

Committee for Risk Assessment RAC

Opinion

proposing harmonised classification and labelling at EU level of

Tellurium

EC Number: 236-813-4 CAS Number: 13494-80-9

CLH-O-000006810-77-01/F

Adopted

11 June 2020

11 June 2020

CLH-O-000006810-77-01/F

OPINION OF THE COMMITTEE FOR RISK ASSESSMENT ON A DOSSIER PROPOSING HARMONISED CLASSIFICATION AND LABELLING AT EU LEVEL

In accordance with Article 37 (4) of Regulation (EC) No 1272/2008, the Classification, Labelling and Packaging (CLP) Regulation, the Committee for Risk Assessment (RAC) has adopted an opinion on the proposal for harmonised classification and labelling (CLH) of:

Chemical name: Tellurium

EC Number: 236-813-4

CAS Number: 13494-80-9

The proposal was submitted by the **Netherlands** and received by RAC on **01 May 2019**.

In this opinion, all classification and labelling elements are given in accordance with the CLP Regulation.

PROCESS FOR ADOPTION OF THE OPINION

The Netherlands has submitted a CLH dossier containing a proposal together with the justification and background information documented in a CLH report. The CLH report was made publicly available in accordance with the requirements of the CLP Regulation at *http://echa.europa.eu/harmonised-classification-and-labelling-consultation/* on **17 June 2019**. Concerned parties and Member State Competent Authorities (MSCA) were invited to submit comments and contributions by **16 August 2019**.

ADOPTION OF THE OPINION OF RAC

Rapporteur, appointed by RAC: Ralf Stahlmann

Co-Rapporteur, appointed by RAC: **Annemarie Losert**

The opinion takes into account the comments provided by MSCAs and concerned parties in accordance with Article 37(4) of the CLP Regulation and the comments received are compiled in Annex 2.

The RAC opinion on the proposed harmonised classification and labelling was adopted on **11 June 2020** by **consensus**.

Classification and labelling in accordance with the CLP Regulation (Regulation (EC) 1272/2008)

	Index No	Chemical name	EC No CAS	CAS No	Classification		Labelling	Labelling		Specific	Notes
					Hazard Class and Category Code(s)	Hazard statement Code(s)	Pictogram, Signal Word Code(s)	Hazard statement Code(s)	Suppl. Hazard statement Code(s)	Conc. Limits, M- factors and ATE	
Current Annex VI entry					No c	current Annex VI e	entry				-
Dossier submitters proposal	TBD	Tellurium	236-813-4	13494-80-9	Repr. 1B	H360FD	GHS08 Dgr	H360FD			
RAC opinion	TBD	Tellurium	236-813-4	13494-80-9	Repr. 1B Lact.	H360Df H362	GHS08 Dgr	H360Df H362			
Resulting Annex VI entry if agreed by COM	TBD	Tellurium	236-813-4	13494-80-9	Repr. 1B Lact.	H360Df H362	GHS08 Dgr	H360Df H362			

GROUNDS FOR ADOPTION OF THE OPINION

RAC general comment

The CLH dossier states that the normal form of tellurium, which is stable at atmospheric pressure, is the hexagonal (metallic) structure. High pressure forms, which are stable at 40-70 kbar and above, are of no relevance in this context. Also amorphous and nano-forms exist. Based on granulometry information (median particle size of about 77 μ m) the dossier submitter (DS) concluded that nano tellurium is not covered by the data forming the basis of the CLH dossier. As there is no information on possible toxicological differences between the different crystalline forms of tellurium, RAC, in line with the DS, assumes that the effects observed in the available toxicological studies are representative for tellurium, irrespective of the crystalline structure.

Toxicokinetic information

The DS presented the data from eight studies and reviews investigating the toxicokinetics of tellurium and tellurium dioxide. These data include information on absorption, distribution, metabolism and elimination in animals and humans, as well as an *in vitro* study on the inhibiting effect of tellurium on squalene epoxidase. In addition, the solubility of tellurium and tellurium dioxide in artificial alveolar and gastrointestinal fluid has been investigated. In summary, there is no guideline toxicokinetic study available, and some of the information is limited, but the information that follows can be extracted from the available studies.

Absorption of tellurium after oral exposure is low, up to 25% in humans (no clear differentiation between the different tellurium compounds; studies have been performed with elemental tellurium but also with tetra- and hexavalent tellurium salts). In rats and rabbits oral absorption was in the range of 10 – 40%. Tellurium can also enter the organism via the lungs (MAK, 2006). No information on dermal uptake was identified.

Tellurium is reduced to telluride after its uptake into the body, which is then stepwise methylated to mono- di- or trimethylated tellurium. These methylated forms are then excreted via urine, faeces or air. Dimethylated tellurium is the compound responsible for the typical garlic odour after intake of tellurium or tellurium dioxide. As tellurium dioxide or its reaction product with water, tellurous acid with the corresponding tellurites, is stepwise reduced in the body to telluride (Te^{2-}) , the typical form of reduced tellurium in the body, it can be concluded that tellurium and tellurium dioxide are metabolised in an equivalent manner and resulting in identical metabolites. This is the basis for the read-across as can be seen in the section below.

Tellurium is eliminated as dimethyl telluride in urine, sweat and expired air, but trimethyl telluride is the predominant form in urine. Biphasic elimination was observed in rats after i.p. administration of radioactive substance. Most of orally administered tellurium was unabsorbed and appeared in the faeces. Excretion in man was about 83% via the urine, 15.6% via the faeces and 1.6% in exhaled air. In rats, excretion is mainly via faeces (about 70%).

Read-across

The DS proposed a read-across with the source substance being tellurium dioxide (CAS: 7446-07-3), and metallic tellurium (CAS: 13494-80-9) as the target substance.

A read-across for the human health endpoints genotoxicity, carcinogenicity and reproductive toxicity was proposed based on the fact that the source and target substance are metabolised by

the same route and because the source and target substance have very similar physico-chemical properties. On this basis, the DS hypothesised that human health toxicity, especially genotoxicity, carcinogenicity and reproductive toxicity, of source and target substance will be similar.

