

Committee for Risk Assessment

RAC

Annex 1 Background document to the Opinion proposing harmonised classification and labelling at EU level of

ipconazole (ISO); (1RS,2SR,5RS;1RS,2SR,5SR)-2-(4chlorobenzyl)-5-isopropyl-1-(1H-1,2,4-triazol-1ylmethyl)cyclopentanol [CAS No. 125225-28-7 (all stereoisomers); CAS No. 115850-69-6 (cis-cis racemate); CAS No. 115937-89-8 (cis-trans racemate)]

> EC Number: -CAS Number: -

CLH-O-000001412-86-198/F

The background document is a compilation of information considered relevant by the dossier submitter or by RAC for the proposed classification. It includes the proposal of the dossier submitter and the conclusion of RAC. It is based on the official CLH report submitted to public consultation. RAC has not changed the text of this CLH report but inserted text which is specifically marked as 'RAC evaluation'. Only the RAC text reflects the view of RAC.

Adopted 9 March 2018

Annankatu 18, P.O. Box 400, FI-00121 Helsinki, Finland | Tel. +358 9 686180 | Fax +358 9 68618210 | echa.europa.eu

CLH report

Proposal for Harmonised Classification and Labelling

Based on Regulation (EC) No 1272/2008 (CLP Regulation), Annex VI, Part 2

Substance Name: IPCONAZOLE

EC Number: Not allocated

CAS Number: Not included

Index Number: Not allocated

Contact details for dossier submitter:

UK Competent Authority Chemicals Regulation Directorate Health and Safety Executive United Kingdom

Version number:

2

Date: December 2016

CONTENTS

Part A.

1	P	ROPOSAL FOR HARMONISED CLASSIFICATION AND LABELLING	7
	1.1	SUBSTANCE	7
	1.2	HARMONISED CLASSIFICATION AND LABELLING PROPOSAL	
	1.3	PROPOSED HARMONISED CLASSIFICATION AND LABELLING BASED ON CLP REGULATION	9
2	В	ACKGROUND TO THE CLH PROPOSAL	13
		HISTORY OF THE PREVIOUS CLASSIFICATION AND LABELLING	
	2.2	SHORT SUMMARY OF THE SCIENTIFIC JUSTIFICATION FOR THE CLH PROPOSAL	
	2.3	CURRENT HARMONISED CLASSIFICATION AND LABELLING	
	2.4	CURRENT SELF-CLASSIFICATION AND LABELLING	14
	2.	4.1 Current self-classification and labelling based on the CLP Regulation criteria	14
3	\mathbf{J}	USTIFICATION THAT ACTION IS NEEDED AT COMMUNITY LEVEL	

PART B.

S	CIENTIFIC EVALUATION OF THE DATA	
1	IDENTITY OF THE SUBSTANCE	
	 1.1 NAME AND OTHER IDENTIFIERS OF THE SUBSTANCE	
2	MANUFACTURE AND USES	
	2.1 MANUFACTURE2.2 IDENTIFIED USES	
3	CLASSIFICATION FOR PHYSICO-CHEMICAL PROPERTIES	
	3.1PHYSICO-CHEMICAL PROPERTIES3.1.1Summary and discussion of physico-chemical properties3.1.2Conclusions on classification and labelling	
4	HUMAN HEALTH HAZARD ASSESSMENT	25
	 4.1 TOXICOKINETICS (ABSORPTION, METABOLISM, DISTRIBUTION AND ELIMINATION)	25 26 26 27 28 28 28 28 28 28 28 29 29 29 29 29 29 29 29 29 29
	4.2.5 Conclusions on classification and labelling	

4.3 SPECIFIC TARGET ORGAN TOXICITY – SINGLE EXPOSURE (STOT SE)	
4.3.1 Summary and discussion of Specific target organ toxicity – single exposure	
4.3.2 Comparison with criteria	
4.3.3 Conclusions on classification and labelling	
4.4 IRRITATION	
4.4.1 Skin irritation	
4.4.1.1 Non-human information	
4.4.1.2 Human information	
4.4.1.3 Summary and discussion of skin irritation	
4.4.1.4 Comparison with criteria	
4.4.1.5 Conclusions on classification and labelling	
4.4.2 Eye irritation	
4.4.2.1 Non-human information	
4.4.2.2 Human information	
4.4.2.3 Summary and discussion of eye irritation	
4.4.2.4 Comparison with criteria	
4.4.2.5 Conclusions on classification and labelling	
4.4.3 Respiratory tract irritation	
4.5 CORROSIVITY	
4.5.1 Conclusions on classification and labelling	
4.6 SENSITISATION	
4.6.1 Skin sensitisation	
4.6.1.1 Non-human information	
4.6.1.2 Human information	
4.6.1.3 Summary and discussion of skin sensitisation	
4.6.1.4 Comparison with criteria.	
4.6.1.5 Conclusions on classification and labelling	
4.6.2 Respiratory sensitisation 4.6.2.1 Conclusions on classification and labelling	
4.0.2.1 Conclusions on classification and labeling	
4.7.1 Non-human information 4.7.1.1 Repeated-dose toxicity: oral	
4.7.1.1 Repeated-dose toxicity. oral	
4.7.1.1.2 Mouse	
4.7.1.1.3 Dog	
4.7.1.2 Repeated-dose toxicity: inhalation	
4.7.1.3 Repeated-dose toxicity: dermal	
4.7.1.4 Repeated-dose toxicity: other routes	57
4.7.2 Human information	
4.7.3 Other relevant information	
4.7.4 Summary and discussion of repeated-dose toxicity relevant for classification as STOT RE	
4.7.5 Comparison with criteria of repeated-dose toxicity findings relevant for classification as ST	OT-RE 61
4.7.6 Conclusions on classification and labelling of repeated-dose toxicity findings relevant for classification	
as STOT RE	
4.8 GERM CELL MUTAGENICITY (MUTAGENICITY)	67
4.8.1 Non-human information	
4.8.1.1 In vitro data	
4.8.1.2 In vivo data	68
4.8.2 Human information	
4.8.3 Other relevant information	
4.8.4 Summary and discussion of mutagenicity	
4.8.5 <i>Comparison with criteria</i>	
4.8.6 Conclusions on classification and labelling	
4.9 CARCINOGENICITY	
4.9.1 Non-human information.	
4.9.1.1 Carcinogenicity: oral	
4.9.1.2 Carcinogenicity: inhalation	
4.9.1.3 Carcinogenicity: dermal	
4.9.2 Human information	
4.9.3 Other relevant information	
4.9.4 Summary and discussion of carcinogenicity	

	4.9.5 Comparison with criteria	73
	4.9.6 Conclusions on classification and labelling	
	4.10 TOXICITY FOR REPRODUCTION	
	4.10.1 Effects on fertility	75
	4.10.1.1 Non-human information	
	4.10.1.2 Human information	
	4.10.2 Developmental toxicity	
	4.10.2.1 Non-human information4.10.2.2 Human information	
	4.10.2.2 Human information 4.10.3 Other relevant information	
	4.10.4 Summary and discussion of reproductive toxicity	
	4.10.5 Comparison with criteria	
	4.10.6 Conclusions on classification and labelling	
	4.11 OTHER EFFECTS	
5	ENVIRONMENTAL HAZARD ASSESSMENT	106
	5.1 DEGRADATION	106
	5.1.1 Stability	
	5.1.2 Biodegradation	
	5.1.2.1 Biodegradation estimation	
	5.1.2.2 Screening tests	110
	5.1.2.3 Simulation tests	
	5.1.3 Summary and discussion of degradation	
	5.2 ENVIRONMENTAL DISTRIBUTION	
	5.2.1 Adsorption/Desorption 5.2.2 Volatilisation.	
	5.2.2 Volatilisation 5.2.3 Distribution modelling	
	5.2.5 Distribution modelling	
	5.3.1 Aquatic bioaccumulation	
	5.3.1.1 Bioaccumulation estimation	
	5.3.1.2 Measured bioaccumulation data	
	5.3.2 Summary and discussion of aquatic bioaccumulation	
	5.4 AQUATIC TOXICITY	
	5.4.1 Fish	
	5.4.1.1 Short-term toxicity to fish	
	5.4.1.2 Long-term toxicity to fish	
	5.4.2.1 Short-term toxicity to aquatic invertebrates	
	5.4.2.2 Long-term toxicity to aquatic invertebrates	
	5.4.3 Algae and aquatic plants	140
	5.4.4 Other aquatic organisms (including sediment)	
	5.5 Comparison with criteria for environmental hazards (sections $5.1 - 5.4$)	
	5.6 Conclusions on classification and labelling for environmental hazards (sections $5.1 - 5.4$)	
6	OTHER INFORMATION	
7	REFERENCES	151
8	ANNEXES	156
	8.1 ANNEX I: MEAN BODY WEIGHTS OF RAT FETUSES WITH AND WITHOUT EXTERNAL MALFORMATIONS	
	(DEVELOPMENTAL TOXICITY STUDIES)	
	8.2 ANNEX II: DEVELOPMENTAL TOXICITY STUDIES IN RATS: INDIVIDUAL FETAL DATA ON SEX, BODY WEIGHTS	
	EXTERNAL MALFORMATIONS	158
	8.3 ANNEX III: BENCHMARK DOSE ANALYSIS OF LITTER EFFECTS IN PRELIMINARY RAT AND RABBIT DEVELOPMENTAL TOXICITY STUDIES: EXTERNAL MALFORMATIONS	170
	8.4 ANNEX IV – ECOTOXICITY OF DEGRADATION PRODUCTS	
	or manazir, heorometri or beekabarrourikobuerbananananananananananananananananananan	105

Part A.

1 PROPOSAL FOR HARMONISED CLASSIFICATION AND LABELLING

1.1 Substance

Substance name:	Ipconazole		
EC number:	Not allocated		
CAS number:	Refer to table 4 in Part B		
Annex VI Index number:	Not allocated		
Degree of purity:	≥ 95.5% [87.5-93% ipconazole cc (cis-cis) racemate and 6.5-9.5 ipconazole ct (cis-trans) racemate]		
Impurities:	There are a number of process impurities which have been taken into account and are not considered to contribute to the classification and labelling.		

Table 1:Substance identity

1.2 Harmonised classification and labelling proposal

Table 2: The current Annex VI entry and the proposed harmonised classification

	CLP Regulation
Current entry in Annex VI, CLP Regulation	Not currently listed
Current proposal for consideration by RAC	Acute Tox 4; H302 – Harmful if swallowed STOT-RE 2; H373 – May cause damage to organs (eyes, skin, liver and gastrointestinal tract) through prolonged or repeated exposure Repr 2; H361d – Suspected of damaging the unborn child Aquatic Chronic 1; H410 – Very toxic to aquatic life with long lasting effects M = 100

Resulting harmonised classification (future entry in Annex VI, CLP Regulation)	Acute Tox 4; H302 – Harmful if swallowed STOT-RE 2; H373 – May cause damage to organs (eyes, skin, liver and gastrointestinal tract) through prolonged or repeated exposure
	Repr 2; H361d – Suspected of damaging the unborn child
	Aquatic Chronic 1; H410 – Very toxic to aquatic life with long lasting effects
	M = 100

1.3 Proposed harmonised classification and labelling based on CLP Regulation

 Table 3:
 Proposed classification according to the CLP Regulation

CLP Annex I ref	Hazard class	Proposed classification	Proposed SCLs and/or M-factors	Current classification 1)	Reason for no classification ²⁾
2.1.	Explosives	Not classified	Not applicable	Not classified	conclusive but not sufficient for classification
2.2.	Flammable gases	Not classified	Not applicable	Not classified	conclusive but not sufficient for classification
2.3.	Flammable aerosols	Not classified	Not applicable	Not classified	conclusive but not sufficient for classification
2.4.	Oxidising gases	Not classified	Not applicable	Not classified	conclusive but not sufficient for classification
2.5.	Gases under pressure	Not classified	Not applicable	Not classified	conclusive but not sufficient for classification
2.6.	Flammable liquids	Not classified	Not applicable	Not classified	conclusive but not sufficient for classification
2.7.	Flammable solids	Not classified	Not applicable	Not classified	conclusive but not sufficient for classification
2.8.	Self-reactive substances and mixtures	Not classified	Not applicable	Not classified	conclusive but not sufficient for classification
2.9.	Pyrophoric liquids	Not classified	Not applicable	Not classified	conclusive but not sufficient for classification
2.10.	Pyrophoric solids	Not classified	Not applicable	Not classified	conclusive but not sufficient for classification
2.11.	Self-heating substances and mixtures	Not classified	Not applicable	Not classified	conclusive but not sufficient for classification
2.12.	Substances and mixtures which in contact with water emit flammable gases	Not classified	Not applicable	Not classified	conclusive but not sufficient for classification
2.13.	Oxidising liquids	Not classified	Not applicable	Not classified	conclusive but not sufficient for classification

2.14.	Oxidising solids	Not classified	Not applicable	Not classified	conclusive but not sufficient for classification
2.15.	Organic peroxides	Not classified	Not applicable	Not classified	conclusive but not sufficient for classification
2.16.	Substance and mixtures corrosive to metals	Not classified	Not applicable	Not classified	conclusive but not sufficient for classification
3.1.	Acute toxicity - oral	Acute Tox 4; H302 – Harmful if swallowed		Not classified	-
	Acute toxicity - dermal	Not classified	Not applicable	Not classified	conclusive but not sufficient for classification
	Acute toxicity - inhalation	Not classified	Not applicable	Not classified	conclusive but not sufficient for classification
3.2.	Skin corrosion / irritation	Not classified	Not applicable	Not classified	conclusive but not sufficient for classification
3.3.	Serious eye damage / eye irritation	Not classified	Not applicable	Not classified	conclusive but not sufficient for classification
3.4.	Respiratory sensitisation	Not classified	Not applicable	Not classified	Data lacking
3.4.	Skin sensitisation	Not classified	Not applicable	Not classified	conclusive but not sufficient for classification
3.5.	Germ cell mutagenicity	Not classified	Not applicable	Not classified	conclusive but not sufficient for classification
3.6.	Carcinogenicity	Not classified	Not applicable	Not classified	conclusive but not sufficient for classification
3.7.	Reproductive toxicity	Repr 2; H361d – Suspected of damaging the unborn child	None	Not classified	-
3.8.	Specific target organ toxicity -single exposure	Not classified	Not applicable	Not classified	conclusive but not sufficient for classification

3.9.	Specific target organ toxicity – repeated exposure	STOT-RE 2 – H373 – May cause damage to organs (eyes, skin, liver and gastrointestinal tract) through prolonged or repeated exposure.		Not classified	-
3.10.	Aspiration hazard	Not classified	Not applicable		conclusive but not sufficient for classification
4.1.	Hazardous to the aquatic environment	Aquatic Chronic 1; H410 – Very toxic to aquatic life with long lasting effects		Not classified	-
5.1.	Hazardous to the ozone layer	Not classified	Not applicable		conclusive but not sufficient for classification -

¹⁾ Including specific concentration limits (SCLs) and M-factors ²⁾ Data lacking, inconclusive, or conclusive but not sufficient for classification

Labelling:

Pictogram(s):	GHS07, GHS08, GHS09
Signal word:	Warning
Hazard statements:	H302 - Harmful if swallowed
	H361d - Suspected of damaging the unborn child
	H373 - May cause damage to organs (eyes, skin, liver, gastrointestinal tract) through prolonged or repeated exposure H410 – Very toxic to aquatic life with long lasting effects
Precautionary statements:	Not included in Annex VI
Proposed notes assigned to an entry:	None

2 BACKGROUND TO THE CLH PROPOSAL

2.1 History of the previous classification and labelling

Ipconazole has not previously been reviewed for harmonised classification and labelling in the EU.

At the time of writing, no REACH registration dossiers have been submitted for this substance.

2.2 Short summary of the scientific justification for the CLH proposal

2.3 Current harmonised classification and labelling

Ipconazole was approved for Annex I listing as a 3A review substance under Council Directive 91/414/EEC, with the UK as Rapporteur Member State. The EFSA conclusion (EFSA Journal 2013;11(4):3181) [74] was that ipconazole was harmful if swallowed (H302), may cause damage to organs through prolonged or repeated exposure (H373) and was suspected of damaging the unborn child (H361d). It also considered very toxic to aquatic life with long lasting effects (H410).

Ipconazole does not meet the criteria for classification for physical hazards.

Ipconazole is classified as harmful for acute toxicity via the oral route as the ATE values ranged from 468 – 1338 mg/kg. Acute Tox 4; H302 – Harmful if swallowed is proposed. The ATEs via the inhalation and dermal routes were above the values for classification. Acute exposure to ipconazole did not result in toxicity to specific organs or produce narcotic effects. There were some signs of respiratory tract irritation following acute inhalation exposure in animals, but taken into consideration with the observations in the repeated-dose and skin and eye irritation studies it is concluded that they are insufficient to classify. Therefore, it is not proposed to classify for STOT-SE. Signs of mild irritation were observed in the skin and eye irritations studies, but all scores were below the values for classification. Ipconazole gave a negative result in a Guinea Pig maximisation test and it is not proposed to classify for sensitisation.

Repeated-dose administration of ipconazole resulted in a number of adverse effects in rats, mice and dogs at doses below the relevant guidance values for classification. This included ocular effects (potentially related to a decrease in plasma cholesterol), hepatocyte necrosis, lesions in the oesophagus, pharynx, larynx and hard palate, fatty deposits in the liver and fatty vacuolation in the adrenal glands. A further systemic finding of concern was skin reddening in dogs following oral (capsule) administration. Effects at doses relevant for classification were noted after oral, dermal and inhalation exposure. Therefore, it is proposed to classify ipconazole with STOT-RE 2; H373 – May cause damage to organs (eyes, skin, liver and gastrointestinal tract) through prolonged or repeated exposure.

There was no indication that ipconazole has a mutagenic effect on somatic or germ cells and no classification for germ cell mutagenicity is proposed.

From studies in the rat and mouse, there was no indication that administration of ipconazole caused an increased incidence of tumours. Therefore, no classification for carcinogenicity is proposed.

There were marginal and inconsistent reductions in some reproductive parameters (reductions in total litter size (F2 only) and live birth index (F1 only)) in a two-generation study in rats. However, as

these were only marginally below the historical control ranges, were inconsistent across the generations and did not show statistical significant differences from the controls, they are not considered to provide evidence of a specific treatment related effect and therefore, no classification for effects on fertility is proposed.

There are four developmental studies (two in rats and two in rabbits) in which several findings indicative of developmental toxicity were observed. These included, microphthalmia and short/kinky tails in both rats and rabbits along with visceral defects (e.g., abnormalities of major blood vessels associated with the aortic arch and increased incidence of left umbilical artery in rats). There were also increases in fetal resorptions/deaths resulting in reduced live fetuses per litter in rats and rabbits. It is noted that signs of maternal toxicity were observed and the majority of findings were only reported in preliminary studies. Litter effects were evident in the rat preliminary study and the number of fetuses with malformation tended to be clustered in a few litters rather than being more evenly distributed. Overall, it is proposed to classify ipconazole with **Repr 2; H361d – Suspected of damaging the unborn child.**

Ipconazole is hydrolytically stable and is considered to be 'not rapidly degradable' for the purposes of hazard classification. Despite a log K_{ow} of 4.28-4.65, the substance has a low potential for bioaccumulation as the steady-state BCF has been experimentally determined in fish to be 225-283 l/kg. This is less than the CLP cut-off value of 500 l/kg. Acute and Chronic aquatic toxicity data are available for fish, invertebrates and algae. In acute studies, the most sensitive species is the fish, but the L(E)C50 is above the range for classification. Therefore, not classification for aquatic acute toxicity is proposed. The lowest chronic NOEC is the 28-day mean measured value of 0.00044 mg/l for *Pimephales promelas* from a reliable fish early-life stage study. These data indicate that the substance should be classified as **Chronic Category 1; H410 – Very toxic to aquatic life with long lasting effects, with an M factor of 100.**

2.4 Current self-classification and labelling

2.4.1 Current self-classification and labelling based on the CLP Regulation criteria

The following self-classifications have been notified to the Classification and Labelling Inventory:

Acute Tox. 4 (H302), Aquatic Acute 1 (H400), Aquatic Chronic 1 (H410);

Acute Tox 4 (H302, H332), Aquatic Acute 1 (H400), Aquatic Chronic 1 (H410);

Acute Tox 4 (H332);

Acute Tox 4 (H302), Repr. 2 (H361), Aquatic Chronic 2 (H411).

3 JUSTIFICATION THAT ACTION IS NEEDED AT COMMUNITY LEVEL

Ipconazole is a systemic fungicide for the seed treatment of wheat and barley that inhibits 14-C demethylation in the ergosterol biosynthesis pathway of plant disease fungi. The target site for ipconazole is reported to be the enzyme cytochrome P-450, which catalyses the 14-C demethylation in this pathway. In 2013, it was approved for Annex I listing as a 3A review substance under Council Directive 91/414/EEC, with the UK as Rapporteur Member State. In accordance with Article 36 (2) of the CLP Regulation, ipconazole should now be considered for harmonised classification and labelling. Therefore, this proposal considers all human health and environmental hazard classes. This CLH dossier presents a classification and labelling proposal based mainly on the information presented in the assessment of ipconazole under Directive 91/414/EEC. The assessment made under that Directive is attached to the IUCLID dossier. The EFSA conclusion (EFSA Journal 2013;11(4):3181) [74] was that ipconazole was harmful if swallowed (H302), may cause damage to organs through prolonged or repeated exposure (H373) and was suspected of damaging the unborn child (H361d).

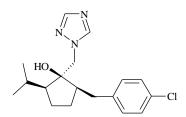
Part B.

SCIENTIFIC EVALUATION OF THE DATA

1 IDENTITY OF THE SUBSTANCE

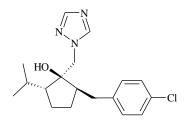
1.1 Name and other identifiers of the substance

Table 4:Substance identity


EC number:	Not allocated
EC name:	Not allocated
CAS number (EC inventory):	Not listed
CAS number:	Related CAS identifiers
	125225-28-7* (all stereoisomers)
	115850-69-6 cis-cis (cc) racemate
	115937-89-8 cist-trans (ct) racemate
CAS name:	-
IUPAC name:	(1RS,2SR,5RS;1RS,2SR,5SR)-2-(4-chlorobenzyl)- 5-isopropyl-1-(1H-1,2,4-triazol-1-ylmethyl) cyclopentanol*
CLP Annex VI Index number:	Not listed
Molecular formula:	C ₁₈ H ₂₄ ClN ₃ O
Molecular weight:	333.9 g/mol

* As included in the Draft Assessment Report and EFSA conclusion [74]. It should, however, be noted that the CAS number 125225-28-7 is generic and covers all possible stereoisomers.

Structural formula:


Ipconazole cc (cis-cis) racemate

(1*RS*,2*SR*,5*RS*)-2-(4-chlorobenzyl)-5-isopropyl-1-(1*H*-1,2,4-triazol-1-ylmethyl) cyclopentanol CAS: 115850-69-6

Ipconazole ct (cis-trans) racemate

(1*RS*,2*SR*,5*SR*)-2-(4-chlorobenzyl)-5-isopropyl-1-(1*H*-1,2,4-triazol-1-ylmethyl) cyclopentanol CAS: 115937-89-8

1.2 <u>Composition of the substance</u>

Table 5: Constituents (non-confidential information)

Constituent	Typical concentration	Concentration range	Remarks
Ipconazole (1 <i>RS</i> ,2 <i>SR</i> ,5 <i>RS</i> ;1 <i>RS</i> ,2 <i>SR</i> ,5 <i>SR</i>)- 2-(4-chlorobenzyl)-5- isopropyl-1-(1 <i>H</i> -1,2,4- triazol-1-ylmethyl) cyclopentanol	-	≥95.5%	
cc - racemate ct - racemate	90.1% 7.3%	87.5-93% 6.5-9.5%	

Current Annex VI entry: not listed.

The active substance, is approximately a 12:1 ratio of the cc and ct racemates (i.e., 90.1% ipconazole *cc* and 7.3% ipconazole ct). Further details on the composition are provided in the technical dossier.

Whilst it is noted that the substance contains > 80% of ipconazole-cc racemate (90.1% typical), the ISO name Ipconazole is associated with the IUPAC name (1RS,2SR,5RS;1RS,2SR,5SR)-2-(4-chlorobenzyl)-5-isopropyl-1-(1H-1,2,4-triazol-1-ylmethyl)cyclopentanol. The substance is therefore identified as such in the CLH report for consistency. It is proposed to include the CAS numbers 125225-28-7, 115850-69-6 and 115937-89-8 in the description of the substance as related chemical identifiers:

Index No	International Chemical Identification	EC No	CAS No
603-RST-VW- Y	 ipconazole (ISO); (1RS,2SR,5RS;1RS,2SR,5SR)-2- (4-chlorobenzyl)-5-isopropyl-1-(1H-1,2,4-triazol-1- ylmethyl)cyclopentanol [CAS No. 125225-28-7 (all stereoisomers); CAS No. 115850-69-6 (cis-cis racemate); 	-	-
	CAS No. 115937-89-8 (cis-trans racemate)]		

Table 6: Impurities (non-confidential information)

Impurity	Typical concentration	Concentration range	Remarks
Confidential			

There are a number of process impurities in the substance. These have been taken into consideration and are not considered to impact on the classification proposed in this dossier. Further information on the impurities is considered to be confidential but full details are provided in the technical dossier.

Current Annex VI entry: Not listed

Table 7: Additives (non-confidential information)

ł	Additive	Function	Typical concentration	Concentration range	Remarks
1	None				

Current Annex VI entry: Not applicable

1.2.1 Composition of test material

The composition of the tested material is considered to meet the specification outlined above.

1.3 <u>Physico-chemical properties</u>

References are taken from the Draft Assessment Report (DAR) - Ipconazole - Volume 3, Annex B.2: Physical and Chemical properties – November 2011 and Addendum 5 to the DAR – Volume 3, Annex B.2: Physical and Chemical properties - November 2012

All studies were conducted to GLP and were considered acceptable during the review of the active substance. The studies were conducted on ipconazole (pure or technical) or the ipconazole cc and ct racemates. Where ipconazole cc or ct were tested this is noted in the table.

Property	Value	Reference	Comment (e.g. measured or estimated)
State of the substance at 20°C and 101,3 kPa	White powder	Comb, A.L., 2005a, b, c [1], [2], [3] DAR B.2.1.7 and DAR B.2.1.8	Visual inspection 98.1% (technical), 99.3% (cc) and 98.3% (ct)
Melting/freezing point	81-89 °C	Comb, A.L, 2007 [4]	EEC A1 (capillary method) 99.7% (pure)
	85.5-88 °C	Riggs, A.S, 2001a [5] DAR B.2.1.1	98.4% (technical)
Boiling point	> 400 °C at 102 kPa	Woolley, S.M & Mullee, D. M., 2000a and 2000b [6][7] DAR B.2.1.2	EEC A2 (DSC) 99.7% (cc) and 99.7% (ct)
Relative density	1.23 at 20 °C	Woolley, S.M & Mullee, D. M., 2000g and 2000h [8][9] DAR B.2.1.4	EEC A3 (pycnometer method) 99.7% (cc) and 99.7% (ct)
Vapour pressure	3 x 10 ⁻⁶ Pa at 25 °C	Comb, A.L., 2007 [4] DAR B.2.1.5	EEC A4 (vapour pressure balance method) 99.7% pure
Surface tension	56.6 mN/m at 20 °C	Comb, A.L., 2005a [1] DAR B.2.1.24	OECD 115 98.1% (technical)

 Table 8: Summary of physico - chemical properties

Water solubility	11.0 mg/L in pure water 9.05 mg/L in pH 5 buffer 10.4 mg/L in pH 7 buffer 10.4 mg/L in pH 9 buffer	Comb, A.L, 2007 [4] DAR B.2.1.11	EEC A6 (column elution method) 99.7% (pure)
	4.97 mg/L in pure water 5.79 mg/L in pH 5 buffer 4.60 mg/L in pH 7 buffer 4.71 mg/L in pH 9 buffer	Riggs, A.S., 2001b [10] DAR B.2.1.11	EEC A6(flask method) 99% (ct)
	9.34 mg/L in pure water 9.86 mg/L in pH 5 buffer 8.68 mg/L in pH 7 buffer 9.13 mg/L in pH 9 buffer		99.2% (ct)
Partition coefficient n-octanol/water	Log Pow = 4.65 (effect of pH not considered)	Riggs, A. S., 2001d [11]	OECD 117 (HPLC) 100% (cc)
	Log Pow = 4.44 (effect of pH not considered)	DAR B.2.1.13	100% (ct)
	Log Pow = 4.49 at 20 °C (effect of pH not considered)	Comb, A.L., 2012a and b [12][13]	EEC A8 (Shake flask) 99.6% (cc)
	Log Pow = 4.28 at 20 °C (effect on pH not considered)	Addendum 5 DAR B.2.1.13	100% (ct)
Flash point	Not applicable (solid wit melting point > 80°C)		
Flammability	Not flammable; melted and burned but did not sustain a flame on removal of ignition source. Flame did not propagate along the pile.	Comb, A.L., 2005a [1] DAR B.2.1.20	EEC A10 98.1% (technical)
	Experience in handling and use indicates the substance is not pyrophoric and does not emit flammable gases on contact with water.		
Explosive properties	Not explosive in response to heat, shock or friction.	Comb, A.L., 2005a [1] DAR B.2.1.22	EEC A14 98.1% (technical)
Self-ignition temperature	No auto-ignition below 400 °C	Comb, A.L., 2005a [1] DAR B.2.1.20	EEC A15 98.1% (technical)
Oxidising properties	Not oxidising	Comb, A.L., 2005a [1] DAR B.2.1.23	EEC A17 98.1% (technical)

Granulometry	No data		
Stability in organic solvents and identity of relevant degradation products	No data		
Dissociation constant	Potential dissociated species: pKa = -5.43 $figure CH_3$ $figure CH_3$ pKa = -2.42 $figure CH_3$ pKa = -2.42 $figure CH_3$ pKa = 2.32 $figure CH_3$ $figure CH_3$ pKa = 17.34 $figure CH_3$ $figure CH_3$ fig	Yu, W.S., (2001b) [14] DAR B.2.1.18	Estimated (Sparc Online Calculator)
Viscosity	Not applicable		

2 MANUFACTURE AND USES

2.1 Manufacture

Ipconazole is manufactured outside of the EU.

2.2 Identified uses

Ipconazole is used as a fungicidal seed treatment in agricultural applications within the EU.

3 CLASSIFICATION FOR PHYSICO-CHEMICAL PROPERTIES

Table 9: Summary table for relevant physico-chemical studies

Method	Results	Remarks	Reference
Refer to table 8			

3.1 Physico-chemical properties

3.1.1 Summary and discussion of physico-chemical properties

In a standard study (EEC A10, Comb, A. 2005(a) DAR B.2.1.20), ipconazole melted and burned but did not sustain combustion on removal of the ignition source. Consequently, it does not meet the criteria for classification as a flammable solid. In addition, experience in handling and use indicates that the substance is not pyrophoric and does not emit flammable gases on contact with water.

In a standard study (EEC A14, Comb, A. 2005(a) DAR B.2.1.22), ipconazole was not found to be sensitive to the effects of heat, shock or friction. Consequently, it does not meet the criteria for classification as an explosive substance.

In a standard study (EEC A17, Comb, A. 2005(a) DAR B.2.1.23), ipconazole was not found to be oxidising. Consequently, it does not meet the criteria for classification as an oxidising solid.

3.1.2 Conclusions on classification and labelling

Not classified – conclusive but not sufficient for classification

RAC evaluation of physical hazards

Summary of the Dossier Submitter's proposal

In a standard flammability study (EEC A.10., Comb, A. 2005(a) DAR B.2.1.20), ipconazole melted and burned, but did not sustain combustion on removal of the ignition source.

In addition, experience in handling and use indicates that the substance is not pyrophoric and does not emit flammable gases in contact with water.

In a standard study (EEC A.17., Comb, A. 2005(a) DAR B.2.1.23), ipconazole was not found to be oxidising.

In a standard study (EEC A.14., Comb, A. 2005(a) DAR B.2.1.22), ipconazole was not found to be sensitive to the effects of heat, shock or friction.

Comments received during public consultation

One comment was received from a Company-Manufacturer, agreeing with the 'no classification' proposal for physical hazards.

Assessment and comparison with the classification criteria

During the RAC consultation, one RAC member commented that the A.14. method used in the assessment does not entirely cover the requirements of CLP, and that the same situation was encountered in the dossier for another substance (mefentrifluconazole). Both substances are triazole compounds with similar usage.

Ipconazole does not meet the criteria for classification as a flammable solid, as it did not sustain combustion on removal of the ignition source and as noted above, experience in handling and use indicates that the substance is not pyrophoric and does not emit flammable gases in contact with water.

Ipconazole does not meet the criteria for classification as an oxidising solid as the relevant test was negative.

To define ipconazole as "not explosive", the results of a series of three tests should be negative (CLP Guidance: Annex I: Figure 2.1.2). These are: (1) Detonation test (UN gap test, zero gap); (2) Koenen test; (3) Ignition under confinement (time/pressure test). In addition, the larger frame of the physical hazard profile including such properties as flammability, oxidising and pyrophoric ability, indicates that ipconazole is not a reactive substance.

Ipconazole is not sensitive for heat, shock or friction measured by A.14., but *the time/pressure test* from the three necessary tests has not been performed, as required by UN 1 (c) (i) and UN 2 (c) (i).

As all of the measured explosive properties are negative and, based on the weight of the evidence reviewed, RAC agreed not to classify ipconazole as explosive.

4 HUMAN HEALTH HAZARD ASSESSMENT

This assessment is largely based on the information provided in the Draft Assessment Report for ipconazole, Volume 3 Annex B.6 (November 2011).

4.1 Toxicokinetics (absorption, metabolism, distribution and elimination)

The following summary is derived from the assessment made for the review under Directive 91/414/EEC.

4.1.1 Non-human information

The toxicokinetics and metabolism of ipconazole have been investigated in rats following oral administration (single high and low doses, plus repeated (14 days) dosing). After a single dose, ipconazole was extensively absorbed (> 90%) at the low dose level (2 mg/kg). The majority (> 80%) of a high (100 mg/kg) or low single dose was excreted within 48 hours, mainly via the biliary route (> 50% of the applied dose), with very little retention of material after five days. Systemic exposure (C_{max} and AUC values) was proportionally higher at the high dose than the difference in doses would indicate, suggesting non-linear kinetics. On repeated dosing, the T_{max} was shortened, the AUC values increased and the half-life extended. Increased retention of radiolabelled material in the carcass was also indicated on repeated dosing, but remained relatively low (< 1.4% of the administered dose). The highest residues were detected in the liver after both single (low- and high-dose) and repeated administration, but, overall, levels retained in tissues were low at 120 hours after the (final) dose (total < 0.7% of administered single dose; $\le 1.4\%$ of a repeated, daily dose). Ipconazole was extensively metabolised [15], with a maximum of 2.2% of the administered dose excreted unchanged. Large numbers of metabolite fractions occurred at low levels (each < 4% of the dose). All metabolites that occurred at $\geq 6\%$ of the administered dose were identified. Hydroxylation and conjugation were the major metabolic pathways, with the ring structure remaining largely intact. The only notable exception was a small amount (up to 6.9% of the dose) of free triazole (1,2,4-triazole) detected in urine.

During the evaluation under Directive 91/414/EEC, questions were raised over the isomer-specific toxicity of ipconazole. Specifically, there was a concern over the possibility that the toxicity of the substance was owing to one or more metabolites derived from ipconazole ct; the possibility was raised that a small difference in the metabolism of the ct stereoisomers by humans compared with laboratory animals could affect the ability to predict the toxicity of ipconazole (ISO) to humans from the available data. The following case was presented by industry to support its assertion that 'the possibility of the formation of metabolites in humans that are specific to the ipconazole ct stereoisomers, and their subsequent responsibility for toxic effects, is remote':

- theoretical and experimental evidence to indicate that interconversion between ipconazole cc and ct is unlikely in the mammalian body;
- although the theoretical considerations suggest likely differences in the metabolism of ipconazole cc and ct, experimental data from rats and goats indicate that there is no significant formation of ct-specific metabolites;

- no evidence for major species-specific differences in metabolism based on the similar metabolism and kinetics of ipconazole in rats and goats. In particular the metabolite profile in faeces, a major route of excretion in both species, showed no major differences (qualitative or quantitative) of particular concern, i.e. the profiles should be considered broadly similar;
- no evidence from acute and genotoxicity studies for the ct being of more toxicological concern than the isomer.

The RMS accepted the evidence for the lack of interconversion of ipconazole cc and ct, but concluded that, notwithstanding the data on rats and goats, there was some remaining uncertainty surrounding the comparative animal versus human metabolism of ipconazole.

No marked differences in toxicokinetics between males and females were observed.

4.1.2 Human information

None available.

4.1.3 Summary and discussion of toxicokinetics

Ipconazole is extensively absorbed after oral administration in rodents, is widely distributed and extensively metabolised and excreted.

4.2 Acute toxicity

Acute toxicity has been investigated by the oral, inhalation and dermal routes in rats and mice.

	Acute Oral			
Method	LD ₅₀	Observations and remarks		
Rats, Sprague-Dawley, 5/sex/group Males: 300, 420, 600, 850, 1200, 1700, 2400, 3400 mg/kg Females: 600, 850, 1200, 1700, 2400 mg/kg Administered in olive oil 14-day observation period 87.27% cc : 10.23% ct, purity 97.5% Japanese guideline (no deviations from OECD 401), GLP Kureha Corporation (1989)[16]	Males = 1338 mg/kg Females = 888 mg/kg	Deaths occurred at $\geq 1200 \text{ mg/kg}$ in males and at $\geq 850 \text{ mg/kg}$ in females; most deaths occurred between 1 and 4 days after dosing. Clinical signs appeared from 3 hours after dosing and included decreased locomotor activity, loose stool, lateral position, lacrimation, reddish tear, reddish nasal discharge, tip toe gait, ptosis and loss of hair. Skin reddening was observed in one high-dose male. Body weight losses were recorded in male survivors at \geq 1200 mg/kg and reduced body weight gains were recorded at day 3 at 850 mg/kg. Body weight losses were recorded in female survivors at \geq 850 mg/kg. In males that died, the predominant macroscopic findings were in the stomach: distension, thinning of the stomach, no stomach content and sporadic perforation of the stomach. In females that died, the most common finding was atrophy of the spleen.		
Mice, CD-1, 5/sex/group 300, 420, 600, 850, 1200 mg/kg in olive oil 14-day observation period 87.27% cc : 10.23% ct, purity 97.5% Japanese guideline (no deviations from OECD 401), GLP Kureha Corporation (1989) [17]	Males = 537 mg/kg Females = 468 mg/kg	Deaths occurred at ≥ 420 mg/kg, on days 2 or 3. Body weight losses (≥ 420 mg/kg) or reduced body weight gains (300 mg/kg) were initially recorded in males. The predominant findings at necropsy of mice that died were in the gastrointestinal tract, most commonly reddish change or distension in the duodenum. Many animals that died showed no macroscopic changes.		

Table 10:	Summary table of relevant acute toxicity studies
-----------	--

	Acute Inhalation		
Method	LC50	Observations and remarks	
Nose-only exposure for 4 hours Rats, Sprague-Dawley, 5/sex Administered undiluted as a dust, mean test atmosphere concentration = 1.88 mg test	> 1.88 mg/l	There were no deaths and no clinical signs of toxicity during the period of exposure. During the two hours after removal from the chamber, clinical signs included excessive lacrimation, salivation and red nasal discharge.	
substance / litre air, average mass median aerodynamic diameter (MMAD) = $3.9 \ \mu m$		During the 14-day observation period, clinical signs included clear and red nasal discharge, chromodacryorrhoea, yellow anal-genital staining and decreased faecal volume.	
14-day observation period OECD 403, GLP		Most females did not gain weight or showed a small loss in weight during the first week of observations.	

Kureha Corporation (2003) [18]		There were no abnormal findings at necropsy, but the extent of internal examination of the respiratory tract was unclear.
Whole-body exposure for 4 hours Rats, Sprague-Dawley, 5/sex/group Administered as a mixture of 70% ipconazole with a carrier (white carbon / kaolin 1:1). Atmospheric dust concentrations of ipconazole were 2.19 and 3.53 mg/l. MMAD = 5.3 µm. 14-day observation period cc:ct content and purity not reported. OECD 403, GLP Kureha Corporation (1991) [19]	> 3.53 mg/l	There were no deaths. Clinical signs of toxicity included salivation, slight nasal discharge (reddish) and urine incontinence, all of which had resolved one hour after exposure. Salivation in some animals of both groups re-occurred from 5 to 8 days after exposure. Body weights were unaffected. No adverse macroscopic findings were recorded, but the extent to which the respiratory tract was examined was unclear.
	Acı	ute Dermal
Method	LD50	Observations and remarks
Rats, Sprague-Dawley, 5/sex/group 2000 mg/kg, semi-occlusive, exposure for 24 hours	> 2000 mg/kg	There were no deaths, no clinical signs of toxicity or abnormal gross necropsy findings.
14-day observation period		
87.27% cc : 10.23% ct, purity 97.5%		
Japanese guideline (no deviation from OECD 402), GLP		
Kureha Corporation (1989) [20]		

4.2.1 Non-human information

4.2.1.1 Acute toxicity: oral

Two acute oral studies have been conducted, one in rats and one in mice. LD_{50} values of 1338 (male rats), 888 (female rats), 537 (male mice) and 468 (female mice) were obtained.

4.2.1.2 Acute toxicity: inhalation

Two acute inhalation studies with ipconazole administered as a dust undiluted or with a carrier have been conducted. The 4-hour LC_{50} values were > 1.88 mg/l and > 3.53 mg/l.

4.2.1.3 Acute toxicity: dermal

The dermal LD_{50} in a limit-dose test in rats was > 2000 mg/kg.

4.2.1.4 Acute toxicity: other routes

No information.

4.2.2 Human information

No information.

4.2.3 Summary and discussion of acute toxicity

See section 4.2.4.

4.2.4 Comparison with criteria

In two acute oral studies, conducted in rats and mice, LD_{50} values ranged from 468 (female mice) to 1338 (male rats). These values fall with the range for acute oral toxicity category 4 under CLP (> 300 mg/kg, \leq 2000 mg/kg). It is therefore proposed that ipconazole should be classified as Acute Tox 4 – H302.

In two acute inhalation studies, concentrations of ipconazole of up to 3.53 mg/l did not result in any deaths. No classification is proposed for acute inhalation toxicity.

The LD₅₀ value obtained from an acute dermal study was above the classification cut-off (≤ 2000 mg/kg) in the CLP Regulation. No classification is proposed for acute dermal toxicity.

4.2.5 Conclusions on classification and labelling

Acute Tox 4; H302 – Harmful if swallowed

RAC evaluation of acute toxicity

Summary of the Dossier Submitter's proposal

Acute toxicity: oral route

<u>Rats</u>

Ipconazole was tested for acute oral toxicity in Sprague-Dawley rats (5 male and 5 female per dose), according to a Japaneses guideline (no deviation from OECD TG 401; GLP) (Kureha Corporation,1989(16)¹). Ipconazole was administered orally at 300 to 3400 mg/kg bw in males and from 600 to 2400 mg/kg bw in females.

 $^{^{1}}$ The reference numbering given here refers to that of the Background Document throughout.

The calculated oral LD₅₀ values were 1338 and 888 mg/kg bw for male and female rats, respectively, and were within the range for classification in acute toxicity category 4 (300 < $LD_{50} \le 2000$).

<u>Mice</u>

Ipconazole was tested for acute oral toxicity in CD-1 mice (5 males and 5 females per dose), according to a Japaneses guideline (no deviation from OECD TG 401; GLP) (Kureha Corporation, 1989 (17)). Ipconazole was administered orally in males and females at 300 to 1200 mg/kg bw.

The calculated oral LD₅₀ values were 537 and 468 mg/kg bw for male and female rats, respectively, and were within the range for classification in acute toxicity category 4 (300 < $LD_{50} \le 2000$).

Therefore, classification for Acute Tox. 4; H302, for the oral route was proposed by the DS.

Acute toxicity: dermal route

Ipconazole was tested for acute dermal toxicity in Sprague-Dawley rats (5 males and 5 females per dose), according to a Japaneses guideline (no deviation from OECD TG 402; GLP) (Kureha Corporation, 1989 (20)).

The LD₅₀ values for both male and female rabbits were > 2000 mg/kg bw, which is above the limit for classification in acute dermal toxicity category 4 (1000 < LD₅₀ \leq 2000). The DS did not propose classification for acute dermal toxicity

Acute toxicity: Inhalation

In an acute inhalation study conducted according to OECD TG 403 (Kureha Corporation, 2003 (18)), the LC₅₀ value for ipconazole was > 1.88 mg/L for rats. The mean mass aerodynamic diameter (MMAD) was 3.9 μ m. In another acute inhalation study conducted according to OECD TG 403 (Kureha Corporation, 1991 (19)), the LC₅₀ value for ipconazole was > 3.53 mg/L for rats. The mean mass aerodynamic diameter (MMAD) was 5.3 μ m. The DS did not propose classification for acute inhalation toxicity for ipconazole.

Comments received during public consultation

4 MSCAs and one industrial organisation supported classification of ipconazole as Acute Tox. 4, H302: Harmful if swallowed.

One MSCA asked for harmonisation of an acute toxicity estimate (ATE) value for acute oral toxicity as it would facilitate classification of mixtures containing ipconazole.

Assessment and comparison with the classification criteria

Taking into account the data presented on acute toxicity by the oral, inhalation and dermal routes, RAC is of the opinion that ipconazole meets the classification criteria for **Acute Tox. 4; H302**, via the oral route but no classification is required for the other routes, in line with what was proposed by the DS.

To facilitate consistent classification of mixtures containing ipconazole, a harmonised ATE value is also proposed. According to the CLP regulation, the ATE value for a substance should be derived using the LD₅₀ where available. The lowest LD₅₀ value in female mice was 468 mg/kg bw and 888 mg/kg bw in female rats. Taking these data into account, and in line with table 3.1.2, Annex I of CLP, RAC is of the opinion that the converted ATE for ipconazole should be used, and proposes to assign **an ATE of 500 mg/kg bw for acute oral toxicity**.

4.3 Specific target organ toxicity – single exposure (STOT SE)

4.3.1 Summary and discussion of Specific target organ toxicity – single exposure

The information gained from the acute oral and dermal toxicity studies (section 4.2) did not indicate that ipconazole resulted in toxicity to specific organs after a single exposure.

There were some clinical signs indicative of respiratory tract irritation upon acute inhalation exposure, which included red followed by clear nasal discharge and moist rales. Data from medical surveillance of manufacturing plant personnel and clinical cases / poisoning incidents did not report respiratory irritation in humans.

4.3.2 Comparison with criteria

STOT-SE is divided into three categories. Categories 1 and 2 are assigned on the basis of significant or severe toxicity that is non-lethal and their criteria include guidance cut-off values. From the available acute studies, there was no evidence that a single exposure to ipconazole resulted in toxicity to specific organs, and thus a classification in category 1 or 2 is not appropriate.

STOT-SE 3 is reserved for transient target organ effects, which are limited to respiratory tract irritation and narcotic effects. There were no indications of ipconazole having a narcotic effect in the available acute studies. The criteria for respiratory tract irritation are largely based on human data; such data was limited but did not raise concern for respiratory irritation. In a nose-only inhalation study in rats, clinical signs included a red nasal discharge for several days followed by a clear discharge and rales, whereas in a whole-body study in rats the only sign of respiratory tract irritation was a slight nasal discharge immediately following exposure. Dyspnoea and rhinitis, which are given as clinical signs of irritation in the CLP criteria, were not reported. There were no histopathology investigations to support these findings. In a 28-day repeated-dose inhalation study in which ipconazole was administered at concentrations up to 1 mg/l (section 4.7.1.2.), clinical signs of respiratory tract irritation were not reported. In this study, histopathological changes were noted in the larynx of animals after 2 to 4 weeks of exposure, but it is not known if they were the result of acute or only repeated exposure. Upon repeated-dose administration by the oral and dermal routes (section 4.7.1.), indications of gastro-intestinal irritation were apparent (those observed in the dermal study being attributed to oral ingestion), but again it was not possible to conclude if these were due to acute or repeated exposure. In the acute oral studies (section 4.2), the predominant finding in animals that died after a single exposure was gastrointestinal pathology, although this appeared to be

of a different nature from that observed in the repeated-dose studies. Furthermore, ipconazole did not meet the criteria for classification for skin or eye irritation (section 4.4). Overall, it is concluded that there is insufficient evidence for respiratory tract irritation following a single exposure, and so classification as STOT-SE Category 3 is not appropriate.

4.3.3 Conclusions on classification and labelling

Not classified (conclusive but not sufficient for classification)

RAC evaluation of specific target organ toxicity – single exposure (STOT SE)

Summary of the Dossier Submitter's proposal

The information from the acute oral and dermal toxicity studies did not indicate toxicity to specific organs after a single exposure.

There were some clinical signs indicative of respiratory tract irritation after acute inhalation exposure, which included red followed by clear nasal discharge and moist rales. Data from medical surveillance of manufacturing plant personnel and clinical cases / poisoning incidents did indicate respiratory irritation in humans.

Taking into account the existing human and animal data the DS did not propose classification of ipconazole for STOT SE.

Comments received during public consultation

One industrial organisation supported no classification of ipconazole for STOT SE.

Assessment and comparison with the classification criteria

Taking into account the data in the CLH report, RAC is of the opinion that ipconazole **does not warrant classification for STOT SE**.

4.4 Irritation

4.4.1 Skin irritation

The potential of ipconazole to cause skin irritation has been tested in rabbits.

Method	Results	Remarks	Reference
 Rabbit, Japanese white, 6 males. 4-hour exposure of ipconazole as supplied under a semi-occlusive dressing. 88.5% cc : 9.1% ct, purity 97.6%. Comparable to OECD 404, but six animals used. GLP. 	Very slight erythema (score 1) was recorded in two animals, one hour after patch removal; reversed by 24 hours after patch removal. No other reactions were observed.	Not irritant	Kureha Corporation (1997) [21]

 Table 11:
 Summary table of relevant skin irritation studies

4.4.1.1 Non-human information

One skin irritation study has been conducted, in rabbits, in accordance with a Japanese test method guideline published in 1984. Skin effects were graded based on Japanese Guidelines on Agricultural Chemicals at 1, 24, 48 and 72 hours after patch removal. Only minimal effects were observed in two animals (score 1 = barely perceptible), with no reactions in any other animals. The effects were rapidly reversible. The primary cutaneous irritation score was 0.1 (not irritating).

4.4.1.2 Human information

No information.

