be classified as:

#### Aquatic Acute 1; H400, M-factor = 1000, Aquatic Chronic 1; H410, M-factor = 100

according to CLP (Regulation (EC) No. 1272/2008).

#### Supplemental information - In depth analyses by RAC

Analyses

L. GIBBA FROND COUNT DATA

Original *L. gibba* frond count data for Chlorsulfuron

The frond count data from day 0 to day 14 by treatment group and replicate, as presented in Boeri *et al.* (2002), are provided in Table 2.

|      | Expos<br>Initiat<br>Day | ure<br>ted: | Expos<br>Endec | sure<br>I: |         |          |      |      | Nominal                    |
|------|-------------------------|-------------|----------------|------------|---------|----------|------|------|----------------------------|
|      | 0:                      |             | Chlorsulfuron  |            |         |          |      |      |                            |
|      |                         |             | Cou            | nt (Fro    | nds) by | Test Day | ,    |      | Concentration              |
| Rep. | 0                       | 1           | 4              | 6          | 8       | 11       | 13   | 14   | μg/L                       |
| 1    | 15                      | 22          | 86             | 134        | 240     | 415      | 482  | 529  |                            |
| 2    | 15                      | 22          | 80             | 143        | 322     | 710      | 812  | 1018 | Blank Control              |
| 3    | 15                      | 20          | 80             | 152        | 359     | 584      | 716  | 965  |                            |
|      | 15                      | 21          | 82             | 143        | 307     | 570      | 670  | 837  | Mean                       |
|      | 0                       | 1           | 3              | 9          | 61      | 148      | 170  | 268  | Std. Dev.                  |
|      | 0.0                     | 5.4         | 4.2            | 6.3        | 19.8    | 26.0     | 25.3 | 32.0 | Coeff. of Variation        |
| 1    | 15                      | 22          | 66             | 119        | 214     | 344      | 432  | 493  |                            |
| 2    | 15                      | 23          | 100            | 167        | 333     | 607      | 756  | 784  | 0.06                       |
| 3    | 15                      | 20          | 81             | 125        | 235     | 395      | 520  | 594  |                            |
|      | 15                      | 22          | 82             | 137        | 261     | 449      | 569  | 624  | Mean                       |
|      | 0                       | 2           | 17             | 26         | 64      | 139      | 168  | 148  | Std. Dev.                  |
|      | 0.0                     | 7.1         | 20.7           | 19.1       | 24.4    | 31.1     | 29.4 | 23.7 | <b>Coeff. of Variation</b> |
|      | 0                       | -2          | 0              | 4          | 15      | 21       | 15   | 26   | % Inhibition               |
| 1    | 15                      | 21          | 81             | 150        | 320     | 597      | 712  | 1059 |                            |
| 2    | 15                      | 25          | 80             | 151        | 268     | 434      | 548  | 576  | 0.12                       |
| 3    | 15                      | 21          | 72             | 129        | 231     | 407      | 516  | 546  |                            |
|      | 15                      | 22          | 78             | 143        | 273     | 479      | 592  | 727  | Mean                       |
|      | 0                       | 2           | 5              | 12         | 45      | 103      | 105  | 288  | Std. Dev.                  |
|      | 0.0                     | 10.3        | 6.4            | 8.7        | 16.4    | 21.4     | 17.8 | 39.6 | Coeff. of Variation        |
|      | 0                       | -5          | 5              | 0          | 11      | 16       | 12   | 13   | % Inhibition               |
| 1    | 15                      | 26          | 88             | 144        | 284     | 445      | 576  | 625  |                            |
| 2    | 15                      | 19          | 75             | 134        | 244     | 433      | 592  | 608  | 0.24                       |
| 3    | 15                      | 21          | 79             | 145        | 259     | 446      | 536  | 562  |                            |
|      | 15                      | 22          | 81             | 141        | 262     | 441      | 568  | 598  | Mean                       |
|      | 0                       | 4           | 7              | 6          | 20      | 7        | 29   | 33   | Std. Dev.                  |
|      | 0.0                     | 16.4        | 8.3            | 4.3        | 7.7     | 1.6      | 5.1  | 5.4  | Coeff. of Variation        |
|      | 0                       | -3          | 2              | 1          | 15      | 23       | 15   | 29   | % Inhibition               |