The DS identified Scenario 1 of the read-across assessment framework (RAAF) (ECHA, 2017a) as the most adequate scenario to this case to perform the read-across, as the source and target substances are transformed into common compounds.

The source substance, tellurium dioxide, is the oxidised form of the target substance, the metalloid tellurium. Tellurium dioxide is transformed to tellurite in the body, which is then further reduced to telluride (Te^{2-}). When tellurium enters the body it is also reduced to telluride (Te^{2-}) which is then stepwise methylated.

Ogra (2009) proposed a metabolic pathway of tellurium compounds, which was slightly adapted by the dossier submitter:

Tellurite ((TeO₃)²⁻) => telluride (Te²⁻) \rightarrow CH₃TeH \rightarrow (CH₃)₂Te \rightarrow (CH₃)₃Te⁺

- => reduction
- → methylation

Since tellurium and tellurium dioxide are metabolised in a comparable way resulting in identical metabolites it is considered that tellurium dioxide is a suitable source substance to do the readacross to tellurium.

The physico-chemical properties of both substances are very similar and both compounds are considered to have a rather low water solubility, which is also the case for tellurous acid (H_2TeO_3), the reaction product of tellurium dioxide with water. In contrast, other tellurium compounds like tellurates (TeO_4^{2-}) and tellurites (TeO_3^{2-}) have a higher water solubility.

Source and target substance have also been compared using the OECD QSAR Toolbox, and a data matrix containing information on physico-chemical as well as toxicological properties is included in the CLH dossier. The DS concluded that relevant, but limited, information was obtained by the application of the QSAR Toolbox. The results are supportive of the similarities between target and source substance.

The known toxicological properties of both substances further point towards a high degree of concordance. Both substances have low acute toxicity, are neither skin nor eye irritant, but both give positive results in the local lymph node assay. Also the available genotoxicity and reproductive toxicity studies presented in the CLH dossier further support the similarity of source and target substance.

Read-across is performed for genotoxicity and reproductive toxicity, including effects on /via lactation and these endpoints are assessed in the CLH dossier. Carcinogenicity is not covered in the CLH dossier, as no carcinogenicity study is available, neither for tellurium nor for tellurium dioxide. Also repeated dose toxicity is not covered in the dossier, as only a 28-day and a 90-day study with tellurium dioxide are available for this endpoint.

RAC supports the analysis carried out by the DS and the applied read across of data.

HUMAN HEALTH HAZARD EVALUATION

RAC evaluation of germ cell mutagenicity

Summary of the Dossier Submitter's proposal

The CLH dossier provides one bacterial gene mutation study (OECD TG 471, GLP; Anonymous, 2012a) with tellurium, and three *in vitro* studies with the read across substance tellurium dioxide: a bacterial gene mutation study (OECD TG 471, GLP; Anonymous, 2012b), a chromosome aberration study in mammalian cells (OECD TG 473, GLP; Anonymous, 2013a) and a gene mutation study in mammalian cells (OECD TG 476, GLP; Anonymous, 2013b).

No in vivo studies are available.

The OECD TG 471 (Anonymous, 2012a) study with tellurium was clearly negative in all strains, both in the plate incorporation assay and the pre-incubation assay in the presence and absence of metabolic activation. In addition, tellurium dioxide gave negative results in a comparable study (OECD TG 471, Anonymous, 2012b).

Clearly negative results were also obtained in an *in vitro* chromosome aberration assay with the read-across substance tellurium dioxide (OECD TG 473, Anonymous, 2013a).

In a mouse lymphoma assay with the read across substance tellurium dioxide (OECD TG 476, GLP; Anonymous, 2013b) L5178Y cells were exposed with and without metabolic activation for 3 hours and for 24 hours without metabolic activation. Excessive cytotoxicity was seen at doses $\geq 20 \ \mu$ g/mL, so that only low concentrations could be evaluated. After 3 hours with metabolic activation (Assay 1) statistically significant increases in the mutation frequency were observed at the four concentrations evaluated (10, 7.5, 5, 2.5, 1.25 μ g/mL). However, the difference between the mutation frequency of the test item treated sample and the corresponding vehicle control value did not exceed the Global Evaluation Factor (GEF, a validity criterion recommended in the guideline to assess the biological relevance of statistical significant increases) in case of the 7.5, 5 and 2.5 μ g/mL concentrations. Thus, they were considered as biologically non-relevant increases. In case of the 10 and 1.25 μ g/mL concentrations, the values were above the limit of the biological relevance (the difference was higher than the GEF), but the results did not follow a clear dose response and the increases were not reproduced in Assay 2 (repetition under identical conditions: 3 hours treatment with metabolic activation).

Overall, the DS concluded that tellurium and the read across substance tellurium dioxide were clearly negative in the available *in vitro* tests.

Comments received during public consultation

One member state competent authority (MSCA), one trade organisation and one company supported no classification for germ cell mutagenicity based on the *in vitro* genotoxicity studies presented in the dossier.

Assessment and comparison with the classification criteria

RAC agrees with the DS's analysis and interpretation of the *in vitro* mutagenicity studies presented in the CLH dossier. No indication for a mutagenic potential of neither tellurium nor tellurium dioxide can be derived from the presented *in vitro* studies.

However, it is noted that the available studies have some limitations. In the bacterial reverse mutation assay with tellurium (OECD TG 471, GLP; Anonymous, 2012a), no information on the formation of precipitates is presented. However, as the substance has a rather low water solubility it can be assumed that at the tested doses some precipitation may have occurred.