4.4.1.3 Summary and discussion of skin irritation

See section 4.4.1.4.

4.4.1.4 Comparison with criteria

In the one available study, skin reactions in rabbits were scored in accordance with a Japanese guideline. The only reaction observed was a very slight erythema in 2/6 animals at one hour after removal of the patch (primary cutaneous irritation score = 0.1). For a study conducted with six animals, two approaches can be used to evaluate the data in the context of the CLP criteria: the overall average for all animals; or the average score per animal (Skin Irritant Category 2 is applied if 4/6 rabbits show a mean score of 2.3 or above). Ipconazole did not, therefore, meet the criteria for classification as a skin irritant under the CLP Regulation.

4.4.1.5 Conclusions on classification and labelling

Not classified (conclusive but not sufficient for classification)

RAC evaluation of skin corrosion/irritation

Summary of the Dossier Submitter's proposal

The DS proposed no classification for skin corrosion/irritation.

The skin irritation potential of ipconazole was assessed in a study carried out according to a Japaneses guideline (similar to OECD TG 404, but six animals were used; GLP compliant) (Kureha Corporation, 1997 (21)) in six male Japanese White rabbits.

Very slight erythema (score 1) was observed in two rabbits one hour after patch removal, which was fully reversed 24 hours after removal.

Comments received during public consultation

One industrial organisation supported no classification of ipconazole for skin corrosion/irritation.

Assessment and comparison with the classification criteria

Since in an acceptable study, the CLP criteria for skin irritation (a mean score of \geq 2.3 for erythema/eschar or for oedema) were not met in any of the tested animals, RAC considers that ipconazole **does not warrant classification for skin corrosion/irritation**.

4.4.2 Eye irritation

The potential of ipconazole to cause eye irritation has been tested in rabbits.

Method	Results	Remarks	Reference
Rabbits, Japanese white, 9 males.	Group 1: washed eyes	Reactions were	Kureha
In one group (3 animals), treated eyes were washed with purified water 2 minutes after application. In the second group (6 animals), the treated eye remained unwashed for 24 hours after treatment.	Mean scores for 24, 48 and 72 hours for each of the 3 animals were: corneal opacity $(0.33, 0.67, 0.67)$; iris lesion $(0, 0, 0)$; conjunctival redness (1, 1, 1); chemosis $(0.3, 0.3, 0.3)$.	fully reversible in all animals by 7 days.	Corporation (1997) [22]
Ipconazole was applied as supplied.	<i>Group 2: unwashed eyes</i> The mean scores (6 animals) for		
88.5% cc : 9.1% ct, purity 97.6%.	corneal opacity, iris lesions and redness of the conjunctiva and chemosis at 24, 48 and 72 hours were 0.4, 0, 0.9 and 0.3.		
Comparable to OECD 405, but included a treatment group where treated eyes were washed shortly after treatment. GLP.			

Table 12:	Summary table of relevant eye irritation st	tudies
	,	

4.4.2.1 Non-human information

One eye irritation study has been conducted, in rabbits, in accordance with a Japanese test method guideline published in 1984. Two groups of animals were included, one in which the eyes were rinsed 2 minutes after application of the test substance, and one in which the eyes were unwashed for 24 hours after application. Irritant effects were graded based on the Draize method at 1, 24, 48 and 72 hours and 4 and 7 days after instillation of the test substance. In the group with unwashed eyes, corneal opacity (mainly grade 0-1, but grade 2 in one animal at 24 hours) was reported in 4/6 animals. Conjunctival redness and chemosis (grade 1) and discharge (grade 1-3) occurred in all animals. Congestion of the iris (grade 1) was observed in one animal. The scores obtained in the unwashed eyes were similar to those recorded in the washed eyes. All reactions had fully resolved by day 7.

4.4.2.2 Human information

No information.

4.4.2.3 Summary and discussion of eye irritation

See section 4.4.2.4.

4.4.2.4 Comparison with criteria

The guidance on the application of the CLP criteria recommends that, for a study on 6 animals, classification for eye irritation Category 2 is appropriate if at least 4 out of 6 rabbits show a mean score of ≥ 1 for corneal opacity; and/or ≥ 1 for iris lesions; and/or ≥ 2 for conjunctival erythema; and/or ≥ 2 for conjunctival swelling. These classification criteria were not met. Therefore, classification for eye irritation is not appropriate.

4.4.2.5 Conclusions on classification and labelling

Not classified (conclusive but not sufficient for classification)

RAC evaluation of serious eye damage/irritation

Summary of the Dossier Submitter's proposal

The DS proposed no classification for eye damage/irritation.

The eye damage/irritation potential of ipconazole was assessed in a GLP-compliant study carried out according to a Japaneses guideline (similar to OECD TG 405, but 9 rabbits were used and in 3 rabbits the eyes were washed 2 minutes after application) (Kureha Corporation, 1997 (22)).

The mean scores 24, 48 and 72 hours after application for corneal opacity, iris lesion, conjunctival redness and chemosis were below the scores leading to classification according to the CLP criteria. All responses were fully reversed 7 days after application.

Comments received during public consultation

One industrial organisation supported no classification of ipconazole for eye damage/irritation.

Assessment and comparison with the classification criteria

Since in the acceptable study, effects meeting the CLP criteria for classification were not observed in any of the tested animals, RAC considers that ipconazole **does not warrant classification for eye damage/irritation**.

4.4.3 Respiratory tract irritation

See section 4.3.

4.5 Corrosivity

Ipconazole was not corrosive when tested for skin and eye irritation [21, 22].

4.5.1 Conclusions on classification and labelling

Not classified (conclusive but not sufficient for classification)

4.6 Sensitisation

4.6.1 Skin sensitisation

The potential of ipconazole to induce skin sensitisation has been investigated in one guinea pig study.

Species/Method	Doses	No. sensitised/total no.	Result	Reference
Guinea pigs, Dunkin-Hartley, 20 in test groups, 10 in controls. Magnusson and Kingman maximisation test. 88.5% cc: 9.1% ct, purity 97.6%. OECD 406, GLP	Induction: - Intradermal: 2.5% in paraffin oil - Topical: 50% in white petrolatum Challenge: 50% in white petrolatum	Test: 0/20 Ipconazole negative control: 0/20 Positive control: 10/10 animals had grade 3 reactions to 2,4-dinitrochlorobenzene (DNCB) DNCB negative control: no reactions (5/10) or discrete or patchy erythema (grade 1, 5/10).	Negative	Kureha Corporati on (1997) [23]

 Table 13:
 Summary table of relevant skin sensitisation studies

4.6.1.1 Non-human information

The potential of ipconazole to induce skin sensitisation has been investigated in one guinea pig adjuvant method, the maximisation test. No dermal responses were recorded in any of the test animals, whereas the positive control animals all reacted strongly.

4.6.1.2 Human information

No information.

4.6.1.3 Summary and discussion of skin sensitisation

Information obtained from the one available study indicated that ipconazole was not a skin sensitiser.

4.6.1.4 Comparison with criteria

Ipconazole did not meet the criteria (\geq 30% of animals responding in an adjuvant assay) for classification for skin sensitisation.

4.6.1.5 Conclusions on classification and labelling

Not classified (conclusive but not sufficient for classification)

RAC evaluation of skin sensitisation

Summary of the Dossier Submitter's proposal

The DS proposed no classification for skin sensitisation.

The skin sensitisation potential of ipconazole was assessed in a Guinea Pig Maximisation Test (GPMT) (Kureha Corporation, 1997(23)) carried out according to OECD TG 406. No dermal responses were noted in any of the ipconazole treated animals, whereas all positive control animal had strong skin responses.

Comments received during public consultation

One industrial organisation supported no classification of ipconazole for skin sensitisation.

Assessment and comparison with the classification criteria

Taking into account the lack of skin sensitisation responses in Guinea pigs in an acceptable GPMT, RAC considers that ipconazole **does not warrant classification for skin sensitisation**.

4.6.2 Respiratory sensitisation

There is no information available on the potential of ipconazole to induce respiratory sensitisation.

4.6.2.1 Conclusions on classification and labelling

Not classified (data lacking)

RAC evaluation of respiratory sensitisation

Summary of the Dossier Submitter's proposal

The DS proposed no classification for respiratory sensitisation due to lack of information on the potential of ipconazole to induce respiratory sensitisation.

Comments received during public consultation

One MSCA and one industrial organisation supported no classification of ipconazole for respiratory sensitisation

Assessment and comparison with the classification criteria

As there are not data suggesting that ipconazole may cause respiratory sensitisation, RAC **proposes no classification for respiratory sensitisation**.

4.7 Repeated dose toxicity

The repeated-dose toxicity of ipconazole has been investigated in rats, mice and dogs by the oral, dermal and inhalation routes.

4.7.1 Non-human information

4.7.1.1 Repeated-dose toxicity: oral

4.7.1.1.1 Rat

A 28-day and a 90-day repeated-dose study by the oral route are available in the rat.

 Table 14.1:
 Summary table of relevant repeated-dose toxicity studies in the rat (oral)

Method	Dose Levels	Observations and Remarks
Oral (dietary) for 28 days Rats, Han Wistar, 5/sex/group 91.7% cc : 6.7% ct, purity 98.4% OECD 407, GLP Kureha Corporation (2003) [24]	0, 300, 1000, 3000 ppm, equivalent to males = 0, 30.5, 94.5, 208-273 mg/kg/d Females = 0, 31.3, 91.0, 164- 236mg/kg/d The 3000 ppm group was terminated after 3 weeks because of excessive toxicity.	<u>3000 ppm</u> Animals showed marked weight loss or low weight gain, reduced food consumption and indications of the test diet being unpalatable. Females were affected to a greater extent than males; clinical signs in females included thin build, piloerection, excessive chewing, salivation, hunched posture, reddening of the buccal cavity and forepaws, exfoliation on the hind paws and hair loss of the head and forelimbs. Signs in males were restricted to reddening and encrustations in the buccal cavity. Other findings included changes in haematology and clinical chemistry parameters, increased liver and spleen weights, decreased thymus and uterus weight, minimal adipose tissue, moderate/marked myometrial atrophy in the uterus (5/5 animals) and changes in the non-glandular region of the stomach (fore-stomach) (marked epithelial hyperplasia and hyperkeratosis, moderate erosion, slight to moderate ulceration and slight sub-epithelial inflammation in females). This group was terminated at the end of week 3.
		<u>300, 1000 ppm</u> Clinical signs were restricted to females at 1000 ppm and included hair loss (head and dorsal body surface), encrustations in the buccal cavity, exfoliation on the forelimbs/dorsal body surface and individual instances of thin build, piloerection or reddening in the buccal cavity.
		In females at 300 ppm and both sexes at 1000 ppm, body weights were reduced compared with controls (reduced body weight gain or body weight loss over the first week) and food consumption was lower.
		Haematology investigations showed the presence of hyperchromatic erythrocytes in all females and 1 male at 1000 ppm and 2 females at 300 ppm. Lymphocyte counts were slightly higher than controls in females at
		1000 ppm. There were some blood chemistry findings in females at 1000 ppm (increased aspartate aminotransferase (AST), γ -glutamyl transpeptidase (GGT) and cholesterol, decreased urea, low plasma albumin:globulin ratio). Urinalysis showed low urine volume, low electrolyte levels (both sexes at 1000 ppm plus females at 300 ppm) and high urinary pH (females at 1000 ppm).
		The only notable macroscopic findings were in females at 1000 ppm and comprised thin appearance (2/5), marked hair loss (1/5) and depressions in the stomach (3/5). Changes in organ weights were also restricted to females at 1000 ppm and consisted of increased relative liver (15% * higher than controls), spleen (34% ** \uparrow) and thyroid (40% \uparrow) weights.
		Histopathology revealed findings indicative of an irritant effect in the oesophagus (hyperkeratosis**, all animals at 1000 ppm, no cases in other groups) and non- glandular region of the stomach (epithelial hyperplasia, hyperkeratosis, erosion, ulceration, sub-epithelial inflammation in males at 1000 ppm*, females at 300* and 1000** ppm). All females at 1000 ppm had prominent sinusoidal lining cells in the adrenals.

Method	Dose Levels	Observations and Remarks
		The NOAEL in males was 300 ppm (30.5 mg/kg/d); a NOAEL was not identified in females.
Oral (dietary) for 90 days Rats, Han Wistar, 16/sex/group 91.7% cc : 6.7% ct, purity 98.4% OECD 408 & 424, GLP Kureha Corporation (2006) [25]	0, 30, 70, 150, 300 ppm, equivalent to males = 0, 2.5, 5.8, 12.6, 25.9 mg/kg/d females = 0, 3.1, 7.0, 15.4, 33.2 mg/kg/d A further group of 16 males received 600 ppm (= 52.2 mg/kg/d)	There were no deaths or clinical signs of toxicity. There was an overall reduction in body weight gain at 600 ppm in males (14% *) and 300 ppm in females (17% *) that was not associated with a sustained decrease in food intake. There were no treatment-related changes in ophthalmological, haematology, blood chemistry nor urinalysis parameters. The main macroscopic finding was a thickened area in the stomach of 1 male (150 ppm) and 1 female (300 ppm). This female also had a depression in the wall of the stomach. In 300 ppm females, the absolute weight of the adrenals was 19% lower than controls and the relative weight 11% lower; also, the absolute weight of uterus and cervix was 33% lower, relative weight 28% lower. In males at 600 ppm, absolute thymus weight was reduced by 24% and relative weight by 13%. Upon histopathology, substance-related effects were observed in both males and females. Epithelial hyperplasia of the non-glandular fore-stomach was observed in males at 2 150 ppm (up to 4/10 animals at 600 ppm) and females at 300 ppm (5/10*); in the high-dose females there was also one case of ulceration of the fore- stomach and one of hyperkeratosis. There were no substance-related lesions of the glandular stomach or oesophagus. Kidney findings were restricted to females: ↑ incidence of corticomedullary mineralisation (total 0/10, 2/10, 3/10, 6/10*, 9/10* at 0, 30, 70, 150 and 300 ppm, graded minimal or slight) and cortical scarring only at 300 ppm (3/10). Other findings in 300 ppm females were ↓ incidence of epithelial keratinisation of the vagina (3/10 compared with 8/10 of controls). In males at 600 ppm, incidences of focal inflammation in the liver (4/10 compared with 1/10 of controls), developmental cysts in the pituitary and inflammation of the prostate were ↑. Neurotoxicological investigations were negative and neurohistopathology of 6 animals/sex from the control and high-dose groups did not reveal treatment-related changes. Brain weights and anatomical measurements were una

N.B. The values for NOAEL are provided for information only; they have been agreed by a PRAPeR Expert Meeting. * Statistically significant at $p \le 0.05$. ** Statistically significant at $p \le 0.01$

The major adverse effects in the two repeated-dose oral studies in the rat were on the non-glandular region of the stomach (fore-stomach) and comprised epithelial hyperplasia, hyperkeratosis, ulceration and erosion. These adverse effects occurred mainly from 300 ppm (approximately 30 mg/kg/d) in both studies, and were recorded from three weeks of exposure. Hyperkeratosis of the oesophagus was also reported at 1000 ppm (94.5 / 91.0 mg/kg/d) in the 28-day study. The study authors attributed these lesions to an irritant effect of ipconazole.

The other major target organ was the kidney: in the 90-day study, a statistically significant increase in the incidence of corticomedullary mineralisation (graded minimal or slight) occurred from 150 ppm (15.4 mg/kg/d) and a non-statistically significant increase in the incidence of cortical scarring occurred at 300 ppm (33.2 mg/kg/d), both in females. The study author proposed that these changes were related to non-specific toxicity. Historical control data provided by the applicant under Directive 91/414/EEC in the same rat strain and with dietary exposure indicated a maximum incidence per study for slight corticomedullary mineralisation of 1/10 females. In comparison, the incidence of these lesions graded as slight in the present study was 0/10, 0/10, 0/10, 1/10, 4/10 at 0, 30, 70, 150, 300 ppm; thus only the increase in the high-dose group is considered in this report to be

treatment-related. Although there were some changes in urinary parameters in the 28-day study, there were no associated gross or histopathological findings in the kidney or bladder in that study.

Other findings included effects on the uterus (reduction in the incidence of luminal dilatation and uterine/cervix weight at 300 ppm / 33.2 mg/kg/d for 90 days, myometrial atrophy at 3000 ppm / 164-236 mg/kg/d for 21 days) and vagina (reduction in the incidence of epithelial keratinisation at 300 ppm / 33.2 mg/kg/d for 90 days). The review under Directive 91/414/EEC concluded that the uterus findings in the 90-day study (organ weight and pathology) were incidental, being associated with differences in the predominant stage of the oestrus cycle in the different dose groups, and not substance-related. These findings are thus not considered further in this classification report. There were some changes in organ weights without concomitant histopathological changes, the exception being the adrenals (prominent sinusoidal lining cells at 1000 ppm / 91 mg/kg/d in females).

4.7.1.1.2 Mouse

A 28-day and a 90-day repeated-dose study by the oral route are available in the mouse.

Oral (dietary) for 28 days0, 250, 500, 1000 ppm, equivalent to disex/group2000 ppmMouse, CD-1, 6/sex/groupequivalent to males: 0, 44.8, 88.1, 151.8 mg/kg/d2000 ppmThis group was terminated on day 10. There were indications that the treated diet was unpalatable, and there was marked weight loss and low food consumption. Gross findings were pale livers in males, thickened stomach in females and congested lungs and bronchi in both sexes. At histopathology, there was epithelial hyperplasia and sub-epithelial inflammation in the fore- stomach and oesophagus in both sexes, plus hyperkeratosis in the oesophagus. Centrilobular hepatocyte hypertrophy and centrilobular hepatocyte vacuolation were identified in the livers of males and females, together with the presence of hepatocyte fat. One female had a moderate area of hepatocyte necrosis. There was a slight decrease in cellularity in red cell pulp in the spleen in all animals.2000 ppm (157.9 mg/kg/d in males, 294.7 mg/kg/d in females during week 1) but was terminated after 10 days owing to excessive toxicity.2000 ppmTotal cholesterol was markedly reduced: 3.39, 2.46**, 1.83**, 0.74** mmol/1 in females at 0, 250, 500, 1000 ppm. Triglyceride concentrations were not affected. Alkaline phosphatase (ALP), alanine aminotransferase (ALT) and AST levels were raised in both sexes at 1000 ppm showed low albumin concentrations.Relative liver and spleen weights were higher than controls at 500 and 1000 ppm, associated with enlarged spleen and pale liver at the same dose. One female at 1000 ppm had bickening of the limiting ridge in the stomach.	Method	Dose Levels	Observations and Remarks
Findings at histopathology were recorded in the liver, oesophagus and fore-	28 days Mouse, CD-1, 6/sex/group 91.7% cc : 6.7% ct, purity 98.4% OECD 407, GLP Kureha Corporation	1000 ppm, equivalent to males: 0, 44.8, 88.1, 151.8 mg/kg/d females: 0, 53.4, 95.9, 193.8 mg/kg/d A further group received 2000 ppm (157.9 mg/kg/d in males, 294.7 mg/kg/d in females during week 1) but was terminated after 10 days owing to excessive	This group was terminated on day 10. There were indications that the treated diet was unpalatable, and there was marked weight loss and low food consumption. Gross findings were pale livers in males, thickened stomach in females and congested lungs and bronchi in both sexes. At histopathology, there was epithelial hyperplasia and sub-epithelial inflammation in the forestomach and oesophagus in both sexes, plus hyperkeratosis in the oesophagus. Centrilobular hepatocyte hypertrophy and centrilobular hepatocyte vacuolation were identified in the livers of males and females, together with the presence of hepatocyte fat. One female had a moderate area of hepatocyte necrosis. There was a slight decrease in cellularity in red cell pulp in the spleen in all animals. 250, 500, 1000 ppm There were no deaths or clinical signs of toxicity. Over the first 3 days, animals of both sexes at 1000 ppm lost weight and males at 500 ppm had a low weight gain; thereafter, weight gain amongst all groups was normal. Food consumption was reduced in males and females at 500 and 1000 ppm. There were no dose-related effects on haematology parameters. Total cholesterol was markedly reduced: 3.39, 2.46**, 1.83**, 0.74** mmol/l in males and 2.27, 1.93, 1.39**, 0.51** mmol/l in females at 0, 250, 500, 1000 ppm. Triglyceride concentrations were not affected. Alkaline phosphatase (ALP), alanine aminotransferase (ALT) and AST levels were raised in both sexes at 100 ppm. Females at 1000 ppm showed low albumin concentrations. Relative liver and spleen weights were higher than controls at 500 and 1000 ppm, associated with enlarged spleen and pale liver at the same doses. One female at 1000 ppm had thickening of the limiting ridge in the stomach.

 Table 14.2:
 Summary table of relevant repeated-dose toxicity studies in the mouse (oral)

Method	Dose Levels			Observa	ations a	nd Remar	·ks			
		stomach and are summarised below. There were no adverse microscopic findings in the spleen. The thyroid, thymus, adrenals and uterus were not examined microscopically. Summary of histopathological findings Males Females								
		ppm	0	250	500	1000	0	250	500	1000
		mg/kg/d	0	44.8	88.1	151.8	0	53. 4	95.9	193. 8
		n	6	6	6	6	6	6	6	6
		Liver								
		focal hepatocyte necrosis	0	0	0	2	0	0	1	1
		centrilobular hepatocyte hypertrophy	0	1	6**	6**	0	0	0	6**
		panacinar fat	0	1	2	5	0	2	6**	6**
		centrilobular hepatocyte vacuolation	0	2	4	6**	0	4	6**	6**
		Oesophagus								
		epithelial hyperplasia	0	0	0	5*	0	0	0	3
		sub-epithelial inflammation	0	0	0	5*	0	0	0	3
		Fore-stomach								
		epithelial hyperplasia	0	0	0	4	0	0	2	3
		sub-epithelial inflammation	0	0	0	0	0	0	2	3
		A NOAEL was not								
Oral (dietary) for 90 days	0, 30, 150, 500 ppm, equivalent	There were no subs					U		•	
Mouse, CD-1, 9/sex/group OECD 408, GLP	to males: 0, 4.4, 20.2, 69.7 mg/kg/d	At 500 ppm, body weight gains were mainly affected during week 1. Ov body weight gains of males were reduced by 53% and of females by 22% Reductions in food consumption occurred in weeks 1 and 2. There were clear dose-related effects on body weight gains at lower doses.								22%.
91.7% cc : 6.7% ct, purity 98.4% Kureha Corporation (2005) [27]	females: 0, 5.1, 25.4, 90.8 mg/kg/d	Total white blood cell counts were reduced by 32-33% in females 500 ppm. Blood chemistry investigations showed that AST was s raised in females at 500 ppm. Plasma cholesterol concentrations v reduced (3.7, 3.41, 2.87*, 1.71** mmol/l in males and 2.08, 2.46, 1.24** mmol/l in females at 0, 30, 150, 500 ppm). Plasma triglyc were unaffected. Total protein and albumin concentrations in fem ppm were reduced.						as sligh ons were 2.46, 1.7 glycerid females	tly 3, e levels s at 500	
		Absolute (females,	by 6%) liver	weights	and thos	e rela	ative to	body w	eight

Method	Dose Levels			Observa	ations ar	nd Remar	·ks			
		(both sexes, by 24-2 reduced in females 500 ppm, uterus + c body weight by 269 uterus + cervix weig Upon gross examin There were no mach examination was no Findings at histopat adrenals and are sun findings in the gland observation was base	at 500 cervix %), bu ght be ation, roscop ot perf holog mmari dular	 ppm (a weight t for onl low the 1 male bic effectormed). y were based belows 	bsolute was dec ly one o historic and 1 fe ts on th recorded ow. The i or oeso	by 20%, creased (a f these fe cal contro emale at f e lens (op d in the li re were r ophagus (relat absolu- male ol rang 500 p phtha iver, f no sul (altho	ive by ate by 2 s was t ge. pm had lmolog fore-sto ostance ugh the	14%). A 32%, re he abso l pale li ;ical omach a related	At lative to lute vers. nd
				N	Iales		1	Fe	males	
		ppm	0	30	150	500	0	30	150	500
		mg/kg/d	0	4.4	20.2	69.7	0	5.1	25.4	90.8
		n	9	9	9	9	9	9	9	9
		Liver		,	,	,		,	,	,
		generalised fatty deposits	1	0	2	5	0	1	2	5*
		centrilobular fatty deposits	3	1	1	1	0	0	1	3
		centrilobular hepatocyte hypertrophy	7	7	7	8	0	0	1	0
		hepatocyte vacuolation	1	0	6	9**	0	0	1	9**
		Adrenal gland								
		vacuolation of X-zone	0	0	0	0	6	9	9	9
		cortical vacuolation	1	0	0	4	0	0	0	0
		Fore-stomach								
		focal epithelial hyperplasia	0	0	0	2	0	0	0	0
		sub-epithelial inflammation	1	0	0	4	0	0	0	1
		The NOAEL was 3	0 ppm	(4.4 m	g/kg in a	males, 5.	1 mg/	/kg/d iı	n female	es).

N.B. The values for NOAEL are provided for information only; they have been agreed by a PRAPeR Expert Meeting. * Statistically significant at $p \le 0.05$. ** Statistically significant at $p \le 0.01$

The major target organs in the mouse were the liver and the non-glandular region of the stomach (fore-stomach) after administration of ipconazole for 28 and 90 days.

The effects on the liver comprised increased organ weights, macroscopic effects (pale liver) and microscopic changes (hepatocellular hypertrophy, necrosis, fatty deposits and hepatocyte vacuolation) mainly from 500 ppm (88.1 mg/kg/d in males, 95.9 mg/kg/d in females) in the 28-day study and from 150 ppm (20.2 mg/kg/d in males, 25.4 mg/kg/d in females) in the 90-day study. Increased liver weight of the extent seen (absolute = 6%) and hepatocellular hypertrophy are regarded as adaptive changes and thus not relevant to classification. The other microscopic changes are adverse and thus potentially relevant to classification. Increased incidences of hepatocyte vacuolation (from 20.2 mg/kg/d in the 90-day study) and fatty liver (at 69.7 / 90.8 mg/kg/d in the 90-day study) were reported in both studies. The author of the 90-day study noted that hepatocyte fatty vacuolation is a toxic response to disruption of the triglyceride cycle, and considered that it was responsible for changes in clinical chemistry (decreased plasma cholesterol, observed in both studies) and pale livers (observed in both studies).

Lesions were recorded in the fore-stomach in both studies and comprised epithelial hyperplasia and sub-epithelial inflammation at 69.7 mg/kg/d in males of the 90-day study. The same lesions were also observed in the oesophagus in the 28-day study at 1000 ppm (151.8 / 193.8 mg/kg/d). These findings were consistent with an irritant effect of ipconazole.

Adrenal gland changes were reported in the 90-day study. An increased incidence of X-zone vacuolation was observed in all female treatment groups. However, historical control data provided by the applicant under Directive 91/414/EEC indicated that this is a common finding in CD-1 mice (incidences of 0-100%, mean 58% in 13-week studies) and so it will not be considered further in this report. Adrenal cortical vacuolation occurred in 4/9 male mice at 500 ppm (69.7 mg/kg/d) and is considered to be of toxicological relevance.

Slight effects on red blood cell parameters (28-day study) and plasma protein levels (28-day and 90day studies) might have been related to poor nutrition (decreased food consumption and body weight loss or low body weight gain). The decrease in uterus plus cervix weight might have been accounted for by general toxicity; additionally, most individual values were within the historical control range, and so the toxicological relevance of this effect is uncertain.

4.7.1.1.3 Dog

Oral repeated-dose studies are available in the dog with durations of 22 days to one year.

Method	Dose Levels	Observations and Remarks
Oral (capsule) for	Phase I:	Maximum tolerated dose study.
up to 22 days	escalating dose of 10, 20, 40,	Phase 1: escalating-dose phase
Dog, beagle, 1/sex/group 91.7% cc: 6.7% ct, purity 98.4% Kureha Corporation (2005) [28]	80, 120, 160 mg/kg/d for 3, 4, 3, 5, 5, 2 days, respectively Phase II: 160 mg/kg/d for 14 days	There were no adverse effects at 10 or 20 mg/kg/d. At 40 mg/kg/d, one male had liquid faeces. At 80 mg/kg/d, grey-coloured loose faeces occurred in both dogs and from this dose there was weight loss and low food consumption. Reddening of the inside pinna and gums was recorded at 120 mg/kg/d, together with reddened skin around the eyes and yellow discharge from the eyes at 160 mg/kg/d. High liver and kidney weights were recorded in both animals, also pale liver and congestion on the mucosa of the caecum and colon; the female had a mottled liver.
		<u>Phase 2: constant-dose phase (160 mg/kg/d)</u>
		Effects comprised: loose/liquid faeces and emesis from day 1, occasional under-activity/unsteady gait, reddening of the skin, ocular discharge body weight loss, slightly high neutrophil, haematocrit, haemoglobin and RBC counts. Blood chemistry at termination revealed increased ALPalkaline phosphatase, ALT and GGT. Cholesterol and triglycerides were low in both animals, with slightly raised protein in females and slightly lower albumin in males. Liver (both animals) and kidney (male) weights were increased. The liver of the male was enlarged and that of the female was pale and mottled. Both animals had a congested area in the mucosa of the caecum and colon.
Oral (capsule) for	0, 24, 60, 150	Range-finding study.
28 days Dog, beagle, 2/sex/group	mg/kg/d	1/2 males (day 22) and 2/2 females (day 24) at 150 mg/kg/d were sacrificed, having shown poor food consumption, body weight loss or absence of weight gain, poor condition associated with ocular discharge (from day 20).
OECD 409 used as a general guide, GLP 91.7% cc: 6.7% ct, purity 98.4% Kureha Corporation		Clinical signs at 150 mg/kg/d comprised inappetance, loose-liquid faeces, reddening of the skin (inside the ears, gums, lips, abdomen and around the eyes), swollen eyelids and evidence of pain occurred from day 22. At 60 mg/kg/d, there were occasional instances of loose/liquid faeces and inappetance; reddening of the gums, lips, ear and muzzle and ocular discharge were recorded in both sexes in the final week of the study. The only clinical sign at 24 mg/kg/d was reddening inside the ears on days 27 and 28.
(2005) [29]		Reduced weight gain or body weight loss was apparent in all treatment groups.
		In the 150 mg/kg/d group, ophthalmological examination in week 4 could only be conducted on the one surviving male; this animal had moderate mucoid discharge, hyperaemia and congested blood vessel in the conjunctiva in both eyes and slight blepharoedema of both eyelids. The same findings occurred in one male (mucoid discharge classed as severe) and one female (without blepharoedema) at 60 mg/kg/d. The animals sacrificed early all showed opacities in the eyes upon necropsy.
		In the animals sacrificed early, the haematology findings were: slightly increased haematocrit and haemoglobin concentration, markedly increased white blood cells, increased platelet counts and shorter activated partial thromboplastin time (all in males only). There were no toxicologically

 Table 14.3:
 Summary table of relevant repeated-dose toxicity studies in the dog (oral)

Method	Dose Levels	Observations and Remarks
		relevant haematology findings in the animals that survived to week 4.
		In the animals sacrificed early, the blood chemistry findings were: increased ALT, AST, total bilirubin, urea, triglycerides, total protein; decreased creatine phosphokinase, cholesterol, sodium, chloride and albumin:globulin ratio. In the animals that survived to week 4, there was increased ALT activity from 24 mg/kg/d, increased ALPalkaline phosphatase \geq 60 mg/kg/d, and increased GGT, urea, creatinine and total bilirubin.
		Relative weights of the liver (also in the females), kidney and adrenal glands of the early-sacrificed male were high and the relative thymus weight reduced. The male at 150 mg/kg/d that survived to 4 weeks had an increased relative adrenal weight (78% ↑) and reduced relative thymus weight (58% ↓) but no effect on liver or kidney weights. Relative liver and kidney weights were also increased at 24 mg/kg/d. Reduced thymus weights were observed in animals from 24 mg/kg/d.
		Additional findings at necropsy of the early-sacrificed animals were moist fur around the eyes, yellow colouration of several tissues, haemorrhage in the femoro-tibial joints, abnormal gastrointestinal tract contents and depressions/dark areas in the liver, gall bladder and stomach. The urinary bladder contents were an abnormal colour (dark orange). In the 150 mg/kg/d male that survived to week 4, abnormal findings were noted in the stomach, ileum, caecum, liver and gall bladder. At 60 mg/kg/d, swollen eyelids and scabbing or hair-loss around the eyes and isolated incidences of abnormal findings in the gall bladder or stomach and enlarged or pale liver were observed.
		Histopathological examination of the early-sacrificed animals revealed effects in the liver (bile duct proliferation, slight focal necrosis, prominent inflammatory cells in the portal area, moderate multi-focal pigment-laden hepatocytes and pigment-laden Kupffer cells), thymus (marked thymic cortical atrophy in the male) and lungs (slight or moderate multi-focal interstitial pneumonitis in both sexes). In the remaining animals, the same histopathological effects were also observed in the liver (from 24 mg/kg/d), lung (from 60 mg/kg/d) and thymus (at 150 mg/kg/d).
		A NOAEL was not established.

Oral (capsule) for 90 days Dog, beagle, 4/sex/group OECD 409, GLP 91.7% cc: 6.7% ct, purity 98.4% Kureha Corporation (2006) [30]	0, 2, 10, 40 mg/kg/d	There were no unscheduled deaths. Clinica the skin (typically the ears, eyes, muzzle, r and, at 40 mg/kg/d, occasional ocular discl male from week 4) and hair-loss/thinning a males, 3 females). Additionally, one male thin. Overall body weight gain was significantly 52%** ↓; females 50%** ↓, largely attribu consumption of this dose group was signif The following ophthalmological findings, reported in the 40 mg/kg/d group (no such group):	heck and gums) f harge (2 females around the eye a at 40 mg/kg/d w y reduced at 40 r itable to 2 femal- icantly reduced. conducted in we	from 10 mg/kg/d, from week 2, 1 nd muzzle (3 as reported to be ng/kg/d (males es). Food ek 13, were
		40 mg/kg/d	Males	Females
		n	4	4
		Cataracts (total)	3	4
		of posterior capsule	3	
		of posterior + anterior capsule	1	
		complete cataract		1
		Peri-orbital alopecia	2 (slight)	3 (slight)
		Blepharo-oedema	1 (slight)	1 (very slight)
		Episcleral blood vessel congestion, vascularisation on dorsal limbus of eye	1 (1 eye)	
		There were no notable haematology findin chemistry showed that at 40 mg/kg/d there phosphatase, alanine aminotransferase, asp gamma-glutamyltransferase. Bilirubin was dose. At 40 mg/kg/d, plasma cholesterol w and females (50%**↓). Calcium concentra- in the high-dose group. There were slight n values at all dose levels in females, but with Urinalysis showed that, at 40 mg/kg/d, the increased specific gravity and increased pr the urine tended to be darker than that of c the urine of one male. The substance-related macroscopic finding	was increased a partate aminotrar increased in one vas decreased in r ations were redu- reductions in me- th individual inco- re was decreased otein concentration ontrols. Bilirubin	activity of alkaline asferase and e male at this males $(43\%^{**}\downarrow)$ ced in both sexes an triglyceride onsistencies. I urine volume, ion in males; also n was present in

Summary of macro	oscopic	finding	<u>ys</u>					
		Ma	ales			Fen	nales	
mg/kg/d	0	2	10	40	0	2	10	40
n	4	4	4	4	4	4	4	4
Liver								
weight (%)			13 ↑	23 ↑				10 ↑
rel weight (%)				23 ↑				
enlargement				1				
pale colour				1				1
<u>Thymus</u>								
weight (%)				63↓				41 ↓
rel weight (%)				57↓				28 ↓
↓ size				2				1
<u>Kidney</u>								
weight (%)		14 ↑	16 ↑	23 ↑				
rel weight (%)		14 ↑	16 ↑	26 ↑				
Dark/black or gelatinous particles in gall bladder			1	4				1
Hair loss				3				3
Scabbing				2				
Congested areas in urinary bladder				1				1
The substance-rela below:	ated his	topatho	logical	finding	s of not	e are su	immaris	sed

Summary of histop	patholog	gical fir	ndings:					
		Ma	les			Fem	ales	
mg/kg/d	0	2	10	40	0	2	10	40
n	4	4	4	4	4	4	4	4
Liver								
bile duct proliferation	0	0	0	2	0	0	0	3
centrilobular hypertrophy	0	0	3	3	0	0	1	3
pigment-laden Kupffer cells	0	1	1	3	0	0	0	3
focal necrosis (moderate)	0	0	0	0	0	0	0	1
<u>Thymus</u>								
reduced cellularity of cortex	0	0	0	3	0	0	0	2
Eyes								
lenticular degeneration	0	0	0	0	0	0	0	2
anomaly of lenticular fibres	0	0	2	4	0	0	0	0
Adrenals								
cortical vacuolation	0	1	1	3	1	1	2	0
The NOAEL was	10 mg/l	kg/d foi	males	and fen	nales.			

Oral (capsule) for 1 year	0, 1.5, 5, 20 mg/kg/d	There were no subs group died in week		elated d	eaths, al	though	one mal	e in the	1.5 mg/	/kg/d
Dog, beagle, 4/sex/group OECD 452, GLP		The only clinical si legs/paws, muzzle) 20 mg/kg/d. This w dose animals, even	in 2 ma vas first	ales and observe	1 femal d in we	e at 5 m eks 2-3	ig/kg/d a and, par	and all a ticularly	nimals	
91.2% cc: 6.9% ct, purity 98.1%		The overall body weffect in males). For	veight g	ain of fe	males a	t 20 mg	/kg/d wa	as reduc	ed by 20	0% (no
Kureha Corporation (2007) [31]		Ophthalmological of female at 20 mg/kg opacity on the post opacity in the other female.	g/d (non erior ca	e in any psule of	other g 1 male,	roups), o a poste	consistir rior and	ng of a v anterio	very fain r capsul	ıt ar
		There were no adve 20 mg/kg/d, blood in both sexes and re	chemist	ry show	ed redu	ced cho				
		Liver weights relative to body weight were increased at 20 mg/kg/d in males (26%**) and females (34%**). Adjusted kidney weights were also reduced in males (12%*, 19%**, 26%** at 1.5, 5, 20 mg/kg/d) and females (21%** at 20 mg/kg/d). There were no clear treatment-related macroscopic findings.								
		The substance-relation	ted histo	opatholo	ogical fi	ndings o	f note a	re sumn	narised	below:
				Ma	ales			Fem	ales	
		mg/kg/d	0	1.5	5	20	0	1.5	5	20
		n	4	3	4	4	4	4	4	4
		Liver bile duct proliferation	1	0	2	2	2	1	0	2
		centrilobular hypertrophy	1	2	4	3	1	0	2	3
		<u>Thymus</u>								
		reduced cellularity of cortex	0	0	0	2	0	1	0	1
		Eyes lenticular degeneration	0	0	0	1	0	0	0	0
		Adrenals								
		cortical fatty vacuolation	1	1	1	4	0	1	1	4
		Urinary bladder								
		inflammatory cell infiltration	0	0	0	0	0	0	0	1
		transitional cell hyperplasia	0	0	0	0	0	0	0	1
		The NOAEL was 1	5 mg/k	g/d for	males a	nd fema	les.			

N.B. The values for NOAEL are provided for information only; they have been agreed by a PRAPeR Expert Meeting. * Statistically significant at $p \le 0.05$. ** Statistically significant at $p \le 0.01$

After administration of ipconazole to dogs for three weeks to one year, the main target organs were the liver, eyes (lens), thymus and adrenals. Other observations included reddening of the skin and evidence for effects on the kidneys and urinary bladder.

Increased weight, macroscopic and microscopic changes were consistently recorded in the liver in the studies. Many of the blood chemistry findings also related to the liver. The increased plasma alkaline phosphatase and high bilirubin (recorded in the 28-day and 90-day studies) were attributable to the findings in the bile duct. High plasma transaminase and gamma-glutamyltransferase were likely to be related to the centrilobular hypertrophy and, together with the increased weight and hypertrophy, are considered to be an adaptive rather than adverse response. However, there were also clearly adverse effects in the liver, including consistent gross and histopathological changes. Enlarged and/or pale liver was observed at 60 mg/kg/d in the 28-day range-finding study, with isolated incidences also at 40 mg/kg/d in the 90-day study. Adverse histopathological changes were recorded from 24 mg/kg/d in the 28-day range-finding study and at 40 mg/kg/d in the 90-day study (bile duct proliferation, pigment-laden Kupffer cells, moderate focal necrosis in 1/4 females). Macroscopic (depressions/dark areas, dark or gelatinous particles) changes were recorded in the gall bladder in the 28-day and 90-day studies; these were possibly linked to the extensive biliary excretion of ipconazole and its metabolites (section 4.1).

A notable finding in the dog studies was the ocular effects. In the 28-day range-finding study, adverse ophthalmological effects were noted from 60 mg/kg/d and all the animals sacrificed during the third week showed opacities in the eyes. In the 90-day study, all the animals at 40 mg/kg/d had cataracts. Additionally, lenticular degeneration was recorded in 2/4 females at 40 mg/kg/d; in one of these females it was also associated with keratitis, iritis and oedema of the iris. Anomaly of the lenticular fibres occurred in 2/4 males at 10 mg/kg/d and 4/4 males at 40 mg/kg/d. Lenticular opacities and degeneration were also reported in the one-year study, both at 20 mg/kg/d. Lens opacity and lenticular degeneration are possibly linked to the reduced plasma cholesterol that was recorded in these studies, which is consistent with ipconazole's mode of action.

Another effect that was consistent with ipconazole's mode of action was the cortical (fatty) vacuolation of the adrenals that was observed in the 90-day and one-year studies, which suggested an effect on steroid hormone synthesis by the adrenal gland. Increased adrenal weights in the 28-day range-finding study were not further investigated and did not occur in the subsequent studies.

The study authors attributed the effects on the thymus (reduced weight, microscopic evidence of cortical atrophy, reduced cellularity of the cortex) to stress. The cause of interstitial pneumonitis in the range-finding study was not identified.

Increases in kidney weight in the 90-day and one-year studies were considered to be substancerelated, but in the absence of any evidence of kidney damage the study authors considered them to be an adaptive response to urinary excretion of ipconazole and/or its metabolites (although it is noted in section 4.1 that urinary excretion is a minor route of excretion). Individual high-dose animals in the 90-day and one-year studies showed effects on the urinary bladder that appeared to be linked to an irritant effect of the substance.

Skin reddening (observed in all studies and occurring from 10 mg/kg/d in the 90-day study) also appeared to be indicative of irritation, but the effect was purely systemic, as there was no source of topical exposure (the substance was administered in capsules). Furthermore, there was no associated

histopathological change in the skin nor an effect on leucocyte numbers in the peripheral blood that would suggest a widespread inflammatory change. The effect worsened on continued exposure so that towards the end of the one-year study, the whole body was affected in 2/7 animals at 5 mg/kg/d and 8/8 animals at 20 mg/kg/d. Reddening of the gums, ocular discharge or hair loss around the eye/muzzle was noted in the 90-day study (40 mg/kg/d) but not in the one-year study, and the study author postulated that a possible explanation for the effects in these areas was ipconazole or a metabolite in saliva and/or tears (although analysis of these secretions was not conducted).

4.7.1.2 Repeated-dose toxicity: inhalation

A repeated-dose study by the inhalation route is available in rats.

Table 14.4:	Summary table of rele	vant repeated-dose t	oxicity studies ((inhalation)
	•	1		

Method	Dose Levels	Observations and Remarks
Inhalation (nose- only) for 28 days Rats, Sprague- Dawley, 10/sex/group OECD 412, GLP 91.2% cc : 6.9% ct, purity 98.1% Kureha Corporation (2006) [32]	0, 30, 100, 300, 1000 mg/m ³ for 6 hrs/day, 5 days/week Administered as a dust. Mass median aerodynamic diameter 1.9 – 3.8 (respirable)	Three males and two females at 1000 mg/m ³ were sacrificed in poor condition after 2 weeks of exposure. Exposure of this group was discontinued after 2 weeks but the surviving animals were retained until scheduled sacrifice. Clinical signs in this group were anogenital staining, swollen extremities, irregular gait and hunched appearance. Findings in the animals that were sacrificed early included hair loss that correlated with epithelial hyperkeratosis and hyperplasia; pallor of tissues, particularly the GI tract and spleen; thickening (correlated with hyperkeratosis) of the oesophagus; decreased spleen size correlated with decreased lymphoid tissue and increased apoptosis; hyperplasia of the epithelium of the hard palate, squamous/squamoid metaplasia of the cuboidal/columnar epithelium overlying the ventral sero-mucous glands in the larynx; hyperplasia in the fore-stomach; and minimal-slight centrilobular hypertrophy in the liver.
		There were no deaths at $\leq 300 \text{ mg/m}^3$. The only clinical sign was anogenital staining in females at 300 mg/m ³ in the final week.
		Reduced body weight gain or body weight loss was recorded at 1000 mg/m ³ during the first two weeks but recovered once the treatment had been stopped. Body weight gains were reduced only in males at 100 and 300 mg/m ³ (up to 36%**), without a change in food consumption.
		There were no treatment-related ophthalmological findings.
		Haematology showed that lymphocytes were decreased in all treated male groups but without an effect on females. Neutrophils were increased in females at 300 and 1000 mg/m ³ .
		Blood chemistry investigations showed increased ALT and AST in females at 300 mg/m ³ . At 1000 mg/m ³ there was decreased glucose (males), increased phosphorus and increased total protein/globulin (females), which correlated with increased globulin in females at 300 mg/m ³ .
		In females at 300 mg/m ³ , absolute and relative liver weights $(20-22\%^{**}\uparrow)$ and adrenal weights $(17-19\%^{*}\uparrow)$ were increased, whilst relative thymus weight was decreased $(23\%^{*}\downarrow)$.
		Gross findings in the animals that survived to the end of the study were limited to enlarged adrenals (1 female at 100 mg/m ³ , 2 females at 300 mg/m ³) and hair loss at the extremities (2 females at 300 mg/m ³).
		The histopathology findings in the animals that were exposed for the full study duration are summarised below.

Ι

Summary of histopathological findings:	
Males Females	
$mg/m^3 0 30 100 300 0 30 100 300 0 30 100 300 0 30 10 1$	
Liver n 10 0 1 ^a 10 10 10 10	_
centrilobular000014hypertrophy000014	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
oesophagus - hyperkeratosis000100310	
hard palate – 1 3 4 5 1 1 5 6 epithelium hyperplasia	
Larynx n 10 9 10 10 9 10 8 9	_
squamous/ 1 5 6 7 0 9 6 8 squamoid metaplasia	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
hyperkeratosis 0 2	
Adrenals n 10 0 0 10 10 10 10 10	
cortical00004hypertrophy4	
^a : evaluated only in tissues with gross changes	_
Changes in the oesophagus, hard palate, larynx, skin and liver showed evidence of recovery in the 1000 mg/m ³ animals that were maintained for 10-11 day recovery period.	he
The systemic NOAEL was 30 mg/m ³ .	

N.B. The values for NOAEL are provided for information only; they have been agreed by a PRAPeR Expert Meeting. * Statistically significant at $p \le 0.05$. ** Statistically significant at $p \le 0.01$

Irritant effects on the hard palate and larynx were noted at all dose levels. Irritant effects were also observed on the skin, which the study authors suggested were caused by transfer of the test substance from the oral cavity to the extremities. The organs targeted by systemic effects were the liver, adrenals and spleen. Excessive toxicity at 1000 mg/m³ resulted in discontinuation of this dose after two weeks of administration, but there was evidence of reversibility of effects in those animals that survived to the end of the study.

4.7.1.3 Repeated-dose toxicity: dermal

A repeated-dose study by the dermal route is available in rats.

Method	Dose Levels	Observations and Remarks
Dermal for 28	0, 10, 150,	There were no deaths or clinical signs of systemic toxicity.
days Rats, Sprague Dawley, 10/sex/group US EPA and	1000 mg/kg/d for 6 hours/day, 5 days/week	Skin erythema occurred in up to half the animals at 1000 mg/kg/d during weeks 3 and 4. Severity ranged from very slight to well-defined in most cases, with 1 male having a moderate to severe response in the final week. At 150 mg/kg/d, very slight erythema was recorded in 1 female during the final week and 2 females on day 3.
Japanese guideline, GLP		Terminal weight gain was reduced in both sexes by up to 9% at 1000 mg/kg/d. Food consumption was slightly decreased at 1000 mg/kg/d during week 2.
90.7% cc: 6.7% ct, purity 97.4% Kureha		There were no treatment-related findings in ophthalmological, haematology or blood chemistry investigations.
Corporation (2006) [33]		In females of the 1000 mg/kg/d group, absolute and relative adrenal weights (44-52%*) and relative liver weight (12%**) were increased.
		Gross findings were limited to minimal or mild thickening of the skin in 1 male and 1 female at 1000 mg/kg/d, mild red abnormal colouration of the glandular stomach in 1 female at 1000 mg/kg/d and moderate erosion/ulceration of the glandular stomach in 1 female at 150 mg/kg/d.
		Histopathology revealed effects in the skin at all doses from day 18, consisting of minimal to mild epidermal hyperplasia (dose-response relationship) and hyperkeratosis (no clear dose-response relationship and no increase in severity with increasing dose). Minimal adrenal cortical hypertrophy/hyperplasia correlated with the adrenal weight changes but without a dose-response relationship. Minimal to moderate oesophageal, pharyngeal and laryngeal hyperkeratosis and minimal to mild hyperkeratosis in the fore-stomach were observed at all dose levels. In females at 1000 mg/kg/d, minimal renal pelvic (2/10) or renal tubular (5/10) mineralisation was recorded.
		The NOAEL for systemic effects was 150 mg/kg/d.

 Table 14.5:
 Summary table of relevant repeated-dose toxicity studies (dermal)

N.B. The values for NOAEL are provided for information only; they have been agreed by a PRAPeR Expert Meeting. * Statistically significant at $p \le 0.05$. ** Statistically significant at $p \le 0.01$

Repeated dermal exposure of rats to ipconazole resulted in irritant effects (erythema) after two weeks of exposure, mainly at 1000 mg/kg/d but with less severe effects at 150 mg/kg/d in a small number of animals. Histopathology of the skin revealed epidermal hyperkeratosis (often with hyperplasia) at all dose levels.

The study authors attributed the hyperkeratosis of the oesophagus, pharynx, larynx and fore-stomach to an irritation following oral ingestion of the substance, for example by grooming. Systemic effects were noted on food consumption, body weight, liver and adrenal weights (with histopathological effects) and mineralisation in the kidneys at 1000 mg/kg/d. The adrenal effects were not dose-related and the study authors attributed them to a stress response to the treatment procedure.

4.7.1.4 Repeated-dose toxicity: other routes

No information.

4.7.2 Human information

No information.

