[NOTE: THIS DOCUMENT WILL BE ISSUED AS AN INFORMATION DOCUMENT, CURRENTLY REFERENCED IN THE DRAFT RISK PROFILE AS "UNEP/POPS/POPRC.16/INF/[...]"]

Table 1. Detection in wastewater treatment, sludge and matrix from impacted sites and from manufacture/recycling sites

Matrix	Country/ Region	Year	Study site	Concentration			Comments	Reference
			Type of location					
Wastewater t	reatment, sludge, im	pacted sites and	d from manufacture etc	syn	anti	<i>tot</i> DP		
Wastewater	China	2010-2011	WWTP, Shanghai			50-1400 pg/L		Xiang et al., 2014
Soil	China	2009	E-waste recycling site			0.17-1990 ng/g dw		Xiao et al., 2013
Soil	China	2009	Near manufacturing plant			0.83-1200		Wang et al., 2010b
Soil	China	2009	Manufacturing facility in Huai'an			5.11-13400 ng/g dw		Wang et al., 2010a
Soil	China	2011	Manufacturing facility in Huai'an			0.50-2315		Zhang et al., 2015
Soil	China	-	E-waste disposal area in Guiyu	0.14–38 ng/g	0.42–107 ng/g	0.57–146 ng/g		Xu et al., 2017
Soil	China		E-waste recycling site	1081	2246	3327 ng/g		Yu et al., 2010
Soil	China		Areas surrounding the e-waste recycling sites	n.d 12.2	n.d 36.3	n.d 47.4 ng/g		Yu et al., 2010
Soil	China		Industrial areas	n.d 1.18	0.03 - 3.47	0.03 - 4.65 ng/g		Yu et al., 2010
Soil	China		Manufacturing areas			0.50–2,315 pg/g		Zhang et al., 2015
Sediment	Lake Ontario	2004	Near manufacturing plant			<310 ng/g dw		Qiu et al.,2007

Matrix	Country/ Region	Year	Study site Type of location	Concentration			Comments	Reference
Wastewater tr	eatment, sludge, im	pacted sites and	from manufacture etc	syn	anti	totDP		
Sediment core	Lakes Erie	1997-1998	Near manufacturing plant			0.061-8.62		Sverko et al., 2008
Sediment core	Lake Ontario	1997-1998	Near manufacturing plant			2.23-586		Sverko et al., 2008
Surficial sediments	Great Lakes, Canadian site	2002-2006	Near manufacturing plant			0.035-310		Shen et al., 2011b
Suspended sediment	Niagara river	1980-2007	Near manufacturing plant			2.5-62		Shen et al., 2011a
Sediment core	Lake Ontario		Near manufacturing plant			0.061-160		Shen et al., 2011a
Surficial sediment core	Lake Ontario	2007	Near manufacturing plant			73-140		Yang et al., 2011
Sediment core	Lake Ontario	2006-2007	Near manufacturing plant			0.85-96		Shen et al., 2010
Sediment	China		Manufacturing facility in Huai'an			1.86-8.00		Wang et al., 2010a
Sediment	China	2009	e-waste recycling site	520-1630 ng/g	1860-6630 ng/g			Zhang et al., 2011b
Riverine surface sediments	China	2013	e-waste recycling region in Taizhou	27 – 14280 pg/g dw	81 – 13410 pg/g dw	108 – 55270 pg/g dw	<i>anti</i> -Cl ₁₀ : nd - 2580 <i>anti</i> -Cl ₁₁ : 2 - 580	Zhou et al., 2017
Suspended sediment	China	-	e-waste recycling site	13130 ± 2885 ng/g	65660 ± 11440 ng/g		ng/g OC	Wu et al., 2010
Surficial sediment	China	-	e-waste recycling site	21820 ± 2160 ng/g	55320 ± 7140 ng/g			Wu et al., 2010

Matrix	Country/ Region	Year	Study site Type of location	Concentration			Comments	Reference
Wastewater ti	reatment, sludge, im	pacted sites and	from manufacture etc	syn	anti	totDP		
Sediment	China		Manufacturing areas			0.32–20.5 ng/g dw		Zhang et al., 2015
Sewage sludge	Norway	2017	WWTP	2.1 ng/g	7.4 ng/g			Norwegian Environment Agency, 2018b
Sewage sludge	Norway	2018	WWTP	2.5 ng/g	11.8 ng/g			Norwegian Environment Agency, 2019a
Sewage sludge	Spain		WWTP			2.58-18.8 ng/g d.w.		Barón et al., 2012
Sludge	Spain	2010	Ebro and Llobregat river basins,			<0.06-18.8		Barón et al., 2014b
Sewage sludge, biosolids	USA	2006-2010	Municipal, North Carolina	2-24	5-29			Davis et al., 2012
Sewage sludge	Spain	2006	WWTP			2.45-93.8 ng/g d.w.		de la Torre et al., 2011a
Sludge	China	2013-2014	Sewage treatment plants (STP)	8.6 - 16	7.2 – 19.2			Wu et al., 2017
Air	Canada	2017-2018	e-waste recycling site, small facility	2–5.8 ng/m3	2.3–5.4 ng/m3	4.4–11 ng/m3		Gravel et al., 2019
Air	Canada	2017-2018	e-waste recycling site, medium facility	4.7–9.3 ng/m3	7.3–15 ng/m3	12–24 ng/m3		Gravel et al., 2019
Air	Canada	2017-2018	e-waste recycling site, large facility	12–18 ng/m3	22–34 ng/m3	34–53 ng/m3		Gravel et al., 2019

Table 2. Overview over available bioaccumulation data¹

Species (tissue)	Region/Exposure	Tissue	BAF/BCF	BMF			TMF			Comments and	References
Aquatic organisms/food we	bs	L	L/kg	syn	anti	<i>tot</i> DP	DP syn anti totDP		totDP	Benchmark BMF/TMF	
Fish/zoo plankton	Canada/Field	whole		<0.1- 0.6	0.8-11						Tomy et al., 2007
Fish/diporeia (shrimp-like)	Canada/Field	whole		0.1-12	0.1-11						Tomy et al., 2007
Fish/zoo plankton	Canada/Field	whole					1.3	1.1		PBDEs	Kurt-Karakus et al., 2019
Fish/invertebrate	South China/Field	Various					11.3	6.5	10.2	PBDEs and PCBs	Wu et al., 2010
Fish/invertebrate (seven species)	Huai'an China/Field	whole					3.1	1.9	2.2	DPMA, anti-Cl11-DP and anti-Cl10-DP	Wang et al., 2015
Fish (various)/crab	South China/Field	various				1.3- 11.8			2.3*		Sun et al., 2015
Food web (fish, octopus, crab)	South China/Field	muscle				2.3-7.1				PBDEs, DDT and PCBs	Sun et al., 2017
Fish diet study		whole - liver		5.2	1.9						Tomy et al., 2008
Fish diet study	Laboratory	serum		1.06	1.23						Tang et al., 2018
Seal/algae (total nine species)	Antarctica	various					2.9	3.3	3.0	PCBs	Na et al., 2017
Skua (bird)/penguins	Antarctica	muscle (pectoralis)					18.9	21.5			Kim et al., 2015
Carp Terrestrial organisms/food w	Laboratory	muscle	BCF syn-DP 5700 BCF anti- DP 9300								Wang et al., 2019
Ŭ,											

Species (tissue)	Region/Exposure	Tissue	BAF/BCF	BMF			TMF		Comments and	References
Frog/insect	South China/Field	muscle/whole		2.7	1.8	2.1			BMFs for PBDEs and anti-Cl11-DP detected	Wu et al., 2018
Owl/sparrow	Beijing, China	muscle		12	6.8	10			PBDEs, PCBs, HBCD, ppDDE	Yu et al., 2013
Owl/brown rat	Beijing, China	muscle		2.4	1.9	2			PBDEs, PCBs, HBCD, ppDDE	Yu et al., 2013
Sparrow/common kestrel	Beijing, China	muscle		0.31	0.35	0.32			PBDEs, PCBs, HBCD, ppDDE	Yu et al., 2013
Brown rat/common kestrel	Beijing, China	muscle		0.06	0.10	0.06			PBDEs, PCBs, HBCD, ppDDE	Yu et al., 2013
Apple snail/rice plant	South China/Field			3.1	2.3				PBDEs	She et al., 2013

*Non-significant

 $^{\underline{1}}$ Definitions:

Bioconcentrationfactor (BCF; point) - describes uptake and accumulal on of chemical from water only.

Bioaccumulation factor (BAF; point) - describes uptake and accumulaton of chemical from all sources (water, sediment, diet, etc.) relative to amount of chemical (exposure) in water.

Biota-sediment accumulation factor (BSAF; point) - describes uptake and accumulaton of chemical from all sources relative to amount of chemical (exposure) in sediment.

<u>Biomagnification factor (BMF; slope)</u> – describes rate of change of chemical concentration in organisms separated by a single trophic level step (Δ TL=1) on a food chain.

Trophic magnification factor (TMF; slope) – describes rate of change of chemical concentral on in organisms that occupy successively higher trophic levels (Δ TL>1) in a food web.

