

Committee for Risk Assessment

RAC

Annex 2

Response to comments document (RCOM)

to the Opinion proposing harmonised classification and labelling at EU level of

4-vinylcyclohexene (VCH)

CAS number: 100-40-3

EC number: 202-848-9

ECHA/RAC/ CLH-O-0000002966-62-01/A2

Adopted

14 September 2012

COMMENTS AND RESPONSE TO COMMENTS ON CLH: PROPOSAL AND JUSTIFICATION

ECHA has compiled the comments received via internet that refer to several hazard classes and entered them under each of the relevant categories/headings as comprehensive as possible. Please note that some of the comments might occur under several headings when splitting the given information is not reasonable.

Substance name: 4 vinylcyclohexene (VCH) EC number: 202-848-9 CAS number: 100-40-3

General comments

Date	Country /	Comment	Dossier	RAC's response to
	Organisation /		submitter's	comment
	MSCA		response to	
			comment	
14/07/2011	United Kingdom		Thanks for your	Noted
	/ Member State	classification for carcinogenicity.	support	
	Competent			
	Authority			
30/06/2011	Germany /	The German CA agrees with the proposed classifications.	Thanks for your	Noted
	Member State	However, we suggest the following changes.	support.	
		P. 22, section 4.1.2, end of paragraph: The authors describe the possibility that the CYP activity could be	Modifications	
		modified by possible exposure to drugs or environmental chemicals. Since the authors described also the	proposed accepted.	
		important role of CYP2E1 in the metabolism of VCH (see p. 23) it should be pointed out that CYP2E1 induction		
		in human liver can easily be achieved by regular ethanol consumption. Regular and heavy drinker should be		
		considered as population with increased potential to activate VCH to carcinogenic metabolites.		
20/06/2011		P. 24, second paragraph, third line: Replace "metabolisation" by "metabolism".		NT - 1
29/06/2011	Spain Member	We are wondering why the environmental classification proposal has not been included for this substance.	Cf rules detailed in	Noted
	State	We have found information to make a environmental classification proposal.	Art.36 of the CLP	
05/07/2011			regulation	L DAG
05/07/2011	Netherlands /	Administration information (not to be distributed, and disclosed) This may be a duplication of our comments, due	Thanks for your	In RACs view there
	Bureau REACH	to the holiday season we are unable to check this.	support. We	is a distinct
	/ Member State		acknowledge that	difference between
		General Comments:	the incidences of	the clear findings of
		We save that the evention membrane in famile mission of the most another section of the f. MOU	different type of	ovary tumours in
		We agree that the ovarian neoplasms in female mice are the most pronounced carcinogenic effects of VCH.	tumors were	low dosed female
		However, despite the high mortality among male and female rats (low and high dose groups) and male mice (high	increased in male	mice, where the
		dose group only), several treatment-related tumours were observed in these groups, which does provide additional	and female rats and	mortality was

Date	Country / Organisation /	Comment	Dossier submitter's	RAC's response to comment
	MSCA		response to comment	comment
		signs of a carcinogenic potential. Therefore, these data should not simply be ignored. We agree that the ovarian tumours in female mice are possibly induced by the metabolisation of VCH into VCD (supported by the data that VCD does also induce ovarian tumours in mice and rats), which occurs in mice at a much higher rate than in rats. This mechanism indeed explains the absence of ovarian tumours in rats. Since human hepatocytes have been shown to be able to metabolise VCH into VCD, there is no evidence that this mechanism is not relevant to humans. Therefore, we agree with the proposed classification for carcinogenicity: Carc. 1B; H 350 (CLP) or Carc. Cat. 2; R45 (DSD).	in male mice. However, due to the poor survival rate in these groups, the interpretation of these tumors in those treated groups could be misleading. Early excessive mortality may have masked the higher outcome of tumors induced by VCH. Nevertheless, the increased incidence of adenomas or squamous-cell carcinomas (combined) of the clitoral gland in low-dose female rats has to be taken into account since the survival of these animals is similar to control until week 102.	comparable to the control group, and other findings. Apart from the clear finding of ovary tumours in mice, there were some minor findings of other tumours in mice and rats. These findings indicated carcinogenic potential of VCH in e.g. skin, adrenal gland, anterior pituitary gland and in the clitoral gland of rats, and in the lungs of mice. Because of the high mortality in these dose groups, the reliability of these studies was compromised, thereby not providing adequate evidence to draw conclusions.
06/07/2011	United States / Individual	I am Dr. Christopher Bevan, PhD, DABT, a toxicology consultant and managing principal of CJB Consulting LLC.	The destruction of oocytes, which is likely a critical step	We thank the MSCA for providing more
		The CLH report did not include or evaluate the substantial number of peer-reviewed publications which provide important information on the mode-of-action (MOA) of the ovarian tumors seen in mice from VCH exposure. In ECHA's Guidance on the Application of the CLP Criteria for classification for carcinogenicity, it states on page 309 that "all available data must be considered carefully to judge if it can be concluded with confidence that the tumours are being induced through a specific mechanism." This was not done for VCH in the CLH report. The	in the induction of ovary carcinogenesis induced by VCH or VCD, has been	information on the Mode of Action (MoA) after the public consultation. We agree with the

Date	Country /	Comment	Dossier	RAC's response to
	Organisation /		submitter's	comment
	MSCA		response to	
			comment	
		data indicate that ovarian tumors in mice occur as a result of a cytotoxic effect (oocyte depletion by apoptosis in	reported in the	MSCA that
		the ovary) caused by a metabolite of VCH (VCH diepoxide), followed by a hormonal response on the ovary. The	sections 4.10.4	uncertainty remains
		lack of a genotoxic response by VCH when tested in both in vitro and in vivo genotoxicity assays further support	Summary and	regarding the
		the conclusion that VCH acts as a non-linear (threshold) carcinogen in mice.	discussion of	mutagenic potential
			carcinogenicity and	of VCH, but there is
		Although the MOA is relevant to humans, it implies, however, that there is a practical threshold above a certain	4.10.5 Comparison	low concern based
		dose level, and if VCH was to be classified as a carcinogen, a Category 2 classification would be more	with criteria. The	on available
		appropriate.	CLH report has	information.
			been revised to	
			provide more	
			information on this	
			MOA, based on	
			your	
			communication and	
			on the review from	
			Hoyer and Sipes	
			(2007).	
			XX7'.1 1	
			With regard to the	
			genotoxicity	
			potential of VCH,	
			Paragraph 4.9.4 of	
			our proposal	
			explains why the	
			mutagenic potency	
			of VCH (and also	
			VCD) is not so	
			clear to us (see also	
			our response to	
			comment below	
			from Germany /	
			AffiliatedWith	
			Organisation /	
			Company-	
			Manufacturer). We	
			consider that	
			uncertainty remains	
			regarding the	

Date	Country /	Comment	Dossier	RAC's response to
	Organisation /		submitter's	comment
	MSCA		response to	
			comment	
			mutagenic potential	
			of VCH. We did	
			not propose a	
			classification as	
			data are lacking but	
			this effect cannot	
			be excluded and	
			this endpoint is	
			foreseen for	
			substance	
			evaluation.	
			Therefore, this	
			argument should	
			not impact the	
			category of	
			classification.	
14/07/2011	Germany /	Please find attached our comments on Annex XV dossiers proposing harmonised Classification & Labelling for	The critical point	We agree with the
	AffiliatedWithOr	substance CAS 100-40-3.	of the classification	MSCA that the
	ganisation /		of VCH as Carc	metabolism of VCH
	Company-	ECHA comment: The document attached "Comment to the French proposal for Harmonized Classification and	Cat. 1B is the	into monoepoxide
	Manufacturer	Labeling of 4-Vinylcyclohexene (CAS 100-40-3)" is copied below:	human relevance of	and then into the
			the VCH-induced	diepoxide VCD,
		Comment to the French proposal for Harmonized Classification and	ovary tumors in	and consequently
		Labeling of 4-Vinylcyclohexene (CAS 100-40-3)	mice. This	the VCH-induced
			assumption is	ovotoxicity and
		The CLH dossier of 4-Vinylcyclohexene (VCH) which was provided to EChA by France	questioned on the	ovary
		suggests a classification for carcinogenicity in category 1B in accordance with the	basis of the results	carcinogenesis
		CLP regulation (EC) 1272/2008.	of the study of	could be relevant to
			Smith and Sipes	humans.
		However, based on the available data the criteria for Carc. Cat. 1B are clearly not met	(1991) which	
		and classification in Carc. Cat. 2 is proposed at worst due to the following facts:	determined the rate	We agree with the
			of formation of	MSCA that no firm
		a) Scientific discussion	VCH 1,2 epoxide	conclusion can be
		1) Metabolism of VHC (addition to "Summary and discussion on	in human liver	drawn about the
		toxicokinetics" of the French CLH report, chapter 4.1.3, pp 22 -24)	microsomes to be	genotoxic potential
		Metabolism of VCH is described in Figure 1 (taken from Keller et al. 1997). VCH is converted	13- and 2-fold less	of VCH, however
		to VCD in a two step process. VCD is supposed to be the active metabolite causing ovarian	than in mouse and	based on available

Date	Country /	Comment	Dossier	RAC's response to
	Organisation /		submitter's	comment
	MSCA		response to	
			comment	
		toxicity in rat and mice and ovarian carcinogenicity in mice. No ovarian carcinogenicity was	rat hepatocyte	data concern is low
		found in rats.	microsomes	contrary to the
			(results from a	documented
		The epoxidation of VCH to VCH-1,2-epoxide is the velocity determining step and therefore	previous study	genotoxicity of
		the critical reaction for ovarian toxicity and carcinogenicity. The epoxidation of VCH to VCH-	(Smith <i>et al.</i> ,	VCD.
		1,2-epoxide shows distinct differences between mice, rats and humans (Table 1).	1990a),	
			respectively.	The strength of
		Formation of relevant amounts of the toxic metabolite VCD is rather mouse specific. In-vitro	However,	evidence of finding
		studies have proven VCD formation directly from VCH in mice but failed to show VCD	published literature	of the ovary
		formation directly from VHC for rat and human supersomes (Fontaine et al. 2001). Existing	demonstrates	tumours in mice is
		studies suggest that rats are the appropriate animal model for extrapolation of animal data to	variability in the	good. However the
		humans. This conclusion was also published by the same researchers in a recent	rate of formation of	high mortality in the
		comprehensive review concerning the toxicity of VCH (Hoyer, 2007).	VCH epoxides.	other groups
			Indeed, it appears	hampers the
		Details:	that the difference	strength of these
		Rajapaksa and coworkers (2007) evaluated the role of ovarian CYP2E1 in VCH-induced	in the rate of	findings and after a
		ovarian toxicity showing that despite in vitro ovarian bio-activation of VCH or VCH-1,2-	formation of VCH	weight-of-evidence
		epoxide requires CYP2E1 enzyme, in vivo CYP2E1 plays a minimal role. It was concluded in	monoepoxides (i.e.	analysis we disagree
		the French CLH Dossier that these findings support that hepatic metabolism dominates bioactivation	the critical step	with the MSCA that
		of VCH and VCH-1,2- epoxide to the ovarian toxic metabolite, VCD. Therefore, the	thought to account	Carc Cat 1B is
		consecutively described data are focusing on the well examined liver metabolism.	for the higher	appropriate for
		Keller and co-workers investigated the in vitro metabolism of VCH in microsomes of rats and	mouse sensitivity	VCH. In our
		mice (Keller et al., 1997). It was shown that mouse liver had a Vmax for the generation of	towards VCH-	opinion this is a
		VCH-1,2-epoxide from VCH that was 56-fold higher than that for rat liver.	induced	borderline case
		Rat and mouse liver had very similar Km and Vmax values for the metabolism of	ovotoxicity) in rat	between category
		vinylcyclohexene-1,2-epoxide to VCD indicating no species difference for this step.	liver microsomes	Carc. 1B and 2.
		Hydrolysis of VCD was detected in rat and mouse liver and lung as well as in rat ovary	compared to mouse	However, based on
		microsomes. The Vmax for rat liver was 9-fold greater than that for mouse liver.	liver microsomes	all available
			varies from study	information RAC
		Smith and Sipes found that the rate of the formation of 4-vinylcyclohexene-1,2-epoxide from	to study (from a	regards this as a
		VCH in hepatic microsomes obtained from humans was 13- and 2-fold lower than that from	factor of 1.9 to	category 2 (CLP)
		mouse (B6C3F1) and rat (F344), respectively (Smith and Sipes, 1991).	55.5 for VCH 1,2	carcinogen.
		It has been shown in "Supersomes" containing purified human CYP and purified human	epoxide, and from	
		P450 reductase as well as cytochrome b5 and other cofactors in excess that VCH mono	1.6 to 13 for VCH	A minor editorial
		epoxide from VCH is formed and in another experiment formation of VCH diepoxide from	7,8 epoxide	error in the response
		VCH mono epoxide was shown in this really artificial system. (Fontaine et al 2001b).	(Fontaine et al.,	from MSCA is
		Therefore, formation of VCD from VCH is theoretically possible. However, no direct	2011a; Keller <i>et</i>	highlighted. The
L		formation of VCH di epoxide from VCH was shown in this test system (Fontaine et al 2001a).	al., 1997; Smith et	correct reference is