4.7.3 Other relevant information

The chronic/carcinogenicity studies in rats and mice are presented in section 4.9. The non-tumour findings of note are summarised here.

Ipconazole was administered orally to rats at doses up to 13.3 mg/kg/d for one (toxicity phase) or two (carcinogenicity phase) years. The main findings were increased incidences of epithelial hyperplasia of the fore-stomach and centrilobular hepatocyte hypertrophy in the liver, both in males, from 9 mg/kg/d.

In mice, ipconazole was administered orally for 78 weeks at doses up to 57 mg/kg/d. The main target organs were again the liver and the fore-stomach. Hepatocyte vacuolation was recorded from 24.1 mg/kg/d in males and 2.3 mg/kg/d in females, whilst hepatocyte necrosis (mainly graded as minimal to slight) was increased in males at 45.3 mg/kg/d. In males, there were also increased incidences of parenchymal inflammatory cells from 24.1 mg/kg/d and karyomegaly (enlarged nuclei) at 45.3 mg/kg/d in the liver, but the incidences of these in the controls were also high. Fore-stomach lesions (minimal epithelial hyperplasia, hyperkeratosis) were increased in female mice in all dose groups, although without clear dose-response relationships. Alveolar haemorrhage in the lungs and dilated mucous glands in the larynx, both in males, were postulated by the study authors to be related to an irritant action of ipconazole.

4.7.4 Summary and discussion of repeated-dose toxicity relevant for classification as STOT RE according to CLP Regulation

The repeated-dose toxicity of ipconazole has been investigated by the oral, dermal and inhalation routes in rats, mice and dogs. In addition to excessive toxicity in some of the studies, leading to early termination of some dose groups, the major findings were fore-stomach lesions in rats and mice, eye effects in dogs, liver effects in rats, mice and dogs, and skin reddening in dogs. Other effects were reported in the adrenals, kidney, urinary bladder and thymus. The relevance of each of these effects to a possible classification for repeated-dose toxicity is discussed below.

Excessive toxicity leading to early termination of dose groups

Some high-dose groups of all the tested species were terminated early for humane reasons. The clinical signs that led to termination appeared to be related to poor palatability of the test diet rather than a specific toxic effect; hence this effect is not relevant for classification.

Fore-stomach lesions in rats and mice

Fore-stomach lesions were reported in rats and mice and comprised epithelial hyperplasia, hyperkeratosis, erosion, ulceration and sub-epithelial inflammation. Lesions were reported from approximately 30 mg/kg/d in rats (28-day and 90-day oral studies) and from 69.7 mg/kg/d in mice

(28-day and 90-day oral studies). Inhalation and dermal exposure of rats for 28 days also resulted in fore-stomach lesions. There were no such lesions in the gastrointestinal tract of dogs.

The relevance of rodent fore-stomach lesions for human risk assessment has been reviewed by RIVM ([34]). The rodent stomach consists of two anatomically distinct parts: a non-glandular fore-stomach; and a glandular stomach. The rodent glandular stomach is structurally and functionally similar to the stomach of other mammalian non-rodent species, including humans. In contrast, the fore-stomach has no counterpart in humans (nor several test laboratory species, including dogs and rabbits). The forestomach forms a continuum with the oesophagus and is lined with keratinised, stratified squamous epithelium; humans have comparable squamous epithelial tissues in the oral cavity and upper twothirds of the oesophagus. A difference between the rodent oesophagus and that of most mammals (including humans) is that the rodent oesophagus (and also the fore-stomach) does not contain mucosal glands that secrete mucus to aid the passage of food; however, the keratin coating of oesophageal epithelial cells is more pronounced in rodents than humans and provides further protection against chemical insults. Another difference between the species is that rodents lack a vomiting reflex, whereas humans are able to vomit to rid themselves of irritating substances. The main function of the fore-stomach is storage and triturition of food prior to digestion in the glandular stomach. Because of this storage function, the passage of food through the fore-stomach is much slower than through the human mouth and oesophagus; there is therefore a longer time for interaction of ingested chemicals and epithelial cells in the fore-stomach than in the human mouth and oesophagus. Although the epithelium of the rodent oesophagus and fore-stomach are morphologically identical and continuous, it is rare for oesophageal lesions to occur even if fore-stomach lesions are observed [34]; this could be explained by the rapid passage of ingested material through the oesophagus, and/or the difference in physiological conditions (e.g. pH, surface population of bacteria and yeast). Overall, RIVM's conclusion was that fore-stomach effects induced by non-genotoxic substances only after oral administration are not relevant for humans.

Ipconazole induced fore-stomach lesions in rats and mice by the oral route. Hyperkeratosis in the fore-stomach in the rat dermal study was attributed to oral ingestion through grooming; following inhalation exposure, fore-stomach lesions were induced only in high-dose animals that were sacrificed early. However, in considering the relevance of these findings to humans, it is notable that the same lesions that occurred in the fore-stomach were also observed in the oesophagus (oral 28-day studies, rats \geq 91 mg/kg/d, mice \geq 152 mg/kg/d; rat inhalation 28-day study at 300 mg/m³; rat dermal study \geq 10 mg/kg/d), larynx (inhalation study \geq 30 mg/m³, dermal study \geq 10 mg/kg/d), pharynx (dermal study \geq 10 mg/kg/d) and hard palate (inhalation study \geq 100 mg/m³). The lesions in areas other than the fore-stomach were not observed in 90-day studies when tested up to 52.2 mg/kg/d in rats or 91 mg/kg/d in mice, nor in two-year studies at doses \leq 57 mg/kg/d (apart from a slight increase in the incidence of dilated mucous glands of the pharynx of male mice). This observation indicates that in the induction of this local, irritant effect, a high local concentration is likely to be more important than the total body dose on a mg/kg/d basis. The fore-stomach lesions tended to occur at lower doses, which is consistent with the fore-stomach being more sensitive because of the retention of ingested material there.

The fact that no oesophageal, pharyngeal or larynx lesions were observed in dogs might lessen the concern for humans. Overall, however, the occurrence of epithelial hyperplasia, hyperkeratosis and sub-epithelial inflammation in areas other than the fore-stomach (oesophagus, pharynx, larynx, hard palate) in several studies indicates that they were not specific to the rodent fore-stomach; thus they should be considered as potentially of relevance to humans. It is also noted that stomach ulcers and erosion were reported in a rabbit developmental toxicity study with ipconazole (section 4.10.2), which supports the latter position.

Eye effects in dogs

Ocular effects, in the form of opacities, cataracts, lenticular degeneration and anomaly of the lenticular fibres, were reported in the dog studies. These occurred at oral doses of $\geq 60 \text{ mg/kg/d}$ for 28 days, 40 mg/kg/d for 90 days and 20 mg/kg/d for one year. Ocular effects were not reported in rats or mice when ipconazole was administered for up to two years (although ophthalmological examination was not performed on mice, as their eyes are usually considered to be too small for this investigation).

The applicant under Directive 91/414/EEC argued that some of the ocular effects observed in dogs were either artefacts or were not relevant to humans. The lenticular fibre anomaly reported in the 90-day study comprised disrupted and shattered fibres with intervening clean spaces. This finding was only reported in males and showed no correlation with ophthalmoscopic observations or blood cholesterol, nor did it occur in the one-year study. The fixative used, Davidson's fluid, has a relatively high alcohol and acetic acid concentration, and was reported to give relatively poor fixation of the lens, which could result in shattering. The applicant therefore concluded that the lenticular fibre anomaly was an artefact.

Lens fibre (lenticular) degeneration was reported in two females at 40 mg/kg/d in the 90-day study (one of these animals also had inflammatory lesions in the cornea and iris) and in one male at 20 mg/kg/d in the one-year study. The occurrence of this finding correlated, at a group level, with the presence of cataracts and reduced plasma cholesterol, although at the individual level there was not a correlation. The applicant reported that the lens contains high concentrations of ascorbic acid and glutathione, and postulated that these might be important to maintain the normal function of the lens. It was further proposed that oxidative damage plays an important role in the formation of steroid-induced cataracts; as dogs have lower levels of glutathione reductase activity and ascorbate than humans and some laboratory species, the applicant concluded that dogs were more susceptible than humans to oxidative damage of the lens.

The above observation might be consistent with the absence of ocular effects in rats and mice in the present studies, since they have higher glutathione reductase than dogs (although ascorbate is lower in rats than dogs, with levels in mice not reported). However, given that, in the 90-day dog study, 7 of the 8 dogs at 40 mg/kg/d showed cataracts, and there was a clear reduction in plasma cholesterol compared with controls (43-50% decrease) at this dose, the possibility of an association between reduction in cholesterol and the induction of ocular effects remains. Opacities together with reduced plasma cholesterol were also reported in the 28-day and one-year dog studies. Ipconazole inhibits sterol synthesis and thus reduces the plasma cholesterol concentration in animals. The membranes of the cells of the lens contain high levels of cholesterol, and other chemical substances that reduce cholesterol levels have also been reported to produce cataracts. Furthermore, it has been reported that 'the cell membrane of the human lens contains the highest relative concentration of cholesterol in nature...Because the lens must synthesize the cholesterol needed to support its life-long growth, an inhibition of lens cholesterol synthesis with drugs can produce cataracts in animals and humans' [35]. The absence of ocular effects in rats and mice after ipconazole administration does not contradict this supposition, since cholesterol levels were not reduced in the rat studies and, although they were reduced in mice, no ophthalmology or histopathology on mouse eyes was performed. It is thus concluded that the adverse ocular effects induced by ipconazole in dogs are potentially relevant to humans.

Liver effects in rats, mice and dogs

The liver was a target organ in rats, mice and dogs when ipconazole was administered by the oral, inhalation and dermal routes. The following adverse effects were reported:

- Rats, 90-day study, at 52.2 mg/kg/d: focal inflammation;
- Mice, 28-day study
 - $\circ \geq 88.1 \text{ mg/kg/d:}$ pale liver, centrilobular hepatocyte vacuolation, panacinar fat;
 - $\circ \geq 151.8 \text{ mg/kg/d: focal hepatocyte necrosis;}$
- Mice, 90-day study
 - $\circ \geq 20.2 \text{ mg/kg/d: hepatocyte vacuolation;}$
 - $\circ \geq 69.7 \text{ mg/kg/d: fatty deposits, pale liver;}$
- Mice, 2-year study
 - $\circ \geq 2.3 \text{ mg/kg/d: hepatocyte vacuolation}$
 - o 45.3 mg/kg/d: hepatocyte necrosis (mainly graded as minimal to slight) in males;
- Dogs, 28-day study
 - $\circ \geq 24$ mg/kg/d: bile duct proliferation, pigment-laden Kupffer cells, slight focal necrosis, prominent inflammatory cells in the portal area;
 - $\circ \geq 60 \text{ mg/kg/d}$: enlarged and/or pale liver, abnormal findings in the gall bladder;
- Dogs, 90-day study
 - 40 mg/kg/d: isolated incidences of enlarged and/or pale liver, bile duct proliferation, pigment-laden Kupffer cells, moderate focal necrosis in 1/4 females, dark or gelatinous particles in the gall bladder.

These effects are relevant to humans and will thus be considered further in deciding upon a classification for repeated-dose toxicity.

Skin reddening in dogs

An unusual finding was skin reddening (and hair loss) in dogs upon oral exposure of ipconazole. This was reported in all studies and occurred from 10 mg/kg/d in the 90-day study. The cause of the reddening and hair loss was not established by the studies, but since the substance was administered in capsules it appeared to be a systemic effect rather than local irritation. It was also notable that the severity worsened as the duration of exposure increased. Furthermore, ipconazole was not a skin irritant in a test for skin irritation (section 4.4.1.). Skin reddening and hair loss were occasionally reported in rats (for example, one male in an acute study, some animals exposed for 28 days) but not in mice after oral exposure. These effects were also recorded in rats after inhalation exposure, which might have been caused by transfer of the substance to the extremities and dermal exposure. Interestingly, histopathological changes in the skin of rats exposed dermally were first recorded after 18 days of administration, indicating that this was a repeated-dose and not an acute effect.

The adverse skin effects in dogs are regarded as being of relevance to humans.

Other findings

Changes in the kidney were reported in rats and comprised an increase in the incidence of corticomedullary mineralisation (graded minimal or slight) at 33.2 mg/kg/d for 90 days (females only). After dermal exposure of rats for 28 days, renal tubular mineralisation was recorded at 1000 mg/kg/d in females only. Increases in kidney weight in the 90-day and one-year dog studies were not supported by gross or histopathological findings, and so were considered by the study authors to be an adaptive response to urinary excretion of ipconazole and/or its metabolites. No adverse kidney effects were reported in mice. The adverse effect in rats is possibly relevant for classification.

In rats, a change in adrenal gland weight was associated with prominent sinusoidal lining cells at 91 mg/kg/d in females exposed for 28 days, but was not observed in the 90-day or chronic studies. Adrenal cortical vacuolation occurred in 4/9 male mice at 69.7 mg/kg/d in the 90-day study but not after chronic exposure. Cortical (fatty) vacuolation of the adrenals was observed in dogs after exposure for 90 days (at 40 mg/kg/d) and one year (at 20 mg/kg/d). The nature of the vacuolation reported in mice was not investigated by specific staining, but was possibly also fatty and related to ipconazole's mode of action (action on steroid hormone synthesis by the adrenal gland).

The study authors attributed the effects on the thymus in dogs (reduced weight, microscopic evidence of cortical atrophy, reduced cellularity of the cortex) to a secondary, stress-related finding. As there were no gross or histopathology changes in the thymus of rats or mice, the finding in dogs will not be considered further.

Myometrial atrophy in the uterus was reported in 5/5 rats in a 28-day oral study rats at 236 mg/kg/d, but at this dose the animals were sacrificed early because of excessive toxicity. It was not reported at the next dose of 91 mg/kg/d, nor in any other study or species. Therefore, this finding is not considered relevant for classification for repeated-dose toxicity.

4.7.5 Comparison with criteria of repeated-dose toxicity findings relevant for classification as STOT-RE

Under CLP, STOT-RE is assigned on the basis of a substance demonstrating evidence of significant or severe toxicity, generally at or below the oral guidance value of 100 mg/kg/d (for a classification in category 2) obtained in a 90-day rat study. The oral guidance value for a classification in category 1 is ≤ 10 mg/kg/d. The equivalent guidance values for a 28-day study are ≤ 300 mg/kg/d and ≤ 30 mg/kg/d, respectively; for a one-year study, they are ≤ 25 mg/kg/d and 2.5 mg/kg/d, respectively. For inhalation exposure to a dust, the guidance value is ≤ 0.2 mg/L/6h/d in a 90-day rat study, whilst that for dermal exposure is ≤ 200 mg/kg/d in rats or rabbits. 'Significant' toxicity is taken to mean changes that clearly indicate functional disturbance or morphological changes that are toxicologically relevant. 'Severe' toxicity is considered to be more profound or serious and indicates changes that are of a considerably adverse nature with a significant impact on health.

Some of the effects observed in the repeated-dose toxicity studies with ipconazole were attributed to irritation. This was not an acute effect, since the standard tests for skin and eye irritation indicated that ipconazole did not meet the criteria for classification for these end-points (section 4.4). Moreover, skin effects in the 28-day dermal study did not manifest until 18 days of exposure, and the skin effects in dogs were systemic, not local. It is therefore appropriate that the effects attributed to irritation in the repeated-dose studies should be considered under the classification of STOT-RE.

The effects that were potentially relevant to humans and occurred below the guidance cut-off values outlined above are summarised in table 14.6.

Study design	Guidance cut- off value (mg/kg/d)	Findings at dose relevant to STOT-RE Cat 1	Findings at dose relevant to STOT-RE Cat 2				
Rat 28-day dietary	Cat 1: 30 Cat 2: 300	Lowest dose 30.5 mg/kg/d: no adverse effects in males	31.3 mg/kg/d: reduced body weight and food consumption in females				
			91 mg/kg/d: adrenal glands (prominent sinusoidal lining cells), females; lesions of the oesophagus*.				
			164-236 mg/kg/d: severe toxicity led to early termination				
Rat 90-day dietary	Cat 1: 10 Cat 2: 100	5.8-7 mg/kg/d: no adverse effects	33.2 mg/kg/d: kidney effects (corticomedullary mineralisation, minimal or slight, females)				
			52.2 mg/kg/d: liver (focal inflammation)				
Rat 2-year dietary	Cat 1: 1.25 Cat 2: 12.5	1.6 / 1.2 mg/kg/d: no adverse effects	> 13.3 mg/kg/d: liver (centrilobular hepatocyte hypertrophy, males only)				
Rat 28-day inhalation	Cat 1: 0.06 mg/L/6h/d Cat 2: 0.6 mg/L/6h/d	0.03 mg/L/6h/d: no adverse systemic effects; local effects on hard palate and larynx*	\geq 0.1 mg/L/6h/d: local effects on oesophagus, hard palate, larynx				
Rat 28-day	Cat 1: 60	10 mg/kg/d: no adverse effects	150 mg/kg/d: no adverse effects				
dermal	Cat 2: 600		Next dose 1000 mg/kg/d				
Mouse 28-	Cat 1: 30	Lowest dose 44.8 / 53.4 mg/kg/d	\geq 44.8 / 53.4 mg/kg/d: liver effects				
day dietary	Cat 2: 300		\geq 152 mg/kg/d: lesions in the oesophagus*; focal hepatocyte necrosis				
Mouse 90- day dietary	Cat 1: 10 Cat 2: 100	4.4 / 5.1 mg/kg/d: no adverse effects	≥ 20 mg/kg/d: liver (hepatocyte vacuolation)				
			\geq 70 mg/kg/d: adrenal gland (cortical vacuolation)				
Mouse 18- month dietary	Cat 1: 1.9 Cat 2: 19	1.9 / 2.3 mg/kg/d: centrilobular hepatocyte vacuolation (females only)	≥ 24 mg/kg/d: liver (generalised hepatocyte vacuolation, parenchymal inflammatory cells)				
Dog 28-day	Guidance	Lowest dose 24 mg/kg/d					
oral (capsule)	values based on rat study	\geq 24 mg/kg/d: liver effects					
		\geq 60 mg/kg/d: ocular effects (opacities, cataracts, lenticular degeneration)					
Dog 90-day	Guidance	2 mg/kg/d: no adverse effects					
oral (capsule)	values based on rat study	\geq 10 mg/kg/d: skin reddening and hair loss					
		40 mg/kg/d: ocular effects (opacities, cataracts, lenticular degeneration); adrenal glands (fatty vacuolation); liver effects					
Dog 1-year	Guidance	1.5 mg/kg/d: no adverse effects					
oral (capsule)	values based on rat study	\geq 5 mg/kg/d: skin reddening					
(supsulo)	Shi fut Study	20 mg/kg/d: ocular effects (opacities, cataracts, lenticular degeneration); adrenal glands (fatty vacuolation)					

Table 14.6: Summary table of findings at doses relevant to STOT-RE classification for ipconazole

* This was a local irritant effect rather than systemic, specific target-organ toxicity, and as such the local concentration is more important than the total body dose on a mg/kg/d basis. It is thus not appropriate to adjust the guidance value to take account of the exposure duration.

Repeated-dose administration of ipconazole therefore resulted in a number of adverse effects in rats, mice and dogs. When compared with the classification criteria, the significant findings can be summarised as:

- *significant organ damage noted at necropsy and/or subsequently confirmed at microscopic examination:* ocular effects that were potentially related to a decrease in plasma cholesterol;
- *multi-focal or diffuse necrosis, fibrosis or granuloma formation in vital organs with regenerative capacity:* hepatocyte necrosis, although this was focal and generally graded as minimal to slight;
- *morphological changes that are potentially reversible but provide clear evidence of marked organ dysfunction*: lesions in the oesophagus, pharynx, larynx and hard palate (although it is recognised that these effects resulted from local irritation, not specific target-organ toxicity); fatty deposits in the liver; fatty vacuolation in the adrenal glands.

A further systemic finding of concern to support classification was skin reddening in dogs following oral administration in a capsule. The effects noted above, summarised in table 14.6, largely occurred at doses that were consistent with a classification in STOT-RE category 2; there were no findings that indicated that category 1 would be a more appropriate classification. Since adverse effects were recorded after oral, dermal and inhalation exposure, it is not proposed to specify a route of exposure. The primary target organs of specific toxicity were the eyes (although possibly secondary to lowering of plasma cholesterol), skin, liver and gastrointestinal tract.

4.7.6 Conclusions on classification and labelling of repeated-dose toxicity findings relevant for classification as STOT RE

STOT-RE 2; H373 – May cause damage to organs (eyes, skin, liver, gastrointestinal tract) through prolonged or repeated exposure

RAC evaluation of specific target organ toxicity- repeated exposure (STOT RE)

Summary of the Dossier Submitter's proposal

The CLH dossier contained data from several repeated dose toxicity studies of ipconazole:

Oral toxicity

 in rats (in diet, 28-day and 90-day), in mice (in diet, 28-day and 90-day) and in dogs (in capsules, up to 22 days, for 28 days, for 90 days and for one year). In addition, non-neoplastic findinds in 1- and 2-year carcinogenicity studies in rats and in a 78week study in mice were considered in the evaluation of STOT RE.

Inhalation toxicity

• in rats (28-day)

Dermal toxicity

• in rats (28-day)

A summary of the findings at doses relevant for STOT RE classification of ipconazole is presented in the table below:

Study design	Guidance cut-off value (mg/kg bw/d)	Findings at doses relevant for STOT RE Category 1	Findings at doses relevant for STOT RE Category 2		
Rat 28-day dietary	Cat. 1: 30 Cat. 2: 300	Lowest dose 30.5 mg/kg bw/d: no adverse effects in males	31.3 mg/kg bw/d: reduced body weight and food consumption in females		
			91 mg/kg bw/d: adrenal glands (prominent sinusoidal lining cells), females; lesions of the oesophagus*.		
			164-236 mg/kg bw/d: severe toxicity led to early termination		
Rat 90- day, dietary	Cat. 1: 10 Cat. 2: 100	5.8-7 mg/kg bw/d: no adverse effects	33.2 mg/kg bw/d: kidney effects (corticomedullary mineralisation, minimal or slight, females)		
			52.2 mg/kg/d: liver (focal inflammation)		
Rat 2-year dietary	Cat. 1: 1.25 Cat. 2: 12.5	1.6 / 1.2 mg/kg bw/d: no adverse effects	> 13.3 mg/kg bw/d: liver (centrilobular hepatocyte hypertrophy, males only)		
Rat 28-day inhalation	Cat. 1: 0.06 mg/L/6h/d Cat. 2: 0.6 mg/L/6h/d	0.03 mg/L/6h/d: no adverse systemic effects; local effects on hard palate and larynx*	≥ 0.1 mg/L/6h/d: local effects on oesophagus, hard palate, larynx		
Rat 28-	Cat. 1: 60 Cat. 2: 600	10 mg/kg bw/d: no adverse effects	150 mg/kg bw/d: no adverse effects		
day, dermal	Cal. 2: 600	auverse effects	Next dose: 1000 mg/kg bw/d		
Mouse 28- day	Cat. 1: 30 Cat. 2: 300	Lowest dose 44.8 / 53.4 mg/kg bw/d	≥ 44.8 / 53.4 mg/kg bw/d: liver effects		
dietary			≥ 152 mg/kg bw/d: lesions in the oesophagus*; focal hepatocyte necrosis		
Mouse 90- day	Cat. 1: 10 Cat. 2: 100	4.4 / 5.1 mg/kg bw/d: no adverse effects	≥ 20 mg/kg bw/d: liver (hepatocyte vacuolation)		
dietary			≥ 70 mg/kg bw/d: adrenal gland (cortical vacuolation)		
Mouse 18- month dietary	Cat. 1: 1.9 Cat. 2: 19	1.9 / 2.3 mg/kg bw/d: centrilobular hepatocyte vacuolation (females only)	≥ 24 mg/kg bw/d: liver (generalised hepatocyte vacuolation, parenchymal inflammatory cells)		

Dog 28-	Guidance	Lowest dose: 24 mg/kg bw/d			
day oral (capsule)	values based on rat study	\geq 24 mg/kg bw/d: liver effects			
		\geq 60 mg/kg bw/d: ocular effects (opacities, cataracts, lenticular degeneration)			
Dog 90-	Guidance	2 mg/kg bw/d: no adverse effects			
day oral (capsule)	values based on rat study	\geq 10 mg/kg bw/d: skin reddening and hair loss			
		40 mg/kg bw/d: ocular effects (opacities, cataracts, lenticular degeneration); adrenal glands (fatty vacuolation); liver effects			
Dog 1-	Guidance	1.5 mg/kg bw/d: no adverse effects			
year oral (capsule)	values based on rat study	\geq 5 mg/kg bw/d: skin reddening			
		20 mg/kg bw/d: ocular effects (opacities, cataracts, lenticular degeneration); adrenal glands (fatty vacuolation)			

* Statistically significant at $p \le 0.05$.

No data on human repeated dose toxicity were provided.

Taking the results of these studies into account, the DS proposed classification of ipconazole as STOT RE 2; H373 - May cause damage to organs (eyes, skin, liver, gastrointestinal tract) through prolonged or repeated exposure.

Comments received during public consultation

Four MSCAs and one industrial organisation supported the DS's proposal to classify ipconazole for STOT RE 2; H373 - May cause damage to organs (eyes, skin, liver, gastrointestinal tract) through prolonged or repeated exposure.

One MSCA asked for more information on the mode of action (MoA) for ipconazole with regard to steroid hormone synthesis and if a MoA is known, for consideration of the endocrine disrupting potential. This MSCA also asked why the adrenal glands are not included as a target organ. In their response, the DS informed that ipconazole inhibits 14-C demethylation in the ergosterol biosynthesis pathway of fungi which cause plant disease. The endocrine disruption potential of ipconazole was not considered in the report, since this does not relate directly to classification; the MoA of the adverse effects is assumed to be relevant to humans and ipconazole has been proposed to be classified accordingly. Effects in the adrenal gland were somewhat inconsistent, since they occurred in rats exposed for 28 days, but not for 90 days or two years; and in mice exposed for 90 days but not for 18 months. Therefore, the adrenal gland was not identified as a primary target organ in the proposed classification.

Assessment and comparison with the classification criteria

As noted by the DS repeated-dose administration of ipconazole resulted in a number of adverse effects in rats, mice and dogs. When compared with the classification criteria for STOT RE 2, the significant findings can be summarised as:

• significant organ damage noted at necropsy and/or subsequently confirmed at microscopic examination:

- o cular effects (opacities, cataracts, lenticular degeneration) in dogs exposed for 28 days at doses ≥ 60 mg/kg bw/d, exposed for 90 days at dose of 40 mg/kg bw/d and exposed for one year at dose 20 mg/kg bw/d; these effects were potentially related to a decrease in plasma cholesterol;
- multi-focal or diffuse necrosis, fibrosis or granuloma formation in vital organs with regenerative capacity:
 - focal hepatocyte necrosis (graded as minimal to slight) in mice exposed for 28 days at doses > 152 mg/kg bw/d, in dogs exposed for 22 days (males) and 24 days (females) or 28 days (males and females) at 150 mg/kg bw/d and in female dogs exposed for 90 days at 40 mg/kg bw/d;
- morphological changes that are potentially reversible but provide clear evidence of marked organ dysfunction:
 - fatty deposits in the liver; fatty vacuolation in the adrenal glands in rats and mice exposed for 28 days and 90 days at doses within the guidance values for STOT RE 2.

A further systemic finding of concern and in support of classification was skin reddening in dogs following oral administration in a capsule. The skin reddening largely occurred at doses that were consistent with a classification in STOT RE 2; there were no findings that indicated that category 1 would be a more appropriate classification.

Since adverse effects were recorded after oral, dermal and inhalation exposure, it is not proposed to specify a route of exposure. The primary target organs of specific toxicity were the eyes, liver and skin. RAC did not agree with the DS's proposal to include the gastrointestinal tract as a target organ because the effects were not considered sufficiently severe and were only seen at high doses in short term studies, but not in longer term studies.

Taking the above into account, RAC is of the opinion that ipconazole warrants classification as **STOT RE 2; H373 (May cause damage to organs (eyes, liver, skin) through prolonged or repeated exposure)**.

4.8 Germ cell mutagenicity (Mutagenicity)

The genotoxic potential of ipconazole has been investigated in several *in vitro* studies and one *in vivo* study.

	In vitro data		
Method	Organism/strain	Concentrations tested	Result
Bacterial reverse mutation assay (Ames) 87.27% cc: 10.23% ct, purity 97.51% Japanese guideline, similar to OECD 471 but with duplicate plates instead of triplicate. GLP. Nishitomi (1999) [36]	TA100, TA1535, TA1537, TA98, WP2uvrA	With and without S9: 0 – 5000 µg/plate	Negative ± metabolic activation
Mammalian chromosomal aberration assay Main deviation from OECD 473: cytotoxicity was not determined in the main experiment. GLP. 87.27% cc: 10.23% ct, purity 97.51% Nishitomi (1989)[37]	Chinese hamster lung cells (CHL/IU cell line)	With and without S9: 0 – 70 µg/plate	Negative ± metabolic activation but noted that there was insufficient evidence of cytotoxicity in the main experiment to indicate that the dose levels were high enough.
Mammalian cell gene mutation assay US EPA guideline, similar to OECD 476. GLP. 91.2% cc: 6.9% ct, purity 98.1% Cifone (2001) [38]	Chinese hamster ovary (CHO) cells, HGPRT locus	With S9: 0 – 70 µg/ml Without S9: 0 – 50 µg/ml	Negative ± metabolic activation
Bacterial DNA repair assay 87.27% cc: 10.23% ct, purity 97.51% No OECD guideline available, GLP. Nishitomi (1989) [39]	Bacillus subtilis strains H17 (rec ⁺) and M45 (rec ⁻)	Up to 20 µg/disk (no further details available)	Negative ± metabolic activation

Table 15: Summary table of relevant *in vitro* and *in vivo* mutagenicity studies

	In vivo data		
Method	Organism/strain	Concentrations tested	Result
Micronucleus test (oral gavage) 91.7% cc:6.7% ct, purity 98.4% OECD 474, GLP. Kureha Corporation (2005) [40]	CD-1 mice, 5/sex/dose with 2 extra at the high doses to ensure 5/dose at the time of sacrifice	Males: 0, 250, 500, 1000 mg/kg/d Females: 0, 375, 750, 1500 mg/kg/d Administered on two consecutive days, 24 hours apart. Femoral bone marrow was collected 24 hours after the second application.	Negative Clinical signs of toxicity were observed at 500 & 1000 mg/kg/d in males and 750 & 1500 mg/kg/d in females (6 animals of the latter group sacrificed <i>in extremis</i> so not available for mutagenicity analysis). The PCE/NCE ratio was decreased at all dose levels.

4.8.1 Non-human information

4.8.1.1 *In vitro* data

Ipconazole was negative in four *in vitro* genotoxicity assays that investigated bacterial mutation, mammalian cell mutation, mammalian chromosome aberration and DNA repair.

4.8.1.2 *In vivo* data

Ipconazole was negative in a guideline-compliant micronucleus assay in which evidence of bone marrow toxicity was demonstrated, indicating that sufficiently high doses were administered.

4.8.2 Human information

No information.

4.8.3 Other relevant information

No information.

4.8.4 Summary and discussion of mutagenicity

Ipconazole was negative in all the available tests for genotoxicity.

4.8.5 Comparison with criteria

There was no indication that ipconazole has a mutagenic effect on somatic or germ cells in several *in vitro* assays and an *in vivo* micronucleus assay. The criteria for classification for mutagenicity were not met.

4.8.6 Conclusions on classification and labelling

Not classified (conclusive but not sufficient for classification)

RAC evaluation of germ cell mutagenicity

Summary of the Dossier Submitter's proposal

Ipconazole was negative in four *in vitro* genotoxicity assays assessing bacterial mutation, mammalian cell mutation, mammalian chromosome aberration and DNA repair. Ipconazole was also negative in a guideline-compliant micronucleus assay in which evidence of bone marrow toxicity was demonstrated, indicating that sufficiently high doses were administered.

Based on these data the DS concluded that ipconazole does not warrant classification for germ cell mutagenicity.

Comments received during public consultation

One MSCA and one industrial organisation supported no classification of ipconazole as a germ cell mutagen.

Assessment and comparison with the classification criteria

Taking into account the negative results in several *in vitro* studies and in one *in vivo* assay, RAC considers that ipconazole should **not be classified for germ cell mutagenicity**.

4.9 Carcinogenicity

The chronic toxicity and carcinogenic potential of ipconazole have been investigated in rats and mice by the oral route.

Method	Dose levels	Observations and remarks
		(effects of major toxicological significance)
Oral (dietary)	Males: 0, 30, 80,	Treatment did not affect survival rates, which were > 60% in all groups except for the female 80
for 2 years	200, 300 ppm	ppm group (56%). There were no treatment-related clinical signs, persistent effects on body
Rat, Han	equivalent to:	weight gain nor food consumption.
Wistar,	toxicity phase 0,	Non-tumour findings
20/sex/group for 52 weeks,	1.6, 4.2, 10.9, 15.9 mg/kg/d	There were no substance-related ophthalmological, haematology or blood chemistry findings.
additional	carcinogenicity phase 0, 1.3, 3.6,	

 Table 16:
 Summary table of relevant carcinogenicity studies

	-	
50/sex/group	9.0, 13.3	The only change in organ weights noted at 52 and 104 weeks was a non-statistically significant
for 104 weeks	mg/kg/d	increase in absolute and relative ovary weight (21% and 30%, respectively) at 200 ppm. There
OECD 453,	Females: 0, 30,	were no substance-related macroscopic changes.
GLP	<u>remaies</u> . 0, 30, 80, 200, 300	Histopathology at 52 weeks did not reveal any adverse effects of treatment. Substance-related
ULF	ppm initially,	non-tumour histopathology findings at 104 weeks were found in the fore-stomach (epithelial
91.7 cc : 6.7%	then 0, 30, 80,	hyperplasia in males: 0%, 4%, 2%, 10%, 8% at 0, 30, 80, 200, 300 ppm), liver (centrilobular
ct, purity	120, 200 ppm	hepatocyte hypertrophy in males: 14%, 18%, 14%, 14%, 26% at 0, 30, 80, 200, 300 ppm) and
98.1-98.4%	from week 2,	urinary bladder (oedema: 16%, 15%, 9%, 9%, 29% in males at 0, 30, 80, 200, 300 ppm; 8%,
77 1	equivalent to:	17%, 9%, 22%, 14% in females at 0, 30, 80, 200/120, 300/200 ppm). Additional findings in
Kureha	equivalent to.	females at 300/200 ppm were epithelial keratinisation of the vagina (33% compared with 16% in
Corporation	toxicity phase 0,	controls, both above the historical control range of 0-6%) and interstitial cell hyperplasia of the
(2006) [41]	2.2, 5.9, 9.1,	ovary (12% compared with 4% in controls, historical control range 0-10%).
	15.0 mg/kg/d	
	carcinogenicity	There was no consistent effect of treatment on sensory reactivity, grip strength and motor activity
	phase 0, 1.9, 4.9,	(measured during week 50).
	7.3, 12.6	Tumour findings
	mg/kg/d	Tuniour finaings
	iiig/kg/u	Thyroid: the incidence of follicular adenoma was slightly increased in the high-dose groups
		(males: 4%, 4%, 5%, 10%, 10% at 0, 30, 80, 200, 300 ppm; females: 0%, 6%, 3%, 0%, 8%* at 0,
		30, 80, 200/120, 300/200 ppm). The historical control range (same strain and laboratory) for
		males was 4-17% (mean 8.4%) and for females 0-10.2% (8 studies). There was no increase in the
		incidence of cystic follicular cell hyperplasia, follicular cell carcinoma nor substance-related
		increase in the incidence of c-cell hyperplasia.
		The NOAELs of relevance for human risk assessment were 300 ppm (13.3 mg/kg/d) for males,
		200 ppm (12.6 mg/kg/d) for females.

Oral (dietary), 78 weeks	0, 15, 175, 350 ppm, equivalent to	Treatment did no signs of toxicity.	t affect	survival	l rates, wh	ich were ≥	2 69% ir	ı all group	s. There w	vere no clinica
Mouse, CD-1, 5/sex/group		Non-tumour findings nales: 0, 1.9, 1.1, 45.3 In females at 350 ppm there was an overall reduction in body weight gain of 14%. In these								
OECD 451, GLP	24.1, 45.3 mg/kg/d									
91.7 cc : 6.7%	females: 0, 2.3, 26, 57 mg/kg/d	Liver weight was increased in fema	increas les at 3	ed in m 50 ppm	ales at 350 (14% ↑ re) ppm (169 lative wei	%** ↑ r ght).	elative we	ight). Adro	enal weight w
ct, purity 98.1-98.4% Kureha		At 350 ppm, an increased incidence of pallor of the liver (males: 29%* compared with 12% in controls) and enlarged adrenals (females: 20% compared with 8% in controls) were noted. There was no effect on eye opacity, although a specialised ophthalmological examination was not								
Corporation (2007) [42]		undertaken. Non-tumour histo	patholo	ogy find	ings are su	ummarised	below.			
			pullot		Males				males	
		ppm	0	15	175	350	0	15	175	350
		Liver								
		hepatocyte necrosis	2%	10%	6%	20%**	10%	10%	4%	4%
		hepatocyte vacuolation (centrilobular)	57%	59%	80%**	78%*	6%	25%**	61%**	55%**
		hepatocyte vacuolation (generalised)	8%	8%	22%*	41%**	20%	18%	25%	61%**
		parenchymal inflammatory cells	73%	80%	94%**	84%	67%	78%	71%	86%*
		karyomegaly (enlarged nuclei)	45%	41%	43%	65%*	4%	8%	6%	2%
		Larynx								
		dilated mucous glands	18%	25%	7%	35%*	10%	0%	0%	10%
		Fore-stomach								
		epithelial hyperplasia	24%	12%	31%	22%	8%	16%	39%**	27%**
		hyperkeratosis	80%	88%	90%	88%	75%	94%**	86%	92%*
		Lungs								
		alveolar haemorrhage	12%	12%	16%	24%	4%	14%	12%	14%
		Tumour findings								
		Haemopoietic sys females at 0, 15, males, 6% female test laboratory an They were also w	175 and es) were d same ithin th	350 pp within time pe e range	m, respect the histori riod (0-4% (0-8% ma	ively. The cal contro males, m les, 0-18%	incider 1 range ean 1.3 5 female	nces in the of 6 studie %; 0-10% es) reporte	high-dose es conducto females, r	e groups (4% ed at the same nean 4.8%).
		from 51 studies in								
		The NOAEL was	15 ppn	n (1.9 m	g/kg/d in	males, 2.3	mg/kg/	d in femal	es).	

N.B. The values for NOAEL are provided for information only; they have been agreed by a PRAPeR Expert Meeting. * Statistically significant at $p \le 0.05$. ** Statistically significant at $p \le 0.01$

4.9.1 Non-human information

4.9.1.1 Carcinogenicity: oral

In rats, increases in histopathological findings in the fore-stomach, livers and urinary bladder in the higher dose groups were slight and not statistically significant. Furthermore, the incidences of oedema in the urinary bladder of both the concurrent controls and treated groups were much higher than the historical control ranges (males 0-1.7%, females 0-2%), prompting the study author to conclude that this finding was an artefact of the tissue processing. Vaginal and ovary findings in females of the high-dose group were also slightly increased compared with controls, but when the historical control ranges were considered they did not provide convincing evidence of substance-related adverse effects. Although there was a statistically significant increase in the incidence of follicular adenomas in females at 300/200 ppm (without a dose-response relationship at the lower doses), this was within the historical control range and so is not considered to be treatment related. There were no other neoplastic findings of note.

In mice exposed for 78 weeks, the main target organs were the liver and the non-glandular forestomach. Liver effects included hepatocyte necrosis, showing an increased incidence in males (at 350 ppm, graded: minimal 6, slight 2, moderate 2), and increased incidence of karyomegaly (enlarged nuclei), also in males at 350 ppm (45.3 mg/kg/d). The nature of the hepatocyte vacuolation was not investigated, but taking into consideration the findings of the 90-day mouse study, they were likely to be fatty vacuolation, related to ipconazole's mode of action. Changes in the fore-stomach were predominantly observed in females but without clear dose-response relationships. Almost all cases of epithelial hyperplasia of the fore-stomach were graded as minimal. Effects on the lung and larynx in males could have been related to irritancy. A slight increase in the incidence of histiocytic sarcomas was within the historical control range; it is thus concluded that there was no substance-related increase in tumours.

4.9.1.2 Carcinogenicity: inhalation

No information.

4.9.1.3 Carcinogenicity: dermal

No information.

4.9.2 Human information

No information.

4.9.3 Other relevant information

Ipconazole was negative in four in vitro assays and an in vivo micronucleus test (section 4.8).

4.9.4 Summary and discussion of carcinogenicity

Information on the carcinogenic potential of ipconazole is provided by two carcinogenicity studies, one in rats and one in mice. In these studies, increased incidences of two tumour types were observed: thyroid follicular cell adenomas in female rats and histiocytic sarcomas of the haemopoietic system in mice. The only statistically significant increase was in the thyroid follicular cell adenomas in high-dose female rats, but there was not a clear dose-response relationship (0%, 6%, 3%, 0%, 8% at 0, 30, 80, 200/120, 300/200 ppm). Incidences of both tumour types were within the historical control ranges for the same laboratory and animal strain. Overall, they are not considered to provide evidence of carcinogenicity.

4.9.5 Comparison with criteria

There were no increased incidences of tumours that could be attributed to administration of ipconazole. Thus, the substance does not meet the criteria for classification for carcinogenicity. Furthermore, it was negative in a series of *in vitro* and *in vivo* genotoxicity tests. Classification for carcinogenicity is not proposed.

4.9.6 Conclusions on classification and labelling

Not classified (conclusive but not sufficient for classification)

RAC evaluation of carcinogenicity

Summary of the Dossier Submitter's proposal

No information on carcinogenicity of ipconazole in humans is available. The carcinogenicity of ipconazole has been investigated in one study in rats and one study in mice by the oral route. There were no carcinogenicity studies in animals by inhalation or dermal route.

Rats

In the study in rats (Kureha Corporation, 2006 (41); OECD TG 453, GLP), males received ipconazole in the diet at doses of 0, 1.6, 4.2, 10.9, 15.9 mg/kg bw/d for 52 weeks in the chronic toxicity phase and at doses of 0, 1.3, 3.6, 9.0, 13.3 mg/kg bw/d for 104 weeks in carcinogenicity phase. Female rats were given ipconazole in the diet at doses of 0, 2.2, 5.9, 9.1, 15.0 mg/kg bw/d for 52 weeks in the chronic toxicity phase and at doses of 0, 1.9, 4.9, 7.3, 12.6 mg/kg bw/d for 104 weeks in carcinogenicity phase.

Histopathology at 52 weeks did not reveal any adverse effects of treatment. Substancerelated non-neoplastic histopathology findings at 104 weeks were found in the forestomach (epithelial hyperplasia in males: 0%, 4%, 2%, 10%, 8% at 0, 1.3, 3.6, 9.0, 13.3 mg/kg bw/d, respectively), liver (centrilobular hepatocyte hypertrophy in males: 14%,

18%, 14%, 14%, 26% at 0, 1.3, 3.6, 9.0, 13.3 mg/kg bw/d, respectively) and urinary bladder (oedema: 16%, 15%, 9%, 9%, 29% in males at 0, 1.3, 3.6, 9.0, 13.3 mg/kg bw/d, respectively), 8%, 17%, 9%, 22%, 14% in females at 0, 1.9, 4.9, 7.3, 12.6 mg/kg bw/d, respectively). Additional findings in females at 7.3 and 12.6 mg/kg/d were epithelial keratinisation of the vagina (33% compared with 16% in controls, both above the historical control range of 0-6%) and interstitial cell hyperplasia of the ovary (12% compared with 4% in controls, historical control range 0-10%).

There was no consistent effect of treatment on sensory reactivity, grip strength and motor activity (measured during week 50).

Tumour findings

Thyroid: the incidence of follicular adenoma was slightly increased in the high-dose groups (males: 4%, 4%, 5%, 10%, 10% at 0, 1.3, 3.6, 9.0, 13.3 mg/kg bw/d, respectively; females: 0%, 6%, 3%, 0%, 8%* at 0, 1.9, 4.9, 7.3, 12.6 mg/kg bw/d, respectively). The historical control range (same strain and laboratory) for males was 4-17% (mean 8.4%) and for females 0-10.2% (8 studies). There was no increase in the incidence of cystic follicular cell hyperplasia, follicular cell carcinoma nor substance-related increase in the incidence of c-cell hyperplasia. There were no other neoplastic findings of note.

Mice

In the study in mice (Kureha Corporation, 2007 (42); OECD TG 453, GLP), males received ipconazole in diet at doses of 0, 1.9, 24.1, 45.3 mg/kg bw/d for 78 weeks and female mice were given ipoconazloe in the diet at doses 0, 2.3, 26, 57 mg/kg bw/d for 78 weeks (0, 15, 175 and 350 ppm, respectively).

Tumour findings

Haemopoietic system: histiocytic sarcomas were recorded in 0, 1, 0, 2 males and 0, 1, 1, 3 females at 0, 15, 175 and 350 ppm, respectively. The incidences in the high-dose groups (4% males, 6% females) were within the historical control range of 6 studies conducted at the same test laboratory and same time period (0-4% males, mean 1.3%; 0-10% females, mean 4.8%). They were also within the range (0-8% males, 0-18% females) reported for US-bred CD-1 mice from 51 studies initiated between 1987 and 1996.

Based on the results of these studies the DS concluded that the available data were conclusive, but not sufficient for classification of ipconazole for carcinogenicity.

Comments received during public consultation

One MSCA and one industrial organisation supported no classification of ipconazole for carcinogenicity.

Assessment and comparison with the classification criteria

Taking into account the lack of carcinogenic effects in two acceptable studies (one in rats and one in mice) RAC is of the opinion that ipconazole should **not be classified for carcinogenicity**.

4.10 Toxicity for reproduction

The reproductive toxicity of ipconazole has been investigated in a preliminary one-generation study, a two-generation study in rats and in developmental toxicity studies in rats and rabbits.

4.10.1 Effects on fertility

Table 17: Summary table of relevant reproductive toxicity studies - Fertility

Method	Dose levels	Observations and remarks
		(effects of major toxicological significance)
Oral (dietary) Two-generation Rats, Han Wistar, 32/sex/group F0, 28/sex/group F1 OECD 416, GLP 91.7% cc: 6.7% ct, purity 98.1- 98.4% Kureha Corporation (2006) [43]	0, 30, 100, 300 ppm In males, equivalent to 2.2, 7.2, 22 mg/kg/d in F0, 2.8, 9.3, 29.1 mg/kg/d in F1 In females, equivalent to 2.6-5, 8.4-16, 25.5-48 mg/kg/d in F0, 3-5, 9.9-17, 31.6-48 mg/kg/d in F1 Administered for 10 weeks before pairing, during pairing, gestation and lactation until termination in F0 and F1 generations. F2 offspring received diet until termination on day 25 of age.	Histological investigations were conducted only on adults; reproductive organs and pituitary were examined in controls and high-dose groups, as well as any gross pathological findings in other animals. <i>P0 parental toxicity</i> There were no treatment-related deaths or clinical signs of toxicity. During gestation, body weight gains of females at 300 ppm were slightly but statistically significantly reduced (\downarrow 8%*). Male food consumption was unaffected. Female food consumption was statistically significantly reduced at 100 and 300 ppm during the first week of treatment (\downarrow 8%*), days 0-12 of gestation (\downarrow 5* - 10%*) and between days 4-13 of lactation (\downarrow 7* - 13%**). Treatment did not have any effects on oestrus cycles, mating performance, fertility, gestation duration nor gestation index (which was 100% in all groups). Small (5-9%) differences in weights of the spleen (increased in males), kidneys (increased in males) and liver (increased in females) were recorded at 300 ppm. At 300 ppm there was a reduction in caudal epididymal sperm concentration (\downarrow 9%*). There were no treatment-related gross or histopathological findings. <i>Offspring toxicity</i> Treatment did not result in any changes in the incidence of total litter loss, clinical signs, sex ratios, macroscopic or histopathological findings in either the F1 or F2 generation. There were no effects on sperm parameters, oestrus cycles, mating performance, fertility, gestation length nor gestation index in the F1 generation. Slight reductions in the mean number of implantation sites and offspring survival in some of the exposed groups are summarised below:

		spring sur	<u>vival</u>	
ppm	0	30	100	300
	F1 li	tters (proc	luced by F) parents)
mean number of implantation sites	12.8	13.3	12.0	12.0
total litter size day 1	ny 1 11.9 12.3		11.5	10.9
live birth index day 1	97.0%	96.3%	98.6%	6 96.1%
viability index day 4 99.3% 99.3% 99.3%		6 96.5%		
actation index day 21	99.3%	97.4%	98.9%	6 95.5%
	F2 li	tters (proc	luced by F	l parents)
mean number of implantation sites	12.4	13.1	12.8	11.5
total litter size day 1	11.5	12.6	12.1	10.3
live birth index day 1	98.9%	99.5%	98.4%	6 97.6%
viability index day 4	100.0%	100.0%	99.7%	6 99.7%
lactation index day 21	99.7%	98.8%	99.6%	6 99.6%
HCD	mean		min	max
	F1 li	tters (proc	luced by F	0 parents)
number of implantation sites	12.3	tters (prod	luced by Fo	0 parents) 12.8
		tters (proc		
implantation sites	12.3		11.4	12.8
implantation sites total litter size day 1	12.3 11.4		11.4 10.8	12.8 12.0
implantation sites total litter size day 1 live birth index day 1	12.3 11.4 98.8%		11.4 10.8 97.7%	12.8 12.0 99.5%
implantation sites total litter size day 1 live birth index day 1 viability index day 4	12.3 11.4 98.8% 98.9% 97.7%		11.4 10.8 97.7% 98.3%	12.8 12.0 99.5% 99.4% 100.0%
implantation sites total litter size day 1 live birth index day 1 viability index day 4	12.3 11.4 98.8% 98.9% 97.7%		11.4 10.8 97.7% 98.3% 91.6%	12.8 12.0 99.5% 99.4% 100.0%
implantation sites total litter size day 1 live birth index day 1 viability index day 4 lactation index day 21 number of	12.3 11.4 98.8% 98.9% 97.7% F2 li		11.4 10.8 97.7% 98.3% 91.6% Iuced by F	12.8 12.0 99.5% 99.4% 100.0% 1 parents)
implantation sites total litter size day 1 live birth index day 1 viability index day 4 lactation index day 21 number of implantation sites	12.3 11.4 98.8% 98.9% 97.7% F2 li 12.2	tters (proc	11.4 10.8 97.7% 98.3% 91.6% luced by F 11.5	12.8 12.0 99.5% 99.4% 100.0% 1 parents) 12.8
implantation sites total litter size day 1 live birth index day 1 viability index day 4 lactation index day 21 number of implantation sites total litter size day 1	12.3 11.4 98.8% 98.9% 97.7% F2 li 12.2 11.3	tters (proc	11.4 10.8 97.7% 98.3% 91.6% luced by F 11.5 10.5	12.8 12.0 99.5% 99.4% 100.0% 1 parents) 12.8 11.8
implantation sites total litter size day 1 live birth index day 1 viability index day 4 lactation index day 21 number of implantation sites total litter size day 1 live birth index day 1	12.3 11.4 98.8% 98.9% 97.7% F2 li 12.2 11.3 98.2%	tters (proc	11.4 10.8 97.7% 98.3% 91.6% luced by F 11.5 10.5 95.1%	12.8 12.0 99.5% 99.4% 100.0% 1 parents) 12.8 11.8 99.7%

In the F2 generation at 300 ppm, body weight gains from day 1-14 and 14-21 were reduced (\downarrow 12-13%**), as they were from days 21-25 (\downarrow 19-24%**). Overall body weight gain (day 1-25) was clearly reduced at 300 ppm (15-16%).
Spleen weights relative to body weight were higher than controls in the F2 generation at 300 ppm (\uparrow 10-11%*); other organ weight changes in the F1 and F2 pups were attributed to the differences in body weight.
A delay in the sexual maturation of F1 females (vaginal opening) was attributed to the delayed physical development of these females as a result of lower body weights. There were no effects on the sexual maturation of males.
The NOAEL for reproductive performance was 300 ppm (22-26 mg/kg/d). The NOAEL for general parental toxicity was 100 ppm (9-10 mg/kg/d) and that for offspring toxicity was also 100 ppm (8 mg/kg/d).