Table 3: Abiotic monitoring data for Dechlorane	Plus in remote locations (adopted from	1 ECHA 2017d) [TO BE COMPLETED
---	--	--------------------------------

Compartment	Location	Findings	Reference
Atmosphere	Two remote research stations: one in Canadian high Arctic (Alert) and the other in the Tibetan Plateau (Nam Co)	Sampling dates not explicitly stated for Alert (but appear to be in the period 2006 to 2007). Monthly-integrated samples were collected between October 2006 and February 2008 at Nam Co. Detected in 11 out of 14 samples at Alert with total DP ranging from <0.05 pg/m3 to 2.1 pg/m3, primarily associated with particles. Not detected in prescreening at Nam Co, which is suggested by the study authors to be due to fewer particulates reaching the station.	Xiao <i>et al.</i> (2012)
Atmosphere	Transects in East Greenland Sea, and northern and southern Atlantic Ocean	Sampling took place during August – September 2009 (Greenland) and November – December 2008 (Atlantic), 10 samples from each transect, with sampling over 2-6 days at 15 m a.s.l. DP was detected in all air samples, at concentrations of $0.05 - 4$ pg/m3. DP was mainly detected in the particulate phase. In the Atlantic, the highest concentration was observed in the English Channel originating from continental air passing Western Europe. The fractional abundance of syn-DP increased with decreasing northern latitude from 0.37 to ca. 0.67, showing a stereoselective depletion of anti-DP (thought to be caused by UV sunlight).	Möller <i>et al.</i> (2010)
Atmosphere	Transect from East China Sea to Arctic	17 air samples taken between June and September 2010. Each sample was collected over 1-2 days (height not specified). DP was detected in all samples in the range $0.01 - 1.4$ pg/m3 (as total DP), mainly in the particulate phase. Includes remote areas, but not exclusively.	Möller <i>et al.</i> (2011)
Atmosphere	Transect in Indian, Pacific and Southern Oceans from southeast Asia to Antarctica	Sampling took place during November 2010 – March 2011 (n=20). Each sample was collected over 1-2 days at 20 m a.s.l. DP was detected in all samples as follows: Pacific Ocean: 1.7-11 pg/m3 (total DP) Indian Ocean: 0.26 – 2.1 pg/m3 (total DP) Southern Ocean: 0.31 pg/m3 (total DP)	Möller <i>et al.</i> (2012)
Atmosphere	Station Nord, Northeast Greenland	Detected in 46 % of air samples collected weekly throughout 2012. Syn- DP concentration: mean 2.32 pg/m3 (range <1 - 9.0 pg/m3). Anti-DP concentration: mean 5.24 pg/m3 (range <1 - 33.1 pg/m3).	Vorkamp <i>et al.</i> (2015)

Atmosphere	Arctic (78.22°N 15. 65°E) Longyearbyen is a coal mining community with 2 100 residents and so a local source of Dechlorane Plus (e.g. building and pipe insulation) cannot be ruled out.	 Samples were collected from September 2012 to May 2013 (a total of 34 samples, each collected over 48 hours). The samples represent the atmospheric particulate fraction collected on quartz fibre filters (2.2 μm cut-off). Total DP concentration was 0.05-5 pg/m3. Anti-DP was detectable in 91 % of the samples with a mean (± standard error) of 1.1 (±0.19) pg/m3. Syn-DP was detectable in 91 % of the samples with a mean (± standard error) of 0.29 (±0.04) pg/m3. The fanti ranged from 0.43 to 0.9 with a mean value of 0.75, which is reasonably consistent with that in commercial Dechlorane Plus products. 	Salamova <i>et al.</i> (2014)
Atmosphere	Råö (Swedish west coast), Pallas (Northern Finland), Aspvreten (Swedish east coast, 70 km SW of Stockholm) [These represent 'background' sites.]	Samples were apparently collected in May, July and November 2009 and January 2010. DP concentrations were: Råö: 0.18 – 0.52 pg/m3 (n=4) Pallas: 0.016 – 0.047 pg/m3 (n=2; January and July only) Aspvreten: 0.12 - 0.23 pg/m3 (n=3; January, July and November) Deposition fluxes were estimated from the monthly average data as follows: Råö: 0.11 – 0.34 ng/m2/d Pallas: 0.017 – 0.025 ng/m2/d Aspvreten: 0.15 - 0.39 ng/m2/d	Kaj et al. (2010)
Atmosphere	Review of Arctic data	Does not cite articles beyond the ones already summarised here	Vorkamp et al. (2014)
Atmosphere	Northern Sweden	Bimonthly bulk atmospheric deposition samples were taken for one year from October 2009 to November 2010. DP was detected on all seven sampling occasions at Abisko in the Arctic (68°20'N, 9°03'E) at a maximum amount of 5.7 ng per sample (total isomers). DP was detected on three of five sampling occasions at Krycklan in the sub-Arctic	Newton <i>et al.</i> (2014)

		(64°14'N, 19°46'E; located approximately 60 km northwest of the city	
		of Omea) at a maximum amount of 0.16 ng per sample (total isomers).	
		The average (±standard deviation) of the monthly deposition flux for	
		total DP was calculated to be 22±2.1 ng/m2/month at Abisko and	
		1.1 ± 0.52 ng/m2/month at Krycklan. It is interesting to note that the	
		higher flux was found at the more remote site. Newton et al. (2014)	
		considered the air-parcel back trajectories at both sites. Both sites	
		from the eastern and southern Baltic countries. However, Abisco is	
		around 100 km from the Norwegian coast and receives a higher	
		proportion of its air from the ocean than the continent, whereas a higher	
		proportion of the air at Krycklan comes from the south and east and the	
		air from the ocean passes over the land mass of Norway and Sweden.	
		Thus the differences in fluxes at the two sites may reflect differences in	
		emission sources.	
		The fraction of the anti- isomer was lower at the Arctic site (mean 0.25)	
		than the sub-Arctic site (mean 0.62), suggesting isomer-selective	
		degradation or isomerization during long range transport to the more	
		remote site. The fanti- at the sub-Arctic site was similar to that in	
		commercial products, and may indicate proximity to a local source.	
Atmosphere	Entebbe, Lake Victoria, Uganda	Weekly air sampling between October 2008 and July 2010. DP was not	Arinaitwe et al. (2014)
		detected in 9 samples from 2008. In the 30 samples from 2009, syn-DP	
		was detected in 17 % of samples (arithmetic mean: 0.21 pg/m3) and	
		anti-DP in 10% of samples (arithmetic mean: 0.10 pg/m3). The	
		geometric mean was below the detection limit for both isomers. In 1/	
		mean: 0.46 ng/m3: geometric mean 0.05 ng/m3) and anti-DP in 76 % of	
		samples (arithmetic mean: 0.33 pg/m3; geometric mean 0.18 pg/m3).	
		The paper notes that recycling of electronic equipment may be the	
		source of the contamination.	
Atmosphere	All continents except Antarctica	Samples collected July – September 2005 (possibly also 2006) for a	Sverko et al. (2010a) [ABST]
I	Ĩ	Global Atmospheric Passive Sampler (GAPS) study (25 sites, number of	
		samples not stated). Reported concentrations ranged from 'not detected'	
		to 348 pg/m3, the highest level being for Cape Grim, Tasmania where	
		population density is very low. It was also detected in north Alaska and	
		Svaldard.	

Seawater	Transects of sampling in East Greenland Sea, northern and southern Atlantic Ocean	Sampling took place during August – September 2009 (Greenland) and November – December 2008 (Atlantic). 10 samples from each transect. Concentrations in sea water were <detection 1.3="" and="" dp<br="" l,="" limit="" pg="" –="">was mainly detected in the particulate phase. Includes remote areas, but not exclusively.</detection>	Möller <i>et al.</i> (2010)
Seawater	Transect of sampling from East China Sea to Arctic	18 sea water samples taken between June 2010 and September 2010, with each sample collected over 12-24 h. Seawater concentrations ranged between $0.006 - 0.4$ pg/L. Includes remote areas, but not exclusively.	Möller <i>et al.</i> (2011)
Seawater, sediment, soil and air	Ny-Ålesund, Svalbard (78°55'N, 11°56'E).	Samples of soil, moss and dung were collected simultaneously (see Appendix 4 for the moss and dung results). The mean (and range) of concentrations in the soil samples was 0.042 (0.012-0.105) µg/kg dw) for anti-DP and 0.284 (0.094-1.01) µg/kg dw for syn-DP. The fanti in the soil samples was 0.18. Sediment and seawater samples were also taken at King's bay. The mean (and range) measured concentrations were 32 (85-648) pg/L and 61 (22-116) pg/L for anti-DP and syn-DP, respectively, in seawater; and 0.073 (0.023-0.228) µg/kg dw and 0.270 (0.085-0.648) µg/kg dw for anti-DP and syn-DP, respectively, in sediment. The fanti was 0.36 in seawater and 0.21 in sediment. Na <i>et al.</i> (2015) considered that the low fanti values found in water, sediment, soil (and also moss; see Appendix 4) may reflect degradation of anti-DP during long-range transport, possibly by UV.	Na et al. (2015)
Sediment	Kongsfjorden, Svalbard, Norwegian Arctic	27 samples of surficial sediment taken in July 2009. Syn-DP and anti- DP were detected in 78 % and 94 % of samples, respectively. Syn-DP ranged between n.d 5.4 pg/g dw (mean: 1.4 ± 1.5 pg/g dw). Anti-DP ranged between n.d 15.9 pg/g dw (mean: 4.5 ± 4.3 pg/g dw). No clear spatial trend between the outer and inner fjord. The paper notes that it is plausible that both glacial runoff and oceanic currents play a role in introducing DP to the fjord sediments. The relatively low fractional abundance of the syn-DP isomer indicates the long-range transport of this chemical to this Arctic site.	Ma et al. (2015)