#### **Table 2.**L. gibba frond count data from Boeri et al. (2002)

| 1<br>2<br>3 | 15<br>15<br>15 | 19<br>23<br>21 | 31<br>32<br>36 | 44<br>50<br>49 | 62<br>61<br>84 | 109<br>116<br>206 | 206<br>196<br>350 | 273<br>238<br>414 | 0.48                |
|-------------|----------------|----------------|----------------|----------------|----------------|-------------------|-------------------|-------------------|---------------------|
|             | 15             | 21             | 33             | 48             | 69             | 144               | 251               | 308               | Mean                |
|             | 0              | 2              | 3              | 3              | 13             | 54                | 86                | 93                | Std. Dev.           |
|             | 0.0            | 9.5            | 8.0            | 6.7            | 18.8           | 37.7              | 34.4              | 30.2              | Coeff. of Variation |
|             | 0              | 2              | 60             | 67             | 78             | 75                | 63                | 63                | % Inhibition        |
| 1           | 15             | 18             | 22             | 34             | 29             | 31                | 31                | 30                |                     |
| 2           | 15             | 18             | 24             | 26             | 37             | 40                | 37                | 38                | 0.96                |
| 3           | 15             | 17             | 28             | 31             | 39             | 41                | 40                | 43                |                     |
|             | 15             | 18             | 25             | 30             | 35             | 37                | 36                | 37                | Mean                |
|             | 0              | 1              | 3              | 4              | 5              | 6                 | 5                 | 7                 | Std. Dev.           |
|             | 0.0            | 3.3            | 12.4           | 13.3           | 15.1           | 14.8              | 12.7              | 17.7              | Coeff. of Variation |
|             | 0              | 17             | 70             | 79             | 89             | 93                | 95                | 96                | % Inhibition        |

#### Calculated growth rate by test interval

The mean frond count is determined using the number of fronds observed in a test beaker on a given observation day.

Growth rate is calculated for each treatment group and control group based on frond count (or biomass). Growth rate is calculated in this analysis using frond count data and the following formula:

$$\mu = \frac{\ln N_n - \ln N_0}{t_n}$$

where:

 $\mu$  = Average specific growth rate

 $N_0$  = Number of fronds (or biomass) at the beginning of the test

 $N_n$  = Number of fronds (or biomass) at  $t_n$ 

 $t_n$  = Time of nth measurement after beginning of test (days).

Inhibition is calculated for each treatment group as the percent reduction in mean frond count and mean growth rates relative to the respective control means. The following formula was used:  $\%~\rm I$ 

= C - T

× 100

С

where:

C = Control mean frond count or growth rate

T = Treatment group mean frond count or growth rate

The results are presented in Table 3.