N.B. The values for NOAEL are provided for information only; they have been agreed by a PRAPeR Expert Meeting. * Statistically significant at $p \le 0.05$. ** Statistically significant at $p \le 0.01$

4.10.1.1 Non-human information

The doses used in the two-generation study in rats were based upon a preliminary, one-generation study, in which Wistar rats (8/sex/group F0, 12/sex/group F1) were administered 0, 30, 150 or 300 ppm ipconazole for 29 days before mating, during pairing, gestation and lactation until termination; the F1 animals were then exposed from weaning until termination at approximately 8 weeks of age [43]. The only treatment-related observations were some changes in the weights of female reproductive organs (uterus and oviduct decreased in all dose groups, ovary increased at 300 ppm).

In the main study, sperm concentrations in the caudal epididymides in F0 males were reduced, but in the absence of consistent changes in the F1 generation, these minor differences were considered not to be of toxicological significance. Minimal reductions in the number of implantation sites (not statistically significant) and litter sizes on post-natal days 1, 4 and 21 were generally within relevant historical control data. Overall, fertility parameters were unaffected in this study. Offspring toxicity was evident in the reduced body weight gains in the mid- and high-dose groups, but there was no indication of specific developmental toxicity. Some changes in the weights of female reproductive organs in the preliminary study were not confirmed in the two-generation study.

4.10.1.2 Human information

No information available.

4.10.2 Developmental toxicity

Method	Dose levels	0	bservatio	ns and re	marks		
		(effects of	major to	xicologica	al significa	nce)	
Oral (gavage) Rats, Sprague- Dawley, 6 or 7 mated females/ group No guideline.	0, 1, 10, 50, 100, 250, 500 mg/kg/d in 1% aqueous sodium carboxy-methylcellulose from gestation days 6-15	This was a preliminary study. Investigations in the dams: gross pathology, ovaries & uterine contents examined, gravid uterine weights, corpora lutea and implantations determined. Investigations in the fetuses: number, sex & weights of live fetuses & placentae, incidences of resorptions and fetal deaths; live fetuses examined for external abnormalities. There was no examination for visceral or skeletal malformations and variations. <i>Maternal toxicity</i>					
GLP.	Dams were sacrificed on gestation day 20	<i>Maternal toxicity</i> Deaths occurred in 6/7 and 7/7 females at 250 and 500 mg/kg/d, respec					ectively,
89.09% cc:10.20% ct,		between gestation days 8-10					
purity 99.29% Kureha Corporation		Clinical signs occurred at \geq vagina (3/7), soiled fur (1/7) signs were not reported in 3/	, eye discl				
(1990) [44]		At 100 mg/kg/d dams lost w there was a marked reductio 0-20), statistically significan $(\downarrow 24\%$ days 0-15, $\downarrow 14\%$ da maternal body weights adjus 50 mg/kg/d (see table below	n in body at. Body w ys 0-20) b sted for ute	weight gain eight gain out not wit erine conte	in (↓ 85% o was also r h statistica ents were c	days 0-15, educed at l significat only slightl	↓ 52% day 50 mg/kg/d 1ce. The
		Food consumption of the 50 and 100 mg/kg/d groups (sta was lower than controls duri	tistically s	significant	gestation		
		There were no treatment-rela before scheduled sacrifice, the contents.					
		Developmental toxicity					
		Ipconazole did not affect the number of corpora lutea or implantation sites w administered in doses $\leq 100 \text{ mg/kg/d}$. In the one dam at 250 mg/kg/d that survived, there was 100% fetal resorption/death. At 100 mg/kg/d, there was reduction in the number of live fetuses per litter, an increase in the % of feta resorptions and deaths, and decreased fetal weight (all statistically significan The same parameters were affected at 50 mg/kg/d, but without statistical significance; see table below. Placental weight was increased at 100 mg/kg/d				that re was a of fetal gnificant). ical	
		mg/kg/d	0	1	10	50	100
		Maternal body weight (g) day 20	405	416	408	386 -5%	336 -17%
		Gravid uterine weight (g)	74	84	73	64 -14%	26** -65%
		Adjusted maternal body weight (g)	330	332	335	322 -2%	310 -6%
		Live fetuses/litter	13.4	14.7	13.2	12.3	4.9**
		% fetal resorption/deaths	7.7%	5.8%	13.6%	19.7%	69.3%**
		Mean fetal weight males (mg)	3453	3589	3532	2926 -15%	2026** -41.3%
		Mean fetal weight females (mg)	3299	3365	3185	2895 -12%	2181** -34%

Table 18: Summary table of relevant reproductive toxicity studies - Development

		mg/kg/d	0	1	10	50	100
		No. fetuses/litters	94/7	88/6	79/6	86/7	34/6
		Meningoencephalocoele	0	0	0	0	1
		Exencephaly	0	1	0	0	0
		Microphthalmia	0	1	0	2 1 litter	7*** 4 litters
		Open eyelid	0	1	0	0	0
		Micrognathia	0	0	0	0	1
		Omphalocoele	0	0	0	0	1
		Kinky and/or short tail	0	0	0	l (kinky)	7*** short=2 kinky=6 2 litters
		Total no. fetuses with abnormalities/litters with affected fetuses ^a	0	2/2	0	3/1	11*** 4* litters
ats, Sprague- awley, 24	0, 3, 10, 30 mg/kg/d in 1% aqueous sodium carboxymethylcellulose	The study differs from the cu as the unit for the analysis of the fetal incidences. However report. The period of dosing	fetal effe r, litter in	ects; inste cidence c	ad, analys lata were	sis was base reported in	d solely on the study
ats, Sprague- awley, 24 males/group ECD 414 981), GLP. 0.09% ::10.20% ct,	in 1% aqueous sodium	as the unit for the analysis of the fetal incidences. However report. The period of dosing GD 5 in rodents). <i>Maternal toxicity</i> There were no maternal deat At 30 mg/kg/d: maternal boo	fetal effe r, litter in is less that hs or clin ly weight:	ects; inste icidence c in is curre ical signs s were low	ad, analys lata were ently prefe of toxicit wer than c	sis was base reported in erred (norm ty at any do controls fror	d solely on the study ally from se. n gestation
Pral (gavage) ats, Sprague- bawley, 24 emales/group PECD 414 (1981), GLP. 9.09% c:10.20% ct, urity 99.29% cureha forporation (1990) [45]	in 1% aqueous sodium carboxymethylcellulose from gestation days 6 to 15 Dams were sacrificed on	as the unit for the analysis of the fetal incidences. However report. The period of dosing GD 5 in rodents). <i>Maternal toxicity</i> There were no maternal deat At 30 mg/kg/d: maternal boo day 7 to 20, although no sign adjusted for gravid uterine w recorded during the dosing p Reduction in food consumption this group, but was comparal	fetal effe r, litter in is less that hs or clin ly weight ificant di reight. Re eriod but ion was re ble with c	ects; inste cidence c in is curre ical signs s were low fferences ductions there was ecorded a ontrols du	ad, analys lata were ently prefe of toxicit wer than c were note in weight s no chang t certain p uring the p	sis was base reported in erred (norm ty at any do controls fror ed for body gain by 17- ge over days points during	d solely on the study ally from se. n gestation weight 24% were s 0-20. g gestation in
ats, Sprague- awley, 24 emales/group ECD 414 (981), GLP. 9.09% c:10.20% ct, urity 99.29% cureha orporation	in 1% aqueous sodium carboxymethylcellulose from gestation days 6 to 15 Dams were sacrificed on	as the unit for the analysis of the fetal incidences. However report. The period of dosing GD 5 in rodents). <i>Maternal toxicity</i> There were no maternal deat At 30 mg/kg/d: maternal boo day 7 to 20, although no sign adjusted for gravid uterine w recorded during the dosing p Reduction in food consumpt this group, but was comparal There were no treatment-relation	fetal effe r, litter in is less that hs or clin ly weight ificant di reight. Re eriod but ion was re ble with c	ects; inste cidence c in is curre ical signs s were low fferences ductions there was ecorded a ontrols du	ad, analys lata were ently prefe of toxicit wer than c were note in weight s no chang t certain p uring the p	sis was base reported in erred (norm ty at any do controls fror ed for body gain by 17- ge over days points during	d solely on the study ally from se. n gestation weight 24% were s 0-20. g gestation i
ats, Sprague- awley, 24 males/group ECD 414 981), GLP. 9.09% ::10.20% ct, 10.20% ct, 10.	in 1% aqueous sodium carboxymethylcellulose from gestation days 6 to 15 Dams were sacrificed on	as the unit for the analysis of the fetal incidences. However report. The period of dosing GD 5 in rodents). <i>Maternal toxicity</i> There were no maternal deat At 30 mg/kg/d: maternal bood day 7 to 20, although no sign adjusted for gravid uterine were recorded during the dosing p Reduction in food consumpt this group, but was comparal There were no treatment-relat <i>Developmental toxicity</i>	f fetal effe r, litter in is less that hs or clin ly weights hificant di reight. Re eriod but ion was re ble with c ated gross	ects; inste icidence c in is curre ical signs s were low fferences ductions there was ecorded a ontrols du findings.	ad, analys lata were ently prefe of toxicit wer than c were note in weight s no chang t certain p uring the	sis was base reported in erred (norm ty at any do controls fror ed for body gain by 17- ge over days points during post-dosing	d solely on the study ally from se. n gestation weight 24% were s 0-20. g gestation i period.
ats, Sprague- awley, 24 males/group ECD 414 981), GLP. 209% 10.20% ct, rity 99.29% ureha prporation	in 1% aqueous sodium carboxymethylcellulose from gestation days 6 to 15 Dams were sacrificed on	as the unit for the analysis of the fetal incidences. However report. The period of dosing GD 5 in rodents). <i>Maternal toxicity</i> There were no maternal deat At 30 mg/kg/d: maternal boo day 7 to 20, although no sign adjusted for gravid uterine w recorded during the dosing p Reduction in food consumpt this group, but was comparal There were no treatment-relation	f fetal effe r, litter in is less that hs or clin ly weights hificant di reight. Re eriod but ion was re ble with c ated gross	ects; inste icidence c in is curre ical signs s were low fferences ductions there was ecorded a ontrols du findings.	ad, analys lata were ently prefe of toxicit wer than c were note in weight s no chang t certain p uring the	sis was base reported in erred (norm ty at any do controls fror ed for body gain by 17- ge over days points during post-dosing	d solely on the study ally from se. n gestation weight 24% were s 0-20. g gestation i period.
ats, Sprague- awley, 24 males/group ECD 414 981), GLP. 9.09% 10.20% ct, 10.20% ct, 110.20%	in 1% aqueous sodium carboxymethylcellulose from gestation days 6 to 15 Dams were sacrificed on	as the unit for the analysis of the fetal incidences. However report. The period of dosing GD 5 in rodents). <i>Maternal toxicity</i> There were no maternal deat At 30 mg/kg/d: maternal bood day 7 to 20, although no sign adjusted for gravid uterine w recorded during the dosing p Reduction in food consumpt this group, but was comparal There were no treatment-relat <i>Developmental toxicity</i> Gravid uterine weights, num	fetal effe r, litter in is less that hs or clin ly weight ificant di reight. Re eriod but ion was re ble with c ated gross bers of co tions and ely. The in historical 3% for 10	ects; inste icidence c in is curre ical signs s were low fferences ductions there was ecorded a ontrols du findings. orpora lute deaths w neidences control r 0 studies	ad, analys lata were ently prefe of toxicit wer than c were note in weight s no chang t certain p uring the p ea, implar as 3.9%, 7 in the mi ange (4.5 1987-199	sis was base reported in erred (norma- ty at any doe controls fror ed for body gain by 17- ge over days points during post-dosing nts, live fetu 3.8%, 7.2%, d- and high -8.5% for 6 3). The inci	d solely on the study ally from se. n gestation weight 24% were s 0-20. g gestation i period. sees and sex , 7.6% at 0, -dose group studies dences in th

External malformations Number of fetuses Number of litters Microphthalmia Cleft lip Cleft palate Vestigial tail Total number of affected fetuses/litters Visceral malformations	324 23 0 0 0	352 23 0	339 24 0	354 23
Number of litters Microphthalmia Cleft lip Cleft palate Vestigial tail Total number of affected fetuses/litters	23 0 0	23 0	24	23
Microphthalmia Cleft lip Cleft palate Vestigial tail Total number of affected fetuses/litters	0 0	0		
Cleft lip Cleft palate Vestigial tail Total number of affected fetuses/litters	0		0	
Cleft palate Vestigial tail Total number of affected fetuses/litters				2 (0.69 2 litte
Vestigial tail Total number of affected fetuses/litters	0	0	0	1 (0.30
Total number of affected fetuses/litters		0	0	1 (0.3
fetuses/litters	0	0	1 (0.3%)	0
Visceral malformations	0	0	0	2/2
Number of fetuses	155	169	163	168
Number of litters	23	23	24	23
Double aortic arch	0	0	0	1 (0.69
Coarctation of the aorta	0	0	0	1 (0.69
Right aortic arch	0	0	1 (0.6%)	0
Aberrant right subclavian artery	0	0	0	1 (0.6
Agenesis of the spleen	0	0	0	1 (0.69
Total number of affected fetuses/litters	0	0	1	2/2
Visceral variations				
Number of fetuses	155	169	163	168
Number of litters	23	23	24	23
Left umbilical artery	1 (0.6%)	2 (1.2%) 2 litters	2 (1.2%) 2 litters	7* (4.2% 6 litte
Skeletal variations				
Number of fetuses	169	183	176	186
Number of litters	23	23	24	23
Supernumerary ribs	3 (1.8%) 3 litters	1	8 (4.5%) 6 litters	13* (7 7 litte

		background incidence of cleft with no cases in another 11 la laboratories, with incidences	boratories. Cleft	palate was record	
		Historical control data for sur strain, 3 studies conducted 19			laboratory and rat
		The NOAEL for maternal and	d developmental t	oxicity was 10 n	ng/kg/d.
Oral (gavage) Rabbits, Japanese White, 5 females/group No guideline. GLP. 89.09% cc:10.20% ct, purity 99.29% Kureha Corporation (1990) [46]	0, 10, 100, 300, 1000 mg/kg/d in 1% aqueous sodium carboxymethylcellulose from gestation days 6 to 18 Dams were sacrificed on gestation day 27	This was a preliminary study. ovaries & uterine contents ex- implantations determined; inv- uterine implants were grossly & weights of live fetuses & p live fetuses examined for exter- visceral or skeletal malformat <i>Maternal toxicity</i> All dams at 300 and 1000 mg of toxicity (discharge from th dose groups. At 100 mg/kg/d, dams lost 26 compared with a gain of 53 g Food consumption was reduc- group but thereafter was comp At gross necropsy of the anim occurred in the stomach (ulce lobular pattern and pale colour hydropericardium and erosion <i>Developmental toxicity</i> Ipconazole did not affect the r administered in doses ≤ 100 r gravid uterine weight, the nur resorptions/deaths, slightly re change to the fetal sex ratio (s	Investigations in amined, gravid ut vestigation for ver visible. Investiga- lacentae, incidence ernal abnormalitie tions and variation (/kg/d died during e eyes and soiling 64g (up to 6%) fro for the controls ar ed up to about ges parable to or high nals that died befor referosion and/or p ur). One animal at n of the stomach.	the dams: gross erine weights, cc y early resorption tions in the fetus ses of resorptions s. There was no ns. the dosing period g of fur) were see on gestation days d 66g for the 10 station day 12 in er than the contr ore scheduled sac betechia) and live 100 mg/kg/d hav a lutea or implan ng/kg/d there wa es, an increase in	pathology, orpora lutea and ns when no ses: number, sex s and fetal deaths; examination for d. Clinical signs en only in these s 6 to 18, mg/kg/d group. the 100 mg/kg/d ols. crifice, changes er (accentuated d hair loss, ttation sites when s a decrease in fetal
		mg/kg/d	0	10	100
		Maternal body weight (g) day 27	4296	4333	4364
		Gravid uterine weight (g)	452	427 -6%	265 -41%
		Adjusted maternal body weight (g)	3844	3906	4099
		Live fetuses/litter	8.8	7.3	4.8
		% fetal resorption/deaths	13.8%	4.8% ^a	58.5%*
		Mean fetal weight males (g)	36.8	41.3	29.4
		Mean fetal weight females (g)	37.2	37.8	31.4
		Sex ratio (male/total)	0.477	0.591	0.750*
		^a One dam had implantation si analysis by the study authors. implantation sites in this anin of fetal resorptions.	The study report	did not provide	the number of

		The adverse findings from feta	al external exami	ination are show	n below:
		mg/kg/d	0	10	100
		No. fetuses/litters	44 / 5	22 / 3	24 / 4
		Acephaly	0	0	1
		Microphthalmia	0	0	1
		General oedema	0	0	1
		Vestigial tail	0	0	1
		Short tail	0	0	3*/3
		Kinky tail	0	0	1
		Total no. fetuses with abnormalities/litters with affected fetuses ^b	0	0	6**/3*
		Historical control data for mic laboratory and strain (2001-20 2.32%) from 13 studies (2262	010), the mean in		
		Historical control data for sho same laboratory and strain (20 0.07% (range $0 - 0.53%$) from absent tail [47]. The total number of fetuses we was 6 / 2262 (0.27%).	01-2010), the m n 13 studies (226	ean incidence of 2 fetuses). There	short tail was were no cases of
Oral (gavage) Rabbits, Japanese White (KBL:JW), 18 females/group OECD 414 (1981). GLP. 89.09% cc:10.20% ct, purity 99.29% Kureha Corporation (1990) [48]	0, 2, 10, 50 mg/kg/d in 1% aqueous sodium carboxymethylcellulose from gestation days 6 to 18 Dams were sacrificed on gestation day 27	The study differs from the cur as the unit for the analysis of f the fetal incidences. However, report, although there is not a each individual fetus. All fetal transverse section, which is co- hydrocephalus. <i>Maternal toxicity</i> There were no deaths or clinic Maternal body weights were r throughout the dosing period (Mean body weight change of during dosing (e.g., -73 g betw consumption was slightly low. Reproductive parameters (grav implants, live fetuses, resorpti treatment. There were no stati- weight and placental weight. <i>Developmental toxicity</i> The only abnormality seen at o palate in the 50 mg/kg/d group findings upon visceral examin	etal effects; instu- litter incidence listing of the abr rabbit heads we insidered to be an eal signs of toxic: educed compare by up to 106 g / dams at this dose ween days 6 and er than controls of vid uterine weigh ons/fetal deaths stically significa	ead, analysis wa data were report formalities and of re examined into dequate for the of ity. d with controls a 3%, not statistic e was reduced or 15). At this dose (not statistically nts, numbers of of and sex ratios) w nt effects on mea-	s based solely on ed in the study other findings for ernally by a single letection of at 50 mg/kg/d cally significant). a several days b, food significant). corpora lutea, vere unaffected by an fetal body us with cleft

Number of fetuses / litters 111 / 16 163 / 17 137 / 16 155 / 1 External findings Image: Cleft palate 0 0 0 10.7% Skeletal malformations Image: Cleft palate 0 0 10.7% 10.7% Skeletal malformations Image: Cleft palate 0 0 10.7% 10.7% Skeletal malformations Image: Cleft palate 0 0 1 (0.7%) 1 (0.7%) Skeletal malformations Image: Cleft palate 0 0 1 (0.7%) 2 (1.3%) Bifurcation of the ribs 0 0 0 2 (1.3%) 2 litter Bifurcation of the sternebrae 1 (0.9%) 3 (1.8%) 0 5 (3.2%) 3 litter Number of affected fetuses / litters 1 / 1 3 / 2 2 / 2 8 / 4 Skeletal variations Image: Clervical ribs 0 0 3 (1.8%) 2 (1.5%) 20**** Supernumerary ribs 9 (8.1%) 18 (11%) 16 24 (11.7%) 21.5% Lumbarisation of the sacral vertebrae		-	-		
External findingsImage: Cleft palate000Cleft palate0001 (0.7%)Skeletal malformationsImage: Cleft palate001 (0.7%)Splitting of nasal bones001 (0.7%)2 (1.3%)Bifurcation of the ribs001 (0.7%)2 (1.3%)Bifurcation of the sternebrae1 (0.9%)3 (1.8%)05 (3.2%)Fusion of the sternebrae1 (0.9%)3 (1.8%)05 (3.2%)Number of affected fetuses /1 / 13 / 22 / 28 / 4Skeletal variationsImage: Clervical ribs0003Supernumerary ribs9 (8.1%)1 (0.6%)2 (1.5%)20****Cervical ribs00033Supernumerary ribs9 (8.1%)18 (11%)1624Historical control data:01 (0.6%)1 (0.7%)3 (1.9%)Vertebrae01 (0.6%)1 (0.6%)4 (2.6%)Historical control data:Based on examination of 1116 fetuses from 150 litters, historical control data from the same laboratory and test strain (1986-1989) were• splitting of the parietal bones:fetal incidence 1.7%, range 0-14.3%• supernumerary ribs:fetal incidence 21.8%, range 13.9-30.1%• lumbarisation of the sacral vertebrae:fetal incidence 1.3%, range 0-4.9%• asymmetry of the sternebrae:fetal incidence 0.3%, no value for rangeData from the same laboratory and test strain, 2001-2010 ([46]), 13 studies (22 fetuses) <t< th=""><th>mg/kg/d</th><th>0</th><th>2</th><th>10</th><th>50</th></t<>	mg/kg/d	0	2	10	50
Cleft palate001 (0.79) Skeletal malformations	Number of fetuses / litters	111 / 16	163 / 17	137 / 16	155 /17
Skeletal malformations001 (0.7%)1 (0.7%)Hemi-vertebrae001 (0.7%)2 (1.3%)Bifurcation of the ribs0002 (1.3%)Bifurcation of the sternebrae1 (0.9%)3 (1.8%)05 (3.2%)Fusion of the sternebrae1 (0.9%)3 (1.8%)05 (3.2%)Number of affected fetuses /1 / 13 / 22 / 28 / 4Skeletal variations00003Splitting of parietal bones2 (1.8%)1 (0.6%)2 (1.5%)20****Cervical ribs0003Supernumerary ribs9 (8.1%)18 (11%)1624Lumbarisation of the sacral01 (0.6%)1 (0.7%)3 (1.9%)vertebrae01 (0.6%)1 (0.6%)4 (2.6%)Historical control data:Based on examination of 1116 fetuses from 150 litters, historical control data from the same laboratory and test strain (1986-1989) were• splitting of the parietal bones: fetal incidence 1.7%, range 0-14.3%• supernumerary ribs: fetal incidence 21.8%, range 13.9-30.1%• lumbarisation of the sacral vertebrae: fetal incidence 0.3%, no value for range Data from the same laboratory and test strain, 2001-2010 ([46]), 13 studies (22 fetuses)• cleft palate: no cases• hemivertebrae: thoracic – mean 0.04, range 0-0.48; lumbar – mean 0. range 0-0.70• bifurcation of the ribs: 0.12 (0-0.95)	External findings				
Splitting of nasal bones001 (0.7%)1 (0.7%)Hemi-vertebrae001 (0.7%)2 (1.3%)Bifurcation of the ribs002 (1.3%)Bifurcation of the sternebrae1 (0.9%)3 (1.8%)02 (1.3%)Fusion of the sternebrae1 (0.9%)3 (1.8%)05 (3.2%)Number of affected fetuses /1 / 13 / 22 / 28 / 4Skeletal variations	Cleft palate	0	0	0	1 (0.7%)
Hemi-vertebrae001 (0.7%) 2 (1.3% 2 litterBifurcation of the ribs0002 (1.3% 2 litterFusion of the sternebrae1 (0.9%)3 (1.8%)05 (3.2% 3 litterNumber of affected fetuses / litters1 / 13 / 22 / 28 / 4Skeletal variationsSplitting of parietal bones2 (1.8%)1 (0.6%)2 (1.5%) 2 (1.5%)20**** (12.9% (12.9%)Cervical ribs0003Supernumerary ribs9 (8.1%)18 (11%)16 (11.7%)24Lumbarisation of the sacral vertebrae01 (0.6%)1 (0.7%)3 (1.9%)Asymmetry of sternebrae01 (0.6%)1 (0.6%)4 (2.6%)Historical control dataBased on examination of 1116 fetuses from 150 litters, historical control data from the same laboratory and test strain (1986-1989) wei• splitting of the parietal bones: fetal incidence 1.7%, range 0-14.3%• supernumerary ribs: fetal incidence 21.8%, range 13.9-30.1%• lumbarisation of the sacral vertebrae: fetal incidence 1.3%, range 0- 4.9%• cleft palate: no cases• hemivertebrae: thoracic – mean 0.04, range 0-0.48; lumbar – mean 0. range 0-0.70• bifurcation of the ribs: 0.12 (0-0.95)	Skeletal malformations				
Bifurcation of the ribs0002 litterFusion of the sternebrae $1 (0.9\%)$ $3 (1.8\%)$ 0 $5 (3.2\%)$ $3 litterNumber of affected fetuses /1 / 13 / 22 / 28 / 4Skeletal variations -Splitting of parietal bones2 (1.8\%)1 (0.6\%)2 (1.5\%)20^{***}(12.9\%)Cervical ribs0003Supernumerary ribs9 (8.1\%)18 (11\%)1624(11.7\%)Lumbarisation of the sacralvertebrae01 (0.6\%)1 (0.7\%)3 (1.9\%)Asymmetry of sternebrae01 (0.6\%)1 (0.6\%)4 (2.6\%)Historical control datarom the same laboratory and test strain (1986-1989) weil\cdotsplitting of the parietal bones: fetal incidence 1.7\%, range 0-14.3\%\cdotsupernumerary ribs: fetal incidence 21.8\%, range 13.9-30.1\%\cdotlumbarisation of the sacral vertebrae: fetal incidence 1.3\%, range 0-4.9\%\cdotsymmetry of the sternebrae: fetal incidence 0.3\%, no value for rangeData from the same laboratory and test strain, 2001-2010 ([46]), 13 studies (22fetuses)\cdotcleft palate: no cases\cdothemivertebrae: thoracic – mean 0.04, range 0-0.48; lumbar – mean 0.range 0-0.70\cdotbifurcation of the ribs: 0.12 (0-0.95)$	Splitting of nasal bones	0	0	1 (0.7%)	1 (0.7%)
Fusion of the sternebrae1 (0.9%)3 (1.8%)02 litter 5 (3.2%) 3 litterNumber of affected fetuses / litters $1/1$ $3/2$ $2/2$ $8/4$ Skeletal variations2 $1/1$ $3/2$ $2/2$ $8/4$ Skeletal variations2 $1/1$ $3/2$ $2/2$ $8/4$ Skeletal variations2 1.8% 1 0.6% 2 $2.2/2$ $8/4$ Skeletal variations000 3 2 $2.2/2$ $8/4$ Cervical ribs000 3 2 2.9% Cervical ribs9 8.1% 18 11% 16 24 Lumbarisation of the sacral0 1 0.6% 1 0.7% 3 Vertebrae01 0.6% 1 0.6% 4 2.6% Historical control data:Based on examination of 1116 fetuses from 150 litters, historical control data from the same laboratory and test strain $1986-1989$) wet•splitting of the parietal bones: fetal incidence 1.7% , range $0.14.3\%$ •supernumerary ribs: fetal incidence 21.8% , range $13.9-30.1\%$ •lumbarisation of the sacral vertebrae: fetal incidence 1.3% , range $0.4.9\%$ •asymmetry of the sternebrae: fetal incidence 0.3% , no value for rangeData from the same laboratory and test strain, 2001-2010 ([46]), 13 studies (22 fetuses)•cleft palate: no cases•hemivertebrae: thoracic – mean 0.04 , range $0.0.48$; lumbar – mean 0.70 ••bifurcation of the ribs: 0.12 ($0-$	Hemi-vertebrae	0	0	1 (0.7%)	2 (1.3%) 2 litters
Number of affected fetuses / litters $1 / 1$ $3 / 2$ $2 / 2$ 3 litter $8 / 4$ Skeletal variations </td <td>Bifurcation of the ribs</td> <td>0</td> <td>0</td> <td>0</td> <td>2 (1.3%) 2 litters</td>	Bifurcation of the ribs	0	0	0	2 (1.3%) 2 litters
litters skeletal variations scale Splitting of parietal bones 2 (1.8%) 1 (0.6%) 2 (1.5%) 20*** Cervical ribs 0 0 0 3 Supernumerary ribs 9 (8.1%) 18 (11%) 16 24 Lumbarisation of the sacral 0 1 (0.6%) 1 (0.7%) 3 (1.9%) vertebrae 0 1 (0.6%) 1 (0.6%) 4 (2.6%) Historical control data: Based on examination of 1116 fetuses from 150 litters, historical control data from the same laboratory and test strain (1986-1989) were • splitting of the parietal bones: fetal incidence 1.7%, range 0-14.3% • supernumerary ribs: fetal incidence 21.8%, range 13.9-30.1% • lumbarisation of the sacral vertebrae: fetal incidence 1.3%, range 0-4.9% • asymmetry of the sternebrae: fetal incidence 0.3%, no value for range Data from the same laboratory and test strain, 2001-2010 ([46]), 13 studies (22 fetuses) • cleft palate: no cases • hemivertebrae: thoracic – mean 0.04, range 0-0.48; lumbar – mean 0. range 0-0.70 • bifurcation of the ribs: 0.12 (0-0.95) •	Fusion of the sternebrae	1 (0.9%)	3 (1.8%)	0	5 (3.2%) 3 litters
Splitting of parietal bones $2 (1.8\%)$ $1 (0.6\%)$ $2 (1.5\%)$ 20^{***} Cervical ribs0003Supernumerary ribs $9 (8.1\%)$ $18 (11\%)$ 16 24 Lumbarisation of the sacral0 $1 (0.6\%)$ $1 (0.7\%)$ $3 (1.9\%)$ vertebrae0 $1 (0.6\%)$ $1 (0.7\%)$ $3 (1.9\%)$ Asymmetry of sternebrae0 $1 (0.6\%)$ $1 (0.6\%)$ $4 (2.6\%)$ Historical control dataBased on examination of 1116 fetuses from 150 litters, historical control data from the same laboratory and test strain (1986-1989) were•splitting of the parietal bones: fetal incidence 1.7\%, range 0-14.3\%•supernumerary ribs: fetal incidence 21.8\%, range 13.9-30.1%•lumbarisation of the sacral vertebrae: fetal incidence 1.3\%, range 0- 4.9% •asymmetry of the sternebrae: fetal incidence 0.3\%, no value for range Data from the same laboratory and test strain, 2001-2010 ([46]), 13 studies (22 fetuses)•cleft palate: no cases•hemivertebrae: thoracic – mean 0.04, range 0-0.48; lumbar – mean 0. range 0-0.70•bifurcation of the ribs: 0.12 (0-0.95)		1 / 1	3 / 2	2 / 2	8 / 4
Cervical ribs0003Supernumerary ribs9 (8.1%)18 (11%)1624Lumbarisation of the sacral01 (0.6%)1 (0.7%)3 (1.9%)vertebrae01 (0.6%)1 (0.6%)1 (0.6%)4 (2.6%)Historical control dataBased on examination of 1116 fetuses from 150 litters,historical control data from the same laboratory and test strain (1986-1989) were•splitting of the parietal bones: fetal incidence 1.7%, range 0-14.3%•supernumerary ribs: fetal incidence 21.8%, range 13.9-30.1%•lumbarisation of the sacral vertebrae: fetal incidence 1.3%, range 0- 4.9%•asymmetry of the sternebrae: fetal incidence 0.3%, no value for rangeData from the same laboratory and test strain, 2001-2010 ([46]), 13 studies (22 fetuses)•cleft palate: no cases•hemivertebrae: thoracic – mean 0.04, range 0-0.48; lumbar – mean 0. range 0-0.70•bifurcation of the ribs: 0.12 (0-0.95)	Skeletal variations				
Supernumerary ribs9 (8.1%)18 (11%)16 (11.7%)24 (15.5%)Lumbarisation of the sacral vertebrae01 (0.6%)1 (0.7%)3 (1.9%)Asymmetry of sternebrae01 (0.6%)1 (0.6%)4 (2.6%)Historical control data:Based on examination of 1116 fetuses from 150 litters, historical control data from the same laboratory and test strain (1986-1989) were esplitting of the parietal bones: fetal incidence 1.7%, range 0-14.3%esupernumerary ribs: fetal incidence 21.8%, range 13.9-30.1%lumbarisation of the sacral vertebrae: fetal incidence 1.3%, range 0- 4.9%easymmetry of the sternebrae: fetal incidence 0.3%, no value for range Data from the same laboratory and test strain, 2001-2010 ([46]), 13 studies (22 fetuses)ecleft palate: no casesehemivertebrae: thoracic – mean 0.04, range 0-0.48; lumbar – mean 0. range 0-0.70ebifurcation of the ribs: 0.12 (0-0.95)	Splitting of parietal bones	2 (1.8%)	1 (0.6%)	2 (1.5%)	20*** (12.9%)
Lumbarisation of the sacral vertebrae01 (0.6%)1 (0.7%)3 (1.9%)Asymmetry of sternebrae01 (0.6%)1 (0.7%)3 (1.9%)Historical control data: historical control data from the same laboratory and test strain (1986-1989) were4 (2.6%)•splitting of the parietal bones: fetal incidence 1.7%, range 0-14.3%•supernumerary ribs: fetal incidence 21.8%, range 13.9-30.1%•lumbarisation of the sacral vertebrae: fetal incidence 1.3%, range 0- 4.9%•asymmetry of the sternebrae: fetal incidence 0.3%, no value for range 	Cervical ribs	0	0	0	3
vertebrae01 (0.6%)1 (0.6%)4 (2.6%)Historical control data: Based on examination of 1116 fetuses from 150 litters, historical control data from the same laboratory and test strain (1986-1989) were•splitting of the parietal bones: fetal incidence 1.7%, range 0-14.3%•supernumerary ribs: fetal incidence 21.8%, range 13.9-30.1%•lumbarisation of the sacral vertebrae: fetal incidence 1.3%, range 0- 4.9%•asymmetry of the sternebrae: fetal incidence 0.3%, no value for range Data from the same laboratory and test strain, 2001-2010 ([46]), 13 studies (22 fetuses)•cleft palate: no cases•hemivertebrae: thoracic – mean 0.04, range 0-0.48; lumbar – mean 0, range 0-0.70•bifurcation of the ribs: 0.12 (0-0.95)	Supernumerary ribs	9 (8.1%)	18 (11%)		24 (15.5%)
 <u>Historical control data</u>: Based on examination of 1116 fetuses from 150 litters, historical control data from the same laboratory and test strain (1986-1989) were splitting of the parietal bones: fetal incidence 1.7%, range 0-14.3% supernumerary ribs: fetal incidence 21.8%, range 13.9-30.1% lumbarisation of the sacral vertebrae: fetal incidence 1.3%, range 0-4.9% asymmetry of the sternebrae: fetal incidence 0.3%, no value for range Data from the same laboratory and test strain, 2001-2010 ([46]), 13 studies (22 fetuses) cleft palate: no cases hemivertebrae: thoracic – mean 0.04, range 0-0.48; lumbar – mean 0. range 0-0.70 bifurcation of the ribs: 0.12 (0-0.95) 		0	1 (0.6%)	1 (0.7%)	3 (1.9%
 historical control data from the same laboratory and test strain (1986-1989) were splitting of the parietal bones: fetal incidence 1.7%, range 0-14.3% supernumerary ribs: fetal incidence 21.8%, range 13.9-30.1% lumbarisation of the sacral vertebrae: fetal incidence 1.3%, range 0-4.9% asymmetry of the sternebrae: fetal incidence 0.3%, no value for range Data from the same laboratory and test strain, 2001-2010 ([46]), 13 studies (22 fetuses) cleft palate: no cases hemivertebrae: thoracic – mean 0.04, range 0-0.48; lumbar – mean 0. range 0-0.70 bifurcation of the ribs: 0.12 (0-0.95) 	Asymmetry of sternebrae	0	1 (0.6%)	1 (0.6%)	4 (2.6%)
 Data from the same laboratory and test strain, 2001-2010 ([46]), 13 studies (22 fetuses) cleft palate: no cases hemivertebrae: thoracic – mean 0.04, range 0-0.48; lumbar – mean 0, range 0-0.70 bifurcation of the ribs: 0.12 (0-0.95) 	 historical control data from the sar splitting of the parietal b supernumerary ribs: feta lumbarisation of the sact 4.9% 	me laborato bones: fetal al incidence tral vertebra	ory and test s incidence 1. 21.8%, rang e: fetal incid	train (1986-2 7%, range 0- ge 13.9-30.19 lence 1.3%, 1	1989) wei -14.3% % range 0-
 fetuses) cleft palate: no cases hemivertebrae: thoracic – mean 0.04, range 0-0.48; lumbar – mean 0, range 0-0.70 bifurcation of the ribs: 0.12 (0-0.95) 					Ū.
 hemivertebrae: thoracic – mean 0.04, range 0-0.48; lumbar – mean 0. range 0-0.70 bifurcation of the ribs: 0.12 (0-0.95) 	fetuses)	a test stralli	, 2001-2010	([+0]), 15 80	
range 0-0.70bifurcation of the ribs: 0.12 (0-0.95)	• cleft palate: no cases				
		– mean 0.0	4, range 0-0	.48; lumbar -	– mean 0.
• fusion of the sternebrae: 0.67 (0-2.57)	• bifurcation of the ribs: 0).12 (0-0.95)		
		0 67 (0 0 4	-7)		

N.B. The values for NOAEL are provided for information only; they have been agreed by a PRAPeR Expert Meeting. * Statistically significant at $p \le 0.05$. ** Statistically significant at $p \le 0.01$. *** Statistically significant at $p \le 0.001$.

^a Statistical analysis of the number of fetuses in each litter with external malformations in the preliminary rat developmental toxicity study, undertaken by the dossier submitter, indicated that there was a pronounced litter effect (see Annex III); i.e., there

was a statistically significant difference (p < 0.0004) between the analysis when the malformation data were grouped by litter and dose compared with grouping by dose alone. ^b A similar analysis for the rabbit preliminary developmental toxicity study indicated that there was not a litter effect for the external abnormalities.

4.10.2.1 Non-human information

External and visceral findings

In a preliminary rat study, no fetuses were obtained at the highest doses of 250 and 500 mg/kg/d because of extensive maternal deaths. At the next doses of 50 and 100 mg/kg/d, there were increased incidences of microphthalmia and kinky/short tail (statistically significant at 100 mg/kg/d). There were also single-fetal incidences of meningoencephalocoele (protrusion of brain tissue through the skull), micrognathia (one jaw unusually small) and omphalocoele (umbilical hernia) at 100 mg/kg/d. Only external investigations were undertaken in this study, not visceral examinations; it is unclear how thoroughly the eye was examined, and hence if the reported finding of microphthalmia truly fitted the description of this malformation as given in the harmonised nomenclature for developmental toxicity (DevTox²: microphthalmia defined as small eye, eyeball or globe of eye upon visceral examination, compared with the external finding of small eye bulge, which 'may be associated with microphthalmia'). Overall, 11 fetuses of the 100 mg/kg/d group in the preliminary study were recorded to have malformations, in four litters. Six of these fetuses were in one litter (from dam number 1015, 6/8 fetuses affected: 2 with microphthalmia alone, two with kinky tail alone, one with short tail alone, one with microphthalmia, kinky tail, micrognathia and meningoencephalocele). Three were in another (dam number 1016, 3/5 fetuses affected: one with microphthalmia and kinky tail; one with microphthalmia and kinky plus short tail; one with kinky tail and omphalocele). The remaining two litters each had one fetus with microphthalmia (1/1 and 1/4 fetuses affected, respectively). The mean fetal weight was lower in the litters from dams 1015 (male mean 43% lower, female mean 17% lower) and 1016 (male mean 21% lower, female mean 26% lower) than in the other four litters obtained at this dose. Maternal toxicity in dams 1015 and 1016 was not, however, noticeably more marked than in the other dams of the group. The three fetuses with malformations in the 50 mg/kg/d group all occurred in the same litter.

In the main rat study, sections taken of the head did not include the eyes and so they were not subjected to histological examination. However, the eyes were examined for external alterations after removing the palpebral skin, enabling a close examination of the size of the eyeball. The microphthalmia observed at 30 mg/kg/d was unilateral, with one less than 2/3 the size of the other. The two cases occurred in two separate litters. One of the fetuses with microphthalmia also had a cleft lip and cleft palate. One rabbit fetus, from a dam dosed with 100 mg/kg/d ipconazole in the preliminary study, was recorded with microphthalmia. Cleft palate was recorded in one rabbit fetus dosed with 50 mg/kg/d in the main study. One rat fetus in the 10 mg/kg/d group of the main study had a vestigial tail, but this abnormality was not recorded at 30 mg/kg/d.

Malformations of major blood vessels associated with the aortic arch were recorded in two rat fetuses at 30 mg/kg/d, one with a double aortic arch and coarctation (narrowing) of the aorta, the other (from

² <u>www.devtox.org/index.htm</u> The objectives of the DevTox project are to: harmonise the nomenclature used to describe developmental anomalies in laboratory animals; to assist in the visual recognition of developmental anomalies with the aid of photographs; and, to provide a historical control database of developmental effects in laboratory animals. Project partners: Federal Institute for Risk Assessment (BfR), Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM) and Institute of Clinical Pharmacology and Toxicology, Academical Medicine, Berlin, together with contributions from international scientists from research institutions, regulatory agencies and industry.

a different litter) with an aberrant right subclavian artery and also agenesis (absence) of the spleen. In the high-dose group there was also an increase in the incidence of left umbilical artery (in rats the umbilical artery is normally on the right side), which was seen in six litters and was outside the historical control range. The study authors were uncertain of the toxicological significance of this finding, and there is no description of a malpositioned or transposed umbilical artery in ECETOC [49] nor Makris [50]; in DevTox this finding is not classified as either a malformation or variation. Dilatation of the renal pelvis and/or ureter, classified as a visceral variation, was recorded in rat pups, but in the absence of a clear dose-response relationship (1, 7, 3, 8 at 0, 3, 10, 30 mg/kg/d) it will not be considered further. A predominant malformation in the rabbit preliminary study was the occurrence of short tails at a dose of 100 mg/kg/d, which occurred in 12.5% of the fetuses and three of the four litters. In this dose group, a kinky tail was also recorded in one fetus.

Skeletal findings

Several skeletal findings were recorded in the studies. These included low but increased incidences of skeletal malformations in rabbits from 10 mg/kg/d, but in the absence of concurrent historical control data these are difficult to interpret. Supernumerary ribs were recorded in both rat and rabbit fetuses, but uncertainty surrounds the developmental/teratogenic significance of such ribs, in particular their post-natal reversibility or otherwise. The presence of supernumerary ribs that are small in size may be considered to be less significant with respect to teratogenic potential than ribs that are more than half the size of a full rib, which are considered to be more likely to persist post-natally. Cervical ribs were also reported in the main rabbit study; these are not classified as either malformations or variations by DevTox, and are considered to be of low to moderate concern by ECETOC. Splitting of the parietal bone was recorded in almost 13% of the rabbit fetuses when ipconazole was administered at 50 mg/kg/d (compared with an incidence of 1.8% in controls). The head of the reproductive toxicology division of the laboratory where the study was conducted provided the following commentary:

'Splitting (or fissure) of the parietial bone' observed in alizarin red S-stained skeletal specimens of near term fetuses of Japanese White rabbits means an isolated site of ossification (bone fragment) which is mainly found in the anterior fontanel between the right and left parietal bones. This is classified as a skeletal malformation in our laboratories although it is not known whether the part of the fissure ossifies to fuse the fragment into the parietal bone with growth or not. The term splitting (or fissure) of the parietal bone has not been found in other literature. However, 'extra ossification site (bone island, fontanellar bone, or suture bone)' may correspond to this skeletal finding.'

It was also noted that the finding was not a malformation such as might adversely affect the survival of offspring, for example partial absence of the parietal bone, since an unstained part (fissure-like area) of the parietal bone is always filled with a translucent material, suggesting the existence of unstained bone. The UK Advisory Committee on Pesticides accepted the conclusion that the finding should be regarded as an unossified line and categorised as a variation. Furthermore, Makris *et al.* [50] note that a split parietal bone should not be confused with an unossified line. Splitting of the parietal bone has been recorded in primates, but was not categorised as either a malformation or variation by DevTox. Overall, for the purposes of classification this finding will be regarded as a variation. Moreover, the incidence in the high-dose group was within the historical control range.

Fetal resorptions and deaths

Although there appeared to be a slight (not statistically significant) increase in fetal resorptions and deaths at 10 and 30 mg/kg/d in the main rat study, the increase was within the historical control data

and was compounded by the atypically low incidences in the controls and low-dose group (which were below the historical control range). A reduction in the number of live fetuses per litter, an increase in fetal resorptions and deaths, and decreased fetal weight were also reported in the preliminary study, at 50 mg/kg/d and 100 mg/kg/d (statistically significant in the latter and associated with maternal toxicity). These parameters were also affected in the rabbit preliminary study (100 mg/kg/d), as was the sex ratio, in association with maternal toxicity; there were no effects in the main study, in which the maximum dose was 50 mg/kg/d.

4.10.2.2 Human information

No information available.

4.10.3 Other relevant information

4.10.4 Summary and discussion of reproductive toxicity

In a two-generation study in rats, some maternal toxicity was evident in the high-dose group (300 ppm, equivalent to 31.6-48 mg/kg/d in female F1) as a reduction in body weight gain and food consumption. Mating performance and fertility were unaffected. There were minor reductions in the total litter size (F2 only) and live birth index on day 1 (F1 only) at 300 ppm ipconazole; as these were only marginally below the historical control ranges, were inconsistent across generations and did not show statistically significant differences from the controls, they do not provide evidence of a specific, treatment-related effect on reproduction. A slight reduction in the viability index on day 4 (F1 only) at 300 ppm ipconazole was associated with a reduction in body weight gains in these groups, and is regarded as general offspring toxicity or an effect secondary to maternal toxicity.

Several findings that indicated a developmental toxicity (teratogenic) potential for ipconazole were reported in four developmental toxicity studies, two in rats and two in rabbits. Additionally, reductions in the number of live fetuses per litter and increases in fetal resorptions and deaths were recorded in the preliminary developmental toxicity studies. The relevance of these findings to classification is discussed below. More information on the findings (body weights, sex, external malformations) in individual pups in the mid- and high-dose groups of the rat studies is presented in Annex II.

Microphthalmia in rats and rabbits

Microphthalmia was reported in three of the four developmental toxicity studies. It was not reported in the two-generation study, but in this study histological investigations were not routinely conducted on the offspring, and the highest tested dose was lower than was employed in some of the developmental toxicity studies. Microphthalmia is classified as a malformation and hence is associated with a high level of concern. There was some uncertainty about how thoroughly this effect was investigated in the developmental toxicity studies and thus its interpretation as either an external or a visceral finding, but in the absence of further information it will be regarded as a malformation in this report.

The incidences of microphthalmia in the two rat developmental toxicity studies (a preliminary and a main study) are presented below.

mg/kg/d	0	0	1	3	10	10	30	50	100
Study	Prelim	Main	Prelim	Main	Prelim	Main	Main	Prelim	Prelim
Number of fetuses examined	94	324	88	352	79	339	354	86	34
Number of fetuses affected	0	0	1 (1.1%)	0	0	0	2 (0.6%)	2 (2.3%)	7 (21%)
Number of litters affected	0	0	1	0	0	0	2/23 (8.7%)	1/7 (14%)	4/6 (67%)
Maternal toxicity, adjusted maternal body weights	-	-	-	-	-	-	-	2%↓ adjusted bw	6%↓ adjusted bw cs
Historical control data (1985- 0.64%/4.17% (1/1), 0.83%/4. fetuses).	,	-							5439

Table 18.1. Fetal and litter incidence of microphthalmia in the preliminary and main rat developmental toxicity studies

bw = body weight; cs = clinical signs (red discharge from the vagina, soiled fur, eye discharge and loose faeces)

The one case of microphthalmia in the 1 mg/kg/d group is considered to be an incidental finding because of the absence of this effect at 3 and 10 mg/kg/d. The incidence of this malformation increased in a dose-related manner at doses of \geq 30 mg/kg/d. However, at 30 mg/kg/d, the litter and fetal incidences were within relevant historical control ranges (same strain, laboratory and conducted within five years either side of the ipconazole study); therefore the finding at this dose might have been an incidental finding. The incidence of microphthalmia did exceed the relevant historical control data at doses of \geq 50 mg/kg/d and thus is concluded to be treatment-related at 50 and 100 mg/kg/d. The overall mean incidence of this malformation amongst the historical controls was low (0.06% in 20 studies).

At 100 mg/kg/d in the preliminary rat study, maternal toxicity was marked, comprising weight loss, an overall reduction in body-weight gain, red discharge from the vagina, soiled fur, eye discharge and loose faeces. Maternal toxicity at 50 mg/kg/d was minimal, with only a very slight (2%) reduction in body weight adjusted for uterine contents, and there were no clinical signs of toxicity. The body weights of affected fetuses were at least 25% lower than those of unaffected litter mates (see Annexes I and II).