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's respons comment	se to
		In conclusion, the balance of activation vs. detoxification reactions in rats and mice suggests that the mouse may be more susceptible to 4-VCH toxicity because of generation of high levels of epoxide metabolites. In general, the mouse is more efficient at metabolism of 4- VCH to epoxides than is the rat or human. Beyond this, the rat seems to be more efficient at hydrolysis of epoxides. Thus, the rat would tend to produce a lower concentration of epoxide metabolites than the mouse, at equal doses of 4-VCH. This has been also demonstrated in vivo. After an i.p. administration of VCH (800 mg/kg bw), VCH-1,2-epoxide (41 nmol/mL) was found in blood of mice, but was not detected in rats (Smith et al 1990). This is also supported by the fact that VCD could be detected after incubation of hepatic	<i>al.</i> , 1990a). Taking into account the results from the study of Fontaine <i>et al.</i> (2001a), the mean rate of formation of VCH- 1,2-epoxide in human liver microsomes is only 1.3-fold lower than in mice and even	Fontaine et 2001a.	al.,
		microsomes from mice with VCH. Hepatic microsomes from rats treated in the same way showed no detectable VCD formation from VCH (Fontaine et al., 2001a). Same result is true for human CYP "Supersomes" (human CYP + P450 reductase + cytochrome b5). Supersomes are not able to directly catalyze VCH epoxidation to diepoxide metabolites of VCH in detectable amounts (Fontaine et al., 2001a). This demonstrates VCD is practically not available to the rat and human after exposure to 4-VCH. The differences in the metabolism of VCH by the rat and mouse explain why after administration of VCH higher internal exposure to active epoxides occurs in mice (Smith et al., 1990a + b).	1.4-fold higher than in rats (when comparing the highest rate of VCH-1,2-epoxide formation in women, it is even 1.4 and 2.7 higher than in mice and rats, respectively).		
		This has also been suggested as the reason for the different sensitivities of the rat and mouse with regard to the ovarian toxicity and carcinogenic effects of VCH (Hoyer & Sipes, 1996).	Moreover, induction of VCH epoxidation has been demonstrated		
		The rate of hepatic VCH epoxidation can be regarded as the main factor which determines the ovotoxicity and carcinogenicity of VCH. It has been demonstrated in in-vitro studies that humans are less capable forming the VCH-1,2-epoxide than the F344 rat and therefore be even regarded as less sensitive than the F344 rat to VCH-1,2 epoxide transmitted toxic effects. But taking other rat strains into account one can conclude that VCH-1,2-epoxide formation of rat and humans are about the same. The results of the studies above suggest that rats are the more appropriate animal model for extrapolation of animal data to humans. Formation of relevant amounts of the toxic metabolite VCD is rather mouse specific. VCD is practically not available to the rat and human after exposure to 4-VCH. Therefore, ovarian carcinogenicity was observed in mice but not in rats.	in both rats and mice. Indeed, increased formation of monoepoxides from 2 to 4-fold were observed in both rats and mice after a previous exposure to VCH for 10 days (Fontaine <i>et al.</i> ,		

Date	Country / Organisation / MSCA	(Table 1 should information" of Table 1: Maxim metabolites of V ^W Watabe et al.	the French al conversio /CH in rat, 1 (991)	CLH report (pp on velocity (nmo	toxicokinetics 17 -22) for cl pl/min/mg/pro	arity) otein) of 4-V al. 1997; ^s S	CH and selected	1991;		Dossier submitter's response to comment2001a).In addition, the study of Smith and Sipes clearly demonstrated that human hepatocytes microsomes are able to produce VCH-1,2- and -7,8-	RAC's response to comment
		Conversion	Liver Mouse	Rat	Human	Lung Mouse	Rat	Ovar Mouse	Rat	epoxide. Fontaine et al. showed that	
			(BeC3F 1)	(Strain)	(n =12)	wituse	Nai	WIGUSE	Nat	isolated CYPs were capable of	
		4-VCH to 4 VCH-1,2 epoxide	9.1 ^s 11.1 ^K Fontain e 2001: 0.9	1.4 ^s (F344) 0.49 ^w (Wistar) 0.20 ^K (Crl:CD BR) Fontaine 2001: 0.47	0.67 ^s M 0.23- 0.85 (n=6) F 0.36- 1.25 (n=5)	3.49	1.39	Not detectable	Not detectable	significantly converting VCH into VCH monoepoxide, and then monoepoxides into VCD. VCD could not be directly produced at detectable levels	
		4 VCH to 4 VCH-7,8 epoxide	0.91 ^K Fontain e 2001: 0.61	0.12 ^S (Wistar) 0.07 ^K (Crl:CD BR) Fontaine 2001 (F344): 0.37	<0.09 ^s	1.83	Not detectable	Not detectable	Not detectable	by "supersomes" incubated with VCH (Fontaine <i>et</i> <i>al.</i> , 2001b). Nevertheless, it should be noted that, similarly, VCD was not	
		4 VCH-1,2 epoxide to VCD	5.35	3.69	Not examined*	2.70	2.06	Not detectable	Not detectable	detected in mouse or rat microsomes incubated with	
		4 VCH-7,8 epoxide To VCD	9.45	8.83 ^K	Not examined*	11.8	1.35	Not detectable	Not detectable	VCH when rodents were not previously exposed to VCU indicating	
			•	•	•	-	•	-	•	to VCH, indicating that an induction of	

Organisation / MSCA		Dossier submitter's response to comment	RAC's response to comment
	* it was shown by Fontaine et al. (2001, 2000) that artificial human "supersomes" are capable to form VCH mono epoxide from VCH and VCD in relevant amounts only from VCH mono epoxide as the rat.	specific CYPs is required (Fontaine et al., 2001a). In	
		of the Fontaine's study could demonstrate that a	
		different human isozymes is likely needed to convert	
		Overall, there is evidence that human CYPs are	
		different enzymatic reactions leading to the formation of the ultimate	
	HO O 4-VCH-1.2-DIOL 4-VCH-1.2-DIOL 4-VCH-7,8-DIOL Hydrolysis Products	There is no evidence of clear species differences	
	FIG. 1. Metabolic pathway for 4-vinylcyclohexene. All of the reactions shown were studied, as was the hydrolysis of 4-vinylcyclohexene diepoxide. Thickness of lines indicates the relative velocity of the reaction in liver, compared to other reactions in liver. Solid line indicates the reaction rate for mouse liver; dashed line indicates the reaction rate for rat liver.	metabolising VCH into VCD.	
	Figure 1: Metabolic pathway of 4-VCH taken from Keller et al. 1997, French CLH report, Respectively	Therefore, we are not convinced that the metabolism of VCH into	
	 mutagenicity, 4.9.5 "Comparison with criteria" and 4.9.6 "Conclusion on classification and labeling" of the French CLH report) VCH is clearly non-mutagenic in in-vitro and in vivo OECD Guideline studies. VCH did not produce an increase of revertants in TA1537 with or without metabolic activation (rat or 	monoepoxide and then in the diepoxide VCD, and consequently the VCH-induced	
		* it was shown by Fontaine et al. (2001, 2000) that artificial human "supersomes" are capable to form VCH mono epoxide from VCH and VCD in relevant amounts only from VCH mono epoxide as the rat. $I = \frac{1}{10000000000000000000000000000000000$	 * it was shown by Fontaine et al. (2001, 2000) that artificial human "supersomes" are capable to form VCH mono epoxide from VCH and VCD in relevant amounts only from VCH mono epoxide as the rat. * it was shown by Fontaine et al. (2001, 2000) that artificial human "supersomes" are capable to form VCH mono epoxide from VCH and VCD in relevant amounts only from VCH mono epoxide as the rat. * (CH mono epoxide from VCH and VCD in relevant amounts only from VCH mono epoxide as the rat. * (CH mono epoxide from VCH and VCD in relevant amounts only from VCH mono epoxide as the rat. * (CH mono epoxide from VCH and VCD in relevant amounts only from VCH mono epoxide as the rat. * (CH mono epoxide from VCH and VCD in relevant amounts only from VCH mono epoxide as the rat. * (CH mono epoxide from VCH mono epoxide as the rat. * (CH mono epoxide from VCH mono epoxide from VCH mono epoxide as the rat. * (CH mono epoxide from VCH mono epoxide from VCH mono epoxide as the rat. * (CH mono epoxide from VCH mono epoxide from VCH mono epoxide from the results in the section from the equation of the capability of the result in the relative section from the result in the relative section from the equation of the capability of the formation of the capability of the result in the relative section from the relative section from the relative section in the relative section from the relative section in the relative section from the relative secont in the relative section from the relative section from the

Date	Country / Organisation / MSCA			Dossier submitter's response to	RAC's response to comment					
	MSCA								comment	
		activation. Equ	ivocal results v	were obtained for	r TA 1537 withou	t metabolic activ	vation (NTP.		ovary	
		1989).		carcinogenesis are						
		,							not relevant to	
		It is known that	t S9 mix is con	taining microsor	mes and enriched	with necessary e	enzymes for		human.	
		VCD generatio	n (eg CYP2A a	and CYP 2B).		-	-			
									Another critical	
		Details							point of the dossier	
					s in the strains TA				is the genotoxic	
					at or hamster S9),	, when tested acc	ording to the		potential of VCH.	
		pre-incubation							As mentioned in	
							nd mice after ora	al and inhalative	the CLH dossier	
					y and decreased b				(4.9.4 Summary	
					in was decreased				and discussion of	
		week study.	and increased	mortality was o	bserved in the hig	gn-dose groups if	the 13-		mutagenicity), in	
		week study.							vitro systems may be inappropriate to	
		In contrast to th	nis VCD was n	ositive in the Ar	nes test for TA15	37 with metaboli	c activation		test VCH since rat	
					without metabolic				S9 may fail to	
		There is no in-v			without metabolik		, 1909).		metabolise VCH	
									into the ultimate	
		3) Discussion of	of Carcinogenic	city					metabolite VCD.	
					.1.1 "toxicokineti	cs: non human			Interestingly, a	
				LH report, p41 fe					mouse lymphoma	
		Table 2: Carcin	nogenicity of V	CH in rats after	2 years oral dosir	ng (gavage) of 0,	200 or 400		assay was found	
		mg/kg/day (NT	P 1986)						positive in a NTP	
									study (not	
		Dose		0	200	400	Historical	Comment	published but	
							control %		results available on	
							(range)		the NTP website	
		Survival	М	33/50	13/50	5/50			(<u>http://ntp-</u>	
		(104 W)	f	40/50	28/50	13/50			apps.niehs.nih.gov/	
		Squamous	m	0/50	1/50 (2%)	4/50 (8%)	1.9 (0-10)	No effect as	<u>ntp_tox/index.cfm?</u> <u>fuseaction=mousel</u>	
		Cell						within range	ymphoma.studyDet	
		Papilloma						of historical	ails&study no=971	
		or						control	$\frac{113\&study_{10}=971}{117\&cas no=100-}$	
		Carcinoma		1/50	1/50	2/50		NT CC	<u>40-</u>	
		Preputial	m	1/50	1/50	3/50	3.6 (max 14)	No effect as	3&endpointlist=M	

Date	Country / Organisation / MSCA			Dossier submitter's response to comment	RAC's response to comment						
		Gland: Adenoma or Carcinoma							within range of historical control	<u>L,ML-N</u>)). In vivo genotoxicity was investigated by a	
		Adenoma or carcinomaFAnterior Pituitary GlandImage: Comparison of the second s		19/50 (38	%) 24/48	(50%)	7/44 (16%	b) 41.3 (27-		micronucleus assay in rats and mice exposed to VCH by inhalation for 2 days or 13 weeks	
		Clitoral F Gland: Adenoma or Squamous Cell Carcinoma		1/50 (2%) 5/50 (10%)	0/49	2.1 (0-8)	No effect as within range of historical control and no dose dependency	(Bevan <i>et al.</i> , 2001). However, validity of the results is questioned since only 1000 PCE per	
		Table 3: Carcinogenicity of VCH in mice after 2 years oral dosing (gavage) of 0, 200 or 400 400 mg/kg/day (NTP 1986) 1								animal were scored (the actual OECD 474 TG recommends to score a minimum of 2000 immature	
		dose		0	200	400		Historical control % (range)	Comment	erythrocytes per animal for the	
		Survival (104 W)	m f	37/50 40/50	39/50 39/50	7/5 17/3	50			incidence of micronucleated	
		Alveolar/Bronchiolar Adenoma or Carcinoma	m	5/50 (8%)	11/50 (22%) 4/50	0 (8%)	14.3 (2-26)	No effect as within range of historical control and no dose dependency	immature erythrocytes), no individual data are available, and no historical negative/positive	
		Adrenal gland adenoma	m	0/50	3/49 (6%)	4/4	8 (8%)	0.7 (0-4.3)	No effect as within range of historical control	control data are available (especially for 1,3- butadiene used as a	
		Mixed ovarian Tumor, (Benign)	F	0/49 (0%)	25/48 (52%) 11/4	47 (23%)	0.2%	effect	positive control in the mouse micronucleus assay)). With	

Date	Country / Organisation / MSCA			Dossier submitter's response to comment	RAC's response to comment					
		Ovarian Granulosa	F	1/49 (2%)	9/48 (19%)	11/47 (23%)	Close to	effect	regard to VCD, no	
		Cell adenoma					0 %		in vivo assay is	
							(unusual		available, although	
							tumor)		it is mutagenic in	
									several in vitro	
		The following text shou				mary and discuss	sion of		tests and	
		carcinogenicity" of the							carcinogenic in rats	
		Carcinogenic studies we							and mice.	
		mortality was observed							However, it was	
		(14%) male mice; 13/50							found to form	
		general, male animals an							DNA adducts in	
		sensitive than mice. Hig							mice dermally	
		Additionally, low dose i							exposed to VCH	
		may be considered as no				ilts of low dose n	nale and female		(Randerath and	
		mice and low dose fema					1 .1 0		Mabon, 1996).	
		Results of the NTP stud							Therefore, we are	
		Nevertheless, as these st	tudies	are the only a	available carcino	ogenicity studies	they are briefly		of the opinion that no firm conclusion	
		discussed.							can be drawn about	
		No carcinogenic effect i							the genotoxic	
		dose of 200 mg/kg/day control (data not shown							potential of VCH	
		and female data as well						ale	and VCD and that	
		consideration.	as 10v	v uose maie u	ata is presenteu		to depui		this endpoint has	
		consideration.							not been	
		Ovarian carcinogenicity	was	observed in m	ice This kind o	f tumor is unusu	al (see historical	I	sufficiently	
		control). Other tumors of						L	investigated.	
		within the range of the h				ne control (data l	lot shown) of		in , estingute ut	
				car control (u					Finally, concern	
		The toxicokinetic studie	es men	tioned before	suggest that rat	ts are the more ar	opropriate anim	al	has been raised	
		model for extrapolation							about a	
		metabolite VCD is rathe							classification as	
				-F					Carc Cat 1B based	
		In general, the mouse is	more	efficient at m	etabolism of 4-	VCH to epoxides	s than is the rat o	or	on the increased	
		human. Beyond this, the							incidence of ovary	
		rat would tend to produc							tumors in female	
		equal doses of 4-VCH.						ce	mice only. The	
		suggests that the mouse							CLP states: "A	
									single study in one	

