European Commission

Combined Draft Renewal Assessment Report prepared according to Regulation (EC) N° 1107/2009 and Proposal for Harmonised Classification and Labelling (CLH Report) according to Regulation (EC) N° 1272/2008

Dicamba

Volume 1

Rapporteur Member State: Denmark Co-Rapporteur Member State: Romania

Version History

When	What
2007/February	Initial DAR
2018/July	Draft RAR
2019/	Revised vol 1 according to ECHA accord- ance check
2020/December	Vol. 1 revised to include an ED assessment
2021/February	Revised vol 1 according to ECHA accord- ance check

Table of contents

RAPPO	RTEUR MEMBER STATE: DENMARK	. 1
	TEMENT OF SUBJECT MATTER AND PURPOSE FOR WHICH THIS REPORT HAS BEI PARED AND BACKGROUND INFORMATION ON THE APPLICATION	
1.1	CONTEXT IN WHICH THIS DRAFT ASSESSMENT REPORT WAS PREPARED	10
1.1. 1.1. 1.1. 1.1.	 Arrangements between rapporteur Member State and co-rapporteur Member State EU Regulatory history for use in Plant Protection Products 	10 10
1.2	APPLICANT INFORMATION	11
1.2. 1.2. 1.2.	 Producer or producers of the active substance Information relating to the collective provision of dossiers 	11 12
1.3	DENTITY OF THE ACTIVE SUBSTANCE	12
1.3. 1.3. 1.3. 1.3. 1.3.	 Chemical name (IUPAC and CA nomenclature). Producer's development code number. CAS, EEC and CIPAC numbers. 	12 12 12
1.3.		
	Identity and content of additives (such as stabilisers) and impurities 3.8.1 Additives	12 13
	3.8.2 Significant impurities3.8.3 Relevant impurities	
1.3.	1	
	INFORMATION ON THE PLANT PROTECTION PRODUCT	
1.4. 1.4.	11	13
1.4.		on
1.4.4	Detailed quantitative and qualitative information on the composition of the plant protection produ	
1.	 4.4.1 Composition of the plant protection product	14 14
1.4.		14
1.4.		
1.4.	8	
1.4.	5	
1.4.9		
1.4. 1.4.		ion
1.4.	Detailed quantitative and qualitative information on the composition of the plant protection produced and the plant protection produced and the plant protection produced and plant protection produced and plant protection produced and plant	uct
1	4.12.1 Composition of the plant protection product	-
	4.12.1 Composition of the plant protection product	
	4.12.3 Information on the active substances 4.12.3 Information on safeners, synergists and co-formulants	
1.4.		
1.4.		

	1.4.15 1.4.16	Field of use envisaged Effects on harmful organisms	
	1.5 Det	AILED USES OF THE PLANT PROTECTION PRODUCT	. 16
	1.5.1	Details of representative uses	. 17
	1.5.2	Further information on representative uses	. 21
	1.5.3	Details of other uses applied for to support the setting of MRLs for uses beyond the representation	tive
	1.5.4	uses Overview on authorisations in EU Member States	
2		RY OF ACTIVE SUBSTANCE HAZARD AND OF PRODUCT RISK ASSESSMENT	
-			
	2.1.1	Summary or identity	
		SICAL AND CHEMICAL PROPERTIES [EQUIVALENT TO SECTION 7 OF THE CLH REPORT TEMPLA	-
	2.2.1	Summary of physical and chemical properties of the active substance	
	2.2.1		. 64
	2.2.2	Summary of physical and chemical properties of the plant protection product	
	2.3 DAT	A ON APPLICATION AND EFFICACY	. 66
	2.3.1	Summary of effectiveness	66
	2.3.2	Summary of information on the development of resistance	
	2.3.3	Summary of adverse effects on treated crops	
	2.3.4	Summary of observations on other undesirable or unintended side-effects	. 66
	2.4 Fur	THER INFORMATION	. 66
	2.4.1	Summary of methods and precautions concerning handling, storage, transport or fire	. 66
	2.4.2	Summary of procedures for destruction or decontamination	. 69
	2.4.2.		
	2.4.2.		
	2.4.3	Summary of emergency measures in case of an accident	
	2.5 MET	THODS OF ANALYSIS	
	2.5.1	Methods used for the generation of pre-authorisation data	
	2.5.2	Methods for post control and monitoring purposes	. 71
	2.6 EFF	ECTS ON HUMAN AND ANIMAL HEALTH	. 72
	2.6.1	Summary of absorption, distribution, metabolism and excretion in mammals [equivalent to security of absorption]	
	2.6.1.	 9 of the CLH report template] 1 Short summary and overall relevance of the provided toxicokinetic information on 	. 72
	2.0.1.	proposed classification(s)	
	2.6.2	Summary of acute toxicity	
	2.6.2.		
	2.6.2.		
	2.6.2.		
	2.6.2. 2.6.2.		
	2.6.2.		
	2.6.2.		
	2.6.2.		
	2.6.2.		
	2.6.2.	10 Specific target organ toxicity-single exposure (STOT SE) [equivalent to section 10.11 of CLH report template]	
	2.6.3	Summary of repeated dose toxicity (short-term and long-term toxicity) [section 10.12 of the C	
	2.0.5	report]	
	2.6.3.	1 Specific target organ toxicity-repeated exposure (STOT RE) [equivalent to section 10.12	2 of
		the CLH report template]	100

2.6.4	Summary of genotoxicity / germ cell mutagenicity [equivalent to section 10.8 of the CLH report template]
2.6.4	1 3
2.0.7	mutagenicity
2.6.4	
2.6.4	
	131
2.6.5	Summary of long-term toxicity and carcinogenicity [equivalent to section 10.9 of the CLH report
	template]
2.6.5	
	carcinogenicity
2.6.5	
2.6.5	
2.6.6	Summary of reproductive toxicity [equivalent to section 10.10 of the CLH report template] 143
2.6.6	
•	10.10.1 of the CLH report template]
2.6.6	Adverse effects on development [equivalent to section 10.10.4 of the CLH report template] 148
2.6.6	
2.6.6	
2.6.7	Summary of neurotoxicity
2.6.8	Summary of other toxicological studies
2.6.8	
2.6.8	Toxicity studies of metabolites and impurities
2.6.8	
2.6.8	
2.6.9	Summary of medical data and information
2.6.10	Toxicological end points for risk assessment (reference values)
2.6.1	
	(acceptable daily intake)
2.6.1	
	reference dose)
2.6.1	
	(acceptable operator exposure level)
2.6.1	
	AAOEL (acute acceptable operator exposure level)
2.6.11	Summary of product exposure and risk assessment
17 DE	SIDUE
2.7 KE	
2.7.1	Summary of storage stability of residues
2.7.2	Summary of metabolism, distribution and expression of residues in plants, poultry, lactating
	ruminants, pigs and fish
2.7.3	Definition of the residue
2.7.4	Summary of residue trials in plants and identification of critical GAP 174
2.7.5	Summary of feeding studies in poultry, ruminants, pigs and fish
2.7.6	Summary of effects of processing
2.7.7	Summary of residues in rotational crops
2.7.8	Summary of other studies
2.7.9	Estimation of the potential and actual exposure through diet and other sources
2.7.10	Proposed MRLs and compliance with existing MRLs
2.7.11	Proposed import tolerances and compliance with existing import tolerances
2.8 FA	TE AND BEHAVIOUR IN THE ENVIRONMENT
2.8.1	Summary of fate and behaviour in soil
2.8.2	Summary of fate and behaviour in water and sediment [equivalent to section 11.1 of the CLH report
2.0.2	template]
1.1.1	
1.1.1	

2.8.3	Summary of fate and behaviour in air	
2.8.3.1		
2.8.4	Summary of monitoring data concerning fate and behaviour of the active substance, me	etabolites,
	degradation and reaction products	206
2.8.5	Definition of the residues in the environment requiring further assessment	206
2.8.6	Summary of exposure calculations and product assessment	206
2.9 EFFE	CTS ON NON-TARGET SPECIES	212
	Summary of effects on birds and other terrestrial vertebrates	
2.9.1.1		
2.9.1.2		
	Summary of effects on aquatic organisms [section 11.5 of the CLH report]	
2.9.2.1		
2.9.2.2		
2.9.2.3		
2.9.2.4	1	
2.9.2.5		
	Summary of effects on arthropods	
2.9.3.1		
2.9.3.2		
	Summary of effects on non-target soil meso- and macrofauna	
	Summary of effects on soil nitrogen transformation	
	Summary of effects on terrestrial non-target higher plants	
	Summary of effects on other terrestrial organisms (flora and fauna)	
	Summary of effects on biological methods for sewage treatment	
	Summary of product exposure and risk assessment	
2.9.9.1		
2.9.9.2		
2.9.9.3	1 6	
2.9.9.4		
2.9.9.5		
2.9.9.6	6	
2.9.9.7	8	
2.9.9.8	Terrestrial non-target higher plants	249
2.10 END	OCRINE DISRUPTING PROPERTIES	250
2.10.1	GATHER ALL RELEVANT INFORMATION	250
	Executive Summary	
	Introduction	
2.10.3		
	1	
2.10.3.		
2.10.3.		
1.1.1.1		
	Gather Information & Assess the Evidence	
	Gather Information	
1.1.1.2	8 ,	
1.1.1.3	1	
	Assess the Evidence	
1.1.1.4		
1.1.1.5		
1.1.1.6		
	DATA REVIEWS	
	In Vitro and In Silico Mechanistic Data	
	In silico data in OECD Conceptual Framework level 1	
	In vitro data in OECD Conceptual Framework level 2	
	In Vivo Mechanistic Data – Mammalian Species	
	Short term mechanistic studies in OECD Conceptual Framework level 3	
	In Vivo Data – Mammalian Species	
1.1.1.7	Short term studies in OECD Conceptual Framework level 4	275

1.1.1.8 Chronic and carcinogenicity studies in OECD Conceptual Framework level 4	282
1.1.1.9 Developmental studies in OECD Conceptual Framework level 4	285
1.1.1.10 Reproductive studies in OECD Conceptual Framework level 5	
2.10.14 In Vivo Data – Non-Mammalian Species	
1.1.1.11 Existing data in OECD Conceptual Framework level 1	
1.1.1.12 Short term non-mammalian studies in OECD Conceptual Framework level 3	
1.1.1.1.3 Non-mammalian studies in OECD level 4	
2.10.15 Non-mammalian studies in OECD level 5	294
2.10.16 ED ASSESSMENT FOR HUMANS	295
2.10.17 ED Assessment for T-modality	
2.10.18 Have T-mediated parameters been sufficiently investigated?	
2.10.19 Lines of evidence for adverse effects and endocrine activity related to T-modality	
1.1.1.14 Assessment of the integrated lines of evidence and weight of evidence for T-m	
adversity and endocrine activity	
Table 1.1.9.3-2 WoE for T-mediated endocrine activity	303
2.10.20 ED assessment for EAS-modalities	
2.10.21 Have EAS-mediated parameters been sufficiently investigated?	305
2.10.22 Lines of evidence for adverse effects and endocrine activity related to EAS-modalities	
1.1.4.1 Assessment of the integrated lines of evidence and weight of evidence for T-mediated a	dversity
and endocrine activity	327
2.10.23 Overall conclusion on the ED assessment for humans	330
2.10.24 ED assessment for non-target organisms	331
2.10.25 ED assessment for T-modality	331
2.10.26 Have T-mediated parameters been sufficiently investigated?	
Table 3.1.1-1 Assessment of dataset sufficiency for T-modality in non-target organisms	331
2.10.26.1 Lines of evidence for adverse effects and endocrine activity related to T-modality	332
3.1.2.1 Assessment of the integrated lines of evidence and weight of evidence for T-m	
adversity and endocrine activity	
2.10.26.2 MoA analysis for T-modality	
2.10.27 Conclusion of the assessment of T-modality	
2.10.28 ED assessment for EAS-modalities	
2.10.29 Have EAS-mediated parameters been sufficiently investigated?	
2.10.30 3.2.2 Lines of evidence for adverse effects and endocrine activity related to EAS-modalities	
3.3.2.1 Assessment of the integrated lines of evidence and weight of evidence for EAS-m	
adversity and endocrine activity	
2.10.31 3.2.3 Initial analysis of the evidence and identification of relevant scenario for the ED asso	
of EAS-modalities	
2.10.32 3.3 Overall conclusion on the ED assessment	
2.10.33 OVERALL conclusion on the ED assessment	
2.10.34 REFERENCES	
2.10.35 RMS comments and ED assessment:	345
2.11 PROPOSED HARMONISED CLASSIFICATION AND LABELLING ACCORDING TO THE CLP CF	RITERIA
[SECTIONS 1-6 OF THE CLH REPORT]	
2.11.1.2 Composition of the substance 2.11.2 Proposed harmonized classification and labelling	
· · ·	
2.11.2.2 Additional hazard statements / labelling2.11.3 History of the previous classification and labelling	
2.11.5 Flistory of the previous classification and labelling 2.11.4 Identified uses	
2.11.4 Identified uses	
2.12 RELEVANCE OF METABOLITES IN GROUNDWATER	
2.12.1 STEP 1: Exclusion of degradation products of no concern	
2.12.2 STEP 2: Quantification of potential groundwater contamination	
2.12.3 STEP 3: Hazard assessment – identification of relevant metabolites	
2.12.3.1 STEP 3, Stage 1: screening for biological activity	

2.12.3.2 STEP 3, Stage 2: screening for genotoxicity	
2.12.3.3 STEP 3, Stage 3: screening for toxicity	
2.12.4 STEP 4: Exposure assessment – threshold of concern approach	
2.12.5 STEP 5: Refined risk assessment	
2.12.6 Overall conclusion	382
2.13 CONSIDERATION OF ISOMERIC COMPOSITION IN THE RISK ASSESSMENT	
2.14 Residue definitions	382
2.14.1 Definition of residues for exposure/risk assessment	382
2.14.2 Definition of residues for monitoring	382
3 PROPOSED DECISION WITH RESPECT TO THE APPLICATION	385
3.1 BACKGROUND TO THE PROPOSED DECISION	385
3.1.1 Proposal on acceptability against the decision making criteria – Article 4 and annex II of re	
(EC) No 1107/2009	
3.1.1.1 Article 4	
3.1.1.2 Submission of further information	
3.1.1.3 Restrictions on approval	
3.1.1.4 Criteria for the approval of an active substance	
 3.1.2 Proposal – Candidate for substitution	
 3.1.3 Proposal – Low risk active substance 3.1.4 List of studies to be generated, still ongoing or available but not peer reviewed 	
3.1.4.1 Identity of the active substance or formulation	
3.1.4.2 Physical and chemical properties of the active substance and physical, chemical and t	
properties of the formulation	
3.1.4.3 Data on uses and efficacy	
3.1.4.4 Data on handling, storage, transport, packaging and labelling	
3.1.4.5 Methods of analysis	
3.1.4.6 Toxicology and metabolism	
3.1.4.7 Residue data	
3.1.4.8 Environmental fate and behaviour	397
3.1.4.9 Ecotoxicology	397
3.1.5 Issues that could not be finalised	398
3.1.6 Critical areas of concern	
3.1.7 Overview table of the concerns identified for each representative use considered	
3.1.8 Area(s) where expert consultation is considered necessary	
3.1.9 Critical issues on which the Co RMS did not agree with the assessment by the RMS	401
3.2 PROPOSED DECISION	402
3.3 RATIONAL FOR THE CONDITIONS AND RESTRICTIONS TO BE ASSOCIATED WITH THE APPRO AUTHORISATION(S), AS APPROPRIATE	
3.3.1 Particular conditions proposed to be taken into account to manage the risks identified	
3.4 APPENDICES	
3.5 REFERENCE LIST	
J.J. NEFENEIVE LIJI	400

Level 1

1 <u>STATEMENT OF SUBJECT MATTER AND PURPOSE FOR WHICH THIS REPORT</u> <u>HAS BEEN PREPARED AND BACKGROUND INFORMATION ON THE APPLICA-</u> <u>TION</u>

1.1 CONTEXT IN WHICH THIS DRAFT ASSESSMENT REPORT WAS PREPARED

1.1.1 Purpose for which the draft assessment report was prepared

Two dossiers were submitted for the renewal of approval of the active substance dicamba at EU level in accordance with the requirements of Regulation (EC) No 1107/2009 and Commission Implementing Regulation (EU) 844/2012. The two submitters were Syngenta Crop Protection AG and Rotam Agrochemical Europe Limited.

This RAR reviews new data generated since the first approval of dicamba. In addition, already EU review data are summarised for the sake of completeness.

Proposal for MRL setting was included.

A proposal for Classification and Labelling is included within Vol. 1.

1.1.2 Arrangements between rapporteur Member State and co-rapporteur Member State

Denmark acting as Rapporteur Member State (RMS) has evaluated all sections of the dossier. The draft Renewal Assessment Report (dRAR) was subjected to quality assurance by the Co-RMS Romania.

1.1.3 EU Regulatory history for use in Plant Protection Products

Dicamba is an existing active substance, the renewal of which is part of the AIR III renewal programme.

Dicamba (CAS No 1918-00-9) was first included on Annex I of 91/414/EEC on 01/01/09 under Inclusion Directive 2008/69/CE. Denmark was the Rapporteur Member State (RMS). The date of expiration of approval is 31/12/2018 according to the Commission Implementing Regulation 540/2011/CE. The first notifier was Syngenta Crop Protection AG. Notifiers for the renewal are Syngenta Crop Protection AG and Rotam Agrochemical Europe Limited.

The following documents of the previous evaluation process resulting in the first approval of dicamba are considered to provide relevant review information on already accepted data or a reference to where such information and data can be found:

- Draft Assessment Report on dicamba prepared by Denmark, 2007 (DAR)
- DAR including its addendum (compiled version of November 2010 containing all individually submitted addenda (Denmark, 2010))
- European Food Safety Authority; Conclusion on the peer review of the pesticide risk assessment of the active substance dicamba. EFSA Journal 2011;9(1):1965. [52 pp.] doi:10.2903/j.efsa.2011.1965. Available online: www.efsa.europa.eu/efsajournal.htm (EFSA review)
- SANCO review report on dicamba SANCO/829/08 rev. 2 of 7th March 2008 (on 27 September 2011 the Standing Committee on Food Chain and Animal Health has taken note of the amendments of chapter 1, 3, 5, 6 and 7 and appendix II based on the EFSA Conclusion on the peer review of the pesticide risk assessment of the active substance dicamba. EFSA Journal 2011; 9(1): 1965.)
- Commission directive (EC) 2008/69/CE and Commission Implementing Regulations 1100/2011 and 540/2011
- On 12 July 2016 the Standing Committee on Plant, Animals, Food and Feed took note of the revision of this review report after the assessment of the confirmatory data. This assessment has been carried out in line with the Guidance document on the procedures for submission and assessment of confirmatory data following inclusion of an active substance in Annex to Regulation (EC) No 541/20117.

MRL

Commission Regulation (EU) No 149/2008 of 29 January 2008 amending Regulation (EC) No 396/2005 of the European Parliament and of the Council by establishing Annexes II, III and IV setting maximum residue levels for products covered by Annex I thereto.

Commission Regulation (EU) No 441/2012 of 24 May 2012 amending Annexes II and III to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for bifenazate, bifenthrin, boscalid, cadusafos, chlorantraniliprole, chlorothalonil, clothianidin, cyproconazole, deltamethrin, dicamba, difenoconazole, dinocap, etoxazole, fenpyroximate, flubendiamide, fludioxonil, glyphosate, metalaxyl-M, meptyldinocap, novaluron, thiamethoxam, and triazophos in or on certain products.

Commission Regulation (EU) No 737/2014 of 24 June 2014 amending Annexes II and III to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for 2-phenylphenol, chlormequat, cyflufenamid, cyfluthrin, dicamba, fluopicolide, flutriafol, fosetyl, indoxacarb, isoprothiolane, mandipropamid, metaldehyde, metconazole, phosmet, picloram, propyzamide, pyriproxyfen, saflufenacil, spinosad and trifloxystrobin in or on certain products.

Commission Regulation (EU) 2015/401 of 25 February 2015 amending Annexes II and III to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for acetamiprid, chromafenozide, cyazofamid, dicamba, difenoconazole, fenpyrazamine, fluazinam, formetanate, nicotine, penconazole, pymetrozine, pyraclostrobin, tau-fluvalinate and tebuconazole in or on certain products.

Commission Regulation (EU) 2015/845 of 27 May 2015: amending Annexes II and III to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for azoxystrobin, chlorantraniliprole, cyantraniliprole, dicamba, difenoconazole, fenpyroximate, fludioxonil, glufosinate-ammonium, imazapic, imazapyr, indoxacarb, isoxaflutole, mandipropamid, penthiopyrad, propiconazole, pyrimethanil, spirotetramat and trinexapac in or on certain products.

1.1.4 Evaluations carried out under other regulatory contexts

There is a JMPR evaluation published of dicamba from 2010. There is a FAO specification from 2016.

1.2 APPLICANT INFORMATION

1.2.1 Name and address of applicant(s) for approval of the active substance

Syngenta Crop Protection AG Schwarzwaldallee 215 P.O. Box CH-4002 Basel Switzerland

Rotam Agrochemical Europe Limited Hamilton House Mabledon Place London WCIH 9BB United Kingdom

1.2.2 Producer or producers of the active substance

1.2.3 Information relating to the collective provision of dossiers

No Task Force was formed.

1.3 IDENTITY OF THE ACTIVE SUBSTANCE

1.3.1	Common name proposed or ISO-accepted and synonyms	Dicamba		
1.3.2	Chemical name (IUPAC and CA nomenclat	ture)		
IUPAC		3,6-dichloro-2-methoxybenzoic acid		
CA		Benzoic acid, 3,6-dichloro-2-methoxy-		
1.3.3	Producer's development code number	Syngenta: SAN 837 Rotam: RC1176		
1.3.4	CAS, EEC and CIPAC numbers			
CAS		1918-00-9		
EC		217-635-6		
CIPAC		85		
1.3.5	Molecular and structural formula, molecular	ar mass		
	lar formula	$C_8H_6Cl_2O_3$		
Structural formula				
Molecu		221 g/mol		
1.3.6	Method of manufacture (synthesis path- way) of the active substance	Confidential. Please refer to Volume 4.		
1.3.7	Specification of purity of the active sub- stance in g/kg	Confidential. Please refer to Volume 4.		
1.3.8	Identity and content of additives (such as st	abilisers) and impurities		

1.3.8.1 Additives	Confidential. Please refer to Volume 4.
1.3.8.2 Significant impurities	Confidential. Please refer to Volume 4.
1.3.8.3 Relevant impurities	Please refer to Volume 4.
1.3.9 Analytical profile of batches	Confidential. Please refer to Volume 4.

1.4 INFORMATION ON THE PLANT PROTECTION PRODUCT

1.4.1	Applicant	Name: Adress :	Syngenta Crop Protection AG Schwarzwaldallee 215 P.O. Box CH-4002 Basel; Switzerland
		Contact: Telephone number: Fax number: E-mail:	
1.4.2	Producer of the plant protection product	Name: Address:	
		Contact:	
		Telephone number: Fax number: E-mail:	
1.4.3	Trade name or proposed trade name and producer's development code number of the plant protection product		nnvel 7254B
1.4.4	Detailed quantitative and qualitative informaticative informaticative and qualitative informaticative informaticative and qualitative and qual	ation on the composit	ion of the plant protection prod-

1.4.4.1	Composition of the plant protection prod- uct	Pure dicamba in A7254B		
	uct	content of pure active sub- stance:	480 g/L	41.0 % w/w
		limits :	456 - 504 g/L	39.0 - 43.1 % w/w
		Technical dicamba in A7254B		
		at a minimum purity of the substance of 88 % w/w.	technical a	ctive
		content of technical active substance:	545 g/L	46.6 % w/w
		limits :	520 - 570 g/L	44.4 – 48.7 % w/w
		at a typical purity of the tech stance of 95 % w/w.	hnical acti	ve sub-
		content of technical active substance:	505 g/L	43.2 % w/w
		limits :	480 - 530 g/L	41.0 – 45.3 % w/w
1.4.4.2	Information on the active substances	ISO common name:	Dicam	
		CAS No:1918-00-9EC No:217-635-6CIPAC No:85Salt, ester anion or cation present:None		
1.4.4.3	Information on safeners, synergists and co-formulants	Confidential. Please refer to Volume 4.		
1.4.5	Type and code of the plant protection prod- uct	- State: Liquid Type: Soluble concentrate Code: SL		
1.4.6	Function	Herbicide		
1.4.7	Field of use envisaged	Field crops		
1.4.8	Effects on harmful organisms	Systemic effect on a range of broadleaved weeds.		

1.4.9	Applicant	Name:	Rotam Agrochemical Europe Limited
		Address:	Hamilton House Mabledon Place London WCIH 9BB United Kingdom
		Contact:	
		Address:	
		Phone No.: Fax. No.: E-mail:	
1.4.10	Producer of the plant protection product	Name: Address:	
		Contact:	
		Phone No.:	
		Fax. No.: E-mail:	
1.4.11	Trade name or proposed trade name and producer's development code number of	Trade names:	OCEAL VERMEIL
	the plant protection product	Code number:	
1.4.12	Detailed quantitative and qualitative informatication uct	ation on the cor	nposition of the plant protection prod-

1.4.12.1	Composition of the plant protection prod-	Pure active substance		
	uct	content of pure active substance :	700 g/kg	70.0 % w/w
		limits :	675 - 725	67.5 – 72.5 %
			g/kg	w/w
		Technical active substance The active substance is with a r g/kg (98.0% w/w) on dry matte	-	purity of 980.0
		content of technical active substance :	714 g/kg	71.4 % w/w
		limits :	689 - 740	68.9 – 74.0 %
			g/kg	w/w
1.4.12.2	Information on the active substances	ISO common name: CAS No: EC No: CIPAC No:	191 217 85	amba 8-00-9 -635-6
1.4.12.3	Information on safeners, synergists and co-formulants	Salt, ester anion or cation prese Confidential. Please refer to V		ium salt or Rotam.
	Type and code of the plant protection prod- uct	Type: Water soluble granules Code: SG		
1.4.14	Function	Herbicide		
1.4.15	Field of use envisaged	Field crops		
1.4.16	Effects on harmful organisms	Systemic effect on a range of by	roadleaved	d weeds.

1.5 DETAILED USES OF THE PLANT PROTECTION PRODUCT

1.5.1 Details of representative uses

Summary of representative uses evaluated for Syngenta, for which all risk assessments needed to be completed (*name of active substance or the respective variant*)

Crop and/or	Mem- ber	Prod- uct	F G	Pests or Group of	Prepa	aration		Applica	ation		Applica	tion rate ment	per treat-	PHI (day	Remarks
situa- tion (a)	State or Coun- try	name	or I (b)	pests con- trolled (C)	Type (d-f)	Conc. a.s. (i)	metho d kind (f-h)	range of growth stages & season (j)	number min- max (k)	Interval between applica- tion (min)	kg a.s /hL min- max (I)	Water L/ha min- max	kg a.s./ha min-max (I)	s) (m)	
Maize	Northern EU Central EU Sou- thern EU	A7254B	F	Dicot and monocot weed plants	SC	480 g/L	Foliar spray	BBCH 12-19	1	-	-	200- 500	0.288	N/A	PHI determined by growth stage at applica- tion and time to harvest- able crop
Sorghum	Central EU South- ern EU	A7254B	F	Dicot and monocot weed plants	SC	480 g/L	Foliar spray	BBCH 12-18	1	-	-	20-400	0.210	N/A	PHI determined by growth stage at applica- tion and time to harvest- able crop
Oat	Northern EU	A7254B	F	Dicot and monocot weed plants	SC	480 g/L	Foliar spray	BBCH 21-29	1	-	-	200- 400	0.096	N/A	PHI determined by growth stage at applica- tion and time to harvest- able crop
Wheat	Northern EU	A7254B	F	Dicot and monocot weed plants	SC	480 g/L	Foliar spray	BBCH 21-29	1	-	-	200- 400	0.096	N/A	PHI determined by growth stage at applica- tion and time to harvest- able crop
Wheat	South- ern EU	A7254B	F	Dicot and monocot weed plants	SC	480 g/L	Foliar spray	BBCH 10-32	1	-	-	200- 400	0.120	N/A	PHI determined by growth stage at applica- tion and time to harvest- able crop
Triticale	Northern EU	A7254B	F	Dicot and monocot weed plants	SC	480 g/L	Foliar spray	BBCH 21-29	1	-	-	200- 400	0.096	N/A	PHI determined by growth stage at applica- tion and time to harvest- able crop

(Regulation (EU) N° 284/2013, Annex Part A, points 3, 4)

Barley	Northern EU	A7254B	F	Dicot and monocot weed plants	SC	480 g/L	Foliar spray	BBCH 21-29	1	-	-	200- 400	0.096	N/A	PHI determined by growth stage at applica- tion and time to harvest- able crop
Rye	Northern EU	A7254B	F	Dicot and monocot weed plants	SC	480 g/L	Foliar spray	BBCH 21-29	1	-	-	200- 400	0.096	N/A	PHI determined by growth stage at applica- tion and time to harvest- able crop

(a) For crops, the EU and Codex classifications (both) should be taken into account; where (i) g/kg or g/L. Normally the rate should be given for the active substance (according to ISO) and not for the variant in order to compare the rate for same active substances used in

(b) Outdoor or field use (F), greenhouse application (G) or indoor application (I)

(c) *e.g.* biting and sucking insects, soil born insects, foliar fungi, weeds

(d) *e.g.* wettable powder (WP), emulsifiable concentrate (EC), granule (GR)

(e) CropLife International Technical Monograph no 2, 6th Edition. Revised May 2008. Catalogue (j) of pesticide

(f) All abbreviations used must be explained

(g) Method, e.g. high volume spraying, low volume spraying, spreading, dusting, drench

- (h) Kind, *e.g.* overall, broadcast, aerial spraying, row, individual plant, between the plant- type of equipment used must be indicated
- g/kg or g/L. Normally the rate should be given for the active substance (according to ISO) and not for the variant in order to compare the rate for same active substances used in different variants (e.g. fluoroxypyr). In certain cases, where only one variant is synthesised, it is more appropriate to give the rate for the variant (e.g. benthiavalicarb-isopropyl).

(j) Growth stage range from first to last treatment (BBCH Monograph, Growth Stages of Plants, 1997, Blackwell, ISBN 3-8263-3152-4), including where relevant, information on season at time of application

(k) Indicate the minimum and maximum number of applications possible under practical conditions of use

 The values should be given in g or kg whatever gives the more manageable number (e.g. 200 kg/ha instead of 200 000 g/ha or 12.5 g/ha instead of 0.0125 kg/ha

(m) PHI - minimum pre-harvest interval

Summary of representative uses evaluated for Rotam, for which all risk assessments needed to be completed (*dicamba*) (Regulation (EU) N° 284/2013, Annex Part A, points 3, 4)

					Prepa	ration		Applic	ation		Applicat	tion rate p ment	er treat-		
Crop and/or situa- tion (a)	Member State or Country	Product name	F G or I (b)	Pests or Group of pests controlled (C)	Type (d-f)	Conc. a.s. (i)	method kind (f-h)	range of growth stages & season (j)	number min-max (k)	Interval between application (min)	kg, L product / ha a) max. rate per appl. b) max. total rate per crop/sea- son	Water L/ha min-max	kg a.s./ha min-max (I)	PHI (days) (m)	Remarks
Maize	CZ, HU, PL, RO, SK	OCEAL/ FH-048	F	Dicot and monocot weed plants	SG	700 g/kg	Over- all spray- ing	BBCH 12-18	1	-	a) 0.4 b) 0.4	200- 400	a) 280 b) 280	60	
Maize	ES, GR, IT	OCEAL/ FH-048	F	Dicot and monocot weed plants	SG	700 g/kg	Over- all spray- ing	BBCH 12-18	1	-	a) 0.4 b) 0.4	200- 400	a) 280 b) 280	60	
Maize	FR	OCEAL/ FH-048	F	Dicot and monocot weed plants	SG	700 g/kg	Over- all spray- ing	BBCH 12-18	1	-	a) 0.4 b) 0.4	200- 400	a) 280 b) 280	60	

- (a) For crops, the EU and Codex classifications (both) should be taken into account; where (i) g/kg or g/L. Normally the rate should be given for the active substance (according to ISO) and not for the variant in order to compare the rate for same active substances used in
- (b) Outdoor or field use (F), greenhouse application (G) or indoor application (I)
- (c) *e.g.* biting and sucking insects, soil born insects, foliar fungi, weeds
- (d) e.g. wettable powder (WP), emulsifiable concentrate (EC), granule (GR)
- (e) CropLife International Technical Monograph no 2, 6th Edition. Revised May 2008. Catalogue (j) of pesticide
- (f) All abbreviations used must be explained
- (g) Method, e.g. high volume spraying, low volume spraying, spreading, dusting, drench
- (h) Kind, *e.g.* overall, broadcast, aerial spraying, row, individual plant, between the plant- type of equipment used must be indicated
- (i) g/kg or g/L. Normally the rate should be given for the active substance (according to ISO) and not for the variant in order to compare the rate for same active substances used in different variants (e.g. fluoroxypyr). In certain cases, where only one variant is synthesised, it is more appropriate to give the rate for the variant (e.g. benthiavalicarb-isopropyl).
- (j) Growth stage range from first to last treatment (BBCH Monograph, Growth Stages of Plants, 1997, Blackwell, ISBN 3-8263-3152-4), including where relevant, information on season at time of application
- (k) Indicate the minimum and maximum number of applications possible under practical conditions of use
- The values should be given in g or kg whatever gives the more manageable number (e.g. 200 kg/ha instead of 200 000 g/ha or 12.5 g/ha instead of 0.0125 kg/ha
- (m) PHI minimum pre-harvest interval

1.5.2 Further information on representative uses

For the Annex I renewal of dicamba, the representative uses are in maize (FH-048) and maize, sorghum and small grain cereals (A7245B) for the control of annual and perennial broadleaved weeds.

Following normal harvest of an autumn or spring treated crop no restrictions apply. Waiting period for replacement crops in case of failure of a crop treated with dicamba may apply but will depend on dose, timing and succeeding crops. Recommendations for succeeding crops will be available on national labels.

1.5.3 Details of other uses applied for to support the setting of MRLs for uses beyond the representative uses

Rotam: There are no other uses for dicamba than maize in the registrations of Rotam.

Syngenta: Plese refer to the table under 1.5.4.

1.5.4 Overview on authorisations in EU Member States

Rotam:

COUNTRY	PRODUCT NAME	CROP	TARGET PEST	REGISTRATION NUMBER
Central EU				
Czech Republic	OCEAL, PONANT	Maize	Weeds	5166-0; 5166-1
Germany	OCEAL	Maize	Weeds	007481-00
Hungary	OCEAL, MINERVE, PO- NANT	Maize	Weeds	04.2/1131-1/2014
Poland	OCEAL 700SG, VERMEIL 700SG	Maize	Weeds	R-44/2014, R- 175/2014
Romania	OCEAL	Maize	Weeds	077PC
Slovakia	OCEAL	Maize	Weeds	11-11-1463
UK	OCEAL	Maize	Weeds	15618
North EU				
-				
South EU				
France	OCEAL, MINERVE, VER- MEIL	Maize	Weeds	2130066
Greece	OCEAL, MINERVE, PO- NANT	Maize	Weeds	70099, 70100, 70126
Italy	OCEAL, MINERVE	Maize	Weeds	15288, 16232
Spain	OCEAL	Maize	Weeds	25-813

Since the AIR dossier submission, Rotam got registration in Austria (registration n°3835), Croatia (registration n°UP/I-320-20/16-03/196) and Portugal (registration n° 00848), still on maize at the same application dose rate.

Syngenta:

BANVEL 480 SL (A7254B)

A7254B is an SL formulation containing 480 g/L dicamba

1	2	3	4	5	6	7	8	9	10	11	12	13	14
						Applicatio	on		A	oplication rate			
Us e No.	Member state(s)	Crop and/or sit- uation (crop desti- nation/ pur- pose of crop)	F G r I	Pests or Group of pests con- trolled (additionally: developmental stages of the pest or pest group)	Method/ Kind	Timing/Growth stage of crop & season	Max. Num- ber a) per use b) per crop/ season	Minimum interval be- tween ap- plications (days)	L A7254B / ha a) max. rate per appl. b) max. to- tal rate per crop/season	kg Dicamba / ha a) max. rate per appl. b) max. to- tal rate per crop/season	Water L/ha min/ma x	PHI (days)	Remarks: e.g. safener/syn- ergist per ha
1	France	Maize	F	Dicot and monocot weed plants	Foliar spray	BBCH 12-19	1/2*	14-30	0.6	0.288	200-500		*FR Split rate
2	France	Maize	F	Dicot and monocot weed plants	Foliar spray	BBCH 12-19	1/2*	14-30	0.6	0.288	200-500		*FR Split rate
3	Greece	Maize	F	Dicot and monocot weed plants	Foliar spray	BBCH 12-19	1	n/a	0.6	0.288	200-500		PHI determined by growth stage at application and time to har- vestable crop
4	Italy	Maize	F	Dicot and monocot weed plants	Foliar spray	BBCH 12-19	1	n/a	0.6	0.288	200-500		PHI determined by growth stage at application and time to har- vestable crop
5	Portugal	Maize	F	Dicot and monocot weed plants	Foliar spray	BBCH 12-19	1	n/a	0.6	0.288	200-500		PHI determined by growth stage at application and time to har- vestable crop
6	Spain	Maize	F	Dicot and monocot weed plants	Foliar spray	BBCH 12-19	1	n/a	0.6	0.288	200-500		PHI determined by growth stage at application and time to har- vestable crop
7	Italy	Sorghum	F	Dicot and monocot weed plants	Foliar spray	BBCH 12-18	1	n/a	0.44	0.21	200-400		PHI determined by growth stage at application and time to har- vestable crop

1	2	3	4	5	6	7	8	9	10	11	12	13	14
		_				Applicatio	n		Ar	plication rate			
Us e No.	Member state(s)	Crop and/or sit- uation (crop desti- nation/ pur- pose of crop)	F G r I	Pests or Group of pests con- trolled (additionally: developmental stages of the pest or pest group)	Method/ Kind	Timing/Growth stage of crop & season	Max. Num- ber a) per use b) per crop/ season	Minimum interval be- tween ap- plications (days)	L A7254B / ha a) max. rate per appl. b) max. to- tal rate per crop/season	kg Dicamba / ha a) max. rate per appl. b) max. to- tal rate per crop/season	Water L/ha min/ma x	PHI (days)	Remarks: e.g. safener/syn- ergist per ha
8	Spain	Wheat (inc durum wheat)	F	Dicot and monocot weed plants	Foliar spray	BBCH 10-32	1	n/a	0.25	0.12	200-400		PHI determined by growth stage at application and time to har- vestable crop
9	Italy	Wheat (inc durum wheat)	F	Dicot and monocot weed plants	Foliar spray	BBCH 10-32	1	n/a	0.25	0.12	200-400		PHI determined by growth stage at application and time to har- vestable crop
10	France	Fallow land (inter- crops, Set aside)	F	Dicot and monocot weed plants	Foliar spray	Spring /Summer	1	n/a	0.3-0.6	0.144- 0.288	100-400		PHI determined by growth stage at application and time to har- vestable crop
11	France	Fallow land (inter- crops, Set aside)	F	Dicot and monocot weed plants	Foliar spray	Spring /Summer	1	n/a	0.3-0.6	0.144- 0.288	100-400		PHI determined by growth stage at application and time to har- vestable crop
12	France	Stubbles	F	Dicot and monocot weed plants	Foliar spray	Post harvest	1	n/a	0.6	0.288	200-400		no restriction on rotation. Possi- bility to apply every year. Up to end October
13	France	Stubbles	F	Dicot and monocot weed plants	Foliar spray	Post harvest	1	n/a	0.6	0.288	200-400		no restriction on rotation. Possi- bility to apply every year. Up to end October
14	Italy	Stubbles	F	Dicot and monocot weed plants	Foliar spray	Post harvest	1	n/a	0.6	0.288	200-400		no restriction on rotation. Possi- bility to apply every year. Up to end October
15	France	Pasture, Grassland	F	Rumex sp	Foliar spray	Spring / Summer	2	42	1	0.48	200-400	14	

1	2	3	4	5	6	7	8	9	10	11	12	13	14
	-		<u> </u>		~	Applicatio			-	oplication rate			
Us e No.	Member state(s)	Crop and/or sit- uation (crop desti- nation/ pur- pose of crop)	F G r I	Pests or Group of pests con- trolled (additionally: developmental stages of the pest or pest group)	Method/ Kind	Timing/Growth stage of crop & season	Max. Num- ber a) per use b) per crop/ season	Minimum interval be- tween ap- plications (days)	L A7254B / ha a) max. rate per appl. b) max. to- tal rate per crop/season	kg Dicamba / ha a) max. rate per appl. b) max. to- tal rate per crop/season	Water L/ha min/ma x	PHI (days)	Remarks: e.g. safener/syn- ergist per ha
16	France	Pasture, Grassland	F	Rumex sp	Foliar spray	Spring / Summer	2	42	1	0.48	200-400	14	
17	France	Rye grass	F	Dicot and monocot weed plants	Foliar spray	Spring /Summer	1	n/a	1	0.48	100-400	14	
18	France	Rye grass	F	Dicot and monocot weed plants	Foliar spray	Spring /Summer	1	n/a	1	0.48	100-400	14	
19	Belgium	Maize	F	Dicot and monocot weed plants	Foliar spray	BBCH 12-19	1		0.6	0.288	200-500		
20	Czech Re- public	Maize	F	Dicot and monocot weed plants	Foliar spray	BBCH 12-19	1	n/a	0.6	0.288	200-500		PHI determined by growth stage at application and time to har- vestable crop
21	Slovakia	Maize	F	Dicot and monocot weed plants	Foliar spray	BBCH 12-19	1	n/a	0.6	0.288	200-500		PHI determined by growth stage at application and time to har- vestable crop
22	Hungary	Maize	F	Dicot and monocot weed plants	Foliar spray	BBCH 12-19	1	n/a	0.6	0.288	200-500		PHI determined by growth stage at application and time to har- vestable crop
23	Nether- lands	Maize	F	Dicot and monocot weed plants	Foliar spray	BBCH 12-19	1	n/a	0.6	0.288	200-500		PHI determined by growth stage at application and time to har- vestable crop
24	Romania	Maize	F	Dicot and monocot weed plants	Foliar spray	BBCH 12-19	1	n/a	0.4	0.192	200-500		To be used with a graminicide. PHI determined by growth stage at application and time to har- vestable crop
25	Slovenia	Maize	F	Dicot and monocot weed plants	Foliar spray	BBCH 12-19	1	n/a	0.6	0.288	200-500		PHI determined by growth stage at application and time to har- vestable crop

1	2	3	4	5	6	7	8	9	10	11	12	13	14
		-		-		Applicatio	-	· · ·	-	plication rate			
Us e No.	Member state(s)	Crop and/or sit- uation (crop desti- nation/ pur- pose of crop)	F G r I	Pests or Group of pests con- trolled (additionally: developmental stages of the pest or pest group)	Method/ Kind	Timing/Growth stage of crop & season	Max. Num- ber a) per use b) per crop/ season	Minimum interval be- tween ap- plications (days)	L A7254B / ha a) max. rate per appl. b) max. to- tal rate per crop/season	kg Dicamba / ha a) max. rate per appl. b) max. to- tal rate per crop/season	Water L/ha min/ma x	PHI (days)	Remarks: e.g. safener/syn- ergist per ha
26	Romania	Maize	F	Dicot and monocot weed plants	Foliar spray	BBCH 12-19	1	n/a	0.6	0.288	200-500		PHI determined by growth stage at application and time to har- vestable crop
27	Hungary	Sorghum	F	Dicot and monocot weed plants	Foliar spray	BBCH 12-18	1	n/a	0.44	0.21	200-400		PHI determined by growth stage at application and time to har- vestable crop
28	Slovenia	Sorghum	F	Dicot and monocot weed plants	Foliar spray	BBCH 12-18	1	n/a	0.44	0.21	200-400		PHI determined by growth stage at application and time to har- vestable crop
29	Belgium	Fallow land (inter- crops, Set aside)	F	Dicot and monocot weed plants	Foliar spray		1	n/a	1	0.48	100-400		PHI determined by growth stage at application and time to har- vestable crop
30	Czech Re- public	Fallow land (inter- crops, Set aside)	F	Dicot and monocot weed plants	Foliar spray	Spring / Summer	1	n/a	1	0.48	100-400		PHI determined by growth stage at application and time to har- vestable crop
31	Hungary	Total Weed control (non crop land)	F	Dicot and monocot weed plants	Foliar spray	Spring / Summer	1	n/a	0.75	0.36	200-400	n/a	15-25 cm growth stage of the weeds. It means that 50-60 % of the soil is cov- ered.
32	Slovenia	Total Weed control (non crop land)	F	Dicot and monocot weed plants			1	n/a	0.75	0.36	200-400	n/a	15-25 cm growth stage of the weeds. It means that 50-60 % of the soil is cov- ered.

1	2	3	4	5	6	7	8	9	10	11	12	13	14
						Applicatio	n	·	A	oplication rate			
Us e No.	Member state(s)	Crop and/or sit- uation (crop desti- nation/ pur- pose of crop)	F G r I	Pests or Group of pests con- trolled (additionally: developmental stages of the pest or pest group)	Method/ Kind	Timing/Growth stage of crop & season	Max. Num- ber a) per use b) per crop/ season	Minimum interval be- tween ap- plications (days)	L A7254B / ha a) max. rate per appl. b) max. to- tal rate per crop/season	kg Dicamba / ha a) max. rate per appl. b) max. to- tal rate per crop/season	Water L/ha min/ma x	PHI (days)	Remarks: e.g. safener/syn- ergist per ha
33	Hungary	Stubbles	F	Dicot and monocot weed plants	Foliar spray	Post harvest	1	n/a	0.75	0.36	200-400	n/a	It means that once in every 3 years the stubble use is possible, only.
34	Slovenia	Stubbles	F	Dicot and monocot weed plants	Foliar spray	Post harvest	1	n/a	0.75	0.36	200-400	n/a	no restriction on rotation. Possi- bility to apply every year.
35	Belgium	Pasture, Grassland	F	Dicot and monocot weed plants	Foliar spray	Spring / Summer	2	n/a	1	0.48	200-400	14	
36	UK	Pasture, Grassland	F	Dicot and monocot weed plants	Foliar spray	Spring / Summer	2	n/a	1	0.48	200-400	14	
37	Estonia	Maize	F	Dicot and monocot weed plants	Foliar spray	BBCH 12-19	1	n/a	0.6	0.288	200-500		PHI determined by growth stage at application and time to har- vestable crop
38	Latvia	Maize	F	Dicot and monocot weed plants	Foliar spray	BBCH 12-19	1	n/a	0.6	0.288	200-500		PHI determined by growth stage at application and time to har- vestable crop
37	Lithuania	Maize	F	Dicot and monocot weed plants	Foliar spray	BBCH 12-19	1	n/a	0.6	0.288	200-500		PHI determined by growth stage at application and time to har- vestable crop
38	Estonia	Oat	F	Dicot and monocot weed plants	Foliar spray	BBCH 21-29	1	n/a	0.2	0.096	200-400		PHI determined by growth stage at application and time to har- vestable crop

1	2	3	4	5	6	7	8	9	10	11	12	13	14
						Applicatio				oplication rate		-	
Us e No.	Member state(s)	Crop and/or sit- uation (crop desti- nation/ pur- pose of crop)	F G r I	Pests or Group of pests con- trolled (additionally: developmental stages of the pest or pest group)	Method/ Kind	Timing/Growth stage of crop & season	Max. Num- ber a) per use b) per crop/ season	Minimum interval be- tween ap- plications (days)	L A7254B / ha a) max. rate per appl. b) max. to- tal rate per crop/season	kg Dicamba / ha a) max. rate per appl. b) max. to- tal rate per crop/season	Water L/ha min/ma x	PHI (days)	Remarks: e.g. safener/syn- ergist per ha
39	Latvia	Oat	F	Dicot and monocot weed plants	Foliar spray	BBCH 21-29	1	n/a	0.2	0.096	200-400		PHI determined by growth stage at application and time to har- vestable crop
40	Lithuania	Oat	F	Dicot and monocot weed plants	Foliar spray	BBCH 21-29	1	n/a	0.2	0.096	200-400		PHI determined by growth stage at application and time to har- vestable crop
41	Estonia	Barley	F	Dicot and monocot weed plants	Foliar spray	BBCH 21-29	1	n/a	0.2	0.096	200-400		PHI determined by growth stage at application and time to har- vestable crop
42	Latvia	Barley	F	Dicot and monocot weed plants	Foliar spray	BBCH 21-29	1	n/a	0.2	0.096	200-400		PHI determined by growth stage at application and time to har- vestable crop
43	Lithuania	Barley	F	Dicot and monocot weed plants	Foliar spray	BBCH 21-29	1	n/a	0.2	0.096	200-400		PHI determined by growth stage at application and time to har- vestable crop
44	Estonia	Wheat (inc durum wheat)	F	Dicot and monocot weed plants	Foliar spray	BBCH 21-29	1	n/a	0.2	0.096	200-400		PHI determined by growth stage at application and time to har- vestable crop
45	Latvia	Wheat (inc durum wheat)	F	Dicot and monocot weed plants	Foliar spray	BBCH 21-29	1	n/a	0.2	0.096	200-400		PHI determined by growth stage at application and time to har- vestable crop

1	2	3	4	5	6	7	8	9	10	11	12	13	14
		-			-	Applicatio				oplication rate			
Us e No.	Member state(s)	Crop and/or sit- uation (crop desti- nation/ pur- pose of crop)	F G r I	Pests or Group of pests con- trolled (additionally: developmental stages of the pest or pest group)	Method/ Kind	Timing/Growth stage of crop & season	Max. Num- ber a) per use b) per crop/ season	Minimum interval be- tween ap- plications (days)	L A7254B / ha a) max. rate per appl. b) max. to- tal rate per crop/season	kg Dicamba / ha a) max. rate per appl. b) max. to- tal rate per crop/season	Water L/ha min/ma x	PHI (days)	Remarks: e.g. safener/syn- ergist per ha
46	Lithuania	Wheat (inc durum wheat)	F	Dicot and monocot weed plants	Foliar spray	BBCH 21-29	1	n/a	0.2	0.096	200-400		PHI determined by growth stage at application and time to har- vestable crop
47	Estonia	Rye	F	Dicot and monocot weed plants	Foliar spray	BBCH 21-29	1	n/a	0.2	0.096	200-400		PHI determined by growth stage at application and time to har- vestable crop
48	Latvia	Rye	F	Dicot and monocot weed plants	Foliar spray	BBCH 21-29	1	n/a	0.2	0.096	200-400		PHI determined by growth stage at application and time to har- vestable crop
49	Lithuania	Rye	F	Dicot and monocot weed plants	Foliar spray	BBCH 21-29	1	n/a	0.2	0.096	200-400		PHI determined by growth stage at application and time to har- vestable crop
50	Estonia	Triticale	F	Dicot and monocot weed plants	Foliar spray	BBCH 21-29	1	n/a	0.2	0.096	200-400		PHI determined by growth stage at application and time to har- vestable crop
51	Latvia	Triticale	F	Dicot and monocot weed plants	Foliar spray	BBCH 21-29	1	n/a	0.2	0.096	200-400		PHI determined by growth stage at application and time to har- vestable crop
52	Lithuania	Triticale	F	Dicot and monocot weed plants	Foliar spray	BBCH 21-29	1	n/a	0.2	0.096	200-400		PHI determined by growth stage at application and time to har- vestable crop

1	2	3	4	5	6	7	8	9	10	11	12	13	14
						Applicatio	n		A	oplication rate			
Us e No.	Member state(s)	Crop and/or sit- uation (crop desti- nation/ pur- pose of crop)	F G r I	Pests or Group of pests con- trolled (additionally: developmental stages of the pest or pest group)	Method/ Kind	Timing/Growth stage of crop & season	Max. Num- ber a) per use b) per crop/ season	Minimum interval be- tween ap- plications (days)	L A7254B / ha a) max. rate per appl. b) max. to- tal rate per crop/season	kg Dicamba / ha a) max. rate per appl. b) max. to- tal rate per crop/season	Water L/ha min/ma x	PHI (days)	Remarks: e.g. safener/syn- ergist per ha
53	Latvia	Fallow land (inter- crops, Set aside)	F	Dicot and monocot weed plants	Foliar spray	Spring / Summer	1	n/a	1	0.48	100-400		PHI determined by growth stage at application and time to har- vestable crop
54	Estonia	Total Weed control (non crop land)	F	Dicot and monocot weed plants	Foliar spray	Spring / Summer	1	n/a	0.75	0.36	200-400	n/a	15-25 cm growth stage of the weeds. It means that 50-60 % of the soil is cov- ered.
55	Estonia	Stubbles	F	Dicot and monocot weed plants	Foliar spray	Post harvest	1	n/a	0.75	36	200-400	n/a	no restriction on rotation. Possi- bility to apply every year.

Volume 1 – Level 1

MONDAK 240 SL (A10037A)

A10037A is an SL formulation containing 240 g/L dicamba

1	2	3	4	5	6	7	8	9	10	11	12	13	14
Use No.	Mem- ber state(s)	Crop and/or sit- uation (crop desti- nation/ purpose of crop)	F G or I	Pests or Group of pests con- trolled (additionally: developmen- tal stages of the pest or	Method/ Kind	Applicat Timing/Growth stage of crop & season	1	Minimum interval be- tween ap- plications (days)	L A10037A / ha a) max. rate per appl. b) max. total rate per crop/season	Application rate kg dicamba / ha a) max. rate per appl. b) max. total rate per crop/season	Water L/ha min/max	PHI (days)	Remarks: e.g. safener/syn- ergist per ha
1	Italy	Maize	F	Dicot and monocot weed plants	Foliar spray	BBCH 12 –18	1/2*	N/A	1.2	0.288	200-500	N/A	* FR split dose option (192+96) PHI determined by growth stage at application and time to har- vestable crop
2	Italy	Sorghum	F	Dicot and monocot weed plants	Foliar spray	BBCH 12-18	1	N/A	0.75	0.18	200-400	N/A	PHI determined by growth stage at application and time to har- vestable crop
3	Italy	Stubble	F	Dicot and monocot weed plants	Foliar spray	Spring/summer Post harvest	1	N/A	1.2	0.288	200-400	N/A	No restriction on rotation. Possibility to apply every year
4	Italy	Total weeds con- trol	F	Dicot and monocot weed plants	Foliar spray	Spring/summer	1	N/A	0.6	0.144	200-400	N/A	Intercrop No restriction on rotation. Possibility to apply every year

CADENCE 70 WG (A9781A)

A9781A is a WG formulation containing 700 g/kg dicamba

1	2	3	4	5	6	7	8	9	10	11	12	13	14
						Applica	tion		Ap	oplication rate			
Use No.	Mem- ber state(s)	Crop and/or sit- uation (crop desti- nation/ purpose of crop)	F G or I	Pests or Group of pests controlled (additionally: de- velopmental stages of the pest or pest group)	Method/ Kind	Tim- ing/Growth stage of crop & season	Max. Num- ber a) per use b) per crop/ season	Minimum interval be- tween ap- plications (days)	kg A9781A / ha a) max. rate per appl. b) max. to- tal rate per crop/sea- son	kg Dicamba / ha a) max. rate per appl. b) max. to- tal rate per crop/sea- son	Water L/ha min/max	PHI (days)	Remarks: e.g. safener/syner- gist per ha
1	France	Maize	F	Dicot weed plants	Foliar spray	BBCH 12-19	1	n/a	0.41	0.288	200-400		PHI determined by growth stage at ap- plication and time to harvestable crop
2	France	Maize	F	Dicot weed plants	Foliar	BBCH 12-19	1	n/a	0.41	0.288	200-400		PHI determined by growth stage at ap- plication and time to harvestable crop
3	Austria	Maize (inc sweetcorn)	F	Dicot weed plants	Foliar spray	BBCH 12-19	1	n/a	0.41	0.288	200-400		PHI determined by growth stage at ap- plication and time to harvestable crop
4	Czech Repub- lic	Maize	F	Dicot weed plants	Foliar spray	BBCH 12-19	1	n/a	0.41	0.288	200-400		PHI determined by growth stage at ap- plication and time to harvestable crop
5	Hungary	Maize	F	Dicot weed plants	Foliar spray	BBCH 12-19	1	n/a	0.41	0.288	200-400		PHI determined by growth stage at ap- plication and time to harvestable crop
6	France	Fallow land (inter- crops, Set aside)	F	Dicot weed plants	Foliar spray	Spring /Sum- mer	1	n/a	0.2-0.4	0.140- 0.280	100-400		PHI determined by growth stage at ap- plication and time to harvestable crop

1	2	3	4	5	6	7	8	9	10	11	12	13	14
						Applica	tion		Aŗ	oplication rate			
Use No.	Mem- ber state(s)	Crop and/or sit- uation (crop desti- nation/ purpose of crop)	F G or I	Pests or Group of pests controlled (additionally: de- velopmental stages of the pest or pest group)	Method/ Kind	Tim- ing/Growth stage of crop & season	Max. Num- ber a) per use b) per crop/ season	Minimum interval be- tween ap- plications (days)	kg A9781A / ha a) max. rate per appl. b) max. to- tal rate per crop/sea- son	kg Dicamba / ha a) max. rate per appl. b) max. to- tal rate per crop/sea- son	Water L/ha min/max	PHI (days)	Remarks: e.g. safener/syner- gist per ha
7	France	Fallow land (inter- crops, Set aside)	F	Dicot weed plants	Foliar spray	Spring /Sum- mer	1	n/a	0.2-0.4	0.140- 0.280	100-400		PHI determined by growth stage at ap- plication and time to harvestable crop
8	Austria	Sorghum	F	Dicot weed plants	Foliar spray	BBCH 12-18	1	n/a	0.3	0.21	200-400		PHI determined by growth stage at ap- plication and time to harvestable crop
9	Hungary	Sorghum	F	Dicot weed plants	Foliar spray	BBCH 12-18	1	n/a	0.3	0.21	200-400		PHI determined by growth stage at ap- plication and time to harvestable crop
10	France	Stubbles	F	Dicot weed plants	Foliar spray	Post harvest	1	n/a	0.4	0.28	200-400	n/a	no restriction on ro- tation. Possibility to apply every year
11	France	Stubbles	F	Dicot weed plants	Foliar spray	Post harvest	1	n/a	0.4	0.28	200-400	n/a	no restriction on ro- tation. Possibility to apply every year.

SPANDIS/DINIRO (A18385B)

A18385 is a WG formulation containing 400 g/kg dicamba + 40 g/kg prosulfuron + 100 g/kg nicosulfuron

1	2	3	4	5	6	7	8	9	10	11	11	11	12	13	14
Use-	Member	Crop	F, Fn,	Pests or Group of		Applicati	on			Appl	ication rate			PHI	Remarks:
No. (e)	state(s)	and/ or situ- ation	Fpn G, Gn, Gpn	pests controlled (additionally: devel- opmental stages of	Kind	Timing / Growth stage of crop & season	Max. number a) per use	Min. in- terval be- tween ap- plications	kg A18385B/ ha	g prosulfu- ron/ha a) max. rate per	g nicosulfu- ron/ha	g dicamba/ ha	Water L/ha	(days)	e.g. g saf- ener/synergist per ha
		(crop desti- nation / pur- pose of	or I	the pest or pest group)			b) per crop/ sea- son	(days)	per appl. b) max. total	appl.	a) max. faceper appl.b) max. totalrate percrop/season	a) max. rate per appl. b) max. total rate per crop/season	max		(1)
Zona	l uses (field	crop) Lor outde	or uses	, certain types of prot	ected crops)										
1	AT	Maize	F	Annual/ perennial broad leave weeds and grasses	Foliar spray	BBCH 12-18	1 (1 appl. every 3rd year)	N/A	a) 0.4 b) 0.4	a) 16 b) 16	a) 40 b) 40	a) 160 b) 160	200- 400	n.s.	tank-mixed oil- based adjuvant needed (e.g Adigor@ 1.0- 1.5L/ha)
1	BE	Maize	F	Annual/ perennial broad leave weeds and grasses	Foliar spray	BBCH 12-18	1 (1 appl. every 3rd year)	N/A	a) 0.4 b) 0.4	a) 16 b) 16	a) 40 b) 40	a) 160 b) 160	200- 400	n.s.	proportional mit- igation; tank- mixed oil-based adjuvant needed (e.g Adigor@ 1.0-1.5L/ha)
1	CZ	Maize	F	Annual/ perennial broad leave weeds and grasses	Foliar spray	BBCH 12-18	1 (1 appl. every 3rd year)	N/A	a) 0.4 b) 0.4	a) 16 b) 16	a) 40 b) 40	a) 160 b) 160	200- 400	n.s.	proportional mit- igation; tank- mixed oil-based adjuvant needed (e.g Adigor@ 1.0-1.5L/ha)
1	HU	Maize	F	Annual/ perennial broad leave weeds and grasses	Foliar spray	BBCH 12-18	1 (1 appl. every 3rd year)	N/A	a) 0.5 b) 0.5	a) 20 b) 20	a) 50 b) 50	a) 200 b) 200	200- 400	n.s.	tank-mixed oil- based adjuvant needed (e.g Adigor@ 1.0- 1.5L/ha)
1	HU	Maize	F	Annual/ perennial broad leave weeds and grasses	Foliar spray	BBCH 12-18	1 (1 appl. every 3rd year)	N/A	a) 0.4 b) 0.4	a) 16 b) 16	a) 40 b) 40	a) 160 b) 160	200- 400	n.s.	proportional mit- igation; tank- mixed oil-based adjuvant needed

1	2	3	4	5	6	7	8	9	10	11	11	11	12	13	14
Use-	Member	Crop	F, Fn,	Pests or Group of		Applicati	on			Appl	ication rate			PHI	Remarks:
No. (e)	state(s)	and/ or situ- ation (crop desti- nation / pur- pose of crop)	Fpn G, Gn, Gpn or I	pests controlled (additionally: devel- opmental stages of the pest or pest group)	Method / Kind	Timing / Growth stage of crop & season	Max. number a) per use b) per crop/ sea- son	Min. in- terval be- tween ap- plications (days)	per appl. b) max. total	g prosulfu- ron/ha a) max. rate per appl. b) max. total rate per crop/season	per appl.	g dicamba/ ha a) max. rate per appl. b) max. total rate per crop/season	Water L/ha min / max	(days)	e.g. g saf- ener/synergist per ha (f)
															(e.g Adigor@ 1.0-1.5L/ha)
1	NL	Maize	F	Annual/ perennial broad leave weeds and grasses	Foliar spray	BBCH 12-18	1 (1 appl. every 3rd year)	N/A	a) 0.4 b) 0.4	a) 16 b) 16	a) 40 b) 40	a) 160 b) 160	200- 400	n.s.	tank-mixed oil- based adjuvant needed (e.g Adigor@ 1.0- 1.5L/ha)
1	RO	Maize	F	Annual/ perennial broad leave weeds and grasses	Foliar spray	BBCH 12-18	1 (1 appl. every 3rd year)	N/A	a) 0.5 b) 0.5	a) 20 b) 20	a) 50 b) 50	a) 200 b) 200	200- 400	n.s.	tank-mixed oil- based adjuvant needed (e.g Adigor@ 1.0- 1.5L/ha)
1	RO	Maize	F	Annual/ perennial broad leave weeds and grasses	Foliar spray	BBCH 12-18	1 (1 appl. every 3rd year)	N/A	a) 0.4 b) 0.4	a) 16 b) 16	a) 40 b) 40	a) 160 b) 160	200- 400	n.s.	proportional mit- igation; tank- mixed oil-based adjuvant needed (e.g Adigor@ 1.0-1.5L/ha)
1	SI	Maize	F	Annual/ perennial broad leave weeds and grasses	Foliar spray	BBCH 12-18	1 (1 appl. every 3rd year)	N/A	a) 0.4 b) 0.4	a) 16 b) 16	a) 40 b) 40	a) 160 b) 160	200- 400	n.s.	proportional mit- igation; tank- mixed oil-based adjuvant needed (e.g Adigor@ 1.0-1.5L/ha)
1	SK	Maize	F	Annual/ perennial broad leave weeds and grasses	Foliar spray	BBCH 12-18	l (1 appl. every 3rd year)	N/A	a) 0.5 b) 0.5	a) 20 b) 20	a) 50 b) 50	a) 200 b) 200	200- 400	n.s.	tank-mixed oil- based adjuvant needed (e.g Adigor@ 1.0- 1.5L/ha)

1	2	3	4	5	6	7	8	9	10	11	11	11	12	13	14
Use-	Member	Crop	F, Fn,	Pests or Group of		Applicati	ion			Appl	ication rate			PHI	Remarks:
No. (e)	state(s)	and/ or situ- ation (crop desti- nation / pur- pose of crop)	Fpn G, Gn, Gpn or I	pests controlled (additionally: devel- opmental stages of the pest or pest group)	Method / Kind	Timing / Growth stage of crop & season	Max. number a) per use b) per crop/ sea- son	Min. in- terval be- tween ap- plications (days)	per appl. b) max. total	g prosulfu- ron/ha a) max. rate per appl. b) max. total rate per crop/season	per appl.	g dicamba/ ha a) max. rate per appl. b) max. total rate per crop/season	Water L/ha min / max	(days)	e.g. g saf- ener/synergist per ha (i)
1	SK	Maize	F	Annual/ perennial broad leave weeds and grasses	Foliar spray	BBCH 12-18	l (1 appl. every 3rd year)	N/A	a) 0.4 b) 0.4	a) 16 b) 16	a) 40 b) 40	a) 160 b) 160	200- 400	n.s.	proportional mit- igation; tank- mixed oil-based adjuvant needed (e.g Adigor@ 1.0-1.5L/ha)
1	UK	Maize	F	Annual/ perennial broad leave weeds and grasses	Foliar spray	BBCH 12-18	1 (1 appl. every 3rd year)	N/A	a) 0.4 b) 0.4	a) 16 b) 16	a) 40 b) 40	a) 160 b) 160	200- 400	n.s.	proportional mit- igation; tank- mixed oil-based adjuvant needed (e.g Adigor@ 1.0-1.5L/ha)
1	BG	Maize	F	Annual/ perennial broad leave weeds and grasses	Foliar spray	BBCH 12-18	l (1 appl. every 3rd year)	N/A	a) 0.5 b) 0.5	a) 20 b) 20	a) 50 b) 50	a) 200 b) 200	200- 400	n.s.	tank-mixed oil- based adjuvant needed (e.g Adigor@ 1.0- 1.5L/ha)
1	BG	Maize	F	Annual/ perennial broad leave weeds and grasses	Foliar spray	BBCH 12-18	l (1 appl. every 3rd year)	N/A	a) 0.4 b) 0.4	a) 16 b) 16	a) 40 b) 40	a) 160 b) 160	200- 400	n.s.	proportional mit- igation; tank- mixed oil-based adjuvant needed (e.g Adigor@ 1.0-1.5L/ha)
1	FR	Maize	F	Annual/perennial broad leave weeds and grasses	Foliar spray	BBCH 12-18	1 (1 appl. every 3rd year)	N/A	a) 0.5 b) 0.5	a) 20 b) 20	a) 50 b) 50	a) 200 b) 200	200- 400	n.s.	tank-mixed oil- based adjuvant needed (e.g Adigor@ 1.0- 1.5L/ha)
1	FR	Maize	F	Annual/ perennial broad leave weeds and grasses	Foliar spray	BBCH 12-18	l (1 appl. every	N/A	a) 0.4 b) 0.4	a) 16 b) 16	a) 40 b) 40	a) 160 b) 160	200- 400	n.s.	proportional mit- igation; tank- mixed oil-based

1	2	3	4	5	6	7	8	9	10	11	11	11	12	13	14
Use-	Member	Crop	F, Fn,	Pests or Group of		Applicati	ion	-		Appl	ication rate		-	PHI	Remarks:
No. (e)	state(s)	and/ or situ- ation (crop desti- nation / pur- pose of crop)	Fpn G, Gn, Gpn or I	pests controlled (additionally: devel- opmental stages of the pest or pest group)	Method / Kind	Timing / Growth stage of crop & season	Max. number a) per use b) per crop/ sea- son	Min. in- terval be- tween ap- plications (days)	per appl.	g prosulfu- ron/ha a) max. rate per appl. b) max. total rate per crop/season	per appl.	per appl.	Water L/ha min / max	(days)	e.g. g saf- ener/synergist per ha (f)
							3rd year)								adjuvant needed (e.g Adigor@ 1.0-1.5L/ha)
1	GR	Maize	F	Annual/ perennial broad leave weeds and grasses	Foliar spray	BBCH 12-18	1 (1 appl. every 3rd year)	N/A	a) 0.5 b) 0.5	a) 20 b) 20	a) 50 b) 50	a) 200 b) 200	200- 400	n.s.	tank-mixed oil- based adjuvant needed (e.g Adigor@ 1.0- 1.5L/ha)
1	GR	Maize	F	Annual/ perennial broad leave weeds and grasses	Foliar spray	BBCH 12-18	1 (1 appl. every 3rd year)	N/A	a) 0.4 b) 0.4	a) 16 b) 16	a) 40 b) 40	a) 160 b) 160	200- 400	n.s.	proportional mit- igation; tank- mixed oil-based adjuvant needed (e.g Adigor@ 1.0-1.5L/ha)
1	IT	Maize	F	Annual/ perennial broad leave weeds and grasses	Foliar spray	BBCH 12-18	1 (1 appl. every 3rd year)	N/A	a) 0.5 b) 0.5	a) 20 b) 20	a) 50 b) 50	a) 200 b) 200	200- 400	n.s.	tank-mixed oil- based adjuvant needed (e.g Adigor@ 1.0- 1.5L/ha)
1	IT	Maize	F	Annual/ perennial broad leave weeds and grasses	Foliar spray	BBCH 12-18	1 (1 appl. every 3rd year)	N/A	a) 0.4 b) 0.4	a) 16 b) 16	a) 40 b) 40	a) 160 b) 160	200- 400	n.s.	proportional mit- igation; tank- mixed oil-based adjuvant needed (e.g Adigor@ 1.0-1.5L/ha)
1	HR	Maize	F	Annual/ perennial broad leave weeds and grasses	Foliar spray	BBCH 12-18	1 (1 appl. every 3rd year)	N/A	a) 0.5 b) 0.5	a) 20 b) 20	a) 50 b) 50	a) 200 b) 200	200- 400	n.s.	tank-mixed oil- based adjuvant needed (e.g Adigor@ 1.0- 1.5L/ha)

1	2	3	4	5	6	7	8	9	10	11	11	11	12	13	14
Use-	Member	Crop	F, Fn,	Pests or Group of		Applicati	ion	-		Appl	ication rate			PHI	Remarks:
No. (e)	state(s)	and/ or situ- ation (crop desti- nation / pur- pose of crop)	Fpn G, Gn, Gpn or I	pests controlled (additionally: devel- opmental stages of the pest or pest group)	Method / Kind	Timing / Growth stage of crop & season	Max. number a) per use b) per crop/ sea- son	Min. in- terval be- tween ap- plications (days)	per appl.	g prosulfu- ron/ha a) max. rate per appl. b) max. total rate per crop/season	per appl.	g dicamba/ ha a) max. rate per appl. b) max. total rate per crop/season	Water L/ha min / max	(days)	e.g. g saf- ener/synergist per ha ^(f)
1	HR	Maize	F	Annual/ perennial broad leave weeds and grasses	Foliar spray	BBCH 12-18	l (1 appl. every 3rd year)	N/A	a) 0.4 b) 0.4	a) 16 b) 16	a) 40 b) 40	a) 160 b) 160	200- 400	n.s.	proportional mit- igation; tank- mixed oil-based adjuvant needed (e.g Adigor@ 1.0-1.5L/ha)
1	МТ	Maize	F	Annual/ perennial broad leave weeds and grasses	Foliar spray	BBCH 12-18	1 (1 appl. every 3rd year)	N/A	a) 0.5 b) 0.5	a) 20 b) 20	a) 50 b) 50	a) 200 b) 200	200- 400	n.s.	tank-mixed oil- based adjuvant needed (e.g Adigor@ 1.0- 1.5L/ha)
1	MT	Maize	F	Annual/ perennial broad leave weeds and grasses	Foliar spray	BBCH 12-18	1 (1 appl. every 3rd year)	N/A	a) 0.4 b) 0.4	a) 16 b) 16	a) 40 b) 40	a) 160 b) 160	200- 400	n.s.	proportional mit- igation; tank- mixed oil-based adjuvant needed (e.g Adigor@ 1.0-1.5L/ha)
1	РТ	Maize	F	Annual/ perennial broad leave weeds and grasses	Foliar spray	BBCH 12-18	1 (1 appl. every 3rd year)	N/A	a) 0.5 b) 0.5	a) 20 b) 20	a) 50 b) 50	a) 200 b) 200	200- 400	n.s.	tank-mixed oil- based adjuvant needed (e.g Adigor@ 1.0- 1.5L/ha)
1	РТ	Maize	F	Annual/ perennial broad leave weeds and grasses	Foliar spray	BBCH 12-18	1 (1 appl. every 3rd year)	N/A	a) 0.4 b) 0.4	a) 16 b) 16	a) 40 b) 40	a) 160 b) 160	200- 400	n.s.	proportional mit- igation; tank- mixed oil-based adjuvant needed (e.g Adigor@ 1.0-1.5L/ha)
1	ES	Maize	F	Annual/ perennial broad leave weeds and grasses	Foliar spray	BBCH 12-18	1 (1 appl. every	N/A	a) 0.5 b) 0.5	a) 20 b) 20	a) 50 b) 50	a) 200 b) 200	200- 400	n.s.	tank-mixed oil- based adjuvant needed (e.g

1	2	3	4	5	6	7	8	9	10	11	11	11	12	13	14
Use- No. (e)	Member state(s)	Crop and/ or situ- ation (crop desti- nation / pur- pose of crop)	Fpn	Pests or Group of pests controlled (additionally: devel- opmental stages of the pest or pest group)	Method / Kind	Applicati Timing / Growth stage of crop & season	Max. number a) per use	Min. in- terval be- tween ap- plications (days)	a) max. rateper appl.b) max. total	g prosulfu- ron/ha a) max. rate per appl. b) max. total	ron/ha a) max. rate per appl. b) max. total	ha a) max. rate per appl.	Water L/ha min / max	(days)	Remarks: e.g. g saf- ener/synergist per ha (f)
							3rd year)								Adigor@ 1.0- 1.5L/ha)
1	ES	Maize	F	Annual/ perennial broad leave weeds and grasses	Foliar spray	BBCH 12-18	1 (1 appl. every 3rd year)	N/A	a) 0.4 b) 0.4	a) 16 b) 16	a) 40 b) 40	a) 160 b) 160	200- 400	n.s.	proportional mit- igation; tank- mixed oil-based adjuvant needed (e.g Adigor@ 1.0-1.5L/ha)

CALLISTO TURBO (A18032E)

A18032E is a WG formulation containing 312.5 g/kg dicamba + 150 g/kg mesotrione + 100 g/kg nicosulfuron

1	2	3	4	5	6	7	8		10	11	12	13	14
Use-	Mem-	Crop and/		Pests or Group of		Appli	ication		Ар	plication rate		PHI	Remarks:
No.	ber state(s)	or situation (crop destination / purpose of crop)	or	pests controlled (additionally: developmental stages of the pest or pest group)	Method / Kind	Timing / Growth stage of crop & season		terval be-		a) max. rate per appl.	Water L/ha min / max	(days)	e.g. g safener/synergist per ha
1	C-EU CZ, SK, SL, HU, RO SEU – FR, PT, ES, BG, HR	Maize	F	Annual/perennial BLW & grasses	Foliar Spray	BBCH 12-19	1	n/a	0.6	187.5 g dicamba 90 g meso- trione 60 g nico- sulfuron	80-400	nr	annually where soil clay content >10 %; split rate application possible tank-mixed oil-based adjuvant needed (e.g Adigor @ 1.0- 1.5L/ha)
2	CZ	Maize	F	Annual/perennial BLW & grasses nar- rower spectrum	Foliar Spray	BBCH 12-19	1	n/a	0.4	125 g dicamba 60 g meso- trione 40 g nico- sulfuron	80-400	nr	annually where soil clay content <10 %; proportional mitigation measures split rate application possible tank-mixed oil-based adjuvant needed (e.g Adigor @ 1.0- 1.5L/ha)
3	CZ	Maize	F	Annual/perennial BLW & grasses nar- rower spectrum	Foliar Spray	BBCH 12-19	1	n/a	0.4	125 g dicamba 60 g meso- trione 40 g nico- sulfuron	80-400	nr	Annually regardless of soil clay content; proportional mitigation measures (less than those for 0.6 kg/ha); split rate application possible tank-mixed oil-based adjuvant needed (e.g Adigor @ 1.0- 1.5L/ha)

1	2	3	4	5	6	7	8		10	11	12	13	14
Use-	Mem-	Crop and/		Pests or Group of		Appl	ication		Ар	plication rate		PHI	Remarks:
No.	ber state(s)	or situation (crop destination / purpose of crop)	or	pests controlled (additionally: developmental stages of the pest or pest group)	Method / Kind	Timing / Growth stage of crop & season	(min. interval		ha a) max. rate per appl. b) max. total	a) max. rate per appl.	L/ha min / max	(days)	e.g. g safener/synergist per ha
4	SK	Maize	F	Annual/perennial BLW & grasses	Foliar Spray	BBCH 12-19	1	n/a	0.6	187.5gdicamba90 g meso- trione60 g nico- sulfuron	80-400	nr	annually where soil clay content >10 %; split rate application possible tank-mixed oil-based adjuvant needed (e.g Adigor @ 1.0- 1.5L/ha)
5	SK	Maize	F	Annual/perennial BLW & grasses nar- rower spectrum	Foliar Spray	BBCH 12-19	1	n/a	0.4	125 g dicamba 60 g meso- trione 40 g nico- sulfuron	80-400	nr	annually where soil clay content <10 %; proportional mitigation measures split rate application possible tank-mixed oil-based adjuvant needed (e.g Adigor @ 1.0- 1.5L/ha)
6	SK	Maize	F	Annual/perennial BLW & grasses nar- rower spectrum	Foliar Spray	BBCH 12-19	1	n/a	0.4	125 g dicamba 60 g meso- trione 40 g nico- sulfuron	80-400	nr	Annually regardless of soil clay content; proportional mitigation measures (less than those for 0.6 kg/ha); split rate application possible tank-mixed oil-based adjuvant needed (e.g Adigor @ 1.0- 1.5L/ha)
7	SL	Maize	F	Annual/perennial BLW & grasses	Foliar Spray	BBCH 12-19	1	n/a	0.6	187.5 g dicamba 90 g meso- trione 60 g nico- sulfuron	80-400	nr	annually where soil clay content >10 %; split rate application possible tank-mixed oil-based adjuvant needed (e.g Adigor @ 1.0- 1.5L/ha)

1	2	3	4	5	6	7	8		10	11	12	13	14
Use-	Mem-	Crop and/	F	Pests or Group of		Appl	ication		Ар	plication rate		PHI	Remarks:
No.	ber state(s)	or situation (crop destination / purpose of crop)	or	pests controlled (additionally: developmental stages of the pest or pest group)	Method / Kind	Timing / Growth stage of crop & season	(min. interval	terval be-	ha a) max. rate per appl. b) max. total	a) max. rateper appl.b) max. total	L/ha min / max	(days)	e.g. g safener/synergist per ha
8	SL	Maize	F	Annual/perennial BLW & grasses nar- rower spectrum	Foliar Spray	BBCH 12-19	1	n/a	0.4	125 g dicamba 60 g meso- trione 40 g nico- sulfuron	80-400	nr	annually where soil clay content <10 %; proportional mitigation measures split rate application possible tank-mixed oil-based adjuvant needed (e.g Adigor @ 1.0- 1.5L/ha)
9	SL	Maize	F	Annual/perennial BLW & grasses nar- rower spectrum	Foliar Spray	BBCH 12-19	1	n/a	0.4	125 g dicamba 60 g meso- trione 40 g nico- sulfuron	80-400	nr	Annually regardless of soil clay content; proportional mitigation measures (less than those for 0.6 kg/ha); split rate application possible tank-mixed oil-based adjuvant needed (e.g Adigor @ 1.0- 1.5L/ha)
10	HU	Maize	F	Annual/perennial BLW & grasses	Foliar Spray	BBCH 12-19	1	n/a	0.6	187.5 g dicamba 90 g meso- trione 60 g nico- sulfuron	80-400	nr	annually where soil clay content >10 %; split rate application possible tank-mixed oil-based adjuvant needed (e.g Adigor @ 1.0- 1.5L/ha)
11	HU	Maize	F	Annual/perennial BLW & grasses nar- rower spectrum	Foliar Spray	BBCH 12-19	1	n/a	0.4	125 g dicamba 60 g meso- trione 40 g nico- sulfuron	80-400	nr	annually where soil clay content <10 %; proportional mitigation measures split rate application possible tank-mixed oil-based adjuvant needed (e.g Adigor @ 1.0- 1.5L/ha)

1	2	3	4	5	6	7	8		10	11	12	13	14
Use-	Mem-	Crop and/	F	Pests or Group of		Appl	ication		Ар	plication rate		PHI	Remarks:
No.	ber state(s)	or situation (crop destination / purpose of crop)	or	pests controlled (additionally: developmental stages of the pest or pest group)	Method / Kind	Timing / Growth stage of crop & season			Kg product / ha a) max. rate per appl. b) max. total rate per crop/season	a) max. rate per appl.	Water L/ha min / max	(days)	e.g. g safener/synergist per ha
12	HU	Maize	F	Annual/perennial BLW & grasses nar- rower spectrum	Foliar Spray	BBCH 12-19	1	n/a	0.4	125 g dicamba 60 g meso- trione 40 g nico- sulfuron	80-400	nr	Annually regardless of soil clay content; proportional mitigation measures (less than those for 0.6 kg/ha); split rate application possible tank-mixed oil-based adjuvant needed (e.g Adigor @ 1.0- 1.5L/ha)
13	RO	Maize	F	Annual/perennial BLW & grasses	Foliar Spray	BBCH 12-19	1	n/a	0.6	187.5 g dicamba 90 g meso- trione 60 g nico- sulfuron	80-400	nr	annually where soil clay content >10 %; split rate application possible tank-mixed oil-based adjuvant needed (e.g Adigor @ 1.0- 1.5L/ha)
14	RO	Maize	F	Annual/perennial BLW & grasses nar- rower spectrum	Foliar Spray	BBCH 12-19	1	n/a	0.4	125 g dicamba 60 g meso- trione 40 g nico- sulfuron	80-400	nr	annually where soil clay content <10 %; proportional mitigation measures split rate application possible tank-mixed oil-based adjuvant needed (e.g Adigor @ 1.0- 1.5L/ha)
15	RO	Maize	F	Annual/perennial BLW & grasses nar- rower spectrum	Foliar Spray	BBCH 12-19	1	n/a	0.4	125 g dicamba 60 g meso- trione 40 g nico- sulfuron	80-400	nr	Annually regardless of soil clay content; proportional mitigation measures (less than those for 0.6 kg/ha); split rate application possible tank-mixed oil-based adjuvant needed (e.g Adigor @ 1.0- 1.5L/ha)

1	2	3	4	5	6	7	8		10	11	12	13	14
Use-	Mem-	Crop and/		Pests or Group of		Appl	ication		Ар	plication rate		PHI	Remarks:
No.	ber state(s)	or situation (crop destination / purpose of crop)	or	pests controlled (additionally: devel- opmental stages of the pest or pest group)	Method / Kind	Timing / Growth stage of crop & season	(min. interval		ha a) max. rate per appl. b) max. total	a) max. rate per appl.	L/ha min / max	(days)	e.g. g safener/synergist per ha
16	FR	Maize	F	Annual/perennial BLW & grasses	Foliar Spray	BBCH 12-19	1	n/a	0.6	187.5gdicamba90 g meso- trione60 g nico- sulfuron	80-400	nr	annually where soil clay content >10 %; split rate application possible tank-mixed oil-based adjuvant needed (e.g Adigor @ 1.0- 1.5L/ha)
17	FR	Maize	F	Annual/perennial BLW & grasses nar- rower spectrum	Foliar Spray	BBCH 12-19	1	n/a	0.4	125 g dicamba 60 g meso- trione 40 g nico- sulfuron	80-400	nr	annually where soil clay content <10 %; proportional mitigation measures split rate application possible tank-mixed oil-based adjuvant needed (e.g Adigor @ 1.0- 1.5L/ha)
18	FR	Maize	F	Annual/perennial BLW & grasses nar- rower spectrum	Foliar Spray	BBCH 12-19	1	n/a	0.4	125 g dicamba 60 g meso- trione 40 g nico- sulfuron	80-400	nr	Annually regardless of soil clay content; proportional mitigation measures (less than those for 0.6 kg/ha); split rate application possible tank-mixed oil-based adjuvant needed (e.g Adigor @ 1.0- 1.5L/ha)
19	РТ	Maize	F	Annual/perennial BLW & grasses	Foliar Spray	BBCH 12-19	1	n/a	0.6	187.5 g dicamba 90 g meso- trione 60 g nico- sulfuron	80-400	nr	annually where soil clay content >10 %; split rate application possible tank-mixed oil-based adjuvant needed (e.g Adigor @ 1.0- 1.5L/ha)

1	2	3	4	5	6	7	8		10	11	12	13	14
Use-	Mem-	Crop and/	F	Pests or Group of		Appl	ication		Ар	plication rate		PHI	Remarks:
No.	ber state(s)	or situation (crop destination / purpose of crop)	or	pests controlled (additionally: developmental stages of the pest or pest group)	Method / Kind	Timing / Growth stage of crop & season	(min. interval	terval be-	ha a) max. rate per appl. b) max. total	a) max. rateper appl.b) max. total	L/ha min / max	(days)	e.g. g safener/synergist per ha
20	РТ	Maize	F	Annual/perennial BLW & grasses nar- rower spectrum	Foliar Spray	BBCH 12-19	1	n/a	0.4	125 g dicamba 60 g meso- trione 40 g nico- sulfuron	80-400	nr	annually where soil clay content <10 %; proportional mitigation measures split rate application possible tank-mixed oil-based adjuvant needed (e.g Adigor @ 1.0- 1.5L/ha)
21	PT	Maize	F	Annual/perennial BLW & grasses nar- rower spectrum	Foliar Spray	BBCH 12-19	1	n/a	0.4	125 g dicamba 60 g meso- trione 40 g nico- sulfuron	80-400	nr	Annually regardless of soil clay content; proportional mitigation measures (less than those for 0.6 kg/ha); split rate application possible tank-mixed oil-based adjuvant needed (e.g Adigor @ 1.0- 1.5L/ha)
22	ES	Maize	F	Annual/perennial BLW & grasses	Foliar Spray	BBCH 12-19	1	n/a	0.6	187.5 g dicamba 90 g meso- trione 60 g nico- sulfuron	80-400	nr	annually where soil clay content >10 %; split rate application possible tank-mixed oil-based adjuvant needed (e.g Adigor @ 1.0- 1.5L/ha)
23	ES	Maize	F	Annual/perennial BLW & grasses nar- rower spectrum	Foliar Spray	BBCH 12-19	1	n/a	0.4	125 g dicamba 60 g meso- trione 40 g nico- sulfuron	80-400	nr	annually where soil clay content <10 %; proportional mitigation measures split rate application possible tank-mixed oil-based adjuvant needed (e.g Adigor @ 1.0- 1.5L/ha)

1	2	3	4	5	6	7	8		10	11	12	13	14
Use-	Mem-	Crop and/	F	Pests or Group of		Appl	ication		Ар	plication rate		PHI	Remarks:
No.	ber state(s)	or situation (crop destination / purpose of crop)	or	pests controlled (additionally: developmental stages of the pest or pest group)	Method / Kind	Timing / Growth stage of crop & season			Kg product / ha a) max. rate per appl. b) max. total rate per crop/season	a) max. rateper appl.b) max. total	Water L/ha min / max	(days)	e.g. g safener/synergist per ha
24	ES	Maize	F	Annual/perennial BLW & grasses nar- rower spectrum	Foliar Spray	BBCH 12-19	1	n/a	0.4	125 g dicamba 60 g meso- trione 40 g nico- sulfuron	80-400	nr	Annually regardless of soil clay content; proportional mitigation measures (less than those for 0.6 kg/ha); split rate application possible tank-mixed oil-based adjuvant needed (e.g Adigor @ 1.0- 1.5L/ha)
25	BG	Maize	F	Annual/perennial BLW & grasses	Foliar Spray	BBCH 12-19	1	n/a	0.6	187.5 g dicamba 90 g meso- trione 60 g nico- sulfuron	80-400	nr	annually where soil clay content >10 %; split rate application possible tank-mixed oil-based adjuvant needed (e.g Adigor @ 1.0- 1.5L/ha)
26	BG	Maize	F	Annual/perennial BLW & grasses nar- rower spectrum	Foliar Spray	BBCH 12-19	1	n/a	0.4	125 g dicamba 60 g meso- trione 40 g nico- sulfuron	80-400	nr	annually where soil clay content <10 %; proportional mitigation measures split rate application possible tank-mixed oil-based adjuvant needed (e.g Adigor @ 1.0- 1.5L/ha)
27	BG	Maize	F	Annual/perennial BLW & grasses nar- rower spectrum	Foliar Spray	BBCH 12-19	1	n/a	0.4	125 g dicamba 60 g meso- trione 40 g nico- sulfuron	80-400	nr	Annually regardless of soil clay content; proportional mitigation measures (less than those for 0.6 kg/ha); split rate application possible tank-mixed oil-based adjuvant needed (e.g Adigor @ 1.0- 1.5L/ha)

1	2	3	4	5	6	7	8		10	11	12	13	14
Use-	Mem-	- · r	F	Pests or Group of		Appl	ication		Ар	plication rate		PHI	Remarks:
No.	ber state(s)	or situation (crop destination / purpose of crop)	or	pestscontrolled(additionally:devel-opmental stages of thepest or pest group)	Method / Kind	Timing / Growth stage of crop & season	(min. interval	Minimum in- terval be- tween appli- cations (days)		a) max. rate per appl.	L/ha min / max	(days)	e.g. g safener/synergist per ha
							b) per crop/ season		rate per crop/season	rate per crop/season			
28	HR	Maize	F	Annual/perennial BLW & grasses	Foliar Spray	BBCH 12-19	1	n/a	0.6	dicamba	80-400	nr	annually where soil clay content >10 %;
										90 g meso- trione 60 g nico- sulfuron			split rate application possible tank-mixed oil-based adjuvant needed (e.g Adigor @ 1.0- 1.5L/ha)
29	HR	Maize	F	Annual/perennial BLW & grasses nar- rower spectrum	Foliar Spray	BBCH 12-19	1	n/a	0.4	125 g dicamba 60 g meso- trione 40 g nico- sulfuron	80-400	nr	annually where soil clay content <10 %; proportional mitigation measures split rate application possible tank-mixed oil-based adjuvant needed (e.g Adigor @ 1.0- 1.5L/ha)
30	HR	Maize	F	Annual/perennial BLW & grasses nar- rower spectrum	Foliar Spray	BBCH 12-19	1	n/a	0.4	125 g dicamba 60 g meso- trione 40 g nico- sulfuron	80-400	nr	Annually regardless of soil clay content; proportional mitigation measures (less than those for 0.6 kg/ha); split rate application possible tank-mixed oil-based adjuvant needed (e.g Adigor @ 1.0- 1.5L/ha)

MILAGRO PLUS (A19658H)

A19658H is an OD formulation containing 220 g/kg dicamba + 50 g/kg nicosulfuron

1	2	3	4	5	6	7	8	9	10		11	12	13	14
Use-	Member	Crop and/		Pests or Group of		Applie	cation	1		Application	rate	1	PHI	Remarks:
No. (e)	state(s)	or situation (crop destina- tion / purpose of crop)	Fpn	pests controlled (additionally: develop- mental stages of the pest or pest group)	Method / Kind	Timing / Growth stage of crop & sea- son		Min. inter- val between applica- tions (days)	kg or L product / ha a) max. rate per appl. b) max. to- tal rate per crop/sea- son	a) max. rate per appl. b) max. total	dicamba/ha a) max. rate per appl.	ter L/ha min /	(days)	e.g. g saf- ener/synergist per ha (f)
Zona	l uses (field	or outdoor uses	, certa	in types of protected cr	ops)		-	-	-					
1	Hungary	Maize	F	Dicot & Grass weeds	foliar	BBCH 12-18	1	NA	1.2	60	264	100- 400	soil clay content >10 % recommendation from 0.8 - 1.2 L/ha	
2	Hungary	Maize	F	Dicot & Grass weeds	foliar	BBCH 12-18	1	NA	0.8	40	176	100- 400	soil clay content <10 %	
3	Hungary	Maize	F	Dicot & Grass weeds	foliar	BBCH 12-18	2	7-15	a) 0.8 b) 1.2	a) 40 b) 60	a) 176 b) 264	100- 400	Split / soil clay content >10 %	
4	Romania	Maize	F	Dicot & Grass weeds	foliar	BBCH 12-18	1	NA	1.2	60	264	100- 400	soil clay content >10 % recommendation from 0.8 - 1.2 L/ha	
5	Romania	Maize	F	Dicot & Grass weeds	foliar	BBCH 12-18	2	7-15	0.8	40	176	100- 400	soil clay content <10 %	
6	Romania	Maize	F	Dicot & Grass weeds	foliar	BBCH 12-18	2	7-15	a) 0.8 b) 1.2	a) 40 b) 60	a) 176 b) 264	100- 400	Split / soil clay content >10 %	
7	Slovenia	Maize	F	Dicot & Grass weeds	foliar	BBCH 12-18	1	NA	1.2	60	264	100- 400	soil clay content >10 % recommendation from 0.8 - 1.2 L/ha	
8	Slovenia	Maize	F	Dicot & Grass weeds	foliar	BBCH 12-18	1	NA	0.8	40	176	100- 400	soil clay content <10 %	
9	Slovenia	Maize	F	Dicot & Grass weeds	foliar	BBCH 12-18	2	7-15	a) 0.8 b) 1.2	a) 40 b) 60	a) 176 b) 264	100- 400	Split / soil clay content >10 %	

1	2	3	4	5	6	7	8	9	10		11	12	13	14
Use- No.	Member state(s)	Crop and/ or situation		Pests or Group of pests controlled		Applic	cation			Application	rate		PHI (days)	Remarks:
(e)	state(s)	(crop destina- tion / purpose of crop)	Fpn G,	pests controlled (additionally: develop- mental stages of the pest or pest group)	Method / Kind	Timing / Growth stage of crop & sea- son		Min. inter- val between applica- tions (days)	product / ha a) max. rate per appl. b) max. to-	a) max. rate per appl. b) max. total	dicamba/ha a) max. rate per appl.	Wa- ter L/ha min / max	(days)	e.g. g saf- ener/synergist per ha (^{f)}
10	Greece	Maize	F	Dicot & Grass weeds	foliar	BBCH 12-18	1	NA	1.2	60	264	100- 400	soil clay content >10 % recommendation from 0.8 - 1.2 L/ha	
11	Greece	Maize	F	Dicot & Grass weeds	foliar	BBCH 12-18	1	NA	0.8	40	176	100- 400	soil clay content <10 %	
12	Greece	Maize	F	Dicot & Grass weeds	foliar	BBCH 12-18	2	7-15	a) 0.8 b) 1.2	a) 40 b) 60	a) 176 b) 264	100- 400	Split / soil clay content >10 %	
13	Italy	Maize	F	Dicot & Grass weeds	foliar	BBCH 12-18	1	NA	1.2	60	264	100- 400	soil clay content >10 % recommendation from 0.8 - 1.2 L/ha	
14	Italy	Maize	F	Dicot & Grass weeds	foliar	BBCH 12-18	1	NA	0.8	40	176	100- 400	soil clay content <10 %	
15	Italy	Maize	F	Dicot & Grass weeds	foliar	BBCH 12-18	2	7-15	a) 0.8 b) 1.2	a) 40 b) 60	a) 176 b) 264	100- 400	Split / soil clay content >10 %	
16	Spain	Maize	F	Dicot & Grass weeds	foliar	BBCH 12-18	1	NA	1.2	60	264	100- 400	soil clay content >10 % recommendation from 0.8 - 1.2 L/ha	
17	Spain	Maize	F	Dicot & Grass weeds	foliar	BBCH 12-18	1	NA	0.8	40	176	100- 400	soil clay content <10 %	
18	Spain	Maize	F	Dicot & Grass weeds	foliar	BBCH 12-18	1	7-15	a) 0.8 b) 1.2	a) 40 b) 60	a) 176 b) 264	100- 400	Split / soil clay content >10 %	
19	Bulgaria	Maize	F	Dicot & Grass weeds	foliar	BBCH 12-18	1	NA	1.2	60	264	100- 400	soil clay content >10 % recommendation from 0.8 - 1.2 L/ha	

1	2	3	4	5	6	7	8	9	10		11	12	13	14
Use-	Member	Crop and/		Pests or Group of		Applic	cation			Application	rate		PHI	Remarks:
No. (e)	state(s)	or situation (crop destina- tion / purpose of crop)	Fpn G, Gn,	pests controlled (additionally: develop- mental stages of the pest or pest group)	Method / Kind	Timing / Growth stage of crop & sea- son		val between applica-	product / ha a) max. rate per appl. b) max. to-	a) max. rate per appl. b) max. total	dicamba/ha a) max. rate per appl.	min /	(days)	e.g. g saf- ener/synergist per ha
20	Bulgaria	Maize	F	Dicot & Grass weeds	foliar	BBCH 12-18	1	NA	0.8	40	176	100- 400	soil clay content <10 %	
21	Bulgaria	Maize	F	Dicot & Grass weeds	foliar	BBCH 12-18	2	7-15	a) 0.8 b) 1.2	a) 40 b) 60	a) 176 b) 264	100- 400	Split / soil clay content >10 %	
22	Croatia	Maize	F	Dicot & Grass weeds	foliar	BBCH 12-18	1	NA	1.2	60	264	100- 400	soil clay content >10 % recommendation from 0.8 - 1.2 L/ha	
23	Croatia	Maize	F	Dicot & Grass weeds	foliar	BBCH 12-18	1	NA	0.8	40	176	100- 400	soil clay content <10 %	
24	Croatia	Maize	F	Dicot & Grass weeds	foliar	BBCH 12-18	2	7-15	a) 0.8 b) 1.2	a) 40 b) 60		100- 400	Split / soil clay content >10 %	

CALLISTO PLUS 170SC (A17072C)

A17072C is an SC formulation containing 120 g/L dicamba + 50 g/L mesotrione

1	2	3	4	5	6	7	8		10	11	12	13	14
Use- No.	Member state(s)	Crop and/ or situation		Pests or Group of pests controlled		Appl	ication	1	Ар	plication rate		PHI (days)	Remarks:
110.	state(s)	(crop destination / purpose of crop)	or	(additionally: devel- opmental stages of the pest or pest group)	Method / Kind	Timing / Growth stage of crop & season			a) max. rateper appl.b) max. total	a) max. rate	Water L/ha min / max	(uays)	e.g. g safener/synergist per ha
1	Czech Republic	maize	F	Broad Leaved Weeds (annual/per- ennial)	foliar	BBCH 12-19	1	n/a	2	100 g mes- otrione 240 g dicamba	80/400	n/a	
2	Hungary	maize	F	Broad Leaved Weeds (annual/per- ennial)		BBCH 12-19	1	n/a	2	100 g mes- otrione 240 g dicamba	80/400	n/a	
3	Romania	maize	F	Broad Leaved Weeds (annual/per- ennial)		BBCH 12-19	1	n/a	2	100 g mes- otrione 240 g dicamba	80/400	n/a	
4		maize	F	Broad Leaved Weeds (annual/per- ennial)		BBCH 12-19	1	n/a	2	100 g mes- otrione 240 g dicamba	80/400	n/a	
5	Bulgaria	maize	F	Broad Leaved Weeds (annual/per- ennial)		BBCH 12-19	1	n/a	2	100 g mes- otrione 240 g dicamba	80/400	n/a	
6	France	maize	F	Broad Leaved Weeds (annual/per- ennial)	foliar	BBCH 12-19	1	n/a	2	100 g mes- otrione 240 g dicamba	80/400	n/a	
7	France	maize	F	Broad Leaved Weeds (annual/per- ennial)	foliar	BBCH 12-19	1	n/a	2	100 g mes- otrione 240 g dicamba	80/400	n/a	
8		maize	F	Broad Leaved Weeds (annual/per- ennial)		BBCH 12-19	1	n/a	2	100 g mes- otrione 240 g dicamba	80/400	n/a	

1	2	3	4	5	6	7	8		10	11	12	13	14
	Member	Crop and/		Pests or Group of		Appl	ication		Ар	plication rate		PHI	Remarks:
No.	state(s)	or situation (crop destination / purpose of crop)	G or I	pests controlled (additionally: devel- opmental stages of the pest or pest group)	Method / Kind	Timing / Growth stage of crop & season	(min. interval		L product / ha a) max. rate per appl. b) max. total rate per crop/season		L/ha	(days)	e.g. g safener/synergist per ha
9	Italy	maize	F	Broad Leaved Weeds (annual/per- ennial)	foliar	BBCH 12-19	1	n/a	2	100 g mes- otrione 240 g dicamba	80/400	n/a	
10	Portugal	maize	F	Broad Leaved Weeds (annual/per- ennial)	foliar	BBCH 12-19	1	n/a	2	100 g mes- otrione 240 g dicamba	80/400	n/a	
11	Spain	maize	F	Broad Leaved Weeds (annual/per- ennial)	foliar	BBCH 12-19	1	n/a	2	100 g mes- otrione 240 g dicamba	80/400	n/a	

CASPER 55 WG and PARSEC (A14031E)

A14031E is a WG formulation containing 500 g/kg dicamba + 50 g/kg prosulfuron

1	2	3	4	5	6	7	8	9	10	11	12	13	14
1						Applic				plication rate			
Us e No	Member state(s)	Crop and/or situation (crop destina- tion/ purpose of crop)	F G r I	PestsorGroupofpestscon-trolled(additionally:(additionally:developmen-tal stagesofthepestorpestgroup)	Method / Kind	Timing/Growth stage of crop & season	Max. Num- ber a) per use b) per crop/ season	Minimum in- terval be- tween appli- cations (days)	kg A14031E / ha a) max. rate per appl. b) max. total rate per crop/season	g, kg as/ha a) max. rate per appl. b) max. total rate per crop/season	Water L/ha min/ma x	PHI (days)	Remarks: e.g. safener/syner- gist per ha
1	Austria	maize	F	annual dicots + convolvolus	Foliar	BBCH 12-18	1	NA	a) 0.3 b) 0.3	15 g prosul- furon 150 g dicamba	150-400		
2	Belgium	maize	F	annual and perennial di- cots	Foliar	BBCH 12-19 (see remarks)	1 or 2	NA	a) 0.3 b) 0.3	15 g prosul- furon 150 g dicamba	150-400	60d Sillage & 90d Grain	Existing registra- tion; 1 app at 0.3kg/ha BBCH 12- 16 or 2 appl: 1st at 0.1-0.2kg/ha BBCH 12-16 & 2nd 0.1- 0.2kg/ha BBCH 18- 19
3	Germany	maize	F	annual dicots + convolvolus	Foliar	BBCH 12-18	1	NA	a) 0.3 b) 0.3	15 g prosul- furon 150 g dicamba	150-400		
4	Czech Re- public	maize	F	annual dicots + convolvolus	Foliar	BBCH 12-18	1	na	a) 0.4 b) 0.4	20 g prosul- furon 200 g dicamba	150-400	60d Sillage & 90d Grain	
5	Netherlands	maize	F	annual and perennial di- cots	Foliar	BBCH 12-19 (see remarks)	1	NA	a) 0.3 b) 0.3	15 g prosul- furon 150 g dicamba	150-400	60d Sillage & 90d Grain	Existing registra- tion; 1 app at 0.3kg/ha BBCH 12- 16 or 2 appl: 1st at 0.1-0.2 kg/ha BBCH 12-16 & 2nd 0.1-0.2kg/ha BBCH 18-19
6	UK	maize	F	annual and perennial di- cots	Foliar	BBCH 12-18	1	NA	a) 0.3 b) 0.3	15 g prosul- furon 150 g dicamba	150-400	60d Sillage & 90d Grain	Existing registra- tion; not maize grown for seed pro- duction Use recommended with adjuvant: NIS
7	Poland	maize	F	annual and perennial di- cots	Foliar	BBCH 12-18	1	NA	a) 0.3 b) 0.3	15 g prosul- furon 150 g dicamba	150-400		

1	2	3	4	5	6	7	8	9	10	11	12	13	14
						Applic	cation	•		plication rate			
Us e No	Member state(s)	Crop and/or situation (crop destina- tion/ purpose of crop)	F G r I	Pests or Group of pests con- trolled (additionally: developmen- tal stages of the pest or pest group)	Method / Kind	Timing/Growth stage of crop & season	Max. Num- ber a) per use b) per crop/ season	Minimum in- terval be- tween appli- cations (days)	kg A14031E / ha a) max. rate per appl. b) max. total rate per crop/season	g, kg as/ha a) max. rate per appl. b) max. total rate per crop/season	Water L/ha min/ma x	PHI (days)	Remarks: e.g. safener/syner- gist per ha
8	Hungary	maize	F	annual and perennial di- cots	Foliar	BBCH 12-18	1	NA	a) 0.3-0.4 b) 0.3-0.4	15-20 g prosulfuron 150-200 g dicamba	150-400	60d Sillage & 90d Grain	
9	Hungary	sorghum	F	annual and perennial di- cots	Foliar	BBCH 12-18	1	NA	a) 0.3-0.4 b) 0.3-0.4	15-20 g prosulfuron 150-200 g dicamba	150-400		
10	Hungary	sweet corn	F	annual and perennial di- cots	Foliar	BBCH 12-18	1	NA	a) 0.3-0.4 b) 0.3-0.4	15-20 g prosulfuron 150-200 g dicamba	150-400		
11	Romania	maize	F	annual and perennial di- cots except Convolvolus & hibuscus	Foliar	BBCH 12-18 / 4- 6 leaves	1	NA	a) 0.3-0.4 b) 0.3-0.4	15-20 g prosulfuron 150-200 g dicamba	150-400	60d Sillage & 90d Grain	
12	Romania	sorghum	F	annual and perennial di- cots	Foliar	BBCH 12-18 / 4- 6 leaves	1	NA	a) 0.4 b) 0.4	20 g prosul- furon 200 g dicamba	150-400		
13	Romania	barley	F	annual and perennial di- cots except Convolvolus	Foliar	BBCH 12-18	1	NA	0.2	10 g prosul- furon 100 g dicamba	150-400	-	
14	Romania	wheat	F	annual and perennial di- cots except Convolvolus, Viola and Delphinium	Foliar	BBCH 12-18	1	NA	0.25	10-12.5 g prosulfuron 100-125 g dicamba	150-400	-	
15	Slovakia	maize	F	annual and perennial di- cots	Foliar	BBCH 12-18	1	NA	a) 0.25-0.3 b) 0.25-0.3	12.5-15 g prosulfuron 125-150 g dicamba	150-400	60d Sillage & 90d Grain	Existing registra- tion; Use recom- mended with adju- vant: +0.5% ATPLUS

1	2	3	4	5	6	7	8	9	10	11	12	13	14
			İ			Applic				plication rate	•	-	
Us e No	Member state(s)	Crop and/or situation (crop destina- tion/ purpose of crop)	F G r I	PestsorGroupofpestscon-trolled(additionally:(additionally:developmen-talstagesofthepestorpestgroup)	Method / Kind	Timing/Growth stage of crop & season	Max. Num- ber a) per use b) per crop/ season	Minimum in- terval be- tween appli- cations (days)	kg A14031E / ha a) max. rate per appl. b) max. total rate per crop/season	g, kg as/ha a) max. rate per appl. b) max. total rate per crop/season	Water L/ha min/ma x	PHI (days)	Remarks: e.g. safener/syner- gist per ha
16	France - N	maize and seed produc- tion	F	annual and perennial di- cots	Foliar	BBCH 12-19 (see remarks)	1 (-2)	NA	a) 0.3 b) 0.3	15 g prosul- furon 150 g dicamba	80-400	60d Sillage & 90d Grain	Existing registra- tion; 1 app at 0.3kg/ha BBCH 12- 16 or 2 appl: 1st at 0.1-0.2kg/ha BBCH 12-16 & 2nd 0.1- 0.2kg/ha BBCH 18- 19;
17	France - N	Sorghum	F	annual and perennial di- cots	Foliar	BBCH 12-18	1	NA	a) 0.3 b) 0.3	15 g prosul- furon 150 g dicamba	80-400	60d	
18	France - N	Millet (hun- garian & proso)	F	annual and perennial di- cots	Foliar		1 (-2)	NA	a) 0.3 b) 0.3	15 g prosul- furon 150 g dicamba	80-400	60d	
19	France - N	Sugarcane	F	annual and perennial di- cots	Foliar	BBCH 12- 18	1 (-2)	NA	a) 0.3 b) 0.3	15 g prosul- furon 150 g dicamba	80-400	180d	
20	France - S	maize and seed produc- tion	F	annual and perennial di- cots	Foliar	BBCH 12-19 (see remarks)	1 (-2)	NA	a) 0.3 b) 0.3	15 g prosul- furon 150 g dicamba	80-400	60d Sillage & 90d Grain	Existing registra- tion; 1 app at 0.3kg/ha BBCH 12- 16 or 2 appl: 1st at 0.1-0.2kg/ha BBCH 12-16 & 2nd 0.1- 0.2kg/ha BBCH 18- 19;
21	France - S	Sorghum	F	annual and perennial di- cots	Foliar	BBCH 12-18	1	NA	a) 0.3 b) 0.3	15 g prosul- furon 150 g dicamba	80-400	60d	
22	France - S	Millet (hun- garian & proso)	F	annual and perennial di- cots	Foliar		1 (-2)	NA	a) 0.3 b) 0.3	15 g prosul- furon 150 g dicamba	80-400	60d	
23	France - S	Sugarcane	F	annual and perennial di- cots	Foliar	BBCH 12-18	1 (-2)	NA	a) 0.3 b) 0.3	15 g prosul- furon 150 g dicamba	80-400	180d	

1	2	3	4	5	6	7	8	9	10	11	12	13	14
						Applic			Ар	plication rate	•		
Us e No	Member state(s)	Crop and/or situation (crop destina- tion/ purpose of crop)	F G r I	PestsorGroupofpestscon-trolled(additionally:(additionally:developmen-talstagesofthepestorpestgroup)	Method / Kind	Timing/Growth stage of crop & season	Max. Num- ber a) per use b) per crop/ season	Minimum in- terval be- tween appli- cations (days)	kg A14031E / ha a) max. rate per appl. b) max. total rate per crop/season	g, kg as/ha a) max. rate per appl. b) max. total rate per crop/season	Water L/ha min/ma x	PHI (days)	Remarks: e.g. safener/syner- gist per ha
24	France - N	Industrial sites including railways and parks and gar- den pathways, cemeteries, al- leys	F	annual and perennial di- cots	Foliar	Not applicable	1	NA	a) 0.3 b) 0.3	a) 15 b) 15	a) 150 b) 150	80-400	
25	France - S	Industrial sites including railways and parks and gar- den pathways, cemeteries, al- leys	F	annual and perennial di- cots	Foliar	Not applicable	1	NA	a) 0.3 b) 0.3	a) 15 b) 15	a) 150 b) 150	80-400	
26	Italy	maize	F	annual and perennial di- cots	Foliar	BBCH 12-18	1	NA	a) 0.3-0.4 b) 0.3-0.4	15-20 g prosulfuron 150-200 g dicamba	150-400	60d Sillage & 90d Grain	Existing registra- tion; Use recom- mended with adju- vant: NIS
27	Italy	sorghum	F	annual and perennial di- cots	Foliar	BBCH 12-18	1	NA	a) 0.3-0.4 b) 0.3-0.4	15-20 g prosulfuron 150-200 g dicamba	150-400		Existing registra- tion; Use recom- mended with adju- vant: NIS
28	Spain	maize	F	annual and perennial di- cots	Foliar	BBCH 12-18	1	NA	a) 0.3-0.4 b) 0.3-0.4	15-20 g prosulfuron 150-200 g dicamba	150-400	60d Sillage & 90d Grain	Existing registra- tion; Use recom- mended with adju- vant: +0.2L/ha wet- ter/adjuvant
29	Spain	sorghum	F	annual and perennial di- cots	Foliar	BBCH 12-18	1	NA	a) 0.3-0.4 b) 0.3-0.4	15-20 g prosulfuron 150-200 g dicamba	150-400		
30	Portugal	maize	F	annual and perennial di- cots	Foliar	BBCH 12-18	1	NA	a) 0.3-0.4 b) 0.3-0.4	15-20 g prosulfuron 150-200 g dicamba	150-400	60d Sillage & 90d Grain	

1	2	3	4	5	6	7	8	9	10	11	12	13	14
Us e No	Member state(s)	Crop and/or situation (crop destina- tion/ purpose of crop)	F G r I	Pests or Group of pests con- trolled (additionally: developmen- tal stages of the pest or pest group)	Method / Kind	Applie Timing/Growth stage of crop & season	Max. Num- ber a) per use b) per crop/ season	Minimum in- terval be- tween appli- cations (days)	Ap kg A14031E / ha a) max. rate per appl. b) max. total rate per crop/season	g, kg as/ha a) max. rate per appl. b) max. total rate per crop/season	Water L/ha min/ma x	PHI (days)	Remarks: e.g. safener/syner- gist per ha
31	Bulgaria	maize	F	annual dicots	Foliar	BBCH 12-18	1	NA	a) 0.3 b) 0.3	15 g prosul- furon 150 g dicamba	150-400	14 d Sillage	
32	Croatia	maize	F	annual and perennial di- cots	Foliar	BBCH 12-18	1	NA	a) 0.3-0.4 b) 0.3-0.4	15-20 g prosulfuron 150-200 g dicamba	150-400	56 d Sillage & Grain	Existing registra- tion (current GAP registered is BBCH 13-15; 0.3-0.5 kg/ha; 200-400 L water /ha; 56 d PHI sillage and grain); recommend use with adjuvant: NIS rate of 300-350 g/ha product, with the addition of 300 ml/ha of non-ionic wetting agent.

Level 2

Dicamba

2 <u>SUMMARY OF ACTIVE SUBSTANCE HAZARD AND OF PRODUCT RISK ASSESS-</u><u>MENT</u>

Summary of methodology proposed by the applicant for literature review and for all sections:

Rotam:

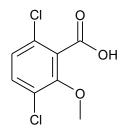
Literature review has been performed according to:

- EFSA (2011). Guidance of EFSA, Submission of scientific peer-reviewed open literature for the approval of pesticide active substances under Regulation (EC) No 1107/2009, EFSA Journal 2011;9(2):2092.
- AGES (2013). External scientific report, Case studies for the application of the Guidance of EFSA on Submission of scientific peer-reviewed open literature for the approval of pesticide active substances under Regulation (EC) No 1107/2009, using substances for which dossiers are submitted under Regulation (EU) No 1141/2010, EFSA supporting publication 2013:EN-511.

Syngenta:

A summary of the methodology employed is given below.

- 1. A very broad search was conducted in 18 scientific source databases for dicamba and its metabolites using the search terms listed in CA 9.5.1.
- 2. Duplicates titles from between the data bases were automatically removed from the output.
- 3. A rapid assessment of the titles was conducted to remove any additional duplicates and any obviously irrelevant titles (where enough information was available from the title alone).
- 4. A further rapid assessment was conducted using summary abstracts and any clearly irrelevant titles were removed.
- 5. A detailed assessment of the full-text documents for the remaining titles was conducted using the criteria developed for study relevance.
- 6. Any relevant papers were highlighted and assessed for reliability.


2.1 IDENTITY

2.1.1 Summary or identity

Dicamba is a systemic herbicide for the control of annual and perennial broadleaf dicotyledonous weed species.

Mass: 221 g/mol

Structure formula:

2.2 PHYSICAL AND CHEMICAL PROPERTIES [EQUIVALENT TO SEC-TION 7 OF THE CLH REPORT TEMPLATE]

2.2.1 Summary of physical and chemical properties of the active substance

Table 1: Summary of physicochemical properties of the active substance

Property	Value	Reference	Comment (e.g. measured or esti- mated)
Physical state at 20°C and 101,3 kPa	Solid	Widlak A., 1993b Widlak A., 1993c Daum A., 2015 Chambers J., 2010	Visual
Melting/freez- ing point	114-116°C	Widlak A., 1993a	Measured
Boiling point	Thermal decomposition starts at about 230°C be- fore the boiling point is reached	Das, 1999	Measured
Relative density	Not a requirement according to 283/2013		
Vapour pres- sure	1.67 · 10 ⁻³ Pa (25°C)	Chen, 1994	Vapour pressure curve based on eight measure- ments (95- 111°C) Extrapo- lated va- pour pres- sure at 25° C : $1.25 \cdot 10^{-5}$ mm Hg = $1.67 \cdot 10^{-3}$ Pa
Surface tension	66.9 – 72.2 mN/m	O'Connor B., 2015 Chambers J., 2010	Measured
Water solubil- ity	Syngenta:Temperature: 25°C. Purity: 99.6%Pure waterpH 1.8Buffer solutionpH 4.1>250 g/LBuffer solutionpH 6.8>250 g/LBuffer solutionpH 8.2>250 g/LRotam:Temperature: 25°C. Purity: 99.7%Pure waterpH 1.987.3 g/L	Kettner, 1999a Chambers J., 2010	Measured

Property	Value	Reference	Comment (e.g. measured or esti- mated)
	Buffer solutionpH 4>3560 g/LBuffer solutionpH 7>3560 g/LBuffer solutionpH 8>3560 g/L		
Partition coeffi- cient n-oc- tanol/water	Syngenta: Temperature: 25°C. Purity: 99.6% pH 5.0: $\log P_{OW} = -0.55$, $P_{OW} = 0.28$ pH 6.8: $\log P_{OW} = -1.8$, $P_{OW} = 0.017$ pH 8.9: $\log P_{OW} = -1.9$, $P_{OW} = 0.012$ Rotam: Temperature: 25°C. Purity: 99.72% pH 5.1: $\log P_{OW} = -0.78$; $P_{OW} = 0.1661$ pH 7.0: $\log P_{OW} = -2.30$; $P_{OW} = 0.0051$ pH 9.1: $\log P_{OW} = -2.42$; $P_{OW} = 0.0039$	Kettner, 1999b Chambers J., 2010	Measured
Henry's law constant	H = 5.06 x 10 ⁻⁵ Pa m ³ mol ⁻¹ (25°C) (Based on a water solubility of 7.3 g/L) H' = 1.0 x 10 ⁻⁴ Pa m ³ mol ⁻¹ (25°C) (Based on a water solubility of 6.6 g/L recalculated to include only the neutral form of dissolved a.i.: 3565 mg/L)	Burkhard, 1999a Chambers J., 2010	Calculated
Flash point	Not determined. Not needed as the melting point is $> 40^{\circ}C$	Angly, 1999a	
Flammability	Not highly flammable	Angly, 1999a	Tested
Explosive prop- erties	No explosive properties under effect of thermal -, shock – or friction.	Angly, 1999c	Tested
Self-ignition temperature	Not self-igniting	Angly, 1999b	Tested
Oxidising prop- erties	Not considered an oxidising substance	Angly, 1999d	Tested
Granulometry	Not a requirement according to 283/2013	D 20011	
Solubility in or- ganic solvents and identity of relevant degra- dation products	Syngenta:Temperature: 25°C. Purity: 89.5%Acetone>500 g/LEthyl acetate>500 g/LMethanol>500 g/LOctanol490 g/LDichloromethane340 g/LToluene180 g/LHexane2.8 g/L	Das, 2001b Chambers J., 2010	Measured
	Rotam: Temperature: 25°C. Purity: 98.85%		

Property	Value	Reference	Comment (e.g. measured or esti- mated)
	Acetone >250 g/L		
	Ethyl acetate 200-250 g/L		
	Methanol >250 g/L		
	Octanol >250 g/L		
	Dichloromethane 340 g/L		
	Toluene 80-100 g/L		
	Hexane < 10 g/L		
	Syngenta:	Bebel, 1993	Measured
Dissociation	pKa = 1.87 (Purity: 99.2%)	Burkhard, 1999b	
constant	Rotam: pKa = 2.10 (Purity: 99.7%)	Chambers J., 2010	
Viscosity	Not a requirement according to Regulation 283/2013		
Spectra (UV/VIS, IR, NMR, MS), molar extinc- tion at relevant wavelengths, optical purity	UV/VIS Solutions: Neutral: methanole Acidic: methanole / HCl Basic : methanole / NaOHSolu- tionWavelength [nm]Molar extinction coefficient [L / m cm]neu- tral22810130tral acidic280737neu- tral10128basic22810522basic280343	nol 	Measured
	IRAbsorption peaks:Wavenumber (cm ⁻¹)3300-2500COO-H stretch1714C=O stretch1581, 1461ar C-C		
	1381, 1401 at C-C 1288 ar C-OCH ₃ stretch assimetric	y-	

Property	Value		Reference	Comment (e.g. measured or esti- mated)
	1005	ar C-OCH ₃ stretch symmetric		
	NMR	incure		
	¹ H-NMR			
	Chemical s (ppm) 4.0 7.2, 7.4 7.3 Not detected 10	shift Assignment 4 2, 3 Solvent 1		
	¹³ C-NMR ^{Ci} O ^c D ^c O ^c			
	Chemical s (ppm) 62 125-133 154 170 170	shift Assignment h b,c,d,e,f g a		
	<u>MS</u> Type of analyser: I Ionization mode: I Ionization energy:	Electron impact 70 eV		
	Mass spectrum int	erpretation:		
	<u>m/z</u> 220	Fragment ion Molecular ion, M ⁺ (with typical iso- tope-pattern at m/z 222 and m/z 224 for CL-atoms)		

Property	Value		Reference	Comment (e.g. measured or esti- mated)
	203	M ⁺ -OH		
	191	M ⁺ -NMR		
	175	m/z 203-CO		
	173	m/z 203-OCH ₂		
	160	m/z 191-OCH ₃		
	45	СООН		

Dicamba

Volume 1 – Level 2

2.2.1.1 Evaluation of physical hazards [equivalent to section 8 of the CLH report template]

2.2.1.1.1 Explosives [equivalent to section 8.1 of the CLH report template]

Table 2: Summary table of studies on explosive properties

Method	Results	Remarks	Reference
EEC A.14	The substance is not considered an explosive	Purity: 89.8%	Angly, 1999a

2.2.1.1.1.1 Short summary and overall relevance of the provided information on explosive properties Dicamba is not considered an explosive, as concluded from the test results on thermal sensitivity (effect of flame) and mechanical sensitivity (shock and friction)

2.2.1.1.1.2 Comparison with the CLP criteria Not explosive according to the CLP criteria.

2.2.1.1.1.3 Conclusion on classification and labelling for explosive properties Dicamba does not meet the criteria for classification as an explosive.