year ^a	BDE-47	BDE-209	ΣPBDEs	HBB	PBT	DPTE	DP	ref
008	0.57-8.3	na	0.86-6.4	na	na	na	na	ref49
008	0.18-2.3	na	0.43-3.3	0.10-11	0.01-0.05	0.10-2.3	0.05-1.6	ref17,20
010	0.10-0.79	nd-9.4	0.31-10.7	0.09-6.3	nd-0.24	nd-2.5	0.13-22	ref23
010	0.04-0.11	nd-2.0	0.22-2.3	0.10-2.5	0.12-0.64	0.18-0.41	0.01-0.86	ref18
003	0.88-17	< 0.5-27	1.4-37	na	na	na	na	ref22
010	0.07-0.76	0.13-3.9	0.31-8.1	0.26-5.9	0.36-4.53	0.26-5.9	0.52-0.75	ref18
003	<0.16-112	<0.50-29	2.3-199	na	na	na	na	ref22
008	0.41-13	na	2.9-29	na	na	na	na	ref49
010/11	0.14-0.32	nd-4.0	0.14-4.6	3.7-19	0.71-2.2	0.44-2.3	1.7–11	this study
008	0.57-8.3	na	1.15-13	na	na	na	na	ref49
004/05	<3.4-13	< 0.6	1.5-16	na	na	na	na	ref39
010/11	nd-0.49	nd-6.5	nd-6.6	0.15-26	nd-2.8	nd-1.1	0.26-2.1	this study
010	0.03-0.04	nd-4.0	0.07-4.1	0.16-0.42	0.22-0.79	0.10-0.19	0.05-0.44	ref18
003	<0.16-31	< 0.50-41	<2.58-61	na	na	na	na	ref22
009	0.06-0.95	nd-0.07	0.09-1.8	0.08-0.66	nd-0.02	0.01-1.7	0.02-4.2	ref17,19
008	0.58	na	0.78	0.32	0.02	0.04	0.07	ref17,20
010/11	0.08	nd	0.13	0.12	nd	nd	0.31	this study
	year ^a)08)08)10)03)10)03)00)03)00)03)00)00)0	year ^a BDE-47 008 $0.57-8.3$ 008 $0.18-2.3$ 010 $0.10-0.79$ 010 $0.04-0.11$ 003 $0.88-17$ 010 $0.07-0.76$ 003 $<0.16-112$ 008 $0.41-13$ $010/11$ $0.14-0.32$ 008 $0.57-8.3$ $004/05$ $<3.4-13$ $010/11$ $nd-0.49$ 010 $0.03-0.04$ 003 $<0.16-31$ 009 $0.06-0.95$ 008 0.58 $010/11$ 0.08	year ^a BDE-47 BDE-209 008 0.57-8.3 na 008 0.18-2.3 na 010 0.10-0.79 nd-9.4 010 0.04-0.11 nd-2.0 003 0.88-17 <0.5-27	yearBDE-47BDE-209 Σ PBDEs0080.57-8.3na0.86-6.40080.18-2.3na0.43-3.30100.10-0.79nd-9.40.31-10.70100.04-0.11nd-2.00.22-2.30030.88-17<0.5-27	yearBDE-47BDE-209 $\Sigma PBDEs$ HBB008 $0.57-8.3$ na $0.86-6.4$ na008 $0.18-2.3$ na $0.43-3.3$ $0.10-11$ 010 $0.10-0.79$ nd-9.4 $0.31-10.7$ $0.09-6.3$ 010 $0.04-0.11$ nd-2.0 $0.22-2.3$ $0.10-2.5$ 003 $0.88-17$ $<0.5-27$ $1.4-37$ na010 $0.07-0.76$ $0.13-3.9$ $0.31-8.1$ $0.26-5.9$ 003 $<0.16-112$ $<0.50-29$ $2.3-199$ na008 $0.41-13$ na $2.9-29$ na010/11 $0.14-0.32$ nd-4.0 $0.14-4.6$ $3.7-19$ 008 $0.57-8.3$ na $1.15-13$ na010/11 $nd-6.5$ $nd-6.6$ $0.15-26$ 010 $0.03-0.04$ $nd-4.0$ $0.07-4.1$ $0.16-0.42$ 003 $<0.16-31$ $<0.50-41$ $<2.58-61$ na009 $0.06-0.95$ $nd-0.07$ $0.09-1.8$ $0.08-0.66$ 008 0.58 na 0.78 0.32 008 0.58 na 0.78 0.32	yearBDE-47BDE-209 Σ PBDEsHBBPBT0080.57-8.3na0.86-6.4nanana0080.18-2.3na0.43-3.30.10-110.01-0.050100.10-0.79nd-9.40.31-10.70.09-6.3nd-0.240100.04-0.11nd-2.00.22-2.30.10-2.50.12-0.640030.88-17<0.5-27	yearBDE-47BDE-209 Σ PBDEsHBBPBTDPTE080.57-8.3na0.86-6.4nananana080.18-2.3na0.43-3.30.10-110.01-0.050.10-2.31000.10-0.79nd-9.40.31-10.70.09-6.3nd-0.24nd-2.51100.04-0.11nd-2.00.22-2.30.10-2.50.12-0.640.18-0.41030.88-17<0.5-27	year"BDE-47BDE-209 Σ PBDEsHBBPBTDPTEDP1080.57-8.3na0.86-6.4nanananana1080.18-2.3na0.43-3.30.10-110.01-0.050.10-2.30.05-1.61000.10-0.79nd-9.40.31-10.70.09-6.3nd-0.24nd-2.50.13-221000.04-0.11nd-2.00.22-2.30.10-2.50.12-0.640.18-0.410.01-0.861030.88-17<0.5-27

Table 4. Atmospheric concentrations (in $pg m^{-3}$, sum of gaseous and particulate phases) of PBDEs, HBB, PBT, DPTE and DP over the global oceans and their marginal seas (na = Not Analyzed, nd = Not Detected) as shown in Möller et al. 2012.

^{*a*}Year of sampling. ^{*b*}Only aerosols.

Table 5. Concentrations of *syn-* and *anti-DP* in air samples from Arctic stations, as presented in Vorkamp et al.2019.

Location	Year	Mean SDP concentra-	Maximum SDP	Reference
		tion (pg/m ³)	concentration (pg/m ³))
Villum Research Station	2014-2016	4.2	31.7	This study (all samples)
Villum Research Station	2014	0.64	5.3	This study, monthly samples
Villum Research Station	2012	6.7	41	Vorkamp et al. (2015)
Pallas, Finland	2013/2014	0.039	0.061	Haglund et al. (2016)
Little Fox Lake, Yukon, Cana	da 2011-2014	~ 0.25	~ 1.8	Yu et al. (2015)
Longyearbyen, Svalbard *	2012/2013	1.2	5.0	Salamova et al. (2014)
Alert, Canada	2007	~ 0.75	2.1	Xiao et al. (2012)

* Particle phase only. DP is mainly associated with particles (Hoh et al., 2006).

Table 6. Concentrations (ng/g lipid weight) and detection frequencies (DF) of syn- and anti-dechlorane plus (DP) in biota samples from Greenland (Vorkamp et al. 2019). Lipids (%) describes mean lipid content of the samples. Concentrations < LOQ were set to 0 in the calculations of means.

Species			syn-DP	6 A		anti-DP	
	Lipids (%)	DF (%)	Mean	Range	DF (%)	Mean	Range
Arctic char	0.69	0	<0.13	<0.13	50	0.047	<0.030-0.19
Glaucous gull	5.3	100	0.22	0.076-0.35	100	0.89	0.34-1.2
(Thule)							
Ringed seal (Thule)	92	0	<0.018	<0.018	0	<0.017	< 0.017
Harp seal	95	25	0.008 *	<0.018-0.032	25	0.014 =	<0.017-0.058
Hooded seal	92	50	0.013*	<0.017-0.033	50	0.019	<0.017-0.045
Bearded seal	88	20	0.004ª	<0.017-0.019	20	0.009 *	<0.015-0.045
Narwhal	90	0	< 0.065	<0.065	12.5	0.012ª	<0.039-0.096
Killer whale	98	9.1	0.040ª	<0.038-0.44	18.2	0.19	<0.037-2.1
Glaucous gull (East) 5.3	87.5	0.24	<0.55 ^b ;	100	0.93	0.39-2.1
Ringed seal (East)	90.6	0	<0.014	<0.014	50 °	0.076	<0.013-0.17

* value near or below detection limits; * very low sample intake (0.31 g); * detected in two out of four samples, in the fifth sample the peak could not be integrated.

Species	Tissue	Sample location and	Limit of detection	Measured concentration	Comment	Reference
		date	(LoD), μg/kg ww			
INVERTEBRATES						
Mussel (species not specified)	Soft parts	Niagara River area, Canada (it appears that two different locations were involved, with one mussel representing each site); date of sampling not stated	-	Site 1 (n=1) Total isomers: ~4 µg/kg ww Anti-DP: ~2 µg/kg ww Syn-DP: ~2 µg/kg ww Site 2 (n=1) Total isomers: ~1.8 µg/kg ww Anti-DP: ~1 µg/kg ww Syn-DP: ~0.8 µg/kg ww	Analysis by GC-HRMS. Not known if mussels were depurated prior to analysis. Values read from a graph.	Kolic <i>et al.</i> (2009)
Blue Mussel (Mytilus edulis)	Soft parts	Receiving water from Åse WWTP, Åsefjorden, Norway (sampling date not stated). Fossá river estuary, Hvalfjörður, Iceland in November 2011.	Not explicitly stated, but presumably 0.003/4 for both isomers	Norwegian (urban) site: Total isomers: 0.035-0.042 µg/kg ww Anti-DP: 0.018-0.019 µg/kg ww Syn-DP: 0.017- 0.023 µg/kg ww Icelandic site: Neither isomer was above the LoD (no. of samples not stated).	Analysis by GC-MS. Not known if mussels were depurated prior to analysis. The Icelandic site is remote from human activity.	Schlabach <i>et al.</i> (2011)
FISH						
Barbel (<i>Barbus barbus</i>) (n not stated) Wels Catfish (<i>Silurus glanis</i>) (n not stated) Common Carp (<i>Cyprinus carpio</i>) (n not stated)	Not stated	Ebro river basin, Spain (year not stated)	Anti-DP: 0.0023 Syn-DP: 0.0055 (µg/kg lw)	Total isomer concentration: Median: 0.88 μg/kg lw Range: <lod 2.24="" kg="" lw<="" td="" μg="" –=""><td>Analysis by GC-NCI-MS-MS. Presumably a sub-set of the data reported by Santín <i>et al.</i> (2013).</td><td>Barón <i>et al</i>. (2012)</td></lod>	Analysis by GC-NCI-MS-MS. Presumably a sub-set of the data reported by Santín <i>et al.</i> (2013).	Barón <i>et al</i> . (2012)
Fish (various species) (n=48)	Whole body	Llobregat, Ebro, Júcar and Guadalquivir river basins, Spain; 2010	Anti-DP: 0.0023 Syn-DP: 0.0055 (μg/kg lw)	Concentration ranges (total isomers), µg/kg lw: Llobregat river basin: 0.57–4.86 Ebro river basin: 0.11–1.28 Júcar river basin: <lod-0.59 Guadalquivir river basin: 0.06–1.91</lod-0.59 	Analysis by GC-MS. The study included four Wels Catfish (<i>Silurus glanis</i>) caught in the Ebro river basin.	Santín <i>et al.</i> (2013)
Lake Trout (Salvelinus namaycush) Whitefish (Coregonus clupeaformis)	Dorsal muscle	Lake Trout from Lake Superior in 2002 (n=3), Lake Huron in 2001 (n=5) and Lake Ontario in 1998 and 1999 (n=5), Canada. Whitefish from Lake Erie in 2002 (n=5) and Lake Ontario in 2000 (n=5).	-	Detected in all samples in the range 0.061 – 2.600 μg/kg lw (total isomers) Fish from Lake Ontario had higher concentrations compared to those from the other lakes.	Analysis by GC-HRMS. Most fish samples had fanti values below the highest value of technical products (no difference was observed between the two fish species).	Shen <i>et al.</i> (2010)