Regarding cytotoxicity, it is stated that it was seen only in the top dose of 5000 μ g/plate in the Initial Mutation Test, but at clearly lower doses in the Confirmatory and the Complementary Confirmatory Mutation Test: in the test strain *E. coli* WP2 uvrA at concentrations of 5000, 1581 & 500 μ g/plate and in the test strains TA100, TA1535 & TA1537 at 158.1 and 50 μ g/plate (it is unclear if in these strains cytotoxicity was not seen at higher doses). These results are in one part conflicting and, on the other hand, it leaves only few lower dose concentrations for the assessment of possible genotoxic potential of the test material.

Similar limitations are also noticed for the *in vitro* studies conducted with the read across substance tellurium dioxide, i.e. the bacterial reverse mutation assay, the mammalian gene mutation assay as well as for the mammalian chromosome aberration test.

For the bacterial reverse mutation assay (OECD TG 471, Anonymous, 2012b) it is reported that cytotoxicity concentrations, with and without metabolic activation, were observed in the two or three highest concentrations of the Initial Mutation Test, where the plate incubation technique was used. Stronger cytotoxicity (no further details available) was seen in the Confirmatory and Complementary Confirmatory Mutation Tests, where the pre-incubation test was used, leaving doubts on at which doses cytotoxicity was actually seen. Like for tellurium, water solubility is also rather low for tellurium dioxide, but no formation of precipitates is reported, although concentrations up to 5000 μ /plate were tested.

In contrast, in the *in vitro* mammalian gene mutation test (OECD TG 476, Anonymous, 2013b), in which the same vehicle (methyl cellulose) was used, it is described that at some concentrations insolubility was detected in the final treatment medium at the end of treatment. No further details on the exact concentrations where insolubility occurred are presented. Due to the excessive cytotoxicity only rather low doses could be tested (Assay 1, with metabolic activation: \leq 10 µg/mL, Assay 1, without metabolic activation: \leq 20 µg/mL, Assay 2, with metabolic activation: \leq 8 µg/mL).

In addition, for the *in vitro* mammalian chromosome aberration test (OECD TG 473, Anonymous, 2013a) inconsistencies were observed with regard to concentrations at which cytotoxicity and precipitation occurred. While in Assay 2 without metabolic activation cytotoxicity was seen as low as 10 μ g/mL, in the other assays cytotoxicity only started at 75 or 100 μ g/mL. "Minimum" solubility was reported in three of the four assays at 100 and 200 μ g/mL.

Overall, there are minor limitations in the presented *in vitro* mutagenicity studies, but still no indication for a mutagenic potential can be derived.

RAC noted that in a review by MAK (2006) further *in vitro* genotoxicity studies with several tellurium compounds are described. Several of these studies including a DNA repair study in bacterial cells with the read across substance tellurium dioxide (Yagi & Nishioka, 1977) gave positive results (see section above *Additional key elements*). It is, however, noted that the study did not follow generally accepted guidelines and the information presented on the test system is rather scarce.

It can be concluded that the well conducted *in vitro* genotoxicity studies presented in the CLH dossier have some minor deficiencies with regard to solubility and cytotoxicity and reporting thereof. It is not clear whether these issues interfered with the tests ability to detect any mutagenic potential, but gave negative results. A non-guideline study by Yagi & Nishioka, 1977 gave a positive result.

On this basis and in the absence of any *in vivo* study, **no classification for germ cell mutagenicity is proposed**.

RAC evaluation of reproductive toxicity

Summary of the Dossier Submitter's proposal

Sexual function and fertility

The DS did not provide studies regarding the effects of tellurium. Therefore, a read across approach from tellurium dioxide is performed for effects on sexual function and fertility.

According to the DS, there are no studies in humans addressing adverse effects on sexual function and fertility. The DS presented two recent studies in animals dealing with the impairment of fertility or mammalian development after exposure to TeO₂. One Reproduction/Developmental toxicity screening study in rats (OECD TG 421, Anonymous, 2013c) and a sub-chronic study in rats (OECD TG 408, Anonymous, 2017). According to the DS, relevant and severe effects on sexual function and fertility have been observed in an OECD TG 421 screening study with tellurium dioxide at doses, which elicited severe general toxicity, up to mortality, but also at doses without marked systemic toxicity. Therefore, the DS is of the opinion that classification as Category 1B for adverse effects on sexual function and fertility is justified for tellurium as well, since tellurium and tellurium dioxide have common metabolites and read across is justified.

In the Reproduction/Developmental toxicity screening study from 2013, according to GLP and OECD TG 421 (Anonymous, 2013c), twelve Wistar rats/sex/dose were exposed via gavage to tellurium dioxide at 0, 25, 120 and 600 mg/kg bw/d 7 days/week. Males were exposed for 28 days (14 days pre-mating and 14 days post-mating) and were sacrificed afterwards. Females were dosed 14 days pre-mating, up to 14 days of mating, throughout gestation and up to day 4 of lactation. In the P0 generation systemic effects occurred at 120 (mind dose, MD) and 600 (high dose, HD) mg/kg bw/d. In HD females mortality increased. Five females died between days 14 and 45, one female died due to a gavage accident and one female died on day 13 of the mating period. In HD animals, clinical signs like decreased activity, liquid faeces, hunched back, laboured respiration, lethargy, piloerection and red liquid from mouth and vulva were noted. In MD and HD animals, bw, bw gain and food consumption were decreased in males and females, resulting in terminal bw in males about 7 and 14% lower than controls, and in females about 5 and 11% (on day 14 of exposure) lower. The NOAEL for systemic effects is 25 mg/kg bw/d.

In HD females, the mating and fertility index were decreased to about 73% and 63%. In MD and HD females the gestation index was decreased (92, 100, 67, 0% in ctrl, LD, MD, HD, respectively). Four out of six HD females were non-pregnant with reduced or no corpora lutea and no implantation sites. Oestrus cycle of HD females was characterised by dioestrus. The gestation period in MD females was statistically significantly prolonged by 0.7 days (Control: 22.73 days, MD: 23.42 days). The two females of the HD group that delivered had a mean duration of pregnancy of 24 days (+1.3 days compared to control).