Date	Country /	Comment	Dossier	RAC's response to
	Organisation /		submitter's	comment
	MSCA		response to	
			comment	
		In-vitro studies have proven VCD formation directly from VCH in microsomes from mice but	species and sex	
		failed to show VCD formation directly from VHC for rat microsomes and artificial produced	might be	
		human supersomes (Fontaine et al. 2001). Therefore, rats are the appropriate animal model	considered to	
		for extrapolation of animal data to humans.	provide sufficient	
			evidence of	
		VCD can be regarded as the ultimate carcinogen in mice. However, VCD is practically not	carcinogenicity	
		available to rats and humans after exposure to 4-VCH. Therefore, ovarian carcinogenicity	when malignant	
		was observed in mice, but not in rats. As rats are considered the appropriate animal model	neoplasms occur to	
		for extrapolation of VCH animal data to humans (Hoyer, 2007), the relevance of the ovarian	an unusual degree	
		carcinogenicity for humans remains unclear or is unlikely.	with regard to	
			incidence, site, type	
		3) Missing epidemiological evidence	of tumour or age at	
		There is no epidemiological study available to evaluate the carcinogenicity of VCH to	onset, or when	
		humans. There is limited evidence for the carcinogenicity of VCH to experimental animals.	there are strong	
			findings of tumours	
		B) Comparison with Classification Criteria	at multiple sites".	
		The chapter "Comparison with criteria for classification" of the French CLH report (pp45 – 46)	Granulosa-cell	
		has to be changed. Bases on the comment given above assumption made in chapter 4.10.5	tumors, an	
		are not correct or incomplete, respectively.	uncommon finding	
		In compliance with Regulation (EC) No 1272/2008 (CLP), substances are classified for	in NTP historical	
		carcinogenicity according to their potential to cause cancer in humans. The classification	vehicle control,	
		criteria for cancer classification are given below and compared to the available data for VCH.	were observed in	
			low-dose and high-	
		Criteria to be considered for classification Cancer Cat 1	dose female mice.	
			Although the	
		Cancer Cat. 1: Known or presumed human carcinogens	mortality was	
		A substance is classified in Category 1 for carcinogenicity on the basis of epidemiological and/or	significantly	
		animal data. A substance may be further distinguished as:	increased in the	
			high-dose group,	
		Category 1A, known to have carcinogenic potential for humans,	the data should not	
		classification is largely based on human evidence, or	be disregarded	
			because they are	
		Category 1B, presumed to have carcinogenic potential for humans,	also found in the	
		classification is largely based on animal evidence.		
		classification is largely based on animal evidence.	low-dose group. In addition, VCD	
		The elegrification in Category 14 and 1P is based on strength of suidence to a the suith a different		
		The classification in Category 1A and 1B is based on strength of evidence together with additional	produced the same	
l		considerations (see section 3.6.2.2).	type of tumors in	
		Such evidence may be derived from:	mice (NTP, 1986;	

Date	Country /	Comment	Dossier	RAC's response to
	Organisation /		submitter's	comment
	MSCA		response to	
			comment	
		– human studies that establish a causal relationship between human exposure to a substance and the	1989). Not only	
		development of cancer (known human carcinogen); or	benign tumors	
		– animal experiments for which there is sufficient (1) evidence to demonstrate animal carcinogenicity	were observed in	
		(presumed human carcinogen).	treated female mice	
			but also carcinoma.	
		In addition, on a case-by-case basis, scientific judgement may warrant a decision of presumed human	It should be noted	
		carcinogenicity derived from studies showing limited evidence of carcinogenicity in humans together	that the authors of	
		with limited evidence of carcinogenicity in experimental animals.	the NTP study	
			reported that the	
		Additional criteria to be considered for classification:	granulosa-cell	
			lesions are a	
		Section 3.6.2.2.3 (CLP): Strength of evidence involves the enumeration of tumours in human and	continuum of	
		animal studies and determination of their level of statistical significance. Sufficient human evidence	hyperplastic to	
		demonstrates causality between human exposure and the development of cancer, whereas sufficient	benign and	
		evidence in animals shows a causal relationship between the substance and an increased incidence of	malignant	
		tumours. Limited evidence in humans is demonstrated by a positive association between exposure and	neoplastic	
		cancer, but a causal relationship cannot be stated. Limited evidence in animals is provided when data	proliferations.	
		suggest a carcinogenic effect, but are less than sufficient. The terms 'sufficient' and 'limited' have	It should be	
		been used here as they have been defined by the International Agency for Research on Cancer (IARC)	emphasised that	
		and read as follows:	increased incidence	
			of tumors have	
		- sufficient evidence of carcinogenicity: a causal relationship has been established between the agent	been observed in	
		and an increased incidence of malignant neoplasms or of an appropriate combination of benign and	male mice and	
		malignant neoplasms in (a) two or more species of animals or (b) two or more independent studies in	male and female	
		one species carried out at different times or in different laboratories or under different protocols. An	rats, but, due to	
		increased incidence of tumours in both sexes of a single species in a well-conducted study, ideally	poor survival in	
		conducted under Good Laboratory Practices, can also provide sufficient evidence. A single study in	these groups, the	
		one species and sex might be considered to provide sufficient evidence of carcinogenicity when	interpretation of	
		malignant neoplasms occur to an unusual degree with regard to incidence, site, type of tumour or age	the data is difficult.	
		at onset, or when there are strong findings of tumours at multiple sites;	Excessive mortality	
			may have masked	
		- limited evidence of carcinogenicity: the data suggest a carcinogenic effect but are limited for	increased	
		making a definitive evaluation because, e.g. (a) the evidence of carcinogenicity is restricted to a single	incidences of	
		experiment; (b) there are unresolved questions regarding the adequacy of the design, conduct or	different types of	
		interpretation of the studies; (c) the agent increases the incidence only of benign neoplasms or lesions	tumors. Also, we	
		of uncertain neoplastic potential; or (d) the evidence of carcinogenicity is restricted to studies that	do not think that	
		demonstrate only promoting activity in a narrow range of tissues or organs.	ovary tumors	
			observed in mice	

Date	Country / Organisation /	Comment	Dossier submitter's	RAC's response to comment
	MSCA		response to	comment
	MSCA		comment	
		According to CLP section 3.6.2.2.6, important factors which may be taken into consideration when	could be	
		assessing the overall level of concern for humans are:	confounded with	
		assessing the overall level of concern for numans are.	"excessive toxicity	
		(a) tumour type and background incidence;	at test doses" since	
		(b) multi-site responses;	the incidence is	
		(c) progression of lesions to malignancy;	statistically	
		(d) reduced tumour latency;	significant even at	
		(e) whether responses are in single or both sexes;	the low dose at	
		(f) whether responses are in a single of boin sexes, (f) whether responses are in a single species or several species;	which mortality	
		(g) structural similarity to a substance(s) for which there is good evidence of carcinogenicity;	was similar to	
		(<i>b</i>) routes of exposure;	control.	
		(i) routes of exposure, (i) comparison of absorption, distribution, metabolism and excretion between test animals and	control.	
		humans;	Overall, we are still	
		<i>(j) the possibility of a confounding effect of excessive toxicity at test doses;</i>	convinced that	
		(k) mode of action and its relevance for humans, such as cytotoxicity with growth stimulation,	VCH shows	
		<i>mitogenesis, immunosuppression, mutagenicity.</i>	sufficient evidence	
			of carcinogenic	
		Rational for non-classification of VCH into Carc. Cat. 1A/B	potential. Based on	
		Rational for non-classification of Verrinto Care. Cat. 17/15	the fact that VCH	
		VCH does not meet the criteria for Carc. Cat. 1A as there is no valid epidemiological data	is clearly	
		available that justifies a cancer classification.	carcinogenic in	
			female mice, that	
		VCH does not met the criteria for Carc. Cat 1B due to the following reasons:	there is uncertainty	
		1. There are no human studies that give even limited evidence for a causal relation ship	regarding the	
		of carcinogenicity and VCH exposure.	genotoxicity of	
		of earemogenery and verrexposure.	VCH and VCD,	
		2. Detailed toxicokinetic data suggests that mechanism causing ovarian tumor is rather	and that there is no	
		mice specific and therefore not relevant to rats or humans (see consideration criteria	evidence that the	
		(i)). Only mice, but not rats or humans are able to metabolize VCH to VCD in a	VCH-induced	
		significant amount (steady state concentration). VCD is considered to be a	ovary	
		carcinogen (Carc. Cat. 2 but not 1B according to regulation 1272/2008)	carcinogenesis is	
		an emogen (emot eut 2 out not 12 ucostaning to regaration 12/2/2000)	not relevant to	
		3. Significant tumor were only observed in mice (see consideration criteria (f) – reason	humans, a	
		see 2.). No tumor are observed in rats.	classification in	
			Carc Cat 1B is still	
		4. Predominantly benign ovarian tumor were observed in mice and ovarian tumors were	appropriate for	
		the only site tumor induction was observed (no multisite response, see consideration	VCH.	
		criteria (b) – reason see 2.)	With regard to	
			to and to	

Country / Dossier **RAC's response to** Date Comment **Organisation** / submitter's comment MSCA response to comment VCD. а 5. High dose groups of existing animal studies in rat and mice are inadequate for classification as evaluation as survival rate is far to low (10-34%). Tumor findings in this studies may Carc. Cat 1B could therefore be not regarded of sufficient evidence but of limited evidence (see be more consideration criteria (j)). appropriate. Its genotoxic potential 6. VCH is non mutagenic in vivo and in vitro. deserves to be further investigated Rational for classification of VCH in Carc. Cat. 2 in vivo. Cat. 2: Suspected human carcinogens Specific The placing of a substance in Category 2 is done on the basis of evidence obtained from human and/or suggestions: animal studies, but which is not sufficiently convincing to place the substance in Category 1A or 1B, based on strength of evidence together with additional considerations Tables 2 and 3 are (see section 3.6.2.2). Such evidence may be derived either from limited (1) evidence of carcinogenicity interesting. in human studies or from limited evidence of carcinogenicity in animal studies. Historical incidences have been included in As described above VCH does not fulfil the criteria to classify for Carc. Cat. 1. The only available valid information on carcinogenicity of VCH is derived from an animal study with Table 14 mice, in which predominantly benign tumor were observed. Tumors in mice may be regarded (Summary table of as a secondary effect of ovarian toxicity. From the toxicokinetic data of VCH sufficient relevant information were provided concerning the differences between mice, rats and humans. The carcinogenicity results of these studies suggest that rats are the more appropriate animal model for studies) in the CLH extrapolation of animal data to humans. Overall evaluation suggest that mechanism causing report. ovarian tumor is rather mice specific and not relevant to rats or humans. Section 4.10.4 has been revised in the CLH report to take On the other hand reliability of the rat cancer study is very limited. The metabolite VCD, that into account your cause ovarian toxicity and tumors in mice is in principle formed in rats and humans in low suggestions. amounts as well (in vitro data only). The formation of VCD was proven in vivo in mice but not in rats. P 22: corrections Despite amounts formed are considered not to be enough to induce cancer in the rat and have been made to probably humans and VCH is non mutagenic in vivo and in vitro, classification of VCH for clarify the text Carc. Cat. 2 is suggested based on precautionary principle. (Fontaine et al Conclusion 2001) VCH is converted to VCD in a two step process. VCD is supposed to be the active metabolite p37 4.9.6 causing ovarian toxicity in rat and mice and ovarian carcinogenicity in mice. No ovarian corrections have

Date	Country / Organisation /		Comment		Dossier submitter's	RAC's response to comment
	MSCA				response to	
		carcinogenic	ity was found in rats.		commentbeenmadeto	
			tion of VCH to VCH-1,2-epoxide is the velocity de	etermining step and therefore	clarify the text	
			eaction for ovarian toxicity and carcinogenicity. The		charing the text	
			shows distinct differences between mice, rats and		p 41 We do not	
		human).	,	`` <u></u>	agree that the NTP	
		,			study may be	
			icokinetic data suggest that mechanism causing ov		considered as not	
			not relevant to rats or humans. Existing studies sug		assignable to	
		appropriate a	animal model for extrapolation of animal data to hu	umans (Hoyer&Sipes 2007).	invalid.	
		Despite amo	unts formed are considered not to be enough to inc	luce cancer in the rat and	P 44: Partially	
			nans and VCH is non mutagenic in vivo and in vit		agree. Corrections	
			according to regulation 1272/2008 (EU GHS) is su		have been made to	
		precautionary	y principle as there are still uncertainties e.g. low r	eliability of NTP rat results.	clarify the text	
		Carc. Cat. 2	according to regulation 1272/2008 (EU GHS) is th	e same classification as	P44-45: Partially	
			EU classification in force for the metabolite VCD.		agree. Corrections	
			netabolite for carcinogenic effects as also discusse		have been made to	
			VCH more restrictive than the metabolite VCD, wh	nich is supposed to be the	clarify the text	
		active toxica	nt, is inappropriate.		DIC	
		Direct comm			P46: see our remark on the	
		Direct comm		Correction	carcinogenic	
		Page	Incorrect or miss leading description 4.1 Toxicokinetics (absorption	A more deliberative description is	potential of VCD	
		17 -	metabolism distribution and	necessary and should include	above	
		24	elimination)	statements and table 1 of metabolism		
				discussion given above		
					Please see CLH	
		Page	Additionally, Fontaine and coworkers	It has been shown that "Supersomes"	report for references.	
		22	have demonstrated that	containing purified human CYP +	Tererences.	
			human CYP "Supersomes" (human	purified human P450 reductase +		
			CYP + P450 reductase + cytochrome	cytochrome b5 and other cofactors in		
			b5) are able to catalyze VCH	excess that VCH mono epoxide is		
			epoxidation, resulting in the	formed from VCH and in another		
			formation of mono- and diepoxide	experiment formation of VCH di epoxide		
			<i>metabolites of VCH (Fontaine et al.,</i>	from VCH mono epoxide was shown in		
			2001).	this really artificial system (Fontaine et al		
				2001b). Formation of VCD from VCH		

Date	Country / Organisation / MSCA		Commer	nt	Dossier submitter's response to comment	RAC's response to comment
		Page 37	4.9.6 Conclusions on classification and labelling Information regarding mutagenicity are displayed as supporting evidence for the carcinogenicity endpoint due to the positive <i>in vitro</i> results of VCD. However, no classification is discussed and proposed for this endpoint for VCH.	 therefore is theoretically possible (purified enzymes and high amounts of VCH mono epoxide are needed). However, the group was not able to show direct formation of VCH di epoxide from VCH in this test system (Fontaine et al 2001a). 4.9.6 Conclusions on classification and labelling Information regarding mutagenicity are displayed as supporting evidence for the carcinogenicity Endpoint. Positive <i>in vitro</i> results of VCD are given as additional information as VCD is discussed as possible ultimate carcinogen. However, no classification is discussed and proposed for this endpoint for VCH. VCH is clearly non-mutagenic in <i>in vitro</i> and <i>in vivo</i> OECD Guideline studies. VCH did not produce increase in revertants in TA1537 with or without metabolic activation (rat or hamster S9). In contrast to VCD was positive in the Ames test for TA1537 with metabolic activation. And equivocal results were obtained for TA 1537 without metabolic activation (NTP, 1989). 	-	
		Page 41	4.10.1 Carcinogenicity	It is known that S9 mix is containing microsomes and enriched with necessary enzymes for VCD generation (eg. CYP2A and CYP 2B). A more deliberative description is necessary and should include: "The high dose results are questionable		