Table 7. Measured concentrations in biota associated with the aquatic environment [TO BE COMPLETED]

Walleye (Stizostedion vitreum)	?	Lake Erie, USA; 1980, 1984, 1990, 1992, 1994,	-	Range: 0.14-0.91 µg/kg lw	Analysis by GC-MS.	Hoh <i>et al</i> . (2006)
		1996, and 2000. Except for 1980 and 1984, there were three samples in each sampling year.				Houde <i>et al.</i> (2014)
Yellow Perch (<i>Perca flavescens</i>) (n = 29)	Whole body	Lake Erie, USA; 1980, 1984, 1990, 1992, 1994, 1996, and 2000. Except for 1980 and 1984, there were three samples in each sampling year.	Anti-DP: 0.05 Syn-DP: 0.12 (LoQ, μg/kg lw)	Not detected in any sample	Analysis by GC-MS.	Hoh <i>et al</i> . (2006) Houde <i>et al</i> . (2014)
Northern Pike (<i>Esox lucius</i>) (n=11)	Liver	Lake Erie, USA; 1980, 1984, 1990, 1992, 1994, 1996, and 2000. Except for 1980 and 1984, there were three samples in each sampling year.	Anti-DP: 0.05 Syn-DP: 0.12 (LoQ, μg/kg lw)	Detected in 45 % of samples. Range: not detected to 9.1 (syn-) or 2 (anti-) µg/kg Iw	Analysis by GC-MS.	Hoh <i>et al</i> . (2006) Houde <i>et al</i> . (2014)
Muskellunge (<i>Esox muskellunge</i>) (n=10)	Liver	Lake Erie, USA; 1980, 1984, 1990, 1992, 1994, 1996, and 2000. Except for 1980 and 1984, there were three samples in each sampling year.	Anti-DP: 0.05 Syn-DP: 0.12 (LoQ, μg/kg lw)	Detected in at least 90% of samples. Mean concentration (total isomers): 6.2 ± 3.6 µg/kg lw (one fish contained 37.4 µg/kg lw)	Analysis by GC-MS. Most of the Muskelunge samples were >7 years old.	Hoh <i>et al</i> . (2006) Houde <i>et al</i> . (2014)
Lake Trout (Salvelinus namaycush) (n=5 per year)	Whole body	Lake Ontario (north of Main Duck Island), Canada; 1979, 1983, 1988, 1993, 1998 & 2004	0.01	Mean per year (total isomers): 0.31±0.07 to 0.85±0.20 μg/kg ww [2.3±0.6 to 7.2±1.3 μg/kg lw]	Analysis by GC-MS. Sampled fish were four to five years old. Stable isotope analysis showed that trophic status and food sources were highly variable over time.	Ismail <i>et al</i> . (2009)
European Eel (<i>Anguilla anguilla</i>)	Whole body or muscle	Glass eels (n=100, split into 10 samples) collected from the French Atlantic coast; date not stated Elvers (n=30), yellow (n=30) and silver eels (n=12) collected from Germany (River Vidå, River Elbe and Rivers Elbe and Rhine, respectively); date not stated	Anti-DP: 0.017, Syn-DP: 0.0053	Detected in all life stages. Total isomer concentrations were: Glass eels: <0.02 – 0.32 μg/kg ww [<lod 31.8="" kg="" lw]<br="" μg="" –="">Elvers: <0.02 – 0.46 μg/kg ww [<lod 33.8="" kg="" lw]<br="" μg="" –="">Yellow eels: 0.013–0.50 μg/kg ww [0.14±0.008 μg/kg lw] Silver eels: 0.017–0.38 μg/kg ww [0.17±0.19 μg/kg lw]</lod></lod>	Analysis by GC-MS. Levels were similar to American Eels, and probably reflect diffuse exposure. The isomer ratio changes over the life cycle. The syn- isomer predominates (>80%) in glass, elvers and yellow eels, but its contribution drops to 40% in silver (fully adult) eels that have stopped feeding.	Sühring <i>et al</i> . (2013 and 2014)
American Eel (Anguilla rostrata)	Whole body or muscle	Glass eels (n=37, pooled into three samples) from	Anti-DP: 0.017 Syn-DP: 0.0053	Detected in all life stages. Total isomer concentrations were:	Analysis by GC-MS.	Sühring <i>et al</i> . (2014) & Byer <i>et al</i> . (2013)

		Baie des Sables, Matane, Quebec, Canada; 2007 and 2008 Young yellow eels (n=10) from the Saint Lawrence River, Canada; 2007 and 2008 Yellow eels (n=15, muscle) from Lake Ontario and the upper Saint Lawrence River, Canada; 2007 and 2008 Silver eels from Lake Ontario, Canada; 2007 and 2008		Glass eels: <0.02 µg/kg ww Young yellow eels: 0.10–0.69 µg/kg ww [1.7 \pm 0.92 µg/kg lw] Yellow eels: 0.19 \pm 0.086 to 0.29 \pm 0.20 µg/kg ww [0.90 \pm 0.41 to 0.17 \pm 0.19 µg/kg lw] Silver eels: 0.067 \pm 0.048 µg/kg lw DPMA was detected in yellow and silver eels from the same area.	Levels were similar to European Eels, and probably reflect point source as well as diffuse exposure. The isomer ratio changes over the life cycle. The syn- isomer predominates (>70%) in yellow eels, but its contribution drops to 44 % in silver (fully adult) eels that have stopped feeding.	
Perch (Perca fluviatilis)	Muscle	One composite sample from Helsinki (Old City Bay) and five composite samples from Pyhäjärvi, Tampere. Finland (6–10 individuals per composite) (sampling date not stated). Two locations (Riddarfjärden and Stora Essingen) at Lake Mälaren, Stockholm, Sweden (sampling date not stated).	Anti-DP: 0.001-0.003 Syn-DP: 0.002- 0.004	Finnish sites: Anti-DP: 0.0011 & 0.0030 µg/kg ww in two composite samples, all others below LoD Syn-DP: 0.0038 µg/kg ww in one composite sample, all others below LoD. Swedish site: Neither isomer was above the LoD (no. of samples not stated).	Analysis by GC-MS. The sites are in urban areas.	Schlabach <i>et al.</i> (2011)
Arctic Char (Salvelinus alpinus)	Muscle	á Mýranar lake, Faroe Islands (sampling date not stated).	Not explicitly stated, but presumably 0.003/4 for both isomers	12 fish analysed as a pooled sample. Neither isomer was above the LoD.	Analysis by GC-MS. Site is remote from human activity.	Schlabach <i>et al</i> . (2011)
Striped Bass (Morone saxatilis) (n=1) Tilapia (Oreochromis mossambicus)] (n=1) Cod (Gadus morhua) (n=1) Atlantic Salmon (Salmo salar)] (n=1)	Muscle	Two Supermarket in Chung-Li city, Taiwan (the cod and salmon were imported, the other two species were locally caught).	0.0003 μg/g lw (both isomers)	Anti-DP: range 0.034 – 0.300 μg/kg lw Syn-DP: range 0.038 – 0.273 μg/kg lw The highest concentrations occurred in the bass.	Analysis was by GC-MS.	Chen <i>et al</i> . (2014)
Fish (15 marine species) (n=20)	Muscle	Supermarkets in Osaka, Japan; June 2011	0.0002	Detected in 18 out of 20 samples, up to 0.0142 µg/g ww	Analysis was by GC-MS.	Kakimoto <i>et al</i> . (2012)
Common Mullet Oriental Goby Steed Barbel Temperate Sea Bass Crucian Carp	Muscle	22 rivers across South Korea from late July to early October 2008. Urban-industrial: 15 sites Rural-industrial: 3 sites	Not stated	Average total concentration: Overall: 24.5 (range: 0.61 – 126) μg/kg lw Urban-industrial region: 36.1±35.3 ng/g lw	Analysis was by GC- high resolution MS. Both isomers were consistently detected in all fish samples regardless of sampling	Kang <i>et al</i> . (2010); Kang <i>et al</i> . (2009) [ABST].

	1					
(Latin names not provided)		Rural: 4 sites		Rural region: 1.4±1.0 μg/kg lw	sites and fish species. Mean	
		Fish were sampled twice		Concentrations of syn- and anti-DP	concentrations at the urban	
		at each site, and several		isomer ranged from 0.17 – 30	sites were around 25 times	
		individual fish carcasses		μg/kg lw and 0.44 – 97 μg/kg lw,	greater than those at the rural	
		were combined and		respectively. The anti-DP isomer	sites. There is no	
		homogenized to provide		was dominant in all samples. The	manufacturing facility in South	
		a pooled sample.		mean fanti value (0.67 ±0.060) was	Korea.	
				significantly lower than that of the		
				technical product (0.75) (p = 0.032)		
				suggesting that the syn- isomer		
				may be more bioaccumulative		
Mud Carp	Musele liver	Natural pend at an e	Anti DD:	Both isomore were detected in all	Applysis was by GC MS	7hang at al (2011a)
(Cirrhinus malitaralla) (n=10)	R brain	Natural pond at an e-	AIILI-DF.	Both isomers were detected in all	Analysis was by GC-IVIS.	211ding et ul. (2011d)
(Cirrininus montorenu) (n=10)	& brain	waste recycling site,		samples. Median concentrations of	Both species are associated	
		South China; December	0.024 (brain)	total isomers were as follows:	with benthic	
		2009			environments. The median	
				Mud Carp	sediment concentration (total	
				Muscle: 0.38 µg/kg ww	isomers) was above 3,000	
				Liver: 9.55 μg/kg ww	μg/kg dw.	
				Brain: 18.26 μg/kg ww	Higher levels of the anti-	
				Northern Snakehead	isomer were detected in the	
				Muscle: 0.76 µg/kg ww	brain than liver or muscle for	
				Liver: 92.0 µg/kg ww	Mud Carp, whereas liver	
				Brain: 11.8 µg/kg ww	accumulated more of both	
				Anti-DP-1Cl was detected in 100%	isomers in Northern	
				of liver and 80% of muscle samples.	Snakehead, Lipid-normalized	
				with median concentrations of	concentrations indicated	
				0.01-5.63 ug/kg www. Anti-DP-2Cl	preferential distribution to	
				was detected in one muscle sample	liver in both species	
				of Mud Corp. at a concentration of	iver in both species,	
				of Mud Carp, at a concentration of	suggesting that nepatic	
				0.01 µg/kg ww. Both isomers were	proteins might be important in	
				detected in all five sediment	the accumulation of this	
				samples collected at the same time	substance. It appeared that	
				(at concentrations from 6.32 to	there was enrichment of the	
				25.0 (median: 12.0) μg/kg and from	syn- isomer in all tissues	
				0.42 to 0.83 (median: 0.64) μg/kg	(except Northern Snakehead	
				dw, respectively).	brain) compared to levels in	
					sediment and the technical	
					product.	
					The study shows that both	
					isomers can cross the blood-	
					brain barrier in fish.	
Northern Snakehead (Channa arays)	Muscle liver	Natural pond at an e-	Svn-DP: 0.0012	Both isomers were detected in all	Analysis was by GC-MS	Zhang et al (2011a)
(n=10)	& hrain	waste recycling site	(muscle) to 0.055	samples Median concentrations of	Both species are associated	
(11 ±0)		South China: December	(hrain)	total isomers were as follows:	with benthic	
		2009			environments. The median	
		2003		Mud Corp	continuents. The meuldi	
				iviud Carp	sediment concentration (total	