Histopathological observations detected atrophy of ovary, uterus and vagina in 4/5 dead HD females, a moderate vacuolation of corpora lutea and pigment deposits in the right ovary in 1/5 females. In other HD females, histopathologic changes in reproductive organs as well as on kidney, liver and thymus (histopathology only in control and HD animals), were also observed. No adverse effects on reproductive organs were observed in males.

The DS mentioned mechanistic studies (Harry *et al.*, 1989, Wagner *et al.*, 1995), which were conducted to clarify the mechanism of tellurium-induced neuropathy. In these studies, it was demonstrated that tellurium interferes with the squalene epoxidase, the enzyme catalysing the

first and rate limiting step of cholesterol synthesis. As cholesterol is a precursor for steroidal hormone synthesis, the DS indicated that there is some suspicion that tellurium could interfere with the endocrine system, which might explain the observed disturbance of hormonally regulated processes (oestrus cycle, duration of gestation). However, experimental verification is missing.

In a subchronic oral toxicity study with TeO_2 in male Wistar rats according to GLP and OECD TG 408 from 2017, the animals were exposed via gavage to 0, 10, 30 and 100 mg/kg bw/d. No treatment related effects were observed at any dose group.

The DS mentioned that also in a rat 28-day study, which is also part of the REACH registration dossier (Anonymous, 2013), effects on female reproductive organs were noted at 600 mg/kg bw/d; in 2 of 4 females, moderate diffuse epithelial atrophy of the vagina was noted. No further details on this study are presented in the CLH dossier.

Development

There are no studies addressing adverse effects of tellurium or tellurium dioxide on human development.

Based on the severe effects consistently seen in several pre-natal developmental toxicity studies with tellurium in rats (Agnew & Curry, 1972, Agnew *et al.*, 1968, Garro & Pentschew, 1964, Duckett, 1971a, b, Duckett, 1970, Johnson *et al.*, 1988) and rabbits (Johnson *et al.*, 1988), as well as in a pre-natal developmental toxicity study in rats (Perez-D'Gregorio & Miller, 1988) and a reproductive screening study in rats (Anonymous, 2013c) with the read-across substance tellurium dioxide, including doses with only slight or absent maternal toxicity, the DS proposed to classify tellurium as Repr. 1B, H360D.

Several studies with tellurium investigated different exposure durations and identified a time window, which is relevant for the induction of the main malformation, i.e. hydrocephalus. The relevant exposure period is from gestation day (GD) 9 to 15. Even single doses, if high enough, administered within this period resulted in the induction of hydrocephalus.

The DS evaluated 9 developmental toxicity studies in rats and one study in rabbits. Eight studies were performed with tellurium and two with tellurium dioxide. The studies with tellurium are summarised in the following table (modified):

Method, guideline, deviations if any, species, strain, sex, no/group	Test substance, dose levels duration of exposure	Results	Reference
Prenatal Developmental Toxicity Study Similar to OECD TG 414	Tellurium (Purity: 99.99%) 0, 30, 300, 3000, 15000 ppm Te (corresponding to 0, 1.9, 18, 173, 579.4	Dams: NOEL: 1.9 mg Te/kg bw/d (reduced feed consumption, reduced body weight gain during exposure period which recovered after cessation of exposure, no maternal death)	(Johnson <i>et al.</i> , 1988) also reported in (ECHA Dissemination,
Deviations: no GLP: yes Female Crl COBS CD (SD) BR rats (32-33 animals/dose group) K2	1.9, 18, 173, 579.4 mg/kg bw/d) from GD 6 to GD 15 GD 20: 2/3 of the females underwent caesarean section, 1 out of 2 of the foetuses were examined for soft tissue anomalies and ½ for osseous skeletal status; 1/3 of the dams	<u>Offspring:</u> NOAEL: 18 mg Te/kg bw/d (skeletal and soft tissue malformations, primarily hydrocephalus at 173 and 579.4 mg Te/kg bw/d, number of pups surviving 7 days reduced at highest dose) No. (%) of foetuses with dilated lateral ventricles: 1 (0.7); 0 (0); 1 (0.7); 11 (8.3); 67 (54.9) at 0, 1.9, 18, 173, 579.4 mg/kg bw/d,	2018)

Method, guideline,	Test substance, dose	Results	Reference
deviations if any,	levels duration of		
species, strain,	exposure		
sex, no/group	delivered naturally;	respectively);	
	foetuses and dams were sacrificed on post- natal day (PND) 7. Application via diet	No. (%) of litters with dilated lateral ventricles: 1 (4.6); 0 (0); 1 (4.8); 3 (14.3); 17 (85) at 0, 1.9, 18, 173, 579.4 mg/kg bw/d, respectively) % litters/foetuses with variations: 18.2 (2.1); 35.0 (2.9); 28.6 (3.2); 57.1(10.6); 100 (40.6) at 0, 1.9, 18, 173, 579.4 mg/kg bw/d, respectively)	
Prenatal Developmental Toxicity Study Similar to OECD TG 414 Deviations: no GLP: yes Female New Zealand white rabbits (17 animals/dose group) K2	Tellurium (Purity: 99.99%) 0, 17.5, 175, 1750, 5250 ppm Te (corresponding to 0, 0.7, 7, 70, 210 mg/kg bw/d) from GD 6 to GD 18 GD 29: all females underwent caesarean section, all foetuses were examined for soft tissue anomalies and thereafter for skeletal variations Application via diet	 <u>Dams:</u> NOAEL: 7 mg Te/kg bw/d (reduced feed consumption, reduced body weight gain during exposure period which recovered after cessation of exposure, soft or liquid feces, alopecia, thin appearance, and/or decreased motor activity, no maternal death up to highest dose) <u>Offspring:</u> NOAEL: 70 mg Te/kg bw/d (HD: decreased foetal body weights, increased incidence of foetuses or litters with variations, malformations including hydrocephalus and with reversible delays in ossification, no individual numbers provided. It was stated that 'There were low incidences of hydrocephalus, enlarged and/or irregularly shaped anterior fontanelle, incomplete ossification of, or small holes in, the frontals and parietals; frontals with thickened ossification; umbilical hernia; fused pulmonary artery and aorta; asymmetric and/or irregularly shaped and/or fused sternebrae; and thickened areas in the ribs in foetuses of high-dosage pregnancies.'; No. (%) of foetuses with abnormalities: 3 (6.7); 6 (5.1); 4 (6.0); 2 (1.8); 11 (11.8) at 0, 0.7, 7, 70, 210 mg/kg bw/d, respectively); No. (%) of litters with abnormalities: 2 (22.2); 5 (33.3); 2 (25); 1 (7.1); 6 (46.2) at 0, 0.7, 7, 70, 210 mg/kg bw/d Te, respectively) 	(Johnson <i>et al.</i> , 1988) also reported in (ECHA Dissemination, 2018)