2.2.1.1.2 Flammable gases (including chemically unstable gases) *[equivalent to section 8.2 of the CLH report template]*

Not applicable.

2.2.1.1.3 Oxidising gases [equivalent to section 8.3 of the CLH report template]

Not applicable.

2.2.1.1.4 Gases under pressure [equivalent to section 8.4 of the CLH report template]

Not applicable.

2.2.1.1.5 Flammable liquids [equivalent to section 8.5 of the CLH report template]

Not applicable.

2.2.1.1.6 Flammable solids *[equivalent to section 8.6 of the CLH report template]*

Table 3: Summary table of studies on flammable solids

Method	Results	Remarks	Reference
EEC A.10	Not highly flammable	Purity: 89.8%	Angly, 1999a

2.2.1.1.6.1 Short summary and overall relevance of the provided information on flammable solids A flame of a gas burner resulted in melting of the substance. Dicamba did not catch fire, neither unmelted nor melted. Dicamba is therefore not considered highly flammable.

2.2.1.1.6.2 Comparison with the CLP criteria Not flammable according to the CLP criteria.

2.2.1.1.6.3 Conclusion on classification and labelling for flammable solids Dicamba does not meet the criteria for classification as flammable.

2.2.1.1.7 Self-reactive substances *[equivalent to section 8.7 of the CLH report template]* Not tested/Not relevant

2.2.1.1.8 Pyrophoric liquids *[equivalent to section 8.8 of the CLH report template]* Not applicable

2.2.1.1.9 Pyrophoric solids [equivalent to section 8.9 of the CLH report template] Not tested/Not relevant

2.2.1.1.10 Self-heating substances [equivalent to section 8.10 of the CLH report template]

 Table 4:
 Summary table of studies on self-heating substances

Method	Results	Remarks	Reference
EEC A.16	Not self-heating	Purity: 89.8%	Angly, 1999b

2.2.1.1.10.1 Short summary and overall relevance of the provided information on self-heating substances Dicamba was placed in an oven at room temperature; the temperature-time curve relating to conditions in the centre of the sample was recorded while the temperature of the oven was increased at a rate of 0.5° C/min. There was no significant observation on the temperature-time curve between room temperature and the melting point. Dicamba is therefore not considered self-heating or self-igniting.

2.2.1.1.10.2 Comparison with the CLP criteria Not self-heating according to the CLP criteria.

2.2.1.1.10.3 Conclusion on classification and labelling for self-heating substances Dicamba does not meet the criteria for classification as self-heating.

2.2.1.1.11 Substances which in contact with water emit flammable gases [equivalent to section 8.11 of the CLH report template]

Not applicable

2.2.1.1.12 Oxidising liquids *[equivalent to section 8.12 of the CLH report template]* Not applicable

2.2.1.1.13 Oxidising solids [equivalent to section 8.13 of the CLH report template]

Table 5: Summary table of studies on oxidising solids

Method	Results	Remarks	Reference
EEC A.17	Not considered an oxidising substance	Purity: 89.8%	Angly, 1999d

2.2.1.1.13.1 Short summary and overall relevance of the provided information on oxidising solids Dicamba and cellulose was mixed in different ratios and ignited. No evidence of oxidizing properties was observed.

2.2.1.1.13.2 Comparison with the CLP criteria Not an oxidising solid according to the CLP criteria.

2.2.1.1.13.3 Conclusion on classification and labelling for oxidising solids Dicamba does not meet the criteria for classification as an oxidising substance.

2.2.1.1.14 Organic peroxides [equivalent to section 8.14 of the CLH report template]

Not applicable

2.2.1.1.15 Corrosive to metals *[equivalent to section 8.15 of the CLH report template]*

Not tested

2.2.2 Summary of physical and chemical properties of the plant protection product

A7254B (Dicamba 480 g/L SL)

The formulation A7254B is a light yellow liquid with a weak amine like odour. It is neither explosive nor oxidising. It is autoflammable at 465°C. The formulation has a pH of 8.3 while the pH of a 1% dilution of it is 7.5. The density is 1.170 g/cm^3 at 20°C. The results of storage stability tests indicate that the formulation has a shelf life of at least 2 years.

OCEAL (FH-048)

The formulation OCEAL is a light brown uniform granule with a vanilla type odour. The granules has a size of 500 $-1000 \ \mu m$ (99.95% of granules > 500 μm and 98.66% of granules < 1000 μm). The formulation is not explosive, not highly flammable and not highly oxidising. It is autoflammable at 246°C. pH of a 1% dilution of the formulation is 7.33. The pour density is 0.60 g/mL and the tap density is 0.625 g/mL. The formulation is considered to be dust free. The results of storage stability tests indicate that the formulation has a shelf life of at least 2 years.

2.3 DATA ON APPLICATION AND EFFICACY

2.3.1 Summary of effectiveness

Dicamba can be applied post-emergence to a range of monocotyledonous crops such as maize, barley and wheat. Timing of application and maximum dose vary between crops. Dicamba controls a wide range of annual and perennial broadleaved weeds. Key target of dicamba are broadleaf weeds belonging to the families: *Amaranthaceae, Chenopodiaceae, Asteracea, Convolvulaceae, Solanaceae, Polygonaceae* and *Brassicacea.*

2.3.2 Summary of information on the development of resistance

According to the HRAC classification dicamba belongs to the Group O herbicides. Resistance to this group of herbicides is very rare and there are only a few restricted occurrences of confirmed resistance to dicamba and none in Europe. However where resistance to other members of this mode of action group has been confirmed there may also be cross-resistance to dicamba. As resistance to dicamba is very rare, dicamba can be a useful component of resistance management strategy used, e.g., in mixture with herbicides with a higher incidence of resistance such as the sulfonylureas.

2.3.3 Summary of adverse effects on treated crops

Maize can form fascinated or fused abnormal brace roots. Stems can become brittle and break and they can also become weakened and formed a curved, or 'goose-neck', shape. Dicamba can cause normally tolerant monocot species to lay flat for a time just after treatment but these symptoms often disappears within hours or days after treatment.

2.3.4 Summary of observations on other undesirable or unintended side-effects

Not relevant.

2.4 FURTHER INFORMATION

2.4.1 Summary of methods and precautions concerning handling, storage, transport or fire

Handling

Dicamba

Avoid contact with skin, eyes and clothing. Avoid inhalation of fog and vapours. Do not eat, drink or smoke while working.

A7254B (Dicamba 480 g/L SL)

Avoid contact with skin and eyes. When using do not eat, drink or smoke.

OCEAL (FH-048)

Do not eat, drink or smoke when using this product. Wash skin with mild soap and water.

Storage

Dicamba

Store the product in closed original containers. Protect from light and humidity. Keep out of the reach of children. Keep away from food, drink and animal feedingstuffs.

A7254B (Dicamba 480 g/L SL)

Keep containers tightly closed in a dry, cool and well-ventilated place. Keep out of the reach of children. Keep away from food, drink and animal feeding stuffs.

OCEAL (FH-048)

Keep container closed when not in use. Store in a well-ventilated place. Keep container tightly closed.

Transport

Dicamba

Use unbreakable containers, make sure they can Rail / Road (RID / ADR): Not classified Sea (IMDG-Code): Not classified Air (ICAO / IATA): Not classified as dangerous	l as dangerous good	
A7254B (Dicamba 480 g/L SL)		
UN number:	3082	
Transport document description (ADR):	ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. (DICAMBA-DIMETHYLAMMO- NIUM), 9, III	
Transport document description (IMDG):	ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. (DICAMBA-DIMETHYLAMMO- NIUM), 9, III, MARINE POLLUTANT	
Transport document description (IATA-DGR):	ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. (DICAMBA-DIMETHYLAMMO- NIUM), 9, III	
Transport hazard class (UN):	9	
Packaging group:	III	
OCEAL (FH-048)		
UN number:	3077	

Dicamba	Volume 1 – Level 2
Proper Shipping Name:	ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S. (Dicamba)
Transport document description (ADR):	UN 3077 ENVIRONMENTALLY HAZARDOUS SUBS- TANCE, SOLID, N.O.S.(Dicamba), 9, III, (E)
Transport document description (IMDG):	UN 3077 ENVIRONMENTALLY HAZARDOUSSUBS- TANCE, SOLID, N.O.S.(Dicamba), 9, III, MARINE POL- LUTANT
Transport hazard class (UN):	9
Packaging group:	III
Fire-fighting measures	

Dicamba	
Combustibility:	This product is combustible at elevated temperatures.
Suitable Extinguishing Media:	Dry chemical extinguisher, foam, carbon dioxide or waterspray (do not use direct jet of water).
Special Hazards during Fire Fighting:	Combustion products are toxic and/or irritant. Measures have to be taken to prevent the contaminated extinguishing agent from seeping into the ground or from spreading uncontrollably.
Hazardous Combustion Products: Protective Equipment for Fire Fighting:	Carbon dioxide; carbon monoxide; nitrogen oxides; hydrogen chloride Use self-contained breathing apparatus. Wear protective equipment.

A7254B (Dicamba 480 g/L SL)

Suitable extinguishing media:

Extinguishing media - small fires: Use water spray, alcohol-resistant foam, dry chemical or carbon dioxide. Extinguishing media - large fires: Use alcohol-resistant foam or water spray.

Extinguishing media which shall not be used for safety reasons: Do not use a solid water stream as it may scatter and spread fire.

Specific hazards during fire fighting: As the product contains combustible organic components, fire will produce dense black smoke containing hazardous products of combustion. Exposure to decomposition products may be a hazard to health.

Special protective equipment for firefighters: Wear full protective clothing and self-contained breathing apparatus.

Further information to minimise the hazards arising: Do not allow run-off from fire fighting to enter drains or water courses. Cool closed containers exposed to fire with water spray.

Hazardous decomposition products likely to be generated in the event of fire: Combustion or thermal decomposition will evolve toxic and irritant vapours.

OCEAL (FH-048)	
5 5	Dry chemical powder, alcohol-resistant foam, carbon dioxide (CO2). Do not use a heavy water stream as it may extend the fire
	Use water spray or fog for cooling exposed containers. Exercise caution when fighting any chemical fire. Do not fight fire when fire reaches ex- plosives
	Do not enter fire area without proper protective equipment, including res- piratory protection
	Hazardous decomposition products may be released during prolonged heating like smokes, carbon monoxide and dioxide, nitrogen oxides (NOx).
Explosion hazard:	Product is not explosive
Reactivity:	The product is stable at normal handling- and storage conditions

2.4.2 Summary of procedures for destruction or decontamination

2.4.2.1 Controlled incineration:

The active substance dicamba (SAN 837), can be disposed of safely by incineration in a modern incinerator, licensed to treat special contaminated waste, which fulfils the following conditions: temperature > 800°C, minimum residence time within the incinerator: 2 seconds, equipped with a washing unit for flue gases. The ashes have to be disposed of at a suitable, approved waste disposal site. Wash water has to be disposed of via a suitable wastewater treatment plant.

A temporary formation of polyhalogenated dibenzo-p-dioxins and dibenzo-furans during incineration cannot be fully excluded. It should be noted that the halogen content with 32% is well below 60% and therefore not critical, and also that the reaction products are completely destroyed at temperatures above 800°C.

2.4.2.2 Procedures for the Decontamination of Water in the Case of an Accident:

Fire fighting water has to be contained, concentrated and decontaminated by filtration using charcoal. The water can be disposed of at a suitable sewage treatment plant or incinerated. The charcoal can be disposed of in a suitable waste incineration plant in accordance with the official regulations.

A7254B (Dicamba 480 g/L SL)

Spilled liquid formulation should first be adsorbed onto a solid, such as sand, inert clay filler, saw dust or soil, before being swept up into a safe container to await disposal.

As the halogen content of A7254B is below the 60% trigger value, high temperature incineration is the preferred means of disposal for the active substances, formulated products, contaminated materials or contaminated packaging. Directive 96/47/EEC defines the controlled conditions for incineration. Incineration should be carried out in a licensed incinerator operating at a temperature above 800°C and with a minimum gas phase residence time of two seconds.

OCEAL (FH-048)

The spilled formulation should be swept or shovelled into a container before disposal. High temperature incineration may be used for disposal for the product and/or contaminated materials or packaging. Incineration should take place in an authorised incinerator at temperature above 800°C.

2.4.3 Summary of emergency measures in case of an accident

Dicamba

Personal precautions:

Ensure suitable personal protection during removal of spillage (for details see safety data sheet).

Clean up methods:

Cover spillage with moist earth or sawdust. Transfer to a container for disposal. Wash the spillage area with water. Do not allow spilled product or wash solution to enter sewers, drains, dams, creeks or any other waterways.

Procedures for the decontamination of water in the case of an accident:

Contaminated water must be contained. It may be decontaminated by filtration using charcoal and then concentrated. The water should be incinerated. The charcoal can be disposed on in a suitable waste incineration plant in accordance with official regulations.

A7254B (Dicamba 480 g/L SL)

Decontamination of areas, vehicles and buildings:

Contain spillage, and then collect with non-combustible absorbent material, (e.g. sand, earth, diatomaceous earth, vermiculite) and place in container for disposal according to local / national regulations.

If the product contaminates rivers and lakes or drains inform respective authorities.

Do not contaminate ponds, waterways or ditches with chemical or used container.

Do not dispose of waste into sewer.

Disposal of damaged packaging, absorbents and other materials :

Empty remaining contents. Triple rinse containers. Empty containers should be taken to an approved waste handling site for recycling or disposal. Do not re-use empty containers.

First aid measures:

Inhalation: Immediately move to fresh air. If breathing is irregular or stopped, administer artificial respiration. Keep patient warm and at rest. Call a physician or Poison Control Centre immediately.

Skin contact: Take off all contaminated clothing immediately. Wash off immediately with plenty of water. If skin irritation persists, call a physician. Wash contaminated clothing before re-use.

Eye contact: Rinse immediately with plenty of water, also under the eyelids, for at least 15 minutes. Remove contact lenses. Immediate medical attention is required.

Ingestion: If swallowed, seek medical advice immediately and show this container or label. Do NOT induce vomiting.

Medical advice: There is no specific antidote available. Treat symptomatically.

OCEAL (FH-048)

Accidental release measures:

Personal precautions, protective equipment and emergency procedures: Wear a self-contained breathing apparatus and appropriate personal protective equipment (PPE). Evacuate unnecessary personnel. Avoid inhalation of vapour and spray mist Environmental precautions: Avoid release to the environment. Prevent entry to sewers and public waters. Methods and material for containment and cleaning up:

Sweep or shovel spills into appropriate container for disposal according to local / national regulations

First aid measures:

I list alu measur	CS.
General:	Call a physician or poison control center immediately
Inhalation:	When symptoms occur: go into open air and ventilate suspected area
Skin contact:	When symptoms occur: rinse immediately with plenty of water
Eye contact:	Rinse first with plenty of water and if necessary take medical advice
Ingestion:	Rinse mouth with plenty of water. DO NOT induce vomiting. Seek medical advice

2.5 METHODS OF ANALYSIS

2.5.1 Methods used for the generation of pre-authorisation data

Analysis of the active substance as manufactured

Adequate methodology exists for the determination of dicamba as manufactured. The methods fulfil the requirements of SANCO/3030/99 rev. 4.

Formulation analysis

Adequate methodology exists for the determination of dicamba in the preparations A7254B and FH-048. The methods fulfil the requirements of SANCO/3030/99 rev. 4.

Methods for Risk Assessment

Methods in support of environmental fate studies:

Adequate methodology exists. Details are provided in Vol.3 B.5.Full description is not required for studies conducted with radioactive labelled substance.

Methods in support of residue studies:

All the methods used for the generation of pre-authorisation data for dicamba in maize and cereals are validated according to SANCO/3029/99. The LOQ in all methods is 0.01 mg/kg or 0.05 mg/kg.

Methods in support of toxicological, ecotoxicolgical and phys/chem studies:

Adequate methodology exists. Details are provided in Vol.3 B.5.

2.5.2 Methods for post control and monitoring purposes

Food and feed of plant and animal origin:

Adequate methods are available to monitor the respective current residue definition in plant material and food of animal origin. The methods are sufficiently validated and independent validated according to Sanco/825/00 rev. 8.1. The LOQ is 0.01 mg/kg.

Soil and water:

Both applicants submitted adequate methodology for the determination of dicamba and DCSA in soil and for the determination of dicamba, DCSA and 5-OH in water. The methods fulfil the requirements of SANCO/825/00 rev. 8.1. Details are provided in vol 3 B.5.

Air:

Both applicants submitted adequate methodology for the determination of dicamba in air. The methods fulfil the requirements of SANCO/825/00 rev. 8.1. Details are provided in B.5.

Body fluids and tissues:

Adequate methods are available for the determination of dicamba in body fluids and tissues. The methods fulfil the requirements of SANCO/825/00 rev. 8.1. Details are provided in B.5.

2.6 EFFECTS ON HUMAN AND ANIMAL HEALTH

2.6.1 Summary of absorption, distribution, metabolism and excretion in mammals *[equivalent to section 9 of the CLH report template]*

Type of study	Dose levels	Substance	Results	References
TG/GLP	Animal spe- cies, strain; sex	Batch		
Absorption, dis- tribution, deple- tion and excre- tion in rats – oral single dose OECD 417 (1984)/GLP	0.5 and 200 mg/kg bw Wistar rats	[phenyl-U- ¹⁴ C]dicamba Unlabelled: AMS 163/101 Radiolabelled: ILA-72.1	A fast and almost complete (98 – 99 % of admin- istered dose) absorption was observed with peak blood concentrations measured 0.5 hours after dosing for both dose levels. A second maximum was observed 2-4 hours after administration indi- cating some enterohepatic circulation. Elimination was predominantly via urine and only to a small extent via faeces. Tissue concentrations were highest 4 hours after administration with rapid depletion thereafter.	(2002) KCA 5.1.1/01
Absorption, dis- tribution and excretion in rats – oral repeated dose No TG/GLP	75 – 800 mg/kg bw Wistar and Sprague-Daw- ley rats	[phenyl-U- ¹⁴ C]dicamba Labelled: 037H9294 Unlabelled: 52103810	A fast absorption was observed with peak blood concentrations measured 0.5-1 hour after multiple dosing with 75 to 800 mg/kg bw. While absorp- tion was independent of the dose level, elimina- tion processes were saturated at the higher dose levels (\geq 150 and 250 mg/kg bw).	(1998a) KCA 5.1./02
Absorption, dis- tribution and excretion in rats – oral repeated dose OECD 417 (1984)/GLP	50 – 800 mg/kg bw Wistar rats	[phenyl-U- ¹⁴ C]dicamba Labelled: 787- 0102 Unlabelled: 52103810	Dicamba was readily absorbed into systemic cir- culation with peak blood concentrations of radio- activity measured 0.5-2 hours after multiple dos- ing with 50-800 mg/kg bw in rat. While absorp- tion was independent of the dose level, elimina- tion processes were saturated at the higher dose levels (> 100-200 mg/kg bw).	(2003) KCA 5.1.1/03
Absorption, dis- tribution, me- tabolism and excretion in rats – oral single dose OECD 417 (1984)/GLP	10 mg/kg bw CD VAF /Plus rats	[phenyl-U- ¹⁴ C]dicamba Labelled: Lot 911115 Unlabelled: RS- M36-020492	Dicamba was almost quantitatively absorbed and excreted rapidly but was metabolised only to very minor extent as most of the compound was ex- creted unchanged predominantly via urine (about 93% of applied dose within 24 hours). Metabolisation involved the demethylation of the methyl ether leading to the respective alcohol DCSA (NOA 414746) (about 0.6% of applied dose). Most of the absorbed dose was eliminated via urine; the remainder via faeces (~ 2% of absorbed	(1994a) KCA 5.1.1/04
			dose). Absorption, excretion and the metabolic pathways in the rat were similar after application of dicamba and its amine salts (DMA-, IPA- and DGA-salts).	

Table 6:	Summary table of toxicokinetic studies
----------	--

Type of study TG/GLP	Dose levels Animal spe- cies, strain; sex	Substance Batch	Results	References
Determination of 5-hydroxy dicamba in rats OECD 417 (1984)/GLP	10 mg/kg bw CD VAF /Plus rats	[phenyl-U- ¹⁴ C]dicamba Labelled: Lot 911115 Unla- belled dicamba: RS-M36- 020492	5-hydroxy dicamba is a minor metabolite in rats	(1994b) KCA 5.1.1/05
Absorption, dis- tribution, me- tabolism and excretion in mice, rats, rab- bits and dogs – oral single dose OECD 417 (1984)/before GLP	89 (mice), 102 (rats), 100 (rab- bits) and 88.2 (dogs) mg/kg bw Swiss albino mice Sprague-Daw- ley rats New Zealand white rabbits Beagle dogs – all females	[phenyl-U- ¹⁴ C]dicamba No batch no. given	Dicamba was readily and extensively (> 85% of administered dose) absorbed into systemic circu- lation with peak blood concentrations of radioac- tivity measured 1 hour after dosing with 100 mg/kg bw for rats and dogs. Half-life times were slightly longer in dogs (2.1 h) than in rats (1.1 h). Elimination was predominantly via urine and only small extent via faeces (0.5-5.7% of applied dose). The elimination was uniformly in all species ex- cept mice with slightly higher faecal values (9.4% of applied dose). Independent of the species the administered radioactivity was excreted rapidly (\geq 85% within 48 hours) resulting in very low tissue residues. Uniformly in all species unchanged dicamba was the main component of excreta and tissues.	(1980) KCA 5.1.1/06
Metabolism of dicamba – oral single dose in rats OECD 417 (1984)/GLP	0.5 and 200 mg/kg bw Wistar rats	[phenyl-U- ¹⁴ C]dicamba Labelled: ILA- 72.1 Unlabelled dicamba: AMS 163/101	An oral dose of dicamba was almost quantita- tively absorbed but was metabolised only to very minor extent as most of the compound was ex- creted unchanged predominantly via urine. Me- tabolisation involved glucuronyl conjugation of the benzoic acid group resulting in metabolite M1 (about 0.5% of applied dose) and the demethyla- tion of the methyl ether leading to the respective alcohol DCSA (NOA 414746) and/or its glucu- ronic acid conjugate M2 (totally about 0.2-0.3% of applied dose). A further minor metabolite de- rived from hydroxylation at position 5 of the phe- nyl ring resulting in 5-OH dicamba (NOA 405873). Most of the absorbed dose was elimi- nated via urine; the remainder via faeces (< 2% of absorbed dose). The metabolic pathways in the rat were not significantly influenced by dose and sex.	(2003) KCA 5.1.1/07
Absorption, dis- tribution, excre- tion and metab- olism in rat fol- lowing oral ad- ministration OECD 417 (1984)/GLP	0.5 and 200 mg/kg b.w Wistar rats	[Ring-U-14C]- RC1176 RTM/DCMB/D CSA/090326 (DCSA) HHBT-049-00- 1 (5OH- dicamba)	Dicamba is rapidly absorbed by gastro intestinal tract and rapidly excreted mainly via urine, inde- pendently of the dose or the sex. Unchanged dicamba was the main component of excreta. Cmax was reached at 0.5 hours. >90% of the dose excreted by day 7. Highest residue levels in tissues and organs at 0.5 h. and close or LOQ within 12-24 h after dosage. The highest radioactivity content was found in kidneys. 50H-dicamba was detected in urine and feces.	NEW (2010a) KCA 5.1.1/08

Type of study TG/GLP	Dose levels Animal spe- cies, strain; sex	Substance Batch	Results	References
			The presents of a minor glucuronide derivative of [RING-U-14C]-dicamba in urine was confirmed.	
Toxicokinetic study in rat fol- lowing repeated oral administra- tion OECD 417 (1984)/GLP	200 mg/kg b.w. Wistar rats	[Ring-U- ¹⁴ C]- RC1176 XVIII/2	Following repeated oral administration, dicamba is rapidly absorbed by gastrointestinal tract and undergoes an enterohepatic circulation. The (Day 7) C_{max} and $AUC_{0\rightarrow 24}$ values are similar to those obtained after a single dose (Day 1), demonstrat- ing an absence of accumulation potential. C_{max} was reached at 0.5 hours. At 4 hours after ad- ministration, a second maximum was observed, probably due to enterohepatic circulation. Plasma levels were close to or below LOQ after 24 hours.	NEW (2010b) KCA 5.1.1/09
	Human and Rat Liver Micro- somes	[phenyl-U- ¹⁴ C] dicamba 9314SJR027-5	No Phase I NADPH-dependent metabolism of dicamba occurred in human liver microsomes and rat liver microsomes.	NEW Thibaut R. (2016) KCA 5.1.1/10

Dicamba was rapidly absorbed and then efficiently and rapidly eliminated mainly via urinary excretion independent of the species, the mode of administration (gavage, mixed with the diet), and the dosage used. No significant pharmacokinetic difference was observed between the species (rat, mouse, dog, rabbit). The maximum blood concentrations were reached within 1 hour and then declined very rapidly with a half-life time of 1.1 to 2.1 hours.

After a repeated oral exposure in rats (at 200 mg/kg b.w. for 7 days), dicamba is rapidly absorbed with a peak blood concentraton at 0.5 hours (Tmax). At 4 hours after administration, a second maximum was observed, probably due to enterohepatic circulation.

Distribution

The amount of total radiocarbon in the body was generally very low due to the fast elimination. Tissue levels were low (max. 4.5 ppm after 16 hours) and declined rapidly (max. 0.14 ppm after 96 hours). Kidneys contained the highest residue levels (which is in accordance with the urinary excretion of dicamba) followed by blood and liver. No accumulation of dicamba was observed. In the rat, T_{max} in blood was reached within 0.5 h after dosing of 0.5 and 200 mg/kg bw with maximum concentrations of 0.11-0.13 ppm (low dose) and 51-68 ppm (high dose). Plasma half-life time was 2 h at both concentrations.

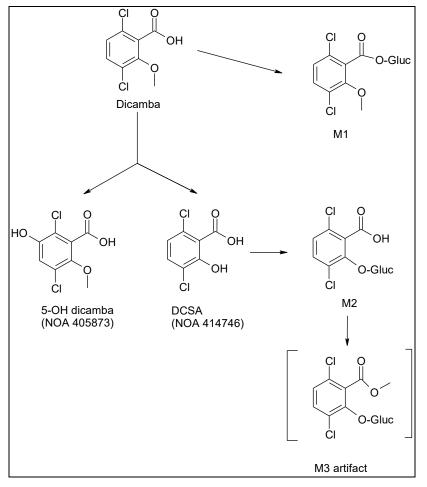
Metabolism

Only a limited degree of parent dicamba was metabolised and represented the major radiocarbon fraction in urine, faces and examined tissues (86-98%). The metabolite 3,6-dichloro-2-hydroxybenzoic acid (DCSA, NOA 414746) was found in small quantities in the urine of all species. The glucuronide of dicamba was found in the urine of rats. The presence of 5-hydroxy dicamba (5-OH dicamba, NOA 405873 – an important plant metabolite) was confirmed in rat urine.

Dicamba metabolic pathway in rodents is summarised in the figure below.

Absorption/Elimination

Independent of the species and the dose level, dicamba was rapidly absorbed and eliminated. The elimination of dicamba has been shown to be rapidly and almost completely excreted *via* urine (85-98% of applied dose within 24 hours) in several rat studies. The percentage of dicamba elimination via faces was low (1 to 5 % of applied dose). One study showed that the elimination was uniformly in all species (rats, rabbits and dogs) except mice with slightly higher faecal values (9.4% of applied dose). Elimination via urine in mice was 72.76 % after 24 hours and 83.8%


Dicamba

Volume 1 – Level 2

after 48 hours. A recent pharmacokinetic study in rats revealed that the renal excretion is saturated at higher dose levels (> 100 - 200 mg/kg bw).

Based on the results from an *in vitro* comparative metabolism of dicamba in human and rat liver microsome, it is confirmed that dicamba is poorly metabolized by Phase I oxidative processes in the liver. These results are identical in rats and humans.

Dicamba metabolism in the rat:

2.6.1.1 Short summary and overall relevance of the provided toxicokinetic information on the proposed classification(s)

The toxicokinetic information is considered acceptable and adequate.

2.6.2 Summary of acute toxicity

2.6.2.1 Acute toxicity - oral route [equivalent to section 10.1 of the CLH report template]

Table 7: Summa	ry table of animal	l studies on acute	e oral toxicity
----------------	--------------------	--------------------	-----------------

Study type TG/GLP	Animal sex, species and strain	Substance Batch	Dose levels, duration of exposure		Reference
Acute oral tox- icity	Spartan rats	Dicamba (tech- nical), Purity	500, 794, 1250, 1984, 3150 or 5000	Calculated LD ₅₀ : Females 1581	1974

~OECD 401	6 groups of 5	85.8% (pre-	mg/kg body	mg dicamba/kg	KCA 5.2.1/01
(1987)/before	females and 5	sumed)	weight	bw.	
GLP (Data from origi- nal CLP pro- posal)	males	Batch not re- ported		Males 1879 mg dicamba/kg bw. Corrected for pu- rity: Females 1356 mg dicamba/kg bw. Males 1612 mg dicamba/kg bw.	(study accepta- ble)

Table 8:Summary table of human data on acute oral toxicity

Type of data/report	Test substance	Relevant information about the study (as appli- cable)	Observations	Refer- ence
Incident re- port, acci- dental expo- sure	1% Banvel M spray (340g MCPA, 30g dicamba/L)	Farmer sprayed a wheat field using knapsack sprayer for 30 minutes. When spraying against the wind face and arms were contaminated	Symptoms were transient glucosu- ria, ataxia, and weakening of ten- don reflexes. Nausea, bloating, loss of appetite and palpitations occurred the day following expo- sure. At six day had vomiting and abdominal pain. At eight days gas- troscopy revealed hemorrhagic gastro-duodenitis which had re- solved at follow up 5 weeks later.	Huepp and Hessel- mann (1979)
Prospective study from patients noti- fied to the Poisons Unit following acute poison- ing	12 patients had in- gested dicamba for- mulations contain- ing more than one herbicide in most cases.	The study examined the re- lation between blood herbi- cide concentration and the effect of alkaline diuresis on outcome of patients fol- lowing acute poisoning. Blood and urine sample from all patients was exam- ined (HPLC with limit of sensitivity of 10 mg/L for dicamba).	Plasma dicamba concentration was 0.02 g/L or less in 4 patients. There was no indication that dicamba had contributed to tox- icity in any patient.	Flana- gan <i>et</i> <i>al</i> (1990)
A retrospec- tive observa- tional case series of 14 patients	14 patients (5 fe- male, 9 male) admit- ted to hospital after consuming dicamba containing product. There is no clear in- dication of the exact level of exposure.	The study reported infor- mation on clinical manifes- tation, patient management and final outcome after in- tentional ingestion of dicamba containing prod- ucts.	Acute symptoms comprised transi- ent clinical signs (depressed men- tal state, irritability or confusion, nausea, vomiting, or anorexia), changes in EKG (prolonged QTc intervals followed by sinus tachy- cardia) and/or increased lactate, leucocytosis, elevated creatinine kinase and metabolic acidosis. All findings were rapidly reversible with no or supportive treatment (hydration, sodium bicarbonate).	Moon and Chun (2014)
A retrospec- tive observa- tional case series of pa- tients that in-	Twelve patients had consumed 50 – 300 mL of dicamba product (40% dicamba; dicamba as dimethylamine	Information on clinical manifestation (APACHE II scores), patient manage- ment and final outcome are provided.	None of the patients that ingested dicamba died. There was no signif- icant relationship between amount of dicamba ingested and clinical outcome or APACHE II scores. Most patients were discharged	Park <i>et</i> <i>al</i> (2011)

Type of data/report	Test substance	Relevant information about the study (as appli- cable)	Observations	Refer- ence
gested herbi- cides.	salt).		within 1 week after admission to the hospital except for 4 patients needing longer treatment due to pre-existing health conditions or hospital-infection, which are con- sidered unrelated to dicamba expo- sure.	

2.6.2.1.1 Short summary and overall relevance of the provided information on acute oral toxicity

The acute oral toxicity study of dicamba in rats, performed prior to GLP and OECD guidelines, was conducted with minor deviations not considered to compromise the scientific validity of the study. The study was also the basis for the existing classification for acute oral toxicity. **However, the purity was only presumed in this study and not directly measured.** No clinical observations were reported but body weight gain was normal, by day 14 post dose, in surviving animals. There was no examination post mortem.

The calculated LD_{50} was 1581 mg dicamba/kg bw in females and 1879 mg dicamba/kg bw in males, which were the basis for the existing minimum classification. The LD_{50} corrected for purity was 1612 mg dicamba/kg bw for males and 1356 mg/kg bw for females.

Limited human data are available but there is no evidence of significant acute systemic toxicity in humans following acute exposures.

2.6.2.1.2 Comparison with the CLP criteria regarding acute oral toxicity

LD₅₀ values of 1879 mg dicamba/kg bw for males and 1581 mg/kg bw for females were found in an acute oral study.

According to CLP, classification is based on the lowest acute toxicity estimate (ATE) value available i.e. the lowest ATE in the most sensitive appropriate species tested.

Dicamba meets the criteria for classification in acute oral toxicity category 4 (300 mg/kg bw < ATE \leq 2000 mg/kg bw). The lowest LD₅₀ value of 1581 mg/kg bw shall be used as the Acute Toxicity Estimate (ATE).

2.6.2.1.3 Conclusion on classification and labelling for acute oral toxicity

Acute Tox. 4, harmful if swallowed (H302) ATE = 1581 mg/kg bw according to Regulation (EC) No 1272/2008.

2.6.2.2 Acute toxicity - dermal route [equivalent to section 10.2 of the CLH report template]

Table 9: Summary table of animal studies on acute dermal toxicity

Study type TG/GLP	Animal sex, species and strain	Substance Batch	Dose lev- els duration of expo- sure	Results	Reference
Acute dermal toxicity OECD 402 (1987)/GLP	Alpk:AP _f SF (Wistar-de- rived) rats 1 group of 5 fe- males and 5 males	Dicamba tech. (SAN 837 tech.), Purity 90.4% B2826511	2000 (1808 pure dicamba) mg/kg bw, 24 hours ex- posure	$LD_{50} > 2000$ mg dicamba/kg bw for males and females Corrected for purity: $LD_{50} >$ 1808 mg dicamba/kg	2002 KCA 5.2.2/01 (study ac- ceptable)

				bw for males and females	
Acute dermal toxicity OECD 402 (1987)/GLP	CRL:(WI)BR Wistar rats 1 group of 5 males and 5 fe- males	dicamba (RC1176) Purity 98.85% RTM/DCMB/03/20090612	2000 mg/kg bw, 24 hours ex- posure	LD ₅₀ > 2000 mg dicamba/kg bw for males and females	NEW 2010a KCA 5.2.2/02 (study ac- ceptable)

 Table 10:
 Summary table of human data on acute dermal toxicity

Type of data/report	Test sub- stance,	Relevant information about the study (as ap- plicable)	Observations	Reference
Incident re- port, acci- dental ex- posure	1% Banvel M spray (340g MCPA, 30g dicamba/L)	Farmer sprayed a wheat field using knapsack sprayer for 30 minutes. When spraying against the wind face and arms were contaminated	Symptoms were transient glucosuria, ataxia, and weakening of tendon re- flexes. Nausea, bloating, loss of appe- tite and palpitations occurred the day following exposure. At six days had vomiting and abdominal pain. At eight days gastroscopy revealed hem- orrhagic gastro-duodenitis which had resolved at follow up 5 weeks later.	Huepp and Hesselmann (1979)

2.6.2.2.1 Short summary and overall relevance of the provided information on acute dermal toxicity

The LD₅₀ values of dicamba were provided in two acute dermal toxicity studies performed in accordance with OECD 402 (1987) and GLP. In Wistar rats, neither cutaneous reactions nor systemic clinical signs related to the administration of the test item were observed. LD₅₀ was found to be >2000. In Alpk:AP_fSF rats, none of the animals died and there were no signs of systemic toxicity. Three males and all the females showed signs of slight skin irritation, and scabs were still apparent on the skin of one female at the end of the study. Apart from scabs in this one animal, there were no macroscopic abnormalities at examination post mortem. LD₅₀ was determined to be >2000 mg dicamba/kg bw (>1808 mg/kg purity corrected) when applied once to the shaved intact skin of male and female rats.

Huep W.W., Hesselmann J., 1979, Severe acute erosive-hemorrhagic gastroduodenitis following to spraying of the herbicide Banvel M. Deutsche medizinische Wochenschrift, 104(14), 525

A farmer sprayed a wheat field with a 1% Banvel M spray broth using a knapsack sprayer for half an hour (Banvel M contains 340g MCPA and 30g Dicamba per litre concentrate). When he was spraying against the wind his face and arms were contaminated. The following day he suffered from nausea, bloating, loss of appetite and palpitation of the heart. Six days later the symptoms were vomiting and abdominal pain. The family doctor prescribed Meto-clopramid (Paspertin®). Eight days after the exposure a gastrocopy revealed hemorrhagic gastro-duodenitis which had resolved at follow up five weeks later. No laboratory confirmation of exposure to the two herbicides was performed.

2.6.2.2.2 Comparison with the CLP criteria regarding acute dermal toxicity

Based on the results (no deaths in rats >2000 mg dicamba/kg bw), no classification for acute dermal toxicity is warranted for dicamba according to Regulation (EC) No 1272/2008.

2.6.2.2.3 Conclusion on classification and labelling for acute dermal toxicity

No classification for acute dermal toxicity is warranted for dicamba according to Regulation (EC) No 1272/2008.

2.6.2.3 Acute toxicity - inhalation route [equivalent to section 10.3 of the CLH report template]

Table 11:	Summary table of anima	l studies on acute	inhalation toxicity

Study type TG/GLP	Animal sex, species and strain	Substance Batch	Dose levels duration of expo- sure	Results	Reference
Acute inhala- tion toxicity OECD 403 (2009)/GLP (study accepta- ble)	Sprague-Daw- ley derived, al- bino rats 1 group of 5 males and 5 fe- males	Dicamba Purity: 97.8% w/w 201410375	5.14 mg/L(nose- only) for 4 h.	$LC_{50} > 5.14$ mg dicamba/L for males and females Corrected for purity: $LC_{50} > 5.03$ mg dicamba/L for males and females	NEW 2015 KCA 5.2.3/01
Acute inhala- tion toxicity OECD 403 (1981)/GLP (study accepta- ble)	Alpk:AP _f SD (Wistar-de- rived) rats 3 groups of 5 fe- males and 5 males	Dicamba Tech. (SAN 837 Tech.) Purity 91.2% B2826511	Target con- centra- tions : of 1, 2.5 and 5 mg/L air (males only at 1 and 2.5 mg/l). Ana- lysed conc.: 1.011, 2.373 and 4.591 mg/L Achieved gravimetric concentra- tion 1.182, 2.676 and 5.191 mg/L (nose-only) for 4 h.	Inhalation LC_{50} (males): 4.46 mg dicamba/L Inhalation LC_{50} (fe- males): >5.19 mg dicamba/L Corrected for purity: LC_{50} females > 4.73 mg dicamba/L LC_{50} males 4.07 mg dicamba/L	2001 KCA 5.2.3/02
Acute inhala- tion toxicity OECD 403 (1981)/GLP (study accepta- ble)	CRL:(WI)BR Wistar rats 3 groups of 5 males and 1 group of 5 fe- males	Dicamba (RC1176) Purity: 98.85% RTM/DCMB/03/20090612	Mean achieved doses: 5.01, 3.98, 4.50 mg/L, (nose-only) for 4 h.	LC_{50} females > 5.01 mg dicamba/L LC_{50} males 5.11 mg dicamba/L (technical ma- terial)	NEW 2010 KCA 5.2.3/03

No relevant human data are available.

2.6.2.3.1 Short summary and overall relevance of the provided information on acute inhalation toxicity

In an acute, nose-only inhalation toxicity study in Alpk:APfSD rats (2001), a group of 5 males and 5 females were exposed to aerosolised dicamba for 4 hours, at a particulate concentration of 5.19 mg/L. No deaths were observed during exposure, but 3/5 males and 1/5 females were found dead shortly after the cessation of exposure. Further groups of 5 males (only) were then exposed to particulate concentrations of 2.68 or 1.18 mg/L dicamba. There was one death shortly after exposure to 2.68 mg/L but no deaths following exposure to 1.18 mg/L.

The principal clinical signs were respiratory tract irritation (laboured breathing, changes in breathing depth and/or rate, abnormal respiratory noise). These signs were seen at all three dose levels. These effecs are discussed further in relation to specific target organ toxicity, single exposure in section 2.6.2.10. At 2.68 mg/kg wet fur (all animals) and stains around the nose (1/5) were observed. All animals displayed changes indicative of mild toxicity: decreased activity and salivation. Signs of moderate or mild toxicity (hunched posture, piloerection, salivation, decreased activity, coldness to touch, reduced foot withdrawal reflex, reduced response to sound) were present at 5.19 mg/L. At 5.19 mg/L, one male was prostrate and all females had muscular rigidity. The respiratory effects, seen during and immediately after exposure in all animals exposed to 5.19 mg/L and 2.68 mg/L, were transient and most animals had recovered by day 3, although abnormal respiratory noise persisted in some animals exposed to 2.68 mg/L until day 4. All animals were symptom free from day 5.

At 5.19 mg/L, surviving males lost weight over the first 3 days after exposure while females lost weight on day 2 but all animals then gained weight.

Necropsy findings in animals which died prematurely included: partially deflated / mottled lungs in 2/3 males exposed to 5.19 mg/L; dark spots in the lung in 1/1 male exposed to 2.68 mg/L; dark liver in 2/3 males exposed to 5.19 mg/L. There were no other treatment related macroscopic changes.

Acute inhalation 4 hour LC_{50} values of 4.46 mg/L (90% CL 2.80–40.5 mg/L) for males and >5.19 mg/L for females were derived. LC_{50} values corrected for purity were 4.07 mg/L for males and F >4.73 mg/L for females.

In a second study (2015) a group of 5 male and 5 female Sprague-Dawley rats were exposed via inhalation (nose-only exposure) to 5.14 mg/L of dicamba for 4 hours. None of the rats died and all gained body weight during the study. Following exposure all rats exhibited irregular respiration and hypoactivity. Additionally, two males had anogenital staining. All animals had recovered by day 3. There were no gross abnormalities at necropsy. The acute inhalation LC_{50} was > 5.14 mg/L in male and female rats in this study.

In the third study (2010) groups of Wistar rats were exposed to an atmosphere of the test material for a single period of four hours (nose only). A target concentration of 5.0 mg/L was used for the first exposure group (5 males and 5 females). Subsequent targets were based on the results of the preceding exposures in order to produce a range of mortality rates (2 other groups of 5 males each).

Clinical observations revealed wet fur and fur staining were commonly recorded on the day of the exposure and several days after exposure. These observations were considered to be related to the restraint and exposure procedures and, in isolation, were considered not to be biologically significant.

In surviving animals, significant clinical signs commonly noted on the day of exposure and continuing during the observation period included laboured, noisy, gasping respiration and sneezing. In addition, ataxia, lethargy, hunched posture; tiptoe gait, eye partially closed and emaciation were noted in some survivors during the first week of the observation period. No clinical signs were noted from Day 7 of the observation period. A single four hour nose-only exposure of dicamba to the Wistar rat resulted in death of 2 males at 5.01 mg/L and 1 male at 4.50 mg/L on Day 0 or 1. At necropsy, no specific cause of death was determined for these animals. No test item-related macroscopic findings were noted at any dose level following a 14-day observation period. LC_{50} for females was > 5.01 mg dicamba/L and LC_{50} for males was 5.11 mg dicamba/L.

2.6.2.3.2 Comparison with the CLP criteria regarding acute inhalation toxicity

A LC50 value of 4.46 mg dicamba/L for males were found in the (2001) study.

According to CLP, classification is based on the lowest acute toxicity estimate (ATE) value available i.e. the lowest ATE in the most sensitive appropriate species tested.

Dicamba meets the criteria for classification in acute inhalation toxicity category 4 (1.0 mg/L < ATE \leq 5.0 mg/L). The lowest LC₅₀ value of 4.46 mg/Lin males shall be used as the Acute Toxicity Estimate (ATE).

2.6.2.3.3 Conclusion on classification and labelling for acute inhalation toxicity

Dicamba should be classified as Acute Tox. 4, harmful if inhaled (H332), ATE = 4.46 mg/L according to Regulation (EC) No 1272/2008.

2.6.2.4 Skin corrosion/irritation [equivalent to section 10.4 of the CLH report template]

Study type TG/GLP	Animal sex, species and strain	Substance Batch	Dose lev- els duration of expo- sure	Results	Reference
Skin irritation OECD 404 (1992)/GLP, occulusive dressing was used instead of semi-occusive dressing (study acceptable)	New Zealand White rabbits, 3 animals, one male and two females	Dicamba tech. (SAN 837 Tech.), Purity 91.0% Y01040/007 (milled Y01040/005)	0.5 g, 4- hour	No skin reac- tion in 2/3 ani- mals. Signs of skin irritation pre- sent in 1/3 ani- mals for 7 days, all re- solved by 14 days. Mean scores for that animal at 24, 48 and 72 hours: Erythema: 1.7, 0, 0 Oedema: 0.7, 0, 0	2002 KCA 5.2.4/01
Skin irritation OECD 404 (2002)/GLP (study accepta- ble)	New Zealand White rabbits, 3 males	Dicamba (RC1176) Purity: 98.85% RTM/DCMB/03/20090612	0.5 g, 4- hour	The individual mean scores (at 24, 48 and 72 hours) for ery- thema and oe- dema were 0.00, 0.00 and 0.00 respec- tively.	NEW 2010b KCA 5.2.4/02

Table 12: Summary table of animal studies on skin corrosion/irritation

 Table 13:
 Summary table of human data on skin corrosion/irritation

Type of data/report	Test sub- stance	Relevant information about the study (as ap- plicable)	Observations	Reference
Incident re- port, acci- dental expo- sure	1% Banvel M spray (340g MCPA, 30g dicamba/L)	field using knapsack sprayer for 30 minutes.	Nausea, bloating, loss of appetite and pal- pitations occurred the day following ex- posure. At six days had vomiting and ab- dominal pain. At eight days gastroscopy revealed hemorrhagic gastro-duodenitis which had resolved at follow up 5 weeks later.	Huepp and Hesselmann (1979)
Incident re- port, acci- dental expo- sure		1976 one employee de- veloped a contact derma- titis working in the tech- nical flake operation. One of his arms became in- flamed during the hot months when he was	He was seen by a doctor and given topi- cal steroid and released. The second case occurred around 1977 and was also a contact dermatitis from technical flake. Treatment was the same and employee improved in response to	The infor- mation is from a question- naire that was ob- tained from

Type of data/report	Test sub- stance	Relevant information about the study (as ap- plicable)	Observations	Reference
		wearing short sleeve shirt.	this treatment. These cases prompted a Policy change to require long sleeve shirts. No further epi- sodes have occurred since this change in policy.	BASF 2003, which re- ports on cases of ad- verse health incidences in produc- tion work- ers since 1973 (up to 2003).

2.6.2.4.1 Short summary and overall relevance of the provided information on skin corrosion/irritation

The skin irritation potential of dicamba technical was investigated in a standard guideline study in rabbits (2002). No signs of systemic toxicity were seen in any animal over the course of the study. Signs of mild skin irritation (erythema, oedema, scabbing, thickening and wrinkling) were seen in 1/3 rabbits between 1-7 days after decontamination but these had all resolved within 14 days of application. Dicamba is, therefore, not a skin irritation to the rabbit.

In a second study in rabbits (2010b), at observation one, 24, 48 and 72 hours after patch removal, there were no observed clinical signs noted on the skin of the treated animals. As no clinical signs were observed up to 72 hours after patch removal, the study was terminated after the 72 hours observation. The individual mean scores (considering readings at 24, 48 and 72 hours after patch removal) for erythema and oedema were 0.00, 0.00 and 0.00 respectively.

In humans, there have been two cases of adverse health effects following dermal exposure during manufacture. These occurred in 1976 and 1977 and resulted in skin rashes which resolved with treatment with topical steroids. Subsequently handling advice was changed to include wearing of long sleeves. No further cases of skin effects resulting from the handling of dicamba have been reported.

2.6.2.4.2 Comparison with the CLP criteria regarding skin corrosion/irritation

The results of the rabbit skin irritation study do not meet the criteria for classification.

2.6.2.4.3 Conclusion on classification and labelling for skin corrosion/irritation Dicamba does not meet the criteria for classification as a skin irritant.

2.6.2.5 Serious eye damage/eye irritation [equivalent to section 10.5 of the CLH report template]

 Table 14:
 Summary table of animal studies on serious eye damage/eye irritation

Study type TG/GLP	Animal sex, spe- cies and strain	Substance Batch	Results	Reference
Eye irritation ~OECD 405/be- fore GLP and OECD guideline (study acceptable)	NewZealandWhite rabbits2 groups: group I		Serious eye dam- age to the rabbit eye	1974 KCA 5.2.5/01

wash) – 5 rabbits, group II (24 hours		
then wash) – 3 rab- bits		

 Table 15:
 Summary table of human data on eye corrosion/irritation

Type of data/report	Test sub- stance	Relevant information about the study (as ap- plicable)	Observations	Reference
Incident report, accidental exposure		A contractor was in- stalling a pipe bracket on a nitrogen line below the second floor grating in the Dicamba Flaking area on October 2, 2001.	The activity caused dust from the Flaker to fall through the grating into the left eye of the contractor. Eye irritation resulted as reported by nurse's report, and was treated by flushing and irrigating on site and over the counter Advil by the con- tractor's physician.	The infor- mation on are from a question- naire that was ob- tained from BASF 2003, which re- ports on cases of ad- verse health incidences in produc- tion work- ers since 1973 (up to 2003).

2.6.2.5.1 Short summary and overall relevance of the provided information on serious eye damage/eye irritation

The eye irritation potential was investigated in a pre-guideline study in rabbits (**1974**). Eyes of rabbits were exposed to the test compound for 5 minutes (Group 1) or 24 hours (Group 2). Following exposure, the eyes were gently washed with water.

In both goups, there was evidence of severe ocular irritation. Corneal opacity was observed from 1 hour post instillation and persisted until 21 days after instillation in some rabbits. A mean corneal opacity score of \geq 3 was observed in all animals at 48 and 72 hours. Iridial irritation was observed from 1 hour post instillation and was present in all animals at 24 and 48 hours and persisted in some rabbits for 7 days. Conjunctival redness and swelling (chemosis) was also seen in all rabbits, generally from 1 hour post instillation. Other signs of severe ocular irritation included blanching, purulent ocular discharge, fluorescein staining and pannus and in some animals these were present 21 days following instillation.

	Corneal opacity			Iris l	esion	Conj	Conjunctival red- ness		Conjunctival chemosis				5		
Grade	0	1	2	3	4	0	1	0	1	2	0	1	2	3	4
1 h	1/5	2/5	2/5			1/5	4/5	4/5	1/5				3/5	2/5	
24 h		2/5	1/5	2/5			5/5		2/5	3/5				4/5	1/5
48 h			2/5	2/5	1/5		5/5		2/5	3/5			3/5	1/5	1/5
72 h					5/5	1/5	4/5		2/5	3/5			1/5	2/5	2/5
24-72h mean			3.1			0	.9		1.6				3.0		
7 d			3/5	1/5	1/5	1/5	4/5		4/5	1/5		1/5	2/5	2/5	

Eye irritation of Dicamba tech. to rabbits. Group I – 5 minutes exposure.

	Corneal opacity			Iris l	esion	on Conjunctival red- ness			Conjunctival chemosis					
14 d	2/5	2/5	1/5		5/5		3/5	2/5			1/5	3/5	1/5	
21 d		2/3	1/3		3/3		2/3	1/3			1/3	2/3		

		Corneal opacity					Iris lesion		Conjunctival redness		Conjunctival chemosis					
Grade	0	1	2	3	4	0	1	2	0	1	2	0	1	2	3	4
1 h		1/3	1/3		1/3		3/3		1/3	1/3	1/3			1/3	2/3	
24 h			1/3	1/3	1/3		3/3		1/3	1/3	1/3					3/3
48 h				2/3	1/3		3/3			1/3	2/3				3/3	
72 h					3/3		2/3	1/3			3/3				1/3	2/3
24-72h mean			3.4				1.1			1.6				3.6		
7 d		1/3	1/3		1/3		2/3	1/3		1/3	2/3			2/3		1/3
14 d	1/3	1/3			1/3	2/3	1/3		1/3	2/3			1/3	1/3		1/3
21 d		1/2			1/2	1/2	1/2		2/2				1/2			1/2

Eye irritation of Dicamba tech. to rabbits. Group II - 24 hours exposure.

Even if the study was conducted prior to Guideline 405, it is considered acceptable for evaluation of the potential serious eye damage/eye irritation of dicamba.

A single incident of eye exposure during manufacture has been recorded. In 2001 a contractor working below the dicamba flaking area disturbed some dust from the flaker, which fell through the grating into his eye resulting in irritation. Local first aid involved irrigation of the affected eye and the contractor's physician also recommended the taking of ibuprofen.

2.6.2.5.2 Comparison with the CLP criteria regarding serious eye damage/eye irritation

21 days after installation, effects on cornea and conjunctiva were still observed in the eyes of some rabbits indicating possible irreversibility. Furthermore, the mean scores in at least 3/5 (Group 1) and 3/3 (Group 2) animals for corneal opacity were \geq 3 (mean scores at 24, 48 and 72 hours). These data exceed the criterion for classification of irreversible effects. The study results warrant a classification of dicamba as Eye Dam. 1, Causes serious eye damage (H318) according to Regulation (EC) No 1272/2008.

2.6.2.5.3 Conclusion on classification and labelling for serious eye damage/eye irritation

Dicamba should be classified as Eye Dam. 1, Causes serious eye damage (H318) according to Regulation (EC) No 1272/2008.

2.6.2.6 Respiratory sensitisation [equivalent to section 10.6 of the CLH report template] No information available.

2.6.2.6.1 Short summary and overall relevance of the provided information on respiratory sensitisation No information available.

2.6.2.6.2 Comparison with the CLP criteria regarding respiratory sensitisation No information available.

2.6.2.6.3 Conclusion on classification and labelling for respiratory sensitisation

No information available.

2.6.2.7 Skin sensitisation [equivalent to section 10.7 of the CLH report template]

Table 16: Summary table of animal studies on skin sensitisation

Method, guideline, deviations if any	Species, strain, sex, no/group	Test sub- stance	Dose levels duration of expo- sure	Results	Reference
Maximisa- tion study OECD 406 GLP	Guinea pig Ibm:GOHI (Himalayan spotted) 30 females (20 test, 10 controls)	Dicamba (Technical material; batch 52625110; purity 86.3%) Vehicle: ethanol / Vaseline	ethanol, FCA and physiological sa- line (50:50). Topical: 25% in vaselinum album under an occlusive dressing for 48 hours.	sessed at 24 and 48 hours. No dermal reaction following chal- lenge in test or control animals.	(1991)

2.6.2.7.1 Short summary and overall relevance of the provided information on skin sensitisation

No clinical signs of systemic toxicity and no effects on body weight development were noted. The application area around the injection sites 1 to 3 of control and test group animals was found to show erythema and edema from day 2 to 7, necroses from day 8 to 13, encrustation from day 13 to 17 and exfoliation from day 18 to 25 (termination of the test). The epidermal induction in test group females resulted in grade 1 edema in 1/20 and erythema in 8/20 animals at the 24 and/or 48 hour readings. There were no signs of irritation or oedema in any of the test or control group animals after challenge application.

2.6.2.7.2 Comparison with the CLP criteria regarding skin sensitisation

Dicamba does not meet the criteria for classification as a skin sensitiser.

2.6.2.7.3 Conclusion on classification and labelling for skin sensitisation

Dicamba does not meet the criteria for classification as a skin sensitiser.

2.6.2.8 *Phototoxicity*

Study type TG/GLP	Animal sex, species and strain	Substance Batch	Results	Reference
city test	Mouse fibroblast cell line Balb/3T3, clone A31	Purity 90.1%	No phototoxic ef- fects observed. The study was per- formed with UVA 315-400 nm.	Gehrke H, 2015

Study type TG/GLP	Animal sex, species and strain	Substance Batch	Results	Reference
<i>In vitro</i> phototoxicity test OECD 432 (2004)/GLP	Mouse embryo fibro- blasts from the Balb/c 3T3 clone 31 (ATCC - CCL163)		fects observed. The study was performed with UVA 320-400	NEW Ostinet D., 2016 KCA
Deviation from TG 432: UV/vis absorption spectrum of the test substance according to OECD TG 101 was not determined			nm.	5.2.7/02

2.6.2.9 Aspiration hazard [equivalent to section 10.13 of the CLH report template]

No evidence of aspiration hazard.

2.6.2.9.1 Short summary and overall relevance of the provided information on aspiration hazard

No evidence of aspiration hazard.

2.6.2.9.2 Comparison with the CLP criteria regarding aspiration hazard No classification.

2.6.2.9.3 Conclusion on classification and labelling for aspiration hazard No classification.

2.6.2.10 Specific target organ toxicity-single exposure (STOT SE) [equivalent to section 10.11 of the CLH report template]

 Table 18:
 Summary table of animal studies on STOT SE (specific target organ toxicity-single exposure)

<i>,</i> 0	Test substance, route of exposure, dose levels, du-	Results	Reference
if any, species,	ration of exposure		
strain, sex,			
no/group			

			Γ
Acute neurotox-	Dicamba (technical mate-	<u>1200 mg/kg bw</u>	(1993)
icity (oral). OECD 424	rial; purity: 86.9%) 0, 300, 600 or 1200 mg/kg	1/10 males found dead on day 1	(1995)
(1997).	bw. Single oral gavage	Signs of neurotoxicity after 1.5 ± 1 hours:	
GLP	dose.	Rigidity in handling/body tone (8/10 males, 10/10 fe- males), impairment of respiration (4/10 males, 5/10 fe-	
Rat,	The dose levels applied	males), flattened and/or raised posture (5/10 males, 6/10	
	correspond to 261, 521	females), impairment of gait (all animals), hypoalertness	
CD®BR,	and 1043 mg/kg bw/day of pure dicamba.	(7/10 males),	
10/sex/group	pure dicumba.	↓ rears/minute males,	
	Vehicle: corn oil	\uparrow freezing in response to touch,	
	Positive control: Acryla-	abnormal righting reflex (9/9 males, 10/10 females),	
	mide	\uparrow 86.5% tail flick latency time males,	
		\downarrow 29% fore limb grip strength males,	
		\downarrow activity both sexes during the first 10 to 15 minutes of	
		session	
		\downarrow auditory startle	
		<i>Body weight</i> :↓ 8.6% day 7 males <i>Body weight gain</i> : ↓ 25.9% day 0-7 males	
		Food consumption: $\downarrow 12.8\%$ day 0-7 males	
		Signs of neurotoxicity after 7 days:	
		Fore limb grip strength \downarrow 15.0% males,	
		Auditory startle: maximum and average input voltages to	
		stimulus \downarrow 59.10 and 53.5% respectively in males, 56% \downarrow	
		in females	
		Signs of neurotoxicity after 14 days:	
		No differences from control.	
		600 mg/kg bw	
		Signs of neurotoxicity after 1.5 ± 1 hours:	
		Rigidity in handling/body tone (8/10 males, 8/10 fe- males), impairment of respiration (2/10 males, 1/10 fe-	
		males), flattened and/or raised posture (5/10 males, 6/10	
		females), impairment of gait (all animals), hypoalertness	
		(4/10 males, 2/10 females),	
		↓ rears/minute males,	
		↑ freezing in response to touch,	
		abnormal righting reflex (10/10 males, 9/10 females),	
		\uparrow 54% tail flick latency time males,	
		\downarrow 19% fore limb grip strength males,	
		\downarrow activity both sexes during the first 10 to 15 minutes of the locomotor activity session	
		Signs of neurotoxicity after 7 days:	
		No effects.	
		<u>300 mg/kg bw</u>	
		Signs of neurotoxicity after 1.5 ± 1 hours:	
		Rigidity in handling/body tone (5/10 females), raised posture (2/10 females),	
		\downarrow rears/minute males,	
		↑ freezing in response to touch (1/10 males, 2/10 fe- males),	
		abnormal righting reflex (7/10 males, 8/10 females),	
		\downarrow 15% fore limb grip strength males	
		No NOAEL (NOAEL < 300 mg/kg bw/day). All signs and measurements comparable to control by day 14.	

Method, guide- line, deviations if any, species, strain, sex, no/group	Test substance, route of exposure, dose levels, du- ration of exposure	Results	Reference
		No treatment-related neuropathy.	
Acute delayed neurotoxicity. US-EPA FIFRA, Subdi- vision F, § 81-7 GLP Hen <i>Gallus gal- lus domesticus</i> , strain: Hisex Brown 10/group in con- trol, low and mid dose group, positive control; 20/group high dose group.	Dicamba (technical mate- rial; purity: 86.82%). 0, 79 (¼ LD ₅₀), 158 (½ LD ₅₀), 316 mg/kg bw (LD ₅₀) Single oral dose Vehicle: corn oil Positive control: TOCP <i>The dose levels applied</i> <i>correspond to 226, 327,</i> <i>475, 688 and 998 mg/kg</i> <i>bw of pure dicamba for the</i> <i>LD₅₀ determination, and to</i> <i>69, 137, and 274 mg/kg bw</i> <i>of pure dicamba for the</i> <i>neurotoxicity assessment</i> <i>groups.</i>	 316 (274) mg/kg bw: 9/20 animals died. Body weight: weight loss during the first two weeks of the experiment. Lesions of the sciatic nerve considered secondary to mild nerve entrapment resulting from recumbency not a direct toxic effect of dicamba. 158 (137) mg/kg bw: 1/10 birds found dead day 5. Body weight gain: ↓ 67% Food consumption: ↓ days 1 to 3 Neuropathology: comparable to control hens 79 (69) mg/kg bw: No mortality. Body weight development similar to control. Food consumption: ↓ days 1 to 3 The LD₅₀ expressed as technical dicamba is 316 mg/kg bw. NOAEL < 79 mg/kg bw. Effects at all doses: unsteadiness, inability to walk, collapsing when moved and lying on the pen floor with legs outstretched or lying on one side. Effect was reversible. Does not induce delayed neurotoxicity in hens 	(1983)
Acute inhalation toxicity OECD 403 (1981)/GLP (study accepta- ble) CRL:(WI)BR Wistar rats 3 groups of 5 males and 1 group of 5 fe- males	Dicamba (RC1176) Purity: 98.85% RTM/DCMB/03/20090612 Mean achieved doses: 5.01, 3.98, 4.50 mg/L, (nose- only) for 4 h.	LC_{50} females > 5.01 mg dicamba/L LC_{50} males 5.11 mg dicamba/L (technical material) In surviving animals (all groups), significant clinical signs commonly noted on the day of exposure and con- tinuing during the observation period included laboured, noisy, gasping respiration and sneezing. In addition, ataxia, lethargy, hunched posture; tiptoe gait, eye par- tially closed, and emaciation were noted in some survi- vors during the first week of the observation period. No clinical signs were noted from Day 7 of the observation period.	2010 KCA 5.2.3/03 (study ac- ceptable)
Acute inhalation toxicity OECD 403 (2009)/GLP (study accepta- ble)	Dicamba Purity: 97.8% w/w 201410375 5.14 mg/L(nose-only) for 4 h.	LC ₅₀ > 5.14 mg dicamba/L for males and females (tech- nical material) None of the rats died and all gained body weight during the study. Following exposure all rats exhibited irregular	2015 KCA 5.2.3/01 (study ac- ceptable)

Method, guide- line, deviations if any, species, strain, sex, no/group	Test substance, route of exposure, dose levels, du- ration of exposure	Results	Reference
Sprague-Daw- ley derived, al- bino rats 1 group of 5 males and 5 fe- males		respiration and hypoactivity. Additionally, two males had anogenital staining. All animals had recovered by day 3.	
Acute inhalation toxicity OECD 403 (1981)/GLP (study accepta- ble) Alpk:AP _f SD (Wistar-derived) rats 3 groups of 5 fe- males and 5 males	Dicamba Tech. (SAN 837 Tech.) Purity 91.2% B2826511 Target concentrations: of 1, 2.5 and 5 mg/L air (males only at 1 and 2.5 mg/l). Analysed conc.: 1.011, 2.373 and 4.591 mg/L Achieved gravimetric con- centration 1.182, 2.68 and 5.191 mg/L (nose-only) for 4 h	LC ₅₀ (males): 4.46 mg dicamba/L LC ₅₀ (females): >5.19 mg dicamba/L (technical material) At 2.68 mg/kg, wet fur (all animals) and stains around the nose (1/5) were observed. All animals displayed changes indicative of mild toxicity: decreased activity and salivation. Signs of moderate or mild toxicity (hunched posture, piloerection, salivation, decreased ac- tivity, coldness to touch, reduced foot withdrawal reflex, reduced response to sound) were present at 5.19 L. At 5.19 mg/L, one male was prostrate and all females had muscular rigidity. The respiratory effects, seen during and immediately after exposure in all animals exposed to 5.19 mg/L and 2.68 mg/L, were transient and most an- imals had recovered by day 3, although abnormal respir- atory noise persisted in some animals exposed to 2.68 mg/L until day 4. All animals were symptom free from day 5.	2001 KCA 5.2.3/02 (study ac- ceptable)

 Table 19:
 Summary table of other studies relevant for STOT SE (specific target organ toxicity-single exposure)

Type of study/data	Test substance	Observations	Reference
Developmental toxicity Test guideline not stated but complies largely to OECD 414 (2001) but with some notable deviations (see below) Oral (gavage) Rat, CD 25 mated fe- males/group	Dicamba (Technical grade; batch: 52625110; purity 90.4%) 0, 64, 160 or 400 mg/kg bw/day on days 6-19 of ges- tation. The dose levels applied cor- respond to 58, 145 and 362 mg/kg bw/day of pure dicamba. Vehicle: corn oil	Maternal toxicity 400 (362) mg/kg bw/day: 4/25 deaths gestation day 7 & 8; ataxia, stiffening of the body when held, urine soaked fur, salivation and decreased motor activity; ↓ body weight gain (27% lower corrected maternal bw gain); ↓ food consumption (18.5% lower than controls, days 6-19). 4 deaths on GD7 and 8 (3 pregnant, 1 non- pregnant) 160 (145) mg/kg bw/day 10 % lower corrected maternal bw gain (not statistically significant) 64 (58) mg/kg bw/day No effects Maternal NOAEL 64 (58) mg/kg bw/day Developmental toxicity 400 (362) mg/kg bw/day: ↑ number of incompletely ossified frontal (s) and/or parietal(s) 64 (58) & 160 (145) mg/kg bw/day: No effects Developmental NOAEL 160 (145) mg/kg bw/day	(1981) (study ac- ceptable)

Dicamba

D 1 (1	D: 1 (T 1 : 1 1		
Developmental	Dicamba (Technical grade;	Maternal toxicity	
toxicity	batch: 52625110; purity	300 (271) mg/kg bw/day: 4/20 abortions; ataxia, rales,	(1992)
US EPA 83-3	90.4%)	laboured breathing, perinasal substance, dried/no fae-	(study ac-
(complies	0, 30, 150 or 300 mg/kg	ces, impaired righting reflex and decreased motor ac-	ceptable)
	bw/day on days 6-18 of ges-	tivity; \downarrow body weight gain (42% lower than controls	1 /
OECD 414,	tation	days 0 to 29); \downarrow relative food consumption (13% lower	
2001)		than controls, days 0-29). Clinical observations first	
Oral (capsule)	The dose levels applied cor-	occurred on day 9 of presumed gestation, and one or	
Rabbit, New	respond to 27.1, 136 and	more were generally observed in several does	
Zealand White	271 mg/kg bw/day of pure	throughout the dosing and post dosing periods.	
Hra:(NZW)SPF	dicamba.		
20 inseminated		150 (136) mg/kg bw/day: 1/20 abortion; ataxia and	
females/group		decreased motor activity	
iemaies, group			
		30 (27.1) mg/kg bw/day	
		No effects	
		Maternal NOAEL:30 mg/kg bw/day	
		Developmental toxicity	
		1 5	
		300 mg/kg bw/day:	
		increased incidence of irregularly ossified internasals.	
		8 7	
		High dosis (incidence) 300 mg/kg bw/day	
		Pups: 3.9%	
		Litter: 23.1%	
		HCD 1987-1989	
		Pups: 0-2.3%	
		Litter: 0-14.3%	
		HCD 1990-1994	
		Pups: 0-5 (0-4.8%)	
		Litter: 0-4 (0-26.7%)	
		HCD 1992-1994	
		Pups: 0-4.2%	
		Litter: 0-26.7%	
		30, 150 mg/kg bw/day:	
		No effects	
		Developmental NOAEL 150 (136) mg/kg bw/day	

Two Generation	Dicamba (Technical mate-	Parental toxicity	
Oral (continu-	rial; batch 52103810; purity	5000 ppm	1993
ous in diet)	86.9%)	F0: mean achieved intake 347/390 mg/kg bw/day,	
OECD 416	0, 500, 1500 or 5000 ppm	males/ females respectively	
(1983) Rat, CD	Vehicle: laboratory animal diet.	↓ body weight gain pregnancy day 0-14: 9.6% (day 0-20: 3.2%)	
(SD) BR		↑ adjusted liver weight 13% females, 5% males	
VAF/Plus 32/sex/group	The overall F0/F1 pre-mat- ing doses correspond to	F1: mean achieved intake, 432/458 mg/kg bw/day, males/ females respectively	
(F0) 28/sex/group (F1)	37.9, 113 and 389 mg/kg bw /day for males and 42.6, 130 and 424 mg/kg bw/day for females at 0, 500, 1500 or	Clinical signs during lactation: tense/stiff body tone and slow righting reflex for a few days during the lat- ter part of lactation	
	5000 ppm, respectively.	↓ body weight pregnancy day 0-14: 4.6% (F1A) and 23% (F1B)	
	The overall F0/F1 pre-mat-	↑ absolute liver weight 3% females, males 9.5% (relative)	
	ing means correspond to 32.9, 98.3 and 338 mg/kg	\downarrow food consumption week 5-8	
	bw/day of pure dicamba for	<u>1500 ppm</u>	
	males, and to 37.0, 113, 369 mg/kg bw/day of pure	F0: mean achieved intake, 105/125 mg/kg bw/day, males/ females respectively	
	dicamba for females, at 500, 1500 and 5000 ppm, respec-	F1: mean achieved intake, 121/135 mg/kg bw/day, males/ females respectively	
	tively	↓ body weight gain pregnancy day 0-14 (F1B): 15 % (day 0-20: 15%)	
		<u>500 ppm</u>	
		F0: mean achieved intake, 35/41 mg/kg bw/day, males/ females respectively	
		F1: mean achieved intake, 40/44 mg/kg bw/day, males/ females respectively	
		↓ body weight gain pregnancy day 0-14: 9.6% (F1B) (day 0-20: 1.7%) but absolute body weight was not re- duced	
		Otherwise, no effects	
		NOAEL 500 ppm (42.6 mg/kg bw/day) on the basis of decreased body weight during pregnancy (GD 0- 14) at 1500 and 5000 ppm. Clinical signs during lacta- tion, ↑ liver weights at 5000 ppm	
		<u>Reproductive toxicity</u>	
		No effects at any dose level	
		NOAEL 5000 ppm (389 mg/kg bw/day)	
		Offspring toxicity	
		5000 ppm	
		F1: ↓mean pup body weight 24 % day 21, delayed sexual maturation of males by 2 days, ↑ relative liver weights 27%.	
		F2A/B: ↓ body weight 26/30 % day 21, ↑ relative liver weights approx. 36%.	
		<u>1500 ppm</u>	
		F1: ↓ mean pup body weight 4 % day 21	
		F2A/B: ↓ pup body weight 10/14 % day 21	
		<u>500 ppm</u>	
		F2B: No effects	
		NOAEL: 500 ppm (37.9 mg/kg bw/day) based on	

		body weight effects at 1500 and 5000 ppm.	
Subchronic neurotoxicity study. OECD 424 (1997). GLP Rat, CD [®] BR, 10/sex/group (dietary)	Dicamba (technical mate- rial; purity: 86.9%) 0, 3000, 6000 and 12000 ppm Actual doses 0, 197.1, 401.5 and 767.9 mg/kg/day for the males and 253.4, 472.0 and 1028.9 mg/kg/day for fe- males. Continuous in the diet for 13 weeks The dose levels applied cor- respond to 171, 348 and 667 mg/kg bw/day of pure dicamba in males, and to 220, 410, 894 mg/kg bw/day of pure dicamba in females at 3000, 6000 and 12000 ppm, respectively.	12000 ppm (males 767.9 mg/kg bw/day, females 1028.9 mg/kg bw/day): Body weight: ↓ 5.5% males, 4.8% females, week 14 Body weight gain: ↓ 24.1% males, 37.9%, females week 1 FOB: ↑ frequency of rigid body tone when handled in weeks 4, 8 and 13 (greater in females than males). Pathology: No treatment-related changes in any of the tissues examined 6000 ppm (males 401.5 mg/kg bw/day, females 472 mg/kg bw/day): No treatment-related effects. 3000 ppm (males 197.1 mg/kg bw/day, females 253.4 mg/kg bw/day): No treatment-related effects. MOAEL for neurotoxicity and systemic toxicity is 6000 ppm (401.5 mg/kg bw /day in males and 472 mg/kg bw/day in females), based on decreased body weight gain and neurobehavioral findings.	(1994) (study ac- ceptable)

12 1 1			
13-week oral (capsule) tox-	Dicamba (technical mate- rial; batch B2826511; purity	<u>300 (274) mg/kg bw/day:</u>	(2003)
icity	90.4%)	<i>Clinical observations</i> : Hind limb gait abnormalities noted from day 1: ataxia, stiff gait and sporadic transi-	(study ac-
OECD 409,	0, 10, 50, 300 mg/kg bw/day	ent collapse generally seen in the majority of the 300	ceptable)
1998	Capsule administration. No	mg/kg animals approximately 2 hours after dosing and	
GLP	vehicle	persisting for up to 5 hours. The neurological screen at	
Dog: pure-	13-week duration plus 4-	wk 6 and 13 showed abnormal locomotion and gait ab-	
breed Beagles	week recovery	normalities in all animals. No effects detected follow- ing the recovery phase.	
4/sex/group,	Considering the purity of	<i>Mean bw gain:</i> \downarrow 26 % in males and 44 % in females	
plus an addi- tional	dicamba used for this study (90.4%), the applied doses	(not statistically significant)	
4/sex/group for control and top	referring to pure dicamba (100% purity) correspond to	<i>Food consumption:</i> 90% of control for males and 84% of control for females	
dose 4-week re-	9.0, 45, 274 mg/kg bw/day.	<i>Haematology:</i> 19-17.7% RBC, Hct and Hb week 7 and	
covery phase		13 both sexes. ↑ 10.5% APPT activity in males and 7%	
		in females at week 13, but signs of reversibility follow-	
		ing recovery. C_{1}	
		<i>Clinical chemistry:</i> ↓ 24.6-32.4% cholesterol and phospholipids weeks 7 and 13. Partial improvement follow-	
		ing recovery (no statistically significant differences	
		from control).	
		<i>Organ weights:</i> ↓ Not significantly decreased abs 17 % and 11 % rel testes weight	
		Not toxicologically significant effects (1 absolute and	
		relative spleen weight for males due to high control	
		value and ↑ kidney weight as percentage body weight in females, not evident after recovery).	
		50 (45) mg/kg bw/day:	
		No toxicologically significant findings.	
		10 (9) mg/kg bw/day:	
		No treatment-related effects.	
		NOAEL = $50 (45) \text{ mg/ kg bw/day based on effects on}$	
		gait and behaviour, decreased food intake and body	
		weight gain, minor alterations in the red blood cell	
		parameters and disturbances in the serum lipid lev-	
		els and decreased testes weight in the highest dose group.	
		Stoup.	

RC1176: 90- day oral capsule toxicity study in beagle dogs OECD 409 (1998) GLP Dog: Beagle 4/sex/group	0, 10, 50 and 300 mg/kg bw/day Dicamba (technical mate- rial; Lot: RTM/DCMB/03/20090612; purity >95%) Doses corresponded to 0, 9.5, 47.5, 285 at 100, 500, and 2500 ppm, respectively when corrected for purity.	At 300 (285) mg/kg bw/day : Clinical signs : Intermittent stiff gait and recumbency, slight and/or moderate uncoordination or ataxia and retching or em- esis were consistently recorded. On occasion, the ani- mals also displayed slightly to severely decreased ac- tivity, liquid faeces, increased salivation, minor tonic convulsions or tremors. All animals recovered by the following morning Organ weight: ↑ ovary absolute and relative weight (>40 %)	(2010) (study ac- ceptable)
		<i>Clinical chemistry parameters</i> : ↑ ALT in both sexes during week 13 (72%, p<0.01 in the males, and 143%, p<0.05 in the females).c ↓ cholesterol appeared to be lower than control; how- ever, no statistically significant differences were noted when compared to control. ↓ triglyceride mean values in both males and females, attaining statistical significance in the males (-28%, p< 0.05).)	
		↓ ALKP mean values in females (-40%, p<0.05 at week 7), and -36%, p<0.01 at week 13.	
		<u>50 (47.5) mg/kg bw/day</u>	
		\downarrow ALKP mean values (-30%, p<0.05 at week 7)	
		<u>10 (9.5) mg/kg bw/day :</u>	
		No toxicologically relevant effects	
		<u>NOAEL</u> was 50 (47.5) mg/kg bw/day based on clin- ical signs and parameters (stiff gait, uncoordination or ataxia and retching or emesis, decreased activity, liquid faeces, increased salivation, minor tonic con- vulsions or tremors, decreased values in the red blood count, haemoglobin and haematocrit at 300 mg/kg bw/day)	

4 week oral range-finding study Pre OECD guideline and GLP. No hae- matology, clini- cal chemistry or pathology con- ducted. Non-GLP Rat: CD® 5/sex/group (di- etary)	Dicamba (Banvel technical; batch 52625110; purity 86.82%) Dietary study, 0, 5000, 7500, 10000, 12500, 15000 ppm. Doses correspond to 0, 568, 798,1053, 1353, 1649 for males and for females 0, 557, 840, 1085, 1364, 1654 mg/kg dicamba/day (tech- nical material) at 0, 5000, 7500, 10000, 12500 and 15000 ppm 4-week duration <i>Corrected for purity cor-</i> <i>responds to 493, 693,</i> 914, 1175 and 1432 mg/kg bw/day for males at 5000, 7500, 10000, 12500 and 15000 ppm, <i>respectively, and 484,</i> 729, 942, 1184 and 1436 mg/kg bw/day for females at 5000, 7500, 10000, 12500 and 15000 ppm	 15000 ppm (approx. 1649 mg/kg bw/day for males & 1654 mg/kg bw/day for females): 3/5 males and 4/5 females impaired mobility in hind extremities. Body weight gain: ↓ 39.0% males, ↓ 23.0% females week 4 Food consumption: ↓ 35.6% males, ↓ 29.3% females week 1-4 12500 ppm (approx. 1353 mg/kg bw/day for males & 1364 mg/kg bw/day for females): 1/5 male impaired mobility in hind extremities. Body weight: ↓ 23.7% males, ↓ 12.8% females week 4 Food consumption: ↓ 24.9% males, ↓ 20.7% females week 1-4 10000 ppm (approx. 1053 mg/kg bw/day for males & 1085 mg/kg bw/day for females): Body weight: ↓ 11.2% males week 4 Food consumption: ↓ 16.9% males, 12 % females week 1-4 7500 ppm (approx. 798 mg/kg bw/day for males & 557 mg/kg bw/day for females): No adverse effects reported. NOAEL: 840 mg dicamba/kg bw/day in females and 798 mg dicamba/kg bw/day in males (7500 ppm) based on reduced body weight gain and food 	(1979) (range-find- ing study supportive of risk as- sessment)
Repeated dose 28-day inhala- tion. OECD 412 EC No. 440/2008 GLP Rat: WI Wistar 10/sex/group	Dicamba (BAS 183H Tech- nical material; batch 0002B01BA-251; purity 93.9%) Nose only exposures to dust. 0, 0.001, 0.005, 0.05 mg/L, 6 hours/day, 5 days/week for 4 weeks. Dose levels correspond to 0.00094, 0.0047 and 0.047 mg/L of pure dicamba	consumption 0.05 mg/L: Body weight gain : ↓ 41 % in males, 13 % in females (not statistically significant in females) Organ weights: ↑ absolute (16 – 17%) and relative (17 – 20%) lung weights in males and females. Histopathology: minimal or slight hypertrophy or hyperplasia of the epithelium of single bronchi, bronchioles or terminal bronchioles in all males and females, minimal/slight bronchiolo-alveolar hyperplasia in 8/10 males and 9/10 females. 0.005 mg/L: Histopathology: minimal multifocal bronchiolo-alveolar hyperplasia in 2/10 males. 0.001 mg/L: No treatment-related adverse findings. NOAEC for local toxicity at the respiratory tract was 0.001 (0.00094) mg/L. The NOAEC for general, systemic toxicity was 0.005 (0.0047) mg/L (decreased bw gain).	(2014) (study ac- ceptable)

2.6.2.10.1 Short summary and overall relevance of the provided information on specific target organ toxicity – single exposure (STOT SE)

Neurotoxicity

In an acute neurotoxicity study in rats (**1993**) a single oral administration (gavage) of dicamba at dose levels of 0, 300, 600, or 1200 mg/kg bw resulted in one unscheduled death and in decreased mean body weight gain and food consumption in high dose males. Dose dependent neurobehavioral effects were apparent in all treated groups at 1.5 ± 1 hours after dosing. The overall effect of treatment could be described as a stimulus- or stressinduced rigidity based on the increased frequency in treated animals exhibiting rigidity in handling/body tone, impairment of respiration, flattened and/or raised posture, impairment of gait, hypoalertness, significantly decreased number of rears/minute, freezing in response to touch, abnormal righting reflex (uncoordinated, landing on side, landing on back), increased tail flick latency time, decreased forelimb and hind limb grip strength, and decreased activity during the first 10 to 15 minutes of the 40-minute locomotor activity session.

At the day 7 neurobehavioral evaluation, differences were restricted to a few parameters (forelimb grip strength, auditory startle) in high dose rats (statistically significant in males only). At the day 14 neurobehavioral examination there was no differences between dicamba-treated animals and vehicle control animals, demonstrating that the neurobehavioral changes were transient. There were no neurohistopathological findings that could be related to treatment. It was not possible to establish a NOAEL following a single high dose in rats.

Administration of single oral doses of dicamba to domestic hens at a dose level of 316 mg/kg bw (LD₅₀) was poorly tolerated (1983). However, there were none of the classical clinical signs of ataxia indicating delayed neurotoxicity at this or lower dose levels. The clinical signs of toxicity observed at all doses included unsteadiness, inability to walk, collapsing when moved and lying on the floor with legs outstretched or lying on one side. The first signs were noted within one hour of dosing and some birds were recumbent for up to 15 days before showing signs of recovery with animals in the lower dose groups recovering faster. In the high dose group, these clinical signs were accompanied by body weight loss and decreased food consumption during the first 10 to 14 days after treatment with recovery after this period of time. The microscopic examination revealed no neurohistopathological lesions in the brain and spinal cord of hens administered dicamba. Lesions of the sciatic nerve were restricted to the high dose level (316 mg/kg bw) and were considered secondary to nerve entrapment resulting from the recumbency rather than from a direct toxic effect of dicamba. The results of the study revealed no indication for delayed neurotoxicity.

It was not possible to establish a NOAEL following a single high dose, but in the subchronic neurotoxicity study a NOAEL of 401.5 mg/kg bw/day for neurotoxicity was determined (1994). The observed effects in the acute neurotoxicity study at 300 (261) mg/kg, which were generally observed 1.5 hours after administration only (1993), might be due to the higher systemic peak concentrations of dicamba after oral gavage compared to dietary administration of an even higher dose.

Three standard single dose inhalation studies performed with rats according to OECD 403 at doses ranging from 1 to 5.19 mg/L. In all three studies, evidence of specific target organ toxicity was seen in the form of clinical signs.

In the study by (2010), where Wistar rats were exposed to 3.98, 4.5 and 5.01 mg/L (nose only) signs of narcotic effects such as ataxia, lethargy and eyes partially closed were seen in animals in all groups during the first week after exposure. Ataxia and lethargy were not observed later than 1 day after dosing (2010). In the study by (2015), all animals showed hypoactivity after dosing (5.14 mg/L) and in (2001) decreased activity was noted in all animals (doses: 1.182, 2.676 and 5.191 mg/L), and in the highes dose group reduced foot withdrawal reflex and reduced response to noise were also observed.

Adverse clinical signs (ataxia, stiffening of the body when held, crusts around nose/muzzle) were recorded in the rat developmental toxicity study (1981) on the first day of dosing at 400 (362) mg/kg bw. This dose level resulted in on 4 deaths on GD7 and 8. There were no adverse clinical signs at lower dose levels (64 and 160 mg/kg bw/day). In the rabbit developmental study ataxia was also observed at 300 (271) mg/kg bw/day and 150 (136) mg/kg bw/day up to the day efter last dosing (GD19) (1992).

Clinical signs were not reported in the acute oral study and in the acute dermal study no clinical signs were oberved. Transiently abnormal gait including ataxia has also been observed in repeat studies in dogs at 300 (274) mg/kg bw/day (2003) and at at 300 (285) mg/kg bw/day (2010). In rats at a dose > 1000 mg/kg bw for 4 weeks impaired mobility of hind extremities was observed (2010). In rats at a dose > 1000 mg/kg bw for reported clinical signs during lactation included tense/stiff body tone and slow righting reflex for a few days during the latter part of lactation at 5000 ppm (424 mg/kg bw/day) (2010).

Respiratory irritation

As described above, three standard single dose inhalation studies were performed in rats. In the study by (2001), Alpk:AP_fSD (Wistar derived) rats were exposed nose only to aerosilised Dicamba at 1.182, 2.676 and 5.191 mg/L (measured concentration) for 4 h. The animals were devided in 3 groups of 5 males and 5 females. An LD₅₀

Dicamba

Volume 1 – Level 2

of 4.46 and >5.19 mg dicamba/L (technical material) was established. Changes indicative of irritation of the upper respiratory tract was seen at all doses and included increase in breathing depth and abnormal respiratory noice. At \geq 2.68 mg/L, the breathing rate was reduced and at \geq 5.19 mg/L laboured breathing was further observed. (2001).

Similar effects were seen in (2010), where CRL:(W1)BR Wistar rats were exposued to mean doses of 5.01, 3.98 and 4.5 mg/L nose only during 4 hours. In all groups, significant clinical signs commonly noted on the day of exposure and continuing during the observation period included laboured, noisy, gasping respiration and sneezing. Irregular respiration was also reported in the third study by (2015), where Sprague Dawley rats were exposed to 5.14 mg/L (nose only, 4 h).

A 28 day inhalational study is also available for Dicamba (2014). The study was performed according to OECD 412 on William Wistar rats. The animals were exposed nose only to dust at doses of 0, 0.001, 0.005, 0.05 mg/L 6 hours/day, 5 days/week for 4 weeks. At the highest dose, the histopathology showed minimal or slight hypertrophy or hyperplasia of the epithelium of single bronchi, bronchioles or terminal bronchioles in all males and females and minimal/slight bronchiolo-alveolar hyperplasia in 8/10 males and 9/10 females. This indicates a local toxicity at the respiratory tract and the NOAEC for this endpoint was 0.001 (0.00094) mg/L. The NOAEC for general, systemic toxicity was 0.005 (0.0047) mg/L (decreased bw gain).

2.6.2.10.2 Comparison with the CLP criteria regarding STOT SE (specific target organ toxicity-single exposure)

Specific target organ toxicity (single exposure) is defined as specific, non lethal target organ toxicity arising from a single exposure to a substance or mixture. All significant health effects that can impair function, both reversible and irreversible, immediate and/or delayed effects are considered.

STOT, SE - narcotic effects

In single dose oral studies in both the rat and hen there was no evidence of neuropathology at doses up to peri-lethal levels. In the hen adverse clinical signs were only observed at dose levels that induced some lethality. In the rat, adverse clinical signs at dose levels which did not induce lethality were seen within 1.5 hours of dosing at doses \geq 300 mg/kg bw in the neurotoxicity study. These neurobehavioural effects include rigidity in handling/body tone, impairment of respiration, flattened and/or raised posture, impairment of gait (all animals), hypoalertness and abnormal righting reflex and reduced activity amongst others (see table 18). All effects were reversible and non-existing after 7 days, and in the absence of any evidence of neuropathology these transient effects in rats are considered not to be evidence of significant or severe toxicity or to be changes that clearly indicate functional disturbance of toxicological relevance.

In the acute inhalation studies, neurobehavioral effects after the single exposure were observed at all dose levels. These effects include ataxia and lethargy as well as reduced activity and reduced reflexes in forms of reduced foot withdrawal reflex and reduced response to noise.

Further, in several chronic studies signs of narcotic effects such as ataxia and reduced righting reflex were observed on the days after dosing.

The criteria for classifying substances as Category 3 for narcotic effects observed in animal studies are according to section 3.8.2.2.2 (b):

"Narcotic effects observed in animal studies may include lethargy, lack of coordination, loss of righting reflex, and ataxia. If these effects are not transient in nature, then they shall be considered to support classification for Category 1 or 2 specific target organ toxicity single exposure."

Since effects as for example ataxia, lethargy, reduced reflexes and reduced activity were observed in rats after single exposure in both acute oral and acute inhalation studies and after dosing in chronic studies, a classification for narcotic effects is considered appropriateAs the effects are transient in nature, a STOT-SE category 3 H336 should apply.

STOT SE - Respiratory effects

In single dose inhalation studies, clear signs of respiratory tract irritation was found at all dose levels. Signs of irritation were increased in breathing depth and abnormal respiratory noice, reduced breathing rate and laboured breathing at the highest dose. Furthermore, historpathological changes in the lungs found in a 28-day inhalational study indicate local toxicity of dicamba in the respiratory tract that could explain the clinical signs of irritation.

According to the CLP regulation, classifying for respiratory tract irritation should be based on human data and animal data can be used part of a weight of evidence evaluation. According to section 3.8.2.2.1. (d), "there are currently no validated animal tests that deal specifically with RTI, however, useful information may be obtained from the single and repeated inhalation toxicity tests. For example, animal studies may provide useful information in terms of clinical signs of toxicity (dyspnoea, rhinitis etc) and histopathology (e.g. hyperemia, edema, minimal inflammation, thickened mucous layer) which are reversible and may be reflective of the characteristic clinical symptoms described above. Such animal studies can be used as part of weight of evidence evaluation".

For dicamba, no human data is available for single exposure by inhalation. However, there are strong indications from the animal studies, that respiratory tract irritation occurs. This is based on the reversible effects on the respiration of the animals in the single dose inhalation studies, but also on histopathological changes found in the lungs in the 28-day inhalation study. This indicates that a classification as STOT, SE 3 H335 is warranted..

2.6.2.10.3 Conclusion on classification and labelling for STOT SE (specific target organ toxicity-single exposure)

Proposed classification: STOT SE 3; H336: May cause drowsiness or dizziness and H335: may cause respiratory tract irritation.

2.6.3 Summary of repeated dose toxicity (short-term and long-term toxicity) [section 10.12 of the CLH report]

2.6.3.1 Specific target organ toxicity-repeated exposure (STOT RE) [equivalent to section 10.12 of the CLH report template]

Table 20:Summary table of animal studies on repeated dose toxicity (short-term and long-term toxicity) STOT
RE (specific target organ toxicity - repeated exposure)

Method, guideline, deviations if any, species, strain, sex, no/group	Test substance, route of exposure, dose levels, du- ration of exposure	Results	Reference
		Oral studies	
4 week oral range-finding study Pre OECD guideline and GLP. No haematology, clinical chemistry or pathology conducted. Non-GLP Rat: CD® 5/sex/group (dietary)	Dicamba (Banvel technical; batch 52625110; purity 86.82%) Dietary study, 0, 5000, 7500, 10000, 12500, 15000 ppm. Doses correspond to 0, 551, 775, 1022, 1314, 1602 mg/kg bw/day for males and 541, 816, 1054, 1324, 1607 mg/kg bw/day for fe- males at 5000, 7500, 10000, 12500, 15000 ppm, respectively 4-week duration <i>Corrected for purity corre-</i> <i>sponds to 493, 693, 914,</i> <i>1175 and 1432 mg/kg</i> <i>bw/day for males at 5000,</i> <i>7500, 10000, 12500 and</i> <i>15000 ppm, respectively,</i>	15000 ppm (approx.1602 mg/kg bw/day for males& 1607 mg/kg bw/day for females): $3/5$ males and $4/5$ females impaired mobility in hindextremities.Body weight gain: \downarrow 39.0% males, \downarrow 23.0% femalesweek 4Food consumption: \downarrow 35.6% males, \downarrow 29.3% femalesweek 1-412500 ppm (approx. 1304 mg/kg bw/day for males) $4/5$ males impaired mobility in hind extremities.Body weight: \downarrow 23.7% males, \downarrow 12.8% females week4Food consumption: \downarrow 24.9% males, \downarrow 20.7% femalesweek 1-410000 ppm (approx. 1022 mg/kg bw/day for males) $4/5$ mg/kg bw/day for females):Body weight: \downarrow 11.2% males week 4Food consumption: \downarrow 16.9% males, 12 % femalesweek 1-47500 ppm (approx.775 mg/kg bw/day for males &816 mg/kg bw/day for females) and 5000 ppm	(1979) (range-find- ing study supportive of risk assess- ment)

Method,	Test substance, route of	Results	Reference
guideline,	exposure, dose levels, du-		
deviations if any, species,	ration of exposure		
strain, sex,			
no/group		(annuar 551 mg/kg hm/day for males 9 541	
	and 484, 729, 942, 1184 and 1436 mg/kg bw/day for	(approx. 551 mg/kg bw/day for males & 541 mg/kg bw/day for females):	
	females at 5000, 7500, 10000, 12500 and 15000	No adverse effects reported.	
	ppm	NOAEL: 775 mg dicamba/kg bw/day in females and 816 mg dicamba/kg bw/day in males (7500 ppm) based on reduced body weight gain and	
		food consumption	
90-day oral toxicity. OECD 408,	Dicamba (technical mate- rial; batch 52504710; purity 89.4%)	12000 ppm (males 1000 mg/kg bw/day, females 1065 mg/kg bw/day) : ↓ activity, transient hypothermia 20/20 males, 20/20 females	(1997) (study acceptable)
May 1981 GLP Rat; HanIbm:	0, 500, 3000, 6000, 12,000 ppm. Equivalent to 0, 40.1, 239, 479, 1000 mg/kg hu(deu (melae)) 0, 42,2	Body weight gain: \downarrow 28% males; 40.4% females (weeks 0-13).	
WIST (Wistor)	bw/day (males); 0, 43.2, 266, 535 and 1065 mg/kg	Food consumption: \downarrow 13% both sexes weeks 0-13	
(Wistar) 10/sex/group main groups; 10/sex con-	bw/day (females). Vehicle: diet 13-week duration plus 4-	<i>Haematology week 12</i> : \uparrow 5.2% lymphocytes males; \downarrow platelets 11.0% males, 12.4% females; \downarrow partial thromboplastin times 7% males, 6% females; \downarrow haemoglobin and RBC 3.8% females; \uparrow 28.3% WBC fe-	
trol and top	week recovery	males.	
dose for re- covery (dietary)	Corrected for purity corre- sponds to 35.8, 213, 429, and 894 mg/kg bw/day in males, and 38.6, 238, 479, 952 mg/kg bw/day in fe- males at 500, 3000, 6000	Clinical chemistry week 12: 15% plasma proteins (males) and \downarrow 16-23.3% globulins both sexes, \uparrow 28.9-75.7% ALT, ALP and AST activities both sexes (note female ALP \uparrow 75.7%); \uparrow 136% GGT, \uparrow 62.2% triglyceride, \uparrow 31.6% cholesterol, \uparrow 15.5% creatinine and \uparrow 20.1% phosphorous values for females; \downarrow 25.7% cholesterol, \downarrow 47.6% triglycerides and \downarrow 13.6	
	and 12000 ppm, respec- tively	% glucose, \uparrow 19.6% urea for males. Week 17: \uparrow 38.9% ALP and \uparrow 34.1% phosphorous in females.	
		<i>Urinalysis:</i> \uparrow 12/20 females uric acid crystals in urine week 12 (control 1/20)	
		<i>Liver weights rel to bw week 13:</i> \uparrow 23.0% males, 20.5% females (% bw).	
		<i>Histopathology 13 weeks</i> : \uparrow 4/10 females minimal to slight centrilobular hepatocyte hypertrophy and 5/10 females minimal to moderate hepatocellular pigmentation. \downarrow adipose tissue after treatment in 1/10 male and 6/10 females, correlated with decreased terminal bodyweight.	
		6000ppm (males 479 mg/kg bw/day, females 535 mg/kg bw/day):	
		\uparrow 6/10 females uric acid crystals in urine week 12.	
		<u>3000 ppm (males 239 mg/kg bw/day, females 266 mg/kg bw/day)</u> :	
		No effects observed.	
		500 ppm (males 40.1 mg/kg bw/day, females 43.2 mg/kg bw/day):	
		No effects observed.	
		NOAEL 6000 ppm (479 and 535 mg/kg bw/day in males and females, respectively).	
	•	101	

Method, guideline, deviations if any, species, strain, sex, no/group	Test substance, route of exposure, dose levels, du- ration of exposure	Results	Reference
Subchronic neurotoxicity study. OECD 424 (1997). GLP Rat, CD [®] BR, 10/sex/group (dietary)	Dicamba (technical mate- rial; purity: 86.9%) 0, 3000, 6000 and 12000 ppm Actual doses 0, 197.1, 401.5 and 767.9 mg/kg/day for the males and 253.4, 472.0 and 1028.9 mg/kg/day for females. Continuous in the diet for 13 weeks <i>The dose levels applied</i> <i>correspond to 171, 348 and</i> 667 mg/kg bw/day of pure dicamba in males, and to 220, 410, 894 mg/kg bw/day of pure dicamba in females at 3000, 6000 and 12000 ppm, respectively.	12000 ppm (males 767.9 mg/kg bw/day, females 1028.9 mg/kg bw/day): Body weight: ↓ 5.5% males, 4.8% females week 14 Body weight gain: ↓ 24.1% males, 37.9% females week 1 FOB: ↑ frequency of rigid body tone when handled in weeks 4, 8 and 13 (greater in females than males). Pathology: No treatment-related changes in any of the tissues examined 6000 ppm (males 401.5 mg/kg bw/day, females 472 mg/kg bw/day): No treatment-related effects. 3000 ppm (males 197.1 mg/kg bw/day, females 253.4 mg/kg bw/day): No treatment-related effects. NOAEL for neurotoxicity and systemic toxicity is 6000 ppm (401.5 mg/kg bw /day in males and 472 mg/kg bw/day in females), based on de- creased body weight gain and neurobehavioral findings.	(1994) (study ac- ceptable)

Method,	Test substance, route of	Results	Reference
guideline,	exposure, dose levels, du-		
deviations if	ration of exposure		
any, species,			
strain, sex, no/group			
Combined	Dicamba (technical mate-	Non noonlastia findinga	
chronic tox-	rial; purity 86.8%)	Non-neoplastic findings	(1985)
icity/carcino-	Continuous in the diet 0,	2500 ppm (males 99.1 mg/kg bw/day, females 120.1 mg/kg bw/day):	(study ac-
genicity.	50, 250, 2500 ppm for 115	Food consumption: $\uparrow 2.6\%$ males during first year	ceptable)
OECD 453,	weeks (males), 118 weeks	<i>Pathology</i> : ↑ incidence of liver necrosis in males	
87/302/EEC B.33 (1988)	(females).	$(5/49 \text{ in control vs } 11/50 \text{ at } 2500 \text{ ppm})$, Slight \uparrow hy-	
GLP	The doses correspond to	dronephrosis of kidney in males (1/49 in control vs	
Rat,	2.0, 10.0, and 99.1 mg/kg bw/day for males and 2.4,	4/50 at 2500 ppm)	
CD	12.1, and 120.1 mg/kg	and females (0/49 in control vs 3/49 at 2500 ppm)	
(Sprague Dawley)	bw/day for females	Slight \uparrow cystic hyperplasia in the uterus (15/49 in control and 20/49 at 2500ppm)	
60/sex	Actual doses corrected for	Carcinogenicity:	
(50/sex/group	purity corresponds to 1.7 ,	↑ incidence of thyroid parafollicular (C-cell) carci-	
main study, 10/sex/group	8.7, and 83.0 mg/kg bw/day	noma in males	
interim kill after 12	of pure dicamba for males, and to 2.1, 10.5, and 104	↑ increase in polyps in the uterus (4/60 in control, 8/60 at 2500 ppm)	
months) (die-	mg/kg bw/day of pure dicamba for females, at 50,	250 ppm (males 10 mg/kg bw/day, females 12.1 mg/kg bw/day):	
tary)	250, and 2500 ppm, respec-	Carcinogenicity:	
	tively.		
		↑ incidence of thyroid parafollicular (C-cell) carci- noma in males but within historical control range	
		No other toxicologically significant treatment-re- lated effects.	
		↑ increase in polyps in the uterus (4/60 in control, 8/60 at 2500 ppm)	
		50 ppm (males 2 mg/kg bw/day, females 2.4 mg/kg bw/day):	
		No toxicologically significant treatment-related effects.	
		<u>Neoplastic findings</u>	
		NOAEL for carcinogenicity 250 ppm (equivalent to 10 mg/kg bw/day in males) based on increased inci- dence of thyroid parafollicular (C-cell) carcinoma in males outside biotosical control range NOAEL	
		in males outside historical control range. NOAEL supported by increase in polyps in the uterus at high dose.	
		NOAEL systemic: 250 ppm (10 mg/kg bw/day) based on liver necrosis in and increase in cystic hy- perplasia in the uterus at top dose	
		The lowest survival at 104 weeks was 42 % in high dose males.	

Carcinogen-	Dicamba (technical mate-	Non-neoplastic fi	ndings	5				
icity study.	rial; purity 86.8%)	3000 ppm (males			w/dav.	femal	es 364	
OECD 451	Continuous in the diet 0,	Continuous in the diet 0, <u>mg/kg bw/day</u>):						
(1981), 87/202/EEC	50, 150, 1000 and 3000	Body weight gain: ↓ females from week 25 (12% week 1-52, 17% week 1-104). Pathology: slightly increased incidence of amyloi-						
87/302/EEC B.32 (1988)	ppm for 89 weeks (males)							
GLP	or 104 weeks (females).							
		dosis in males in heart, parathyroid, thyroid, spleen,						
Mouse,	The average compound	kidney and adrena	.l					
CD-1	consumption was 5.5, 17.2, 108, and 358 mg/kg/day for	Dose (ppm)			Males			
52/sex/group	the males and 5.8, 18.8,		0	50	150	1000	3000	
dietary)	121, and 364 mg/kg/day for							
	females.	Thyroid, Amy- loidosis	7/52	7/28	9/34	4/21	11/52	
	The average compound consumption then corre-	Parathyroid, Am- yloidosis	5/52	5/28	5/34	4/21	11/52	
	sponds to 4.8, 14.9, 93.7 and 311 mg/kg bw/day of	spleen, Amyloi- dosis	4/52	6/31	10/38	5/23	11/52	
	pure dicamba for males, and to 5.0, 16.3, 105, 316	adrenals, Amy- loidosis	6/52	6/28	8/34	5/21	14/52	
	mg/kg bw/day of pure dicamba for females, at 50,	adrenals, medul- lary hyperplasia	16/52	5/28	7/34	5/21	7/52	
	150, 1000 and 3000 ppm, respectively.	heart, Amyloi- dosis	7/52	8/28	11/34	5/22	16/52	
		Kidney, glomeri- olar amyloidosis	12/52	13/52	14/52	13/52	20/52	
							EN LZI	
		1000 ppm (males mg/kg bw/day) : No toxicologically						
		mg/kg bw/day): No toxicologically fects. 150 ppm (males 1	y signif	icant tr	eatmei	nt-relat	ed ef-	
		mg/kg bw/day): No toxicologically fects.	y signif 17.2 mg	icant tr g/kg by	eatmen w/day,	nt-relat <u>female</u>	ed ef- es 18.8	
		 mg/kg bw/day): No toxicologically fects. 150 ppm (males 1 mg/kg bw/day): No toxicologically fects. 50 ppm (males 5. 	y signif 17.2 mş y signif	icant tr <u>z/kg bv</u> icant tr	v/day, v/day	nt-relat <u>femalo</u> nt-relat	ed ef- es 18.8 ed ef-	
		mg/kg bw/day): No toxicologically fects. 150 ppm (males 1 mg/kg bw/day): No toxicologically fects. 50 ppm (males 5. mg/kg bw/day):	y signif 1 7.2 mş y signif 5 mg/k	icant tr g/kg by icant tr	v/day, reatmen lay, fe	nt-relat <u>female</u> nt-relat <u>males</u> :	ed ef- es 18.8 ed ef- 5.8	
		 mg/kg bw/day): No toxicologically fects. 150 ppm (males 1 mg/kg bw/day): No toxicologically fects. 50 ppm (males 5. 	y signif 1 7.2 mş y signif 5 mg/k	icant tr g/kg by icant tr	v/day, reatmen lay, fe	nt-relat <u>female</u> nt-relat <u>males</u> :	ed ef- es 18.8 ed ef- 5.8	
		mg/kg bw/day): No toxicologically fects. 150 ppm (males 1 mg/kg bw/day): No toxicologically fects. 50 ppm (males 5. mg/kg bw/day): No toxicologically fects. S0 ppm (males 5. mg/kg bw/day): No toxicologically fects. No toxicologically fects. No toxicologically fects. Neoplastic findin	y signif 1 7.2 mg y signif <u>5 mg/k</u> y signif <u>gs</u>	icant tr <u>z/kg bv</u> icant tr icant tr	reatmen v/day, reatmen lay, fe	nt-relat <u>female</u> nt-relat nt-relat	ed ef- es 18.8 ed ef- 5.8 ed ef-	
		mg/kg bw/day): No toxicologically fects. 150 ppm (males 1 mg/kg bw/day): No toxicologically fects. 50 ppm (males 5. mg/kg bw/day): No toxicologically fects.	y signif 1 7.2 mg y signif <u>5 mg/k</u> y signif <u>gs</u>	icant tr <u>z/kg bv</u> icant tr icant tr	reatmen v/day, reatmen lay, fe	nt-relat <u>female</u> nt-relat nt-relat	ed ef- es 18.8 ed ef- 5.8 ed ef-	
		 mg/kg bw/day): No toxicologically fects. 150 ppm (males 1 mg/kg bw/day): No toxicologically fects. 50 ppm (males 5. mg/kg bw/day): No toxicologically fects. No toxicologically fects. 	y signif 1 7.2 mg y signif 5 mg/k y signif ted char m (equ	icant tr <u>z/kg by</u> icant tr icant tr icant tr nges in ivalent	v/day, reatmen lay, fe reatmen neopla to 108	nt-relat <u>female</u> nt-relat nt-relat astic fin	ed ef- es 18.8 ed ef- 5.8 ed ef- ndings	
		 mg/kg bw/day): No toxicologically fects. 150 ppm (males 1 mg/kg bw/day): No toxicologically fects. 50 ppm (males 5. mg/kg bw/day): No toxicologically fects. No toxicologically fects. No toxicologically fects. 	y signif 17.2 mg y signif 5 mg/k y signif gs ted char m (equ based c amyloi id, sple	icant tr <u>z/kg by</u> icant tr icant tr icant tr icant tr nges in ivalent on sligh dosis in een, kid	v/day, eatmen lay, fe reatmen neopla to 108 tly hig n males ney an	nt-relat <u>female</u> nt-relat males : nt-relat astic fin astic fin astic fin ber ince s in head d adren	ed ef- es 18.8 ed ef- 5.8 ed ef- ndings guidence urt, nal and	

Method, guideline, deviations if	Test substance, route of exposure, dose levels, du- ration of exposure	Results	Reference
any, species, strain, sex, no/group	ration of exposure		
		Termination week 89 survival 30% in males in the 150 and 3000 ppm groups; week 104 survival at least 35% all female groups. At 78 weeks the survival in all groups exceeded 50 %.	
13-week oral (capsule) tox- icity OECD 409, 1998 GLP Dog: pure- breed Bea- gles 4/sex/group, plus an addi- tional 4/sex/group for control and top dose 4-week re- covery phase	Dicamba (technical mate- rial; batch B2826511; pu- rity 90.4%) 0, 10, 50, 300 mg/kg bw/day Capsule administration. No vehicle 13-week duration plus 4- week recovery <i>Considering the purity of</i> <i>dicamba used for this study</i> (90.4%), the applied doses referring to pure dicamba (100% purity) correspond to 9.0, 45, 274 mg/kg <i>bw/day</i> .	 300 (274) mg/kg bw/day: Clinical observations: Hind limb gait abnormalities noted from day 1: ataxia, stiff gait and sporadic transient collapse generally seen in the majority of the 300 mg/kg animals approximately 2 hours after dosing and persisting for up to 5 hours. The neurological screen at wk 6 and 13 showed abnormal locomotion and gait abnormalities in all animals. No effects detected following the recovery phase. Mean bw gain: ↓ 26 % in males and 44 % in females (not statistically significant) Food consumption: 90% of control for males and 84% of control for females Haematology: ↓ 9-17.7% RBC, Hct and Hb week 7 and 13 both sexes. ↑ 10.5% APPT activity in males and 7% in females at week 13, but signs of reversibility following recovery. Clinical chemistry: ↓ 24.6-32.4% cholesterol and phospholipids weeks 7 and 13. Partial improvement following recovery (no statistically significant differences from control). Organ weights: ↓ Not significantly decreased abs 17% and 11 % rel testes weight. Not toxicologically significant effects (↓ absolute and relative spleen weight for males due to high control value and ↑ kidney weight as percentage body weight in females, not evident after recovery). 50 (45) mg/kg bw/day: No toxicologically significant findings. 10 (9) mg/kg bw/day: No toxicologically significant findings. 10 (9) mg/kg bw/day: No teatment-related effects. NOAEL = 50 (45) mg/ kg bw/day based on effects on gait and behaviour, decreased food intake and body weight gain, minor alterations in the red blood cell parameters and disturbances in the serum lipid levels, decreased testes weigt in the highest dose group. 	(2003) (study acceptable)
1-year die- tary toxicity EPA guide- line 84-1 (1982). Simi- lar to OECD 452, but no haematology examinations at 3 months.	Dicamba (technical mate- rial; Lot: 52625110; purity 86.8%) 0, 100, 500 and 2500ppm Dietary administration. 52-week duration coresponding to 2.03, 11.4 and 57 mg/kg bw/day for males, and 2.14, 11.4, and	2500 ppm (57 mg/kg bw/day males; 51 mg/kg bw/day females) Clinical observations: ↑ incidence and frequency of soft faeces during first 6 months (25-75% v 25% in controls). Body weight: ↓ during week 1, but recovered by week 5/6 (approx. 6.5% weight loss compared with pretreatment). No overall effect (weeks 0-50). Food Consumption: inappetance in 1 male and 1 fe- male during first week: a further male did only eat	(study ac- ceptable)

Method,	Test substance, route of	Results	Reference
guideline,	exposure, dose levels, du-		
deviations if any, species,	ration of exposure		
strain, sex,			
no/group			
GLP	51 mg/kg bw/day for fe-	small amount of food during first 3 weeks, but after	
Dog: Beagle	males.	being fed a slurry diet, stabilised by week 6.	
4/sex/group	The applied doses referring to pure dicamba (100% pu- rity) correspond to 1.8, 9.9, 50 mg/kg bw/day for males, and 1.9, 9.9, and 44 mg/kg	<i>Hematology</i> : \downarrow statistically significant changes in the red blood cell values in high dose males at the 6 month investigation ($\downarrow \sim 9\%$ for haematocrit, erythrocytes and <i>haemoglobin</i>).	
	bw/day for females at 100,	Clinical chemistry:	
	500, and 2500 ppm, respec-	At 6 months females only:	
	tively.	↓ 10.9 % calcium, ↓ 6.9 % total protein, ↓ 24 % globulin, \uparrow 31.3% Aspartate aminotransferase. Organ weight:	
		↓ ovary weight (30 % absolute/35 % reative),	
		500 ppm (11.4 mg/kg bw/day males and females):	
		Body weight: \downarrow week 1 (4.4 % weight loss compared with pretreatment), but recovered by week 2 and no overall effect (weeks 0-50).	
		<i>Food consumption:</i> inappetance in 2 animals during first week of the study.	
		100 ppm (2.03 mg/kg bw/day males and 2.14 fe- males mg/kg bw/day):	
		<i>Body weight:</i> \downarrow week 1 (3% weight loss compared with pretreatment), but recovered by week 2 and no overall effect (weeks 0-50).	
		The NOAEL was 500 ppm (11.4 for males and fe- males)	
RC1176: 90- day oral cap-	0, 10, 50 and 300 mg/kg bw/day	At 300 mg/kg bw/day :	(2010) (study
sule toxicity study in bea- gle dogs OECD 409 (1998) GLP Dog: Beagle 4/sex/group	Dicamba (technical mate- rial; Lot: RTM/DCMB/03/20090612; purity >95%) Doses corresponded to 0, 9.5, 47.5, 285 at 100, 500, and 2500 ppm, respectively when corrected for purity	<i>Clinical signs</i> : Intermittent stiff gait and recumbency, slight and/or moderate uncoordination or ataxia and retching or emesis were consistently recorded. On occasion, the animals also displayed slightly to severely decreased activity, liquid faeces, increased salivation, minor tonic convulsions or tremors. All animals recovered by the following morning	acceptable)
in bent group		Clinical chemistry parameters : \uparrow ALT in both sexes during week 13 (72%, p<0.01 in the males, and 143%, p<0.05 in the females).c	
		↓ cholesterol appeared to be lower than control; how- ever, no statistically significant differences were noted when compared to control.	
		\downarrow triglyceride mean values in both males and females, attaining statistical significance in the males (-28%, p< 0.05).)	
		\downarrow ALKP mean values in females (-40%, p<0.05 at week 7), and -36%, p<0.01 at week 13.	