				Muscle: 0.38 µg/kg ww	isomers) was above 3,000	
				Liver: 9.55 µg/kg ww	μg/kg dw.	
				Brain: 18.26 µg/kg ww	Higher levels of the anti-	
				Northern Snakehead	isomer were detected in the	
				Muscle: 0.76 µg/kg ww	brain than liver or muscle for	
				Liver: 92.0 μg/kg ww	Mud Carp, whereas liver	
				Brain: 11.8 μg/kg ww	accumulated more of both	
				Anti-DP-1Cl was detected in 100%	isomers in Northern	
				of liver and 80% of muscle samples,	Snakehead. Lipid-normalized	
				with median concentrations of	concentrations indicated	
				0.01-5.63 ug/kg ww. Anti-DP-2Cl	preferential distribution to	
				was detected in one muscle sample	liver in both species	
				of Mud Carp, at a concentration of	suggesting that henatic	
				0.01 ug/kg www. Both isomers were	proteins might be important in	
				detected in all five sediment	the accumulation of this	
				samples collected at the same time	substance. It appeared that	
				(at concentrations from 6.22 to	thore was enrichment of the	
				(at concentrations from 0.32 to	there was enrichment of the	
				25.0 (median: 12.0) μ g/kg and from	syn- isomer in all tissues	
				0.42 to 0.83 (median: 0.64) μg/kg	(except Northern Shakehead	
				dw, respectively).	brain) compared to levels in	
					sediment and the technical	
					product.	
					The study shows that both	
					isomers can cross the blood-	
					brain barrier in fish.	
Mud Carp (Cirrhinus molitorella)	Blood serum	Electronics waste	0.009-0.026	Detected in all pooled samples	Analysis by GC-MS. The range	Zeng <i>et al.</i> (2014b)
Northern Snakehead (Ophicephalus		recycling site in south		Mud Carp	of concentrations was given as	
argus)		China, 2010. 3 pooled		Total isomers:	0.3-5.1 μg/kg ww or 47-727	
5,		samples for each species		Mean: 0.3 µg/kg ww	ug/kg lw. The lipid weight	
		each taken from 6		Mean fanti = 0.44	concentrations are not given	
		individuals Each pooled		Northern Snakehead	senarately for each species	
		sample was divided into		Total isomers:	The fanti in both species was	
		2 subsamples for analysis		Mean: 1.6 ug/kg ww	significantly lower (n<0.001)	
		2 substitupies for unarysis		Moan fanti = 0.56	than that in sodimonts from	
					the erec (fenti-0.755)	
	Musele	Lingha Diver Linguing		Detected in 17 out of 10 meeted		Den et el (2012)
Crucian Carp (Cardssius cardssius)	iviuscie	Liaone River, Liaoning	-	Detected in 17 out of 18 pooled	Analysis by GC-IVIS.	Ren <i>et al</i> . (2013)
Common Carp (Cyprinus carpio)		province, China; August		samples		
Grass Carp (Ctenopharyngodon idellus)		2010. 18 pooled samples		Total isomers:		
Sharpbelly (Hemiculter leucisculus)		(6 sites)		Mean: 223 ng/kg lw		
Pond Loach (<i>Misgurnus anguillicaudatus</i>)				Median: 215 ng/kg lw		
				Range: not detected – 470 ng/kg lw		
Bleeker (Pseudolaubuca sinensis) (n = 12)	Muscle	Beijing–Hangzhou Grand	Anti-DP: 0.135	Total isomers:	Analysis by GC- high resolution	Wang et al. (2013)
Loach (<i>Misgurnus anguillicaudatus</i>) (n =		Canal, Huai'an, Jiangsu	Syn-DP: 0.120	Mean: 764 (range of means for	MS.	
7)		province, China; May		each species: 56.8 to 1 110) μg/kg	The site was downstream of	
Crucian Carp (<i>Carassius auratus</i>) (n = 9)		2010. Five fish were		ww	the discharge point of the	
Common Carp (<i>Cyprinus carpio</i>) (n = 8)		pooled into composite			Chinese manufacturing facility.	

Northern Snakehead (<i>Channa argus</i>) (n = 3)		samples for each species (except Northern Snakehead).		Mean: 67 500 µg/kg lw (range of means for each species: 2 760–96 800 µg/kg lw)	The highest mean concentration was 1.1 mg/kg ww in Common Carp, or 97 mg/kg lw in Bleeker.	
Mosquito Fish (<i>Gambusia affinis</i>) (n = 11) Paradise Fish (<i>Macropodus opercularis</i>) (n = 9) Chinese Hooksnout Carp (<i>Opsariichthys bidens</i>) (n = 18). Chinese False Gudgeon (<i>Abbottina rivularis</i>) (n = 10) Nichols' Minnow (<i>Nicholsicypris normalis</i>) (n = 6) Chinese Bitterling (<i>Rhodeinae</i>) (n = 9)	Whole fish	E-waste recycling site & reference site (Dinghu Mountain) in the Pearl River Delta, Guangdong Province, southern China; March - July 2010. Fish were pooled into composites for each species at each site.	Anti-DP: 0.59 (lw) Syn-DP: 0.14 (lw)	E-waste recycling site (29 fish, 9 composites) Total isomers: medians per species: 79-410 µg/kg lw (overall range 60- 420 µg/kg lw) Reference site (34 fish, 12 composites) Total isomers: medians per species: 1.7-8.4 µg/kg lw (overall range 0.96-8.8 µg/kg lw) Anti-DP-1Cl was detected in all samples collected from the e-waste recycling site (range: 2.4-14 µg/kg lw), but not at the reference site (LoD 0.09 µg/kg lw). Anti-DP-2Cl was not detected in any sample (LoD 0.01 µg/kg lw).	Analysis by GC-MS. The e-waste site is in a heavily industrialized area. The reference site is in a relatively non-contaminated agricultural area.	Mo et al. (2013)
Greenland Shark (Somniosus microcephalus)	Liver	Female sharks by-caught in a commercial fishery in the waters around Iceland, northeast Atlantic, between April 2001 and October 2003 (n=15).	Not stated	Not stated.	The paper provides quantitative data on three target compounds that were "routinely" detected in the liver samples, but does not comment on the concentrations or detection frequencies of the other substances that were included in the analysis (including Dechlorane Plus). In summarising this study, Vorkamp & Rigét (2014) stated that Dechlorane Plus was "not detected", but this might be misleading.	Strid <i>et al.</i> (2013)
Brown trout (Salmo trutta)	Fillet	One location in Lake Mjøsa, Norway, August 2016.	Anti-DP: 0.14 Syn-DP: 0.03	Not detected in 10 fillet samples	Number of fish not specified	Schlabach <i>et al.</i> (2017)

Matrix	Country/Region	Year	n		Concentration		Comment	Reference
				1,5-DPMA	1,3-DPMA	ΣDP		
								Sverko et al., 2010
								Tomy et al., 2007
Plankton	Canada, Lake Ontario	2000-2003	1	nd	199 ng/g lw	2.05 ng/g lw		Tomy et al., 2013
Diphoreia	Canada, Lake Ontario	2000-2003	1	nd	56.1 ng/g lw	5.87 ng/g lw		Tomy et al., 2013
Alewife	Canada, Lake Ontario	2000-2003	2	7.9, 15.1 ng/g lw	3.40, nd ng/g lw	0.102, 0.082 ng/g lw		Tomy et al., 2013
Smelt	Canada, Lake Ontario	2000-2003	2	nd	5.9, 7.8	0.01, 0.026 ng/g lw		Tomy et al., 2013
Sculpin	Canada, Lake Ontario	2000-2003	3	25.8, 22.2, 21.7 ng/g lw	16.4, 24.3, 101 ng/g lw	1.36, 2.91, 0.502 ng/g lw		Tomy et al., 2013
Trout	Canada, Lake Ontario	2000-2003	4	nd	0.5, 0.12, 0.22, 0.41 ng/g lw	0.107, 0.062, 0.076, 0.576 ng/g lw		Tomy et al., 2013
								Sühring et al., 2014
								Wang et al., 2015
								Wolsche et al., 2015
								Rajabova et al., 2016
Peregrine falcon egg	Canada							Guerra et al., 2011
Peregrine falcon egg	Spain							Guerra et al., 2011

Table 8. Detection of Dechlorane monoadduct (DPMA) in environmental samples (IN PREPARATION)