Method, guideline,	Test substance, dose	Results	Reference
deviations if any,	levels duration of	Kebulto	Reference
species, strain,	exposure		
sex, no/group			
Sex, no/groupPrenatalDevelopmentalToxicity StudyNot according toguidelineDeviations: notapplicableGLP: noFemale Long Evansrats (5-11 dams perdose group andgestation day; 2-3dams per controlgroup and gestationday)K4	Tellurium (Purity: not provided) 13 mg Te/kg bw/d Single application on gestation days 7, 8, 9, 10, 11, 12, or 13 Vehicle: olive oil (suspension) Dams were allowed to deliver and offspring observed until PND 10; sacrifice on PND 10 and fixation of offspring in Bouin's solution, examination for hydrocephalus (increased ventricular dilatation was classified as hydrocephalus) and other defects No information on maternal toxicity	Dams: no NOAEL can be derived since effects on dams were not examined/reported Offspring: LOAEL 13 mg Te/kg bw/d (hydrocephalus in offspring of animals treated on day 9 (14 of 75 (18.6%) offspring) or 10 (10 of 32 (31%) offspring); one offspring with hydrocephalus in the group treated on GD7 (1 of 33 (3%) offspring) and one in an offspring of the control group (1 of 94 (1.1%) offspring), but not in offspring of dams treated on any other day of gestation; no other malformations observed; Foetal resorptions were also observed, but examinations for uterine resorption sites were only performed in animals which failed to deliver by GD 22 (2/10, 3/8, 0/11, 1/6, 1/7, 0/5, 1/5 dams treated on GD 7, 8, 9, 10, 11, 12, 13, respectively)	(Agnew and Curry, 1972) also reported in (ECHA Dissemination, 2018)
Prenatal	intramuscular Tellurium (Purity: not	Dams: no NOAEL can be derived	(Agnew <i>et al.</i> ,
Developmental Toxicity Study	provided)	since effects on dams were not examined/reported	1968)
Not according to guideline	3300 ppm Te Application throughout gestation	<u>Offspring</u> : LOAEL 165 mg Te/kg bw/d (Hydrocephalus were observed in 8/10 litters 4-5 days	
Deviations: not applicable GLP: no	Dams (n=10) were allowed to deliver, foetuses were	after birth, 47% (36/77) of all foetuses developed hydrocephalus, with up to 100% of all foetuses of	
Female Wistar rats (32 dams per dose	examined for hydrocephalus	a litter) <u>Remark</u> : No hydrocephalus was observed in preliminary	
group, 16 dams in the control group)	No information on maternal toxicity	experiments with two groups of four pregnant rats, which received 1250 or 2500 ppm Te.	
К4	Application via diet	1230 01 2300 ppin re.	
Prenatal Developmental Toxicity Study Not according to	Tellurium (Purity: not provided) 500, 1250, 2500 ppm Te (25, 62.5, 125 mg	Dams: NOAEL 125 mg Te/kg bw/d (no detailed information provided, but stated that they behaved normally, tolerated the diet well and delivered on schedule)	(Garro and Pentschew, 1964) also reported in
guideline Deviations: not applicable	Te/kg bw/d) `fed during pregnancy', dams of the high dose received normal diet 3-	<u>Offspring</u> : LOAEL 25 mg Te/kg bw/d (100% hydrocephalus in the highest dose group and 60-90% in the mid dose group, at the low	(ECHA Dissemination, 2018)
GLP: no Female Long Evans rats (> 100 dams,	5 days before delivery Dams were allowed to deliver and offspring	dose group only a part of the litters were affected (60% according to Duckett, 1971);	

Method, guideline,	Test substance, dose	Results	Reference
deviations if any, species, strain,	levels duration of exposure		
sex, no/group no further information) K4 Prenatal Developmental Toxicity Study	were examined for the occurrence of hydrocephalus Application via diet Tellurium (Purity: not provided)	hydrocephalus detectable immediately after birth; new-borns appeared smaller than controls; all offspring died within the first month after birth; no detailed examination of the foetuses for other endpoints) <u>Dams:</u> no NOAEL can be derived since effects on dams were not examined/reported	(Duckett, 1971) also reported in
Not according to guideline Deviations: not applicable GLP: no Female Wistar rats (30 dams in treatment group, 20 dams in control group) K4 (according to registration dossier and the authors of this document)	3000 ppm Te (150 mg Te/kg bw/d) fed 'every day of gestation' Dams were allowed to deliver and offspring were examined for the occurrence of hydrocephalus Application via diet	Offspring: LOAEL 150 mg Te/kg bw/d (24 of the female rats fed tellurium gave birth to litters. 20 of the rats gave birth to litters in which all the animals were hydrocephalic, 4 gestating rats gave birth to normal offspring. The hydrocephalus was non- obstructive in type for the first few days, after which obstructions appeared. Most of the animals died by the end of the second week. Only 61 of the 207 hydrocephalic rats born alive were still alive at the age of 10 days and only 44 survived until the age of 1 year.)	(ECHA Dissemination, 2018)
Prenatal Developmental Toxicity Study Not according to guideline Deviations: not applicable GLP: no Female Wistar rats (20 dams in treatment group, 20 dams in test group) K4	Tellurium (Purity: not provided) 3000 ppm Te (180 mg/kg bw/d as calculated by the authors of the publication) fed 'every day of gestation' On GD 13 and 15 foetuses (number not specified) were removed via abdominal wall; after closing the wall the dams were allowed to deliver; Only foetuses of Te fed animals who eventually gave birth to hydrocephalic animals, and foetuses of similar age control rats, were examined.	Dams: no NOAEL can be derived since effects on dams were not examined/reported Offspring: LOAEL 180 mg Te/kg bw/d (morphological anomalies in the cells in the ependymal layer of the treated foetuses: plasmalemma was without microvilli and the number of mitochondria was 'greatly diminished'; mitochondria 'were often abnormal, smaller and darker than normal and showed distortion of cristae')	(Duckett, 1970) also reported in (ECHA Dissemination, 2018)
	Application via diet		