Method,	Test substance, route of	Results	Reference
guideline,	exposure, dose levels, du-	Results	Kelerence
deviations if	ration of exposure		
any, species,			
strain, sex, no/group			
no/group			
		Haematology	
		Significant effects in females: \downarrow RBC (-17 to -20%)	
		in weeks 7 and 13. ↓ Haemoglobin (-18%) in week	
		7. ↓ Haematocrit (-18%) in week 7	
		50 mg/kg bw/day	
		\downarrow ALKP mean values (-30%, p<0.05 at week 7)	
		ALKI mean values (-50%, p <0.05 at week 7)	
		10 mg/kg bw/day :	
		No toxicologically relevant effects	
		NOAEL was 50 (47.5) mg/kg bw/day based on	
		clinical signs and parameters (stiff gait, uncoordi-	
		nation or ataxia and retching or emesis, decreased activity, liquid faeces, increased salivation, minor	
		tonic convulsions or tremors, decreased values in	
		the red blood count, haemoglobin and haemato-	
		crit at 300 mg/kg bw/day	
		Inhalation studies	
Repeat dose	Dicamba (BAS 183H Tech-	<u>0.05 mg/L:</u>	
28-day inha- lation.	nical material; batch		(2014)
OECD 412	0002B01BA-251; purity 93.9%)	Body weight gain : $\downarrow 41$ % in males, 13 % in females	(study ac- ceptable)
EC No.	Nose only exposures to	(not statistically significant in females)	1 /
440/2008	dust.	<i>Organ weights</i> : \uparrow absolute (16 – 17%) and relative (17 – 20%) lung weights in males and females.	
GLP	0, 0.001, 0.005, 0.05 mg/L,	Not statistically significant changes in organ weight:	
Rat:	6 hours/day, 5 days/week for 4 weeks.	\downarrow thymus absolute and relative weight (15-19 %) in	
WI Wistar	Dose levels correspond to	males and females.	
10/sex/group	0.00094, 0.0047 and 0.047	\downarrow absolute and relative ovary weight (12-13%).	
0r	mg/L of pure dicamba	↑ absolute and relative adrenal weight (10 %) in fe- males.	
		<i>Histopathology:</i> minimal or slight hypertrophy or	
		hyperplasia of the epithelium of single bronchi, bron-	
		chioles or terminal bronchioles in all males and fe-	
		males, minimal/slight bronchiolo-alveolar hyper- plasia in 8/10 males and 9/10 females.	
		0.005 mg/L:	
		Histopathology: minimal multifocal bronchiolo-al-	
		veolar hyperplasia in 2/10 males.	
		0.001 mg/L:	
		No treatment-related adverse findings.	
1		NOAEC for local toxicity at the respiratory tract	
		was 0.001 (0.00094) mg/L. The NOAEC for gen- eral, systemic toxicity was 0.005 (0.0047) mg/L	

Method, guideline, deviations if any, species, strain, sex, no/group	Test substance, route of exposure, dose levels, du- ration of exposure	Results	Reference
		Dermal studies	
28-day der- mal OECD 410, 1981 GLP Rat: Alpk:AP _f SD (Wistar-de- rived) 10/sex/group	Dicamba (technical mate- rial; batch B2826511; pu- rity 91.0%) 0, 30, 300, 1000 mg/kg bw/day for 21 days Vehicle: water used to make a paste 28-day duration, 21 appli- cations. Dose levels applied corre- spond to 27.3, 273 and 910 mg/kg bw/day of pure dicamba	1000 (910) mg/kg bw/day:Histopathological signs of irritation in treated skin in10/10 males and 10/10 females (Acanthosis/hyper- keratosis, inflammatory cell infiltration)300 (273) mg/kg bw/day:Histopathological signs of irritation in 10/10 males and 9/10 females, less severe than high dose.30 (27.3) mg/kg bw/day:Acanthosis/hyperkeratosis in 5/10 males and 1/10 fe- males.NOAEL for systemic toxicity > 1000 (910) mg/kg bw/day.	(2002) (study acceptable)

 Table 21:
 Summary table of human data on repeated dose toxicity STOT RE (specific target organ toxicity-repeated exposure)

Type of data/report	Route of exposure Relevant information about the study (as applicable)	Observations	Reference
None			

 Table 22:
 Summary table of other studies relevant for repeated dose toxicity STOT RE (specific target organ toxicity-repeated exposure)

Type of study/data	Test substance	Observations	Refer-
Developmental toxicity	Dicamba (Technical grade;	Maternal toxicity	ence
Test guideline not stated		Waterhar toxicity	(1981)
but complies largely to		400 (362) mg/kg bw/day: 4/25 deaths	(study ac-
OECD 414 (2001) but		gestation day 7 & 8; ataxia, stiffening	ceptable)
with some notable devia- tions (see summary)	on days 6-19 of gestation	of the body when held, urine soaked fur, salivation and decreased motor ac-	
Oral (gavage)	Vehicle: corn oil	tivity; \downarrow body weight gain (27% lower	
Rat, CD		corrected maternal bw gain); ↓ food	
25 mated females/group	The dose levels applied corre-	consumption (18.5% lower than con-	
	spond to 58, 145 and 362 mg/kg bw/day of pure dicamba.	trols, days 6-19).	
	owaay of pure accamba.	160 (145) mg/kg bw/day	
		10 % lower corrected maternal bw	
		gain (not statistically significant)	
		64(59) mg/kg huy/day	
		64 (58) mg/kg bw/day No effects	

Type of study/data	Test substance	Observations	Refer- ence
		Maternal NOAEL 64 (58) mg/kg bw/day	
		Developmental toxicity	
		400 (362) mg/kg bw/day: ↑ number of incompletely ossified frontal (s) and/or parietal(s)	
		64 (58) &160 (145) mg/kg bw/day: No effects	
		Developmental NOAEL 160 (145) mg/kg bw/day	
Developmental toxicity US EPA 83-3 (complies largely to OECD 414, 2001) Oral (capsule) Rabbit, New Zealand White Hra:(NZW)SPF 20 inseminated fe- males/group	Dicamba (Technical grade; batch: 52625110; purity 90.4%) 0, 30, 150 or 300 mg/kg bw/day on days 6-18 of gestation <i>The dose levels applied corre-</i> <i>spond to 27.1, 136 and</i> <i>271 mg/kg bw/day of pure</i> <i>dicamba.</i>	Maternal toxicity 300 (271) mg/kg bw/day: 4/20 abor- tions; ataxia, rales, laboured breathing, perinasal substance, dried/no faeces, impaired righting reflex and decreased motor activity; \downarrow body weight gain (42% lower than controls days 0 to 29); \downarrow relative food consumption (13% lower than controls, days 0-29).	(1992) (study ac- ceptable)
		150 (136) mg/kg bw/day: 1/20 abor- tion; ataxia and decreased motor activ- ity	
		30 (27.1) mg/kg bw/day No effects	
		Maternal NOAEL: 30 mg/kg bw/day Developmental toxicity	
		300 mg/kg bw/day: increased incidence of irregularly ossi- fied internasals.	
		High dosis (incidence) Pups: 3.9% Litter: 23.1%	
		HCD 1987-1989 Pups: 0-2.3% Litter: 0-14.3%	
		HCD 1990-1994 Pups: 0-5 (0-4.8%) Litter: 0-4 (0-26.7%)	
		HCD 1992-1994 Pups: 0-4.2% Litter: 0-26.7%	
		30, 150 mg/kg bw/day: No effects	
		Developmental NOAEL 150 (136) mg/kg bw/day	

Type of study/data	Test substance	Observations	Refer- ence
Two Generation Oral (continuous in diet) OECD 416 (1983) Rat, CD (SD) BR VAF/Plus 32/sex/group (F0) 28/sex/group (F1)	Dicamba (Technical material; batch 52103810; purity 86.9%) 0, 500, 1500 or 5000 ppm Vehicle: laboratory animal diet. The overall F0/F1 pre-mating doses correspond to 37.9, 113	Parental toxicity 5000 ppm F0: mean achieved intake 347/390 mg/kg bw/day, males/ females respec- tively ↓ body weight gain pregnancy day 0- 14: 9.6% (day 0-20: 3.2%)	1993
	and 389 mg/kg bw /day for males and 42.6, 130 and 424 mg/kg bw/day for females at 0, 500, 1500 or 5000 ppm, respec- tively. <i>The overall F0/F1 pre-mating</i> <i>means correspond to 32.9, 98.3</i>	 ↑ adjusted liver weight 13% females, 5% males F1: mean achieved intake, 432/458 mg/kg bw/day, males/ females respec- tively Clinical signs during lactation: tense/stiff body tone and slow righting reflex for a few days during the latter 	
	and 338 mg/kg bw/day of pure dicamba for males, and to 37.0, 113, 369 mg/kg bw/day of pure dicamba for females, at 500, 1500 and 5000 ppm, respec- tively	part of lactation ↓ body weight pregnancy day 0-14: 4.6% (F1A) and 23% (F1B) ↑ absolute liver weight 3% females, males 9.5% (relative) ↓ food consumption week 5-8	
		1500 ppm F0: mean achieved intake, 105/125 mg/kg bw/day, males/ females respec- tively F1: mean achieved intake, 121/135	
		mg/kg bw/day, males/ females respec- tively ↓ body weight gain pregnancy day 0- 14 (F1B): 15 % (day 0-20: 15%)	
		500 ppm F0: mean achieved intake, 35/41 mg/kg bw/day, males/ females respec- tively F1: mean achieved intake, 40/44 mg/kg bw/day, males/ females respec-	
		tively ↓ body weight gain pregnancy day 0- 14: 9.6% (F1B) (day 0-20: 1.7%) but absolute body weight was not reduced. Otherwise, no effects	
		NOAEL 500 ppm (42.6 mg/kg bw/day) on the basis of decreased body weight during pregnancy (GD 0- 14) at 1500 and 5000 ppm. Clinical signs during lactation, ↑ liver weights at 5000 ppm	
		Reproductive toxicity No effects at any dose level NOAEL 5000 ppm (389 mg/kg bw/day)	

Type of study/data	Test substance	Observations	Refer-
		Offenning touisity	ence
		Offspring toxicity	
		<u>5000 ppm</u>	
		F1: ↓mean pup body weight 24 % day 21, delayed sexual maturation of males by 2 days, ↑ relative liver weights 27%.	
		F2A/B: ↓ body weight 26/30 % day 21, ↑ relative liver weights approx. 36%.	
		<u>1500 ppm</u>	
		F1: ↓ mean pup body weight 4 % day 21	
		F2A/B: ↓ pup body weight 10/14 % day 21	
		<u>500 ppm</u>	
		F2B: No effects	
		NOAEL: 500 ppm (37.9 mg/kg bw/day) based on body weight effects at 1500 and 5000 ppm.	

2.6.3.1.1 Short summary and overall relevance of the provided information on specific target organ toxicity – repeated exposure (short-term and long-term toxicity)

Dicamba is not a volatile compound (vapour pressure $< 10^{-2}$ Pascal) and therefore no short term inhalation toxicity study is required.

Short-term toxicity was investigated in rats and dogs. Five oral studies are available of which three were dietary and two were with administration in capsules. Furthermore, one dermal toxicity study in rat and one rat inhalation study were available for evaluation of the short-term toxicity of dicamba. One not accepted repeated dose dermal toxicity study was also available for evaluation but not considered. Generally, the studies are old and therefore often missing to address potential neurotoxic and immunotoxic effects, genotoxicity by way of micronuclei formation and effects potentially related to changes in the hormonal system as is required in the data requirements. No immunotoxicity study was submitted. Dossier submitter evaluated that dicamba does not belong to a class of chemicals (e.g., the organotins, heavy metals, or halogenated aromatic hydrocarbons) that would be expected to be immunotoxic. A thorough review of the toxicology data for dicamba has shown no evidence of adverse effects on the immune system in rats, mice or dogs and functional assays in rats and goats confirmed lack of immunomodulation. Based on these findings it can be concluded that dicamba probably has no immunotoxic potential.

Dietary administration of 0, 5000, 7500, 10000, 12500, and 15000 ppm dicamba to rats for 28 days resulted in reduced body weight gain and food consumption from 10000 ppm and above and clinical signs in form of impaired mobility of hindlimbs from 12500 ppm and higher. The NOAEL was 7500 ppm corresponding to 775 mg dicamba/kg bw/day in females and 816 mg dicamba/kg bw/day in males (1979).

Administration of dicamba to rats at dietary concentrations of 0, 500, 3000, 6000, and 12000 ppm for 90-days resulted in decrease of body weight gain and reduced food consumption at the highest dose level only. The liver was identified as target organ as indicated by an increased activity of hepatic enzymes, altered clinical chemistry parameters associated with the liver, increased relative liver weights as well as hepatocyte hypertrophy and pigmentation. In addition, a number of minor haematological changes were seen at 12000. Increased serum phosphate level changes were not reversible within 28 days following cessation of compound administration. Based on these results, the NOAEL for subchronic administration of dicamba to rats was determined to be 6000 ppm corresponding to 479 mg dicamba/kg bw/day in males and 535 mg dicamba/kg bw/day in females (1997).

In dogs treated with dicamba in gelatine capsules at dose levels of 0, 10, 50 or 300 mg/kg bw/day (0, 9, 45 and 274 mg pure dicamba/kg/day) for 90-days treatment with 300 (274) mg/kg bw/day resulted in changes on the gait and

behaviour (stiff gait, uncoordination or ataxia and retching or emesis, decreased activity, liquid faeces, increased salivation, minor tonic convulsions or tremors), decreased food intake and body weight gain, and minor changes in the red blood cell parameters and in the serum lipid levels (decreased values in the red blood count, haemoglobin and haematocrit at 300 (274) mg/kg bw/day)). Not significantly decreased absolute (17%) and (11%) relative testes weight was observed without histopatological changes. Dosing with 50 (45) mg/kg bw/day resulted in slightly decreased serum lipid levels, which have not been considered to be an adverse effect. The NOAEL was considered to be 50 mg/kg bw/day in this (2003).

Dietary administration of dicamba to dogs for one year at dietary dose levels of 0, 100, 500, and 2500 ppm did result in statistically significant changes in the red blood cell values in high dose males at the 6 month investigation. These effects were not considered adverse at the PRAPeR 83 expert meeting. Further effects on body weight and food consumption changes were observed at 2500 ppm during the early phase of the study and were considered due to palatability problems. The dietary dose of 2500 ppm has been found to be the highest concentration of dicamba in the diet which dogs will consume. Effects on several clinical chemistry parameters were observed at 2500 ppm and a decreased ovary weight (around 30 %) Based on the result of this study, the NOAEL was 500 ppm, equivalent to a mean daily intake of approx. 11.4 mg/kg bw/day (1986).

In a new study, dogs treated with dicamba in gelatine capsules at dose levels of 10, 50 and 300 mg/kg bw/day (0, 9.5, 47.5, 285 mg pure dicamba/kg bw/day) for 90-days. Clinical signs and parameters (stiff gait, uncoordination or ataxia and retching or emesis, decreased activity, liquid faeces, increased salivation, minor tonic convulsions or tremors, decreased values in the red blood count, haemoglobin and haematocrit were observed at 300 (285) mg/kg bw/day. NOAEL was 50 mg/kg bw/day (10, 2010).

The 21-day dermal study in rabbits treated with 0, 100, 500 or 2500 mg/kg bw/day was not accepted due to too few animals on study, too many accidental deaths and inadequate reporting of the study (**1979**).

Dermal administration of 30, 300 or 1000 mg/kg bw/day (27.3, 273 and 910 mg/kg bw/day of pure dicamba) for 21 days in a 28 day period to male and female rats produced no systemic toxicity. At 300 and 1000 mg/kg bw/day there were histopathological changes in skin at the application site indicative of skin irritation with increased intensity in the high dose group. Males exposed to 30 mg/kg bw/day showed minimal histopathological signs of skin irritancy in a few animals while there were no effects in females at this dose level. The NOAEL for systemic toxicity in this study is considered to be 1000 mg/kg/day (2002).

In a 28-day study inhalation study, male and female rats were exposed to 0, 0.001, 0.005, 0.05 mg/L dicamba (0, 0.00094, 0.0047 and 0.047 mg/L of pure dicamba) for 20 days in total. In males, a significantly decreased body weight gain (41 %) was found at high dose. Absolute and relative thymus weight (15-17% in males and 19 % in females). In females, a non-significant decrease in absolute and relative ovary weight (12-13%) at the high dose. Based on these findings, systemic NOAEL was 0.005 (0.0047) mg/L. Local effects were also observed with increased mucous cell hyper-trophy (0.05 mg/L) found in the nasal cavity, increased epithelial alteration (\geq 0.001 mg/L) in larynx as well as squamous metaplasia (0.05 mg/L m). Effects observed in the lung were slightly increased lung weight (0.05 mg/L), increased incidence of alveolar histiocytosis + macrophage aggre-gation (0.05 mg/L) and multifocal bronchiolo-alveolar hyperplasia (\geq 0.005 mg/L) and bronchiolar hypertrophy or hyperplasia (0.05 mg/L). Based on these effects the local NOAEL was 0.001 (0.00094) mg/L (**10000094**) mg/L (**2014**).

Overall, the short term oral NOAEL was 50 mg/kg bw in dogs based on clinical symptoms, decreased body weight gain, haematology parameters and in rats oral NOAEL was 479 mg/kg bw/day based on decreased body weight gain, effects on liver including altered clinical chemistry parameters, relative weight and histopathology.

Dietary administration of technical dicamba to rats at dose levels of 0, 3000, 6000, and 12000 ppm corresponding to an average daily compound intake of 197.1, 401.5, and 767.9 mg/kg in males and 253.4, 472.0, and 1028.9 mg/kg in females (171, 348 and 667 mg/kg bw/day of pure dicamba in males, and 220, 410, 894 mg/kg bw/day of pure dicamba in female, respectively) for 3 months resulted in a slightly decreased body weight gain in high dose animals. The major neurobehavioral treatment-related effect in the high dose animals was an increased frequency of rigid body tone when handled throughout the study. More high-dose females than males were affected. The other findings in high dose rats may be related to rigidity. The effects included rigidity observed at weeks 4 and 13 during the landing splay test and during the righting reflex test at all post treatment FOB tests. An apparent, but non-significant,

increase in the mean latency to first step in male rats, an increased frequency of mildly impaired gait, and an increased frequency of abnormal righting reflex (i.e. uncoordinated, lands on side, or lands on back) was also observed in the high dose.

At week 13 fewer findings were observed and with lower incidence.

Administration of dicamba did not cause damage to the nervous tissues as indicated by the histopathology findings. Based on the results of this study, the NOAEL for neurotoxicity and systemic toxicity was 6000 ppm, which is equivalent to a mean daily intake of 401 mg/kg bw and 472 mg/kg bw in males and females, respectively (1994).

For summary of longterm studies please see section 2.6.5 and for summary of developmental toxicity studies and 2-generation study please see 2.6.6.

Table 23:	Extrapolation of equivalent effective dose for toxicity studies of greater or lesser duration than 90 days

Study reference	Effective dose (mg/kg/day) (males/females)	Length of exposure	Extrapolated effec- tive dose when ex- trapolated to 90- day exposure	Classification sup- ported by the study
(1979)	551/541	4 weeks	183,7/180	No
(1997)	1000/1065	90 days	1000/1065	No
(1994)	767.9 /1028.9	13 weeks	767.9 /1028.9	No
(2003)	300	13 weeks	300	No
(1986)	57/51	52 weeks	228/204	No
(2010)	300	90 days	300	No
(2014)	0.005 mg/L	28 days	0.0016 mg/L	No
(2002)	>1000	28 days	>333	No
(1985)	99.1/120.1 (sys- temic)	115 weeks (males, 118 weeks (females)	892/1081	No
(1988)	>358/364	89 weeks (males), 104 weeks (females)	>2478/2944	No
(1981)	160	14 days	26	No
(1992)	150	14 days	24	No
(1993)	113/130	2 generation study	113/130	No

2.6.3.1.2 Comparison with the CLP criteria regarding STOT RE (specific target organ toxicity-repeated exposure)

According to the CLP regulation classification in STOT RE is required for substances that cause: "... consistent and identifiable toxic effects in humans, or, in experimental animals, toxicologically significant changes which have affected the function or morphology of a tissue/organ, or have produced serious changes to the biochemistry or haematology of the organism and these changes are relevant for human health."

. Adverse clinical signs (ataxia, stiffening of the body when held, crusts around nose/muzzle) were recorded in the rat developmental toxicity study (1981) on the first day of dosing at 400 (362) mg/kg bw. This dose level resulted in 4 deaths (3 pregnant, 1 non-pregnant) on GD 7 and 8. There were no adverse clinical signs at lower dose levels (64 and 160 mg/kg bw/day). In the rabbit developmental study ataxia was also observed at 300 (271) mg/kg bw/day and 150 (136) mg/kg bw/day up to the day efter last dosing (GD19) (1992). Transiently abnormal gait including ataxia has also been observed in repeated dose studies in dogs at 300 (274) mg/kg bw/day (1992) and at at 300 (285) mg/kg bw/day (1992). In rats at a dose > 1000 mg/kg bw/day (1992) in rats reported clinical signs during lactation included tense/stiff body tone and slow righting reflex for a few days during the latter part of lactation at 5000 ppm (424 mg/kg bw/day) (1993).

Transient stiffness to handling and slow righting reflex was observed in rats in the 2-generation study at 5000 ppm corresponding to 424 mg/kg bw/day (1993). Effects were only seen at 767.9 mg/kg bw/day when exposed via diet (1994). The neurobehavioural effects in this study were transient, unaccompanied by any evidence of morphological change and, consequently, are considered not to indicate significant or severe target organ

toxicity relevant for STOT-RE (please also see 2.6.2.10). For the inhalation study (2014) was the extrapolated effective dose below the guidance values for STOT-RE, however, the effect at this dose was only seen on bw gain and not mean body weight.

Dicamba appears to be neurotoxic at doses below the guidance values for classification as STOT-RE. Nevertheless, STOT-RE classification in category 1 or 2 is not considered to be warranted since dicamba-induced neurotoxicity seems to be a transient effect.

Substances are classified as specific target organ toxicants following repeated exposure on the basis of "significant" or "severe" toxicity. In this context "significant " means changes which clearly indicate functional disturbance or morphological changes which are toxicologically relevant. "Severe" effects are generally more profound or serious than "significant" effects and are of a considerably adverse nature which significantly impact on health.

The effect on body weight gain was not considered significant or severe and classification for STOT-RE is not warranted for dicamba.

2.6.3.1.3 Conclusion on classification and labelling for STOT RE (specific target organ toxicity-repeated exposure)

No classification.

2.6.4 Summary of genotoxicity / germ cell mutagenicity [equivalent to section 10.8 of the CLH report template]

Test system Test object TG/GLP		Concentration	Compound ¹ Purity Batch. No.	Results	Reference
In vitro					
Chromosome aber	rations				
Mammalian Chro- mosomal Aberra- tion Test OECD 473 (1997)/GLP	Human Lympho- cytes	648, 1134, 1985 μg/mL (experi- ment I without S9, experiment II with S9), and 370.3, 648, 1134 μg/mL (experiment II without S9, exper- iment I with S9)	89.8 % P.MG2726410	Positive (-S9) Negative (+ S9)	Bohnenberger S, 2015 KCA 5.4.1/01 (ac- ceptable)
Mammalian Chro- mosomal Aberra- tion Test 2000/32/EC, B.10 ~OECD 473 (1997)/GLP	Chinese hamster ovary cells (CHO)	266, 524, 1039, 2069 μg/mL	Technical Dicamba 88.8% 52625110	Negative (+/- S9) Validity of the study is questioned.	

Table 24:	Summary table	of genotoxic	ity/germ cell r	nutagenicity test	s in vitro

¹ Test concentations are corrected for purity in all studies except for Verspeek-Rip 2010, Brown 2010a and b where the concentrations are given as technical dicamba.

Test system Test object TG/GLP In vitro micronu- cleus test OECD 487 (2016)/GLP	Human Lympho- cytes	Concentration 50, 100, 250, 500, 1000, 1500 and 2000 μg/mL (±S9, 3 hours), 250, 500, 750, 1000, 1250, 1500, 1750, and 2000	Compound ¹ Purity Batch. No. Technical Dicamba 89.8% P.MG2726410	Results Negative (+/- S9)	Reference Whitwell, 2017a K-CA 5.4.1/02 (acceptable)
Gene mutations –	Bacteria	1750, and 2000 μg/mL (-S9, 24h)	1.002/2010		
Bacterial Reverse Mutation Test EU 2000/32/EC, B.13/14 ~ OECD 471 (1997)/GLP	Salmonella typhi- murium strains (TA98, TA100, TA1535, TA1537 and TA102	7.1, 35.4, 177, 885, 4425 μg/mL (experiment I), and 41.5 and 83.0 (TA102 only), 166, 332, 664 (all strains), 1328 and 2655 (all strains except TA102) μg/mL (experi- ment II)	Dicamba tech- nical 88.5% 52504710	Negative (+/- S9)	Ballantyne, M, 1996 KCA 5.4.1/03 (ac- ceptable)
Gene mutations –	Mammalian cells				
Mammalian cell gene mutation test (forward mutation test) EU 2000/32/EC B.17~ OECD 476 (1997)/GLP	Mouse lymphoma L5178Y cells	226, 452, 904, 1356, 1808, and 1998 μg/mL	Dicamba (SAN 837) 90.4% B2826511	Negative (+/- S9)	Clay, P., 2001 KCA 5.4.1/04 (ac- ceptable)
Mammalian cell gene mutation test (forward mutation test) OECD 476 (1997)/GLP	Mouse lymphoma L5178Y cells	10, 33, 100, 333, 1000, 1500, 1750, 2210 µg/mL (-S9) 10, 100, 333, 1000, 1250, 1500, 1750, 2000 µg/mL (+S9)	RC1176 (dicamba) 988.50 g/kg RTM/DCMB/03/ 20090612	Positive (+/- S9)	Verspeek-Rip CM, 2010 KCA 5.4.1/05 (ac- ceptable)
Mammalian cell gene mutation test (forward mutation test) OECD 476 (1997)/GLP	v 1	Exp. 1: 65.6 – 2100 µg/mL (- /+S9) Exp. 2: 21.9 – 1400 µg/mL (-S9), 175 – 2100 µg/mL (+S9) Exp. 3: 175 – 2100 µg/mL (-S9)	RC1176 (dicamba) 988.50 g/kg RTM/DCMB/03/ 20090612	Positive (+/- S9)	Brown R, 2010a KCA 5.4.1/06 (ac- ceptable)
Mammalian cell gene mutation test (forward mutation test)	Mouse lymphoma L5178Y cells	Exp. 1: 65.6 – 2100 μg/mL (- /+S9)	dicamba PAS 3 99% TM/DCMB/PUR E/20090612	Positive (- S9) Negative (+/S9)	Brown R, 2010b KCA 5.4.1/07 (ac- ceptable)

Test systemTest objectTG/GLPOECD476(1997)GLP		Concentration Exp. 2: 43.8 – 2100 μg/mL (-S9), 175 – 2100 μg/mL (+S9)	Compound ¹ Purity Batch. No.	Results	Reference
Other genotoxic e	ffects		L		
No tests					
QSAR					
	DEREK Nexus (multiple end- points not limited to genotoxicity), Vega suite (muta- genicity models) and ToxTree (structural alerts for in vivo micro- nuceus for- mation). Addition- ally the OECD QSAR Toolbox was used to assess DNA and protein binding and for functional group profiling.			Alert for <i>in vivo</i> mi- cronuclei for- mation in rodents (as potential H-ac- ceptor-path3- H- acceptor) from ToxTree and the OECD QSAR Toolbox	Lorez C, Booth E (2016).

 Table 25:
 Summary table of genotoxicity/mutagenicity tests in mammalian somatic or germ cells in vivo

Test system	Concentration	Compound	Results	Reference
Test object		Purity		
TG/GLP		Batch. No.		

In vivo – somatic cells (non-heritable)						
Gene mutations						
No tests						
Chromosome aber	Chromosome aberrations					
Bone Marrow cy- togenetic assay No TG ~2000/32/EEC B.11~ OECD 475/No GLP	Male and female Sprague-Dawley rats	minal	Dicamba ≥ 99% Not specified	Negative	Hrelia, P. et al. (1994) KCA 5.4.2/01 supplemental	

Mammalian Erythrocyte Mi- cronucleus Test 2000/32/EC, B.12 ~ OECD 474/GLP	Male and female CD-1 mice	Dicamba Tech- nical 1300 mg/kg bw	Dicamba technical 88.5% 52504710	Negative	(1996) KCA 5.4.2/02 (accepta- ble)
Other genotoxic effective of the second seco	ffects				
Rat Alkaline Comet Assay OECD 489, 2016/GLP.	Male CD(SD) rats.	Dicamba 37.5, 75 and 150 mg/kg/day	Dicamba, Batch nr P.MG2726410 89.8% w/w	Negative in liver Positive in duo- denum, with con- current increase in hedgehog cells	(2019), XB29VC (acceptable)
Transgenic Ro- dent Somatic and Germ Cell Gene Mutation Assays OECD 488, 2013/GLP	Male Muta™Mouse	0, 1000, 3000 or 10000 ppm (cal- culated as 171, 454 and 1443 mg/kg/day, respectively), diet	Dicamba, Batch nr P.MG2726410 89.8% w/w	Negative	(2020) (acceptable)
In vivo – germ cells (heritable)					
No tests					

Other studies relevant for genotoxicity / germ cell mutagenicity

Other studies					
Rat Histopatho- logical Follow-up Study OECD 489, 2016/GLP.	Male CD (SD) rats.	Dicamba 37.5, 75 and 150 mg/kg/day	Dicamba, Batch nr P.MG2726410 89.8% w/w	There was no de- tectable increase in apoptotic/ne- crotic cells in the stomach or duo- denum related to treatment with dicamba	(2019) NS52VW
Dicamba techn. (BAS 183 H; SAN837 techn.): Follow up study to determine po- tential ex-vivo ef- fects during comet tissue pro- cessing Not GLP	CD(SD) rats.	Dicamba 75 mg/kg bw/day (gavage)	Dicamba, Batch nr P.MG2726410 89.8% w/w	Positive in duo- denum. Inconclu- sive regarding di- rect or indirect damage.	(2020) MM44NB
[14C]Dicamba: Duodenum Kinet- ics in Rats GLP	Male CD (SD) rats	Dicamba (oral) 75 mg/kg bw/day	Dicamba, Batch nr P.MG2726410 89.8% w/w	Results supports exposure of duo- denum after oral exposure to dicamba in rats	(2020) MT42NJ

Assay type	Conditions	Result	References	Reliability
In vitro assays				
bacterial mutation	S Typhimurium TA98 TA100, ± S9	-	Shirasu <i>et al.</i> (1982);	Overview publication contains no details citing earlier publication by same au- thor ² : both publications combined considered not reliable : lack of details on test compounds (unclear whether dicamba acid or salt was tested, no source/purity), methods (no information on source of cells, on concentrations used, on vehicle on negative/positive controls), result documentation (no numerical data at all for dicamba)
			Moriya <i>et al.</i> (1983)	Not reliable: lack of details on test compounds (no source, purity), methods (no onformation on source of cells, on concentrations used; uncertainty about positive controls), result documentation (information limited to +/- response, no numerical data)
	<i>S Typhimurium</i> TA97, TA98, TA100, TA102, ± S9	-	Hrelia et al. (1990);	Not reliable: lack of details on test compounds (no source, purity), methods (no onfromation on source/cultivation of cells, essentially no information on study design except strains and +/-S9), result documentation (only negative response, no numerical data)
			Mersch-Sundermann et al. (1994)	Overview publication not containing any details citing earlier publication by same author for data on dicamba ³ : both publications combined considered reliable with restrictions : reasonable documentation of test compounds and methods but only limited documentation of results (+/- response with very little numerical data)
	S Typhimurium TA98 TA100,TA1535, TA1537, TA1538 \pm S9; maize \pm 1S†	-	Eisenbeis <i>et al.</i> (1981); †Plewa <i>et al.</i> (1984);	Not reliable: lack of details on test compounds (no source/purity; test material likely to be commercial products – not active ingredients as such), methods (no information on concentrations used, number of replicates or experiments), result documentation (only negative response, essentially no numerical data) Cites Gentile et al 1982 ⁴ for part of method description; both publications to- gether still considered not reliable : lack of details on test compounds (no purity; unclear description of sources; active ingredient and commercial product used but product not identified), methods (apparently same positive control com- pounds used +/- S9 for all but one strain; uncertainty whether negative controls

² Shirasu Y, Moriya M, Kato K, Furuhashi A, Kada T; Mutagenicity screening of pesticides in the microbial system; Mutation Research (1976) 40: 19-30

³ Mersch-Sundermann V, Dickgiesser N, Hablizel U, Gruber B; Examination of mutagenicity or organic microconatimations on the environment – I Communication: The mutagenicity of selected herbicides and insecticides with the Salmonella-microsome test (Ames test) in consideration of the pathogenic potence of contaminated ground- and drinking water; Zbl Bakt Hyg B (1988), 186:247-260

⁴ Gentile JM, Gentile GJ, Bultman J, Sechriest R, Wagner ED, Plewa MJ; An evaluation of the genotoxic properties of insecticides following plant and animal activation; Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis; 1982, 101(1):19-29

Assay type	Conditions	Result	References	Reliability
			Kier <i>et al.</i> (1986) and references therein	were included into each experiment; no information on number/range of concen- trations used); results (mostly +/- response with only very sporadic numerical data); partly exotic study design (additional experiments with bacteria treated with extracts from plants grown on water/pesticide mixtures = 1S experiments) Review paper citing data from other publications/reports; for dicamba data, Sim- mon 1978 is cited – however citation cannot be clearly identified, as 28 refer- ences by Simmon et al 1978 are provided (all apparently US-EPA reports without referenced title providing an indication which of these reports contains data on dicamba); nevertheless a summary report by Simmon 1979 ⁵ is available that is expected to include the data cited for dicamba within Kier et al 1986; the 1979 report by Simmon is considered reliable (Ames part): reasonably good documen- tation on test compounds (no purity and slight uncertainty whether active ingre- dient or product was tested but active ingredient considered likely), methods (only number of replicates per experiment missing and positive controls in ab- sence of S9 only included in one experiment in 4 strains and none in the 5 th strain, positive control +S9 always included) and results (numerical data available on negative/positive controls, treatment concentrations for all 3 experiments with dicamba)
	<i>S Typhimurium</i> TA1535, TA1536, TA1537, TA1538, <i>E</i> <i>coli</i> , <i>WP2</i> use of S9 not stated	-	Shirasu (1975)	Apparently refers to same data as Shirasu 1982 above (again no information on methods/numerical results) – therefore also considered not reliable (details see Shirasu 1982)
	<i>S Typhimurium</i> TA98, TA100, TA1535, TA1537, TA1538, <i>E</i> coli WP2 ±S9	-	Poole et al. (1977)	Abstract only (co-author is VF Simmon) – no data provided within abstract bu considered to refer to the same experiments as reported within Simmon 1979 (same EPA Contract number 68-01-2458 as abstract by Poole et al 1977) – see above under Kier et al 1986
	<i>S Typhimurium</i> TA100, TA1535, TA1537, TA1538; <i>E</i> <i>coli WP2uvrA</i> ±S9	-	Waters <i>et al.</i> (1980); Waters <i>et al.</i> (1981)	Review papers not containing any detailed results on dicamba - for Ames results of dicamba, expected to refer to data as reported by Simmon 1979^5 – for evaluation of Simmon 1979 see Kier et al 1986 above
	S Typhimurium TA98, TA100,TA1537, TA1538, E coli WP2uvrA ±S9	-	Simmon (1980)	identical to Simmon 1979 ⁵ (same EPA-600/1-79-041) – for evaluation of Simmor 1979 see Kier et al 1986 above
	<i>S Typhimurium</i> TA98, TA100, TA1535, TA 1537, TA1538, <i>E</i> <i>coli WP2uvrA</i> , ± S9	-	Waters <i>et al.</i> (1982); Sandhu <i>et al.</i> (1985)	Review papers not containing any detailed results on dicamba - for Ames result of dicamba, expected to refer to data as reported by Simmon 1979 ⁵ – for evalua tion of Simmon 1979 see Kier et al 1986 above

⁵ Simmon VF, In vitro microbiological mutagenicity and unscheduled DNA synthesis studies of eighteen pesticides, EPA-600/1-79-041, October 1979

Assay type	Conditions	Result	References	Reliability
mutation, DNA repair, mitoic re- combination, or relative toxicity assays	SOS chromotest <i>E coli</i> PQ37±S9	-	Xu & Schurr (1990); Mersch-Sundermann et al. (1994)	For method description Xu et al 1989 ⁶ cited – both publications together still considered not reliable : lack of details on test compounds (no purity, no direct info on source), and results (mostly +/- response with essentially no detailed nu- merical data for dicamba); reasonably good description of methods (in Xu 1989) but no positive controls used and no information on concentrations tested Review paper comparing results of Ames and SOS chromotest results reported elsewhere; for dicamba data Mersch-Sundermann et al 1988 ³ (Ames results – evaluation of reliability see Mersch-Sundermann 1994 above) and Mersch-Sun- dermann et al 1989 ⁷ (SOS Chromotest results) are cited; SOS chromotest part together with the 1989 publication combined considered reliable with re- strictions : reasonable documentation of test compounds and methods but only limited documentation of results (only SOSIP value but no info on responses at individual dicamba concentrations)
	pol A E. coli p3478, W3110	+	Leifer <i>et al.</i> (1981) [and references the- rein]; Simmon (1980); Waters <i>et al.</i> (1980); Waters <i>et al.</i> (1981); Waters <i>et al.</i> (1982)	Review paper citing data from other publications; for dicamba a report from Simmon (1978) is referenced which is considered to contain the data that is also contained in Simmon 1980 (= Simmon 1979); the three papers by Waters et al are also considered to refer to the data contained in Simmon 1980 (=1979); for growth inhibition part within Simmon 1979: considered (borderline) not reliable : only slight uncertainties about test compound (probably active ingredients, no purity), good description of methods (however no information on number of rep- licates or experiments; likely single experiment) and results (numerical data pro- vided for test compound concentrations and positive/ negative controls); however shortcomings make evaluation of relatively weak dicamba response difficult (in- crease in ratio of growth inhibition zone for DNA-repair incapable/capable strain at top concentration vs. negative control but less strong than positive con- trol) and no information on variability or reproducibility; no statistical analysis; also no clear criteria for definition of positive response was provided (no histor- ical controls; absolute values of growth inhibition zones for dicamba smaller than negative and positive controls)
	S Typhimurium,uvrB rec;	-	Sandhu <i>et al</i> . (1985)	Publication contains no actual data on dicamba and refers to an EPA testing program – the latter is considered to be represented by Simmon 1979 (= Simmon 1980); evaluation of Ames part within Simmon 1979, see under Kier et al 1986

⁶ Xu H, Microtitration SOS Chromotest: A new approach in genotoxicity testing, Toxicity Assessment: An International Journal (1989), 4:105-114

⁷ Mersch-Sundermann V, Hofmeister A, Müller G, Hof H, Examination of mutagenicity of organic microcontaminations of the environment – III Communication: The mutagenicity of selected herbicides and insecticides with the SOS-Chromotest, Zbl Hyg (1989), 189:135-146

Assay type	Conditions	Result	References	Reliability
	rec assay <i>B subtilus H17, M45</i>	+	references therein;	See discussion on growth inhibition part of Simmon 1979 under Leifer et al 1981 above (same type of growth inhibition experiment both for E.coli W3110/p3478 and B. subtilis H17/M45)
	rec assay <i>B subtilis</i> M45	-	Shirasu (1975)	Contains no actual data on dicamba (just listed as one of several compounds being tested and apparently found negative); several papers cited within Shirasu 1975 (Kada 1972/1974 ⁸) or by the same author published later (Shirasu 1982, Shirasu 1976) also contain no actual data on dicamba: all papers together still considered not reliable : very little information on test compound (not entirely clear whether its dicamba acid or dimethylamine salt; no source/purity), methods (no information on vehicle/applied concentrations or on positive/negative con- trols, no statistical analysis) and results (no numerical data at all)
	S Typhimurium various strains, T ₄ AP72 bacteriophage E coli K, B,	-	Andersen <i>et al.</i> (1972)	Not reliable: lack of details on test compounds (only range of purities for several compounds, no detailed information on supplier), methods (source of cells given but S.typhimurium strains for Ames part not identified; no information on test concentrations or vehicles used, on time between exposure to response evaluation, on replicates/number of experiments; unclear whether positive/negative controls included in each experiment), result documentation (only +/- response for Ames part – no numerical data; only numerical data for one dose for bacteriophage experiments)
	S. cerevisiae D3 ±S9	-	Sandhu <i>et al.</i> (1985); Simmon (1980); Wa- ters <i>et al.</i> (1980); Wa- ters <i>et al.</i> (1981); Wa- ters <i>et al.</i> (1981); Wa- ters <i>et al.</i> (1982); Poole <i>et al.</i> (1977); Zimmerman <i>et al.</i> (1984) and references therein	All publication expected to rely on data reported by Simmon 1979 ⁵ (=1980); for experiments with S. cervisiae: considered borderline reliable with restrictions : only slight uncertainties about test compound (probably active ingredients, no purity), reasonable description of methods (however no information on number of replicates - likely single culture; some short-comings vs. OECD test guideline: 4 instead of 5 concentrations used; no positive control in dicamba experiments; only single direct acting positive control in other experiments not needing S9 ac- tivation) and results (numerical data provided for test compound concentrations and positive/negative controls; reasonable variation for available positive/nega- tive controls with clear distinction between +/- responses)

⁸ Kada T, Tutikawa K, Sadaie Y; In vitro and host-mediated 'rec-assay' procedures for screening chemical mutagens; and phloxine, a mutagenic red dye detected; Mutation Research, 1972, 16:165-174

Kada T, Moriya M, Shirasu Y, Screening of pesticides for DNA interactions by ,rec-assay' and mutagenesis testing, and frameshift mutagens detected, Mutation Research (1974) 26:243-248

Assay type	Conditions	Result	References	Reliability
	S. cerevisiae D4± S9, maize ±1S	Ŧ	Plewa <i>et al.</i> (1984)	Cites Gentile et al 1982 ⁴ for part of method description; both publications to- gether still considered not reliable : lack of details on test compounds (purity; unclear description of sources; active ingredient and commercial product used but product not identified), methods (no information on concentration levels used, number of replicates, solvent concentration in negative controls; assumption sin- gle culture and single experiment; as compared to OECD 481 short treatment period); results (mostly +/- response with only very sporadic numerical data; no data at all for positive controls); partly exotic study design (additional experi- ments with S. cerevisiae treated with extracts from plants grown on water/pesti- cide mixtures = 1S experiments); variation in negative controls overlaps with criteria for positive response; some concurrent negative control responses out- side reported 'normal' negative control ranges
	<i>S. cervisiae</i> D7± S9	-	Hrelia et al. (1990);	Not reliable : lack of details on test compounds (no source, purity), methods (no source/cultivation of cells, essentially no information on study design except strains and +/-S9), result documentation (only negative response, no numerical data)
chromosome ab- erration	Swiss albino mouse spleen cells	+	Amer & Aly, (1997);	<i>Not reliable</i> : lack of details on test compounds (no source/purity for in vitro part), methodological short comings (experiments only in absence of S9, no positive controls, time between start of exposure and harvest too short for chromosome aberrations to be visible in 1 st experiment, no cytotoxicity info for 1 st experiment, only single concentration in 2 nd experiment; only 50 vs. recommended 300 meta-phases evaluated per experiment/concentration), result documentation (only limited numerical data; doubts about correct presentation of cytotoxicity data) and plausibility (stronger 'response' in 1 st experiment as compared to 2 nd experiment at same concentration)
	CHO cells	+	Gonzalez et al (2011)	<i>Not reliable:</i> details see reliability discussion for Gonzalez et al publications un- der point 5.4.1. lack of details on test compounds (no purity).
SCE	human peripheral blood lym- phocytes ±S9	+	Hrelia et al. (1990)	Not reliable : lack of details on test compounds (no source, purity), methods (no source/cultivation of cells, essentially no information on study design, cell type used and +/-S9), result documentation (only positive response, no numerical data)
	human peripheral blood lym- phocytes ±S9	-	Perocco et al. (1990)	Not reliable (borderline): reasonable description of test compound, methods and results but some short-comings (uncertainty whether blood from single or several donors used per experiment; no positive controls; 30 metaphases from apparently single culture scored per experiment/concentration less than recommended 50)

Assay type	Conditions	Result	References	Reliability
	Swiss albino mouse spleen cells	+	Amer & Aly (1997);	Not reliable : lack of details on test compounds (no source/purity for in vitro part), methodological short comings (experiments only in absence of S9, no positive controls, time between start of exposure and harvest too short for SCE to be vis- ible; only 25 vs. recommended 50 metaphases evaluated per experiment/concen- tration), result documentation (only limited numerical data; no information on cytotoxicity) and implausibility (positive effects reported for experimental design with too short period between start of exposure and harvest for SCEs being visi- ble)
	human lymphocytes (in whole blood cultures)	+	Gonzalez et al. (2006)	<i>Not reliable: details see reliability discussion for Gonzalez et al publications un-</i> <i>der point 5.4.1. lack of details on test compounds (no purity).</i>
	CHO cells	+	Gonzalez et al. (2007)	<i>Not reliable: details see reliability discussion for Gonzalez et al publications un-</i> <i>der point 5.4.1. lack of details on test compounds (no purity).</i>
	CHO cells	+	Gonzalez et al (2009)	<i>Not reliable: details see reliability discussion for Gonzalez et al publications un-</i> <i>der point 5.4.1. lack of details on test compounds (no purity).</i>
Unscheduled DNA synthesis	human lung fibroblasts (WI-38) \pm S9	-	Simmon (1980); Wa- ters <i>et al.</i> (1981); Wa- ters <i>et al.</i> (1982); Sandhu <i>et al.</i> (1985)	All publication expected to rely on data reported by Simmon 1979 ⁵ (=1980); UDS part of Simmon 1979 considered reliable : reasonably good documentation on test compounds (no purity and slight uncertainty whether active ingredient or product was tested but active ingredient considered likely), methods (source of cells ab- sent, number of cells used not reported) and results (statistics only included in text; no clear criteria provided what is considered a positive response); otherwise no relevant deviations from OECD482
	human peripheral blood lym- phocytes +S9	+	Hrelia <i>et al.</i> (1990)	Not reliable : lack of details on test compounds (no source, purity), methods (no information on source/cultivation of cells, essentially no information on study design, cell type used; only that it was done +/-S9), result documentation (only positive response +S9, no numerical data) – Hrelia et al (1994) indicates that the UDS results mentioned within Hrelia et al (1990) are the same as those reported within Perocco et al 1990 (below)
	human peripheral blood lym- phocytes ±S9	+	Perocco <i>et al.</i> (1990)	Not reliable : reasonably good description of test compounds and methods but methodological (no positive controls, no statistics, no criteria for positive response, no cytotoxicity) and reporting shortcomings (no numerical data, only dpm shown graphically but no information on $dpm/\mu g$ DNA, no information on cytotoxicity, no dose-relationship, variability between donors partly larger than between negative control and dicamba treated cultures)

Assay type Condit	ions	Result	References	Reliability
COMET CHO	ells	-	Sorensen <i>et al.</i> (2005)	Two different experimental designs: assumption (not clearly described) that one part was direct treatment of cells with pesticides and second part was treatment of cells with pesticides (and/or degradation products) after pre-incubation with vehicle or clays – both parts are considered not reliable ; Both parts: only minor short-comings for test compound (no purity) and test sys- tem (source of cells not provided) Direct treatment of cells with dicamba: some methodological (no information on vehicle, on exact dose levels used – only range given, on number of cultures; apparently no negative controls, experiments done in absence of S9 only) and reporting short-comings (no information on cytotoxicity, results only presented graphically, no negative/positive control data, no individual experiment results) Clay pre-treatment: methodological and reporting shortcomings: unclear de- scription how claimed concentrations in genotox part (up to 7.3 mM) are achieved from pre-treatment samples (about 4.5 mM); results only presented graphically, no positive control data, no individual experiment results, appar- ently no true negative control (dicamba in vehicle without clay in pre-treatment was considered negative control)
СНО с	ells	+	Gonzalez et al. (2007)	<i>Not reliable: details see reliability discussion for Gonzalez et al publications un- der point 5.4.1</i>
GreenScreen HC assa (Gentronix Ltd.)	y <i>GADD45a-GFP</i> <i>GFP</i> induction, -S9	-	Knight et al. (2009)	Publication of screening tests with large number of compounds including dicamba by using three high throughput in vitro test systems (limited relevance):
CellSensor p53RE-bla HCT 116 assay (Invitrogen Corp		-	Knight et al. (2009)	considered reliable with restrictions within limitations normal for screening tests: lack of details on test compounds (no clear source, purity), methods (no
CellCiphr Cytotox Profilin Panel-p53 endpoin (Cellumen Inc.)	g HepG2 cells p53 ac-	-	Knight <i>et al</i> . (2009)	source of cells, apparently all experiments done without metabolic activation, in- formation on replicates only for HepG2 part, no information on number of ex- periments) and results (essentially only +/- response; no detailed results on gen- otoxicity parameters nor on cytotoxicity)

Assay type	Conditions: route, dose	Result	Reference	Reliability
In vivo assays chromosome ab- erration	non inbred white mice, ♂, oral gavage, 50 or 500 mg/kg, bone marrow	±	Kurinnyi <i>et al.</i> (1982)	Not reliable: insufficient description of test compound (no source/purity; product tested - not active ingredient), of methods (no information on animal strain/sex/group size, on mode/number of applications, on experimental timings, no positive controls, two dose levels only for dicamba product, apparently only one negative control vs. totally 57 treated groups) and result documentation (only % aberrant metaphases; no details whether these in/exclude gaps or other aberrations, no in-
				control vs. totally 57 treated groups) and re

Assay type	Conditions: route, dose	Result	Reference	Reliability
	SD rats ♂&♀, oral gavage, 832 mg/kg (80% of LD50), 416, 208 mg/kg	-	Hrelia et al. (1994)	Reliable ⁹ : good description of test compound, methods and documentation of re- sults (but no individual animal data); however some deviations to current OECD 475 (mainly: 4 vs. recommended 5 animals/sex/group – however no relevant sex difference – therefore totally 8 animals/group, 100 vs. recommended 200 meta- phases scored/animal – totally 800/group vs. recommended 1000/group in absence of relevant sex difference)
	Swiss mice, c_{1}^{\wedge} i.p., 20mg/kg, (1/10 LD50), spleen, testes	+	Aly (1995)	<i>Not reliable</i> (ip and oral part of publication – apparently not peer-reviewed): reasonable description of test compound (only purity lacking) but lack of details/short-comings on methods (no information on animal strain or on health status prior to
	Swiss mice, ♂ oral gavage, 1, 3 or 5 days 119 mg/kg/day (1/10 LD50), bone marrow, spleen, testes	+	Aly (1995)	treatment, on dye used for bone marrow and spermatocytes, on colchicine dose, on how authors ensured that spermatocytes were in metaphase and no illustration of cell preparation quality; no positive controls included nor criteria for positive re- sponse; insufficient description of statistics; slides apparently not coded for spleen and bone marrow) and on results (inadequate description of structural aberrations [spleen, bone marrow], inadequate description of aberrations for spermatocytes [except tetraploid]; only 50 metaphases scored/animal and tissue vs. recommended 200, only single dose level used; no information on target organ toxicity e.g. by MI); ip treatment part – further short-comings: implausible results: strongest response seen too early at 6 h after application (<<1.5 cell cycles - corresponding to 15-24 h); effect by solvent (DMSO) alone (vs. untreated group) – side effects by vehicle not excluded; oral application part – further short-comings: no information on housing condition of animals (repeated treatment), on treatment of vehicle controls, on stability of dicamba in vehicle, timing of sacrifice after application (appropriate or not?)
	Swiss albino mice; i.p.; 11 or 20 mg/kg, bone marrow	+	Amer & Aly (1997)	Not reliable: reasonable description of test compound but lack of details for meth- ods (no information sex, exact age or bw of animals) and for results (only means but no individual animal data; no information on cytotoxicity e.g. mitotic index), methodological short-comings (no positive controls; only 4/5 mice of unknown sex/group for negative controls/treated group, respectively, vs. recommended 5/sex/group; only 50 metaphases evaluated/animal vs. recommended 200; slides not coded; no info on target organ exposure or toxicity), and positive response at too early time point (6h <<1.5x cell cycle) considered implausible (also causes doubts on less strong positive response at later/more appropriate time points)

 9 Considered , Acceptable in the view of other supporting studies' in the last EU review

Assay type	Conditions: route, dose	Result	Reference	Reliability
Sex-linked reces- sive lethal assay	D. melanogaster	-	Valencia (1981); Wa- ters <i>et al.</i> (1980); Wa- ters <i>et al.</i> (1981); Wa- ters <i>et al.</i> (1982); Sandhu <i>et al.</i> (1985)	Not reliable (publications by Waters and Sandhu refer to data by Valencia 1981): lack of details for test compounds (no purity/source), for methods (no information on number of flies treated or mated; unclear description of experimental design or measurements) and result reporting (no positive control data); no information at all about methods/measurements/results (except +/- response) of dominant lethal
Dominant lethal assay	D. melanogaster	-	Valencia (1981)	part of report (only two compounds tested as test procedure considered too time- consuming to be considered further)
DNA unwinding assay	SD rats ♂ i.p. 13.3, 17.8 or 26.6 mg/k (1/6, 1/4.5 or 1/3 LD ₅₀) liver DNA	+	Perocco <i>et al</i> . (1990)	Not reliable: reasonably good description of test compound but methodological short-comings (no information on number of rats used; uncertainties about vehi- cle/application volumes in treated groups; different exposure period in nega- tive/treated groups vs. positive control; likely introduction of DNA damage post- treatment by harsh DNA isolation procedures; no criteria for positive response) and reporting shortcomings (no information at all on variability; values partly pre- sented graphically only); post-treatment DNA damage not excluded (considerable damage in negative controls already), which is likely to be sensitive to slight vari- ations in experimental procedure – uncertainty whether variations between treated (or positive control) and negative control by maximum factor of 2 are truly treat- ment-related; no difference in rate of DNA-unwinding between treated or positive control vs. negative control

Some of the additional not reliable publications report negative and some positive findings. However the lack of details in the description of methods and results often prevent a meaningful evaluation of the published results and/or the study design/methods used are considered flawed (e.g. leading to implausible results).

Table 26: Summary table of human data relevant for genotoxicity / germ cell mutagenicity

Type of data/re- port	Relevant information about the study (as applicable)	Observations	Reference
		No studies available	

2.6.4.1 Short summary and overall relevance of the provided information on genotoxicity / germ cell mutagenicity

In vitro

The submitted *in vitro* genotoxicity tests cover the three endpoints gene mutation and structural as well as numerical chromosome abberations.

Dicamba technical was tested in one reverse gene mutagenicity tests in five S. typhimurium strains (Ballantyne 1996) and in four forward gene mutation tests in mouse lymphoma L5178Y cells (Clay 2001, Verspeek-Rip 2010, Brown 2010a, Brown 2010b) and in three assays for chromosome damage using Human Lymphocytes and Chinese hamster ovary cells (Bohnenberger 2015, Putman 1986, Whitwell, 2017a).

The original three *in vitro* tests presented in the DAR 2010 (Ballantyne 1996, Clay 2001, Putman 1986) were all considered negative under the conditions of the performed studies. The five new tests (one mammalian chromosomal aberration test, one *in vitro* MN test and three mammalian forward gene mutation test) submitted for the purpose of renewal show a positive result in 4 tests and negative result in one test (*in vitro* micronucleus).

In two of the new mammalian forward gene mutation test (Verspeek-Rip 2010, Brown 2010a), dose-related genotoxic responses were recorded both in the absence and presence of S9-mix at cytotoxic concentrations (RTGs of 5-24% with S9 and 17-42% without S9). A third mammalian gene mutation test (Brown 2010b) performed with highly purified dicamba (99%) was positive in the absence of S9-mix at cytotoxic concentrations (RTGs 15-27% without S9). A genotoxic response was also observed with S9-mix but only at RTGs of 6-9% which according to the TG 490 should not be considered positive as the increase in MF occurred only below 10% RTG. Overall no genotoxic response was observed at concentrations below 1750 μ g/mL (-S9) and 2000 μ g/mL (+S9) after 3-4 hours exposure; and 700 μ g/mL (-S9) after 24 hours exposure. Increases in MF exceeding the GEF value were observed at cytotoxic concentrations only, beginning at RTGs of 42% (-S9) and 24% (+S9) followed by a steep dose -related increase in MFs with increasing cytotoxicity.

In the old study testing for forward mutations (Clay 2001), isolated statistically significant increases in MFs were observed in the presence and absence of S9-mix. The result was not reproduced in the subsequent experiment and was relatively small (less than a 2-fold increases over solvent control levels) and Dicamba was therefore considered non-mutagenic in this test.

A position paper (Holmes 2010) to address the significance of the results in the mammalian forward gene mutation tests was submitted. It thoroughly discuss all mammalian forward gene mutation tests for dicamba and its metabolite OH- dicamba and states that the positive results are artefactual to cytotoxicity caused by oxidative stress with a threshold concentration below which they cannot occur. RMS is not convinced by this argumentation as Salmonella strains TA100 and TA102 are considered susceptible to oxidative stress and tests in these organisms were negative.

In the old study testing for *in vitro* mammalian chromosomal aberration (CA) (Putman 1986), dicamba did not induce an increase in CA when Chinese hamster ovary cells were treated in the absence or presence of S9-mix in doses up to the limit of solubility (maximum dose was 2330 µg/ml). A new study; however (Bohnenberger 2015) produced a statistically significant increase in CA in the absence of S9 mix, clearly exceeding the range of the laboratory historical solvent control after 22 hours treatment with 1262.9 µg/mL. One higher concentration in this

experiment was not evaluated due to clear cytotoxicity. After a 4 hour treatment, at 2210.0 μ g/mL also in the absence of S9-mix, a statistically significant increase in CA was observed, but was clearly within the range of the laboratory historical solvent control data. In the presence of S9-mix no statistically significant increases in CA was observed.

Dicamba did not induce micronuclei in cultured human peripheral blood lymphocytes following treatment in the absence and presence of an aroclor induced rat liver metabolic activation system (S-9) after 3 hours of treatment in an *In Vitro* Human Lymphocyte Micronucleus Assay. In the 24 hour treatment a statistically significant increase in MNBN at 1250 μ g/mL (0.60%) was within range of the historical control 95th percentile (0.1-0.85%). At 250 μ g/mL one culture was statistically significantly increased outside the 95th percentile historical control range (0.9%) but within the historical control range (the other culture was 0.4%). Vehicle historical control,: mean +/- SD: 0.37 +/- 0.18, range 95th%ile: 0.10-0.84, / observed range: 0.1-1.0. Furthermore, there was no dose response in the study and the concurrent control was in the low end of the range (0.15%). Therefore, these small statistical increases were not considered to be biologically relevant. Concentrations were analysed up to 2000 μ g/mL, a recommended regulatory maximum concentration for in vitro micronucleus assays. Dicamba was concluded to be negative in this assay (Whitwell, 2017a).

In vivo, there was no evidence of CA at the maximum dose of 832 mg/kg bw in rats, corresponding to 80 % of the LD₅₀, however the test was only supplemental due to limitations of study design (Hrelia, et al.1994). Dicamba did not induce micronuclei in the polychromatic erythrocytes of the bone marrow in mice treated with two doses of 1300 mg/kg bw/day (techn), which produced limited mortality (**1996**). ADME data in mice indicates target tissue was reached as dicamba was measured in blood 16 (approx. 1% of applied dose) and 96 hours (approx. 0.1 % of applied dose) after exposure to 89 mg/kg bw (**1996**). As elimination of dicamba is fast, the levels were low after 96 hours. The tested dose in the MN study (1300 mg/kg bw) was somewhat higher than the dose used in the mouse ADME study. Based on these studies, dicamba is not denoted clastogenic or aneugenic.

An *in vivo* comet assay study was performed to address the the above discussed conflicting results found in *in vitro* gene mutation studies with dicamba. In the study, male CD(SD) rats were treated orally (gavage) with daily doses of 0 (vehicle), 37.5, 75 and 150 mg/kg bw/day of dicamba at 0 and 24 h (2019). A positive control group was included (Ethyl Methanesulphonate). Animals were sacrificed at 2 h after the 2nd application and cell suspensions were prepared from the duodenum (site of contact tissue) and the liver. DNA strand breaks were assessed by comparing the % tail intensity and evidence for any overt toxicity to concurrent and historical control data. Further, the number of hedgehog cells per 150 cells were noted (cells with > 80% DNA in tail). The systemic availability of dicamba was confirmed in blood samples taken at 1 and 2 h after the 2nd application at the high dose level. Duodenum and liver tissue samples were evaluated microscopically and histopathologically. No increase in tail intensity and in the number of hedgehog cells was seen at all three dose levels in the liver confirming a complete absence of genotoxicity. An increase in tail intensity and in the number of hedgehog cells was seen at the low and mid dose level in the duodenum. Histopathology evaluations within the Comet assay did not indicate relevant fixed markers of treatment in the duodenum nor the liver.

Dicamba	Number of cells scored	Median tail intensity (%)	Number of hedgehog cells°
Liver			
0 (vehicle)	900	0.53	0
37.5	900	0.49	0
75	900	0.39	0
150	900	0.50	0
Positive control	450	50.28***	0
Duodenum			
0 (vehicle)	900	0.51	0
37.5	900	21.75***	63
75	900	38.73***	72
150	900	-	-
Positive control	450	50.46***	0

Table 27:Median tail intensity and number of hedgehog cells scored in the liver and duodenum in rats after
exposure to Dicamba in 2019.

*** p <0.001

° mean number of hedgehogs encountered while scoring 150 cells

A follow-up study to the Comet assay was performed to investigate potential causes or modes of action for the inconclusive findings observed in the duodenum within the Comet assay and to clarify whether the absence of histopathological findings indicating cellular damage in the duodenum within the Comet assay may be due to the relatively short time period between the last treatment and sacrifice (2 h). This short time period may be insufficient for cellular damage leading to sufficient morphological changes in the cells/tissue to become visible by standard histopathological methods. In this follow-up study groups of male rats were treated similarly as in the Comet assay (2 daily gavage applications at 0, 37.5 and 75 mg/kg bw/day) but were sacrificed at 2, 6, 24 or 48 h after the 2nd application. This would allow more time for any cellular/ tissue damage in the duodenum and stomach (as a point of contact tissues) to become manifest as cell death or other morphological changes via standard histopathological evaluation and by staining for specific apoptosis markers (TUNEL, caspase 3). In this follow-up study, no indications of any adverse effects of treatment were seen in the duodenum nor in the stomach up to 48 h after 2nd (72 h after 1st) application - neither in cell/tissue morphology (e.g. necrotic or apoptotic changes) nor with specific staining for apoptosis markers (2019). These results indicate that, whatever causes the effects seen in the duodenum within the Comet assay, does not cause cellular or tissue damage within the duodenum within this follow-up study.

A second follow-up study was conducted to investigate if any ex-vivo effects may have caused the increases in %tale intensity observed in the initial Comet test using different tissue processing methods in a test similar to Comet Assay using male CD(SD) rats. Groups of 3 animals were treated with Dicamba at 75 mg/kg/day, orally by gavage on two occasions, the second dose being administered approximately 24 hours after the first dose. Tissues were sampled at 0.5, 1, 2, 4 and 6 hours post treatment. In addition to this, one group received three 25 mg/kg doses (separated by 30-minute intervals) on two consecutive days; the animals were terminated 2 hours after their final dose. The vehicle control group received 0.5% methylcellulose (group 1), the positive control group received 200 mg/kg ethyl methanesulphonate (EMS) on a single occasion approximately 3 hours before sampling. Furthermore, the pH (intracellular and in the mincing buffer), osmolarity (in the mincing buffer) and histopathological examination were also performed to assess any ex-vivo effects which may have caused the increases in %TI observed in the initial Comet test. The result of this study confirmed the increase in TI after dicamba exposure but was inconclusive regarding if the observed effect on DNA damage was direct or indirect 20020).

To finally conclude on the potential of Dicamba to induce gene mutations (reporter gene: lacZ) in the duodenum, notifiers conducted a Transgenic Rodent Somatic and Germ Cell Gene Mutation Assays (OECD TG 488, 2013) with transgenic male mice (Muta[™]Mouse). Dicamba was administered to groups of 7 male transgenic mice orally for 28 consecutive days via the diet and, after 3 days of manifestation period, the mutant frequencies in the duodenum were determined. Dose levels of 0, 1200, 3000 and 7000 ppm corresponding to 176, 431 and 924 mg/kg bw/day, respectively, were selected for the transgenic rodent assay. A positive control group received 100 mg/kg bw/day N-ethyl-N-nitrosourea for two consecutive days via gavage followed by a 10 day manifestation period. At 7000 ppm food consumption and body weight development were slightly reduced achieving statistical significance on days 1-3 and 15, respectively. No effects of treatment were seen at 1200 and 3000 ppm and duodenum weights

were unaffected at all dose levels. There were no treatment-related macroscopic changes and no histopathological findings in the duodenum. There were no significant differences in the mutant frequencies in the duodenum in any of the groups treated with dicamba as compared to the negative control group. The mutant frequencies in the duodenum in the positive control group were statistically significantly increased (2020).

In a kinetic study, the rate and route of excretion of radioactivity and the absorption kinetics in duodenal sections were investigated, at intervals, following two daily oral doses of [14C]Dicamba (75 mg/kg) to 20 male rats.

Group	Treatment	Sacrifice time af-	Males	Sampling
		ter final dose (h)		
1	Dicamba:	0.5	4	
2	7.5 mg/mL,	1	4	At georifical blood, geotrointectingl treat, due denum, liver
3	75 mg/kg bw	2	4	At sacrifice: blood, gastrointestinal tract, duodenum, liver
4	(by oral ga-	4	4	
5	vage on 2 days)	6		Urine: 1, 2, 4, 6, 24 h (post 1 st dose); 1, 2, 4, 6 (post 2 nd dose); Feces: 24 h (post 1 st dose), 6 h (post 2 nd dose) At sacrifice: cage wash, blood, gastrointestinal tract, duode- num, liver

Table 28:Experimental design

Following two daily oral doses of [14C]Dicamba (75 mg/kg) in 0.5% (w/v) methyl cellulose solution to 20 male rats radioactivity was rapidly absorbed with maximum mean whole blood (35.6 µg equiv/g, 161 nmol equiv/g), plasma (53.4 µg equiv/g, 242 nmol equiv/g), duodenum sections (20.9 µg equiv/g, 94.6 nmol equiv/g) and liver (17.4 µg equiv/g, 78.7 nmol equiv/g) concentrations occurring at 0.5 hours after the second dose (first samping interval). Following two oral doses of [14C]Dicamba (75 mg/kg) mean concentrations in duodenum sections were greatest in section A (immediately after the stomach). Mean concentrations generally declined between sections A to B and sections B to C between 0.5 - 2 hours post dose. At 0.5 hours post dose mean concentrations in section A were 20.9 μ g equiv/g (94.6 nmol equiv/g) declining to 6.62 μ g equiv/g (30 nmol equiv/g) at 2 hours post dose. Mean concentrations in section B at 0.5 hours were 13.3 μ g equiv/g (60.2 nmol equiv/g) declining to 5.33 μ g equiv/g (24.1 nmol equiv/g) at 2 hours post dose. Mean concentrations in section C at 0.5 hours were 11.6 µg equiv/g (52.5 nmol equiv/g) declining to 5.92 µg equiv/g (26.8 nmol equiv/g) at 2 hours post dose. At 4 and 6 hours post dose mean concentrations between each of the sections were generally similar. Following a single oral dose of [14C]Dicamba to male rats mean concentrations of radioactivity in urine was maximal at 4 hours post dose (4680 μ g equiv/g) declining to the lowest observed concentrations at 24 hours (111 μ g equiv/g). Following the second oral dose of [14C]Dicamba greatest concentrations were observed at 2 hours (6040 µg equiv/g) post dose. Mean concentrations of [14C]Dicamba in liver were maximal (17.4 µg equiv/g, 78.7 nmol equiv/g) at 0.5 hours (first sampling time) and declined over time but were still measurable (0.983 μ g equiv/g, 4.45 nmol equiv/g) at 6 hours post dose (final sampling time) which indicates exposure in liver is comparable with the duodenum.

In conclusion dispite the initial variations seen between the three duodenum sections, the study demonstrates that all sections of the duodenum were exposed to dicamba in rats and a difference in tissue exposure does not seem to be the cause for the difference in Comet assay response (2020).

A comprehensive literature search and discussion on *in vitro/in vivo* genotoxicity was performed by Syngenta in September 2009¹⁰ and included in the DAR. The published results are contradictory but there is evidence for a slight DNA daminging capacity by dicamba. For SCE four out of five studies were positive and for unscheduled DNA synthesis two out of three studies were positive. One *in vitro* chromosome aberration study was positive and among the *in vivo* chromosom aberration studies published, three out of five studies were positive and 1/5 inconclusive. The quality of the published studies is not without deficiencies (e.g. information of purity missing) and the reporting on methods is usually sparse/lacking and it cannot be entirely ruled out that some of the positive genotoxicity results are false positive results.

¹⁰ Dicamba Statement. Comprehensive literature search and discussion on *in vitro/in vivo* gentoxicity. September 2009. Syngenta

In the latest literature search, 4 relevant studies were identified, which were conducted by Gonzalez et al (2006; 2007; 2009; 2011). These studies showed positive results for increased SCE frequency, MN formation and increased comet width and comet length in vitro. These results were seen for both dicamba and the product Banvel. The conclusions of all four papers indicated a genotoxic effect of Dicamba and Banvel. However, all four papers show major limitations and therefore a genotoxic effect in vitro cannot be concluded based on these papers.

Three (Q)SAR programs were selected working on different basis of expert knowledge rules and statistical methods for the assessment of genotoxicity. These were; DEREK Nexus (multiple endpoints not limited to genotoxicity), Vega suite (mutagenicity models) and ToxTree (structural alerts for in vivo micronuceus formation). Additionally the OECD QSAR Toolbox was used to assess DNA and protein binding and for functional group profiling. Hence, overall, using these tools genotoxicity endpoints of in vitro and in vivo mutagenicity, chromosome damage and DNA/protein binding were considered. An alert for *in vivo* micronuclei formation in rodents (as potential Hacceptor-path3- H-acceptor) from ToxTree and the OECD QSAR Toolbox was observed for dicamba (Lorez C, Booth E (2016)).

2.6.4.2 Comparison with the CLP criteria regarding genotoxicity / germ cell mutagenicity

Classification in category 1A or B is not considered relevant because there are no positive evidence from human epidemiological studies or evidence of dicamba inducing heritable mutations in the germ cells of humans or mammals.

Classification in category 2 may be based on positive results of a least one valid *in vivo* mammalian somatic cell mutagenicity test, indicating mutagenic effects in somatic cells. A Category 2 mutagen classification may also be based on positive results of an *in vivo* valid mammalian somatic cell genotoxicity test, supported by positive *in vitro* mutagenicity results.

In vitro results can lead to a Category 2 mutagen classification in a case where there is support by chemical structure activity relationship to known germ cell mutagens. In the case where there are also negative or equivocal data, a weight of evidence approach using expert judgement has to be applied.

Gene mutation tests *in vitro* in bacteria (Ames) were negative, while in mammalian cells conflicting results are seen *in vitro* (one negative and three positive gene mutation studies – the positive effects being in presence of clear cytotoxicity); available *in vitro* tests for cytogenetic endpoints also show variable results for dicamba – one positive and one negative *in vitro* chromosome aberration study and one negative *in vitro* micronucleus study. *In vivo* studies covering structural and numerical chromosome aberrations (chromosome aberration study in rats, micronucleus study in mice) do not indicate any genotoxic potential of dicamba *in vivo*. In order to address the conflicting *in vitro* results, an *in vivo* Comet assay was performed. The study clearly demonstrates a lack of genotoxicity in the liver, while increases in tail intensity was seen in the duodenum, as a site-of-contact tissue. This increase was accompanied by marked increase in hedgehog cells at low doses of dicamba and tissue toxicity in histopathological analysis at high doses. The positive result in duodenum was confirmed in a follow-up study based on elements of the guideline for the Comet Assay.

However, a Transgenic Rodent Somatic and Germ Cell Gene Mutation Assays, conducted to address the positive findings in the Comet assay, was clearly negative in duodenum up to a dose (924 mg/kg bw/day) a dose near the limit dose of 1000 mg/kg bw/day. Taking into account that a Comet assay detects DNA damage and the TGR Assay detects mutations and the latter was negative, it is not considered likely dicamba causes gene mutations in vivo. On that basis, the criteria of a classification for mutagenicity in category 2 is not considered met.

2.6.4.3 Conclusion on classification and labelling regarding genotoxicity / germ cell mutagenicity

No classification.

2.6.5 Summary of long-term toxicity and carcinogenicity [equivalent to section 10.9 of the CLH report template]

Method, guideline, deviations if any, spe- cies, strain, sex, no/group	Test substance, dose levels dura- tion of exposure	Results	Reference
Combined chronic tox- icity/carcinogenicity. OECD 453, 87/302/EEC B.33 (1988) GLP Rat, CD (Sprague Dawley) 60/sex (50/sex/group main study, 10/sex/group interim kill after 12 months)	Dicamba (tech- nical material; pu- rity 86.8%) Continuous in the diet 0, 50, 250, 2500 ppm for 115 weeks (males), 118 weeks (fe- males) The doses corre- spond to 2.0, 10.0, and 99.1 mg/kg bw/day for males and 2.4, 12.1, and 120.1 mg/kg bw/day for fe- males <i>Corrected for pu-</i> <i>rity the doses cor-</i> <i>respond to 1.7,</i> 8.7, and 83.0 mg/kg bw/day of pure dicamba for males, and to 2.1, 10.5, and 104 mg/kg bw/day of pure dicamba for females, at 50, 250, and 2500 ppm, respectively.	Non-neoplastic findings 2500 ppm (males 99.1 mg/kg bw/day, females 120.1 mg/kg bw/day): Food consumption: ↑ 2.6% males during first year Pathology: ↑ incidence of liver necrosis in males (5/49 in control vs 11/50 at 2500 ppm), Slight ↑ hy- dronephrosis of kidney in males (1/49 in control vs 3/49 at 2500 ppm) Slight ↑ cystic hyperplasia in the uterus (15/49 in control vs 3/49 at 2500 ppm) Carcinogenicity: ↑ incidence of thyroid parafollicular (C-cell) carcinoma in males ↑ increase in polyps in the uterus (4/60 in control, 8/60 at 2500 ppm) 250 ppm (males 10.0 mg/kg bw/day, females 12.1 mg/kg bw/day): Carcinogenicity: ↑ incidence of thyroid parafollicular (C-cell) carcinoma in males but within historical control range No other toxicologically significant treatment-related effects. 50 ppm (males 2.0 mg/kg bw/day, females 2.4 mg/kg bw/day): No toxicologically significant treatment-related effects. Noplastic findings NOAEL for carcinogenicity 250 ppm (equivalent to 10 mg/kg bw/day in males) based on increased incidence of thyroid parafollicular (C-cell) carcinoma in males from 250 ppm, which showed a positive trend. The observations were also outside historical control range. NOAEL supported by increase in polyps in the uterus at high dose. NOAEL systemic: 250 ppm (10 mg/kg bw/day) ba	(1985)

Table 29: Summary table of animal studies on long-term toxicity and carcinogenicity

Carcinogenicity study. OECD 451 (1981), 87/302/EEC B.32 (1988) GLP	Dicamba (tech- nical material; pu- rity 86.8%) Continuous in the diet 0, 50, 150,	Non-neoplastic fir 3000 ppm (males 3 mg/kg bw/day): Body weight gain:	358 mg ↓ fema	les fro				(1988)
Mouse, CD-1 52/sex/group	1000 and 3000 ppm for 89 weeks (males) or 104 weeks (females) corresponding to	week 1-52, 17% week 1-104). <i>Pathology:</i> slightly increased incidence of amyloi- dosis in males in heart, parathyroid, thyroid, spleen, kidney and adrenal						
		Dose (ppm)			Males	1	1	
	5.5, 17.2, 108, and 358 mg/kg/day for		0	50	150	1000	3000	
	the males and 5.8, 18.8, 121, and 364 mg/kg/day for fe-	Thyroid, Amyloi- dosis	7/52	7/28	9/34	4/21	11/52	
	males.	Parathyroid, Am- yloidosis	5/52	5/28	5/34	4/21	11/52	
	The average com- pound consump-	spleen, Amyloi- dosis	4/52	6/31	10/38	5/23	11/52	
	tion then corre- sponds to 4.8,	adrenals, Amy- loidosis	6/52	6/28	8/34	5/21	14/52	
	14.9, 93.7 and 311 mg/kg bw/day of	adrenals, medul- lary hyperplasia	16/52	5/28	7/34	5/21	7/52	
	pure dicamba for males, and to 5.0,	heart , Amyloido- sis	7/52	8/28	11/34	5/22	16/52	
	16.3, 105, 316 mg/kg bw/day of pure dicamba for	Kidney, glomeri- olar amyloidosis	12/52	13/52	14/52	13/52	20/52	
	females, at 50, 150, 1000 and 3000 ppm, respec- tively.	 1000 ppm (males mg/kg bw/day): No toxicologically fects. 150 ppm (males 1 mg/kg bw/day): No toxicologically fects. 50 ppm (males 5.5 mg/kg bw/day): No toxicologically fects. 50 ppm (males 5.5 mg/kg bw/day): No toxicologically fects. No toxicologically fects. No toxicologically fects. No treatment-relate at any dose level. NOAEL: 1000 ppm bw/day in males) b of amyloidosis in r roid, spleen, kidney males (121 mg/kg gain at 3000 ppm. 	signifi 7.2 mg signifi 5 mg/kg signifi ed char n (equi vased or nales ir y and a	cant tro /kg bw cant tro g bw/d cant tro ges in valent n slight n heart, drenal	eatmen //day, f eatmen ay, fen eatmen neopla to 108 tly high parath and 10	t-relate female t-relate t-relate t-relate stic fir mg/kg her inci- lyroid, 00 ppr	ed ef- s 18.8 ed ef- 5.8 ed ef- idence thy- n in fe-	

Method, guideline, deviations if any, spe- cies, strain, sex, no/group	Test substance, dose levels dura- tion of exposure	Results	Reference
		Termination week 89 survival 30% in males in the 150 and 3000 ppm groups; week 104 survival at least 35% all female groups. At 78 weeks the survival in all groups exceeded 50 %.	

Table 30: Summary table of human data on long-term toxicity and carcinogenicity

Type of study/data	Test sub- stance	Relevant information about the study (as applica-	Observations	Reference
	Dicamba	ble)	There was no difference in	Alayania MC, Dosa
Prospec- tive cohort study	as a pesti- cide but not further specified	The study investigates poten- tial association between lung cancer incidence and expo- sure to agricultural pesticides among the Agricultural Health Study cohort of li- censed pesticide applicators while controlling for known risk factors for lung cancer. 57284 pesticide applicators and 32333 spouses.	There was no difference in the incidence of lung can- cer in any of the dicamba exposure groups when compared to the never ex- posed group, while the low dicamba exposure group had a lower incidence than the never exposed group. Therefore the difference between the low (<24.5 days lifetime exposure) and high dicamba expo- sure group is considered due to an incidentally low incidence in the low dicamba exposure group and not to indicate a rele- vant increase in the high exposure group.	Alavanja MC, Dose- meci M, Samanic C, Lubin J, Lynch CF, Knott C, Barker J, Hoppin JA, Sandler DP, Coble J, Thomas K, Blair A; Pesticides and lung cancer risk in the agricultural health study cohort; published; Am J Epi- demiol (2004) 160:876-85.
Case-con- trol study	Dicamba as a pesti- cide but not further specified	The study investigates the risk of developing prostate cancer in relation to exposure to specific pesticides.	No statistically significant risk of prostate cancer was observed for ever exposure to dicamba, while a signif- icant excess risk was ob- served for high exposure to dicamba (OR=2.70; 95% CI: 1.01–7.20) based on eight exposed cases. Con- sidering that the 'ever' vs. 'never' use of dicamba did not reveal an increased risk for prostate cancer, the only small number of cases in the dicamba 'high' ex- posure group and the gen- eral limitations of the	Band PR, Abanto Z, Bert J, Lang B, Fang R, Gallagher RP, Le ND; Prostate cancer risk and exposure to pesticides in British Columbia farmers; published; Prostate (2011) 71:168-83

Type of	Test sub-	Relevant information	Observations	Reference		
study/data	stance	about the study (as applica-				
		ble)	study as such, the statisti- cally significant associa- tion between high dicamba exposure and prostate can- cer risk is considered not to indicate a relevant car- cinogenic potential of dicamba.			
Case-con- trol	Dicamba	Canadian incident case (non- Hodgkin's lymphoma; n=517 or 513) - control (n=1506) study among men in a diver- sity of occupations. An initial postal questionnaire was fol- lowed by a telephone inter- view for those reporting pes- ticide exposures of 10 hours/year or more and a 15% random sample of the remainder	A significantly increased risk for non-Hodgkin's lymphoma by exposure to Dicamba (odds ratio 1.88; 95% CI 1.32-2.68) and ex- posure to mixtures contain- ing Dicamba (odds ratio 1.96; 95% CI 1.40-2.75). When they distinguished between those exposed to Dicamba, but not to DEET (N,N-diethyl-m-tol- uamide), and those exposed to both compounds, they calculated odds ratios of 1.39 (95% CI 0.77-2.50) and 1.84 (95% CI 1.23- 2.75), respectively. Limita- tions of the study include differential response rates between cases (61.7%) and controls (48.0%) and the potential for recall bias.	McDuffie H.H., Pahwa P., McLaugh- lin J.R., Spinelli J.J., Fincham S., Dosman J.A., Robson D., Skinnider L.F. and Choi N.W. (2001) Non-Hodgkin's Lym- phoma and Specific Pesticide Exposures in men: Cross-Can- ada Study of Pesti- cides and Health. Cancer Epidemiol- ogy, Biomarkers and Prevention 10, 1155- 1163. McDuffie H.H., Pahwa P., Robson D., Dosman J.A., Fin- cham S., Spinelli J.J. and McLaughlin J.R. (2005) Insect Repel- lents, Phenoxyherbi- cide Exposure, and Non-Hodgkin's Lym- phoma. J Occup En- viron Med. 47: 806- 816.		
Case-con- trol	Dicamba	US incident case (non-Hodg- kin's lymphoma; n=1321) - control (n=1057) study among men and women identified by random digit di- aling and Medicare eligibil- ity files.	1 1	Hartge P., Colt J.S., Severson R.K., Cer- han J.R., Cozen W., Camann D., Zahm S.H., and Davis S. (2005) Residential herbicide Use and Risk of Non- Hodg- kin Lymphoma. Can- cer Epidemiol Bi- omarkers Prev 14(4) 934-937		
Prospec- tive cohort study	Dicamba	Investigation of cancer inci- dence among pesticide appli- cators exposed to dicamba in the Agricultural Health Study, a prospective cohort	A total of 41969 applica- tors were included in the analysis and 22036 (52.5%) reported ever hav- ing used dicamba. When	Samanic C., Rusiecki J., Dosemeci M., Hou L., Hoppin J.A., Sandler D.P., Lubin		

Type of	Test sub-	Relevant information	Observations	Reference
study/data	stance	about the study (as applica-		
		of licensed pesticide applica- tors in North Carolina and Iowa	prised low exposure appli- cators a positive trend in the risk between lifetime exposure days and lung	among Pesticide Ap- plicators Exposed to Dicamba in the Agri- cultural Health Study. Environmental Health perspectives 114 (10)

 Table 31:
 Summary table of other studies relevant for long-term toxicity and carcinogenicity

Type study	Test sub- stance	Relevant information about the study (as applica- ble)	Observations	Reference
			No studies available	

2.6.5.1 Short summary and overall relevance of the provided information on long-term toxicity and carcinogenicity

Dicamba was tested for long-term effects in a mouse and in a rat study.

Dietary administration of dicamba to CD-1 mice at dietary dose levels of 0, 50, 150, 1000, and 3000 ppm (corresponding to 5.5, 17.2, 108, and 358 mg/kg/day for males and 5.8, 18.8, 121, and 364 for females, respectively) for at least 89 weeks resulted in a slight reduction in body weight gain in high dose females (> 10%). Differential white blood cell count of blood smears at termination revealed a marked decrease of neutrophils and an increase of lymphocytes counts in treated female mice at \geq 150 ppm but witout clear dose-response. A tendency to increased incidence of amyloidosis was observed in several tissues in high dose males only. Body weight gain was decreased in females at 3000ppm. In females, a significantly higher incidence of combined lymphoid tumours was observed at 150 and 1000 ppm. The incidence at 3000 ppm was not significantly increased.

		Males			Females						
	Dose [ppm]	0	50	150	1000	3000	0	50	150	1000	3000
	No. exam.	52	52	52	52	52	52	51	52	52	52
Lymphoid leukaemia		1	0	0	0	0	0	0	1	0	0
Lymphosarcoma		0	4	2	0	1	2	4	8	7	5
Pleomorphic lympho-sarcoma		-	-	-	-	-	1	1	2	2	2
Combined lymphosarcoma							3	5	10	9	7
Combined lymphoid tumors							3(6%)	5 (10%)	11* (21%)	9*(1 7%)	7 (13%)
Histiocytic sarcoma		-	-	-	-	-	2	2	0	1	2
Myeloid leukemia		-	-	-	-	-	0	1	1	1	0

*:p<0.05, pairwise comparison. HCD: 7.7-34.6%

Incidence of combined lymphoid tumors in this study was found to be up to 21 %. This is within the background incidence observed in acceptable historical control data (7.7-34.6 %). HCD studies were performed within a 5-year period and with same strain/supplier of animals and the same laboratory as the current dicamba study. Because of the lack of dose response and the incidence were within historical controls, dicamba was not considered to have a tumourigenic potential at dosage levels up to 3000 ppm in mice. The NOAEL in this study was 1000 ppm (mean value 121/108 for females/males mg/kg bw/day) (1988).

Dietary administration of dicamba to rats at dietary concentrations of 0, 50, 250, 2500 ppm (corresponds to 2.0, 10.0, and 99.1 mg/kg bw/day for males and 2.4, 12.1, and 120.1 for females, at 50, 250, and 2500 ppm, respectively) for up to 27 months resulted in slightly increased food consumption observed in high dose males mainly during the first year of treatment. Also, in males there was a slight increase in liver necrosis and increase in cystic hyperplasia in the uterus at high dose. There was also a marginally decreased survival rate (42%) (1985).

The dicamba rat study was performed 1981 to 1983. 6 separate HCDs were provided by Syngenta:

HCD source/description	Years per- formed (in life)	Lab./strain	Duration (months) (di- camba study: 26.5)	Number of stu- dies	Acceptability
1. HCD: Historical control from studies done by the laboratory, in which the dicamba study was performed in, over the period of 1975-1979 in CD rats are available. Information is lacking on tumor incidence of individual studies for the HCD from 1975 to 1979 (only a mean and a range is given). Since the study is from 1981-1983, the HCD are not collected within a 5 year but rather 10 year period. It is not known if incidences are based on terminal kill animals only or in- cludes also interrrim kill animals for all studies. Data for lymphoma, polyps in uterus and c-	1975-1979,	Performing lab/CD rats (Sprague Daw- ley)	Exact dura- tion unknown (In the intro- duction text to this HCD collection, the studies are described as 24 months studies)	Unknown but 1010 animals	Acceptable but with uncertain- ties.
cell carcinoma available. 2. HCD: Historical control data collected in 1983 and 1985 from the performing labor- atory. These data seem to be lacking in confirmed available information of breeder and other details and for data from 1983 the strain is not available. The strain in the HCDs from 1985 is CD rats. It was not pos- sible to confirm when exactly the studies	Data col- lected 1983 and 1985, exact years not known	Performing lab/CD rats (Sprague Daw- ley)	Exact dura- tion unknown (The CROs updated HCD have shown that only studies of 24	1983:10 1985:9	Acceptable but with uncertain- ties.

	1			1	
were performed either. Data were collected in 1983 and in 1985, but no more infor- mation is available on the time these stud- ies were actually conducted. Syngenta has some indirect information which may sup- port that for the 1985 HCD, the studies were performed in close proximity to the inlife period of the dicamba study. This was mostly deduced and not actually con- firmed. RMS finds the HCD collected in 1983 of less credibility than the HCD from 1975-1979. The HCD collected in 1985 also lack information but are considered more useful than the HCDs collected in 1983. It is not known if incidences are based on terminal kill animals only or in- cludes also interrrim kill animals for all studies. Please refer to Vol 3, study B6.5/03 for more details. Data for lym- phoma and c-cell carcinoma available. Data available for pheochromocytoma and uterus polyps (1985 only) 3. HCD: Studies x and y are considered ac- ceptable for use as HCD (X started 2 years prior and Y started 4 years after the study	1979 and 1987	(study x and y) Performing lab/CD rats	month dura- tion are in- cluded in HCDs).	2	Acceptable
with dicamba according to applicant). The data was also from the performing labora- tory and on the same strain of rat. Study x: results for given group size (60 for males, 55 for females) includes only animals from terminal sacrifice and animals dying during the study; interim sacrifice animals not in- cluded (interim sacrifice had only been done for control and high dose groups) Study y: results for given group size (70) does also not include animals from the in- terim sacrifice; thyroid tumors and malig- nant lymphomas were not seen in the in- terim sacrifice groups. Thyroid c-cell hy- perplasia was also not seen at interim sac- rifice. Data for lymphoma and c-cell carcinoma available.		(Sprague Daw- ley)			
4. HCD: Notifier supplied HCD for polyps and Thyroid effects from RITA (Registry of Industrial Toxicology Anamial data) on SD rats. For effects on thyroid: for males ranges of incidences of thyroid gland C- cell adenomas were 3.3-38.3% and 0-8.3% for C-cell carcinomas. For polyps (glandu- lar) the range was 0-5.8% and for polyps (endometrial) the range was 0-36.5%. These data are only considered supplemen- tary by RMS since they were from different unknown laboratories and HCD are col- leted in a period of time exceeding way above the 5 or even 10 years around the time when the dicamba study was condu- cated (1981-1983) since data are collected from 1985 to 2010. Please also refer to po- sition paper Vol 3, B.6.5/04 and B.6.5/05. Data for c-cell carcinoma and polyps avail- able.	1985-2010	RITA (Registry of Industrial Toxicology An- amial data): Sprague Dawley	24-26	39 studies for uterus polyp and 40 studies for thy- roid tumors	Supplementary.
5. HCD: National Toxicology Program (NTP). Data collected from NTP labs/fe- male Sprague Dawley. Please see position paper 6.5/05 for more information in Vol 3. Data for c-cell carcinoma available.	1998-2004	NTP/ Sprague Dawley, females	24	9	Supplementary
6. HCD: 6. Historical control data from studies done by the laboratory, in which the	1976-1986	Performing lab/CD rats	24	29 (this is the number of control	Acceptable

dicamba study was performed in, over the period of 1977-1994 an in Sprague Dawley rats are available. Since the dicamba study is from 1981-1983, the HCD are not col- lected within 5 years of the study but rather over around 17 years. Notifier further sub- mitted data within \pm 5 years (initiated 1976-1986), which were used for compari- son to dicamba data and are considered ac- ceptable and the most reliable of the HCDs submitted. However, \pm 5 years may be con- sidered too long a time period. Please also refer to position paper B.6.5/05 in Vol 3 for further clarification by notifier. Data repre- sents both administration by diet and ga- vage. Information of body weigt and other details of study conduct are missing for the single studies. Data for c-cell carcinoma available, liver necrosis and kidney ne-	(Sprague ley)	Daw-	groups from to- tally 20 studies initiated 1976- 1986, as a num- ber of studies had more than one control group).	
available, liver necrosis and kidney ne- phrosis and lymphoma.				

<u>Mixed malignant lymphoma</u> tumors were observed in high dose (6.7%) with significant trend analysis: during the first evaluation it was found appropriate to combine the different types of malignant lymphomas and they were then considered within historical control range. The incidence of the 1975-1979 historical control data set from the laboratory the dicamba study was performed in (using CD rats, 24 month duration, based on data from 1010 males) for malignant lymphoma (no differentation into histio- or lymphocytic or mixed) had a mean incidence of 3.8% with a range of 0-8.6% in individual studies. However, if the other historical control data are used (1985), the ranges for malignant lymphoreticular lymphoma at the laboratory was 0-7.2% for studies reported/data collected in 1985. In the X,Y studies Range was between 0-1.7%. The incidence observed in this study is in this respect within the available historical control range.

Since no mixed malignant lymphomas were observed at interim kill, the incidence could also be calculated out of the animals at terminal kill. In this case the incidences of lymphomas would be 0% (0/50), 0% (0/50), 8% (4/50) and 8% (4/50). The incidence would then be within the 1975-1979 HCDs and outside the 1985 HCDs. HCDs from performing study restricted to starting 1976-1986 is 0-9.1 %.

However, a discussion of the usefulness of the HCDs as well as how to calculate the incidences would be considered necessary by RMS

Thyroid parafollicular (C-cell) carcinoma:

in high dose males, an increased incidence of thyroid parafollicular (C-cell) carcinoma was observed. No significant difference was found according to pairwise comparison, whereas a significant trend was observed. In the last evaluation it was discussed that often parafollicular tumours develop upon functional changes of the thyroid. Changes in the incidence of parafollicular adenoma and parafollicular hyperplasia would therefore be expected. However, neither the incidence of parafollicular adenoma (2, 5, 5 and 3 at 0, 50, 250, and 2500 ppm, respectively) nor of parafollicular hyperplasia (28, 27, 37 and 26) was affected by treatment. Likewise, the weighted grade of parafollicular hyperplasia was comparable between all groups (1.9, 2.0, 1.9 and 2.0). Therefore, at the last evaluation, it was considered unlikely that the increased incidence of parafollicular carcinoma is related to treatment.

Thyroid	No. exam.	60	60	60	60	60	60	60	60
0-12 months									
Parafollicular cell carcinoma		0/11	0/11	1/12	0/10	0/11	0/11	0/10	0/11
Parafollicular hyperplasia, mild		1	1			1		1	
12 months to termination									
Parafollicular cell hyperplasia		28/49	27/49	37/48	26/50	35/49	36/49	39/50	35/49
-trace		4	3	2	3	3	6	4	0
-mild		24	24	35	21	30	29	34	34
-moderate		0	0	0	2	2	1	1	1

Follicular adenoma	0/49	1/49	1/48	1/50	-	-	-	-
Parafollicular cell adenoma	2/49	5/49	5/48	3/50	5/49	1/49	3/50	6/49
Follicular carcinoma	0/49	1/49	0/48	0/50	-	-	-	-
Parafollicular cell carcinoma	1/49	0/49	1/48	5/50	0/49	1/49	0/50	0/49
Parafollicular cell carcinoma (/total)	1/60	0/60	2/60	5/60a				
Parafollicular cell carcinoma (%)	1.7	0	3.3	8.3				

a: positive trend analysis

It should be noted that the incident of thyroid parafollicular (C-cell) carcinoma in this study is 8.3 % (5/60) in the high dose group and the incidence in the 250 ppm group is 3.3 % (2/60). In the historical control data from 1975-1979 the range is 0.0-2.0 % incidence (mean 0.2%). In the other historical control data from collected 1983, the range is 0-2.9 (but these HCDs are considered less reliable) and 0-1.7% for data collected in 1985. In the studies x and y the incidence is 0%. Thus the incidence in the study is above the incidence found in all these HCD for mid and high dose group males. In the HCD from RITA (unknown laboratories and collected over a periode of 25 years for males, ranges of incidences of thyroid gland C-cell adenomas were 3.3-38.3% and 0-8.3% for C-cell carcinomas. The RITA HCDs are supplementary. The latest historical controls supplied by the notifier are spanning ± 5 years around the dicamba study, but not 2.5 years centered around the study. The range of incidence of parafollicular cell carcinoma in these studies are 0-5 % in males, with a mean and standard deviation of 0.3 \pm 1. These historical control data are acceptable and expected to be the most relevant. Only the high dose is outside the range of these HCDs. HCDs from the NTP in females are considered supplementary.

Notifier argues that the longer in-life periode in the dicamba study (26.5 months for males) versus 24 months in HCD may have led to higher incidence of carcinomas in the dicamba study and RITA data may be more relevant. RMS acknowledge that in-life periode may affect the HCD range.

Notifier argues that perhaps collecting data over a larger time periode from different laboratories is less important than using a longer treatment periode. It is difficult to know what may affect the incidence of c-cell tumors more. The dicamba study had a duration of 26.5 months which is longer than the studies where HCD have been colleted from. However, using HCD from different laboratories may introduce many possible confounding factors (e.g. animal vendor, type of bedding, possible chemical contaminations, or differences in the feed composition, many different pathologists, tissue trimming) which may also affect the range. Furthermore, only 1 study among the 40 studies taken from the RITA database had a c-cell carcinoma incidence of 8.3% (25 months duration). The highest incidence after that was 6.0 % (which was actually from a 24 months study). There were 9 studies in total with a duration of 25-26 weeks. Of these studies 7 of them had an incidence of 2 % or less and 1 had an incidence of 5%. So 8.3% represents the most extreme control group even among the studies of longer than 24 monts duration (25-26 months) and from unknown laboratories and also collected over a time period of 25 years.

The increase in parafollicular cell carcinoma was not accompanied by increases in hyperplasia or adenomas. Furthermore, there were no indication of early onset of tumors and no indication of thyroid effects from the short term studies. Taken together, this decrease the level of concern regarding the carcinogenicity concern for humans

However, considering both that the incidence in the high dose was above the most appropriate HCD as well as a significant trend was observed, the observed increase in thyroid parafollicur carcinoma cannot be excluded to be treatment related.

Thyroid parafollicu- lar c-cell carcinoma	Years (in life)	Lab./strain	Males; Range (%), mean ± SD	Duration (months) (di- camba study: 26.5)
1. HCD	1975-1979,	Performing lab/CD rats (Sprague Daw- ley)	0-2, 0.2	Exact duration unknown (men- tioned as 2 year studies)
2. HCD	Data collected 1983 and 1985, exact years not known	Performing lab/CD rats (Sprague Daw- ley)	0-1.7 (1985) 0-2.9 (1983)	Exact duration unknown (men- tioned as 2 year studies)

3. HCD	1979 and 1987	(study x and y) Per- forming lab/CD rats (Sprague Dawley)	0	24
4. HCD	1985-2010	RITA (Registry of Industrial Toxicol- ogy Anamial data): Collected from dif- ferent labs/Sprague Dawley	0-8.3, 2.5 ±2.5	24-26
5. HCD	1998-2004	NTP/ Sprague Da- wley, females	0-8	24
6. HCD	1976-1986	Performing lab/CD rats (Sprague Daw- ley)	0-5, 0.3 ±1	24

In females, pheochromocytoma of the adrenal medulla was observed in the incidence: 1/47, 4/48, 3/46 and 5/46. No adrenal medulla pheochromocytoma were observed before 12 months of age and therefore RMS considers it appropriate to calculate the incidence out of the number of animals who died after 12 months or were killed at termination. Historical control data were supplied by Syngenta and collected in 1985 (acceptability of HCD are discussed above). Incidence in females was outside HCD range (0-8.3%) in the high dose (11%) but without clear dose-response (not statistically significant trend or by pairwise comparison). Because of the lack of dose-response and lack of increased finding of adrenal medullary hyperplasia, in females, the increased incidence of pheochromocytoma of the adrenal medulla may be considered incidental. Also, if it is considered acceptable to calculate the incidence was also above HCD in some groups, but the highest incidence was found in controls and therefore not considered treatment related.

In females, 4/60 (6.7%), 5/60 (8.3%), 5/60 (8.3%) and 8/60 (13.3%) polyps in the uterus was observed untill terminal sacrifice so the overall incidence of uterine polyps in the high dose group was slightly higher than concurrent and historical control data from the same laboratory (0-8.3% in the HCDs collected 1975-1979) but did not reach statistical significance. The increase in high dose group may be treatment related. Uterine polyps are a benign age related tumor in rats which may not have an etiology relevant for women (Davis, 2012)¹¹ but according to ECHA CLP guidance (2017) only if a mode of action of tumour development is conclusively determined not to be operative in humans may the carcinogenic evidence for that tumour be discounted. To the knowledge of RMS, this is not the case for uterine polyps at this time. No early onset was observed at 12 months (only 2 rats with polyps seen at 50 ppm). However, the finding may be considered supportive for a classification.

Effects observed in humans:

The only source of human information on carcinogenicity of dicamba is epidemiology. A general difficulty for epidemiology papers, and for the evaluation of any dicamba associated adverse health effects, is that exposure to dicamba alone normally cannot be evaluated. This is because dicamba is often used in mixtures with other herbicide active ingredients with often lower dicamba-content in these mixture products as compared to the other active ingredients. It is therefore almost impossible to consider the effect of exposure to dicamba alone without the influence of other active substances/co-formulants. Furthermore, it is difficult to attribute health effects including cancer to dicamba-containing products since humans are exposed to a great number of environmental chemicals.

Lung cancer: Statistical significance was only seen when comparing high dicamba exposure (as lifetime exposure days) with low dicamba exposure but not with no dicamba exposure (Alavanjaet al., 2004). The statistical significance is therefore considered more of an artefact - due to the fact that the low dicamba exposure groups had a lower risk for lung cancer than the no exposure group – than indicating an actual effect of dicamba.

No lung effects were seen in any repeated dose toxicity study in animals.

¹¹ Davis, B (2012). Endometrial Stromal Polyps in Rodents: Biology, Etiology, and Relevance to Disease in Women. Toxicologic Pathology.

Therefore, the published findings on lung cancer are considered of insufficient relevance to be considered for human risk assessment of dicamba.

Prostate cancer: Statistical significance was seen in only one publication when a low number of cases with high dicamba exposure were compared to never exposure but not for 'ever' use of dicamba (data based on British Columbia Cancer Registry) (Band et al, 2011).

Additionally, there are a number of other publications that investigate the association between prostate cancer risk and pesticide including dicamba exposure¹² (data based on the Agricultural Health Study – applicators and spouses): none of these found an association between prostate cancer and dicamba exposure. Additionally two reviews evaluate the overall evidence of an association of pesticide exposure and prostate cancer and conclude that there is no relevant association¹³.

Therefore, the reported association of high dicamba exposure and prostate cancer is considered not relevant for human risk assessment considering that this was not confirmed by a considerable number of other epidemiology publications or any similar finding in animal studies.

An apparent association between exposure to dicamba, either alone or in combination with other pesticides, and Non-Hodgkin's lymphoma in agricultural workers was identified by McDuffie et al (2001;2005) but was not confirmed by Samanic et al (2005). Similarly, Hartge et al (2006) found no correlation between the use of dicamba and Non-Hodgkin's lymphoma in a residential environment.

Two reasonably well-designed and reported publications did not find an association between exposure to dicamba and NHL covering exposure to dicamba from residential use (home and garden, case-control study) and from use on the field (pesticide applicators on farms, prospective cohort study) – Samanic et al (2006) and Hartge et al (2005).

The other two publications from the same primary author (McDuffie et al 2001/2005) were based on the same data set and reported a weak association of dicamba exposure (various professions) with NHL (case-control design).

However the design and reporting limitations of the McDuffie publications are considered somewhat more marked as compared to the other two publications: e.g. no information on period of data collection or whether pesticide exposure preceded NHL diagnosis or not, potential recall bias (inherent for case-control studies), risk of statistically significant associations occurring by chance considering the large numbers of associations evaluated (but details missing exactly how many compounds/associations were evaluated). Due to the fact that subjects had variable occupations potentially made a correct assessment of pesticide exposure particularly difficult in the McDuffie et al papers.

Therefore considering a weight of evidence in the evaluation whether dicamba was associated with an increased risk for NHL, more weight is placed on the results by Hartge et al and Samanic et al vs McDuffie et al – also as the association seen by McDuffie et al were relatively weak as well. Therefore, dicamba is considered not to be associated with a relevantly increased risk for NHL based on the epidemiology papers discussed above.

The last publication by Samanic et al (2006) additionally reports a slightly increased risk for lung and colon cancer when the highest dicamba-exposed group is compared with the low-exposed group but not when any dicamba-exposed group (including the highest exposed group) is compared to the no-exposure group. The same data set concerning lung cancer is also discussed in the Alavanja et al 2004 publication (summarised as above). As the low-exposure group for dicamba contained more non-smokers than the high- or no-exposure groups and consequently had a markedly lower risk for lung (and colon) cancer as compared to the no-exposure group, the reported increase of risk for the highest exposure group is considered more an artefact to the low risk within the low-exposure group and not to indicate a relevant increase of risk due to high dicamba exposure.

Therefore, the additional 4 epidemiology papers discussed above are considered not to indicate a relevant risk for cancer associated with dicamba.

2.6.5.2 Comparison with the CLP criteria regarding carcinogenicity

 Table 32:
 Compilation of factors to be taken into consideration in the hazard assessment

¹² Barry et al 2011 and 2012, Koutros et al 2011

¹³ Mink et al 2008, Weichental et al 2010

Species and strain	Tumour type and back- ground incidence	Multi-site responses	Progres- sion of le- sions to malig- nancy	Reduced tumour latency	Responses in single or both sexes	Con- founding effect by excessive toxicity?	Route of exposure	MoA and relevance to hu- mans
Mouse, CD- 1	No treat- ment-re- lated changes in neo- plastic findings							
Rat, CD (Sprague Dawley)	uterine polyps (0-8.3%)	No	No		single	No	oral	Not known
Rat, CD (Sprague Dawley)	Thyroid parafollic- ular (C- cell) car- cinoma (0-2.9%)	No	NA		single	No	oral	Not known

Regarding the increased incidence of c-cell carcinoma there was a lack of concurrent histopathological findings/increase in c-cell adenoma in the thyroid from the database, an unknown mode of action and the increase in thyroid parafollicular (C-cell) carcinoma was observed only in one species and in one gender without indication of early onset. The factors mentioned above weaken the available evidence and decrease the level of concern regarding the carcinogenicity concern for humans. However, based on the dose-related increased incidence of thyroid parafollicular (C-cell) carcinoma in male rats, which were above the incidence found in the HCD for high dose group males and in addition with a significant trend analysis, RMS considers the increase in these tumors cannot be exluded to be treatment related and a classification for Carc Cat 2 is suggested. The finding of increased number of polyps in female rats may be considered supportive.

2.6.5.3 Conclusion on classification and labelling for carcinogenicity

Based on the dose-related increased incidence of thyroid parafollicular (C-cell) carcinoma in male rats (although not accompanied by increases in hyperplasia or adenomas), observed above the incidence found in the HCD for high dose group males and a significant trend analysis, RMS considers the increase in these tumors may be treatment related. Since the increase in thyroid parafollicular (C-cell) carcinoma was observed in one species and in one gender, a classification for Carc Cat 2 is suggested by RMS.

2.6.6 Summary of reproductive toxicity [equivalent to section 10.10 of the CLH report template]

2.6.6.1	Adverse effects on sexual function and fertility – generational studies [equivalent to section 10.10.1
	of the CLH report template]

Method, guideline, deviations if any, species, strain, sex, no/group	Test substance, dose levels duration of ex- posure	Results	Refer- ence
Two Gener-	Dicamba (Technical	Parental toxicity	(1993)
ation	material; batch	5000 ppm	

Method,	Test substance, dose	Results	Refer-
guideline,	levels duration of ex-		ence
deviations if	posure		
any, species, strain, sex,			
no/group			
Oral (contin-	52103810; purity	F0: mean achieved intake 347/390 mg/kg bw/day, males/	
uous in diet)	86.9%)	females respectively	
OECD 416 (1983)	0, 500, 1500 or 5000 ppm	↓ body weight gain pregnancy day 0-14: 9.6% (day 0-20: 3.2%)	
Rat, CD	Vehicle: laboratory ani-	↑ adjusted liver weight 13% females, 5% males	
(SD) BR VAF/Plus	mal diet.	F1: mean achieved intake, 432/458 mg/kg bw/day, males/ females respectively	
32/sex/group (F0)	The overall F0/F1 pre- mating doses corre-	Clinical signs during lactation: tense/stiff body tone and slow righting reflex for a few days during the latter part of	
28/sex/group (F1)	spond to 37.9, 113 and 389 mg/kg bw /day for	lactation. ↓ body weight pregnancy day 0-14: 4.6% (F1A) and 23%	
	males and 42.6, 130 and 424 mg/kg bw/day	(F1B)	
	for females at 0, 500,	\uparrow absolute liver weight 3% females, males 9.5% (relative)	
	1500 or 5000 ppm, re- spectively.	↓ food consumption week 5-8	
		<u>1500 ppm</u>	
	Corrected for purity, the overall F0/F1 pre-	F0: mean achieved intake, 105/125 mg/kg bw/day, males/ females respectively	
	mating means corre- spond to 32.9, 98.3 and 338 mg/kg bw/day of pure dicamba for males, and to 37.0, 113,	F1: mean achieved intake, 121/135 mg/kg bw/day, males/ females respectively	
		↓ body weight gain pregnancy day 0-14 (F1B): 15 % (day 0-20: 15%)	
	369 mg/kg bw/day of pure dicamba for fe-	500 ppm	
	males, at 500, 1500 and 5000 ppm, respectively	F0: mean achieved intake, 35/41 mg/kg bw/day, males/ females respectively	
		F1: mean achieved intake, 40.6/44 mg/kg bw/day, males/ females respectively	
		↓ body weight gain pregnancy day 0-14: 9.6% (F1B) (day 0-20: 1.7%) but absolute body weight was not decreased.	
		Otherwise, no effects	
		NOAEL 500 ppm (42.6 mg/kg bw/day) on the basis of decreased body weight during pregnancy (GD 0-14) at 500, 1500 and 5000 ppm. Clinical signs during lactation, ↑ liver weights at 5000 ppm	
		<u>Reproductive toxicity</u>	
		No effects at any dose level	
		NOAEL 5000 ppm (389 mg/kg bw/day)	
		<u>Offspring toxicity</u> 5000 ppm	
		F1: ↓mean pup body weight 24 % day 21, delayed sexual maturation of males by 2 days, ↑ relative liver weights 27%.	
		F2A/B: ↓ body weight 26/30 % day 21, ↑ relative liver weights approx. 36%.	
		<u>1500 ppm</u>	

Method, guideline, deviations if any, species, strain, sex, no/group	Test substance, dose levels duration of ex- posure	Results	Refer- ence
		 F1: ↓ mean pup body weight 4 % day 21 F2A/B: ↓ pup body weight 10/14 % day 21 <u>500 ppm</u> F2B: No effects NOAFL: 500 ppm (37.9 mg/kg bw/day) based on body 	
		F2B: No effects NOAEL : 500 ppm (37.9 mg/kg bw/day) based on body weight effects at 1500 and 5000 ppm.	

T 11 22	
Table 33:	Summary table of human data on adverse effects on sexual function and fertility

Type of	Test sub-	Relevant information	Observations	Reference
data/report	stance	about the study (as appli-		
-		cable)		
The Ontario Farm Family Health Study (OFFHS), a retrospective investigation of the effect of pesticide exposures on reproductive health. No OECD guideline used	Dicamba in an unspeci- fied form	The study investigated the relationship between farm couple exposures to pesticides during pregnancy and the development of subsequent health problems in their offspring including: persistent cough or bronchitis, asthma, and allergies or hay fever. A total of 3405 children were included in the study, of whom 341 were reported to have allergy, 104 persistent cough or bronchitis and 173 reported to have asthma. For 1196 children (35%) there was no pesticide use on the farm during pregnancy.	Although not statistically sig- nificant, the reported use of dicamba led to odds ratios above 1.6 for persistent cough or bronchitis. The study offers weak support for the hypothe- sis that indirect exposure to dicamba during pregnancy is associated with the develop- ment of persistent cough or bronchitis and no support for an association for asthma, and allergies or hay fever during childhood.	Weselak M, Ar- buckle TE, Wigle DT, Krewski D; In utero pesticide expo- sure and childhood morbidity; pub- lished; Environmen- tal Research (2007) 103:79-86;
The Ontario Farm Family Health Study (OFFHS), a retrospective investigation of the effect of pesticide exposures on reproductive health. No OECD guideline used	Dicamba in an unspeci- fied form	Couples living year-round on family-run farms with sales above a threshold figure were eligible for in- clusion in the OFFHS if they were married or liv- ing as married, and the wife was at most 44 years of age. Of the 2946 eligi- ble couples that met the el- igibility criteria, 1893 (64%) returned all three questionnaires and identi- fied a total of 5853 preg- nancies. A total of 53% of	Gender specific results showed significantly elevated adjusted odds ratios (OR) for birth defects for male off- spring in relation to reported farm use of dicamba during the pre-conception period (OR = 2.42, 95% CI: 1.06–5.53), although the dicamba associa- tion did not reach statistical significance in the GEE analy- sis that allowed for familial correlation (OR = 2.34, 95% CI: 0.97–5.67).	Weselak M, Ar- buckle TE, Wigle DT, Walker MC, Krewski D; Pre- and post-conception pes- ticide exposure and the risk of birth de- fects in an Ontario farm population; published; Repro- ductive toxicology (2008) 25:472-80;

· · ·	Test sub- stance	Relevant information about the study (as appli- cable)	Observations	Reference
		the husbands and 6% of the wives were the farm		
		operator.		

Table 34: Summary table of other studies relevant for toxicity on sexual function and fertility

Type of study/data	Test sub- stance	Relevant information about the study (as appli- cable)		Reference
			No data	

2.6.6.1.1 Short summary and overall relevance of the provided information on adverse effects on sexual function and fertility – generational studies

The two-generation rat reproduction study was conducted in rats. Deviations from OECD TG 416 (2001) were the following: Sperm analysis was performed for 8 (F0) and 7 (F1) males from each group instead of the recommended 10 animals/group; Sperm parameters were only examined in proven males. Uterus, spleen, ovary and thyroids in parental animals and spleens in pups were not weighted. Due to relatively low fertility in all groups of the F1 generation, number of litters were <20 in most groups (except high dose group in the 1st mating). As the latter was considered unrelated to treatment and correlated with a high body weight of females, this is considered not to impair the scientific validity of the study. In addition numbers of litter were 20/19 in the 1st/2nd mating of the F1 generation at the top dose level – therefore sufficiently high to reveal a potential effect of treatment. Since there were effects on sexual development, AGD should have been determined in F2 pups. Qualitative depletion of primordial follicles should have been investigated as well as enumeration of the number of promordial follicles and small growing follicles for comparison between treated and control ovaries.

One randomly selected pup/litter should be selected for examination of thymus, brain and spleen according to OECD TG 416 (2001). In this study, selection was made on the basis of body weight at Day 21 post partum; within each litter, the pup with the median weight for the respective sex was chosen. Estrus cycle data were not collected for the recommended 2 weeks but for most animals only 7 days, data was not summarised and it was very difficult/imposible to assess any patterns. Clinical signs were not summarised but only shown on individual level but sorted by group.

The two-generation rat reproduction study conducted with administration of dicamba at dose levels of 0, 500, 1500, and 5000 ppm (correspond to 37.9, 113 and 389 mg/kg bw /day for males and 42.6, 130 and 424 mg/kg bw/day for females at 0, 500, 1500 or 5000 ppm, respectively.) resulted in slight parental toxicity at 1500 ppm and above indicated by decreased body weight gain of F_1 females during gestation (F_0 only seen at 5000 ppm) and by clinical signs in F_1 females during lactation at 5000ppm (increased body tone and slowed righting reflex) and by increased liver weights in F_0 and F_1 adults at 5000 ppm. The increased liver weights were not accompanied by histopathological findings.

Developmental toxicity was observed by reduced pup weights in the top dose group of 5000 ppm at birth and reduced body weight gain at 1500 and 5000 ppm. Increased liver weights were observed in high dose weanlings. A slight delay of sexual maturation was observed in F_1 males as indicated by delayed cleavage of the balano-preputial skinfold. A covariance analysis was done: The aim of the analysis was to compare the developmental landmark (balano-preputial skinfold cleavage) between the treated groups and the control via analysis of covariance (ANCOVA), using bodyweight at 4 weeks as the covariate. There was a strongly significant relationship between bodyweight at 4 weeks and time to balanopreputial separation when parallel linear models were fitted to all four treatment groups (P = 0.001). The ANCOVA comparison of time to balanopreputial separation between the treatment groups, with adjustment for bodyweight at 4 weeks, was not statistically significant: P = 0.117. This suggests that the previously observed difference in the time to balano-preputial skinfold cleavage between the 5000 ppm group and the control group was related to the reduced bodyweight at 4 weeks in the 5000 ppm group.

Reproductive performance was not affected by treatment. A reduced fertility was observed in all F_1 groups including controls. Therefore, a second mateing was performed where previously unsuccessful males were mated with successful females and *vice versa*. Fertility was reduced again without any dose-relationship. Analysis of the combined mateing revealed a comparable number of successfully mating males and females in all groups. Oestrus cycle determinations prior to mating as well as sperm analysis revealed no effects that could be related to dosing.

NOAEL F0 and F1 parental generation was 500 ppm (equivalent to a daily dose of approx. 42.6 mg/kg bw/day) based on decreased body weight gain at 1500 (F1) and 5000 ppm.

Developmental NOAEL was 500 ppm (equivalent to a daily dose of approx. 37.9 mg/kg bw/day) based on dose-related reduced weight in pups at 5000 and 1500 ppm.

The ability to reproduce and to deliver and rear offspring was not affected up to the highest dose tested (5000 ppm, approx. 389 mg/kg bw in males and 424 mg/kg bw/day in females) (1993).

Effects in humans:

Although not statistically significant, the reported use of dicamba led to odds ratios above 1.6 for persistent cough or bronchitis. The study offers weak support for the hypothesis that indirect exposure to dicamba during pregnancy is associated with the development of persistent cough or bronchitis and no support for an association for asthma, and allergies or hay fever during childhood. The authors reecomend using this study for hypothesis generation as it has limitations (Weselak et al, 2007). Gender specific results showed significantly elevated adjusted odds ratios (OR) for birth defects for male offspring in relation to reported farm use of dicamba during the pre-conception period (OR = 2.42, 95% CI: 1.06-5.53), however, the dicamba association did not reach statistical significance in the GEE analysis that allowed for familial correlation (OR = 2.34, 95% CI: 0.97-5.67). The evidence of an association between dicamba exposure and birth defects was weak in males and considering the limitations of the study, the authors also recommended to treat the results with caution as the findings should serve primarily to generate hypotheses (Weselac et al, 2008).

2.6.6.1.2 Comparison with the CLP criteria regarding adverse effects on sexual function and fertility No treatment related effects were observed on sexual function or fertility hence a classification is not proposed.

2.6.6.2 Adverse effects on development [equivalent to section 10.10.4 of the CLH report template]

Table 35: Summary table of animal studies on adverse effects on development

Method, guide- line, deviations if any, species, strain, sex, no/group	Test substance, dose levels duration of ex- posure	Results	Reference
Developmental toxicity Test guideline not stated but com- plies largely to OECD 414 (2001) but with some no- table deviations (see below) Oral (gavage) Rat, CD 25 mated fe- males/group	Dicamba (Technical grade; batch: 52625110; purity (90.4%) 0, 64, 160 or 400 mg/kg bw/day on days 6-19 of gestation Vehicle: corn oil <i>The dose levels ap- plied correspond to</i> 58, 145 and 362 mg/kg bw/day of pure dicamba.	Maternal toxicity 400 (362) mg/kg bw/day: 4/25 deaths gestation day 7 & 8; ataxia, stiffening of the body when held, urine soaked fur, salivation and decreased motor activity; ↓ body weight gain (27% lower cor- rected maternal bw gain); ↓ food con- sumption (18.5% lower than controls, days 6-19). 4 deaths on GD7 and 8 (3 pregnant, 1 non- pregnant) 160 (145) mg/kg bw/day 10 % lower corrected maternal bw gain (not statistically significant) 64 (58) mg/kg bw/day No effects Maternal NOAEL: 64 (58) mg/kg bw/day Developmental toxicity 400 (362) mg/kg bw/day: ↑ number of incompletely ossified frontal (s) and/or parietal(s) 64 (58) & 160 (145) mg/kg bw/day: No effects Developmental NOAEL: 160 (145) mg/kg bw/day: No	(1981) (study acceptable)

Developmental	Dicamba (Technical	Matamal taxiaity	(1002)
toxicity	grade; batch:	<u>Maternal toxicity</u> 300 (271) mg/kg bw/day: 4/20 abor-	(1992) (study acceptable)
US EPA 83-3	52625110; purity	tions; ataxia, rales, laboured breathing,	(study acceptable)
(complies largely	90.4%)	•	
	90.470)	perinasal substance, dried/no faeces, im-	
· · · · · · · · · · · · · · · · · · ·	0 20 150 am 200	paired righting reflex and decreased mo-	
2001)	0, 30, 150 or 300	tor activity; \downarrow body weight gain (42%	
Oral (capsule)	mg/kg bw/day on	lower than controls days 0 to 29); \downarrow relative final controls days 0 to 29).	
Rabbit, New Zea- land White	days 6-18 of gestation	tive food consumption (13% lower than controls, days 0-29).	
Hra:(NZW)SPF	The dose levels ap-		
20 inseminated fe-	plied correspond to	150 (136) mg/kg bw/day: 1/20 abortion;	
males/group	27.1, 136 and 271 mg/kg bw/day of	ataxia and decreased motor activity	
	pure dicamba.	30 (27.1) mg/kg bw/day	
	pure acamba.	No effects	
		Maternal NOAEL: 30 (27.1) mg/kg	
		bw/day	
		Developmental toxicity	
		300 (271) mg/kg bw/day:	
		increased incidence of irregularly ossi-	
		fied internasals .	
		High dosis (incidence)	
		Pups: 3.9%	
		Litter: 23.1%	
		HCD 1987-1989	
		Pups: 0-2.3%	
		Litter: 0-14.3%	
		HCD 1992-1994	
		Pups: 0-4.2%	
		Litter: 0-26.7%	
		HCD 1990-1994	
		Pups: 0-5 (0-4.8%)	
		Litter: 0-4 (0-26.7%)	
		30, 150 mg/kg bw/day:	
		No effects	
		Developmental NOAEL: 150 (136)	
		mg/kg bw/day	

 Table 36:
 Summary table of human data on adverse effects on development

Type of data/report	Test sub- stance	Relevant information about the study (as ap- plicable)		Reference
			Although not statistically sig-	Weselak M, Ar-
Farm Fam-	an unspeci-	relationship between farm	nificant, the reported use of	buckle TE, Wigle
ily Health	fied form	couple exposures to pesti-	dicamba led to odds ratios	DT, Krewski D; In
Study		cides during pregnancy	above 1.6 for persistent cough	utero pesticide ex-
(OFFHS), a		and the development of	or bronchitis. The study offers	posure and child-
				hood morbidity;

Type of	Test sub-	Relevant information	Observations	Reference
data/report	stance	about the study (as ap-		
•		plicable)		
retrospec- tive investi- gation of the effect of pesticide exposures on repro- ductive health. No OECD guideline used		subsequent health prob- lems in their offspring in- cluding: persistent cough or bronchitis, asthma, and allergies or hay fever. A total of 3405 children were included in the study, of whom 341 were reported to have allergy, 104 persistent cough or bronchitis and 173 re- ported to have asthma. For 1196 children (35%) there was no pesticide use on the farm during preg- nancy.	weak support for the hypothe- sis that indirect exposure to dicamba during pregnancy is associated with the develop- ment of persistent cough or bronchitis and no support for an association for asthma, and allergies or hay fever during childhood.	published; Environ- mental Research (2007) 103:79-86;
The Ontario Farm Fam- ily Health Study (OFFHS), a retrospec- tive investi- gation of the effect of pesticide exposures on repro- ductive health. No OECD guideline used	Dicamba in an unspeci- fied form	Couples living year-round on family-run farms with sales above a threshold figure were eligible for in- clusion in the OFFHS if they were married or liv- ing as married, and the wife was at most 44 years of age. Of the 2946 eligi- ble couples that met the el- igibility criteria, 1893 (64%) returned all three questionnaires and identi- fied a total of 5853 preg- nancies. A total of 53% of the husbands and 6% of the wives were the farm operator.	showed significantly elevated adjusted odds ratios (OR) for male offspring in relation to reported farm use of dicamba during the pre-conception pe- riod (OR = 2.42, 95% CI: 1.06-5.53), although the dicamba association did not reach statistical significance in the GEE analysis that al- lowed for familial correlation (OR = 2.34, 95% CI: 0.97- 5.67).	Weselak M, Ar- buckle TE, Wigle DT, Walker MC, Krewski D; Pre- and post-conception pes- ticide exposure and the risk of birth de- fects in an Ontario farm population; published; Repro- ductive toxicology (2008) 25:472-80;

 Table 37:
 Summary table of other studies relevant for developmental toxicity

Type of study/data	Test sub- stance	Relevant infor- mation about the study (as applica- ble)	Reference
None			
Ttone			

2.6.6.2.1 Short summary and overall relevance of the provided information on adverse effects on development

The developmental toxicity of dicamba was investigated in two prenatal developmental toxicity studies, one in rats and one in rabbits. Both studies predate the current OECD Test Guideline Number 414 (2001) and in rabbits do not include the recommended extended dosing period (i.e. from implantation to one day prior to the day of scheduled kill). In rabbit dosing was performed GD 6-18 and in rats dosing was administered GD 6-19. The rat study (1981) has other notable deviations from the guideline including the use of corn oil as a vehicle administered at 1 mL/100g body weight (guideline recommendation ≤ 0.4 mL/100g), the lack of maternal body

weight monitoring (body weight was recorded for gestation days 0, 6 and 20 only and the guideline requirement is for at least every 3 days) and, an insufficient number of foetuses examined for soft tissue alterations (only one third of each litter was examined and the guideline requirement is for one half). The number of corpora lutea was not reported.