Microphthalmia was also reported in 1/24 rabbit fetuses, at the dose of 100 mg/kg/d in the preliminary study; this dose resulted in severe maternal toxicity (loss of weight and decreased food consumption). This incidence (4%) was outside the available historical control data (range 0 - 2.32%, but conducted more than ten years later than the ipconazole study); however, as it was a preliminary study, the number of fetuses available for examination was small. Microphthalmia was not reported in the main rabbit study, in which ipconazole was administered in doses up to 50 mg/kg/d; at this dose, maternal toxicity was minimal.

Short/kinky tails in rats and rabbits

Short or kinky tails were observed in the preliminary rat study (50 and 100 mg/kg/d). The main study employed lower doses (tested up to 30 mg/kg/d); therefore the absence of this effect in the main study

(apart from one affected fetus in the mid-dose group, which also had anal atresia) is not inconsistent with its occurrence in the preliminary study. Malformations were observed in a rabbit preliminary study at a dose of 100 mg/kg/d, notably an increase in the incidence of short tails, which occurred in 12.5% of the fetuses and 3 of the 4 litters; the level of concern for such malformations is high. The fetal and litter incidences in rats and rabbits are summarised in the table below.

mg/kg/d	0	0	1	3	10	10	30	50	100
Study	Prelim	Main	Prelim	Main	Prelim	Main	Main	Prelim	Prelim
Number of fetuses examined	94	324	88	352	79	339	354	86	34
Kinky tail: number of fetuses affected	0	0	0	0	0	0	0	1 (1.2%)	6 (17.6%)
Short tail: number of fetuses affected	0	0	0	0	0	0	0	0	2 (5.9%)
Vestigial tail: number of fetuses affected	0	0	0	0	0	1 (0.3%)	0	0	0
Tail effects: number of litters affected	0	0	0	0	0	1	0	1/7 (14%)	2/6 (33%)
Maternal toxicity, adjusted maternal body weights	-	-	-	-	-	-	-	2%↓ adjusted bw	6%↓ adjusted bw cs
(1994-2000), same strain. Short Kinky tail reported by 1 laborate	tail reporte ory: mean (ed by 2 lab).08%, rar	oratories:	mean 0.03	%, range 0	-0.36%; m	ean 0.089	%, range 0-0).42%.
Concurrent historical control dat (1994-2000), same strain. Short Kinky tail reported by 1 laborate 0.05%, range 0-0.42%; mean 0.0	tail reporte ory: mean (ed by 2 lab).08%, rar	boratories: nge 0-0.3% [52].	mean 0.03	%, range 0	-0.36%; m	ean 0.089	%, range 0-0).42%.
(1994-2000), same strain. Short Kinky tail reported by 1 laborate	tail reporte ory: mean (ed by 2 lat 0.08%, rar 0-0.39%	boratories: nge 0-0.3% [52].	mean 0.03 5. Rudimen	%, range 0	-0.36%; m	ean 0.089 ported by	%, range 0-0).42%.
(1994-2000), same strain. Short Kinky tail reported by 1 laborate 0.05%, range 0-0.42%; mean 0.0	tail reporte ory: mean (08%, range	ed by 2 lab 0.08%, rar 0-0.39%	ooratories: nge 0-0.3% [52]. RAE	mean 0.03 5. Rudimen BBITS	%, range 0 tary / vesti	-0.36%; m gial tail re	ean 0.089 ported by	6, range 0-0 2 laborator).42%. ies: mean
(1994-2000), same strain. Short Kinky tail reported by 1 laborate 0.05%, range 0-0.42%; mean 0.0 mg/kg/d	tail reporte ory: mean (08%, range 0	ed by 2 lab 0.08%, rar 0-0.39%	ooratories: nge 0-0.3% [52]. RAE	mean 0.03 5. Rudimen BBITS 2	%, range 0 tary / vesti	-0.36%; m gial tail re	ean 0.089 ported by	6, range 0-0 2 laborator 50).42%. ies: mean 100
(1994-2000), same strain. Short Kinky tail reported by 1 laborate 0.05%, range 0-0.42%; mean 0.0 mg/kg/d Study	tail reporte ry: mean (8%, range 0 Prelim	ed by 2 lat 0.08%, rar 0-0.39%	00ratories: nge 0-0.3% [52]. RAE 0 ain	mean 0.03 5. Rudimen BBITS 2 Main	%, range 0 tary / vesti 10 Prelim	-0.36%; m gial tail re 10 Ma	ean 0.089 ported by	6, range 0-(2 laborator 50 Main).42%. ies: mean 100 Prelim
(1994-2000), same strain. Short Kinky tail reported by 1 laborate 0.05%, range 0-0.42%; mean 0.0 mg/kg/d Study Number of fetuses examined Absent/vestigial tail: number	tail reporte ory: mean (8%, range 0 Prelim 44	ed by 2 lat 0.08%, rar 0-0.39% M 1 0	ooratories: nge 0-0.3% [52]. RAE 0 ain 11	mean 0.03 5. Rudimen BBITS 2 Main 163	%, range 0 tary / vesti 10 Prelim 22	-0.36%; m gial tail re 10 Ma 13	ean 0.089 ported by) in 7	6, range 0-(2 laborator 50 Main 155	0.42%. ies: mean 100 Prelim 24 1
(1994-2000), same strain. Short Kinky tail reported by 1 laborate 0.05%, range 0-0.42%; mean 0.0 mg/kg/d Study Number of fetuses examined Absent/vestigial tail: number of fetuses affected Short tail: number of fetuses	tail reporte ory: mean (8%, range 0 Prelim 44 0	ed by 2 lat 0.08%, rar 0-0.39% M 1 0 0 0 0 0 0 0 0 0 0 0 0 0	ooratories: nge 0-0.3% [52]. RAE 0 ain 11 0	mean 0.03 5. Rudimen BBITS 2 Main 163 0	%, range 0 tary / vesti 10 Prelim 22 0	-0.36%; m gial tail re 10 Ma 13 0	ean 0.089 ported by) in 7	6, range 0-(2 laborator 50 Main 155 0	0.42%. ies: mean 100 Prelim 24 1 (4.2%) 3
(1994-2000), same strain. Short Kinky tail reported by 1 laborate 0.05%, range 0-0.42%; mean 0.0 mg/kg/d Study Number of fetuses examined Absent/vestigial tail: number of fetuses affected Short tail: number of fetuses affected Kinky tail: number of fetuses	tail reporte ry: mean (8%, range 0 Prelim 44 0 0	ed by 2 lat 0.08%, rar 0-0.39% M 1 0 0 0 0 0 0 0 0 0 0 0 0 0	ooratories: nge 0-0.3% [52]. RAE 0 ain 11 0 0 0	mean 0.03 5. Rudimen BBITS 2 Main 163 0 0	%, range 0 tary / vesti 10 Prelim 22 0 0	-0.36%; m gial tail re 10 Ma 13 0 0	ean 0.089 ported by) in 7	6, range 0-(2 laborator 50 Main 155 0 0	0.42%. ies: mean 100 Prelim 24 1 (4.2%) 3 (12.5%) 1

Table 18.2. Fetal and litter incidence of tail effects in the rat and rabbit developmental toxicity studies
RATS

bw = body weight; cs = clinical signs (red discharge from the vagina, soiled fur, eye discharge and loose faeces); fc = food consumption

Tail effects were therefore reported in the rat and rabbit preliminary studies with incidences that were outside the available historical control ranges (not concurrent with the ipconazole studies), predominantly at the maternally toxic dose of 100 mg/kg/d; at this dose, the body weights of affected rat fetuses were lower than those of unaffected fetuses (see Annexes I and II). Data on the body weights of affected rabbit fetuses compared with their unaffected littermates was not available. There was one case of kinky tail in rats at 50 mg/kg/d, when maternal toxicity appeared to be minimal.

Visceral malformations and variations in rats

In the main rat study, two fetuses at 30 mg/kg/d had abnormalities of major blood vessels associated with the aortic arch (double aortic arch and coarctation (narrowing) of the aorta in one; aberrant right subclavian artery together with absence of the spleen in the other, from a different litter). Both these litters also contained the two pups with microphthalmia and cleft lip/cleft palate; unfortunately, the information in the study report does not allow one to determine if these were the same two pups with the blood vessel abnormalities. None of these observations was reported in the relevant historical control data, although one incidental occurrence of an aberrant subclavian artery was noted in a treatment group of a historical study. The study authors categorised these findings as malformations. At this dose, overall mean fetal body weight was 6-7% lower than the controls.

In the high-dose group there was also an increase in the incidence of left umbilical artery (statistically significant), which was seen in seven pups in six litters and was outside the historical control range. The toxicological significance of this finding is unclear, but the study authors categorised it as a variation and it has been reported to be a common spontaneous finding in Wistar Hannover rats [51].

Visceral malformations and variations were not investigated in the rat (nor rabbit) preliminary study, and so it is not known if such findings occurred at the higher doses employed in that study. No abnormalities of the major blood vessels were detected in the main rabbit study. Given that the malformations were single cases that occurred in pups with more than one malformation (double aortic arch with coarctation of the aorta; aberrant right subclavian artery with absence of spleen) and clustered in just two litters, it is concluded that they do not provide convincing evidence of specific developmental toxicity. The increase in the incidence of left umbilical artery in the high-dose group is concluded to be a treatment-related effect.

Other malformations and variations

In the main rabbit study, 4/17 litters contained fetuses with skeletal malformations at 50 mg/kg/d, notably splitting of the nasal bones, hemi-vertebrae, bifurcation (branching) of the ribs and fusion of the sternebrae. In the absence of concurrent historical control data for the skeletal malformations, some uncertainty surrounds the interpretation of these findings. However, splitting of the nasal bones occurred in only one fetus of each of the mid-and high-dose groups, in conjunction with other skeletal malformations in the same litter at 50 mg/kg/d; as there was no dose-response relationship and the incidence was low, this finding will be disregarded for the purposes of classification. The incidence of fusion of the sternebrae did not show a dose-response relationship (1, 3, 0, 5 at 0, 2, 10, 50 mg/kg/d) nor a statistically-significant trend and thus will also not be considered further. The incidence of hemivertebrae showed a slight dose-response relationship (0, 0, 1, 2 at 0, 2, 10, 50 mg/kg/d), with two litters being affected in the high-dose group, but did not show a statistically significant trend. One of the fetuses in the 50 mg/kg/d group with hemi-vertebrae also had bifurcation of the ribs. The other fetus with bifurcation of the ribs also occurred in a high-dose-group litter in which was reported hemi-

vertebrae (and other skeletal effects), but from the available information it is not possible to determine if it was the same animal. It was also not possible to evaluate individual affected pup weights compared with unaffected pups. Skeletal malformations were not observed in rats. Overall, the low incidences of skeletal malformations in rabbits alone do not provide sufficient evidence of a specific treatment-related effect.

Single incidences of cleft palates in the high-dose groups in the rat (30 mg/kg/d) and rabbit (50 mg/kg/d) main studies were reported. The affected rat pup also had a cleft lip and microphthalmia in addition to the cleft palate, which was within the available historical control range (not concurrent). The body weight of this pup was 42% lower than its litter-mates (1947 mg versus 3333 mg, standard deviation 323 mg); it is not possible to determine if this low body weight was a general manifestation of delayed development or was a consequence of a specific developmental effect, with the poor pup health being secondary to the malformations. Concurrent historical control data were also not available for rabbits. Individual rabbit fetus weights were not available, but the mean fetal weight of this litter was considerably lower than the overall group mean (57-59% reduction for females/males). No cleft lips or palates were reported at 100 mg/kg/d in the preliminary studies in either species, although it is recognised that the smaller group sizes would have reduced the sensitivity of those studies to detect rare malformations. As there were only single incidences, associated with low pup weight and (in the rat) other malformations, and no cases at the higher doses tested in the preliminary studies, the finding of cleft lip/cleft palate is insufficient evidence of a specific developmental effect.

The splitting of the parietal bone that was observed in rabbits is considered to be a variation (unossified line; unlikely to affect survival) and was within the relevant historical control range; therefore it does not represent evidence of a specific effect on development to support classification. The additional skeletal variations recorded in rabbits did not show a statistically significant increase in incidence and, where data were available, were within the relevant historical control ranges.

The supernumerary ribs in the main rat study (statistically significant at 30 mg/kg/d) may have been treatment-related, as there was a dose-related increase in incidence that exceeded the relevant but rather limited historical control data (three studies). There was no information on the size of the extra ribs; generally, however, variations of this nature are not used as evidence for classification, and they are considered to be of low to moderate concern.

Reproductive parameters

In the preliminary rat developmental toxicity study, marked and statistically significant reductions in live litter size (4.9 versus 13.4 in controls) and mean fetal weight (34% to 41.3% reduction) and an increase in fetal resorption/death (69.3% compared with 7.7% in controls) were recorded at 100 mg/kg/d; a litter effect for this finding was not evident. There were clinical signs of maternal toxicity in some animals at this dose. Changes in these parameters also occurred at 50 mg/kg/d and to some extent at 10 mg/kg/d, although they were not statistically significant. There was no evidence of a treatment-related effect in the main rat study when doses up to 30 mg/kg/d were employed, at which maternal toxicity was only indicated by some reduced adjusted body weights (not statistically significant) and intermittent reductions in food consumption.

In rabbits at 100 mg/kg/d, there was also a reduction in live fetuses per litter and a statistically significant increase in fetal resorption/death (58.5% compared with 13.8% in controls); at this dose, maternal toxicity was severe (weight loss and decreased food consumption). The numbers of live rabbit fetuses per litter and fetal deaths were not affected at doses up to and including 50 mg/kg/d in the main study, a dose at which reductions in maternal body weight and food consumption were not statistically significant.

It has been reported that a conceptus may die *in utero* as a result of a primary toxic effect or as a consequence of malformations that result from the teratogenic potential of a chemical substance. In rodents and rabbits, the dead conceptus is resorbed or it may be aborted in rabbits; consequently, inspection of the uterus at the end of developmental toxicity studies does not allow elucidation of the cause of death.

Summary

The following effects are relevant to the classification of ipconazole for developmental toxicity:

- dose-related increase in the incidence of microphthalmia in rats (2/86 pups (2.3%) at 50 mg/kg/d, 7/34 (21%) at 100 mg/kg/d compared with none in controls and outside the historical control range), preliminary study; 1/24 (4%) in rabbits at 100 mg/kg/d, outside the historical control range, preliminary study;
- dose-related increase in the incidence of tail malformations (kinky and/or short) in rats (1/86 pups (1.2%) at 50 mg/kg/d, 7/34 (21%) at 100 mg/kg/d, preliminary study; absent tail in 1/24 (4.2%) rabbit fetuses, short in 3/24 (12.5%), kinky in 1/24 (4.2%) at 100 mg/kg/d, preliminary study. All outside the available (non-concurrent) historical control range;
- left umbilical artery (variation) in 7/354 rats (4.2%) in 6/23 litters at 30 mg/kg/d in the main study, outside the historical control range;
- statistically significant increases in fetal resorptions/deaths, resulting in reduced live fetuses per litter, in rats and rabbits at 100 mg/kg/d, <u>preliminary studies</u>.

4.10.5 Comparison with criteria

Sexual function and fertility

The marginal and inconsistent reductions in a few reproductive parameters in the available twogeneration study, conducted in rats, are not sufficient evidence that ipconazole affects fertility. There were no indications of an adverse effect on sexual function. No classification is proposed.

Development of the offspring

The classification of a substance in category 1A is largely based upon human evidence. As no such evidence exists for ipconazole, classification in this category is not appropriate.

For a classification in category 1B, there should be clear evidence (usually from animal studies) of an adverse effect on development in the absence of other toxic effects, or if occurring together with other toxic effects the developmental effect is considered not to be a secondary non-specific consequence of other toxic effects. Category 2 is considered to be appropriate when there is some evidence of an adverse effect on development, but it is not sufficiently convincing to place the substance in category 1. Deficiencies in the study that make the quality of evidence less convincing might lead to a classification in Category 2, as could mechanistic information that raises doubt about the relevance of the effect for humans.

Increases in fetal resorptions/deaths and malformations (microphthalmia and tail effects) were reported (above the historical control ranges) only in the preliminary studies (it is recognised, however, that the highest dose in the main rat study was below the dose at which malformations and fetal resorptions/deaths were reported in the preliminary study) and generally only at the same doses at which maternal toxicity was recorded, in the form of clinical signs and body weight changes. Moreover, litter effects in the incidence of external malformations were evident in the rat preliminary study; therefore, the number of rat fetuses with malformations tended to be clustered in a few litters rather than being more evenly distributed. This casts some doubt on the finding being caused by exposure to ipconazole, since it might have been linked to a genetic problem in the dams. There was also some uncertainty associated with the investigation of microphthalmia in these studies, although in the absence of further information it has been regarded as a malformation for the purposes of this report. Effects on the left umbilical artery in rats were categorised as variations by the study authors, which are normally regarded to be of lower concern than malformations.

There was no mechanistic information to indicate that the findings were not relevant to humans.

Other considerations were that small numbers of animals and more limited investigations are included in preliminary studies. Moreover, the doses in these studies are chosen to inform on the selection of doses for the main study so the test system is 'pushed', and both the rat and the rabbit ipconazole studies resulted in maternal toxicity. For a classification in Category 1B, the adverse reproductive effect should occur in the absence of other toxic effects, or if occurring together with other toxic effects the adverse effect is considered not to be a secondary, nonspecific consequence. It has been reported that maternal toxicity played a role in the aetiology of some malformations, including microphthalmia and short or absent tails, resorptions and fetal death [53], although other authors have concluded otherwise [54-57]. In the ipconazole studies, statistical significance for the developmental findings occurred exclusively in the preliminary studies at the highest, maternally toxic doses. A number of doubts were thus associated with the findings of developmental toxicity in rats and rabbits only in preliminary studies. The guidance on the application of the CLP criteria indicates that deficiencies in the study might warrant classification in category 2 rather than 1B. Overall, there are sufficient grounds to conclude that category 2 is more appropriate than category 1B.

Therefore, based on increased incidences of fetal resorptions/deaths, microphthalmia and tail malformations only at maternally-toxic doses in preliminary studies, it is concluded that ipconazole meets the criteria for classification for reproductive toxicity category 2 – H361d.

This position is consistent with the EFSA conclusion [74] of Repr. 2 - H361d published in 2013, which was based on the above findings; no additional data on ipconazole have become available since the EFSA review was concluded.

4.10.6 Conclusions on classification and labelling

Repr. 2; H361d – Suspected of damaging the unborn child

RAC evaluation of reproductive toxicity

Summary of the Dossier Submitter's proposal

The effect of ipconazole on fertility and sexual function was assessed based on results of the 2-generation study in rats (Kureha Corporation, 2006 (43); OECD TG 416, GLP). The developmental toxicity was assessed based on one preliminary prenatal toxicity study in rats (Kureha Corporation, 1990 (40); no guideline, GLP), one prenatal toxicity study in rats (main study; Kureha Corporation, 1990 (45); OECD TG 414, GLP), one preliminary prenatal toxicity study in rats is tudy in rabbits (Kureha Corporation, 1990 (46), no guideline, GLP), and one prenatal toxicity study in rabbits (main study; Kureha Corporation, 1990 (46), no guideline, GLP), and one prenatal toxicity study in rabbits (main study; Kureha Corporation, 1990 (48); OECD TG 414, GLP).

Sexual function and ferility

The DS concluded that there was no evidence of any adverse effects on sexual function and fertility in the 2-generation study in rats (Kureha Corporation, 2006 (43); OECD TG 416, GLP; see background document for detailed data).

Developmental toxicity

There were two (preliminary and main) developmental toxicity studies available in rats (Kureha Corporation, 1990 (44 and 45)).

<u>Rats</u>

In the preliminary developmental toxicity study (no guideline, GLP), 6 or 7 mated female Sprague-Dawley rats per group were given ipconazole by gavage at doses of 0, 1, 10, 50, 100, 250, 500 mg/kg bw/d in 1% aqueous sodium carboxy-methylcellulose on gestation days (GD) 6-15. Dams were sacrificed on GD 20.

- Scope of investigations in the dams: gross pathology, ovaries and uterine contents examined, gravid uterine weights, corpora lutea and implantations determined.
- Investigations in the foetuses: number, sex & weights of live foetuses and placentae, incidences of resorptions and foetal deaths; live foetuses examined for external abnormalities.

• There was no examination for visceral or skeletal malformations and variations.

Maternal toxicity

Deaths occurred in 6/7 and 7/7 females at 250 and 500 mg/kg bw/d, respectively, on GD 8-10. At 100 mg/kg bw/d the clinical signs included red discharge from the vagina (3/7), soiled fur (1/7), eye discharge (1/7) and loose faeces (1/7). Clinical signs were not reported in 3/7 dams. At 100 mg/kg bw/d the dams also lost weight up to GD 10 (up to 13% decrease in body weight). Maternal body weight in the preliminary study (from detailed data submitted by industry) is given in the table below.

Dose level	Cumu	lative	body v	weight ga	ain ()	or loss	(-) in g	grams	during	GDs
(mg/kg	6-7	6-8ª	6-9 ^a	6-10 ^a	6-11	6-12	6-13	6-14	6-15	6-20
bw/d)										
0	1	2	5	7	11	15	18	22	30	102
1	0	0	3	8	11	14	20	25	30	107
10	-1	-1	4	8	11	17	21	26	30	101
50	-14	-21	-14	-7	-6	-4	-3	6	10	80
100	-18	-31	-37	-39	-34	-32	-28	-20	-19	34

Table: Ipconazole - Preliminary rat study, maternal body weight performance

^a GD 6-10=critical period for eye and axial skeleton development

These data indicate weight loss on GD 6-13 in dams exposed at doses of 50 mg/kg bw/d and on GD 6-15 after exposure to 100 mg/kg/d. At 100 mg/kg bw/d, there was a statistically significant weight loss in dams up to day 10; and overall there was a marked reduction in body weight gain (\downarrow 85% on GD 0-15 and \downarrow 52% on GD 0-20), which was statistically significant. Body weight gain was also reduced at 50 mg/kg bw/d (\downarrow 24% on GD 0-15 and \downarrow 14% on GD 0-20) but this was not statistically significant. Additionally, food consumption was markedly decreased on GD 6–9 (38% and 67% reduction in dams exposed at 50 and 100 mg/kg bw/d, respectively, compared with control values) and on GD 9–12 (19% and 59%, respectively, compared with control values), which could indicate that the females were nutritionally compromised at these times. It was noted that gastrointestinal irritation after ipconazole has been shown, which could explain the decreased food consumption.

It is noted that the maternal weight loss occurred at a period which covers a large part of organogenesis. However, the maternal body weights adjusted for uterine contents were only slightly reduced at 50 mg/kg bw/d (by 2%) and at 100 mg/kg bw/d, which could be explained by the increase in resorptions and the lower pup weight. In addition, the data indicate that effects on body weight were marked at doses of 50 and 100 mg/kg only during treatment days with relatively quick recovery after treatment cessation.

Developmental toxicity

Ipconazole did not affect the number of corpora lutea or implantation sites when administered in doses \leq 100 mg/kg bw/d. In the one surviving dam at 250 mg/kg bw/d, there was 100% foetal resorption/death. At 100 mg/kg bw/d, there was a reduction in the number of live foetuses per litter, an increase in the % of foetal resorptions and deaths, and decreased foetal weight (all statistically significant). The same parameters were affected at 50 mg/kg bw/d, but without statistical significance.

Table: Maternal and fetal body weight and number of fetuses/resorptions per litter						
Dose (mg/kg bw/d)	0	1	10	50	100	
Maternal body weight (g) day 20	405	416	408	386 (-5%)	336 (-17%)	
Gravid uterine weight (g)	74	84	73	64 -14%	26** -65%	
Adjusted maternal body weight (g)	330	332	335	322 (-2%)	310 (-6%)	
Live fetuses/litter	13.4	14.7	13.2	12.3	4.9**	
% foetal resorption/deaths	7.7%	5.8%	13.6%	19.7%	69.3%**	
Mean foetal weight males (mg)	3453	3589	3532	2926 (-15%)	2026** (-41.3%)	
Mean foetal weight females (mg)	3299	3365	3185	2895 (-12%)	2181** (-34%)	
** Statistically significant at $p \le 0.01$						
Table: External abnormalities i	n foetuses:					
Dose (mg/kg bw/d)	0	1	10	50	100	
No. foetuses (litters)	94/7	88/6	79/6	86/7	34/6	
Meningoencephalocoele	0	0	0	0	1	
Exencephaly	0	1	0	0	0	

*Statistically significant at $p \le 0.05$; ***Statistically significant at $p \le 0.001$

0

0

0

0

0

0

1

1

0

0

0

2(2)

Microphthalmia

Open eyelid

Micrognathia

Omphalocoele

Kinky and/or short tail

Total no. foetuses with

affected foetuses)

abnormalities (litters with

In a preliminary rat study, no foetuses were obtained at the highest doses of 250 and 500 mg/kg bw/d because of extensive maternal deaths. At the next doses of 50 and 100 mg/kg bw/d, there were increased incidences of microphthalmia and kinky/short tail (statistically significant at 100 mg/kg bw/d). There were also single foetal incidences of meningoencephalocoele (protrusion of brain tissue through the skull), micrognathia (one jaw unusually small) and omphalocoele (umbilical hernia) at 100 mg/kg bw/d.

Only external investigations were undertaken in this study, not visceral examinations. It is unclear how thoroughly the eye was examined, and hence if the reported finding of microphthalmia truly fitted the description of this malformation as given in the harmonised nomenclature for developmental toxicity (microphthalmia=defined as small eye, eyeball or globe of eye upon visceral examination; can be compared with the external finding of small

7*** (4)

7*** (2)

short=2

kinky=6

11*** (4*)

0

1

1

2(1)

0

0

0

1

(kinky)

3(1)

0

0

0

0

0

0

eye bulge, which 'may be associated with microphthalmia'). However, in the absence of more detail, RAC considered the reported microphthalmia as a malformation.

Overall, 11 fetuses in four litters of the 100 mg/kg bw/d group in the preliminary study were recorded to have malformations. Six of these foetuses were in one litter (from dam number 1015, 6/8 foetuses affected: 2 with microphthalmia alone, two with kinky tail alone, one with alone, one with microphthalmia, kinky tail, micrognathia short tail and meningoencephalocele). Three foetuses were in another litter (dam number 1016, 3/5 foetuses affected: one with microphthalmia and kinky tail; one with microphthalmia and kinky plus short tail; one with kinky tail and omphalocele). The remaining two litters had one foetus each with microphthalmia (1/1 and 1/4 foetuses affected, respectively). The mean foetal weight was lower in the litter from dams 1015 than in the other four litters obtained at this dose and much lower than mean foetal body weight in the control group. At 50 mg/kg bw/d, the three foetuses with malformations (2 with microphtalmia and 1 with kinky tail) were all in the same litter.

In the main developmental toxicity study (OECD TG 414, GLP), 24 mated female Sprague-Dawley rats per dose group were given ipconazole by gavage at doses of 0, 3, 10, 30 mg/kg bw/d in 1% aqueous sodium carboxy-methylcellulose on GD 6-15. Dams were sacrificed on GD 20.

The study differs from the current test guideline (OECD TG 414, 2001) in that the litter was not used as the unit for the analysis of foetal effects; instead, analysis was based solely on the foetal incidences. However, litter incidence data were reported in the study report. The period of dosing is less than what is currently preferred (normally from GD 5 in rodents).

Maternal toxicity

There were no maternal deaths or clinical signs of toxicity at any dose.

At 30 mg/kg bw/d: maternal body weights were lower than in controls on GD 7-20, although no significant differences were noted for body weight adjusted for gravid uterine weight. Reductions in weight gain by 17-24% were recorded during the dosing period but there was no change over GD 0-20. Reduction in food consumption was recorded at certain points during gestation in this group, but was comparable with controls during the post-dosing period. There were no treatment-related gross necropsy findings.

Developmental toxicity

Gravid uterine weights, numbers of corpora lutea, implants, live foetuses and sex ratio were unaffected. The incidence of foetal resorptions and deaths was 3.9%, 3.8%, 7.2% and 7.6% at 0, 3, 10 and 30 mg/kg bw/d, respectively. The incidences in the mid- and high-dose groups were within the laboratory's historical control range (4.5-8.5% for 6 studies conducted 1988-1992; 4.5-9.3% for 10 studies 1987-1993). The incidences in the control and low-dose groups were lower than the historical control range.

Foetal body weight was reduced at 30 mg/kg bw/d in both sexes (\downarrow 6-7%*) but not at 3 and 10 mg/kg bw/d.

Dose (mg/kg bw/d)	0	3	10	30
External malformations				
Number of foetuses	324	352	339	354
Number of litters	23	23	24	23
Microphthalmia	0	0	0	2 (0.6%) 2 litters
Cleft lip	0	0	0	1 (0.3%)
Cleft palate	0	0	0	1 (0.3%)
Vestigial tail	0	0	1 (0.3%)	0
Total number of affected foetuses (litters)	0	0	0	2 (2)
Visceral malformations				
Number of foetuses	155	169	163	168
Number of litters	23	23	24	23
Double aortic arch	0	0	0	1 (0.6%)
Coarctation of the aorta	0	0	0	1 (0.6%)
Right aortic arch	0	0	1 (0.6%)	0
Aberrant right subclavian artery	0	0	0	1 (0.6%)
Agenesis of the spleen	0	0	0	1 (0.6%)
Total number of affected foetuses (litters)	0	0	1	2 (2)
Visceral variations				
Number of foetuses	155	169	163	168
Number of litters	23	23	24	23
Left umbilical artery, number of affected foetuses (litters)	1 (0.6%)	2 (1.2%) (2)	2 (1.2%) (2)	7* (4.2%) (6)
Skeletal variations				
Number of foetuses	169	183	176	186
Number of litters	23	23	24	23
Supernumerary ribs	3 (1.8%) (3 litters)	1	8 (4.5%) (6 litters)	13* (7%) (7 litters)

* Statistically significant at $p \le 0.05$

Historical control data

• Microphthalmia

Studies conducted in the same laboratory and rat strain (conducted 1985-1995) indicated that microphthalmia was observed in 3 out of 20 control groups in other studies. The foetal/litter incidences in a first historical control group was 0.64%/4.17% (1/1), in a second historical control group 0.83%/4.55% (1/1) and in a third group 0.65%/9.52% (2/2). In 17 other historical control groups, there was no microphtalmia observed. The overall mean incidence in all 20 historical control groups was 0.06% (4/6439 fetuses).

• Cardiovascular malformations

In 20 studies conducted in the same laboratory and rat strain (1985-1995) there were no incidences of double aortic arch or coarctation of the aorta. There was one case of right aortic arch in one study (1/163 foetuses, 0.61%). One pup (out of 121) with aberrant right subclavian artery was observed in a treatment group of one historical control study from 1987-1988.

• Cleft lip and cleft palate

Data gathered from Japanese laboratories from the same rat strain between 1994 and 2000 indicated a background incidence of cleft lip of 0.04% (range 0 - 0.3%) in one laboratory, with no cases in another 11 laboratories. Cleft palate was recorded in three laboratories, with incidences ranging from 0 - 0.4%.

• Supernumerary ribs

Data from the same laboratory and rat strain, 3 studies conducted 1987-1988, showed a range of 1.2-2.8%

Developmental effects observed

In the main rat study, sections taken of the head did not include the eyes and those were hence not subjected to histological examination. However, the eyes were examined for external alterations after removing the palpebral skin, enabling a close examination of the size of the eyeball. The microphthalmia observed at 30 mg/kg bw/d was unilateral, with one bulb being less than 2/3 the size of the other. The two cases occurred in two separate litters. One of the foetuses with microphthalmia also had a cleft lip and cleft palate. One rat foetus in the 10 mg/kg bw/d group of the main study had a vestigial tail, but this abnormality was not recorded at 30 mg/kg/d.

Malformations of major blood vessels associated with the aortic arch were recorded in two rat foetuses at 30 mg/kg bw/d, one with a double aortic arch and coarctation (narrowing) of the aorta, the other (from a different litter) with an aberrant right subclavian artery and also agenesis (absence) of the spleen. In the high-dose group there was also an increase in the incidence of left umbilical artery (in rats the umbilical artery is normally on the right side), which was seen in six litters and was outside the historical control range. The study authors were uncertain of the toxicological significance of this finding, and there is no description of a malpositioned or transposed umbilical artery in ECETOC (2002, (49)) nor Makris *et al.* (2009 (50)). According to the DevTox project (www.devtox.org/index.htm) this finding is not classified as either a malformation or a variation.

Dilatation of the renal pelvis and/or ureter, classified as a visceral variation, was recorded in rat pups, but in the absence of a clear dose-response relationship (1, 7, 3, 8 at 0, 3, 10, 30 mg/kg bw/d, respectively) it was not considered further. A predominant malformation in the rabbit preliminary study was the occurrence of short tails at a dose of 100 mg/kg bw/d, which occurred in 12.5% of the fetuses and three of the four litters. In this dose group, a kinky tail was also recorded in one foetus.

• Skeletal findings

Several skeletal findings were recorded in the studies. These included low but increased incidences of skeletal malformations in rabbits from 10 mg/kg bw/d, but in the absence of concurrent historical control data these findings are difficult to interpret. Supernumerary ribs were recorded in both rat and rabbit foetuses, but uncertainty surrounds the developmental/teratogenic significance of such ribs, in particular their post-natal reversibility or otherwise. The presence of supernumerary ribs that are small in size may be considered to be less significant with respect to teratogenic potential than ribs that are more than half the size of a full rib, which are considered to be more likely to persist post-natally. Cervical ribs were also reported in the main rabbit study; these are not classified as either malformations or variations by the DevTox project, and are considered to be of low to moderate concern by ECETOC (2002 (50)).

• Foetal resorptions and deaths

Although there appeared to be a slight (not statistically significant) increase in foetal resorptions and deaths at 10 and 30 mg/kg bw/d in the main rat study, the increase was within the historical control data and was compounded by the atypically low incidences in the controls and low-dose group (below the historical control range). A reduction in the number of live foetuses per litter, an increase in foetal resorptions and deaths, and decreased foetal weight were also reported in the preliminary study, at 50 mg/kg bw/d and 100 mg/kg bw/d (statistically significant in the latter and associated with maternal toxicity). These parameters were also affected in the rabbit preliminary study (100 mg/kg bw/d), as was the sex ratio, in association with maternal toxicity. There were no effects in the main study, in which the maximum dose was 50 mg/kg bw/d.

<u>Rabbits</u>

There were two (preliminary and main) developmental toxicity studies in rabbits (Kureha Corporation (1990 (46 and 48))

In the preliminary developmental toxicity study (ref 46; non guideline, GLP) 5 mated female rabbits (Japanese White) per group were given ipconazole by gavage at doses of 0, 10, 100, 300 and 1000 mg/kg bw/d in 1% aqueous sodium carboxy-methylcellulose from GD 6-18. Dams were sacrificed on GD 27.

Scope of the investigations in the dams: gross pathology, ovaries and uterine contents examined, gravid uterine weights, corpora lutea and implantations determined; investigation for very early resorptions when no uterine implants were grossly visible. Investigations in the foetuses: number, sex and weights of live foetuses and placenta, incidences of resorptions and foetal deaths; live foetuses examined for external abnormalities. There was no examination for visceral or skeletal malformations and variations.

Maternal toxicity

All dams given 300 and 1000 mg/kg bw/d died during the dosing period. Clinical signs of toxicity (discharge from the eyes and soiling of fur) were seen only in these dose groups.

At 100 mg/kg bw/d, dams lost 264 g (up to 6%) from GD 6 to 18, compared with a gain of 53 g for the controls and 66 g for the 10 mg/kg bw/d group. Food consumption was reduced up to about gestation day 12 in the 100 mg/kg bw/d group but was thereafter comparable to or higher than in the controls.

At gross necropsy of the animals that died before scheduled sacrifice, changes were recorded in the stomach (ulcer/erosion and/or petechia) and liver (accentuated lobular pattern and pale colour). One animal at 100 mg/kg bw/d had hair loss, hydropericardium and erosion of the stomach.

Developmental toxicity

Ipconazole did not affect the number of corpora lutea or implantation sites when administered in doses \leq 100 mg/kg bw/d. At 100 mg/kg bw/d there was a decrease in gravid uterine weight, the number of live foetuses, an increase in foetal resorptions/deaths, slightly reduced foetal weight and placental weight and a change to the foetal sex ratio (see table below).

A predominant malformation in the rabbit preliminary study was the occurrence of short tails at a dose of 100 mg/kg/d, which occurred in 12.5% of the fetuses and three of the four litters. In this dose group, a kinky tail was also recorded in one foetus.

	-		
Dose (mg/kg bw/d)	0	10	100
Maternal body weight (g) day 27	4296	4333	4364
Gravid uterine weight (g)	452	427 -6%	265 -41%
Adjusted maternal body weight (g)	3844	3906	4099
Live foetuses/litter	8.8	7.3	4.8
% foetal resorption/deaths	13.8%	4.8%ª	58.5%*
Mean foetal weight males (g)	36.8	41.3	29.4
Mean foetal weight females (g)	37.2	37.8	31.4
Sex ratio (male/total)	0.477	0.591	0.750*

Table: Maternal and foetal body weight and number of foetuses/resorptions per litter

^aOne dam had implantation sites but no foetuses, and so was excluded from the analysis by the study authors. The study report did not provide the number of implantation sites in this animal, so it was not possible to determine the number of foetal resorptions.

* Statistically significant at $p \le 0.05$

The adverse findings from foetal external examination are shown in the table below:					
Dose (mg/kg bw/d)	0	10	100		
No. foetuses (litters)	44 (5)	22 (3)	24 (4)		
Acephaly	0	0	1		
Microphthalmia	0	0	1		
General oedema	0	0	1		
Vestigial tail	0	0	1		
Short tail	0	0	3* (3)		
Kinky tail	0	0	1		
Total no. foetuses with abnormalities (litters with affected foetuses)	0	0	6** (3*)		

* Statistically significant at $p \le 0.05$

** Statistically significant at $p \le 0.01$

<u>Historical control data</u>

• Microphthalmia

From studies conducted in the same laboratory and strain (2001-2010), the mean incidence was 0.24% (range 0 - 2.32%) from 13 studies (2262 foetuses) (ref 47).

• Short or absent tail

From studies conducted in the same laboratory and strain (2001-2010), the mean incidence of short tail was 0.07% (range 0 – 0.53%) from 13 studies (2262 fetuses). There were no cases of absent tail (ref 47). The total number of foetuses with malformations in this historical control data was 6 / 2262 (0.27%).

In the main developmental toxicity study (ref 48; non guideline, GLP) 18 mated female rabbits (Japanese White) per group were given ipconazole by gavage at doses of 0, 2, 10 and 50 mg/kg bw/d in 1% aqueous sodium carboxy-methylcellulose from GD 6-18. Dams were sacrificed on GD 27.

The study differs from the current test guideline (OECD TG 414, 2001) in that the litter was not used as the unit for the analysis of foetal effects; instead, analysis was based solely on the foetal incidences. However, litter incidence data were reported in the study report, although there is no listing of the abnormalities and other findings for each individual foetus. All foetal rabbit heads were examined internally by a single transverse section, which is considered to be adequate for the detection of hydrocephalus.

Maternal toxicity

There were no deaths or clinical signs of toxicity.

Maternal body weights were reduced compared with controls at 50 mg/kg bw/d throughout the dosing period (by up to 106 g / 3%, not statistically significant). Mean body weight

change of dams at this dose was reduced on several days during dosing (e.g. -73 g between days 6 and 15). At this dose, food consumption was slightly lower than controls (not statistically significant).

Reproductive parameters (gravid uterine weights, numbers of corpora lutea, implants, live foetuses, resorptions/foetal deaths and sex ratios) were unaffected by treatment. There were no statistically significant effects on mean foetal body weight and placental weight.

Developmental toxicity

One foetus with cleft palate was observed in the 50 mg/kg bw/d group. There were no substance-related adverse findings upon visceral examination.

The findings of note upon skeletal examination are shown in the table below (there were several findings with single incidences in different treatment and control groups, not shown).

Dose (mg/kg bw/d)	0	2	10	50
Number of foetuses (litters)	111 (16)	163 (17)	137 (16)	155 (17)
External findings:				
Cleft palate	0	0	0	1 (0.7%)
Skeletal malformations:				
Splitting of nasal bones	0	0	1 (0.7%)	1 (0.7%)
Hemi-vertebrae	0	0	1 (0.7%)	2 (1.3%) (2 litters)
Bifurcation of the ribs	0	0	0	2 (1.3%) (2 litters)
Fusion of the sternebrae	1 (0.9%)	3 (1.8%)	0	5 (3.2%) (3 litters)
Number of affected foetuses (litters)	1 (1)	3 (2)	2 (2)	8 (4)
Skeletal variations:				
Splitting of parietal bones	2 (1.8%)	1 (0.6%)	2 (1.5%)	20*** (12.9%)
Cervical ribs	0	0	0	3
Supernumerary ribs	9 (8.1%)	18 (11%)	16 (11.7%)	24 (15.5%)
Lumbarisation of the sacral vertebrae	0	1 (0.6%)	1 (0.7%)	3 (1.9%)
Asymmetry of	0	1 (0.6%)	1 (0.6%)	4 (2.6%)

Historical control data:

Based on examination of 1116 foetuses from 150 litters, the historical control data from the same laboratory and test strain (1986-1989) were

- splitting of the parietal bones: foetal incidence 1.7%, range 0-14.3%
- supernumerary ribs: foetal incidence 21.8%, range 13.9-30.1%
- lumbarisation of the sacral vertebrae: foetal incidence 1.3%, range 0-4.9%
- asymmetry of the sternebrae: foetal incidence 0.3%, no value for range

Data from the same laboratory and test strain, 2001-2010 (ref 46), 13 studies (2262 foetuses)

- cleft palate: no cases
- hemivertebrae: thoracic mean 0.04, range 0-0.48; lumbar mean 0.13, range 0-0.70
- bifurcation of the ribs: 0.12 (0-0.95)
- fusion of the sternebrae: 0.67 (0-2.57)

The DS concluded, based on increased incidences of microphthalmia and tail malformations, and foetal resorptions/deaths, occurring at what was considered as maternally-toxic doses in preliminary studies, that ipconazole meets the criteria for classification as Repr. 2; H361d (Suspected of damaging the unborn child).

Comments received during public consultation

Three MSCAs supported classification of ipconazole as Repr. 2; H361d, as well as no classification for adverse effects on sexual function and fertility.

One MSCA asked for more discussion on developmental toxicity before deciding on classification.

One MSCA disagreed with the proposed classification and instead proposed classification as Repr. 1B; H360D.

Two industrial organisations supported classification of ipconazole as Repr. 2; H361d, as well as no classification for adverse effects on sexual function and fertility.

Assessment and comparison with the classification criteria

Effects on sexual function and fertility

In the two-generation study in rat, sperm concentrations in the caudal epididymides in F0 males were reduced, but in the absence of consistent changes in the F1 generation, these minor differences were considered not to be of toxicological significance. Minimal reductions in the number of implantation sites (not statistically significant) and litter sizes on post-natal days 1, 4 and 21 were generally within relevant historical control data. Overall, fertility parameters were unaffected in this study. Offspring toxicity was evident in the reduced body weight gains in the mid- and high-dose groups, but there was no indication of specific

developmental toxicity. Some changes in the weights of female reproductive organs in the preliminary study were not confirmed in the two-generation study.

Taking into account the results of main two-generation study, RAC is of the opinion that ipconazole does not warrant classification for effects on sexual function and fertility.

Developmental toxicity

As no human evidence exists for ipconazole, classification in category 1A is not appropriate.

For classification in category 1B, there should be clear evidence (usually from animal studies) of an adverse effect on development in the absence of other toxic effects, or if occurring together with other toxic effects the developmental effect should not be considered to be a secondary non-specific consequence of other toxic effects.

Category 2 is considered to be appropriate when there is some evidence of an adverse effect on development, but it is not sufficiently convincing to place the substance in category 1. Deficiencies in the study that make the quality of evidence less convincing might lead to a classification in Category 2, as could mechanistic information that raises doubt about the relevance of the effect for humans.

For ipconazole, increases in foetal resorptions/deaths were reported in the preliminary studies in both rats and rabbits. Furthermore, increases in specific malformations were reported in the preliminary studies in rats and rabbits (microphthalmia and tail effects) as well as in the main study in rats (microphthalmia). Microphthalmia was seen at two doses in the preliminary rat study (2 foetuses in the same litter at 50 mg/kg bw/d and 7 foetuses in 4 litters at 100 mg/kg bw/d). In the main rat study microphthalmia was seen in 2 foetuses in 2 different litters at 30 mg/kg bw/d (highest dose tested), and in the preliminary rabbit study it was seen in 1 foetus at 100 mg/kg bw/d (highest dose tested). The highest dose in the main rat study was below the dose at which malformations and foetal resorptions/deaths were reported in the preliminary study.

There was some uncertainty associated with the investigation of microphthalmia in these studies; however, in the absence of further information RAC has regarded this finding as a malformation. Effects on the left umbilical artery in rats were categorised as variations by the study authors, which are normally regarded to be of lower concern than malformations.

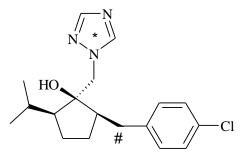
There is no mechanistic information indicating that the findings are not relevant to humans.

In conclusion, specific malformations (mainly microphthalmia and kinky/short tail) were seen after ipconazole exposure. The concern is increased as microphthalmia was seen in two different species, in three out of four available studies, occurring in several litters in two of the studies. The effects are not considered as secondary, non-specific consequences of other toxic effects. Therefore, overall, the evidence is considered as clear, and there are sufficient grounds to conclude that category 1B is more appropriate than category 2.

Taking into account the above analysis RAC is of the opinion that ipconazole warrants classification as **Repr. 1B; H360D (May damage the unborn child)**.

4.11 Other effects

No further information of relevance to classification and labelling.


5 ENVIRONMENTAL HAZARD ASSESSMENT

5.1 Degradation

The ipconazole used in the environmental fate and behaviour studies consists of the ipconazole cc and ipconazole ct racemates. There was no evidence of a significant change in isomer ratio over the duration of any of the degradation studies. Radiolabel studies were carried out with [¹⁴C-triazole] and/or [¹⁴C-benzyl methylene] ipconazole with a radiochemical purity of greater than or equal to 97%. Radiolabelling positions are shown in Figure 1.

This assessment is largely based on the information provided in the Draft Assessment Report for ipconazole, Volume 3 Annex B.8 Environmental fate and behaviour and B.9 Ecotoxicology (November 2011) and Addenda 7 and 8 to the DAR – January 2013.

Figure 1: Ipconazole structure and radiolabelling positions

* Position of [¹⁴C-triazole] radiolabel; # Position of [¹⁴C-benzyl methylene] radiolabel

The relevant information on degradation is summarised in Table 19.

Method Results		Remarks	Reference	
Aqueous hydrolysis (OECD 111) at pH 5, 7 and 9 Hydrolytically stable (half-life >1 year at 25°C		GLP study	Hatzenbeler and Long, 2001a [58]	
Soil photolysis (SETAC, 1995)	$DT_{50} \sim 241$ days (expressed in terms of the equivalent number of days of summer sunlight at 40°N	GLP study	Shaw, 2005b [59]	
Ready biodegradability - modified Sturm test (OECD 301B)	Not readily biodegradable	GLP study	Barnes, 2005 [60]	
Degradation in aerobic water-sediment systems (OECD 308)	$DT_{50} \sim 241$ days and 490 days for the total system in two water- sediment systems at 20°C	GLP study	Shaw, 2005d [61]	
Degradation in soil (OECD 307)	$DT_{50} \sim 294$ days at $20^{\circ}C$	GLP Study	Shaw, 2005a [62]	
Degradation in soil (OECD 307)	$DT_{50} \sim 170$, 184 and 225 days at 20°C in three soils	GLP study	Shaw, 2005c [63]	
Anaerobic degradation in soil (OECD 307)	DT ₅₀ ~ 779 days at 20°C	GLP study	Mellor, 2006 [64]	

Table 19:	Summary	of relevant	information	on degradation
-----------	---------	-------------	-------------	----------------

5.1.1 Stability

<u>Hydrolysis</u>

The hydrolytic stability of ipconazole has been studied according to OECD 111 guideline [58]. The study was carried out according to GLP. The substance tested was radiolabelled, and both [14 C-triazole]- or [14 C-benzyl methylene]-ipconazole were tested.

The test was carried out using sterile aqueous buffers prepared in acetonitrile:water (2:1 v/v) containing 3 μ g/ml of ipconazole. The buffers were incubated in the dark at 25±1°C for 30 days (pH 5, 7 and 9) or at 50°C±0.1°C for 7 days (pH 4, 7 and 9). The buffers were sampled on days 0, 1, 3, 7, 14, 21 and 30 (25°C experiment) and 0, 1, 3 and 7 days after application (50°C experiment). At each interval, duplicate samples were taken and analysed by Liquid Scintillation Counting (LSC) with a further sample also taken for parent compound analysis by high performance liquid chromatography (HPLC). All samples were analysed immediately after sampling. No traps for possible volatile products were included in the test design.

The measured concentrations of ipconazole in the buffers on day 0 were $2.67-2.91\mu$ g/ml, (mean 2.81 µg/ml). At pH5, 7 and 9 for the 25°C experiment 90.9-96.4% of the applied radioactivity (all attributed to parent compound) was recovered after 30 days. At pH5, 7 and 9 for the 50°C experiment 95.3-101.5% of the applied radioactivity (all attributed to parent compound) was recovered after 7 days. The average mass balance was 95.5% of the applied radioactivity at 25°C and 97.9% at 50°C. In all samples, unchanged ipconazole accounted for 99% of the radioactivity based on HPLC analysis.

Ipconazole was found to be hydrolytically stable in aqueous buffered solutions of pH 5, 7 and 9 at $25\pm1^{\circ}$ C, and pH 4, 7 and 9 at $50\pm0.1^{\circ}$ C, with a reported half-life greater than 1 year. No metabolites, degradation and reaction products were formed.

Photolysis

There are no data on aqueous photolysis. Aqueous photolysis is considered unlikely as there is no significant absorption at >290 nm (Draft Assessment Report (DAR) - Ipconazole - Volume 3, Annex B.2: Physical and Chemical properties – November 2011).