Method, guideline, deviations if any, species, strain, sex, no/group	Test substance, dose levels duration of exposure	Results	Reference
Developmental toxicity study No guideline followed Deviations: not applicable GLP: no data Female rats, strain not provided (20 animals/group) K4	Tellurium (Purity: not provided Diet with 2500 ppm Te (according to authors of the publication rats usually consumed 20 g of diet, i.e. 50 mg tellurium which corresponds to ca. 200 mg/kg bw/d) Group 1: Exposure during day 1-21 of gestation Group 2: exposure of 20 dams from GD 1 to 9 Group 3: exposure of 20 dams from GD 10 to 15 Group 4: exposure of 20 dams from GD 16 to 21 No information on maternal toxicity Application via diet	Dams:no NOAEL can be derivedsince effects on dams were notexamined/reportedOffspring:LOAEL 200 mg Te/kgbw/dGroup 1:12/20 dams gave birth tolitters with about 8 pups, 6 out of8 were hydrocephalicGroup 2:no foetuses withhydrocephalusGroup 3:12/20 dams gave birth tohydrocephalusGroup 4:no foetuses withhydrocephalusRemark:In a second experiment21 groups of 5 dams receivedsingle doses of 200 mg Te/kg bw/dvia diet on different days duringgestation.Three animals died and71 gave birth to an average of 8offspring.None of the offspringhad a hydrocephalus.No further	(Duckett <i>et al.</i> , 1971) also reported in (ECHA Dissemination, 2018)

K: Klimisch score

Several developmental toxicity studies were performed with tellurium in rats with hydrocephalus being the major malformation in rats accompanied by increased pup mortality in the top dose group. These effects occurred at doses that elicited only slight toxicity in dams.

In addition to the hydrocephalus, there were other findings like decreased foetal body weights, increased incidence of variations and delays in ossification in the rabbit study. The incidences of hydrocephalus were 'low', but a detailed documentation of the results in rabbits is missing in the publication. However, this study confirms the occurrence of this typical tellurium induced malformation in a second species.

Adverse effects on or via lactation

The DS provided a non-guideline study with tellurium for the effects on lactation in rats (Jackson *et al.*, 1989). Female Wistar dams (2 per dose group) were exposed to 0 or 625 mg/kg bw/d from PND 0 to PND 7, 14, 21 or 28. Light and electron microscopic investigations of spinal cord, optic nerve and sciatic nerve; including measurement of myelin density, myelin sheath thickness and myelinated axon diameter were performed in the pups.

During lactation, offspring showed clinical signs of toxicity already a few days after start of exposure via milk. The microscopic examination of nerve tissues of the offspring revealed typical effects of tellurium intoxication like hypomyelination, myelin degeneration and Schwann cell degeneration. Depending on the nerve tissue investigated, these effects were detectable at all time points or at the three last time points of investigation, with PND 7 being the first time point.

The transmission of tellurium to the offspring was demonstrated by the presence of garlic odour within 2-3 days and skin discolouration. Garlic odour and greyish discolouration of the skin was also seen in dams, but no other toxic signs were reported in dams.

The dossier submitter did not propose to classify for lactation due to doubts about the validity of the study. It is mentioned that only one rather high dose was tested with no information on purity of the test material, only two pups were tested at the indicated time points for the different effects and no analytical measurement of tellurium in milk was conducted. The DS further questioned the validity of the study because no toxicity was reported in the dams, despite the rather high dose applied (625 Te mg/kg bw/d), whereas in another dietary study (Johnson *et al.*, 1988) toxic effects were already seen at 18 mg/kg bw/d and in the reproductive screening study using gavage application at 120 mg TeO₂/kg bw/d (corresponding to 96 mg Te/kg bw/d). The DS considered the study as not reliable (K3).

Comments received during public consultation

One MSCA supported the read-across approach between tellurium dioxide and tellurium for reproductive toxicity.

One industry or trade association and one manufacturer agreed to Repr. 1B, H360D. Classification for effects on sexual function and fertility was not supported.

One MSCA supported the proposed classification of tellurium as Repr. 1B; H360FD

One MSCA supported classification as Repr. 1B, H360D. However, classification as Repr 1B, H360F was not supported due to maternal toxicity. Therefore, classification as Repr. 2, H361f was supported.

No comments on lactation were submitted.

Assessment and comparison with the classification criteria

Sexual function and fertility

At the top dose of 600 mg TeO₂/kg bw/d 5 of 12 rats died, bw was reduced by 11%, and fertility index was reduced to 63% (5 of 8 rats). Due to the high mortality at this dose level, effects on reproductive parameters cannot be adequately evaluated. Changes in the gestation index and gestation length were observed at doses which reduced body weight of the females by 5% and did not cause mortality (MD, 120 mg/kg). Histological observations at the lethal dose level revealed effects, but corresponding data for the MD are missing (only control and HD animals were histopathologically examined in case no macroscopic findings were observed). RAC agrees with the dossier submitter that the known interference of tellurium with squalene epoxidase and the resulting inhibition of cholesterol synthesis might lead to hormonal imbalance due to the dependence of steroid hormone synthesis on cholesterol. However, additional information on clinical chemistry, e.g. measurements on hormone levels, which might provide information on endocrine imbalances, is missing. It is further noted that the study authors did not consider the observed effects in the female reproductive organs as secondary to the observed general toxicity.