# TABLE 3. CALCULATED GROWTH RATE BY TEST INTERVAL BASED ON FROND COUNTS 5.0

| Nominal             |      | Exposure | Initiated | :Day 0: Ex | kposure Er | nded:Day 14 | 4:       |          |
|---------------------|------|----------|-----------|------------|------------|-------------|----------|----------|
| Chlorsulfuron       |      |          |           | Grou       | wth Rate R | lased on    |          |          |
| Concentration       |      |          |           | Count      | (Fronds) h | v Test Dav  |          |          |
| ua/L                | Rep. | Day 0-1  | Dav 0-4   | Day 0-6    | Dav 0-8    | Dav 0-11    | Day 0-13 | Day 0-14 |
|                     | 1    | 0.3830   | 0.4366    | 0.3650     | 0.3466     | 0.3018      | 0.2669   | 0.2545   |
| Blank Control       | 2    | 0.3830   | 0.4185    | 0.3758     | 0.3833     | 0.3507      | 0.3070   | 0.3013   |
|                     | 3    | 0.2877   | 0.4185    | 0.3860     | 0.3969     | 0.3329      | 0.2974   | 0.2974   |
|                     |      |          |           |            |            |             |          |          |
| Mean                |      | 0.3512   | 0.4245    | 0.3756     | 0.3756     | 0.3285      | 0.2904   | 0.2844   |
| Std. Dev.           |      | 0.0550   | 0.0105    | 0.0105     | 0.0260     | 0.0247      | 0.0209   | 0.0260   |
| Coeff. of Variation |      | 15.7     | 2.5       | 2.8        | 6.9        | 7.5         | 7.2      | 9.1      |
|                     | 1    | 0.3830   | 0.3704    | 0.3452     | 0.3322     | 0.2848      | 0.2585   | 0.2495   |
| 0.06                | 2    | 0.4274   | 0.4743    | 0.4017     | 0.3875     | 0.3364      | 0.3015   | 0.2826   |
|                     | 3    | 0.2877   | 0.4216    | 0.3534     | 0.3439     | 0.2973      | 0.2728   | 0.2628   |
|                     |      |          |           |            |            |             |          |          |
| Mean                |      | 0.3660   | 0.4221    | 0.3668     | 0.3545     | 0.3062      | 0.2776   | 0.2650   |
| Std. Dev.           |      | 0.0714   | 0.0520    | 0.0305     | 0.0291     | 0.0269      | 0.0219   | 0.0167   |
| Coeff. of Variation |      | 19.5     | 12.3      | 8.3        | 8.2        | 8.8         | 7.9      | 6.3      |
| % Inhibition        |      | -4       | 1         | 2          | 6          | 7           | 4        | 7        |
|                     | 1    | 0.3365   | 0.4216    | 0.3838     | 0.3825     | 0.3349      | 0.2969   | 0.3041   |
| 0.12                | 2    | 0.5108   | 0.4185    | 0.3849     | 0.3604     | 0.3059      | 0.2768   | 0.2606   |
|                     | 3    | 0.3365   | 0.3922    | 0.3586     | 0.3418     | 0.3001      | 0.2722   | 0.2568   |
| Mean                |      | 0.3946   | 0.4108    | 0.3758     | 0.3616     | 0.3136      | 0.2820   | 0.2738   |
| Std. Dev.           |      | 0.1006   | 0.0162    | 0.0149     | 0.0204     | 0.0186      | 0.0131   | 0.0263   |
| Coeff. of Variation |      | 25.5     | 3.9       | 4.0        | 5.6        | 5.9         | 4.7      | 9.6      |
| % Inhibition        |      | -12      | 3         | 0          | 4          | 5           | 3        | 4        |
|                     | 1    | 0.5500   | 0.4423    | 0.3770     | 0.3676     | 0.3082      | 0.2806   | 0.2664   |
| 0.24                | 2    | 0.2364   | 0.4024    | 0.3650     | 0.3486     | 0.3057      | 0.2827   | 0.2644   |
|                     | 3    | 0.3365   | 0.4153    | 0.3781     | 0.3561     | 0.3084      | 0.2751   | 0.2588   |
|                     |      |          |           |            |            |             |          |          |
| Mean                |      | 0.3743   | 0.4200    | 0.3734     | 0.3574     | 0.3074      | 0.2795   | 0.2632   |
| Std. Dev.           |      | 0.1602   | 0.0204    | 0.0073     | 0.0096     | 0.0015      | 0.0039   | 0.0039   |
| Coeff. of Variation |      | 42.8     | 4.8       | 1.9        | 2.7        | 0.5         | 1.4      | 1.5      |
| % Inhibition        |      | -/       | 1         | 1          | 5          | 6           | 4        | /        |
|                     | 1    | 0.2364   | 0.1815    | 0.1794     | 0.1774     | 0.1803      | 0.2015   | 0.2072   |
| 0.48                | 2    | 0.4274   | 0.1894    | 0.2007     | 0.1/54     | 0.180       | 0.1977   | 0.1974   |
|                     | 5    | 0.5505   | 0.2109    | 0.1975     | 0.2155     | 0.2302      | 0.2425   | 0.2370   |
| Mean                |      | 0.3334   | 0.1966    | 0.1925     | 0,1894     | 0.2015      | 0.2138   | 0.2139   |
| Std. Dev.           |      | 0.0955   | 0.0197    | 0.0114     | 0.0225     | 0.0319      | 0.0247   | 0.0206   |
| Coeff. of Variation |      | 28.7     | 10.0      | 5.9        | 11.9       | 15.8        | 11.6     | 9.6      |
| % Inhibition        |      | 5        | 54        | 49         | 50         | 39          | 26       | 25       |
|                     |      |          |           |            |            |             |          |          |
|                     | 1    | 0.1823   | 0.0957    | 0.1364     | 0.0824     | 0.0660      | 0.0558   | 0.0495   |
| 0.96                | 2    | 0.1823   | 0.1175    | 0.0917     | 0.1129     | 0.0892      | 0.0695   | 0.0664   |
|                     | 3    | 0.1252   | 0.1560    | 0.1210     | 0.1194     | 0.0914      | 0.0754   | 0.0752   |
| Mean                |      | 0 1622   | 0 1 2 2 1 | 0 1164     | 0 1040     | 0 0022      | 0.0660   | 0.0627   |
| Std Dov             |      | 0.0330   | 0.1231    | 0.1104     | 0.1049     | 0.0022      | 0.0009   | 0.003/   |
| Coeff of Variation  |      | 20.2     | 24 Q      | 10 5       | 18.8       | 17 1        | 15.0     | 20.5     |
|                     |      | 20.2     | 27.0      | 1,1,1      | 10.0       | 1 1/11      | 10.0     | 20.5     |