Date	Country / Organisation / MSCA		Comment		Dossier submitter's response to comment	RAC's response to comment
				for rat and mice due to high mortality. Additionally, low dose results are questionable for male rat as well. Reliability of the study may be considered as not assignable to invalid as only results of low dose male and female mice and low dose female rats can be discussed." Consequently results of the NTP study are questionable and can provide only limited evidence therefore.		
		Page 43- 45	4.10.4 summary and discussion of carcinogenicity	 4.10.4 "summary and discussion of carcinogenicity" is described misleading and therefore wrong assumption are made. A more deliberative description is necessary and have to include statements and tables (2 and 3) of carcinogenicity discussion given above 		
		Page 44	Since it was demonstrated that human hepatic microsomes and human CYPs are able to catalyse <i>in</i> <i>vitro</i> the epoxidation of VCH in mono and diepoxide (VCD), it cannot be ruled out that this reaction could occur in women exposed to VCH. Although the study available regarding human metabolism of VCH seems to show that human is less potent to transform it into its monoepoxide, VCH 1,2 epoxide, than rat (and subsequently than mouse), some metabolism still occurs. Nevertheless, information about the levels of VCD formed <i>in vitro</i> in human hepatocytes is missing.	Since it was demonstrated that human hepatic microsomes are able to catalyse in vitro the epoxidation of VCH in mono epoxide and isolated purified human CYP is able to form the diepoxide (VCD) from VCH monoepoxide, it is theoretically possible that VCD is formed in man and women exposed to VCH. Although the study available regarding human metabolism of VCH seems to show that human is less potent to transform VCH into its monoepoxide (VCH-1,2-epoxide) than rat (and subsequently than mouse), some metabolism still occurs. Information about the levels of VCD formed in vitro in human hepatocytes is missing. However, studies with human CYP "Supersomes" (isolated human		

Country / Dossier **RAC's response to** Date Comment **Organisation** / submitter's comment MSCA response to comment CYP + P450 reductase + cytochrome b5) failed to demonstrate direct VCD formation from VCH (Fontaine et al. 2001a). Page Overall, the only valid study to assess VCH carcinogenicity study of NTP in rats carcinogenic effects of VCH is the and mice suffer from high mortality due to 44 oral carcinogenicity study VCH toxicity. Overall, the only valid study 45 in female mice exposed to VCH. The parts to assess carcinogenic effects of VCH are the results observed with male mice and low dose oral carcinogenicity in mice and in female and male rats female rats exposed to VCH. could not be used to evaluate the The results observed with male high dose hazard potential of VCH because of mice and male rats and high dose female rats the poor survival in these animals. However, based on the welldescribed can not be used to evaluate the hazard mechanism by which potential of VCH because of the poor ovarian tumors are produced survival in these animals. (metabolisation of VCH in VCD and Based on the well-described mechanism by subsequent destruction of small which ovarian tumors are produced oocytes), and on the fact that (metabolisation of VCH in VCD and in vitro epoxidation of VCH was subsequent destruction of small oocytes) it observed in human hepatocytes, it cannot be can be concluded that VCH can lead to ruled out that this ovarian tumors in mice. However, relevance mechanism is relevant to human. of this result for rat and humans cannot be concluded from the available data. The epoxidation of VCH shows distinct differences between mice, rats and humans. From the existing data it can be concluded that formation of relevant amounts of the toxic metabolite VCD is rather mouse specific. In vitro studies have proven VCD formation directly from VCH in mice but theses studies fail to show VCD formation directly from VHC for rat and human supersomes (Fontaine et al. 2001a). Existing toxicokinetic studies suggest that rats are the appropriate animal model for extrapolation of animal data to humans (Hoyer&Sipes 2007).

Country / Dossier **RAC's response to** Date Comment **Organisation** / submitter's comment MSCA response to comment However, some uncertainty remains, despite formation of relevant amounts of VCD is unlikely. Theoretically VCD formation in an amount below the detection limit is possible (Fontaine et al. 2001b). 4.10.5 Comparison with criteria Comparison with criteria for classification Page pp45 - 46 has to be changed. Based on the 45comments given above the assumption made 46 in chapter 4.10.5 are not correct or incomplete, respectively. See discussion given above. Carc. Cat. 2 according to regulation Page 4.10.5 Comparison with criteria 46 1272/2008 (EU GHS) is the classification as harmonized EU classification in force for the metabolite VCD. VCD seems to be the responsible metabolite for carcinogenic effects also discussed in the French CLH dossier. Classifying VCH more restrictive than the metabolite VCD, which is supposed to be the active toxicant, is inappropriate. References Bevan C, Keller DA, Panepinto AS, Bentley KS (2001): Effect of 4-vinylcyclohexene on micronucleus formation in the bone marrow of rats and mice. Drug Chem. Toxicol. 24 (3): 273-285. Flaws JA, Doerr JK, Sipes IG, Hoyer PB (1994): Destruction of preantral follicles in adult rats by 4-vinyl-1-cyclohexene diepoxide. Reprod. Toxicol. 8: 509-514. Fontaine SM, Mash EA, Hoyer PB, Sipes IG. (2001a). Stereochemical aspects of vinylcyclohexene bioactivation in rodent hepatic microsomes and purified human cytochrome p450 enzyme systems. Drug Metab Dispos. 29 (2): 179-18. Fontaine SM, Hoyer PB, Halpert JR, Sipes IG (2001b): Role of induction of specific hepatic cytochrome P450 isoforms in epoxidation of 4-vinylcyclohexene. Drug. Metab. Dispos. 29 (9): 1236-1242.

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		Hoyer PB, Sipes IG (2007): "Development of an Animal Model for Ovotoxicity Using 4- Vinylcyclohexene: A Case Study". Birth Defects Research (Part B) 80:113–125. Keller DA, Carpenter SC, Cagen SZ, Reitman FA (1997): In vitro metabolism of 4- vinylcyclohexene in rat and mouse liver, lung, and ovary. Toxicol. Appl. Pharmacol. 144 (1): 36-44.		
		NTP Technical Report on the Toxicology and carcinogenesis studies of 4-vinylcyclohexene (CAS N°. 100-40-3) in F344/N rats and B6C3F1 mice. US National Toxicology Program, NTP TR 303, August 1986.		
		NTP Technical Report on the Toxicology and carcinogenesis studies of 4-vinyl-1- cyclohexene diepoxide (CAS 106-87-6) in F344/N rats and B6C3F1 mice (dermal studies). US National Toxicology Program, NTP TR 362, 1989.		
		Rajapaksa KS, Cannady EA, Sipes IG, Hoyer PB (2007): Involvement of CYP 2E1 enzyme in ovotoxicity caused by 4-vinylcyclohexene and its metabolites. Toxicol. Appl. Pharmacol. 221 (2): 215-221.		
		Smith BJ, Carter DE, Sipes IG (1990a): Comparison of the disposition and in vitro metabolism of 4-vinylcyclohexene in the female mouse and rat. Toxicol. Appl. Pharmacol. 105 (3): 364-371.		
		Smith BJ, Mattison DR, and Sipes IG (1990b): The role of epoxidation in 4-vinylcyclohexeneinduced ovarian toxicity. Toxicol. Appl. Pharmacol. 105 (3): 372-381. Smith BJ, Sipes IG (1991): Epoxidation of 4-vinylcyclohexene by human hepatic microsomes. Toxicol. Appl. Pharmacol. 109 (2): 367-371.		
13/07/2011	Sweden / Member State	The Swedish Chemicals Agency (KemI) agrees with the submitting MS that the data available are sufficient for classification of 4-vinylcyclohexene (VCH) as Carc. Cat. 1B according to Reg. 1272/2008 and as Carc. Cat. 2 according to Dir. 67/548/EEC. Page 52. As the MS has not received any further information it could be interesting to compare the suggested	Thanks for your support. Notifications integrated pg 52	Noted
		classification to "Notifications for classification and labeling" submitted to ECHA for VCH (REACH-IT).		
13/07/2011	Belgium Cefic / BehalfOfAnOrga nisation / Industry or trade	I am writing behalf of the Lower Olefins Sector Groups of Cefic, the Acrylonitrile Butadiene Styrene Copolymer - Styrene Acrylonitrile Copolymer group of Plastics Europe and the International Institute of Synthetic Rubber Producers.	Please see our response to comment above from Germany /	Noted
	association	ECHA comment: The document attached "Letter from Cefic, PlasticsEurope and SRP, 12/07/2011, 4-vinyl	AffiliatedWithOrga	

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		cyclohexene (VCH) Response to proposal for harmonised classification and labelling" (CEFIC Letter re 4VCH.pdf)) is copied below:	nisation / Company- Manufacturer	
		<u>4-vinyl cyclohexene (VCH)</u> Response to proposal for harmonised classification and labelling		
		On behalf of the Lower Olefins Sector Groups of Cefic, the Acrylonitrile Butadiene Styrene Copolymer - Styrene Acrylonitrile Copolymer group of Plastics Europe and the International Institute of Synthetic Rubber Producers, we are writing to provide comment on the proposal from France for a harmonised classification and labelling for 4-vinyl cyclohexene (VCH). Whilst agreeing with the general interpretation of the criteria document we believe that some critical issues are only partially covered, and we specifically disagree with the interpretation		
		of the findings against the criteria for classification for the cancer end point. The basis for our divergence of opinion are set out in the accompanying document. We trust that you will agree with our concerns and look forward to receiving your considered opinion.		
		Yours faithfully,		
		Graeme Wallace Manager Aromatics & Olefins - Cefic Styrenics Chain - Plastics Europe		
		The document mentioned in this letter is copied in the comment on carcinogenicity made by Belgium / Graeme Wallace / Cefic / on 13/7/2011 below.		

Date	Country/ Person/	Comment	Dossier submiter's	RAC's response to comment
	Organisation/		response to	
14/07/2011	MSCA United Kingdom / Member State	 We agree that the mouse ovarian tumours support classification for carcinogenicity; however, we are not sure the available information justifies the Category 1B proposal. We are not convinced that hepatic generation of reactive epoxides and transport to the ovary is a plausible explanation for the ovarian tumours. Given the likely reactivity of the VCH epoxide (and diepoxide) and the widespread systemic distribution the proposed mode of action requires, it is surprising that no tumours were induced in the liver and non ovarian tissues. There was no evidence of genotoxicity from the limited information available. In addition, a non-genotoxic mode of action is supported by the lack of tumour findings in other tissues in the mouse, and the negative rat carcinogenicity study. In conclusion, taking account of the apparent lack of genotoxicity and uncertainties surrounding the proposed mode of action, we consider that CLP Category 2 is more appropriate. 	comment According to a comprehensive review on the VCH-mediated ovotoxicity by Hoyer and Sipes, 2001, VCH or VCD "cause small preantral follicle loss by a direct targeting of the ovary". Then, VCH or its epoxide metabolites are expected to reach	We thank the MSCA for including more information on the MoA, especially about the targeting of the ovary. We agree with the MSCA that it is not demonstrated that the MoA is not relevant for humans, and we agree that no firm conclusion can be
			the ovary. Maybe the liver metabolism is not the only one to contribute to the metabolism of VCH. Indeed, although no epoxidation of VCH or its monoepoxides was detected in mouse or rat ovary incubated with VCH in vitro (Keller et al., 1997), Cannady et al. (2003)	drawn with regard to the genotoxic potential of VCH. However, based on available data of mutagenicity of VCH, concern is low. After a weight-of evidence analysis we regard category Carc. 2 (CLP) as the most appropriate for VCH. Hence we do not support the dossier submitters

	demonstrated that	proposalt the cat
	VCH/VCD are	1B proposal in
	able to induce	regard to
	CYP2E1, CYP2A	carcinogenicity.
	and CYP2B in F1	For more
	follicles (but also	reasoning, please
	in F3 follicles and	
	interstitial cells)	opinion.
	from mice	opinion.
	previously expose	d
	previously expose	u
	to VCH or VCD	
	for 15 days. This	
	would demonstrat	e
	that an induction	
	of CYPs in the	
	ovary may activat	
	the metabolism of	
	VCH or VCD in	
	the ovary, the	
	extent of this	
	reaction in ovary	
	compared to that i	n
	liver being	
	unknown.	
	In addition, we as	e
	of the opinion th	
	no firm conclusio	n
	can be draw	
	about th	
	genotoxic potenti	
	of VCH and VC	D
	and that th	
	endpoint has no	
	been sufficient	
	investigated.	
		is
	mentioned in the	
	CLH dossier (4.9	
	Summary ar	
		of
		n
 1	initiagementy),	**

	vitro systems may	
	be inappropriate to)
	test VCH since ra	t
	S9 may fail to)
	metabolise VCH	1
	into the ultimate	2
	metabolite VCD	
	Interestingly, a	a
	mouse lymphoma	ı
	assay was found	
	positive in a NTF	
	study (no	
	published bu	
	results available or	1
	the NTP website	ذ
	(http://ntp-	
	apps.niehs.nih.gov	/
	ntp_tox/index.cfm	
	?fuseaction=mouse	3
	lymphoma.studyD	
	etails&study_no=9	
	71117&cas_no=10	
	0-40-	
	3&endpointlist=M	
	L,ML-N)). In vivo)
	genotoxicity was	
	investigated by a	ı
	micronucleus	
	assay in rats and	1
	mice exposed to	
	VCH by inhalation	1
	for 2 days or 13	3
	weeks (Bevan e	t
	<i>al.</i> , 2001)	
	However, validity	7
	of the results is	
	questioned since	
	only 1000 PCE per	r
	animal were scored	1
	(the actual OECE	
	474 TC	
	recommends to)