Administration of dicamba to pregnant rats at dose levels of 0, 64, 160, and 400 mg/kg bw/day (Correspond to 64 (58), 160 (145) and 400 (362) mg/kg bw/day of technical dicamba) from day 6 through day 19 of gestation resulted in maternal toxicity at 400 (362) mg/kg bw as indicated by mortality, clinical signs (e.g. ataxia, decreased motor activity, stiff body when held), and food consumption. Decreased corrected body weight gain at mid and high dose was also observed in the dams. Based on these findings, the maternal NOAEL was 64 (58) mg/kg in this study. An increase in the number of incompletely ossified frontal (s) and/or parietal(s) was observed in the high dose fetuses but was not statistically significant. The increase in incomplete ossification may be related to maternal toxicity, as a slight general delay in development of the fetuses. This was corroborated by a slightly reduced fetus weight (ca 6 %) also observed in the high dose. Therefore, the developmental NOAEL was changed to 160 (145) mg/kg bw/day (1981).

Administration of Dicamba at dose levels of 0, 30, 150, 300 mg/kg (*Correspond to 27.1, 136 and 271 mg/kg bw/day of pure dicamba*) to inseminated rabbits during days 6 to 18 of gestation resulted in maternal toxicity at dose levels $\geq 150 (136)$ mg/kg bw/day indicated by mortality, body weight loss, reduced food consumption, and a significant increased incidence of abortions at 300 (271) mg/kg and ataxia and decreased motor activity. Reproductive parameters were not affected by treatment. The incidence of irregularly ossified internasals in the high dose group (3.9 fetal/ 23.1% litter) were increased compared with control (0%). Even though the incidence of irregularly ossified internasals are inside the historical control range of the 1990-1994 studies (but not the 1987-1989 studies), the increase in this variation was statistically significant, only found in high dose animals and more-over, in three different litters. The incidence found in the study (23 % for litters) is also well above the mean of the historical controls (3.5 and 7% for litter in the historical controls). Therefore, it cannot be ruled out that the increased incidence of irregularly ossified internasals is treatment related and the NOAEL for development is therefore 150 (136) mg/kg bw/day. Based on the findings of the study, the maternal NOAEL was 30 (27.1) mg/kg bw/day (1992).

2.6.6.2.2 Comparison with the CLP criteria regarding adverse effects on development

In the classification system, adverse effects on development of the offspring include any effect which interferes with normal development of the conceptus, either before or after birth, and resulting from exposure of either parent prior to conception, or exposure of the developing offspring during prenatal development, or postnatally, to the time of sexual maturation.

In rat and rabbit prenatal developmental toxicity studies, maternal toxicity was demonstrated but there was no effect on foetal viability or body weight and no evidence of any treatment-related malformations or increased incidences of external or visceral variations. A slight increase in number of incompletely ossified frontal (s) and/or parietal(s) were observed in rat fetuses but at a dose where maternal toxicity was observed (4 deaths, ataxia, stiff-ening of the body when held, urine soaked fur, salivation and decreased motor activity, decreased body weight gain and food consumption). It is therefore not considered justified to classify dicamba as a developmental toxicant. Bearing in mind the limitations of the available epidemiology studies, the findings were not considered enough for classification.

2.6.6.3 Adverse effects on or via lactation [equivalent to section 10.10.7 of the CLH report template]

 Table 38:
 Summary table of animal studies on effects on or via lactation

Method,	Test substance, dose	Results	Refer-
guideline,	levels duration of ex-		ence
deviations if	posure		
any, spe-			
cies, strain,			
sex, no/group			
Two Gener-	Dicamba (Technical	Parental toxicity	
ation (Oral)	grade; batch:	<u>5000 ppm</u>	(1993)
OECD 416	52103810; purity	F0: mean achieved intake 347/390 mg/kg bw/day, males/	
(1983)	86.9%)	females respectively	
Rat, CD	0, 500, 1500 or 5000 ppm Continuous in diet. Vehicle: laboratory ani-	↓ body weight gain pregnancy day 0-14: 9.6%	
(SD) BR VAF/Plus		↑ adjusted liver weight 13% females, 5% males	
32/sex/group		F1: mean achieved intake, 432/458 mg/kg bw/day, males/ females respectively	
(F0) 28/sex/group	mal diet	Clinical signs during lactation: tense/stiff body tone and slow righting reflex	
(F1)	The overall F0/F1 pre- mating doses corre-	\downarrow body weight pregnancy day 0-14: 4.6% (F1A) and 22.8% (F1B)	
	spond to 37.9, 113 and 389 mg/kg bw /day for	↑ absolute liver weight 3% females, males 9.5% (relative)	
	males and 42.6, 130	↓ food consumption week 5-8	
	and 424 mg/kg bw/day		
	or females at 0, 500,	<u>1500 ppm</u>	
	1500 or 5000 ppm, re- spectively.	F0: mean achieved intake, 105/125 mg/kg bw/day, males/ females respectively	
	The overall F0/F1 pre-	F1: mean achieved intake, 121/135 mg/kg bw/day, males/ females respectively	
	mating means corre- spond to 32.9, 98.3 and 338 mg/kg bw/day of	\downarrow body weight gain pregnancy day 0-14 (F1B): 15 %	
	pure dicamba for	500 ppm	
	males, and to 37.0, 113, 369 mg/kg bw/day of	F0: mean achieved intake, 35/41 mg/kg bw/day, males/ fe- males respectively	
	pure dicamba for fe- males, at 500, 1500 and 5000 ppm, respectively	F1: mean achieved intake, 40/44 mg/kg bw/day, males/ fe- males respectively	
		↓ body weight gain pregnancy day 0-14: 10% (F1B), but absolute body weight was not decreased	
		Otherwise, no effects	
		NOAEL < 500 ppm (42.6 mg/kg bw/day) on the basis of decreased body weight during pregnancy (GD 0-14) at 500, 1500 and 5000 ppm. Clinical signs during lactation, ↑ liver weights at 5000 ppm	
		Reproductive toxicity	
		No effects at any dose level	
		NOAEL 5000 ppm (389 mg/kg bw/day)	
		Offspring toxicity	
		5000 ppm	
		F1: ↓mean pup body weight 24 % day 21, delayed sexual maturation of males by 2 days, ↑ relative liver weights 27%.	
		F2A/B: \downarrow body weight 26/30 % day 21, \uparrow relative liver weights approx. 36%.	
		<u>1500 ppm</u>	

Method, guideline, deviations if any, spe- cies, strain, sex, no/group	Test substance, dose levels duration of ex- posure	Results	Refer- ence
		F1: ↓ mean pup body weight 4 % day 21 F2A/B: ↓ pup body weight 10/14 % day 21	
		<u>500 ppm</u>	
		F2B: ↓ pup body weight 10 % day 21 No other effects	
		NOAEL 500 ppm (37.9 mg/kg bw/day) based on body weight effects at 1500 and 5000 ppm.	

 Table 39:
 Summary table of human data on effects on or via lactation

Type o data/report	Test sub- stance	Relevant information about the study (as appli- cable)	Reference
None			

Table 40: Summary table of other studies relevant for effects on or via lactation

Type of study/data	Test sub- stance	Relevant information about the study (as appli- cable)	Reference
None			

2.6.6.3.1 Short summary and overall relevance of the provided information on effects on or via lactation The two generation reproduction study (1993) has been described previously. The results showed that administration of 5000 ppm affected the lactating female with clinical signs in F1 females during late lactation (tense/stiff body tone and slow righting reflex). The body weight gain of the females (F0 & F1) was reduced during gestation. Other systemic effects included increased liver weights in F0 and F1 adults and weanling pups. Probably, as a consequence of the reduced maternal body weight during gestation, pup body weights were reduced at birth. Subsequent growth of the pups during lactation was reduced resulting in a slight delay in the time of cleavage of the balano-preputial skin fold in males. There was no indication of impaired nursing behaviour or decreased pup viability during lactation even in the presence of maternal clinical signs. The results of the study do not indicate any direct, adverse effect on the offspring due to transfer of the chemical via the milk or to the quality of the milk.

2.6.6.3.2 Comparison with the CLP criteria regarding effects on or via lactation

The classification is intended to indicate when a substance may cause harm due to its effects on or via lactation and is independent of consideration of the reproductive or developmental toxicity of the substance. There were no effects to warrant classification of dicamba for effects on or via lactation.

2.6.6.4 Conclusion on classification and labelling for reproductive toxicity

In the classification system, reproductive toxicity is subdivided under two main headings:

(a) Adverse effects on sexual function and fertility

Any effect of substances that has the potential to interfere with sexual function and fertility. This includes, but is

not limited to, alterations to the female and male reproductive system, adverse effects on onset of puberty, gamete production and transport, reproductive cycle normality, sexual behaviour, fertility, parturition, pregnancy outcomes, premature reproductive senescence, or modifications in other functions that are dependent on the integrity of the reproductive systems.

(b) Adverse effects on development of the offspring.

Developmental toxicity includes, in its widest sense, any effect which interferes with normal development of the conceptus, either before or after birth, and resulting from exposure of either parent prior to conception, or exposure of the developing offspring during prenatal development, or postnatally, to the time of sexual maturation.

In the rat, dietary exposure of two generations of rats to 5000 ppm dicamba (equivalent to approximately 389 mg/kg bw/day) had no adverse effect on sexual function or fertility or on development of the offspring although it did elicit systemic toxicity in adults and offspring.

A slight increase in number of incompletely ossified frontal (s) and/or parietal(s) were observed in rat fetuses but at a dose where maternal toxicity was observed (4 deaths, ataxia, stiffening of the body when held, urine soaked fur, salivation and decreased motor activity, decreased body weight gain and food consumption). It is therefore not considered justified to classify dicamba as a developmental toxicant.

Classification of dicamba as a reproductive toxicant is not warranted.

2.6.7 Summary of neurotoxicity

 Table 41:
 Summary table of animal studies on neurotoxicity

Method,	Test substance,	Results	Reference
guideline	, de- route of expo-		
viations i	f sure, dose lev-		
any, spec	ies, els, duration of		
strain, se			
no/group	· · · · · · · · · · · · · · · · · · ·		

	D : 1 / 1		I1
Acute neuro- toxicity (oral,	Dicamba (tech- nical material;	1200 mg/kg bw	(1993)
gavage).	purity: 86.9%)	1/10 males found dead on day 1	(1995)
OECD 424	0, 300, 600 or	Signs of neurotoxicity after 1.5 ± 1 hours:	
(1997).	1200 mg/kg bw.	Rigidity in handling/body tone (8/10 males, 10/10 fe- males), impairment of respiration (4/10 males, 5/10 fe-	
GLP	Single oral ga-	males), flattened and/or raised posture (5/10 males, 6/10	
Rat,	vage dose.	females), impairment of gait (all animals), hypoalertness	
	The dose levels	(7/10 males),	
CD [®] BR, 10/sex/group	applied corre- spond to 261,	↓ rears/minute males,	
10/sex/group	521 and	\uparrow freezing in response to touch,	
	1043 mg/kg	abnormal righting reflex (9/9 males, 10/10 females),	
	bw/day of pure	\uparrow 86.5% tail flick latency time males,	
	dicamba.	\downarrow 29% fore limb grip strength males,	
	X7 1 ' 1	\downarrow activity both sexes during the first 10 to 15 minutes of	
	Vehicle: corn oil	session	
	Positive con-	↓ auditory startle	
	trol: Acryla-	Body weight: \downarrow 8.6% day 7 males	
	mide	Body weight gain: $\downarrow 25.9\%$ day 0-7 males	
		Food consumption: \downarrow 12.8% day 0-7 males Signs of neurotoxicity after 7 days:	
		Fore limb grip strength \downarrow 15.0% males, Auditory startle: maximum and average input voltages to	
		stimulus \downarrow 59.10 and 53.5% respectively in males, 56% \downarrow	
		in females	
		Signs of neurotoxicity after 14 days:	
		No differences from control.	
		<u>600 mg/kg bw</u>	
		Signs of neurotoxicity after 1.5 ± 1 hours:	
		Rigidity in handling/body tone (8/10 males, 8/10 females),	
		impairment of respiration (2/10 males, 1/10 females), flat-	
		tened and/or raised posture (5/10 males, 6/10 females), im- pairment of gait (all animals), hypoalertness (4/10 males,	
		2/10 females),	
		↓ rears/minute males,	
		↑ freezing in response to touch,	
		abnormal righting reflex (10/10 males, 9/10 females),	
		\uparrow 54% tail flick latency time males,	
		↓ 19% fore limb grip strength males,	
		\downarrow activity both sexes during the first 10 to 15 minutes of	
		the locomotor activity session	
		Signs of neurotoxicity after 7 days:	
		No effects.	
		<u>300 mg/kg bw</u>	
		Signs of neurotoxicity after 1.5 ± 1 hours:	
		Rigidity in handling/body tone (5/10 females), raised pos-	
		ture (2/10 females),	
		\downarrow rears/minute males, \uparrow freezing in response to touch (1/10 males, 2/10 females)	
		\uparrow freezing in response to touch (1/10 males, 2/10 females),	
		abnormal righting reflex (7/10 males, 8/10 females),	
		\downarrow 15% fore limb grip strength males	

Method, guideline, de- viations if any, species, strain, sex, no/group	Test substance, route of expo- sure, dose lev- els, duration of exposure	Results	Reference
		No NOAEL. (NOAEL < 300 mg/kg bw/day). All signs and measurements comparable to control by day 14. No treatment-related neuropathy.	
Acute delayed neurotoxicity (gavage). US-EPA FIFRA, Subdi- vision F, § 81- 7 GLP Hen <i>Gallus</i> <i>gallus domesti-</i> <i>cus</i> , strain: Hisex Brown 10/group in control, low and mid dose group, positive control; 20/group high dose group.	Dicamba (tech- nical material; purity: 86.82%). $0, 79 (\frac{1}{4} LD_{50}),$ $158 (\frac{1}{2} LD_{50}),$ 316 mg/kg bw (LD_{50}) Single oral dose Vehicle: corn oil Positive con- trol: TOCP The dose levels applied corre- spond to 226, 327, 475, 688 and 998 mg/kg bw of pure dicamba for the LD_{50} determina- tion, and to 69, 137, and 274 mg/kg bw of pure dicamba for the neuro- toxicity assess- ment groups.	 316 (274) mg/kg bw: 9/20 animals died. Body weight: weight loss during the first two weeks of the experiment. Lesions of the sciatic nerve considered secondary to mild nerve entrapment resulting from recumbency not a direct toxic effect of dicamba. 158 (137) mg/kg bw: 1/10 birds found dead day 5. Body weight gain:↓ 67% Food consumption:↓ days 1 to 3 Neuropathology: comparable to control hens 79 (69) mg/kg bw: No mortality. Body weight development similar to control. Food consumption:↓ days 1 to 3 The LD₅₀ expressed as pure dicamba is 274 mg/kg bw of pure dicamba (100%) and 316 mg/kg be for technical dicamba. NOAEL < 79 mg/kg bw. Effects at all doses: unsteadiness, inability to walk, collapsing when moved and lying on the pen floor with legs outstretched or lying on one side. Effect was reversible. 	(1983)
		Does not induce delayed neurotoxicity in hens	

Method, guideline, de- viations if any, species, strain, sex, no/group	Test substance, route of expo- sure, dose lev- els, duration of exposure	Results	Reference
Subchronic neurotoxicity study (dietary). OECD 424 (1997). GLP Rat, CD [®] BR, 10/sex/group	Dicamba (tech- nical material; purity: 86.9%) 0, 3000, 6000 and 12000 ppm Actual doses 0, 197.1, 401.5 and 767.9 mg/kg/day for the males and 253.4, 472.0 and 1028.9 mg/kg/day for females. Continuous in the diet for 13 weeks <i>The dose lev- els applied</i> correspond to 171, 348 and 667 mg/kg bw/day of pure dicamba in males, and to 220, 410, 894 mg/kg bw/day of pure dicamba in females at 3000, 6000 and 12000 ppm, respec- tively.	 12000 ppm (males 767.9 mg/kg bw/day, females 1028.9 mg/kg bw/day): Body weight: ↓ 5.5% males, 4.8% females week 14 Body weight gain: ↓ 24.1% males, 37.9% females week 1 FOB: ↑ frequency of rigid body tone when handled in weeks 4, 8 and 13 (greater in females than males). Pathology: No treatment-related changes in any of the tissues examined 6000 ppm (males 401.5 mg/kg bw/day, females 472 mg/kg bw/day): No treatment-related effects. 3000 ppm (males 197.1 mg/kg bw/day, females 253.4 mg/kg bw/day): No treatment-related effects. NOAEL for neurotoxicity and systemic toxicity 6000 ppm (401.5 mg/kg bw/day in males and 472 mg/kg bw/day in females), based on decreased body weight gain and neurobehavioral findings. 	(1994)

2.6.8 Summary of other toxicological studies

2.6.8.1

Single oral administration (gavage) of dicamba at dose levels of 0, 300, 600, and 1200 mg/kg bw to rats (*corresponding to 261, 521 and 1043 mg/kg bw/day of pure dicamba*) resulted in one unscheduled death and in decreased mean body weight gain and food consumption in high dose males. Dose dependent neurobehavioral effects were recorded in all treated groups at 1.5 ± 1 hours after dosing. The overall effect of treatment was a stimulus- or stress-induced rigidity, a consideration based on the increased frequency in treated animals exhibiting rigidity in handling/body tone, impairment of respiration, flattened and/or raised posture, impairment of gait, hypoalertness, significantly decreased number of rears/minute, freezing in response to touch, abnormal righting reflex (uncoordinated, landing on side, landing on back), increased tail flick latency time, decreased forelimb and hind limb grip strength, and decreased activity during the first 10 to 15 minutes of the 40-minute locomotor activity session.

At the day 7 neurobehavioral evaluation, differences were restricted to a few parameters (forelimb grip strength, auditory startle) in high dose rats. At the day 14 neurobehavioral examination there were no apparent differences between dicamba-treated animals and vehicle control animals, indicating that the neurobehavioral changes were transient. There were no neurobistopathological findings that could be related to treatment. Based on neurobehavioral effects were observed at all tested doses, no NOAEL could be established (1993).

Administration of single oral doses of dicamba to domestic hens at a dose level of 316 mg/kg bw (LD₅₀) was poorly tolerated (1983). However, there was none of the classical clinical signs of ataxia indicating delayed neurotoxicity at this or lower dose levels. The clinical signs of toxicity observed at all doses included unsteadiness, inability to walk, collapsing when moved and lying on the floor with legs outstretched or lying on one side. The first signs were noted within one hour of dosing and some birds were recumbent for up to 15 days before showing signs of recovery with animals in the lower dose groups recovering faster. In the high dose group, these clinical signs were accompanied by body weight loss and decreased food consumption during the first 10 to 14 days after treatment with recovery after this period of time. The microscopic examination revealed no neurohistopathological lesions in the brain and spinal cord of hens administered dicamba. Lesions of the sciatic nerve were restricted to the high dose level (316 mg/kg bw) and were considered secondary to nerve entrapment resulting from the recumbency rather than from a direct toxic effect of dicamba. Clinical signs were observed at all doses and no NOAEL was found in this study. The results of the study revealed no indication for delayed neurotoxicity.

Dietary administration of technical dicamba to rats at dose levels of 0, 3000, 6000, and 12000 ppm (0, 197.1, 401.5 and 767.9 mg/kg/day for the males and 253.4, 472.0 and 1028.9 mg/kg/day for females) for 3 months resulted in a slightly decreased body weight gain in high dose animals. The major neurobehavioral treatment-related effect in the high dose animals was an increased frequency of rigid body tone when handled throughout the study. More high-dose females than males were affected. The other findings in high dose rats may be related to rigidity. The effects included rigidity observed at weeks 4 and 13 during the landing splay test and during the righting reflex test at all post treatment FOB tests. An apparent, but non-significant, increase in the mean latency to first step in male rats, an increased frequency of mildly impaired gait, and an increased frequency of abnormal righting reflex (i.e. uncoordinated, lands on side, or lands on back) was also observed in the high dose. At week 13 fewer findings were observed and with lower incidence.

Administration of dicamba did not cause damage to the nervous tissues as indicated by the histopathology findings. Based on the results of this study, the NOAEL for neurotoxicity and systemic toxicity was 6000 ppm, which is equivalent to a mean daily intake of 401.5 mg/kg bw and 472 mg/kg bw in males and females, respectively (1994).

It was not possible to establish a NOAEL following a single high dose, but in the subchronic neurotoxicity study a NOAEL of 401.5 mg/kg bw/day for neurotoxicity was determined (1994). The observed effects in the acute neurotoxicity study at 300 (261) mg/kg, which were generally observed 1.5 hours after administration only 1993), might be due to the higher systemic peak concentrations of dicamba after oral gavage compared to dietary administration of an even higher dose.

Clinical signs in the form of neurobehavioral effects were recorded in other studies as well (please see 2.6.2.10 for further discussion).

2.6.8.2 Toxicity studies of metabolites and impurities

Study type EU agreed end-Pro-**Classification ac-**Reference point14 cording to Reguposed (reference) endlation (EC) No 1272/2008 point as amended

Toxicity studies of metabolites

NOA405873 (5-OH dicamba)

¹⁴ Dicamba: EFSA Journal 2011; 9(1):1965)

Final addendum to the Draft Assessment Report (DAR), November 2010

Acute short-term toxicity				
Acute oral toxicity rat, gavage (NOA405873) TG 423 (1996)/GLP	LD50 >2000 mg/kg bw (males, females)	-	None	2001 KCA 5.8.1/01
Acute oral toxicity study in rats (5-hydroxydicamba) TG 423/GLP	LD50 >2000 mg/kg bw (females)		None	2010, KCA 5.8.1/11
90 Day subacute feeding studies in the male and female albino rat and the male and female purebred Bea- gle dog. TG 408 (1998)/ before GLP	This study is consid- ered to be accepta- ble with reserva- tions only.			1966, KCA 5.8.1/02 (Supplemental)
Genotoxicity <i>in vitro</i>				
Ames test (S. typhimurium and E. coli) 2000/32/EC, B.13/B.14 (2000)~TG 471 (1997)/GLP	Negative (+/- S9)	-	None	Deparade 2001, KCA 5.8.1/03
Ames test (S. typhimurium and E. coli) TG 471 (1997)/GLP	Negative (+/- S9)		None	Verskeep-Rip C.M. 2010. KCA 5.8.1/12
Gene mutation in mammalian cells (mouse lymphoma L5178Y cells) B.17 (2000)~TG 476/GLP	Equivocal (+S9), Positive (-S9)	-	None	Clay 2002; KCA 5.8.1/04
Mouse Lymphoma Mutagenicity Assay B.17 (2000))~TG 476/GLP	Positive (+ S9) Positive (-S9)	-	None (in absence of an effect in the <i>in vivo</i> study)	Ogorek 2002a; KCA 5.8.1/05
Gene mutation in mammalian cell (L5178Y mouse lymphoma cells) TG 476 (1997)/GLP	Positive (+S9) Negative (-S9)			Verspeek-Rip C.M. 2010, KCA 5.8.1/14
Cytogenetic test on Chinese ham- ster cells B.10 (2000)/TG OECD 473 (1997)/GLP	Positive (+ S9) Positive (-S9)			Ogorek B 2002b, KCA 5.8.1/06
Chromosome aberrations in vitro human peripheral lymphocytes TG 473 (1997)/GLP	Negative (+/- S9)		None	Buskens C.A.F. 2010, KCA 5.8.1/13
In vitro micronucleus test TG 487 (2016)/GLP	Negative (+/-S9)		None	Whitwell 2017b KCA 5.4.1/03
Genotoxicity <i>in vivo</i>				

Mouse bone marrow micronucleus test B.12 (2000)/TG OECD 474/GLP	Negative	-	None	2003; KCA 5.8.1/07
Unscheduled DNA synthesis in rat liver B.39 (2000)/TG 486 (1997)/GLP	Negative	-	None	2004; KCA 5.8.1/08
In vivo Comet assay genotoxicity study TG 489 (2016)/ TG474 (1997)/GLP NOA414746 (DCSA)	Negative	-	None	2019
Multi-(Q)SAR genotoxicity assess- ment of dicamba and ites metabolite DCSA (NOA414746)	-	no indi- cation that DCSA is more toxic than parent	Not applicable	Lorez C, Booth E (2016)., K-CA 5.8.1/01

The metabolite 5-OH dicamba (NOA 405873) was not acutely toxic to mammals and no toxic response was identified in rats and dogs up to the highest dose tested (250 ppm) in dietary subchronic (90-days) studies (1966).

The acute toxicity of 5-OH Dicamba was investigated with respect to the oral route (2001; 2010). Two studis on 5-OH Dicamba in rats was performed. One in accordance with GLP and OECD 423 (1996) and a new study in accordance with GLP and OECD 423 (2001) both with minor deviations not considered to compromise the validity of the studies. The resulting LD_{50} was found to be greater than 2000 mg/kg bw for males and females. Based on the result, no classification for acute oral toxicity is required for 5-OH Dicamba (NOA 405873 tech.) in accordance with Regulation (EC) No.1272/2008.

Two reverse mutagenicity tests have been conducted (Deparade, 2001; Verskeep-Rip, 2010a), one of which was not in the DAR. 5-OH Dicamba was found negative in both tests with and without metabolic activation which indicates that 5-OH Dicamba does not induce point mutations by base substitutions or frame shift in the genome of *Salmonella typhimurium* and *Escherichia Coli*.

Gene mutations was tested in mammalian cells in two studies already included in the DAR and a new study submitted for the RAR: 5-OH dicamba was tested in *in vitro* mammalian cell mutation assay in L5178Y in two experiments. 5-OH dicamba induced statistically significant increases in the mutant frequency at the tk locus of mouse lymphoma compared to solvent control at the highest doses tested (2000, 2370 µg/ml without S9 and 1000 2000, 2370 µg/ml with S9). A dose related increase was seen in the absence of metabolic activation in both experiments. In the presence of S9-mix, the dose relationship was less clear. NOA 405873 is mutagenic in L5178Y TK \pm cells treated in vitro in the absence of S9-mix and equivocal in the presence of S9 (Clay, 2002).

In the second study, 5-OH dicamba was tested in *in vitro* mammalian cell mutation assay in L5178Y in two experiments. In the presence of metabolic activation significant increases were only observed at concentrations ≥ 10 mM (corresponding to 2370 µg/ml) or the increase was not reproducible, however, a positive trend was observed in both experiments. In the absence of S9-mix reproducible increases in the mutant frequency were observed at doses $\geq 600 \mu$ g/ml. Significant positive trends were observed both in presence and absence of S9 (Ogorek 2002b). In the new study 5-OH dicamba the test item was tested up to concentrations of 2370 and 1800 µg/mL without and with S9. 5-OH dicamba was mutagenic in mouse lymphoma L5178Y test under the experimental conditions in the presence of metabolic activation but not in absence of metabolic activation (Verspeek –Rip, 2010b).

Chromosome aberrations in vitro was investigated in two studies. In a new study submitted for the RAR, the ability of 5-OH dicamba to induce chromosome aberrations in human peripheral lymphocytes was investigated in two independent experiments. 5-OH dicamba did not induce a statistically significant or biologically relevant increase in the number of cells with chromosome aberrations with and without S9, in either of the two independent repeated experiments. No effects of 5-hydroxydicamba on the number of polyploid cells and cells with endoreduplicated chromosomes were observed both with and without S9. Under the experimental conditions reported, it was concluded that the test substance 5-OH dicamba did not induced structural chromosomal aberrations in human lymphocytes in vitro (Buskens, 2010).

Chromosome aberrations (CA) were investigated in vitro in Chinese hamster ovary cells. The cytotoxicity test was performed as an integral part of the mutagenicity test. The highest concentration of 1250 μ g/ml without S9-mix with enough cells for scoring caused 29% suppression of mitotic activity (MI).

In the absence of metabolic activation, a significant increase of cells with specific chromosomal aberrations compared to the negative control was found at 1250 μ g/ml. Higher concentrations could not be measured due to toxicity. In the presence of metabolic activation, a significant increase of cells with specific chromosomal aberrations compared to the negative control was found at the highest concentration of 5000 μ g/mL (which exceeds 10 mM). The increase in cells with specific chromosomal aberrations was outside the historical control range both with and without S9. Under the condition of this in vitro chromosome aberration assay, NOA 405873 induced chromosome aberrations in CHO cells (Ogorek, 2002b).

NOA405873 did not induce micronuclei in cultured human peripheral blood lymphocytes following treatment in the absence and presence of an aroclor induced rat liver metabolic activation system (S-9) in an *In Vitro* Human Lymphocyte Micronucleus Assay. Concentrations were analysed up to 2000 μ g/mL, a recommended regulatory maximum concentration for in vitro micronucleus assays. NOA405873 concluded to be negative in this assay (Whitwell, 2017).

In vivo genotoxicity was tested in three assays. In an *in vivo* study, 5-OH Dicamba was investigated for its genotoxic ability in the unscheduled DNA synthesis test. 5-OH Dicamba did not induce DNA repair (measured by unscheduled DNA synthesis) in the rat liver and is therefore denoted as not genotoxic under the conditions of this assay (2004).

The *in vivo* mutagenicity was also investigated in the Mouse micronucleus test. Any positive induction of micronuclei in the polychromatic erythrocytes of the bone marrow in mice treated orally with a single dose of 5-OH Dicamba was within the range of negative control values and not indicative of a positive response. The assay is classified as negative under the conditions of the study (2003).

Further, a in vivo comet assay study was performed. Six animals/group of young adult out-bred Han Wistar WI(Han) male rats were exposed to 0 (vehicle control), 500, 1000 or 2000 mg 5-OH dicamba/kg/day by oral gavage at 0 and 23 hours after (2019) in the main experiment. A positive control was included. In the positive control group (Ethyl methanesulfonate 150 mg/kg, single oral administration at 21 hours (Day 2), 3 males were allocated. Bioanalysis showed exposure at all doses. Liver and duodenum were sampled on Day 2, equivalent to approximately 24 hours after first dosing. The samples were examined for % increase in tail intensity, number of hedgehog cells and for histopathology as indication of cellular toxicity. 5-OH dicamba did not induce DNA damage in the liver of male rats treated up to 2000 mg/kg/day (the maximum recommended dose for in vivo comet studies). In the duodenum, the group mean tail intensity values for all groups treated with 5-OH dicamba exceeded the group mean concurrent vehicle control data with a statistically significant dose-response relationship ($P \le 0.05$). However, of these group mean increases, only the group mean tail intensity value of the highest dose group (2000 mg/kg/day) was found to be statistically significant ($P \le 0.05$) compared to the concurrent vehicle control group, and within this group only 3 animals showed tail intensity values above those observed in the concurrent vehicle control group. In addition, all animals in all test article treated dose groups fell within the historical vehicle control 95% reference range of 0.24-5.60 for this tissue with individual animal responses for the concurrent vehicle control towards the lower end of that range. The findings of increased tail intensity were associated with clear histopathological changes in the duodenum including villi degeneration/atrophy and eosinophilic material in the lumen, the severity of both increased in a general dose-response relationship. Moreover, the increase in the highest dose group compared to the control dose group was about 2% tail DNA. Such a small absolute increase is not of biological relevance. The conclusion is that the metabolite is not genotoxic in this study.

In conclusion, 5-OH dicamba (NOA405873) has a low acute oral toxicity ($LD_{50} > 2000 \text{ mg/kg bw}$) and is unlikely to be genotoxic *in vivo*.

Based on SAR modelling, DCSA (NOA414746) is expected to show a similar genotoxicity as the parent dicamba. An alert for for *in vivo* micronuclei formation in rodents (as potential H-acceptor-path3- H-acceptor) from ToxTree and the OECD QSAR Toolbox was observed for bot dicamba and DCSA (NOA414746). Additionally – as it was found in rat metabolism studies – DCSA (NOA414746) already contributed to the toxicological properties detected in the toxicity studies with dicamba. However, it is only a minor urine metabolite <10 % and no studies were submitted investigating the general toxicity *in vitro* or *in vivo* of this metabolite.

2.6.8.3 Supplementary studies on the active substance

Commonly, indicators of immunotoxicity include changes in haematological parameters, serum globulin levels, alterations in immune system organ weights such as spleen and thymus, and histopathological changes in immune organs such as spleen, thymus, lymph nodes and bone marrow.

Dicamba does not belong to a class of chemicals (e.g., the organotins, heavy metals, or halogenated aromatic hydrocarbons) that would be expected to be immunotoxic and a detailed review of the repeat exposure toxicity database for dicamba revealed no evidence of an adverse effect on the immune system. A thorough review of the toxicology database for dicamba has shown no evidence of adverse effects on the immune system in rats, mice or dogs and functional assays in rats and goats confirmed lack of immunomodulation. Based on these findings within the dicamba toxicology database and published literature, it can be concluded that dicamba probably has no immunotoxic potential.

2.6.8.4 Endocrine disrupting properties

Please see point 2.10

2.6.9 Summary of medical data and information

The expected effect of poisoning with dimethylamine salt of dicamba is described in a publication (Moon et al, 2014). The main effects observed after voluntary ingestion of dicamba (for committing suicide) was mental status change followed by nausea, vomiting, and anorexia. Gastric lavage and administered charcoal may contribute to the development of gastrointestinal symptoms such as nausea, vomiting, or sore throat.

Repetitive EKG has been performed in only four among 10 patients with QTc prolongation because of relatively short hospitalization period. In the four patients with repeated EKG evaluations, QTc prolongation disappeared by discharge. Despite the absence of apparent tissue hypoperfusion during hospitalization, 76.9% of patient had an elevated lactate, which may be explained by the uncoupling effect in mitochondria demonstrated *in vitro* studies. The blocking oxidative phosphorylation results in accumulation of pyruvate that is converted into lactate.

Most presenting symptoms had subsided within 1 day of ingestion. This rapid wane of symptoms may be explained by low tissue accumulation and rapid elimination of dimethylamine salt of dicamba despite its lipid solubility. If a patient has renal insufficiency, however, the excretion of dicamba herbicide may be delayed and the clinical symptoms may be prolonged.

Blood and urine samples were obtained during the acute phase of intoxication from a 30.22 kg woman who ingested 100 ml of a formulation containing 2,4-D (20.1%) and dicamba (1.9%). Assumed ingestion was 12.29 g of 2,4-D and 1.16 g of dicamba. The best fitting model was a two-compartment model for dicamba. The half-life of dicamba was calculated to be approximately 15 hours and the volume of distribution was 23.4 liters. Dicamba was the preferred chemical for elimination until the relative concentration of the 2 chemicals favoured 2,4-D (Shared extra urinary excretion route) (Young and Haley, T.J., 1977).

A farmer sprayed a wheat field with a 1% Banvel M spray broth using a knapsack sprayer for half an hour (Banvel M contains 340g MCPA and 30g Dicamba per litre concentrate). When he was spraying against the wind his face and arms were contaminated. The following day he suffered from nausea, bloating, loss of appetite and palpitation of the heart. Six days later the symptoms were vomiting and abdominal pain. The family doctor prescribed Meto-clopramid (Paspertin[□]). Eight days after the exposure a gastrocopy revealed hemorrhagic gastro-duodenitis which had resolved at follow up five weeks later. No laboratory confirmation of exposure to the two herbicides was performed (Huepp and Hesselmann , 1979).

In a prospective study from patients notified to the Poisons Unit, Guy's Hospital, St Thomas' Street, London from 1984 to 1987.Blood and urine analysis were done in all cases (HPLC with limit of sensitivity 10 mg/l for dicamba). 12 Patients had ingested dicamba. The formulations ingested contained more than one herbicide in most cases. Plasma dicamba concentration was 0.02 g/l or less in 4 patients. The article reports the relation between blood herbicide concentration and the effect of alkaline diuresis on outcome of patients following acute poisoning. There was no indication that dicamba had contributed to toxicity in any patient (Flanagan et al 1990).

Information from manufacturing plant personnel, data collected on humans (public literature) and direct observations (information on adverse health incidences in public databases), information from epidemiology studies (public literature) indicate a low toxic potential of dicamba. Clinical signs after intentional ingestion were transient, non-specific and reversible (with symptomatic or even no treatment). Except of the irritating properties to eyes (and skin) no marked systemic toxicity is expected. Standard first aid measures and symptomatic medical treatment are recommended after accidental or intentional exposure.

There is no specific antidote for dicamba poisoning. Most patients were discharged without complication after hydration and administration of sodium bicarbonate for elevation of creatinine kinase and metabolic acidosis.

The acute toxicities of dicamba herbicide ingestion in patients were managed with supportive treatment such as hydration and sodium bicarbonate, and most symptoms had subsided within 2 days after ingestion. However, physicians should take into account potential complications such as gastrotintestinal tract corrosion, rhabdomyolysis, and acute pancreatitis.

The only source of human information on carcinogenicity of dicamba is epidemiology. An apparent association between exposure to dicamba, either alone or in combination with other pesticides, and Non-Hodgkin's lymphoma in agricultural workers was identified by McDuffie et al (2001;2005) but was not confirmed by Samanic et al (2005). Similarly, Hartge et al (2006) found no correlation between the use of dicamba and Non-Hodgkin's lymphoma in a residential environment.

Lung cancer: Statistical significance was only seen when comparing high dicamba exposure (as lifetime exposure days) with low dicamba exposure but not with no dicamba exposure. The statistical significance is therefore considered more of an artefact - due to the fact that the low dicamba exposure groups had a lower risk for lung cancer than the no exposure group – than indicating an actual effect of dicamba.

No lung effects were seen in any repeated dose toxicity study in animals.

Therefore the published findings on lung cancer are considered of insufficient relevance to be considered for human risk assessment of dicamba.

Prostate cancer: Statistical significance was seen in only one publication when a low number of cases with high dicamba exposure were compared to never exposure but not for 'ever' use of dicamba (data based on British Columbia Cancer Registry).

Additionally there are a number of other publications that investigate the association between prostate cancer risk and pesticide including dicamba exposure¹⁵ (data based on the Agricultural Health Study – applicators and spouses): none of these found an association between prostate cancer and dicamba exposure. Additionally two reviews evaluate the overall evidence of an association of pesticide exposure and prostate cancer and conclude that there is no relevant association¹⁶.

Therefore the reported association of high dicamba exposure and prostate cancer is considered probably not relevant for human risk assessment considering that this was not confirmed by a considerable number of other epidemiology publications or any similar finding in animal studies.

Hypothyroidism: Significance was only seen for 'ever' exposure of dicamba in pesticide applicators but not for the intensity weighted dicamba exposure (Goldner et al, 2013). It was also not supported by a similar finding in spouses (also from AHS data set). Therefore the published association for 'ever' use of dicamba in pesticide applicators to hypothyroidism is considered insufficiently relevant for human risk assessment.

Birth defects in male offspring: A statistically significant association between pre-conception dicamba exposure and (any) birth defect was only seen for male offspring when not adjusting for familial correlation (no association was seen when adjusting for familial correlation for male offspring, or for female or all offspring with exposure during pre-conception or offspring with post-conception exposure). Already the authors conclude that this

¹⁵ Barry et al 2011 and 2012, Karami et al 2013, Koutros et al 2011 and 2013

¹⁶ Mink et al 2008, Weichental et al 2010

might be due to chance (Weselak et al, 2008). The evidence of an association between dicamba exposure and birth defects was weak in males and considering the limitations of the study, the authors also recommended to treat the results with caution as the findings should serve primarily to generate hypotheses (Weselac et al, 2007).

2.6.10 Toxicological end points for risk assessment (reference values)

Table 42: Overview of relevant studies for derivation of reference values for risk assessment

Species	Study	Test substance	Critical effect	NOAEL	LOAEL	Cross
	(method/type, length, route of exposure)					reference
1985	Combined chronic tox- icity/carcino- genicity. OECD 453, 87/302/EEC B.33 (1988) GLP Rat, CD (Sprague Daw- ley) 60/sex (50/sex/group main study, 10/sex/group interim kill af- ter 12 months)	Dicamba (tech- nical material; purity 86.8%) Continuous in the diet 0, 50, 250, 2500 ppm for 115 weeks (males), 118 weeks (females) The doses cor- respond to 2.0, 10.0, and 99.1 mg/kg for males and 2.4, 12.1, and 120.1 mg/kg for fe- males <i>Actual doses</i> <i>correspond to</i> 1.7, 8.7, and 83.0 mg/kg <i>bw/day of pure</i> <i>dicamba for</i> <i>males, and to</i> 2.1, 10.5, and 104 mg/kg <i>bw/day of pure</i> <i>dicamba for fe-</i> <i>males, at 50,</i> 250, and 2500 <i>ppm, respec-</i> <i>tively.</i>	↑ incidence of thyroid parafol- licular (C-cell) carcinoma in males	NOAEL for carcinogenicity 250 ppm (equivalent to 10.0 in males)	2500 ppm (99.1 mg/kg bw/day)	2.6.5
1992	Developmental toxicity US EPA 83-3 (complies largely to OECD 414, 2001) Oral (capsule) Rabbit, New Zealand White Hra:(NZW)SPF	52625110; pu- rity 90.4%)	1/20 abortion; ataxia and de- creased motor activity	30 (27.1) mg/kg bw/day	150 (136) mg/kg bw/day	2.6.6

Species	Study (method/type, length, route of exposure)	Test substance	Critical effect	NOAEL	LOAEL	Cross reference
	20 inseminated females/group	The dose levels applied corre- spond to 27.1, 136 and 271 mg/kg bw/day of pure dicamba.				

2.6.10.1 Toxicological end point for assessment of risk following long-term dietary exposure – ADI (acceptable daily intake)

ADI was previously based on the multigeneration study in rats by (1993) as it was the most sensitive study, i.e. the study with the lowest and most relevant NOAEL. Since, at the re-evaluation, a new NOAEL of 10.0 mg/kg bw/day (carcinogenicity) has been proposed at a lower dose in the chronic study in rats (1985), it is suggested to use this value for the derivation of the ADI. An UF of 150 is proposed to ensure a margin of safety to the carcinogenic effect of at least 1000 based on the carcinogenic effect (increase in thyroid parafollicular (C-cell) carcinoma) observed in this study.

Based on the NOAEL of 10.0 mg/kg bw/day and a safety factor of 150, to achieve a margin of safety above 1000, an ADI can be calculated:

ADI = NOAEL/UF = 10 mg/kg bw/day/150 = 0.07 mg/kg bw/day (rounded)

Rounding from 0.066666666667 to 0.07 is < 10 %.

Margin of safety relative to LOAEL will in this case be:

LOAEL/reference value: 99.1 mg/kg bw/day/0.07= 1415.7

2.6.10.2 Toxicological end point for assessment of risk following acute dietary exposure - ARfD (acute reference dose)

RMS proposes keeping the acute reference dose from the previous evaluation only corrected for the purity of dicamba tested in the study:

The acute oral LD_{50} in the rat was below 2000 mg/kg and the compound is classified as harmful. The acute neurotoxicity study showed neurobehavioral findings upon single treatment of rats. In the rabbit developmental toxicity study clinical signs were observed in dams at \geq 150 mg/kg/day with a NOAEL of 30 mg/kg/day (1992). Therefore, the criteria may be fulfilled to allocate an ARfD.

The proposed ARfD is derived from the NOAEL of 30 (27.1) mg/kg bw/day established in the teratology study in rabbits and a safety factor of 100.

ARfD = NOAEL/safety factor = 30 mg/kg bw/day/100 = 0.30 mg/kg bw/day

2.6.10.3 Toxicological end point for assessment of occupational, bystander and residents risks – AOEL (acceptable operator exposure level)

AOEL was previously based on the Teratology study in rabbits: NOAEL = 30 mg/kg bw/day (1992). However since during the re-evaluation a NOAEL for Carcinogenicity has been proposed, setting a new AOEL is considered required. At the re-evaluation, a new NOAEL of 10.0 mg/kg bw/day (carcinogenicity) has been proposed at a lower dose in the chronic study in rats (1992), it is suggested to use this value for the

derivation of the AOEL. An UF of 150 should be used because of the carcinogenic effect (increase in thyroid parafollicular (C-cell) carcinoma) observed in this study.

Based on the NOAEL of 10.0 mg/kg bw/day and a safety factor of 150, to achieve a margin of safety above 1000, an AOEL can be calculated:

AOEL = NOAEL/UF = 10 mg/kg bw/day(150 = 0.07 mg/kg bw/day (rounded))

Rounding from 0.066666666667 to 0.07 is < 10 %.

Margin of safety relative to LOAEL will in this case be:

LOAEL/reference value: 99.1 mg/kg bw/day/0.07 = 1415.7

2.6.10.4 Toxicological end point for assessment of occupational, bystander and residents risks – AAOEL (acute acceptable operator exposure level)

ARfD is suggested as a value for AAOEL: NOAEL/safety factor = 30 mg/kg bw/day/100 = 0.3 mg/kg bw/day.

2.6.11 Summary of product exposure and risk assessment

Syngenta representative product (A7254B containing 480 g/L dicamba):

According to the GAP the highest dose used is 0.288 kg as/ha with a minimum volume for this use of 200 l/ha. Dermal absorption:

Undiluted: 0.39 %

Diluted: 3.7 %

Operator Exposure:

Safe use can be demonstrated for operators wearing work wear during mixing and loading and application.

Work wear during mixing and loading and application:

Exposure % of AOEL: 5.86 %

Exposure % of AAOEL: 6.83 %

Bystander/resident exposure :

Safe use can be demonstrated for residents and bystanders for both children and adults.

Exposure with default input values:

Resident exposure for children % of AOEL: 5.14 %

Resident exposure for adult % of AOEL: 1.78 %

Bystander exposure for children % of AAOEL: < 1.13 %

Bystander exposure for adult % of AAOEL: < 0.33 %

Worker exposure:

Safe use can be demonstrated for workers wearing work clothing:

Worker exposure % of AOEL: 2.13 %

Rotam representative product dicamba 700SG (OCEAL/FH-048):

According to GAP the highest dose used is 0.280 kg as/ha and a minimum volume for this use of 200 l/ha.

Dermal absorption:

Concentrate: 0.1%

Dilution: 6%

Operator exposure:

Safe use can be demonstrated with use of work wear during mixing, loading and application.

PPE: Workwear during mixing, loading and application:

Exposure % of AOEL: 5.38% Exposure % of AAOEL: 7.25 %

Resident/bystander exposure:

Safe use can be shown for residents/bystanders with default input parameters.

Resident exposure for children % of AOEL: 7.06 % Resident exposure for adult % of AOEL: 2.61 % Bystander exposure for children % of AAOEL: < 2 % Bystander exposure for adult % of AAOEL: < 1 %

Worker exposure:

Safe use can be shown for workers with default input parameters and wearing work clothing.

Potential exposure: Worker exposure % of AOEL: 30 %

For a worker wearing clothes: Worker exposure % of AOEL: 3.36 %

2.7 **Residue**

2.7.1 Summary of storage stability of residues

Syngenta/Rotam

Storage stability of dicamba was demonstrated for a period of 36 months at -18°C in crop commodities with high water and high starch content.

Storage stability of 5-OH-dicamba (NOA405873) was demonstrated for a period of 36 months at -18°C in crop commodities with high water and high starch content.

Storage stability of dicamba and DCSA (NOA414746) was demonstrated in milk, muscle (meat), fat, liver and kidney at -12°C or below for up to 18 months.

Only the results in high water, high starch and the animal commodities for dicamba and 5-OH-dicamba are relevant to the representative uses in this submission.

2.7.2 Summary of metabolism, distribution and expression of residues in plants, poultry, lactating ruminants, pigs and fish

Syngenta/Rotam

Plants

In the DAR (2007, 2010) metabolism in plants were studied in several commodities. In the EFSA opinion from 2011 it was concluded:

The metabolism in plants was investigated in cereals (wheat, sugar cane) and in the pulse/oilseed plant group (soya, cotton), using ¹⁴C-dicamba labelled on the phenyl moiety applied by foliar spraying (wheat), or by droplet applications by means of a micro-syringe to a limited number of leaves (sugar cane, soya, cotton). In sugar cane, soya and cotton, where the characterization of the residues was investigated shortly after the application (6 to 28 days), dicamba remains the major component of the residues, accounting for 22-29% of the TRR in sugar cane leaves, 44 - 94 % of the TRR in soya beans, and 72 % of the TRR in cotton seed. Other identified metabolites were observed in low proportions (< 2 % TRR), except 5-OH-dicamba, which represented 47 % and 20 % of the TRR in sugar cane leaves, 12 and 28 days after application, respectively. In wheat, dicamba seems to be more extensively metabolised, accounting for 10 % of the TRR in immature plant (forage), and 2 % and 16 % of the TRR respectively in straw and grain at harvest. 5-OH-dicamba is detected as the major metabolite in wheat forage (65 % TRR), but it represents less than 4 % TRR in grain and straw at harvest. Both the parent compound and 5-OH-dicamba were observed in free and conjugated form. Considering the different structures identified, the following metabolic pathway in plants was proposed. The metabolism of dicamba proceeds first by hydroxylation to form 5-OH-dicamba, or by demethylation to the DCSA metabolite, both compounds being further degraded to DCGA. The proposed metabolism is shown in Figure 1:

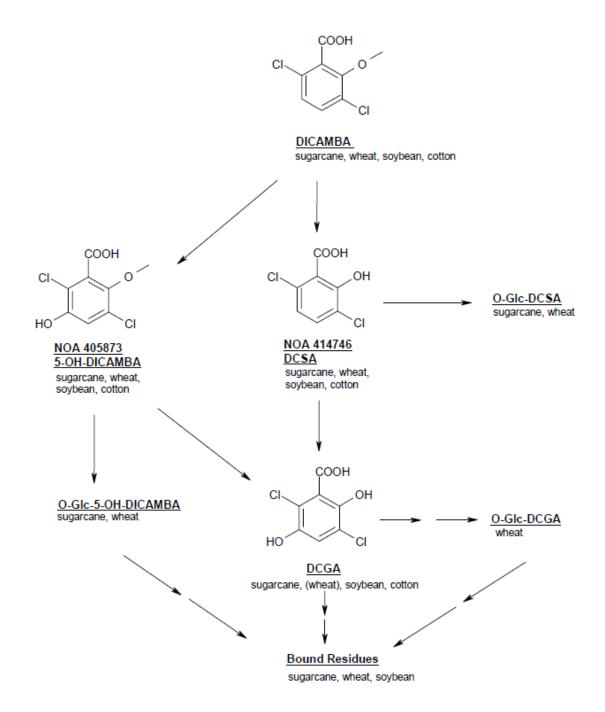


Figure 1: Proposed metabolic pathways of dicamba in plants

Animal

In the DAR (2007, 2010) metabolism in animals was studied in poultry, cow and goat. In the EFSA opinion from 2011 it was concluded:

Metabolism in animals was considered in cow, goat and poultry, using 14C-dicamba. The transfer in fat, milk and eggs was limited, the highest TRRs being observed in kidney and liver. Dicamba (free and conjugated) was by far the major compound identified in all animal matrices, accounting for more than 50 % of the TRR. In addition, DCSA was also observed in ruminants, but only in kidney and liver, up to 21 % of the TRR. 5-OH-dicamba was not detected in animal matrices, except in urine and excreta, but at insignificant levels and proportions (< 0.01 %

TRR). Having regard to the high levels of 5-OH-dicamba in grass, and consequently its significant intake by ruminants (*c.a.* 1.5 mg/kg bw/day), the PRAPeR TC 50 meeting of experts discussed whether a specific metabolism study using this metabolite needs to be required. The experts were of the opinion that a similar pathway to the parent is expected for 5-OH-dicamba, this metabolite being probably more extensively excreted than the parent compound since it is more polar. This assertion is supported by the results of the cow feeding study conducted with 5-OH-dicamba, where this metabolite was almost not detected in any matrices, except in kidney, at the 5N dose rate. It was therefore concluded that a specific ruminant metabolism study should not be required for 5-OHdicamba.

The metabolism of ¹⁴C-dicamba follows the same pathway in both poultry and ruminants:

- O-demethylation of dicamba to DCSA.
- Conjugation of DCSA with glucuronic acid.
- Decarboxylation of DCSA to 2,5-dichlorophenol (DCP).
- Decarboxylation of DCSA followed by substitution by an amino group to from 2-amino-3,6-dichlorophenol (2A36DCP).
- Hydroxylation of dicamba to 5-OH-dicamba.

A metabolism study in pigs is not required as the metabolism in the ruminant and rat is similar.

The proposed metabolic pathway of dicamba in animals is shown in Figure 2.

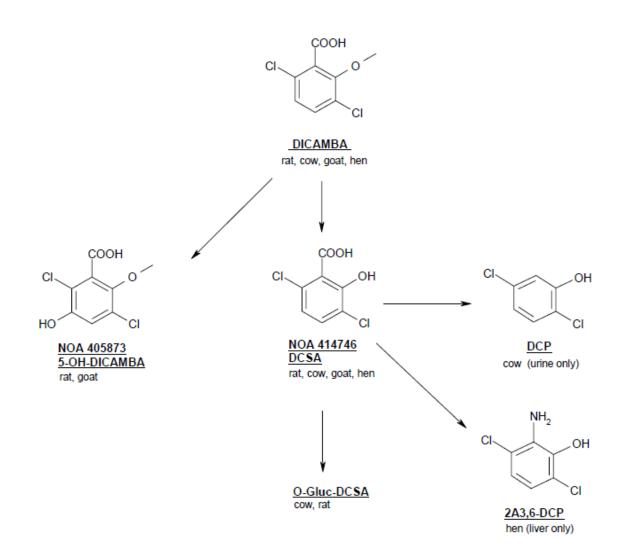


Figure 2: Proposed metabolic pathways of dicamba in animals

Fish

It can be expected that there is no potential for residues in commercial fish diet since dicamba is hydrophilic (Log P_{OW} -0.15 at PH 7) and therefore no data are required.

2.7.3 Definition of the residue

Syngenta and Rotam

Definition of the residue in plants

The metabolism in plants was investigated in cereals (wheat, sugarcane), soybean and cotton as representatives of pulses, oilseeds and cereals and was peer reviewed under Directive 91/414/EEC. It is proposed to set the residue definition for enforcement to:

The sum of dicamba and its salts and conjugates of dicamba expressed as dicamba.

Similarly, it is proposed that the residue definition for risk assessment is set to:

The sum of dicamba, 5-OH-dicamba and their conjugates, expressed as dicamba.

Definition of the residue in animal products

The metabolism in ruminants and poultry was peer reviewed under Directive 91/414/EEC. It is proposed that the residue definition for enforcement is set to:

The sum of dicamba and its salts and conjugates of dicamba expressed as dicamba.

Similarly it is proposed that the residue definition for risk assessment is set to:

The sum of dicamba and its salts and conjugates of dicamba expressed as dicamba.

Definition of the residue in processed commodities

Syngeta and Rotam

The effect of hydrolysis on the nature of the residue of parent dicamba was investigated and peer reviewed under Directive 91/414/EEC. No breakdown or reaction products were formed during hydrolysis under representative processing conditions.

Syngenta

A new study investigating the effect of hydrolysis on the nature of the residue of 5-OH-dicamba was submitted – this has not previously been reviewed in the EU. No breakdown or reaction products were formed during hydrolysis under representative processing conditions.

No change to the definition of residue is proposed.

2.7.4 Summary of residue trials in plants and identification of critical GAP

Syngenta

In Table 43 the applied GAPs for Syngenta is shown.

Table 43:Applied GAPs from Syngenta

			Max. No. of	Minimum	Max. Ap	plication	
Сгор	Outdoor/ Protected	Growth Stage	Applica- tions	Application Interval (days)	Rate (g a.s./ha)	Water (L/ha)	Minimum PHI (days)
Barley	Outdoor (NEU)	BBCH 21- 29	1	na	96	200-400	na ^(a)
Maize	Outdoor (NEU)	BBCH 12- 19	1	na	288	200-500	na ^(a)
Waize	Outdoor (SEU)	BBCH 12- 19	1	na	288	200-500	na ^(a)
Oat	Outdoor (NEU)	BBCH 21- 29	1	na	96	200-400	na ^(a)
Rye	Outdoor (NEU)	BBCH 21- 29	1	na	96	200-400	na ^(a)
Sanahum	Outdoor (NEU)	BBCH 12- 18	1	na	210	200-400	na ^(a)
Sorghum	Outdoor (SEU)	BBCH 12- 18	1	na	210	200-400	na ^(a)
Triticale	Outdoor (NEU)	BBCH 21- 29	1	na	96	200-400	na ^(a)
Wheat	Outdoor (NEU)	BBCH 21- 29	1	na	96	200-400	na ^(a)
vv neat	Outdoor (SEU)	BBCH 10- 32	1	na	120	200-400	na ^(a)

na = not applicable

^(a) It is more appropriate for cereal crops to indicate the application timing using growth stage rather than a pre-harvest interval.

The representative crops included in the original EU review of dicamba were maize and pasture; the use pattern for maize was at a more critical GAP (360 g as/ha) than the one being proposed by Syngenta. New data have therefore been provided by Syngenta to support the new representative GAP for maize. The representative crops included in the original EU review of dicamba did not include wheat, rye, triticale, barley, oat and sorghum. Trials have therefore been provided to support the GAPs for these crops.

Rotam

The representative use on maize is shown in Table 44.

Crop	Applied GAF from Kotal		Max. No. of Minimum		Max. Ap		
	Outdoor/ Growth Protected Stage	Applica- tions	Application Interval (days)	Rate (g a.s./ha)	Water (L/ha)	Minimum PHI (days)	
Maize	outdoor	16	1	-	350	200-400	60**

Table 44:Applied GAP from Rotam in maize

* latest possible growth stage at application

** critical parameter is the growth stage compared to minimum PHI, which is an indicative data

For maize the formulation used in the residue trials submitted by the original notifier was a 48% Soluble Liquid (SL) formulation. The proposed formulation is a 70% Soluble Granule (SG) formulation. Both formulations were applied in trials at a rate producing 360 g dicamba/ha (worst case compared to the current intended use at 350 g dicamba/ha). Both are water based formulation applied at practically identical gaps and are hence likely to produce similar residues. Trials with Dicamba 700 SG were conducted to confirm comparability of residues data to that in the DAR from the 48% SL formulation.

Syngenta/Rotam

The applied GAPs from Syngenta in cereals except maize corresponds to the critical GAP, while the applied GAP in maize from Rotam corresponds to the critical GAP for maize. However, the applied GAP from Syngenta is within the \pm 25 % of the residue trials conducted in the initial DAR, so the same residue trials can be used in this evaluation, see table 45.

Maize (Syngenta)

Maize is a major crop both in the northern and in southern EU. Therefore, eight trials are necessary from each region. Ten trials are available from north and twelve trials are available from south in accordance with the applied GAP \pm 25%. Eight of the trials from north were evaluated in the initial DAR, while two were new. For three of the trials evaluated in the initial DAR the LOQ for the method was 0.05 mg/kg for dicamba and 5-OH-dicamba, respectively. In the submission for renewal the LOQ for dicamba and 5-OH-dicamba in the same three trials were presented as 0.01 mg/kg. The residues for dicamba and 5-OH-dicamba were < 0.01 mg/kg in two trials, while it was 0.02 mg/kg for both dicamba and 5-OH-dicamba, respectively. RMS has asked Syngenta for clarification on that point. Syngenta agree on that. So in this evaluaton the residues for dicamba and 5-OH dicamba were all < 0.05 mg/kg in those three trials instead of 2x <0.01 and 0.02 mg/kg as presented by Syngenta in the submission for renewal.

Maize (Rotam)

Rotam rely on the data submittet by Syngenta in the initial DAR. The proposed formulation from Rotam is a 70% Soluble Granule (SG) formulation while the formulation used in the residue trials submittet by Syngenta is a 48% Soluble Liquid (SL) formulation. To show that the residues are comparable when using a SG formulation compared to a SL formulation, Rotam has conducted 4 residue trials. Both formulations are water based and applied at a rate of 350 g as/ha or 360 g as/ha.

Сгор	Region/ Indoor (a)	Residue levels (mg/kg) observed in the supervised residue trials relevant to the supported GAPs (b)	Recommendations/comments (OECD calculations)	MRL proposals (mg/kg)	HR (mg/kg) (c)	STMR (mg/kg) (d)
Representativo	e uses					
Rotam						
Maize grain	NEU	Mo: $2 \times < 0.01$ RA: $2 \times 0.1^*$ Rotam rely on Syngentas trials from initial DAR Mo: $5 \times < 0.01$; $3 \times < 0.05^*$ RA: 5×0.02 , 3×0.1	Mo: dicamba. Since the residues are below the LOQ of 0.01 or 0.05, the MRL is set at the highest LOQ of 0.05* mg/kg RA: The sum of dicamba and 5-OH- dicamba, free and conjugated expressed as	0.05*	Mo: 0.02 RA: 0.1	Mo: 0.01 RA: 0.02
Maize grain	SEU	Mo: 2 x < 0.01 RA: 2x 0.1** <i>Rotam rely on Syngentas trials from initial DAR</i> Mo: 4 x <0.01 RA: 4 x 0.02	dicamba	0.01*	Mo: 0.01 RA: 0.02	Mo: 0.01 RA: 0.02
Syngenta				11		
Maize grain	NEU	Mo: 7x <0.01; 3x <0.05* RA: 7x <0.02, 3x 0.1	Mo: dicamba. Since the residues are below the LOQ of 0.01 or 0.05, the MRL is set at 0.05* mg/kg	0.05*	Mo: 0.05 RA: 0.1	Mo: 0.01 RA: 0.02
Maize grain	SEU	Mo: 12x <0.01 RA: 12x 0.02	RA: The sum of dicamba and 5-OH- dicamba, free and conjugated expressed as dicamba RA	0.01*	Mo: 0.01 RA: 0.02	Mo: 0.01 RA: 0.02
Maize stover	NEU	MO: NA RA: <0.01,< 0.01, <0.01, 0.02, 0.027, 0.065, 0.076, 0.1, 0.1, 0.1, 0.525			RA: 0.53	RA: 0.02
Maize stover	SEU	MO: NA RA: <0.02, <0.02, 0.02, 0.02, 0.029, 0.029, 0.03, 0.03, 0.05, 0.08, 0.095			RA: 0.095	RA: 0.029

 Table 45:
 Summary of residue trials in maize used in the calculation of the MRL

*For these three trials the LOQ is 0.05 mg/kg for the method used in the determination, while Syngenta has written that the residues of dicamba and 5-OH-dicamba were <0.01 in two trials and 0.02 in one trial. RMS has used the residues as reported in the evaluation in the initial DAR, i.e. <0.05 mg/kg.

**These residue are not used in the calculation for the value for risk assessment, since the LOQ is 0.1 mg/kg

Wheat, barley, oats, rye, triticale (Syngenta)

Wheat, barley, oat, rye, triticale are major crops in northern and southern EU so normally 8 trials are required in each region (SANCO 7525/VI/95 – rev.10.2). Barley, oats, rye and triticale are applied for in the northern EU while wheat is also applied for in the southern EU. Data from barley, oats, rye, triticale and wheat trials can be extrapolated to support the other crops with the same GAP, since the final application is made before the edible part of the crop is formed. Eight trials are available for barley, five trials are available for oats and nine trials are available for wheat (one from north and eight from south).

Sorghum (Syngenta)

Sorghum is a minor crop in Northern Europe and a major crop in Southern Europe. Consequently 4 trials are necessary from north and 8 trials are necessary from south (SANCO 7525/VI/95 – rev.10.2).

The proposed representative uses of dicamba lead to calculated MRLs of 0.05* mg/kg in maize grain and 0.3 mg/kg in small grain cereals. These do not exceed the established MRLs of 0.5 mg/kg (maize), 7.0 mg/kg (barley), 0.5 mg/kg (oats and rye) or 2.0 mg/kg wheat (including triticale). For sorghum the MRL is calculated to 0.2 mg/kg, which is less than the current MRL of 4 mg/kg. The MRL of 4 mg/kg is an Codex MRL implemented in the EU legislation with Regulation (EU) No. 441/2012.

The summary residue trials are presented in Table46.

Сгор	Region/ Indoor (a)	Residue levels (mg/kg) observed in the supervised residue trials relevant to the supported GAPs (b)Recommendations/comments (OECD calculations)		MRL proposals (mg/kg)	HR (mg/kg) (c)	STMR (mg/kg) (d)
Representative	e uses					
Wheat grain Barley grain Oats grain (combined)	NEU	Mo: 3 x <0.01, 3 x 0.02, 0.03, 0.052, 0.06, 0.06, 0.076, 0.117, 0.142, 0.146 RA: 3 x <0.02, 3 x <0.03, 0.04, 0.062, 0.07, 0.086, 0.10, 0.127, 0.153, 0.167	OECD calculations Mo: Dicamba (MRL: 0.103) RA: The sum of dicamba and 5-OH- dicamba, free and conjugated expressed as dicamba	0.3	Mo: 0.146 RA: 0.167	Mo: 0.041 RA: 0.051
Wheat grain	SEU	Mo: 5 x <0.01, 2 x 0.02, 0.07 RA: 5 x <0.02, 0.03, 0.06, 0.15	OECD calculations Mo: Dicamba (MRL: 0.25) RA: The sum of dicamba and 5-OH- dicamba, free and conjugated expressed as dicamba	0.1	Mo: 0.07 RA: 0.15	Mo: 0.01 RA: 0.02
Wheat straw Barley straw Oats straw (combined)	NEU		No MRL calculated for feed items			
Wheat straw	SEU	1				

 Table 46:
 Summary of residue trials Wheat, barley, oats, rye, triticale used in the calculation of the MRL

2.7.5 Summary of feeding studies in poultry, ruminants, pigs and fish

In the framework of the original EU review of dicamba, the dietary burden calculations were performed according to EU guideline 7031/VI/95 rev.4. Based on the representative uses, which were maize and grass the intake for poultry and ruminants was found to be above the trigger value of 0.1 mg/kg diet on dry weight basis. Therefore, feeding studies were submitted and evaluated in the original DAR.

The worst case for dairy- and beef cattle consisting of 100 % pasture is 9.05 mg/kg in fresh diet corresponding to 45 mg kg feed (dry matter) or 1.65 mg/kg bw/day for dairy cattle and 45 mg kg feed (dry matter) or 1.94 mg/kg bw/day beef cattle. Worst-case residue in chicken feed containing 70 % grain was 0.01 mg/kg in fresh diet corresponding to 0.012 mg/kg dry matter or 0.0007 mg/kg bw/day.

Syngenta

Dietary burden calculations

The dietary burden has been calculated for poultry, dairy cattle, beef cattle for the supported representative crops of barley, maize, oats, rye, triticale, wheat and sorghum or their processed products by using the EFSA animal burden calculator from 2016.

According to the OECD feeding table barley, oat, triticale, wheat and rye forage, hay and silage are not considered relevant crops as the representative use for dicamba is on barley, oat, rye, triticale and wheat for grain production only (OECD).

The dietary inputs for the calculation are summarised in Table 47. The highest residues in the residue trials (HR) are used to calculate the maximum potential dietary intake except for feed commodities that are bulked, where the STMR is used, or processed, where the STMR-P is used, as detailed in Table 47. The STMR values in residue trials have been used to calculate the median potential dietary intake.

Commodity	Maximum dietary burden		Median dietary burden		
	Input value (mg/kg)	Comment	Input value (mg/kg)	Comment	
Barley, Straw	1.78	HR	0.25	STMR	
Corn, Field, Forage/Si- lage	0.62	HR	0.31	STMR	
Corn, Field, Stover	0.1	HR	0.301	STMR	
Oat, Straw	1.78	HR	0.25	STMR	
Rye, Straw	1.78	HR	0.25	STMR	
Sorghum, Forage	0.60	HR	0.32	STMR	
Sorghum, Stover	0.80	HR	0.355	STMR	
Sorghum, Silage	0.60	HR Forage data used as surro- gate	0.32	STMR Forage data used as surro- gate	
Triticale, Straw	1.78	HR	0.25	STMR	
Wheat, Straw	1.78	HR	0.25	STMR	
Barley, Grain	0.167	HR	0.04	STMR	
Corn, Field, Grain	0.05	HR	0.01	STMR	
Oat, Grain	0.167	HR	0.04	STMR	
Rye, Grain	0.167	HR	0.04	STMR	
Sorghum, Grain	0.34	HR	0.05	STMR	
Triticale, Grain	0.167	HR	0.05	STMR	
Wheat, Grain	0.167	HR	0.051	STMR	

Table 47:Input values used in the dietary burden calculation

Commodity	Max	kimum dietary burden	Median dietary burden			
	Input value (mg/kg)	Comment	Input value (mg/kg)	Comment		
Brewer's grain (wheat or barley), Dried (By- products group)	0.17	EFSA default processing factor of 3.3 for barley malt is used in calculation [Median value x PF malt 0.051 x 3.3 =0.17]	0.17	EFSA default processing factor of 3.3 for barley malt is used in the calculation [Median value x PF malt $0.051 \times 3.3 = 0.17$]		
Corn, Field, Milled Byprods.	0.02	EFSA default processing of 1 used [Median value x PF 0.02 x 1 = 0.02]	0.02	EFSA default processing of 1 used [Median value x PF 0.02 x 1 = 0.02]		
Corn, Field, Hominy Meal	0.12	EFSA default processing of 6 used [Median value x PF 0.02 x 6 = 0.12]	0.12	EFSA default processing of 6 used [Median value x PF 0.02 x 6 = 0.12]		
Corn, Field, Gluten Feed	0.05	EFSA default processing of 2.5 used [Median value x PF 0.02 x 2.5 = 0.05]	0.05	EFSA default processing of 2.5 used [Median value x PF 0.02 x 2.5 = 0.05]		
Corn, Field, Gluten Meal	0.02	EFSA default processing of 1 used [Median value x PF 0.02 x 1 = 0.02]	0.02	EFSA default processing of 1 used [Median value x PF 0.02 x 1 = 0.02]		
Wheat, Gluten Meal	0.092	EFSA default processing factor of 1,8 is used in calcu- lation [Median value x PF malt 0.051 x 1,8 = 0.092]	0.092	EFSA default processing factor of 1,8 is used in cal- culation [Median value x PF malt 0.051 x 1,8 = 0.092		
Wheat, Milled By- prods.	0.36	EFSA default processing factor of 7 is used in calcula- tion [Median value x PF malt $0.051 \ge 7 = 0.357$]	0.36	EFSA default processing factor of 7 is used in calcu- lation [Median value x PF malt $0.051 \ge 7 = 0.357$]		

The results of the dietary burden calculation are reported in Table 48.

Animals	Median burden	Maximum burden	Above 0.004 mg	Maximum burden	Highest contributing		Previous assessment Maximum burdens
	(mg/kg bw)	(mg/kg bw)	/kg bw	(mg/kg DM)	com	commodities (mg/kg bw	
Beef cattle	0,017	0,032	Yes	1,32	Corn, field	forage/silage	1.94 mg/kg bw/day
Dairy cattle	0,023	0,042	Yes	1,09	Corn, field	forage/silage	1.65 mg/kgbw/day
Ram/Ewe	0,012	0,045	Yes	1,36	Barley	straw	Not calculated
Lamb	0,017	0,058	Yes	1,36	Barley	straw	
Pig (breeding)	0,009	0,014	Yes	0,63	Corn, field	forage/silage	
Pig (finishing)	0,007	0,012	Yes	0,40	Wheat	milled bypdts	Not calculated
Poultry broiler	0,008	0,025	Yes	0,36	Wheat	milled bypdts	0.00073 mg/kg bw/day
Poultry layer	0,014	0,038	Yes	0,56	Wheat	straw	
Turkey	0,008	0,020	Yes	0,28	Wheat	milled bypdts	

Table 48:Results of the dietary burden calculation

It is seen that the trigger value 0.004 mg/kg bw/day is exceeded in all animals. For ruminants the intake is far below the values calculated in the framework of the initial DAR, while for poultry the exposure is higher than calculated in the initial DAR.

Rotam

The applicant has only used the new trials conducted in maize in 2010 in the dietary burden calculation. However, the LOQ for 5-OH dicamba was 0.1 mg/kg. Thus the value for risk assessment that should be used in the dietary burden calculation is too high. Therefore, RMS has used the same values as was used for Syngenta in the dietary burden calculation.

Dietary burden calculation

 Table 49:
 Input values used in the dietary burden calculation

Commodity	M	aximum dietary burden	N	Median dietary burden			
	Input value (mg/kg)	Comment	Input value (mg/kg)	Comment			
Corn, Field, For- age/Silage	0.62	HR	0.31	STMR			
Corn, Field, Stover	0.1	HR	0.301	STMR			
Corn, Field, Grain	0.05	HR	0.01	STMR			
Corn, Field, Milled Byprods.	0.05	EFSA default processing of 1 used [Median value x PF 0.02 x 1 = 0.02]	0.02	EFSA default processing of 1 used. [Median value x PF 0.02 x 1 = 0.02]			
Corn, Field, Hominy Meal	0.12	EFSA default processing of 6 used [Median value x PF 0.02 x 6 = 0.12]	0.12	EFSA default processing of 6 used [Median value x PF 0.02 x 6 = 0.12]			
Corn, Field, Gluten Feed	0.05	EFSA default processing of 2.5 is used [Median value x PF 0.02 x 2.5 = 0.05]	0.05	EFSA default processing of 2.5 is used [Median value x PF 0.02 x 2.5 = 0.05]			
Corn, Field, Gluten Meal	0.02	EFSA default processing of 1 used [Median value x PF 0.02 x 1 = 0.02]	0.02	EFSA default processing of 1 used [Median value x PF 0.02 x 1 = 0.02]			

Table 50:

Results of the dietary burden calculation

Animals	Median burden	Maximum	Above	Maximum	Highest		Previous assessment Maximum burdens
Animais	burden	burden	0.004 mg	burden (mg/kg	contributing		Maximum burdens
	(mg/kg bw)	(mg/kg bw)	/kg bw	DM)	com	modities	(mg/kg bw DM)
Beef cattle	0.015	0.030	Yes	1.27	Corn. field	forage/silage	1.94 mg/kg bw/day
Dairy cattle	0.019	0.037	Yes	0.97	Corn. field	forage/silage	1.65 mg/kgbw/day
Ram/Ewe	0.001	0.002	No	0.05	Corn. field	gluten feed	Not calculated
Lamb	0.002	0.002	No	0.05	Corn. field	gluten feed	
Pig (breeding)	0.004	0.009	Yes	0.37	Corn. field	forage/silage	
Pig (finishing)	0.001	0.002	No	0.06	Corn. field	gluten feed	Not calculated
Poultry broiler	0.001	0.004	No	0.05	Corn. field	milled bypdts	0.00073 mg/kg bw/day
Poultry layer	0.008	0.015	Yes	0.22	Corn. field	forage/silage	
Turkey	0.002	0.004	No	0.06	Corn. field	hominy meal	

It is seen that the trigger value 0.004 mg/kg bw/day is exceeded in all animals besides ram/ewe/lamb. For ruminants the intake is far below the values calculated in the framework of the initial DAR while for poultry the exposure is higher than calculated in the initial DAR.

Feeding studies

Rotam

Two feeding studies in livestock on the active substance dicamba were performed and included in the DAR of dicamba (2007). There was one feeding study in ruminants (dairy cattle) and one feeding study in poultry (laying hens).

Both studies were considered as reliable but it is not required to present them in the current submission for renewal of dicamba approval.

RMS: the dietary burden calculation show that the exposure is higher than 0.004 mg/kg lgv/day for both ruminants and poultry. Consequently, feeding studies are nescessary.

Poultry

Syngenta

A feeding study with dicamba in poultry was evaluated under Council Directive 91/414/EEC and is presented in the dicamba draft Assessment Report (Vol.3, Annex B, Section B.7.1, February 2007) and the results are summarised in Table 51.

Commodity	Results from Livestock Feeding Study					Median Highest Calcu-			CF for	
Commonly	Dose level (mg/kg bw/day) ^(a) [mg/kg diet]	No of animals	DoR (E or RA) ^(b)	Mean Residue (mg/kg)	Max Resi- due (mg/kg)	Residue (mg/kg) ^(c)	Residue (mg/kg) ^(d)	lated MRL (mg/kg)	RA ^(e)	
EU Reviewed		No. 107-2	203 and 7-	4; DAR, 200	 07)					
Poultry Fat	0.15 [2]	10	E & RA	< 0.01	<0.01					
	0.46 [6]	10	E & RA	< 0.01	< 0.01	<0.01	<0.01	< 0.01		
	1.5 [20]	10	E & RA	0.01	0.025					
Poultry Skin	0.15 [2]	10	E & RA	n.a.	n.a.					
	0.46 [6]	10	E & RA	< 0.01	<0.01	<0.01	< 0.01	<0.01		
	1.5 [20]	10	E & RA	0.034	0.068					
Poultry Liver	0.15 [2]	10	E & RA	< 0.01	<0.01					
	0.46 [6]	10	E & RA	0.015	0.023	< 0.01	< 0.01	<0.01		
	1.5 [20]	10	E & RA	0.031	0.053					
Poultry Meat	0.15 [2]	10	E & RA	n.a.	n.a.					
	0.46 [6]	10	E & RA	< 0.01	<0.01	<0.01	< 0.01	<0.01		
	1.5 [20]	10	E & RA	0.01	0.013					
Eggs	0.15 [2]	10	E & RA	n.a.	n.a.					
	0.46 [6]	10	E & RA	< 0.01	<0.01	< 0.01	< 0.01	<0.01		
	1.5 [20]	10	E & RA	< 0.01	<0.01					

 Table 51:
 Poultry feeding study evaluated in the initial DAR

n.a.: Not analysed

(a): Based on average weight of 1.645 kg animal consuming 0.125 kg feed DM/day.

(b): Residue definition used for presented results; E = enforcement, RA = risk assessment. Method AM-0685 was used which determined dicamba, salts & conjugates

(c): Median residue value according to the enforcement residue definition, derived by interpolation/extrapolation from the feeding study for the median dietary burden (FAO, 2009).

(d): Highest residue value (tissues, eggs) or mean residue value (milk) according to the enforcement residue definition, derived by interpolation/extrapolation of the maximum dietary burden between the relevant feeding groups of the study (FAO, 2009).

(e): The median conversion factor for enforcement to risk assessment.

(*): Indicates that the MRL is set at the limit of analytical quantification.

The study was reviewed within the framework of Directive 91/414/EEC and was considered to be acceptable; There are no new requirements or guidance applicable to this submission under Regulation (EC) 1107/2009, therefore the original endpoints and assessment are still valid. No further feeding studies in poultry are required to support the renewal of dicamba.

Ruminants

Syngenta

Feeding studies with dicamba and 5-OH-dicamba separately in lactating ruminants were evaluated under Council Directive 91/414/EEC and are presented in the dicamba draft Assessment Report (Vol.3, Annex B, Section B.7.1, February 2007) and the results are summarised in Table 52.

At the time of this review, a data gap was identified; the method of analysis for animal products had not been fully validated (EFSA Journal 2011;9(1):1965) so MRLs were proposed only. With this submission method GRM022.03A has been sufficiently validated as well as independent validated for analysis in animal matrices. MRLs for animal commodities have subsequently been set (Reg. (EU) No. 441/2012).

According to the results of the dietary burden calculation, lambs demonstrated the highest dietary exposure to residues of dicamba and 5-OH-dicamba of a maximum dietary burden of 0.058 mg/kg/bw/d. The calculated exposure of lambs is sixteen times lower than the lowest dose level in the feeding studies where residues in ruminant tissues and milk were calculated to be <LOQ (<0.01 mg/kg).

No residues above the LOQ are expected in ruminant tissues or milk following the representative uses of dicamba supported by Syngenta. Residues all fall below the established MRLs for ruminant tissues and milk.

Table 52: Overview of ruminant dicamba feeding study evaluated for inclusion of dicamba in Annex I Directive 91/414/EEC

Commodity	Results fro	m livesto	ck Feedi	ng Study		Median	Highest	Calcu-	CF for
	Dose level (mg/kg bw/day) ^(a) [mg/kg	No of animals	DoR (E or RA) ^(b)	Mean Residue (mg/kg)	Max Residue (mg/kg)	Residue (mg/kg) ^(c)	Residue (mg/kg) ^(d)	lated MRL (mg/kg)	RA ^(e)
	diet]								
EU Reviewed	× ×			,					
Ruminant meat	0.93 [40]	3	(f)	< 0.01	< 0.01				
meat	2.78 [120]	3	(f)	0.012	0.014	<0.01	<0.01	<0.01	
	9.3 [400]	3	(f)	0.030	0.037				
Ruminant fat	0.93 [40]	3	(f)	0.023	0.046				
	2.78 [120]	3	(f)	0.025	0.034	<0.01	< 0.01	< 0.01	
	9.3 [400]	3	(f)	0.047	0.059				
Ruminant	0.93 [40]	3	(f)	0.026	0.029				
liver	2.78 [120]	3	(f)	0.066	0.070	<0.01	<0.01	< 0.01	
	9.3 [400]	3	(f)	0.207	0.207				
Ruminant	0.93 [40]	3	(f)	0.154	0.174				
kidney	2.78 [120]	3	(f)	0.282	0.288	<0.01	< 0.01 ^(g)	<0.01 ^(g)	
	9.3 [400]	3	(f)	0.646	0.885				
Milk	0.93 [40]	3	(f)	0.02	0.029				
	2.78 [120]	3	(f)	0.035	0.055	<0.01	<0.01	<0.01	
	9.3 [400]	3	(f)	0.177	0.294				

n.r.: Not required - only the mean values are considered for calculating MRLs in milk

(a): Based on a 570 kg animal consuming 13.2 kg feed DM/day.

(b): Residue definition used for presented results; E = enforcement, RA = risk assessment

(c): Median residue value according to the enforcement residue definition, derived by interpolation/extrapolation from the feeding study for the median dietary burden (FAO, 2009).

(d): Highest residue value (tissues, eggs) or mean residue value (milk) according to the enforcement residue definition, derived by interpolation/extrapolation of the maximum dietary burden between the relevant feeding groups of the study (FAO, 2009).

(e): The median conversion factor for enforcement to risk assessment.

(f): Residues were determined as dicamba and DCSA together.

- (g): Highest residue by interpolation = 0.011 mg/kg, however this is for residues of dicamba and DCSA together therefore residues according to E & RA definition are expected to be <0.01 mg/kg.
- (*): Indicates that the MRL is set at the limit of analytical quantification.

Samples in the first study (report number 379) were analysed using method AM-0659. This method determined residues of dicamba and the metabolite DSCA together as a common moiety (methyl ester of dicamba). The residue definition for both monitoring and risk assessment is proposed as the sum of dicamba, and the salts and conjugates of dicamba expressed as dicamba, therefore the results from this study will give a worst case for residues.

Samples in the second study where 5-OH-dicamba was administered, were analysed for residues of 5-OH-dicamba only. The residue definition for risk assessment in plants includes 5-OH dicamba therefore a feeding study dosed with 5-OH dicamba is relevant. However, this metabolite is not included in the residue definition for animal products for either monitoring or risk assessment as the ruminant metabolism studies indicated that significant residues of 5-OH dicamba were unlikely to be found in the edible animal commodities (5-OH dicamba was only found in excreta at significant levels). The feeding study data supports the conclusions of the metabolism studies. The results of this study will not impact on any proposals for residue values in animal products and have not been discussed further.

Pigs

Syngenta

The calculated dietary exposure of dicamba for pigs is 0.014 mg/kg/bw/d, which is lower than that calculated for ruminants (lambs). The metabolism of dicamba in ruminants was similar to that seen in the rat. Metabolism and feeding studies in pigs are therefore not required, as data for ruminants can be used to address the potential for residues in pigs.

Significant residues in tissues of pigs are therefore not expected and it is anticipated that they would fall below the established MRLs for swine.

Fish

Syngenta, Rotam

As the accumulation of compounds of relatively low lipophilicity (log Pow < 3 (dicamba= -0.15, PH 7)) via the diet is known to be negligible, neither fish metabolism nor fish feeding data are needed.

2.7.6 Summary of effects of processing

Rotam

Not required, since no significant residues (all residue < 0.01 mg/kg) occur in the plant or plant product for further processing and TMDI < 10% of the ADI (EU-Guidelines (Lundehn, Appendix E, 7035/VI/95 rev. 5; 22/07/1997)).

Syngenta

As quantifiable residues of dicamba and 5-OH-dicamba are expected in treated crops, studies investigating the nature of residues in processed commodities are required.

Conditions	Identified Compounds (%)	Report Reference	Source
EU Reviewed Data			
Pasteurisation (20 min, 90°C, pH 4)	Dicamba (100.7)		
Baking, boiling, brewing (60 min, 100°C, pH 5)	Dicamba (105.1)	RJ3333B	Denmark, 2007
Sterilisation (20 min, 120°C, pH 6)	Dicamba (107.6)		

The effect of processing on the nature of dicamba and 5-OH-dicamba were investigated in two separate studies. Studies simulated representative hydrolytic conditions for pasteurisation (20 minutes at 90°C, pH4), boiling/brew-ing/baking (60 minutes at 100°C, pH5) and sterilisation (20 minutes at 120°C, pH6).

The studies showed that no breakdown or reaction products were formed during hydrolysis of dicamba or 5-OHdicamba under representative processing conditions.

It can be concluded that the nature of residues in processed commodities and hence the relevant residues for enforcement and risk assessment in processed commodities are expected to be the same as for primary crops. The distribution of residues in peel/pulp was not deemed relevant to this submission since no representative crop uses have inedible peel.

Magnitude of residue studies have previously been evaluated for barley and oats under Directive 91/414/EC. Processing factors have been derived for barley and oats.

Processing studies have been conducted in barley, oats and wheat and these have not been previously submitted for evaluation under Directive 91/414/EEC. The studies presented have investigated the transfer of dicamba and total dicamba (dicamba + 5-OH-dicamba) residues in processes representative of major industrial procedures for barley (preparation of alcoholic beverages), and for minor industrial procedures and domestic or home procedures; pearling for barley, rolled oats for oats and flour and wholemeal bread production, gluten and starch separation and wheat germ extraction.

In barley, residues of dicamba and dicamba + 5-OH-dicamba did not concentrate in malt, beer or pearl barley. In oats, residues of dicamba and dicamba + 5-OH-dicamba concentrated slightly in rolled oats. In wheat, no detectable residues were observed in the pre-processing RAC grain samples; slight concentration was observed in coarse bran (in one study) and waste by-products. As a result, no processing factors were calculated for wheat commodities. An overall summary of processing factors for dicamba and dicamba + 5-OH-dicamba in processed barley and oat commodities is presented in Table 53.

Сгор	Processed Commod-	Number of Studies	Median Proc	essing Factor	
	ity		dicamba	Dicamba + 5-OH- dicamba	
	Malt (all types)	8	1.00	1.00	
Barley	Beer	4	0.34	0.48	
	Pearl barley	5	0.50	0.67	
Oats	Rolled oats	4	1.33	1.33	
Wheat	Flour production Wholemeal Bread Gluten & starch sepa- ration Wheat Germ Extrac- tion	2	Not calculated	Not calculated	

 Table 53:
 Summary of processing factors for dicamba and dicamba + 5-OH-dicamba from studies presented

2.7.7 Summary of residues in rotational crops

Rotam

Dicamba is degraded rapidly in soil with a DT_{90} of 24.9 days and a DT_{50} of 6.66 days. The predominant metabolite was DCSA, which also is degraded rapidly with a DT_{50} of 4.9 days and a DT_{90} of 16.1 days. Therefore, no studies in rotational or succeeding crops are required according to EU-Guidelines (Lundehn, Appendix C, 7524/VI/95 rev. 2; 22/07/1997) where it is stated that "*From existing results on the residue behaviour of the active substance in soil, a test is carried out to determine whether after 100 days less than 10 % of active substance and bioavailable metabolites can be detected*". If it is not case, as for dicamba, it is not required to presented residues in rotational crops (including metabolism and magnitude).

Syngenta

The metabolism of dicamba in rotational crops was considered during the EU evaluation using C^{14} phenyl-U labelled-dicamba. The studies were evaluated under Council Directive 91/414/EEC and are presented in the dicamba draft Assessment Report (Vol.3, Annex B, Section B.7.9, February 2007).

Comments made by EFSA at the last review indicated residues from confined rotational crops were adequately characterised. Syngenta has conducted a new rotational crop study and this confirms the high total radioactive residues (TRRs) at 30 DAT (0.027-0.886 mg/kg) and progressive and marked decline in subsequent 111 DAT (0.017–0.097 mg/kg) and 285 DAT (0.001–0.016 mg/kg) rotational intervals that were observed in the earlier studies.

Parent was the principal residue identified in all 30 DAT commodities ($\leq 67\%$ TRR; ≤ 0.204 mg/kg) except that of wheat straw and grain ($\leq 1.9\%$ TRR; 0.002 mg/kg). NOA405873 (5-OH-dicamba) was the principal identified metabolite in wheat forage, hay and straw ($\leq 56.3\%$ TRR; ≤ 0.342 mg/kg) but was present at much lower levels in all other commodities ($\leq 5.5\%$ TRR; ≤ 0.005 mg/kg).

By the time of 111 DAT rotational crop harvests, residues of parent and all identified metabolites had declined to $\leq 0.007 \text{ mg/kg}$ (except for NOA405873 in wheat hay, 0.017 mg/kg).

By the time of 285 DAT rotational crop harvests, residues of parent and all the above identified metabolites were not detectable (except for NOA414746 in wheat hay, 0.001 mg/kg).

The decline in parent and identified metabolite residues in successive rotational intervals was accompanied by an increase in the proportion of the total radioactive residue associated with naturally incorporated radioactivity ($\leq 41.7\%$ TRR identified as ¹⁴C-glucose).

These studies demonstrate that the metabolic pathway in rotational crops is identical to that previously elucidated in the primary metabolism studies.

Four limited rotational field trials were conducted to investigate the magnitude of residues in rotational crops. Residues of parent dicamba and 5-OH-dicamba were observed in barley commodities (whole plant, straw, grain) and carrot (tops and leaves). The magnitude and distribution of residues is consistent with those seen in the confined rotational studies. Residues of parent dicamba and 5-OH-dicamba were seen at or below the limit of quantification (LOQ) in three of the four trials conducted. In one trial only, residues of parent and 5-OH-dicamba were observed in some feed items, predominantly at the 30 DAT plant-back interval; these declined over time across the later plant-back intervals. The impact of these results on the animal dietary burden has been considered within this submission. The proposed definition of the residue in succeeding crops is therefore consistent with the definition of the residue for risk assessment in primary crops.

2.7.8 Summary of other studies

As there is currently no guidance available to conduct such studies an assessment on the effect on residue levels in pollen and other bee products has not been conducted. Besides, treatment is taking place before flowering.

2.7.9 Estimation of the potential and actual exposure through diet and other sources

The ADI and ARfD for dicamba are summarised in the table below.

	THET UND THE THE	ardes for dicumou		
End-Point	Value	Study	Safety factor	Reference
Acceptable Daily	0.07 mg/kg bw/d	chronic study in rats (NO-	150	1985
Intake (ADI)		AEL:10 mg/kg bw/day)		
Acute Reference	0.3 mg/kg bw	Rabbit developmental tox-	100	1992
Dose (ARfD)		icity study (NOAEL)		

Table 54:

ADI and ARfD values for dicamba

TMDI

TMDI has been calculated using EFSA PRIMo vers. 3. The residues for cereals and maize are lower than the existing MRLs in Regulation 396/2005. Therefore the current MRL for all commodities are used in the calculation. The results are shown in table 2.7.9-2. As can be seen from the table the highest exposure is for GEMS/Food G1 accounting for 84% of the proposed ADI of 0.07 mg/kg bw/d.

IESTI

The estimates of acute intake were conducted with the EFSA model PRIMO (EFSA model for chronic and acute risk assessment - rev. 3_0)

An IESTI risk assessment was performed, using 97.5th percentile dietary intake values. MRL values were used as an input for the crops and commodities included in this dossier. The summary of the calculation is presented in Table 53. The highest IEST amounted to 21% of the ARfD for milk and milk products.

Calculation of the chronic and acute exposure for dicamba using the MRLs set in Regulation 2015/845

LOGs (mgkg) range tom: b: Toxicological reference values ADI (mgkg bwitey): 0.07 ARDD (mgkg bwitey): 0.3	Input values
	Details - chronic risk Supplementary results -
ADI (mg/kg bw/day): 0,07 ARID (mg/kg bw): 0,3	assessment chronic risk assessment
European Food Safety Authority Source of ADI: Source of ARID: EFSA PRIMo revision 3.0; 2017/12/11 Year of evaluation: Year of evaluation:	Details - acute risk Details - acute risk assessment/children assessment/adults
EPSA PKINO RVISION 3.0; 2017/12/11 Coll of Characterion. Coll of Characterion.	
Normal mode	
Chronic risk assessment: JMPR methodology (IEDI/TMDI)	
No of diels exceeding the ADI :	Exposure resulting fro MRLs set at commotities
Calculated Exposure Highest contributor 2nd contributor to exposure 2nd contributor to (Ws /AVD) MS diet Commodity / (m % of ADD) MS diet Commodi	3rd contributor to MS diet the LOQ Commodity / (in % of AD) group of commodities under ADI)
84% GEMS/Food G11 58,62 53% Soyabeans 10% Wheat 75% NL toddler 52,40 43% Milk Cattle 11% Wheat	8% Barley 84% 5% Maizekorn 75%
74% GENS/Food G10 51,49 47% Soyabeans 11% Wheat 59% GENS/Food G08 41,14 25% Soyabeans 12% Wheat 56% GENS/Food G15 39,35 25% Soyabeans 13% Wheat	6% Barley 74% 9% Barley 59%
56% GEMSFood CI5 39.35 25% Soyabeans 13% Wheat 55% GEMSFood G07 38,46 25% Soyabeans 12% Wheat 46% GEMSFood G06 33,83 21% Wheat 17% Soyabeans	8% Barley 56% 6% Barley 55% 2% Sugar canes 48%
49 /r Generation 0000 3303 21 /r Wite and 1 /r Galaxies 6 41 /r UK infant 28.99 28% Mik Cattle 7% Wheat 38% NL child 26.77 17% Mik Cattle 12% Wheat	2.% Gugai Calles 440.% 3% Peas (without pods) 41% 3% Soyabeans 38%
Color Color <th< th=""><td>5% Beans (with pods) 38% 3% Beans (with pods) 37%</td></th<>	5% Beans (with pods) 38% 3% Beans (with pods) 37%
35% DE child 24,26 14% Milk: Cattle 12% Wheat	2% Apples 35% 2% Peas (without pods) 30%
Ope 30% UK bodier 20.2 15% Mik: Catle 11% Wheat 28% DK child 19.28 13% Wheat 9% Mik: Catle 25% RO general 19.28 13% Wheat 9% Mik: Catle 25% RO general 19.7 14% Wheat 9% Mik: Catle 24% DE general 15.4 9% Mik: Catle 9% Wheat 24% DE general 15.54 9% Mik: Catle 9% Wheat 21% DE woment 4-50 yr 14.98 9% Mik: Catle 9% Wheat 21% DE woment 4-50 yr 14.98 9% Mik: Catle 0.6% Weat 21% Tit bodier 14.90 14% Meat 0.6% Weat	4% Rye 28% 0,7% Maize/com 26%
2 25% ESchild 17.78 13% Wheat 9% Mik: Catte 5% Wheat	1% Beans (with pods) 25% 5% Barley 24%
5 21% Disguisticiti 100 ^a 0.0 ^a <th0.0<sup>a <th0.0<sup>a <th0.0<sup>a</th0.0<sup></th0.0<sup></th0.0<sup>	0,5% Beans (with pods) 22% 2% Barley 21%
	27% Berry 2/1% 0,5% Beans (with pods) 21% 1% Beans (without pods) 20%
5 20% PT general 14,25 11% Wheat 4% Soyabeans 2 20% NL general 13,34 64 16% Mik: Calle 6% Wheat 3 19% FR infant 12,97 12% Mik: Calle 3% Beans (whip pods) 19% FR infant 12,97 12% Mike and 5% market	1% Barls (windur pous) 20% 3% Barley 20% 2% Wheat 19%
Iso Iso <td>4% Milk: Cattle 18% 1% Peas (without pods) 17%</td>	4% Milk: Cattle 18% 1% Peas (without pods) 17%
O 10% C Juditi 1,0/// T 7% Muchai Only Data (%) U 17% E soluti 12,17 7% Wheat 3% Milk: Cattle 14% If adult 9,88 12% Wheat 0,9% Beans (whippods) 13% FR adult 9,28 12% Wheat 0,9% Beans (whippods) 0 10% Uk wgebarian 7,21 6% Wheat 2% Milk: Cattle 9 0% DK wgith 6.35 4% Wheat 2% Milk: Cattle	0,4% Peas (without pods) 11/3 0,4% Beans (without pods) 13%
50 10% UK vegetarian 7.21 6% Wheat 2% Mik: Cattle 9% DK adult 6,35 4% Mik: Cattle 3% Wheat	0,8% Peas (without pods) 10% 0,7% Peas (without pods) 9%
9% UK adult 6,23 5% Wheat 2% Mik: Catlle 9% LT adult 6,02 3% Wheat 3% Mik: Catlle	0,7% Peas (without pods) 9% 0,8% Rye 9%
7% IE child 4,84 3% Wheat 3% Mik: Cattle 7% FI 3 yr 4,76 3% Wheat 0,7% Barley	0,5% Beans (without pods) 7% 0,5% Rye 7%
5% Fi6 yr 3,81 3% Wheat 0,6% Barley 3% Fiadult 2,15 0,9% Wheat 0,5% Rye	0,4% Rye 5% 0,4% Coffee beans 3%
1% PL general 0.88 0.3% Beans (without pods) 0.3% Apples Conclusion:	0,2% Potatoes 1%
The estimated long-term dietary intake (Th/DINEDI) was below the ADI. The long-term intake of residues of is unlikely to present a public health concern.	
Acute risk assessment / children Acute risk assessment / adults / general population Acute risk assessment	nt /children Acute risk assessment / adults / general population
Details - acute risk assessment /children Details - acute risk assessment/adults Hide IESTI new calci	culations Show IESTI new calculations
Details - acute risk assessment /children Details - acute risk assessment/adults Hide IESTI new calcut The acute risk assessment is based on the ARID. ESTI new calcutations: ESTI new calcutations:	
The acute risk assessment is based on the ARID. The calculation is based on the large portion of the most critical consumer group. ES1 new calculations is based on the large portion of the most critical consumer group. ES1 new calculations is based on the large portion of the most critical consumer group. He calculations is based on the large portion of the most critical consumer group. He calculations is based on the large portion of the most critical consumer group. He calculations is based on the large portion of the most critical consumer group. He calculations is based on the large portion of the most critical consumer group. He calculations is based on the large portion of the most critical consumer group. He calculations is based on the large portion of the most critical consumer group. He calculations is based on the large portion of the most critical consumer group. He calculations is based on the large portion of the most critical consumer group. He calculations is based on the large portion of the most critical consumer group. He calculations is based on the large portion of the most critical consumer group. He calculations is based on the large portion of the most critical consumer group. He calculations is based on the large portion of the most critical consumer group. He calculations is based on the large portion of the most critical consumer group. He calculations is based on the large portion of the most critical consumer group. He calculations is based on the large portion of the most critical consumer group. He calculations is based on the large portion of the most critical consumer group. He calculations is based on the large portion of the most critical consumer group. He calculations is based on the large portion of the most critical consumer group. He calculations is based on the large portion of the most critical consumer group. He calculations is based on the large portion of the most critical consumer group. He calculations is based on the large portion of the most consumer group. He ca	d the peeling processing factor (PF), taking into account the residue in the edible portion and/or the conversion 2a, 2b and 3 calculations a variability factor of 3 is used. Since this methodology is not based on international is indicate only.
The acute risk assessment is based on the ARID. The calculation is based on the large portion of the most critical consumer group. ESTI new calculations is based on the large portion of the most critical consumer group. ESTI new calculations is based on the large portion of the most critical consumer group. He calculation is besed on the large portion of the most critical consumer group. He calculation is besed on the large portion of the most critical consumer group. He calculation is besed on the large portion of the most critical consumer group. He calculation is besed on the large portion of the most critical consumer group. He calculation is besed on the large portion of the most critical consumer group. He calculation is besed on the large portion of the most critical consumer group. He calculation is besed on the large portion of the most critical consumer group. He calculation is besed on the large portion of the most critical consumer group. He calculation is besed on the large portion of the most critical consumer group. He calculation is besed on the large portion of the most critical consumer group. He calculation is besed on the large portion of the most critical consumer group. He calculation is besed on the large portion of the most critical consumer group. He calculation is besed on the large portion of the most critical consumer group. He calculation is besed on the large portion of the most critical consumer group. He calculation is besed on the large portion of the most critical consumer group. He calculation is besed on the large portion of the most critical consumer group. He calculation is besed on the large portion of the most critical consumer group. He calculation is besed on the large portion of the most construction of the data definition of the dat	d the peeling/processing factor (PF), taking into account the residue in the edble portion and/or the conversion Za, Zb and 3 calculations a variability factor of 3 is used. Since this methodology is not based on international
The acute fisk assessment is based on the ARID. The calculation is based on the large portion of the most official consumer group. The calculation is based on the large portion of the most official consumer group. The calculation is based on the large portion of the most official consumer group. The calculation is based on the large portion of the most official consumer group. The calculation is based on the large portion of the most official consumer group. The calculation is based on the large portion of the most official consumer group. The calculation is based on the large portion of the most official consumer group. The calculation is based on the large portion of the most official consumer group. The calculation is based on the large portion of the most official consumer group. The calculation is based on the large portion of the most official consumer group. The calculation is based on the large portion of the most official consumer group. The calculation is based on the large portion of the most official consumer group. The calculation is based on the large portion of the most official consumer group. The calculation is based on the large portion of the most official consumer group. The calculation is based on the large portion of the most official consumer group. The calculation is based on the most official consumer group. The calculation is based on the most official consumer group. The calculation is based on the most official consumer group. The calculation is based on the large portion of the most official consumer group. The calculation is based on the large portion of the most official consumer group. The calculation is based on the most official consumer group. The calculation is based on the most official consumer group. The calculation is based on the most official consumer group. The calculation is based on the most official consumer group. The calculation is based on the most official consumer group. The calculation is based on the most official consumer group. The calculation is based on	d the peeling processing factor (PF), taking into account the residue in the edible portion and/or the conversion 2a, 2b and 3 calculations a variability factor of 3 is used. Since this methodology is not based on international is indicate only.
The acute risk assessment is based on the ARID. The acute risk assessment is based on the ARID. The calculation is based on the large portion of the most critical consumer group. ESTI new calculation is based on the large portion of the most critical consumer group. ESTI new calculation is based on the large portion of the most critical consumer group. ESTI new calculation is based on the large portion of the most critical consumer group. ESTI new calculation is based on the large portion of the most critical consumer group. ESTI new calculation is based on the large portion of the most critical consumer group. ESTI new calculation is based on the large portion of the most critical consumer group. ESTI new calculation is based on the large portion of the most critical consumer group. ESTI new calculation is based on the large portion of the most critical consumer group. ESTI new calculation is based on the large portion of the most critical consumer group. ESTI new calculation is based on the large portion of the most critical consumer group. ESTI new calculation is based on the large portion of the most critical consumer group. ESTI new calculation is based on the large portion of the most critical consumer group. ESTI new calculation is based on the large portion of the most critical consumer group. ESTI new calculation is based on the large portion of the most critical consumer group. ESTI new calculation is based on the most critical consumer group. ESTI new calculation is based on the most critical consumer group. ESTI new calculation is based on the most critical consumer group. ESTI new calculation is based on the most critical consumer group. ESTI new calculation is based on the most critical consumer group. ESTI new calculation is based on the most critical consumer group. ESTI new calculation is based on the most critical consumer group. ESTI new calculation is based on the most critical consumer group. ESTI new calculation is based on the most consumer group. ESTI new calculation is based on the most	d the peeling/processing factor (PF), taking into account the residue in the edible portion and/or the conversion 2a, 2b and 3 calculations a variability factor of 3 is used. Since this methodology is not based on international as indicate only. rrationally agreed principles, the results are considered as indicative only.
The acule fisk assessment is based on the ARID. The acule fisk assessment is based on the large portion of the most critical consumer group. The acule fisk assessment is based on the large portion of the most critical consumer group. EST new resolution is based on the large portion of the most critical consumer group. Results for children Results for children Results for children No. of commodiles for which ARD/AD1s No. of commodiles for for for set point for for for for set point for f	d fle pretingiprocessing factor (PT), taking into account the residue in the edite portion and/or the conversion 2.2.2 and 3 calculations is variability factor of 3 is used. Since this methodology in or based on international as indicative only. Institutionally agreed principles, the results are considered as indicative only. Results for edute No. of commodifies for which ARD(AD) is exceeded (EST in ew: MeL / input MeL / input
The acule risk assessment is based on the ARD. The acule risk assessment is based on the targe portion of the most critical consumer group. The acule risk assessment is based on the targe portion of the most critical consumer group. EST more calculations: The acule risk assessment is based on the targe portion of the most critical consumer group. Results for children (so commodilies for which ARD/ADI is exceeded (IEST) Results for all crops EST new Results for children No. of commodilies for which ARD/ADI is exceeded (IEST) EST new Results for children No. of commodilies for which ARD/ADI is exceeded (IEST) EST new Results for children No. of commodilies for which ARD/ADI is exceeded (IEST) EST new Results for children No. of commodilies for which ARD/ADI is exceeded (IEST) EST new Results for children No. of commodilies for which ARD/ADI is exceeded (IEST) EST new Results for children No. of commodilies for which ARD/ADI is exceeded (IEST) EST new Results for children No. of commodilies for which ARD/ADI is exceeded (IEST) EST new Results for children No. of commodilies for which ARD/ADI is exceeded (IEST) EST new Results for children No. of commodilies for which ARD/ADI is exceeded (IEST) EST new Results for children No. of commodilies for which ARD/ADI is exceeded (IEST) EST new Results for children No. of commodilies for which ARD/ADI is exceeded (IEST) EST new Results for children No. of commodilies for which ARD/ADI is exceeded (IEST) EST new Results for children No. of commodilies for which ARD/ADI is exceeded (IEST) EST new Results for children No. of commodilies for which ARD/ADI is exceeded (IEST)	d the presing/processing factor (PF), taking into account the residue in the edite portion and/or the conversion 2.2.2.2 and 3 calculations a variability factor of 3 is used. Since this methodology is not based on international as indicative only. IEEE TI new Results for adults No. of commodiles for which ARD/ADI is exceeded (EST new). MRL / Input for / R. Explored MRL / Input for / Explored (EST new). MRL / Input for / Explored (EST new). MRL / Input for / Explored MRL / Input for / Explored for /
The aculation is based on the ARDD. The calculation is based on the ARDD. The calculation is based on the large portion of the most critical consumer group. Bigs 1 Results for all crops EST new calculations: EST new calculations:	d he prelingiprocessing factor (PT) taking into account the residue in the edite portion and/or the convention 2.2.2 and 3 calculations a saturability factor of 3 is used. Since this methodology is not based on international as indicative only. IEEE Trave Results for edute No. of commodifies for which ARD(AD) is exceeded (EST) new: MRL /input 67.71 exp. MRL /input 15.71 new: MRL /input 15.71 new: MRL /input 15.71 new: MRL /input 15.71 new: MRL /input 15.71 new: 15.71 new: 15
The aculation is based on the large portion of the ARD. The calculation is based on the large portion of the most official consumer group. EST new calculations is based on the large portion of the most official consumer group. EST new calculations is based on the large portion of the most official consumer group. Results for children Results for all crops Results for children Results Resul	d the peeling processing Sector (PF), taking into account the residue in the edible portion and/or the conversion 24, 25 and 3 calculations a variability factor of 3 is used. Since this methodology's not based on international as indicate only. Teationaby agreed principles, the results are considered as indicative only.
The calculation is based on the ARDD. The calculation is based on the ARDD The calculation is based on the large portion of the most critical consumer group. EST new calculation is based on the large portion of the most critical consumer group. EST new calculation is based on the large portion of the most critical consumer group. EST new calculation is based on the large portion of the most critical consumer group. EST new calculation is based on the large portion of the most critical consumer group. EST new calculation is based on the large portion of the most critical consumer group. EST new calculation is based on the ARDADI is constant on the area of the methodology is not based on intervention of commodities for which ARDADI is constant (EST) new calculation is based on intervention of the first of t	d the pre-ling-processing factor (PF), taking into account the residue in the edible portion and/or the conversion 24. 25 and 3 calculations a variability factor of 3 is used. Since this methodology is not based on international relationally agreed principles, the results are considered as indicative only.
The aculation is based on the ARD. The aculation is based on the large portion of the most critical consumer group. BST new calculations: The aciduation is based on the large portion of the most critical consumer group. EST new calculations: The aciduation is based on the large portion of the most critical consumer group. Provide for the large portion of the most critical consumer group. EST new calculations: The aciduation is based on the large portion of the most critical consumer group. EST new calculations: Bits of the methodology is not based on themethodology is not based on item of the methodology	d he peeling processing Sector (PF), taking into account the residue in the edible portion and/or the conversion 24, 22 and 3 calculations a sublability factor of 3 is used. Since this methodology is not based on international is a flactate into: reationably agreed principles, the results are considered as indicative only. IEST new Met./ input Met./ input Flactation
The actuality is based on the KRD. The actuality is based on the KRD. The actuality is based on the targe portion of the most ortical consumer group. The actuality is based on the targe portion of the most ortical consumer group. EST new calculations is based on the targe portion of the most ortical consumer group. The actuality is based on the targe portion of the most ortical consumer group. Results for children Resul	d the pre-ling-processing Sector (PF), taking into account the residue in the edible portion and/or the conversion 24, 25 and 3 calculations a unlability factor of 3 is used. Since this methodology is not based on international is a indicate only reationshy agreed principles, the results are considered as indicative only.
The acule risk assessment is based on the ARD. The aculation is based on the large portion of the most ortical consumer group. EST new calculations: EST aculation is based on the large portion of the most ortical consumer group. Image: Status for children (solution is based on the large portion of the most ortical consumer group. EST new calculation is based on the large portion of the most ortical consumer group. EST new calculation is based on the large portion of the most ortical consumer group. Image: Status for children (solution is based on the large portion of the most ortical consumer group. Results for children (solution is based on the large portion of the most ortical consumer group. EST new factor for the end solution for consumer group. Image: Status for children (solution is based on the large portion of the most ortical consumer group. Results for children (solution is based on the large portion of the most ortical consumer group. EST new factor for the end solution is based on there (solution is based on the large portion of the most ortical consumer group. Image: Status for children (solution is based on the large portion of the most ortical consumer group. Results for children (solution is based on the large portion of the most ortical consumer group. EST new factor for the large for the large portion of the most ortical consumer group. Image: Status for children (solution is based on the large portion of the most ortical consumer group. Results for children (solution is based on the large portion of the most ortical consumer group. EST new factor for the solutis for the large portion of the most ortical consum	d he peelingbprocessing factor (PD) taking into account the residue in the editor portion and/or the convention 2.2.2 and 3.2.distributions a variability factor of 3 is used. Since this methodology is not based on international as indicate only. Results for adults Network Since this methodology is not based on international as indicate only. realized adults of a subset of a subset of a subset on international as indicate only. Image: Since the subset of a subs
The aculation is based on the APDD. The calculation is based on the large portion of the most critical consumer group. ESTI new calculations: The calculation is based on the large portion of the most critical consumer group. ESTI new calculation is based on the large portion of the most critical consumer group. ESTI new calculations: The calculation is based on the large portion of the most critical consumer group. Show results for all crops ESTI new calculations: The calculation is based on interval since this methodology is not based on interval on commodiles for which APDD/D1 is exceeded (ESTI):	d he preling/processing factor (PF), taking into account the residue in the edible portion and/or the conversion 24, 25, and 3 calculations an analability factor of 3 is used. Since this methodology is not based on international relationality agreed principles, the results are considered as indicative only.
The acute fisk assessment is based on the ARD. The acute fisk assessment is based on the targe portion of the most official consumer group. ESTI new calculations: ESTI new calculations is based on the targe portion of the most official consumer group. Based on the targe portion of the most official consumer group. ESTI new calculations: The acute fisk assessment is based on the target portion of the most of the fidentian (CF) For case 2 agreed principles, the results are considered a since this methodology is not based on theme of the fidentian (CF) For case 2 agreed principles, the results are considered a since this methodology is not based on theme to do not invice the fidentian (CF) For case 2 agreed principles, the results are considered a since this methodology is not based on theme to do not invice the fidentian (CF) For case 2 agreed principles, the results are considered a since this methodology is not based on theme to do not invice the fidentian (CF) For case 2 agreed principles, the results are considered agreed principles. The second distribution the fidentian (CF) for case 2 agreed principles, the results for all corpus to do not invice the fidentian (CF) for case 2 agreed principles. The second distribution the fidentian (CF) for case 2 agreed principles, the results for all corpus to do not invice the fidentian (CF) for case 2 agreed principles. The second distribution to do not invice the fidentian (CF) for case 2 agreed principles. The second distribution to do not invice the fidentian (CF) for case 2 agreed principles. The second distribution to do not invice the fidentian (CF) for case 2 agreed principles. The second distribution to do not invice the fidentian (CF) for case 2 agreed principles. The second distribution to do not invice the fidentian (CF) for case 2 agreed principles. The second distribution to do not invice the fidentian (CF) for case 2 agreed distribution to do not invice the fidenti	d he preling/processing factor (PF), taking into account the residue in the edible portion and/or the conversion 24, 25, and 3 calculations an analability factor of 3 is used. Since this methodology is not based on international relationality agreed principles, the results are considered as indicative only.
Based on the ARD. The calculation is based on the large portion of the most official consumer group. ESTI new calculations: The calculation is based on the large portion of the most official consumer group. Based on the large portion of the most official consumer group. Based on the large portion of the most official consumer group. Based on the large portion of the most official consumer group. Based on the large portion of the most official consumer group. Based for children No. of commodities for which ARD/AD1 is exceeded (EST): ESTI ESTI new ESTI new	d he peelingbroces sing factor (PF), taking into account the residue in the edible portion and/or the conversion 24. 2b and 3 coldical conversion of 24. 2b and 26. 2
The soule fisk assessment is based on the APD. The calculation is based on the large portion of the most critical consumer group. Set The calculation is based on the large portion of the most critical consumer group. Set The calculation is based on the large portion of the most critical consumer group. Set The calculation is based on the large portion of the most critical consumer group. Set The calculation is based on the large portion of the most critical consumer group. Show results for all croops Set The calculation is based on the APD/DD is the large colspan="2">Set The methodology is not based on the large colspan="2">Set The methodology is not based on the large colspan="2">Set The methodology is not based on the APD/DD is the APD/DD is the large colspan="2">Set The methodology is not based on the APD/DD is the large colspan="2">Set The methodology is not based on the APD/DD is the large colspan="2">Set The methodology is not based on the APD/DD is the large colspan="2">Set The methodology is not based on the APD/DD is the large colspan="2">Set The methodology is not based on the APD/DD is the large colspan="2">Set The methodology is not based on the APD/DD is the large colspan="2">Set The methodology is not based on the APD/DD is the large colspan="2">Set The methodology is not based on the APD/DD is the large colspan="2">Set The methodology is not based on the APD/DD is the large colspan="2">Set The methodology is not based on the APD/DD is the large colspan="2">Set The methodology is not based on the APD/DD is the large colspan="2">Set The methodology is not based on the APD/DD is the large colspan="2">Set The methodology is not based on the APD/DD is the large colspan="2">Set The methodology is not based on the APD/DD is the large colspan="2">Set The methodology is not based o	d he peelingbroces sing Sactor (PF), taking into account the residue in the edible portion and/or the conversion 2% 20 and 3 obtained by bactor d3's used. Since this methodology is not based on international and the second of the second s
The soule fisk assessment is based on the APD. The calculation is based on the large portion of the most critical consumer group. Set The calculation is based on the large portion of the most critical consumer group. Set The calculation is based on the large portion of the most critical consumer group. Set The calculation is based on the large portion of the most critical consumer group. Set The calculation is based on the large portion of the most critical consumer group. Show results for all croops Set The calculation is based on the APD/DD is the large colspan="2">Set The methodology is not based on the large colspan="2">Set The methodology is not based on the large colspan="2">Set The methodology is not based on the APD/DD is the APD/DD is the large colspan="2">Set The methodology is not based on the APD/DD is the large colspan="2">Set The methodology is not based on the APD/DD is the large colspan="2">Set The methodology is not based on the APD/DD is the large colspan="2">Set The methodology is not based on the APD/DD is the large colspan="2">Set The methodology is not based on the APD/DD is the large colspan="2">Set The methodology is not based on the APD/DD is the large colspan="2">Set The methodology is not based on the APD/DD is the large colspan="2">Set The methodology is not based on the APD/DD is the large colspan="2">Set The methodology is not based on the APD/DD is the large colspan="2">Set The methodology is not based on the APD/DD is the large colspan="2">Set The methodology is not based on the APD/DD is the large colspan="2">Set The methodology is not based on the APD/DD is the large colspan="2">Set The methodology is not based on the APD/DD is the large colspan="2">Set The methodology is not based on the APD/DD is the large colspan="2">Set The methodology is not based o	d he packing boroccasing before (PF), taking into account the residue in the edible portion and/or the conversion of 2, 2, 2 and 3 calculated by the data of 3 is used. Since this methodology is not based on international as indicative only. Testionally agreed principles, the results are considered as indicative only. Testionally agreed principles, the results are considered as indicative only. Testionally agreed principles, the results are considered as indicative only. Testionally agreed principles, the results are considered as indicative only. Testionally agreed principles, the results are considered as indicative only. Testionally agreed principles, the results are considered as indicative only. Testionally agreed principles, the results are considered as indicative only. Testionally agreed principles, the results are considered as indicative only. Testionally agreed principles, the results are considered as indicative only. Testionally agreed principles, the results are considered as indicative only. Testionally agreed principles, the results are considered as indicative only. Testionally agreed principles, the results are considered as indicative only. Testionally agreed principles, the results are considered as indicative only. Testionally agreed principles are considered as indicative only. Testionally agreed princip
The actualization is based on the ARDD. The actualization is based on the large portion of the most official consumer group. EST new calculations: The actualization is based on the large portion of the most official consumer group. Show results for all crops Sint we calculation is based on the MDD. The actualization is based on the MDD. The actualization is based on the MDD. No. of commodities for which ARDD/DI is exceeded (EST): EST new EST new	d he pediapprocessing Sector (PF), taking into account the residue in the edible portion and/or the conversion of 2, 2 and 3 characteristic sector of 3 is used. Since this methodology is not based on international as indicative only. Testinate and the results are considered as indicative only. Testinate on the results are considered as indicative on the results are consintered as indi
The acubit is based on the ARD. The acubit is based on the large portion of the most official consumer group. The acubit is based on the large portion of the most official consumer group. EST new calculation is based on the large portion of the most official consumer group. EST new calculation is based on the large portion of the most official consumer group. Results for children Results for children Results for children EST new Results for adults is portioned in the MRL / Input for a set of the most official consumer group. Results for children Results for children Results for children EST new Results for adults is portioned in the MRL / Input for a set of the interval of the MRL / Input for a set of the interval of the MRL / Input for a set of the interval of the MRL / Input for a set of the interval of the MRL / Input for a set of the interval of the MRL / Input for a set of the interval of the MRL / Input for a set of the interval of the MRL / Input for a set of the interval of the MRL / Input for a set of the interval of the MRL / Input for a set of the interval of the MRL / Input for a set of the interval of the MRL / Input for a set of the interval of the MRL / Input for a set of the interval of the MRL / Input for a set of the interval of the MRL / Input for a set of the interval of the MRL / Input for a set of the MRL / Input for a set of the interval of the MRL / Input for a set of the MRL / Input for a set of the MRL / Input for a set of the interval of the MRL / Input for a set of the MRL / Input for a set of the MRL / Input for a set of the interval of the MRL / Input for a set of the MRL / Input for	d he pediapprocessing Sector (PF), taking into account the residue in the edible portion and/or the conversion of 2, 2 and 3 characteristic sector of 3 is used. Since this methodology is not based on international as indicative only. Testinate and the results are considered as indicative only. Testinate on the results are considered as indicative on the results are consintered as indi
The acule risk assessment is based on the APD. The aculation is based on the large portion of the most official consumer group. EST new calculation is based on the large portion of the most official consumer group. EST new calculation is based on the large portion of the most official consumer group. Image: state of the large portion of the most official consumer group. Show results for all corps is the file most official definition (CF) For case 2 agreed principles, the results are considered a since this methodology is not based on intern the official definition (CF) For case 2 agreed principles, the results are considered a since this methodology is not based on intern the official definition (CF) For case 2 agreed principles, the results are considered a since this methodology is not based on intern the official definition (CF) For case 2 agreed principles, the results are considered a since this methodology is not based on intern the official definition (CF) For case 2 agreed principles, the results are considered is the definition (CF) For case 2 agreed principles, the results are considered is the definition (CF) For case 2 agreed principles, the results are considered in the definition (CF) For case 2 agreed principles, the results for definition (CF) For case 2 agreed principles, the results of the definition (CF) For case 2 agreed principles, the results for definition (CF) For case 2 agreed principles, the results for definition (CF) For case 2 agreed principles, the results for definition (CF) For case 2 agreed principles, the results for definition (CF) For case 2 agreed principles, the results for definition (CF) For case 2 agreed principles, the results for definition (CF) For case 2 agreed principles, the results for definition (CF) For case 2 agreed principles, the results for definition (CF) For case 2 agreed principles, the result definition (CF) For case 2 agreed printiples, the resu	d he pediapprocessing Sector (PF), taking into account the residue in the edible portion and/or the conversion of 2, 2 and 3 characteristic sector of 3 is used. Since this methodology is not based on international as indicative only. Testinate and the results are considered as indicative only. Testinate on the results are considered as indicative on the results are consintered as indi
The acute fisk assessment is based on the ARD. The actualition is based on the https://www.inter.goop. ESTI new calculations: ESTI new calculation is based on the https://www.inter.goop. Show results for all corps Show results for all co	d he pediapprocessing Sector (PF), taking into account the residue in the edible portion and/or the conversion of 2, 2 and 3 characteristic sector of 3 is used. Since this methodology is not based on international as indicative only. Testinate and the results are considered as indicative only. Testinate on the results are considered as indicative on the results are consintered as indi
The acute fisk assessment is based on the ARDD. The acute fisk assessment is based on the large portion of the most of tical consumer group. ESTI new calculations are definition (C): For case 2 agreed principles, the results are considered a since this method.ARD/AD1 is exceeded (ESTI) ESTI new calculations are definition (C): For case 2 agreed principles, the results are considered a since this method.ARD/AD1 is exceeded (ESTI) More The State Calculation is based on the ARD/AD1 is exceeded (ESTI) Results for adults No. of commodiles for which ARD/AD1 is exceeded (ESTI) ESTI new ESTI new ESTI new ARD/AD1 Commodiles for which ARD/AD1 is exceeded (ESTI) ESTI new ESTI new	d he pediapprocessing Sector (PF), taking into account the residue in the edible portion and/or the conversion of 2, 2 and 3 characteristic sector of 3 is used. Since this methodology is not based on international as indicative only. Testinate and the results are considered as indicative only. Testinate on the results are considered as indicative on the results are consintered as indi
The acute in its based on the ARDD. The activitation is based on the large portion of the most official consumer group. EST new calculations: The activitation is based on the large portion of the most official consumer group. Perform The activitation is based on the large portion of the most official consumer group. EST new calculations: The activitation is based on the MDD. The activitation is based on the MDD. Performance in the large portion of the most official consumer group. EST new calculations: The activitation is based on the MDD. Performance in the large portion of the most official consumer group. Perform The activitation is based on the MDD. No. of commodities for which ARDD/OI is exceeded (EST):	d he pediapprocessing Sector (PF), taking into account the residue in the edible portion and/or the conversion of 2, 2 and 3 characteristic sector of 3 is used. Since this methodology is not based on international as indicative only. Testinate and the results are considered as indicative only. Testinate on the results are considered as indicative on the results are consintered as indi
The sack first assessment is based on the ARD. EST the calculation: It based on the most official consumer group. Second colspan="2">EST the calculation: It based on the most official consumer group. The sack first assessment is based on the most official consumer group. Second colspan="2">Second colspan="2"Second colspan="2"Second colspan="2"Second colspan="2"Second colsp	d he pediapprocessing Sector (PF), taking into account the residue in the edible portion and/or the conversion of 2, 2 and 3 characteristic sector of 3 is used. Since this methodology is not based on international as indicative only. Testinate and the results are considered as indicative only. Testinate on the results are considered as indicative on the results are consintered as indi
The acube ink assessment is based on the ARD. The acubation is based on the targe portion of the most ortical consumer group. EST new calculations: The acubation is based on the targe portion of the most ortical consumer group. Show results for all crops	d he pediapprocessing Sector (PF), taking into account the residue in the edible portion and/or the conversion of 2, 2 and 3 characteristic sector of 3 is used. Since this methodology is not based on international as indicative only. Testinate and the results are considered as indicative only. Testinate on the results are considered as indicative on the results are consintered as indi
The acculation is based on the ARD. The acculation is based on the stage portion of the most of field consumer group. EXTINCE of additional based on the most of field consumer group. The acculation is based on the most of field consumer group. EXTINCE of additional based on the most of field consumer group. The acculation is based on the most of field consumer group. EXTINCE of additional based on them of the most of field consumer group. The acculation is based on the most of field consumer group. Results for childen Results for childen No. of commodities for which ARD/AD1s Commodities for which ARD/AD1s EXTINCE of commodities for which ARD/AD1s Commodities for which ARD/AD1s Commodities for which ARD/AD1s Commodites for which ARD/AD1s	d he pediapprocessing Sector (PF), taking into account the residue in the edible portion and/or the conversion of 2, 2 and 3 characteristic sector of 3 is used. Since this methodology is not based on international as indicative only. Testinate and the results are considered as indicative only. Testinate on the results are considered as indicative on the results are consintered as indi

2.7.10 Proposed MRLs and compliance with existing MRLs

EU MRLs for dicamba are currently detailed in Regulation (EU) 2015/845. EU MRLs have not been reviewed under Article 12 of Regulation (EC) 396/2005. EU MRLs for commodities relevant to this submission are detailed in the following table, with established and proposed values. No new EU MRLs are currently proposed.