| % Inhibition | 54 | 71 | 69 | 72 | 75 | 77 | 78 |
|--------------|----|----|----|----|----|----|----|
|--------------|----|----|----|----|----|----|----|

#### Results

Statistical analyses are reported based on nominal concentrations and were conducted using SAS Version 9.4. The 7 and 14 day  $E_rC_{50}$  values (and 95% confidence intervals) for growth rate based on frond count and nominal concentrations were obtained with the 3-parameter exponential model (1 of 5 models used for toxicity experiments advocated by Slob (2002)).

#### Determination of the 7 and 14 day E<sub>r</sub>C<sub>50</sub> and NOEC values

A complication in this analysis was that no observations of effects were measured at day 7. Instead, measures were made at 6 and 8 days of exposure. However, since there was consistency in results from 6 and 8 days exposure, it was possible to obtain meaningful NOEC determinations and  $E_rC_{50}$  estimates for 7 days of exposure from the data available.

The  $E_rC_{50}$  estimates for day 6 and day 8 were 0.6067 and 0.5868 µg a.s./L, with 95% confidence intervals of (0.4884, 0.7250) and (0.4760, 0.6975), respectively. Consequently, the  $E_rC_{50}$  estimate for 7 days of exposure is the geometric mean of the day 6 and day 8 estimates. The calculated 7 day  $E_rC_{50} = 0.5967 \mu g$  a.s./L, with approximate 95% confidence intervals of (0.4760, 0.7250).

The 14 day  $E_rC_{50}$  based on average specific growth rate has been recalculated previously (McKelvey, 2011) and resulted in an  $E_rC_{50} = 0.69 \ \mu g/L$ . The 14 day  $E_rC_{50}$  calculated in this analysis was determined to be 0.71  $\mu g/L$ . The difference observed in these two values is not significant, and is most likely due to differences in rounding of the raw data.