	score a minimum	
	of 2000 immatur	re
	erythrocytes pe	er
	animal for th	
		of
	micronucleated	
	immature	
	erythrocytes), n	10
	individual data an	re
	available, and n	10
	historical	
	negative/positive	
	control data and	re
	available	
	(especially for 1,2	3-
	butadiene used as	a
	positive control i	in
	the mous	
	micronucleus	
	assay)). Wit	th
	regard to VCD, n	10
	in vivo assay	is
	available, althoug	th
	it is mutagenic i	in
	several in vitr	·0
	tests an	nd
	carcinogenic i	in
	rats and mice	
	However, it wa	
	found to for	
	DNA adduc	
	(Randerath and	
	Mabon, 1996).	
	Finally, it should	
	be emphasised that	t
	increased	
	incidence of	
	tumors were	
	observed in rats	
	but, due to poor	
	survival, the	
	results may be	
1		

	mis	sleading. Early	
		essive	
	more	rtality may	
		e masked the	
	hig	her outcome of	
	tum	nors induced by	
	VC		
		vertheless, the	
	incr	reased	
		idence of	
		enomas or	
	squ	amous-cell	
		cinomas	
	(con	mbined) of the	
	clite	oral gland in	
	low	v-dose female	
		s is considered	
		ce the survival	
		hese animals is	
	sim	ilar to control	
	unti	il week 102.	
	Ov	verall, although a	
	M	OA by which	
		CH-induced	
	ova		
	car	cinogenesis	
		uld occur via	
		cyte depletion	
		ding to ovary	
	fun	nors is	
		usible, there is	
	no	evidence that a	
		notoxic	
		mponent does	
		t play a role in	
	the	e VCH	
		cinogenicity.	
		emogementy.	
		ease see CLH	
	rep	port for	

			references	
30/06/2011	Germany / Member State	The carcinogenicity studies (NTP TR 303) in rats and mice performed with VCH suffer from premature mortalility, which indicates excessive dosing. For classification purposes it is important to get more information this aspect, e. g. whether MTD is exceeded (see Lit 1). So, precise values of body weight gain in the different groups are needed. The NTP-report (NTP TR 303, table 8) states that e. g. female mice of the low dose group (200 mg/kg) started with an average body weight, which was 113% of the control animals, but ended with an average body weight, which was 99% of the control. Similar values were found for the high dose females (400 mg/kg; 114% in the beginning of dosing and 99% at the end). The reduced body weight gain of animals, considering the initial problem to randomize animals (NTP TR 303, p32-43), should be presented in more detail. Concerning the rat study it is mentioned in the text of table 14 of the CLP-report that the low dose and the high females showed a statistically significant increase of mortality. The respective asterisk is missing at the low dose figure (22/50). Please clarify. Different kind of tumours seemed to occur in the ovary. It should be clearly stated whether these are considered as	We do not think that ovary tumors observed in mice could be confounded with "excessive toxicity at test doses" since the incidence is statistically significant even at the low dose at which mortality was similar to control.	We agree with the MSCA that the ovary tumors observed in mice could not be confounded with "excessive toxicity at test doses". We note that VCD is classified in Carc Cat 2 in the CLP regulation today.
		 malignant or benign. It is described in the CLH-report, that VCD, classified with Carc. Cat. 2, is the ultimate metabolite and toxicant. Furthermore it is stated that metabolism from VCH to VCD is different in species, showing the highest activity in mice, followed by rats. The lowest activity is assorted to humans. This should also be considered, if a study in mice is considered as the only carcinogenicity study performed with VCH. Overall, there are some uncertainties about a clear-cut classification as Carc. Cat. 1b. Both studies suffer from excessive dosing and the CLH-report states, that the study in female mice is the only reliable study performed with VCH. Only one dose in female mice did not result in premature mortality. These aspects should be discussed in more detail in chapter 4.10.5 of the CLH-report with respect to the Guidance. Lit: 1: Guidance on the Application of the CLP Criteria: Guidance to Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of substances and mixtures, chapter 3.6.2.3.2. (j) The possibility of a confounding effect of excessive toxicity at test doses 	Table8summarizedsurvival and bodyweigth data forrats. According toTable15,randomization ofmiceatthebeginning of thestudy is acceptable(98% for low-dosefemale mice and100% for high-dose female mice).At week 100, bodyweight is reducedto 93 and 88% ofthe control value,in low- and high-dose female mice,respectively.Therefore,no	We thank the MSCA for providing additional information for comparison with the criteria to classify VCH.

is observed in low- dose female mice. Criteria to classify VCH in Carc Cat 1B have been revised in the CLH dossier Concerning the mortality of female rats, the incidence is increased (22/50 vs 10/50 in
Criteria to classify VCH in Carc Cat 1B have been revised in the CLH dossier Concerning the mortality of female rats, the incidence is increased (22/50 vs 10/50 in
VCH in Carc Cat 1B have been revised in the CLH dossier Concerning the mortality of female rats, the incidence is increased (22/50 vs 10/50 in
VCH in Carc Cat 1B have been revised in the CLH dossier Concerning the mortality of female rats, the incidence is increased (22/50 vs 10/50 in
VCH in Carc Cat 1B have been revised in the CLH dossier Concerning the mortality of female rats, the incidence is increased (22/50 vs 10/50 in
1B have been revised in the CLH dossier Concerning the mortality of female rats, the incidence is increased (22/50 vs 10/50 in
revised in the CLH dossier Concerning the mortality of female rats, the incidence is increased (22/50 vs 10/50 in
dossier Concerning the mortality of female rats, the incidence is increased (22/50 vs 10/50 in
Concerning the mortality of female rats, the incidence is increased (22/50 vs 10/50 in
mortality of female rats, the incidence is increased (22/50 vs 10/50 in
mortality of female rats, the incidence is increased (22/50 vs 10/50 in
female rats, the incidence is increased (22/50 vs 10/50 in
incidence is increased (22/50 vs 10/50 in
increased (22/50 vs 10/50 in
vs 10/50 in
controls) but not
significantly. The
increase is
significant only
after week 102 (P
value = 0.022)
01/07/2011 Ireland / Health The Irish CA is in agreement with the proposed classification of Carc. 1B- H350 (Carc. Cat. 2; R45). Thanks for your Noted. Howev
and Safety we find that base
Authority / on the availab
BehalfOfAnOrga data classificatio
in category Carc
(CLP) is mo
apropriate f
VCH. F
arguments of thi
please see th
opinion at
elsewhere in th
RCOM.
05/07/2011 Netherlands / P38, table 14: Despite the high mortality in rats, several treatment-related tumours were observed in various parts Thanks for your We agree with the treatment related tumours were observed in various parts and the treatment related tumours were observed in various parts and the treatment related tumours were observed in various parts and the treatment related tumours were observed in various parts and the treatment related tumours were observed in various parts and the treatment related tumours were observed in various parts and the treatment related tumours were observed in various parts and the treatment related tumours were observed in various parts and the treatment related tumours were observed in various parts and the treatment related tumours were observed in various parts and the treatment related tumours were observed in various parts and the treatment related tumours were observed in various parts and the treatment related tumours were observed in various parts and the treatment related tumours were observed in various parts and the treatment related tumours were observed in various parts and the treatment related tumours were observed in various parts and the treatment related tumours were observed in various parts and the treatment related tumours were observed in various parts and the treatment related tumours were observed in various parts and the treatment related tumours were observed in various parts and the treatment related tumours were observed in various parts and the treatment related tumours were observed in various parts and the treatment related tumours were observed in various parts and the treatment related tumours were observed in various parts and the treatment related tumours were observed in various parts and the treatment related tumours were observed in various parts and the treatment related tumours were observed in various parts and the treatment related tumours were observed in various parts and the treatment related tumours were observed in various
Bureau REACH / of the body, including squamous-cell papillomas or carcinomas of the skin (males) and adenomas or squamous-cell support. MSCA and that
Member State carcinomas (combined) of the clitoral gland (females). Incidences are increased at the end of the study (only We acknowledge them for including the formation of the study of the study (only we acknowledge them for including the study of th
signs that vinylcyclohexene has a carcinogenic potential and should not simply be ignored.
occurred in male
P38, table 14: Despite the high mortality male mice, treatment-related tumours were observed in various parts of mice and male and
the body, including malignant lymphomas and alveolar/bronchiolar adenomas or carcinomas (combined) of the female rats.