Table 9. Indoor air and dust

Matrix	Country/ Region	Year	N	Study site Type of location	Mean <i>air conce</i> detection	Mean (range) in ng/g, air concentrations in pg/m3 detection frequency %			References
					Syn-DP	Anti-DP	Mean ΣDP		
Indoor air	Norway	2012	47	Residential living rooms	0.18 (<mld-7.39) 2%<="" td=""><td>0.28 (<mld-7.61) 4%<="" td=""><td>0.457</td><td></td><td>Cequier et. al., 2014</td></mld-7.61)></td></mld-7.39)>	0.28 (<mld-7.61) 4%<="" td=""><td>0.457</td><td></td><td>Cequier et. al., 2014</td></mld-7.61)>	0.457		Cequier et. al., 2014
Indoor air	Norway	2012	6	School classrooms	<mld 0%<="" td=""><td><mld 0%<="" td=""><td>-</td><td></td><td>Cequier et. al., 2014</td></mld></td></mld>	<mld 0%<="" td=""><td>-</td><td></td><td>Cequier et. al., 2014</td></mld>	-		Cequier et. al., 2014
Indoor air	Norway	2013-14	60	Residential living rooms	<1.2 (<1.2-150) 25%	<1.3 (<1.3-47) 15%			Tay et al., 2017
Indoor air	United Kingdom	2013-1015	20	Office	1.3 (<2.0-7.7) 5%	1.8 (<1.2-24) 5%			Tao et al., 2016
Indoor air	United Kingdom	2013-1015	15	Residential houses	<2.0 (<2.0-4.6, 7%	2.2 (<1.2-20) 20%			Tao et al., 2016
Indoor air	U.S			Residential houses	0.37 (nd-4.0)	4.1(nd-23)			Venier et al., 2016
Indoor air	Canada			Residential houses	23 (nd-76)	25 (nd-243)			Venier et al., 2016
Indoor air	Czech Republic			Residential houses	-	65 (nd-65)			Venier et al., 2016
Dust	Norway	2012	48	Residential living rooms	9.07 (max 311) 92%	18.9 (max 590) 92%	27.97	Concentration of DP was negatively correlated with number of "Picture tube TVs", p= 0.018 and 0.04, for syn and anti-DP, respectively, and positive correlated with age of the woman (p=0.000)	Cequier et. al., 2014
Dust	Norway	2012	6	School classrooms	1.31 (max 3.13) 83%	3.68 (max 9.25) 100%	4.99		Cequier et. al., 2014
Dust	Norway	2013-14	61	Settled dust, residential homes	2.3 (<0.51-62) 48%	8.3 (<0.34-120) 72%			Tay et al., 2017
Dust	United Kingdom	2013-1015	42	Office	60 (<0.26-640), 98%	210 (<0.15-2100) 98%	270		Tao et al., 2016
Dust	United Kingdom	2013-1015	30	Residential houses	3.6 (<0.26-28) 63%	21 (<0.15-170) 84%	24.6		Tao et al., 2016
Dust	Egypt, Cairo	2013	17	Residential houses	0.63 (<0.02-2.28) 71%	0.39 (<0.01-1.70) 47%			Hasan and Shoeib, 2015
Dust	Egypt, Cairo	2013	5	Workplaces	1.42 (0.02-2.88) 100%	0.37 (0.01-0.95) 80%			Hassan and Shoeib, 2015
Dust	Egypt, Cairo	2013	9	Cars	2.10 (<0.02-4.94) 100%	1.65 (0.01-0.95) 100%			Hassan and Shoeib, 2015
Dust	Canada, Vancouver	2007-2008	116	Residential houses	7.5 (<0.70-170) 99%	11 (<0.70-170) 99%		Whole vacuum cleaner bag	Shoeib et al., 2012
Dust	United States of America, Massachusetts	2002-2003	38	Residential houses	3.16 (max 43.1) 89%	9.60 (max 68.4), 100%		Whole vacuum cleaner bag	Johnson et al., 2013

Dust	Australia (A), United Kingdom (UK), Canada (CA), Sweden (S), China (CH)	A: 2014, UK: 2008- 2009, CA: 2014, S: 2014, CH: 2012	A=4, UK=4, CA=6, S= 5, CH=5	A: Office, UK: house bedroom, CA, S, CH: office	0.04 (0.018-0.19) 100%	0.04 (0.013-0.15) 100%	0.079, (0.032- 0.31)		Wong et al., 2017
Dust	United States of America	2015	12	Student campus, common area. Furniture flammability standard TB133			340, (max 2800), 100%	Campus purchased institutional furniture to meet California's TB133 (which requires furniture to withstand a much larger and longer test flame than TB117)	Dodson et al., 2017
Dust	United States of America	2015	42	Student campus, dormitory. Furniture flammability standard TB133			140, (max 1900), 100%	Campus purchased institutional furniture to meet California's TB133 (which requires furniture to withstand a much larger and longer test flame than TB117)	Dodson et al., 2017
Dust	United States of America	2015	15	Student campus common area. Furniture flammability standard TB117			15, (max 38), 100%	Campus purchased institutional furniture to meet California's TB117 (The other standard, TB133 requires furniture to withstand a much larger and longer test flame than TB117)	Dodson et al., 2017

Dust	United States of America	2015	26	Student campus, dormitory. Furniture flammability standard TB117			19, (max 130), 100%	Campus purchased institutional furniture to meet California's TB117 (The other standard, TB133 requires furniture to withstand a much larger and longer test flame than TB117)	Dodson et al., 2017
Dust	United States of America	2010	19 air- planes, 40 sample s	Airplane	110 (40-9500) 100%	330 (92-4200) 100%		Carpet dust. Airplanes represented a wide range of manufacturing dates (1986 – 2008) from five manufacturers (Boeing, Airbus, Canadair Regional, McDonnell Douglas and Embraer).	Allen et al., 2013
Dust	United States of America	2010	19 airplan es, 40 sample s	Airplane	160 (34-2200) 100%	300 (31-9600) 100%		Air return grills. Airplanes represented a wide range of manufacturing dates (1986 – 2008) from five manufacturers (Boeing, Airbus, Canadair Regional, McDonnell Douglas and Embraer).	Allen et al., 2013
Dust	China, Beijing	2012	3	Hotels	-	-	124,000	Highest level of DP in small particles, 7- 20 µm	Cao et al., 2014
Dust	China, Beijing	2012	2	Kindergarten	-	-	231	Highest level of DP in small particles, 7- 20 µm	Cao et al., 2014
Dust	China, Beijing	2012	2	Kindergarten	-	-	1,350	$12\pm 10 \ \mu m$, dust particle fraction	Cao et al., 2014

Dust	China, Beijing	2012	2	Kindergarten	-	-	1,530	$7\pm7 \ \mu m$, dust particle fraction	Cao et al., 2014
Dust	China, Beijing	2012	40	Dormitories	-	-	14,200	Carpeted, Highest level of DP in small particles, 7-20 µm	Cao et al., 2014
Dust,	China, Dongguan	2013	102	Indoor	-	-	68.5 (nd- 622)	Highest level of DP in small particles, 7- 20 μm	Chen et al., 2014
Dust	China, Dongguan	2013	20	outdoor	-	-	22.9, (1.44- 93.1)		Chen et al., 2014
Dust	China, Guangzhou		51	House dust	5.3 (<lod-216) 78%<="" td=""><td>19.4 (<lod-834) 98%</lod-834) </td><td>24.5, (nd- 1050)</td><td>Median. DBDPE dominated</td><td>Tang et al., 2019</td></lod-216)>	19.4 (<lod-834) 98%</lod-834) 	24.5, (nd- 1050)	Median. DBDPE dominated	Tang et al., 2019
Dust	China, Guangzhou		31	Children's hand wipe	0.02 (nd-0.2) 68%	0.1 (nd-1.4) 97%	0.1, (nd- 15)	Median. DBDPE, DE209 and BEH-TEBP dominated	Tang et al., 2019
Dust	China, Guangzhou		51	Adults' hand wipe	0.04 (nd-1.5) 76%	0.14 (nd-5.3) 94%	0.2, (nd- 5.6)	Median. DBDPE, BDE209 and BEH-TEBP dominated	Tang et al., 2019

DBDPE= decabromodiphenylethane BDE209= decabromodiphenylether BEH-TEBP= bis(2-ethylhexyl)- 3,4,5,6-tetrabromo-phthalate

Region	Matrix	Year	n	Detection frequency %,	Syn-DP	Anti-DP	ΣDP median	Σ DP range	Anti- Cl ₁₁ -DP	f- anti	Reference
NT-	Comme	2012	40	<i>syn; anti-</i> DP	0.45	0.95	1.2			0.(7	Comise et al. 2015
INOrway	Serum	2012	48	/8; 89	0.45	0.85	1.5		-	0.67	Cequier et al., 2015
Norway	Serum	2013	61	3; 3	< 0.80	<2.1					Tay et al., 2019
Germany, Red Cross donors	Serum	2013-	42	93; 79	0.77	1.23			-	0.57	Fromme et al., 2015
		14									ŕ
France,	Serum	2003-	48	75; 94	0.22	0.89	1.20		-	0.75	Brasseur et al.,
people living in area of a		05									2014
municipal solid waste incinerator											
Canada, maternal serum	Serum	2007-	102	77; 87	0.49	1.9	2.37			0.81	Zhou et al., 2014
		09									
Korea	Serum	2013	61		0.21	0.52	0.75			0.74	Kim et al., 2016
China, residents of Shandong	Serum	2014	490 in 20		-	-	2.1 (mean)			0.62-	Ma et al., 2017
Province			pooled							0.82	
			samples								
China, residents of Shandong	Serum	2015	452 in 20		-	-	3.1 (mean)			0.62-	Ma et al., 2017
Province			pooled							0.82	
			samples								

Table 10. Median concentration (ng/g lipid) of Dechlorane Plus and its isomers and de-chlorinated DP in human samples