Maize

MRLs for maize grain have been proposed. Both results from the residue trials performed by Rotam and Syngenta have been included. The highest LOQ have been used to set the MRL, see Table 56.

Table 56:	MRL calcu	lations for dicamba on maize grain – representative GAPs		
Region	Outdoor / Pro- tected	Residue Data (mg/kg)	MRL OECD Method (mg/kg)	MRL OECD Rounded (mg/kg)
Northern EU	Outdoor	<0.01, <0.01 <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.05, <0.05, <0.05	0.05*	0.05*
Southern EU	Outdoor	<0.01 < 0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0.01, <0	0.01*	0.01*

* The highest LOQ is used to set the MRL.

There is an existing EU MRL of 0.5 mg/kg (Commission Regulation (EU) 845/2015) for dicamba on maize. The data presented in Table 56 from trials supporting the representative GAP indicate that all residues will be within the existing EU MRL of 0.5 mg/kg.

Dicamba residue calculations for risk assessment

STMR and HR values for maize grain have been proposed for northern and southern Europe for the combined residues of dicamba and 5-OH-dicamba for the trials performed by Syngenta only, since the LOQ for 5-OH dicamba was 0.1 for the residue trials performed by Rotam. The STMR is the median residue and the HR is the highest residue value found. The values are presented in Table 57.

STMR and HR values for maize forage and stover as potential livestock feed items have also been proposed for northern and southern Europe and are presented in Table 57.

Table 57:	STMR and HR calculations for dicamba + 5-OH-dicamba on maize grain, forage and stover -
representati	ive GAP

Region	Outdoor / Pro- tected	Residue Data (mg/kg)	STMR (mg/kg)	HR (mg/kg)
Grain				
Northern EU	Outdoor	<0.02, <0.02, <0.02, <0.02, <0.02, <0.02, <0.02, <0.02, <0.02, <0.02, <0.02, <0.02, <0.02, <0.01, 0.1	0.02	0.1
Southern EU	Outdoor	<pre><0.02, <0.02, <0.02, <0.02, <0.02, <0.02, <0.02, <0.02, <0.02, <0.02, <0.02, <0.02, <0.02, <0.02</pre>	0.02	0.02
Northern + Southern EU	Outdoor	$\begin{array}{c} <0.02, <0.02, <0.02, <0.02, <0.02, <0.02, <0.02, \\ <0.02, <0.02, <0.02, <0.02, <0.02, <0.02, <0.02, \\ <0.02, <0.02, <0.02, <0.02, <0.02, <0.02, <0.02, \\ <0.02, <0.02, <0.1, <0.1, <0.1 \end{array}$	0.02	0.1
Forage				
Northern EU	Outdoor	0.02, 0.048, 0.243, 0.376, 0.417, 0.617	0.31	0.617
Southern EU	Outdoor	0.023, 0.026, 0.028, 0.039, 0.05, 0.05, 0.137	0.05	0.137
Stover		· · · · · · · · · · · · · · · · · · ·		
Northern EU	Outdoor	0.02, 0.027, 0.065, 0.076, 3x 0.1, 0.525	0.301	0.525
Southern EU	Outdoor	<0.02, <0.02, 0.02, 0.02, 0.029, 0.029, 0.029, 0.03, 0.03 0.05, 0.08, 0.095	0.029	0.095

Dicamba residue calculations to derive conversion factors

Residue values of dicamba and 5-OH-dicamba derived from the supervised residue trials have been used to calculate MRLs and derive STMR and HR values for risk assessment calculations. No conversion factors have been used for these calculations. Conversion factors have been determined using these residue data and are summarised in Table 58.

C	7	Individual residue values (mg/kg)		
Crop	Zone	Dicamba	5-OH-dicamba	Conversion factor
Maize	NEU/SEU	20 x <0.02	20 x <0.02	20 x 1.00
grain		0.02	0.02	1.00
		< 0.01	0.01	1.00

Dicumbu residue conversion fuetor curculations	Table 58:	Dicamba	residue	conversion	factor	calculations
--	-----------	---------	---------	------------	--------	--------------

Barley, oat, rye and wheat

Dicamba residue calculations for MRL setting

An MRL for all small grain cereals (barley, oat, rye and wheat) has been calculated for northern and southern Europe according to the OECD calculator (OECD Series on pesticides No. 56, ENV/JM/MONO (2011)2, 1 March 2011) for parent dicamba only. In accordance with SANCO 7525/VI/95 – rev.10.1, data from barley, oat, rye and wheat trials can be extrapolated to support the other small grain cereal crops. Since the residue trials presented in this dossier on barley, oats and wheat in Northern EU were conducted following the same GAP, the data has been combined to calculate a single MRL value for all small grain cereal crops in Northern EU. For the Southern EU, the MRL for small grain cereals is based on data in wheat.

In these calculations a single data point from each trial supporting the representative GAP has been considered. Where two or more values are available from duplicate analysis for the same trial following applications according to the GAP, the mean has been used. Where two or more values are available from duplicate sampling for the same trial following applications according to the GAP, the highest has been used. The calculated outputs are presented in Table 59.

Region	Commodity	Outdoor / Protected	Residue Data (mg/kg)	MRL OECD Method (mg/kg)	MRL OECD Rounded (mg/kg)
Northern EU	Barley, oats, wheat	Outdoor	<0.01, <0.01, <0.01, 0.02, 0.02, 0.02, 0.03, 0.052, 0.06, 0.07, 0.076, 0.117, 0.142, 0.146	0.25	0.3
Southern EU	Wheat	Outdoor	$\begin{array}{c} <\!\!0.01, <\!\!0.01, <\!\!0.01, <\!\!0.01, <\!\!0.01, \\ <\!\!0.01, 0.02, 0.02, 0.07 \end{array}$	0.11	0.15

 Table 59:
 MRL calculations for dicamba on cereal grain – representative GAP

There are existing EU MRLs of 7.0 mg/kg for dicamba in barley, 0.5 mg/kg in oats and rye, and 2.0 mg/kg in wheat (Commission Regulation (EU) 845/2015). The data presented in Table 59 from trials supporting the representative GAP indicate that residues in small grain cereals will be within the existing EU MRLs.

Dicamba residue calculations for risk assessment

STMR and HR values for barley, oats, rye and wheat (including triticale) grain and straw have been calculated for northern and southern Europe for the combined residues of dicamba and 5-OH-dicamba. The STMR is the median residue and the HR is the highest residue value found. In accordance with SANCO 7525/VI/95 – rev.10.1 data from barley, oat, rye and wheat trials can be extrapolated to support the other small grain cereal crops when the final application is made before the edible part of the crop is formed. Since the residue trials presented in this dossier on barley, oats and wheat were conducted following the same GAP in Northern EU, the data has been combined to calculate single STMR and HR values for small grain cereal crops in Northern EU. For the Southern EU, the STMR and HR values for small grain cereals are based on data in wheat.

Volume 1 – Level 2

In these calculations a single data point from each trial supporting the representative GAP has been considered. Where two or more values are available from duplicate analysis for the same trial following applications according to the GAP, the mean has been used. Where two or more values are available from duplicate sampling for the same trial following applications according to the GAP, the highest has been used. The calculated outputs for grain and straw are presented in Table 60.

 Table 60:
 STMR and HR calculations for dicamba and 5-OH-dicamba on cereal grain and straw – representative GAPs

Region	Commodity	Outdoor / Protected	Residue Data (mg/kg)	STMR (mg/kg)	HR (mg/kg)
Grain					
Northern EU	Barley, oats, wheat	Outdoor	<0.02, <0.02, <0.02, 0.03, 0.03, 0.03, 0.04, 0.062, 0.07, 0.086, 0.10, 0.127, 0.153, 0.167	0.051	0.167
Southern EU	Wheat	Outdoor	<0.02, <0.02, <0.02, <0.02, <0.02, 0.03, 0.06, 0.15	0.02	0.15
Straw					
Northern EU	Barley, oats, wheat	Outdoor	<0,02, <0.02, <0.02, 0.02, 0.025, 0.026, 0.03, 0.05, 0.078, 0.098, 0.112, 0.12, 0.13, 0.34	0.04	0.34
Southern EU	Wheat	Outdoor	0.05, 0.06, 0.07, 0.20, 0.29, 0.34, 1.32, 1.78	0.245	1.78

Dicamba residue calculations to derive conversion factors

Residue values of dicamba and 5-OH-dicamba derived from the supervised residue trials have been used to calculate MRLs and derive STMR and HR values for risk assessment calculations. No conversion factors have been used for these calculations.

Conversion factors have been determined using these residue data and are summarised in Table 61.

C	7		Individual residue values (mg/kg)			
Crop	Zone	Dicamba	5-OH-dicamba	Conversion factor		
Barley	NEU	0.07	0.03	0.43		
grain		0.02	<0.01	0.50		
		0.02	<0.01	0.50		
		< 0.01	<0.01	1.00		
		0.02	<0.01	0.5		
		0.06	<0.01	0.17		
		0.03	<0.01	0.33		
		< 0.01	<0.01	1.00		
Median con	version facto	r (barley grain): 0.50				
Oats grain	NEU	0.146	0.021	0.14		
		0.052	<0.01	0.19		
		0.142	0.011	0.08		
		0.076	<0.01	0.13		
		0.117	< 0.01	0.09		
Median con	version facto	r (oats grain): 0.13				
		< 0.01	<0.01	1		
		<0.01	<0.01	1		
		< 0.01	<0.01	1		

Table 61:Dicamba residue conversion factor calculations

Crop	Zone	Individual residue values (mg/kg)			
Crop	Lone	Dicamba	5-OH-dicamba	Conversion factor	
		< 0.01	<0.01	1	
		< 0.01	<0.01	1	
		0.02	0.01	0.50	
		< 0.01	<0.01	1	
		0.07	0.08	1.14	
		0.02	0.04	2.00	
Median conv	version facto	or (wheat grain): 1.00			
Barley	NEU	0.15	0.19	1.27	
straw		0.01	<0.01	1.00	
		0.02	0.03	1.50	
		<0.01	<0.01	1.00	
		0.02	0.01	0.50	
		0.06	0.07	1.17	
		0.05	0.07	1.40	
		< 0.01	0.01	1.00	
Median conv	version facto	or (barley straw): 1.085			
Oats straw	NEU	0.088	0.01	0.11	
		0.016	<0.01	0.63	
		0.1	0.012	0.12	
		0.067	0.011	0.16	
		0.015	<0.01	0.67	
Median conv	version facto	or (oats straw) 0.16			
		< 0.01	0.013	1.30	
		0.01	0.04	4.00	
		<0.01	0.05	5.00	
		0.02	0.18	9.00	
		0.02	0.27	13.50	
		0.03	0.31	10.33	
		0.01	0.06	6.00	
		0.18	1.6	8.89	
		0.12	1.2	10.00	

Sorghum

For MRL setting, the definition of the residue for dicamba is parent dicamba and its salts (free and conjugated). For risk assessment purposes it is the combined residues of dicamba and 5-OH-dicamba (free and conjugated). MRL calculations are presented below.

Dicamba residue calculations for MRL setting

MRLs for sorghum grain have been calculated for northern and southern Europe according to the OECD calculator (OECD Series on pesticides No. 56, ENV/JM/MONO (2011)2, 1 March 2011) for parent dicamba only. In these calculations a single data point from each trial (from either formulation if two formulations were used in side by side plots within a single trial) supporting the representative GAP has been considered. Where two or more values are available from duplicate analysis for the same trial following applications according to the GAP, the mean has been used. Where two or more values are available from duplicate sampling for the same trial following applications according to the GAP, the highest has been used. The calculated outputs are presented in Table 62.

 Table 62:
 MRL calculations for dicamba on sorghum grain – representative GAPs

Region	Outdoor / Pro- tected	Residue Data (mg/kg)	MRL OECD Method (mg/kg)	MRL OECD Rounded (mg/kg)
Northern EU	Outdoor	0.02, 0.02, 0.04, 0.04	0.09	0.09
Southern EU	Outdoor	<0.01, <0.01, <0.01, 0.02, 0.02, 0.028, 0.03, 0.04, 0.043, 0.15	0.203	0.2

There is an existing EU MRL of 4.0 mg/kg (Commission Regulation (EU) 845/2015) for dicamba on sorghum. The data presented in Table 62 from trials supporting the representative GAP indicate that all residues will be within the existing EU MRL of 4.0 mg/kg.

Dicamba residue calculations for risk assessment

STMR and HR values for sorghum grain have been calculated for northern and southern Europe for the combined residues of dicamba and 5-OH-dicamba. The STMR is the median residue and the HR is the highest residue value found. In these calculations a single data point from each trial (from either formulation if two formulations were used in side by side plots within a single trial) supporting the representative GAP has been considered. Where two or more values are available from duplicate analysis for the same trial following applications according to the GAP, the mean has been used. Where two or more values are available from duplicate same trial following applications according to the GAP, the highest has been used. The calculated outputs are presented in Table 63. STMR and HR values for sorghum forage and stover as potential livestock feed items have also been calculated for northern and southern Europe. The calculated outputs are presented in Table 63. Dicamba + 5-OH-dicamba residues in grain, forage and stover in samples from northern and southern EU were similar and combined calculations of the STMR and HR from the two regions are presented.

Table 63:	STMR and HR calculations for dicamba + 5-OH-dicamba on sorghum grain, forage and stover –
representati	ve GAP

Region	Outdoor / Pro- tected	Residue Data (mg/kg)	STMR (mg/kg)	HR (mg/kg)
Grain				
Northern EU	Outdoor	0.03, 0.04, 0.06, 0.07	0.05	0.07
Southern EU	Outdoor	0.02, 0.02, 0.02, 0.03, 0.04, 0.042, 0.06, 0.068, 0.08, 0.34	0.041	0.34
Northern + Southern EU	Outdoor	0.02, 0.02, 0.02, 0.03, 0.03, 0.04, 0.04, 0.042, 0.06, 0.06, 0.07, 0.068, 0.08, 0.34	0.041	0.34
Forage		· · · · · ·		
Northern EU	Outdoor	0.02, 0.28, 0.36, 0.56	0.32	0.56
Southern EU	Outdoor	0.02, 0.06, 0.07, 0.60	0.065	0.60
Northern + Southern EU	Outdoor	0.02, 0.02, 0.06, 0.07, 0.28, 0.36, 0.56, 0.60	0.175	0.60
Stover				
Northern EU	Outdoor	0.10, 0.23, 0.48, 0.66	0.355	0.66
Southern EU	Outdoor	0.02, 0.02, 0.03, 0.06, 0.10, 0.27, 0.295, 0.80	0.08	0.80
Northern + Southern EU	Outdoor	0.02, 0.02, 0.03, 0.06, 0.10, 0.10, 0.23, 0.27, 0.295, 0.48, 0.66, 0.80	0.165	0.80

Dicamba residue calculations to derive conversion factors

Residue values of dicamba and 5-OH-dicamba derived from the supervised residue trials have been used to calculate MRLs and derive STMR and HR values for risk assessment calculations. No conversion factors have been used for these calculations.

Conversion factors have been determined using these residue data and are summarised in Table 64.

Table 64:Dicamba residue conversion factor calculations

Crop	Zone	Individual residue values (mg/kg)		
Сгор	Zone	Dicamba	5-OH-dicamba	Conversion factor
Sorghum	NEU/SEU	0.04	0.02	0.50
grain		0.02	<0.01	0.50
		0.04	0.03	0.75
		0.02	0.02	1.00
		0.028	0.014	0.50
		0.043	0.025	0.58
		< 0.01	<0.01	1.00
		< 0.01	<0.01	1.00
		0.15	0.19	1.27
		0.02	0.01	0.50
		0.03	0.03	1.00
		0.04	0.04	1.00
		0.02	0.02	1.00
		< 0.01	<0.01	1.00
Median cor	version factor	(sorghum grain): 1	·	·
		0.21	0.15	0.71
		0.10	0.18	1.8
		0.03	0.02	0.67
Sorghum	NEU/CEU	0.19	0.37	1.95
forage	NEU/SEU	< 0.01	<0.01	1
		0.03	0.04	1.33
		0.34	0.26	0.76
		0.04	0.02	0.5
Median cor	version factor	(sorghum forage): 0.88		
		0.37	0.11	0.30
		0.07	0.16	2.29
		0.04	0.06	1.5
		0.24	0.42	1.75
		< 0.01	<0.01	1.00
Sorghum	NEU/OFU	0.02	0.01	0.5
stover	NEU/SEU	0.51	0.29	0.57
		0.05	<0.01	0.2
		0.08	0.19	2.38
		0.125	0.17	1.36
		0.09	<0.01	0.11
		h	< 0.01	1.00

Animal products

In Table 65 the exsisting MRLs in animal products are shown. Since the dietary burden calculation showed that all MRLs should be set to < 0.01 mg/kg. The excisting MRLs can be kept when dicamba is used in accordance with the applied uses. Therefore, no modification is necessary.

<u>1000000</u> 1010000	. PRODUCTS OF ANIMAL ORIGIN -TERRESTRIAL ANIMALS . Tissues from	
1010000	. (a) swine	
1011000	. Muscle	0.05*
1011020	. Fat tissue	0.07
1011020	. Liver	0.7
1011040	. Kidney	0.7
1011050	. Edible offals (other than liver and kidney)	0.7
1011990	. Others	0.05*
1012000	. (b) bovine	0.00
1012000	. Muscle	0.5
1012010	. Fat tissue	0.07
1012020	. Liver	0.7
1012030	. Kidney	0.7
1012040	. Edible offals (other than liver and kidney)	0.7
1012030	. Others	0.5
1012000	. (c) sheep	0.0
1013000	. Muscle	0.05*
1013020	. Fat tissue	0.03
1013020	. Liver	0.7
1013030	. Kidney	0.7
1013050 1013990	. Edible offals (other than liver and kidney) . Others	0.7
		0.05"
1014000	. d) goat . Muscle	0.05*
1014010		
1014020	. Fat tissue . Liver	0.07
1014030		0.7
1014040	. Kidney	0.7
1014050	. Edible offals (other than liver and kidney)	0.7
1014990	. Others	0.05*
1015000	. (e) equine	0.05*
1015010	. Muscle	0.05*
1015020	. Fat tissue	0.07
1015030	. Liver	0.7
1015040	. Kidney	0.7
1015050	. Edible offals (other than liver and kidney)	0.7
1015990	. Others	0.05*
1016000	. (f) poultry	0.00
1016010	. Muscle	0.02
1016020	. Fat tissue	0.04
1016030	. Liver	0.07
1016040	. Kidney	0.07
1016050	. Edible offals (other than liver and kidney)	0.07
1016990	. Others	0.05*
1017000	. (g) other farmed terrestrial animals	
1017010	. Muscle	0.05*
1017020	. Fat tissue	0.07
1017030	. Liver	0.7
1017040	. Kidney	0.7
1017050	. Edible offals (other than liver and kidney)	0.7
1017990	. Others	0.05*
1020000	. Milk	
1020010	. Cattle	0.5
1020020	. Sheep	0.2
1020030	. Goat	0.2
1020040	. Horse	0.2
1020990	. Others	0.2
1030000	. Birds eggs	0.05*
1030010	. Chicken	0.05*
1030020	. Duck	0.05*
1030030	. Geese	0.05*
1030040	. Quail	0.05*
1030990	. Others	0.05*
1040000	. Honey and other apiculture products	0.05*
1050000	. Amphibians and Reptiles	0.05*
1060000	. Terrestrial invertebrate animals	0.05*
1070000	. Wild terrestrial vertebrate animals	0.05*
Pesticide res	lue Legislation	Entry in force
	Legislation	Entry in force

 Table 65:
 MRLs for dicamba set in Regulation 2015/845 for animal products

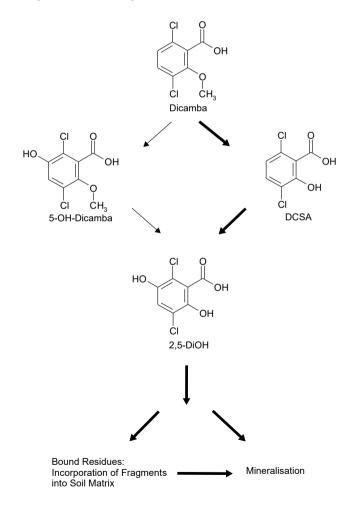
1000000	. PRODUCTS OF ANIMAL ORIGIN -TERRESTRIAL ANIMALS	
1010000	. Tissues from	
1011000	. (a) swine	
1011010	. Muscle	0.05*
1011020	. Fat tissue	0.07
1011030	. Liver	0.7
1011040	. Kidney	0.7
1011050	. Edible offals (other than liver and kidney)	0.7
1011990	. Others	0.05*
1012000	. (b) bovine	0.5
1012010	. Muscle . Fat tissue	0.5
1012020 1012030	. Liver	0.07
1012030	. Kidney	0.7
1012040	. Edible offals (other than liver and kidney)	0.7
1012990	. Others	0.5
1012000	. (c) sheep	0.0
1013010	. Muscle	0.05*
1013020	. Fat tissue	0.07
1013030	. Liver	0.7
1013040	. Kidney	0.7
1013050	. Edible offals (other than liver and kidney)	0.7
1013990	. Others	0.05*
1014000	. d) goat	
1014010	. Muscle	0.05*
1014020	. Fat tissue	0.07
1014030	. Liver	0.7
1014040	. Kidney	0.7
1014050	. Edible offals (other than liver and kidney)	0.7
1014990	. Others	0.05*
1015000	. (e) equine	
1015010	. Muscle	0.05*
1015020	. Fat tissue	0.07
1015030	. Liver	0.7
1015040	. Kidney	0.7
1015050	. Edible offals (other than liver and kidney)	0.7
1015990	. Others	0.05*
1016000	. (f) poultry	
1016010	. Muscle	0.02
1016020	. Fat tissue	0.04
1016030 1016040	. Liver . Kidney	0.07
1016050	. Edible offals (other than liver and kidney)	0.07
1016990	. Others	0.05*
1017000	. (g) other farmed terrestrial animals	0.05
1017010	. Muscle	0.05*
1017020	. Fat tissue	0.07
1017030	. Liver	0.7
1017040	. Kidney	0.7
1017050	. Edible offals (other than liver and kidney)	0.7
1017990	. Others	0.05*
1020000	. Milk	
1020010	. Cattle	0.5
1020020	. Sheep	0.2
1020030	. Goat	0.2
1020040	. Horse	0.2
1020990	. Others	0.2
1030000	. Birds eggs	0.05*
1030010	. Chicken	0.05*
1030020	. Duck	0.05*
1030030	. Geese	0.05*
1030040	. Quail	0.05*
1030990	. Others	0.05*
1040000	. Honey and other apiculture products	0.05*
1050000 1060000	Amphibians and Reptiles Terrestrial invertebrate animals	0.05*
1070000	. Wild terrestrial vertebrate animals	0.05*
1070000		0.05
Pesticide residue	Legislation	Entry in force
Dicamba	Reg. (EU) 2015/845	04-06-2015

2.7.11 Proposed import tolerances and compliance with existing import tolerances

No MRLs exist as a consequence of import tolerances to the EU. Only Codex MRLs have been adopted.

2.8 FATE AND BEHAVIOUR IN THE ENVIRONMENT

2.8.1 Summary of fate and behaviour in soil


2.8.1.1 Route of degradation in soil

Data on the route of degradation in soil is presented in Volume 3 CA B.8 (B.8.1.1.1).

Under **aerobic** soil conditions, dicamba degrades rapidly in soil independent of soil pH with formation of the major metabolite DCSA. The maximum observed levels of DCSA was 58.8%. No other metabolites were observed >5%. High levels of ¹⁴CO₂ (up to 58.3%) indicated mineralisation via ring cleavage. The proposed metabolic pathway for dicamba in aerobic soil is shown below.

No **anaerobic** soil degradation or soil **photolysis** experiments have been performed due to the fast degradation of Dicamba.

Proposed route of degradation of dicamba in soil under aerobic conditions:

2.8.1.2 Rate of degradation in soil

Data on the rate of degradation in soil is presented in Volume 3 CA B.8 (B.8.1.1.2).

Volume 1 – Level 2

The previously submitted studies for dicamba have been technically reviewed and are all but one considered to be acceptable. The degradation kinetics has been re-evaluated according to current guidance. The degradation halflifes for DCSA have all been determined from the existing parent studies but has been re-evaluated according to current guidance.

Study	Soil	Texture	Ki- netic	DegT ₅₀ [20°C/pF2] (days)	
Figge, 1993	BBA Standard Soil 2.2	Loamy Sand	SFO	3.21	
	Gartenacker	Loam	SFO	3.37	
Glänzel, 2000	Pappelacker	Sandy Loam	SFO	4.24	
	Borstel	Loamy Sand	SFO	4.81	
	Farditch	Clay Loam	SFO	18.23	
Roohi A. and Cooper J., 2010	Longwoods	Sandy Loam	SFO	24.60	
	LUFA 2.4	Clay Loam	SFO	8.88	
Geometric mean 7.06 (n=7)					

Rate of degradation of dicamba in soil:

Rate of degradation of DCSA in soil:

Study	Soil	Texture	Kinetic	DegT50 DCSA [20°C/pF2] (days)
Figge, 1993	BBA Standard Soil 2.2	Loamy Sand	SFO	10.5
	Gartenacker	Loam	SFO	4.01
	Pappelacker	Sandy Loam	SFO	3.74
Glänzel, 2000	Borstel	Loamy Sand	SFO	9.65
	6.24 (n=4)			

2.8.1.3 Adsorption and desorpiton in soil

Data on adsorption and desorption in soil is presented in Volume 3 CA B.8 (B.8.1.2).

A soil adsorption/desorption study on dicamba was available from the last EU review. Except for one of the five soils tested, the study was still considered acceptable. A new evaluation of the study using the OECD 106 evaluators checklist (EFSA, 2017) was performed. The adsorption K_{foc} values found ranged from 1.4 - 23.7 mL/g.

A new acceptable study on adsorption/desorption of dicamba in four soils was also submitted. The resulting adsorption K_{foc} values ranged from 2.0 - 11.8 mL/g.

Overall, the adsorption K_{foc} values found for dicamba ranged from 2.0 to 23.7 mL/g with a geometric mean of 5.28 mL/g (n=8) indicating that dicamba has a very high mobility in soil.

Volume 1 – Level 2

For the metabolite DCSA a soil adsorption/desorption study was available from the previous EU review. This study was still considered acceptable. A new evaluation of the study using the OECD 106 evaluators checklist (EFSA, 2017) was performed. The resulting adsorption K_{foc} values ranged from 241.7 to 1433.9 mL/g with a geometric mean of 649.6 mL/g (n=4).

2.8.1.4 Mobility in soil

Data on mobility in soil is presented in Volume 3 CA B.8 (B.8.1.3).

From the previous EU review three studies on the potential mobility in soil of dicamba and its metabolite DCSA were available: One column leaching study with three soils, one aged residue column leaching study with two soils and an outdoor lysimeter study. All three studies were still considered acceptable.

The column leaching study was conducted using three German soils with an organic carbon content ranging from 0.7-2.3%, and pH values between 5.8-6.6. An application rate of 352 g/ha dicamba was used, and 200 mm artificial rain was delivered to each column within 48 hours. Only <0.2-0.68% of the AR (<0.3-1.2 μ g/L) was recovered in the percolated water (sum of dicamba and DCSA) after 48 hours, indicating a negligible transport of dicamba and its metabolite DCSA in the soil columns.

In the aged residue column leaching study, the mobility was studied in one German and one Swiss soil (pH range 6.0-7.4, OC contents of 48-0.96%). Dicamba was aged for 40.5 days before transfer of the soil to the columns and addition of 200 mm artificial rain. A maximum of 0.94% of the AR was recovered as dicamba (1.7 μ g/L), whereas a maximum of 0.31% of the AR was recovered as DCSA (0.53 μ g/L) in the percolation water, indicating a negligible transport of dicamba and DCSA.

In the outdoor lysimeter study, the mobility was studied in intact soil cores following 2-3 annual applications of dicamba. Maize plants were planted and cultivated in the top soil before application of dicamba. After two years with annual applications of dicamba to maize plants grown in the lysimeters (application rate of 360 g/ha), a maximum of 0.15% of the AR was recovered in the leachates. However, neither dicamba nor DCSA were detected in the leachates. The majority of the AR remained in the top 20 cm of the lysimeter column. Only traces amounting to <0.05% of AR were detected below 60 cm at termination of the study, one year after the last treatment.

Furthermore, in a number of field dissipation studies performed with dicamba in Swiss and German soils, several soil horizons were analysed for the distribution of dicamba and DCSA. Downward movement of dicamba and DCSA were not detected below 40 cm in soils characterised as loamy sand, clay loam and silt loam. In sandy loam, the presence of dicamba and DCSA was detected down to 60 cm.

2.8.2 Summary of fate and behaviour in water and sediment [equivalent to section 11.1 of the CLH report template]

1.1.1.1 Rapid degradability of organic substances

Method	Results*	Key or Support- ive study	Remarks	Reference
OECD 301 F Ready Biodeg- radability: Man- ometric respira- tion (1992)	The theoretical oxygen demand (ThOD) for dicamba was calculated to be 1.09 g oxygen/g, the measured chemical oxygen demand COD value was 1.04 g oxy- gen/g. The biological ox- ygen demand BOD value		Acceptable	Wallace and Daniel (2001). Determina- tion of 28 day ready biodegrability of SAN837A. Syn- genta File No SAN837/5987

 Table 66:
 Summary of relevant information on rapid degradability

Volume 1 – Level 2

Method	Results*	Key or Support-	Remarks	Reference
	for dicamba did not ex- ceed 5% (<0.06 and 0.05 g oxygen/g after 5 days and 28 days, respec- tively). This indicates a negligible biodegrada- tion of dicamba under the experimental condi- tions tested. The measured COD and BOD value for the refer- ence substance fulfills the validity criteria of the test. These results indicate that dicamba is <u>not read- ily biodegradable</u> .	ive study		
OECD 301 F Ready Biodeg- radability: Man- ometric respira- tion (1992)	The mean percentage bi- odegradation at the end of the 28 day exposure period was 9% (ThOD). The biodegradation of the reference substance confirms the suitability of the activated sludge inoculum. The degradation rate of Dicamba did not reach 60% within the 10 day window and after 28 days of incubation. Therefore, Dicamba is considered <u>not to be</u> <u>readily biodegradable</u> .		Acceptable	Feil (2010). Ready Biodegradability of RC1176 in a Mano- metric Respirometry Test. Rotam Report No 56061163

* data on full mineralization should be reported

2.8.2.1.1 Ready biodegradability

Data on ready biodegradability is presented in Volume 3 CA B.8 (B.8.2.2.1).

A study on ready biodegradability was available from the previous EU review. The study was still considered acceptable. The results indicated that dicamba is not readily biodegradable.

A new acceptable study was also submitted by notifier Rotam. This study confirmed that dicamba is not readily biodegradable.

2.8.2.1.2 BOD5/COD

In a study from the previous EU review a BOD of 0.05 g oxygen/g was found after 28 days.

1.1.1.2 Other convincing scientific evidence

2.8.2.1.3 Aquatic simulation tests

Data on aerobic mineralisation in surface water is presented in Volume 3 CA B.8 (B.8.2.2.1).

Two new studies on the degradation in surface water were submitted. One from each notifier.

Both studies followed the guideline OECD 309: Aerobic Mineralisation in Surface Water – Simulation Biodegradation Test (2004)

The extent of mineralisation and the rate and route of degradation of [¹⁴C]-dicamba was investigated in two surface waters (Calwich Abbey + River Alte Leine) at four dicamba application rates (1, 10, 95 and 100 μ g/L) following incubation at 20°C under dark conditions for up to 90 days. For non-sterile samples, the degradation rate (DegT₅₀) of dicamba was 532 and 1280 days when dosed at 10 and 95 μ g/L, respectively (DegT₅₀ degradation rates were extrapolated beyond the study duration (59 days)). The metabolite DCSA was identified, reaching maximum values of 0.1% and 0.2% at the 10 μ g/L and at the 95 μ g/L rate respectively. The total carbon dioxide evolved was 2.6% and 2.1% of applied radioactivity for the 10 and 90 μ g/L rates respectively.

For sterile samples, the mean level of parent dicamba at the end of the study was 97.7% AR at 95 μ g/L. Metabolite DCSA was not detected in sterile samples.

System	Test concen-					
	tration (µg/L)	DegT50 (days)	k	Chi ²	R ²	Prob > t
Calwich Abbey, natural water	10	532	0.0013	1.81	0.4858	0.0031
	95	1280	5.4 x 10 ⁻⁴	1.01	0.3778	0.0099
River Alte Leine,	1	59.3	0.01168			
natural water	10	-	-	-	-	-

DegT₅₀ values for dicamba in surface water

2.8.2.1.4 Field investigations and monitoring data (if relevant for C&L)

No information.

2.8.2.1.5 Inherent and enhanced ready biodegradability tests

No information.

2.8.2.1.6 Soil and sediment degradation data

Water-sediment studies are presented in Volume 3 CA B.8 (B.8.2.2.2).

A water-sediment study was available from the previous EU review. The study was still considered acceptable. A new kinetic evaluation of the study was submitted by the notifier Syngenta.

Test guideline: Dutch Guideline for Registration of Pesticides, Section G 2.1: Details on the Nature of Conversion Products and the Rate at which they are formed.

In the study the route and rate of degradation of radio-labelled dicamba was investigated in two aquatic systems

Volume 1 – Level 2

under aerobic conditions. The systems used consisted of natural waters (Rhine-river and pond) and 10% of the corresponding sediment. ¹⁴C-labelled dicamba was applied to the systems resulting in an initial concentration of 1.0 mg/L.

In the kinetic re-evaluation the following results were found :

Chemical	Level / compartment	Derivation of value [num- ber of values]	*DegT ₅₀ / DT ₅₀ [days]
	Level P-I	Geometric mean (2 values)	52.1
	whole system degradation	Highest value (2 values)	53.5
Dicamba	Level P-I	Geometric mean (2 values)	50.9
	water column dissipation	Highest value (2 values)	51.7
DCSA	Level M-I	Geometric mean (2 values)	52.3
	whole system degradation	Highest value (2 values)	56.8

*Normalised to 20°C

Summary of modelling endpoints

Chemical	Level / compartment	Derivation of value [num- ber of values]	*DegT ₅₀ / DT ₅₀ [days]
	Level P-I	Geometric mean (2 values)	38.1
Dicamba	whole system degradation	Highest value (2 values)	53.5
	Level P-I	Geometric mean (2 values)	37.3
	water column dissipation	Highest value (2 values)	51.7
DCSA	Level M-I	Geometric mean (2 values)	52.3
	whole system degradation	Highest value (2 values)	56.8

*Normalised to 20°C

2.8.2.1.7 Hydrolysis

Data on hydrolysis is presented in Volume 3 CA B.8 (B.8.2.1.1).

Two studies were available from the previous EU review. The studies were still considered acceptable. Two new studies submitted by Rotam supported the results of the older studies.

Guidelines:

Studies from the previous EU review: OECD Guideline for Testing Chemicals, Hydrolysis as a Function of pH, 111 (1981) US EPA Pesticide Assessment Guidelines, Subdivision N, Series No. 161-1

New studies :

OECD Guideline for Testing Chemicals, Hydrolysis as a Function of pH, 111 (2004)Dicamba and its major metabolite DCSA (NOA414746) were demonstrated to be stable. No significant hydrolysis occurred in sterile buffer solutions of pH 4, 5, 7 and 9 at 50°C in the dark for 6 to 14 days. It is concluded that the hydrolytic half-lives of both compounds at ambient temperature are >1 year.

2.8.2.1.8 Photochemical degradation

Data on photochemical degradation in water is presented in Volume 3 CA B.8 (B.8.2.1.2).

Two studies were available from the previous EU review. The studies were still considered acceptable.

Volume 1 – Level 2

A new study was also submitted by the notifier Rotam.

Guidelines:

Previously evaluated study: US EPA Pesticide Assessment Guidelines, Subdivision N, Chemistry: Environmental Fate, Series No. 161-2.

Previously evaluated study:

OECD Guidelines for Testing of Chemicals; Proposal for a New Guideline Phototransformation of Chemicals in Water – Direct and Indirect Photolysis, Draft Document (2000).

OECD Environmental Health and Safety Publications, Series on Testing and Assessment, No. 7: Guidance Document on Direct Phototransformation Chemicals in Water (1997).

OPPTS 835.2210, 'Direct Photolysis Rate in Water by Sunlight'; Fate, transport and Transformation Test Guidelines, EPA (1998).

OECD 101 : UV-VIS Absorption Spectra (1996).

New study OECD 316 : Phototransformation of Chemicals in Water – Direct Photolysis (2008).

An aqueous photochemical DT_{50} of 17.0 - 50.3 days at 40°N in spring time and 9.44 days at 30°N in summer time was determined for dicamba.

The quantum yield of direct phototransformation in water was found to be $\Phi = 0.46 - 0.047$.

2.8.2.1.9 Other / Weight of evidence

No information

2.8.3 Summary of fate and behaviour in air

2.8.3.1 Hazardous to the ozone layer

Table 67: Summary table of studies on hazards to the ozone layer

Method	Results	Remarks	Reference
Atmospheric Oxidation Pro- gramme (AOP, ver 1.53 and 1.85) and the Atkinson model	Assuming a constant concen- tration of $1.5 \times 10^6 \times \text{cm}^{-3}$ OH- radical and a 12-hour day, the total rate constant was esti- mated to range between $2.62 \times 10^{-12} \times \text{cm}^3 \text{ sec}^{-1} \times \text{mol}^{-1}$ and $2.985 \times 10^{-12} \times \text{cm}^3 \text{ sec}^{-1}$ $^1 \times \text{mol}^{-1}$. Thus, the half-life period is calculated to be be- tween 3.6 days and 4.1 days.	Acceptable	Stamm (1998) and Müller (1994)

2.8.3.1.1 Short summary and overall relevance of the provided information on hazards to the ozone layer

For dicamba an atmospheric DT_{50} of 3.6 - 4.1 days was derived using the Atmospheric Oxidation Programme (AOP, ver 1.53 and 1.85) and the Atkinson model. The atmospheric DT_{50} exceeds the 2 day trigger for long-range transport. However, as dicamba is easily soluble in water rainfall is expected to remove dicamba from the air to

Volume 1 – Level 2

a large extent. Furthermore, the volatilization from plant and soil surfaces is negligible (0.12% and 0.07 - 1.15%, respectively). Therefore dicamba is not considered hazardous to the ozone layer.

2.8.3.1.2 Comparison with the CLP criteria

There is no available evidence concerning the properties of dicamba and its predicted or observed environmental fate and behaviour indicating that it may present a danger to the structure and/or the functioning of the strato-spheric ozone layer.

Dicamba is not listed in Annex I to Regulation (EC) No 1005/2009. Dicamba should not be classified as hazardous to the ozone layer.

2.8.3.1.3 Conclusion on classification and labelling for hazardous to the ozone layer

No classification.

2.8.4 Summary of monitoring data concerning fate and behaviour of the active substance, metabolites, degradation and reaction products

No data submitted

2.8.5 Definition of the residues in the environment requiring further assessment

Compartment	Residues requiring further assessment
Soil	Dicamba and DCSA
Surface water	Dicamba and DCSA
Sediment	Dicamba and DCSA
Ground water	Dicamba and DCSA
Air	Dicamba

2.8.6 Summary of exposure calculations and product assessment

PEC calculations were performed for the two representative formulations:

• A7254B (Dicamba 480 g/L SL)

Summary of worst case intended uses of A7254B

Сгор	Application rate (g a.s./ha)	Application method	Number of applica- tions	Minimum ap- plication inter- val (days)	Application timing
*Maize	288	Foliar	1	-	BBCH 12-19
Spring Cereals	120	Foliar	1	-	BBCH 10-32

*Maize used as surrogate crop for sorghum in Focus models

• OCEAL (FH-048)

Summary of intended uses of OCEAL

Сгор	Application rate (g a.s./ha)	Application method	Number of applica- tions	Minimum ap- plication inter- val (days)	Application timing
Maize	280	Foliar	1	-	BBCH 10-16

PEC soil

Calculation for A7254B (Dicamba 480 g/L SL)

Volume 1 – Level 2

The calculation for A7254B was based on the critical GAP use of one application of 0.288 kg a.s./ha in maize at BBCH 12 (25% interception).

PEC_{soil} of Dicamba immediately after application was calculated using FOCUS guidance¹⁷ (i.e. current guidance) with the following equation:

 $A[g/ha] \times (1-F)$

PEC (mg/kg) =

 $100 \times d \text{ [cm]} \times \rho \text{ [g/cm^3]}$

Where: A = Application rate F = Fraction intercepted by cropd = Depth of field soil layer (5 cm)

 $\rho = Dry bulk density (1.5 g/cm^3)$

PEC_{soil} of the metabolite DCSA was calculated based on the PEC_{soil} calculated for Dicamba:

PEC_{metabolite} [mg/kg soil] = PEC_{max,parent} x (maximum % metabolite formation/100) x molecular weight ratio

Where:

The molar correction factor for DCSA is 0.937 The maximum occurrence of DCSA in soil is 58.8%

The following initial PEC_{soil} values were calculated:

PECS Dicamba	PECS DCSA
(mg/kg)	(mg/kg)
0.288	0.159

Calculation for OCEAL (FH-048)

The calculation for OCEAL was based on the GAP use of one application of 0.280 kg a.s./ha in maize at BBCH 10 (25% interception).

 PEC_{soil} of Dicamba immediately after the first application was calculated using FOCUS guidance¹⁸ (i.e. current guidance) with the following equation:

PEC (mg/kg) =

 $100 \times d [cm] \times \rho [g/cm^3]$

 $A[g/ha] \times (1 - F)$

Where:

A = Application rate F = Fraction intercepted by crop d = Depth of field soil layer (5 cm) ρ = Dry bulk density (1.5 g/cm³)

PEC_{soil} of the metabolite DCSA was calculated based on the PEC_{soil} calculated for Dicamba:

PEC_{metabolite} [mg/kg soil] = PEC_{max,parent} x (maximum % metabolite formation/100) x molecular weight ratio

Where: The molar correction factor for DCSA is 0.937

¹⁷ FOCUS (1997) Soil persistence models and EU Registration - The Final Report of the Soil Modelling Workgroup of FOCUS (Forum for the Co-ordination of Pesticide Fate Models and their Use) – 29 February 1997. ¹⁸ FOCUS (1997) Soil persistence models and EU Registration - The Final Report of the Soil Modelling Workgroup of FOCUS (Forum for the Co-ordination of Pesticide Fate Models and their Use) – 29 February 1997.

Volume 1 – Level 2

The maximum occurrence of DCSA in soil was assumed to be 75% (conservative compared to the maximum occurrence of 58.8% observed in studies)

Using the following equations, the instantaneous PECsoil at various time-points was calculated for both Dicamba and DCSA:

$$C = C_0 e^{-kt}$$

A time-weighted average PECs was calculated using the following equation:

$$C = \frac{1 - e^{-kt}}{kt} \times C_0$$

Where:

$$\begin{array}{ll} C_0 & = \text{PECs initial} \\ C & = \text{PECs at time t} \\ k & = \ln 2/\text{DT}_{50} \end{array}$$

The following PEC_{soil} values were calculated:

Time after application (days)		Dicamba Actual (mg/kg)	Dicamba Time Weighted Average (mg/kg)	DCSA Actual (mg/kg)	DCSA Time weighted average
Initial	0	0.280	-	0.197	-
Short term	1	0.272	0.276	0.186	0.191
	2	0.265	0.272	0.175	0.186
	4	0.250	0.265	0.156	0.176
Long term	7	0.230	0.254	0.132	0.162
	14	0.189	0.231	0.088	0.135
	21	0.155	0.211	0.0591	0.114
	28	0.127	0.194	0.0396	0.098
	50		0.150	0.0112	0.0648
	100	0.0167	0.0934	0.000640	0.0342

PEC groundwater

Modelling for A7254B (Dicamba 480 g/L SL)

The potential for dicamba and its metabolite DCSA to reach groundwater was examined using the simulation models FOCUS PEARL (v4.4.4), FOCUS PELMO (v5.5.3) and MACRO (v5.5.4)

The risk envelope use patterns used in the modelling were: Maize: 288 g a.s/ha at BBCH 12 (25% interception) Spring cereals: 120 g a.s./ha, at BBCH 10 (0% interception)

The 80th percentile annual average PECgw of dicamba and DCSA at 1 m depth were < 0.1 μ g/L for all models and all relevant FOCUS groundwater scenarios.

Volume 1 – Level 2

		PEARL 4.4.4		PELMO 5.5.3		MACRO 5.5.4	
Maize	Scenario	Parent (µg/L)	DCSA (µg/L)	Parent (µg/L)	DCSA (µg/L)	Parent (µg/L)	DCSA (µg/L)
	Chateaudun	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
	Hamburg	< 0.001	< 0.001	< 0.001	< 0.001	-	-
	Kremsmunster	0.001	< 0.001	< 0.001	< 0.001	-	-
	Okehampton	0.018	< 0.001	0.016	< 0.001	-	-
	Piacenza	< 0.001	< 0.001	< 0.001	< 0.001	-	-
	Porto	< 0.001	< 0.001	< 0.001	< 0.001	-	-
	Sevilla	< 0.001	< 0.001	< 0.001	< 0.001	-	-
	Thiva	< 0.001	< 0.001	< 0.001	< 0.001	-	-

		PEARL 4.4.4		PELMO 5.5.3		MACRO 5.5.4	
cereals	Scenario	Parent (µg/L)	DCSA (µg/L)	Parent (µg/L)	DCSA (µg/L)	Parent (µg/L)	DCSA (µg/L)
Spring	Chateaudun	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Sp	Hamburg	< 0.001	< 0.001	< 0.001	< 0.001	-	-
	Jokioinen	< 0.001	< 0.001	< 0.001	< 0.001	-	-
	Kremsmunster	< 0.001	< 0.001	< 0.001	< 0.001	-	-
	Okehampton	< 0.001	< 0.001	< 0.001	< 0.001	-	-
	Porto	< 0.001	< 0.001	< 0.001	< 0.001	-	-

Modelling for OCEAL (FH-048)

The potential for dicamba and its metabolite DCSA to reach groundwater was examined using the simulation models FOCUS PEARL (v4.4.4), FOCUS PELMO (v5.5.3)

The modelled use pattern was:

280 g a.s/ha in maize at BBCH 10-12 (25% interception)

The 80th percentile annual average PECgw of dicamba and DCSA at 1 m depth were < 0.1 μ g/L for all models and all relevant FOCUS groundwater scenarios.

		PEARL 4.4.4		PELM	0 5.5.3
Maize	Scenario	Parent (µg/L)	DCSA (µg/L)	Parent (µg/L)	DCSA (µg/L)
	Chateaudun	0.0000	0.0000	0.000	0.000
	Hamburg	0.0023	0.0004	0.000	0.000
	Kremsmunster	0.0009	0.0000	0.001	0.000
	Okehampton	0.0222	0.0007	0.023	0.000
	Piacenza	0.0000	0.0000	0.000	0.000
	Porto	0.0000	0.0000	0.000	0.000
	Sevilla	0.0000	0.0000	0.000	0.000
	Thiva	0.0000	0.0000	0.000	0.000

PEC surface water and sediment

Modelling for A7254B (Dicamba 480 g/L SL)

PEC_{SW} and PEC_{SED} were predicted using the FOCUS STEPS 1-2 model.

The following application patterns were used in the modelling: Maize: 288 g a.s/ha at BBCH 12 (minimal interception) Maize: 210 g a.s/ha at BBCH 12 (minimal interception) Spring cereals: 120 g a.s./ha, at BBCH 10 (minimal interception) Spring cereals: 96 g a.s./ha, at BBCH 21 (intermediate interception)

At STEP 2 the following maximum values were found:						
Dicamba:	$PEC_{SW} = 30.56 \ \mu g/L$	$PEC_{SED} = 2.69 \ \mu g/kg$	(228 g a.s./ha in maize at BBCH 12)			
DCSA:	$PEC_{SW} = 11.66 \ \mu g/L$	$PEC_{SED} = 90.15 \ \mu g/kg$	(228 g a.s./ha in maize at BBCH 12)			

Modelling for OCEAL (FH-048)

 PEC_{SW} and PEC_{SED} were predicted using the FOCUS STEPS 1-2 model.

The following application pattern was used in the modelling: Maize: 280 g a.s/ha until BBCH 16 (no interception)

At STEP 2	the following maximum	values were found:
Dicamba:	$PEC_{SW} = 31.6 \ \mu g/L$	$PEC_{SED} = 2.01 \ \mu g/kg$
DCSA:	$PEC_{SW} = 12.5 \ \mu g/L$	$PEC_{SED} = 80.5 \ \mu g/kg$

PEC air

Dicamba:	
Vapour pressure:	1.67 · 10 ⁻³ Pa (25°C)
Volatilisation from plant surfaces:	0.12 % of AR
Volatilisation from soil surfaces:	1.15 % of AR
DT ₅₀ in air (AOP):	3.58 days (12-hour day, 1.510 ⁶ OH cm ⁻³)
DT ₅₀ in air (Atkins calculation):	4.1 days (12-hour day, 1.510 ⁶ OH cm ⁻³)

Volume 1 – Level 2

The potential for long range transport of dicamba through the atmosphere is assessed from a consideration of (a) the potential for volatilisation; (b) atmospheric half-life under real-world conditions; (c) fate and potential impact after deposition. It is concluded that (a) volatilisation is negligible; (b) real-world half-life is shorter than the AOP modelled DT_{50} of 3.6 d due to "raining out" from the atmosphere; (c) dicamba is not persistent in soil or water and does not bioaccumulate. It is therefore considered that long-range transport of dicamba is not a critical issue and no further information is required.

Other routes of exposure

Other routes of exposure such as deposition of dust by drift during sowing, indirect exposure of surface water via sewage treatment plant after treatments in storage rooms and amenity use are not expected as the GAP uses for which authorisation is sought are restricted to spray applications in the field.

2.9 EFFECTS ON NON-TARGET SPECIES

2.9.1 Summary of effects on birds and other terrestrial vertebrates

2.9.1.1 Birds

Avian toxicity studies have been carried out with technical dicamba and no studies with the representative formulations are available. The endpoints were originally reported as technical a.s. and have been corrected for purity; Table 68.

Test type (time scale)	Species	Test sub- stance	Batch no.; purity	Endpoint	Toxicity ^a	Reference
	Bobwhite quail (<i>Colinus vir-</i> ginianus)	Dicamba tech.	52103810 86.93 %	LD50	188 mg a.s. /kg bw	1993
Acute oral	Zebra finch (<i>Taeniopygia</i> guttata)	Dicamba tech.	0002B01BA- 251 93.9 %	LD50	200 mg a.s. /kg bw	2011
				LD50 geometric mean	194 mg a.s. /kg bw	
Short-term	Mallard duck (Anas platyrhynchos)	Dicamba tech.	52625110 86.8 %	LD ₅₀ (dietary)	> 1360 mg a.s./kg bw/d	1977a
dietary	Bobwhite quail (<i>Colinus vir-</i> <i>ginianus</i>)	Dicamba tech.	52625110 86.8 %	LD ₅₀ (dietary)	>864 mg a.s./kg bw/d	1977b
	Mallard duck (Anas platyrhynchos)	Dicamba tech.	52103810 86.9 %	NOEL	77 mg a.s. /kg bw/d	1994a
Long-term/	Bobwhite quail (Colinus vir- ginianus)	Dicamba tech.	52103810 86.9 %	NOEL	148 mg a.s. /kg bw/d	1994b
reproductive				LD ₅₀ /10 of the geo- metric mean acute end- point	19.4 mg a.s. /kg bw/d	

Table 68:	Summary o	of toxicity	of dicamba to	birds
1 doit 00.	Summary	JI to Aloney	or urcamba to	onus

^a All endpoints are corrected for purity of the technical a.s.

Values in **bold** are considered relevant for use in risk assessment.

Metabolite 5-OH dicamba (NOA405873) is a major foliar metabolite, present at >10% of applied parent substance. As acute oral toxicity studies with rats and available genotoxicity studies with parent and 5-OH dicamba indicate that the metabolite is not of higher toxicity than the parent compound, it can be concluded that the risk to birds from this metabolite will be covered by the risk assessment for dicamba. Thus no further testing has been conducted.

2.9.1.2 Mammals

Studies have been carried out with technical dicamba, its major foliar metabolite 5-OH dicamba (NOA405873) and the two representative formulations. The endpoints from the a.s. studies were originally reported as technical dicamba and have been corrected for purity; Table 69.

Volume 1 – Level 2

Test type (time scale)	Species	Test substance	Batch no.; purity	Endpoint	Toxicity ^a	Reference
	Rat	Dicamba tech.	Not reported; 85.8 % pre- sumed	LD ₅₀ , females LD ₅₀ , males LD₅₀, sexes combined LD ₅₀ , geom. mean	1356 1612 1465 mg a.s./ kg bw 1478 mg a.s./ kg bw	1974
Acute oral	Rat	A7254B	PR910061 484 g a.s./L	LD ₅₀ , females LD ₅₀ , males LD ₅₀ , sexes combined LD ₅₀ , geom. mean	2558 (1058) 2375 (982) 2467 (1021) 2465 mg prod- uct/kg bw (1020 mg a.s. /kg bw)	2001a
	Rat	Dicamba 700SG	176-031 703.8 g a.s./kg	LD50, fe- males ^b	> 2000 mg prod- uct/ kg bw (> 1408 mg a.s./kg bw)	2010a
	Rat	5-OH dicamba (NOA 405873)	(KI 6212/1-18 94 ± 2 %)	LD ₅₀ , both sexes	> 2000 mg/kg bw	2001b
Reproductive	Rabbit °	Dicamba tech.	52625110 90.4 %	NOAEL	150 mg a.s./ kg bw/d ^c	1992

 Table 69:
 Summary of toxicity of dicamba and relevant metabolites to mammals

^a All a.s. endpoints are corrected for purity of the technical a.s.

^bOnly females tested.

^c Agreed reproductive endpoint following an expert meeting in the previous evaluation (revised DAR 2010).

Values in **bold** are considered relevant for use in risk assessment.

In cases where separate acute endpoints for males and females are available, the Guidance Document on Risk Assessment for Birds and Mammals (EFSA 2009) proposes that the geometric mean LD_{50} is used unless there is a clear indication of a difference in sensitivity between the sexes (i.e. if the difference in LD_{50} values is > 25 %). For technical dicamba and the representative formulation A7254B the difference is < 25 %, indicating no difference in sensitivity between sexes. Combined LD_{50} values are available from the study reports; RMS proposes that the smaller of these values and the geomeans are used.

The reproductive endpoint was agreed upon in the previous evaluation as a compromise between effects observed at 350 mg/kg bw/d in a 2-generation study in rats and the foetal NOEL of 150 mg/kg bw/d from a teratology study in rabbits. The endpoint has been corrected for purity of the technical a.s. used in the teratology study.

The acute oral toxicity study with the foliar metabolite 5-OH-dicamba indicates that the metabolite is not of higher toxicity than the parent compound.

2.9.2 Summary of effects on aquatic organisms [section 11.5 of the CLH report]

Studies have been carried out with technical dicamba, its major metabolite DCSA (NOA414746) and the two representative formulations. The endpoints from some of the a.s. studies were originally reported as technical dicamba and have been corrected for purity; Table 70.

Volume 1 – Level 2

Test type (time scale)	Species	Test sub- stance	Batch no.; purity	Endpoint	Toxicity	Reference
96 hours, acute (static)	Common carp (<i>Cyprinus car-</i> <i>pio</i>)	Dicamba tech.	P.MG2726410 89.8%	96-h LC50	> 100 mg a.s./L (nom)	2003a
96 hours, acute (static)	Zebra fish (Danio rerio)	Dicamba tech.	RTM/DCMB/0 3/20090612 988.5g/kg	96h LC50	> 98.85 mg a.s./L (nom)	2010a
96 hours, acute (static)	Rainbow trout (Oncorhynchus mykiss)	Banvel 480 SL (A7254B)	PFB3HI19 484 g a.s./L	96-h LC ₅₀	> 41.0 mg a.s./L (nom) (equivalent to > 100 mg A7254B/L)	2005a
96 hours, acute (static)	Rainbow trout (Oncorhyn- chus mykiss)	Dicamba 700 SG	175-024 72.1 % w/w	96 h LC ₅₀	> 100 mg a.s./L (nom)	2010b
96 hours, acute (semi-static)	Rainbow trout (Oncorhyn- chus mykiss)	DCSA (NOA414746)	012793 99.51 %	96-h LC ₅₀	> 100 mg/L (nom)	1993
21 days, chronic (semi-static)	Rainbow trout (Oncorhyn- chus mykiss)	Dicamba tech.	52625110 86.8%	21-d NOEC	180 mg a.s./L (nom)	, 1990
25 days, chronic (flow-through)	Fathead min- now (<i>Pimephales</i> promelas)	Dicamba tech.	COD-001266 92.9%	33-d NOEC	10 mg a.s./L (nom)	2011

 Table 70:
 Summary of toxicity of dicamba and relevant metabolites to aquatic organisms

Volume 1 – Level 2

Test type (time scale)	Species	Test sub- stance	Batch no.; purity	Endpoint	Toxicity	Reference
34 days, chronic (Flow-through)	Sheepshead minnow (Cyprinodon variegatus)	Dicamba tech.	002B01BA- 251 93.9%	34-d NOEC	11 mg a.s./L (mm)	2012
48 hours, acute (static)	Daphnia magna	Banvel 480 SL (A7254B)	PFB3HI19 484 g a.s./L	48-h EC50	> 41.0 mg a.s./L (equivalent to > 100 mg A7254B/L) (nom)	Bätscher, 2005b
48 hours, acute (static)	D. magna	Dicamba 700SG	175-024 72.1 % w/w	48 h EC50	131.6 mg a.s./L (nom)	Egeler P., Goth M. and Seck C., 2010
48 hours, acute (static)	Daphnia magna	DCSA (NOA414746)	012793 99.51 %	48-h EC50	89 mg/L (mm)	Douglas et al., 1993a
21 days, chronic (semi-static)	Daphnia magna	Dicamba tech.	52204112 88.6%	21-d NOEC	97 mg a.s./L (mm)	Douglas, 1993
35 days, chronic (flow-through)	Mysid shrimp	Dicamba tech.	002B01BA- 251 93.9%	35-d NOEC	5.8 mg a.s./L (mm)	Claude et al., 2012
96 hours, chronic (static)	Pseudokirch- neriella sub- capitata	Dicamba tech.	P.MG2726410 90.1%	72-h E _r , E _y and E _b C ₅₀	> 87 mg a.s./L (mm)	Eckenstein, 2015
120 hours, chronic (static)	Anabaena flos- aquae	Dicamba tech.	P.MG2726410 89.9%	72-h E _b C ₅₀ 72-h E _r C ₅₀	> 32 mg a.s./L (nom) > 32 mg a.s./L (nom)	Smyth et al., 1998
120 hours, chronic (static)	Navicula pel- liculosa	Dicamba tech.	52204112 89.5%	72-h E _b C ₅₀ 72-h E _r C ₅₀	> 3.8 mg a.s./L (mm) > 3.8 mg a.s./L (mm)	Hoberg, 1992b
120 hours, chronic (static)	Skeletonema costatum (marine organ- ism)	Dicamba tech.	52204112 89.5%	72-h E _b C ₅₀ 72-h E _r C ₅₀	1.8 mg a.s./L (mm) > 4.1 mg a.s./L (mm)	Hoberg 1993
96 hours, chronic (static)	Pseudokirch- neriella sub- capitata	DCSA (NOA414746)	MLA-21/2 99 % w/w, ± 2 %	72-h E _r C ₅₀ 72-h E _y C ₅₀ 72-h E _b C ₅₀	67 mg/L (mm) 45 mg/L (mm) 46 mg/L (mm)	Eckenstein, 2015a
72 hours, chronic (static)	Pseudokirch- neriella sub- capitata, (for- merly Selenas- trum capricor- nutum)	Banvel 480 SL (A7254B)	PR910061 484 g a.s./L	72-h E _r C ₅₀	(1111) > 42.4 mg a.s./L (mm) (equivalent to > 103 mg A7254B/L)	Peither, 2001
72 hours, chronic (static)	P. subcapitata	Dicamba 700SG	175-024 72.1 % w/w	72 h E _b C ₅₀ 72 h E _r C ₅₀	> 103.8 mg a.s./L (nom) > 103.8 mg a.s./L (nom)	Richter E. and Seck C., 2010

Volume 1 – Level 2

Test type (time scale)	Species	Test sub- stance	Batch no.; purity	Endpoint	Toxicity	Reference
72 hours, chronic (static)	P. subcapitata	Dicamba 700SG	20150112002 692 g a.s./kg	72 h E _b C ₅₀	> 69.2 mg a.s./L (nom) > 69.2 mg a.s./L (nom)	Kosak, L., Emnet, A, 2016
				72 h E _r C ₅₀		
14 days, chronic (static)	Myriophyllum spicatum	Dicamba tech.	P.MG2726410 90.1%	14-d E _y C ₅₀	Shoot length 0.58 mg a.s./L	Kirkwood, 2015
				14-d ErC50	0.94 mg a.s./L (im)	
				14-d E _y C ₅₀	Wet weight 0.97 mg	
				14-d E _r C ₅₀	a.s./L 2.1 mg a.s./L (im)	
				14-d E _y C ₅₀	Dry weight 6.4 mg a.s./L >9 mg a.s./L (im)	
				14-d ErC50		
14 days, chronic (static)	Lemna gibba	Dicamba tech.	52204112 89.5%	14-d ErC50	> 3.2 mg a.s./L (mm)	Hoberg 1992c
7 days, chronic (static)	Lemna gibba	DCSA (NOA414746)	MLA-21/1 99%	7-d ErC50	> 65.8 mg/L (mm)	Grade, 2002
14 days, chronic (static)	Myriophyllum verticillatum	Banvel 480 SL (A7254B)	PB008205 490 g a.s./L	14-d E _r C ₅₀	Biomass 3.7 mg a.s./L (nom) (equivalent to 8.9 mg A7254B/L)	Volz, 2003c
14 days, chronic (static)	Myriophyllum spicatum	Dicamba 700SG	175-024 72.1 % w/w	14-d E _y C ₅₀ 14-d E _r C ₅₀	Shoot length 4.88 mg a.s./L (nom) 5.17 mg a.s./L (nom)	
				14-d E _y C ₅₀ 14-d E _r C ₅₀	Dry weight: 1.86 mg a.s./L (nom) 3.26 mg a.s./L (nom)	Gilberg D. and Seck C., 2010c
				14-d E _y C ₅₀ 14-d E _r C ₅₀	Wet weight: 3.15 mg a.s./L (nom) 4.00 mg a.s./L (nom)	

Values in **bold** are considered relevant for use in risk assessment.

2.9.2.1 Bioaccumulation [equivalent to section 11.4 of the CLH report template]

2.9.2.1.1 Estimated bioaccumulation

Volume 1 – Level 2

The experimentally derived Log Kow of dicamba is -0.55 at pH 5.0, -1.8 at pH 6.8 and -1.9 at pH 8.9. As such dicamba is not expected to bioaccumulate in aquatic organisms. For classification and labelling purposes a substance with Log Kow <4 may be considered unlikely to bioaccumulate in aquatic organisms.

2.9.2.1.2 Measured partition coefficient and bioaccumulation test data

For dicamba and its main metabolite DCSA (NOA414746; surface water and soil) the log P_{ow} values are -1.8 (at pH 6.8) and -0.84 (at pH 6.8) respectively, therefore there are no existing EU endpoints and none are required. No further study is required for this point.

Overall, dicamba is not expected to bioaccumulate in aquatic organisms.

2.9.2.2 Acute aquatic hazard [equivalent to section 11.5 of the CLH report template]

Method	Species	Test mate- rial	Results	Key or Sup- portive study	Remarks	Reference
OECD 203: (1992) JMAFF 2-7- 1, 2001 92/69/EEC, O.J. L383A, Part C.1: (1992)	<i>Cyprinus car- pio</i> (Common carp)	Dicamba technical (89.8%)	96-h LC ₅₀ > 100 mg a.s./L (nom)	Key study	Static GLP	(2003) SAN837/6142
OECD 204 (1984)	Oncorhyn- chus mykiss (Rainbow trout)	Dicamba technical (86.6%)	96-h LC ₅₀ = 177 mg a.s./L (nom)	Key study	Static GLP	1989 SAN837/5030
OECD 203 (1992)	Danio rerio (Zebrafish)	Dicamba technical (988.50 g/kg)	LC ₅₀ (96 h) > 98.85 mg a.s./L (nom)	Key study	Static GLP	2010 10AV4FA

Table 71: Summary of relevant information on acute aquatic toxicity

2.9.2.2.1 Acute (short-term) toxicity to fish

Three studies are available on the acute toxicity of dicamba to fish. All the studies on dicamba technical demonstrate low short-term (96 hour) toxicity to common carp (*Cyprinus carpio*) ($LC_{50} > 100$ mg a.s./L), rainbow trout (*Oncorhynchus mykiss*; formerly *Salmo gairdneri*) (LC_{50} 177 mg a.s./L) and zebra fish (*Danio rerio*) ($LC_{50} > 98.85$ mg a.s./L.

Study 1: (2003; SAN837/6142)

In a 96 hour static toxicity study of SAN837 (purity 89.8%) to common carp (*Cyprinus carpio*), seven fish were exposed to a single nominal test concentration of 100 mg a.s./L and a dilution water control. Specific analysis showed measured test concentrations in the treatment tank to be 111% and 112% of nominal at the start and end of the test, respectively. Measurements of dissolved oxygen, pH and temperature were consistent throughout the term of the experiment. In the control and at the nominal test concentration of 100 mg a.s./L no mortality or other visible abnormalities were determined during the test period of 96 hours. Therefore, the 96 hour NOEC and LC₅₀ were determined to be 100 mg a.s./L and >100 mg a.s./L, respectively, based on the nominal test concentration.

Nominal concentra- tion (mg a.s./L)	Mortality observed (cumulative number of dead fish) (n = 7)						
	3 hour	24 hours	48 hours	72 hours	96 hours		
Dilution water control	0	0	0	0	0		

Dicamba	Volume 1 – Level 2

	100	0	0	0	0	0
--	-----	---	---	---	---	---

n.d. = not determined

Study 2:

(1989; SAN837/5330)

In a 96 hour static toxicity test of SAN837 (purity 86.6%) to rainbow trout (*Oncorhynchus mykiss*; formerly *Salmo gairdneri*), %), run alongside a prolonged toxicity test, ten fish were exposed to nominal test concentrations of 62.5, 125, 250, 500 and 1000 mg a.s./L (reported as ppm) and a dilution water control. Analysis showed measured test concentrations in the treatment tank of 62 - 119% of nominal. Apart from mortality no unusual swimming behaviour was observed. Based on nominal concentrations the 96-hour LC₅₀ was determined to be 177 mg a.s./L.

Effects of dicamba on the survival of *Salmo gairdneri* (96-hour, static)

Time	Cumulative % mortality observed							
(h)	0 ppm	62.5 ppm	125 ppm	250 ppm	500 ppm	1000 ppm		
0	0	0	0	0	0	3		
3	0	0	0	0	10	10		
6	0	0	0	0	10	10		
24	0	0	0	10	10	10		
48	0	0	0	10	10	10		
72	0	0	0	10	10	10		
96	0	0	0	10	10	10		

Study 3: (2010; 10AV4FA)

In a 96 hour static toxicity test of dicamba technical (purity 988.50 g/kg) to zebra fish (*Danio rerio*), seven fish were exposed to a nominal test concentration of 100 mg a.s./L and a dilution water control. Analysis showed measured test concentrations in the treatment tank of 62 - 119% of nominal. No mortality and no abnormal behaviour of fish was observed in the 100 mg/L test item concentration during the test period. The LC₅₀ was determined to be > 98.85 mg dicamba/L (corrected for purity).

T:	Treatment (mg a.s./L)						
Time	Treatmen	t (100 mg/L)	Control				
(h)	Survival	Mortality (%)	Survival	Mortality (%)			
0	7	0	7	0			
3	7	0	7	0			
24	7	0	7	0			
48	7	0	7	0			
72	7	0	7	0			
96	7	0	7	0			

Summary of acute toxicity to fish

The results of the above studies indicate that dicamba exhibits low acute toxicity to fish. The lowest LC_{50} for dicamba technical was 98.85 mg a.s./L.

Overall, the available data indicates low short term toxicity to fish. For classification purposes a $LC_{50} = 98.85$ mg a.s./L is used.

2.9.2.2.2 Acute (short-term) toxicity to aquatic invertebrates

No valid data submitted.

2.9.2.2.3 Acute (short-term) toxicity to algae or aquatic plants

Please refer to Section 2.9.2.3.3 'Chronic toxicity to algae or aquatic plants' where both acute (short-term) and chronic toxicity to algae and aquatic plants are discussed.

2.9.2.2.4 Acute (short-term) toxicity to other aquatic organisms

No data submitted.

Volume 1 – Level 2

2.9.2.3 Long-term aquatic hazard [equivalent to section 11.6 of the CLH report template]

Table 72:	Summary of relevant i	nformation on	chronic aquatic toxicity

Method	Species	Test mate- rial	Results	Relevant study <u>*</u>	Remarks	Reference
OECD 204 (1984)	Oncorhynchus mykiss (Rainbow trout)	Dicamba (86.8%)	21 day LOEC (mortality) > 1000 mg/L (nom) 21 day NOEC (behaviour) = 180 mg/L (nom)	Supportive	Semi-static GLP	(1990) SAN837/5331
OECD 210	Pimephales promelas (Fathead min- now)	Dicamba (92.9%)	33 day ELS NOEC = 10 mg/L (nom) 33 day ELS LOEC (all endpoints) > 10 mg/L (nom)		Flow-through GLP	(2011) SAN837_1152 8
OPPTS 850.1400 Pub- lic Draft, (April 1996)	Cyprinodon variegatus (sheepshead minnow)	Dicamba (93.9%)	34 day ELS NOEC = 11 mg/L (mm) 34 day ELS LOEC (all endpoints) > 11 mg/L (mm)		Flow-through GLP	(2012) SAN837_1152 9
OECD 202 Part II	Daphnia magna	Dicamba tech- nical (88.6%)	21 day EC ₅₀ (all endpoints) > 97 mg/L (mm) 21 day NOEC (all endpoints) = 97 mg/L (mm)		Semi-static GLP	Douglas (1993) SAN837/5332
US EPA, OP- PRS 850.1350 (1996), ASTM 1191-03a (2008)	Americamysis bahia (saltwater my- sid)	Dicamba tech- nical (93.9%)	35 day NOEC = 5.8 mg/L (mm) 35 day LOEC = 11.0 mg/L (mm)		Flow-through GLP	Claude <i>et al</i> (2012) SAN837_1153 0
OECD 201 (2006)	Pseudokirch- neriella sub- capitata (green alga)	Dicamba tech- nical (90.1 %)	72 h E_rC_{50} , E_yC_{50} and $E_bC_{50} > 87$ mg/L (mm) 72-h NOEC (all endpoints) = 43 mg/L (mm) 96 h $E_rC_{50} >$ 87 mg/L (mm) 96-h $E_yC_{50} =$ 85 mg/L (mm)		Static GLP	Eckenstein (2015) SAN837_1146 4

Volume 1 – Level 2

			96-h $E_bC_{50} =$ 87 mg/L (mm) 96-h NOEC (all endpoints) = 43 mg/L (mm)			
US-EPA FIFRA, J 123- 2	Anabaena flos- aquae (blue-green alga)	Dicamba tech- nical (89.9%)	$\begin{array}{l} 72\text{-h } E_r C_{50} = \\ 44.85 \ mg/L \\ (nom) \\ 72\text{-h } E_b C_{50} = \\ 43.14 \ mg/L \\ (nom) \\ 96\text{-h } E_r C_{50} = \\ 34.85 \ mg/L \\ (nom) \\ 96\text{-h } E_b C_{50} = \\ 42.01 \ mg/L \\ (nom) \\ 120\text{-h } E_r C_{50} = \\ 40.76 \ mg/L \\ (nom) \\ 120\text{-h } E_b C_{50} = \\ 41.52 \ mg/L \\ (nom) \\ 96\text{-h } NOErC = \\ 32 \ mg/L \\ (nom) \\ \end{array}$		Static GLP	Smyth <i>et al</i> (1998) SAN837/0411
US-EPA FIFRA, J 122- 2 and 123-2	<i>Navicula pel- liculosa</i> (fresh- water diatom)	Dicamba tech- nical (89.5%)	$72-h ErC_{50} > 3.8 mg/L (mm) 96-h EC_{50} = 5.1 mg/L (mm) 120-h EC_{50} = 2.3 mg/L (mm) 120-h NOEC = 0.5 mg/L (mm) $		Static GLP	Hoberg (1992a) SAN837/5229
US-EPA FIFRA, J 122- 2 and 123-2	Skeletonema costatum (marine dia- tom)	Dicamba tech- nical (89.5%)	$72-h \ ErC_{50} > 4.1 \ mg/L \ (mm) \ 96-h \ EC_{50} = 1.5 \ mg/L \ (mm) \ 120-h \ EC_{50} = 0.58 \ mg/L \ (mm) \ 120-h \ NOEC = 0.001 \ mg/L \ (mm) \ 120-h \ NOEC = 0.001 \ mg/L \ (mm) \ Model{eq:mm}$	supportive	Static GLP	Hoberg (1993), SAN837/5224
OECD 239 (2014)	<i>Myriophyllum</i> <i>spicatum</i> (Eurasian wa- termilfoil)	Dicamba (90.1%)	$14 \text{ day } \text{E}_{r}\text{C}_{50}$ (shoot length) = 0.94 mg/L (mm) 14 day NOEC (shoot length) = 0.27 mg/L (mm) 14 day LOEC		Static GLP (results based on initial measured con- centrations)	Kirkwood (2015) SAN837_1158 0

Volume 1 – Level 2

			(shoot length) = 0.86 mg/L (mm)		
US-EPA FIFRA, J 122- 2 and 123-2	<i>Lemna gibba</i> (duckweed)	Dicamba tech- nical (89.5%)	14 day EC ₅₀ > 3.2 mg a.s./L (mm) 14 day NOEC = 0.19 mg/L (mm)	Static GLP	Hoberg (1992b) SAN837/5223

2.9.2.3.1 Chronic toxicity to fish

Three long term studies on dicamba technical with supporting specific analysis show low long term toxicity to *Oncorhynchus mykiss* (Rainbow trout; formerly *Salmo gairdneri*) (1990), *Pimephales promelas* (fathead minnow) (1991) and *Cyprinodon variegatus* (sheepshead minnow) (1992).

Study 1: (1990; SAN837/5331)

The study is considered acceptable however, long-term toxicity data from OECD TG 204 is not considered adequate under CLP and thus the study is not used for classification. However the data is presented as supportive data.

In a 21 day prolonged semi-static toxicity study of dicamba (purity 86.8%) to *Oncorhynchus mykiss* (rainbow trout), 10 fish were exposed per treatment to nominal test concentrations of 18, 32, 58, 100, 180, 320, 580 and 1000 mg a.s./L and a dilution water control. The mean measured concentrations were in the range 94 to 107% of nominal, adjusting for purity.

Mortality and symptoms of toxicity were recorded throughout the study. Measurements of dissolved oxygen, pH and temperature and salinity were also recorded and remained consistent throughout the study.

With the exception of one fish which died on Day 2 in the 580 mg a.s./L test concentration no mortality was observed in any of the test concentrations. Symptoms of toxicity, including calm behaviour, fish at the top or bottom of the water body, slow flight movement, and low acceptance of food, were observed at concentrations of 320 mg a.s./L and above. No mortality or symptoms of toxicity were observed in the control.

Based on nominal concentrations, the 21 day NOEC was 180 mg a.s./L, and the threshold level of lethal effect was > 1000 mg a.s./L, the highest concentration tested.

Nominal concentration	Cumulative % mortality observed						
(mg a.s./L)	Day 0	Day 7	Day 14	Day 21			
Control	0	0	0	0			
18	0	0	0	0			
32	0	0	0	0			
58	0	0	0	0			
100	0	0	0	0			
180	0	0	0	0			
320	0	0	0	0			
580	0	10	10	10			
1000	0	0	0	0			

Effects of dicamba on the survival of Salmo gairdneri

Study 2: (2011; SAN837_11528)

In a 33 day Fish Early Lifestage (OECD 210) flow-through toxicity study of dicamba acid (purity 92.9%) to *Pimephales promelas* (fathead minnow), fish were exposed to nominal test concentrations of 0.1, 0.32, 1.0, 3.2 and 10 mg a.s./L and a dilution water control. The mean measured concentrations were 0.10, 0.331, 1.03, 2.98 and 9.91 mg a.s./L.

Observations for time to hatch, hatching success, stage-specific and overall survival, overall growth and sublethal morphological and behavioural effects were made during the pre and post-hatch phases, as appropriate.

Volume 1 – Level 2

Measurements of dissolved oxygen, pH and temperature and salinity were recorded and remained consistent throughout the study.

There were no statistically significant treatment related effects for hatching success, survival or growth. Based on nominal concentrations the NOEC was 10 mg a.s./L (the highest concentration tested) and the LOEC was > 10 mg a.s./L.

Nominal con-	Mean meas-	Quantal responses			Non quantal responses		
centration (mg a.s./L)	ured concen- tration (mg a.s./L)	Hatching	Larvae survival (%)	Juvenile survival (%)	Overall survival (%)	Mean length (cm)	Mean wet weight (mg)
Control	Control	98	99	100	97	2.8	229
0.10	0.10	98	97	98	93	2.8	226
0.32	0.331	98	99	100	97	2.9	232
1.0	1.03	97	99	100	96	2.8	232
3.2	2.98	98	100	99	97	2.9	237
10	9.91	98	99	100	97	2.9	231

Effects of dicamba on the survival and growth of fathead minnows

Study 3: (2012; SAN837_11529)

In a 34 day Fish Early Lifestage (OPPTS 850.1400) flow-through toxicity study of dicamba acid (purity 93.9%) to *Cyprinodon variegatus* (sheepshead minnow), fish were exposed to nominal test concentrations of 0.31, 0.77, 1.9, 4.8 and 12 mg a.s./L, a solvent control and a dilution water control. The mean measured concentrations were 0.28, 0.72, 1.8, 4.5 and 11 mg a.s./L, i.e. 97 to 99.6% of nominal, adjusting for purity.

Observations for time to hatch, hatching success, larval mortality, deformed larvae and other symptoms of toxicity were made daily, as appropriate. At the end of the test, lengths and wet and dry weights of the surviving larvae were measured. Measurements of dissolved oxygen, pH and temperature and salinity were recorded and remained consistent throughout the study.

There were no treatment-related effects on time to hatch, and no statistically significant treatment-related effects on hatching success, survival or growth. Therefore, based on mean measured concentrations, the overall NOEC was 11 mg a.s./L and the LOEC was > 11 mg a.s./L.

Mean measured	Quant	tal responses	Non quantal responses			
concentration (mg a.s./L)	Hatching suc- cess (%)	Larval survival (%) ¹	Mean length (mm) ± SD	Mean wet weight (mg) ± SD	Mean dry weight (mg) ± SD	
Control	95	93	19.7 ± 0.22	95.7 ± 5.4	22.3 ± 1.1	
Solvent control	96	99	19.6 ± 0.096	95.6 ± 1.5	21.9 ± 0.34	
0.28	96	100	19.1 ± 0.26	86.9 ± 2.6	19.9 ± 0.83	
0.72	96	100	19.3 ± 0.14	92.1 ± 3.9	21.3 ± 0.85	
1.8	98	97	19.5 ± 0.13	95.6 ± 4.1	21.4 ± 0.80	
4.5	93	95	18.7 ± 0.24	86.5 ± 5.4	19.5 ± 1.2	
11	98	97	19.3 ± 0.22	97.1 ± 5.2	22.1 ± 0.86	

No treatment-related statistically significant effects were observed

¹ The number of surviving larvae at the end of the test (day 32), expressed as a percentage of the number of eggs.

Summary of chronic toxicity to fish

The results of the three available chronic studies indicate that dicamba exhibits low chronic toxicity to fish. For the purpose of classification a NOEC of 10 mg a.s./L is used, based on the data for the fathead minnow.

2.9.2.3.2 Chronic toxicity to aquatic invertebrates

Two studies on dicamba technical with supporting specific analysis shows low long term toxicity to *Daphnia Magna* (Douglas, 1993) and *Americamysis bahia* (saltwater mysid) (Claude *et al*, 2012).

Volume 1 – Level 2

Study 1: Douglas (1993; SAN837/5332)

In a 21 day flow-through toxicity study of dicamba acid (purity 88.6%) to *Daphnia Magna*, groups of forty animals (10 x four replicates) were exposed to nominal test concentrations of 1.0, 3.2, 10, 32 and 100 mg a.s./L (mean measured concentrations 0.92, 3.2, 9.7, 32 and 97 mg a.s./L), plus a dilution water control. The temperature remained at a constant 21°C throughout the experiment. The measured pH ranged from 6.6-8.0 at initiation to 6.8-8.2 at termination and the measured O_2 concentration was 8.7 mg/L at initiation and between 8.1 and 8.3 mg/L at termination.

There were no significant effects on survival or reproduction at any of the test concentrations. The EC_{50} and NOEC for all biological endpoints were >97 mg a.s./L and 97 mg a.s./L, respectively.

Nominal concentrations (mg a.s./L)	Mean measured concentra- tions (mg a.s./L)	Mean adult survival (%)	Mean number of juveniles per surviving female at day 21
Control	-	88	43
1.0	0.92	85	42
3.2	3.2	88	40
10	9.7	88	44
32	32	80	36
100	97	83	43

Effects of dicamba on *Daphnia magna* survival and reproduction

Study 2: Claude et al (2012; SAN837 11530)

In a 35 day flow-through toxicity study of dicamba acid (purity 93.9%) to *Americamysis bahia* (saltwater mysid), animals were exposed to nominal test concentrations of 0.75, 1.5, 3.0, 6.0 and 12 mg a.s./L (mean measured concentration: 0.69, 1.4, 2.9, 5.8 and 11 mg a.s./L, adjusted for purity), plus a dilution water and solvent (DMF) control. At the start of the test 60 neonate mysids were exposed to each treatment (15×4 replicates). On day 14, five male/female pairs were assigned to reproductive compartments in each replicate test chamber, with one pair per compartment.

Specific analysis showed mean measured test concentrations to be 92 to 97% of nominal.

Measurements of dissolved oxygen, pH and temperature and salinity were recorded throughout the study. The measured temperature ranged from $24.4 - 26^{\circ}$ C, pH ranged from 7.8 - 8.1 and the measured O₂ concentration ranged from 5.7 - 7.4 mg/L (gentle aeration from day 15).

Survival of the parent animals was 82.5 % in the controls. The first brood juveniles were observed on day 16 in the controls and all test concentrations up to and including 11 mg a.s./L. Effects on survival, growth and reproduction are shown in the table below.

Mean measured concentrations (mg a.s./L)	% survival		Young pro- duced per re- productive day	Number of young per female ¹		ody length nm)		ry weight ng)
	Juveniles until pair- ing Day 14	Adults until test end Day 35	Mean	Mean	Males	Females	Males	Females
Control	88.3	82.5	0.283	6.0	7.90	8.31	1.07	1.26
Solvent control	90.0	82.5	0.710	13.3	7.97	8.41	0.97	1.38
Pooled control	89.2	82.5	-		7.94	8.36	1.02	1.32
0.69	91.7	85.7	0.287	5.6	7.95	8.14	0.98	1.38
1.4	90.0	80.0	0.342	6.8	7.68	8.30	0.93	1.39
2.9	90.0	69.2	0.517	9.3	7.93	8.10#	0.98	1.15

Effects of dicamba acid on mysid reproduction, growth and survival

Volume 1 – Level 2

Mean measured concentrations (mg a.s./L)	% survival		Young pro- duced per re- productive day	Number of young per female ¹		ody length nm)		ry weight ng)
	Juveniles until pair- ing Day 14	Adults until test end Day 35	Mean	Mean	Males	Females	Males	Females
5.8	90.0	77.5	0.283	5.7	7.86	8.06#	1.02	1.26
11	78.3*	77.3	0.176	3.4	7.74	8.11	1.04	1.41

* Statistically significant decrease in survival in comparison to the pooled control using Fisher's Exact test ($p \le 0.05$)

[#] Statistically significant decrease in comparison to the pooled control using Dunnett's test ($p \le 0.05$)

¹Statistical analyses were not performed on this parameter

In summary, based on a statistically significant decrease in juvenile survival in the highest test concentration the NOEC was 5.8 mg a.s./L and the LOEC was 11 mg a.s./L.

Summary of chronic toxicity to aquatic invertebrates

Based on the data for *Americamysis bahia* the chronic NOEC for aquatic invertebrates of 5.8 mg a.s./L is taken for the purposes of classification.

2.9.2.3.3 Chronic toxicity to algae or aquatic plants

Four studies are available on the acute toxicity of dicamba to algae. In addition two 14 day studies with aquatic macrophytes have been performed using dicamba technical:

Study 1: Eckenstein (2015) - Dicamba Technical: Toxicity to Pseudokirchneriella subcapitata.

Study 2: Smyth et al (1998) - Dicamba Technical: Toxicity to the blue-green alga Anabaena flos-aquae.

Study 3: Hoberg (1992a) - Dicamba Technical: Toxicity to the freshwater diatom, Navicula pelliculosa.

Study 4: Hoberg (1993) - Dicamba Technical: Toxicity to the marine diatom, Skeletonema costatum.

Study 5: Kirkwood (2015) - Dicamba Technical: Toxicity to Myriophyllum spicatum (Eurasian watermilfoil).

Study 6: Hoberg (1992b) - Dicamba Technical: Toxicity to duckweed, Lemna gibba.

Study 1: Eckenstein (2015a; SAN837_11464)

The toxicity of technical dicamba (purity 90.1%) to green alga *Pseudokirchneriella subcapitata* was determined (Eckenstein, 2015). Algae were exposed for 120 hours to nominal concentrations 6.25, 12.5, 25, 50 and 100 mg a.s./L, alongside a culture medium control. At the start of the test, the analytically determined concentrations of dicamba were in the range 95 to 97% of the nominal values and at the end of the test were in the range 96 to 98% of nominal values. Mean measured concentrations were 5.5, 11, 22, 43 and 87 mg a.s./L.

Based on mean measured concentrations, the 72-hour E_rC_{50} , E_yC_{50} and E_bC_{50} were > 87 mg a.s./L and the NOEC for all endpoints was 43 mg a.s./L.

The 96-hour E_rC_{50} , E_yC_{50} and E_bC_{50} were > 87 mg a.s./L, 85 mg a.s./L and 87 mg a.s./L. The 96-hour NOEC for all endpoints was 43 mg a.s./L.

	Growth rate		Yield		Biomass	
Mean measured concentration (mg a.s./L)	Mean (1/day)	% inhibi- tion	Mean (x 10 ³ cells/mL)	% inhibi- tion	Mean inte- gral (10 ³ * day)	% inhibition
Control	1.640	0.0	89.0	0.0	60.5	0.0
5.5	1.670	-1.8	97.3	-9.3	65.9	-8.8
11	1.663	-1.4	95.6	-7.4	64.7	-7.0
22	1.682	-2.6	100.9	-13.5	68.6	-13.3

Measured parameters over 72 hours

Volume 1 – Level 2

43	1.631	0.6	86.4	2.9	59.3	2.0
87	1.423*	13.2	46.2*	48.1	36.6*	39.5

* mean value statistically significantly lower than in the control (according to Williams t-test, one-sided smaller, $\alpha = 0.05$)

Measured parameters over 96 hours

	Growth rate		Yield		Biomass	
Mean measured concentration (mg a.s./L)	Mean (1/day)	% inhibi- tion	Mean (x 10 ³ cells/mL)	% inhibi- tion	Mean inte- gral (10 ³ * day)	% inhibition
Control	1.512	0.0	275.3	0.0	242.6	0.0
5.5	1.520	-0.6	285.1	-3.6	257.1	-5.9
11	1.513	-0.1	278.6	-1.2	251.8	-3.8
22	1.532	-1.3	299.1	-8.7	268.6	-10.7
43	1.547	-2.3	317.0	-15.2	261.0	-7.6
87	1.302*	13.9	118.7*	56.9	119.0#	50.9

* mean value statistically significantly lower than in the control (according to Williams t-test, one-sided smaller, $\alpha = 0.05$)

mean value statistically significantly lower than in the control (according to Welch t-test, one-sided smaller, $\alpha = 0.05$)

Study 2: Smyth et al (1998; SAN837/0411)

The toxicity of technical dicamba (purity 89.9%) to blue-green alga *Anabaena flos-aquae* was determined (Smyth *et al*, 1998). Blue-green algae were exposed for 5 days to nominal concentrations 3.2, 5.6, 10, 18, 32, 56, 100 and 180 mg a.s./L, alongside a culture medium control. At the start of the test, the analytically determined concentrations of dicamba were in the range 100 to 106% of the nominal values and at the end of the test were in the range 100 to 111% of nominal values. pH values were acceptable at test concentrations up to and including 32 mg a.s./L but are too low at higher concentrations of dicamba. Thus it is not possible to decide whether pH or the test substance caused the effects at concentrations > 32 mg a.s./L. Accordingly the NOEC is determined as 32 mg a.s./L and the EC₅₀ as > 32 mg a.s./L.

Mean values at each concentration of dicamba technical for growth rate at 72, 96 and 120 hours for *Anabaena flos-aquae*

Nominal concentra- tions of dicamba tech- nical (mg a.s./L)	Mean growth rate (1/day) 0 – 72 hrs	Mean growth rate (1/day) 0 – 96 hrs	Mean growth rate (1/day) 0 – 120 hrs
Control	0.062	0.054	0.046
3.2	0.062	0.053	0.046
5.6	0.062	0.053	0.045
10	0.061	0.052	0.045
18	0.063	0.053	0.045
32	0.062	0.053	0.046
56	0.003*	-0.001*	-0.004*
100	0.005*	-0.003*	-0.005*
180	0.004*	-0.001*	-0.002*

Volume 1 – Level 2

*: statistically significantly different from control (according to Dunnett's t-test, p = 0.05)

Nominal concentra- tions of dicamba tech- nical (mg a.s./L)	Mean biomass integral (area) 0 – 72 hrs	Mean biomass integral (area)) 0 – 96 hrs	Mean biomass integral (area) 0 – 120 hrs
Control	26.804	73.664	150.388
3.2	26.432	66.524	133.248*
5.6	24.848	65.132	129.536*
10	24.992	64.488	133.552*
18	27.648	69.072	134.016*
32	24.632	66.176	134.680
56	2.020*	2.160*	2.288*
100	1.932*	2.032*	2.080*
180	1.016*	1.096*	1.144*

Mean values at each concentration of dicamba technical for the biomass integral (areas under the growth curve) at 72, 96 and 120 hours for *Anabaena flos-aquae*

*: statistically significantly different from control (according to Dunnett's t-test, p = 0.05)

Study 3: Hoberg (1992a; SAN837/5229)

The toxicity of technical dicamba (purity 89.5%) to the freshwater diatom *Navicula pelliculosa* was determined (Hoberg, 1992a). Algae were exposed for 120 hours to nominal concentrations of 0.25, 0.50, 1.0, 2.0 and 4.0 mg a.s./L, alongside a culture medium control. At the start of the test, the analytically determined concentrations of dicamba were in the range 96.9 to 109% of the nominal values and at the end of the test were in the range 95.5 to 98.8% of nominal values. Mean measured concentrations were 0.26, 0.5, 1.0, 1.9 and 3.8 mg a.s./L.

Based on mean measured concentrations the 120-hour EC_{50} was 2.3 mg a.s./L and the 120-hour NOEC was 0.5 mg a.s./L. The 72-hour E_bC_{50} and E_rC_{50} values were considered to be >3.8 mg a.s./L and the NOEC = 1.0 mg a.s./L.

Mean values at each concentration of dicamba (SAN837) for the growth rate at 72, 96 and 120 hours for	
Navlicula pelliculosa	

Mean measured con- centrations (mg/L)	Mean cell density (x 10 ⁴ cells/mL) after 72 hours	Mean cell density (x 10 ⁴ cells/mL) after 96 hours	Mean cell density (x 10 ⁴ cells/mL) after 120 hours
Control	30	39	78
3.8	19*	21*	28
1.9	18	27	41*
1.0	30	33	57*
0.50	32	37	78*
0.26	38	41	79

* Statistically reduced ($p \le 0.05$) as compared to the control based on Williams' test

Study 4: Hoberg (1993; SAN837/5224)

The toxicity of technical dicamba (purity 89.5%) to the marine diatom *Skeletonema costatum* was determined (Hoberg, 1993). Algae were exposed for 120 hours to nominal concentrations of 0.0097, 0.032, 0.11, 0.36, 1.2 and 4.0 mg a.s./L, alongside a culture medium control. At the start of the test, the analytically determined concentrations of dicamba were in the range 100 to 110% of the nominal values and at the end of the test were in the range 95 to 110% of nominal values. Mean measured concentrations were 0.011, 0.033, 0.11, 0.35, 1.2 and 4.1 mg a.s./L.

Volume 1 – Level 2

Based on mean measured concentrations the 72-hour E_rC_{50} were > 4.1 mg a.s./L, the E_bC_{50} = 1.8 mg a.s./L and NOE_bC = 0.011 mg a.s./L

Mean measured concen- trations (mg a.s./L)	Mean cell density 72 hrs (cells/mL)	Mean cell density 96 hrs (cells/mL)	Mean cell density 120 hrs (cells/mL)
Control	49 ± 2	82 ± 12	111 ± 7
0.011	42 ±2	81 ± 13	110 ± 5
0.033	41 ± 2	76 ± 8	$83 \pm 1*$
0.11	41 ± 1	65 ± 2	$62\pm7^{*a}$
0.35	37 ± 1^{a}	56 ± 1^{a}	$58\pm7^{st a}$
1.2	$26\pm3^{\mathtt{a}}$	$51\pm 6^{\mathrm{a}}$	$53\pm7^{st a}$
4.1	$22\pm1^{\rm a}$	$24\pm2^{\mathtt{a}}$	$38\pm5^{st a}$

Mean values at each concentration of dicamba for cel	density at 72, 96 and 120 hours for <i>Skeletonema</i>
costatum	

Mean values and standard deviation were calculated from the original raw data

*Statistically reduced compared to the control (based on Williams' test, $p \le 0.05$)

^a Cell fragments, bloated cells and thin cell walls observed

Study 5: Kirkwood (2015; SAN837_11580)

The toxicity of technical dicamba (purity 90.1%) to *Myriophyllum spicatum* (Eurasian watermilfoil) was determined in a 14 day study with nominal test concentrations of 0.029, 0.092, 0.29, 0.94, 3.0 and 9.6 mg a.s./L) alongside a dilution water control. Corresponding initial measured concentrations were 0.027, 0.083, 0.27, 0.86, 2.8 and 9.0 mg a.s./L. At exposure initiation (day 0) and termination (day 14), concentrations ranged from 90 to 94% and 81 to 93% of nominal concentrations, respectively. Results were reported based on initial measured concentrations.

The pH of test and control solutions ranged from 8.0 to 10 and dissolved oxygen concentrations ranged from 9.3 to 16 mg/L throughout the exposure period. The pH and dissolved oxygen values most likely increased over time as a result of photosynthesis by the plants. The validity criteria for control shoot length, weight and coefficient of variation were met and there were no visual symptoms of chlorosis in the controls throughout the study.

Initial measured con-	Mean Final	Average specific growth rate		()		l (cm)
centration (mg a.s./L)	total shoot length (cm)	Mean (days-1)	Percent inhi- bition (%)	Mean (cm)	Percent in- hibition (%)	
Control	36.8	0.0899	-	26.5	-	
0.027	50.7	0.1047	-16	39.4	-49	
0.083	45.0	0.1036	-15	34.4	-30	
0.27	34.1	0.0852	5	23.9	10	
0.86	21.8	0.0513 ^b	43	11.3 ^a	57	
2.8	15.0	0.0235 ^b	74	4.2 ^a	84	
9.0	11.1	0.0027 ^b	97	0.6 ^a	98	

Effect of dicamba on growth rate and yield of Myriophyllum spicatum for shoot length

^a Significantly reduced compared to the control, based on Wilcoxon's Test with Bonferroni Holm's Adjustment.

^b Significantly reduced compared to the control, based on Dunnett's Multiple Comparison Test. Negative values indicate an increase relative to the control

Volume 1 – Level 2

Initial measured con- centration	Shoot wet weight (g)	Shoot wet weight			
(mg a.s./L)	() englite (g)	Average speci	fic growth rate	Yiel	d (g)
		Mean (days-1)	Percent inhi- bition (%)	Mean (g)	Percent in- hibition (%)
Control	0.1844	0.0880	-	0.6072	-
0.027	1.0937	0.1064	-21	0.8495	-40
0.083	1.0155	0.1012	-15	0.7713	-27
0.27	0.8393	0.0862	2	0.5951	2
0.86	0.6305	0.0156	24	0.3864	36
2.8	0.4461	0.0429 ª	51	0.2019 ^a	67
9.0	0.3966	0.0328 ª	63	0.1524 ª	75

Effect of dicamba on growth rate and yield (wet weight) of Myriophyllum spicatum

^a Significantly reduced compared to the control, based on Dunnett's Multiple Comparison Test. Negative value indicate an increase relative to the control

Initial measured con- centration	Shoot dry weight (g)	Shoot dry weight				
(mg a.s./L)	weight (g)	Average specific growth rate Yield		eld (g)		
		Mean (days-1)	Percent inhi- bition (%)	Mean (g)	Percent in- hibition (%)	
Control	0.0595	0.0610	-	0.0349	-	
0.027	0.0764	0.0810	-33	0.0519	-49	
0.083	0.0724	0.0767	-26	0.0479	-37	
0.27	0.0679	0.0716	-17	0.0433	-24	
0.86	0.0646	0.0686	-13	0.0400	-15	
2.8	0.0493	0.0496	19	0.0248	29	
9.0	0.0459	0.0431	29	0.0214	39	

Negative values indicate an increase relative to the control; n.d. - not determined

The lowest concentration at which effects were observed was 0.86 mg a.s./L for yield and average growth rate based on shoot length (NOEC = 0.27 mg a.s./L, LOEC = 0.86 mg a.s./L).

For classification purposes, the EC_{50} for average growth rate based on shoot length of 0.94 mg a.s./L is considered the most relevant endpoint for acute (short term) toxicity.

Study 6: Hoberg (1992b; SAN837/5223)

The toxicity of dicamba technical (purity 89.5%) to duckweed (*Lemna gibba*) was assessed in a static test design for 14 days with nominal concentrations 0.25, 0.50, 1.0, 2.0 and 4.0 mg a.s./L together with culture medium control. Measured concentrations were 98% and 61% of nominal at the start and end of the test. The results are summarised in the table below:

Initial measured concentration (mg a.s./L)	Mean number of fronds 14 days	Standard deviation	Mean frond dry weight (g) 14 days	Standard deviation
Control	418	13	0.0654	0.0100
0.25	421	8.6	0.0836	0.0073

Toxicity of dicamba technical to Lemna gibba

Initial measured concentration (mg a.s./L)	Mean number of fronds 14 days	Standard deviation	Mean frond dry weight (g) 14 days	Standard deviation
0.51	371*	6.5	0.0639	0.0111
0.99	390*	14	0.0803	0.0053
1.9	360*	11	0.0821	0.0143
3.8	343*	28	0.0651	0.0092

* Significantly different from control (p < 0.05).

Frond production in the four highest concentrations (0.51, 0.99, 1.9 and 3.8 mg a.s./L) was significantly different from the controls at 14 days. There were no statistical significant differences in dry weight (biomass) at any of the concentrations tested.

Since no test concentration resulted in a 50% reduction in frond density or biomass as compared to the control, an EC_{50} value was not calculated (effectively $EC_{50} > 3.2$ mg a.s./L based on geometric mean concentrations). Whilst this may be considered a chronic study, for classification purposes, the EC_{50} is considered a relevant endpoint for acute (short term) toxicity. In summary, the 14 day EC_{50} value was >3.2 mg a.s./L and the 14 day NOEC was 0.19 mg a.s./L.

Species	Test material	Timepoint for ErC50 & NOEC	Lowest EC ₅₀ (mg a.s./L)	NOEC (mg a.s./L)	Reference
Pseudokirchneriella sub- capitata	Dicamba technical	72 hour 96 hour	> 87	43	Eckenstein (2015) SAN837_11464
Anabaena flos-aquae	Dicamba technical	72 hour 96 hour	> 32 34.85	32	Smyth <i>et al</i> (1998) SAN837/0411
Navicula pelliculosa	Dicamba technical	72 hour 120 hour	3.8 2.3	0.5	Hoberg (1992a) SAN837/5229
Skeletonema costatum	Dicamba technical	72 hour 120 hour	4.1 0.58	0.011	Hoberg (1993) SAN837/5224
Myriophyllum spicatum	Dicamba technical	14 day	0.94	0.27	Kirkwood (2015) SAN837_11580
Lemna gibba	Dicamba technical	14 day	> 3.2	0.19	Hoberg (1992b) SAN837/5223

 Table 73:
 Summary of toxicity data on algae and aquatic plants

Based on these data the EC_{50} for *Skeletonema costatum* is the most acutely sensitive endpoint. The EC_{50} is therefore taken as 0.58 mg a.s./L for classification purposes.

2.9.2.3.4 Chronic toxicity to other aquatic organisms

No other information was submitted or required.

2.9.2.4 Comparison with the CLP criteria

2.9.2.4.1 Acute aquatic hazard

 Table 74:
 Summary of information on acute aquatic toxicity relevant for classification

Method	Species	Test material	Results	Remarks	Reference
OECD 203	Fish	Dicamba tech.	96-h LC ₅₀ >		

Volume 1 – Level 2

	(Danio rerio)		98.85 mg a.s./L (nom)	(2010)
US-EPA FIFRA, Subdivision J, Guide- lines 122-2 and 123-2	Algae (Navicula pel- liculosa)	Dicamba tech.	120-h E _r C ₅₀ > 0.58 mg a.s./L (mm)	Hoberg (1992)
OECD 239	Aquatic plant (<i>Myriophyllum</i> <i>spicatum</i>)	Dicamba tech.	$14-d E_r C_{50} = 0.94 \text{ mg a.s./L}$	Kirkwood A. (2015)

Based on these data the most sensitive species group to acute (short term) exposure to dicamba is algae; lowest $EC_{50} = 0.58$ mg a.s./L.

On this basis, the following classification and labelling of dicamba is proposed: Aquatic Acute 1 H400 (Very toxic to aquatic life); as the lowest $L(E)C_{50}$ is between 0.1 and 1 mg/L; the associated M-factor is 1.

2.9.2.4.2 Long-term aquatic hazard (including bioaccumulation potential and degradation)

Species group	Species	Lowest representative NOEC	Reference
Fish	Pimephales promelas	10 mg a.s./L	(2011) SAN837_11528
Aquatic invertebrates	Americamysis bahia	5.8 mg a.s./L	Claude <i>et al</i> (2012) SAN837_11530
Algae	Skeletonema costatum	0.011 mg a.s./L	Hoberg (1993) SAN837/5224
Aquatic plant	Myriophyllum spicatum	0.27 mg a.s./L	Kirkwood A. (2015)

 Table 75:
 Summary of information on long-term aquatic toxicity relevant for classification

Based on these data the most sensitive species group to chronic (long term) exposure to dicamba is algae (marine species); lowest NOEC = 0.011 mg a.s./L. According to the environmental fate data dicamba is classified as not readily biodegradable. Two studies (according to OECD 301F) were performed to determine the biodegradability of dicamba and the degradation of dicamba was < 9 % after 10 days and the degradation of the reference substance was > 87 % after 10 days. The results of the studies show that dicamba is considered to be not rapidly degradable (degradation < 60% within 10 days) for purpose of classification and labelling. Dicamba does not have the potential to bioaccumulate, as the log P_{ow} is below 4 and thus should not be classified due to potential for bioaccumulation.

On this basis, the following classification and labelling of dicamba is proposed:

Aquatic Chronic 1 H410 (Very toxic to aquatic life with long lasting effects); as the lowest NOEC is between 0.01 and 0.1 mg/L and the substance is not rapidly degradable; the associated M-factor is 1.

2.9.2.5 Conclusion on classification and labelling for environmental hazards

On the basis of the above information on chronic toxicity, bioaccumulation and rapid degradability, the following classification and labelling of dicamba is proposed:

Volume 1 – Level 2

Acute: Category Acute 1' (H400) with M-factor = 1 Long-term: Category Chronic 1' (H410) with a M-factor = 1

2.9.3 Summary of effects on arthropods

2.9.3.1 Bees

Studies have been carried out with technical dicamba and the two representative formulations. No studies of toxicity to bumble bees or solitary bees have been submitted.

The endpoints from the old a.s. studies were originally reported as technical dicamba and have been corrected for purity; Table 75.

Test type (time scale)	Species	Test substance	Batch no.; pu- rity	Endpoint	Toxicity	Reference
		Dicamba tech.	52204112 89.5 %	LD ₅₀ (72 h)	> 89.5 µg a.s/bee ^a	Hillesheim, 1993a
Acute oral	Honey bee	A7254B	52201602 39.9 % w/w	LD ₅₀ (72 h)	> 100 μg prod- uct/bee (> 39.9 μg a.s/bee)	Hillesheim, 1993a
		Dicamba 700SG	20150112002 692 g/kg	LD50 (48 h)	> 155.5 μg prod- uct/bee (> 107.6 μg a.s/bee)	Schmitzer, 2016
	Acute con- tact Honey bee	Dicamba tech.	52204112 89.5 %	LD ₅₀ (72 h)	> 89.5 µg a.s/bee ^a	Hillesheim, 1993b
		A7254B	52201602 39.9 % w/w	LD ₅₀ (72 h)	> 100 μg prod- uct/bee (> 39.9 μg a.s/bee)	Hillesheim, 1993b
		Dicamba 700SG	20150112002 692 g/kg	LD ₅₀ (48 h)	> 144.5 μg prod- uct/bee (> 100 μg a.s/bee)	Schmitzer, 2016
Adult	Hanayhaa	Dicamba tech.	20140901136 98.46 %	LDD ₅₀	> 61.7 µg a.s./ bee/day	Tanzler & Knebel, 2017
(10 days)	Honey bee	A7254B	BSN4C1022 41.7 % w/w	LDD ₅₀	> 194.7 µg a.s./ bee/day	Ruhland, 2015
Larval devel- opment (8 days)	Honoyhaa	A7254B	BSN4C1022 41.7 % w/w	NOED	125 μg a.s./larva/ development pe- riod	Kleebaum, 2015
Larval devel- opment (10 days)	Honey bee	Dicamba tech.	20140901136 98.46%	NOED	3.89 µg a.s./larva/ development pe- riod	Ortoli, 2017

Table 76:Summary of toxicity of dicamba to bees

^a Endpoint corrected for purity of the technical a.s.

Values in **bold** are considered relevant for use in risk assessment.

2.9.3.2 Non-target arthropods other than bees

Studies have been carried out with the two representative formulations. In addition to standard laboratory tests with the two indicator species (Table 76) extended laboratory test with the standard species and three additional species are available (Table 77).

Volume 1 – Level 2

 Table 77:
 Summary of toxicity of dicamba to non-target arthropods other than bees – standard laboratory tests (Tier 1)

Species	Test type; substrate	Test substance	Batch no.; a.s. content	Endpoint	Toxicity	Reference
Aphidius	Tier 1;	A7254B	PR910061 484 g/L	LR50 (48 h)	356 g a.s./ha	Grimm, 2000a
P	Glass plate	Dicamba 700SG	175-024 708.6 g/kg	LR50 (48 h)	3412 g a.s./ha	Sipos, 2010b
Typhlodromus	Tier 1;	A7254B	PR910061 484 g/L	LR50 (7 d)	232.6 g a.s./ha	Grimm, 2000b
pyri	Glass plate	Dicamba 700SG	175-024 708.6 g/kg	LR ₅₀ (7 d)	154 g a.s./ha	Sipos, 2010a

Values in **bold** are considered relevant for use in risk assessment.

 Table 78:
 Summary of toxicity of dicamba to non-target arthropods other than bees – extended laboratory tests and aged residue studies (Tier 2)

Species	Test type; substrate	Test sub- stance	Batch no.; a.s. content	Endpoint	Toxicity	Reference
Aphidius rhopalosiphi	Extended lab.; barley plants (3D)	A7254B	BSN4C1022 487 g/L	Mortality Reproduction	LR ₅₀ > 2338 g a.s./ha NOER = 2338 g a.s./ha	Stevens, 2014
	Extended lab.; maize leaves (2D)	A7254B	PB008205 460 g/L	Mortality Reproduction	LR ₅₀ > 460 g a.s./ha NOER = 57.5 g a.s./ha < 50 % effect at 115 g a.s./ha	Zenz, 2002
Typhlodromus pyri	Extended lab.; maize plants (3D)	Dicamba 700SG	175-024 708.6 g/kg	Mortality Reproduction	LR ₅₀ > 365 g a.s./ha NOER = 365 g a.s./ha	Ythier, 2010a
	Aged resi- due; maize plants (3D)	A7254B	BSN4C1022 487 g/L	0 and 14 DAT: Mortality Reproduction	LR ₅₀ > 974 g a.s./ha NOER = 974 g a.s./ha	Fallowfield, 2015
Chrysoperla	Extended lab.; maize leaves (2D)	A7254B	PB008205 460 g/L	Mortality Reproduction	LR ₅₀ > 960 g a.s./ha NOER = 960 g a.s./ha	Hargreaves & Weyman, 2003
carnea	Extended lab.; maize plants (3D)	Dicamba 700SG	175-024 708.6 g/kg	Mortality Reproduction	LR ₅₀ > 365 g a.s./ha NOER = 365 g a.s./ha	Ythier, 2010b
Aleochara bi- lineata	Extended lab.; sand (2D)	A7254B	PR910061 484 g/L	Mortality Reproduction	LR ₅₀ > 363 g a.s./ha NOER = 363 g a.s./ha	Taruza, 2001
Poecilus cu- preus	Extended lab.; sand (2D)	A7254B	5290250 480 g/L	Mortality Predation rate	LR ₅₀ > 360 g a.s./ha < 50 % effect at 360 g a.s./ha	Rombke, 1990

2.9.4 Summary of effects on non-target soil meso- and macrofauna

Studies have been carried out with the two representative formulations; Table 78.