06:07/2011 United States/ Individual Pages 38-45. Section 4.10. A MOA has been proposed for the ovarian tumors in mice from VCH exposure (Bevan et al., 2009). The MOA individual is in preparation. Pages 38-45. Section for Moase Ovarian tumors in mice from VCH exposure (Bevan et al., 2009). The MOA individual is in preparation. Me are grateful to individual in the revised in including it in the revised in including it in the revised in including it in the revised in the MOA individual in internation of FSH revises in individual ovary, VCH-diepoxide selects of FSH. Therease in longer produced from the pytophalamans and pitulary (VCH-diepoxide selects of FSH. Therease in longer produced for the herminotian and primary folicies in the oxyr), loss the negrated of revised in the revised report of revised in the invision and or portion of or SH release for the herminotian and primary folicies in the oxyr), loss the registed of FSH. Therease in the invited of FSH release for the herminotian and pitulary (Sec.), sec. (SFSH. Therease in the invited of FSH release for the herminotian and pitulary (Sec.), sec. (SFSH. Therease in the invited of FSH release for the herminotian and primary folicies in the ovary, loss of the angevine to fSH. Therease in the invited of the very loss of the angevine fSH. Therease in the invited primary folicies in the ovary. We are grateful to be a revised to revised report.				11 1	1
06/07/2011 United States/ Following exposure and uptake, VCH is metabolized or VCH-space (Bevan et al., 2009). The MOA base intracess of the spinordial and primary in the liver, to VCH-12-epoxide or VCH-78. Following exposure and uptake, VCH is metabolized or VCH-diepoxide enters the blood and circulates through the ody. Upon reaching the ovary, VCH-diepoxide enters the blood and circulates through an obligation. We are grateful to the MOA has been proposed for the ovarian tumors repoxide, Wich are further metabolized to VCH-diepoxide enters the blood and circulates through another and uptake, VCH is metabolized to VCH-diepoxide enters the blood and circulates through another and uptake, VCH is metabolized to VCH-diepoxide enters the blood and circulates through another and uptake, VCH is metabolized to VCH-diepoxide enters the blood and circulates through another on or provide on the invarian tumors in the ovary, loss of the negative feedback inhibition on longer produced from the protein and uptake, VCH diepoxide enters the blood and circulates through an obligation and uptake, VCH is metabolized to VCH-diepoxide scleetively distroys the primordial and primary provide. What are further metabolized to VCH-diepoxide scleetively distroys the primordial and primary on longer produced from the primordial and primary for the date or apoptosis. Repeated exposus to VCH this MOA, hased not the theologized or VCH-diepoxide scleetively distroys the primordial and primary provide notice of TSH reculses for SH reculses of TSH reculses and primordial and primary bing the site of TSH reculses of TSH reculses of TSH reculses and primordial many for TSH reculses of TSH reculses of TSH reculses of TSH reculses and p			lung. Therefore, besides the data on ovarian neoplastic lesions in female mice, these data in male mice may provide	However, early	
06/07/2011 United States / Individual Pages 38-45. Section 4.10. A MAO has been proposed for the ovarian tumors in mice from VCH exposure (Bevan et al., 2009). The MOA manuscript is in preparation. Pages 38-45. Section 4.10. A MAO has been proposed for the ovarian tumors in mice from VCH exposure (Bevan et al., 2009). The MOA manuscript is in preparation. We are grateful to the MAO has been proposed for the ovarian tumors in mice from VCH exposure (Bevan et al., 2009). The MOA manuscript is in preparation. We are grateful to the MAO has been proposed for the ovarian tumors in mice from VCH exposure (Bevan et al., 2009). The MOA manuscript is in preparation. We are grateful to the MAO has been proposed for the ovarian tumors in mice from VCH exposure (Bevan et al., 2009). The MAO manuscript is in preparation. We are grateful to the MAO has been proposed for the ovarian tumors in mice from VCH exposure (Bevan et al., 2009). The MAO manuscript is in preparation. We are grateful to the MAO has been proposed for the ovarian tumors in mice from VCH exposure (Bevan et al., 2009). The MAO manuscript is in preparation. We are grateful to the MAO has been proposed for the ovarian tumors in mice from VCH exposure (Bevan et al., 2009). The MAO manuscript is in preparation. We are grateful to the MAO has been proposed for the ovarian tumors in the into account ovary tumors. We are grateful to the MAO has been proposed for the ovarian tumors in the into account ovary tumors. We are grateful to the MAO has been proposed for the ovarian tumors in mice from VCH exposure (Bevan et al., 2009). The MAO manuscript is in preparation. We are grateful to the MAO has been proposed for the ovarian tumors in mice from VCH exposure (Bevan et al., 2009). The MAO manuscript is in preparation. We are grat			additional signs that vinylcyclohexene has a carcinogenic potential and should not simply be ignored.		
06/07/2011 United States / Individual Reges 38-45. Section 4.10. Images and the primordia of the primordia of the primordia of the calculation of					
06/07/2011United States/Pages 38-45. Section 4.10.Pages 38-45. Section 4.10.Pages 38-45. Section 4.10.That you for the survival of these intersting to the proposed for the ovarian tumors in mice from VCH exposure (Bevan et al., 2009). The MOA tabe into account you comments.We are grateful to the MOA and to the survival valuable ovary to the survival to the s			P41: 4.10.1.1: see comments above.		
06/07/2011 United States / Individual Pages 38-45. Section 4.10. Section 4.10. Section 4.10. 06/07/2011 United States / Individual Pages 38-45. Section 4.10. Near egrateful of the was evaluated using the modified Hill criteria for causality in the IPCS Human Relevance Framework. A manuscript is in preparation. Near egrateful of the WSCA for the WSCA f					
06/07/2011 United States/ Individual Pages 38-45. Section 4.10. A MOA has been proposed for the ovarian tumors in mice from VCH exposure (Bevan et al., 2009). The MOA was evaluated using the modified Hill criteria for causality in the IPCS Human Relevance Framework. A manuscript is in preparation. That Ky uo for the software for the survival software for the vortice of the vort				incidences of	
06:07/2011United States/ IndividualPages 38-45. Section 4.10.Newerheless, the incidence of adcnomas or squamous-cell carcinomas combined of the similar to comto until week 102.Newerheless, the incidence of adcnomas or squamous-cell carcinomas combined of the similar to comto until week 102.Newerheless, the incidence of adcnomas or squamous-cell carcinomas combined of the same resident of take into account protection the similar to comto until week 102.Newerheless, the incidence of adcnomas or squamous-cell carcinomas combined of the same resident of take into account protection take into account protection to Mouse Ovarian tumors protection for Mouse Ovarian tumors protection the ware vertion to more protection for mouse or ovarian tumors, in metapolized, primarily in the liver, to VCH-1;2-epoxide or VCH-7;8- protection of Mouse Ovarian tumors protection for Mouse Ovarian tumors, in setter or acting the ovary, VCH-4-depoxide scleentcy destross the primordial and primary folicles in the orazy, loss of the negative feedback inhibition distroptor is noted, protection the ovary, loss of the negative feedback inhibi				different types of	
06/07/2011United States / IndividualPages 38-45. Section 4.10.Pages 38-45. Section 4.10.New are grateful to the CLH report has been proposed for the ovarian tumors in mice from VCH exposure (Bevan et al., 2009). The MOA manuscript is in preparation.Me are grateful to the MOA and to proprised for the primordial and primary folicles in the ovary, loss of the negative feedback inhibition of FSH release from the hypothalamus and pituitary occurs, leading to high plasma levels of FSH release from the hypothalamus and pituitary occurs, leading to high plasma levels of FSH. Increased plasma hevels of FSH release from the hypothalamus and pituitary occurs, leading to high plasma levels of FSH release from the hypothalamus and pituitary occurs, leading to high plasma levels of FSH. Increased plasma hevels of FSH release from the hypothalamus and pituitary occurs, leading to high plasma levels of FSH. Increasedincreased increased increased increased increased increased increased increasedWe are grateful to the MOA or Bevan for submitting valuable oray tumors. The information on the MOA and to oray tumors. The potential of VCH. the exposite relation on on yourWe are grateful to the MOA and to oray tumors. The information about potential of VCH. the NOA hase or ony yourWe are grateful to the MOA and to oray tumors. The information on the MOA hase or ony your				tumors.	
06:07:2011IndividualPages 38:45. Section 4.10.incidence of adenomas or summation adout the model of the section addition and or the section addition addition and or the section addition and the section addition and or the section addition and or the section addition and the section addition and the section addition addition addition the section addition and the section addition and the section addition addition addition the section addition addition the section addition addition addition the section addition addition addition the section additi				Nevertheless, the	
06/07/2011Inited States / IndividualPages 38-45. Section 4.10. A MOA has been proposed for the ovarian tumors in mice from VCH exposure (Bevan et al., 2009). The CLH report has been revised to use in preparation.That you for has been revised to use in preparation.Vec are grateful to to Bevan for to Bevan for <td></td> <td></td> <td></td> <td>increased</td> <td></td>				increased	
06/07/2011United States/ IndividualPages 38-45. Section 4.10.Same beam proposed for the ovarian tumors in mice from VCH exposure (Bevan et al., 2009). The CLH report has been proposed for the ovarian tumors in mice from VCH exposure (Bevan et al., 2009). The MOA mass been proposed for the ovarian tumors in mice from VCH exposure (Bevan et al., 2009). The MOA mass been proposed for the ovarian tumors in mice from VCH exposure (Bevan et al., 2009). The MOA mass been proposed for the ovarian tumors in mice from VCH exposure (Bevan et al., 2009). The MOA mass been proposed for the ovarian tumors in mice from VCH exposure (Bevan et al., 2009). The MOA mass been proposed for the ovarian tumors in mice from VCH exposure (Bevan et al., 2009). The MOA mass been proposed for the ovarian tumors in mice from VCH exposure (Bevan et al., 2009). The MOA data on the MOA or VCH-indeced or and the senteresting base in the senteresting the sendified Hill criteria for causality in the IPCS Human Relevance Framework. A for these interesting the modified Hill criteria for causality in the IPCS Human Relevance Framework. A for the MOA and to the MOA and to the MOA and to the MOA in the count proposed Mode of Action for Mouse Ovarian Tumors Feolowing exposure and uptake, VCH diepoxide electively destroys the primordial and primary brink the inductal prismal via the local and circulates through the body. Upon reaching the ovary, VCH-diepoxide electively destroys the primordial and primary follicles in the ovary, loss of the negative feedback inhibition on FFH results in the primarily in the liver, to VCH-1, Larceased exposures to VCH induced or of FSH results in the initiation and/or promotion of ovarian tumors.Net metabolized to the following exposure and uptake, VCH diepoxide electively destroys the primordial and primary follicles in the ovary, loss of the negative feedback inhibition on fFH results in the initiation and/or promotion of ovarian tumors.Net metabolized t				incidence of	
06/07/2011United States/ IndividualPages 38-45. Section 4.10.Same beam proposed for the ovarian tumors in mice from VCH exposure (Bevan et al., 2009). The CLH report has been proposed for the ovarian tumors in mice from VCH exposure (Bevan et al., 2009). The MOA mass been proposed for the ovarian tumors in mice from VCH exposure (Bevan et al., 2009). The MOA mass been proposed for the ovarian tumors in mice from VCH exposure (Bevan et al., 2009). The MOA mass been proposed for the ovarian tumors in mice from VCH exposure (Bevan et al., 2009). The MOA mass been proposed for the ovarian tumors in mice from VCH exposure (Bevan et al., 2009). The MOA mass been proposed for the ovarian tumors in mice from VCH exposure (Bevan et al., 2009). The MOA mass been proposed for the ovarian tumors in mice from VCH exposure (Bevan et al., 2009). The MOA data on the MOA or VCH-indeced or and the senteresting base in the senteresting the sendified Hill criteria for causality in the IPCS Human Relevance Framework. A for these interesting the modified Hill criteria for causality in the IPCS Human Relevance Framework. A for the MOA and to the MOA and to the MOA and to the MOA in the count proposed Mode of Action for Mouse Ovarian Tumors Feolowing exposure and uptake, VCH diepoxide electively destroys the primordial and primary brink the inductal prismal via the local and circulates through the body. Upon reaching the ovary, VCH-diepoxide electively destroys the primordial and primary follicles in the ovary, loss of the negative feedback inhibition on FFH results in the primarily in the liver, to VCH-1, Larceased exposures to VCH induced or of FSH results in the initiation and/or promotion of ovarian tumors.Net metabolized to the following exposure and uptake, VCH diepoxide electively destroys the primordial and primary follicles in the ovary, loss of the negative feedback inhibition on fFH results in the initiation and/or promotion of ovarian tumors.Net metabolized t				adenomas or	
06/07/2011United States / IndividualPages 38-45. Section 4.10.Thank you for the cultural proposed for the ovarian tumors in mice from VCH exposure (Bevan et al., 2009). The MOA take into account your comments.Thank you for these interesting of VCH-induced valuable of VCH-induced in the MOA and to these interesting or any time proposed for the ovarian tumors in mice from VCH exposure (Bevan et al., 2009). The MOA these interestingWe are grateful to to Dr. Bevan for submitting06/07/2011Pages 38-45. Section 4.10.Thank you for these interesting the section the MOA of VCH-induced valuable ovary tumors. The follocides which are further metabolized to VCH-diepoxide. VCH-diepoxide enters the blood and circulated through the body. Upon reaching the ovary, VCH-diepoxide selectively destroys the primordial and primary follicides through a mechanism involving programmed cell death or approxis. Repeated exposures to VCH- through the body. Upon reaching the ovary, VCH-diepoxide selectively destroys the primordial and primary of FSH results in the intitation and/or promotion of ovarian tumors.We are revised to the MOA hased through name keels of FSH results in the initiation and/or promotion of ovarian tumors.We note an editor in the information and assume that				squamous-cell	
06/07/2011United States / IndividualPages 38-45. Section 4.10. A MOA has been proposed for the ovarian tumors in mice from VCH exposure (Bevan et al., 2009). The MOA, was evaluated using the modified Hill criteria for causality in the IPCS Human Relevance Framework. A follicles through the body. Upon reaching the ovarian tumors follicles in the originarily in the liver, to VCH-1,2-epoxide or VCH-7,8- epoxide, which are further metabolized to VCH-diepoxide selectively destroys the primordial and primary follicles through the body. Upon reaching the ovarian full regoration and/or promotion of ovarian tumors.We are grateful to the MSCA for usubmitting or Bevan for submitting or VCH-diepoxide selectively destroys the primordial and primary follicles through the body. Upon reaching the ovary, VCH-diepoxide selectively destroys the primordial and primary of FSH release from the hypothalmus and primary locus, leading to high plasma levels of FSH. Increase plasma levels of FSH results in the initiation and/or promotion of ovarian tumors.Key and the follices through the body and circulate show the provide more information and/or promotion of ovarian tumors.We are a grateful to the MSCA for the MSCA for the MSCA for the MSCA for the MSCA for the MSCA for the MSCA for the MSCA for the MSCA for the MSCA for the MSCA for the MSCA					
06/07/2011United States / IndividualPages 38-45. Section 4.10. A MOA has been proposed for the ovarian tumors in mice from VCH exposure (Bevan et al., 2009). The MOA was evaluated using the modified Hill criteria for causality in the IPCS Human Relevance Framework. A manuscript is in preparation.Pages 38-45. Section 4.10. Thank you for take into account your comments.We are grateful to take into account your comments.06/07/2011United States / IndividualPages 38-45. Section 4.10. A MOA has been proposed for the ovarian tumors in mice from VCH exposure (Bevan et al., 2009). The MOA manuscript is in preparation.Me are grateful to the state of VCH-induced of VCH-induced valuableWe are grateful to the state of VCH-induced valuable06/07/2011United States / Proposed Mode of Action for Mouse Ovarian Tumors Following exposure and uptake, VCH is metabolized to VCH-diepoxide. VCH-1,2-epoxide or VCH-7,8,8 epoxide, which are further metabolized to VCH-diepoxide enters the blood and circulate through the body. Upon reaching the ovary, VCH-diepoxide selectively destroys the primordial and primary follicles through an mechanism involving programmed cell death or approses. Since 17[-estradiol and inhibin are no longer produced from the primordial and primary follicles in the ovarian future, gue to complete follicular loss. Since 17[-estradiol and inhibin are no longer provide more of FSH release from the hypothalamus and pituitary occurs, leading to high plasma levels of FSH. Increase plasma levels of FSH results in the initiation and/or promotion of ovarian tumors.We and the key events, on your and assume that				(combined) of the	
06/07/2011United States / IndividualPages 38-45. Section 4.10. A MOA has been proposed for the ovarian tumors in mice from VCH exposure (Bevan et al., 2009). The MOA manuscript is in preparation.Neare grateful to these interesting dot of VCH-induced rouge the modified Hill criteria for causality in the IPCS Human Relevance Framework. A manuscript is in preparation.We are grateful to these interesting dot of VCH-induced ovary tumors. The information about potential of VCH-induced information about potential of VCH-induced follicles through the body. Upon reaching the ovary, VCH-diepoxide enters the blood and circulates through the body. Upon reaching the ovary, VCH-diepoxide enters the blood and circulates through the body. Upon reaching the ovary, VCH-diepoxide enters the blood and circulates through the body. Upon reaching the ovary, VCH-diepoxide enters the blood and circulates through the body. Upon reaching the ovary, VCH-diepoxide enters the blood and circulates through the body. Upon reaching the ovary, VCH-diepoxide selectively destroys the primordial and primary follicles through a mechanism involving programmed cell death or apoptosis. Repeated exposures to VCH has been revised to provide more in cluding in the initiation and/or promotion of ovarian tumors.We note an editorial error in the key events, on yourWe note an editorial error in the key events, on yourWe note an editorial error in the key events, and assume thu					
06/07/2011United States / IndividualPages 38-45. Section 4.10.Tages 38-45. Section 4.10.Section 400 for submitingSection 400 for <br< td=""><td></td><td></td><td></td><td>U</td><td></td></br<>				U	
of 0/07/2011United States / IndividualPages 38-45. Section 4.10.since the survival of these animals is namuscript is in preparation.since the survival of these animals is and of these animals is of these animals is the beam revised to your comments.Mean section 4100We are grateful to the beam revised to your comments.06/07/2011United States / IndividualPages 38-45. Section 4.10.New off the ovarian tumors in mice from VCH exposure (Bevan et al., 2009). The MOA manuscript is in preparation.Mean grateful to these interesting data on the MOA subaltWe are grateful to these interesting to The Bevan for submitting valuable06/07/2011United States / IndividualPages 38-45. Section 4.10.We are grateful to the ovarian tumors in mice from VCH exposure (Bevan et al., 2009). The MOA manuscript is in preparation.Mean grateful to these interesting data on the MOA submitting valuable valuableWe are grateful to the body. Upon reaching the ovary, VCH-diepoxide. VCH-diepoxide enters the blood and circulate through the body. Upon reaching the ovary, VCH-diepoxide selectively destroys the primordial and primary follicles through a mechanism involving programmed cell death or apoptosis. Repeated exposures of the second revised to provide more information on the SH release from the hypothalamus and pituitary occurs, leading to high plasma levels of FSH. Increased plasma levels of FSH results in the initiation and/or promotion of ovarian tumors.We note an editorial error in the key events, and assume that					
of these animals is similar to control unti week 102. The CLH report has been revised to take into account take into account the States /of these animals is similar to control unti week 102. The CLH report has been revised to take into account the States /of these animals is similar to control unti week 102.06/07/2011United States / IndividualPages 38-45. Section 4.10.Thank you for the was evaluated using the modified Hill criteria for causality in the IPCS Human Relevance Framework. Proposed Mode of Action for Mouse Ovarian Tumors Following exposure and uptake, VCH is metabolized, primarily in the liver, to VCH-1,2-epoxide or VCH-7,8- epoxide, which are further metabolized to VCH-diepoxide. VCH-diepoxide enters the blood and circulates through the body. Upon reaching the ovary, VCH-diepoxide selectively destroys the primordial and primary follicles through a mechanism involving programmed cell death or apoptosis. Repeated exposures to VCH ultimately result in premature ovarian failure, due to complete follicular loss. Since 17β-estradiol and inhibitiar no longer produced from the primordial and primary follicles in the ovary, loss of the negative feedback inhibition no longer produced from the primordial and primary follicles in the ovary, loss of the negative feedback inhibition on sour provide moreWe enote an editorial error in the key events, and assume that					
06/07/2011United States / IndividualPages 38-45. Section 4.10. A MOA has been proposed for the ovarian tumors in mice from VCH exposure (Bevan et al., 2009). The MOA was evaluated using the modified Hill criteria for causality in the IPCS Human Relevance Framework. A manuscript is in preparation.Me are grateful to Dr Bevan for submitting valuableWe are grateful to Dr Bevan for submitting valuable06/07/2011United States / IndividualPages 38-45. Section 4.10. A MOA has been proposed for the ovarian tumors in mice from VCH exposure (Bevan et al., 2009). The MOA manuscript is in preparation.Me are grateful to Dr Bevan for submitting valuable06/07/2011United States / IndividualProposed Mode of Action for Mouse Ovarian Tumors Following exposure and uptake, VCH is metabolized, primarily in the liver, to VCH-1,2-epoxide or VCH-7,8- epoxide, which are further metabolized to VCH-diepoxide enters the blod and circulates through the body. Upon reaching the ovary, VCH-diepoxide selectively destroys the primordial and primary follicles through a mechanism involving programmed cell death or apoptosis. Repeated exposures to VCH ultimately result in premature ovarian failure, due to complete follicular loss. Since 17β-estradiol and inhibition or fFSH release from the hypothalamus and pituitary occurs, leading to high plasma levels of FSH results in the initiation and/or promotion of ovarian tumors.We note an editorial error in this MOA, based on your0FSH results in the initiation and/or promotion of ovarian tumors.No how the key events, and assume that					
Image: bis series in the ser					
Image: bit is the second sec					
Image: head of the second se					
Image: bit is a bit is					
106/07/2011United States / IndividualPages 38-45. Section 4.10.Thank you for A MOA has been proposed for the ovarian tumors in mice from VCH exposure (Bevan et al., 2009). The MOA was evaluated using the modified Hill criteria for causality in the IPCS Human Relevance Framework. Manuscript is in preparation.Thank you for these interesting of VCH-inducedWe are grateful to these interesting of VCH-inducedProposed Mode of Action for Mouse Ovarian Tumors Following exposure and uptake, VCH is metabolized, primarily in the liver, to VCH-1,2-epoxide or VCH-7,8- Following exposure and uptake, VCH-diepoxide. VCH-diepoxide enters the blood and circulates through the body. Upon reaching the ovary, VCH-diepoxide selectively destroys the primordial and primary follicles through a mechanism involving programmed cell death or apoptosis. Repeated exposures to VCH has been revised o ultimately result in premature ovarian failure, due to complete follicular loss. Since 17β-estradiol and inhibin of FSH release from the hypothalamus and pituitary occurs, leading to high plasma levels of FSH. Increase plasma levels of FSH results in the initiation and/or promotion of ovarian tumors.your comments.your comments.					
06/07/2011United States / IndividualPages 38-45. Section 4.10. A MOA has been proposed for the ovarian tumors in mice from VCH exposure (Bevan et al., 2009). The MOA was evaluated using the modified Hill criteria for causality in the IPCS Human Relevance Framework. A manuscript is in preparation.Thank you for these interesting data on the MOA of VCH-induced ovary tumors. The potential of VCH to be a endocrine the MoA and to to be a endocrine the MoA, and to the MoA and to the MoA and to the MoA and to to be a endocrine the MoA, and to the MoA and to <br< td=""><td></td><td></td><td></td><td></td><td></td></br<>					
IndividualA MOA has been proposed for the ovarian tumors in mice from VCH exposure (Bevan et al., 2009). The MOA was evaluated using the modified Hill criteria for causality in the IPCS Human Relevance Framework. A manuscript is in preparation.these interesting data on the MOA of VCH-induced ovary tumors. The potential of VCH to be a endocrine disruptor is noted.DrBevan for submitting valuable information about the MOA and to the MOA an	06/07/2011	United States /	Decay 29 45 Section 4.10		We are createful to
was evaluated using the modified Hill criteria for causality in the IPCS Human Relevance Framework. A manuscript is in preparation.data on the MOA of VCH-induced ovary tumors. The information about potential of VCH the MoA and to to be a endocrine disruptor is noted. The CLH report has been revised to provide more follicles through a mechanism involving programmed cell death or apoptosis. Repeated exposures to VCH no longer produced from the primordial and primary follicles in the ovary, loss of the negative feedback inhibition of FSH release from the hypothalamus and pituitary occurs, leading to high plasma levels of FSH. Increased plasma levels of FSH results in the initiation and/or promotion of ovarian tumors.data on the MOA of VCH-induced ovary tumors. The information about to be a endocrine including it in the revised report.	00/07/2011			2	
manuscript is in preparation.of VCH-induced ovary tumors. The potential of VCHvaluableProposed Mode of Action for Mouse Ovarian Tumors Following exposure and uptake, VCH is metabolized, primarily in the liver, to VCH-1,2-epoxide or VCH-7,8- epoxide, which are further metabolized to VCH-diepoxide. VCH-diepoxide enters the blood and circulates through the body. Upon reaching the ovary, VCH-diepoxide selectively destroys the primordial and primary follicles through a mechanism involving programmed cell death or apoptosis. Repeated exposures to VCH ultimately result in premature ovarian failure, due to complete follicular loss. Since 17β-estradiol and inhibin are no longer produced from the primordial and primary follicles in the ovary, loss of the negative feedback inhibition of FSH release from the hypothalamus and pituitary occurs, leading to high plasma levels of FSH. Increased plasma levels of FSH results in the initiation and/or promotion of ovarian tumors.of VCH-induced ovary tumors. The potential of VCH to be a endocrine the MSCA for including it in the revised report.Me note an editorial error in the key events, plasma levels of FSH results in the initiation and/or promotion of ovarian tumors.on yourWe note an editorial error in the key events, and assume that		Individual			
Proposed Mode of Action for Mouse Ovarian Tumors Following exposure and uptake, VCH is metabolized, primarily in the liver, to VCH-1,2-epoxide or VCH-7,8- epoxide, which are further metabolized to VCH-diepoxide. VCH-diepoxide enters the blood and circulates through the body. Upon reaching the ovary, VCH-diepoxide selectively destroys the primordial and primary follicles through a mechanism involving programmed cell death or apoptosis. Repeated exposures to VCH ultimately result in premature ovarian failure, due to complete follicular loss. Since 17β-estradiol and inhibin are no longer produced from the primordial and primary follicles in the ovary, loss of the negative feedback inhibition of FSH release from the hypothalamus and pituitary occurs, leading to high plasma levels of FSH. Increased plasma levels of FSH results in the initiation and/or promotion of ovarian tumors.ovary tumors. The potential of VCH to be a endocrine disruptor is noted. The CLH report has been revised to provide moreinformation about the MSCA for including it in the revised report. has been revised to provide moreWe note an information on this MOA, based on yourWe note an editorial error in this MOA, based on your					
Proposed Mode of Action for Mouse Ovarian Tumorspotential of VCHthe MoA and toFollowing exposure and uptake, VCH is metabolized, primarily in the liver, to VCH-1,2-epoxide or VCH-7,8- epoxide, which are further metabolized to VCH-diepoxide. VCH-diepoxide enters the blood and circulates through the body. Upon reaching the ovary, VCH-diepoxide selectively destroys the primordial and primary follicles through a mechanism involving programmed cell death or apoptosis. Repeated exposures to VCH ultimately result in premature ovarian failure, due to complete follicular loss. Since 17β-estradiol and inhibitian of FSH release from the hypothalamus and pituitary occurs, leading to high plasma levels of FSH. Increased plasma levels of FSH results in the initiation and/or promotion of ovarian tumors.potential of VCH to be a endocrine the MSCA for including it in the micluding it in the revised report.He MoA and to the MSCAthe MoA and to the MSCAHe MoAthe MSCAHe MoAthe MSCAHe MoAthe MSCAHe MoAthe MSCAHe MoAthe MSCAHe MoAthe MSCAHe MoAthe the MSCAHe MoA </td <td></td> <td></td> <td>manuscript is in preparation.</td> <td></td> <td></td>			manuscript is in preparation.		
Following exposure and uptake, VCH is metabolized, primarily in the liver, to VCH-1,2-epoxide or VCH-7,8- epoxide, which are further metabolized to VCH-diepoxide. VCH-diepoxide enters the blood and circulates through the body. Upon reaching the ovary, VCH-diepoxide selectively destroys the primordial and primary follicles through a mechanism involving programmed cell death or apoptosis. Repeated exposures to VCH ultimately result in premature ovarian failure, due to complete follicular loss. Since 17β-estradiol and inhibin are no longer produced from the primordial and primary follicles in the ovary, loss of the negative feedback inhibition of FSH release from the hypothalamus and pituitary occurs, leading to high plasma levels of FSH. Increased plasma levels of FSH results in the initiation and/or promotion of ovarian tumors.to be a endocrine disruptor is noted. The CLH report has been revised to provide morethe MSCA for including it in the revised report. Has been revised to provide more					
epoxide, which are further metabolized to VCH-diepoxide.VCH-diepoxide enters the blood and circulates through the body. Upon reaching the ovary, VCH-diepoxide selectively destroys the primordial and primary follicles through a mechanism involving programmed cell death or apoptosis. Repeated exposures to VCH ultimately result in premature ovarian failure, due to complete follicular loss. Since 17β-estradiol and inhibition of FSH release from the hypothalamus and pituitary occurs, leading to high plasma levels of FSH. Increased plasma levels of FSH results in the initiation and/or promotion of ovarian tumors.disruptor is noted. The CLH report has been revised to provide moreincluding it in the revised report.				1	
through the body. Upon reaching the ovary, VCH-diepoxide selectively destroys the primordial and primary follicles through a mechanism involving programmed cell death or apoptosis. Repeated exposures to VCH ultimately result in premature ovarian failure, due to complete follicular loss. Since 17β-estradiol and inhibin are no longer produced from the primordial and primary follicles in the ovary, loss of the negative feedback inhibition of FSH release from the hypothalamus and pituitary occurs, leading to high plasma levels of FSH. Increased plasma levels of FSH results in the initiation and/or promotion of ovarian tumors. The CLH report has been revised to provide more we note an editorial error in the key events, and assume that					
follicles through a mechanism involving programmed cell death or apoptosis. Repeated exposures to VCH ultimately result in premature ovarian failure, due to complete follicular loss. Since 17β-estradiol and inhibin are no longer produced from the primordial and primary follicles in the ovary, loss of the negative feedback inhibition of FSH release from the hypothalamus and pituitary occurs, leading to high plasma levels of FSH. Increased plasma levels of FSH results in the initiation and/or promotion of ovarian tumors.has been revised to provide moreWe note an editorial error in the key events, and assume that					
ultimately result in premature ovarian failure, due to complete follicular loss. Since 17β-estradiol and inhibin are no longer produced from the primordial and primary follicles in the ovary, loss of the negative feedback inhibition of FSH release from the hypothalamus and pituitary occurs, leading to high plasma levels of FSH. Increased plasma levels of FSH results in the initiation and/or promotion of ovarian tumors.provide more information on this MOA, based on yourWe note an 					revised report.
no longer produced from the primordial and primary follicles in the ovary, loss of the negative feedback inhibitioninformation oneditorial error inof FSH release from the hypothalamus and pituitary occurs, leading to high plasma levels of FSH. Increasedthis MOA, basedthekey events,plasma levels of FSH results in the initiation and/or promotion of ovarian tumors.on yourand assume that					
of FSH release from the hypothalamus and pituitary occurs, leading to high plasma levels of FSH. Increased this MOA, based the key events, plasma levels of FSH results in the initiation and/or promotion of ovarian tumors.				1	
plasma levels of FSH results in the initiation and/or promotion of ovarian tumors. On your and assume that					
					•
communication the word			plasma levels of FSH results in the initiation and/or promotion of ovarian tumors.	-	
and on the review "decreased"				and on the review	"decreased"