China, surplus serum from routine pathology testing, residents of Laizhou Bay, within 10 km from previous production	Serum	2011	146 in 5 pooled		3.1(mean)	1.1 (mean)	4.3 (mean)				He et al., 2013; Wang et al., 2014;
site male China, surplus serum from routine pathology testing residents of Laizhou Bay, within 10 km from previous production	Serum	2011	141 in 5 pooled		2.0(mean)	0.95(mean)	2.9 (mean)				Wang et al., 2014; He et al., 2013
site female						_			ļ	<u> </u>	-
		2005	- 20		15.10	21.20	12.6			0.52	D 1 2000
China, e-waste dismantling region	Serum	2005	20		17.10	21.20	42.6			0.53	Ren et al., 2009; 2011
China, fishing industry region	Serum	2005	20		5.10	8.60	13.7			0.64	Ren et al., 2009; 2011
China	Serum	2011	10		2.50	1.00	3.6			0.35	He et al., 2013
China, > 20 yrs residential time in	Serum	2010-	33		2.75	5.95	8.64			0.70	Ben et al., 2013
e-waste recycling region		11									
China, < 3 yrs residential time in	Serum	2010-	16		0.95	2.71	4.09			0.75	Ben et al., 2013
e-waste recycling region		11									
China, > 20 yrs residential time in	Maternal	2010-	48		2.40	6.16	8.43	1.28-	0.371	0.72	Ben et al., 2014
e-waste recycling region	serum	11						900			
China, < 3 yrs residential time in	Maternal	2010-	20		0.82	2.83	3.55	1.69-	0.155	0.75	Ben et al., 2014
e-waste recycling region	serum	11						11.6			
China, occupational exposure DP	Blood	2011	23		386	471	857			0.54	Zhang et al., 2013
plant											
China, workers without direct DP	Blood	2011	12		143	207	350			0.60	Zhang et al., 2013
exposure											
China, residents near DP	Blood	2011	12		106	207	243			0.61	Zhang et al., 2013
manufacturing plant											
China, > 20 yrs residential time in	Cord	2010-	48		0.959	1.89	2.82	0.680-		0.67	Ben et al., 2014
e-waste recycling region	blood	11						89.7			
China, < 3 yrs residential time in	Cord	2010-	20		0.660	1.40	1.82	0.450-		0.67	Ben et al., 2014
e-waste recycling region	blood	11						27.2			
China, > 20 yrs residential time in	Placenta	2010-	48		0.728	2.75	3.21	0.92-	0.0767	0.74	Ben et al., 2014
e-waste recycling region	tissue	11						197			
China, < 3 yrs residential time in	Placenta	2010-	20		0.32	0.90	1.09	0.459-		0.75	Ben et al., 2014
e-waste recycling region	tissue	11						2.86			
Canada	Milk	2004, 2009	87	74; 85	0.27	0.71	0.98			0.67	Siddique et al., 2012
Canada	Milk	2007-09	105	40; 50	nd	0.02	0.02			0.80	Zhou et al., 2014
China. > 20 yrs residential time in	Milk	2010-	33		1.33	3.32	4.46			0.71	Ben et al., 2013
e-waste recycling region		11									
China, < 3 vrs residential time in	Milk	2010-	16		0.50	1.58	2.19			0.76	Ben et al., 2013
e-waste recycling region	1	11	-				-				,

Figure 1. Two different isomers of Dechlorane Plus monoadduct (DPMA) has been detected in the environment

1,5-DPMA

1,3-DPMA

Table 11x. Dechlorane Plus monoadduct and possible grouping approach

Properties	DPMA	Aldrin	Heptachlor
Prediction OECD QSAR Toolbox v2.1			
Molecular diameter Å	8.7	8.7	8.6
Van der Waals's volume, Å	231	210	202
MW	380.96	364.92	373.32
Water solubility, 25C	0.003 mg/L	0.017 mg/L	0.18 mg/L
Log Kow	7.2 (predicted)	6.5 (measured)	5.5-6.1 (measured)

Information from ECHA, 2017c.

Both Aldrin and heptachlor are listed in Stockholm Convention.

"WHO (1989) reports that aldrin is rapidly converted to dieldrin by epoxidation of the double bond in the environment, and that a large number of microorganisms are capable of promoting epoxidation. Aldrin and dieldrin are highly toxic substances47, and dieldrin is much more resistant to biodegradation (WHO, 1989). Their historical use as neurotoxic insecticides means that they target the central nervous system, but a variety of other effects have been observed in mammals and birds, including on the immune system and liver (WHO, 1989). The mode of action could involve the alkyl bridge (e.g. via hydroxylation), so this does not automatically mean that DPMA would cause effects of the same type or at similar concentrations.

Heptachlor is also highly toxic. EFSA (2007) highlights that the two main transformation products of heptachlor – heptachlor epoxide and photoheptachlor – are persistent, lipophilic and toxic" ECHA, 2017c.

References [TO BE COMPLETED]

Allen JG, Stapleton HM, Vallarino J, McNeely E, McClean MD, Harrad SJ, Rauert CB, Spengler JD (2013). Exposure to flame retardant chemicals on commercial airplanes. Environ Health 12:17.

Barón E, Eljarrat E, Barceló D (2012). Analytical method for the determination of halogenated norbornene flame retardants in environmental and biota matrices by gas chromatography coupled to tandem mass spectrometry. J Chromatogr A. 1248:154-60.

Barón E, Santín G, Eljarrat E, Barceló D (2014b?). Occurrence of classic and emerging halogenated flame retardants in sediment and sludge from Ebro and Llobregat river basins (Spain). J Hazard Mater. 30; 265:288-95.

Ben Y-J, Li X-H, Yang Y-L, Li L, Zheng M-Y, Wang W-Y, Xu X-B (2014). Placental Transfer of Dechlorane Plus in Mother–Infant Pairs in an E-Waste Recycling Area (Wenling, China.) Environ. Sci. Technol. 48, 5187–5193.

Ben Y-J, Li X-H, Yang Y-L, Li L, Di J-P, Wang W-Y, Zhou R-F, Xiao K, Zheng M-Y, Tian Y, Xu X-B (2013). Dechlorane Plus and its dechlorinated analogs from an ewaste recycling center in maternal serum and breast milk of women in Wenling, China. Environmental Pollution. 173, 176-181

Cao Z, Xu F, Covaci A, Wu M, Wang H, Yu G, Wang B, Deng S, Huang J, Wang X (2014). Distribution patterns of brominated, chlorinated, and phosphorus flame retardants with particle size in indoor and outdoor dust and implications for human exposure. Environmental Science and Technology, 48, 8839–884

Cequier E, Marcé RM, BecherG, Thomsen C (2015). Comparing human exposure to emerging and legacy flame retardants from the indoor environment and diet with concentrations measured in serum. Environment International. 85, 292–298.

Cequier E, Ionas AC, Covaci A, Marce RM, Becher G, Thomsen C (2014). Occurrence of a broad range of legacy and emerging flame retardants in indoor environments in Norway. Environ. Sci. Technol. 48, 6827–6835.

Davis EF, Klosterhaus SL, Stapleton HM (2012). Measurement of flame retardants and triclosan in municipal sewage sludge and biosolids. Environ Int. 40:1-7.

de la Torre A, Sverko E, Alaee M, Martínez MÁ (2011). Concentrations and sources of Dechlorane Plus in sewage sludge. Chemosphere. 82(5):692-7.

Dodson RE, Rodgers KM, Carey G, Laurent JGC, Covaci A, Poma G, Malarvannan G, Spengler JD, Rudel RA, Allen JG (2017). Flame retardant chemicals in college dormitories: Flammability standards influence dust concentrations. Environ. Sci. Technol. 51, 4860–4869

ECHA (2017b). Dechlorane Plus; Proposal for identification of a substance of very high concern on the basis of the criteria set out in REACH Article 57. Annex XV report. Available at: https://echa.europa.eu/documents/10162/6ba01c40-009a-8388-1556-d8caa50d2b4f

ECHA (2017c). Annex XV Appendix - Identification of Dechlorane Plus as SVHC. Detailed summaries of the data cited in the main report. Available at: https://echa.europa.eu/documents/10162/86c6520a-cdc8-86bf-cc86-57beef04bc6f

EFSA (2007). Opinion of the Scientific Panel on Contaminants in the Food Chain on a Request from the European Commission Related to Heptachlor as an Undesirable Substance in Animal Feed. Question N° EFSA-Q-2005-184. The EFSA Journal, 478, 1-48.

Fromme H, Cequier E, Kim JT, Hanssen L, Hilger B, Thomsen C, Chang YS, Völkel W (2015). Persistent and emerging pollutants in the blood of German adults: Occurrence of dechloranes, polychlorinated naphthalenes, and siloxanes. Environ Int. 85:292-8. doi: 10.1016/j.envint.2015.09.002.

Gravel S, Lavoué J, Bakhiyi B, Diamond ML, Jantunen LM, Lavoie J, Roberge B, Verner MA, Zayed J, Labrèche F (2019). Halogenated flame retardants and organophosphate esters in the air of electronic waste recycling facilities: Evidence of high concentrations and multiple exposures. Environ Int. 128:244-253.

Hassan and Shoeib, (2015). Levels of polybrominated diphenyl ethers and novel flame retardants in microenvironment dust from Egypt: an assessment of human exposure. Sci Total Environ.;505:47-55.

He S, Li M, Jin J, Wang Y, Bu Y, Xu M, Yang X, Liu A (2013). Concentrations and trends of halogenated flame retardants in the pooled serum of residents of Laizhou Bay, China. Environ Toxicol Chem.32(6):1242-7.

Johnson PI, Stapleton HM, Mukherjee B, Hauser R, Meeker JD (2013). Associations between brominated flame retardants in house dust and hormone levels in men. Sci Total Environ 445-446:177-184

Kim J, Son M-h, Shin E-s, Choi S-D, Chang Y-S (2016). Occurrence of Dechlorane compounds and polybrominated diphenyl ethers (PBDEs) in the Korean general population. Environmental Pollution. 212, 330-336.

Kim JT, Son MH, Kang JH, Kim JH, Jung JW, Chang YS (2015). Occurrence of Legacy and New Persistent Organic Pollutants in Avian Tissues from King George Island, Antarctica. Environ Sci Technol. 49(22):13628-38.

Kurt-Karakus PB, Muir DC, de Jourdan B, Teixeira C, Martindale JE, Embers H, Wang X, Keir M, Backus S (2019). Bioaccumulation of selected halogenated organic flame retardants in Lake Ontario. Environmental Toxicology and Chemistry—Volume 38, Number 6—pp. 1198–1210

Ma Y, Li P, Jin J, Wang Y, Wang Q (2017). Current halogenated flame retardant concentrations in serum from residents of Shandong Province, China, and temporal changes in the concentrations. Environ Res. 155:116-122.

Na G, Yao Y, Gao H, Li R, Ge L, Titaley IA, Santiago-Delgado L, Massey Simonich SL (2017). Trophic magnification of Dechlorane Plus in the marine food webs of Fildes Peninsula in Antarctica. Mar Pollut Bull. 117(1-2):456-461.

Norwegian Environment Agency (2019a). Environmental Contaminants in an Urban fjord. Report L. Nr. 7410-2019/M-1441.

Norwegian Environment Agency (2018b). Environmental Contaminants in an Urban fjord. Report M-1131.

Qiu XH, Marvin CH and Hites RA (2007). Dechlorane plus and other flame retardants in a sediment core from Lake Ontario. Environ. Sci. Technol. 41 (17), 6014–6019.