Volume 1 – Level 2

Test type (time scale)	Species	Test substance	Batch no.; purity	Endpoint	Toxicity	Reference
56 day chronic	Eisenia fetida	A7254B	PFB3HI19; 484 g/L	NOEC	125 mg A7254B/kg dw soil (equivalent to 51.25 mg a.s./kg dw soil) ^a	Friedrich, 2011
56 day chronic	Eisenia fetida	Dicamba 700SG	20150112002; 692 g/kg	NOEC	4.15 mg a.s./kg soil	Pavic B., 2016a
28 day chronic	Folsomia candida	A7254B	BSN4C1022; 487 g/L	NOEC	62.5 mg A7254B/kg dw soil, (equivalent to 26.1 mg a.s./kg dw soil) ^a	McCormac, 2014
28 day chronic	Folsomia candida	Dicamba 700SG	20150112002; 692 g/kg	NOEC	mortality = 100 mg test item/kg soil d.w. eq. to 69.2 mg a.s./kg soil d.w. reproduction = 25.0 mg test item/kg soil eq. to 17.3 mg a.s./kg soil d.w.	Pavic B., 2016b
14 day chronic	Hypo- aspis aculeifer	A7254B	BSN4C1022; 487 g/L	NOEC	= 1 000 mg A7254B/kg dw soil, (equivalent to 417 mg a.s./kg dw soil) ^a	Vinall, 2014
14 day chronic	Hypo- aspis aculeifer	Dicamba 700SG	20150112002; 692 g/kg	NOEC	mortality = 1 000 mg test item /kg soil d.w. eq. to 692 mg a.s./kg soil d.w. reproduction = 1 000 mg test item/kg soil d.w. eq. to 692 mg a.s./kg soil d.w.	Parsons C., 2016

Table 79:	Summary of toxicity	of dicamba on non-target	t soil meso- and macrofauna
	5 5 5	8	

^a Based on nominal active substance content of 480 g/L and density of 1170 kg/m³

2.9.5 Summary of effects on soil nitrogen transformation

Studies have been carried out with technical dicamba and the representative formulation Dicamba 700SG. The endpoints from the a.s. studies were originally reported as technical dicamba and have been corrected for purity; Table 79.

Volume 1 – Level 2

Dicamba

Test type (time scale)	Species	Test substance	Batch no.; purity	Endpoint	Toxicity	Reference
	Soil mi- croflora	Dicamba tech.	P.MG2726410; 89.8%	NOEC	5.75 mg/kg dw soil	Seyfried, 2001
	Soil mi- croflora	Dicamba 700SG	175-024; 72.1%	NOEC	2.45 mg a.s./kg dry soil	Förster, 2010

 Table 80:
 Summary of toxicity of dicamba on soil nitrogen transformation

2.9.6 Summary of effects on terrestrial non-target higher plants

Studies have been carried out with the two representative formulations (Tables 80 and 81).

 Table 81:
 Summary of toxicity of dicamba (A7254B) to terrestrial non-target plants

Species	Family	ER50 (g a.	s./ha)
		Seedling emergence	Vegetative vigour
Dicotyledons		· · ·	
Beta vulgaris (sugar beet) ^a	Chenopodiaceae	97	24.4
Daucus carota (carrot) ^b	Apiaceae	318	888
<i>Glycine max</i> (soybean) ^a	Fabaceae	186	590
Helianthus annuus (sunflower) ^b	Asteraceae	290	15
Lycopersicon esculentum (tomato) ^a	Solanaceae	507	48.6
Raphanus sativus (radish) ^a	Brassicaceae	> 480	212.5
Monocotyledons			
Allium cepa (onion) ^a	Amaryllidaceae	> 480	>1200
Avena sativa (oat) ^a	Poaceae	> 1200	> 1200
Echinochloa crus-galli (barnyard grass) ^b	Poaceae	533	1315
Zea mays (maize) ^b	Poaceae	> 2945	> 2945

^a Balluff, 2002 (seedling emergenge) and 2003 (vegetative vigour); batch no. PB008205 (460 g a.s./L).

^b Bramby-Gunary, 2015 (seedling emergenge) and 2015a (vegetative vigour); batch no. BSN1A1450 (489 g a.s./L). Lowest endpoint for seedling emergence and vegetative vigour indicated in **bold**.

Table 82:Summary of toxicity of dicamba (Dicamba 700SG) to terrestrial non-target plants

Species	Family	ER50 (g	a.s./ha)
		Seedling emergence ^a	Vegetative vigour ^b
Dicotyledons			
Beta vulgaris (red beet)	Chenopodiaceae	-	64.12
Brassica napus (oilseed rape)	Brassicaceae	246.9	> 313
Cucumis sativus (cucumber)	Cucurbitaceae	362.7	-
Lycopersicon esculentum (tomato)	Solanaceae	71.2	19.43
Pisum sativum (pea)	Fabaceae	62.1	20.21
Monocotyledons	·	·	
Allium cepa (onion)	Amaryllidaceae	244.9	426.9
Avena sativa (oat)	Poaceae	942.7	1607

^a Richter & Seck, 2010; batch no. 175-024 (72.1 % according to certificate of analysis).

^b Deslandes, 2010; batch no. 175-024 (708.6 g/kg according to certificate of analysis).

Volume 1 – Level 2

Lowest endpoint for seedling emergence and vegetative vigour indicated in **bold**.

In addition, studies from the open litterature indicate that non-target vegetation in general, and certain plant species in particular, may be significantly affected by dicamba at lower treatment rates than indicated by the endpoints derived from the standard studies (0.2 - 2.43 mg a.s./ha).

2.9.7 Summary of effects on other terrestrial organisms (flora and fauna)

No specific information was submitted.

2.9.8 Summary of effects on biological methods for sewage treatment

No inhibition of the activity of activated sludge was recorded at concentrations up to 500 mg a.s./L.

2.9.9 Summary of product exposure and risk assessment

In the following environmental risk assessment, the conclusions are made for the maize use (max 350 g a.s./ha), unless explicity mentioned. The use in sorghum and cereals is considered to be covered by the risk assessment for the maize use unless otherwise stated.

2.9.9.1 Birds

The risk assessment was carried out according to the EFSA Guidance Document on Risk Assessment for Birds and Mammals (EFSA Journal 2009; 7(12):1438). The assessment is summarised below and presented in detail in Vol. 3 (PPP), B.9.2.1.

The risk assessment concluded that the acute and long-term risk to birds is acceptable for all representative uses of the formulation A7254B. Concerning the representative uses of the formulation Dicamba 700SG, acceptable acute and long-term risk was concluded for use at 0.280 kg a.s./ha, whereas unacceptable long-term risk was found at 0.350 kg a.s./ha.

The risk to birds from the representative uses of the formulations A7254B and Dicamba 700SG was assessed using the toxicity endpoints for dicamba since the risk can be adequately assessed from the available toxicity data for the active substance. It was considered that the risk from the major foliar metabolite 5-OH dicamba (NOA405873) is covered by the risk assessment for dicamba.

Dietary exposure

Table 83: Assessment of acute risk to birds from dicamba for the representative uses of A7254B – Screening step

GAP use	Application rate (kg a.s./ha)	Indicator spe- cies	Geometric mean LD50 (mg a.s./ kg bw)	DDD (mg a.s./ kg bw/day)	TERA	Trigger value
Maize	0.288			45.7	4.2	
Sorghum	0.210			33.3	5.8	
Oat Wheat (BBCH 21–29) Triticale, Rye Barley	0.096	Small omniv- orous bird	194	15.2	13	10
Wheat (BBCH 10–32)	0.120			19.1	10	

With the exception of maize and sorghum, the TER_A values for all GAP uses are greater than the Commission Regulation (EU) 546/2011 trigger of 10, indicating an acceptable acute dietary risk to birds following the use of A7254B.

Volume 1 – Level 2

Dicamba

GAP use; application rate (kg a.s./ha)	Tier 1 crop grouping / growth stage	Generic focal species	Geometric mean LD50 (mg a.s./ kg bw)	DDD (mg a.s./ kg bw/day)	TERA	Trigger value
	Maize BBCH 10- 19	Small insectivorous bird "wagtail"		7.72	25	
	Maize BBCH 10- 29	Medium granivorous bird "gamebird"		1.90	100	
Maize; 0.288	Maize BBCH 10- 29	Medium herbivorous/ granivorous bird "pi- geon"		16.01	12	
	Maize BBCH 10- 29	Small omnivorous bird "lark"	194	6.91	28	10
	Maize leaf development BBCH 10-19	Small insectivo- rous/worm feeding species "thrush"		3.02	64	
Sorghum; 0.210	Cereals early (shoots) BBCH 10-29	Large herbivorous bird "goose"		6.41	30	
0.210	Cereals BBCH 10-29	Small omnivorous bird "lark"		5.04	38	

Table 84: Assessment of acute risk to birds from dicamba for the representative uses of A7254B – Tier 1

All of the TER_A values are greater than the Commission Regulation (EU) 546/2011 trigger value of 10, indicating an acceptable acute dietary risk to birds for the representative uses of A7254B.

GAP use; application rate (kg a.s./ha)	Tier 1 crop grouping / growth stage	Generic focal species	Geometric mean LD50 (mg a.s./ kg bw)	DDD (mg a.s./ kg bw/day)	TERA	Trigger value
	Maize BBCH 10- 29	Medium granivorous bird "gamebird"		2.31	84	
	Maize leaf development BBCH 10-19	Small insectivo- rous/worm feeding species "thrush"		3.68	53	
Maize; 0.350	Maize BBCH 10- 29	Small omnivorous bird "lark"		8.40	23	
	Maize BBCH 10- 29	Medium herbivorous/ granivorous bird "pi- geon"		19.46	10	
	Maize BBCH 10- 19	Small insectivorous bird "wagtail"	194	9.38	21	10
	Maize BBCH 10- 29	Medium granivorous bird "gamebird"		1.85	105	
Maize; 0.280	Maize leaf development BBCH 10-19	Small insectivo- rous/worm feeding species "thrush"		2.94	66	
	Maize BBCH 10- 29	Small omnivorous bird "lark"		6.72	29	
	Maize BBCH 10- 29	Medium herbivorous/ granivorous bird "pi- geon"		15.57	13	

Table 85:
- Tier 1*Assessment of acute risk to birds from dicamba for the representative uses of Dicamba 700SG

Volume 1 – Level 2

GAP use; application rate (kg a.s./ha)	Tier 1 crop grouping / growth stage	Generic focal species	Geometric mean LD50 (mg a.s./ kg bw)	DDD (mg a.s./ kg bw/day)	TERA	Trigger value
	Maize BBCH 10- 19	Small insectivorous bird "wagtail"		7.50	26	

* None of the GAP uses passed the trigger at the screening step.

All of the TER_A values are greater than or equal to the Commission Regulation (EU) 546/2011 trigger value of 10, indicating an acceptable acute dietary risk to birds for the representative uses of Dicamba 700 SG.

Table 86:Assessment of long-term and reproductive risk to birds from dicamba for the representative uses
of A7254B – Screening step

GAP use	Application rate (kg a.s./ha)	Indicator spe- cies	LD50/10 (mg a.s./ kg bw)	DDD (mg a.s./ kg bw/day)	TERLT	Trigger value
Maize	0.288			9.89	2.0	
Sorghum	0.210			7.21	2.7	
Oat Wheat (BBCH 21–29) Triticale, Rye Barley	0.096	Small omniv- orous bird	19.4	3.30	5.9	5
Wheat (BBCH 10–32)	0.120			4.12	4.7	

The TER_{LT} values for use of A7254B in oat, wheat (BBCH 21–29), triticale, rye and barley are greater than the Commission Regulation (EU) 546/2011 trigger of 5, indicating an acceptable long-term dietary risk to birds. The TER_{LT} values for use of A7254B in maize, sorghum and wheat (BBCH 10–32) are below the trigger, indicating a need for further assessment.

Table 87:Assessment of long-term and reproductive risk to birds from dicamba for the representative usesof A7254B – Tier 1

GAP use; application rate (kg a.s./ha)	Tier 1 crop grouping / growth stage	Generic focal species	LD50/10 (mg a.s./ kg bw)	DDD (mg a.s./ kg bw/day)	TERLT	Trigger value
	Maize BBCH 10- 19	Small insectivorous bird "wagtail"		1.72	11	
	Maize BBCH 10- 29	Medium granivorous bird "gamebird"		0.458	42	
Maize; 0.288	Maize BBCH 10- 29	Medium herbivorous/ granivorous bird "pi- geon"		3.46	5.6	
	Maize BBCH 10- 29	Small omnivorous bird "lark"	19.4	1.66	12	5
	Maize leaf development BBCH 10-19	Small insectivo- rous/worm feeding species "thrush"		0.870	22	
Sorghum; 0.210	Cereals early (shoots) BBCH 10-29	Large herbivorous bird "goose"		1.80	11	
0.210	Cereals BBCH 10-29	Small omnivorous bird "lark"		1.21	16	

Volume 1 – Level 2

GAP use; application rate (kg a.s./ha)	Tier 1 crop grouping / growth stage	Generic focal species	LD _{50/10} (mg a.s./ kg bw)	DDD (mg a.s./ kg bw/day)	TER _{LT}	Trigger value
Wheat	Cereals early (shoots) BBCH 10-29	Large herbivorous bird "goose"		1.03	19	
(BBCH 10–32); 0.120	Cereals BBCH 10-29	Small omnivorous bird "lark"		0.693	28	
	Cereals BBCH 30-39	Small omnivorous bird "lark"		0.343	57	

All of the TER_{LT} values are greater than or equal to the Commission Regulation (EU) 546/2011 trigger value of 5, indicating an acceptable long-term dietary risk to birds for the representative uses of A7254B.

Table 88:	Assessment of long-term and reproductive risk to birds from dicamba for the representative uses
of Dicamba	2700SG – Tier 1*

GAP use; application rate (kg a.s./ha)	Tier 1 crop grouping / growth stage	Generic focal species	LD50/10 (mg a.s./ kg bw)	DDD (mg a.s./ kg bw/day)	TERLT	Trigger value
	Maize BBCH 10- 29	Medium granivorous bird "gamebird"		0.56	35	
	Maize leaf development BBCH 10-19	Small insectivo- rous/worm feeding species "thrush"		1.06	18	
Maize; 0.350	Maize BBCH 10- 29	Small omnivorous bird "lark"	-	2.02	9.6	
	Maize BBCH 10- 29	Medium herbivorous/ granivorous bird "pi- geon"		4.21	4.6	
	Maize BBCH 10- 19	Small insectivorous bird "wagtail"	19.4	2.10	9.3	5
	Maize BBCH 10- 29	Medium granivorous bird "gamebird"	19.4	0.45	44	5
	Maize leaf development BBCH 10-19	Small insectivo- rous/worm feeding species "thrush"		0.85	23	
Maize; 0.280	Maize BBCH 10- 29	Small omnivorous bird "lark"		1.62	12	
	Maize BBCH 10- 29	Medium herbivorous/ granivorous bird "pi- geon"		3.37	5.8	
	Maize BBCH 10- 19	Small insectivorous bird "wagtail"		1.68	12	

* None of the GAP uses passed the trigger at the screening step.

All of the TER_{LT} values for the representative use of Dicamba 700SG at 0.280 kg a.s./ha are above the Commission Regulation (EU) 546/2011 trigger value of 5, indicating an acceptable long-term dietary risk to birds. For the representative use at 0.350 kg a.s./ha, TER_{LT} for medium herbivorous/ granivorous bird "pigeon" is below the trigger, indicating unacceptable risk. Thus higher tier assessment would be required to support an application rate of 0.350 kg a.s./ha.

Drinking water exposure

Volume 1 – Level 2

The leaf scenario was not considered relevant for the representative uses. For the puddle scenario no specific calculations of exposure and TER were necessary because the ratio of effective application rate (in g/ha) to acute and long-term endpoints (in mg/kg bw/d) does not exceed 50 ($K_{OC} < 500$ L/kg). The acute and long-term risk to birds from drinking water exposure was considered acceptable for all representative uses of A7254B and Dicamba 700SG.

Secondary poisoning

Dicamba and its major soil and surface water metabolite DCSA have $\log P_{ow}$ values < 3, indicating that the risk of secondary poisoning and biomagnification in terrestrial food chains is negligible.

2.9.9.2 Mammals

The risk assessment was carried out according to the EFSA Guidance Document on Risk Assessment for Birds and Mammals (EFSA Journal 2009; 7(12):1438). The assessment is summarised below and presented in detail in Vol. 3 (PPP), B.9.2.2.

The risk assessment concluded that the acute and long-term risk to mammals is acceptable for all representative uses of the formulations A7254B and Dicamba 700SG.

Since the toxicity data indicate that the formulation A7254B is more toxic than predicted from the content of active substance, the acute risk from the representative uses of A7254B was assessed using the endpoint for the formulation. For the formulation Dicamba 700SG, the available data indicate a similar toxicity of the formulation and the active substance, so the acute risk was assessed using the endpoint for dicamba. For both formulations the long-term risk can be adequately assessed from the available toxicity data for the active substance.

The available studies indicate that the major foliar metabolite 5-OH dicamba (NOA405873) is not more toxic than the active substance. It was therefore considered that the risk from the metabolite is covered by the risk assessment for dicamba.

Dietary exposure

Table 89:	Assess	ment of acute ris	k to mammals fron	n dicamba for the	e representati	ve uses of A	A7254B –
Screening	step						
GAD				IB	DDD	TED	

GAP use	Application rate (kg a.s./ha)	Indicator spe- cies	LD ₅₀ (mg a.s./ kg bw)	DDD (mg a.s./ kg bw/day)	TERA	Trigger value
Maize	0.288			39.3	26	
Sorghum	0.210			24.9	41	
Oat Wheat (BBCH 21–29) Triticale, Rye Barley	0.096	Small herbivo- rous mammal	1020 ^a	11.4	89	10
Wheat (BBCH 10–32)	0.120			14.2	72	

^a From study with A7254B

All of the TERA values are greater than the Commission Regulation (EU) 546/2011 trigger value of 10, indicating an acceptable acute dietary risk to mammals for the representative uses of A7254B.

Volume 1 – Level 2

Dicamba

Table 90:	Assessment of acute risk to mammals from dicamba for the representative uses of Dicamba
700 SG - 3	Screening step

GAP use	Application rate (kg a.s./ha)	Indicator spe- cies	LD50 (mg a.s./ kg bw)	DDD (mg a.s./ kg bw/day)	TERA	Trigger value
Maize	0.350 ª	Small herbivo- rous mammal	1465 ^b	47.7	31	10

^a Also covers application rate 0.280 kg a.s./ha.

^b From study with technical dicamba.

 TER_A is greater than the Commission Regulation (EU) 546/2011 trigger value of 10, indicating an acceptable acute dietary risk to mammals for the representative uses of Dicamba 700SG.

 Table 91:
 Assessment of long-term and reproductive risk to mammals from dicamba for the representative uses of A7254B – Screening step

GAP use	Application rate (kg a.s./ha)	Indicator spe- cies	LD50 (mg a.s./ kg bw)	DDD (mg a.s./ kg bw/day)	TERA	Trigger value
Maize	0.288			11.0	12	
Sorghum	0.210			5.38	25	
Oat Wheat (BBCH 21–29) Triticale, Rye Barley	0.096	Small herbivo- rous mammal	136	2.46	55	5
Wheat (BBCH 10–32)	0.120			3.07	44	

All of the TER_{LT} values are greater than or equal to the Commission Regulation (EU) 546/2011 trigger value of 5, indicating an acceptable long-term dietary risk to mammals for the representative uses of A7254B.

Table 92:	Assessment of long-term and reproductive risk to mammals from dicamba for the representa-
tive uses of	f Dicamba 700SG – Screening step

GAP use	Application rate (kg a.s./ha)	Indicator spe- cies	LD50 (mg a.s./ kg bw)	DDD (mg a.s./ kg bw/day)	TERA	Trigger value
Maize	0.350 ª	Small herbivo- rous mammal	136	13.4	10	5

^a Also covers application rate 0.280 kg a.s./ha.

 TER_{LT} is greater than the Commission Regulation (EU) 546/2011 trigger value of 5, indicating an acceptable long-term dietary risk to mammals for the representative uses of Dicamba 700SG.

Drinking water exposure

No specific calculations of exposure and TER were necessary because the ratio of effective application rate (in g/ha) to acute and long-term endpoints (in mg/kg bw/d) does not exceed 50 ($K_{OC} < 500$ L/kg). The acute and long-term risk to mammals from drinking water exposure was considered acceptable for all representative uses of A7254B and Dicamba 700SG.

Secondary poisoning

Dicamba and its major soil and surface water metabolite DCSA have log P_{ow} values < 3, indicating that the risk of secondary poisoning and biomagnification in terrestrial food chains is negligible.

Volume 1 – Level 2

2.9.9.3 Aquatic organisms

The risk assessments for aquatic organisms (fish, aquatic invertebrates, algae and aquatic plants) were conducted in accordance to the new EFSA Guidance on tiered risk assessment for plant protection products for aquatic organisms in edge-of-field surface waters (2013). The assessment is summarised below and presented in detail in Vol. 3 (PPP), B.9.4.

Table 93:Derivation of acute RAC values used in the Tier 1 risk assessment for dicamba, metaboliteDCSA (NOA414746), A7254B and Dicamba 700SG

Species	Substance	Exposure system	Results (µg/L)	Assess- ment Safety fac- tor	RAC (µg/L)
Dicamba		-		•	•
Rainbow trout	Dicamba (tested as A7254B)	96 h, s	LC ₅₀ > 41 000 μg a.s./L	100	> 410 (a.s.)
Daphnia magna	Dicamba (tested as A7254B)	48 h, s	EC ₅₀ > 41 000 μg a.s./L	100	> 410 (a.s.)
DCSA (NOA4147	746)				
Rainbow trout	DCSA (NOA414746)	96 h, ss	LC ₅₀ > 100 000 µg/L	100	> 1 000
Daphnia magna	DCSA (NOA414746)	48 h, s	$EC_{50} = 89\ 000\ \mu g/L$	100	890
A7254B	·				
Rainbow trout	A7254B	96 h, s	$\begin{array}{c} LC_{50} > 100 \ 000 \ \mu g \\ A7254B/L \\ LC_{50} > 41 \ 000 \ \mu g \\ a.s./L \end{array}$	100	>1 000 (product) > 410 (a.s.)
Daphnia magna	A7254B	48 h, s	$\begin{array}{c} LC_{50} > 100 \ 000 \ \mu g \\ A7254B/L \\ LC_{50} > 41 \ 000 \ \mu g \\ a.s./L \end{array}$	100	> 1 000 (prod- uct) > 410 (a.s.)
Dicamba 700SG				•	
Fish	Dicamba 700SG	96 h	$LC_{50} > 100\ 000\ \mu g$ a.s./L	100	> 1000
Daphina	Dicamba 700SG	48 h	EC ₅₀ = 131 600 μg a.s./L	100	1 316

s: static; ss: semi-static; f: flow through

RAC values in bold are used for the Tier 1 aquatic risk assessment

Volume 1 – Level 2

Table 94:	Derivation of chronic RAC values used in the Tier 1 risk assessment for dicamba, metabolite	
DCSA (N	[OA414746], A7254B and Dicamba 700SG	

Species	Substance	Exposure system	Results (µg/L)	Assess- ment Safety fac- tor	RAC (µg/L)
Dicamba					
Sheepshead min- now	Dicamba	34 d, f	NOEC = 11 000 μg a.s./L	10	1 100
Pimephales prome- las	Dicamba	25 d, f	NOEC = 10 000 μg a.s./L	10	1 000
Mysid shrimp	Dicamba	35 d, f	NOEC = 5 800 μg a.s./L	10	580
Navicula pellicu- losa	Dicamba	72 h, s	$E_r C_{50} > 3\ 800\ \mu g$ a.s./L	10	> 380
Myriophyllum spi- catum	Dicamba	14-d, s	$E_r C_{50} = 940 \ \mu g \ a.s./L$ shoot length	10	94
DCSA (NOA41474	6)				1
Pseudokirchneri- ella subcapitata	DCSA (NOA414746)	72 h, s	$E_r C_{50} = 67\ 000\ \mu g/L$	10	6 700
Lemna gibba	DCSA (NOA414746)	7 d, s	$E_r C_{50} > 65\ 800\ \mu g/L$	10	> 6 580
A7254B					1
Pseudokirchneri- ella subcapitata	A7254B	72 h, s	$\begin{array}{c} E_r C_{50} > 103 \ 000 \ \mu g \\ A7254B/L \\ E_r C_{50} > 42 \ 400 \ \mu g \\ a.s./L \end{array}$	10	10 300 (product) 4 240 (a.s.)
Myriophyllum ver- ticillatum	A7254B	14 d, s	$ \begin{array}{l} E_r C_{50} = 8 \ 900 \ \mu g/L \\ E_r C_{50} = 3 \ 700 \ \mu g \\ a.s./L \end{array} $	10	890 (product) 370 (a.s.)
Dicamba 700SG		-		•	-
Algae	Dicamba 700SG	72 h, s	72 h $E_rC_{50} > 69\ 200$ µg a.s./L	10	> 6920
Myriophyllum spi- catum	Dicamba 700SG	14 d, s	$E_r C_{50} = 3\ 260\ \mu g$ a.s./L	10	326

s: static; ss: semi-static; f: flow through RAC values in bold are used for the Tier 1 aquatic risk assessment

Volume 1 – Level 2

 Table 95:
 Comparison of FOCUS Steps 1 and 2 PEC_{sw} to the Tier 1 acute and chronic RAC values for dicamba and DCSA (NOA414746) following application of A7254B in maize to cover all intended crop uses

	Dica	mba	DCSA (NOA414746)		
Group	Acute	Chronic	Acute	Chronic	
Tier 1 RAC _{sw} (μg a.s./L)	> 410	94	890	6 700	
FOCUS Step 1 PEC _{sw} (µg a.s./L)	97.54	97.54	40.58	40.58	
FOCUS Step 2 PEC _{sw} (µg a.s./L)	30.56	30.56	-	-	

Values in bold indicate an unacceptable risk

The acute Tier 1 RAC_{sw} value is above the FOCUS Step 1 PEC_{SW} value for dicamba, but the chronic Tier 1 RAC value is below the FOCUS Step 1 PEC_{SW} value indicating the need for further refinement. Both the acute Tier 1 RAC_{sw} and the chronic Tier 1 RAC_{sw}, values are above the FOCUS Step 2 PEC_{SW} value for dicamba, indicating an acceptable risk for aquatic organisms following application of A7254B according to the proposed use patterns.

Both of the Tier 1 RAC_{sw} values are above the FOCUS Step 1 PEC_{SW} value for DCSA (NOA414746) indicating an acceptable risk for aquatic organisms following application of A7254B according to the proposed use patterns.

Group		Fish acute	Fish chronic	Invertebrate acute	Invertebrate chronic	Algae	Aquatic macro- phytes	
Test species		Oncorhyn- chus mykiss	Pimephales promelas	Daphnia magna	Daphnia magna	Navicula pelliculosa	Myriophyl- lum spi- catum	
Endpoint (µg/L)		LC ₅₀	NOEC	EC50	NOEC	E_rC_{50}	ErC ₅₀	
		> 41 000	10 000	> 41 000	97 000	> 3 800	3 260	
AF		100	10	100	10	10	10	
RAC (µg/L)		> 410.0	1000	> 410	970	> 380	326	
FOCUS Scenario Step 1	PEC gl- max (µg/L)		PEC/RAC					
Worst-case Europe/ March- May	97.54 μg/L	< 0.238	0.098	< 0.238	0.101	< 0.257	0.299	
FOCUS Scenario Step 2		PEC/RAC						

Table 96:Aquatic organisms: acceptability of risk (PEC/RAC < 1) for dicamba for each organism group
based on FOCUS Steps 1 and 2 calculations for the use of Dicamba 700SG in maize

Group		Fish acute	Fish chronic	Invertebrate acute	Invertebrate chronic	Algae	Aquatic macro- phytes
Worst-case Europe/ March- May	30.56 μg/L	< 0.075	0.031	< 0.075	0.032	0.080	0.096

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration;

Table 97:Aquatic organisms: acceptability of risk (PEC/RAC < 1) for DCSA for each organism group
based on FOCUS Step 1 calculations for the use of Dicamba 700SG in maize

Group		Fish acute	Invertebrate acute	Aquatic macrophytes		
Test species		Oncorhynchus mykiss	Oncorhynchus mykiss Daphnia magna		hynchus mykiss 🛛 Daphnia magna 👘 Lemna gibb	
Endpoint (µg/L)		LC ₅₀ EC ₅₀ > 100 000 > 89 000		E _r C ₅₀ 65 800		
AF		100 100		10		
RAC (µg/L)		> 1 000 > 890		6 580		
FOCUS Sce- nario Step 1	PEC gl- max (µg/L)	PEC/RAC				
Worst-case: S Eu- rope/March- May	40.58 μg/L	< 0.041	< 0.046	0.006		

AF: Assessment factor; PEC: Predicted environmental concentration; RAC: Regulatory acceptable concentration;

The Tier 1 RAC_{sw} values are above the FOCUS Step 1 PEC_{SW} value for dicamba and DCSA (NOA414746) indicating an acceptable risk for aquatic organisms following application of Dicamba 700 SG according to the proposed use patterns.

The risk assessment concluded that the acute and chronic risk to aquatic organisms is acceptable for all representative uses of the formulation A7254B and Dicamb 700SG.

2.9.9.4 Bees

The risk assessment was carried out according to the Guidance Document on Terrestrial Ecotoxicology (SANCO/10329/2002). In addition, and following EFSA recommendations, the EFSA Guidance Document on the risk assessment of plant protection products on bees (EFSA Journal 2013; 11(7):3295) was used to assess chronic risk to adult honeybees and risk to honeybee larvae. The assessment is summarised below and presented in detail in Vol. 3 (PPP), B.9.6.1.

The risk assessment concluded that the acute and chronic risk to honeybees is acceptable for all representative uses of the formulation A7254B. For the formulation Dicamba 700SG, acceptable acute and chronic risk to honeybees was concluded for all representative uses.

Acute contact and oral toxicity data for dicamba and formulation A7254B were > 89.5 μ g a.s./bee and > 100 μ g product/bee (equivalent to > 39.9 μ g a.s./bee based on reported content of 39.9% a.s.) respectively. Adjusted endpoints from the formulation studies were used as worst case. For Dicamba 700SG, the available data indicate that the formulation is not more toxic than the active substance, so the acute risk was assessed using the endpoint for dicamba. Assessment of chronic risk was based on the proprietary studies of each notifier.

Volume 1 – Level 2

A risk assessment for bumblebees and solitary bees was not performed since no toxicity data were available.

GAP use	Application rate (g a.s./ha)	Exposure route	LD50 (µg a.s./bee)	HQ	Trigger value
Maizah	288 ^b	Oral	> 39.9	< 7.2	50
Maize ^b	200	Contact	> 39.9	< 7.2	50

Table 98: Assessment of acute risk to honeybees from dicamba for the representative uses of A7254B ^a

^a Assessment according to SANCO/10329/2002.

^b Also covers other GAP uses with lower application rates.

Table 99:Assessment of acute risk to honeybees from dicamba for the representative uses of Dicamba700SG a

GAP use	Application rate (g a.s./ha)	Exposure route	LD50 (µg a.s./bee)	HQ	Trigger value
Maira	350 ^b	Oral	> 89.5	< 3.9	50
Maize	350	Contact	> 89.5	< 3.9	50

^a Assessment according to SANCO/10329/2002.

^b Also covers application rate 280 g a.s./ha.

All of the HQ values are below the trigger of 50, indicating an acceptable acute risk to bees for the representative uses of A7254B and Dicamba 700SG.

Table 100:Assessment of chronic risk to honey bees from dicamba for the representative uses of A7254B- Screening step a

GAP use	Application rate (kg a.s./ha)	Life stage	Toxicity end- point	ETR	Trigger value
Maizab	0.200 h	Adult	LDD ₅₀ > 194.7 µg a.s./bee/day	< 0.011	0.03
Maize ^b	0.288 ^b	Larvae	NOED = 125 μg a.s./larva	0.01	0.2

^a Assessment according to EFSA Journal 2013; 11(7):3295.

^b Also covers other GAP uses with lower application rates.

The ETR values for adult and larval honeybees are below the respective EFSA (2013) trigger values, indicating an acceptable chronic risk to bees for the representative uses of A7254B.

 Table 101:
 Assessment of chronic risk to honey bees from dicamba for the representative uses of Dicamba 700SG – Screening step ^a

GAP use	Application rate (kg a.s./ha)	Life stage	Toxicity end- point	ETR	Trigger value	
Maize	0.350	A .d.,14	LDD ₅₀ > 61.7 µg	< 0.043	0.02	
Waize	0.280	Adult	a.s./bee/day	< 0.034	0.03	
Maize	0.350	I	NOED = 3.89	0.0428	0.2	
Ivialze	0.280	Larvae	μg a.s./larva	< 0.034	0.2	

^a Assessment according to EFSA Journal 2013; 11(7):3295.

Both ETR values are above the EFSA (2013) trigger, indicating a need for further assessment.

Volume 1 – Level 2

GAP use	Application rate (kg a.s./ha)	Scenario	Exposure factor	SV	Toxicity end- point	ETR	Trigger value
		Treated crop	1	0.92		< 0.004	
	Weeds in treated field12.9	< 0.012					
Maize	0.350 ^b	Plants at field margin	0.0092	2.9	LDD ₅₀ > 61.7 μg a.s./bee/day		0.03
		Adjacent crop	0.0033	5.8		< 0.00008	
		Succeeding crop	1	0.54		< 0.002	
		Treated crop	1	0.15		0.009	
М.		Weeds in treated field	1	2.2	NOED = 3.89 μg a.s./larva	0.135	0.2
Maize	0.350 ^b	Plants at field margin	0.0092	2.2		0.001	
		Adjacent crop	0.0033	4.4		0.0009	
		Succeeding crop	1	0.4		0.02	

 Table 102:
 Assessment of chronic risk to honey bees from dicamba for the representative uses of Dicamba 700SG – Tier 1 ^a

^a Assessment according to EFSA Journal 2013; 11(7):3295.

^b Also covers application rate 0.280 kg a.s./ha.

All ETR values are below the EFSA (2013) trigger, indicating an acceptable chronic risk to honeybees for the representative uses of Dicamba 700SG.

2.9.9.5 Non-target arthropods other than bees

The risk assessment was carried out according to the Guidance Document on Terrestrial Ecotoxicology (SANCO/10329/2002) and ESCORT 2 (Candolfi et al. 2001). The assessment is summarised below and presented in detail in Vol. 3 (PPP), B.9.6.2.

The risk assessment concluded that the in-field and off-field risk to non-target arthropods other than bees is acceptable for all representative uses of the formulations A7254B and Dicamba 700SG.

The assessment was based on the toxicity endpoints for each of the representative products since no studies with technical dicamba were available.

 Table 103:
 Assessment of in-field risk to non-target arthropods other than bees from dicamba for the representative uses of A7254B – Tier 1

Species; study type	LR50 (g a.s./ha)	PER in-field (g a.s./ha)	HQ in-field	Trigger value
<i>Typhlodromus pyri</i> Tier 1, 2D exposure scenario	232.6	288 ª	1.24	2
<i>Aphidius rhopalosiphi</i> Tier 1, 2D exposure scenario	356	208 "	0.81	2

^a Also covers other GAP uses with lower application rates.

The in-field HQ values for both standard species are below the trigger, indicating acceptable risk to non-target arthropods for all representative uses of A7254B. Although not strictly required, higher tier studies are available (Table 77) and support the risk assessment.

 Table 104:
 Assessment of in-field risk to non-target arthropods other than bees from dicamba for the representative uses of Dicamba 700SG – Tier 1

Species; study type LR50 (g a.s./ha)	PER in-field (g a.s./ha)	HQ in-field	Trigger value
---	-----------------------------	-------------	---------------

Volume 1 – Level 2

<i>Typhlodromus pyri</i> Tier 1, 2D exposure scenario	154	350	2.27	2
<i>Aphidius rhopalosiphi</i> Tier 1, 2D exposure scenario	3412	550	0.10 ª	2
<i>Typhlodromus pyri</i> Tier 1, 2D exposure scenario	154	280	1.82	2

^a Also covers assessment for application rate 0.280 kg a.s./ha.

The in-field HQ value for *Aphidius rhopalosiphi* is below the trigger, indicating acceptable risk for all representative uses of Dicamba 700SG. HQ for *Typhlodromus pyri* is above the trigger at 350 g a.s./ha, indicating a need for further assessment.

In extended laboratory studies (Tier 2) with *T. pyri* and *Chrysoperla carnea* there were no unacceptable (> 50 %) effects on survival and reproduction at application rates > 350 g a.s./ha, indicating acceptable in-field risk for all representative uses of Dicamba 700SG.

Table 105:Assessment of off-field risk to non-target arthropods other than bees from dicamba for the representative uses of A7254B –Tier 1

Species; study type	LR50 (g a.s./ha)	PER off-field (g a.s./ha)	Correction factor	HQ off-field	Trigger value
<i>Typhlodromus pyri</i> Tier 1, 2D exposure scenario	232.6	0.798 ª	10	0.034	2
Aphidius rhopalosiphi Tier 1, 2D exposure scenario	356	0.798*	10	0.022	2

^a Worst case for the representative GAP uses.

Table 106:Assessment of off-field risk to non-target arthropods other than bees from dicamba for the representative uses of Dicamba 700SG – Tier 1

Species; study type	LR50 (g a.s./ha)	PER off-field (g a.s./ha)	Correction factor	HQ off-field	Trigger value
<i>Typhlodromus pyri</i> Tier 1, 2D exposure scenario	154	0.9695 ª	10	0.063	2
<i>Aphidius rhopalosiphi</i> Tier 1, 2D exposure scenario	3412	0.9095 *	10	0.0028	2

^a Worst case for the representative GAP uses.

The off-field HQ values are below the trigger, indicating acceptable risk to non-target arthropods other than bees for all representative uses of A7254B and Dicamba 700SG.

2.9.9.6 Non-target soil meso- and macrofauna

The risk assessment was carried out according to the Guidance Document on Terrestrial Ecotoxicology (SANCO/10329/2002). The assessment is summarised below and presented in detail in Vol. 3 (PPP), B.9.8.

The risk assessment concluded that the chronic risk to non-target soil meso- and macrofauna is acceptable for all representative uses of the formulation A7254B and Dicamba 700SG.

Volume 1 – Level 2

Organism	Test substance	NOEC (mg/kg dw soil)	Maximum instan- taneous PECs (mg/kg dw soil)	TER _{LT}	Trigger value
	Dicamba (tested as A7254B)	51.25 mg a.s./kg dw soil	0.29	180	
	DCSA	5.13 ª	0.159	32	
Earthworm (Eisenia fetida)	A7254B	125 (equivalent to 51.25 mg a.s./kg dw soil)	0.70	180	5
	Dicamba 700SG	4.15 mg a.s./kg dw soil	0.280	14.8	
	A7254B	62.5 (equivalent to 26.1 mg a.s./kg dw soil)	0.70	89	
Collembola (Fol- somia candida)	Dicamba 700SG	17.3 mg a.s./kg dw soil	0.280	61.8	5
	Dicamba (tested as A7254B)	26.1	0.29	90	
	DCSA	2.61 ª	0.159	16	-
	A7254B	1 000 (equivalent to 417 mg a.s./kg dw soil)	0.70	1 400	
Soil mite (Hypoaspis acu- leifer)	Dicamba 700SG	692 mg a.s./kg dw soil	0.280	2471	5
	Dicamba (tested as A7254B)	417	0.29	1 400	
	DCSA	41.7 ^a	0.159	262	1

Table 107: Long-term TER values for other soil meso- and macro-fauna

^a In accordance with SANCO/10329/2002 the metabolite was considered to be ten times more toxic than the parent substance

2.9.9.7 Soil nitrogen transformation

The risk assessment was carried out according to the Guidance Document on Terrestrial Ecotoxicology (SANCO/10329/2002). The assessment is summarised below and presented in detail in Vol. 3 (PPP), B.9.10.

T 11 100	D'1 (C	CC .	•• •	•
Table 108:	Risk assessment for	effects on s	oil micro-	organisms
14010 1000	THER debelorment for	enteeto on o	on mero	organionio

Test substance	NOEC (mg a.s./kg dw soil)	PECs (mg/kg dw soil)
Dicamba	5.75	0.29
DCSA	0.575 ª	0.159
Dicamba 700SG	2.45 mg a.s./kg dry soil	0.280

^a In accordance with SANCO/10329/2002 the metabolite was considered ten times more toxic than the parent substance

The risk assessment concluded that the risk to non-target soil micro-organisms is acceptable for all representative uses of the formulations A7254B and Dicamba 700 SG (NOEC \leq PEC_s).

Volume 1 – Level 2

2.9.9.8 Terrestrial non-target higher plants

The risk assessment was carried out according to the Guidance Document on Terrestrial Ecotoxicology (SANCO/10329/2002). The assessment is summarised below and presented in detail in Vol. 3 (PPP), B.9.12.

The risk assessment concluded that the risk to terrestrial non-target plants is acceptable for all representative uses of the formulation A7254B, provided that a 2 m no-spray buffer zone is respected for the representative use of A7254B in maize. For the formulation Dicamba 700SG, acceptable risk was concluded for all representative uses, provided that a 3 m no-spray buffer zone is respected.

The assessment was based on the toxicity endpoints for each of the representative products since no studies with technical dicamba were available.

 Table 109:
 Deterministic assessment of risk to non-target terrestrial plants from dicamba for the representative uses of A7254B

Test type	GAP use	Application rate (g a.s./ha)	Distance (drift)	ER50 (g a.s./ha)	PER (g a.s./ha)	TER	Trigger
Seedling emergence	Maize ^a	288	1 m (2.77%)	97	7.98	12	5
			1 m (2.77%)		7.98	1.9	
	Maize	288	2 m (1.40%)	15	4.03	3.7	5
			3 m (0.94%)		2.71	5.5	
	Conchum	210	1 m (2.77%)	15	5.82	2.6	5
	Sorghum	210	2 m (1.40%)	15	2.94	5.1	5
Vegetative	Wheat	120	1 m (2.77%)	15	3.32	4.5	5
vigour	(BBCH 10 – 32)	120	2 m (1.40%)	15	1.68	8.9	5
	Oat, Wheat (BBCH 21 – 29), Triticale, Rye, Barley	96	1 m (2.77%)	15	2.66	5.6	5

^a Also covers other GAP uses with lower application rates.

The deterministic risk assessment indicates acceptable risk to non-target terrestrial plants for all representative uses of A7254B, provided that a 3 m no-spray buffer zone is respected for use in maize and a 2 m no-spray buffer zone is respected for use in sorghum and wheat (120 g a.s./ha).

A probabilistic risk assessment was carried out based on a median $HC_5 = 6.90$ mg a.s./ha for vegetative vigour. The HC_5 was derived from a Species Sensitivity Distribution for 7 species (excluding the three "greater than" values).

 Table 110:
 Probabilistic assessment of risk to non-target terrestrial plants from dicamba for the representative uses of A7254B

Test type	GAP use	Application rate (g a.s./ha)	Distance (drift)	HC5 (g a.s./ha)	PER (g a.s./ha)	TER	Trigger
		288	1 m (2.77%)	6.90	7.98	0.86	1
Vegetative vigour	Maize	200	2 m (1.40%)	0.90	4.03	1.7	1
(igoui	Sorghum ^a	210	1 m (2.77%)	6.90	5.82	1.2	1

^a Also covers GAP uses with lower application rates.

The probabilistic risk assessment indicates acceptable risk to non-target terrestrial plants for all representative uses of A7254B, provided that a 2 m no-spray buffer zone is respected for the representative use in maize. The probabilistic approach is considered acceptable but it is unclear to what extent the species included in the SSD are representative for the floral community to be protected, considering the available data from the open literature.

Volume 1 – Level 2

Test type	GAP use	Application rate (g a.s./ha)	Distance (drift)	ER50 (g a.s./ha)	PER (g a.s./ha)	TER	Trigger
Seedling emergence	Maize ^a	350	1 m (2.77%)	62.1	9.70	6.4	5
Vegetative vigour	Maize	350	1 m (2.77%)	19.43	9.70	2.0	5
			3 m (0.94%)		3.29	5.9	
	Maize	280	1 m (2.77%)	19.43	7.76	2.5	- 5
			3 m (0.94%)		2.63	7.4	

 Table 111:
 Deterministic assessment of risk to non-target terrestrial plants from dicamba for the representative uses of Dicamba 700SG

^a Also covers assessment for application rate 0.280 kg a.s./ha.

The deterministic risk assessment indicates acceptable risk to non-target terrestrial plants for all representative uses of Dicamba 700SG, provided that a 3 m no-spray buffer zone is respected.

A probabilistic risk assessment was not considered appropriate because toxicity data for Dicamba 700SG were insufficient to construct a reliable SSD.

2.10ENDOCRINE DISRUPTING PROPERTIES

Assessment provided by the applicant. Please also see appendix 1 for the ED assessment including ToxCast plots.

2.10.1 GATHER ALL RELEVANT INFORMATION

2.10.2 Executive Summary

This document summarises and evaluates all of the available evidence on dicamba relevant to the assessment of endocrine disruption, in accordance with EFSA-ECHA (2018) Guidance for the identification of endocrine disruptors in the context of Regulations (EU) No 528/2012 and (EC) No 1107/2009. In order to support Applicants and Competent Authorities, EFSA and ECHA have developed guidance on how to identify endocrine disruptors in accordance with the criteria laid down in Regulation (EC) No 1107/2009. The Guidance Document describes how to gather, evaluate and consider all relevant information for the assessment, conduct a mode of action (MoA) analysis, and apply a weight of evidence approach, in order to establish whether the criteria for the identification of endocrine disruptors laid down in Commission Regulation (EU) 2018/605 of 19 April 2018 amended Annex II to Regulation (EC) No 1107/2009 are fulfilled.

The assessment strategy is based on the three conditions stipulated in the ED criteria (adversity, endocrine activity and a biologically plausible link between the two) and the grouping of the parameters described above, as recommended in the EFSA-ECHA guidance document.

All available relevant toxicology and ecotoxicology studies for dicamba are included in this review. The relevant regulatory mammalian toxicology studies for dicamba cover a range of study types including sub-acute, subchronic, chronic, developmental and reproductive toxicity studies in a range of mammalian species including rat, mouse, dog and rabbit. The relevant regulatory non-mammalian toxicology studies submitted for dicamba cover a range of study types including chronic and reproductive toxicity studies in birds and fish.

The available data on dicamba do not indicate effects consistent with endocrine disruption. In accordance with the EFSA-ECHA (2018) Guidance, EATS-mediated parameters have been sufficiently investigated and no additional *in vitro* or *in vivo* mammalian data are required to assess the EAS or T modalities. Applying this Guidance Document, the conclusion can be drawn that dicamba does not meet the criteria for endocrine disruption with respect to humans.

Volume 1 – Level 2

Available ecotoxicology data do not indicate effects consistent with endocrine disruption, however, considering the available data in accordance with the EFSA-ECHA Guidance document (2018), there is not currently a fully adequate dataset to conclude on whether dicamba exhibits endocrine disrupting properties in non-target organisms according to the Endocrine Disruption Criteria (2018/605).

As first steps to make sufficient data available to reach a conclusion, Syngenta proposes to conduct the following studies:

- 1) 21-day fish screening assay (OECD 230) in the Fathead minnow;
- 2) Amphibian Metamorphosis Assay (OECD 231).

2.10.3 Introduction

2.10.3.1 Purpose

This document summarises and evaluates all of the available evidence on dicamba relevant to the assessment of endocrine disruption, in accordance with EFSA-ECHA (2018) Guidance for the identification of endocrine disruptors in the context of Regulations (EU) No 528/2012 and (EC) No 1107/2009. Following an evaluation of the study reliability, relevance and significance, a weight of evidence assessment is conducted in order to establish whether the criteria are fulfilled.

2.10.3.2 Scientific Criteria in Accordance with Regulation (EC) No 1107/2009

Point 3.6.5 of Annex II to Regulation (EC) No 1107/2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EEC and 91/414/EEC states that, "An active substance, safener or synergist shall only be approved if, on the basis of the assessment of Community or internationally agreed test guidelines or other available data and information, including a review of the scientific literature, reviewed by the Authority, it is not considered to have endocrine disrupting properties that may cause adverse effect in humans, unless the exposure of humans to that active substance, safener or synergist in a plant protection product, under realistic proposed conditions of use, is negligible, that is, the product is used in closed systems or in other conditions excluding contact with humans and where residues of the active substance, safener or synergist concerned on food and feed do not exceed the default value set in accordance with point (b) of Article 18(1) of Regulation (EC) No 396/2005." Consequently, scientific criteria for the determination of endocrine disrupting properties were developed on the basis of the Weybridge¹⁹ and WHO/IPCS definitions²⁰.

Commission Regulation (EU) 2018/605 of 19 April 2018 amended Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. The criteria state that an active substance, safener or synergist is to be considered as having endocrine disrupting properties that may cause adverse effects on humans, or non-target organisms, if all of the following criteria are met, unless it can be demonstrated that the adverse effects are not relevant to humans or (sub)populations for non-target organisms.

Annex II to Regulation (EC) No 1107/2009 (point 3.6.5) was amended to include the following criteria for endocrine disruption considered relevant humans:

- (1) it shows an adverse effect in an intact organism or its progeny, which is a change in the morphology, physiology, growth, development, reproduction or life span of an organism, system or (sub)population that results in an impairment of functional capacity, an impairment of the capacity to compensate for additional stress or an increase in susceptibility to other influences.
- (2) it has an endocrine mode of action, i.e. it alters the function(s) of the endocrine system;
- (3) the adverse effect is a consequence of the endocrine mode of action

Annex II to Regulation (EC) No 1107/2009 (point 3.8.2) was amended to include the following criteria for endocrine disruption in non-target organisms:

- it shows an adverse effect in non-target organisms, which is a change in the morphology, physiology, growth, development, reproduction or life span of an organism, system or (sub)population that results in an impairment of functional capacity, an impairment of the capacity to compensate for additional stress or an increase in susceptibility to other influences;
- (2) it has a an endocrine mode of action, i.e. it alters the function(s) of the endocrine system;
- (3) the adverse effect is a consequence of the endocrine mode of action

¹⁹ "an exogenous substance that causes adverse health effect(s) in an intact organism, or its progeny, secondary to changes in endocrine function" Weybridge Report (EC 1998)

²⁰ "an exogenous substance or mixture that alters function(s) of the endocrine system and consequently causes adverse health effects in an intact organism, or its progeny, or (sub)populations" WHO/IPCS (2002)

Volume 1 – Level 2

Commission Regulation (EU) 2018/605 stipulates that the identification of endocrine disruptors shall be based on all available relevant scientific data, and that the relevance, quality, consistency and coherence should be considered. Adverse effects that are non-specific secondary consequences of other toxic effects shall not be considered for the identification of the substance as endocrine disruptor.

2.10.3.3 EFSA-ECHA (2018) Guidance Document

In order to support Applicants and Competent Authorities, the European Commission asked the European Food Safety Authority (EFSA) and the European Chemicals Agency (ECHA) to develop guidance on how to identify endocrine disruptors in accordance with the criteria laid down in Regulation (EC) No 1107/2009. The Guidance Document describes how to gather, evaluate and consider all relevant information for the assessment, conduct a mode of action (MoA) analysis, and apply a weight of evidence (WoE) approach, in order to establish whether the criteria are fulfilled (EFSA-ECHA 2018).

In order to determine whether a substance causes adverse effect(s) that can be plausibly linked to endocrine activity, all relevant information needs to be collected, assessed and grouped in accordance with the guidance. The rationale for grouping is loosely based on OECD Guidance and the Joint Research Centre (JRC) screening methodology to identify potential disruptors of estrogenic, androgenic, thyroidal and steroidogenic (EATS) modalities (JRC 2016).

The OECD Guidance Document 150 lists the test guidelines and parameters that are considered relevant when investigating the ED properties of a substance (OECD 2018). In the context of this guidance, all the parameters listed by the OECD GD 150 (Table 2.10.1-1 and Table 1.2.3.1-2) are grouped into four groups:

- *In vitro* mechanistic: Parameters measured *in vitro* that provide information on the mechanism through which a substance could be considered endocrine active (OECD CF level 2).
- *In vivo* mechanistic: Parameters measured *in vivo* that provide information on endocrine activity that are usually not considered adverse (OECD CF level 3).
- **EATS mediated:** Parameters measured *in vivo* that may contribute to the evaluation of adversity, which may also be indicative of an EATS MoA (OECD CF level 4 and 5).
- Sensitive to, but not diagnostic of EATS: Parameters measured *in vivo* that may contribute to the evaluation of adversity, however, these effects cannot be considered diagnostic for any one of the EATS modalities.

1.1.1.1 Assessment strategy

The assessment strategy is based on the three conditions stipulated in the ED criteria (adversity, endocrine activity and a biologically plausible link between the two) and the grouping of the parameters described above, as recommended in the EFSA-ECHA (2018) Guidance. The assessment strategy is applicable to both humans and non-target organisms, and is illustrated in Figure 1.2.3.1-1. The remainder of this report is structured as follows:

Section 3: Gather information & assess the evidence

Section 4: Data reviews

Section 5: Integration and assessment of lines of evidence

Section 6: Initial analysis of the evidence (WoE)

Section 8: Conclusion on the ED criteria

Following an outline of the methodology (Section 3), the data reviews in Section 4 are organised around the OECD's Conceptual Framework for the Testing and Assessment of Endocrine Disrupting Chemicals (Table 2.10.1-1 and Table 1.2.3.1-2). In accordance with the Guidance (EFSA-ECHA, 2018), data from the various Conceptual Framework levels have differing applications and implications, e.g. providing mechanistic information (Levels 2 and 3) or providing data on adverse effects on endocrine relevant endpoints (Levels 4 and 5). Section 5 integrates and assesses the lines of evidence, whereas Section 6 evaluates all of the available evidence in a weight of evidence assessment, considering the availability of "EATS mediated" parameters. Where EATS mediated parameters are not sufficiently investigated according to the EFSA-ECHA Guidance (2018), potential endocrine modalities and testing strategies are outlined in Section 7. Section 8 provides a conclusion on the ED criteria.

Section 7: MoA analysis

Volume 1 – Level 2

Each Section considers effects relevant to both human health and non-target organisms. It should be noted that non-EATS modalities and potential for endocrine disrupting properties in invertebrate organisms are not currently within the scope of the Guidance (EFSA-ECHA 2018).

Volume 1 – Level 2

Table 2.10.1-1 OECD Cond	eptual Framework for Testing and Assessment of Endocrine Disruptors
Level 1 Existing data and non-test in- formation	 Physical & chemical properties, e.g., MW reactivity, volatility, biodegradability. All available (eco) toxicological data from standardised or non-standardised tests. Read-across, chemical categories, QSARs and other <i>in silico</i> predictions, and ADME model predictions.
Level 2 <i>In vitro</i> assays providing data about selected endocrine mech- anism(s)/pathways(s)	 Estrogen (OECD TG493) or androgen receptor binding affinity (US EPA TG OPPTS 890.1150) Estrogen receptor transactivation (OECD TG 455, ISO 19040-3), yeast estrogen screen (ISO 19040-1&2) Androgen receptor transactivation (OECD TG 458) Steroidogenesis <i>in vitro</i> (OECD TG 456) Aromatase assay (US EPA TG OPPTS 890.1200) Thyroid disruption assays (e.g. thyroperoxidase inhibition, transthyretin binding) Retinoid receptor transactivation assays Other hormone receptors assays as appropriate High-throughput screens
Level 3 – Mammalian Species In vivo assays providing data about selected endocrine mech- anism(s)/pathway(s)	 Uterotrophic assay (OECD TG 440) Hershberger assay (OECD TG 441)
Level 4 – Mammalian Species <i>In vivo</i> assays providing data on adverse effects on endocrine relevant endpoints	 Repeated dose 28-day study (OECD TG 407) Repeated dose 90-day study (OECD TG 408) Pubertal development and thyroid function assay in peripubertal male rats (PP male assay) (US EPA TG OPPTS 890.1500) Pubertal development and thyroid function assay in peripubertal fe- male rats (PP female assay) (US EPA TG OPPTS 890.1450) Prenatal development toxicity study (OECD TG 414) Combined chronic toxicity and carcinogenicity studies (OECD TG 451-453) Reproduction/developmental toxicity screening test (OECD TG 421) Combined repeated dose toxicity study with the reproduction/devel- opmental toxicity screening test (OECD TG 422) Developmental neurotoxicity study (OECD TG 426) Repeated dose dermal toxicity: 21/28-day study (OECD TG 410) Subchronic dermal toxicity: 90-day study (OECD TG 412) Subchronic inhalation toxicity: 90-day study (OECD TG 413) Repeated dose 90-day oral toxicity study in non-rodents (OECD TG 409)

Volume 1 – Level 2

(Continued)	
Level 3 – Non-Mammalian Species In vivo assays providing data about selected endocrine mech- anism(s)/pathway(s)	 Amphibian metamorphosis assay (AMA) (OECD TG 231) Fish short-term reproduction assay (FSTRA) (OECD TG 229) 21-day fish assay (OECD TG 230) Androgenised female stickleback screen (AFSS) (OECD GD 148) EASZY assay. Detection of Substances Activing through Estrogen Receptor using Transgenic cyp19a1b GFP Zebrafish Embryos (When TG is available) <i>Xenopus</i> embryonic thyroid signalling assay (XETA) (When TG is available) Juvenile medaka anti-androgen screening assay (JMASA) (When GD is available) Short-term juvenile hormone activity screening assay using <i>Daphnia</i> <i>magna</i> (When TG is available) Rapid androgen disruption adverse outcome reporter (RADAR) assay (When TG is available)
Level 4 – Non-Mammalian Species In vivo assays providing data on adverse effects on endocrine relevant endpoints	 Fish sexual development test (FSDT) (OECD TG 234) Larval amphibian growth & development assay (LAGDA) (OECD TG 241) Avian reproduction assay (OECD TG 206) Fish early life stage (FELS) toxicity test (OECD TG 210) New guidance document on harpacticoid copepod development and reproduction test with <i>Amphiascus</i> (OECD GD 201) <i>Potamopyrgus antipodarum</i> reproduction test (OECD TG 242) <i>Lymnaea stagnalis</i> reproduction test (OECD TG 243) Chironomid toxicity test (OECD TG 218-219) <i>Daphnia magna</i> reproduction test (OECD TG 222)* Enchytraeid reproduction test (OECD TG 220) Sediment water <i>Lumbriculus</i> toxicity test using spiked sediment (OECD TG 225) Predatory mite reproduction test in soil (OECD TG 222)* *: Studies performed on formulated product
Level 5 – Non-Mammalian Species In vivo assays providing more comprehensive data on adverse effects on endocrine relevant endpoints over more extensive parts of the life cycle of the or- ganism	 Fish life cycle toxicity test (FLCTT) (US EPA TG OPPTS 850.1500) Medaka extended one-generation reproduction test (MEOGRT) (OECD TG 240) Avian two-generation toxicity test in the Japanese quail (ATGT) (US EPA TG OCSPP 890.2100/740-C-15-003) Sediment water chironomid life cycle toxicity test (OECD TG 233) <i>Daphnia</i> multigeneration test for assessment of EDCs (When TG is available) Zebrafish extended one-generation reproduction test (ZEOGRT) (When TG is available)

 Table 1.2.3.1-2
 OECD Conceptual Framework for Testing and Assessment of Endocrine Disruptors (Continued)

Note: These lists are not exhaustive.

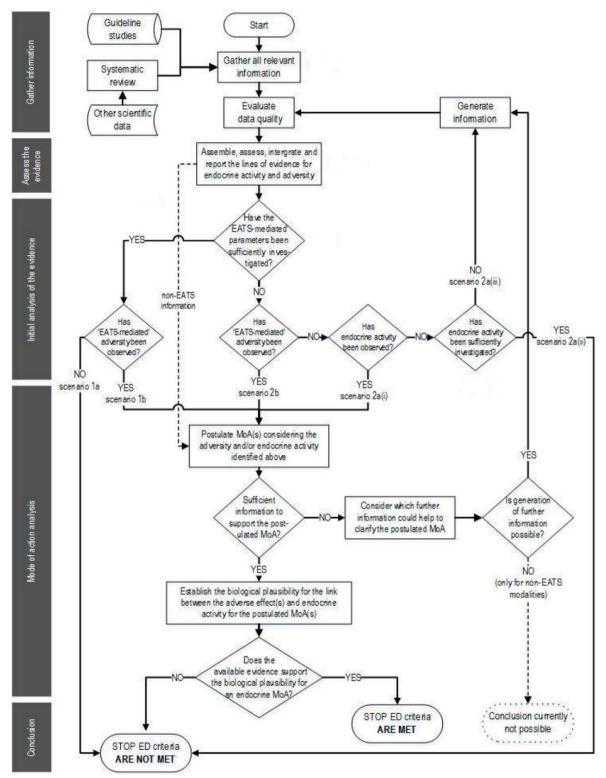


Figure 1.2.3.1-1 OECD Conceptual Framework for Testing and Assessment of Endocrine Disruptors (Continued)

2.10.4 Gather Information & Assess the Evidence 2.10.5 Gather Information

In this step all available relevant information is gathered both in terms of regulatory studies conducted in accordance with internationally agreed study protocols, and peer-reviewed published literature retrieved with systematic review methodology.

1.1.1.2 Regulatory studies

The available relevant regulatory in vitro toxicology studies submitted for dicamba are included in this review.

The relevant regulatory mammalian toxicology studies submitted for dicamba cover a range of study types including sub-acute, sub-chronic, chronic, developmental and reproductive toxicity studies in a range of mammalian species including rat, mouse, dog and rabbit.

The relevant regulatory non-mammalian toxicology studies submitted for dicamba cover a range of study types including chronic and reproductive toxicity studies in birds and fish.

1.1.1.3 Open scientific literature

A series of comprehensive searches of the open scientific literature were undertaken for the Annex 1 renewal submission (full details can be found in Section 9 of the MCA). Relevant and reliable data obtained from the published literature, but not identified in the systematic literature search for dicamba, are also included in this review where appropriate.

2.10.6 Assess the Evidence

Information shall be evaluated for its relevance and reliability. Evaluation of each of the relevant studies was based on the framework developed by the European Chemical Industry Council (CEFIC) Endocrine Modulators Steering Group (EMSG) for the weight of the evidence evaluation of potential endocrine disrupting substances (CEFIC, 1999). This framework consists of an independent assessment of a study's reliability and relevance, from which an overall assessment of the study's significance, relative to other studies using the same substance, is then derived.

1.1.1.4 Study reliability

Defined as 'the inherent quality of a test report or publication relating to preferably standardised methodology and the way the experimental procedure and results are described to give clear evidence of the clarity and plausibility of findings' (Klimisch et al. 1997). In accordance with the EFSA-ECHA (2018) Guidance, the reliability of the studies was assessed based on the criteria described by Klimisch et al. (1997), Brown et al. (2001), and CEFIC (1999). Each study was assigned to one of four categories on the basis of compliance with the criteria, as follows:

- 1. **Reliable without restrictions** studies conducted according to testing guidelines (preferably Good Laboratory Practice [GLP]) or in which all of the criteria are fully documented and reported.
- 2. Reliable with restrictions studies that do not follow broadly accepted testing guidelines, but that document and report compliance with a substantial majority of the criteria.
- 3. Not reliable studies in which there are notable deficiencies in scientific integrity (e.g. interferences between the measuring system and the test substance) or that document and report compliance with relatively few of the criteria.
- 4. Not assignable usually reserved for abstracts, secondary literature, subject reviews or book reviews.

Klimisch reliability codes 1 and 2 are equivalent to CEFIC EMSG "High" and "Medium" confidence of repeatability. Klimisch reliability code 3 is equivalent to CEFIC EMSG "Low" confidence of repeatability.

1.1.1.5 Study relevance

Data relevance refers to the appropriateness of the data for the intended purpose of the assessment (EFSA 2015; Vermeire *et al.* 2013). Relevance assessment differentiates between the various endpoints reported to be influenced by endocrine disrupting substances on the basis of mechanistic evidence and observed effects. Some reported endpoints are more explicitly the consequence of an endocrine disrupting mechanism than others. Using the criteria developed by CEFIC EMSG it is possible to establish a hierarchy of endpoint relevance as follows:

- Observed adverse health effects with mechanistic support to establish causal linkage.
- Observed health effects with limited understanding of mechanism.
- Biomarker of exposure.
- Mechanistic potential with no observed effect.

CEFIC EMSG assigns the relevance of *in vitro* and *in vivo* studies as High, Medium or Low according to the criteria detailed in Table and Table 1.3.2.2-3, respectively. Note that these criteria are not exhaustive and in some cases (e.g. unusual study designs), relevance may be assigned according to different criteria.

Table 1.5.2.2-1 Relevance of <i>In Vuro</i> Assays According to CEFTC EMSG		
Relevance	Description	
High	 Endpoint is based upon receptor binding potential coupled with transcriptional activation in a whole cell or subcellular assay. Endpoint is based on receptor binding potential in a whole cell assay. Endpoint of steroid metabolism in a whole cell assay. 	
Medium	 Endpoint is based on receptor binding activity in a subcellular assay. Endpoint is based on cell growth or other endpoint, not a direct measurement of receptor mediated activity. Endpoint of steroid metabolism in a subcellular assay. 	
Low	• Not applicable; all <i>in vitro</i> assays are relevant to at least some extent by def- inition.	

Table 1.3.2.2-1Relevance of *In Vitro* Assays According to CEFIC EMSG

Table 1.3.2.2-3	Relevance of In Vivo	Assays/Endpoints	According to CEFIC EMSG

Relevance	Description
High	• Endpoint(s) in a multi-generational test or other repeat dose toxicity test that is specifically controlled by the endocrine system.
	• Parallel dose-response changes in hormone levels in the presence of conse- quent toxicological effects (mammalian only).
	• Negative data from a short term/screening assay specifically controlled by the endocrine system.
Medium	 Endpoint(s) in a multi-generation test or other repeat dose standard toxicity test, which may be influenced by the endocrine system, but is also known to be affected by other factors, e.g. toxicity Positive endpoint data from a short-term/screening assay specifically controlled by the endocrine system. Changes in hormone levels in the absence of any toxicological changes (mammalian only).
Low	• Evidence indicates that the endpoint is not controlled by the endocrine system.

In accordance with the EFSA-ECHA (2018) guidance, when evaluating the relevance of studies conducted according to outdated guidelines, it is important to consider what parameters relevant for identification of ED properties were included in the study design. Missing parameters with respect to the updated version of the test guidelines are clearly reported.

1.1.1.6 Study significance

According to the CEFIC EMSG framework, the "weight" or significance that should be assigned to a study is derived from a combination of its reliability/repeatability and relevance scores. It is a measure of the significance which can be ascribed to a study in reaching a conclusion about endocrine disruption. It is also the parameter which is ultimately used in the evaluation of the endocrine disrupting potential for the combined dataset for a particular substance. CEFIC EMSG assigns the significance of *in vitro* and *in vivo* studies as High, Indicative, Low or Unusable according to the criteria detailed in Table 1.3.2.3--1 and Table 1.3.2.3-, respectively. Note that these criteria are not exhaustive and in some cases (e.g. unusual study designs), significance may be assigned according to different criteria.

Significance	Description			
Indicative ¹	• Studies of high relevance and with reliability scores of 1.			
Low	 Studies of medium relevance and with reliability scores of 1 or 2. Studies of high relevance and with reliability scores of 2. 			
Unusable	• Data from studies with reliability scores of 3 or 4.			

Table 1.3.2.3-1 Significance of In Vitro Assays According to CEFIC EMSG

¹ The CEFIC EMSG framework does not allow for *in vitro* studies to be classified as High significance. At best these can only be "indicative" of mechanistic potential. However, a negative result of "Indicative" significance is sufficient to be definitive for the mechanism being investigated.

 Table 1.3.2.3-2 Significance of In Vivo Assays According to CEFIC EMSG

Significance	Description
High	• Repeat dose studies of high relevance and with reliability scores of 1 or 2.
Indicative	 Screening assay studies of high relevance and with reliability scores of 1 or 2. Repeat dose studies of medium relevance and with reliability scores of 1 or 2.
Low	• Screening assay studies of medium relevance and with reliability scores of 1 or 2.
Unusable	• Data from studies with reliability scores of 3 or 4.

The final step in the CEFIC EMSG framework, and Section 4 of this document weighs the balance of evidence from the significance assessments of all the studies evaluated. This weight of the evidence evaluation is consistent with the general approach proposed in the EFSA-ECHA (2018) Guidance and OECD Guidance Document No. 150 (OECD, 2018).

2.10.7 DATA REVIEWS

This section assembles all the lines of evidence for endocrine activity and adversity.

Following the OECD Conceptual Framework and the four groupings specified in the EFSA-ECHA (2018) Guidance, the lines of evidence are organised according to their contribution to their assessment. The available data for dicamba has been compiled using the spread sheet recommended by the EFSA-ECHA (2018) Guidance (appendix E in that document) and is supplied alongside this report.

The available studies and references to appendix E Study Matrix IDs are provided in the table below.

Table 1.4. Outline of dataset considered for mammalian toxicology and ecotoxicology assessments

Type of toxicity	Study type	Study ID Matrix	
<i>In vitro</i> mechanistic data (OECD CF level	Devillers et al. (2015) QSAR model for assessment of estrogen, and rogen, and thyroid hormone receptor binding	14	
2)	Zhang et al. (2015) QSAR and <i>in vitro</i> transthyrethrin binding assay	15	
	US EPA ToxCast Dashboard	16, 17	
	Van Vugt-Lussenburg et al. (2014) CALUX screening for interaction with ERa, ERb, AR, PR, GR and TRb	18	
Studies in mammaliar	1 species		
Repeated dose tox- icity studies in mam- mals	(1979) 3-Week dermal toxicity study in the rabbit Equivalent to OECD 410 (1981)	3	
(OECD CF level 4)	(2002) 28 Day dermal toxicity study in the rat OECD 410 (1981)	4	
	(2014) 28 Day inhalation toxicity study in the rat OECD 412 (2009)	5	
	(1997) 13 Week dietary study in the rat OECD 408 (1981)	6	
	(2003) 13 Week capsule toxicity study in the dog OECD 409 (1998)	7	
	(2010) 13 Week capsule toxicity study in the dog OECD 409 (1998)	8	
	(1994) Subchronic neurotoxicity study in the rat Equivalent to OECD 424 (1997)	9	
	(1979) 28 Day dietary toxicity study in the rat No guideline	25	
Chronic and carcino- genicity toxicity stud- ies in mammals	(1986) One year dietary toxicity study in the dog OECD 452 (1981)	10	
(OECD CF level 4)	(1988) Dietary carcinogenicity study in the mouse OECD 451 (1981)	11	

	(1985) Dietary combined chronic toxicity and carcino- genicity study in the rat OECD 453 (1981)	12
Developmental tox- icity studies in mam- mals	OECD 414 (1981) (1992) Developmental toxicity study in the rabbit	1
(OECD CF level 4)	OECD 414 (1981) Developmental toxicity study in the rat	2
Reproductive toxicity studies in mammals (OECD CF level 5)	(1993) Two generation reproductive toxicity study in the rat OECD 416 (1983)	13
Studies in non-mamm	alian species	
Available ecotoxicol- ogy data from stand- ardized or non-stand-	(OECD 204) (1990) Prolonged toxicity test in Rainbow trout	21
ardised tests (OECD CF level 1)	(2011) Fish early life stage test in Fathead minnow (OECD 210)	22
	(2012) Fish early life stage test in Sheepshead min- now (OPPTS 850.1400)	23
	Zhu et al. (2013) Study on effects of dicamba on adult Chinese rare minnow Published in open scientific literature	24
Reproductive Tox- icity in Birds (OECD CF level 4)	(OECD 206) (1994) Avian reproduction test in the Mallard duck	19
	(OECD 206) (199b) Avian reproduction test in the Bobwhite quail	20

2.10.8 *In Vitro* and *In Silico* Mechanistic Data2.10.9 In silico data in OECD Conceptual Framework level 1

Reference:	1: Judson RS <i>et al.</i> , 2015. Integrated model of chemical perturbations of a biological pathway using 18 in vitro high-throughput screening assays for the estrogen receptor. <i>Toxicol. Sci.</i> 148(1) : 137–154. File number: NA_14831
	2: Browne P <i>et al.</i> , 2015. Screening Chemicals for Estrogen Receptor Bioac- tivity Using a Computational Model. <i>Environ. Sci. Technol.</i> 49(14) : 8804– 8814. File number: NA_14873
	These references are reported together as some data are duplicated across studies.

Guidelines: Not applicable.

GLP: No.

Study design: Results from 18 *in vitro* ER ToxCastTM high-throughput screening assays measuring ER binding, dimerization, chromatin binding, transcriptional activation, and ER-dependent cell proliferation were integrated into a computational model that can discriminate bioactivity from assay-specific interference and cytotoxicity. Model scores range from 0 (no activity) to 1 (bioactivity of 17 β -estradiol).

The output from this model was compared to the known *in vivo* ER activity in the Uterotrophic assay for a range of reference compounds. The model output score accuracies exceeded 84% for the prediction of Uterotrophic study outcome.

Assay name	Biological process	detection	orga-	tissue	cell line
	target	technology	nism		
NVS_NR_bER	receptor binding	radioligand	bovine	uterus	NA
NVS_NR_hER	receptor binding	radioligand	human	NA	NA
NVS_NR_mERa	receptor binding	radioligand	mouse	NA	NA
OT_ER_ERaERa_0480	protein complemen-	fluorescence	human	kidney	HEK293T
	tation				
OT_ER_ERaERa_1440	protein complemen-	fluorescence	human	kidney	HEK293T
	tation				
OT_ER_ERaERb_0480	protein complemen-	fluorescence	human	kidney	HEK293T
	tation				
OT_ER_ERaERb_1440	protein complemen-	fluorescence	human	kidney	HEK293T
	tation				
OT_ER_ERbERb_0480	protein complemen-	fluorescence	human	kidney	HEK2931
	tation				
OT_ER_ERbERb_1440	protein complemen-	fluorescence	human	kidney	HEK293T
	tation				
OT_ERa_EREGFP_0120	protein production	fluorescence	human	cervix	HeLa
OT_ERa_EREGFP_0480	protein production	fluorescence	human	cervix	HeLa
ATG_ERa_TRANS_up	mRNA induction	fluorescence	human	liver	HepG2
ATG_ERE_CIS_up	mRNA induction	fluorescence	human	liver	HepG2
Tox21_ERa_BLA_Ago-	protein production	fluorescence	human	kidney	HEK293T
nist_ratio					
Tox21_ERa_LUC_BG1_	protein production	biolumines-	human	ovary	BG1
Agonist		cence			
ACEA_T47D_80h_Posi-	cell proliferation	electrical im-	human	breast	T47D
tive		pedance			
Tox21_ERa_BLA_Anta-	protein production	fluorescence	human	kidney	HEK2931
gonist_ratio					
Tox21_ERa_LUC_BG1_	protein production	biolumines-	human	ovary	BG1
Antagonist		cence			

Table 1.1.1.6-1 Summary of the 18 high-throughput *in vitro* ER Assays included in the ToxCastTM ER Bioactivity Model

Results: Dicamba had a score of 0 for both agonistic and antagonistic activity and is thus considered to have no ER bioactivity.

CONCLUSIONS

Reliability score	2: Reliable with restrictions
Relevance score	High/Medium (Endpoint is based on simulated ER pathway stimulation in an <i>in silico</i> model). Note: The CEFIC EMSG does not give criteria for relevance of <i>in silico</i> data. Rele- vance has been assigned in line with the criteria for <i>in vitro</i> data.
Overall significance	Low – No evidence of effects relevant to the assessment of endocrine disruption.

Reference: Kleinstreuer NC *et al.*, 2017. Development and validation of a computational model for androgen receptor activity. *Chem. Res. Toxicol.*, **30 (4)**: 946–964. File number: NA_14876

Guidelines: Not applicable.

GLP: No.

Study design: Eleven high throughput screening (HTS) ToxCastTM/Tox21 *in vitro* assays were integrated into a computational network model to distinguish true AR pathway activity from technology-specific assay interference. The *in vitro* HTS assays probed perturbations of the AR pathway at multiple points (receptor binding, coregulator recruitment, gene transcription, and protein production) and multiple cell types. Confirmatory *in vitro* antagonist assay data and cytotoxicity information were used as additional flags for potential nonspecific activity.

The output from this model was compared to the known *in vivo* AR activity in the Hershberger assay for a range of reference compounds. The model output score showed accuracies of 95.2% for the outcome of Hershberger assays run in agonism mode and 97.5% for Hershberger assays run in antagonism mode.

assay name	source	gene	species	type
NVS_NR_hAR	Novascreen	AR	Homo sapiens	receptor binding
NVS_NR_cAR	Novascreen	AR	P. troglodytes	receptor binding
NVS_NR_rAR	Novascreen	AR	Rattus norvegi- cus	receptor binding
OT_AR_ARSRC1_0480	Odyssey Thera	AR; SRC	Homo sapiens	coregulator recruit- ment
OT_AR_ARSRC1_0960	Odyssey Thera	AR; SRC	Homo sapiens	coregulator recruit- ment
ATG_AR_TRANS	Attagene	AR	Homo sapiens	RNA reporter gene
OT_AR_ARELUC_AG_1440	Odyssey Thera	AR; ARE	Homo sapiens	reporter gene
Tox21_AR_BLA_Ago- nist_ratio	NCATS/NCGC	AR	Homo sapiens	reporter gene
Tox21_AR_LUC_MDAKB2_ Agonist	NCATS/NCGC	AR	Homo sapiens	reporter gene
Tox21_AR_BLA_Antago- nist_ratio	NCATS/NCGC	AR	Homo sapiens	reporter gene
Tox21_AR_LUC_MDAKB2_ Antagonist	NCATS/NCGC	AR	Homo sapiens	reporter gene
Tox21_AR_LUC_MDAKB2_ Antagonist-confirmation	NCATS/NCGC	AR	Homo sapiens	reporter gene

Table 1.4.1.1-2 Tox21/ToxCastTM in vitro assays used in AR Pathway Model

Results: Dicamba was predicted to be inactive as an AR agonist or antagonist with AUC values of 0 for both pathways.

CONCLUSIONS

Reliability score	2: Reliable with restrictions
Relevance score	High/Medium (Endpoint is based on simulated AR pathway stimulation in an <i>in silico</i> model). Note: The CEFIC EMSG does not give criteria for relevance of <i>in silico</i> data. Relevance has been assigned in line with the criteria for <i>in vitro</i> data.
Overall significance	Low – No evidence of effects relevant to the assessment of endocrine disruption.

Reference: Devillers J, Bro E, Millot F (2015). Prediction of the endocrine disruption profile of pesticides. *SAR and QSAR in Environ. Res.*, *26:10 831-852*. File number: NA_13813

Guidelines: Not applicable.

GLP: No.

Study design: The ability of dicamba to bind and act as an agonist/antagonist of androgen receptor (AR), oestrogen receptor α (ER α), oestrogen receptor β (ER β), thyroid hormone receptor α (TR α) and thyroid hormone receptor β (TR β) was predicted using an *in silico* molecular docking approach. The authors provide limited information on the methodology, protein preparation or protocol generation (i.e. docking target). Predicted binding potentials were scored 1 to 4, with 1 representing a low probability of binding and 4 representing a high probability of binding. The degree of inappropriate penetration into the docking site (i.e. crash score) was not considered, the sensitivity and specificity of the models were not detailed, and bootstrap analysis was not conducted.

Binding affinities with receptors not directly involved with the endocrine system were also estimated. These data are outside the scope of this review and are not discussed further.

Results:

Receptor:	AR	ARa*	ERα	ERaa*	ERβ	ERβa*	TRα	TRβ
Score:	1	2	1	1	1	1	1	1

*: 'a' denotes antagonist mode

Overall, the results of these *in silico* predictions indicate that dicamba has a low potential to interact with the estrogen (α , β) receptors, androgen receptor and thyroid (α , β) receptors. It is important to note that these scores reflect theoretical binding potential, calculated via *in silico* docking to protein structures and are of questionable relevance to *in vitro* and *in vivo* activity. X-ray crystallography selectively favours the protein confirmations most likely to crystalise. Consequently, most structures are ligand-bound dimers (LBD) with associated cofactors, rather than monomeric ligand binding domains stabilised by heat-shock proteins (HSP). Thus, cofactors and ligands should be removed and the protein structure optimised for physiological pH. The authors also failed to minimise and prepare the database for screening, which can lead to docking performance scores worse than random (Jain 2007; Peng *et al.* 1996).

CONCLUSIONS

Reliability score	2: Reliable with restrictions
Relevance score	Medium (Endpoint is based on simulated receptor binding potential in an <i>in silico</i> model). Note: The CEFIC EMSG does not give criteria for relevance of <i>in silico</i> data. Rele- vance has been assigned in line with the criteria for <i>in vitro</i> data.
Overall significance	Low – No evidence of effects relevant to the assessment of the A and T pathways.

2.10.10 In vitro data in OECD Conceptual Framework level 2

Reference: Zhang J, Kamstra JH, Ghorbanzadeh M, Weiss JM, Hamers T, Andersson PL (2015). In Silico Approach To Identify Potential Thyroid Hormone Disruptors among Currently Known Dust Contaminants and Their Metabolites. *Environ. Sci. Technol.*, *49:10099–10107*, Syngenta File No. NA_13814

Guidelines: Not applicable

GLP: No

Study design: The potential for dicamba as a thyroid hormone disrupting chemical (THDC) was examined using a computational quantitative structure-activity relationship (QSAR) model and an *in vitro* model, a competitive [¹²⁵I]-T4- hormone transporter transthyretin (TTR) binding assay.

Results: Dicamba was predicted to bind to TTR in the QSAR Model but subsequently tested negative in the radioligand TTR binding assay.

CONCLUSIONS

Reliability score	2: Reliable with restrictions
Relevance score	Medium (Endpoints are based on receptor binding/ potential in subcellular assay)
Overall significance	Indicative – No evidence of effects relevant to the assessment of endocrine disruption

 Reference:
 US EPA, Computational Toxicology Dashboard.
 Accessed online at https://comp-tox.epa.gov/dashboard in 2019

Guidelines: None cited

GLP: No

Study design: The US EPA Computational Toxicology online Dashboard was queried with the keyword "dicamba". The Computational Toxicology Dashboard contains a large quantity of data ranging from high throughput assays (HTS), summaries of regulatory toxicology studies, and US EPA risk assessment endpoints. In order to extract the relevant OECD conceptual framework level 2 *in vitro* assays for this review "EDSP21" data was selected from the "Bioactivity" module.

Estrogenic activity: Twenty-two HTS assays examining estrogenic activity are available. Dicamba was inactive in all assays in the absence of cytotoxicity, indicating no potential for dicamba to interact with the estrogen receptor (Table 4.1.2-1)

Assay component endpoint name	Assay type	AC50 (µM)	Cytotoxicity z-score	Flags
	real-time cell-growth ki-			
ACEA_ER_80hr	netics	Inactive	NA	NA
ATG_ERE_CIS_dn	mRNA induction	Inactive	NA	NA
ATG_ERE_CIS_up	mRNA induction	Inactive	NA	NA
ATG_ERa_TRANS_dn	mRNA induction	Inactive	NA	NA
ATG_ERa_TRANS_up	mRNA induction	Inactive	NA	NA
NVS_NR_bER	radioligand binding	Inactive	NA	NA
NVS_NR_hER	radioligand binding	Inactive	NA	NA
OT_ER_ERaERa_0480	protein fragment comple- mentation assay	Inactive	NA	NA
OT_ER_ERaERa_1440	protein fragment comple- mentation assay	Inactive	NA	NA
OT_ER_ERaERb_0480	protein fragment comple- mentation assay	Inactive	NA	NA
OT_ER_ERaERb_1440	protein fragment comple- mentation assay	Inactive	NA	NA
OT_ER_ERbERb_0480	protein fragment comple- mentation assay	Inactive	NA	NA

Table 1.4.1.2-1 Summary of US-EPA ToxCastTM estrogenic screening data for dicamba

Assay component endpoint	Assay type	AC50 (µM)	Cytotoxicity	Flags
name			z-score	
	protein fragment comple-			
OT_ER_ERbERb_1440	mentation assay	Inactive	NA	NA
	fluorescent protein induc-			
OT_ERa_EREGFP_0120	tion	Inactive	NA	NA
	fluorescent protein induc-			
OT_ERa_EREGFP_0480	tion	Inactive	NA	NA
TOX21_ERa_BLA_Agonist_ra-				
tio	beta lactamase induction	Inactive	NA	NA
TOX21 ERa BLA Antago-				
nist_ratio	beta lactamase induction	Inactive	NA	NA
TOX21 ERa LUC VM7 Ago-				
nist	luciferase induction	Inactive	NA	NA
TOX21 ERa LUC VM7 An-				
tagonist 0.1nM E2	luciferase induction	Inactive	NA	NA
TOX21 ERa LUC VM7 An-				
tagonist_0.5nM_E2	luciferase induction	Inactive	NA	NA
TOX21_ERb_BLA_Ago-				
nist_ratio	beta lactamase induction	Inactive	NA	NA
TOX21 ERb BLA Antago-				
nist_ratio	beta lactamase induction	Inactive	NA	NA

Androgenic activity: Fourteen HTS assays examining androgenic activity are available. Dicamba was inactive in all assays in the absence of cytotoxicity, indicating no potential for dicamba to interact with the androgen receptor (Table 4.1.2-2).

Assay component endpoint			Cytotoxicity	
name	Assay type	AC50 (µM)	z-score	Flags
	real-time cell-growth ki-			
ACEA_AR_agonist_80hr	netics	Inactive	NA	NA
ATG_AR_TRANS_dn	mRNA induction	Inactive	NA	NA
ATG_AR_TRANS_up	mRNA induction	Inactive	NA	NA
NVS_NR_cAR	radioligand binding	Inactive	NA	NA
NVS_NR_hAR	radioligand binding	Inactive	NA	NA
NVS_NR_rAR	radioligand binding	Inactive	NA	NA
OT_AR_ARELUC_AG_1440	luciferase induction	Inactive	NA	NA
OT_AR_ARSRC1_0480	protein fragment comple- mentation assay	Inactive	NA	NA
OT_AR_ARSRC1_0960	protein fragment comple- mentation assay	Inactive	NA	NA
TOX21_AR_BLA_Agonist_ra- tio	beta lactamase induction	Inactive	NA	NA
TOX21_AR_BLA_Antago- nist_ratio	beta lactamase induction	Inactive	NA	NA
TOX21_AR_LUC_MDAKB2_ Agonist	luciferase induction	Inactive	NA	NA
TOX21_AR_LUC_MDAKB2_ Antagonist_0.5nM_R1881	luciferase induction	Inactive	NA	NA
TOX21_AR_LUC_MDAKB2_ Antagonist_10nM_R1881	luciferase induction	Inactive	NA	NA

Thyroid activity: Ten thyroid HTS assays are available. Dicamba was inactive in all of these assays Dicamba was not determined to interact with the thyroid hormone receptor (Table 4.1.2-3).

Assay component endpoint name	Assay type	AC50 (µM)	Cytotoxicity z-score	Flags
ATG_THRa1_TRANS_dn	mRNA induction	Inactive	NA	NA
ATG_THRa1_TRANS_up	mRNA induction	Inactive	NA	NA
NCCT_TPO_AUR_dn	enzyme activity	Inactive	NA	NA
NIS_RAIU_inhibition	enzyme activity	Inactive	NA	NA
NVS_NR_hTRa_Antagonist	immunoassay: elisa	Inactive	NA	NA
TOX21_TR_LUC_GH3_Ago- nist	luciferase induction	Inactive	NA	NA
TOX21_TR_LUC_GH3_Antag- onist	luciferase induction	Inactive	NA	NA
TOX21_TSHR_Agonist_ratio	cAMP measurement	Inactive	NA	NA
TOX21_TSHR_Antagonist_ra- tio	cAMP measurement	Inactive	NA	NA
TOX21_TSHR_wt_ratio	cAMP measurement	Inactive	NA	NA

Table 1.1.1.6-1 Summary of US-EPA ToxCastTM thyroid screening data for dicamba

Aromatase activity: One aromatase HTS assays are available. Dicamba was inactive in this assay (Table 4.1.2-4).

ToxCast TM Assay Identifier	Result	AC50	Flags
TOX21_Aromatase_Inhibition	Inactive	NA	NA

Reliability score	2: Reliable with restrictions
Relevance score	High –Whole cell assays Medium – Cell free assays
Overall significance	Indicative – No evidence of an effect relevant to the as- sessment of endocrine disruption

Reference:Van Vugt-Lussenburg BMA, Pieterse B, Middelhof I, Behnisch PA, van der Burg B and Bram
Brouwer (2014). The "dirty dozend" Pops & other pollutants: toxicological profiling by
CALUX panel, Organohalogen Compounds., 76:1071–1073. File number: NA_14243

Guidelines: Not applicable

GLP: No

Study design: 150 reference compounds with known toxicological properties were tested in a high trough put screening assay. The pesticides tested were selected from the ToxCast program. The used Chemical Activated LUciferase gene eXpression (CALUX) assay is a stable reporter gene assay using U20S cell lines expressing either different receptors, among those the following endocrine-related receptors: ERa, ERb, AR, PR, GR and TRb. Cells were treated in triplicates with 2% of a test compound dilution series (16 individual concentrations) in DMSO. Positive and negative controls were included on each plate. After 24h exposure, the exposure medium

was removed, cells were lysed and the luciferase signal was measured. Results were calculated as PC10 values compared to the reference compound activity.

Results: Of the different cell lines tested, dicamba only showed an effect in ER α expressing cells. The value calculated was -5.5.

The publication has severe deficiencies in the description of the method and the presentation and discussion of the results. The authors do not give any details on the origin of the test material or the concentration tested. The positive and negative controls used are not described. The results presented do not indicate the units of the result calculated. The results for the controls are not presented. The data presented are not discussed in detail. No conclusion on the comparability of the results of the ToxCast program are made.

CONCLUSIONS

This publication was judged as unreliable but included for completeness into this review.

Reliability score	3: Unusable
Relevance score	Medium (Endpoints are based on receptor binding/ potential in
	subcellular assay)
Overall significance	Indicative – No evidence of effects relevant to the assessment of
	endocrine disruption

Reference: Karmaus AL *et al.*, 2016. High-Throughput Screening of Chemical Effects on Steroidogenesis Using H295R Human Adrenocortical Carcinoma Cells. *Toxicol. Sci.* 150(2):323-32, File number: NA_14616

Guidelines: Study adopted from and broadly in compliance with the OECD guidance reference 456.

GLP: No.

Study design: A high-throughput assay using H295R human adrenocortical carcinoma cells was used to evaluate the effect of 2060 chemical samples, including dicamba, on steroidogenesis via high-performance liquid chromatography followed by tandem mass spectrometry quantification of ten steroid hormones, including progestagens, glucocorticoids, androgens, and oestrogens. The study employed a three-stage screening strategy. The first stage established the maximum tolerated concentration (MTC \geq 70% viability) per sample. The second stage quantified changes in hormone levels at a single concentration at either the MTC or at 100 μ M, whichever was lower. For compounds eliciting a change in steroid hormone biosynthesis (defined as >1.5-fold change up or down vs. negative control DMSO values) for more than four hormones, a concentration-response (CR) was determined. At all stages, cells were prestimulated with 10 mM forskolin for 48 hours to induce steroidogenesis followed by chemical treatment for 48 h.

Results: Dicamba was tested up to a concentration of 100µM and called negative for all endpoints tested in the absence of relevant cytotoxicity.

 Table 1.1.1.6-5 Summary of steroidogenesis results for dicamba (Karmaus AL et al., 2016)

Assay name	Result	Flag
CEETOX_H295R_11DCORT_dn	Negative	NA
CEETOX_H295R_11DCORT_up	Negative	NA
CEETOX_H295R_ANDR_dn	Negative	NA

Assay name	Result	Flag
CEETOX_H295R_ANDR_up	Negative	NA
CEETOX_H295R_CORTISOL_dn	Negative	NA
CEETOX_H295R_CORTISOL_up	Negative	NA
CEETOX_H295R_DOC_dn	Negative	NA
CEETOX_H295R_DOC_up	Negative	NA
CEETOX_H295R_ESTRADIOL_dn	Negative	NA
CEETOX_H295R_ESTRADIOL_up	Negative	NA
CEETOX_H295R_ESTRONE_dn	Negative	NA
CEETOX_H295R_ESTRONE_up	Negative	NA
CEETOX_H295R_OHPREG_dn	Negative	NA
CEETOX_H295R_OHPREG_up	Negative	NA
CEETOX_H295R_OHPROG_dn	Negative	NA
CEETOX_H295R_OHPROG_up	Negative	NA
CEETOX_H295R_PROG_dn	Negative	NA
CEETOX_H295R_PROG_up	Negative	NA
CEETOX_H295R_TESTO_dn	Negative	NA
CEETOX_H295R_TESTO_up	Negative	NA

CONCLUSIONS

Reliability score	2: Reliable with restrictions
Relevance score	High (Steroid metabolism in whole cell assay)
Overall significance	Low – No evidence of effects relevant for the assessment of the S pathway

Reference: Paul Friedman K *et al.*, 2016. Tiered High-Throughput Screening Approach to Identify Thyroperoxidase Inhibitors Within the ToxCast Phase I and II Chemical Libraries. *Toxicol. Sci.* **151(1):** 160-180. File number: NA_14874

Guidelines: Not applicable.

GLP: No.

Study design: The ToxCastTM phase I and II chemical libraries, comprised of 1074 unique chemicals and including dicamba, were initially screened using rat thyroid microsomes to identify potential thyroperoxidase (TPO) inhibitors. Chemicals positive in a first single-concentration screen were retested in concentration-response. Due to high false-positive rates typically observed with loss-of-signal assays such as AUR-TPO, two additional assays were employed in parallel to identify possible sources of nonspecific assay signal loss, enabling stratification of roughly 300 putative TPO inhibitors based upon selective AUR-TPO activity. A cell-free luciferase inhibition assay was used to identify nonspecific enzyme inhibition among the putative TPO inhibitors, and a cytotoxicity assay using a human cell line was used to estimate the cellular tolerance limit. Additionally, the TPO inhibition activities of 150 chemicals were compared between the AUR-TPO and an orthogonal peroxidase oxidation assay using guaiacol as a substrate to confirm the activity profiles of putative TPO inhibitors. **Results:** Dicamba was tested at a single concentration and was scored negative based on less than 20% decrease in maximal TPO activity, which was the threshold used to define a positive hit response.

CONCLUSIONS

Reliability score	2: Reliable with restrictions
Relevance score	Medium (Enzyme activity in a subcellular assay)
Overall significance	Low - No evidence of effects relevant for the assessment of endocrine disruption

Reference:	Wang J et al., 2018. High-Throughput Screening and Quantitative Chemical
	Ranking for Sodium-Iodide Symporter Inhibitors in ToxCast Phase I Chemical
	Library. Environ. Sci. Technol. 52 (9): 5417–5426, File number: NA_14880

Guidelines: Not applicable.

GLP: No.

Study design: This study applied a previously validated high-throughput approach to screen for sodium-iodide symporter (NIS) inhibitors in the ToxCastTM phase I library, representing 293 important environmental chemicals. 310 blinded samples, including dicamba, were screened in a tiered-approach using an initial single-concentration (100 μ M) radioactive-iodide uptake (RAIU) assay in hNIS-HEK293T-EPA cells, followed by 169 samples further evaluated in multi-concentration (0.001 μ M–100 μ M) testing in parallel RAIU and cell viability assays. A novel chemical ranking system that incorporates multi-concentration RAIU and cytotoxicity responses was also developed as a standardized method for chemical prioritization in current and future screenings.

Results: Dicamba was screened at a single concentration and was scored negative based on a threshold of less than 20% NIS inhibition in the RAIU assay.

CONCLUSIONS

Reliability score	2: Reliable with restrictions
Relevance score	High (Enzyme inhibition in a whole cell assay)
Overall significance	Low - No evidence of effects relevant for the assessment of endocrine disruption

Reference:	Hornung MW et al., 2018. Screening the ToxCast Phase 1 Chemical Library for Inhibition of Deiodinase Type 1 Activity. Toxicol. Sci. 162 (2): 570–581, File number: NA 14882
	Olker JH <i>et al.</i> , 2019. Screening the ToxCast Phase 1, Phase 2, and e1k Chem- ical Libraries for Inhibitors of Iodothyronine Deiodinases. <i>Toxicol. Sci.</i> <i>168(2):430-442</i> . File number:. NA_14886

Guidelines: Not applicable.

GLP: No.

Study design: Over 1800 unique chemicals, including dicamba, were screened *in vitro* for potential enzyme inhibition using HEK293 cell lysate with adrenoviral expressed DIO1, DIO2 and DIO3, respectively. Compounds were initially tested at a single concentration; chemicals produced enzyme inhibition of 50% or greater were further tested in concentration-response to determine relative potency. These references are reported together, because they are in parts redundant.

Results: Dicamba was tested at a single concentration of 200μ M and was inactive in all three DIO assays.

CONCLUSIONS

Reliability score	2: Reliable with restrictions
Relevance score	Medium (Enzyme activity in a subcellular assay)
Overall significance	Low - No evidence of effects relevant for the assessment of endocrine disruption

2.10.11 In Vivo Mechanistic Data – Mammalian Species

2.10.12 Short term mechanistic studies in OECD Conceptual Framework level 3

No in vivo mechanistic data in OECD conceptual framework level 3 was identified for inclusion in this review.

2.10.13 In Vivo Data – Mammalian Species

1.1.1.7 Short term studies in OECD Conceptual Framework level 4

Report:	(2014). BAS 183 H (Dicamba techn.): Repeated dose 28-day inhalation toxicity
_	study in Wistar rats, dust. BASF DocID 2014/1170794.
	File number: SAN837_11498

Guidelines: 412 (2009)

GLP: Yes

Study design: 10 male and 10 female **WI WI** rats per group were head-nose exposed to dust atmospheres on 6 hours per day, on 5 consecutive days per week for 4 weeks (20 exposures). The target concentrations were 1, 5 and 50 mg/m³ test substance in air. A concurrent control group was exposed to conditioned air as air control.

Endpoints relevant for assessment of potential for endocrine disruption

- Gross macroscopic observations
- Organ weight: Adrenal glands, epididymides, ovaries, testes, thymus, thyroid glands and uterus
- Histopathological evaluation: Adrenal glands, epididymides, mammary gland, ovaries, pituitary gland, prostate, seminal vesicle, testes, thyroid/parathyroid and uterus with cervix.

Deviations from the current guideline:

OECD 412 guideline was revised in 2018 to accommodate the testing of particle aerosols including nanomaterials. There were no additional endocrine specific endpoints added to the 2018 version, so the update has no impact for endocrine disruption endpoints.

Effects on endpoints relevant for assessment of potential for endocrine disruption None.

CONCLUSIONS

Reliability score	1: Reliable without restrictions	
Relevance score	Medium (Standard repeat dose toxicity test, with endpoints that may b	
	influenced by the endocrine system, but are also known to be affected by	
	other factors, e.g. toxicity, etc.)	
Overall significance	Indicative – No evidence of an effect relevant to the assessment of endo-	
	crine disruption	

Report:	(2002). Dicamba Tech. (SAN 837 Tech.): 28-Day dermal toxicity study in rats.	
in point	report number: CTL/LR0594/REG/REPT.	
	File number: SAN837/6040	

Guidelines: OECD 410 (1981)

GLP: Yes

Study design: 10 male and 10 Alpk: APfSD (Wistar-derived) female rats per dose group received a dermal application of dicamba at 0, 30, 300, or 1000 mg/kg bw/day for 6 hours/day, 21 days in the 28 days period. Dicamba was mixed with deionized water to form a paste and applied to the clipped dorsal skin on at least 10% of body surface of the animals with a secured gauze batch. After 6 hours, application sites were cleaned with warm water.

Endpoints relevant for assessment of potential for endocrine disruption

- Gross macroscopic observations
- Organ weight: Adrenal glands, epididymides, ovaries, testes and uterus with cervix
- Histopathological evaluation: Adrenal glands, epididymides, mammary gland, ovaries, pituitary gland, prostate, seminal vesicle, testes, thyroid/parathyroid and uterus with cervix.

Deviations from the current guideline:

None.

Effects on endpoints relevant for assessment of potential for endocrine disruption: None.

A lesion in the adrenal gland (necrosis /fibrosis/ vacuolation /pigmentation) was recorded in three males in the 1000 mg/kg/day dose group. However, a similar reaction was also seen in one male given 300 mg/kg, one female given 30 mg/kg/day and one female of the control group. These results were not deemed to be related to treatment

and were not reproduced in any other short or long-term study in rat or any other species tested. Therefore, these findings are considered to be normal biological variation and do not reflect an interaction of dicamba with the endocrine system.

CONCLUSIONS

Reliability score	1: Reliable without restrictions
Relevance score	Medium (Standard repeat dose toxicity test, with endpoints that may be influenced by the endocrine system, but are also known to be affected by
	other factors, e.g. toxicity, etc.)
Overall significance	Indicative – No evidence of an effect relevant to the assessment of endo-
	crine disruption

Report:	(1979). Banvel Technical: 3-Week dermal tox-
	icity study in rabbits.
	File number: SAN837/5078

Guidelines: Broadly equivalent to OECD 410

GLP: Yes

Study design: 4 male and 4 female New Zealand White rabbits per dose group received a dermal application of dicamba tech. at 0, 100, 500, and 2500 mg/kg bw/day for 6 hours/day, 5 days/week. Dosages were adjusted based upon weekly bodyweight. Dicamba tech. was mixed with 0.9% saline solution to form a paste and applied to the clipped dorsal skin on at least 10% of body surface of the animals. After 6 hours, application sites were cleaned. The skin of 2 males and 2 females per group was abraded twice weekly. Body weight and food consumption were recorded weekly.

Endpoints relevant for assessment of potential for endocrine disruption

- Gross macroscopic observations
- Organ weights: adrenals, testes, ovaries, thyroid, parathyroid
- Histopathological evaluation (highest dose group only): Adrenal glands, ovaries, pituitary gland, prostate, testes, thyroid/parathyroid, uterus

Deviations from the current guideline:

OECD 410 specifies that 5 animals per sex per dose are used, however this study only used 4 animals per sex per group.

Effects on endpoints relevant for assessment of potential for endocrine disruption None.

There was a statistically significant increase in absolute adrenals weight in the female 100 mg/kg/day group; however, in the absence of compound related morphologic lesions in the adrenals or a dose response, this weight variation was not considered toxicologically significant.

CONCLUSIONS

Reliability score	2: Reliable with restrictions
Relevance score	Medium (Standard repeat dose toxicity test, with endpoints that may be influenced by the endocrine system, but are also known to be affected by other factors, e.g. toxicity, etc.)
Overall significance	Indicative – No evidence of an effect relevant to the assessment of endo- crine disruption

Rep	(1997). Dicamba TC: 13-week feeding study in rats (includ	ing 4-week re-
	covery). report number: 97/059.	
	File number: SAN837/0010	

Guidelines: OECD 408 (1981)

GLP: Yes

Study design: Dicamba tech. was administered to groups of 10 male and 10 female HanIbm: WIST (Wistar) rats at dietary concentrations of 0, 500, 3000, 6000 and 12000 ppm (mg/kg) for 13 weeks. 10 additional rats/sex in each of the control and high dose groups were permitted a 28-day recovery period following the 13-week treatment period.

Endpoints relevant for assessment of potential for endocrine disruption

- Gross macroscopic observations
- Organ weights: Adrenal glands, ovaries and testes
- Histopathological evaluation: Adrenal glands, epididymides, mammary area, ovaries, pituitary gland, prostate, seminal vesicles, testes, thyroid/parathyroid, uterus and vagina.

Deviations from the current guideline:

OECD test guideline 408 was revised in 2018 to include additional parameters which may be sensitive to perturbation of the endocrine system. The following parameters would be expected in a study conducted to the current OECD test guideline but were not assessed in this study: assessment of the organ weight of the epididymides, the prostate including the seminal vesicles with coagulating glands as a whole complex, uterus, pituitary gland and thyroid gland; vaginal smears (oestrus cycle determination at necropsy); serum/plasma analyses of thyroid hormones (Thyroxine, TSH, T3), LDL and HDL cholesterol.

Effects on endpoints relevant for assessment of potential for endocrine disruption None.

CONCLUSIONS

Reliability score	1: Reliable without restrictions	
Relevance score	Medium (Standard repeat dose toxicity test, with endpoints that may be influenced by the endocrine system, but are also known to be affected by other factors, e.g. toxicity, etc.)	
Overall significance	Indicative – No evidence of an effect relevant to the assessment of endo- crine disruption	

Report:	(1994). Subchronic Neurotoxicity Study of Dietary Technical Dicamba in Rats.
	laboratory project number: 686-178.
	File number: SAN837/5210

Guidelines: Subchronic neurotoxicity study - equivalent to OECD 424 (1997)

GLP: Yes

Study design: Dicamba was administered orally via diet to SD rats (10/sex/dose) at dose levels of 0, 300, 600 and 12000 ppm for 13 weeks. The mean consumption during the 13-week study was 197.1, 401.5 and 767.9 mg/kg/day for males and 253.4, 472.0 and 1028.9 mg/kg/day for females.

Endpoints relevant for assessment of potential for endocrine disruption

- Gross macroscopic observations
- Histopathological evaluation: Pituitary gland

Deviations from the current guideline:

None.

Effects on endpoints relevant for assessment of potential for endocrine disruption None.

CONCLUSIONS

Reliability score	1: Reliable without restrictions	
Relevance score	Medium (Standard repeat dose toxicity test, with endpoints that may be influenced by the endocrine system, but are also known to be affected by other factors, e.g. toxicity, etc.)	
Overall significance	Indicative – No evidence of an effect relevant to the assessment of endo- crine disruption	

Report:	(2003). SAN 837 tech.; 13-Week oral (capsule) tox-	
	icity study in the dog. study report number: 826795.	
	File number: SAN837/6130	

Guidelines: OECD 409 (1998)

GLP: Yes

Study design: Dicamba was administered orally (capsule) to groups of Beagle dogs at dose levels of 0, 10, 50 or 300 mg/kg bw/day for 13 weeks followed by a four week recovery period in some dogs. The four groups contained 4 male and 4 female dogs and the control and 300 mg/kg group also contained an additional 4 males and 4 females which were retained after the treatment period for the 4-week recovery period. The test substance was weighed directly into gelatine capsules in accordance the most recently recorded body weight for each animal. The control animals received empty capsules.

Endpoints relevant for assessment of potential for endocrine disruption

- Gross macroscopic observations
- Organ weights: Adrenal glands, ovaries, testes with epididymides, thyroid gland with parathyroid and uterus
- Histopathological evaluation: Adrenal glands, epididymides, mammary gland area, ovaries, pituitary gland, prostate gland, testes, thyroid/parathyroid, uterus with vagina.

Deviations from the current guideline:

None.

Effects on endpoints relevant for assessment of potential for endocrine disruption None.

CONCLUSIONS

Reliability score	1: Reliable without restrictions
Relevance score	Medium (Standard repeat dose toxicity test, with endpoints that may be influenced by the endocrine system, but are also known to be affected by other factors, e.g. toxicity, etc.)
Overall significance	Indicative – No evidence of an effect relevant to the assessment of endo- crine disruption

Report:	(2010). RC1176: 90-Day Oral Capsule Toxicity Study in Beagle Dogs.
	code: 10/037-101K.

Guidelines: OECD 409 (1998)

GLP: Yes

Study design: Dicamba was administered orally (capsule) to groups of dogs at dose levels of 0, 10, 50 or 300 mg/kg bw/day for 90 days. The four groups contained 4 male and 4 female dogs. Capsule filling was performed shortly prior to treatment and stored at room temperature pending administration to animals. The test item used to fill the capsule was calculated and adjusted based on the animal's most recent body weight. The control animals received empty capsules.

Endpoints relevant for assessment of potential for endocrine disruption

- Gross macroscopic observations
- Organ weights: Adrenal glands, ovaries, testes, thyroid gland with parathyroid, pituitary, prostate and uterus
- Histopathological evaluation: Adrenal glands, epididymides, mammary gland (inguinal), ovaries, pituitary gland, prostate, testes, thyroid/parathyroid, uterus and vagina.

Deviations from the current guideline:

None.

Effects on endpoints relevant for assessment of potential for endocrine disruption None.

CONCLUSIONS

Reliability score	1: Reliable without restrictions
Relevance score	Medium (Standard repeat dose toxicity test, with endpoints that may be influenced by the endocrine system, but are also known to be affected by other factors, e.g. toxicity, etc.)
Overall significance	Indicative – No evidence of an effect relevant to the assessment of endo- crine disruption

Report:	(1979), Banvel: 4-Week range-finding study in rats.
	Syngenta Unpublished Report No
	163-670. Syngenta File No. SAN837/5088

Guidelines: None.

GLP: No (study performed before the implementation of GLP)

Study design: Dicamba technical was administered in the diet for 28 days at levels of 0, 5000, 7500, 10000, 12500, or 15000 ppm to groups of 5 rats/sex. Weekly recordings were made of detailed clinical observations, individual body weights and food consumption. Mortality and overt toxicity was recorded twice daily.

Endpoints relevant for assessment of potential for endocrine disruption

• None

Deviations from the current guideline:

Not applicable. Effects on endpoints relevant for assessment of potential for endocrine disruption None.

CONCLUSIONS

Reliability score	1: Reliable without restrictions
Relevance score	Low (Standard repeat dose toxicity test, with no relevant endpoints for assessment of endocrine disruption)
Overall significance	Low – No evidence of an effect relevant to the assessment of endocrine disruption

1.1.1.8 Chronic and carcinogenicity studies in OECD Conceptual Framework level 4

Report:	(1988).
	Dicamba, potential tumorigenic effects in prolonged administration to mice.
	File No. SAN837/5075.

Guidelines: OECD 451 (1981)

GLP: Yes

Study design: 52 CrI:CD-1 (ICR) BR (Swiss) mice per sex per group were administered dicamba via the diet at dose levels of 0, 50, 150, 1000 and 3000 ppm. In addition, 10 male and 10 female mice were assigned to a health check group for haematology check prior to treatment. Male mice were killed following 89 completed weeks of treatment when the survival approached 30% in males administered 150 and 3000 ppm. Females were killed following 104 completed weeks of treatment when the survival was at least 35%.

Endpoints relevant for assessment of potential for endocrine disruption

- Gross macroscopic observations
- Organ weights: Testes
- Histopathological evaluation: Adrenal glands, mammary gland, ovaries, pituitary gland, prostate, seminal vesicles, testes with epididymides, thyroid (with parathyroid) and uterus

Deviations from the current guideline

The mice were 7 weeks old at study start (preferably max. 6 weeks, in OECD 451). Clinical observations were not made daily during some parts of the study. In absence of any remarkable clinical observations this is considered not to affect the validity of the study. Survival rate was 30% for males and 35% for females at 89 and 104 weeks respectively, at which time the remaining animals were killed. The deviations are not considered to compromise the scientific validity of the study.

Effects on endpoints relevant for assessment of potential for endocrine disruption None.

CONCLUSIONS

Reliability score	1: Reliable without restrictions
Relevance score	Medium (Standard repeat dose toxicity test, with endpoints that may be influenced by the endocrine system, but are also known to be affected by other factors, e.g. toxicity, etc.)
Overall significance	Indicative – No evidence of an effect relevant to the assessment of endo- crine disruption

Report:	(1985). Technical dicamba. Lifetime dietary toxicity and oncogenicity study in
	rats. report No. 163-694.
	File No. SAN837/5072

Guidelines: OECD 453 (1981)

GLP: Yes

Study design: Dicamba was administered to groups of 60 male and 60 female Sprague-Dawley rats at dietary concentrations of 0, 50, 250, and 2500 ppm for over two years (115 weeks for males and 118 weeks for females) with a scheduled sacrifice at 12 months.

Endpoints relevant for assessment of potential for endocrine disruption

- Gross macroscopic observations
- Organ weights: Ovaries and testes
- Histopathological evaluation: Adrenal glands, mammary area, ovaries, pituitary gland, prostate, seminal vesicles, testes with epididymides, thyroid (with parathyroid) and uterus

Deviations from the current guideline:

The terminal necropsy schedule for this study was 27 months, rather than 24 months by current guidelines. Organ weights which were not recorded according to latest guidelines include: epididymides, the thyroid (and parathyroid) and the uterus. Histopathology assessment not recorded according to latest guidelines include: coagulating gland and vagina. No haematological or clinical chemical examinations were performed after 3 months. Survival was (marginally) less than 50 % in all dosed male groups and in mid dose females at 104 weeks.

Effects on endpoints relevant for assessment of potential for endocrine disruption

In males, a higher incidence of C-cell carcinoma was seen in at the top dose level as compared to concurrent controls (8.3% vs. 1.7%). This is considered unrelated to treatment as this was observed in high dose males only and the overall incidence of pre-neoplastic and neoplastic lesions in C-cells did not show a treatment-related effect in males. A more detailed discussion can be found in section 5.1.

CONCLUSIONS

Reliability score	1: Reliable without restrictions
Relevance score	Medium (Standard repeat dose toxicity test, with endpoints that may be influenced by the endocrine system, but are also known to be affected by other factors, e.g. toxicity, etc.)
Overall significance	Indicative – No evidence of an effect relevant to the assessment of endo- crine disruption

Report:	(1986). Dicamba - One year dietary toxicity in dogs.
	Report No.163-696.
	File No. SAN837/5083.

Guidelines: OECD 452 (1981)

GLP: Yes

Study design: The test article was administered to groups of 4 male and 4 female Beagle dogs at dietary dose levels of 0, 100, 500 and 2500 ppm for 12 months. All dogs were sacrificed after 12 months and submitted to a complete necropsy.

Endpoints relevant for assessment of potential for endocrine disruption

- Gross macroscopic observations
- Organ weights: Adrenal gland, ovaries, pituitary glands, testes and thyroid/parathyroid complex
- Histopathological evaluation: Adrenal glands, mammary gland, ovaries, pituitary gland, prostate, testes with epididymides, thyroid (with parathyroid) and uterus

Deviations from the current guideline:

Compared to OECD guideline 452 haematological examinations are lacking at 3 months after study start. This does not compromise the validity of the study.

Effects on endpoints relevant for assessment of potential for endocrine disruption

None.

CONCLUSIONS

	Reliability score	1: Reliable without restrictions
--	-------------------	----------------------------------

Relevance score	Medium (Standard repeat dose toxicity test, with endpoints that may be influenced by the endocrine system, but are also known to be affected by other factors, e.g. toxicity, etc.)
Overall significance	Indicative – No evidence of an effect relevant to the assessment of endo- crine disruption

1.1.1.9 Developmental studies in OECD Conceptual Framework level 4

Report:	(1981). Teratology study in Albino rats with technical dicamba.
	report No. 450-0460.
	File No. SAN837/5064.

Guidelines: Equivalent to OECD 414 (1981)

GLP: Yes

Study design: Polygamous cohabitation was employed during mating trials and males were rotated among females on a day-to-day basis until the required number of breedings were obtained. Each male was paired with different females each day of the mating trials. Daily examinations (observation of copulation plug and/or sperm positive results of vaginal smear) were conducted to establish bred females. 25 young, sexually mature, pregnant females were randomly assigned to each dose group. Rats per dose group were administered dicamba via oral gavage in corn oil (1ml/100g) at dose levels of 0, 64, 160, and 400 mg/kg during days 6 to 19 of gestation. Dams were sacrificed on day 20 of gestation and their gravid uterus was excised and weighted, then examined to determine the number of implantation sites, resorption sites and foetuses (live foetuses and intra-uterine deaths).

Endpoints relevant for assessment of potential for endocrine disruption

- Gross macroscopic observations
- Pregnancy parameters (e.g. % pregnant)
- Number of implantations
- Number of abortions/resorptions/intra-uterine deaths
- Foetal abnormalities
- Pup sex ratio

Deviations from the current guideline:

The OECD 414 guideline was updated on 25 June 2018, to include measurement of maternal thyroid hormones (T4, T3 and TSH) and ano-genital distance (AGD) in rats, neither of which were considered in the current study. The volume of test material and vehicle given to the animals were higher (1.0 ml/100 g) than recommended by the guideline (0.4 ml/100g). Only one third of foetuses in each litter were examined for soft tissue alterations. Limited determination of body weight was conducted (day 0, 6 and 20). The number of corpora lutea was not reported. The deviations are not found to compromise the study results as presented. The skeletons were also only singly stained with Alizarin red, rather than double stained with Alizan blue.

Effects on endpoints relevant for assessment of potential for endocrine disruption None.

CONCLUSIONS

Reliability score	1: Reliable without restrictions
Relevance score	Medium (Standard repeat dose toxicity test, with endpoints that may be influenced by the endocrine system, but are also known to be affected by other factors, e.g. toxicity, etc.)
Overall significance	Indicative – No evidence of an effect relevant to the assessment of endo- crine disruption

Report:	(1992). Developmental toxicity (embryo-fetal toxicity and teratogenic po		
	tential) study of technical dicamba administered orally via capsule to New Zealand white rab-		
	bits. report No. 1819-004.		
	File No. SAN837/5235.		

Guidelines: U.S. Environmental Protection Agency Pesticide Assessment Guidelines Subdivision F, 83-3 (equivalent to OECD 414, 1981)

GLP: Yes

Study design: Groups of 19 (control) or 20 (treated groups) artificially inseminated virgin New Zealand White rabbits (Hra: (NZW) SPF) were administered the test article at dose levels of 0, 30, 150 and 300 mg/kg during days 6 to 18 of gestation by the means of gelatin capsules. Dosages were adjusted to individual body weights recorded on days 6, 9, 12 and 15 of presumed gestation. Dams were sacrificed on day 29 of gestation and their uteri examined for live foetuses and intra-uterine deaths; foetuses were removed.

Endpoints relevant for assessment of potential for endocrine disruption

- Gross macroscopic observations
- Pregnancy parameters (e.g. % pregnant)
- Number of implantations
- Corpora lutea
- Number of abortions/resorptions/intra-uterine deaths
- Foetal abnormalities
- Pup sex ratio

Deviations from the current guideline:

The following parameters would be expected in a study conducted in rabbits to the current OECD test guideline but were not addressed in this study: gravid uterine weight, thyroid weight, skeletal observations used single staining with alizarin red only (did not double stain with Alician blue), cryptorchidism was not examined, dosage did not include the entire period of gestation (organogenesis only). These deviations are not thought to affect the validity of the study.

Effects on endpoints relevant for assessment of potential for endocrine disruption None.

One abortion was recorded in the 150 mg/kg/day and four abortions were recorded in the 300 mg/kg/day dosage group. The abortions were associated with significant maternal toxicity indicated as clinical observations and reduced body weight gains (300 mg/kg dose group had a 42% reduced weight gain relative to controls). Additionally, reduced relative (-13% compared to control) and absolute (-17% compared to control) food consumption was noted among the 300 mg/kg/day dosage group. 1 dead occurred in the high dose group, however this was the result of an accident (intubation accident) and not considered treatment related. For further details on the relationship between abortions and food consumption and body weight, see table 4.3.3-1 below:

Table 1.4.3.3-1 Deaths and abortions, body weight change, absolute and relative food consumption of dams across day 0-29

Endpoint [Day 0-29]	0 (Vehicle)	30 mg/Kg/Day	150 mg/Kg/Day	300 mg/Kg/Day
Deaths	0	0	0	la
Abortions	0	0	1	4
Maternal Body Weight	$+0.45 \pm 0.17$	$+0.56\pm0.10$	$+0.47 \pm 0.18$	$+0.26 \pm$
Change [kg]			[17]b	0.21**[13]b
Maternal Absolute Food	148.0 ± 23.4	$168.0 \pm 12.4*$	151.8 ± 18.0	$121.6 \pm$
Consumption [g/day]	[17]c		[16]c	28.2*[13]b
Maternal Relative Food	39.5 ± 4.5 [17]c	44.4 ± 4.5 **	40.7 ± 4.2 [16]c	34.2 ± 5.7
Consumption [g/day]				**[13]b

Days = days of gestation

[] = Number of values averaged

- a. Cause of death was accidental, intubation accident
- b. Excludes values for does that aborted or were found dead;
- c. Excludes values that were not recorded, as well as those associated with spillage or wet feed.
- * Significantly different from vehicle control group [p≤0.05]
- ** Significantly different from vehicle control group [p≤0.01]

CONCLUSIONS

Reliability score	1: Reliable without restrictions
Relevance score	Medium (Standard repeat dose toxicity test, with endpoints that may be influenced by the endocrine system, but are also known to be affected by other factors, e.g. toxicity, etc.)
Overall significance	Indicative – No evidence of an effect relevant to the assessment of endo- crine disruption

1.1.1.10 Reproductive studies in OECD Conceptual Framework level 5

Report:	(1993). Technical Dicamba – A study of the effect on reproductive function of		
	two generations in the rat.	report No. SNC 140/921437. Syn-	
	genta File No. SAN837/5213.		