	Key Events Following exposure and uptake of VCH, the key events leading to ovarian toxicity and tumors outlined below (a table with references is also provided as an attachment). 1. Systemic levels of VCHD 1a. Bioactivation of VCH to VCHD (via VCH-1,2-epoxide) 1b. Hydrolysis of VCH poxide metabolites by epoxide hydrolase 2. Decreased follicular loss in ovaries from VCHD 3. Selective destruction of primordial and primary follicles through apoptosis 4. Ovarian failure (no estrous cyclicity) from complete oocyte loss 5. Increased plasma FSH levels from release of negative feedback of 17β-estradiol and inhibin on hypothalamus and pituitary. 6. Initiation and/or promotion of ovarian tumors from increased plasma FSH levels. Chronic oral exposure of female mice to VCH resulted in ovarian granulosa cell tumors (Collins et al., 1987). Preceding the tumors, a reduction in the number of follicles, particularly the primary follicles, were noted in the ovarias of female mice exposed to VCH did not show any ovarian toxicity or increased incidence of ovarian tumors, although it is difficult to reach any strong conclusions about the ovarian tumor incidence in rats because of poor survival in the oral chronic study (Collins and Manus, 1987; Collins et al., 1987). Mercas compounds that form diepoxide, such as 1,3-butadiene and isoprene, significantly depleted follicles (Doerr et al., 1995). The species difference in ovarian toxicity appears largely due to differences in the rate of bioactivation or cytems. The balance of activation versus detoxification reactions of VCH metabolism ard different betwe	from Hoyer and Sipes (2007).	should be repleed with "increased": "2. Decreased follicular loss in ovaries from VCHD"
--	---	---------------------------------	--