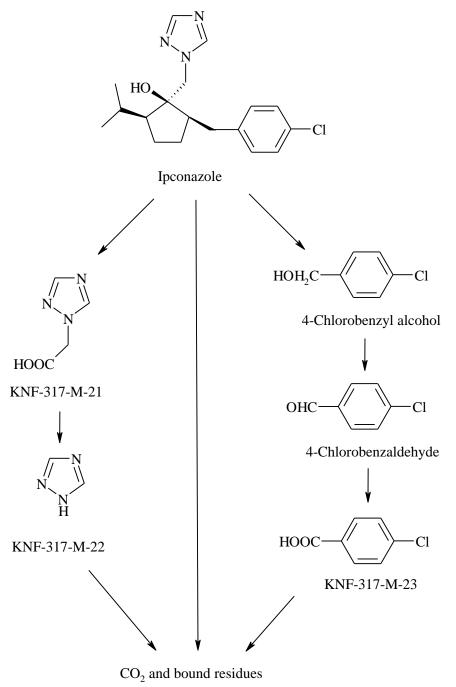
A soil photolysis study was conducted according to the SETAC guidelines (1995) and GLP (Shaw, 2005b [59]).

The test was carried out using [¹⁴C-triazole]ipconazole (92.6% cc: 5.4% ct) and [¹⁴C-benzyl methylene]ipconazole (95.6% cc:2.3% ct), applied at a nominal rate of 10.8 μ g/10 cm² (calculated by the study author to be equivalent to an agricultural use rate of 108 g as./ha).

The soil used was a sandy loam consisting of 56.13% sand, 26.37% silt and 17.51% clay. The soil had an organic carbon content of 1.9% and a pH of 6. An aqueous slurry of 2 mm sieved soil was applied to glass plates, the thickness adjusted to 2 mm and allowed to air-dry overnight at approx 35°C. Stock solutions for each radiolabelled form were separately prepared in ethanol, and aliquots (100 μ l organic solvent per soil layer) were applied evenly to the surface of 28 soil layers (i.e. 28 soil regions on 14 glass plates).

Of the 14 treated glass plates, 1 was taken for immediate (zero-time) analysis, 1 was taken for assessment of the distribution of radioactivity, 6 were placed in the Suntest apparatus for irradiation and 6 were placed in dark control incubation. Irradiated and dark control samples were incubated at


approx 20°C for periods up to 10 days under a stream of humidified air, which was then connected in series to VOC and ${}^{14}CO_2$ traps.


Irradiated samples were continuously irradiated using an artificial natural sunlight source (290-800 nm range) from a xenon arc light (wavelengths <290 nm were specifically excluded by filters). The mean irradiance from the lamp was 60.4 W/m^2 measured over the wavelength range 290–400 nm; this was thought to be equivalent to exposure to 40.64 days summer sunlight (assuming 12 hour day/night periods) at 40°N.

For each radiolabelled form of $[{}^{14}C]$ -ipconazole, duplicate soil layers (i.e. 1 glass plate) were taken for analysis after 2, 4, 6, 8 and 10 days of irradiation or dark control incubation. At each sampling occasion, trapping solutions were exchanged for fresh solutions and taken for analysis.

No significant degradation was seen in the dark control samples. In the exposed samples the amount of ipconazole, expressed as a % of the applied radioactivity declined to around 79% after 10 hours irradiation. There was no significant change in the isomer ratio. It was estimated that the DT_{50} for the triazole-label ipconazole was around 241 days (expressed in terms of the equivalent number of days of summer sunlight at 40°N (southern Europe)).

A number of minor metabolites were seen in the illuminated samples, along with two more major metabolites. A major metabolite seen was 1,2,4-triazole, which was formed at a maximum of 10.4% of the applied radioactivity on day 8 (equivalent of 32.5 days 40°N summer sunlight) of the study. In addition, 4-chlorobenzaldehyde was formed up to 6.3% of the applied radioactivity at day 8 of the study. The proposed route of photolytic degradation on soil is shown in Figure 2.

KNF-317-M-21 = 1,2,4-triazole-1-acetic acid KNF-317-M-22 = 1,2,4-triazole KNF-317-M-23 = 4-chlorobenzoic acid

5.1.2 Biodegradation

5.1.2.1 Biodegradation estimation

5.1.2.2 Screening tests

Ready biodegradation of ipconazole was investigated using a modified Sturm test, according to the OECD 301B test guideline (Barnes, 2005[60]). The study was conducted in accordance with GLP, with minor deviations from the recommended temperature range of $22\pm2^{\circ}$ C, (minimum and maximum 19.8 and 24.4°C, respectively), which were not considered to impact on the validity of the results.

The tests were carried out in amber glass culture (5 litre) bottles containing standard mineral medium. The bottles were inoculated with activated sewage sludge (30 mg/l) and aerated overnight with CO₂-free air prior to addition of the test substance (nominal concentration 10 mg C/l). Two control vessels were prepared, one containing inoculated mineral salts medium and the other inoculated mineral salts medium plus sodium benzoate (at a nominal concentration of 10 mg C/l). Additional mixtures were prepared of sodium benzoate and ipconazole (nominal 10 mg C/l each) to assess the potential inhibitory effect of test substance on activity of the microbial inoculum.

The degradation of sodium benzoate based on CO_2 production was 66% after 6 days and 93% after 29 days in the absence of ipconazole. In the presence of ipconazole, sodium benzoate biodegraded by 60% after 8 days, indicating, in the view of the study author, that ipconazole was not inhibitory to the activity of the microbial inoculum. Cumulative levels of CO_2 production in the controls after 29 days (77.0 and 78.7 mg CO_2) were within the acceptable range for this assay system, confirming that the inoculum was viable.

There was no evidence of CO_2 production by mixtures containing ipconazole after 29 days. As less than 60% of theoretical CO_2 production was reached within 29 days, ipconazole is considered to be not readily biodegradable.

5.1.2.3 Simulation tests

Water-sediment systems

Aerobic water-sediment system degradation studies were conducted for ipconazole according to OECD guideline 308 (2002). The study was performed according to GLP (Shaw, 2005d[61]). The study was carried out at $20\pm2^{\circ}$ C but a minor deviation outside of the temperature range occurred at the end of the acclimatisation period and beginning of the incubation period (range 16.1-26.1°C). This is not considered to affect the validity of the results.

The water and sediments used in the study were taken from two sources: a small pond (Bury Pond, Cambridgeshire, UK) and a large lake (Emperor Lake, Derbyshire, UK). The sediments were classified as a sandy loam clay (Bury Pond) and a loamy clay (Emperor Lake) and had an organic carbon content of 2.0% and 2.6% respectively and a pH of 7.7 and 6.9 respectively.

The substance used in the test was either [¹⁴C-triazole] (96.2% cc: 5.4% ct) or [¹⁴C-benzyl methylene]-labelled (95.6% cc: 2.3% ct) ipconazole at a nominal rate of 0.036 mg/l. Solutions of the

[¹⁴C]-ipconazole in ethanol were applied to the water phase of the sediment and the systems were incubated at 20°C in the dark for up to 100 days. The test vessels were connected to a series of traps for collection of volatile organic compounds (one trap) and ¹⁴CO₂. Duplicate samples (one of each radiolabel) and trapping solutions were taken for analysis immediately after application and after 1, 2, 7, 14, 30, 59 and 100 days incubation. Additionally, samples of water were taken for analysis at 7, 14, 30, 44, 59, 73, 87 and 100 days. The ¹⁴C- present in the trapping solutions was analysed by LSC. The water and sediment samples were extracted and analysed by both LSC and HPLC methods. In addition the relative proportion of ipconazole cc and ipconazole ct were investigated in selected samples, and selected samples that had been treated with [¹⁴C-triazole]ipconazole were analysed by thin layer chromatography (TLC) to investigate the presence of free triazole metabolites.

Redox potential and oxygen content measured in the water phase of both systems indicated aerobic conditions were maintained. In the sediment phase, the redox potential was generally <200 mV (and in the Bury Pond system was 14-46 mV over day 0-59), indicating reducing conditions. For both test systems, the range of pH in the water and sediment phases was 7.23-8.09 and 6.47-7.98, respectively.

The distribution of radioactivity in the two water-sediment systems determined during the study is shown in Figure 3 to Figure 6.

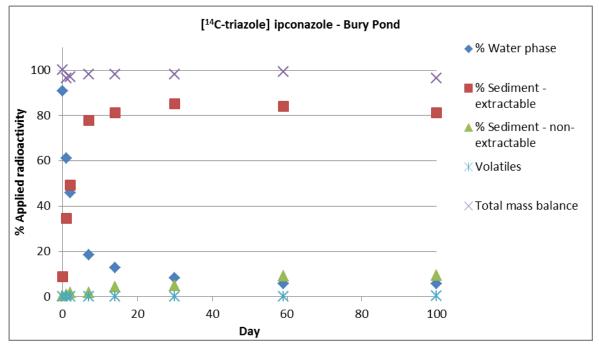


Figure 3: Mass balance for [¹⁴C-triazole]ipconazole in the Bury Pond water-sediment system

Figure 4: Mass balance for [¹⁴C-benzyl methylene]ipconazole in the Bury Pond watersediment system

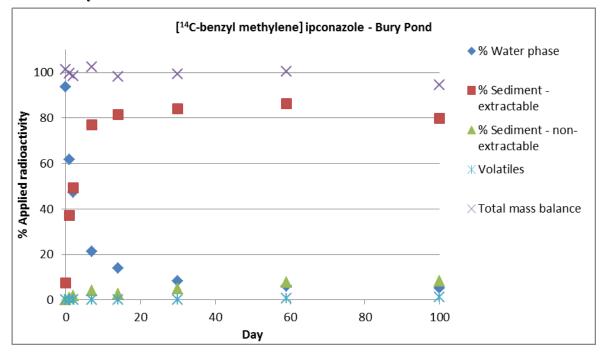


Figure 5: Mass balance for [¹⁴C-triazole]ipconazole in the Emperor Lake water-sediment system

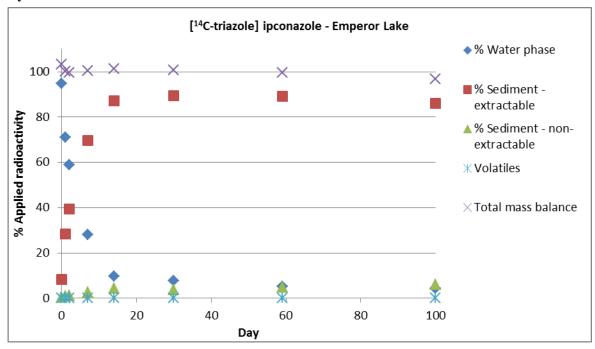
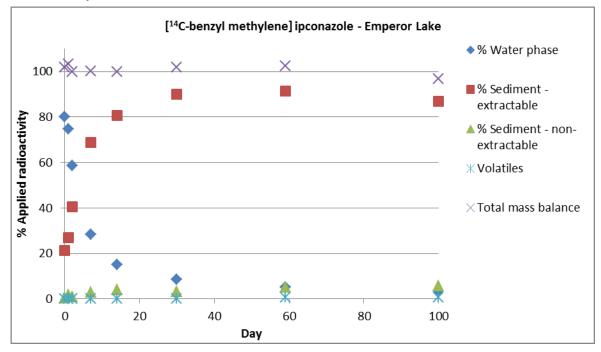



Figure 6: Mass balance for [¹⁴C-benzyl methylene]ipconazole in the Emperor Lake watersediment system

As can be seen above, the radioactivity partitioned from the water phase to the sediment phase, with over 80% of the radioactivity being present in the sediment phase after around 7-14 days incubation. Only a small proportion of the radiolabel was present as volatiles or $^{14}CO_2$ (1.1% or less), indicating that mineralisation was insignificant over the course of the study. Parent compound analysis indicated that, by day 100 of the study, around 67.7-75.2% (Bury Pond sediment) or 81.9-83.2% (Emperor Lake sediment) of the radiolabel present in the total system (water phase plus sediment phase) was as unchanged ipconazole (Table 20 and 21). There was no appreciable change in the relative ratio of isomers (cc to ct) present in samples analysed on day 0 and day 59 of the study, indicating that preferential degradation of one isomer over the other was not occurring in the study.

The time for 50% degradation (DT_{50}) for water, sediment and total water-sediment system are summarised in Table 22. The DT_{50} in the total water-sediment system in this study is clearly >100 days (the study author estimated the DT_{50} for the total water-sediment system to be around 241 days in the Bury Pond system and 490 days in the Emperor Lake system).

Identity		%	Applied ra	dioactivity	v (days afte	r applicati	on)			
	0	1	2	7	14	30	59	100		
	[¹⁴ C TRIAZOLE]-IPCONAZOLE – TOTAL SYSTEM									
Ipconazole	96.1	94.4	91.5	90.0	87.8	88.0	77.1	75.2		
Metabolite 1	1.3	a	а	а	0.4	0.5	1.0	2.7		
Metabolite 2	0.5	0.3	а	а	а	0.3	1.4	0.9		
Metabolite 3	0.4	a	0.4	0.4	1.3	0.5	1.5	4.1		
KNF-317-M-1 (see text)	0.5	a	0.2	0.6	0.4	2.3	4.8	1.4		
Metabolite 5	0.9	0.4	0.5	0.8	а	0.3	1.5	а		
Others	а	0.7	2.6	4.5	3.8	1.3	2.7	2.6		
[¹⁴ C	BENZYL	METHYL	ENE] IPCC	NAZOLE	– TOTAL S	SYSTEM				
Ipconazole	95.7	94.6	92.9	92.9	89.3	86.7	79.8	67.7		
Metabolite 1	0.3	а	а	а	0.3	1.2	0.2	2.6		
Metabolite 2	0.3	а	а	а	а	1.8	1.3	3.6		
Metabolite 3	0.2	0.6	0.6	0.5	2.4	0.8	1.8	2.4		
KNF-317-M-1 (see text)	а	а	а	0.8	0.8	0.9	6.3	5.7		
Metabolite 5	0.5	0.7	0.5	0.3	а	0.0	1.2	1.4		
Others	4.3	2.7	2.7	3.9	2.5	2.8	1.6	1.8		

Table 20: Characterisation of radioactivity from the Bury Pond water-sediment system after treatment with radiolabelled ipconazole (nominal rate of 0.036 mg/l) at 20°C.

Notes: a) Not apparent or below the LOD.

Others: Radioactivity not associated with specific components.

Identity	% Applied radioactivity (days after application)									
	0	1	2	7	14	30	59	100		
	[¹⁴ C	TRIAZOLE	E]-IPCONA	ZOLE – TO	TAL SYST	ΈM				
Ipconazole	b	97.9	93.7	92.5	92.4	92.7	86.7	83.2		
Metabolite 1	b	0.2	0.2	a	0.9	1.0	0.4	1.7		
Metabolite 2	b	а	а	а	а	0.2	0.2	0.4		
Metabolite 3	b	а	0.2	а	0.1	0.7	0.8	0.7		
KNF-317-M-1	b	а	а	a	0.3	1.0	1.4	1.6		
Metabolite 5	b	0.1	0.6	0.2	0.4	0.7	0.9	а		
Others	b	1.1	3.7	5.1	2.8	0.7	4.1	2.7		
	[¹⁴ C BENZ	YL METHY	(LENE] IPO	CONAZOLI	E – TOTAL	SYSTEM				
Ipconazole	96.6*	94.7	93.3	94.9	91.8	95.6	89.5	81.9		
Metabolite 1	0.1	а	а	а	а	0.8	0.1	2.3		
Metabolite 2	0.6	0.4	0.2	а	0.4	0.2	0.3	0.3		
Metabolite 3	0.5	0.1	0.8	а	0.8	0.2	1.2	а		
KNF-317-M-1	а	0.1	0.6	а	0.2	0.9	1.4	3.0		
Metabolite 5	0.6	0.3	0.6	а	0.4	0.4	0.8	а		
Others	3.1	5.8	3.8	2.3	2.3	0.3	3.3	3.2		

Table 21: Characterisation of radioactivity from the Emperor Lake water-sediment system after treatment with radiolabelled ipconazole (nominal rate of 0.036 mg/l) at 20°C.

Notes: a) Not apparent or below the LOD.

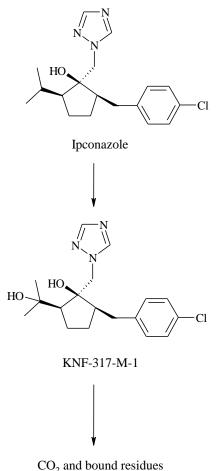
b) The HPLC radiochromatogram of the sediment extracts in the day 0 sample was anomalous (a component, reported as an impurity not seen in other samples, eluted in addition to ipconazole). Others: Radioactivity not associated with specific components.

* Sample values not included in kinetic modelling as they were reported to be outliers.

Table 22:	DT ₅₀ of ipconazole in	n aerobic water-sediment s	ystems
-----------	-----------------------------------	----------------------------	--------

Phase	Assumed						
	kinetics ^a	Bury Pond	Emperor Lake	Geometric mean			
Water	FOMC	2	2.8	2.37			
	pseudo SFO	5.3	5.8	5.54			
Sediment	SFO	244 ^b	441 ^b	328 ^b			
Total system	SFO	241 ^b	490 ^b	344 ^b			

Notes: a) FOMC = first order multi-compartment; SFO = single first order.


b) Extrapolated beyond the study duration of 100 days.

No major metabolites (>10% of the applied radioactivity) were detected in water or sediment. One minor metabolite, labelled as KNF-317-M-1, peaked in the sediment after 59 days (around 6.3% of applied radioactivity in the total system) in Bury Pond sediment treated with [¹⁴C-benzyl methylene]ipconazole. With the [14C-triazole]-ipconazole radiolabel and in the Emperor Lake system (both radiolabels), levels of KNF-317-M-1 were lower. At the study end, KNF-317-M-1 was still increasing in the Emperor Lake sediment but was declining at study end in the Bury Pond sediment. Four

additional minor metabolites were detected at very low levels, each individually $\leq 4.1\%$ of the applied radioactivity (total system) in both systems. However, as degradation of ipconazole was minimal in both of the water-sediment systems, metabolites may not have had sufficient time to form in significant amounts by the study end. Therefore, the full route of degradation of ipconazole in such systems may not be fully defined.

The proposed metabolic pathway is outlined below in Figure 7 (UK, 2011; EFSA, 2013 [74]). The metabolite KNF-317-M-1 was thought to be formed by hydroxylation of the methylethyl moiety attached to the triazole ring in ipconazole. It is possible that some minor cleavage of the methylene bridge between the cyclopentane ring and phenyl ring moieties may occur, based on evidence of production of ${}^{14}CO_2$ (1.1% applied radioactivity) in aerobic aquatic systems treated with [${}^{14}C$ -benzyl methylene]-ipconazole.

Figure 7: The metabolic pathway proposed by the applicant for ipconazole in watersediment systems.

Soil systems - aerobic

Study 1:

The degradation of ipconazole in aerobic soil was studied in a GLP study using the OECD 307 guideline (Shaw, 2005a[62]).

The test was carried out using both [¹⁴C-triazole]ipconazole (cc 92.6%, ct 5.4%) and [¹⁴C-benzyl methylene]ipconazole (cc 95.6%, ct 2.3%).

The soil used in the test was a sandy loam (56.13% sand, 26.37% silt and 17.51% clay) with an organic carbon content of 1.9% and a pH of 6. The soil was sieved (2 mm) and portions of the soil (equivalent to 200 g on a dry weight basis) were incubated in glass bottles within air flow-through systems, under a continuous humid air supply, in the dark at 20°C for one week prior to the start of the test. The soil moisture tension was adjusted to pF2³ and maintained at this tension for the duration of the test. The test vessels were connected in series to one VOC trap and two CO₂ traps.

Stock solutions of the test substance were prepared in ethanol and/or water and aliquots were applied evenly to the soil surface (the volume of organic solvent added to the soil did not exceed 0.5% of the dry soil weight (v/w)). The soils were then mixed to ensure uniform incorporation of the test substance. The substances were applied to the soil at a nominal rate of 0.288 mg/kg. The rate was chosen by the applicant on the basis of an agricultural use rate of 108 g a.s./ha, assuming an incorporation depth of 2.5 cm, and a soil bulk density of 1.5 g/cm³. In addition soil samples were also prepared at a higher nominal loading rate of 2.88 mg/kg in order to generate additional quantities of metabolites for identification, however none of these samples were utilised further.

The spiked soils were then incubated in the dark at 20°C for up to 230 days. At intervals during the study a single sample was taken for each radio-label for analysis; trapping solutions were also taken for analysis at the same time as for the soil samples. The ¹⁴C- present in the trapping solutions was analysed by LSC. The soil samples were extracted and analysed by both LSC and HPLC methods. In addition the relative proportion of cc and ct ipconazole were investigated in selected samples, and selected samples that had been treated with [¹⁴C-triazole] ipconazole were analysed by thin layer chromatography (TLC) to investigate the presence of free triazole metabolites.

The results of the study are summarised in Table 23 and 24. By day 230 of the study 55.4% of the radiolabel from the [¹⁴C-triazole] ipconazole was found to be parent ipconazole and 51.3% of the radiolabel from the [¹⁴C-benzyl methylene] ipconazole was found to be parent ipconazole.

³ Soil moisture content at field capacity of the soil.

Distribution				% Appli	ed radioac	tivity (day	s after app	olication)		
		0	3	7	14	30	60	90	122	230
	<u>.</u>		[¹⁴	C-TRIAZO	LE] IPCO	NAZOLE				
Extractable soil residues		95.9	96.8	93.9	92.4	93.3	88.3	82.3	83.6	68.4
Unextractable so residues	oil	2.8	4.2	4.7	6.6	8.2	12.2	14.0	14.2	17.8
Volatiles ¹⁴ C	O_2	NA	0.2	0.2	5.9ª	2.3	2.3	3.2	4.3	9.3
Org	ganic	NA	ND	ND	ND	0.1	0.1	ND	0.1	0.1
Total		98.7	101.2	98.8	104.9	103.9	102.9	99.5	102.2	95.6
	-		[¹⁴ C BEN	ZYL MET	HYLENE]	IPCONAZ	OLE			
Extractable soil residues		95.7	92.5	92.6	88.8	91.4	86.7	79.5	78.8	62.2
Unextractable so residues	oil	2.2	3.6	5.3	6.9	7.6	10.0	11.0	13.8	14.6
Volatiles ¹⁴ C	O ₂	NA	0.6	1.3	2.3	3.5	5.7	8.2	9.8	16.0
Org	ganic	NA	ND	ND	ND	ND	ND	0.1	ND	ND
Total		97.9	96.7	99.2	98.0	102.6	102.5	98.8	102.4	92.8

Table 23: Distribution of radioactivity from aerobic soil after treatment with [¹⁴C] ipconazole at the rate of 0.288 mg/kg

Notes: a) 1.7% of the radioactivity trapped in the KOH traps for this sample was not CO_2 .

NA: Not applicable.

ND: Not detected.

Identity			% Applie	d radioac	tivity (day	s after ap	plication)	1		
	0	3	7	14	30	60	90	122	230	
[¹⁴ C TRIAZOLE] IPCONAZOLE										
Ipconazole	90.4	88.5	83.9	87.3	83.9	77.0	67.5	72.6	55.4	
Polar metabolites	0.4	3.8	3.0	1.8	3.0	2.7	4.8	2.0	2.2	
Metabolite 1	ND	ND	3.2	ND	ND	ND	1.4	0.3	0.5	
Metabolite 2	0.3	ND	0.2	ND	0.2	0.5	0.6	0.3	0.5	
Metabolite 3	0.5	0.6	0.4	0.6	0.7	0.8	1.0	1.0	1.5	
Metabolite 4 ^a	ND	0.5	0.7	0.8	1.9	2.9 (1.8)	3.5	3.1 (1.8)	4.4	
Metabolite 5	0.7	0.6	0.5	0.4	0.4	0.7	0.4	0.5	0.3	
KNF-317-M-11 (see text)	2.6	1.7	1.0	0.9	2.2	2.9	2.6	3.2	3.1	
Others	1.0	1.1	1.0	0.6	1.0	0.8	0.5	0.6	0.5	
		[¹⁴ C BENZ	ZYL MET	HYLENE] IPCONA	ZOLE				
Ipconazole	90.0	85.7	86.7	84.4	83.2	79.6	69.1	68.9	51.3	
Polar metabolites	1.2	1.9	0.9	0.3	1.9	0.3	0.6	0.2	0.8	
Metabolite 1	ND	0.3	1.7	ND	0.3	0.3	0.5	0.4	0.4	
Metabolite 2	0.4	0.4	0.4	0.3	0.4	0.4	0.6	0.4	0.6	
Metabolite 3	0.5	0.5	0.5	0.6	0.8	1.0	1.1	1.1	1.2	
Metabolite 4 ^a	0.1	0.6	0.5	0.9	1.7	2.5 (1.6)	3.2 (2.2)	3.8	3.7	
Metabolite 5	0.7	0.7	0.6	0.4	0.5	0.5	0.4	0.4	0.4	
KNF-317-M-11 (see text)	1.4	1.4	0.6	0.9	1.6	1.4	3.2	3.0	2.6	
Others	1.4	1.0	0.7	1.0	1.0	0.7	0.8	0.6	1.3	

Table 24: Identification of radioactive components from aerobic soil after treatment with [¹⁴C]-ipconazole at the rate of 0.288 mg/kg.

Notes: a) Metabolite 4 represents a zone of radioactivity that contained at least 3 components, 1 of which was identified as KNF-317-M-1 (see text). The proportion of KNF-317-M-1 in selected samples is stated in brackets alongside the value for the metabolite 4.

ND: Not detected.

Others: Radioactivity not associated with specific components.

The DT_{50} (time for 50% degradation) of ipconazole was estimated to be 294 days (mean value for both radiolabels). The extent of mineralisation (¹⁴CO₂ formation) was between 9.3 and 16% of the applied radioactivity after 230 days. The metabolites formed are considered further below.

Study 2:

A further aerobic soil degradation study was conducted according to the OECD 307 guideline and GLP (Shaw, 2005c[63]). The study was carried out using [¹⁴C triazole] ipconazole in 3 soil types. The soils were a sandy clay loam (53.51% sand, 24.02% silt and 22.47% clay; 4.6% organic carbon content and pH 7.7), a silt loam (13.91% sand, 59.71% silt and 26.38% clay; 4.5% organic carbon content and pH 6.1) and a clay loam (39.19% sand, 29.09% silt, 31.72% clay; 2.0% organic carbon content and pH 7.1).

The test was carried out at 20°C but one soil was also tested at 10°C. The nominal application rate of the test substance was 0.288 mg/kg and the study methodology was essentially the same as the Shaw (2005a) study reported above, except that the study duration was 120-122 days rather than 230 days.

The results of the study are summarised in Table 25 and Table 26. At the end of the study, 55.1%-85.4% of the applied radioactivity remained as parent ipconazole and the DT₅₀ was determined to be 170 days at 20°C and 593 days at 10°C in the sandy clay loam soil, 225 days at 20°C in the silt loam soil and 184 days at 20°C in the clay loam soil. Isomer ratios were investigated at days 0 and 90, with isomer ratios remaining virtually unchanged at these three sample points, indicating that there was not preferential degradation of one isomer over another. Mineralisation (¹⁴CO₂ formation) was between 0.2 and 3.9% of the applied radioactivity after 120 days at 20°C and around 0.1% of the applied radioactivity in the experiment at 10°C). The metabolites formed are considered further below.

Table 25: Distribution of radioactivity from four aerobic soils after treatment with [¹⁴ C]
ipconazole at a rate of 0.288 mg/kg and following incubation at 20°C and 10°C

Distribution				% Applied	radioactivi	ity		
Days after application	0	3	7	14	30	59	90	120
		Sandy cl	ay loam soil	l incubated	at 20°C		•	
Extractable soil residues	94.8	96.0	96.4	95.5	84.0	89.6	82.9	67.9
Unextractable soil residues	7.9	5.1	5.6	6.7	15.4	10.5	17.8	33.2
Volatiles ¹⁴ CO ₂	NA	ND	ND	ND	0.1	0.4	0.7	1.0
Organic	NA	ND	ND	ND	ND	ND	ND	ND
Total	102.7	101.1	102.0	102.2	99.5	100.5	101.4	102.1
		Silty cla	y loam soil	incubated a	t 20°C			
Days after application	0	3	7	14	32	60	90	122
Extractable soil residues	90.2	100.2	87.6	95.4	89.1	86.1	76.8	85.8
Unextractable soil residues	13.7	8.1	14.4	8.1	12.2	14.3	17.9	19.4
Volatiles ¹⁴ CO ₂	NA	ND	ND	ND	ND	0.1	ND	0.2
Organic	NA	ND	ND	ND	ND	ND	ND	ND
Total	103.9	108.3	102.0	103.5	101.3	100.5	94.7	105.4
		Clay	loam soil in	cubated at 2	e0°C	•	•	
Days after application	0	3	7	14	32	60	90	122
Extractable soil residues	100.3	97.0	89.9	79.2	86.3	80.6	87.1	73.4
Unextractable soil residues	6.7	8.2	11.3	23.8	16.6	23.0	24.5	21.9
Volatiles ¹⁴ CO ₂	NA	ND	ND	ND	ND	0.8	2.1	3.9
Organic	NA	ND	ND	ND	ND	ND	ND	ND
Total	107.0	105.2	101.2	103.0	102.9	104.4	113.7	99.2
		Sandy cl	ay loam soil	incubated	at 10°C	•	•	
Days after application	0	3	7	14	30	59	90	120
Extractable soil residues	100.3	98.2	99.6	100.6	93.0	97.8	93.1	93.4
Unextractable soil residues	8.1	5.3	4.0	4.5	7.9	6.1	9.5	10.4
Volatiles ¹⁴ CO ₂	NA	ND	ND	ND	ND	ND	ND	0.1
Organic	NA	ND	ND	ND	ND	ND	ND	ND
Total	108.4	103.5	103.6	105.1	100.9	103.9	102.6	103.9

Notes: NA: Not applicable.

ND: Not detected.

Table 26: Identification of radioactive components from four aerobic soils after treatment with [¹⁴C]-ipconazole at a rate of 0.288 mg/kg and following incubation at 20°C and 10°C.

Identity			0	% Applied 1	adioactivit	ty			
Days after application	0	3	7	14	30	59	90	120	
Sandy clay loam soil incubated at 20°C									
Ipconazole	91.6	93.3	94.5	91.8	78.5	80.9	70.0	55.1	
Polar metabolites	0.9	0.5	0.6	0.3	0.6	1.3	1.8	2.2	
Metabolite 1	ND	ND	ND	ND	ND	ND	0.2	0.2	
Metabolite 2	ND	ND	ND	ND	ND	ND	0.4	0.3	
Metabolite 3	ND	ND	ND	0.3	0.3	0.9	1.7	1.5	
Metabolite 4 ^a	ND	0.7	0.2	1.2	2.0	3.9 (2.1)	5.2 (1.9)	6.0 (2.8)	
Metabolite 5	0.3	ND	0.1	0.3	0.4	0.4	0.6	0.6	
KNF-317-M-11 (see text)	0.1	0.6	0.4	1.3	1.5	1.9	2.6	1.6	
Others	1.9	0.9	0.6	0.3	0.7	0.3	0.4	0.4	
		Silty cla	y loam soil	incubated a	t 20°C				
Days after application	0	3	7	14	32	60	90	122	
Ipconazole	89.0	98.3	85.8	91.0	84.8	76.0	67.6	70.8	
Polar metabolites	0.2	0.2	0.3	0.7	1.2	1.7	2.4	3.9	
Metabolite 1	ND	ND	ND	ND	ND	ND	ND	1.4	
Metabolite 2	ND	ND	ND	ND	ND	0.4	0.4	1.1	
Metabolite 3	ND	ND	ND	0.2	0.1	0.6	0.8	1.5	
Metabolite 4 ^a	ND	0.4	0.4	1.2	1.4	2.3	2.3 (1.0)	3.9 (1.7)	
Metabolite 5	0.2	0.4	0.2	0.2	ND	0.7	0.4	0.7	
KNF-317-M-11 (see text)	ND	0.2	0.4	1.2	0.9	4.0	2.6	1.6	
Others	0.8	0.7	0.5	0.9	0.7	0.4	0.3	0.9	
		Clay	loam soil in	cubated at 2	20°C				
Days after application	0	3	7	14	32	60	90	122	
Ipconazole	99.3	95.0	86.7	76.3	79.1	68.9	70.4	58.1	
Polar metabolites	ND	0.2	0.3	0.3	1.2	1.5	2.8	2.9	
Metabolite 1	ND	ND	ND	ND	ND	0.1	0.2	0.4	
Metabolite 2	ND	ND	ND	ND	ND	0.4	0.6	0.7	
Metabolite 3	ND	ND	ND	ND	0.7	1.1	1.5	1.6	
Metabolite 4 ^a	0.2	0.6	0.9	1.3	2.8	4.3 (2.5)	6.0 (3.6)	6.7 (2.9)	
Metabolite 5	ND	0.4	0.4	ND	0.3	0.6	0.9	1.0	

Identity			9	6 Applied	radioactivit	y		
KNF-317-M-11 (see text)	ND	0.2	0.9	0.8	1.8	3.2	4.7	1.7
Others	0.8	0.6	0.7	0.5	0.4	0.5	ND	0.3
		Sandy cl	ay loam soi	l incubated	at 10°C			
Days after application	0	3	7	14	30	59	90	120
Ipconazole	98.3	96.9	98.0	98.4	90.3	93.9	87.4	85.4
Polar metabolites	0.7	0.3	0.3	0.2	0.2	0.4	0.6	0.6
Metabolite 1	ND	ND	ND	ND	ND	ND	ND	ND
Metabolite 2	ND	ND	0.1	ND	ND	ND	ND	0.1
Metabolite 3	ND	ND	ND	ND	ND	0.3	0.4	0.6
Metabolite 4 ^a	0.2	0.1	0.3	0.3	0.8	1.5	2.0 (1.1)	2.3 (1.2)
Metabolite 5	0.3	ND	0.2	ND	ND	0.2	0.3	0.4
KNF-317-M-11 (see text)	ND	0.3	0.4	0.7	0.8	1.2	2.0	3.9
Others	0.8	0.6	0.3	1.0	0.9	0.3	0.4	0.1

Notes: a) Metabolite 4 was a zone of radioactivity that contained at least 3 components, one of which was identified as KNF-317-M-1 (see text). The proportion of KNF-317-M-1 in selected samples is stated in brackets alongside the value for the Metabolite zone. Other individual components in this zone constituted not more than 2% of the applied radioactivity in any sample.

ND: Not detected.

Others: Radioactivity not associated with specific components.

Study 3:

The degradation of ipconazole in anaerobic soil has been investigated using the OECD 307 guideline in a GLP study (Mellor, 2006[64]). The study included an initial aerobic incubation period followed by an anaerobic incubation period. The test was carried out using both [¹⁴C-triazole]ipconazole (cc 92.6%:ct 5.4%) and [¹⁴C-benzyl methylene]ipconazole (cc 95.6%, ct 2.3%). The soil used in the test was a sandy loam consisting of 57.12% sand, 24.44% silt and 18.43% clay. The soil had an organic carbon content of 2.0% and a pH of 6.0.

The test design and methodology for the first 30 days, i.e. the aerobic incubation, was identical to the aerobic studies described above. After 30 days incubation the soil samples were flooded to a depth of 1-2 cm with oxygen-free distilled water, and the flow-through gas was changed to oxygen-free nitrogen (after anaerobic conditions had been established the gas flow was reduced to three periods of 20 minutes per day). The test system was then incubated under these conditions for a further 90 days (to give a total study duration of 120 days). Redox potential measurements indicate that anaerobic conditions developed from 30 days through to study end.

The results of the aerobic/anaerobic incubation are shown in Table 27 and Table 28.

Distribution		% Applie	d radioactivity	(days after ap	plication)		
	0		30 37 6		91	120	
[¹⁴ C TRIAZOLE] IPCONAZOLE							
Overlying water	NA	NA	1.7	1.6	1.2	1.2	
Extractable soil residues	96.7	93.5	92.6	89.6	88.6	88.3	
Unextractable soil residues	3.5	2.9	7.4	9.8	12.5	12.3	
Volatiles ¹⁴ CO ₂	NA	0.6	0.6	0.6	0.5	0.6	
Organic	NA	ND	ND	ND	ND	ND	
Total	100.2	97.0	102.3	101.6	102.8	102.4	
	[¹⁴ C]	BENZYL MET	HYLENE] IPC	ONAZOLE			
Overlying water	NA	NA	1.1	1.1	1.2	0.6	
Extractable soil residues	98.3	90.4	90.1	88.1	86.8	86.0	
Unextractable soil residues	3.5	3.4	7.6	9.0	11.4	11.7	
Volatiles ¹⁴ CO ₂	NA	3.3	3.9	3.6	3.6	3.8	
Organic	NA	ND	ND	ND	ND	ND	
Total	101.8	97.1	102.7	101.8	103.0	102.1	

Table 27: Distribution of radioactivity from an anaerobic soil system after treatment with
[¹⁴ C] ipconazole at the rate of 0.288 mg/kg

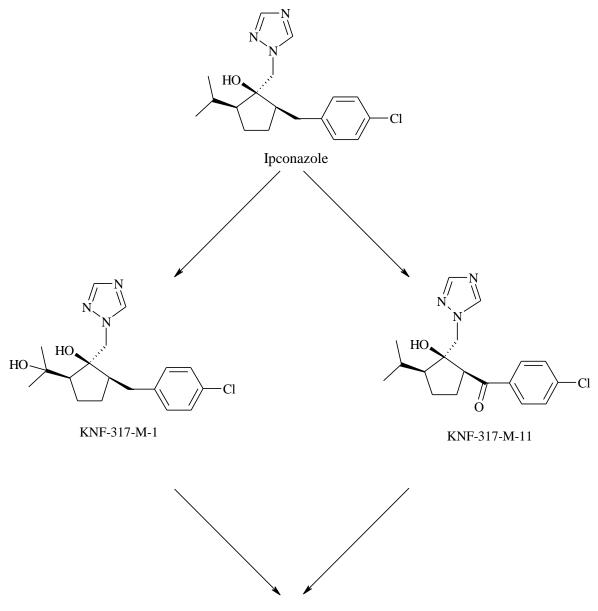
Notes: NA: Not applicable. ND: Not detected.

There was no significant change in the isomer ratio of cc:ct in soils sampled on days 0, 37 and 120 of the study.

The DT_{50} in the anaerobic soil (mean of both radiolabels from day 30 onwards) was estimated to be 779 days. Mineralisation (¹⁴CO₂ formation) was between 0.6 and 3.8% of the applied radioactivity after 120 days. Metabolites formed are considered further below.

Identity	% Applied radioactivity (days after application)					
	0	30	37	60	91	120
	[¹⁴ C TRIAZOLE	E] IPCONAZOI	E		
Ipconazole	94.5	87.1	87.2	83.3	82.0	79.7
Polar metabolites	<0.1	1.8	1.3	1.0	1.3	1.3
KNF-317-M-1 (see text)	0.5	0.7	0.6	0.8	0.8	0.6
Unknown metabolite	0.2	1.6	1.1	1.5	1.4	1.5
KNF-317-M-11 (see text)	0.7	0.6	0.6	0.5	0.9	1.1
Others	0.9	1.7	1.8	2.4	2.1	4.0
	[¹⁴ C BE	NZYL METHY	(LENE] IPCON	NAZOLE		
Ipconazole	94.8	86.1	84.8	83.9	81.6	80.1
Polar metabolites	<0.1	<0.1	0.1	0.3	< 0.1	0.2
KNF-317-M-1 (see text)	0.6	0.6	0.7	0.6	0.7	0.6
Unknown metabolite	0.2	1.4	1.4	1.4	1.3	1.6
KNF-317-M-11 (see text)	0.7	0.5	0.7	0.5	0.6	0.6
Others	2.1	1.8	2.4	1.4	2.6	2.9

Table 28: Identification of radioactive components from aerobic/anaerobic soil after treatment with [¹⁴C]-ipconazole at the rate of 0.288 mg/kg.


Notes: Others: Radioactivity not associated with specific components.

Route of degradation in soil

The route and rate of degradation of ipconazole was investigated in a single soil with two appropriate radiolabelling positions (triazole and benzyl methylene positions). In addition, a rate of degradation study with a single radiolabelling position (triazole position) provided further appropriate route of degradation information in an additional three soils. Aerobic degradation led to the formation of a number of minor metabolites and there was no difference in metabolites between the two different radiolabelling positions. The amounts of metabolites formed were generally low, below 5% of the applied radioactivity. The proposed route of degradation in aerobic soil is summarised in Figure 8.

A study investigating route of degradation of ipconazole under anaerobic conditions on a single soil was also conducted using both radiolabelled positions. There were apparently fewer metabolites observed in this study, but KNF-317-M-1 (max 0.8% AR) and KNF-317-M-11 (max 1.1% AR at end of study) were observed. This indicates that the route of degradation under anaerobic conditions is likely to be very similar to aerobic conditions, but occurring at a slower rate.

CO2 and bound residues

5.1.3 Summary and discussion of degradation

Ipconazole is not readily biodegradable. Laboratory simulation studies have shown that ipconazole has a relatively long biodegradation half-life ($DT_{50} >> 100$ days) in whole water-sediment systems and in soil. No aqueous photolysis study is available but this is considered a relatively minor route of degradation given a lack of significant absorption at >290 nm. Photolysis on soil surfaces has been shown to occur but the DT_{50} is around 241 days of summer sunlight at 40°N. Ipconazole is hydrolytically stable at pH 5, 7 and 9.

Based on the available data, ipconazole is considered to degrade only slowly in the environment and so should be considered to be 'not rapidly degradable' for the purpose of environmental hazard classification.

5.2 Environmental distribution

5.2.1 Adsorption/Desorption

The K_{oc} for ipconazole has been determined in two studies, covering six different soil types (Hatzenbeler and Long, 2001b[75]; Wanner, 2006) [76]. The K_{oc} determined was in the range 1,724 to 3,214 ml g⁻¹, with mean value of 2,431 ml g⁻¹.

5.2.2 Volatilisation

The Henry's law constant for ipconazole has been calculated to be 3×10^{-5} Pa m³ mol⁻¹ (Comb, 2007[4]).

5.2.3 Distribution modelling

Based on the Henry's law constant of 3×10^{-5} Pa m³ mol⁻¹, ipconazole is expected to have a low potential for volatilisation from aquatic systems. The mean K_{oc} for the substance has been determined to be 2,431 ml g⁻¹ and so partitioning from the water phase to the sediment phase is expected to occur (as demonstrated in the simulation studies at 5.1.2.3).

5.3 Aquatic Bioaccumulation

The available data on aquatic bioaccumulation are summarised in Table 29.

Table 29:	Summary	of relevant information	on aquatic bioaccumulation
-----------	---------	-------------------------	----------------------------

Method	Results	Remarks	Reference
Log K _{ow} (OECD 117, HPLC method)	4.65 ipconazole cc4.44 ipconazole ct	GLP Study Temperature is not given Substance is surface active	Riggs, 2001 [65]
Log K _{ow} (EEC A8 (Shake flask))	4.49 at 20°C ipconazole cc 4.28 at 20°C ipconazole ct	GLP Study (Reliable without restriction)	Comb, 2012a and 2012b [12] [13]
Bioconcentration in fish (OECD 305)	Steady state BCF 225-283 l/kg in <i>Lepomis macrochirus</i>	GLP Study (Reliable without restriction)	Kureha Corporation (2006) [66]

Note: a) The surface tension of ipconazole (98.1% purity) has been determined as 56.5 mN m⁻¹ at 20°C for a 90% saturated aqueous solution using the OECD 115 methodology (GLP study) (Comb, 2005).

5.3.1 Aquatic bioaccumulation

5.3.1.1 Bioaccumulation estimation

Ipconazole has a log K_{ow} of 4.28-4.65 (see Section 1.3) which suggests that the substance has some potential to bioconcentrate in aquatic organisms.

5.3.1.2 Measured bioaccumulation data

5.3.2 Summary and discussion of aquatic bioaccumulation

The bioconcentration factor for ipconazole has been measured in an OECD 305 guideline study using bluegill sunfish (*Lepomis macrochirus*) carried out according to GLP (2006[66]).

The substance tested was [¹⁴C-triazole]ipconazole mixed with non-radiolabelled ipconazole with a purity of 98.4% (cc 91.7% and ct 6.7%). The test was carried out using a flow-through system and the study consisted of a 28 day exposure period followed by an 11 day depuration period. The temperature during the test was in the range 22.0-23.7°C and the mean pH of the water was 7.3.

Two exposure concentrations were used, nominally 1.3 and 13 μ g/l. The mean measured concentration (± standard deviation) in the two exposure groups during the exposure period was 1.43±0.08 μ g/l and 13.9±0.6 μ g/l respectively based on radioactivity measurements. [¹⁴C-triazole]ipconazole accounted for >98% of the radioactivity present in solution.

Four fish from each treatment were sampled on days 1, 3, 7 14, 21 and 28 of the exposure period and days 1, 3, 7 and 11 of the depuration period. The fish were separated into fillet (edible portion), skeleton and viscera prior to analysis for total ¹⁴C. The fish lipid contents were determined on two pooled samples (each of three fish) collected on the first and last day of exposure and on the last day of depuration. The mean measured concentrations in the fish found during the study are summarised in Table 30.

For the 1.3 μ g/l (nominal) treatment group, uptake of the radioactivity was rapid and the concentrations in fish reached steady-state between days 7 and 28 of the uptake period. The mean concentrations in whole fish were in the range 0.285-0.365 mg/kg at steady state.

In the 13 μ g/l (nominal) group, initial uptake of radioactivity in fish was again rapid. The concentrations of radioactivity in non-edible portions and whole-fish increased rapidly to day 1 of exposure and were generally consistent and only increased slightly throughout the remaining exposure period. Concentrations in edible portions of fish increased rapidly during the first 24 hours and remained constant to day 7 before increasing again at day 14. Steady-state concentrations were therefore achieved between days 14 and 28 at this exposure concentration. The mean concentrations in whole fish were in the range 3.56-4.15 mg/kg at steady-state.

Time (days)	Mean ^a concentrations (\pm standard deviation) of radioactivity (µg equivalents/g)							
	Nominal test	concentration1.	.3 μg/l	Nominal test	Nominal test concentration 13 µg/l			
	Edible	Non-edible	Whole fish	Edible	Non-edible	Whole fish		
Exposure day 0	nd	nd	nd	nd	nd	nd		
Exposure day 1	0.109±0.020	0.520 ± 0.045	0.390±0.023	1.52±0.29	3.89±0.16	3.27±0.36		
Exposure day 3 ^b	0.093±0.016	0.361±0.031	0.279±0.033	1.53±0.33	3.79±0.76	3.12±0.47		
Exposure day 7	0.116±0.028	0.348±0.075	0.285 ± 0.058	1.53±0.36	3.80±0.24	3.21±0.19		
Exposure day 14	0.141±0.063	0.403±0.052	0.331±0.021	2.24±0.55	4.06±0.88	3.56±0.72		
Exposure day 21	0.138±0.074	0.364±0.063	0.306 ± 0.037	2.43±0.53	4.37±0.64	3.88±0.62		
Exposure day 28	0.147±0.038	0.445±0.114	0.365 ± 0.073	2.43±0.21	4.73±0.54	4.15±0.48		
Depuration day 1	0.023±0.002	0.063±0.005	0.051±0.004	0.417±0.146	0.828±0.083	0.721±0.092		
Depuration day 3	0.012±0.003	0.023±0.002	0.020 ± 0.001	0.125±0.053	0.247±0.109	0.214±0.093		
Depuration day 7	0.006 ± 0.001	0.015 ± 0.001	0.012±0.001	0.054 ± 0.008	0.119±0.023	0.100±0.019		
Depuration day 11	0.003 ± 0.002	0.010 ± 0.001	0.007 ± 0.001	0.015 ± 0.017	0.073±0.016	0.054 ± 0.014		

Table 30: Mean concentrations in edible tissues, non-edible tissues and whole fish during exposure to [¹⁴C triazole] ipconazole

Notes: a) mean of four fish.

b) mean of three fish (results from fourth fish were considered anomalous and not included in the mean calculation.

nd: not detected.

The mean lipid content in the fish was found to increase from 2.79% tissue weight at day 0 of the exposure phase, to 4.19-5.53% at the end of the exposure phase (exposure day 28) and 3.98-6.07% by day 11 of the depuration phase.

The mean steady state bioconcentration factors (for whole fish) were determined to be 225 l/kg for the 1.3 μ g/l treatment group and 283 l/kg for the 13 μ g/l treatment group. These values were not normalised to a standard lipid content of 5%. However, as noted above, the lipid contents of the fish at the end of the exposure phase and the end of the depuration phase were close to 5% and so lipid normalisation would not significantly affect the results.

Depuration of the radioactivity from the fish was rapid. By day 1 of depuration the whole fish concentration of radioactivity had declined by 86% (in the 1.3 μ g/l treatment group) and 82.6% (in the 13 μ g/l treatment group) compared with the day 28 of uptake value and >95% of the radioactivity had been eliminated by day 7 of depuration. The time for 50% depuration (DT₅₀) was estimated to be around 0.29-0.37 days for whole fish.

The authors of the study calculated kinetic bioconcentration factors of 246 l/kg for the 1.3 μ g/l treatment group and 274 l/kg for the 13 μ g/l treatment group. However it should be noted that the rapid uptake seen in the study means that the uptake kinetics are effectively estimated from only a limited number of data points. The kinetic bioconcentration factors were not lipid normalised or growth-corrected. However, as noted above, lipid normalisation would be unlikely to affect the results significantly and, as very rapid overall depuration was seen in the test, growth dilution would be unlikely to significantly contribute to the depuration (and hence kinetic bioconcentration factor) seen in this test.

5.4 Aquatic toxicity

The available aquatic toxicity data for ipconazole are summarised in Table 31.

Table 31:	Summary	of relevant	information on	aquatic toxicity
-----------	---------	-------------	----------------	------------------

Method	Results	Remarks	Reference
Acute toxicity to fish (OECD 203)	96h-LC ₅₀ = 1.5 mg/l mm (Oncorhynchus mykiss)	GLP Study	Kureha Corporation (2001a) [67]
Acute toxicity to fish (OECD 203)	96h-LC ₅₀ = 1.3 mg/l mm (<i>Lepomis macrochirus</i>)	GLP Study	Kureha Corporation (2001b) [68]
Long-term toxicity to fish (OECD 210)	28d-NOEC = 0.00044 mg/l mm (<i>Pimphales promelas</i>)	GLP Study	Kureha Corporation (2007) [69]
Acute toxicity to <i>Daphnia</i> magna (OECD 202)	$48h\text{-EC}_{50} = 1.7 \text{ mg/l mm}$	GLP Study	Palmer et al., 2001c [70]
Long-term toxicity to Daphnia magna (OECD 211)	21d-NOEC = 0.0109 mg/l mm	GLP Study	Flatman, 2007 [71]
Toxicity to algae (OECD 201)	96h-E _r C ₅₀ >2.2 mg/l n (<i>Pseudokirchneriella</i> subcapitata) 96h-NOEC _r = 0.22 mg/l n (<i>Pseudokirchneriella</i> subcapitata)	GLP Study	Flatman, 2006a [72]
Long-term toxicity to Chironomus riparius (OECD 219)	28d-NOEC = 3.52 mg/l im ^a	GLP Study Test substance initially added to the water phase of a water- sediment system.	Flatman, 2006b [73]

Notes: mm = endpoint based on mean measured test concentrations.

n = endpoint based on nominal test concentrations.

a) concentration relates to the initial measured concentration added to the water phase.