Guidelines: OECD 416 (1983)

GLP: Yes

Study design: Dicamba was administered to groups of 32 male and female albino rats (CrkCD (SD) BR VAF/Plus strain) at dietary dose levels of 0, 500, 1500, and 5000 ppm. Following an acclimation period of 2 weeks treatment started at 6 weeks of age for 10 weeks prior to pairing. Dosing continued until all litters had weaned. From these litters the F1 generation (28/sex/group) was selected on Day 21 post-partum, reared to maturity and paired at 16 and 25 weeks of age. Direct treatment of the F1 generation started at the age of 4 weeks, i.e. 12 weeks before mating and continued until the re-mated females had reared their young (F2 generation) to weanlings. Because of the low pregnancy rate of the F1 generation a second mating was performed in the F1 generation. Following the weaning of F2A pups, F1 males and females were remated employing alternative pairings and, where possible, remating females without litters and males apparently failing to induce pregnancy to animals which were successful at the first mating.

Endpoints relevant for assessment of potential for endocrine disruption

- Gross necropsy (macroscopic) observations
- Reproductive performance: Pre-coital interval, Mating, Fertility, Duration of gestation, Parturition, Litter size and survival (reductions in litter size can be indicative of abortions/resorptions/intra-uterine deaths), Lactation
- Sex ratio
- Sexual maturation (vaginal opening and preputial separation)
- Corpora lutea
- Oestrus cyclicity
- Sperm analysis (number, morphology, motility)
- Foetal abnormalities
- Organ weights: testes, epididymides, prostate, seminal vesicles with coagulating glands, pituitary, thyroid and adrenal glands
- Histopathological examination: vagina, uterus (with cervix), ovaries, testis, epididymis, seminal vesicles, prostate (and coagulating gland)

Deviations from the current guideline

A minimum of 10 males from both P and F1 groups should be used for sperm analysis of homogenisation-resistant spermatids and cauda epididymides sperm reserves. In this study, sperm analysis was performed for 8 (F0) and 7 (F1) males from each group instead of the recommended 10 animals/group. Anogenital distance was not recorded in this experiment. Uterus, spleen and thyroids in parental animals and the spleen of pups were not weighted. The required level of pregnancies was achieved in the F0 population, but low pregnancy rates were achieved in the F1 generation first and second mating. These deviations are not considered to impair the scientific validity of the study.

Effects on endpoints relevant for assessment of potential for endocrine disruption

The mean age of sexual maturation amongst F1 generation males, as determined by cleavage of the balanopreputial skinfold, was significantly ($p \le 0.01$) delayed in the 5000 ppm dose group compared to the control (45.6 days vs. 43.7 day in control). This slight delay in development was considered to reflect the slower growth rate of these animals prior to weaning rather than indicative of a specific effect on sexual maturation. The slower growth rate and development of the high dose F1 males observed prior to weaning is manifested as consistently lower body weight, food consumption and water consumption throughout the maturation process. This is further discussed in the assessment of lines of evidence in section 5.1.

CONCLUSIONS

Reliability score	1: Reliable without restrictions
	Medium (Standard repeat dose toxicity test, with endpoints that may be
Relevance score	influenced by the endocrine system, but are also known to be affected by
	other factors, e.g. toxicity, etc.)
	Indicative – Limited evidence of an effect relevant to the assessment of
Overall significance	endocrine disruption

2.10.14 In Vivo Data – Non-Mammalian Species 1.1.1.11 Existing data in OECD Conceptual Framework level 1

The following studies conducted as part of the regulatory data package for registration of dicamba are not specifically designed for detection of endocrine disrupting properties, but as they cover life stages and endpoints relevant to development, growth or reproduction, have been included in the current evaluation.

Report:	CA 8.2.2/01 of Dicamba. Report Numbe	1990, Study of Prolonged Toxicity (21 d) to Fish (Rainbow trout) er 1554,
		(Syngenta File No. SAN837/5331)

Guidelines: OECD 204

GLP: Yes

Study design: Rainbow trout (*Onchorhynchus mykiss*) were exposed under semi-static conditions to dicamba at nominal concentrations of 0, 18, 32, 58, 100, 180, 320, 580 and 1000 mg a.i./L for 21 days. Endpoints included survival and growth (length and weight).

Endpoints relevant for assessment of potential for endocrine disruption

• Growth (length and weight)

Effects on endpoints relevant for assessment of potential for endocrine disruption

• None

CONCLUSIONS

Reliability score	1 - Reliable without restriction
Relevance score	Medium - Endpoint in a multi-generation test, or other repeat dose standard toxicity test, which may be influenced by the endocrine system, but is also known to be affected by other factors, e.g. toxicity, etc.
Overall significance	Indicative for no evidence of effects relevant for the assessment of endocrine disruption (indicative study/no effects observed)

Report:	CA 8.2.2.1/01: 2011. BAS 183 H (Dicamba Techn.) –Early Life-Stage Toxicity Test on Fathead Minnow (Pimephales promelas) in a Flow through System, Report Number
	50F0267/97E002 405803.
	(Syngenta file No. SAN837 11528)

Guidelines: OECD 210

GLP: Yes

Study design: Fathead minnows (*Pimephales promelas*) were exposed under flow-through conditions to dicamba at nominal concentrations of 0, 0.10, 0.32, 1, 3.2 and 10 mg a.i./L (measured as 0, 0.100, 0.331, 1.03, 2.98, and 9.91 mg a.i./L) for 33 days. Endpoints included hatching success, survival, and growth (length and weight).

Endpoints relevant for assessment of potential for endocrine disruption

- Hatching success
- Larval growth (length and weight)

Effects on endpoints relevant for assessment of potential for endocrine disruption

• None

CONCLUSIONS

Reliability score 1 - Reliable without restriction		
Relevance score	Medium - Endpoint in a multi-generation test, or other repeat dose standard toxicity test, which may be influenced by the endocrine system, but is also known to be affected by other factors, e.g. toxicity, etc.	
Overall significance	Indicative for no evidence of effects relevant for the assessment of endocrine disruption (indicative study/no effects observed)	

Report:	CA 8.2.2.1/01 Dicamba Acid: An Early Life- Stage Toxicity Test with the Sheepshead Minnow (Cyprinodon variegatus), Report Number
	405804, (Syngenta File No. SAN837 11529)

Guidelines: OECD 210

GLP: Yes

Study design: Sheepshead minnows (*Cyprinodon variegatus*) were exposed under flow-through conditions to dicamba at nominal concentrations of 0, 0.31, 0.77, 1.9, 4.8, and 12 mg a.i./L (measured as 0, 0.28, 0.72, 1.8, 4.5, and 11 mg a.i./L) for 34 days. Endpoints included hatching success, survival, and growth (length and weight).

Endpoints relevant for assessment of potential for endocrine disruption

- Hatching success
- Larval growth (length and weight)

Effects on endpoints relevant for assessment of potential for endocrine disruption

• None

CONCLUSIONS

Reliability score	1 - Reliable without restriction	
Relevance score	Medium - Endpoint in a multi-generation test, or other repeat dose standard toxicity test, which may be influenced by the endocrine system, but is also known to be affected by other factors, e.g. toxicity, etc.	
Overall significance	Indicative for no evidence of effects relevant for the assessment of endocrine disruption (indicative study/no effects observed)	

Report:K-CA 8.2.3/02 Zhu et al. (2013). Dicamba Affects Sex Steroid Hormone Level and mRNA
Expression of Related Genes in Adult Rare Minnow (Gobiocypris rarus) at Environmentally
Relevant Concentrations. State Key Laboratory of Environmental Aquatic Chemistry, Re-
search Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box
2871, Shuangqing Rd 18, Haidian District, Beijing, 100085, People's Republic of China. Pu-
blished. Environmental Toxicology 30 (6):693-703 (Syngenta File No. SAN837_11618)

Guidelines: NA

GLP: No

Study design: Adult rare minnows (*Gobiocypris rarus*) were exposed to dicamba under flow-through conditions at nominal concentrations of 0, 0.05, 0.5, and 50 μ g a.i./L for 40 days. Test concentrations were not verified by chemical analysis. Endpoints included survival, body length and weight, gonadosomatic index, hepatosomatic

index, histological changes, plasma vitellogenin, sex hormone levels, and mRNA transcripts related to endocrine activity.

Endpoints relevant for assessment of potential for endocrine disruption

- Body length and weight
- Gonadosomatic index
- Hepatosomatic index
- Histopathology
- Plasma vitellogenin
- Sex hormone levels
- mRNA transcripts (star, 3β-hsd, cyp17, cyp19a, era, vtg)

Effects on endpoints relevant for assessment of potential for endocrine disruption

- Body length and weight: No effect
- Gonadosomatic index: No effect
- Hepatosomatic index: No effect
- Histopathology: Inhibition of spermatogenesis in male testes and ovarian degeneration in females at 50 µg a.i./L
- Plasma vitellogenin: Increased VTG in males at all test concentrations, no effect on VTG in females
- Sex hormone levels: Increased E2 in males and females at all test concentrations, no effect on 11-KT
- mRNA transcripts:

		Liver				Gonads	5	
Gene	0.05	0.5	5	50	0.05	0.5	5	50
star (f)	\downarrow	\downarrow	\downarrow	\rightarrow	-	-	\rightarrow	\downarrow
star (m)	-	-	\downarrow	\rightarrow	↑ (-	-	-
3β -hsd (f)	-	-	-	-	↑ (1	↑ (↑
3β-hsd (m)	-	-	-	-	-	-	↑ (-
cyp17 (f)	↑ (↑	1	1	↑ (1	↑	↑
cyp17(m)	-	↑	↑	1	↑ (-	-	-
cyp19a (f)	\downarrow	\downarrow	-	-	-	\downarrow	\downarrow	\downarrow
cyp19a (m)	\downarrow	\downarrow	\downarrow	\downarrow	-	-	-	-
era (f)	-	-	↑	↑	-	-	-	-
era (m)	-	-	-	-	-	-	-	-
vtg (f)	\uparrow	↑ (1	1	\uparrow	↑	↑	↑
vtg (m)	↑ (1	1	↑	\uparrow	↑	↑	↑

Effects on mRNA transcripts and sex hormone levels were not consistent with any specific EAS modality. In the gonads, a decrease in female aromatase (cyp19a) expression was reported in the top 3 treatment levels. However, this effect was not consistent with plasma E2, which increased in all treatment levels. There were no effects on male aromatase expression in the gonads, although an increase in plasma E2 was observed in all treatment levels. No effects were observed on plasma 11-KT. Overall, changes in gene expression were generally not dose-related and did not indicate any consistent effects on steroidogenesis.

Apparent effects on vitellogenesis would likely be secondary to reported increases in plasma E2 levels at all test concentrations in both males and females. While vitellogenin increased at both the transcript (liver mRNA) and protein (plasma) level in males, increases were only reported at the transcript (liver mRNA) level in females.

Histological effects were noted in both the liver and gonads. Specifically, inhibition of spermatogenesis in male testes and ovarian degeneration in females was observed at the highest treatment level. The significance of these effects was not determined as there were no effects on gonadosomatic index, and because reproductive parameters (e.g., fecundity) were not monitored in this study. Additionally, at the highest treatment level, histopathology indicated cytoplasmic degeneration and bile stagnation in the livers of male fish, and enlargement of cell nuclei and bile stagnation in the livers of female fish. These observations may be indicative of hepatotoxicity.

CONCLUSIONS

Reliability score	3 - Not reliable
Relevance score	Medium - Positive endpoint data from a short-term/screening assay specifically controlled by the endocrine system.
Overall significance	Unusable - Data from studies with reliability scores of 3 or 4.

The reliability of this study was given a Klimisch score of 3, supported by the following comments from the RMS:

Additionally, the quality of reporting and statistical robustness of this study were questionable, and the study did not examine adverse apical endpoints. Therefore, the significance of the results and overall study was low/unusable.

1.1.1.12 Short term non-mammalian studies in OECD Conceptual Framework level 3

None available

1.1.1.13 Non-mammalian studies in OECD level 4

Report:	CA 8.1.1.3/01, (1994), Technical Dicamba: A Reproduction Study with the Northern Bobwhite, Report Number 131-182.
	(Syngenta File No. SAN837/5206)

Guidelines: OECD 206

GLP: Yes

Study design: Northern bobwhites (*Colinus virginianus*) were exposed to dicamba via nominal dietary concentrations of 0, 400, 800, and 1600 ppm (measured as 0, 426, 823, and 1510 ppm) for 21 weeks. Birds were observed

for signs of mortality, abnormal behaviour (daily), body weight, egg production, egg shell thickness, egg quality, viability of embryos, hatchability, number and weight of hatchlings, hatchling survival and gross pathology.

Endpoints relevant for assessment of potential for endocrine disruption

- Egg production, egg shell thickness, egg quality
- Viability of embryos
- Hatchability, number and weight of hatchlings
- Gross pathology

Effects on endpoints relevant for assessment of potential for endocrine disruption

• None

CONCLUSIONS

Reliability score	1 - Reliable without restriction		
Relevance score	Medium - Endpoint in a multi-generation test, or other repeat dose standard toxicity test, which may be influenced by the endocrine system, but is also known to be affected by other factors, e.g. toxicity, etc.		
Overall significance	Indicative for no evidence of effects relevant for the assessment of endocrine disruption (indicative study/no effects observed)		

Report:	CA 8.1.1.3/01, (1994), Technical Dicamba:
	A Reproduction Study with the Mallard, Report Number 131-183.
	(Syngenta File No. SAN837/5205)

Guidelines: OECD 206

GLP: Yes

Study design: Mallard ducks (*Anas platyrhynchos*) were exposed to dicamba via nominal dietary concentrations of 0, 400, 800, and 1600 ppm (measured as 0, 426, 823, and 1510 ppm) for 21 weeks. Birds were observed for signs of mortality, abnormal behaviour (daily), body weight, egg production, egg shell thickness, egg quality, and viability of embryos, hatchability, number and weight of hatchlings, hatchling survival and gross pathology.

Endpoints relevant for assessment of potential for endocrine disruption

- Egg production, egg shell thickness, egg quality
- Viability of embryos
- Hatchability, number and weight of hatchlings
- Gross pathology
- •

Effects on endpoints relevant for assessment of potential for endocrine disruption

- Hatchability: Decrease at 1600 ppm
- Number of 14-day-old survivors: Decrease at 1600 ppm

The effects noted above were only observed at the highest test concentration (1600 ppm) and therefore may be indicative of systemic toxicity.

CONCLUSIONS

Reliability score	1 - Reliable without restriction		
Relevance score	Medium - Endpoint in a multi-generation test, or other repeat dose standard toxicity test, which may be influenced by the endocrine system, but is also known to be affected by other factors, e.g. toxicity, etc.		
Overall significance	Indicative - Repeat dose studies of medium relevance and with reliabil- ity scores of 1 or 2		

2.10.15 Non-mammalian studies in OECD level 5 None available.

2.10.16 ED ASSESSMENT FOR HUMANS 2.10.17 ED Assessment for T-modality

2.10.18 Have T-mediated parameters been sufficiently investigated?

	Sufficiently investigated
T-mediated parameters	Yes based on availability of data in the following studies:
	(2014). BAS 183 H (Dicamba techn.): Repeated dos 28-day inhalation toxicity study in Wistar rats, dust ^{#\$} OECD 412 (2009) – ID: 13
	(2002). Dicamba Tech. (SAN 837 Tech.): 28-Day der mal toxicity study in rats [§] OECD 410 (1981) – ID: 4
	(1979). Banvel Technical: 3-Week dermal toxicit study in rabbits ^{#\$} Equivalent to OECD 410 (1981) – ID: 3
	(1997). Dicamba TC: 13-week feeding study i rats (including 4-week recovery) ^{\$} OECD 408 (1981) – ID: 6
	(2003). SAN 837 tech.; 13-Week oral (capsule toxicity study in the dog ^{#\$} OECD 409 (1998) – ID: 7
	(2010). RC1176: 90-Day Oral Capsule Toxicit Study in Beagle Dogs ^{#\$} OECD 409 (1998) – ID: 8
	(1988). Dicamba, potential tumorigenic effects i prolonged administration to mice ^{\$} OECD 451 (1981) – ID: 11
	(1985). Technical dicamba. Lifetime dietary tox icity and oncogenicity study in rats [§] OECD 453 (1981) – ID: 12
	(1986). Dicamba - One year dietary toxicity in dogs ^{#\$} OECD 452 (1981) – ID: 12
	(1993). Technical Dicamba – A study of the effect or reproductive function of two generations in the rat ^{#S} OECD 416 (1983) – ID: 13

Thyroid weight was measured. \$ Thyroid histopathology was measured.

2.10.19 Lines of evidence for adverse effects and endocrine activity related to T-modality The lines of evidence have been assembled through interrogation of the data assessed in Section 4 of this document:

Increased thyroid parafollicular (C-cell) carcinoma in rat chronic/carcinogenic study

In a chronic/carcinogenicity study, a statistically significant increase in thyroid parafollicular (c-cell) carcinoma were observed (8.3% vs. 1.7%) in the high dose male group (Table 5.1-2), but not in females (1985). No concurrent increase in the incidence of hyperplasia or C-cell adenomas was observed (Table 5.1-3). The combined thyroid c-cell tumours (adenomas and carcinomas) are within range of the historical control data from the same laboratory which used the same strain and diet but with a shorter study duration (24 months vs 26.5/27 months in males and females, respectively).

The combined thyroid c-cell tumours (adenomas and carcinomas) were within range of the historical control data from the same laboratory which used the same strain and diet but with a shorter study duration (24 months vs 26.5/27 months in males and females, respectively). Examination of the impact of the length of the in-life phase on thyroid c-cell tumours in Sprague Dawley rats using data from the registry of Industrial Toxicology (RITA) indicates that the incidence of thyroid C-cell adenoma and carcinoma are consistently higher (both sexes) in studies with an in-life phase of 25-26 months vs studies with an in-life phase of 24 months. In males in particular, the mean incidences of thyroid C-cell carcinoma were about twice as high in 25/26-month studies as compared to 24 month studies and these tumours were seen in 78% of the 25/26-month studies vs 52% of 24-month studies. The latter indicates that thyroid C-cell tumours, especially carcinomas in males, have a clear age-related component and exceeding the guideline-recommended 2 year in-life period, as in the dicamba study (27 months), can result in higher incidences of these tumours when compared to 24-month studies. This is further supported by HCD information for Sprague Dawley rats collected from the National Toxicology Program (NTP) in 2008, which observed an incidence range of 17-38% for thyroid Ccell adenomas and 0-8% for thyroid C-cell carcinomas. The information is essentially limited to 24-month studies in female rats but is considered supportive for comparison to the incidences seen for males in the dicamba study

	Male			Female				
Dose level [ppm]	0	50	250	2500	0	50	250	2500
No. exam.	60	60	60	60	60	60	60	60
Follicular adenoma	0	1	1	1	-	-	-	-
Parafollicular cell adenoma	2	5	5	3	5	1	3	6
Follicular carcinoma	0	1	0	0	-	-	-	-
Parafollicular cell carcinoma	1	0	2	5	0	1	0	0

Table 2.1.2-1 Incidences of follicular and parafollicular tumours of the thyroid

Table 2.1.2-2 Thyroid c-cell (parafollicular) findings in male rats in dicamba carcino	-
genicity study	

Number of males affected animals

Dosage	0			50			250			2500		
[ppm]												
Time of	IS	died	TS	IS	died	TS	IS	died	TS	IS	died	TS
death												
No. of ani-	10	39	11	10	37	13	10	31	19	10	35	15
mals												
Hyperplasia	1	19	9	1	17	10	0	18	19	0	12	14
Mean sever-	(2.0)			(1.9)			(1.9)			(2.0)		
ity												
Adenoma	0	1	1	0	3	2	0	2	3	0	1	2
Carcinoma	0	0	1	0	0	0	1	1	0	0	5	0
Combined	1	19	9	1	18	10	1	19	19	0	15	14
total												
Combined	29/60 (48%)		29/60 (48%)		39/60 (65%)			29/60 (48%)				
total as per-												
centage												

IS = interim sacrifice, TS = terminal sacrifice, died = animals found dead or sacrificed in extremis during the study

No hypertrophy, hyperplasia or other pre-neoplastic lesions were observed in the thryoid, pituitary or hypothalamus in any other repeat dose study with dicamba. Furthermore, data from the literature and ToxCast do not indicate an interaction of dicamba with components of the HPT axis.

Therefore, the apparent increase in the incidence of C-cell carcinoma is therefore considered to have occurred spontaneously, as part of normal biological variability of a very common age-related tumour in a population of aged animals. Table 2.2.1 assembles the lines of evidence for T-mediated adversity in accordance with the ECHA-EFSA (2018) guidance

	Grouping	Line(s) of evidence	Species	Exposur e	Route of exposure	Effect dose	Observed effects	Assessment of each line of evidence	Assessment of the integrated lines of evidence	Modalit y
Evidence for endocrine activity	In vitro mechanisti c	Thyroid receptor (α / β) transactivation	Rat				No agonism or antagonism of thyroid receptor reporter gene expression in GH3 rat pituitary gland cells	Negative, no evidence for thyroid interaction <i>in</i> <i>vitro</i>	Overall negative, no evidence for a consitent pattern of	Т
		Thyroid receptor (THRa1) transactivation Inhibition of TPO (Thyroid	Human Rat				No up (agonism) or down (antagonism) reporter gene expression in human HepG2 cells No inhibition of TPO		endocrine activity and adversity in the T modality	
		peroxidase) Inhibition of NIS (Sodium- iodide symporter)	Human				negative based on a threshold of less than 20% inhibition in the RAIU assay			
		Deiodination enzyme inhibition	Human				no inhibition of DIO1, DIO2 and DIO3			
		Thyrotropin releasing hormone (TRH) receptor	Rat				No binding detected			
		Thyroid (weight)	Rabbit	3 Weeks	Dermal	2500 mg/kg bw/day	no effect (at highest dose tested [2500 mg/kg bw/day])	Negative, no al- teration to thy- roid weight		
	T- mediated		Rat	28 Days	Inhalation	0.05 mg/L	no effect (at highest dose tested [0.05 mg/L]) no effect (at highest dose			
	parameter		Dog	13 Weeks	Oral	300 mg/kg bw/day	tested [300 mg/kg bw/day]) no effect (at highest dose			
			Dog	90 Days	Oral	300 mg/kg bw/day	tested [300 mg/kg bw/day])			

Table 2.1.2-2 Lines of evidence for thyroid activity and adversity in mammals

					no effect (at highest dose		
	Dog	1 Years	Oral	2500 ppm	tested [2500 ppm])		
Thyroid (His-				2500	no effect (at highest dose		
topathology)				mg/kg	tested [2500 mg/kg		
	Rabbit	3 Weeks	Dermal	bw/day	bw/day])		
				1000	no effect (at highest dose		
				mg/kg	tested [1000 mg/kg		
	Rat	28 Days	Dermal	bw/day	bw/day])		
					no effect (at highest dose		
	Rat	28 Days	Inhalation	0.05 mg/L	tested [0.05 mg/L])		
					no effect (at highest dose		
	Rat	28 Days	Inhalation	0.05 mg/L	tested [0.05 mg/L])		
		13			no effect (at highest dose		
	Rat	Weeks	Oral	12000 ppm	tested [12000 ppm])	Increased	
					no effect (at highest dose	incidence of c-	
		13		300 mg/kg	tested [300 mg/kg	cell carcinomas	
	Dog	Weeks	Oral	bw/day	bw/day])	in the	
					no effect (at highest dose	carcinogenicity	
				300 mg/kg	tested [300 mg/kg	study in the	
	Dog	90 Days	Oral	bw/day	bw/day])	absence of an	
					no effect (at highest dose	increased	
	Dog	1 Years	Oral	2500 ppm	tested [2500 ppm])	incidence of	
		104			no effect (at highest dose	releated	
	Mouse	Weeks	Oral	3000 ppm	tested [3000 ppm])	histopathologica	
					Slight increase in parafol-	l findings. No	
					licular carcinomas, how-	consistent effect	
					ever not considered toxi-	across studies.	
					cologically significant-		
					There were also no ac-		
					companying changes to		
					function of thyroid, there-		
	_	27 Mon-			fore not considered treat-		
	Rat	ths	Oral	2500 ppm	ment-related.		
		2 Gen					
		Adult			no effect (at highest dose		
	Rat	(F0)	Oral	5000 ppm	tested [5000 ppm])		
		2 Gen					
	D .	Offspring		5000	no effect (at highest dose		
	Rat	(F1)	Oral	5000 ppm	tested [5000 ppm])		

	2 Gen					
	Adult			no effect (at highest dose		
Rat	(F1)	Oral	5000 ppm	tested [5000 ppm])		
	2 Gen					
	Offspring			no effect (at highest dose		
Rat	(F2)	Oral	5000 ppm	tested [5000 ppm])		

Evidence of general	Liver (weight)				2500		No consistent	
toxicity	Liver (weight)				mg/kg		effect on the	
toxicity		Rabbit	3 Weeks	Dermal	bw/day	No effect on organ	liver	
		Rubbit	5 WEEKS	Dermai	1000		nver	
					mg/kg			
		Rat	28 Days	Dermal	bw/day	No effect on organ		
		Rat	28 Days	Inhalation	0.05 mg/L	No effect on organ		
		Itut	20 Duys	minutation	0.05 mg/L	Statistically significant		
						increase in mean relative		
						liver weight in males and		
						females after treatment at		
			13			12000ppm, like control		
		Rat	Weeks	Oral	12000 ppm	group after recovery		
		1111	13	Olui	300 mg/kg	Stoup after recovery		
		Dog	Weeks	Oral	bw/day	No effect on organ		
					300 mg/kg	No treatment-related ef-		
		Dog	90 Days	Oral	bw/day	fect on organ		
		Dog	1 Years	Oral	2500 ppm	No effect on organ		
			104			No treatment-related ef-		
		Mouse	Weeks	Oral	3000 ppm	fect on organ		
			27 Mon-					
		Rat	ths	Oral	2500 ppm	No effect on organ		
			2 Gen			Increased liver weight for		
			Adult			males and females at		
		Rat	(F0)	Oral	5000 ppm	5000ppm		
			2 Gen			Increased liver weight for		
			Offspring			males and females at		
		Rat	(F1)	Oral	5000 ppm	5000ppm		
			2 Gen			Increased liver weight for		
			Adult			males and females at		
		Rat	(F1)	Oral	5000 ppm	5000ppm		
			2 Gen			Increased liver weight for		
			Offspring			males and females at		
		Rat	(F2)	Oral	5000 ppm	5000ppm		
	Liver				2500	no effect (at highest dose		
	(histopatholog				mg/kg	tested [2500 mg/kg		
	y)	Rabbit	3 Weeks	Dermal	bw/day	bw/day])		
					1000	no effect (at highest dose		
		_			mg/kg	tested [1000 mg/kg		
		Rat	28 Days	Dermal	bw/day	bw/day])		

			1		
				no effect (at highest dose	
Rat	28 Days	Inhalation	0.05 mg/L	tested [0.05 mg/L])	
				12000 ppm	
				Minimal/slight hypertro-	
				phy in centrilobular	
				hepatocytes in females af-	
				ter treatment at	
	13			12000ppm, not observed	
Rat	Weeks	Oral	12000 ppm	after recovery	
				no effect (at highest dose	
	13		300 mg/kg	tested [300 mg/kg	
Dog	Weeks	Oral	bw/day	bw/day])	
				no effect (at highest dose	
			300 mg/kg	tested [300 mg/kg	
Dog	90 Days	Oral	bw/day	bw/day])	
				no effect (at highest dose	
Dog	1 Years	Oral	2500 ppm	tested [2500 ppm])	
	104			no effect (at highest dose	
Mouse	Weeks	Oral	3000 ppm	tested [3000 ppm])	
	27 Mon-			no effect (at highest dose	
Rat	ths	Oral	2500 ppm	tested [2500 ppm])	
	2 Gen				
	Adult			no effect (at highest dose	
Rat	(F0)	Oral	5000 ppm	tested [5000 ppm])	
	2 Gen				
	Offspring			no effect (at highest dose	
Rat	(F1)	Oral	5000 ppm	tested [5000 ppm])	
	2 Gen				
	Adult			no effect (at highest dose	
Rat	(F1)	Oral	5000 ppm	tested [5000 ppm])	
	2 Gen				
	Offspring			no effect (at highest dose	
Rat	(F2)	Oral	5000 ppm	tested [5000 ppm])	

Page 302 of 406

1.1.1.14 Assessment of the integrated lines of evidence and weight of evidence for T-mediated adversity and endocrine activity

Table 1.1.1.13-1 WoE for T-mediated adversity

- Thyroid effects (weight and histopathology) were examined in multiple studies at different dose levels and of different durations in rats and dogs by oral administration of the substance. Thyroid effects were also examined in one study in rabbits via dermal application of the substance.
- No effect on thyroid weight or histopathology was observed in any of the species at any of the dose levels tested
 - There was no evidence for the identification of a T-mediated adverse effect

Table 1.1.1.13-2 WoE for T-mediated endocrine activity

- Negative for the following *in vitro* investigations: TRbeta binding (antagonism) TRbeta binding (agonism) InVitroToxCast Thyroid Transthyretin (TTR)
- No evidence for identification of T-mediated endocrine activity

1.1.2 Initial analysis of the evidence and identification of relevant scenario for the ED assessment of Tmodality

A dataset is considered to have sufficiently investigated thyroid related adversity in relation to mammals if the parameters investigated in OECD TG 407, 408, 409, 416, and 453 have been assessed. Assessment of the potential for Dicamba in studies spinning a range of durations and exposure levels in the mouse, rat, rabbit and dog. It is therefore determined that the potential for thyroid related adversity in relation to mammals has been sufficiently addressed.

A dataset is considered to have sufficiently investigated thyroid related adversity in relation to mammals if the parameters investigated in OECD TG 407, 408, 409 (and/or the one-year dog study, if available), 416, and 453 have been assessed.

Assessment of the potential for dicamba to alter thyroid related parameters (histology and/or weight) has been conducted in studies spanning a range of durations (from 28 days to 27 months), in the mouse, rat, rabbit and dog, and through multiple exposure routes (see data reviews in Section 4.3). It is therefore determined that the potential for thyroid related adversity in relation to mammals has been sufficiently addressed.

Table 2.1.3-1Selection of Relevant Scenario for the ED Assessment of T-modalityin Mammals

Adversity based on T-mediated pa- rameters	Positive mechanistic OECD CF level 2/3 test	Scenario	Next step of the assessment	Scenario selected
No (sufficiently in- vestigated)	Yes/No	1a	Conclude: ED criteria not met because there is no " T-medi- ated " adversity	Х
Yes (sufficiently in- vestigated)	Yes/No	1b	Perform MoA analysis	
No (not sufficiently investigated)	Yes	2a (i)	Perform MoA analysis (addi- tional information may be needed for the analysis)	
No (not sufficiently investigated)	No (sufficiently in- vestigated)	2a (ii)	Conclude: ED criteria not met because no T-mediated endo- crine activity observed	
No (not sufficiently investigated)	No (not sufficiently investigated)	2a (iii)	Generate missing level 2 and 3 information. Alternatively, gen- erate missing "EATS-mediated" parameters. Depending on the outcome move to corresponding scenario	
Yes (not sufficiently investigated)	Yes/No	2b	Perform MoA analysis	

1.1.3 MoA analysis for T-modality

Not applicable.

1.1.4 Conclusion of the assessment of T-modality

Assessment of the potential for dicamba to alter thyroid related parameters (histology and/or weight) has been conducted in studies spanning a range of durations (from 28 days to 27 months), in the mouse, rat, rabbit and dog, and through multiple exposure routes, and no effects on these parameters were observed.

Dicamba therefore occupies scenario 1a for the T modality, and as such the ED criteria are not met for this modality.

2.10.20 ED assessment for EAS-modalities 2.10.21 Have EAS-mediated parameters be ffiai

2.10.21 Have EAS-mediated parameters been sufficiently investigated?							
•	Sufficiently investigated						
EAS-mediated parameters	Yes, based on availability of data in the following						

AS-mediated parameters	Yes, based on availability of data in the following studies:
	(1993) Technical Dicamba – A study of the effect on reproductive function of two generations in the
	rat
	OECD TG 416 (1983) – ID: 13

2.10.22 Lines of evidence for adverse effects and endocrine activity related to EAS-modalities The lines of evidence have been assembled through interrogation of the data assessed in Section 4 of this document:

• Delay in sexual maturation in a two-generation reproductive toxicity study

The mean age of sexual maturation amongst F1 generation males, as determined by cleavage of the balanopreputial skinfold, was significantly ($p \le 0.01$) delayed in the 5000 ppm dose group compared to the control (45.6 days vs. 43.7 day in control). This slight delay in development was considered to reflect the slower growth rate of these animals prior to weaning rather than indicative of a specific effect on sexual maturation. Cleavage of the balanopreputial skinfold for males at 1500 and 500 ppm and vaginal opening amongst all females of all treated groups were unaffected by treatment. The slower growth rate and development of the high dose F1 males observed prior to weaning is manifested as consistently lower body weight, food consumption and water consumption throughout the maturation process.

In this study body weight at sexual landmark were not recorded, however body weight from week 4-8, food and water consumption from week 5-8 have been calculated (duration up to and during sexual maturation). The mean sexual maturation of F1 males observed in this study was between day 43.3 and 45.6 which is equivalent to 6 to 7 weeks of age. During this time, the high dose body weight, food consumption and water consumption were consistently lower than controls; statistically significant reductions in recorded body weight in week 4 and week 8 and statistically significant reductions in mean food consumption between week 5 and 8 were observed. In addition, although not statistically significant, there was a 9% drop in water consumption in the high dose group relative to control. The table below (Table 5.1-1) has been generated to demonstrate the correlation between body weight, food and water consumption and the observed effect on sexual maturation in the high dose F1 male group:

		F1 Male				
	Observation			Dose Gr	oup (ppm))
			0	500	1500	5000
Preputial	Devefore	Mean	43.7	43.3	43.4	45.6**
Separation	Day of age	Ν	28	28	28	28
		Week 4	95	100	100	80**
		Week 5	151	160	158	129
Bo	ody weight (mean)	Week 6a	216	224	228	191
		Week 7a	282	293	298	254
		Week 8	342	359	362	311**
		mean	673	702	709	629**
Food consumpt	tion [g/rat/wook] wook 5 9	SD	23.4	16.5	40.4	28.0
r ood consump	tion [g/rat/week] week 5-8	% con- trol	-	104	105	93
		mean	338	340	356	308
Water concurry	ation [a/rat/wook] wook 5 9	SD	43.0	11.6	29.3	18.9
water consum	ption [g/rat/week] week 5-8	% con- trol	-	101	105	91

Table 2.2.2-1 Intergroup comparison of F1 male pup day and age of sexual maturation in a two-generation reproductive toxicity study in rats.

** - Statistically different from control, p<0.01

a. weeks associated with sexual development

Upon recommendation of the RMS, a covariance analysis was done: The aim of the analysis was to compare the developmental landmark (balano-preputial skinfold cleavage) between the treated groups and the control via analysis of covariance (ANCOVA), using bodyweight at 4 weeks as the covariate. There was a strongly significant relationship between bodyweight at 4 weeks and time to balanopreputial separation when parallel linear models were fitted to all four treatment groups (P = 0.001). The ANCOVA comparison of time to balanopreputial separation between the treatment groups, with adjustment for bodyweight at 4 weeks, was not statistically significant: P = 0.117. This suggests that the previously observed difference in the time to balano-preputial skinfold cleavage between the 5000 ppm group and the control group was related to the reduced bodyweight at 4 weeks in the 5000 ppm group.

The delay in sexual maturation is secondary to a reduction in bodyweight, rather than a direct influence of dicamba. Bodyweight and growth rate play a significant role in the onset of puberty (Goldman *et al.* 2000; Glass *et al.* 1976) and pubertal delays are induced by dietary restriction in rats (Wilen & Naftolin 1978; Holehan & Merry 1985). Sexual development is initiated by a shift in the frequency of electrical activity in gonadotropin-releasing hormone expressing (GnRH) neurons of the hypothalamus, which control the release of reproductive hormones from the pituitary. The strongest activators of GnRH neurons are Kisspeptin, Neuropeptide Y, Adiponectin, and white adipose tissue (leptin), which have been demonstrated to positively feedback at the hypothalamus, triggering sexual development in humans and rodents (Pinilla *et al.* 2012). Consequently, the reductions in bodyweight and nutritional status are considered the most plausible mechanism for the apparent delay in sexual development observed in dicamba treated rats. This is supported by the lack of effects on reproduction parameter, notably mating and fertility indices. Table 5.1-4 assembles the lines of evidence for EAS-mediated adversity in accordance with the ECHA-EFSA (2018) guidance.

Task Number: TK0222787

Page 308 of 406

	Grouping	Line(s) of evidence	Species	Exposure	Route of exposure	Effect dose -	Observed effects	Assessment of each line of evidence	Assessment of the integrated lines of evidence	Modality
Evidence for	In vitro mechanist	ER binding	Human	•			Inactive	Negative, no evidence for	Overall negative, no	E
endocrine activity	ic		Bovine				Inactive	estrogenicity in vitro	evidence for estrogenic,,	
activity		ER dimerization	Human				Inactive $(\alpha/\alpha, \beta/\beta, \alpha/\beta)$		androgenic or steroidogenic	
		ERE activity	Human				Inactive in HepG2 human liver cell line ERE cis- activation (agonism or antagonism)		activity	
		Estrogen receptor (α / β) transactivatio n	Human				No up (agonism) or down (antagonism) reporter gene expression in human HepG2, HEK293T, HeLa or BG1 cells			
		AR binding	Chimpanz e				Inactive	Negative, no evidence for		Α
			Human				Inactive	androgenicity in vitro		
			Rat				Inactive	VIIIO		
		Androgen receptor transactivatio n	Human				Inactive			
		Aromatase inhibition	Human				Inactive	Negative, no evidence for an	-	S
		H295R adrenal assay (Ceetox)	Human				No effect on 11- Deoxycortisol and 17- alpha-	effect on steroidogenesis <i>in</i> <i>vitro</i>		
							hydroxyprogesterone, Androstenedione, Cortisol, 11- Deoxycorticosterone,			
							Estradiol, Estrone, 17- alpha-hydroxypregnelone,			

Table 2.2.2-2 Lines of evidence for estrogen, androgen, and steroidogenesis activity and adversity in mammals

	Grouping	Line(s) of evidence	Species	Exposure	Route of exposure	Effect dose -	Observed effects	Assessment of each line of evidence	Assessment of the integrated lines of evidence	Modality
	Grouping	evidence	Species	Exposure	exposure	uose	testosterone and	evidence	evidence	Wiodanty
							progesterone levels			
Integrate	EAS-	Ovary				2500	no effect (at highest dose	Negative, no con-	Overall	EAS
d lines of	mediated	(Weight)				mg/kg	tested [2500 mg/kg	sistent effects on	negative, no	
evidence	parameter		Rabbit	3 Weeks	Dermal	bw/day	bw/day])	ovaries	evidence for a	
for						1000	no effect (at highest dose		consitent pattern	
adversity			_		_	mg/kg	tested [1000 mg/kg		of endocrine	
			Rat	28 Days	Dermal	bw/day	bw/day])		adversity	
			D .	20.5	* * * *	0.05 //	no effect (at highest dose			
			Rat	28 Days	Inhalation	0.05 mg/L	tested [0.05 mg/L])	-		
			р (12 337 1	0.1	12000	no effect (at highest dose			
			Rat	13 Weeks	Oral	ppm	tested [12000 ppm])			
						200 mg/lrg	no effect (at highest dose tested [300 mg/kg			
			Dog	13 Weeks	Oral	300 mg/kg bw/day	bw/day])			
			Dog	15 Weeks	Oral	bw/day	no effect (at highest dose	-		
						300 mg/kg	tested [300 mg/kg			
			Dog	90 Days	Oral	bw/day	bw/day])			
			Dog	JO Days	Oldi	owiday	no effect (at highest dose	-		
			Dog	1 Years	Oral	2500 ppm	tested [2500 ppm])			
			208	1 1 0015	0.141	_cooppin	no effect (at highest dose			
			Rat	27 Months	Oral	2500 ppm	tested [2500 ppm])			
		Ovary				2500	no effect (at highest dose			
		(histopatho-				mg/kg	tested 2500 mg/kg			
		logy)	Rabbit	3 Weeks	Dermal	bw/day	bw/day])			
						1000	no effect (at highest dose			
						mg/kg	tested [1000 mg/kg			
			Rat	28 Days	Dermal	bw/day	bw/day])			
							no effect (at highest dose			
			Rat	28 Days	Inhalation	0.05 mg/L	tested [0.05 mg/L])			
						12000	no effect (at highest dose			
			Rat	13 Weeks	Oral	ppm	tested [12000 ppm])			
							no effect (at highest dose			
						300 mg/kg	tested [300 mg/kg			
			Dog	13 Weeks	Oral	bw/day	bw/day])			

Grouping	Line(s) of evidence	Species	Exposure	Route of exposure	Effect dose -	Observed effects	Assessment of each line of evidence	Assessment of the integrated lines of evidence	Modality
 Grouping	evidence	Species	Exposure	exposure	uose	no effect (at highest dose	evidence	evidence	mounity
					300 mg/kg	tested [300 mg/kg			
		Dog	90 Days	Oral	bw/day	bw/day])			
						no effect (at highest dose			
		Dog	1 Years	Oral	2500 ppm	tested [2500 ppm])			
			104			no effect (at highest dose			
		Mouse	Weeks	Oral	3000 ppm	tested [3000 ppm])			
						no effect (at highest dose			
		Rat	27 Months	Oral	2500 ppm	tested [2500 ppm])			
			2 Gen			no effect (at highest dose			
		Rat	Adult (F0)	Oral	5000 ppm	tested [5000 ppm])			
			2 Gen						
			Offspring			no effect (at highest dose			
		Rat	(F1)	Oral	5000 ppm	tested [5000 ppm])			
		_	2 Gen			no effect (at highest dose			
		Rat	Adult (F1)	Oral	5000 ppm	tested [5000 ppm])			
			2 Gen						
		р (Offspring (F2)	0.1	5000	no effect (at highest dose			
	TL 14	Rat	(F2)	Oral	5000 ppm	tested [5000 ppm])			
	Uterus weight (with cervix)				1000	no effect (at highest dose tested [1000 mg/kg	Negative, no con- sistent effects on		
	(with cervix)	Rat	28 Days	Dermal	mg/kg bw/day	bw/day])	uterus		
		Kat	20 Days	Dermai	0w/day	no effect (at highest dose	uterus		
		Rat	28 Days	Inhalation	0.05 mg/L	tested [0.05 mg/L])			
		Rat	20 Days	milaiation	0.05 mg/L	no effect (at highest dose			
					300 mg/kg	tested [300 mg/kg			
		Dog	13 Weeks	Oral	bw/day	bw/day])			
		208		0.144	0 a ay	no effect (at highest dose			
					300 mg/kg	tested [300 mg/kg			
		Dog	90 Days	Oral	bw/day	bw/day])			
	Uterus histo-	U			2500	no effect (at highest dose	1		
	pathology				mg/kg	tested [2500 mg/kg			
	(with cervix)	Rabbit	3 Weeks	Dermal	bw/day	bw/day])			
					1000	no effect (at highest dose			
					mg/kg	tested [1000 mg/kg			
		Rat	28 Days	Dermal	bw/day	bw/day])			

Grouping	Line(s) of evidence	Species	Exposure	Route of exposure	Effect dose -	Observed effects	Assessment of each line of evidence	Assessment of the integrated lines of evidence	Modality
1 2			•	•		no effect (at highest dose			v
		Rat	28 Days	Inhalation	0.05 mg/L	tested [0.05 mg/L])			
					12000	no effect (at highest dose			
		Rat	13 Weeks	Oral	ppm	tested [12000 ppm])			
						no effect (at highest dose			
			10.000		300 mg/kg	tested [300 mg/kg			
		Dog	13 Weeks	Oral	bw/day	bw/day])			
					200 //	no effect (at highest dose			
		Dee	00 D	01	300 mg/kg	tested [300 mg/kg			
		Dog	90 Days	Oral	bw/day	bw/day]) no effect (at highest dose			
		Dog	1 Years	Oral	2500 ppm	tested [2500 ppm])			
		Dog	1 1 cars 104	Olai	2300 ppm	no effect (at highest dose			
		Mouse	Weeks	Oral	3000 ppm	tested [3000 ppm])			
		mouse	Weeks	Olui	5000 ppm	no effect (at highest dose			
		Rat	27 Months	Oral	2500 ppm	tested [2500 ppm])			
			2 Gen	0.144	2000 ppm	no effect (at highest dose			
		Rat	Adult (F0)	Oral	5000 ppm	tested [5000 ppm])			
			2 Gen		**				
			Offspring			no effect (at highest dose			
		Rat	(F1)	Oral	5000 ppm	tested [5000 ppm])			
			2 Gen			no effect (at highest dose			
		Rat	Adult (F1)	Oral	5000 ppm	tested [5000 ppm])			
			2 Gen						
		_	Offspring			no effect (at highest dose			
		Rat	(F2)	Oral	5000 ppm	tested [5000 ppm])			
	Vagina histo-	D (10 11/1	0.1	12000	no effect (at highest dose	Negative, no con-		
	pathology	Rat	13 Weeks	Oral	ppm	tested [12000 ppm])	sistent effect on		
					200	no effect (at highest dose	vagina		
		Dec	90 Days	Oral	300 mg/kg bw/day	tested [300 mg/kg bw/day])			
		Dog	90 Days	Urai	bw/day	no effect (at highest dose	•		
		Mouse	Weeks	Oral	3000 ppm	tested [3000 ppm])			
		mouse	2 Gen		5000 ppm	no effect (at highest dose	1		
		Rat	Adult (F0)	Oral	5000 ppm	tested [5000 ppm])			
		1.00		Jui	2000 ppm	no effect (at highest dose	1		
		Rat	2 Gen	Oral	5000 ppm	tested [5000 ppm])			

Grouping	Line(s) of evidence	Species	Exposure	Route of exposure	Effect dose -	Observed effects	Assessment of each line of evidence	Assessment of the integrated lines of evidence	Modality
 F8			Offspring						
			(F1)						
			2 Gen			no effect (at highest dose			
		Rat	Adult (F1)	Oral	5000 ppm	tested [5000 ppm])			
			2 Gen						
			Offspring			no effect (at highest dose			
		Rat	(F2)	Oral	5000 ppm	tested [5000 ppm])			
	Oestrus cycli-	_	2 Gen:			no effect (at highest dose	Negative, no alter-		
	city	Rat	Adult (F0)	Oral	5000 ppm	tested [5000 ppm])	ation to oestrus		
		D .	2 Gen:	0.1	5000	no effect (at highest dose	cyclicity		
		Rat	Adult (F1)	Oral	5000 ppm	tested [5000 ppm])	.		
	Testis				2500	no effect (at highest dose	Negative, no con-		
	(Weight)	Rabbit	3 Weeks	Dominial	mg/kg bw/day	tested [2500 mg/kg	sistent effects on testis		
		Kabbil	5 weeks	Dermal	1000	bw/day]) no effect (at highest dose	testis		
					mg/kg	tested [1000 mg/kg			
		Rat	28 Days	Dermal	bw/day	bw/day])			
		Kat	20 Days	Dermai	0 W/ddy	no effect (at highest dose			
		Rat	28 Days	Inhalation	0.05 mg/L	tested [0.05 mg/L])			
		Itut	20 Duj5	minution	12000	no effect (at highest dose			
		Rat	13 Weeks	Oral	ppm	tested [12000 ppm])			
					FF	no effect (at highest dose			
					300 mg/kg	tested [300 mg/kg			
		Dog	13 Weeks	Oral	bw/day	bw/day])			
						no effect (at highest dose			
					300 mg/kg	tested [300 mg/kg			
		Dog	90 Days	Oral	bw/day	bw/day])			
						no effect (at highest dose			
		Dog	1 Years	Oral	2500 ppm	tested [2500 ppm])			
			104			no effect (at highest dose			
		Mouse	Weeks	Oral	3000 ppm	tested [3000 ppm])			
		D .	07.14		2500	no effect (at highest dose			
		Rat	27 Months	Oral	2500 ppm	tested [2500 ppm])			
	Testis (histo-				2500	no effect (at highest dose			
	pathology)	Dahhit	2 Weak	Dammal	mg/kg	tested [2500 mg/kg			
		Rabbit	3 Weeks	Dermal	bw/day	bw/day])			

Grouping	Line(s) of evidence	Species	Exposure	Route of exposure	Effect dose -	Observed effects	Assessment of each line of evidence	Assessment of the integrated lines of evidence	Modality
		•	•	•	1000	no effect (at highest dose			
					mg/kg	tested [1000 mg/kg			
		Rat	28 Days	Dermal	bw/day	bw/day])			
						no effect (at highest dose			
		Rat	28 Days	Inhalation	0.05 mg/L	tested [0.05 mg/L])			
					12000	no effect (at highest dose			
		Rat	13 Weeks	Oral	ppm	tested [12000 ppm])			
						no effect (at highest dose			
					300 mg/kg	tested [300 mg/kg			
		Dog	13 Weeks	Oral	bw/day	bw/day])			
						no effect (at highest dose			
					300 mg/kg	tested [300 mg/kg			
		Dog	90 Days	Oral	bw/day	bw/day])			
						no effect (at highest dose			
		Dog	1 Years	Oral	2500 ppm	tested [2500 ppm])			
			104			no effect (at highest dose			
		Mouse	Weeks	Oral	3000 ppm	tested [3000 ppm])			
						no effect (at highest dose			
		Rat	27 Months	Oral	2500 ppm	tested [2500 ppm])			
						no effect (at highest dose			
		Rat	2 Gen	Oral	5000 ppm	tested [5000 ppm])			
						no effect (at highest dose			
		Rat	2 Gen	Oral	5000 ppm	tested [5000 ppm])			
						no effect (at highest dose			
		Rat	2 Gen	Oral	5000 ppm	tested [5000 ppm])			
						no effect (at highest dose			
		Rat	2 Gen	Oral	5000 ppm	tested [5000 ppm])			
					2500	no effect (at highest dose			
					mg/kg	tested [2500 mg/kg			
		Rabbit	3 Weeks	Dermal	bw/day	bw/day])			
	Epididymis				1000	no effect (at highest dose	No consistent		
	(Weight)				mg/kg	tested [1000 mg/kg	effect on		
		Rat	28 Days	Dermal	bw/day	bw/day])	epididymis		
						no effect (at highest dose			
		Rat	28 Days	Inhalation	0.05 mg/L	tested [0.05 mg/L])			

Grouping	Line(s) of evidence	Species	Exposure	Route of exposure	Effect dose -	Observed effects	Assessment of each line of evidence	Assessment of the integrated lines of evidence	Modality
Grouping	Epididymis	Species	Exposure	exposure	1000	no effect (at highest dose	evidence	evidence	wiodanty
	(histopatho-				mg/kg	tested [1000 mg/kg			
	logy)	Rat	28 Days	Dermal	bw/day	bw/day])			
	iogy)	Kat	20 Days	Dermai	0w/day	no effect (at highest dose			
		Rat	28 Days	Inhalation	0.05 mg/L	tested [0.05 mg/L])			
			20 2 4 3 5		12000	no effect (at highest dose			
		Rat	13 Weeks	Oral	ppm	tested [12000 ppm])			
					FF	no effect (at highest dose			
					300 mg/kg	tested [300 mg/kg			
		Dog	13 Weeks	Oral	bw/day	bw/day])			
						no effect (at highest dose			
					300 mg/kg	tested [300 mg/kg			
		Dog	90 Days	Oral	bw/day	bw/day])			
						no effect (at highest dose			
		Dog	1 Years	Oral	2500 ppm	tested [2500 ppm])			
			104			no effect (at highest dose			
		Mouse	Weeks	Oral	3000 ppm	tested [3000 ppm])			
						no effect (at highest dose			
		Rat	27 Months	Oral	2500 ppm	tested [2500 ppm])			
			2 Gen			no effect (at highest dose			
		Rat	Adult (F0)	Oral	5000 ppm	tested [5000 ppm])			
			2 Gen						
			Offspring			no effect (at highest dose			
		Rat	(F1)	Oral	5000 ppm	tested [5000 ppm])			
		D .	2 Gen	0.1		no effect (at highest dose			
		Rat	Adult (F1)	Oral	5000 ppm	tested [5000 ppm])			
			2 Gen						
		Rat	Offspring (F2)	Oral	5000 mm/	no effect (at highest dose tested [5000 ppm])			
	Prostate	Kat	(F2)	Oral	5000 ppm		No consistent	-	
	(Weight)				300 mg/kg	no effect (at highest dose tested [300 mg/kg	treatment related		
	(weight)	Dog	90 day	Oral	bw/day	bw/day])	effect		
		Dog	2 Gen	Ulai	0w/uay	no effect (at highest dose	eneci		
		Rat	Adult (F0)	Oral	5000 ppm	tested [5000 ppm])			
		Nät	2 Gen	Olai	5000 ppm	tested [5000 ppin])			
			Offspring			no effect (at highest dose			
		Rat	(F1)	Oral	5000 ppm	tested [5000 ppm])			

Grouping	Line(s) of evidence	Species	Exposure	Route of exposure	Effect dose -	Observed effects	Assessment of each line of evidence	Assessment of the integrated lines of evidence	Modality
B		~	2 Gen			no effect (at highest dose			
		Rat	Adult (F1)	Oral	5000 ppm	tested [5000 ppm])			
			2 Gen						
			Offspring			no effect (at highest dose			
		Rat	(F2)	Oral	5000 ppm	tested [5000 ppm])			
	Prostate histo-				2500	no effect (at highest dose			
	pathology				mg/kg	tested [2500 mg/kg			
	(with seminal	Rabbit	3 Weeks	Dermal	bw/day	bw/day])			
	vesicles and				1000	no effect (at highest dose			
	coagulating				mg/kg	tested [1000 mg/kg			
	glands)	Rat	28 Days	Dermal	bw/day	bw/day])			
						no effect (at highest dose			
		Rat	28 Days	Inhalation	0.05 mg/L	tested [0.05 mg/L])			
					12000	no effect (at highest dose			
		Rat	13 Weeks	Oral	ppm	tested [12000 ppm])			
						no effect (at highest dose			
		_			300 mg/kg	tested [300 mg/kg			
		Dog	13 Weeks	Oral	bw/day	bw/day])			
					200 1	no effect (at highest dose			
			00.5	- 1	300 mg/kg	tested [300 mg/kg			
		Dog	90 Days	Oral	bw/day	bw/day])			
		D	1 37	0.1	2500	no effect (at highest dose			
		Dog	1 Years	Oral	2500 ppm	tested [2500 ppm])			
		м	104	0.1	2000	no effect (at highest dose			
		Mouse	Weeks	Oral	3000 ppm	tested [3000 ppm])			
		Dat	27 Months	Oral	2500	no effect (at highest dose			
		Rat	27 Months 2 Gen:	Urai	2500 ppm	tested [2500 ppm]) no effect (at highest dose			
		Rat	Adult (F0)	Oral	5000 ppm	tested [5000 ppm])			
		Kat	2 Gen:	Olai	5000 ppm	tested [5000 ppin])			
			2 Gen: Offspring			no effect (at highest dose			
		Rat	(F1)	Oral	5000 ppm	tested [5000 ppm])			
		Ixat	2 Gen:	0101	2000 ppin	no effect (at highest dose			
		Rat	Adult (F1)	Oral	5000 ppm	tested [5000 ppm])			
		1.ai	2 Gen:	5141	2000 ppm				
			Offspring			no effect (at highest dose			
		Rat	(F2)	Oral	5000 ppm	tested [5000 ppm])			

Grouping	Line(s) of evidence	Species	Exposure	Route of exposure	Effect dose -	Observed effects	Assessment of each line of evidence	Assessment of the integrated lines of evidence	Modality
Grouping	Sperm Num-	species	2 Gen:	exposure	uose -	Observed effects	Negative, no alter-	evidence	wiouanty
	ber		Offspring			no effect (at highest dose	ation to sperm		
	001	Rat	(F1)	Oral	5000 ppm	tested [5000 ppm])	number, sperm		
		Rat	2 Gen:	Oldi	5000 ppm		motility or sperm		
			Offspring			no effect (at highest dose	morphology		
		Rat	(F2)	Oral	5000 ppm	tested [5000 ppm])	morphotogy		
	Sperm Moti-		2 Gen:	0.1	e coo ppin				
	lity		Offspring			no effect (at highest dose			
	5	Rat	(F1)	Oral	5000 ppm	tested [5000 ppm])			
			2 Gen:						
			Offspring			no effect (at highest dose			
		Rat	(F2)	Oral	5000 ppm	tested [5000 ppm])			
	Sperm Mor-		2 Gen:						
	phology		Offspring			no effect (at highest dose			
		Rat	(F1)	Oral	5000 ppm	tested [5000 ppm])			
			2 Gen:						
			Offspring			no effect (at highest dose			
		Rat	(F2)	Oral	5000 ppm	tested [5000 ppm])			
Sensitive	Fertility		2 Gen:			no effect (at highest dose	Decreased preg-		
to, but not	(mammals)	Rat	Adult (F0)	Oral	5000 ppm	tested [5000 ppm])	nancy rate ob-		
diagnostic			•			Decreased pregnancy	served in F1 adult		
of, EATS		D (2 Gen:	0.1	5000	rates in F1 generation (all	rats, evident in all		
	T. (Rat	Adult (F1)	Oral	5000 ppm	doses)	in all groups - as- sociated with		
	Time to	D-4	2 Gen:	01	5000	no effect (at highest dose	higher body		
	mating	Rat	Adult (F0) 2 Gen:	Oral	5000 ppm	tested [5000 ppm]) no effect (at highest dose	weight at pairing		
		Rat	Adult (F1)	Oral	5000 ppm	tested [5000 ppm])	in all dose groups		
	Gestation	Kat	2 Gen:	Olai	5000 ppm	no effect (at highest dose	(including con-		
	length	Rat	Adult (F0)	Oral	5000 ppm	tested [5000 ppm])	trol). No effects		
	length	Rat	Addit (10)	Oldi	5000 ppm		on time of mating		
			2 Gen:			no effect (at highest dose	or gestation length		
		Rat	Adult (F1)	Oral	5000 ppm	tested [5000 ppm])	0 0		
	Number of					no effect (at highest dose			
	implantations,				300 mg/kg	tested [300 mg/kg	No consistent		
	corpora lutea	Rabbit	13 Days	Oral	bw/day	bw/day])	treatment related		
						no effect (at highest dose	effects observed		
			2 Gen		400 mg/kg	tested [400 mg/kg			
		Rat	adult (F0)	Oral	bw/day	bw/day])			

Grouping	Line(s) of evidence	Species	Exposure	Route of exposure	Effect dose -	Observed effects	Assessment of each line of evidence	Assessment of the integrated lines of evidence	Modality
	Numbers of embryonic or foetal deaths	Rabbit	12 Dava	Oral	300 mg/kg bw/day	no effect (at highest dose tested [300 mg/kg			
	and viable foetuses	Rat	13 Days	Oral	400 mg/kg bw/day	bw/day]) no effect (at highest dose tested [400 mg/kg bw/day])			
	Post implanta- tion loss	1	11 Duys	- Of Mi		1 abortion at 150 mg/kg day 22 of gestation, 4 abortions at 300 mg/kg on days 19 (1), 21 (1) and 24	No consistent ef- fect observed, abortions ob- served in the pres-		
		Rabbit	13 Days 2 Gen:	Oral	150 mg/kg bw/day	(2) of gestation no effect (at highest dose	ence of systemic toxicity		
		Rat	Adult (F0) 2 Gen:	Oral	5000 ppm	tested [5000 ppm]) no effect (at highest dose			
	Litter size	Rat	Adult (F1)	Oral	5000 ppm 300 mg/kg	tested [5000 ppm]) no effect (at highest dose tested [300 mg/kg	No consistent ef- fect on litter size,		
		Rabbit	13 Days	Oral	bw/day	bw/day]) no effect (at highest dose	viability and weight. In rats, at		
		Rat	14 Days	Oral	400 mg/kg bw/day	tested [400 mg/kg bw/day])	the second mate (F2B pups), there		
		Rat	2 Gen: Adult (F0)	Oral	5000 ppm	no effect (at highest dose tested [5000 ppm]) Slight decrease in litter	was a slight, non- significant higher pup loss at		
		Rat	2 Gen: Adult (F1)	Oral	5000 ppm	size due to increased pup loss at 5000ppm	5000ppm during the weaning pe-		
	Litter viability	Rat	2 Gen: Offspring (F1)	Oral	5000 ppm	no effect (at highest dose tested [5000 ppm])	riod (persisting, even after culling on day 4 post-par-		
					···· FF	Slight non-significant in- creased pup loss at	tum), resulting in slightly lower lit-		
		Rat	2 Gen: Offspring (F2)	Oral	5000 ppm	5000ppm during weaning period; No effect on loss post-partum	ter size.		
	Litter/pup weight				300 mg/kg	no effect (at highest dose tested [300 mg/kg			
		Rabbit	13 Days	Oral	bw/day	bw/day])	1		

Grouping	Line(s) of evidence	Species	Exposure	Route of exposure	Effect dose -	Observed effects	Assessment of each line of evidence	Assessment of the integrated lines of evidence	Modality
						Decreased mean pup			
						weight at birth at			
						5000ppm; Decreased litter			
						weight at 5000ppm; de-			
						creased pup growth			
						through to weaning at			
			2 Gen:			5000ppm; decreased			
		_	Offspring			mean pup weight at wean-			
		Rat	(F1)	Oral	5000 ppm	ing at 5000ppm			
						Decreased mean pup			
						weight at birth at			
						5000ppm; decreased litter			
			2.0			weight at 5000ppm; de-			
			2 Gen:			creased pup growth			
		D - 4	Offspring	Orrel	5000	through to weaning at			
	Fetal develop-	Rat	(F2)	Oral	5000 ppm	1500 and 5000ppm;	Delay in sexual		
	ment		2 Gen:				maturation in		
	ment		Offspring			Delay in preputial separa-	males as a result		
		Rat	(F1)	Oral	5000 ppm	tion at 5000ppm	of delayed growth		
	Sex Ratios	Rat	(11)	Olai	5000 ppm	no effect (at highest dose	No consistent		
	Sex Ratios				300 mg/kg	tested [300 mg/kg	treatment related		
		Rabbit	13 Days	Oral	bw/day	bw/day])	effect		
	·	1100011	10 2 4 30	0141	0 (<i>ii</i>) du j	no effect (at highest dose			
					400 mg/kg	tested [400 mg/kg			
		Rat	14 Days	Oral	bw/day	bw/day])			
			2 Gen:						
			Offspring			no effect (at highest dose			
		Rat	(F1)	Oral	5000 ppm	tested [5000 ppm])			
			2 Gen:						
			Offspring			no effect (at highest dose			
		Rat	(F2)	Oral	5000 ppm	tested [5000 ppm])		ļ	
	Presence of					no effect (at highest dose	No consistent		
	anomalies				300 mg/kg	tested [300 mg/kg	treatment related		
	(external, vis-	Rabbit	13 Days	Oral	bw/day	bw/day])	effect observed		
	ceral, skeletal					no effect (at highest dose			
			2 Gen		400 mg/kg	tested [400 mg/kg			
		Rat	Adult (F0)	Oral	bw/day	bw/day])			

Grouping	Line(s) of evidence	Species	Exposure	Route of exposure	Effect dose -	Observed effects	Assessment of each line of evidence	Assessment of the integrated lines of evidence	Modality
			•	•		Increased renal pelvic			~
						cavitations at 400 mg/kg,			
						but 3 of 5 affected foe-			
						tuses were from 1 litter			
	Adrenal gland					Increased adrenal weight	No consistent		
	(Weight)					in females in low dose	treatment related		
						group (100 mg/kg), not	effect on adrenal		
					2500	observed in any other	gland		
		5.111			mg/kg	dose. No histopathologi-			
		Rabbit	3 Weeks	Dermal	bw/day	cal findings.	-		
					1000	no effect (at highest dose			
		D (20 D		mg/kg	tested [1000 mg/kg			
		Rat	28 Days	Dermal	bw/day	bw/day])			
		D -4	29 D	T., h . 1 . 4	0.05	no effect (at highest dose			
		Rat	28 Days	Inhalation	0.05 mg/L 12000	tested [0.05 mg/L]) no effect (at highest dose	-		
		Rat	13 Weeks	Oral		tested [12000 ppm])			
		Kat	15 WEEKS	Ofai	ppm	no effect (at highest dose	-		
					300 mg/kg	tested [300 mg/kg			
		Dog	13 Weeks	Oral	bw/day	bw/day])			
		Dog	15 WCCKS	Olai	0w/day	no effect (at highest dose	-		
					300 mg/kg	tested [300 mg/kg			
		Dog	90 Days	Oral	bw/day	bw/day])			
		208	90 D u j s	0.144	0 117 a ay	no effect (at highest dose			
		Dog	1 Years	Oral	2500 ppm	tested [2500 ppm])			
			2 Gen			no effect (at highest dose			
		Rat	Adult (F0)	Oral	5000 ppm	tested [5000 ppm])			
			2 Gen		••				
			Offspring			no effect (at highest dose			
		Rat	(F1)	Oral	5000 ppm	tested [5000 ppm])			
			2 Gen			no effect (at highest dose			
		Rat	Adult (F1)	Oral	5000 ppm	tested [5000 ppm])			
			2 Gen						
			Offspring			no effect (at highest dose			
		Rat	(F2)	Oral	5000 ppm	tested [5000 ppm])			

Grouping	Line(s) of evidence	Species	Exposure	Route of exposure	Effect dose -	Observed effects	Assessment of each line of evidence	Assessment of the integrated lines of evidence	Modality
	Adrenal gland				2500	no effect (at highest dose			
	(Histopatholo				mg/kg	tested [2500 mg/kg			
	gy)	Rabbit	3 Weeks	Dermal	bw/day	bw/day])			
						Non treatment-related ad-			
						renal lesion in 3 males at			
						1000 mg/kg- lesion was			
						also seen in 1 male at 300			
					1000	mg/kg, 1 female at 30			
					mg/kg	mg/kg, and 1 control fe-			
		Rat	28 Days	Dermal	bw/day	male.			
						no effect (at highest dose			
		Rat	28 Days	Inhalation	0.05 mg/L	tested [0.05 mg/L])			
					12000	no effect (at highest dose			
		Rat	13 Weeks	Oral	ppm	tested [12000 ppm])			
						no effect (at highest dose			
					300 mg/kg	tested [300 mg/kg			
		Dog	13 Weeks	Oral	bw/day	bw/day])			
						no effect (at highest dose			
					300 mg/kg	tested [300 mg/kg			
		Dog	90 Days	Oral	bw/day	bw/day])			
						no effect (at highest dose			
		Dog	1 Years	Oral	2500 ppm	tested [2500 ppm])			
			104			no effect (at highest dose			
		Mouse	Weeks	Oral	3000 ppm	tested [3000 ppm])			
						no effect (at highest dose			
		Rat	27 Months	Oral	2500 ppm	tested [2500 ppm])			
			2 Gen			no effect (at highest dose			
		Rat	Adult (F0)	Oral	5000 ppm	tested [5000 ppm])			
			2 Gen						
			Offspring			no effect (at highest dose			
		Rat	(F1)	Oral	5000 ppm	tested [5000 ppm])			
			2 Gen			no effect (at highest dose			
		Rat	Adult (F1)	Oral	5000 ppm	tested [5000 ppm])			
			2 Gen						
			Offspring			no effect (at highest dose			
		Rat	(F2)	Oral	5000 ppm	tested [5000 ppm])			

Grouping	Line(s) of evidence	Species	Exposure	Route of exposure	Effect dose -	Observed effects	Assessment of each line of evidence	Assessment of the integrated lines of evidence	Modality
	Body weight		1	•		Decreased maternal body	Systemic toxicity	Systemic	EAS
	, ,					weight at 150 mg/kg days	evident at high	toxicity evident	
						6-8 and at 300 mg/kg	dose group – body	in doses of 300	
						days 6-19 (all of dosage	weight changes	mg/kg/day for	
						period),19-29 (post dos-		rabbit and dog,	
						age period), and days 6-		3000 ppm in	
						29 and 0-29 periods; in-		mice and 5000	
						creased body weight gains		ppm in rat	
						at 150 and 300 mg/kg			
Evidence of general					300 mg/kg	days 19-29 of gestation			
toxicity		Rabbit	13 Days	Oral	bw/day	(post dosage period)			
						Statistically significant			
		_	2 Gen		400 mg/kg	decrease in maternal body			
		Rat	adult (F0)	Oral	bw/day	weight gestation day 20			
			2 Gen		400 /1				
		D (Offspring	0.1	400 mg/kg				
		Rat	(F1)	Oral	bw/day	No effect			
					2500				
		D-11:4	2 W 1	Dermal	mg/kg bw/day				
		Rabbit	3 Weeks	Dermal	bw/day	No effect on body weight Slight decrease in body			
						weight in males at 300			
						and 1000 mg/kg and fe-			
					1000	males at 1000 mg/kg, but			
					mg/kg	not consistently statisti-			
		Rat	28 Days	Dermal	bw/day	cally significant			
		Itur	20 Duji	Dermar	omaay	Decreased body weight			
						change in males at 0.05			
						mg/L; No effect on body			
		Rat	28 Days	Inhalation	0.05 mg/L	weight			
						Decreased body weight			
						gain for males and fe-			
						males during treatment at			
						12000ppm; Increased			
						weight gained in males			
						and females at 12000ppm			
					12000	during recovery period;			
		Rat	13 Weeks	Oral	ppm	Decreased weight in			

Grouping	Line(s) of evidence	Species	Exposure	Route of exposure	Effect dose -	Observed effects	Assessment of each line of evidence	Assessment of the integrated lines of evidence	Modality
Grouping	evidence	Species	Exposure	exposure	uose	males and females at	evidence	cviuence	Wiodanty
						12000ppm both during			
						treatment and recovery			
						period			
						Decreased mean body			
						weight gain in males and			
						females during treatment			
					300 mg/kg	at 300 mg/kg, no effect			
		Dog	13 Weeks	Oral	bw/day	during recovery period			
						No effect on body weight;			
					300 mg/kg	no effect on body weight			
		Dog	90 Days	Oral	bw/day	gains			
						Statistically significant			
						decreased mean body			
						weight at week 4 in males			
						at 12000ppm; decreased			
						overall body weight gain			
		_			12000	in males and females at			
		Rat	13 Weeks	Oral	ppm	12000ppm			
						Decreased mean body			
						weight in male 2500ppm			
						group week 12-5 due to 1			
						individual; mean body			
						weights dropped week 52			
			1 37	0.1	2500	due to fasting for pathol-			
		Dog	1 Years	Oral	2500 ppm	ogy testing			
			104			Decreased body weight			
		м	104	0.1	2000	gain for females at			
		Mouse	Weeks	Oral	3000 ppm	3000ppm			
		D (27 Mon-	0.1	2500				
		Rat	ths	Oral	2500 ppm	No effect on body weight			
						Decreased body weight			
						gain for females during			
						pregnancy at 5000ppm;			
			2 Gen			Increased body weight			
		Rat	adult (F0)	Oral	5000 ppm	gain post-partum in fe- males at 5000ppm			

Grouping	Line(s) of evidence	Species	Exposure	Route of exposure	Effect dose -	Observed effects	Assessment of each line of evidence	Assessment of the integrated lines of evidence	Modality
Grouping	evidence	species	Exposure	exposure	u0se -	Decreased mean body-	evidence	evidence	withuanty
						weight in males and fe-			
						males at 5000ppm; de-			
						creased growth rate in			
						males and females' weeks			
						1-4 at 5000ppm; De-			
						creased body weight gain			
						during pregnancy in fe-			
						males' weeks 1-2 of 1st			
						mating at 1500 and			
						5000ppm, and full dura-			
			2 Gen			tion of 2nd mating at			
		Rat	Adult (F1)	Oral	5000 ppm	1500 and 5000ppm			
	Food					Decreased absolute mater-	No consistent		
	Consumption					nal feed consumption at	treatment related		
						300 mg/kg days 6-19 (en-	effect on food		
						tire dosage period); de-	consumption		
						creased relative maternal			
					200 /	feed consumption at 300			
		D 11.4	12.0	0.1	300 mg/kg	mg/kg days 6-19 (entire			
		Rabbit	13 Days	Oral	bw/day	dosage period)			
						Statistically significant			
			2 Gen		400 mg/kg	decreased maternal food			
		Rat	Adult (F0)	Oral	400 mg/kg bw/day	consumption at 400 mg/kg			
		Kat	Adult (F0)	Olai	1000	no effect (at highest dose			
					mg/kg	tested [1000 mg/kg			
		Rat	28 Days	Dermal	bw/day	bw/day])			
		Rat	20 Days	Dermai	0 W/day	no effect (at highest dose			
		Rat	28 Days	Inhalation	0.05 mg/L	tested [0.05 mg/L])			
		Itur	20 Duj5	minution	0.00 mg/L	Decreased food intake in			
						males and females at			
						12000ppm during treat-			
						ment period; Increased			
						food consumption during			
						recovery period in fe-			
					12000	males at 12000ppm, but			
		Rat	13 Weeks	Oral	ppm	not in males; Increased			

Grouping	Line(s) of evidence	Species	Exposure	Route of	Effect dose -	Observed effects	Assessment of each line of evidence	Assessment of the integrated lines of evidence	Modality
Grouping	evidence	species	Exposure	exposure	uose -	food conversion ratio both	evidence	evidence	wiodanty
						during treatment and re-			
						covery in males and fe-			
						males at 12000ppm			
						Decreased group mean			
						food intake in males and			
						females during treatment			
						at 300 mg/kg, primarily			
						due to lower intake weeks			
					300 mg/kg	1-3, no effect during re-			
		Dog	13 Weeks	Oral	bw/day	covery			
						Slight but not statistically			
						significantly decreased			
					12000	food consumption for			
		Rat	13 Weeks	Oral	ppm	males at 12000ppm			
						no effect (at highest dose			
						tested [2500 ppm])			
						No treatment-related ef-			
						fect on food consumption;			
						initial lack of appetite			
						week 1 in males (2 at			
						500ppm, 2 at 2500ppm)			
						and females (1 at			
						2500ppm) recovered			
						week 2 in all except 1			
						male 500ppm and 1 male			
						2500ppm, considered due			
		Dog	1 Years	Oral	2500 ppm	to palatability problems			
			104			no effect (at highest dose			
		Mouse	Weeks	Oral	3000 ppm	tested [3000 ppm])			
						Statistically significant in-			
						creased food consumption			
						in males' weeks 1-40 at			
						2500ppm, only occasional			
			27 Mon-		2500	after this point			
		Rat	ths	Oral	2500 ppm				
		-	2 Gen:			no effect (at highest dose			
		Rat	Adult (F0)	Oral	5000 ppm	tested [5000 ppm])			

Grouping	Line(s) of evidence	Species	Exposure	Route of exposure	Effect dose -	Observed effects	Assessment of each line of evidence	Assessment of the integrated lines of evidence	Modality
						Decreased food consump-			
						tion weeks 5-8 in males			
						and females at 5000ppm,			
						recovered to control lev-			
						els week 8-16 in males,			
			2 Gen:			marginal reduction in fe-			
		Rat	Adult (F1)	Oral	5000 ppm	males			

1.1.4.1 Assessment of the integrated lines of evidence and weight of evidence for T-mediated adversity and endocrine activity

The weight of evidence for EAS-mediated adversity is summaries in Table 2.2.2.1-1 and for EAS-mediated endocrine activity in Table 2.2.2.1-2. The overall WoE for EAS-mediated activity is indicative of negative activation of EAS modalities.

Table 1.1.4.1-1 WoE for EAS-mediated adversity

- Evaluation of two generations study that access all the relevant parameters did not show any ED effects.
- EAS parameters were examined in multiple studies at different dose levels and of different durations in rats and dogs by oral administration of the substance. EAS-mediated effects were also examined in one study in rats via dermal application of the substance.
- No EAS-mediated adverse effects were consistently observed in any of the species at any of the dose levels tested.
- There was no evidence for the identification of EAS-mediated adversity.

Table 1.1.4.1-2 WoE for EAS-mediated endocrine activity

•	Negative for the following in vitro investigations at OECD Conceptual Framework Level 2:
	ToxCast ER bioactivity (agonism and antagonism)
	ToxCast AR bioactvity (agonism and antagonism)
	ToxCast steroidogenesis activity
	AR binding assay
	Aromatase assay

• No evidence for identification of EAS-mediated endocrine activity

1.1.5 Initial analysis of the evidence and identification of relevant scenario for the ED assessment of EAS-modalities

A dataset is considered to have sufficiently investigated EAS related adversity in relation to mammals if the parameters investigated in a two-generation reproductive toxicity study (OECD TG 416) conducted to the 2001 revision of this guideline have been assessed (EFSA-ECHA, 2018).

Although the two-generation study for dicamba was conducted prior to 2001, the current study exceeded requirements of the 1983 revision of the OECD 416 test guideline by including sperm assessment, oestrus cyclicity, corpora lutea counts, full assessment of histopathology and organ weights (with the exception of uterus and thyroid weights).

Table 2.2.3-1 Comparison of the Parameters Sensitive to Perturbation of the Endocrine System required in the 2001 Revision of OECD 416 and the Two-generation Toxicity Study with Dicamba.

Parameter	Assessed in the two-generation study with dicamba
Gross necropsy (macroscopic) observations	Yes
 Reproductive performance: Pre-coital interval Mating (copulation indices) Fertility Gestation index Duration of gestation Parturition Litter size (reductions in litter size can be indicative of abortions/resorptions/intra-uterine deaths) Number of implantations 	Yes
Number of <i>corpora lutea</i>	Yes – references the appearance or absence of re- duced corpora lutea but does not directly state the number
Sex ratio	Yes
Oestrus cyclicity	Yes – vaginal smears taken daily for 7 days prior to mating for FO and first mate of F1generation and dur- ing the 20 day mating period to detect marked anoma- lies of the oestrus cycle
Sexual maturation (vaginal opening and preputial separation)	Yes
Ano-genital distance	No
Sperm analysis (number, motility and morphology)	Yes
Organ weights: uterus, ovaries, testes, epididymides, pros- tate, seminal vesicles with coagulating glands, pituitary, thy- roid and adrenal glands	All, except uterus and thyroid were not weighted
Histopathological examination: vagina, uterus (with cervix), ovaries, testis, epididymis, seminal vesicles, prostate (and co- agulating gland)	Yes

1.1.6 Data set sufficiency for EATS-related endocrine activity (OECD CF Level 2/3 test)

The potential for dicamba to have endocrine activity *in vitro* was extensively examined as part of the United States Environmental Protection Agency's ToxCast[™] programme, which included binding, transactivation and steroidogenic assays equivalent to OECD Conceptual Framework Level 2. Whilst dicamba had no significant effect in any of these assays, the EFSA-ECHA Guidance specifically requests mechanistic studies in OECD Conceptual Framework Level 3, to confirm an absence of activity *in vivo*, following negative *in vitro* assays.

The US EPA ToxCastTM ER and AR Bioactivity Models are able to accurately predict the outcome of Uterotrophic and Hershberger assays, and could therefore be used as alternatives to *in vivo* testing to address E and A modalities. These bioactivity models integrate data from a range of high throughput *in vitro* assays from the US EPA's ToxCastTM and Tox21 programs (18 oestrogen receptor assays and 11 androgen receptor assays) examining pathway perturbations at multiple points along receptor binding, co-regulator recruitment, gene transcription, and protein production axes and across multiple types of cell. The calculations based on *in vitro* assays data have been shown to predict *in vivo* activity in the Uterotrophic and Hershberger assays to a high degree of precision (Browne *et al.*, 2015; Judson *et al.* 2015; Kleinstreuer *et al.* 2017) with accuracies of >84% for the prediction of Uterotrophic study outcome, and 95.2% for the outcome of Hershberger assays run in agonism mode and 97.5% for Hershberger assays run in antagonism mode.

In the androgen receptor bioactivity model, dicamba exhibited an agonism score of 0 and an antagonism score of 0, these values do not exceed the 0.001 score specified by the US EPA as the criteria for defining a compound as negative in the bioactivity model (Kleinstreuer *et al.* 2017). On this basis the US EPA androgen receptor bioactivity model prediction is that dicamba will not be positive in a Hershberger assay run in either agonism or antagonism mode. Due to the high degree of predictivity exhibited by this model Syngenta believe that this negative prediction is sufficient to establish that dicamba is not likely to exhibit androgenic or antiandrogenic activity *in vivo* without the need to generate additional data.

Dicamba exhibited a model score of 0 in the US EPA oestrogen receptor bioactivity model, this value indicates no activity against the oestrogen receptor and is below the score of 0.1 defined by the authors as the criteria for considering a compound to be active in this model (Browne *et al.*, 2015). This ER bioactivity model was parameterised using the ToxCastTM *in vitro* data described in Section 4.1.2 of this document. This information is sufficient to establish that dicamba is not likely to exhibit estrogenic activity *in vivo* without the need to generate additional data.

Dicamba was tested in 21 ToxCast assay component endpoints related to steroidogenesis, with the majority of these endpoints being assessed in a high-throughput steroidogenesis assay in H295R Human Adrenocortical Carcinoma Cells (Karmaus *et al.*, 2016). There is no indication that dicamba has a specific effect on steroidogenesis in H295R cells. In addition, no effect on aromatase activity were observed. On this basis, sufficient data exist to conclude that dicamba does not inhibit steroidogenesis.

Available *in vitro* mechanistic information indicates that dicamba does not inhibit the activity of thyroid peroxidase, the sodium-iodide symporter, or deiodinase enzymes, and does not interact with the thyroid hormone receptor.

Table 2.2.4-1 Selection of Relevant Scenario for the ED Assessment of EAS-modality in Mammals

	Positive mechanistic OECD CF level 2/3	Scenario	Next step of the assessment	Scenario selected
rameters	test			
No (sufficiently in- vestigated)	Yes/No	1a	Conclude: ED criteria not met because there is no "EAS-medi- ated" adversity	Х
Yes (sufficiently in- vestigated)	Yes/No	1b	Perform MoA analysis	

No (not sufficiently investigated)	Yes	2a (i)	Perform MoA analysis (addi- tional information may be needed for the analysis)	
No (not sufficiently investigated)	No (sufficiently in- vestigated)	2a (ii)	Conclude: ED criteria not met because no EAS-mediated en- docrine activity observed	
No (not sufficiently investigated)	No (not sufficiently investigated)	2a (iii)	Generate missing level 2 and 3 information. Alternatively, gen- erate missing "EATS-mediated" parameters. Depending on the outcome move to corresponding scenario	
Yes (not sufficiently investigated)	Yes/No	2b	Perform MoA analysis	

1.1.7 MoA analysis for EAS-modalities

Not relevant at present time. No consistent effect on any parameter described as "EATS-mediated" in the guidance document was identified in the dicamba mammalian toxicology database.

1.1.8 Conclusion of the assessment of EAS-modalities

Although the two-generation study for dicamba was conducted prior to 2001, the current study exceeded requirements of the 1983 revision of the OECD 416 test guideline by including sperm assessment, oestrus cyclicity, corpora lutea counts, full assessment of histopathology and organ weights (with the exception of uterus and thyroid weights). This study therefore is considered to meet the requirements of the 2001 revision of OECD test guideline. No consistent effects on any EAS parameters were observed for dicamba.

Dicamba therefore occupies scenario 1a for the EAS modalities, and as such the ED criteria are not met for these modalities.

2.10.23 Overall conclusion on the ED assessment for humans

In conclusion, based on the available evidence, the T modality is considered sufficiently investigated and no adversity has been observed. Therefore, the substance does not meet the ED criteria for the T modality.

Based on the available evidence, the EAS modality is considered sufficiently investigated and no adversity has been observed. Therefore, the substance does not meet the ED criteria for the EAS modality.

2.10.24 ED assessment for non-target organisms

According to the Criteria an adverse effect relevant to non-target organisms "is a change in the morphology, physiology, growth, development, reproduction or life span of an organism, system or (sub) population that results in an impairment of functional capacity, an impairment of the capacity to compensate for additional stress or an increase in susceptibility to other influences".

Effects on endpoints relevant to survival, growth, development and reproduction in available ecotoxicology studies may therefore be regarded as relevant to establishing evidence for adverse effects. However, as indicated in the Guidance document with respect to validated test guidelines informative for endocrine disrupting properties, such endpoints can only be considered 'Sensitive to, but not diagnostic of, EATS'.

Studies recommended in the guidance document as sufficient for investigation of 'EATS-mediated adversity' in non-target organism are as follows:

- Fish full life study (MEOGRTS, OECD 240, or equivalent);
- Larval amphibian growth and development assay (LAGDA, OECD 241), though a negative AMA is acceptable in lieu of a LAGDA.

Studies recommended in the guidance document as sufficient for investigation of 'endocrine activity' in non-target organism are as follows:

- Fish short-term reproduction assay (FSTRA, OECD 229) or 21-d fish assay (OECD 230);
- Amphibian metamorphosis assay (AMA, OECD 231)

2.10.25 ED assessment for T-modality

2.10.26 Have T-mediated parameters been sufficiently investigated?

 Table 3.1.1-1
 Assessment of dataset sufficiency for T-modality in non-target organisms

	Sufficiently investigated							
T-mediated parameters	No	No						
	Based on non-availability of							
	Studies measuring T-mediated	adversity:						
	- LAGDA study (OE	ECD 241)						
	- (negative) AMA (0	DECD 231)						
	Studies measuring T-mediate - AMA (OECD 231)	d activity						

Table 5.1.2-		dence for thyroid	u activity allu a	uversity III	non-target	species	1			
	Grouping	Line(s) of Evi- dence	Species	Expo- sure	Route of expo- sure	Effect Con- centration	Observed effects	Assessment	Assessment of inte- grated line of evidence	Moda- lity
	<i>In vitro</i> me- chanistic	Thyroid trans- porter transthy- retin binding					Inactive in thyroid transporter transthy- retin binding assay	No evidence of endocrine activ- ity		
Inte- grated lines of evidence for endo- crine ac- tivity		ToxCast thyroid assays (10)					Inactive in all Tox- Cast thyroid assays	No evidence of endocrine activ- ity	Overall not indicative of endocrine activity	
		CALUX nuclear receptor assay (TRb)	See section 4.1.2	2			Inactive in TRb as- say	No evidence of endocrine activ- ity		Т
		ToxCast thyroid peroxidase inhi- bition assay					Inactive in ToxCast thyroid peroxidase inhibition assay	No evidence of endocrine activ- ity		
		ToxCast so- dium-iodine symporter inhi- bition assay					Inactive in ToxCast sodium-iodine sym- porter inhibition as- say	No evidence of endocrine activ- ity	docrine activ-	
	<i>In vivo</i> me- chanistic	n/a								
	EATS- mediated parameters	n/a								
Inte- grated			Pimephales promelas	33 days	Water	n/a	No effect on length	No evidence of adversity	Overall not	
lines of evidence	Sensitive to.	Length Once		21 days	Water	n/a	No effect on length	No evidence of adversity	indicative of adverse ef-	
for adver- sity	but not di- agnostic of,		Cyprinodon variegatus	34 days	Water	n/a	No effect on length	No evidence of adversity	fects from parameters	Ν
	EATS	ATS Weight Colin		Colinus virgi- nianus 21 weeks Dietary n/a		n/a	No effect on weight	No evidence of adversity	sensitive to, but not diag- nostic of,	
			Anas platyr- hynchos	21 weeks	Dietary	n/a	No effect on weight	No evidence of adversity	EATS	

2.10.26.1 Lines of evidence for adverse effects and endocrine activity related to T-modality Table 3.1.2-1 Lines of evidence for thyroid activity and adversity in non-target species

			Pimephales promelas	33 days	Water	n/a	No effect on weight	No evidence of adversity	
			Oncorhynchus mykiss	21 days	Water	n/a	No effect on weight	No evidence of adversity	
			Cyprinodon variegatus	34 days	Water	n/a	No effect on weight	No evidence of adversity	
		Development	Colinus virgi- nianus	21 weeks	Dietary	n/a	No effect on number of hatchlings	No evidence of adversity	
			Anas platyr- hynchos	21 weeks	Dietary	1600 ppm	Decrease in hat- chlings	Potential evi- dence of sys- temic toxicity at highest test con- centration	
			Pimephales promelas	33 days	Water	n/a	No effects on hatch- ing time or hatching success	No evidence of adversity	
			Cyprinodon variegatus	34 days	Water	n/a	No effects on hatch- ing time or hatching success	No evidence of adversity	
		Morphology	Anas platyr- hynchos	21 weeks	Dietary	n/a	No abnormalities	No evidence of adversity	
		Morphology	Pimephales promelas	33 days	Water	n/a	No abnormalities	No evidence of adversity	
	Mortality		Colinus virgi- nianus	21 weeks	Dietary	n/a	No effect on morta- lity	No evidence of adversity	
			Anas platyr- hynchos	21 weeks	Dietary	n/a	No effect on morta- lity	No evidence of adversity	
			Oncorhynchus mykiss	21 days	Water	n/a	No effect on morta- lity	No evidence of adversity	
Evidence			Pimephales promelas	33 days	Water	n/a	No effect on morta- lity	No evidence of adversity	
of general toxicity			Cyprinodon variegatus	34 days	Water	n/a	No effect on morta- lity	No evidence of adversity	
-	Behaviour		Oncorhynchus mykiss	21 days	Water	320, 580, 1000 mg/L	Calm behaviour	Consistent with stress due to sys- temic toxicity	
			Colinus virgi- nianus	21 weeks	Dietary	n/a	No effect on feed consumption	No evidence of adversity	
			Anas platyr- hynchos	21 weeks	Dietary	n/a	No effect on feed consumption	No evidence of adversity	

3.1.2.1 Assessment of the integrated lines of evidence and weight of evidence for T-mediated adversity and endocrine activity

The weight of evidence for T-mediated adversity is summarized in 3.1.2.5-1 and for T-mediated endocrine activity 3.1.2.5-2. The overall weight of evidence is not indicative of T-mediated adversity or endocrine activity, although not sufficiently investigated.

Table 3.1.2.5-1 WoE for T-mediated adversity

- No endpoints for T-mediated adversity were examined, but several endpoints 'sensitive to, but not diagnostic of, EATS' were considered (e.g., growth, development)
- No effects independent of systemic toxicity were observed for endpoints 'sensitive to, but not diagnostic of, EATS' in any of the species at any of the dose levels tested
- There was no evidence for the identification of a T-mediated adverse effect, although not sufficiently investigated

Table 2.10.26.1-2WoE for T-mediated endocrine activity

- No data were available for T-mediated 'in vivo mechanistic' activity in non-mammalian organisms
- Several mammalian assays were considered for T-mediated 'in vitro mechanistic' activity
- Negative for the following '*in vitro* mechanistic' investigations:
 - Thyroid transporter transthyretin binding
 - ToxCast thyroid assays (10)
 - CALUX nuclear receptor assay (TRb)
 - ToxCast thyroid peroxidase inhibition assay
 - ToxCast sodium-iodine symporter inhibition assay
- No evidence for identification of T-mediated endocrine activity, although not sufficiently investigated

3.1.3 Initial analysis of the evidence and identification of relevant scenario for the ED assessment of Tmodality

A Larval Amphibian Growth and Development Assay (LAGDA, OECD 241) is not currently available for dicamba, nor is an amphibian metamorphosis assay (AMA, OECD 231). Therefore, after considering all lines of evidence, T-mediated adversity and endocrine activity are not sufficiently investigated.

Table 3.1.3-1Selection of Relevant Scenario for the ED Assessment of T-modality in Non-target Organisms

Adversity based on T-mediated pa- rameters	Positive mechanistic OECD CF level 2/3 test	Scenario	Next step of the assessment	Scenario selected
No (sufficiently in- vestigated)	Yes/No	1a	Conclude: ED criteria not met because there is no " T-medi- ated " adversity	
Yes (sufficiently in- vestigated)	Yes/No	1b	Perform MoA analysis	
No (not sufficiently investigated)	Yes	2a (i)	Perform MoA analysis (addi- tional information may be needed for the analysis)	
No (not sufficiently investigated)	No (sufficiently in- vestigated)	2a (ii)	Conclude: ED criteria not met because no T-mediated endo- crine activity observed	
No (not sufficiently investigated)	No (not sufficiently investigated)	2a (iii)	Generate missing level 2 and 3 information. Alternatively, gen- erate missing "EATS-mediated" parameters. Depending on the outcome move to corresponding scenario	X
Yes (not sufficiently investigated)	Yes/No	2b	Perform MoA analysis	

2.10.26.2 MoA analysis for T-modality

T-mediated adversity and T-activity have not been sufficiently investigated for dicamba; the ecotoxicology database only included parameters 'sensitive to, but not diagnostic of, EATS'. Therefore, a MOA analysis for the T modality is not appropriate at this time.

2.10.27 Conclusion of the assessment of T-modality

Based on scenario 2a (iii) applies: No endocrine activity, but not sufficiently investigated.

2.10.28 ED assessment for EAS-modalities

2.10.29 Have EAS-mediated parameters been sufficiently investigated? Table 3.2.1-1 Assessment of dataset sufficiency for EAS-modalities in non-target organisms

	Sufficiently investigated
EAS-mediated parameters	No, based on non-availability of Studies measuring EAS-mediated ad-
	versity:
	- MEOGRT (OECD 240) or FLCTT measuring all endpoints foreseen to
	be measured in OECD 240 Studies measuring EAS-mediated activity
	- FSTRA (OECD 229) or 21 day fish screening study (OECD 230)

	Grouping	Line(s) of Evi- dence	Species	Exposure	Route of expo- sure	Effect Con- centration	Observed effects	Assessment	Assessment of inte- grated line of evidence	Moda- lity
Inte- grated line of ev-		ToxCast estro- gen assays (22) and model CALUX nuclear					Inactive in all ToxCast estrogen assays and model Active in ER□ assay,	No consistent ER bioactiv- ity, for both agonism and		E
		receptor assays (ER□, ER□) ToxCast andro-					inactive in ER assay	antagonism	Overall not	
idence for endocrine activity	<i>In vitro</i> me- chanistic	gen assays (14) and model CALUX nuclear	See section 4.1.2	2			androgen assays and model	No AR bioac- tivity, for both agonism and	indicative of endocrine activity	А
activity		receptor assay (AR)					Inactive in AR assay	antagonism		
		ToxCast H295R assay ToxCast aroma- tase assay					Inactive for all steroid hormones Inactive in ToxCast aromatase assay	No effects on steroidogene- sis		S
	<i>In vivo</i> me- chanistic	n/a								
Inte-	EATS- mediated parameters	n/a								
grated line of ev-		Fecundity	Colinus virgi- nianus	21 weeks	Dietary	n/a	No effect on egg pro- duction	No evidence of adversity	Overall not	
idence for adversity	Sensitive- to-but not		Anas platyr- hynchos	21 weeks	Dietary	n/a	No effect on egg pro- duction	No evidence of adversity	indicative of adverse ef-	Ν
	diagnostic of EATS	Fertility	Colinus virgi- nianus	hynchos Colinus virgi- 21 weeks		n/a	No effects on egg quality, viable em- bryos, or number of 14-day-old survivors	No evidence of adversity	fects from parameters sensitive to,	

2.10.30 3.2.2 Lines of evidence for adverse effects and endocrine activity related to EAS-modalities Table 3.2.2-1 Lines of evidence for estrogen, androgen, and steroidogenesis activity and adversity in non-target species

		Anas platyr- hynchos	21 weeks	Dietary	1600 ppm	Decrease in number of 14-day-old survivors; no effects on egg qual- ity, viable embryos	Potential evi- dence of sys- temic toxicity at highest test concentration	but not diag- nostic of, EATS	
		Pimephales promelas	33 days	Water	n/a	No effect on length	No evidence of adversity		
	Length	Oncorhynchus mykiss	21 days	Water	n/a	No effect on length	No evidence of adversity		
		Cyprinodon variegatus	34 days	Water	n/a	No effect on length	No evidence of adversity		
		Colinus virgi- nianus	21 weeks	Dietary	n/a	No effect on weight	No evidence of adversity		
		Anas platyr- hynchos	21 weeks	Dietary	n/a	No effect on weight	No evidence of adversity		
	Weight	Pimephales promelas	33 days	Water	n/a	No effect on weight	No evidence of adversity		
		Oncorhynchus mykiss	21 days	Water	n/a	No effect on weight	No evidence of adversity		
		Cyprinodon variegatus	34 days	Water	n/a	No effect on weight	No evidence of adversity		
		Colinus virgi- nianus	21 weeks	Dietary	n/a	No effect on number of hatchlings	No evidence of adversity		
	Development	Anas platyr- hynchos	21 weeks	Dietary	1600 ppm	Decrease in hatchlings	Potential evi- dence of sys- temic toxicity at highest test concentration		
		Pimephales promelas	33 days	Water	n/a	No effects on hatching time or hatching suc- cess	No evidence of adversity		
		Cyprinodon variegatus	34 days	Water	n/a	No effects on hatching time or hatching suc- cess	No evidence of adversity		
	Mombalazy	Anas platyr- hynchos	21 weeks	Dietary	n/a	No abnormalities	No evidence of adversity		
	Morphology	Pimephales promelas	33 days	Water	n/a	No abnormalities	No evidence of adversity		
Mortality		Colinus virgi- nianus	21 weeks	Dietary	n/a	No effect on mortality	No evidence of adversity		

		Anas platyr- hynchos	21 weeks	Dietary	n/a	No effect on mortality	No evidence of adversity	
		Oncorhyn- chus mykiss	21 days	Water	n/a	No effect on mortality	No evidence of adversity	
	Pimephales promelas	33 days	Water	n/a	No effect on mortality	No evidence of adversity		
Evidence of general		Cyprinodon variegatus	34 days	Water	n/a	No effect on mortality	No evidence of adversity	
toxicity	Behaviour	Oncorhyn- chus mykiss	21 days	Water	320, 580, 1000 mg/L	Calm behaviour	Consistent with stress due to systemic toxicity	
В	Benaviour	Colinus virgi- nianus	21 weeks	Dietary	n/a	No effect on feed con- sumption	No evidence of adversity	
		Anas platyr- hynchos	21 weeks	Dietary	n/a	No effect on feed con- sumption	No evidence of adversity	

3.3.2.1 Assessment of the integrated lines of evidence and weight of evidence for EAS-mediated adversity and endocrine activity

The weight of evidence for EAS-mediated adversity is summarized in Table 1.1.4.1-1 and for EAS-mediated endocrine activity in Table 1.1.4.1-2. The overall weight of evidence is not indicative of EAS-mediated adversity or endocrine activity, although not sufficiently investigated.

Table 2.10.26.2-1WoE for EAS-mediated adversity

- No endpoints for EAS-mediated adversity were examined, but several endpoints 'sensitive to, but not diagnostic of, EATS' were considered (e.g., fecundity and fertility)
- No effects independent of systemic toxicity were observed for endpoints 'sensitive to, but not diagnostic of, EATS' in any of the species at any of the dose levels tested
- There was no evidence for the identification of an EAS-mediated adverse effect, although not sufficiently investigated

Table 2.10.26.2-2WoE for EAS-mediated endocrine activity

- No data were available for EAS 'in vivo mechanistic' activity in non-mammalian organisms
- Several mammalian assays were considered for EAS 'in vitro mechanistic' activity
- Negative for the following '*in vitro* mechanistic' investigations:
 - ToxCast estrogen assays (22) and model
 - CALUX nuclear receptor assays (ERa and ERb)
 - ToxCast androgen assays (14) and model
 - CALUX nuclear receptor assay (AR)
 - o ToxCast H295R assay
 - ToxCast aromatase assay

• No evidence for identification of EAS-mediated endocrine activity, although not sufficiently investigated

2.10.31 3.2.3 Initial analysis of the evidence and identification of relevant scenario for the ED assessment of EAS-modalities

A fish full life cycle study (MEOGRTS, OECD 240, or equivalent) is not currently available for dicamba, nor is a fish short-term reproduction assay (FSTRA, OECD 229) or 21-day fish assay (OECD 230). Therefore, after considering all lines of evidence, EAS-mediated adversity and endocrine activity are not sufficiently investigated.

Adversity based on EAS-mediated pa- rameters	iated pa- OECD CF level 2/3 test			Scenario lected	se-
No (sufficiently in- vestigated)	Yes/No	1a	Conclude: ED criteria not met because there is no "EAS-mediated" adversity		
Yes (sufficiently in- vestigated)	Yes/No	1b	Perform MoA analysis		
No (not sufficiently investigated)	Yes	2a (i)	Perform MoA analysis (additional infor- mation may be needed for the analysis)		
No (not sufficiently investigated)	No (sufficiently inves- tigated)	2a (ii)	Conclude: ED criteria not met because no EAS-mediated endocrine activity ob- served		
No (not sufficiently investigated)	No (not sufficiently in- vestigated)	2a (iii)	Generate missing level 2 and 3 information. Alternatively, generate missing "EATS-me- diated" parameters. Depending on the out- come move to corresponding scenario	Х	
Yes (not sufficiently investigated)	Yes/No	2b	Perform MoA analysis		

Table 3.2.3-1 Selection of Relevant Scenario for the ED Assessment of EAS-modality in non-target Organisms
--

3.2.4 MoA analysis for EAS-modalities

EAS-mediated adversity and EAS-activity have not been sufficiently investigated for dicamba; the ecotoxicology database only included parameters 'sensitive to, but not diagnostic of, EATS'. While a published study in rare minnow included 'in vivo mechanistic' and 'EATS-mediated' parameters, the study was not deemed reliable and therefore could not be used to support a MOA analysis. Thus, a MOA analysis for the EAS modality is not appropriate at this time.

3.2.5 Conclusion of the assessment of EAS-modalities

Scenario 2a (iii) applies: No endocrine activity, but not sufficiently investigated.

2.10.32 3.3 Overall conclusion on the ED assessment

In conclusion, for both the T and EAS modalities, adversity has not been sufficiently investigated in non-target organisms, nor has endocrine activity. Therefore, additional information will need to be generated in order to determine whether dicamba exhibits endocrine disrupting properties in non-target organisms.

2.10.33 OVERALL conclusion on the ED assessment

4.0 Human Health

Dicamba has been extensively tested, with the relevant data from literature and regulatory studies covering a wide range of study types in vitro and in vivo. These data fall into the levels 1, 2, 4 and 5 of the OECD Conceptual Framework. Considering the available regulatory study database in accordance with the EFSA-ECHA Guidance (2018) there is sufficient information to conclude that dicamba does not adversely affect the EAS or the T modalities.

In addition, a number of relevant sources of information were identified to evaluate the potential for EAS modalities to be operant for dicamba. Evaluation of the outputs of the US EPA estrogen receptor and androgen receptor bioactivity models indicated a low likelihood that dicamba exhibits E or A activity in vivo. Furthermore, assessments of aromatase activity, and effects on steroidogenesis in H295R cells indicated no overall effect of dicamba on steroidogenesis.

As no further information is required to conclude that E, A, S, and T modalities are not likely to be operant in mammals in vivo it can be concluded that dicamba does not meet the scientific criteria defining a human endocrine disruptor implemented by Commission Regulation (EU) 2018/605.

4.2 Non-Target Organisms

Evaluation of the available data in accordance with the EFSA-ECHA Guidance document (2018) indicates that there is an inadequate ecotoxicology dataset to conclude that dicamba exhibits endocrine disrupting properties in non-target organisms according to the ED Criteria (2018/605). EATS-mediated adversity has not been fully investigated in non-target organisms (e.g., OECD 240, OECD 241), nor has endocrine activity (e.g., OECD 229/230, OECD 231). Consequently, according to the guidance document, additional information will need to be generated in order to determine whether dicamba exhibits endocrine disrupting properties in non-target organisms.

As first steps to make sufficient data available to reach a conclusion, Syngenta proposes to conduct the following studies:

- 1) 21-day fish screening assay (OECD 230) in the Fathead minnow.
- 2) Amphibian Metamorphosis Assay (OECD 231).

2.10.34 REFERENCES

NOTE: Only public literature references are listed here.

Brown RP, Greer RD, Mihaich EM, Guiney PD (2001). A critical review of the scientific literature on potential endocrine-mediated effects in fish and wildlife. *Ecotoxicol. Environ. Safety* **49**: 17-25.

Capen, CC, Martin SL (1989). The effects of xenobiotics on the structure and function of thyroid follicular and C-cells. Toxicol Pathol. 17:266-93

CEFIC EMSG (1999). Towards the establishment of a weight of the evidence approach to prioritising action in relation to endocrine disruption. CEFIC.

Klimisch HJ, Andreae M, Tillmann U (1997). A systematic approach for evaluating the quality of experimental toxicological and ecotoxicological data. *Reg. Tox. Pharmacol.* **25**: 1-5.

ECHA (2017) European Chemicals Agency Guidance on the Application of the CLP Criteria. Guidance to Regulation (EC) No 1272/2008 on classification, labelling and packaging (CLP) of substance and mixtures. Version 5, July 2017.

EFSA (2015) European Food Safety Authority Principles and process for dealing with data and evidence in scientific assessments. *EFSA Journal* **13** (5): 4121. http://doi.org/10.2903/j.efsa.2015.4121.

EFSA (2013) Scientific Opinion on the hazard assessment of endocrine disruptors: scientific criteria for identification of endocrine disruptors and appropriateness of existing test methods for assessing effects mediated by these substances on human health and the environment. *EFSA Journal* **11** (3): 3132, doi: 10.2903/j.efsa.2013.3132.

EFSA-ECHA (2018) Guidance for the identification of endocrine disruptors in the context of Regulation (EU) No 528/2012 and (EC) No 1107/2009. Adopted on 5 June 2018.

Glass, A. R., Harrison, R., and Swerdloff, R. S. (1976). Effect of undernutrition and amino acid deficiency on the timing of puberty in rats. *Pediatric research*, *10*(11): 951

Goldman J.M., Laws S.C., Balchak S.K., Cooper R.L., and Kavlock R.J. (2000). Endocrine-Disrupting Chemicals: Prepubertal Exposures and Effects on Sexual Maturation and Thyroid Activity in the Female Rat. A Focus on the EDSTAC Recommendations. *Critical Reviews in Toxicology*, **30**(2):135–196.

Holehan A.M. and Merry B.J. (1985). The control of puberty in the dietary restricted female rat. Mech. Ageing Dev. 32: 179–191.

Jain AN (2007) Surflex-Dock 2.1: robust performance from ligand energetic modelling, ring flexibility, and knowledge-based search. *J. Comput. Aided Mol. Des.* **21** (5): 281-306.

JRC (2016) Joint Research Centre Screening methodology to identify potential endocrine disruptors according to different options in the context of an impact assessment. In: JRC Science Policy Reports. Publications Office of the European Union, Luxembourg. Available at: <u>http://doi.org/10.2788/73203</u>

Judson RS, Magpantay FM, Chickarmane V, *et al.* (2015) Integrated model of chemical perturbations of a biological pathway using 18 *in vitro* high-throughput screening assays for the estrogen receptor. *Toxicological Sciences* **148** (1): 137-154.

Karmaus, A.L., Toole, C.M., Filer, D.L., Lewis, K.C., Martin, M.T (2016). High-throughput screening of chemical effects on steroidogenesis using H295R human adrenocortical carcinoma cells. *Toxicological Sciences* **150** (2): 323-332.

Kleinstreuer NC, Cegar P, Watt ED, *et al.* (2017) Development and validation of a computational model for androgen receptor activity. *Chem. Res. Toxicol.* **30** (4): 946-964.

National Toxicology Program. Historical control data for Sprague Dawley.

OECD, 2012. OECD Guidance Document No. 150: Guidance document on standardised test guidelines for evaluating chemicals for endocrine disruption. http://search.oecd.org/officialdocuments/displaydocumentpdf/?cote=env/jm/mono(2012)22&doclanguage=en (DoA: 20 May 2014).

Peng C, Ayala PY, Schlegel HB (1996) Using redundant internal coordinates to optimise equilibrium geometries and transition states. *Journal of Computational Chemistry* 7 (1): 49-56.

Pinilla L., Aguilar E., Dieguez C., Millar R.P., and Tena-Sempere M. (2012) Kisspeptins and reproduction: physiological roles and regulatory mechanisms. *Physiol. Rev.* **92**: 1235-1316.

Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006.

Reif DM, Martin MT, Tan SW, Houck KA, Judson RS, Richard AM, Knudsen TB, Dix DJ, Kavlock RJ (2010). Endocrine profiling and prioritization of environmental chemicals using ToxCast data. *Environ. Health Perspec.* **118(12)**: 1714-1720.

RITA: Registry of Industrial Toxicology Animal data. Historical control data for Sprague Dawley.

Rotroff DM, Dix DJ, Houck KA, Knudsen TB, Martin MT, McLaurin KW, Reif DM, Crofton KM, Singh AV, Xia M, Huan R, Judson RS (2013). Using *in Vitro* high throughput screening assays to identify potential endocrine-disrupting chemicals. *Environ. Health Perspec.* **121**: 7-14.

Rotroff DM, Martin MT, Dix DJ, Filer DL, Houck KA, Knudsen TB, Sipes NS, Reif DM, Xia M, Huang R, Judson RS (2014). Predictive endocrine testing in the 21st century using *in vitro* assays of estrogen receptor signaling responses. *Environ. Sci. Technol.* **48**: 8706-8716.

Vermeire T, Aldenberg T, Buist H, *et al.* (2013) OSIRIS a quest for proof of principal for integrated testing strategies of chemicals for four human health endpoints. *Regul. Toxicol. Pharmacol.* **67** (2); 136-145.

WHO/IPCS (2002) World Health Organisation/International Programme on Chemical Safety Global Assessment of the State-of-the-science of Endocrine Disruptors. WHO/IPCS/ECD/02.2. Available at: <u>http://www.who.int/ipcs/publications/new_issues/endocrine_disruptors/en/</u>

WHO/IPCS (2009) World Health Organisation/International Programme on Chemical Safety Principles and Methods for the Risk Assessment of Chemicals in Food. Environmental Health Criteria 240. Available at: http://www.who.int/foodsafety/publications/chemical-food/en/

Wilen R. and Naftolin F. (1978). Pubertal food intake and body length, weight and composition in the feed-restricted female rat: comparison with well fed animals. *Pediat. Res.* **12**: 263–267

2.10.35 RMS comments and ED assessment:

ED assessment for humans

Studies investigating T modality:

- (2014). BAS 183 H (Dicamba techn.): Repeated dose 28-day inhalation toxicity study in Wistar rats, dust, OECD 412 (2009) ID: 13-thyroid weight and histopthology.
- (2002). Dicamba Tech. (SAN 837 Tech.): 28-Day dermal toxicity study in rats, OECD 410 (1981) ID: 4-thyroid histopathology
- (1979). Banvel Technical: 3-Week dermal toxicity study in rabbits, Equivalent to OECD 410 (1981) ID: 3 not considered acceptable by RMS
- (1997). Dicamba TC: 13-week feeding study in rats (including 4-week recovery), OECD 408 (1981) ID: 6 thyroid histopathology.
- (2003). SAN 837 tech.; 13-Week oral (capsule) toxicity study in the dog, OECD 409 (1998) ID: 7 thyroid weight and histopthology.
- (2010). RC1176: 90-Day Oral Capsule Toxicity Study in Beagle Dogs, OECD 409 (1998) ID: 8 thyroid weight and histopthology.
- (1988). Dicamba, potential tumorigenic effects in prolonged administration to mice,
- OECD 451 (1981) ID: 11 thyroid histopathology.
- (1985). Technical dicamba. Lifetime dietary toxicity and oncogenicity study in rats, OECD 453 (1981) ID: 12 thyroid histopathology.
 - (1986). Dicamba One year dietary toxicity in dogs, OECD 452 (1981) ID: 12 thyroid weight and histopthology.
- Goldner et al. (2013). Hypothyroidism and pesticide use among male private pesticide applicators in the agricultural health study

٠

	Grouping	Line(s) of evidence	Species	Exposur e	Route of exposure	Effect dose	Observed effects
Evidence	In vitro	Thyroid	Rat	L L	cxposure	-	No agonism or
for	mechanisti	receptor (α / β)	Kat				antagonism of thyroid
endocrine	c	transactivation					receptor reporter gene
activity	C C	transactivation					expression in GH3 rat
activity							pituitary gland cells
		Thyroid	Human				No up (agonism) or down
		receptor	Trainan				(antagonism) reporter
		(THRa1)					gene expression in human
		transactivation					HepG2 cells
		Inhibition of	Rat				No inhibition of TPO
		TPO (Thyroid					
		peroxidase)					
		Inhibition of	Human				negative based on a
		NIS (Sodium-					threshold of less than
		iodide					20% inhibition in the
		symporter)					RAIU assay
		Deiodination	Human				no inhibition of DIO1,
		enzyme inhibition					DIO2 and DIO3
		Thyrotropin	Rat				No binding detected
		releasing					_
		hormone					
		(TRH)					
		receptor					
		Thyroid				2500	no effect (at highest dose
		(weight)				mg/kg	tested [2500 mg/kg
	Т-		Rabbit	3 Weeks	Dermal	bw/day	bw/day])
	mediated						no effect (at highest dose
	mediated	1	Det	20 Davia	Inhalation	$0.05 m \alpha/I$	tested $[0, 05, m_{\odot}/L]$

Rat

Dog

28 Days

13

Weeks

Inhalation

Oral

0.05 mg/L

300 mg/kg

bw/day

tested [0.05 mg/L])

no effect (at highest dose

tested [300 mg/kg

bw/day])

Assessment of the integrated

Overall

negative, no

evidence for a

consitent

pattern of endocrine

activity and

adversity in the T modality

of

Modalit

Т

v

lines

evidence

Assessment of each line of

Negative, no

evidence for

thyroid

interaction in

vitro

Negative, no al-

teration to thy-

roid weight

evidence

Lines of evidence for thyroid activity and adversity in mammals

parameter

 	•		-					
						a decrease in thyroid		
						weight in males was		
						noted after 4 weeks of re-		
						covery but was not consi-		
						dered biologically plau-		
						sible because the effect		
						was not present before the		
						recovery period (at		
					300 mg/kg	highest dose tested [300		
		Dog	90 Days	Oral	bw/day	mg/kg bw/day])		
		Dog	90 Duj5	olui	omaay	no effect (at highest dose		
		Dog	1 Years	Oral	2500 ppm	tested [2500 ppm])		
	Thyroid (His-	Dog	1 1 cars	Oldi	2500 ppm	no effect (at highest dose		
						tested [2500 mg/kg		
	topathology)	Dahhit	3 Weeks	Dominal	mg/kg bw/day	bw/day])		
		Rabbit	5 Weeks	Dermal	bw/day			
						Cysts were observed		
						more frequently in high		
						dose $(6/10)$ female rats		
						than in control $(3/10)$ in		
						the study, but without		
						dose response and the ef-	Increased	
						fect was not seen in other	incidence of c-	
						studies it was likely spon-	cell carcinomas	
						taneous and not treatment	in the	
					1000	related (at highest dose	carcinogenicity	
					mg/kg	tested [1000 mg/kg	study in the	
		Rat	28 Days	Dermal	bw/day	bw/day])	absence of an	
						no effect (at highest dose	increased	
		Rat	28 Days	Inhalation	0.05 mg/L	tested [0.05 mg/L])	incidence of	
						no effect (at highest dose	releated	
		Rat	28 Days	Inhalation	0.05 mg/L	tested [0.05 mg/L])	histopathologica	
			13			no effect (at highest dose	l findings. No	
		Rat	Weeks	Oral	12000 ppm	tested [12000 ppm])	consistent effect	
					**	no effect (at highest dose	across studies.	
			13		300 mg/kg	tested [300 mg/kg		
		Dog	Weeks	Oral	bw/day	bw/day])		
						In the 4 week recovery		
						group, focal c-cell hyper-		
						plasia was observed in 2		
						females in control and 4		
					300 mg/kg	in high dose, but after 13		
		Dog	90 Days	Oral	bw/day	weeks here was 1 in each		
		Dog	90 Days	Urai	ow/day	weeks here was 1 in each		

-		r					
						of these groups indicating	
						the finding was likely not	
						related to treatment. No	
						increase was seen in	
						males (2003) (at	
						highest dose tested [300	
						mg/kg bw/day])	
						no effect (at highest dose	
		Dog	1 Years	Oral	2500 ppm	tested [2500 ppm])	
			104			no effect (at highest dose	
		Mouse	Weeks	Oral	3000 ppm	tested [3000 ppm])	
						Increase in parafollicular	
						carcinomas, - There were	
						also no accompanying	
			27 Mon-			changes to function of	
		Rat	ths	Oral	250 ppm	thyroid,	

Evidence of general toxicity	Liver (weight)				2500 mg/kg		No consistent effect	
Evidence of general toxicity	Liver (weight)	Rabbit	3 Weeks	Dermal	bw/day	No effect on organ	on the liver	
		100010		2 411114	1000 mg/kg			
		Rat	28 Days	Dermal	bw/day	No effect on organ		
		Rat	28 Days	Inhalation	0.05 mg/L	No effect on organ		
						Statistically significant increase		
						in mean relative liver weight in		
						males and females after		
						treatment at 12000ppm, like		
		Rat	13 Weeks	Oral	12000 ppm	control group after recovery		
					300 mg/kg			
		Dog	13 Weeks	Oral	bw/day	No effect on organ		
					300 mg/kg	No treatment-related effect on		
		Dog	90 Days	Oral	bw/day	organ		
		Dog	1 Years	Oral	2500 ppm	No effect on organ		
						No treatment-related effect on		
		Mouse	104 Weeks	Oral	3000 ppm	organ		
		Rat	27 Months	Oral	2500 ppm	No effect on organ		
			2 Gen			Increased liver weight for		
		Rat	Adult (F0)	Oral	5000 ppm	males and females at 5000ppm		
			2 Gen					
			Offspring			Increased liver weight for		
		Rat	(F1)	Oral	5000 ppm	males and females at 5000ppm		
			2 Gen	. 1	-	Increased liver weight for		
		Rat	Adult (F1)	Oral	5000 ppm	males and females at 5000ppm		
			2 Gen			T 11: 11.C		
		Р (Offspring	0.1	5000	Increased liver weight for		
	T :	Rat	(F2)	Oral	5000 ppm	males and females at 5000ppm		
	Liver (histopathology)	Rabbit	3 Weeks	Dermal	2500 mg/kg bw/day	no effect (at highest dose tested [2500 mg/kg bw/day])		
	(instopatiology)	Kabbit	5 WEEKS	Dermai	1000 mg/kg	no effect (at highest dose tested		
		Rat	28 Days	Dermal	bw/day	[1000 mg/kg bw/day])		
		Kat	20 Days	Definal	0w/day	no effect (at highest dose tested		
		Rat	28 Days	Inhalation	0.05 mg/L	[0.05 mg/L])		
		Itur	20 Dujo	minution	0.05 mg E	12000 ppm		
						Minimal/slight hypertrophy in		
						centrilobular hepatocytes in fe-		
						males after treatment at		
						12000ppm, not observed after		
		Rat	13 Weeks	Oral	12000 ppm	recovery		
					300 mg/kg	no effect (at highest dose tested		
		Dog	13 Weeks	Oral	bw/day	[300 mg/kg bw/day])		
					300 mg/kg	no effect (at highest dose tested		
		Dog	90 Days	Oral	bw/day	[300 mg/kg bw/day])		
						no effect (at highest dose tested		
		Dog	1 Years	Oral	2500 ppm	[2500 ppm])		

				no effect (at highest dose tested		
Mouse	104 Weeks	Oral	3000 ppm	[3000 ppm])		
				Increased incidence of liver ne-		
				crosis (at highest dose tested		
Rat	27 Months	Oral	2500 ppm	[2500 ppm])		
	2 Gen			no effect (at highest dose tested		
Rat	Adult (F0)	Oral	5000 ppm	[5000 ppm])		
	2 Gen					
	Offspring			no effect (at highest dose tested		
Rat	(F1)	Oral	5000 ppm	[5000 ppm])		
	2 Gen			no effect (at highest dose tested		
Rat	Adult (F1)	Oral	5000 ppm	[5000 ppm])		
	2 Gen					
	Offspring			no effect (at highest dose tested		
Rat	(F2)	Oral	5000 ppm	[5000 ppm])		

T-mediated endocrine activity:

The level of thyroid hormones or TSH was not measured in any of the above mentioned studies. Dicamba was inactive in 10 of 10 available ToxCast thyroid assays. Based on the data from published literature dicamba was considered to be inactive in the inhibition of deiodinase enzyme 1 (Hornung, 2018), sodium iodide symporter (Wang, 2018), and thyroid peroxidase activity (Friedman, 2017). Dicamba was predicted to bind to Transthyretin in a QSAR Model but subsequently tested negative in a competitive [1251]-T4-Transthyretin ligand binding assay (Zhang, 2015). No indication of T-mediated endocrine activity was found in vitro.