Ren G-F, Luo X-F, Ma S-T, Sun Y-F, Yu Z-Q, Sheng G-Y, Fu J-M (2011). Quantification of Dechlorane Plus in Human Serum by Gas Chromatography Coupled with Negative Chemical Ionization Mass Spectrometry. Chin J Anal Chem. 39(2), 235–238.

Ren GF, Yu ZQ, Ma ST, Li HR, Peng PG, Sheng GY, Fu JM (2009). Determination of Dechlorane Plus in serum from electronics dismantling workers in South China. Environ Sci Technol 43 (24), 9453–9457.

Siddique S, Xian QM, Abdelouahab N, Takser L, Phillips SP, Feng YL, Wang B, Zhu JP (2012). Levels of dechlorane plus and polybrominated diphenylethers in human milk in two Canadian cities. Environ. Int. 39 (1), 50–55.

She YZ, Wu JP, Zhang Y, Peng Y, Mo L, Luo XJ, Mai BX (2013). Bioaccumulation of polybrominated diphenyl ethers and several alternative halogenated flame retardants in a small herbivorous food chain. Environ Pollut. 174:164-70.

Shen L, Reiner EJ, Helm PA, Marvin CH, Hill B, Zhang X, Macpherson KA, Kolic TM, Tomy GT, Brindle ID (2011a). Historic trends of dechloranes 602, 603, 604, dechlorane plus and other norbornene derivatives and their bioaccumulation potential in Lake Ontario. Environ Sci Technol. 45(8):3333-40.

Shen L, Reiner EJ, MacPherson KA, Kolic TM, Helm PA, Richman LA, Marvin CH, Burniston DA, Hill B, Brindle ID, McCrindle R, Chittim BG (2011b). Dechloranes 602, 603, 604, Dechlorane Plus, and Chlordene Plus, a newly detected analogue, in tributary sediments of the Laurentian Great Lakes. Environ Sci Technol. 45(2):693-9.

Shoeib M, Harner T, Webster GM, Sverko E, Cheng Y (2012). Legacy and current-use flame retardants in house dust from Vancouver, Canada. Environ. Pollut. 169, 175-182.

Sun YX, Hu YX, Zhang ZW, Xu XR, Li HX, Zuo LZ, Zhong Y, Sun H, Mai BX (2017). Halogenated organic pollutants in marine biota from the Xuande Atoll, South China Sea: Levels, biomagnification and dietary exposure. Mar Pollut Bull. 118(1-2):413-419.

Sun YX, Zhang ZW, Xu XR, Hu YX, Luo XJ, Cai MG, Mai BX (2015). Bioaccumulation and biomagnification of halogenated organic pollutants in mangrove biota from the Pearl River Estuary, South China. Mar Pollut Bull. 15;99(1-2):150-6.

Sverko E, Tomy GT, Marvin CH, Zaruk D, Reiner E, Helm PA, Hill B, McCarry BE (2008). Dechlorane plus levels in sediment of the lower Great Lakes. Environ Sci Technol. 42(2):361-6.

Tang S, Tan H, Liu X, Chen D (2019). Legacy and alternative flame retardants in house dust and hand wipes from South China. Science of the Total Environment. 656, 1-8.

Tang B, Luo XJ, Huang CC, Sun RX, Wang T, Zeng YH, Mai BX (2018). Stereoselective bioaccumulation of syn- and anti-Dechlorane plus isomers in different tissues of common carp (Cyprinus carpio). Sci Total Environ. 616-617:1339-1346.

Tao F, Abdallah MA-E, Harrad S (2016). Emerging and Legacy Flame Retardants in UK Indoor Air and Dust: Evidence for Replacement of PBDEs by Emerging Flame Retardants? Environ. Sci. Technol. 50, 13052–13061

Tay JH, Sellström U, Papadopoulou E, Padilla-Sánchez JA, Haug LS, de Wit CA (2019). Serum concentrations of legacy and emerging halogenated flame retardants in a Norwegian cohort: Relationship to external exposure. *Environmental Research*. *178*, *108731*

Tomy GT, Thomas CR, Zidane TM, Murison KE, Pleskach K, Hare J, Arsenault G, Marvin CH, Sverko E (2008). Examination of isomer specific bioaccumulation parameters and potential in vivo hepatic metabolites of syn- and anti-Dechlorane Plus isomers in juvenile rainbow trout (Oncorhynchus mykiss). Environ Sci Technol. 42(15):5562-7.

Tomy GT, Pleskach K, Ismail N, Whittle DM, Helm PA, Sverko E, Zaruk D, Marvin CH (2007). Isomers of dechlorane plus in Lake Winnipeg and Lake Ontario food webs. Environ Sci Technol. 1;41(7):2249-54. Venier M, Audy O, Vojta Š, Bečanová J, Romanak K, Melymuk L, Krátká M, Kukučka P, Okeme J, Saini A, Diamond ML, Klánová J (2016). Brominated flame retardants in the indoor environment — Comparative study of indoor contamination from three countries. *Environ. Int.* 94, 150-160.

Wang D, Jia H, Hong WJ, Xue X, Sun Y, Li YF, Guo W (2019). Uptake, depuration, bioaccumulation, and selective enrichment of dechlorane plus in common carp (Cyprinus carpio). Environ Sci Pollut Res Int. doi:10.1007/s11356-019-07239-8. [Epub ahead of print] PubMed PMID: 31865567.

Wang DG, Guo MX, Pei W, Byer JD, Wang Z (2015). Trophic magnification of chlorinated flame retardants and their dechlorinated analogues in a fresh water food web. Chemosphere. 118:293-300.

Wang Y, Xu M, Jin J, He S, Li M, Sun Y (2014). Concentrations and relationships between classes of persistent halogenated organic compounds in pooled human serum samples and air from Laizhou Bay, China. Science of the Total Environment. 482–483, 276–282.

Wang DG, Yang M, Qi H, Sverko E, Ma WL, Li YF, Alaee M, Reiner EJ and Shen L (2010a). An Asia-specific source of Dechlorane Plus: concentration, isomer profiles, and other related compounds. Environ. Sci. Technol. 44 (17): 6608–6613.

Wang X-P, Gong P, Yao T-D, Jones KC (2010b). Passive air sampling of organochlorine pesticides, polychlorinated biphenyls, and polybrominated diphenyl ethers across the Tibetan Plateau. Environmental Science and Technology. 44: 2988–2993.

WHO (1989). International Programme On Chemical Safety Environmental Health Criteria 91 aldrin and dieldrin. Geneva.

Wong F, Suzuki G, Michinaka C, Yuan B, Takigami H, de Wit CA (2017). Dioxin-like activities, halogenated flame retardants, organophosphate esters and chlorinated paraffins in dust from Australia, the United Kingdom, Canada, Sweden and China. Chemosphere 168: 1248-1256

Wu JP, Chen XY, Si-Kang W, Sun Y, Feng WL, Tao L, Luo XJ, Mai BX (2018). Dechlorane Plus flame retardant in a contaminated frog species: Biomagnification and isomer-specific transfer from females to their eggs. Chemosphere. 211:218-225.

Wu Q, Li H, Kuo DTF, Chen S, Mai B, Li H, Liu Z, Deng M, Zhang H, Hu X, Geng X, Chen Y (2017). Occurrence of PBDEs and alternative halogenated flame retardants in sewage sludge from the industrial city of Guangzhou, China. Environ Pollut. 220(Pt A):63-71.

Wu JP, Zhang Y, Luo XJ, Wang J, Chen SJ, Guan YT, Mai BX (2010). Isomer-specific bioaccumulation and trophic transfer of Dechlorane Plus in the freshwater food web from a highly contaminated site, South China. Environ Sci Technol. 15;44(2):606-11

Xiang N, Chen L, Meng XZ, Li YL, Liu Z, Wu B, Dai L, Dai X (2014). Polybrominated diphenyl ethers (PBDEs) and dechlorane plus (DP) in a conventional wastewater treatment plant (WWTP) in Shanghai: seasonal variations and potential sources. Sci Total Environ. 15; 487:342-9.

Xiang N, Zhao X, Meng XZ, Chen L (2013). Polybrominated diphenyl ethers (PBDEs) in a conventional wastewater treatment plant (WWTP) from Shanghai, the Yangtze River Delta: implication for input source and mass loading. Sci Total Environ. 461-462:391-6.

Xu P, Tao B, Zhou Z, Fan S, Zhang T, Liu A, Dong S, Yuan J, Li H, Chen J, Huang Y (2017). Occurrence, composition, source, and regional distribution of halogenated flame retardants and polybrominated dibenzo-p-dioxin/dibenzofuran in the soils of Guiyu, China. Environ Pollut. 228:61-71.

Yang R, Wei H, Guo J, McLeod C, Li A, Sturchio NC (2011). Historically and currently used Dechloranes in the sediments of the Great Lakes. Environ Sci Technol. 45(12):5156-63. Erratum in: Environ Sci Technol. 2011 45(21):9467.

Yu L, Luo X, Zheng X, Zeng Y, Chen D, Wu J, Mai B (2013). Occurrence and biomagnification of organohalogen pollutants in two terrestrial predatory food chains. Chemosphere. 93(3):506-11.

Yu Z, Lu S, Gao S, Wang J, Li H, Zeng X, Sheng G, Fu J (2010). Levels and isomer profiles of Dechlorane Plus in the surface soils from e-waste recycling areas and industrial areas in South China. Environ Pollut. 158(9):2920-5.

Zhang Q, Zhu C, Zhang H, Wang P, Li Y, Ren D, Jiang G (2015). Concentrations and distributions of Dechlorane Plus in environmental samples around a Dechlorane Plus manufacturing plant in East China. Sci. Bull. 60(8):792–797.

Zhang Y, Wu JP, Luo XJ, Wang J, Chen SJ, Mai BX (2011). Tissue distribution of Dechlorane Plus and its dechlorinated analogs in contaminated fish: high affinity to the brain for anti-DP. Environ Pollut. 159(12):3647-52.

Zhou S, Fu J, He H, Fu J, Tang Q, Dong M, Pan Y, Li A, Liu W, Zhang L (2017). Spatial distribution and implications to sources of halogenated flame retardants in riverine sediments of Taizhou, an intense e-waste recycling area in eastern China. Chemosphere. 184:1202-1208.

Zhou SN, Siddique S, Lavoie L, Takser L, Abdelouahab N, Zhu J (2014). Hexachloronorbornene-based flame retardants in humans: Levels in maternal serum and milk. Environ Int 66:11-17