In order to allow for a better interpretation of the results an overview of the maternal toxicity is presented below.

No clinical signs were seen in control and LD, but at MD and HD all animals had dark faeces. At the HD considerable clinical signs like reduced activity, hunched back or piloerection was seen in females. The effects on female body weight and body weight gain are summarised in the following table.

Body weight (%,	LD	MD	HD
compared to control)	(n = 12)	(n = 12)	(n = 2)
Day 14	- 4.3	- 4.7	- 11 *
GD 0	- 5.1	- 6.1	- 15.2 **
GD 7	- 5.3 *	- 7.8 **	- 14 **
GD 14	- 6.5 *	- 10 **	- 16.1 **
GD 20	- 6.9 *	- 13.3 **	- 19.8 **
PND 0	- 7.1 *	- 14.4 **	- 29.2 **
PND 4	- 7.8 *	- 18.3 **	- 30.2 **
Body weight gain (%,	LD	MD	HD
compared to control)	(n = 12)	(n = 12)	(n = 2)
Day 14 - GD 0	- 45.3	- 70.4	- 206.5
G 0 – GD 14	- 6.6	-18.9	-6.0
GD 7 – G 14	- 14.5 *	-25.1 **	-30.8 *
GD 14 – GD 20	- 8.4	- 25.3 **	-32.9 *
GD 0 – GD 20	- 9.5	- 23.8 **	- 26.5 **
GD 20 - PND 0	- 6.4	- 9.8	+11.9
PND 0 – PND 4	- 26.5	- 115.8	- 56.3

Table: Female body weights in the OECD TG 421 study (Anonymous, 2013c).

Statistically significant *: $p \le 0.05$; **: $p \le 0.01$

It is stated that changes in the LD were within the historical control range (historical control data not presented).

In summary, effects on fertility and histological changes of female reproductive organs were observed in the HD, which induced pronounced maternal lethality. As no histopathological examination of the MD female reproductive organs was performed it is not possible to exclude similar changes in the MD. In the original study summary, it is concluded that the observed atrophies were substance related and not secondary to the observed general toxicity.

It is further noted that a screening study is not equivalent to a generation study, as it uses fewer animals and the pre-mating exposure duration is only for two weeks. In addition, there is a rather large space between the MD of 120 mg/kg bw/d, where only minor maternal toxicity was observed, and the HD of 600 mg/kg bw/d, which induced severe maternal toxicity and death. Relevant effects might have been observed if doses between MD and HD would have been tested. Furthermore, the test guideline recommends to histologically assess the organs of all animals affected by toxicity in the HD, but also the organs from animals in low and mid dose. Although the uterus, the ovaries and the vagina were affected in HD animals, no detailed histopathological analyses of these organs was performed in LD or MD animals.

Reduction of the gestation index in a small number of rats (4/12 animals with stillborns) and a slight increase of gestation length (+0.7 days), but no changes in the fertility index, were observed at the MD. Effects on male reproductive organs were not observed. Although data are not conclusive, they point to effects on female fertility. This is underlined by the observation that tellurium dioxide causes structural changes in female reproductive organs and leads to reduced numbers of corpora lutea.

Histological changes of the vagina were also seen in the HD in a 28-day study (NN, 2013d), which tested the same doses as the reproductive screening study (NN, 2013c). In 2 out of 4 HD females, moderate diffuse epithelial atrophy of the vagina was noted. Also in this study considerable toxicity was seen in the MD and HD, including one death in the HD females.

Human data on fertility and reproductive function are not available.

RAC concurs with the proposal by the DS that classification is justified for tellurium for adverse effects on sexual function and fertility. A reduction in gestation index as well as a prolonged

gestation period were seen at doses which did not cause severe general toxicity. However, there is no information on possible effects on reproductive organs at doses without severe general toxicity. Taking this into account, RAC considers that **classification for adverse effects on sexual function and fertility in category 2 (H361) is justified**.

Developmental toxicity

As there are no epidemiological data available for humans, classification of tellurium in Cat. 1A is not justified.

However, developmental toxicity has consistently been observed in developmental toxicity studies performed with tellurium and tellurium dioxide. Studies with tellurium are mostly performed by application via dietary exposure, but one study reported was conducted via the intramuscular route. Most studies date back to the 1960ies or 1970ies, details of the findings are often missing and most studies did not report the effects in dams or did not clearly state that there were no observable effects in dams. These studies did, however, investigate the time period relevant for the induction of hydrocephalus. It could be demonstrated that even a single dose can induce hydrocephaly, if the dose is high enough and when applied within the relevant time window (GD 9 – 15). Only two studies, one in rats and one in rabbits, are in concordance with current test guidelines. In both studies hydrocephalus and increased pup mortality was observed.

Findings with tellurium are further supported by two studies performed with tellurium dioxide. Even at the lowest dose in the developmental toxicity study severe effects like hydrocephalus occurred in all foetuses without any effects being observed in the dams. The screening study revealed increased pup mortality already at doses which did not cause toxicity in the dams.

Species (year of study)	Dose of TeO ₂ / Route of Exposure	Treatment duration	Time of Evaluati on	Findings (dams)	Findings (foetuses, pups)
Wistar rats (Perez- D'Gregorio & Miller, 1988)	0, 1.6, 16, 80, 160 mg TeO ₂ /kg bw/d or 0, 1.3, 13, 64, 128 mg Te/kg bw/d Subcutaneous application	GD 15 to GD 19	GD 20	NOAEL 16 mg/kg bw/d weight loss, centro-lobular fatty changes in the liver and lethality	NOAEL 1.6 mg/kg bw/d hydrocephalus (100% at 16 mg/kg bw/d), oedema, exophthalmia, ocular haemorrhage, umbilical hernia, undescended testis and small kidneys Increased foetal mortality in the two highest doses at GD20 (11% and 81%) Remarks: In parallel a pair fed study was performed. All tellurium dioxide exposed foetuses revealed malformations, however, no such effects were observed in pair-fed control animals, indicating that reduced food consumption was not responsible for the effects.