T-mediated adversity:

In above mentioned studies, no pattern of adversity relating to the thyroid gland was observed (changes in thyroid weight in rats and dogs; no macroscopic changes in rats, mice, and dogs. Cysts were observed more frequently in high dose (6/10) female rats than in control (3/10) in the study (2002), but without dose response and the effect was not seen in other studies it was likely spontaneous and not treatment related. In the 90 day dog study (2003) a decrease in thyroid weight in males was noted after 4 weeks of recovery but was not considered biologically plausible because the effect was not present before the recovery period. In the 4 week recovery group, focal c-cell hyperplasia was observed in 2 females in control and 4 in high dose, but after 13 weeks here was 1 in each of these groups indicating the finding was likely not related to treatment. No increase was seen in males (2003).

A study reported a cross-sectional investigation of the association between self-reported history of physician diagnosed thyroid disease (hypothyroidism, hyperthyroidism, and "other" thyroid disease) and exposure to pesticides among 22,246 male pesticide applicators in the Agricultural Health Study (AHS). Statistically significant associations were observed between ever use of dicamba and hypothyroidism (OR=1.37; 95% CI 1.13-1.66, n=289). In exposure–response analyses using the intensity weighted exposure measure, no trend was seen for exposure to dicamba. Limitations included self-reported outcome, the inability to determine whether exposure preceded disease onset, and the possibility of chance associations resulting from the evaluation of 50 different pesticides with three different thyroid outcomes (Goldner et al, 2013). The relevance was therefore considered low but the results should be part of the weight of evidence considerations.

Regarding T-modality, T-mediated adversity has been sufficiently investigated and no T-mediated adversity has been observed across studies and species (rat, mouse and dog).

Conclusion on T-modality: As no treatment related adversity to the thyroid gland was observed and the adversity was sufficiently investigated, it can be concluded that ED criteria for T-modality are not met (i.e. Scenario 1a is applied). **Other MOA:**

Only effect observed on the thyroid was the increase in carcinoma of the c-cells in male rats (1985). C-cells are not involved in the traditional thyroid hormone production as T3 and T4 but makes calcitonin which is a hormone involved in regulation the calcium level of the blood.

The MOA is unknown, however, the increase in c-cell carcinoma may be hormone related.

Adversity based on T- mediated parameters	Positive mech- anistic OECD CF level 2/3 Test	Scenario	Next step of the assessment	Scenario selected (indicate with an "x" the scenario selected based on the assessed lines of evidence)
No (sufficiently inves- tigated)	Yes/No	la	Conclude: ED criteria not met because there is no " T-mediated " adversity	х
Yes (sufficiently inves- tigated)	Yes/No	16	Perform MoA analysis	
No (not sufficiently investigated)	Yes	2a (i)	Perform MoA analysis (additional information may be needed for the analysis)	
No (not sufficiently investigated)	No (sufficiently investigated)	2a (ii)	Conclude: ED criteria not met because no T-mediated endocrine activity observed	
No (not sufficiently investigated)	No (not suffi- ciently investi- gated)	2a (iii)	Generate missing level 2 and 3 information. Alternatively, generate missing "EATS-mediated" parame- ters. Depending on the outcome move to corresponding scenario	
Yes (not sufficiently investigated)	Yes/No	2Ъ	Perform MoA analysis	

EAS-modalities

Lines of evidence for estrogen, and rogen, and steroidogenesis activity and adversity in mammals

Eviden	Groupi ng In vitro	Line(s) of evidence ER	Species Human	Exposu re	Route of exposu re	Effect dose -	Observed effects	Assessment of each line of evidence Negative, no	Assessment of the integrated lines of evidence Overall	Modality E
ce for endocri	mechan istic	binding	Bovine				Inactive	evidence for estrogenicity	negative, no evidence for	
ne activity		ER dimerizati on	Human				Inactive $(\alpha/\alpha, \beta/\beta, \alpha/\beta)$	in vitro	estrogenic,, androgenic or steroidogeni	
		ERE activity	Human				Inactive in HepG2 human liver cell line ERE cis-activation (agonism or antagonism)		c activity	
		Estrogen receptor (α / β) transactiva tion	Human				No up (agonism) or down (antagonism) reporter gene expression in human HepG2, HEK293T, HeLa or BG1 cells			
		AR binding	Chimpa nze				Inactive	Negative, no evidence for		Α
		omanig	Human				Inactive	androgenicity		
			Rat				Inactive	in vitro		
		Androgen receptor transactiva tion	Human				Inactive			
		Aromatase inhibition	Human				Inactive	Negative, no evidence for		S
		H295R adrenal assay (Ceetox)	Human				No effect on 11- Deoxycortisol and 17-alpha- hydroxyprogesteron e, Androstenedione, Cortisol, 11- Deoxycorticosterone , Estradiol, Estrone, 17-alpha- hydroxypregnelone, testosterone and progesterone levels	an effect on steroidogenesi s <i>in vitro</i>		
Integra ted	EAS- mediate	Ovary (Weight)		3		2500 mg/kg	no effect (at highest dose tested [2500	No consistent effects on	Overall negative, no	EAS
lines of evidenc	d para- meter		Rabbit	Weeks	Dermal	bw/day 1000	mg/kg bw/day]) no effect (at highest	ovaries	evidence for a consitent	
e for	meter		.	28		mg/kg	dose tested [1000		pattern of	
adversi ty			Rat	Days	Dermal	bw/day	mg/kg bw/day]) decreased (at highest dose tested [0.05 mg/L]) not		endocrine adversity	
			Rat	28 Dave	Inhala- tion	0.05 mg/L	statistically signifi- cant			
				Days 13 Waaka		12000	no effect (at highest dose tested [12000			
			Rat	Weeks 13 Waska	Oral	ppm 300 mg/kg	ppm]) no effect (at highest dose tested [300			
			Dog	Weeks 90	Oral	bw/day 300	mg/kg bw/day]) No treatment related effect [300 mg/kg bw/day] Not statis			
			Dog	90 Days	Oral	mg/kg bw/day	bw/day]. Not statis- tically significant			

				Route				Assessment of the	
Groupi	Line(s) of		Fynosu	of	Effect		Assessment of each line	integrated lines of	
ng	evidence	Species	Exposu re	exposu re	dose -	Observed effects	of evidence	evidence	Modality
				-		Decreased rel and			
						absolute ovary			
						weight (at highest dose tested [2500			
					2500	ppm]) not statisti-			
		Dog	1 Years	Oral	ppm	cally significant.			
						no effect (at highest			
		D (27	0.1	2500	dose tested [2500			
	Ovary	Rat	Months	Oral	ppm 2500	ppm]) no effect (at highest			
	(histopa-		3		mg/kg	dose tested [2500			
	thology)	Rabbit	Weeks	Dermal	bw/day	mg/kg bw/day])			
					1000	no effect (at highest			
		D (28	D 1	mg/kg	dose tested [1000			
		Rat	Days	Dermal	bw/day	mg/kg bw/day]) no effect (at highest			
			28	Inhala-	0.05	dose tested [0.05			
		Rat	Days	tion	mg/L	mg/L])]		
			-			no effect (at highest			
		D -4	13 Waalaa	01	12000	dose tested [12000			
		Rat	Weeks	Oral	ppm 300	ppm]) no effect (at highest	1		
			13		mg/kg	dose tested [300			
		Dog	Weeks	Oral	bw/day	mg/kg bw/day])			
					300	no effect (at highest			
		Dec	90 Dava	Orral	mg/kg bw/day	dose tested [300			
		Dog	Days	Oral	bw/day	mg/kg bw/day]) no effect (at highest			
					2500	dose tested [2500			
		Dog	1 Years	Oral	ppm	ppm])			
			104		2000	no effect (at highest			
		Mouse	104 Weeks	Oral	3000 ppm	dose tested [3000 ppm])			
		Wiouse	WEEKS	Olai	ppm	no effect (at highest			
			27		2500	dose tested [2500			
		Rat	Months	Oral	ppm	ppm])			
			2 Gen		5000	no effect (at highest			
		Rat	Adult (F0)	Oral	ppm	dose tested [5000 ppm])			
			2 Gen	5.41		no effect (at highest	1		
			Offspri		5000	dose tested [5000			
		Rat	ng (F1)	Oral	ppm	ppm])			
			2 Gen Adult		5000	no effect (at highest dose tested [5000			
		Rat	(F1)	Oral	ppm	ppm])			
	Uterus				1000	no effect (at highest	No consistent		
	weight	D.	28 D		mg/kg	dose tested [1000	effects. Some		
	(with cer- vix)	Rat	Days	Dermal	bw/day	mg/kg bw/day]) no effect (at highest	effects were observed in		
	, 14)		28	Inhala-	0.05	dose tested [0.05	aged animals		
		Rat	Days	tion	mg/L	mg/L])			
					300	no effect (at highest			
		Dog	13 Weeks	Oral	mg/kg bw/day	dose tested [300			
		Dog	W CCKS	Ulai	300	mg/kg bw/day]) no effect (at highest	1		
			90		mg/kg	dose tested [300			
		Dog	Days	Oral	bw/day	mg/kg bw/day])			
	Uterus his-		2		2500	no effect (at highest			
	topatho- logy (with	Rabbit	3 Weeks	Dermal	mg/kg bw/day	dose tested [2500 mg/kg bw/day])			
	cervix)	Rabbit	TUCKS	Donnal	1000	no effect (at highest	1		
	,		28		mg/kg	dose tested [1000			
		Rat	Days	Dermal	bw/day	mg/kg bw/day])			
			28	Inhala-	0.05	no effect (at highest dose tested [0.05			
		Rat	28 Days	Inhala- tion	0.05 mg/L	dose tested [0.05 mg/L])			
	1	itut	Duys	1011	<u>6</u> , L		1		

Groupi	Line(s) of		Exposu	Route of exposu	Effect		Assessment of each line	Assessment of the integrated lines of	
ng	evidence	Species	re	re	dose -	Observed effects	of evidence	evidence	Modality
						no effect (at highest			
		D (13	0.1	12000	dose tested [12000			
		Rat	Weeks	Oral	ppm 300	ppm]) no effect (at highest			
			13		mg/kg	dose tested [300			
		Dog	Weeks	Oral	bw/day	mg/kg bw/day])			
					300	no effect (at highest			
			90		mg/kg	dose tested [300			
		Dog	Days	Oral	bw/day	mg/kg bw/day])			
					2500	no effect (at highest			
		Dog	1 Years	Oral	2500 ppm	dose tested [2500 ppm])			
		205	1 10415	oiui	PPm	endometrial hyper-			
						plasia slight increse			
						in incidenc (at high-			
			104	0.1	3000	est dose tested			
		Mouse	Weeks	Oral	ppm	[3000 ppm]) Slightly increased			
						incidence of cystic			
						hyperplasia in			
						Uterus:15/49, 17/49			
						13/50, 20/49 (at			
		Rat	27 Months	Oral	2500	highest dose tested			
		Kai	Wontins	Orai	ppm	[2500 ppm]) Increased incidence			
						of polyps (at highest			
			27		2500	dose tested [2500			
		Rat	Months	Oral	ppm	ppm])			
			2 Gen		5000	no effect (at highest			
		Rat	Adult (F0)	Oral	5000 ppm	dose tested [5000 ppm])			
		Itut	2 Gen	orur	PPm	no effect (at highest			
			Offspri		5000	dose tested [5000			
		Rat	ng (F1)	Oral	ppm	ppm])			
			2 Gen Adult		5000	no effect (at highest			
		Rat	(F1)	Oral	ppm	dose tested [5000 ppm])			
	Vagina	Itut	(11)	orur	ppm	no effect (at highest	No consistent		
	histopa-		13		12000	dose tested [12000	effect on va-		
	thology	Rat	Weeks	Oral	ppm	ppm])	gina		
			90		300 mg/kg	no effect (at highest dose tested [300			
		Dog	90 Days	Oral	bw/day	mg/kg bw/day])			
		205	24,5	0.101	e day	no effect (at highest			
			104		3000	dose tested [3000			
		Mouse	Weeks	Oral	ppm	ppm])			
			2 Gen Adult		5000	no effect (at highest dose tested [5000			
		Rat	(F0)	Oral	ppm	ppm])			
			2 Gen			no effect (at highest			
			Offspri		5000	dose tested [5000			
		Rat	ng (F1)	Oral	ppm	ppm])			
			2 Gen Adult		5000	no effect (at highest dose tested [5000			
		Rat	(F1)	Oral	ppm	ppm])			
	Oestrus	•	2 Gen:			no effect (at highest	No alteration		
	cyclicity		Adult		5000	dose tested [5000	to oestrus cy-		
		Rat	(F0)	Oral	ppm	ppm])	clicity		
			2 Gen:		5000	no effect (at highest dose tested [5000			
		Rat	Adult (F1)	Oral	ppm	ppm])			
	Testis	1	()	21001	2500	no effect (at highest	o consistent		
	(Weight)		3		mg/kg	dose tested [2500	effects on tes-		
		Rabbit	Weeks	Dermal	bw/day	mg/kg bw/day])	tis		

Groupi	Line(s) of		Exposu	Route of exposu	Effect		Assessment of each line	Assessment of the integrated lines of	
ng	evidence	Species	re	re	dose -	Observed effects	of evidence	evidence	Modality
		•			1000	no effect (at highest			
			28		mg/kg	dose tested [1000			
		Rat	Days	Dermal	bw/day	mg/kg bw/day])			
			20	T 1 1	0.05	no effect (at highest			
		Rat	28 Days	Inhala- tion	0.05 mg/L	dose tested [0.05 mg/L])			
		Rat	Days	tion	mg/L	Statistically signifi-			
						cant increase in rel			
						weight but not abs			
						or rel to brain			
			10		12000	weight (at highest			
		Rat	13 Weeks	Oral	12000	dose tested [12000			
		Näi	WEEKS	Olai	ppm	ppm]) Decreased abs and			
					300	rel weight (at highest			
			13		mg/kg	dose tested [300			
		Dog	Weeks	Oral	bw/day	mg/kg bw/day])			
			~ ~		300	no effect (at highest			
		D	90 Dava	01	mg/kg	dose tested [300			
		Dog	Days	Oral	bw/day	mg/kg bw/day]) Decreased abs and			
					2500	rel (at highest dose			
		Dog	1 Years	Oral	ppm	tested [2500 ppm])			
						no effect (at highest			
			104		3000	dose tested [3000			
		Mouse	Weeks	Oral	ppm	ppm])			
			27		2500	no effect (at highest			
		Rat	27 Months	Oral	2500	dose tested [2500			
	Testis (his-	Kat	Wolluis	Olai	ppm 2500	ppm]) no effect (at highest			
	topatho-		3		mg/kg	dose tested [2500			
	logy)	Rabbit	Weeks	Dermal	bw/day	mg/kg bw/day])			
					1000	no effect (at highest			
		D (28		mg/kg	dose tested [1000			
		Rat	Days	Dermal	bw/day	mg/kg bw/day]) no effect (at highest			
			28	Inhala-	0.05	dose tested [0.05			
		Rat	Days	tion	mg/L	mg/L])			
						no effect (at highest			
		_	13		12000	dose tested [12000			
		Rat	Weeks	Oral	ppm 200	ppm])			
			13		300 mg/kg	no effect (at highest dose tested [300			
		Dog	Weeks	Oral	bw/day	mg/kg bw/day])			
		8			300	no effect (at highest			
			90		mg/kg	dose tested [300			
		Dog	Days	Oral	bw/day	mg/kg bw/day])			
					2500	no effect (at highest			
		Dog	1 Years	Oral	2500 ppm	dose tested [2500 ppm])			
		Dog	1 1 0 1 5	Ulai	Phil	no effect (at highest			
			104		3000	dose tested [3000			
		Mouse	Weeks	Oral	ppm	ppm])			
						no effect (at highest			
		D.	27		2500	dose tested [2500			
		Rat	Months 2 Gen	Oral	ppm	ppm])			
			2 Gen Adult		5000	no effect (at highest dose tested [5000			
		Rat	(F0)	Oral	ppm	ppm])			
			2 Gen			no effect (at highest			
			Offspri		5000	dose tested [5000			
		Rat	ng (F1)	Oral	ppm	ppm])			
			2 Gen		5000	no effect (at highest			
		Rat	Adult (F1)	Oral	5000	dose tested [5000			
	L	Kat	(11)	Ulal	ppm	ppm])		1	

Groupi	Line(s) of		Exposu	Route of exposu	Effect		Assessment of each line	Assessment of the integrated lines of	
 ng	evidence	Species	re	re	dose -	Observed effects no effect (at highest	of evidence	evidence	Modality
			3		2500 mg/kg	dose tested [2500			
		Rabbit	Weeks	Dermal	bw/day	mg/kg bw/day])			
	Epididy-				1000	no effect (at highest	No consistent		
	mis	D (28		mg/kg	dose tested [1000	effect on		
	(Weight)	Rat	Days	Dermal	bw/day	mg/kg bw/day]) no effect (at highest	epididymis		
			28	Inhala-	0.05	dose tested [0.05			
		Rat	Days	tion	mg/L	mg/L])			
	Epididy-		•		1000	no effect (at highest			
	mis (histopa-	Rat	28 Days	Dermal	mg/kg bw/day	dose tested [1000 mg/kg bw/day])			
	(histopa- thology)	Rat	Days	Dermai	0w/day	no effect (at highest			
	817		28	Inhala-	0.05	dose tested [0.05			
		Rat	Days	tion	mg/L	mg/L])			
			13		12000	no effect (at highest dose tested [12000			
		Rat	Weeks	Oral	12000 ppm	ppm])			
		Ttut	W CORD	oiui	300	no effect (at highest			
			13		mg/kg	dose tested [300			
		Dog	Weeks	Oral	bw/day	mg/kg bw/day])			
			90		300 mg/kg	no effect (at highest dose tested [300			
		Dog	Days	Oral	bw/day	mg/kg bw/day])			
		205	2490	0141	e maay	no effect (at highest			
					2500	dose tested [2500			
		Dog	1 Years	Oral	ppm	ppm])			
			104		3000	no effect (at highest dose tested [3000			
		Mouse	Weeks	Oral	ppm	ppm])			
					11	no effect (at highest			
			27		2500	dose tested [2500			
		Rat	Months	Oral	ppm	ppm])			
			2 Gen Adult		5000	no effect (at highest dose tested [5000			
		Rat	(F0)	Oral	ppm	ppm])			
			2 Gen			no effect (at highest			
		D .	Offspri	0.1	5000	dose tested [5000			
		Rat	ng (F1) 2 Gen	Oral	ppm	ppm]) no effect (at highest			
			Adult		5000	dose tested [5000			
		Rat	(F1)	Oral	ppm	ppm])			
	Prostate				300	no effect (at highest	No consistent		
	(Weight)	Dec	00 day	Orral	mg/kg	dose tested [300	treatment		
		Dog	90 day 2 Gen	Oral	bw/day	mg/kg bw/day]) no effect (at highest	related effect		
			Adult		5000	dose tested [5000			
		Rat	(F0)	Oral	ppm	ppm])			
			2 Gen		-000	no effect (at highest			
		Rat	Offspri ng (F1)	Oral	5000	dose tested [5000 ppm])			
		Kat	2 Gen	Olai	ppm	no effect (at highest			
			Adult		5000	dose tested [5000			
		Rat	(F1)	Oral	ppm	ppm])			
	Prostate		2		2500	no effect (at highest			
	histo- pathology	Rabbit	3 Weeks	Dermal	mg/kg bw/day	dose tested [2500 mg/kg bw/day])			
	(with sem-	Rabolt	TTEERS	Dorman	1000	no effect (at highest			
	inal vesi-		28		mg/kg	dose tested [1000			
	cles and	Rat	Days	Dermal	bw/day	mg/kg bw/day])			
	coagulat-		20	Im11	0.05	no effect (at highest			
	ing glands)	Rat	28 Days	Inhala- tion	0.05 mg/L	dose tested [0.05 mg/L])			
		Tut	Duys		<u>6</u> , L	no effect (at highest	1		
			13		12000	dose tested [12000			
		Rat	Weeks	Oral	ppm	ppm])			

Groupi	Line(s) of		Exposu	Route of exposu	Effect		Assessment of each line	Assessment of the integrated lines of	
ng	evidence	Species	re	re	dose -	Observed effects	of evidence	evidence	Modality
					300	no effect (at highest			•
		D	13	0.1	mg/kg	dose tested [300			
		Dog	Weeks	Oral	bw/day 300	mg/kg bw/day]) no effect (at highest			
			90		mg/kg	dose tested [300			
		Dog	Days	Oral	bw/day	mg/kg bw/day])			
						no effect (at highest			
		D	1 37	0.1	2500	dose tested [2500			
		Dog	1 Years	Oral	ppm	ppm]) no effect (at highest			
			104		3000	dose tested [3000			
		Mouse	Weeks	Oral	ppm	ppm])			
						no effect (at highest			
		Det	27 Montha	Orral	2500	dose tested [2500			
		Rat	Months 2 Gen:	Oral	ppm	ppm]) no effect (at highest			
			Adult		5000	dose tested [5000			
		Rat	(F0)	Oral	ppm	ppm])			
			2 Gen:		-	no effect (at highest			
		Rat	Offspri ng (F1)	Oral	5000	dose tested [5000			
		Kat	2 Gen:	Orai	ppm	ppm]) no effect (at highest			
			Adult		5000	dose tested [5000			
		Rat	(F1)	Oral	ppm	ppm])			
	Sperm		2 Gen:		-	no effect (at highest	No alteration		
	Number	Rat	Offspri ng (F0)	Oral	5000	dose tested [5000 ppm])	to sperm number,		
		Kat	2 Gen:	Olai	ppm	no effect (at highest	sperm motil-		
			Offspri		5000	dose tested [5000	ity or sperm		
		Rat	ng (F1)	Oral	ppm	ppm])	morphology		
	Sperm		2 Gen:		5000	no effect (at highest			
	Motility	Rat	Offspri ng (F0)	Oral	5000 ppm	dose tested [5000 ppm])			
		Rat	2 Gen:	Oldi	ppin	no effect (at highest			
			Offspri		5000	dose tested [5000			
		Rat	ng (F1)	Oral	ppm	ppm])			
	Sperm Morpho-		2 Gen: Offspri		5000	no effect (at highest dose tested [5000			
	logy	Rat	ng (F0)	Oral	ppm	ppm])			
	1085	1100	2 Gen:	0141	PPm	no effect (at highest			
			Offspri		5000	dose tested [5000			
<u> </u>	F (11)	Rat	ng (F1)	Oral	ppm	ppm])	D 1		
Sensi- tive to,	Fertility (mam-		2 Gen: Adult		5000	no effect (at highest dose tested [5000	Decreased pregnancy		
but not	(main- mals)	Rat	(F0)	Oral	ppm	ppm])	rate observed		
diag-	,					Decreased preg-	in F1 adult		
nostic			2 Gen:		5000	nancy rates in F1	rats, evident		
of, EATS		Rat	Adult (F1)	Oral	5000	generation (all doses)	in all in all groups - asso-		
LAID	Time to	ixat	2 Gen:	Uldi	ppm	no effect (at highest	ciated with		
	mating		Adult		5000	dose tested [5000	higher body		
	-	Rat	(F0)	Oral	ppm	ppm])	weight at		
			2 Gen:		5000	no effect (at highest	pairing in all dose groups		
		Rat	Adult (F1)	Oral	5000 ppm	dose tested [5000 ppm])	(including		
	Gestation	itut	2 Gen:	5141	PPm	no effect (at highest	control). No		
	length		Adult		5000	dose tested [5000	effects on		
		Rat	(F0)	Oral	ppm	ppm])	time of ma-		
			2 Gen:		5000	no effect (at highest	ting or gesta- tion length		
		Rat	Adult (F1)	Oral	ppm	dose tested [5000 ppm])			
		Tut	(11)	5141	300	no effect (at highest			
			13		mg/kg	dose tested [300			
		Rabbit	Days	Oral	bw/day	mg/kg bw/day])			

Groupi	Line(s) of		Exposu	Route of exposu	Effect		Assessment of each line	Assessment of the integrated lines of	
ng	evidence	Species	re	re	dose -	Observed effects	of evidence	evidence	Modality
	Number of								
	implanta- tions, cor-		2 Gen		400	no effect (at highest			
	pora lutea		adult		mg/kg	dose tested [400			
	NT 1	Rat	(F0)	Oral	bw/day	mg/kg bw/day])			
	Numbers of embry-				300	no effect (at highest			
	onic or		13		mg/kg	dose tested [300			
	foetal	Rabbit	Days	Oral	bw/day	mg/kg bw/day])	No consistent		
	deaths and viable foe-				400	no effect (at highest	treatment re- lated effects		
	tuses		14		mg/kg	dose tested [400	observed		
	D. I	Rat	Days	Oral	bw/day	mg/kg bw/day])			
	Post im- plantation					1 abortion at 150 mg/kg day 22 of	No consistent effect ob-		
	loss					gestation, 4 abor-	served, abor-		
						tions at 300 mg/kg	tions observed		
			13		150 mg/kg	on days 19 (1), 21 (1) and 24 (2) of	in the pres- ence of sys-		
		Rabbit	Days	Oral	bw/day	gestation	temic toxicity		
			2 Gen:			no effect (at highest			
		Rat	Adult (F0)	Oral	5000	dose tested [5000 ppm])			
		Kat	2 Gen:	Olai	ppm	no effect (at highest			
			Adult		5000	dose tested [5000			
	T ::	Rat	(F1)	Oral	ppm 200	ppm])	N		
	Litter size		13		300 mg/kg	no effect (at highest dose tested [300	No consistent effect on litter		
		Rabbit	Days	Oral	bw/day	mg/kg bw/day])	size, viability		
			14		400	no effect (at highest	and weight. In		
		Rat	14 Days	Oral	mg/kg bw/day	dose tested [400 mg/kg bw/day])	rats, at the second mate		
		Itut	2 Gen:	Olui	owiday	no effect (at highest	(F2B pups),		
			Adult	- 1	5000	dose tested [5000	there was a		
		Rat	(F0)	Oral	ppm	ppm]) Slight decrease in	slight, non- significant		
			2 Gen:			litter size due to in-	higher pup		
		_	Adult		5000	creased pup loss at	loss at		
	Litter via-	Rat	(F1) 2 Gen:	Oral	ppm	5000ppm no effect (at highest	5000ppm dur- ing the wean-		
	bility		2 Gen. Offspri		5000	dose tested [5000	ing period		
	5	Rat	ng (F1)	Oral	ppm	ppm])	(persisting,		
						Slight non-signifi-	even after culling on day		
						cant increased pup loss at 5000ppm	4 post-par-		
			2 Gen:			during weaning pe-	tum), result-		
		Pot	Offspri	Oral	5000	riod; No effect on	ing in slightly lower litter		
	Litter/pup	Rat	ng (F2)	Oral	ppm 300	loss post-partum no effect (at highest	size.		
	weight		13		mg/kg	dose tested [300			
		Rabbit	Days	Oral	bw/day	mg/kg bw/day])			
						Decreased mean pup weight at birth at			
						5000ppm; De-			
						creased litter weight			
						at 5000ppm; de- creased pup growth			
						through to weaning			
			2.0			at 5000ppm; de-			
			2 Gen: Offspri		5000	creased mean pup weight at weaning at			
		Rat	ng (F1)	Oral	ppm	5000ppm			
						Decreased mean pup			
			2 Gen: Offspri		5000	weight at birth at 5000ppm; decreased			
		Rat	ng (F2)	Oral	ppm	litter weight at			

Groupi	Line(s) of		Exposu	Route of exposu	Effect		Assessment of each line	Assessment of the integrated lines of	
ng	evidence	Species	re	re	dose -	Observed effects	of evidence	evidence	Modality
						5000ppm; decreased pup growth through			
						to weaning at 1500			
						and 5000ppm;			
	Fetal deve-						Delay in sex-		
	lopment		2 Gen:			Delay in preputial	ual maturation in males as a		
			Offspri		5000	separation at	result of de-		
		Rat	ng (F1)	Oral	ppm	5000ppm	layed growth		
	Sex Ratios		13		300 mg/kg	no effect (at highest dose tested [300	No consistent treatment		
		Rabbit	Days	Oral	bw/day	mg/kg bw/day])	related effect		
			-		400	no effect (at highest			
		Det	14 Dava	Orral	mg/kg	dose tested [400			
		Rat	Days 2 Gen:	Oral	bw/day	mg/kg bw/day]) no effect (at highest			
			Offspri		5000	dose tested [5000			
		Rat	ng (F1)	Oral	ppm	ppm])	ļ		
			2 Gen: Offspri		5000	no effect (at highest dose tested [5000			
		Rat	ng (F2)	Oral	ppm	ppm])			
	Presence				300	no effect (at highest	Delayed ossi-		
	of anoma- lies (exter-	Rabbit	13 Dava	Oral	mg/kg bw/day	dose tested [300 mg/kg bw/day])	fication were observed		
	nal, vis-	Kabbit	Days	Oral	ow/day	Increased incidence	observed		
	ceral, skel-					of irregularly ossi-			
	etal					fied internasals at			
					300	highest dose tested [300 mg/kg			
			13		mg/kg	bw/day])			
		Rabbit	Days	Oral	bw/day	<u> </u>			
						no effect (at highest dose tested [400			
						mg/kg bw/day])			
						Increased renal pel-			
					400	vic cavitations at 400 mg/kg, but 3 of			
					mg/kg	5 affected foetuses			
		Rat	14 days	Oral	bw/day	were from 1 litter			
						Increased incidence			
						of incomplete ossifi- cation at highest			
					400	dose tested [400			
		D (14 1	0.1	mg/kg	mg/kg bw/day])			
	Adrenal	Rat	14 days	Oral	bw/day	Increased adrenal	No consistent		
	gland					weight in females in	treatment re-		
	(Weight)					low dose group (100	lated effect on		
					2500	mg/kg), not ob- served in any other	adrenal gland		
			3		mg/kg	dose. No histopatho-			
		Rabbit	Weeks	Dermal	bw/day	logical findings.			
			28		1000 mg/kg	no effect (at highest dose tested [1000			
		Rat	28 Days	Dermal	bw/day	mg/kg bw/day])			
						10 % increase (at]		
						highest dose tested [0.05 mg/L]) not			
			28	Inhala-	0.05	statistically signifi-			
		Rat	Days	tion	mg/L	cant			
						Decreased absolute			
						(-30%) and relative to bw weight (-			
						11%) (at highest			
		D	13		12000	dose tested [12000			
		Rat	Weeks	Oral	ppm	ppm])			

									Assessment	
					Route of			Assessment	of the integrated	
	Groupi ng	Line(s) of evidence	Species	Exposu re	exposu re	Effect dose -	Observed effects	of each line of evidence	lines of evidence	Modality
			Species			300	no effect (at highest	01011401100		1110 44110
			Dog	13 Weeks	Oral	mg/kg bw/day	dose tested [300 mg/kg bw/day])			
			Dog	WEEKS	Olai	300	no effect (at highest			
				90		mg/kg	dose tested [300			
			Dog	Days	Oral	bw/day	mg/kg bw/day])			
						2500	no effect (at highest dose tested [2500			
			Dog	1 Years	Oral	ppm	ppm])			
			0	2 Gen		- 11	no effect (at highest			
			D .	Adult	0.1	5000	dose tested [5000			
			Rat	(F0) 2 Gen	Oral	ppm	ppm]) no effect (at highest			
				Offspri		5000	dose tested [5000			
			Rat	ng (F1)	Oral	ppm	ppm])			
				2 Gen		5000	no effect (at highest			
			Rat	Adult (F1)	Oral	5000 ppm	dose tested [5000 ppm])			
			Tut	2 Gen	5141	PPm	no effect (at highest			
			_	Offspri		5000	dose tested [5000			
		Adrenal	Rat	ng (F2)	Oral	ppm 2500	ppm]) no effect (at highest			
		Adrenal gland		3		2500 mg/kg	dose tested [2500			
		(Histopath	Rabbit	Weeks	Dermal	bw/day	mg/kg bw/day])			
		ology)					Non treatment-re-			
							lated adrenal lesion in 3 males at 1000			
							mg/kg- lesion was			
							also seen in 1 male			
						1000	at 300 mg/kg, 1 fe-			
				28		mg/kg	male at 30 mg/kg, and 1 control fe-			
			Rat	Days	Dermal	bw/day	male.			
				20	T 1 1	0.05	no effect (at highest			
			Rat	28 Days	Inhala- tion	0.05 mg/L	dose tested [0.05 mg/L])			
			Kat	Days	tion	mg/L	no effect (at highest			
				13		12000	dose tested [12000			
			Rat	Weeks	Oral	ppm	ppm])			
				13		300 mg/kg	no effect (at highest dose tested [300			
			Dog	Weeks	Oral	bw/day	mg/kg bw/day])			
						300	no effect (at highest			
			Dog	90 Dave	Oral	mg/kg bw/day	dose tested [300 mg/kg bw/day])			
			Dug	Days	Utal	ow/uay	no effect (at highest			
						2500	dose tested [2500			
			Dog	1 Years	Oral	ppm	ppm])			
				104		3000	no effect (at highest dose tested [3000			
			Mouse	Weeks	Oral	ppm	ppm])			
							no effect (at highest			
			Rat	27 Months	Oral	2500	dose tested [2500			
		Body	Nät	wonuns	Ulai	ppm	ppm]) Decreased maternal	Systemic	Systemic	EAS
		weight					body weight at 150	toxicity	toxicity	
							mg/kg days 6-8 and	evident at	evident in	
							at 300 mg/kg days 6-19 (all of dosage	high dose group – body	doses of 160 mg/kg/day	
							period),19-29 (post	weight	for rabbit	
							dosage period), and	changes	and dog,	
						200	days 6-29 and 0-29		3000 ppm in	
Evi	idence of			13		300 mg/kg	periods; increased body weight gains at		mice and <500 ppm in	
	ral toxicity		Rabbit	Days	Oral	bw/day	150 and 300 mg/kg		rat	

				Route of			Assessment	Assessment of the integrated	
Groupi	Line(s) of		Exposu	exposu	Effect		of each line	lines of	
 ng	evidence	Species	re	re	dose -	Observed effects	of evidence	evidence	Modality
						days 19-29 of gesta- tion (post dosage			
						period)			
						Statistically signifi-			
						cant decrease in ma-			
						ternal body weight gestation day 20 at			
						400 mg/kg bw/day			
						and decreased ad-			
					160	justed bw gain at			
		Rat	14 Days	Oral	mg/kg bw/day	160 and 400 mg/kg bw/day			
		Kat	2 Gen	Olai	400	0w/day			
			Offspri		mg/kg				
		Rat	ng (F1)	Oral	bw/day	No effect			
			3		2500 mg/kg	No effect on body			
		Rabbit	Weeks	Dermal	bw/day	weight			
						Slight decrease in			
						body weight in			
						males at 300 and 1000 mg/kg and fe-			
						males at 1000			
					1000	mg/kg, but not con-			
		D (28	D 1	mg/kg	sistently statistically			
		Rat	Days	Dermal	bw/day	significant Decreased body			
			28	Inhala-	0.05	weight change at			
		Rat	Days	tion	mg/L	0.05 mg/L;			
						Decreased body			
						weight gain for males and females			
						during treatment at			
						12000ppm; In-			
						creased weight gained in males and			
						females at			
						12000ppm during			
						recovery period; De-			
						creased weight in males and females			
						at 12000ppm both			
		-	13	<u> </u>	12000	during treatment and			
		Rat	Weeks	Oral	ppm	recovery period Decreased mean			
						body weight gain in			
						males and females			
					200	during treatment at			
			13		300 mg/kg	300 mg/kg, no effect during recovery pe-			
		Dog	Weeks	Oral	bw/day	riod			
					300	No effect on body			
		Dag	90 Davs	Oral	mg/kg	weight; no effect on			
		Dog	Days	Oral	bw/day	body weight gains Statistically signifi-			
						cant decreased mean			
						body weight at week			
						4 in males at 12000ppm; de-			
						creased overall body			
						weight gain in males			
		D-4	13 Waalsa	01	12000	and females at			
		Rat	Weeks	Oral	ppm	12000ppm Decreased mean			
					2500	body weight in male			
		Dog	1 Years	Oral	ppm	2500ppm group			

				Route of			Assessment	Assessment of the integrated	
Groupi ng	Line(s) of evidence	Species	Exposu re	exposu re	Effect dose -	Observed effects	of each line of evidence	lines of evidence	Modality
 ng	evidence	Species	10	10	uose -	week 12-5 due to 1	or evidence	evidence	Withdanty
						individual; mean			
						body weights			
						dropped week 52 due to fasting for			
						pathology testing			
						Decreased body			
			104	- 1	3000	weight gain for fe-			
		Mouse	Weeks 27	Oral	ppm 2500	males at 3000ppm No effect on body			
		Rat	Months	Oral	2500 ppm	weight			
		1000		0141	PPm	Decreased body			
						weight gain for fe-			
						males during preg-			
						nancy at 5000ppm; Increased body			
			2 Gen			weight gain post-			
			adult		5000	partum in females at			
		Rat	(F0)	Oral	ppm	5000ppm			
						Decreased mean bodyweight in males			
						and females at			
						5000ppm; decreased			
						growth rate in males			
						and females' weeks 1-4 at 5000ppm;			
						Decreased body			
						weight gain during			
						pregnancy in fe-			
						males' weeks 1-2 of 1st mating at 1500			
			2 Gen			and 5000ppm, and			
			Adult		15000	2nd mating at 1500			
		Rat	(F1)	Oral	ppm	and 5000ppm.			
	Food					Decreased absolute	No consistent		
	Consumpti on					maternal feed con- sumption at 300	treatment related effect		
	on					mg/kg days 6-19	on food		
						(entire dosage pe-	consumption		
						riod); decreased rel-			
						ative maternal feed consumption at 300			
					300	mg/kg days 6-19			
			13		mg/kg	(entire dosage pe-			
		Rabbit	Days	Oral	bw/day	riod)			
						Statistically signifi- cant decreased ma-			
			2 Gen		400	ternal food con-			
			Adult		mg/kg	sumption at 400			
		Rat	(F0)	Oral	bw/day	mg/kg			
			28		1000 mg/kg	no effect (at highest dose tested [1000			
		Rat	Days	Dermal	bw/day	mg/kg bw/day])			
						no effect (at highest			
		D.	28 David	Inhala-	0.05	dose tested [0.05			
		Rat	Days	tion	mg/L	mg/L]) Decreased food in-			
						take in males and fe-			
						males at 12000ppm			
						during treatment pe-			
						riod; Increased food			
						consumption during recovery period in			
						females at			
			13		12000	12000ppm, but not			
		Rat	Weeks	Oral	ppm	in males; Increased			

Groupi ng	Line(s) of evidence	Species	Exposu re	Route of exposu re	Effect dose -	Observed effects	Assessment of each line of evidence	Assessment of the integrated lines of evidence	Modality
				-		food conversion ra-			
						tio both during treat-			
						ment and recovery in males and fe-			
						males at 12000ppm			
						Decreased group			
						mean food intake in			
						males and females			
						during treatment at 300 mg/kg, primar-			
						ily due to lower in-			
					300	take weeks 1-3, no			
		_	13		mg/kg	effect during recov-			
		Dog	Weeks	Oral	bw/day 300	ery			
					mg/kg	no effect (at highest dose tested [300			
		Dog	90 days	Oral	bw/day	mg/kg bw/day])			
		Ŭ,				Slight but not statis-			
						tically significantly			
			13		12000	decreased food con-			
		Rat	Weeks	Oral	12000 ppm	sumption for males at 12000ppm			
		Rut	Weeks	Olui	ppin	no effect (at highest			
						dose tested [2500			
						ppm])			
						No treatment-related effect on food con-			
						sumption; initial			
						lack of appetite			
						week 1 in males (2			
						at 500ppm, 2 at			
						2500ppm) and fe- males (1 at			
						2500ppm) recovered			
						week 2 in all except			
						1 male 500ppm and			
						1 male 2500ppm,			
					2500	considered due to palatability prob-			
		Dog	1 Years	Oral	ppm	lems			
						no effect (at highest			
			104		3000	dose tested [3000			
		Mouse	Weeks	Oral	ppm	ppm])			
						Statistically signifi- cant increased food			
						consumption in			
						males' weeks 1-40 at			
						2500ppm, only oc-			
			27		2500	casional after this			
		Rat	27 Months	Oral	2500 ppm	point			
			2 Gen:	2141	rr	no effect (at highest			
			Adult		5000	dose tested [5000			
		Rat	(F0)	Oral	ppm	ppm])			
						Decreased food con- sumption weeks 5-8			
						in males and fe-			
						males at 5000ppm,			
						recovered to control			
			2 Gen: Adult		5000	levels week 8-16 in males, marginal re-			

EAS mediated endocrine activity

E modality: Dicamba was inactive in Toxcast E R Bioactivity Model, and therefore considered sufficiently investigated for E modality. In a published paper, dicamba showed an effect in ER α expressing cells. The value calculated was -5.5. (Van Vugt-Lussenburg et al , 2014), but the reliability of the study is questionable.

Conclusion on E-mediated endocrine activity: E-mediated endocrine activity was sufficiently investigated and dicamba is likely not an endocrine disruptor via the E receptor.

A modality: dicamba tested negative in 14/14 available ToxCast AR assays. Level 2 (OECD 458) and Level 3 (Hershberger bioassay in rats, i.e. OECD TG 441) tests are not available. Dicamba was not tested in OECD 458 assay.

Conclusion on A-mediated endocrine activity: No indication of A-mediated endocrine activity but A-mediated endocrine activity was not sufficiently investigated.

Steroidogenesis (S): Dicamba was tested in 2 ToxCast assays evaluating the potential of interaction with the human aromatase (hCYP19A1).

Level 2 assays according to guideline (H295R steroidogenesis assay, i.e. OECD TG 456 and aromatase assay, i.e. OPPTS 890.1200) are not available.

Conclusion on S-mediated endocrine activity: No indication of S-mediated endocrine activity but S-mediated endocrine activity was not sufficiently investigated.

EAS-mediated adversity:

Organ weights and histopathology:

Adrenal

No consistent effect was observed on adrenal weight or histopathology. In the combined chronic toxicity study in rats, (1987) pheochromocytoma of the adrenal medulla was observed in the incidence: 1/47, 4/48, 3/46 and 5/46 at 0, 50, 250 and 2500 ppm, respectively. No adrenal medulla pheochromocytoma were observed before 12 months of age and therefore RMS considers it appropriate to calculate the incidence out of the number of animals who died after 12 months or were killed at termination. Historical control data were supplied by Syngenta and collected in 1985 (acceptability of HCD are discussed above). Incidence in females was outside HCD range (0-8.3%) in the high dose (11%) but without clear dose-response (not statistically significant trend or by pairwise comparison). Because of the lack of dose-response and lack of increased finding of adrenal medullary hyperplasia, in females, the increased incidence out of 60 animals, the incidence in high dose group is 8.3% (5/60) which is just inside HCD range. In males, the incidence was also above HCD in some groups, but the highest incidence was found in controls and therefore not considered treatment related.

Uterus: no histopathological changes were observed in dogs. Uterus was weighted in the two 90 days dog studies and seemed increased in high dose in **Mathematical (2010)** and decreased in high dose in **Mathematical (2003)**. No dose response was observed in either study and was not considered treatment related. In the combined chronic toxicity study in rats (**Mathematical (1985)**), a slight increase in cystic hyperplasia in the uterus was observed in the high dose females at termination but not at interim sacrifice. The incidence was 15/49 (31%), 17/49 (35%), 13/50 (26%) and 20/49 (41%) at 0, 50, 250 and 2500ppm, respectively. In females, 4/60 (6.7%), 5/60 (8.3%) and 8/60 (13.3%) polyps in the uterus was observed including all animals so the overall incidence of uterine polyps in the high dose group was slightly higher than concurrent and historical control data from the same laboratory (0-8.3%) but did not reach statistical significance. If only animals from 12 months to termination are considered, the incidences are 4/49 (8%), 3/49 (6%), 5/50 (10%), 8/49 (16%).

These effects were not observed in the 90 day rat study (1997). In this study 2 females had hydrometra in high dose (12000ppm) versus none in control, however, hydrometra was also noticed in 1 control animal in the recovery control group and not considered treatment related.

(mice) slight increase in endometrial hyperplasia in uterus in high dose with the incidences: 10/52 (19%), 14/41 (34%), 9/48 (19%), 12/48 (25%), 18/52 (35%) at 0, 50, 150, 1000 and 3000 ppm. There is a lack of clear dose response (although made difficult by different number of animals in groups) and the higher incidence in high dose was not considered treatment related.

In principle, effects on uterus in rats should be considered EATS mediated. The effects were only observed in aged animals and the effects in rats are also considered normal age related changes. However, if the higher incidence of these effects, observed in rats, in the high dose is a sign of treatment induced early reproductive senescence in females, this would be an adverse effect. It is difficult to confirm with the available data as estrus cycle was not investigated in the animals and no effects were observed in histopathology of the ovaries in the chronic studies. Furthermore, even if the aetiology of uterine endometrial stromal polyps is not well defined in rodents, there is no clear evidence that estrogen or estrogen-like compounds are associated with endometrial stromal polyp formation in rats while uterine endometrial polyps are recognised as being hormonal responsive in women (Davis, 2012)²¹. Other ED related MOA could be relevant, though.

Ovaries:

²¹ Davis, B (2012). Endometrial Stromal Polyps in Rodents: Biology, Etiology, and Relevance to Disease in Women. Toxicologic Pathology.

Absolute ovary weights seemed to be decreased in 13 week dog study (2003) but was not considered treatment related as there was no effect after adjusting for body weight. Ovary weight at 300 mg/kg bw/day did seem to be decreased after recovery, though. No changes was found in histopathology of the ovaries either at termination or after recovery.

Absolute and relative ovary weight was decreased in dogs (30 % abs/35 % rel, high dose) in the one year study without effects noted in the histopathological examination of the ovaries (1986).

No effects on ovary weight or histopathology in 28 day dermal toxicity study in rats (2002).

In the 90 day study in rats absolute ovary weight was 25 % decreased compared with control, but only 4 % relative to body weight probably reflecting the difference in body weight between groups. There were no histopathological findings in the ovaries after 13 weeks, and in recovery groups there was 1 animal with cyst and inflammation in top dose and none in control which were not considered dose related (1997).

Non-significant decrease in absolute and relative ovary weight (12-13%) with no histopathologic finding in the ovary was seen in the top dose in the 28 day inhalation toxicity study in rats (

In the combined chronic toxicity study in rats, ovaries did not seem affected and no treatment related histopatological differences from control were noted. No dose response was observed in variation of ovary weights (1985).

In the 2 generation study in rats, differences from control in high dose groups of absolute ovary weights were sometimes > 10%. However, not when adjusted to body weight or relative to body weight (1998).

Ovaries were not weighed in mice in the carcinogenicity study but histopathology did not show effects different from control (1988).

In dogs, no clear pattern was obvious of effects on the ovaries since observations were a decrease in the one year dog study (1986) and an increase in ovary weight in a 90 day study but not considered treatment related because it was driven by 1 animal with an ovarian cyst in high dose (1986) while no clear effect was observed in the other 90 day dog study (1986). No clear pattern was observed in rats or mice either.

Testicles:

Testes weight in the high dose was 17 % (abs) and 11 % (rel) lower than in control without histopathologial changes and the change was not statistically significant (

Testes weight seemed to be decreased in the one year dog study (1981) (11 % abs/13 % rel, high dose), which was not statistically significant. The standard deviation was a bit high in the control group and considering the low number of test animals, the decreased testes weight may not be considered adverse. No effects were seen in the histopathological examination of the organ.

(2012). Testes weight seemed to be slightly decreased in the high dose group but was < 10% absolute, or did not show clear dose response and furthermore no effects were noted histopathologically. Therefore, the effect on testes was not considered adverse.

No effects on testes were seen in rats in 28 days study (2009; 2009; 2002) or in the 2 year study (2009; 2002) or in the 2 year study (2009; 2009). No effects were observed on testes in rats in the 2 generation study (2009).

In the 90 day rat study (**building**) significantly increased testes weight was seen only relative to bw, but not absolute or relative to brain weight and was attributed to differences in body weight.

Overall, effects on testes weight (decreased weight) were observed in dogs but were generally of small magnitude and no effects were observed on histopathology of the organ. In rats and mice no treatment related effects were observed on testes. Effects were generally not observed on other male reproductive organs.

Sexual maturation

Delayed preputial separation in males was observed in the 2 generation study. The observed effect was likely caused by a smaller body weight and may not be a specific effect of treatment as a covariance analysis was done comparing pps between the treated groups and the control via analysis of covariance (ANCOVA), using bodyweight at 4 weeks as the covariate. ANCOVA comparison of time to balanopreputial separation between the treatment groups, with adjustment for bodyweight at 4 weeks, was not statistically significant: P = 0.117. Sexual maturation was not affected in females.

Sperm parameters.

Sperm parameters were examined in the 2 generation rat study, however, only in proven males which could create a bias. Sperm analysis was performed for 8 (F0) and 7 (F1) males from each group instead of the recommended 10 animals/group. There were no treatment-related effects on sperm motility, morphology and count of proven males.

Estrus cycle.

Estrus cycle data were not summarised and it was very difficult to assess any patterns in the number of rats with regular/irregular cycles across the groups. Also, according to OECD guideline 416, females of the P generation should be dosed during growth and for several complete oestrus cycles in order to detect any adverse effects on oestrus cycle normality by the test substance. OECD guideline document no 43 states that vaginal smears must be collected daily for at least two weeks for an accurate determination of

cycle length. Because the estrus cycle was just assessed for 7 days before mating (and during mating), 14 days was often not reached and normality of the cycles were difficult to evaluate. No differences in estrus cycle or time to mating were reported.

Regarding EAS-modalities, the RMS recommend that the dataset is not sufficiently investigated since the 2 two-generation study was performed before 2001 and several EAS-mediated parameters have not been investigated, or with deviations from guideline:

- Since there were effects on sexual development (delayed preputial separation), AGD should have been determined in F2 pups.
- Sperm parameters were only examined in proven males. Sperm analysis was performed for 8 (F0) and 7 (F1) males from each group instead of the recommended 10 animals/group
- Quantitative evaluation of primordial follicles.
- One randomly selected pup/litter should be selected for examination of thymus, brain and spleen according to OECD TG 416 (2001). In this study, selection was made on the basis of body weight at Day 21 post partum; within each litter, the pup with the median weight for the respective sex was chosen.
- Estrus cycle data were not summarised and it was very difficult/imposible to assess any patterns because vaginal smears were not collected long enough to assess normal cyclicity.

Conclusion on EAS-adversity: The WoE approach is against the EAS-mediated adversity as no clear pattern was observed (but with uncertainties listed above).

Adversity based on EAS-mediated pa- rameters	anistic ()k ('))		Next step of the assessment	Scenario selected (indicate with an "x" the scenario selected based on the assessed lines of evidence)
No (sufficiently inves- tigated)	Yes/No	1a	Conclude: ED criteria not met because there is no "EAS-mediated" adversity	
Yes (sufficiently inves- tigated)	Yes/No	16	Perform MoA analysis	
No (not sufficiently investigated)	Yes	2a (i)	Perform MoA analysis (additional infor- mation may be needed for the analysis)	
No (not sufficiently investigated)	No (sufficiently investigated)	2a (ii)	Conclude: ED criteria not met because no EAS-mediated endocrine activity ob- served	
No (not sufficiently investigated)	No (not suffi- ciently investi- gated)	2a (iii)	Generate missing level 2 and 3 infor- mation. Alternatively, generate missing "EATS-mediated" parameters. Depending on the outcome move to corresponding scenario	х
Yes (not sufficiently investigated)	Yes/No	2ъ	Perform MoA analysis	

RMS's proposed strategy for further ED assessment:

Level 2 studies for A-modality (i.e. OECD 458) and S-modality (H295R steroidogenesis assay, i.e. OECD TG 456 and aromatase assay, i.e. OPPTS 890.1200) should be conducted.

If the above mentioned Level 2 tests are positive (at least for one modality), then MoA should be analysed. If the above mentioned Level 2 tests are negative, then Level 3 (Hershberger bioassay in rats, i.e. OECD TG 441) should be performed.

If Hershberger bioassay in rats is negative, then ED criteria are not met (Scenario 2a (ii)). If Hershberger bioassay in rats is positive, then MoA should be analysed (Scenario 2a (i); additional data might be needed for MoA analysis – extended one-generation reproductive toxicity study as a last step).

ED assessment for non-target organisms

Acc. to the test strategy recommendations provided in the ECHA/EFSA Guidance (2018), further consideration on the potential ED properties on non-target organisms other than mammals is required. The reason for this is that dicamba is likely not endocrine disrupting in mammals with regard to the E- and T-modalities, and that the dataset for the A- and S-modalities was considered not sufficient to address the adversity and endocrine activity of dicamba in mammals. Pending the outcome of requested studies for

humans/mammals, further consideration on the potential ED properties of dicamba on non-target organisms other than mammals is required.

See Table ED1 for the studies in non-mammalian species included in the ED assessment of dicamba.

For the ED assessment a total of six ecotoxicity studies are available, comprising two avian reproduction assays (OECD TG 206), two fish early life stage (ELS) toxicity assays (OECD TG 210, or alike) and two additional fish toxicity studies. These bird and fish assays were evaluated in Vol. 3 CA sections B.9.1 and B.9.2, respectively. Noteworthy, these assays are not specifically designed to detect endocrine disruption and therefore the endpoints, though some are endocrine-sensitive, cannot be considered specific to identify an endocrine MoA.

ED assessment for T-modality

To have the T-mediated adversity wrt. other non-target organisms other than mammals sufficiently investigated, the results from an amphibian growth and development assay (LAGDA; OECD TG 241) or alternatively negative test results from an amphibian metamorphosis assay (AMA; OECD TG 231) would be needed. These studies were however not included in the dossier. Based on the available information, the applicant has assembled the lines of evidence table for thyroid adversity and activity. Table ED1: Lines of evidence for adverse effects and endocrine activity relate to T-modality

	Study ID matrix	Effect clas- sification	Effect target	Species	Dura- tion of expo- sure	Route of expo- sure/ad minis- tration	Effect Con- centration	Observed effect	Assessment of each line of evidence	Assess- ment of the inte- grated line of evi- dence	Moda- lity
Inte- grated lines of evi- dence for en- do- crine		<i>In vitro</i> me- chanistic	Thyroid transporter transthyretin binding ToxCast thy- roid assays (10) CALUX nu- clear recep- tor assay (TRb) ToxCast thy- roid peroxi- dase inhibi- tion assay	See section 4.1.2	2			Inactive in thyroid transporter trans- thyretin binding assay Inactive in all ToxCast thyroid assays Inactive in TRb assay Inactive in Tox- Cast thyroid pe- roxidase inhibi- tion assay	No evidence of endocrine ac- tivity No evidence of endocrine ac- tivity No evidence of endocrine ac- tivity No evidence of endocrine ac- tivity	Overall not indicative of endo- crine activ- ity	Т
activity			ToxCast so- dium-iodine symporter inhibition as- say					Inactive in Tox- Cast sodium-io- dine symporter in- hibition assay	No evidence of endocrine ac- tivity		
		<i>In vivo</i> me- chanistic	n/a								
Inte-		EATS- mediated parameters	n/a								
grated lines of evi-	22			Pimephales promelas	33 days	Water	n/a	No effect on length	No evidence of adversity	Overall not indicative	
dence for ad-	21	Sensitive to, but not di-	Length	Oncorhynchus mykiss	21 days	Water	n/a	No effect on length	No evidence of adversity	of adverse effects	No
versity	23	but not di- agnostic of, EATS		Cyprinodon variegatus	34 days	Water	n/a	No effect on length	No evidence of adversity	from pa- rameters	No
	20		Weight	Colinus virgi- nianus	21 weeks	Dietary	n/a	No effect on weight	No evidence of adversity	sensitive to, but not	

	19			Anas platyr- hynchos	21 weeks	Dietary	n/a	No effect on weight	No evidence of adversity	diagnostic of, EATS
	22			Pimephales promelas	33 days	Water	n/a	No effect on weight	No evidence of adversity	01, EATS
	21			Oncorhynchus mykiss	21 days	Water	n/a	No effect on weight	No evidence of adversity	
	23			Cyprinodon variegatus	34 days	Water	n/a	No effect on weight	No evidence of adversity	
	20			Colinus virgi- nianus	21 weeks	Dietary	n/a	No effect on num- ber of hatchlings	No evidence of adversity	
	19		Develop- ment	Anas platyr- hynchos	21 weeks	Dietary	1600 ppm	Decrease in hat- chlings	Potential evi- dence of sys- temic toxicity at highest test concentration	
	22		ment	Pimephales promelas	33 days	Water	n/a	No effects on hatching time or hatching success	No evidence of adversity	
	23			Cyprinodon variegatus	34 days	Water	n/a	No effects on hatching time or hatching success	No evidence of adversity	
	19		Morphology	Anas platyr- hynchos	21 weeks	Dietary	n/a	No abnormalities	No evidence of adversity	
	22		Worphology	Pimephales promelas	33 days	Water	n/a	No abnormalities	No evidence of adversity	
	20			Colinus virgi- nianus	21 weeks	Dietary	n/a	No effect on mor- tality	No evidence of adversity	
	19			Anas platyr- hynchos	21 weeks	Dietary	n/a	No effect on mor- tality	No evidence of adversity	
Evi-	21	Mortality		Oncorhynchus mykiss	21 days	Water	n/a	No effect on mor- tality	No evidence of adversity	
dence of ge-	22			Pimephales promelas	33 days	Water	n/a	No effect on mor- tality	No evidence of adversity	
neral toxicity	23			Cyprinodon variegatus	34 days	Water	n/a	No effect on mor- tality	No evidence of adversity	
toxicity	21	Behaviour		Oncorhynchus mykiss	21 days	Water	320, 580, 1000 mg/L	Calm behaviour	Consistent with stress due to systemic toxicity	
	20			Colinus virgi- nianus	21 weeks	Dietary	n/a	No effect on feed consumption	No evidence of adversity	

19	Anas platyr-	21	Distory	n/a	No effect on feed	No evidence of	
	hynchos	weeks	Dietary	n/a	consumption	adversity	

Assessment of the integrated lines of evidence and weight of evidence

Based on the available information, there was no clear evidence for the identification of T-mediated adverse effects or T-mediated endocrine activity for non-target organisms other than mammals. No endpoints for T-mediated adversity were examined, however, several endpoints "*sensitive to, but not diagnostic of, EATS*" were considered (e.g., growth, development) and these did in general not indicate adverse effects. The overall WoE for non-target organisms other than mammals is not indicative of T-mediated adversity or of T-mediated endocrine activity, although not sufficiently investigated (i.e., LAGDA and/or AMA tests not submitted).

Initial analysis of the evidence and identification of the relevant scenario

Table ED2: Selection of relevant scenario

Adversity based on T-mediated pa- rameters	Positive mecha- nistic OECD CF level 2/3 Test	Scenario	Next step of the assessment	Scenario selected
No (sufficiently in- vestigated)	Yes/No	1a	Conclude: ED criteria not met be- cause there is not "T-mediated" ad- versity	
Yes (sufficiently in- vestigated)	Yes/No	1b	Perform MoA analysis	
No (not sufficiently investigated)	Yes	2a (i)	Perform MoA analysis (additional information may be needed for the analysis)	
No (not sufficiently investigated)	No (sufficiently investigated)	2a (ii)	Conclude: ED criteria not met be- cause no T-mediated endocrine ac- tivity observed	
No (not sufficiently investigated)	No (not suffi- ciently investi- gated)	2a (iii)	Generate missing level 2 and 3 in- formation. Alternatively, generate missing "EATS-mediated" param- eters. Depending on the outcome move to corresponding scenario	Х
Yes (not suffi- ciently investi- gated)	Yes/No	2b	Perform MoA analysis	

Conclusion on the ED assessment for T-modality

The available evidence is not sufficient to conclude either on T-mediated endocrine activity or on T-mediated adversity. Based on scenario 2a (iii), the endocrine activity/endocrine adversity was not sufficiently investigated for the T-modality. Therefore, according to the ECHA/EFSA guidance, additional information should be generated (Scenario 2a(iii)). A level 3 study according to OECD TG 231 (AMA) is required. Alternatively, a study acc. to OECD TG 248 (*Xenopus* Eleutheroembryonic thyroid assay; XETA) can be considered acceptable for use instead of the AMA test (agreed by experts at the PREV 14 meeting, September 2019).

Two outcomes are possible:

- 1) If study OECD TG 231 (or OECD T 248) is negative, scenario 1a applies and the ED criteria are thus not met.
- 2) If study OECD TG 231 (or OECD T 248) is positive, scenario 2a(i) applies and further data will be needed to support the MoA analysis (i.e., level 4 LAGDA test; OECD TG 241).

ED assessment for EAS-modality

For assessing the ED properties through the EAS-modalities for non-target organisms other than mammals, in this case, six ecotoxicity studies were available. For fish an early life stage study acc. to OECD TG 210 and an alike study (OPPTS 850.1400) were available, and further a prolonged toxicity test (OECD TG 204) and an effect study from the open scientific literature (Zhu *et al.*, 2013) were available. In addition, two avian reproduction studies (OECD TG 206) were available. The lines of evidence table for estrogen, androgen, and steroidogenesis adversity and activity has been assembled by the applicant based on the available information. Table ED3: Lines of evidence for adverse effects and endocrine activity relate to EAS-modalities

	Study ID Matrix	Effect classifica- tion	Effect target	Species	Dura- tion of exposure	Route of ex- po- sure/ad minis- tration	Effect Con- centration	Observed effect	Assessment of each line of evidence	Assess- ment of the inte- grated line of evi- dence	Moda- lity
			ToxCast estro- gen assays (22) and model					Inactive in all Tox- Cast estrogen assays and model	No con- sistent ER bioactivity,		
			CALUX nu- clear receptor assays (ER , ER)					Active in ER□ as- say, inactive in ER□ assay	for both ago- nism and an- tagonism	Overall not	Ε
Inte- grated line of		<i>In vitro</i> mechanis- tic	ToxCast an- drogen assays (14) and model	See section 4.1	.2			Inactive in all Tox- Cast androgen as- says and model	No AR bio- activity, for both ago-	indicative of endo- crine activ-	А
evidence for activ- ity			CALUX nu- clear receptor assay (AR)					Inactive in AR assay	nism and an- tagonism	ity	
			ToxCast H295R assay ToxCast aro- matase assay					Inactive for all ster- oid hormones Inactive in ToxCast aromatase assay	No effects on steroidoge- nesis		S
		<i>In vivo</i> mechanis- tic	n/a								
Inte-		EATS- mediated parame- ters	n/a								
grated line of	20			Colinus vir- ginianus	21 weeks	Dietary	n/a	No effect on egg production	No evidence of adversity	Overall not	
evidence for ad-	19	Sensitive-	Fecundity	Anas platyr- hynchos	21 weeks	Dietary	n/a	No effect on egg production	No evidence of adversity	indicative of adverse effects	
versity	20	to-but not diagnostic of EATS	Fertility	Colinus vir- ginianus	21 weeks	Dietary	n/a	No effects on egg quality, viable em- bryos, or number of 14-day-old survi- vors	No evidence of adversity	from pa- rameters sensitive to, but not	Ν

	19			Anas platyr- hynchos	21 weeks	Dietary	1600 ppm	Decrease in number of 14-day-old survi- vors; no effects on egg quality, viable embryos	Potential evi- dence of sys- temic tox- icity at high- est test con- centration	diagnostic of, EATS	
	22			Pimephales promelas	33 days	Water	n/a	No effect on length	No evidence of adversity		
	21		Length	Oncorhyn- chus mykiss	21 days	Water	n/a	No effect on length	No evidence of adversity		
	23			Cyprinodon variegatus	34 days	Water	n/a	No effect on length	No evidence of adversity		
	20			Colinus vir- ginianus	21 weeks	Dietary	n/a	No effect on weight	No evidence of adversity		
	19			Anas platyr- hynchos	21 weeks	Dietary	n/a	No effect on weight	No evidence of adversity		
	22		Weight	Pimephales promelas	33 days	Water	n/a	No effect on weight	No evidence of adversity		
	21			Oncorhyn- chus mykiss	21 days	Water	n/a	No effect on weight	No evidence of adversity		
	23			Cyprinodon variegatus	34 days	Water	n/a	No effect on weight	No evidence of adversity		
	20			Colinus vir- ginianus	21 weeks	Dietary	n/a	No effect on number of hatchlings	No evidence of adversity		
	19		Development	Anas platyr- hynchos	21 weeks	Dietary	1600 ppm	Decrease in hat- chlings	Potential evi- dence of sys- temic tox- icity at high- est test con- centration		
	22			Pimephales promelas	33 days	Water	n/a	No effects on hatch- ing time or hatching success	No evidence of adversity		
	23			Cyprinodon variegatus	34 days	Water	n/a	No effects on hatch- ing time or hatching success	No evidence of adversity		
	19		Morphology	Anas platyr- hynchos	21 weeks	Dietary	n/a	No abnormalities	No evidence of adversity		
	22		worphology	Pimephales promelas	33 days	Water	n/a	No abnormalities	No evidence of adversity		
Evi- dence of	20	Mortality		Colinus vir- ginianus	21 weeks	Dietary	n/a	No effect on morta- lity	No evidence of adversity		

general toxicity	19		Anas platyr- hynchos	21 weeks	Dietary	n/a	No effect on morta- lity	No evidence of adversity
	21		Oncorhyn- chus mykiss	21 days	Water	n/a	No effect on morta- lity	No evidence of adversity
	22		Pimephales promelas	33 days	Water	n/a	No effect on morta- lity	No evidence of adversity
	23		Cyprinodon variegatus	34 days	Water	n/a	No effect on morta- lity	No evidence of adversity
	21	Behaviour	Oncorhyn- chus mykiss	21 days	Water	320, 580, 1000 mg/L	Calm behaviour	Consistent with stress due to sys- temic tox- icity
	20		Colinus vir- ginianus	21 weeks	Dietary	n/a	No effect on feed consumption	No evidence of adversity
	19		Anas platyr- hynchos	21 weeks	Dietary	n/a	No effect on feed consumption	No evidence of adversity

Assessment of the integrated lines of evidence and weight of evidence

Based on the available information, there was no clear evidence for the identification of EAS-mediated adverse effects or EAS-mediated endocrine activity for non-target organisms other than mammals. No endpoints for EAS-mediated adversity were examined, however, several endpoints "sensitive to, but not diagnostic of, EATS" were considered (e.g., fecundity, fertility). In some fish studies, effects on some parameters were observed, however in general adverse effects were not indicated. The available evidence from fish studies is only considered supportive for the lack of ED related adversity, since those studies provide little information concerning potential ED-related effects. Though the overall WoE for non-target organisms other than mammals is not indicative of EAS-mediated adversity or of EAS-mediated endocrine activity, this is considered to be not sufficiently investigated.

The level 2 dataset (*in vitro* mechanistic) for assessment of A- and S-modalities regarding endocrine activity is considered insufficient following the ECHA/EFSA guidance. It is, however, considered sufficient for the E-modality. Overall, the dataset should thus be regarded incomplete acc. to the ECHA/EFSA guidance. The lines of evidence for EAS-modalities and their evaluations as reported for mammals (see section) is also relevant for non-target organisms other than mammals.

Overall, in line with the ECHA/EFSA guidance the dataset is considered insufficient for the assessment of the E-, A- and S-modalities regarding endocrine activity and endocrine adversity.

Initial analysis of the evidence and identification of the relevant scenario

Table ED4: Selection of relevant scenario

Adversity based on T-mediated pa- rameters	Positive mech- anistic OECD CF level 2/3 Test	Scenario	Next step of the assessment	Scenario selected
No (sufficiently in- vestigated)	Yes/No	1a	Conclude: ED criteria not met be- cause there is not "EAS-mediated" adversity	
Yes (sufficiently investigated)	Yes/No	1b	Perform MoA analysis	
No (not sufficiently investigated)	Yes	2a (i)	Perform MoA analysis (additional information may be needed for the analysis)	
No (not sufficiently investigated)	No (sufficiently investigated)	2a (ii)	Conclude: ED criteria not met be- cause no EAS-mediated endocrine activity observed	
No (not sufficiently investigated)	No (not suffi- ciently investi- gated)	2a (iii)	Generate missing level 2 and 3 in- formation. Alternatively, generate missing "EATS-mediated" param- eters. Depending on the outcome move to corresponding scenario	Х
Yes (not suffi- ciently investi- gated)	Yes/No	2b	Perform MoA analysis	

Conclusion on the ED assessment for EAS-modality

The available dataset for non-target organisms other than mammals for dicamba was incomplete since EAS-mediated parameters were not sufficiently investigated.

The available level 2 dataset for the ED assessment for EAS-modalities in mammals was insufficient to conclude on the ED properties of dicamba on human and further data were requested for the A- and S-modalities. This conclusion also applies to wild mammals.

The available information and evidence is not sufficient to conclude either on EAS-mediated endocrine activity or on EAS-mediated adversity.

Based on scenario 2a (iii), the endocrine activity/endocrine adversity was not sufficiently investigated for the EASmodalities. Therefore, according to the ECHA/EFSA guidance, additional information should be generated (Scenario 2a(iii)). A level 3 study according to OECD TG 229 (FSTRA) is required.

Two outcomes are possible:

- 1. If OECD TG 229 is negative, scenario 2a(ii) applies and the ED criteria are thus not met.
- 2. If OECD TG 229 is positive, the scenario 2a(i) applies and further data will be needed to support the MoA analysis (i.e., level 5 MEOGRT test; OECD TG 240).

Overall conclusion on the ED assessment

Based on the available evidence from standard mammalian studies, the E- and T-modalities was considered sufficiently investigated and the data suggest that dicamba is likely not an endocrine disruptor via the E- and/or T-modalities in humans/mammals. However, for the A- and S-modalities the available information was insufficient to draw a conclusion for mammals.

For non-target organisms other than mammals, evaluation of the available data in acc. with the ECHA/EFSA guidance indicates that the ecotoxicological dataset was insufficient to assess the ED properties of dicamba through the EATS-modalities. Awaiting the outcome of requested tests for humans/mammals, tests performed according to OECD TG 229 and OECD TG 231 (or OECD TG 248) could be submitted in order to conclude on the endocrine disruptive properties to non-target organisms other than mammals.

According to the assessment strategy of the guidance for the identification of endocrine disruptors (ECHA/EFSA, 2018), a tiered assessment strategy should be followed. In the case of dicamba, additional tests would be required to complete the current data package:

- Level 2 studies for A-modality (i.e. OECD 458) and S-modality (H295R steroidogenesis assay, i.e. OECD TG 456 and aromatase assay, i.e. OPPTS 890.1200) should be conducted.
- If the above mentioned Level 2 tests are positive (at least for one modality), then MoA should be analysed. If the above mentioned Level 2 tests are negative, then Level 3 (Hershberger bioassay in rats, i.e. OECD TG 441) should be performed.
- If Hershberger bioassay in rats is negative, then ED criteria are not met (Scenario 2a (ii)). If Hershberger bioassay in rats is positive, then MoA should be analysed (Scenario 2a (i); additional data might be needed for MoA analysis extended one-generation reproductive toxicity study as a last step OECD TG 443).
- A study in line with the OECD TG 231 (AMA), or alternatively OECD TG 248 (XETA) (see section 3.1.4)
- A study in line with the OECD TG 229 (FSTRA) (see section 3.2.4)

The above mentioned tests are relevant to investigate potential EATS-mediated endocrine activity and, if negative, to exclude that dicamba has endocrine properties, acc. to the scientific criteria for the determination of endocrine disrupting properties as set out in point 3.6.5 and point 3.8.2 of Annex II to Regulation (EC) No 1107/2009. However, in case of positive result/s based on the abovementioned tests for at least one modality, additional testing (level 4/5 data, see sections 2.2.5, 3.1.4 and 3.2.4) might be needed in order to further investigate the adversity. In that case the following test/s could be appropriate to test for adversity: a study performed acc. to OECD TG 240 and/or a study performed acc. to OECD TG 241.

After having taking into consideration all the available existing information, taking into account the information on the properties of the substance and the situation summarised in the paragraph above, it is considered that, in order to be able to conclude whether the approval criteria on the endocrine disruption potential in line with Commission Regulation (EU) 2018/605²² are met for dicamba, the applicant should complete the data package to support a conclusion on absence of EATS-mediated adversity, as explained in section 3.4.1 of the ECHA/EFSA guidance.

In order to meet the objectives of Regulation (EU) No 2018/1659, the data package should be completed within a period not exceeding 30 months.

²² Commission Regulation (EU) 2018/605 of 19 April 2018 amending Annex II to Regulation (EC) No 1107/2009 by setting out scientific criteria for the determination of endocrine disrupting properties. OJ L 101, 20.4.2018, p. 33–36.

2.11 PROPOSED HARMONISED CLASSIFICATION AND LABELLING AC-CORDING TO THE CLP CRITERIA *[SECTIONS 1-6 OF THE CLH RE-PORT]*

2.11.1 Identity of the substance [section 1 of the CLH report]

2.11.1.1 Name and other identifiers of the substance

Table 112: Substance identity and information related to molecular and structural formula of the substance

Name(s) in the IUPAC nomenclature or other in- ternational chemical name(s)	3,6-dichloro-2-methoxybenzoic acid
Other names (usual name, trade name, abbrevia- tion)	Dicamba
ISO common name (if available and appropriate)	Dicamba
EC number (if available and appropriate)	217-635-6
EC name (if available and appropriate)	-
CAS number (if available)	1918-00-9
Other identity code (if available)	CIPAC: 85
Molecular formula	$C_8H_6Cl_2O_3$
Structural formula	
SMILES notation (if available)	
Molecular weight or molecular weight range	221 g/mol
Information on optical activity and typical ratio of (stereo) isomers (if applicable and appropriate)	-
Description of the manufacturing process and identity of the source (for UVCB substances only)	-
Degree of purity (%) (if relevant for the entry in Annex VI)	Minimum purity: 850 g/kg

2.11.1.2 Composition of the substance

Constituent (Name and numerical identifier)	Concentration range (% w/w minimum and maximum in multi-con- stituent substances)	Current CLH in Annex VI Table 3.1 (CLP)	Current self- classifica- tion and labelling (CLP)
Dicamba, CAS nr 1918- 00-9	Minimum 85% w/w	Acute Tox. 4 * Eye Dam. 1	Acute Tox. 4 Eye Dam. 1
		Aquatic Chronic 3	Aquatic Chronic 3

 Table 113:
 Constituents (non-confidential information)

Table 114: Impurities (non-confidential information) if relevant for the classification of the substance

Impurity (Name and nu- merical identifier)	Concentration range (% w/w minimum and maximum)	Current CLH in Annex VI Table 3.1 (CLP)	Current self- clas- sification and la- belling (CLP)	The impurity con- tributes to the classification and labelling

Table 115: Additives (non-confidential information) if relevant for the classification of the substance

Additive (Name and numerical identifier)	Function	Concentration range (% w/w mini- mum and maximum)	Current CLH in Annex VI Table 3.1 (CLP)	Current self- classification and labelling (CLP)	The additive contributes to the classifica- tion and label- ling
None					

 Table 116:
 Test substances (non-confidential information)

Identification of test substance	Purity	Impurities and additives (iden- tity, %, classifica- tion if available)	Other information	The study(ies) in which the test sub- stance is used

2.11.2 Proposed harmonized classification and labelling

2.11.2.1 Proposed harmonised classification and labelling according to the CLP criteria

 Table 117:
 Proposed harmonised classification and labelling according to the CLP criteria

	Index	International Chemical	EC	CAS	Classifi	cation		Labelling		Specific	Notes
	No	Identification	No	No	Hazard Class and Category Code(s)		Pictogram, Signal Word Code(s)	Hazard sta- tement Code(s)	Suppl. Haz- ard state- ment Code(s)	Conc. Limits, M-factors and ATEs	
Current Annex VI en- try	607- 043- 00-X	dicamba (ISO); 2,5-di- chloro-6-methoxybenzoic acid; 3,6-dichloro-2-meth- oxybenzoic acid	217- 635-6	1918- 00-9	Acute Tox. 4* Eye Dam. 1 Aquatic Chronic 3	H302 H318 H412	GHS05 GHS07 Dgr	H302 H318 H412			
Dossier submitters proposal	607- 043- 00-X	dicamba (ISO); 2,5-di- chloro-6-methoxybenzoic acid; 3,6-dichloro-2-meth- oxybenzoic acid	217-635-6	1918- 00-9	Retain Eye Dam. 1 Add Carc. 2 Acute Tox. 4 STOT SE 3 STOT SE 3 Aquatic Acute 1 Modify Acute Tox. 4 Aquatic Chronic 1	Retain H318 Add H351 H332 H335 H336 H400 Modify H302 H410	Retain GHS05 GHS07 Dgr Add GHS08 GHS09	Retain H318 Add H351 H332 H335 H336 Modify H302 H410		Add M=1 M=1 inhalation: ATE = 4.46 mg/L oral: ATE = 1581 mg/kg bw	
Resulting entry in An- nex VI if adopted by RAC and agreed by Commission	607- 043- 00-X	dicamba (ISO); 2,5-di- chloro-6-methoxybenzoic acid; 3,6-dichloro-2-meth- oxybenzoic acid	217-635-6	1918- 00-9	Carc. 2 Acute tox. 4 Acute Tox. 4 STOT SE 3 STOT SE 3 Eye Dam. 1 Aquatic Acute 1 Aquatic Chronic 1	H351 H302 H332 H335 H336 H318 H400 H410	GHS05 GHS07 GHS08 GHS09 Dgr	H351 H302 H332 H335 H336 H318 H410		inhalation: ATE = 4.46 mg/L oral: ATE = 1581 mg/kg bw M=1 M=1	

2.11.2.2 Additional hazard statements / labelling

Table 118: Reason for not proposing harmonised classification and status under CLH public consultation

Hazard class	Reason for no classification	Within the scope of CLH public consultation		
Explosives	Yes			
Flammable gases (includ- ing chemically unstable gases)	hazard class not applicable	No		
Oxidising gases	hazard class not applicable	No		
Gases under pressure	hazard class not applicable	No		
Flammable liquids	hazard class not applicable	No		
Flammable solids	data conclusive but not sufficient for classi- fication	Yes		
Self-reactive substances	hazard class not assessed in this dossier	No		
Pyrophoric liquids	hazard class not assessed in this dossier	No		
Pyrophoric solids	hazard class not assessed in this dossier	No		
Self-heating substances	data conclusive but not sufficient for classi- fication	Yes		
Substances which in con- tact with water emit flam- mable gases	hazard class not assessed in this dossier	No		
Oxidising liquids	hazard class not applicable	No		
Oxidising solids	data conclusive but not sufficient for classi- fication	Yes		
Organic peroxides	hazard class not applicable	No		
Corrosive to metals	hazard class not assessed in this dossier	No		
Acute toxicity via oral route	Acute tox 4 H302	Yes		
Acute toxicity via dermal route	data conclusive but not sufficient for classi- fication	Yes		
Acute toxicity via inhala- tion route	Acute tox 4 H332	Yes		
Skin corrosion/irritation	data conclusive but not sufficient for classi- fication	Yes		
Serious eye damage/eye ir- ritation	Eye dam. 1 H318	Yes		
Respiratory sensitisation	Data lacking	No		
Skin sensitisation	data conclusive but not sufficient for classi- fication	Yes		
Germ cell mutagenicity	data conclusive but not sufficient for classi- fication	Yes		
Carcinogenicity	Carc 2 H351	Yes		
Reproductive toxicity	data conclusive but not sufficient for classi- fication	Yes		
Specific target organ tox- icity-single exposure	STOT SE 3	Yes		
Specific target organ tox- icity-repeated exposure	data conclusive but not sufficient for classi- fication	Yes		
Aspiration hazard	Data lacking	No		

Hazard class	Reason for no classification	Within the scope of CLH public consultation
Hazardous to the aquatic environment	Harmonised classification proposed	Yes
Hazardous to the ozone layer	data conclusive but not sufficient for classi- fication	Yes

2.11.3 History of the previous classification and labelling

The studies the old/new acute tox classifications are based on are all relatively old (<=2001) and were therefore already evaluated in EU - also for classification purposes. Considering the age of dicamba and how long it is already registered in EU, we believe ECB (European Chemicals Bureau – EchA's predecessor) took a look at the available data when assigning the classification in the past and that these classifications are not just based on voluntarily classification by industry. We assume that - when implementing the new C&L guidance - the old R-phrases were then 'translated' into the new H-phrases.

Concerning toxicity endpoints we think dicamba had been classified as R22 (acute oral tox) and R41 (severe eye irritation) according to the old EU classification scheme. This is based on study data from 1974 which are still considered valid for these endpoints today triggering the respective classifications according to today's C&L scheme.

Older inhalation toxicity studies (e.g. 1974) revealed no relevant inhalation toxic potential but these were not in agreement with current test guidelines (e.g. no monitoring of particle size distribution or actual concentration in the animals breathing zones). The oldest inhalation tox study available to Syngenta with a study design in agreement with current test guidelines is from 2001, was submitted (and evaluated) for the previous EU review and was therefore also available for classification purposes in EU. The reason why no inhalation toxicity classification was considered required at that time may have been the fact that the combined LC50 (both sexes together) in the 2001 study was considered to be >5 mg/L (3/5 males + 1/5 females died at top concentration resulting in 4/10 total deaths). Only in males the LC50 was slightly below 5 mg/L in that study but as dicamba as such did not reveal a relevant sex difference in the available acute toxicity studies, it may have been considered sufficient to base also the classification for inhalation toxicity on the situation in both sexes combined – which then would not trigger a classification for inhalation toxicity. The latter would actually be supported by the newest available study (2015) where the LC50 in both sexes separately was shown to be >5 mg/L.

2.11.4 Identified uses

Dicamba is used as a selective post-emergent broad-leaved herbicide in the EU.

2.11.5 Data sources

The data submitted in the context of renewal of pesticide active substances under Regulation no. 1107/2009 concerning the placing of plant protection products on the market. The data was evaluated in the Renewal Assessment Report (RAR) Vol. 1-4.

2.12 RELEVANCE OF METABOLITES IN GROUNDWATER

The soil metabolite DCSA does not exceed 0.1 μ g/L in the PECgw modelling performed with PELMO, PEARL and MACRO. Therefore an assessment of relevance of metabolites in groundwater is not needed.

2.12.1 STEP 1: Exclusion of degradation products of no concern

Not relevant

2.12.2 STEP 2: Quantification of potential groundwater contamination

Dicamba and the soil metabolite DCSA does not exceed 0.1 μ g/L in the PECgw modelling performed with PELMO, PEARL and MACRO.

2.12.3 STEP 3: Hazard assessment – identification of relevant metabolites

2.12.3.1 STEP 3, Stage 1: screening for biological activity

Not relevant

2.12.3.2 STEP 3, Stage 2: screening for genotoxicity

Not relevant

2.12.3.3 STEP 3, Stage 3: screening for toxicity

Not relevant

2.12.4 STEP 4: Exposure assessment – threshold of concern approach

2.12.5 STEP 5: Refined risk assessment

2.12.6 Overall conclusion

2.13 CONSIDERATION OF ISOMERIC COMPOSITION IN THE RISK AS-SESSMENT

The active substance dicamba is not a mixture of isomers. Therefore no information is presented or required.

2.14 Residue definitions

2.14.1 Definition of residues for exposure/risk assessment

Food of plant origin: The sum of dicamba and 5-OH dicamba, free and conjugated, expressed as dicamba

Food of animal origin: The sum of dicamba and its salts and conjugates of dicamba expressed as dicamba

Soil: Dicamba and DCSA

Groundwater: Dicamba and DCSA

Surface water: Dicamba and DCSA

Sediment: Dicamba and DCSA

Air: Dicamba

2.14.2 Definition of residues for monitoring

Food of plant origin: The sum of dicamba and its salts and conjugates of dicamba expressed as dicamba Food of animal origin: The sum of dicamba and its salts and conjugates of dicamba expressed as dicamba Soil: Dicamba and DCSA Groundwater: Dicamba and DCSA Surface water: Dicamba and DCSA

Sediment: None

Air: Dicamba

Level 3

Dicamba

3 PROPOSED DECISION WITH RESPECT TO THE APPLICATION

3.1 BACKGROUND TO THE PROPOSED DECISION

3.1.1 Proposal on acceptability against the decision making criteria – Article 4 and annex II of regulation (EC) No 1107/2009

3.1.1.	1 Article 4			
J.1.1.		Yes	No	
i)	It is considered that Article 4 of Regulation (EC) No 1107/2009 is com- plied with. Specifically the RMS considers that authorisation in at least one Member State is expected to be possible for at least one plant pro- tection product containing the active substance for at least one of the representative uses.	x		Dicamba. There are 2 representative products. Representative product for Syngenta (A7254B). Safe use could be demon- strated without using PPE. Representative product for Rotam (FH-048): Safe use could be demonstrated without using PPE for operatorand also for worker and bystander/residents.
3.1.1.	2 Submission of further information	-		
		Yes	No	
i)	It is considered that a complete dossier has been submitted	х		
ii)	It is considered that in the absence of a full dossier the active substance may be approved even though certain information is still to be submitted because:			
	(a) the data requirements have been amended or refined after the sub- mission of the dossier; or			
	(b) the information is considered to be confirmatory in nature, as re- quired to increase confidence in the decision.			
3.1.1.	3 Restrictions on approval			
		Yes	No	
	It is considered that in line with Article 6 of Regulation (EC) No 1107/2009 approval should be subject to conditions and restrictions.		X	
3.1.1.	4 Criteria for the approval of an active substance			
Dossi	er			
		Yes	No	
	It is considered the dossier contains the information needed to establish, where relevant, Acceptable Daily Intake (ADI), Acceptable Operator Exposure Level (AOEL) and Acute Reference Dose (ARfD).	х		

 It is considered that the dossier contains the information necessary to carry out a risk assessment and for enforcement purposes (relevant for substances for which one or more representative uses includes use on feed or food crops or leads indirectly to residues in food or feed). In particular it is considered that the dossier: (a) permits any residue of concern to be defined; (b) reliably predicts the residues in food and feed, including succeeding crops (c) reliably predicts, where relevant, the corresponding residue level reflecting the effects of processing and/or mixing; (d) permits a maximum residue level to be defined and to be determined by appropriate methods in general use for the commodity and, where appropriate, for products of animal origin where the commodity or parts of it is fed to animals; (e) permits, where relevant, concentration or dilution factors due to processing and/or mixing to be defined. 			 For monitoring (residues) Food of plant origin: The sum of dicamba and its salts and conjugates of dicamba expressed as dicamba Food of animal origin: The sum of dicamba and its salts and conjugates of dicamba expressed as dicamba For risk assessment (residues) Food of plant origin: The sum of dicamba and 5-OH-dicamba, free and conjugated expressed as dicamba Food of animal origin: The sum of dicamba and its salts and conjugates of dicamba expressed as dicamba
It is considered that the dossier submitted is sufficient to permit, where relevant, an estimate of the fate and distribution of the active substance in the environment, and its impact on non-target species.	х		Sufficient information has been submitted.
Efficacy	-		
	Yes	No	
It is considered that it has been established for one or more representa- tive uses that the plant protection product, consequent on application consistent with good plant protection practice and having regard to real- istic conditions of use is sufficiently effective.	x		See level 2 (section 2.3).
Relevance of metabolites	<u> </u>		
	Yes	No	
It is considered that the documentation submitted is sufficient to permit the establishment of the toxicological, ecotoxicological or environmen- tal relevance of metabolites.	X		
Composition			
· · · · · · · · · · · · · · · · · · ·	Yes	No	
It is considered that the specification defines the minimum degree of purity, the identity and maximum content of impurities and, where rele- vant, of isomers/diastereo-isomers and additives, and the content of im- purities of toxicological, ecotoxicological or environmental concern within acceptable limits.		х	For the toxicological studies the specifications are not fully covered in the studies.

It is considered that the specification is in compliance with the relevant Food and Agriculture Organisation specification, where such specifica- tion exists.	x		Dicamba has a FAO specification from 2016 with a dicamba content not less than 850 g/kg. The specifications are in compliance with this.
It is considered for reasons of protection of human or animal health or the environment, stricter specifications than that provided for by the FAO specification should be adopted		х	Explain as necessary
Methods of analysis	1	1	
It is considered that the methods of analysis of the active substance, saf- ener or synergist as manufactured and of determination of impurities of toxicological, ecotoxicological or environmental concern or which are present in quantities greater than 1 g/kg in the active substance, safener or synergist as manufactured, have been validated and shown to be suf- ficiently specific, correctly calibrated, accurate and precise.	Yes	No	Sufficient information is submitted (with the possible exception of impurities of toxicological concern). The assessment on impurities of toxicological concern is not yet finalised
It is considered that the methods of residue analysis for the active sub- stance and relevant metabolites in plant, animal and environmental ma- trices and drinking water, as appropriate, shall have been validated and shown to be sufficiently sensitive with respect to the levels of concern.It is confirmed that the evaluation has been carried out in accordance with the uniform principles for evaluation and authorisation of plant pro- tection products referred to in Article 29(6) of Regulation 1107/2009.Impact on human health	X X		
Impact on human health - ADI, AOEL, ARfD			
	Yes	No	
It is confirmed that (where relevant) an ADI, AOEL and ARfD can be established with an appropriate safety margin of at least 100 taking into account the type and severity of effects and the vulnerability of specific groups of the population.	X		RMS proposes keeping the acute reference dose from the previous evaluation only corrected for the purity of dicamba tested in the study: The acute oral LD ₅₀ in the rat was below 2000 mg/kg and the compound is classified as harmful. The acute neurotoxicity study showed neurobehavioral findings upon single treatment of rats. In the rabbit developmental toxicity study clinical signs were observed in dams at \geq 150 mg/kg/day with a NO- AEL of 30 mg/kg/day (1992). Therefore, the criteria may be ful- filled to allocate an ARfD. The proposed ARfD is derived from the NOAEL of 30 (27.1) mg/kg bw/day established in the teratology study in rabbits and a safety factor of 100. ARfD = NOAEL/safety factor = 30 mg/kg bw/day/100 = 0.30 mg/kg bw/day

Impac	on human health – proposed genotoxicity classification			ADI was previously based on the multigeneration study in rats by (1993) as it was the most sensitive study, i.e. the study with the lowest and most relevant NOAEL. Since, at the re-evaluation, a new NOAEL of 10.0 mg/kg bw/day (carcinogenicity) has been proposed at a lower dose in the chronic study in rats (1985), it is suggested to use this value for the derivation of the ADI. An UF of 150 is proposed to ensure a margin of safety to the carcinogenic effect of at least 1000 based on the carcinogenic effect (increase in thyroid parafollicular (C-cell) carcinoma) observed in this study. Based on the NOAEL of 10.0 mg/kg bw/day and a safety factor of 150, to achieve a margin of safety above 1000, an ADI can be calculated: ADI = NOAEL/UF = 10 mg/kg bw/day/150 = <u>0.07 mg/kg bw/day</u> (rounded) AOEL was previously based on the Teratology study in rabbits: NOAEL = 30 mg/kg bw/day (1992). However since during the re-evaluation a NOAEL for Carcinogenicity has been proposed, setting a new AOEL is con- sidered required. At the re-evaluation, a new NOAEL of 10.0 mg/kg bw/day (carcinogenicity) has been proposed at a lower dose in the chronic study in rats (1985), it is suggested to use this value for the derivation of the AOEL. An UF of 150 should be used because of the carcinogenic effect (increase in thyroid parafollicular (C-cell) carcinoma) observed in this study. Based on the NOAEL of 10.0 mg/kg bw/day and a safety factor of 150, to achieve a margin of safety above 1000, an AOEL can be calculated: AOEL = NOAEL/UF = 10 mg/kg bw/day 150 = 0.07 mg/kg bw/day (rounded)
Impaci	on numan nearth – proposed genotoxicity classification	Yes	No	
		res		
	It is considered that, on the basis of assessment of higher tier genotoxi- city testing carried out in accordance with the data requirements and other available data and information, including a review of the scientific literature, reviewed by the Authority, the substance SHOULD BE clas- sified or proposed for classification , in accordance with the provisions of Regulation (EC) No 1272/2008, as mutagen category 1A or 1B .		x	The submitted <i>in vivo</i> cytogenetic test with somatic cells was a non GLP study with several deviations from guideline and the acceptability of this study is questionable. The in vivo MN study was. Considering the quality/results of the published and GLP studies in the dossier, the overall conclusion is that, despite some indications of DNA damaging capacity of dicamba, the weight of evidence suggests that dicamba is of no concern regarding chromosomal

				damage in vivo. The gene mutagenic potential of dicamba was excluded with a negative TGR assay.
Impa	ct on human health – proposed carcinogenicity classification	Ī	T	
•		Yes	No	
i)	It is considered that, on the basis of assessment of the carcinogenicity testing carried out in accordance with the data requirements for the active substances, safener or synergist and other available data and information, including a review of the scientific literature, reviewed by the Authority, the substance SHOULD BE classified or proposed for classification, in accordance with the provisions of Regulation (EC) No 1272/2008, as carcinogen category 1A or 1B.		x	Based on the dose-related increased incidence of thyroid parafollicular (C- cell) carcinoma in male rats (although not accompanied by increases in hy- perplasia or adenomas), observed above the incidence found in the HCD for mid and high dose group males and a significant trend analysis, RMS consid- ers the increase in these tumors may be treatment related. Since the increase in thyroid parafollicular (C-cell) carcinoma was observed in one species and in one gender, a classification for Carc Cat 2 is suggested by RMS.
ii)	Linked to above classification proposal.			[if no provide a brief explanation of conditions of use and cross refer to the
	It is considered that exposure of humans to the active substance, safener or synergist in a plant protection product, under realistic proposed con- ditions of use, is negligible, that is, the product is used in closed systems or in other conditions excluding contact with humans and where residues of the active substance, safener or synergist concerned on food and feed do not exceed the default value set in accordance with Article 18(1)(b) of Regulation (EC) No 396/2005.			section containing full details to support the contention of negligible expo- sure]
Impa	ct on human health – proposed reproductive toxicity classification	1		
		Yes	No	
i)	It is considered that, on the basis of assessment of the reproductive tox- icity testing carried out in accordance with the data requirements for the active substances, safeners or synergists and other available data and in- formation, including a review of the scientific literature, reviewed by the Authority, the substance SHOULD BE classified or proposed for classification , in accordance with the provisions of Regulation (EC) No 1272/2008, as toxic for reproduction category 1A or 1B.		x	Classification of dicamba as a reproductive toxicant is not warranted.
ii)	Linked to above classification proposal.			
	It is considered that exposure of humans to the active substance, safener or synergist in a plant protection product, under realistic proposed con- ditions of use, is negligible, that is, the product is used in closed systems or in other conditions excluding contact with humans and where residues of the active substance, safener or synergist concerned on food and feed			

		1		
	do not exceed the default value set in accordance with Article 18(1)(b) of Regulation (EC) No 396/2005.			
Impa	act on human health – proposed endocrine disrupting properties classifi	cation		
		Yes	No	
i)	It is considered that the substance SHOULD BE classified or pro- posed for classification in accordance with the provisions of Regulation (EC) No 1272/2008, as carcinogenic category 2 and toxic for repro- duction category 2 and on that basis shall be considered to have en- docrine disrupting properties		х	
ii)	It is considered that the substance SHOULD BE classified or pro- posed for classification in accordance with the provisions of Regulation (EC) No 1272/2008, as toxic for reproduction category 2 and in addi- tion the RMS considers the substance has toxic effects on the endocrine organs and on that basis shall be considered to have endocrine dis- rupting properties		x	
iii)	Linked to either i) or ii) immediately above.		х	
	It is considered that exposure of humans to the active substance, safener or synergist in a plant protection product, under realistic proposed con- ditions of use, is negligible, that is, the product is used in closed systems or in other conditions excluding contact with humans and where residues of the active substance, safener or synergist concerned on food and feed do not exceed the default value set in accordance with Article 18(1)(b) of Regulation (EC) No 396/2005.			
Fate	and behaviour in the environment			
Persi	istent organic pollutant (POP)	**	.	
		Yes	No	
	It is considered that the active substance FULFILS the criteria of a per- sistent organic pollutant (POP) as laid out in Regulation 1107/2009 An- nex II Section 3.7.1.		X	The active substance dicamba has a DT_{50} in soil of $3.21 - 24.6$ days (geomean $DT_{50} = 7.06$ days, $n = 7$). In surface water the DT_{50} of the active substance is $50.0 - 51.7$ days and in the whole surface water system (water/sediment) the DT_{50} is $50.8 - 53.5$ days. Dicamba does therefore not fulfil the persistence criteria for POP. As logK _{ow} = -2.3 (pH 7) dicamba is not expected to bioaccumulate. The DT_{50} of dicamba in air is $3.6 - 4.1$ days, but as the volatilisation from plant (0.12%) and soil (0.07 - 1.15%) surfaces is negligible long-range transport of the active substance is not expected. Therefore dicamba is not a POP.

Persistent, bioaccur	Persistent, bioaccumulative and toxic substance (PBT)						
i croistent, bioaccui	numero una toxic substance (1 p 1)	Yes	No				
sistent, bioad lation 1107/2	red that the active substance FULFILS the criteria of a per- ccumulative and toxic (PBT) substance as laid out in Regu- 2009 Annex II Section 3.7.2.		X	The active substance dicamba has a DT_{50} in soil of $3.21 - 24.6$ days (geomean $DT_{50} = 7.06$ days, $n = 7$). In surface water the DT_{50} of the active substance is $50.0 - 51.7$ days and in the whole surface water system (water/sediment) the DT_{50} is $50.8 - 53.5$ days. Dicamba therefore fulfil the P criteria for PBT with regard to the half-life in fresh water. As logK _{ow} = -2.3 (pH 7) dicamba is not expected to bioaccumulate. Dicamba does not fulfil the T criteria. Dicamba is therefore not a PBT substance.			
Very persistent and	very bioaccumulative substance (vPvB).	1	1				
very persiste	ered that the active substance FULFILS the criteria of a a ent and very bioaccumulative substance (vPvB) as laid out n 1107/2009 Annex II Section 3.7.3.		No x	The active substance dicamba has a DT_{50} in soil of $3.21 - 24.6$ days (geomean $DT_{50} = 7.06$ days, $n = 7$). In surface water the DT_{50} of the active substance is $50.0 - 51.7$ days and in the whole surface water system (water/sediment) the DT_{50} is $50.8 - 53.5$ days. Dicamba does therefore not fulfil the persistence criteria for vPvB. As logK _{ow} = -2.3 (pH 7) dicamba is not expected to bioaccumulate. Dicamba is therefore not a vPvB substance.			
Ecotoxicology			I				
		Yes	No				
ble in accord for evaluation in Article 29 tection produ RMS is con effects, the u which the acc	red that the risk assessment demonstrates risks to be accepta- dance with the criteria laid down in the uniform principles on and authorisation of plant protection products referred to (6) under realistic proposed conditions of use of a plant pro- uct containing the active substance, safener or synergist. The tent that the assessment takes into account the severity of uncertainty of the data, and the number of organism groups trive substance, safener or synergist is expected to affect ad- ne intended use.			In the terrestrial vertebrate risk assessment, all TER _A and TER _{LT} values are in excess of their corresponding trigger values, indicating acceptable acute and long term risks to birds and mammals after application of FH-048 or A7245B at rates up to 288 g a.s./ha in maize, 210 g a.s./ha in sorghum and 96 g a.s./ha in cereals. Based on the FOCUS STEP 1-2 PECsw and PECsed values, the acute and long-term are acceptable to fish, aquatic invertebrates, sediment-dwellers and algae from the use of dicamba to maize, sorghum and cereasl with one application per year at rates up to 288 g a.s./ha. No risk mitigation measures beyond 1 m buffer are necessary to protect the aquatic organisms, if the products FH-048 and A7245B are used according to these GAPs. Dicamba is an herbicide with no known insecticidal properties and it exhibits low acute oral and contact toxicity to honey bees. The HQ values for acute oral and contact exposure, calculated in accordance with the guidance of SANCO/10329/202 rev 2 final, are both below the trigger value of 50 for the			

		 use of A7245B and FH-048. Additonal risk assessment considering the EFSA Bee guidance (EFSA Journal 2013;11(7):3295) have been performed for adult chronic and larval development for honey bee and the calculated ETE values were below the trigger values. Thus acceptable acute and chronic risk to honey bees for all representative uses of FH-048 and A7245B has beencalculated. The proposed use of dicamba on maize, sorghum and cereals, in accordance with Good Agricultural Practice, will present no unacceptable risk to other non-target arthropods. Acceptable risk of acute and long term toxicity for earthworms and soil macro-organisms at an application rate of 288 g dicamba/ha was calculated. The risk to soil micro-organisms is negligible for applications up to 5.75 mg a.s./kg dw soil. A low risk to terrestrial non-target plants was identified for dicamba after applications of A7245B at rates up to 288 g a.s./ha in maize with the use of a 2 meter buffer zone, 210 g a.s./ha in sorghum and cereals with the use of a 2 meter buffer zone. Follwong application of FH-048 at rates up to 280 g a.s./ha in maize a low risk was identified with the use of a 3 meter buffer zone. Follwong application direct artes are considered acceptable and risk mitigation measures and if the GAP is assumed.
It is considered that, on the basis of the assessment of Community or internationally agreed test guidelines, the substance HAS endocrine disrupting properties that may cause adverse effects on non-target organisms.	x	The available dataset is insufficient to conclude on ED proprerties of dicamba. RMS suggests that tests performed according to OECD TG 229 and OECD TG 231 (or alternatively OECD TG 248) should be submitted in order to con- clude on the endocrine disruptive properties to non-target organisms other than mammals.
Linked to the consideration of the endocrine properties immediately above. It is considered that the exposure of non-target organisms to the active substance in a plant protection product under realistic proposed condi- tions of use is negligible.		Non-target organisms inevitable will be exposed from the intended GAP uses. Any firm conclusion on endocrine properties of dicamba is pending new stud- ies.

ment on the basis of Co lines, that the use under t tion products containing — will result in a negligi — has no unacceptal	stablished following an appropriate risk assess- mmunity or internationally agreed test guide- the proposed conditions of use of plant protec- this active substance, safener or synergist: ble exposure of honeybees, or ble acute or chronic effects on colony ment, taking into account effects on honeybee behaviour.	X		The HQ values for acute oral and contact exposure, calculated in accordance with the guidance of SANCO/10329/202 rev 2 final, are both below the trig- ger value of 50 for the use of A7245B and FH-048. Risk assessment considering the EFSA Bee guidance (EFSA Journal 2013;11(7):3295) have been performed for adult chronic and larval develop- ment and the calculated ETE values were below the trigger values. Thus ac- ceptable acute and chronic risk to honey bees for all representative uses of FH-048 and A7245B has beencalculated.
Residue definition		Yes	No	
lished for the purposes of	ere relevant, a residue definition can be estab- risk assessment and for enforcement purposes.	X		
Fate and behaviour concerning	groundwater		1.3.7	
		Yes	No	
tive uses, that consequent uct consistent with realis tion of the active substan products in groundwater of form principles for evaluation	s been established for one or more representa- ly after application of the plant protection prod- tic conditions on use, the predicted concentra- nce or of metabolites, degradation or reaction complies with the respective criteria of the uni- tion and authorisation of plant protection prod- 29(6) of Regulation 1107/2009.	x		Dicamba and its soil metabolite DCSA does not exceed 0.1 μg/L in the PECgw modelling performed with PELMO, PEARL and MACRO.

3.1.2 Proposal – Candidate for substitution

Candi	Candidate for substitution					
		Yes	No			
	It is considered that the active substance shall be approved as a candidate for substitution		Х			

3.1.3 Proposal – Low risk active substance

	Yes	No	
It is considered that the active substance shall be considered of low risk.		x	Dicamba does not fulfil the criteria for low risk.
If the active substance is not a micro-organism, in particular it is considered that:			
(a) the substance should NOT be classified or proposed for classifica- tion in accordance to Regulation (EC) No 1272/2008 as any of the fol- lowing:			
- carcinogenic category 1A, 1B or 2,			
- mutagenic category 1A, 1B or 2,			
- toxic to reproduction category 1A, 1B or 2,			
— skin sensitiser category 1,			
- serious damage to eye category 1,			
— respiratory sensitiser category 1,			
— acute toxicity category 1, 2 or 3,			
- specific Target Organ Toxicant, category 1 or 2,			
— toxic to aquatic life of acute and chronic category 1 on the basis of appropriate standard tests,			
— explosive,			
— skin corrosive, category 1A, 1B or 1C;			
(b) it has not been identified as priority substance under Directive 2000/60/EC;			
(c) it is not deemed to be an endocrine disruptor in accordance to Annex II of Regulation (EC) No 1107/2009;			
(d) it has no neurotoxic or immunotoxic effects;			
(e) it is not persistent (half-life in soil is more than 60 days) or its bio- concentration factor is lower than 100.			
(f) it is a semiochemical and verifies points (a) to (d).			

Paragraph (e) doesn't apply to naturally occurring active substances.		
If the active substance is a micro-organism, in particular it is considered that at strain level the micro-organism has not demonstrated multiple resistance to anti-microbials used in human or veterinary medicine.		
If the active substance is a baculovirus, in particular it has not demon- strated adverse effects on non-target insects.		

3.1.4 List of studies to be generated, still ongoing or available but not peer reviewed

Data gap	Relevance in relation to representa- tive use(s)	Study status		
		No confirmation that study available or on- going.	Study on-going and anticipated date of completion	Study available but not peer-reviewed
3.1.4.1 Identity of the active substance or form	ulation			
-				
3.1.4.2 Physical and chemical properties of the	e active substance and physical, chemical	l and technical properties	of the formulation	
-				
3.1.4.3 Data on uses and efficacy	·			
-				
3.1.4.4 Data on handling, storage, transport, p	ackaging and labelling			
-				
3.1.4.5 Methods of analysis	·			
-				

3.1.4.6	1.4.6 Toxicology and metabolism					
3.1.4.7	Residue data					
-						
3.1.4.8	Environmental fate and behaviour					
-						
3.1.4.9	3.1.4.9 Ecotoxicology					
-						

3.1.5 Issues that could not be finalised

An issue is listed as an issue that could not be finalised where there is not enough information available to perform an assessment, even at the lowest tier level, for the representative uses in line with the Uniform Principles, as laid out in Commission Regulation (EU) No 546/2011, and where the issue is of such importance that it could, when finalised, become a concern (which would also be listed as a critical area of concern if it is of relevance to all representative uses).

Area of the risk assessment that could not be finalised on the basis of the available data	Relevance in relation to representative use(s)
	[specify if measure relates to a specific repre- sentative use/use scenario/product or to all uses/products]

3.1.6 Critical areas of concern

An issue is listed as a critical area of concern:

(a) where the substance does not satisfy the criteria set out in points 3.6.3, 3.6.4, 3.6.5 or 3.8.2 of Annex II of Regulation (EC) No 1107/2009 and the applicant has not provided detailed evidence that the active substance is necessary to control a serious danger to plant health which cannot be contained by other available means including non-chemical methods, taking into account risk mitigation measures to ensure that exposure of humans and the environment is minimised, or

(b) where there is enough information available to perform an assessment for the representative uses in line with the Uniform Principles, as laid out in Commission Regulation (EU) 546/2011, and where this assessment does not permit to conclude that for at least one of the representative uses it may be expected that a plant protection product containing the active substance will not have any harmful effect on human or animal health or on groundwater or any unacceptable influence on the environment.

An issue is also listed as a critical area of concern where the assessment at a higher tier level could not be finalised due to a lack of information, and where the assessment performed at the lower tier level does not permit to conclude that for at least one of the representative uses it may be expected that a plant protection product containing the active substance will not have any harmful effect on human or animal health or on groundwater or any unacceptable influence on the environment.

Critical area of concern identified	Relevance in relation to representative use(s)
The endocrine disrupting potential of dicamba could not be finalised due to lack of sufficient information.	Relevant for all representative uses.

3.1.7 Overview table of the concerns identified for each representative use considered

(If a particular condition proposed to be taken into account to manage an identified risk, as listed in 3.3.1, has been evaluated as being effective, then 'risk identified' is not indicated in this table.)

All columns are grey as the material tested in the toxicological studies has not been demonstrated to be representative of the technical specification.

Representative use		Use " A7254B " (X ¹)	Use " FH-048" (X ¹)
Operator risk	Risk identified		
	Assessment not finalised		
Worker risk	Risk identified		
	Assessment not finalised		
Bystander risk/resident	Risk identified		
	Assessment not finalised		
Consumer risk	Risk identified		
	Assessment not finalised		
Risk to wild non target	Risk identified		
terrestrial vertebrates	Assessment not finalised		
Risk to wild non target terrestrial organisms other than vertebrates	Risk identified		
	Assessment not finalised		
Risk to aquatic organ- isms	Risk identified		
	Assessment not finalised		
Groundwater exposure active substance	Legal parametric value breached		
	Assessment not finalised		
Groundwater exposure metabolites	Legal parametric value breached		
	Parametric value of $10\mu g/L^{(a)}$ breached		
	Assessment not finalised		
Comments/Remarks			

The superscript numbers in this table relate to the numbered points indicated within chapter 3.1.5 and 3.1.6. Where there is no superscript number, see level 2 for more explanation.

(a): Value for non relevant metabolites prescribed in SANCO/221/2000-rev 10-final, European Commission, 2003

3.1.8 Area(s) where expert consultation is considered necessary

It is recommended to organise a consultation of experts on the following parts of the assessment report:

Area(s) where expert consul- tation is considered neces- sary	Justification
	[specify the reasons why expert consultation is considered necessary]

3.1.9 Critical issues on which the Co RMS did not agree with the assessment by the RMS

Points on which the co-rapporteur Member State did not agree with the assessment by the rapporteur member state. Only the points relevant for the decision making process should be listed.

Issue on which Co-RMS disa- grees with RMS	Opinion of Co-RMS	Opinion of RMS
Amyloidosis observed in high dose male mice in the long term study	This effect is considered adverse and supportive of cancer classification	The increase in high dose is slight and might be considered treatment related but RMSis unsure if it can be used to support classification for cancer.
Classification for Muta 2	Co-RMS considers a positive comet assay as adequate to classify as Muta 2	There was a positive Comet assay available, however, a Transgenic Ro- dent Somatic and Germ Cell Gene Mutation Assays was clearly nega- tive in duodenum up to a dose (924 mg/kg bw/day) a dose near the limit dose of 1000 mg/kg bw/day. Taking into account that a Comet assay de- tects DNA damage and the TGR As- say detects mutations and the latter was negative, it is not considered likely dicamba causes gene muta- tions in vivo. On that basis, the crite- ria of a classification for mutagenic- ity in category 2 is not considered met.
NOAEL for the 2 year rat study	NOAEL for Carc would have been chosen at 50 ppm	NOAEL was set by RMS at 250ppm

3.2 PROPOSED DECISION

It is proposed that:

- **3.3** RATIONAL FOR THE CONDITIONS AND RESTRICTIONS TO BE AS-SOCIATED WITH THE APPROVAL OR AUTHORISATION(S), AS AP-PROPRIATE
- 3.3.1 Particular conditions proposed to be taken into account to manage the risks identified

3.4 APPENDICES

GUIDANCE DOCUMENTS USED IN THIS ASSESSEMENT

<u>General</u>

Commission Regulation (EU) No 283/2013 of 1 March 2013 setting out the data requirements for active substances.

Commission Regulation (EU) No 284/2013 of 1 March 2013 setting out the data requirements for plant protection products.

Section identity, physical chemical and analytical methods

Section physico chemical properties

ECHA (2017). Guidance on the Application of the CLP Criteria 2017 vers 5.0

UN recommendations on the Transport of Dangerous Goods (2015). Manual of tests and criteria Annex 6 2015 rev 6

Section analytical methods

SANCO/825/00 rev. 8.1, 16 November 2010, Guidance document on pesticide residue analytical methods.

Section Data on application and efficacy

SANCO/10054/2013 - rev. 3 (2013): Guidance document on data requirements on efficacy for the dossier to be submitted for the approval of new active substances contained in plant protection products.

Section Toxicology

EFSA (2012), Guidance on Dermal Absorption, EFSA Panel on Plant Protection Products and their Residues (PPR), EFSA Journal 2012;10(4):2665

EFSA (2014), Guidance on the assessment of exposure of operators, workers, residents and bystanders in risk assessment for plant protection products, EFSA Journal 2014;12(10):3874

Section Residue and consumer risk assessment

OECD (2009). Guidance Document on Overview of Residue Chemistry Studies (as revised in 2009). Environment, Health and Safety Publications. Series on Testing and Assessment No. 64 and Series on Pesticides No. 32

OECD (2011) Guidance Document on Crop Field Trials (Series on Testing and Assessment No. 164 and Series on Pesticides No. 66)

OECD (2008). Guidance document on magnitude of pesticide residues in processed commodities. Environment, Health and Safety Publications. Series on Testing and Assessment No. 96.

OECD (2009). Guidance Document on the Definition of Residues. Environment, Health and Safety Publications. Series on Testing and Assessment No. 63 and Series on Pesticides No. 31

OECD MRL Calculator (2011)

SANCO/7525/VI/95 rev. 10.1 December 2015. Appendix D – Comparability, extrapolation, group tolerance and data requirements

SANCO/11187/2013 rev. 3. 31 January 2013. Appendix J - Nature of pesticide residues in fish

SANCO/3029/99 EU, rev.4, 11 July 2000- Residues: Guidance for generating and reporting methods of analysis in support of pre-registration data requirements

SANCO/825/00 EU, rev. 8.1, November 2010, Guidance document on pesticide residue analytical methods (post-registration monitoring and control)

OECD (2007). Guidance Document on Pesticide Residue Analytical Methods. Environment, Health and Safety Publications. Series on Testing and Assessment No. 7 and Series on Pesticides No. 39

OECD Test Guidelines No. 501, 502, 503, 504, 506, 507, 508, 509

Section fate and behavior in environment

OECD 307 guideline, aerobic and anaerobic transformation in soil (2002).

FOCUS (2006) "Guidance Document on Estimating Persistence and Degradation Kinetics from Environmental Fate Studies on Pesticides in EU Registration" Report of the FOCUS Work Group on Degradation Kinetics, EC Document Reference Sanco/10058/2005 version 2.0, 434 pp].

FOCUS (2011) Generic guidance for Estimating Persistence and Degradation Kinetics from Environmental Fate Studies on Pesticides in EU Registration

EFSA (2014) European Food Safety Authority. Guidance Document for evaluating laboratory and field dissipation studies to obtain DegT50 values of active substances of plant protection products and transformation products of these active substances in soil. EFSA Journal 2014;12(5):3662, 38 pp., doi:10.2903/j.efsa.2014.3662

U.S. EPA OPPTS 835.6100 Terrestrial Field Dissipation (October 2008).

EU Commission Working Document 1607/VI/97 Rev. 1 (22/7/1997), Appendix B, Residue Trials, 7029/VI/95 Rev. 5 (22/7/1997).

SETAC – Procedures for Assessing Environmental Fate and Ecotoxicity of Pesticides' (Dr. M. Lynch, March 1995).

SANCO/3029/99/Revision 4, Residues: Guidance for Generating and Reporting Methods of Analysis in Support of Pre-Registration Data Requirements for Annex II (Part A, Section 4) and Annex III (Part A, Section 5) of Directive 91/414 (July 2000).

BBA guideline Part IV, 4-1 (1986)

OECD 106: Adsorption - Desorption Using a Batch Equilibrium Method.

OECD 312 (2004)

OECD 111 guideline on hydrolysis as a function of pH

OECD guideline (draft), Phototransformation of chemicals in water, Part A: Direct phototransformation (1990) prepared by UBA, Germany.

OECD 316 guideline on photodegradation in water.

OECD 301 D for testing of chemicals (adopted July 17, 1992)

OECD 309 (2004)

OECD 308 (2002)

Biologische Bundesanstalt Guidelines, Part IV, Section 6-1 (July 1990)

FOCUS (1997): Soil Persistence Models and EU Registration - The final report of the work of the Soil Modelling Work group of FOCUS (FOrum for the Co-ordination of pesticide fate models and their Use). 29.02.97, 77 pp

FOCUS (1997) Soil persistence models and EU Registration - The Final Report of the Soil Modelling Workgroup of FOCUS (Forum for the Co-ordination of Pesticide Fate Models and their Use) – 29 February 1997.

FOCUS (2006): "Guidance Document on Estimating Persistence and Degradation Kinetics from Environmental Fate Studies on Pesticides in EU Registration", Report on the FOCUS Work Group on Degradation Kinetics, EC Document Reference Sanco/10058/2005 version 2.0, 434 pp

FOCUS (2014a): Generic guidance for Estimating Persistence and Degradation Kinetics from Environmental Fate Studies on Pesticides in EU Registration, Version 1.1, 18 December 2014

FOCUS (2002): EC Document Reference Sanco/321/2000, rev.2, Version 1.1, April 2002;

EC (2014): EC Document Reference Sanco/13144/2010, Version 3, October 2014

FOCUS (2014b): Generic Guidance for Tier 1 FOCUS Ground Water Assessments, Version 2.2, May 2014

FOCUS (2001): EC Document Reference SANCO/4802/2001-rev.2. 245 pp.

FOCUS (2015): Generic Guidance for FOCUS Surface Water Scenarios, Version 1.4, May 2015

FOCUS (2008). "Pesticides in Air: Considerations for Exposure Assessment". Report of the FOCUS

Working Group on Pesticides in Air, EC Document Reference SANCO/10553/2006 Rev 2 June 2008.

327 pp.

Section ecotoxicology

EFSA (2009). Guidance Document on Risk Assessment for Birds and Mammals. EFSA Journal 2009; 7(12):1438

EFSA (2013). Guidance on tiered risk assessment for plant protection products for aquatic organisms in edge-of-field surface waters. EFSA Journal 2013;11(7):3290

EFSA draft (2013). Guidance Document on the risk assessment of plant protection products on bees (Apis mellifera, Bombus spp. and solitary bees). EFSA Journal 2013;11(7):3295

EU (2002). Guidance Document on Terrestrial Ecotoxicology Under Council Directive 91/414/EEC. SANCO/10329/2002 rev 2 final.

3.5 REFERENCE LIST

Hobbs CA, Recio L, Streicker M, Boyle MH, Tanaka J, Shiga A, and Witt KL. Comet assay evaluation of six chemicals of known genotoxic potential in rats. Mutat Res Genet Toxicol Environ Mutagen. 2015 July ; 0: 172–181. doi:10.1016/j.mrgentox.2015.03.003

Koppen G, Azqueta A, Pourrut B, Brunborg G, Collins AR and Langie SAS. The next three decades of the comet assay: a report of the 11th International Comet Assay Workshop. Mutagenesis, 2017, 32, 397–408. doi:10.1093/mutage/gex002

Lorenzo Y, Costa S, Collins AR and Azqueta A. The comet assay, DNA damage, DNA repair and cytotoxicity: hedgehogs are not always dead. Mutagenesis vol. 28 no. 4 pp. 427–432. doi:10.1093/mutage/get018

Vasquez MZ. Recommendations for safety testing with the in vivo comet assay. Mutation Research 747 (2012) 142–156