Values in **bold** indicate the most sensitive endpoints used for acute and chronic classifications

5.4.1 Fish

5.4.1.1 Short-term toxicity to fish

Two studies are available on the short-term toxicity of ipconazole to fish.

Study 1:

The first study was an OECD 203 guideline study with rainbow trout (*Oncorhynchus mykiss*) carried out according to GLP [67]. The test substance used had a purity of 99.2%. Stock solutions of the test substance were dissolved in acetone and acetone (0.1 ml/l) was subsequently present in the test

solutions. In the test, two replicate groups of 10 fish each were exposed to nominal concentrations of ipconazole of 0.31, 0.63, 1.3, 2.5 or 5.0 mg/l for 96 hours using a flow-through system (12 volume additions every 24 hours). The test included duplicate control groups (dilution water alone) and solvent control groups (dilution water containing acetone at 0.1 ml/l).

During the test, the temperature ranged between 10.7° C and 12.2° C and the pH ranged from 8.0 to 8.3. The dissolved oxygen concentration was at least 76% of the air saturation value. The concentration of test substance present in exposure tanks was verified by HPLC analysis on samples taken on day 0, 2 and 4 of the test. The water samples were centrifuged prior to analysis. Non-centrifuged samples were also analysed from the 0.31, 1.3 and 5.0 mg/l treatments on days 0, 2 and 4 of the test. The measured concentrations are summarised in Table 32.

 Table 32: Measured concentration of ipconazole in water during the test with Oncorhynchus mykiss

Nominal test concentration	Measured	concentratio	n (mg/l)	Mean measured	Mean measured		
(mg/l)	0 days	2 days	4 days	concentration (mg/l) ^b	as % of nominal ^b		
Centrifuged samples							
Control	<loq<sup>a</loq<sup>	<loq<sup>a</loq<sup>	<loq<sup>a</loq<sup>	-	-		
Solvent control	<loq<sup>a</loq<sup>	<loq<sup>a</loq<sup>	<loq<sup>a</loq<sup>	-	-		
0.31	0.122	0.127	0.138	0.13	42		
0.63	0.356	0.307	0.356	0.34	54		
1.3	0.606	0.828	0.835	0.76	58		
2.5	1.39	1.39	1.32	1.4	56		
5.0	2.24	2.12	1.92	2.1	42		
Non-centrifuged samples	Non-centrifuged samples						
0.31	0.276	0.279	0.276	0.28	90		
1.3	0.838	1.096	1.118	1.0	77		
5.0	2.42	2.39	2.23	2.3	46		

Notes: a) Limit of quantification (LOQ) was 0.1 mg/l for ipconazole cc and 0.01 mg/l for ipconazole ct.

b) Results were the sum of the ipconazole cc and ct stereoisomers.

As can be seen above, the concentrations measured in the centrifuged samples were lower than both the nominal concentrations and also the non-centrifuged samples. The authors of the study noted that the limit of solubility of the substance in the test medium may have been exceeded and therefore based the results on the mean measured in the centrifuged samples.

A dose-related increase in mortality was evident in the fish after 96 hours exposure. Mortality in the control and solvent control groups was 0%, and no mortality was seen in the treatment groups at mean measured concentrations of 0.13, 0.34 and 0.76 mg/l (signs of sublethal effects were evident at 0.76 mg/l). Mortality was 30% at a mean measured concentration of 1.4 mg/l and 100% at a mean measured concentration of 2.1 mg/l. The 96h-LC₅₀ based on the mean measured concentrations was calculated to be 1.5 mg/l (95% confidence interval: 0.76 mg/l to 2.1 mg/l).

Study 2:

The second study was an OECD 203 guideline study with bluegill sunfish (*Lepomis macrochirus*) carried out according to GLP [68]. The test substance used had a purity of 99.2%. The method used, and the nominal test concentrations used, was essentially the same as that used in the Palmer et al. (2001a) study above with rainbow trout.

During the test, the temperature ranged from 21.6 to 21.8°C and the pH ranged from 7.9 to 8.1. The dissolved oxygen concentration was at least 76% of the air saturation value. The mean measured concentrations determined in both the centrifuged and non-centrifuged (only collected from the 0.31 mg/l treatment group on days 0, 2, and 4) are summarised in Table 33.

Table 33: Measured concentration of ipconazole in water during the test with Lepomis macrochirus

Nominal test concentration	Measured	concentratio	n (mg/l)		Mean measured	
(mg/l)	0 days 2 days 4 days		4 days	concentration (mg/l) ^b	as % of nominal ^b	
Centrifuged samples						
Control	<loq<sup>a</loq<sup>	<loq<sup>a</loq<sup>	<loq<sup>a</loq<sup>	-	-	
Solvent control	<loq<sup>a</loq<sup>	<loq<sup>a</loq<sup>	<loq<sup>a</loq<sup>	-	-	
0.31	0.130	0.140	0.161	0.14	45	
0.63	0.326	0.329	0.324	0.33	52	
1.3	0.754	0.704	0.738	0.73	56	
2.5	1.64	1.74	2.02	1.8	72	
5.0	2.59	2.15	-	2.4	48	
Non-centrifuged samples						
0.31	0.280	0.273	0.285	0.28	90	

Notes: a) Limit of quantification (LOQ) was 0.15 mg/l for ipconazole cc and 0.015 mg/l for ipconazole ct b) Results were the sum of the ipconazole cc and ct stereoisomers.

The measured concentrations in the centrifuged samples were again lower than the nominal concentrations, and also the non-centrifuged samples and so the LC_{50} was determined using mean measured concentrations from the centrifuged samples.

No mortality or visual evidence of sublethal effects was seen in the control, solvent control, 0.14 mg/l, 0.33 mg/l or 0.73 mg/l treatment groups. Mortality in the 1.8 mg/l treatment group was 90% after 96 hours and 100% mortality was seen in the 2.4 mg/l treatment group. The 96h-LC₅₀ based on the mean measured concentration was calculated to be 1.3 mg/l (95% confidence interval: 0.73-1.8 mg/l).

5.4.1.2 Long-term toxicity to fish

The long-term toxicity of ipconazole to fish has been studied in an OECD 210 guideline study (fish early-life stage) with fathead minnow (*Pimephales promelas*) carried out according to GLP [69]. The substance used in the test had a purity of 98.1%, consisting of 91.2% cc and 6.9% ct. Stock solutions of the test substance were prepared in tetrahydrofuran (THF).

In the test, newly-fertilised eggs (less than 48 hours old) were exposed to ipconazole under flowthrough conditions at nominal test concentrations of 0.077, 0.19, 0.48, 1.2 or $3.0 \mu g/l$. Controls and solvent controls were also maintained in duplicate. The test system was a flow-through system (flow rate 140 ml/minute) and the developing embryos were exposed for a period of 4 days pre-hatch and 28 days post-hatch (32 days total). From day 0 to 8 post-hatch the fry were fed twice daily with newly hatched brine shrimp (*Artemia* sp.) nauplii and from day 10 the fry were fed 2-3 times per day with rinsed 48-hour-old *Artemia* nauplii cultures. Excess food and detritus were removed from the exposure tanks daily.

During the test the temperature was in the range 23.7° C to 25.9° C and the pH was between 7.6 and 8.6. The dissolved oxygen concentration was in the range 7.9 to 10.0 mg O₂/l. The concentration of test substance in the exposure tanks was analytically verified. The mean measured concentrations are summarised in Table 34.

Table 34: Measured concentration of ipconazole in water during the test with Pimephales					
promelas					

Nominal test concentration (µg/l)	Mean measured concentration (µg/l)	Mean measured as % of nominal ^a
Control	ND	-
Solvent control	ND	-
0.077	0.075	97
0.19	0.18	95
0.48	0.44	92
1.2	1.1	92
3.0	2.9	97

Notes: ND: not detected.

a) Calculated from rounded data

As can be seen the mean measured concentrations were close to the nominal concentrations. The toxicity was expressed in terms of the mean measured concentrations.

The main biological responses are summarised in Table 35.

Mean measured conc. (µg/l)	Total no. eggs (A)	Total no. hatched fry ^a (B)	Total no. live fry ^b	Total no. dead hatched larvae ^c	Total no. dead eggs ^c	Total no. remaining viable eggs	Total no. surviving fry at day 28 (C)	Total hatch (%) ^d	Post- hatch survival (%) ^e	Overall survival (%) ^f
Control	60	52	58	0	0	6	48	87	92	80
Solvent control	60	59	59	0	0	0	53	98	90	88
0.075	60	59	59	0	0	0	48	98	81	80
0.18	60	57	57	0	0	0	48	95	84	80
0.44	61	61	61	0	0	0	41	100	67	67
1.1	60	59	59	0	0	0	47	98	80	78
2.9	60	58	58	0	0	0	13	97	22	22

 Table 35: Total numbers of hatched and surviving fry, hatching success and percentage survival

Notes: a) Back-calculated from numbers of fry surviving to Day 28 by adding the sum of observed larval mortalities throughout exposure period.

b) Number of live larvae on Day 0 post hatch, including remaining viable eggs.

c) Numbers of dead larvae and dead eggs on Day 0 post hatch.

d) Total hatch calculated from the total number of hatched larvae as a percentage of the total number of eggs (B/A).

e) Based on total number of successfully hatched eggs (C/B).

f) Based on total number of eggs at initiation (C/A).

Hatching success

Hatching commenced on the first day after initiation of the study, with 87 % of control eggs having hatched successfully. By day 4 (pre-hatch), hatching was complete for all egg chambers. Hatching success ranged from 87-102% across all the levels. Embryo development was unaffected by the presence of ipconazole (Table 34). The day that >90% control hatching had been achieved was designated as day 0 post-hatch.

Post-hatch survival

On day 28 post-hatch, mortality was statistically significant at concentrations of 0.44 and 2.9 μ g/l (33 and 78%, respectively), but not at the interim level of 1.1 μ g/l where mortality was only 20% and therefore within the guideline acceptance criterion of 30%. The remaining fish from each vessel were counted and the percent post-hatch survival calculated by comparison with the number of hatched larvae in each exposure vessel. The 28-day LC₅₀ was determined to be 2.48 μ g/l and the mean measured NOEC for mortality was determined to be 1.1 μ g/l.

Sub-lethal observations

No clear sub-lethal effects were noted in the appearance and behaviour of fry in either the controls or exposure levels.

Weight and length

The weight and length of the surviving fry were determined on day 28 post-hatch. The data are summarised in Table 36. There were statistically significant effects on both weight and length in both the 1.1 and 2.9 μ g/l treatment groups. The EC₅₀ for weight and length were determined to be 1.63 μ g/l and >2.9 μ g/l, respectively. The mean measured NOEC for weight and length were determined to be 0.44 μ g/l.

Mean measured concentration (µg/l)	Mean fry length (mm)	Mean fry dry weight (mg)
Control	15.6	8.1
Solvent control	16.8	8.0
0.075	16.6	9.4
0.18	15.5	7.0
0.44	16.1	7.0
1.1	14.9*	4.3*
2.9	11.3**	1.5**

Table 50. Mean length and weight for surviving my at day 20 post nater	Table 36:	Mean length and	l weight for survivin	ng fry at day 28 post-hatch
--	-----------	-----------------	-----------------------	-----------------------------

Notes: * Statistically significant compared to the solvent control at p<0.05.

** Statistically significant compared to the solvent control at p<0.001.

The control and solvent control groups met the validity criteria of $\geq 66\%$ hatching success with post hatch survival of $\geq 70\%$.

Overall the lowest mean measured chronic NOEC from this study was $0.44 \mu g/l (0.00044 mg/l)$ based on fish weight and length.

5.4.2 Aquatic invertebrates

5.4.2.1 Short-term toxicity to aquatic invertebrates

The acute toxicity of ipconazole has been determined in an OECD 202 guideline study carried out according to GLP using *Daphnia magna* (Palmer et al., 2001c[70]). The test substance used had a purity of 99.2%.

Stock solutions of the test substance were dissolved in dimethylformamide (DMF) and DMF (0.1 ml/l) was subsequently present in the test solutions. In the test, two replicate groups of 10 animals each were exposed to nominal concentrations of ipconazole of 0.31, 0.63, 1.3, 2.5 or 5.0 mg/l for 48 hours using a flow-through system (28 volume additions over 24 hours). The test included duplicate control groups (dilution water alone) and solvent control groups (dilution water containing DMF at 0.1 ml/l).

During the test, the temperature ranged between 19.8°C and 19.9°C and the pH ranged from 8.1 to 8.3. The dissolved oxygen concentration was at least 91% of the air saturation value. The concentration of test substance present in exposure tanks was verified by HPLC analysis on samples

taken on day 0 and 2 of the test. The water samples were centrifuged prior to analysis. Noncentrifuged samples were also analysed from the 0.31, 1.3 and 5.0 mg/l treatment on days 0 and 2 of the test. The measured concentrations are summarised in Table 37.

 Table 37: Measured concentration of ipconazole in water during the test with Daphnia magna

Nominal test concentration	Measured concen	tration (mg/l)	Mean measured	Mean measured			
(mg/l)	0 days	2 days	concentration (mg/l) ^b	as % of nominal ^b			
Centrifuged samples	Centrifuged samples						
Control	<loq<sup>a</loq<sup>	<loq<sup>a</loq<sup>	-	-			
Solvent control	<loq<sup>a</loq<sup>	<loq<sup>a</loq<sup>	-	-			
0.31	0.133	0.126	0.13	42			
0.63	0.352	0.351	0.35	56			
1.3	0.787	0.729	0.76	58			
2.5	1.63	1.55	1.6	64			
5.0	2.93	3.74	3.3	66			
Non-centrifuged samples							
0.31	0.290	0.283	0.29	94			
1.3	1.06	1.00	1.0	77			
5.0	3.30	4.15	3.7	74			

Notes: a) Limit of quantification (LOQ) was 0.1 mg/l for ipconazole cc and 0.01 mg/l for ipconazole ct.

b) Results were the sum of the ipconazole cc and ct stereoisomers.

The mean measured concentrations in the centrifuged samples were lower than both the nominal concentrations and the concentrations measured in non-centrifuged samples. The toxicity was therefore expressed in terms of mean measured concentrations from the centrifuged samples.

No immobilised *Daphnia* were seen in the control, solvent control or 0.13 mg/l treatment groups after 48 hours exposure. A dose-related increase in mortality (immobilised *Daphnia*) was evident from concentrations of 0.35 mg/l (5% immobilisation) to 3.3 mg/l (80% immobilisation). The 48h-EC₅₀ based on the mean measured exposure concentrations in the centrifuged samples was 1.7 mg/l (95% confidence interval: 1.2-2.6 mg/l).

5.4.2.2 Long-term toxicity to aquatic invertebrates

The long-term toxicity of ipconazole to *Daphnia magna* has been studied in an OECD 211 guideline reproduction study carried out according to GLP (Flatman, 2007[71]). The substance tested had a purity of 98.1% and consisted of 91.2% cc and 6.9% ct. Stock solutions of the test substance were prepared in tetrahydrofuran (THF).

The test system used was a semi-static test system whereby groups of 10 first instar *Daphnia* were exposed to ipconazole for 21 days. In the first test, the mean measured exposure concentrations used were 0.050, 0.112, 0.215, 0.434, 0.84 and 1.7 mg/l. However in this test 100% mortality was seen at

the highest two concentrations and effects on reproduction were seen at all exposure concentrations. As a result a second test was conducted at lower mean measured concentrations of 0.0014, 0.0038, 0.0109, 0.0329 and 0.0969 mg/l. Controls and solvent control groups were also included. Owing to the very shallow dose response seen the author of the study considered that it was necessary to combine the data from both tests in order to determine the full range of endpoints in the study.

During the tests the temperature ranged from 19° C to 22° C and the pH was in the range 7.3 to 8.1. The *Daphnia* were fed suspensions of *Chlorella vulgaris* on a daily basis. The test concentrations were verified by HPLC analysis of samples taken from freshly prepared test media on days 0, 7, 9 and 14 and on expired test media on days 2, 9 and 12 in the first test. In the second test analysis was carried out on samples from freshly prepared test media on days 0, 10, 14 and 19 and on expired test media on days 3, 12, 17 and 21. The measured concentrations are summarised in Table 38.

 Table 38: Measured concentrations of ipconazole during a 21-day chronic Daphnia magna study

Test	Nominal concentration (mg/l)	Mean measured concentration (mg/l)	Mean measured concentration as % nominal
1	Solvent control	ND	-
	0.053	0.050	94
	0.106	0.112	106
	0.213	0.215	101
	0.425	0.434	102
	0.85	0.84	99
	1.70	1.7	100
2	Solvent control	ND	-
	0.0013	0.0014*	106
	0.0039	0.0038	98
	0.0117	0.0109	93
	0.0353	0.0329	93
	0.106	0.0969	91

Notes: * Calculated based on solvent stock recoveries. ND: Not detected.

The measured concentrations were close to nominal concentrations. The toxicity endpoints were expressed in terms of mean measured concentrations.

The biological responses found in the study are summarised in Table 39.

Test	Mean measured concentration (mg/l)	% Immobilisation after 21 days	Cumulative number of young per female after 21 days	Cumulative number of dead young after 21 days compared to solvent control	Mean length per surviving female (mm)
1	Control	0	86	10.6	а
	Solvent control	10	96	0.0	а
	0.050	0	56	41.9	а
	0.112	20	34	64.2	а
	0.215	30	71	25.8	а
	0.434	40	34	64.2	а
	0.84	100	-	-	а
2	Control	5	122	-16.8	4.53
	Solvent control	5	104	0.0	4.45
	0.0014	10	95	7.9	4.44
	0.0038	0	73	29.8	4.37
	0.0109	0	103	1.6	4.40
	0.0329	10	100	4.7	4.25
	0.0969	10	106	-1.5	4.28

Table 39: Chronic toxicity of ipconazole to Daphnia magna in a 21-day study

Notes: a) Lengths were not determined in the first test.

Fecundity

In the first test, a statistically significant (p<0.001) reduction in neonate production occurred at all test concentrations with the exception of the 0.215 mg/l group. This anomaly was thought to be a result of the very flat dose response across the test range. In the second test, the only test level at which a statistically significant reduction in neonate production occurred compared to the solvent control was the second lowest concentration, 0.0038 mg/l. The three higher test concentrations showed no significant reduction in fecundity and it was therefore concluded that the reduction at 0.0038 mg/l was an anomaly and not treatment related.

In the second test, there was a statistically significant difference in the mean number of neonates per adult between the control and the solvent control groups (122 and 104, respectively). The mean numbers of neonates produced per adult were very similar in the control and solvent control during the range finding test (20 and 25, respectively) and in the first test (86 and 96, respectively). It was therefore considered that the difference in the second test was unlikely to be attributable to the solvent. The numbers of neonates produced in the two main tests were in excess of the validity criteria of 60 neonates per surviving adult, confirming the health and acceptability of the test animals. As a result of the variation in reproduction observed between the two control groups, all statistical evaluations were made between the test groups and the solvent control group.

Based on the combined data set from both tests, the 21-day NOEC for fecundity was determined to be 0.215 mg/l.

Time to first brood

In the first test, time to first brood was significantly delayed at all treatment levels but in the second test a significant effect only occurred in the highest treatment level, 0.0969 mg/l. Based on the combined data set from both tests, the NOEC for time to first brood was determined to be 0.0329 mg/l.

Parental growth

The lengths of adults surviving to day 21 were determined in the second test only. A significant treatment related effect on parental body length was identified at the two highest test concentrations of 0.0329 and 0.0969 mg/l.

The 21-day NOEC for parental growth was therefore determined to be 0.0109 mg/l. This was also the overall NOEC and was based on mean measured test concentrations.

The study was conducted in accordance with OECD test guideline 211 and to GLP. Although the test was carried out in two parts and for some endpoints the data from both parts of the test were combined, the most sensitive endpoint was parental growth and the NOEC for this was determined using data from the second test only and so the result is considered to be reliable.

5.4.3 Algae and aquatic plants

The toxicity of ipconazole to *Pseudokirchneriella subcapitata* (formerly known as *Selenastrum capricornutum*) has been studied in an OECD 201 guideline study carried out according to GLP (Flatman, 2006a[72]). The substance used in the test had a purity of 98.1% and consisted of 91.2% of cc and 6.9% ct,

Stock solutions of the test substance were prepared in tetrahydrofuran (THF) and algal cultures were exposed in triplicate to nominal concentrations of 0.046, 0.10, 0.22, 0.46, 1.0 or 2.2 mg/l, together with a control group and solvent control group. The cultures were incubated under continuous illumination with continuous agitation. Cell densities were determined after 0, 24, 48, 72 and 96 hours incubation.

During the test, the temperature ranged between 23°C and 24°C and the pH in the control samples was between 7.7 and 8.9. The concentrations of the test substance in the nutrient medium were verified by analysis using an HPLC method at the start of the test and after 96 hours exposure. The measured concentrations are summarised in Table 40.

As the measured concentrations at test initiation and at 96 hours were generally within 80% of the nominal concentration (or just outside 80% of nominal) the authors calculated the toxicity endpoints based on the nominal concentrations.

Time	Nominal concentration (mg/l)	Measured concentration (mg/l)	Measured concentration as % nominal
0 hours (fresh	Control	ND	-
solution)	0.046	0.0485	105
	0.10	0.105	105
	0.22	0.240	109
	0.46	0.464	101
	1.0	1.05	105
	2.2	2.37	108
96 hours (expired solution)	Control	ND	-
	0.046	0.0382	83.1
solution	0.10	0.0856	85.6
	0.22	0.174	79.1
	0.22 (no algae)	0.257	117
	0.46	0.364	79.1
	1.0	0.907	90.7
	2.2	2.242	102

 Table 40: Measured concentrations of ipconazole during the algal toxicity study

 Pseudokirchneriella subcapitata

Notes: ND: Not detected. Limit of detection was 0.01 mg/l ipconazole (0.00912 mg/l for ipconazole cc and 0.00069 mg/l ipconazole ct).

The effect of exposure on biomass and growth rate is summarised in Table 41.

The growth of the untreated control was significantly less than that observed in the solvent control and the growth in the lower ipconazole treatments was comparable to that of the solvent control. The study author therefore concluded that the solvent used acted as a mild growth stimulant. In evaluating the data, comparisons for the impact of ipconazole on the growth of the algae were therefore made between the treatment groups and the solvent control. This is considered to be acceptable. Cell concentrations in non-solvent control cultures increased by a factor of 208 within 96 hours. Cell concentrations in solvent control cultures increased by a factor of 322 within 96 hours

Parameter	Nominal concentration (mg/l)	% Inhibition compared with solvent control	Statistical significance compared with solvent control (p)
Area under	Control	42.9	<0.001*** ^T
curve to 96 hours	Solvent control	0.0	-
(biomass)	0.046	-14.6	0.127 ^D
	0.10	15.3	0.103 ^D
	0.22	-10.3	0.428 ^D
	0.46	26.6	0.002** ^D
	1.0	66.4	<0.001*** ^D
	2.2	87.4	<0.001*** ^D
Growth rate	Control	7.5	<0.001*** ^T
	Solvent control	0.0	-
	0.046	-3.3	>0.999 ^w
	0.10	3.7	0.396 ^w
	0.22	-0.1	0.396 ^w
	0.46	8.1	<0.001*** ^W
	1.0	24.1	<0.001*** ^W
	2.2	47.8	<0.001*** ^W

Table 41:	Inhibition of algae	e following exposur	e to ipconazole
-----------	---------------------	---------------------	-----------------

Notes: *P* values for the comparison with solvent control using Williams' test (W), Dunnett's test (D) and the *t*-test (T) * p < 0.05

** p<0.01

*** p<0.001

The 96-hour E_bC_{50} of ipconazole to *Pseudokirchneriella subcapitata* was determined to be 0.62 mg/l and the 96-hour E_rC_{50} was determined to be >2.2 mg/l. The 96h-NOEC was determined to be 0.22 mg/l based on both biomass and growth rate. The E_rC_{50} and NOE_rC endpoints at 72 hours are not available, however the data indicate that effects at 96 hours were similar or slightly greater than at 72 hours and so the 72-h ErC_{50} is also expected to be >2.2 mg/l and the 72h-NOE_rC unchanged at 0.22 mg/l. The results are based on the nominal concentration (the measured concentration was generally within 80% of the nominal value during the test).

5.4.4 Other aquatic organisms (including sediment)

The long-term toxicity of ipconazole to sediment-dwelling invertebrates has been studied in an OECD guideline 219 study carried out to GLP using *Chironomus riparius* [73]. The test was carried out using [¹⁴C-benzyl methylene]ipconazole mixed with non-radiolabelled ipconazole with a purity of 98.1% and consisted of 91.2% cc and 6.9% ct.

The test was carried out using artificial sediment consisting of 5% dry weight sphagnum peat, 20% dry weight kaolin clay and 75% dry weight industrial sand (acid-washed fine sand). The pH of the sediment was adjusted to pH 6.6. The test was carried out using glass beakers (8 cm diameter) containing a 2 cm deep layer of sediment with 8 cm of overlying water (400 ml volume). The water-

sediment system was allowed to settle and acclimate to the test conditions for one week prior to the addition of the larvae.

Stock solutions of the test substance were prepared by suspending radiolabelled test substance, diluted with non-radiolabelled ipconazole, in DMF (dimethylformamide). The required volume of each dose solution (or DMF for the solvent control group) was dispensed into the overlying water in the test vessels. Dispersion of the test substance was facilitated by airflow through the system for approximately 5 minutes prior to sampling at time zero.

The test was carried out under static conditions (no renewal of test medium) for 28 days. Four groups, each of 20 first instar *C. riparius* were exposed to nominal ipconazole concentrations of 0.219, 0.438, 0.875, 1.75 and 3.50 mg/l (the concentrations relate to the initial concentration in the water phase). Control groups (four replicate groups of 20) and solvent control groups (eight replicate groups of 20; each containing DMF at 0.1 ml/l) were also established. Four additional test vessels containing ipconazole (two at 0.219 mg/l and two at 3.5 mg/l) were prepared for use as 'destructive' samples for the analysis of water, sediment and pore water. The larvae were fed daily at a rate of 0.5 mg/larvae from days 1 to 9 and 1.0 mg/larvae from day 10 to study termination. The test vessels were aerated throughout the test. The temperature during the test was $20^{\circ}C\pm 2^{\circ}C$.

A sub-sample (5 ml) of the overlying water from each of the treated test vessels (including those intended for destructive sampling) and all control/solvent control vessels was removed following test substance application and after 1, 3, 7, 14 and 28 days incubation and triplicate aliquots were subjected to radioassay by liquid scintillation counting (LSC). The concentration of radioactivity in pore water was measured for destructive samples at days 0 and 7; for all remaining samples, concentration in pore water was measured at Day 28. Following removal of the pore water, sediment from the destructive samples (day 7) and all other samples (day 28) were extracted with acetonitrile; aliquots of the acetonitrile extract were taken for radioassay by LSC. The sediments were then allowed to air-dry for up to 10 days at room temperature before taking aliquots for combustion/radioassay. Control and solvent control sediments at day 28, and destructive samples at day 0, were air-dried for 5 to 7 days then ground and combusted directly without extraction.

The measured concentrations of the test substance in the overlying water at day 0 of the test were 0.205, 0.411, 0.791, 1.62 and 3.33 mg/l, for the nominal 0.219, 0.438, 0.875, 1.75 and 3.50 mg/l treatment groups respectively. The concentration of radiolabel in the overlying water decreased from between 90.5-94.6% of the applied radioactivity on day 0 to 17.0-19.7% of the applied radioactivity on Day 7, and finally to between 8.3 and 9.9% of the applied radioactivity on day 28 (see Table 42). The concentration of radiolabel in the sediment-phase increased from between 7.36-7.46% of the applied radioactivity on day 0 to 59.4-70.1% of the applied radioactivity on day 7, and finally to 60.2-76.6% of the applied radioactivity on day 28. Radioactivity in pore water accounted for <0.1% of the applied radioactivity throughout the study. A maximum of 1.4% AR was recovered from test vessel rinses. In all fractions, total radioactivity on day 28 accounted for 69.6-84.9% of the applied radioactivity.

Nominal treatment	Initial measured	Mean measured concentration as a % of applied radioactivity					
group (mg/l)	concentration added to water (mg/l)	Day 0	Day 1	Day 3	Day 7	Day 14	Day 28
Solvent control	Solvent control	ND	ND	ND	ND	ND	ND
Control	Control	ND	ND	ND	ND	ND	ND
0.219	0.219	93.6	55.7	34.0	17.8	11.9	8.4
0.438	0.436	94.1	49.5	30.3	17.0	12.1	8.3
0.875	0.874	90.5	50.4	33.0	19.1	14.0	9.9
1.75	1.76	92.2	49.8	32.3	18.6	12.3	8.3
3.50	3.52	94.6	55.3	34.5	19.7	14.3	9.4

 Table 42: Summary of measured concentrations of total radioactivity in the overlying water

Notes: ND: None detected, <0.001 mg/l

The concentration data showed that ipconazole partitioned from the water phase to the sediment phase during the study.

Chironomid growth and development were monitored daily. From day 13, when the first midges emerged, adults were sexed and removed from the vessels. The 28-day percentage emergence success was calculated for each treatment. The main findings are summarised in Table 43.

Nominal treatment group (mg/l)	Initial measured concentration added to water (mg/l)	Mean development rate at day 28	Mean % emergence at day 28
Solvent control	Solvent control	0.0655	95.5
Control	Control	0.0682	93.4
0.219	0.219	0.0635	92.3
0.438	0.436	0.0649	94.3
0.875	0.874	0.0597	90.6
1.75	1.76	0.0613	91.9
3.50	3.52	0.0600	83.6

Table 43: Summary of the toxicity of ipconazole to Chironomus riparius

The mean emergence from the control and solvent control groups were 93.4 and 95.5% respectively. The mean emergence from the treatment groups was in the range 83.6 and 94.3% and was not statistically significantly different from the solvent control group at any treatment group. Similarly the development rate was not significantly reduced (p<0.05) compared with the solvent control group and there was no significant difference (p>0.05) in the sex ratio of the emerged midges from each treatment group compared to the solvent control group.

As no significant treatment related effects on emergence or delayed development was seen in this study the NOEC was determined to be 3.52 mg/l (the highest dose tested) and the EC₅₀ was >3.52 mg/l. The results are based on the initial measured applied radioactivity in the water column.

The study is considered to be reliable. However, the results are difficult to use in relation to aquatic classification as the substance partitioned significantly from water to sediment during the course of the study.

5.5 Comparison with criteria for environmental hazards (sections 5.1 – 5.4)

Ipconazole is hydrolytically stable, not readily biodegradable and has a half-life in whole watersediment systems >>16 days. Therefore the substance is considered to be 'not rapidly degradable' for the purposes of hazard classification.

Despite a log K_{ow} of 4.28-4.65, the substance has a low potential for bioaccumulation as the steadystate BCF has been experimentally determined in fish to be 225-283 l/kg. This is less than the CLP cut-off value of 500 l/kg.

The toxicity of ipconazole to aquatic species is summarised in Table 31 and the key acute and chronic classification endpoints are included below in Table 44.

Species	Acute Toxicity L/EC50 (mg/l)	Chronic Toxicity NOEC (mg/l)
Fish	96h-LC ₅₀ : 1.3 mg/l (<i>Lepomis macrochirus</i>)	28d-NOEC: 0.00044 mg/l (Pimephales promelas)
Daphnia magna	48 h-EC ₅₀ : 1.7 mg/l	21d-NOEC: 0.0109 mg/l
Algae	96h-E _r C ₅₀ : >2.2 mg/l (<i>Pseudokirchneriella subcapitata</i>)	96h-NOE _r C: 0.22 mg/l (<i>Pseudokirchneriella subcapitata</i>)

Table 44: Key acute and chronic aquatic toxicity endpoints for ipconazole

The lowest reliable acute/short-term $L(E)C_{50}$ is 1.3 mg/l for fish (mean measured), which is above the CLP Aquatic Acute Toxicity criterion of ≤ 1 mg/l. Therefore it is proposed that the substance is not classified for aquatic acute toxicity.

Chronic/long-term toxicity data are available for fish, *Daphnia magna* and algae. Chronic NOECs <0.1 mg/l were obtained with both fish and *Daphnia magna*. The lowest chronic NOEC is the 28day mean measured value of 0.00044 mg/l for *Pimephales promelas* from a reliable fish early-life stage study. At the time of writing, no longer-term fish study, e.g. investigating potential endocrine disruption, is available. These data indicate that the substance should be classified as Chronic Category 1 (H410). It is further proposed that the appropriate Chronic M-factor is 100 since ipconazole is not rapidly degradable and its lowest NOEC is between 0.0001 and 0.001 mg/l.

Note: The available information on environmental degradants of ipconazole is considered briefly in Annex IV. These were mainly assessed in the DAR in relation to their formation, persistence and risks to soil and none were identified in the EFSA Conclusion (2013) [74] as being 'major' (i.e. formed at $\geq 10\%$ Applied Radioactivity) in water or sediment. It would, in any case, appear from the limited ecotoxicity data available on 1*H*-1,2,4-triazole and the self-classifications of 4-chlorobenzoic acid and 4-chlorobenzaldehyde, that these predominantly soil degradants are less aquatically toxic than the parent substance. Therefore, degradants are not considered to affect the proposed environmental classification of ipconazole.

5.6 Conclusions on classification and labelling for environmental hazards (sections 5.1 – 5.4)

Aquatic Acute Category: Not classified (conclusive but not sufficient for classification)

Aquatic Chronic Category 1: H410: Very toxic to aquatic life with long lasting effects

Chronic M-factor = 100

RAC evaluation of aquatic hazards (acute and chronic)

Summary of the Dossier Submitter's proposal

Regarding the substance identity, the following was provided by the DS:

CAS 125225-28-7 – all stereoisomers CAS 115850-69-6 – *cis-cis* (cc) racemate: 87.5–93% CAS 115937-89-8 – *cist-trans* (ct) racemate: 6.5–9.5%

Water solubility (- EEC A.6., Comb, 2001, 2007; DAR B.2.1.11) ranged between 4-11 mg/L in different pHs and the octanol-water partition coefficient (Log K_{ow}) between 4.3-4.65. Regarding sorption, a K_{oc} of 1,724–3,214 mL/g was derived, with a mean value of 2,431 mL/g, determined in six different soil types (Hatzenbeler & Long, 2001b; Wanner, 2006).

Degradability

Aquatic photolysis is not likely due to the lack of absorption at >290 nm. No measured data.

Photolysis on soil surface: $DT_{50} \approx 241$ days of summer sunlight at 40°N – SETAC, 1995 (Shaw, 2005b).

Hydrolytically stable: $DT_{50} > 1$ year at 25°C, at pH 5, 7 & 9 – OECD TG 111 (Hatzenbeler & Long, 2001a).

Not readily biodegradable: less than 60% of theoretical CO_2 production was reached within 29 days – OECD TG 301B (Barnes, 2005b)

Simulation studies: biodegradation $DT_{50} >> 100$ days in whole water-sediment systems – OECD TG 308 (Shaw, 2005d) and in soils under aerobic or anaerobic conditions – OECD TG 307 (Shaw, 2005a,c; Mellor, 2006).

Ipconazole showed only slow degradation in the environment; the DS proposed to consider the substance as non-rapidly degradable for the purpose of environmental hazard classification.

Degradation products

A number of ipconazole degradation products have been identified (UK, 2011; EFSA, 2013), predominantly in soil. By use of radio-labelled ipconazole, more than 10 minor degradants could be differentiated in soil, corresponding to 11–13% in total. None of the major degradants, such as the hydroxylated forms of ipconazole, the cleaved triazole moieties and clorobenzoic acid, -aldehyde or -alcohol derivatives – were identified in the EFSA conclusion (2013) as equally or more hazardous than ipconazole.

Bioaccumulation

Bioconcentration in fish: steady state BCF 225–283 L/kg in *Lepomis macrochirus* – OECD TG 305 (Kureha Corporation, 2006).

Despite a Log $K_{OW} = 4.28-4.65$, the substance has a low potential for bioaccumulation.

Aquatic toxicity – summary table

Method	Results	Re marks	Reference
Acute fish toxicity – OECD TG 203	96h-LC ₅₀ = 1.5 mg/L mm <i>Oncorhynchus mykiss</i>	GLP	Kureha Corporation, 2001a
Acute fish toxicity – OECD TG 203	96h-LC ₅₀ = 1.3 mg/L mm <i>Lepomis macrochirus</i>	GLP	Kureha Corporation, 2001b
Chronic fish toxicity – OECD TG 210	28d-NOEC = 0.00044 mg/L mm <i>Pimephales promelas</i>	GLP	Kureha Corporation, 2007
Acute invertebrate toxicity – OECD TG 202	48h-EC ₅₀ = 1.7 mg/L mm <i>Daphnia magna</i>	GLP	Palmer et al., 2001c
Chronic invertebrate toxicity – OECD TG 211	21d-NOEC = 0.0109 mg/L mm Daphnia magna	GLP	Flatman, 2007
Toxicity to algae – OECD TG 201	96h-E _r C ₅₀ >2.2 mg/L nominal 96h-NOEC _r = 0.22 mg/L nominal <i>Pseudokirchneriella subcapitata</i>	GLP	Flatman, 2006a
Long-term toxicity <i>Chironomus riparius</i> OECD TG 219	28d-NOEC = 3.52 mg/L	GLP	Flatman, 2006b
mm – moan moasurod		1	

mm = mean measured

Proposal of DS for classification

The DS proposed no classification for acute aquatic hazards, based on acute toxicity above the CLP cut-off value of 1 mg/L.

For chronic classification, toxicity data are available for fish, *Daphnia magna* and algae. Based on a lowest NOEC value of 0.00044 mg/L and the fact that ipconazole is considered non-rapidly degradable, the DDA proposed classification as Aquatic Chronic 1 (H410, very toxic to aquatic life with long lasting effects), with an M-factor of 100.

Comments received during public consultation

Five commenting Member States agreed with the proposed classification and no one opposed.

Some minor clarifications were requested by two commenting parties concerning the concrete values of NOEC and BCF values, on which the classification as Aquatic Chronic 1 with an M of 100 are based. However, even if the lowest NOEC value would change based on the conclusion on the statistical significance of mortality effects at a given concentration (see following paragraph), it would not change the proposed classification.

One MSCA commented that they would use a NOEC value of 0.00018 mg/L, instead of a NOEC of 0.00044 mg/L as proposed by the DS – taking into account the 20% mortality at a 1.1 μ g/L ipconazole concentration, which was considered as not significant by DS and therefore not used. The DS replied that the NOEC value proposed is outside the acceptability criterion of 30% (being only 22%), and that the NOEC of 0.00044 mg/L is supported by other endpoints such as fish weight and length besides fish mortality. An additional argument is the EFSA peer review conclusion for ipconazole, with the same lowest NOEC value of 0.00044 mg/L (EFSA, 2013).

The same MSCA also commented that the final concentration of THF (tetrahydrofuran) solvent used in the chronic fish and daphnia studies was lacking. The DS complemented this information with the value of 0.1 mL THF/L diluent water and clarified that the "comparison of the solvent and blank controls does not reveal any adverse effects from use of this solvent in either test".

Another MSCA commented that the lipid normalised BCF value for fish was lacking, and that they were not satisfied with the DS's conclusion that the final lipid content of the studied fish is close to 5%. The MSCA calculated and proposed a lipid normalised BCF using a 0–48 days time-averaged lipid content.

Assessment and comparison with the classification criteria

Ipconazole is hydrolytically stable, not readily biodegradable and has a half-life in whole water-sediment systems $DT_{50} >> 16$ days. Therefore, the substance is considered to be non-rapidly degradable for the purposes of hazard classification.

The substance has low bioaccumulation, as the steady-state BCF has been experimentally determined in fish to be 225–283 L/kg. RAC prefers to calculate the lipid normalised BCF according to OECD TG 305, Annex 5, which states that "*If the same fish were used for measuring chemical concentrations and lipid contents at all sampling points, this requires each individual measured concentration in the fish to be corrected for that fish's lipid content.*" and "For the steady-state BCF, the mean value recorded at the end of the uptake phase in the treatment group should be used". Taking the worst case scenario into consideration, the maximum lipid normalised BCF would be 338 L/kg, which is calculated from the highest measured BCF = 283 L/kg x 5%/4.19% (the lowest lipid content at the end of the uptake phase), which is still below the CLP cut-off value of 500.

The results from all aquatic acute toxicity studies gave LC/EC_{50} values above the CLP cutoff criterion of 1 mg/L (fish: 1.3 mg/L; daphnia: 1.7 mg/L; algae: 2.2 mg/L. Therefore, it is proposed that the substance is not classified for Aquatic Acute hazards.

Concerning chronic aquatic toxicity, RAC agrees with the DS that the most appropriate fish (*Pimephales promelas*) NOEC value is 0.00044 mg/L. This is also the value to be used for chronic classification, as aquatic invertebrate and algae NOECs were higher than this value (*Daphnia Magna* NOEC = 0.0109 mg/L; algae NOErC = 0.22 mg/L). Thus, the substance should be classified as **Aquatic Chronic 1 - H410**. As 0.0001 < NOEC \leq 0.001 and the substance is considered non-rapidly degradable, the appropriate chronic **M-factor is 100**.

6 OTHER INFORMATION

No other relevant information.

7 **REFERENCES**

Draft Assessment Report (DAR) - Ipconazole - Volume 3, Annex B.2: Physical and Chemical properties – November 2011 and Addendum 5 to the DAR – Volume 3, Annex B.2: Physical and Chemical properties - November 2012

Draft Assessment Report for ipconazole, Volume 3 Annex B.6 – Toxicology and Metabolism - November 2011.

Draft Assessment Report for ipconazole, Volume 3 Annex B.8 - Environmental fate and behaviour and B.9. Ecotoxicology - November 2011 and Addenda 7 and 8 to the DAR – January 2013

Specific References

Physical Hazards

[1] Comb, A. L. 2005a Ipconazole (technical): Physico-chemical properties, Huntingdon Life Sciences Ltd., UK, Laboratory no. KRA 115/052887, Kureha Corporation, Report no. IP-018-P, GLP, unpublished,

[2] Comb, A. L. 2005b Ipconazole cc: Physico-chemical properties, Huntingdon Life Sciences Ltd., UK, Laboratory no. KRA 118/053092, Kureha Corporation, Report no. IP-019-P, GLP, unpublished,

[3] Comb, A. L. 2005c Ipconazole ct: Physico-chemical properties, Huntingdon Life Sciences Ltd., UK, Laboratory no. KRA 114/053092, Kureha Corporation, Report no. IP-020-P, GLP, unpublished,

[4] Comb, A.L. 2007 Ipconazole: Physico-chemical properties, Huntingdon Life Sciences, Ltd., UK, Laboratory no. KRA 0144/072292, Kureha Corporation, Report no. IP-011-P, GLP, unpublished

[5] Riggs, A. S. 2001a The melting point range of ipconazole technical, Crompton Corporation, Canada, Laboratory no. GRL-FR-11700, Kureha Corporation, Report no. IP-010-P, GLP, unpublished

[6] Woolley, S. M. and Mullee, D. M. 2000a Ipconazole cc: Determination of boiling temperature, Safepharm Laboratories Limited, UK, Laboratory no. 1293/026, Kureha Corporation, Report no. IP-012-P, GLP, unpublished

[7] Woolley, S. M. and Mullee, D. M. 2000b Ipconazole ct: Determination of boiling temperature, Safepharm Laboratories Limited, UK, Laboratory no. 1293/029, Kureha Corporation, Report no. IP-013-P, GLP, unpublished

[8] Woolley, S. M. and Mullee, D. M. 2000g Ipconazole cc: Determination of density, Safepharm Laboratories Limited, UK, Laboratory no. 1293/027, Kureha Corporation, Report no. IP-014-P, GLP, unpublished

[9] Woolley, S. M. and Mullee, D. M. 2000h Ipconazole ct: Determination of density, Safepharm Laboratories Limited, UK, Laboratory no.: 1293/030, Kureha Corporation, Report no. IP-015-P, GLP, unpublished

[10] Riggs, A. S. 2001b The solubility of ipconazole in water and aqueous buffers, Crompton Co., Canada, Laboratory no. GRL-11702, Kureha Corporation, Report no. IP-026-P, GLP, unpublished

[11] Riggs, A. S. 2001d The partition coefficient (n-octanol/water) of ipconazole, Crompton Corporation, Canada, Laboratory no. GRL-11705, Kureha Corporation, Report no. IP-028-P, GLP, unpublished

[12] Comb, A.L. 2012a Ipconazole cc Partition Coefficient by Flask Method, Huntingdon Life Sciences Ltd., UK, Laboratory project no. OPB0052, Kureha Corporation, Report no. IP-155-P, GLP, unpublished

[13] Comb, A.L. 2012b Ipconazole ct Partition Coefficient by Flask Method, Huntingdon Life Sciences Ltd., UK Laboratory project no. OPB0053, Kureha Corporation, Report no. IP-156-P, GLP, unpublished

[14] Yu, W. S. 2001b The dissociation constant of ipconazole, Crompton Co., Canada, Laboratory no. GRL-11704, Kureha Corporation, Report no. IP-029-P, GLP, unpublished

Human Health Hazards

[15] Kureha Corporation, *Ipconazole: metabolism in rats.* 2007.

[16]. Kureha Corporation, Acute oral toxicity study of KNF-317 in rats. 1989.

[17] Kureha Corporation, Acute oral study of KNF-317 in mice. 1989.

[18] Kureha Corporation, *Ipconazole technical: an acute (4-hour) inhalation study in the rat via nose-only exposure.* 2003.

[19] Kureha Corporation, Acute inhalation toxicity of KNF-317 technical in rats. 1991.

[20] Kureha Corporation, Acute dermal toxicity study of KNF-317 in rats. 1989.

[21] Kureha Corporation, Primary dermal irritation study of ipconazole in rabbits. 1997.

[22] Kureha Corporation, Primary eye irritation study of ipconazole in rabbits. 1997.

[23] Kureha Corporation, Dermal sensitization in guinea pigs. 1997.

[24] Kureha Corporation, *KNF-317: preliminary toxicity study by dietary administration to Han Wistar rats for 4 weeks.* 2003.

[25] Kureha Corporation, *Ipconazole: toxicity study by dietary administration to Han Wistar rats for 13 weeks. Amended final report.* 2006.

[26] Kureha Corporation, *Ipconazole: preliminary toxicity study by dietary administration to CD-1 mice for 4 weeks.* 2006.

[27] Kureha Corporation, *Ipconazole: preliminary toxicity study by dietary administration to CD-1 mice for 13 weeks*. 2005.

[28] Kureha Corporation, *Ipconazole: maximum tolerated dosage study by oral capsule administration to beagle dogs.* 2005.

[29] Kureha Corporation, *Ipconazole: preliminary toxicity study by oral capsule administration to Beagle dogs for 4 weeks.* 2005.

[30] Kureha Corporation, *Ipconazole: toxicity study by oral capsule administration to beagle dogs for 13 weeks.* 2006.

[31] Kureha Corporation, *Ipconazole: toxicity study by oral capsule administration to Beagle dogs for 52 weeks.* 2007.

[32] Kureha Corporation, *Ipconazole: a 4-week inhalation toxicity study in the rat via nose-only exposure.* 2006.

[33] Kureha Corporation, *Ipconazole: a 28-day dermal toxicity study in rats.* 2006.

[34] Pronk, M.E.J., Fore-stomach tumours. Fact-sheet FSV-11/00, in Fact-sheets for the (eco)toxicological risk assessment strategy of the National Institute for Public Health and the Environment. Part IV. 2003.

[35] Mitchell, J. and R.J. Cenedella, *Human lens cholesterol concentrations in patients who used lovastatin or simvastatin.* Archives of Ophthalmology, 1999. 117: p. 653-657.

[36] Nishitomi, T., *Bacterial reverse mutation study of KNF-317*. 1989, Institute of Toxicology and Environmental Sciences, Japan.

[37] Nishitomi, T., *Chromosomal aberration study of KNF-317 in cultured mammalian cells*. 1989, Mitsubishi-Kasei Institute of Toxicological and Environmental Sciences, Kashima Laboratory, Ibaraki, Japan.

[38] Cifone, M.A., *CHO HGPRT forward mutation assay with duplicate cultures with ipconazole (amended final report)*. 2001, Uniroyal Chemical Company, USA. Covance Laboratories Inc., USA.

[39]. Nishitomi, T., *Bacterial DNA repair study of KNF-317*. 1989, Mitsubishi-Kasei Institute of Toxicological and Environmental Sciences, Kashima Laboratory, Ibaraki, Japan.

[40] Kureha Corporation, *Micronucleus test of ipconazole in mice (amended final report)*. 2005.

[41] Kureha Corporation, *Ipconazole: combined carcinogenicity and chronic toxicity study by dietary administration to Han Wistar rats for 104 weeks*. 2006.

[42] Kureha Corporation, *Ipconazole: carcinogenicity study by dietary administration to CD-1 mice for 78 weeks.* 2007.

[43] Kureha Corporation, *Ipconazole: two-generation reproductive performance study by dietary administration to Han Wistar rats.* 2006.

[44] Kureha Corporation, KNF-317: Teratogenicity study in rats - preliminary study. 1990.

[45] Kureha Corporation, KNF-317: teratogenicity study in rats. 1990.

[46] Kureha Corporation, *KNF-317: teratogenicity study in rabbits - preliminary study*. 1990.

[47] Ema, M., et al., *Historical control data on prenatal developmental toxicity studies in rabbits.* Congenital Anomalies, 2012. 52: p. 155-161.

[48] Kureha Corporation, *Teratogenicity study in rabbits*. 1991.

[49] ECETOC, *Guidance on evaluation of reproductive toxicity data*. 2002, European Centre for Ecotoxicology and Toxicology of Chemicals: Brussels. p. 1-141.

[50] Makris, S.L., et al., *Terminology of developmental abnormalities in common laboratory mammals (version 2)*. Congenital Anomalies, 2009. 49(3): p. 123-246.