#### **FIGURE 1.** 6 DAY GROWTH RATE DOSE RESPONSE CURVE



11





Exponential Model w/ Shape Parm Fit to GRATE8



Exponential Model w/ Shape Parm Fit to GRATE14



# Recalculation of 7 and 14 day $E_r C_{\rm 50}$ and NOEC values based on geometric mean concentration

The  $E_rC_{50}$  and NOEC for Lemna Giba growth rate endpoint based on the geometric mean of initially measured concentrations and one half of LOQ (LOQ for chlorsurfuron is equal to 0.0132 µg/L) were recalculated (Table 4). The results for 14 days test are the following: The  $E_rC_{50}$  is 0.064 µg/L and the NOEC is 0.04 µg/L. There are no available measured test concentrations on the days 6 and 8, the recalculation of  $E_rC_{50}$  and NOEC based on geometric mean of initial concentrations and half of LOQ is rather speculative. Despite the recalculation was performed and the resulting values for 7 days test were the following:  $E_rC_{50}$  equal to 0.0595 µg/L and the NOEC to 0.04 µg/L.

**Table 4.** 7 and 14 day  $E_rC_{50}$  and NOEC Values Based on Growth Rate

| Response    | Day | NOE <sub>r</sub> C<br>(µg/L) | Concentrations | E <sub>r</sub> C <sub>50</sub><br>(µg/L) | 95% Confidence<br>Intervals |
|-------------|-----|------------------------------|----------------|------------------------------------------|-----------------------------|
| Growth rate | 7   | 0.24                         | Nominal        | 0.5967                                   | (0.4760, 0.7250)            |
|             | 14  | 0.24                         | Nominal        | 0.715ª                                   | (0.6438, 0.7857)            |

<sup>a</sup> Previously calculated to be 0.69 µg/L (McKelvey, 2011)

#### Details of Douglas et al. (1988) study

(DAR 07, Vol 3, Annex B, part 5, B.9)

Test Substance: DPX-W4189 technical, purity: 98.5% Test organism: *Lemna minor* Medium: algal nutrient medium pH = 5 GLP: Yes Medium renewed on days 2, 5, 7, 9, 12 14-day  $E_rC_{50} = 0.11 \ \mu g/L$ 14-day NOE<sub>r</sub>C = 0.04  $\mu g/L$ 

Regarding the Douglas *et al.* (1988) study, the endpoints are based on the growth rate. The NOE<sub>r</sub>C for 14-day test duration was 0.04 µg/L and is the same as NOEC derived from recalculated data of the Boeri *et al.* (2002) study. In RAC's opinion, both NOEC results are derived from methods which are designed for compounds not stable in the test solution. On contrary, chlorsulfuron stability was proved during 21 day test period; the compound is not ready biodegradable and bioaccumulation is not expected because of the low log  $K_{ow}$  (at pH 7, log Kow = -0.99). The very low concentration (below the LOQ) at the end of the 14 days study could be explained by uptake of the test compound to the test organism. Unfortunately this hypothesis cannot be verified since no information on the chlorsulfuron concentration in the test organisms is available.

### **Additional references**

SAS Version 9.4 (2014). SAS Institute Inc. NC 27513-2414.

Slob, W., (2002). Dose-response Modeling of Continuous endpoints. *Toxicol. Sci.* 66: 298-312.

McKelvey, R., (2011). Chlorsulfuron: Calculation of Average Specific Growth Rate for *Lemna gibba* Based on Data Presented in DuPont-4468. E.I. du Pont de Nemours and Company, Wilmington, Delaware. DuPont-33183.

## **ANNEXES:**

- Annex 1 Background Document (BD) gives the detailed scientific grounds for the opinion. The BD is based on the CLH report prepared by the Dossier Submitter; the evaluation performed by RAC is contained in RAC boxes.
- Annex 2 Comments received on the CLH report, response to comments provided by the Dossier Submitter and by RAC (excl. confidential information).