Studies with tellurium dioxide are summarised in the following table:

Wistar rats (Anonymo us, 2013c; OECD TG 421)	0, 25, 120, 600 mg TeO ₂ /kg bw/d or 0, 20, 96, 480 mg Te/kg bw/d)	Males were dosed for 28 days (14 days pre-mating and 14 days mating/post- mating	Males: after 14 days post- mating period	NOEL 25 mg/kg bw/d Increased mortality in HD females	LOEL 25 mg/kg bw/d Increased pup mortality at all dose groups, all dead in HD
	via gavage	Females were exposed 14 days pre- mating, for up to 14 days of mating (1:1), throughout gestation and up to day 4 of lactation	Females: Day 5 of lactation	Decreased bw and bw gain Atrophy of reproductive tissues and histopathologica I changes of reproductive organs and kidney, liver, thymus in HD females (histopathology only in ctrl and HD)	absence of cranial region of the head with reduced brain size, covered by skin (n=4 pups) whole body subcutaneous gelatinous material in 16 found dead pups

In summary, there is consistent evidence from experimental studies with rats that tellurium causes developmental toxicity after gestational exposure or exposure to weaning rats, at doses which are not, or only slightly, toxic to dams. The most relevant effects caused by tellurium are severe malformations (i.e. hydrocephalus) and pup lethality. Elementary tellurium caused hydrocephalus and other major malformations in two species, rats and rabbit. Even single exposure to high doses during the relevant time period (GD 9 to 15) resulted in hydrocephalus.

The highest weight in the assessment is given to those studies which detected developmental toxicity and foetal and pup mortality without any maternal toxicity. These are the pre-natal developmental toxicity study in rats with dietary tellurium exposure (Garro & Pentschew, 1964), the pre-natal developmental toxicity study in rats with sub-cutaneous tellurium dioxide exposure (Perez-D'Gregorio & Miller, 1988) and the reproductive screening study in rats with gavage exposure to tellurium dioxide (Anonymous, 2013c). The remaining studies can be regarded as supportive.

In conclusion, RAC concurs with the proposal of the DS that **classification for adverse effects on development of the offspring in Category 1B (H360) is justified**.

Adverse effects on or via lactation

No human data are available to assess effects via lactation. With tellurium, only one study in rats is available. Two lactating rats were exposed to a dietary dose of 625 mg/kg bw/d (diet containing 1.25% Te), and two dams were used as control. No information on the purity of the test substance was provided. A total of 40 offspring were studied, five tellurium exposed and five control pups were investigated at the indicated time points (PND 7, 14, 21, and 28) for toxic effects. Light and electron microscopy was performed in two pups from each group. It can be assumed that only until day 7, tellurium exposure of the pups was achieved only via milk. After that period, exposure to tellurium containing diet might also have occurred. No analysis of Te concentration in the milk was performed. The DS classified the study reliability as Klimisch 3.

No toxicity was reported in dams at the highest dose of 625 mg/kg bw/d. In another dietary study, the prenatal developmental toxicity study in rats (Johnson *et al.*, 1988), maternal toxicity was seen at doses \geq 18 mg/kg bw/d.

Offspring showed clinical signs, grey coloured skin and the typical odour of garlic. By 2 weeks of age, all the tellurium exposed pups were lethargic compared to the controls and showed evidence of hind limb paresis. The tellurium exposed pups gained weight more slowly than the control pups and appeared small for age, an effect which was strongest after 14 days of age. It is noted that in the second week of life, exposure via food cannot be excluded, but this is a time where a big contribution of the pup's food still comes from milk. Light and electron microscopy of nervous tissue from rat offspring exposed via lactation showed typical alterations, starting on day 7 of exposure, where exposure was solely via milk. These observations must be interpreted as induced by tellurium via milk.

In addition, the optic nerves were investigated, but demyelination was not evident before 14 days of age. However, at 7 days of age no myelination was present in either control or treated pups; therefore, it was not possible to detect any demyelination. Clear effects on the optic nerve were seen after 14 days.

It is acknowledged that the study has considerable limitations (low number of animals per group, no toxicity in dams, despite high exposure) but there is a clear causality between general exposure indication (greyish discolouration of the skin, garlic odour in dams and pups) and histopathological changes in the pups, typical for tellurium intoxication starting on day 7 of exposure (sciatic nerves) and on day 14 of exposure (optic nerve). Further evidence for transfer of tellurium to milk comes from a study by Nishimura *et al.* (2003) who could demonstrate that 2% and 3.9% of ^{123m}Te after single i.v. administration to the dams were transferred to the pups on PND1 and PND7, respectively, which was demonstrated by the whole body retention method. On PND14, 5% of the administered dose was detected in the pups.

Therefore, despite the deficiencies of the study, RAC concludes that **classification for Adverse effects on or via lactation (H362) is justified**.

Additional references

MAK (2006) Tellurium and its inorganic compounds. The MAK-Collection Part I: MAK Value Documentations, Vol. 22. DFG Deutsche Forschungsgemeinschaft, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. https://onlinelibrary.wiley.com/doi/pdf/10.1002/3527600418.mb1349480vere0022

ANNEXES:

- Annex 1 The Background Document (BD) gives the detailed scientific grounds for the opinion. The BD is based on the CLH report prepared by the Dossier Submitter; the evaluation performed by RAC is contained in 'RAC boxes'.
- Annex 2 Comments received on the CLH report, response to comments provided by the Dossier Submitter and RAC (excluding confidential information).