[51] Aoyama, H, Kikuta, M., Shirasaka, N., Hojo, H., Takahashi, K. L., Shimizu, N., Harigae, M., Taguchi, F., Teramoto, S. *Historical control data on reproductive abilities and incidences of spontaneous fetal malformations in Wistar Hannover GALAS rats*. Congenital Anomalies, 2002. 42: p/194-201.

[52] Ema, M., et al., *Historical control data on developmental toxicity studies in rodents*. Congenital Anomalies, 2014. 54: p. 150-161.

[53] Khera, K.S., *Common fetal aberrations and their teratologic significance: a review*. Fundamental and Applied Toxicology, 1985. 1: p. 13-18.

[54] Rogers, J.M., et al., *Evaluation and interpretation of maternal toxicity in Segment II studies: issues, some answers, and data needs.* Toxicology and Applied Pharmacology, 2005. 207: p. S367-S374.

[55] Danielsson, B.R., *Maternal toxicity*. Methods in Molecular Biology, 2013. 947: p. 311-325.

[56] Chapin, R.E., et al., *The effects of feed restriction on reproductive function in Sprague-Dawley rats.* Fundamental and Applied Toxicology, 1993. 20: p. 23-29.

[57] Carney, E.W., et al., *The effects of feed restriction during in utero and postnatal development in rats.* Toxicological Sciences, 2004. 82: p. 237-249.

Environmental Hazards

[58] Hatzenbeler CJ, Long MC (2001a) A hydrolysis study of [¹⁴C] ipconazole in water. Kureha Corporation. Report no. IP-085-F, unpublished.

[59] Shaw D (2005b) Ipconazole: Soil photolysis. Kureha Corporation. Report no. IP-080-F, unpublished.

[60] Barnes SP (2005) Ipconazole: Assessment of ready biodegradability - modified sturm test. Kureha Corporation. Report no. IP-087-F, unpublished.

[61] Shaw D (2005d) Ipconazole: Aerobic transformation in aquatic sediment systems. Kureha Corporation. Report no. IP-088-F, unpublished.

[62] Shaw D (2005a) Ipconazole: Metabolic fate in soil under aerobic conditions. Kureha Corporation. Report no. IP-078-F, unpublished.

[63] Shaw D (2005c) Ipconazole: Rate of degradation in three aerobic soils. Kureha Corporation. Report no. IP-081-F, unpublished.

[64] Mellor SJ (2006) Ipconazole: Anaerobic soil route and rate of degradation. Kureha Corporation. Report no. IP-079-F, unpublished.

[65] Riggs AS (2001) The partition coefficient (n-octanol/water) of ipconazole. Kureha Corporation. Report no. IP-028-P, unpublished.

[66] (2006) Ipconazole: Bioconcentration in Bluegill sunfish. Kureha Corporation. Report no. IP-099-E, unpublished.

[67] (2001a) Ipconazole: A 96-hour flow-through acute toxicity test with the rainbow trout (*Oncorhynchus mykiss*). Kureha Corporation. Report no. IP-096-E, unpublished.

[68] (2001b) Ipconazole: A 96-hour flow-through acute toxicity test with the bluegill (*Lepomis macrochirus*). Kureha Corporation. Report no. IP-097-E, [68]

[69] (2007) Ipconazole: Fish early life stage toxicity test for Fathead minnow. Kureha Corporation. Report no. IP-098-E, unpublished.

[70] Palmer SJ, Kendall TZ, Krueger HO (2001c) Ipconazole: A 48-hour flow-through acute toxicity test with the cladoceran (*Daphnia magna*). Kureha Corporation. Report no. IP-100-E, unpublished.

[71] Flatman D (2007) Ipconazole: Prolonged toxicity to Daphnia magna. Kureha Corporation. Report no. IP-101-E, unpublished.

[72] Flatman D (2006a) Ipconazole: Algal growth inhibition assay. Kureha Corporation. Report no. IP-102-E, unpublished.

[73] Flatman D (2006b) Ipconazole: Toxicity to the sediment-dwelling phase of the midge *Chironomus riparius*. Kureha Corporation. Report no. IP-103-E, unpublished.

[74] EFSA (2013). Conclusion on pesticide peer review. Conclusion on the peer review of the pesticide risk assessment of the active substance ipconazole. European Food Safety Authority. EFSA Journal, **11**(4):3181.

[75] Hatzenbeler CJ, Long M (2001b) Adsorption and Desorption of [¹⁴C] ipconazole in soils. Uniroyal Chemical Company, USA. Report no.IP-082-F, unpublished.

[76] Wanner U (2006) [¹⁴C]-ipconazole: Adsorption/desorption to a loamy sand (batch equilibrium method). Chemtura Corporation, USA. Report no. IP-083-F, unpublished.

8 ANNEXES

8.1 Annex I: Mean body weights of rat fetuses with and without external malformations (developmental toxicity studies)

 Table 1
 Study no. 89–0062
 KNF-317; Teratogenicity Study in Rats (Preliminary Study)

 Mean body weights of fetuses with or without external malformations

1) Information on all fetuses

	_	B.W. (n	ng)
Category	n	Mean	S.D.
Without microphthalmia	371	3226	522
With microphthalmia	10	1851	461
Without kinky/short tail	373	3222	524
With kinky/short tail	8	1705	367
Without microphthalmia/kinky and/or short tail	366	3245	498
With microphthalmia/kinky and/or short tail	15	1847	420

2) Information in each treatment group

				Dose le	vel (mg/kį	g∕day)				
		0			1		10			
_	_	B.W. (n	ng)	_	B.W. (r	ng)	_	B.W. (r	ng)	
Category	n	Mean	S.D.	n	Mean	S.D.	n	Mean	S.D.	
Without microphthalmia	94	3369	313	87	3526	352	79	3360	410	
With microphthalmia	0	-	-	1	1411	-	0	-	-	
Without kinky/short tail	94	3369	313	88	3502	416	79	3360	410	
With kinky/short tail	0	-	-	0	-	-	0	-	-	
Without microphthalmia/kinky and/or short tail	94	3369	313	87	3526	352	79	3360	410	
With microphthalmia/kinky and/or short tail	0	-	-	1	1411	-	0	-	-	

		Dose	e level (m	ng/kg/d	ay)	
_		50				
	_	B.W. (r	_	B.W. (r	ng)	
Category	n	Mean	S.D.	n	Mean	S.D.
Without microphthalmia	84	2928	466	27	2296	554
With microphthalmia	2	2173	569	7	1822	443
Without kinky/short tail	85	2918	476	27	2347	517
With kinky/short tail	1	2260	-	7	1626	314
Without microphthalmia/kinky and/or short tail	83	2936	463	23	2393	530
With microphthalmia/kinky and/or short tail	3	2202	406	11	1790	392

3) Information in each litter with external malformations

			Litter n	o. and	dose level	(mg/kg/o	lay)			
_		1038 (1)			1012 (50)		1015 (100)			
_	_	B.W. (n	ng)	_	B.W. (r	ng)	_	B.W. (r	ng)	
Category	n	Mean	S.D.	n	Mean	S.D.	n	Mean	S.D.	
Without microphthalmia	16	3344	159	8	2724	453	5	1832	473	
With microphthalmia	1	1411	-	2	2173	569	3	1563	345	
Without kinky/short tail	17	3230	494	9	2653	513	4	1837	443	
With kinky/short tail	0	-	-	1	2260	-	4	1625	443	
Without microphthalmia/kinky and/or short tail	16	3344	159	7	2790	446	2	1916	745	
With microphthalmia/kinky and/or short tail	1	1411	-	3	2202	406	6	1669	353	

			Litter n	o. and (dose level					
	1016 (100)				017 (100)		1019 (100)			
_	_	B.W. (n	ng)	_	B.W. (n	ng)	_	B.W. (mg)		
Category	n	Mean	S.D.	n	Mean	S.D.	n	Mean	S.D.	
Without microphthalmia	3	1920	299	0	-	-	3	2146	347	
With microphthalmia	2	1634	50	1	2404	-	1	2394	-	
Without kinky/short tail	2	2073	197	1	2404	-	4	2208	310	
With kinky/short tail	3	1627	37	0	-	-	0	-	-	
Without microphthalmia/kinky and/or short tail	2	2073	197	0	-	-	3	2146	347	
With microphthalmia/kinky and/or short tail	3	1627	37	1	2404	-	1	2394	-	

Table 2 Study no. 89–0063 KNF-317; Teratogenicity Study in Rats Mean body weights of fetuses with or without external malformations

1) Information on all fetuses

		B.W. (r	ng)
Category	n	Mean	S.D.
Without microphthalmia	1367	3410	339
With microphthalmia	2	1999	74
Without kinky/short tail	1369	3408	343
With kinky/short tail	0	-	_

2) Information in each treatment group

					Dose	level (n	ng/kg/d	lay)					
	0				3			10			30		
-	_	B.W. (r	mg)		B.W. (r	ng)		B.W. (r	ng)		B.W. (r	ng)	
Category	n	Mean	S.D.	n	Mean	S.D.	n	Mean	S.D.	n	Mean	S.D.	
Without microphthalmia	324	3496	296	352	3434	375	339	3445	324	352	3272	312	
With microphthalmia	0	-	-	0	-	-	0	-	-	2	1999	74	
Without kinky/short tail	324	3496	296	352	3434	375	339	3445	324	354	3265	325	
With kinky/short tail	0	-	-	0	-	-	0	-	-	0	-	-	

3) Information in each litter with external malformations

	Lit	ter no. ar	ng/kg/day)			
_		77 (30)			80 (30)	
		B.W. (r	ng)	_	B.W. (r	ng)
Category	n	Mean	S.D.	n	Mean	S.D.
Without microphthalmia	17	3305	170	14	3334	324
With microphthalmia	1	2051	-	1	1947	-
Without kinky/short tail	18	3235	338	15	3241	475
With kinky/short tail	0	-	-	0	-	-

8.2 Annex II: Developmental toxicity studies in rats: individual fetal data on sex, body weights and external malformations

	Animal	Total no. of	Sex/	B. W./	Findings	
g/kg/day)	no.	live fetuses	(m/f)	(mg)		
50	1008	12	m	3216	N	
50	1008	12	m	3204	N	
50	1008	12	m	2636	N	
50	1008	12	m	3179	N	
50	1008	12	m	3436	N	
50	1008	12	m	3131	N	
50	1008	12	f	2464	N	
50	1008	12	f	3279	N	
50	1008	12	f	2804	N	
50	1008	12	f	3291	N	
50	1008	12	f	2826	N	
50	1008	12	f	2865	N	
50	1009	11	m	2386	N	
50	1009	11	m	2974	N	
50	1009	11	m	1843	N	
50	1009	11	m	2328	N	
50	1009	11	m	2472	N	
50	1009	11	f	2610	N	
50	1009	11	f	3194	N	
50	1009	11	f	2801	N	
50	1009	11	f	2480	N	
50				2480		
	1009	11	f		N	
50	1009	11	f	2521	N	
50	1010	14	m	1951	N	
50	1010	14	m	3495	N	
50	1010	14	m	2915	N	
50	1010	14	m	2406	N	
50	1010	14	m	2258	N	
50	1010	14	m	2706	N	
50	1010	14	m	2221	N	
50	1010	14	f	3014	N	
50	1010	14	f	1989	N	
50	1010	14	f	2825	N	
50	1010	14	f	2325	N	
50	1010	14	f	3303	N	
50	1010	14	f	2302	N	
50	1010	14	f	3036	N	
50	1011	11	m	3270	N	
50	1011	11	m	3575	N	
50	1011	11	m	3398	N	
50	1011	11	m	3751	N	
50	1011	11	f	3444	N	
50	1011	11	f	3455	N	
50	1011	11	f	3217	N	
	1011	11	f	3424	N	
50		11		0424		
50 50			f	2736	N	
50 50 50	1011	11 11	f f	2736 3203	N N	

Appendix 1 Study no. 89–0062 KNF-317; Teratogenicity Study in Rats (Preliminary Study) Fetal sex, body weights and external malformations – Individual data

Dose level	Animal	Total no. of	Sex/	B. W./	Findings
(mg/kg/day)	no.	live fetuses	(m/f)	(mg)	1 II GIII GO
50	1012	10	f	2575	Microphthalmia
50	1012	10	f	1770	Microphthalmia
50	1012	10	m	2260	Kinky tail
50	1012	10	f	2883	Ν
50	1012	10	f	3246	N
50	1012	10	f	2512	N
50	1012	10	m	2348	N
50	1012	10	m	3076	N
50	1012	10	m	3286	N
50	1012	10	m	2177	N
50	1013	14	m	3110	N
50	1013	14	m	3199	N
50	1013	14	m	2081	N
50	1013	14	m	2128	Ν
50	1013	14	m	2900	N
50	1013	14	m	2872	N
50	1013	14	m	3252	N
50	1013	14	m	2513	N
50	1013	14	f	2978	N
50	1013	14	f	2468	N
50	1013	14	f	2625	N
50	1013	14	f	3101	N
50	1013	14	f	2707	N
50	1013	14	f	2802	N
50	1014	14	m	3603	N
50	1014	14	m	3416	N
50	1014	14	m	3330	N
50	1014	14	m	3591	N
50	1014	14	m	3535	N
50	1014	14	f	3132	N
50	1014	14	f	3234	N
50	1014	14	f	3175	N
50	1014	14	f	3351	N
50	1014	14	f	3387	N
50	1014	14	f	2885	N
50	1014	14	f	3474	N
50	1014	14	f	3538	N
50	1014	14	f	3364	N

Appendix 1 Study no. 89–0062 KNF-317; Teratogenicity Study in Rats (Preliminary Study) Fetal sex, body weights and external malformations – Individual data

Dose level (mg/kg/day)	Animal no.	Total no. of live fetuses	Sex/ (m/f)	B. W./ (mg)	Findings
100	1015	8	f	1825	Microphthalmia
100	1015	8	f	1691	Microphthalmia
100	1015	8	m	1172	Microphthalmia, Kinky tail, Micrognathia, Meningoencephalocele
100	1015	8	f	2211	Kinky tail
100	1015	8	m	1433	Kinky tail
100	1015	8	f	1683	Short tail
100	1015	8	m	1389	N
100	1015	8	f	2443	Ν
100	1016	5	f	1598	Microphthalmia, Kinky tail
100	1016	5	m	1669	Microphthalmia, Kinky tail, Short tail
100	1016	5	m	1615	Kinky tail, Omphalocele
100	1016	5	m	2212	N
100	1016	5	f	1934	Ν
100	1017	1	f	2404	Microphthalmia
100	1018	0			
100	1019	4	f	1750	N
100	1019	4	m	2400	Ν
100	1019	4	m	2394	Microphthalmia
100	1019	4	f	2287	N
100	1020	3	m	2718	Ν
100	1020	3	m	1862	Ν
100	1020	3	m	1424	Ν
100	1021	13	m	2778	N
100	1021	13	m	2522	Ν
100	1021	13	m	2563	Ν
100	1021	13	m	2507	Ν
100	1021	13	m	2629	N
100	1021	13	m	2414	Ν
100	1021	13	f	2424	N
100	1021	13	f	1679	Ν
100	1021	13	f	3552	N
100	1021	13	f	2756	Ν
100	1021	13	f	3071	N
100	1021	13	f	2761	Ν
100	1021	13	f	2968	N

Dose level	Animal	Total no. of	Sex/	B. W./	Findings	
(mg/kg/day)	no.	live fetuses	(m/f)	(mg)		
10	49	15	f	3216	N	
10	49	15	f	3268	N	
10	49	15	f	3083	N	
10	49	15	f	3391	N	
10	49	15	m	3603	N	
10	49	15	m	3696	N	
10	49	15	m	3605	N	
10	49	15	m	3457	N	
10	49	15	f	3308	N	
10	49	15	f	3396	N	
10	49	15	f	3499	N	
10	49	15	m	3615	N	
10	49	15	f	3381	N	
10	49	15	f	3446	N	
10	49	15	m	3789	N	
10	50	14	m	3276	N	
10	50	14	m	3028	N	
10	50	14	m	3111	N	
10	50	14	m	3606	N	
10	50	14	m	3294	N	
10	50	14	m	3179	N	
10	50	14	f	2959	N	
10	50	14	f	2925	N	
10	50	14	m	3354	N	
10	50	14	f	3007	N	
10	50	14	m	3194	N	
10	50	14	f	3147	N	
10	50	14	f	3332	N	
10	50	14	f	3408	N	
10	51	17	f	3334	N	
10	51	17	m	3769	N	
10	51	17	f	3787	N	
10	51	17	 m	3677	N	
10	51	17	m	3745	N	
10	51	17	m	3921	N	
10	51	17	f	3721	N	
10	51	17	m	3597	N	
10	51	17	f	3321	N	
10	51	17	f	3376	N	
10	51	17		3123	N	
10	51	17	m f	3123	N	
10	51	17		3544	N	
10	51	17	m		N	
			m	3785		
10	51	17	m	3753	N	
10	51	17	m	3824	N	
10	51	17	m	3505	N	

Appendix 2 Study No. 89-0063 KNF-317; Teratogenicity Study in Rats Fetal sex, body weights and external malformations - Individual data

Dose level	Animal	Total no. of	Sex/	B. W./	Findings	
mg/kg/day)	no.	live fetuses	(m/f)	(mg)		
10	52	15	f	2481	N	
10	52	15	m	3149	N	
10	52	15	f	3191	N	
10	52	15	m	3053	N	
10	52	15	f	3085	N	
10	52	15	m	3264	N	
10	52	15	m	3190	N	
10	52	15	f	2829	N	
10	52	15	m	3479	N	
10	52	15	m	3604	N	
10	52	15	m	2983	N	
10	52	15	f	3056	N	
10	52	15	f	2113	N	
10	52	15	f	2933	N	
10	52	15	m	3562	N	
10	53	16	m	3442	N	
10	53	16	f	3626	Ν	
10	53	16	m	3494	N	
10	53	16	f	3401	N	
10	53	16	m	3969	N	
10	53	16	f	3540	N	
10	53	16	f	3774	N	
10	53	16	f	3558	N	
10	53	16	f	2789	N	
10	53	16	m	3855	N	
10	53	16	m	3744	N	
10	53	16	m	3703	N	
10	53	16	m	4010	N	
10	53	16	f	3892	N	
10	53	16	m	3615	N	
10	53	16	m	3942	N	
10	54	15	m	3661	N	
10	54	15	m	3434	N	
10	54	15	f	3855	N	
10	54	15	f	3778	N	
10	54	15	f	3152	N	
10	54	15	m	3865	N	
10	54	15	m	3952	Ν	
10	54	15	m	3612	Ν	
10	54	15	m	3759	Ν	
10	54	15	m	3425	N	
10	54	15	f	3822	Ν	
10	54	15	f	3524	Ν	
10	54	15	f	3810	N	
10	54	15	m	4036	N	
10	54	15	m	4233	N	

163

Dose level	Animal	Total no. of	Sex/	B. W./	Findings	
(mg/kg/day)	no.	live fetuses	(m/f)	(mg)	Findings	
10	55	10	f	2953	Ν	
10	55	10	m	3413	Ν	
10	55	10	f	2998	Ν	
10	55	10	m	3428	Ν	
10	55	10	f	3391	Ν	
10	55	10	m	3331	N	
10	55	10	m	3367	Ν	
10	55	10	f	3098	Ν	
10	55	10	m	3368	Ν	
10	55	10	m	3888	N	
10	56	11	m	3822	N	
10	56	11	m	4020	N	
10	56	11	f	4035	N	
10	56	11	f	3885	Ν	
10	56	11	f	3886	Ν	
10	56	11	f	3485	Ν	
10	56	11	m	3919	Ν	
10	56	11	f	3692	Ν	
10	56	11	m	4054	Ν	
10	56	11	m	4005	Ν	
10	56	11	f	3608	N	
10	57	16	m	3200	N	
10	57	16	f	3572	Ν	
10	57	16	m	3710	Ν	
10	57	16	f	3655	Ν	
10	57	16	f	3676	N	
10	57	16	m	3997	N	
10	57	16	f	3392	N	
10	57	16	m	3744	N	
10	57	16	m	3546	Ν	
10	57	16	f	3682	N	
10	57	16	m	3424	N	
10	57	16	m	3509	N	
10	57	16	m	3980	N	
10	57	16	m	3681	N	
10	57	16	f	3616	N	
10	57	16	f	3657	N	

Dose level	Animal	Total no. of	Sex/	B. W./	Findings
(mg/kg/day)	no.	live fetuses	(m/f)	(mg)	1 In Galage
10	58	16	m	3259	N
10	58	16	f	3076	N
10	58	16	f	3301	N
10	58	16	f	3731	N
10	58	16	m	3965	N
10	58	16	m	3998	N
10	58	16	m	3980	N
10	58	16	f	3895	N
10	58	16	f	3709	N
10	58	16	f	3458	N
10	58	16	m	3952	N
10	58	16	f	3769	N
10	58	16	m	3720	N
10	58	16	m	4037	N
10	58	16	f	4160	N
10	58	16	f	3843	N
10	59	14	m	3739	N
10	59	14	m	3592	N
10	59	14	m	3425	N
10	59	14	f	3257	N
10	59	14	m	4027	N
10	59	14	f	3661	N
10	59	14	m	3753	N
10	59	14	f	3025	N
10	59	14	m	3832	N
10	59	14	m	3843	N
10	59	14	f	3269	N
10	59	14	f	3262	N
10	59	14	f	3471	N
10	59	14	f	3729	N
10	60	15	f	3265	N
10	60	15	m	3567	N
10	60	15	f	3563	N
10	60	15	m	3745	N
10	60	15	f	3555	N
10	60	15	f	3558	N
10	60	15	m	3570	N
10	60	15	f	3638	N
10	60	15	m	3672	N
10	60	15	f	3634	N
10	60	15	f	3299	N
10	60	15	m	3637	N
10	60	15	m	3916	N
10	60	15	m	3890	N
10	60	15	m	4102	N

Dose level	Animal	Total no. of	Sex/	B. W./	Findings
(mg/kg/day)	no.	live fetuses	(m/f)	(mg)	Findings
10	61	16	f	3051	N
10	61	16	f	2973	N
10	61	16	m	3420	N
10	61	16	m	3300	N
10	61	16	m	2953	N
10	61	16	f	2905	N
10	61	16	m	2427	N
10	61	16	m	3267	N
10	61	16	m	3482	N
10	61	16	m	3193	N
10	61	16	f	3286	N
10	61	16	f	3130	N
10	61	16	m	3189	N
10	61	16	f	3111	N
10	61	16	m	2931	N
10	61	16	m	3290	N
10	62	15	m	3282	N
10	62	15	m	4000	N
10	62	15	m	3696	Ν
10	62	15	m	3439	Ν
10	62	15	m	3527	Ν
10	62	15	m	3374	Ν
10	62	15	m	3557	Ν
10	62	15	m	3692	Ν
10	62	15	f	3169	Ν
10	62	15	m	3637	Ν
10	62	15	m	3458	Ν
10	62	15	m	3510	Ν
10	62	15	f	3243	Ν
10	62	15	m	3781	N
10	62	15	f	3339	N
10	63	15	m	3162	N
10	63	15	m	2979	N
10	63	15	m	2858	N
10	63	15	f	3008	Ν
10	63	15	f	3092	N
10	63	15	m	3046	N
10	63	15	m	3131	N
10	63	15	f	2971	Ν
10	63	15	f	2835	N
10	63	15	m	2939	N
10	63	15	m	3309	N
10	63	15	f	2820	N
10	63	15	m	3012	N
10	63	15	m	3229	N
10	63	15	f	2796	N

Dose level	Animal	Total no. of	Sex/	B. W./	Findings	
(mg/kg/day)	no.	live fetuses	(m/f)	(mg)		
10	64	14	f	3014	N	
10	64	14	m	3840	N	
10	64	14	m	3148	N	
10	64	14	m	3411	N	
10	64	14	m	3500	N	
10	64	14	f	3089	N	
10	64	14	m	3096	N	
10	64	14	m	3005	N	
10	64	14	f	3192	N	
10	64	14	f	2861	N	
10	64	14	m	2938	N	
10	64	14	f	3438	N	
10	64	14	f	3264	N	
10	64	14	f	3384	N	
10	65	15	f	3499	N	
10	65	15	m	3809	N	
10	65	15	m	3855	N	
10	65	15	m	3686	N	
10	65	15	m	3799	N	
10	65	15	f	3789	N	
10	65	15	f	3688	N	
10	65	15	f	3806	N	
10	65	15	f	3628	N	
10	65	15	m	4081	N	
10	65	15	m	3782	N	
10	65	15	m	3892	N	
10	65	15	m	3841	N	
10	65	15	f	3754	N	
10	65	15	f	3699	N	
10	66	16	f	3182	N	
10		16	-	3332		
	66		f		N	
10	66	16	f	3021	N	
10	66	16	f	3366	N	
10	66	16	f	3484	N	
10	66	16	f	3253	N	
10	66	16	f	3534	N	
10	66	16	m	3433	N	
10	66	16	m	3621	N	
10	66	16	m	3573	N	
10	66	16	m	3284	N	
10	66	16	m	3331	N	
10	66	16	f	3295	N	
10	66	16	m	3484	N	
10	66	16	f	3228	N	
10	66	16	f	3729	N	
10	67	3	m	3556	N	
10	67	3	m	3650	N	
10	67	3	f	3489	N	

Dose level	Animal	Total no. of	Sex/	B. W./	Findings
(mg/kg/day)	no.	live fetuses	(m/f)	(mg)	Findings
10	68	17	f	3111	Ν
10	68	17	m	3604	N
10	68	17	f	3075	N
10	68	17	f	3387	N
10	68	17	m	3814	N
10	68	17	f	3620	N
10	68	17	m	3309	N
10	68	17	f	2839	N
10	68	17	m	3378	N
10	68	17	f	2966	N
10	68	17	f	3160	N
10	68	17	f	3154	N
10	68	17	m	3717	N
10	68	17	f	3498	N
10	68	17	f	3238	N
10	68	17	m	3397	N
10	68	17	f	2965	N
10	69	6	f	3304	N
10	69	6	m	3420	N
10	69	6	f	3294	N
10	69	6	m	3540	N
10	69	6	f	3505	N
10	69	6	m	3245	N
10	70	17	m	3265	N
10	70	17	m	3356	N
10	70	17	m	3326	N
10	70	17	f	3257	N
10	70	17	f	3136	N
10	70	17	m	3339	N
10	70	17	m	3281	N
10	70	17	m	3578	N
10	70	17	f	3276	N
10	70	17	m	3281	N
10	70	17	m	3391	N
10	70	17	m	3524	N
10	70	17		3353	N
10	70	17	m f	3500	N
10	70	17	f	3544	N
10	70	17	f	3544	N
10	70	17	m	3551	N

10 mg/kg/day	-continue	d			
Dose level	Animal	Total no. of	Sex/	B. W./	Findings
(mg/kg/day)	no.	live fetuses	(m/f)	(mg)	r in dings
10	71	17	f	3115	N
10	71	17	f	3100	N
10	71	17	m	3115	N
10	71	17	f	3123	N
10	71	17	f	3214	N
10	71	17	f	3089	N
10	71	17	f	3089	N
10	71	17	m	3481	N
10	71	17	f	3354	N
10	71	17	m	3535	N
10	71	17	f	3355	N
10	71	17	m	3328	N
10	71	17	m	3524	N
10	71	17	f	3494	N
10	71	17	m	3241	N
10	71	17	f	3050	Vestigial tail, Anal atresia
10	71	17	f	3317	N
10	72	14	f	3005	N
10	72	14	m	3538	N
10	72	14	m	3839	N
10	72	14	f	3360	N
10	72	14	m	3538	N
10	72	14	m	3578	N
10	72	14	m	3356	N
10	72	14	f	2991	N
10	72	14	f	3247	N
10	72	14	m	3351	N
10	72	14	m	3661	N
10	72	14	m	3465	N
10	72	14	f	3379	N
10	72	14	f	3256	N

Dose level	Animal	Total no. of	Sex/	B. W./	Findings
(mg/kg/day)	no.	live fetuses	(m/f)	(mg)	
30	73	15	f	2745	N
30	73	15	f	3325	N
30	73	15	f	3155	N
30	73	15	m	3451	N
30	73	15	m	3395	N
30	73	15	m	3405	N
30	73	15	m	3440	N
30	73	15	f	2906	N
30	73	15	m	3450	N
30	73	15	m	3481	N
30	73	15	m	3233	N
30	73	15	m	3514	N
30	73	15	m	3180	N
30	73	15	f	3289	N
30	73	15	m	3538	N
30	74	14	f	3042	N
30	74	14	m	3295	N
30	74	14	f	3226	N
30	74	14	f	3362	N
30	74	14	m	3289	N
30	74	14	m	3311	N
30	74	14	m	2976	N
30	74	14	f	3634	N
30	74	14	m	3339	N
30	74	14	f	3258	N
30	74	14	m	3524	N
30	74	14	m	2778	N
30	74	14	m	3203	N
30	74	14	f	3343	N
30	75	15	f	3659	N
30	75	15	m	3849	N
30	75	15		3486	N
30	75	15	m	4009	N
30	75	15	m f	3290	N
30	75	15	f	3825	N
30	75	15	m	3949	N
30	75	15	f	2712	N
30	75	15	f	3943	N
30	75	15	m	3824	N
30	75	15	m	3928	N
30	75	15	f	3733	N
30	75	15	f	2700	N
30	75	15	m	2706	N
30	75	15	f	3905	N

Dose level (mg/kg/day)	Animal no.	Total no. of live fetuses	Sex/ (m/f)	B. W./ (mg)	Findings
30	76	13	f	3385	N
					N
30	76	13	f	2943	N
30	76	13	f	3306	N
30	76	13	m	3478	N
30	76	13	f	3251	N
30	76	13	m	3714	N
30	76	13	m	2325	N
30	76	13	m	3543	N
30	76	13	m	3569	N
30	76	13	f	3177	N
30	76	13	m	3280	N
30	76	13	m	2311	N
30	76	13	m	3557	N
30	77	18	m	3441	N
30	77	18	f	3408	N
30	77	18	f	2994	N
30	77	18	m	2051	Microphthalmia
30	77	18	f	2987	N
30	77	18	m	3255	Ν
30	77	18	m	3392	N
30	77	18	m	3525	N
30	77	18	m	3298	N
30	77	18	f	3344	N
30	77	18	f	3316	N
30	77	18	f	3026	N
30	77	18	f	3384	N
30	77	18	m	3269	N
30	77	18	f	3174	N
30	77	18	f	3471	N
30	77	18	m	3470	N
30	77	18	m	3431	N
30	78	17	f	3023	N
30					N
	78	17 17	f	3057	
30	78	17	m	3259	N
30	78		m	3383	N
30	78	17	f	2859	N
30	78	17	f	3230	N
30	78	17	f	3065	N
30	78	17	m	3366	N
30	78	17	m	3075	N
30	78	17	f	3174	N
30	78	17	m	3328	N
30	78	17	f	3129	N
30	78	17	f	3396	N
30	78	17	f	3007	N
30	78	17	f	3087	N
30	78	17	m	3440	N
30	78	17	f	3162	Ν

Dose level	Animal	Total no. of	Sex/	B. W./	Findings
mg/kg/day)	no.	live fetuses	(m/f)	(mg)	Findings
30	79	16	m	3615	N
30	79	16	f	3150	Ν
30	79	16	m	3208	N
30	79	16	f	3197	N
30	79	16	f	3333	N
30	79	16	f	3401	N
30	79	16	f	3787	N
30	79	16	f	3198	N
30	79	16	f	3155	N
30	79	16	m	3567	N
30	79	16	f	3149	N
30	79	16	f	3361	N
30	79	16	m	3221	Ν
30	79	16	m	3256	Ν
30	79	16	m	3744	Ν
30	79	16	f	3287	N
30	80	15	m	3302	N
30	80	15	f	3397	N
30	80	15	m	2871	N
30	80	15	f	3241	N
30	80	15	f	3604	N
30	80	15	m	3677	N
30	80	15	f	3282	N
30	80	15	m	2602	N
30	80	15	f	3355	N
30	80	15	m	3690	N
30	80	15	m	3267	N
30	80	15	m	1947	Microphthalmia, Cleft lip, Cleft palate
30	80	15	m	3678	N
30	80	15	m	3629	N
30	80	15	f	3075	N
30	81	14	m	3286	N
30	81	14	f	3452	N
30	81	14	m	2996	N
30	81	14	f	2917	N
30	81	14	m	3330	N
30	81	14	f	2875	N
30	81	14	m	3088	N
30	81	14	m	3489	N
30	81	14	m	3154	N
30	81	14	m	3078	N
30	81	14	m	3149	N
30	81	14	m	3173	N
30	81	14	m	2832	N
30	81	14	f	3224	N

Appendix 2 Study No. 89-0063 KNF-317; Teratogenicity Study in Rats Fetal sex, body weights and external malformations - Individual data

Dose level	Animal	Total no. of	Sex/	B. W./	Findings	
(mg/kg/day)	no.	live fetuses	(m/f)	(mg)	Findings	
30	82	15	m	2342	Ν	
30	82	15	m	2838	N	
30	82	15	f	2987	N	
30	82	15	f	2228	N	
30	82	15	m	3187	N	
30	82	15	m	2975	N	
30	82	15	f	2674	N	
30	82	15	m	2611	N	
30	82	15	f	2972	N	
30	82	15	f	2723	N	
30	82	15	f	2902	N	
30	82	15	f	2173	N	
30	82	15	f	2944	Ν	
30	82	15	m	2442	N	
30	82	15	f	2905	N	
30	83	14	m	3470	N	
30	83	14	f	3413	N	
30	83	14	f	3483	Ν	
30	83	14	f	3217	N	
30	83	14	m	3409	N	
30	83	14	f	3274	Ν	
30	83	14	m	3932	N	
30	83	14	m	3685	N	
30	83	14	m	3736	N	
30	83	14	m	3333	N	
30	83	14	m	3552	N	
30	83	14	f	3139	N	
30	83	14	f	3327	N	
30	83	14	f	3434	N	
30	84	15	m	2942	N	
30	84	15	f	2695	N	
30	84	15	f	3071	N	
30	84	15	f	3333	Ν	
30	84	15	f	3495	Ν	
30	84	15	m	3660	Ν	
30	84	15	f	2920	Ν	
30	84	15	f	3248	Ν	
30	84	15	f	2993	Ν	
30	84	15	f	2945	N	
30	84	15	m	3779	N	
30	84	15	f	3193	N	
30	84	15	f	3118	N	
30	84	15	m	3115	N	
30	84	15	m	3389	N	
30	85	0			Non-pregnant	

Dose level	Animal	Total no. of	Sex/	B. W./	Findings
(mg/kg/day)	no.	live fetuses	(m/f)	(mg)	Findings
30	86	15	m	2606	Ν
30	86	15	f	3257	N
30	86	15	m	3416	N
30	86	15	f	3089	Ν
30	86	15	f	3476	N
30	86	15	f	3269	N
30	86	15	f	3259	N
30	86	15	m	2994	N
30	86	15	f	2847	N
30	86	15	f	2827	N
30	86	15	f	3355	N
30	86	15	f	3195	N
30	86	15	m	3083	N
30	86	15	m	3234	N
30	86	15	f	2986	Ν
30	87	15	f	3362	N
30	87	15	m	3344	N
30	87	15	f	3498	N
30	87	15	m	3729	N
30	87	15	f	3276	N
30	87	15	f	3200	N
30	87	15	f	3461	N
30	87	15	f	3586	N
30	87	15	m	3456	N
30	87	15	m	3717	N
30	87	15	f	3547	N
30	87	15	m	3665	N
30	87	15	m	3329	N
30	87	15	m	3341	Ν
30	87	15	f	3353	Ν
30	88	15	f	2763	Ν
30	88	15	m	3405	Ν
30	88	15	m	3529	Ν
30	88	15	m	3261	Ν
30	88	15	m	3621	Ν
30	88	15	m	3663	Ν
30	88	15	f	3173	N
30	88	15	f	3144	N
30	88	15	m	3234	Ν
30	88	15	m	3303	N
30	88	15	f	2546	N
30	88	15	m	3318	N
30	88	15	f	3362	N
30	88	15	f	3209	N
30	88	15	f	3281	N

Dose level	Animal	Total no. of	Sex/	B. W./	Findings
(mg/kg/day)	no.	live fetuses	(m/f)	(mg)	
30	89	19	m	3296	N
30	89	19	m	3460	N
30	89	19	f	3191	N
30	89	19	f	3099	N
30	89	19	f	3206	N
30	89	19	m	2975	N
30	89	19	m	3254	N
30	89	19	f	2685	N
30	89	19	f	3279	N
30	89	19	f	2882	N
30	89	19	m	3421	N
30	89	19	f	3394	N
30	89	19	f	3434	N
30	89	19	f	3151	N
30	89	19	m	3552	N
30	89	19	m	3537	Ν
30	89	19	m	3471	Ν
30	89	19	f	3295	N
30	89	19	m	3373	N
30	90	15	f	2910	N
30	90	15	f	2842	N
30	90	15	f	2810	N
30	90	15	m	3213	Ν
30	90	15	m	3077	N
30	90	15	m	3740	N
30	90	15	m	3173	N
30	90	15	f	3401	N
30	90	15	f	2743	N
30	90	15	f	3077	N
30	90	15	f	3299	N
30	90	15	f	3269	N
30	90	15	m	3429	N
30	90	15	f	3177	N
30	90	15		3697	N
30	91	15	m	3399	N
30	91	15		3864	N
30	91	15	m f	3320	N
30	91	15	f	3285	N
30	91	15		3802	N
30	91	15	m f	3090	N
30		15	f	3090	N N
	91	15			
30	91		f	3264	N
30	91	15	f	3631	N
30	91	15	m	3714	N
30	91	15	m	3712	N
30	91	15	f	3561	N
30	91	15	f	3585	N
30	91	15	f	3499	N
30	91	15	f	3324	N

Dose level	Animal	Total no. of	Sex/	B. W./	Findings	
mg/kg/day)	no.	live fetuses	(m/f)	(mg)	Findings	
30	92	15	f	2955	N	
30	92	15	f	2901	N	
30	92	15	f	3212	N	
30	92	15	f	3017	N	
30	92	15	f	3086	N	
30	92	15	m	3172	N	
30	92	15	m	3509	N	
30	92	15	f	3236	N	
30	92	15	m	3315	N	
30	92	15	f	3057	N	
30	92	15	f	2236	N	
30	92	15	m	2932	N	
30	92	15	f	3213	N	
30	92	15	f	3188	N	
30	92	15	m	3051	Ν	
30	93	15	m	3038	N	
30	93	15	m	3365	N	
30	93	15	m	3222	N	
30	93	15	f	3341	N	
30	93	15	f	2919	N	
30	93	15	m	3235	N	
30	93	15	f	3451	N	
30	93	15	f	3494	N	
30	93	15	f	3101	N	
30	93	15	f	3113	N	
30	93	15	f	3216	N	
30	93	15	f	3587	N	
30	93	15	f	3287	N	
30	93	15	m	3132	N	
30	93	15	m	3568	N	
30	94	19	m	2915	N	
30	94	19	m	3356	N	
30	94	19	m	3201	N	
30	94	19	f	3072	N	
30	94	19	m	3107	N	
30	94	19	f	3341	N	
30	94	19	m	3614	N	
30	94	19	f	3263	N	
30	94	19	f	3380	N	
30	94	19	f	3253	N	
30	94	19	f	2963	N	
30	94	19		3169	N	
30	94	19	f f		N N	
				3260		
30	94	19	m	3214	N	
30	94	19	f	3098	N	
30	94	19	m	3371	N	
	0 •					
30 30	94 94	19 19	f	3256 3302	N N	

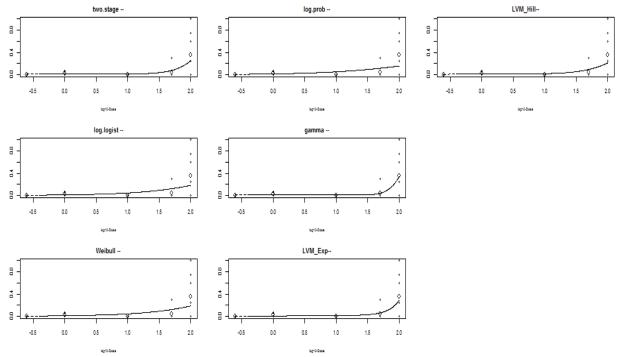
Dose level (mg/kg/day)	Animal no.	Total no. of live fetuses	Sex/ (m/f)	B. W./ (mg)	Findings	
30	95	17	f	3116	N	
30	95	17	m	3575	N	
30	95	17	m	3738	N	
30	95	17	m	3881	N	
30	95	17	f	3427	N	
30	95	17	m	3416	N	
30	95	17	m	3684	N	
30	95	17	f	3655	N	
30	95	17	m	3640	N	
30	95	17	m	3852	N	
30	95	17	f	3409	N	
30	95	17	f	3612	N	
30	95	17	m	3671	N	
30	95	17	f	3292	N	
30	95	17	m	3603	N	
30	95	17	f	3594	N	
30	95	17	f	3694	N	
30	96	13	f	2833	N	
30	96	13	m	3245	N	
30	96	13	f	3460	N	
30	96	13	f	3561	N	
30	96	13	m	3053	N	
30	96	13	m	3476	N	
30	96	13	f	3329	N	
30	96	13	f	3261	N	
30	96	13	f	3306	N	
30	96	13	m	3620	N	
30	96	13	m	3558	N	
30	96	13	f	3084	N	
30	96	13	f	3427	N	

8.3 Annex III: Benchmark dose analysis of litter effects in preliminary rat and rabbit developmental toxicity studies: external malformations

RAT: Benchmark dose analysis for indiv_litter_prelimdt.txt

This report was generated on 2015-06-11 using PROAST version 50.9 and R version 3.1.1 (2014-07-10).

Dose


The dose variable was 'Dose'.

Response

The response variable was 'malformed', which has data type 6 (quantal + litter effects).

Model results

Figure 1 shows a plot of dose vs. response for the exponential and Hill models respectively.

Exponential model

The chosen exponential model was LVM_Exp: m^2 -, predicting a benchmark dose of 64.4074. It had log-likelihood -39.9109166.

Here are the results from the exponential model:

```
##
## version: 50.9
##
   model
            B 12
##
   log-lik
              -39.91
   alfa
           0.3055
##
   a-
##
         0.6244
   CED-
           64.4074
##
##
   dtype
            6
   b: -0.01982
##
##
   ces.ans
               3
##
   CES
          0.1
```

```
## conv 1
```

scaling on x: 1

selected all

Table 2 shows the log-likelihood and number of parameters of the exponential models.

<u>model</u>	<u>converged</u>	<u>loglik</u>	<u>npar</u>
full	1	-37.86	6
ml-	1	-46.04	2
m2-	1	-39.91	3
m3-	1	-39.54	4
m4-	1	-39.91	4
m5-	0	-39.48	5
m2-	1	-39.91	3

Hill model

The chosen Hill model was LVM_Hill: m2-, predicting a benchmark dose of 55.5298. It had log-likelihood -40.8341984.

Here are the results from the Hill model:

```
##
## version: 50.9
## model B 22
## log-lik -40.83
## alfa 0.2285
## a- 0.612
## CED- 55.5298
## dtype 6
## b: 22.05
## ces.ans 3
## CES 0.1
## conv 1
## scaling on x: 1
## selected all
Table 2 shows the log likelihood
```

Table 3 shows the log-likelihood and number of parameters of the Hill models.

<u>model</u>	<u>converged</u>	<u>loglik</u>	<u>npar</u>
full		-37.86	6
ml-	1	-46.04	2
m2-	1	-40.83	3
m3-	1	-39.49	4
m4-	1	-40.83	4
m5-	1	-39.48	5
m2-	1	-40.83	3

Benchmark dose by covariate

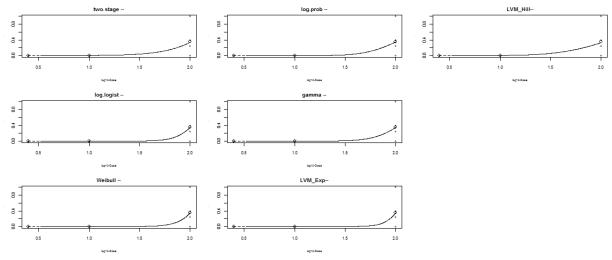
The benchmark dose predicted intervals by covariate are summarised in Table 4

Table 5. Number of pups with malformations in each litter

Dose	dam	grpsize	malformed
0	1001	10	0
0	1002	13	0
0	1003	16	0
0	1004	14	0
0	1005	14	0
0	1006	13	0
0	1007	14	0
1	1036	5	0
1	1037	17	0
1	1038	17	1
1	1039	17	0
1	1040	18	0
1	1041	14	1
10	1042	14	0
10	1043	17	0
10	1044	14	0
10	1045	6	0
10	1046	13	0
10	1047	15	0
50	1008	12	0
50	1009	11	0
50	1010	14	0
50	1011	11	0
50	1012	10	3
50	1013	14	0
50	1014	14	0
100	1015	8	6
100	1016	5	3
100	1017	1	1
100	1019	4	1
100	1020	3	0
100	1021	13	0

Value of parameter alpha = 0.4222 With p value = 0.000398

RABBIT: Benchmark dose analysis for Indiv _litter_rabbit_prelim.txt


This report was generated on 2015–06–25 using PROAST version 50.9 and R version 3.1.1 (2014–07–10).

Dose

The dose variable was 'Dose'. <u>Response</u>

The response variable was 'malf_foet', which has data type 6 (quantal + litter effects). Model results

Figure 1 shows a plot of dose vs. response for the exponential and Hill models respectively.

Exponential model

The chosen exponential model was LVM_Exp: m^2 -, predicting a benchmark dose of 75.8658. It had log-likelihood -12.6657178.

Here are the results from the exponential model: ##

##	
##	version: 50.9
##	model B 12
##	log-lik -12.67
##	alfa 0.7089
##	a- 2.9716
##	CED- 75.8658
##	dtype 6
##	b: -0.03701
##	ces.ans 3
##	CES 0.1
##	conv 0
##	scaling on x: 1
##	selected all

Table 2 shows the log-likelihood and number of parameters of the exponential models.

<u>model</u>	<u>converged</u>	<u>loglik</u>	<u>npar</u>
full	1	-12.69	4
ml-	1	-17.18	2
m2-	1	-12.63	3
m2-	0	-12.67	3

Hill model

The chosen Hill model was LVM_Hill: m2-, predicting a benchmark dose of 42.6963. It had log-likelihood -12.7496115.

Here are the results from the Hill model:

```
##
## version: 50.9
##
   model
           в 22
   log-lik -12.75
##
           0.7302
##
   alfa
   a-
##
        10
##
   CED-
           42.6963
```

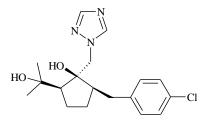
dtype 6
b: 0.7797
ces.ans 3
CES 0.1
conv 1
scaling on x: 1
selected all
Table 3 shows the log-likelihood and number of parameters of the Hill models.

<u>converged</u>	<u>loglik</u>	<u>npar</u>
	-12.69	4
1	-17.18	2
1	-12.78	3
1	-12.75	3
	<u>converged</u> 1 1 1	-12.69 1 -17.18 1 -12.78

Benchmark dose by covariate

The benchmark dose predicted intervals by covariate are summarised in Table 4.

subgroup diffBMR: 0.1 extra risk constraint: no P-value GoF: 0.05 including litter effects Value of parameter alfa: 0.715377931491429 with P-value: 0.185457372767165

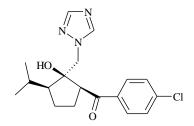

8.4 Annex IV – Ecotoxicity of degradation products

Ipconazole has been shown to partition rapidly and degrade slowly in water-sediment and soil systems. A number of degradation products of ipconazole have been identified (UK, 2011; EFSA, 2013), predominantly in soil. These main degradants are summarised below:

a) Abbreviation in the Draft Assessment Report (2011) and EFSA conclusion (2013) [73]: KNF-317-M-1

Name: (1RS,2SR,5RS)-2-(4-chlorobenzyl)-5-(1-hydroxy-1-methylethyl)-1-(1*H*-1,2,4-triazol-1-ylmethyl)cyclopentanol

Structure:


Formed in water-sediment and soil biodegradation studies.

No information is readily available for the environmental classification of this substance.

b) Abbreviation in the Draft Assessment Report (2011) and EFSA conclusion (2013) [73]: KNF-317-M-11

Name: (1RS,2SR,5SR)-2-(4-chlorobenzoyl)-5-isopropyl-1-(1*H*-1,2,4-triazol-1-ylmethyl)cyclopentanol

Structure:

Formed in soil biodegradation studies.

No information is readily available for the environmental classification of this substance.

c) Abbreviation in the Draft Assessment Report (2011) and EFSA conclusion (2013) [73]: KNF-317-M-21

Name: 1H-1,2,4-triazole-1-acetic acid

Structure:

Formed in soil photolysis studies.

No information is readily available for the environmental classification of this substance.

d) Abbreviation in the Draft Assessment Report (2011) and EFSA conclusion (2013) [73]: KNF-317-M-22

Name: 1H-1,2,4-triazole

Structure:

Formed in soil photolysis and degradation studies.

The EFSA conclusion (2013) [73] reports ecotoxicity data for this substance and this is summarised in Table 45.

Species	Acute Toxicity L/EC ₅₀ (mg/l)	Chronic Toxicity NOEC (mg/l)
Fish	96h-LC ₅₀ : 498 mg/l	28d-NOEC: 3.2 mg/l
Daphnia magna	48h-EC ₅₀ : >100 mg/l	No data
Algae	72h-ErC ₅₀ : 22.5 mg/l	72h-NOEC: 4.6 mg/l (unclear if biomass, rate or both)

The EFSA conclusion (2013) [73] indicates that 1H-1,2,4-triazole has a low log K_{ow} value of -0.76 and so is unlikely to bioaccumulate.

Based on these data, the 1H-1,2,4-triazole would not be classified for environmental effects. This is consistent with the proposed classification and self-classifications for this substance in the ECHA C&L Inventory at the time of submission.

e) Abbreviation in the Draft Assessment Report (2011) and EFSA conclusion (2013) [73]: KNF-317-M-23

Name: 4-Chlorobenzoic acid

Structure:

HOOC

Formed in soil photolysis studies.

The self-classifications for this substance in the C&L Inventory at the time of submission indicate that the substance would not be classified for environmental effects.

f) Name: 4-Chlorobenzaldehyde

Structure:

OHC CI

Formed in soil photolysis studies.

The majority of self-classifications for this substance in the C&L Inventory at the time of submission indicate that the substance would be classified for environmental effects as Aquatic Chronic 2, H411 toxic to aquatic life with long-lasting effects.

g) Name: 4-Chlorobenzyl alcohol

Structure:

HOCH,-

Formed in soil photolysis studies.

No information is readily available for the environmental classification of this substance.