The pathological changes in the ovary when mice are dosed with either VCH or VCHD or when rats are dosed with VCHD are identical (Flaws et al., 1994; Springer et al., 1996; Mayer et al., 2002). VCHD selectively destroys the primordial and primary follicles through a mechanism involving programmed cell death or apoptosis, thereby accelerating the normal process of atresia (Springer et al., 1996; Hoyer and Sipes, 2007).	
Ovarian failure (premature menopause) is a consequence of VCH-induced primordial and primary follicle loss (Hooser et al., 1994; Mayer et al., 2002). In mice given daily intraperitoneal injections of 800 mg/kg VCH for 30 days, there was >90% loss of the small pre-antral follicles at the end of the dosing period (Hooser et al., 1994). At 240 days of the study (210 days following VCH treatment), there were few widely scattered oocytes in small and growing follicles; however, at 360 days, no oocytes at any stage were observed in the VCH-treated mice. The complete loss of oocytes at 360 days coincided with the loss of estrous cyclicity, indicating ovarian failure. Follicular loss also resulted in increased follicle stimulating hormone (FSH) plasma levels, presumably due to the lack of 17 β -estradiol and inhibin production from the follicles. 17 β -Estradiol and inhibin exert negative feedback inhibition of FSH production in the hypothalamus and/or pituitary. Plasma FSH levels were not elevated above control levels until 240 days following the initiation of dosing, suggesting that virtually complete loss of follicles is needed before the release of the negative feedback inhibition at the hypothalamus/pituitary. At the time of ovarian failure, VCH-treated mice showed lesions in the ovary that appear similar to preneoplastic lesions reported in a genetically susceptible strain of mice for granulosa cell tumors (Hooser et al., 1994; Tennant et al., 1990).	
A similar pattern was reported for rats dosed intraperitoneally for 30 days with 80 mg/kg VCH-diepoxide (Mayer et al., 2002). Rats dosed with VCH-diepoxide had reduced number of preantral follicles by day 30. Following cessation of dosing, relative to controls, primordial, primary, and secondary follicles were progressively lost with time. Circulating FSH levels in VCH-treated rats were greater (days 120, 240 and 360) than in controls. Cyclicity was disrupted in the VCH-diepoxide treated animals by day 360. VCHD has been shown to selectively deplete primordial and primary follicles in the ovaries of nonhuman primates (Macaca fascicularis) (Appt et al., 2006).	
Several animal models initially drew attention to the possible involvement of gonadotropins in ovarian tumorigenesis. Biskind and Biskind (1944) reported a high incidence of ovarian tumors in rats whose ovaries were autotransplanted to the spleen. However, the formation of the ovarian tumors did not occur when one ovary was left intact or when the ovary was autotransplanted in previously hypophysectomized animals. (Biskind and Biskind, 1948). This tumorigenesis has been attributed to elevated pituitary gonadotropins due to the deactivation of estrogen in the liver and the consequent depletion of negative feedback of estrogen on the pituitary. Since then, the development of ovarian tumors has been reported in several transgenic or knockout animal models that exhibit hypergonadotropism with high levels of circulating FSH and LH similar to the postmenopausal state in women (Kumar et al., 1999; Risma et al., 1995). Granulosa cell tumors can also be induced by genetic deletion of germ cells (Murphy, 1972; Murphy and Beamer, 1973), neonatal thymectomy (Nishizuka et al., 1972), or X-irradiaton (Marchant, 1987).	
The hormonal tumorigenesis hypothesis for ovarian granulosa cell cancers is that endocrine factors that control the normal growth of target organs can also provide suitable conditions for neoplastic transformation. The gonadotropin hypothesis has been proposed as an underlying mechanism to ovarian cancer, in that excessive levels of gonadotropins, related to the surge occurring during ovulation and the loss of gonadal negative feedback in	

· · · · · · · · · · · · · · · · · · ·		
	menopause and premature ovarian failure (oocyte depletion), may play a role in the development and progression of ovarian (granulosa cell) cancer perhaps through alteration in signaling pathways affecting cell growth (Murphy, 1980; Fuller et al., 2002). The incidence of ovarian cancer in women climbs dramatically around the age at which most women reach menopause. The onset of menopause, which happens at approximately 51 years of age, involves changes in gonadotropin levels as a result of cessation of ovarian function and menstrual cycle. The complete cessation of ovarian function results in the loss of negative feedback of ovarian steroids (i.e., 17β- estradiol) on gonadotropins. In 2 to 3 years after menopause, gonadotropin levels are particularly high, such that the concentrations of FSH and LH reach a peak of 10-20 times and 3-4 times the values recorded during the proliferative phase of the menstrual cycle, respectively (Chakravarti et al., 1976; Speroff et al., 1999). The increase in plasma gonadotropin levels is a result of the loss of feedback inhibition from 17β-estradiol and inhibin, both of which are produced from follicles. In the case of ovarian failure where there is complete loss of oocytes in the ovary, the loss of 17β-estradiol and inhibin from the follicles leads to increased plasma gonadotropin levels.	
	References Appt, S.E., Kaplan, J.R., Clarkson, T.B., Cline, J.M., Christian, P.J., and Hoyer, P.B (2006) Destruction of primordial ovarian follicles in adult cynomolgus macaques after exposure to 4-vinylcyclohexene diepoxide: a nonhuman primate model of the menopausal transition. Fert. Steril. 86(Suppl. 3): 1210-1216.	
	Bevan, C., Stadler, J.C., Elliott, G.S., Frame, S.R., Baldwin, J.K., Leung, HW., Moran, E., and Panepinto, A.S. (1996) Subchronic toxicity of 4-vinylcyclohexene in rats and mice by inhalation exposure. Fundam. Appl. Toxicol. 32: 1-10.	
	Bevan, C., Gargas, M., Kirman, C., and Vergnes, J. (2009) Mode of action (MOA) evaluation and derivation of a cancer and non-cancer reference value for 4-vinylcyclohexene. Toxicol. Sci. 108 (Suppl.), abstract #839	
	Biskind, M.S., and Biskind, G.R. (1944) Development of tumors in the rat ovary after transplantation into the spleen. Proc. Soc. Exp. Biol. Med. 55: 176-179.	
	Biskind, M.S., and Biskind, G.R. (1948) Atrophy of ovaries transplanted to the spleen in unilaterally castrated rats; proliferative changes following subsequent removal of intact ovary. Science 108: 137-138.	
	Chakravarti, S., Collins, W.P., Forecast, J.D., Newton, J.R., Oram, D.H., and Studd, J.W. (1976) Hormonal profiles after the menopause. Br. Med. J. 2: 784-787.	
	Collins, J.J., and Manus, A.G. (1987) Toxicological evaluation of 4-vinylcyclohexene. I. Prechronic (14-day) and subchronic (13-week) gavage studies in Fischer 344 rats and B6C3F1 mice. J. Toxicol. Environ. Health 21: 493-505.	
	Collins, J.J., Montali, R.J., and Manus, A.G. (1987) Toxicological evaluation of 4-vinylcyclohexene: II. Induction of ovarian tumors in female B6C3F1 mice by chronic oral administration of 4-vinylcyclohexnene. J. Toxicol.	

Environ. Health 21: 507-524.
Dahl, A.R., and Henderson, R.F. (2000) Comparative metabolism of low concentrations of butadiene and its monoepoxide in human and monkey hepatic microsomes. Inhal. Toxicol. 12: 439-451.
Doerr, J.K., Hooser, S.B., Smith, B.J., and Sipes, I.G. (1995) Ovarian toxicity of 4-vinylcyclohexene and related olefins in B6C3F1 mice. Chem. Res. Toxicol. 8: 963-969.
Flaws, J.A., Doerr, J.K., Sipes, I.G., and Hoyer, P.B. (1994) Destruction of pre-antral follicles in adult rats by 4- vinylcyclohexene diepoxide. Reprod. Toxicol. 8: 509-514.
Hooser, S.B., Parola, L.R., Van Ert, M.D., and Sipes, I.G. (1993) Differential ovotoxicity of 4-vinylcyclohexene and its analog, 4-phenylcyclohexene. Toxicol. Appl. Pharmacol. 119: 302-305.
Hooser, S.B., Douds, D.P., DeMerell, D.G., Hoyer, P.B., and Sipes, I.G. (1994) Long-term ovarian and gonadotropin changes in mice exposed to 4-vinylcyclohexene. Reprod. Toxicol. 8: 315-323.
Hoyer, P.B., Sipes, I.G., 2007. Development of an animal model for ovotoxicity using 4-vinylcyclohexene: a case study. Birth Defects Res. (Part B) 80: 113-125.
Kao, SW., Sipes, I.G., and Hoyer, P.B. (1999) Early effects of ovotoxicity induced by 4-vinylcyclohexene diepoxide in rats and mice. Reprod. Toxicol. 13: 67-75.
Kumar, T.R., Palapattu, G., Wang, P., Woodruff, T.K., Boime, I., Byrne, M.C., and Matzuk, M.M. (1999) Transgenic models to study gonadotropin function: the role of follicle-stimulating hormone in gonadal growth and tumorigenesis. Mol. Endocrinol. 13: 851-865.
Marchant, J. (1987) Animal models for tumors of the female reproductive tract. In: Pathology of the Female Reproductive Tract (A. Blaustein, Ed.), pp. 899-924, Springer-Verlag, New York.
Mayer, L.P., Pearsall, P.J., Christian, P.J., Devine, P.J., Payne, C.M., McCuskey, M.K., Marion, S.L., Sipes, I.G., and Hoyer, P.B. (2002) Long-term effects of ovarian follicular depletion in rats by 4-vinylcyclohexene dipoxide. Reprod. Toxicol. 16: 775-781.
Murphy, E.D. (1972) Hyperplasia and early neoplastic changes in the ovaries of mice after genetic deletion of germ cells. J. Natl. Cancer Inst. 48: 1283-1295.
Murphy, E.D., and Beamer, W.G. (1973) Plasma gonadotropin levels during early stages of ovarian tumorigenesis in mice of the Wx/Wv genotype. Cancer Res. 33: 721-723.
Nishizuka, Y., Tanaka, Y., Sakakura, T., and Kojima, A. (1972) A frequent development of ovarian tumors from dysgenetic ovaries of neonatally thymectomized mice. Gann 63: 139-140.

12/07/2011	Germany / BehalfOfAnOrga nisation / Company- Manufacturer	 Risma, K.A., Clay, C.M., Nett, T.M., Wagner, T., Yun, J., and Nilson, J.H. (1995) Targeted overexpression of luteinizing hormone in transgenic mice leads to infertility, polycystic ovaries, and ovarian tumors. Proc. Natl. Acad. Sci. USA 92: 1322-1326. Smith, B.J., and Sipes, I.G. (1991) Epoxidation of 4-vinylcyclohexene by human hepatic microsomes. Toxicol. Appl. Pharmacol. 109: 367-371. Speroff, L., Glass, R., and Kase, N. (1999) Clinical gynecologic endocrinology and infertility. Sixth Ed. Lippincott Williams & Wilkins, Baltimore, Md. Springer, L.N., McAsey, M.E., Flaws, J.A., Tilly, J.L., Sipes, I.G., and Hoyer, P.B. (1996) Involvement of apoptosis in 4-vinylcyclohexene diepoxide-induced ovotoxicity in rats. Toxicol. Appl. Pharmacol. 139: 394-401. Tennent, B.J., Shultz, K.L., Sundberg, J.P., and Beamer, W.G. (1990) Ovarian granulosa cell tumorigenesis in SWR-derived F1 hybrid mice: Preneoplastic follicular abnormality and malignant disease progression. Am. J. Obstet. Gynecol. 163: 625-634. Please find our comments concerning evaluation of carcinogenicity in the enclosed attachment. <i>ECHA comment: View document attached: Comments from Evonik Industries, 12/07/2011, (evonik_statement_CLH_VCH_France.pdf).</i> 	Please see our response to comment above from Germany / AffiliatedWithOrg anisation / Company- Manufacturer	Noted
13/07/2011	Belgium / Cefic / BehalfOfAnOrga nisation / Industry or trade association	 We disagree with the interpretation of the findings against the criteria for classification for the cancer end point. Our comments are in the zip file ECHA comment: The document attached "4-vinyl cyclohexene (VCH) Response to proposal for harmonised classification and labelling" (VCH-Comments.docx) is copied below: Introduction The Lower Olefins Sector Groups of Cefic, the Acrylonitrile Butadiene Styrene Copolymer - Styrene Acrylonitrile Copolymer group of Plastics Europe and the International Institute of Synthetic Rubber Producers welcomes the opportunity to comment on the proposal from France for a harmonised classification and labelling for 4-vinyl cyclohexene (VCH). The criteria document (dated May 2011) fairly reviews the existing data and we agree with the general interpretation. We do, however, believe that some critical issues are only partially covered and we specifically disagree with the interpretation of the findings against the criteria for classification for the cancer end point. We believe an excessively conservative interpretation has been made and the reasons for our view are given below. 	Please see our response to comment above from : Germany / AffiliatedWithO rganisation / Company- Manufacturer United Kingdom / Member State The CLH report	Noted.

Summary and assessment of the relevant data There is only one cancer study that is reliable and that is the one carried out with female mice. This study showed a clear, statistically and biologically significant increase in tumours of the ovaries only. The studies in male mice and both sexes of rat were not deemed reliable due to excessive mortality in the VCH treatment groups compared to controls. (This is the conclusion of the authors of the study and is repeated by the authors of the C&L proposal.). It should also be noted that the high dose level mice also showed high mortality rates leaving only the single low does animal group from which conclusions could be drawn. Subchronic studies with female mice have demonstrated lesions that can be considered precursors to the neoplastic lesions seen in the cancer study. Similar studies in female rats have not demonstrated such precursor treatment- related changes. The available data suggests that the ovarian effects seen in female mice are not directly caused by VCH itself but rather by epoxide metabolites, and in particular the diepoxide metabolite (VCD). VCD itself causes ovotoxicity in both rats and mice. Toxicokinetic data from both mouse and rat indicate significant species differences. Indeed, mice produce the epoxide metabolites (mono and diepoxide) at a higher rate of formation and mouse epoxide hydrolases detoxify less efficiently compared to the rat. Data generated with human hepatic microsomes suggests that humans metabolize VCH even more slowly than rats. This work by Smith et al (1991) reported that the eliability of the human hepatic microsomes used in the study was assessed using a number of techniques and activity levels found were similar to those reported by others in the literature. There does not therefore appear to be any basis for the comment in section 4.1.2. of the proposal document from France effectively questioning the eliability of the results and urging caution in their use because of mooted confounding from prior exp	on the communication of Bevan and on the	
Excluding the references from NTP, IARC and the public databases. In this case, we do not believe that the mode of action (MoA) has been thoroughly considered. A detailed review of		

	published as an appendix to the Texas Commission on E VCH published in January 2011. This review was condu- appendix to this document. Following IPCS methodology Following exposure and uptake, VCH is metabolized, p epoxide, which are further metabolized to VCH diepoxi systemic circulation. Upon reaching the ovary, VCH d follicles through a mechanism involving apoptosis. Rep ovarian failure, due to complete follicular loss. Since 17 primordial and primary follicles in the ovary, loss of th hypothalamus and pituitary occurs, leading to high plasm the initiation and/or promotion of ovarian tumours. The conclusion from the MoA assessment is that VCH (referred above as VCD), the metabolite of VCH, is set	posure to VCH carried out by the Sapphire Group was invironmental Quality development support document for acted using the IPCS framework and is reproduced in the ty, the proposed MoA is as follows: primarily in the liver, to VCH-1,2-epoxide or VCH-7,8- de (referred above as VCD). VCH diepoxide enters the iepoxide selectively destroys the primordial and primary beated exposures to VCH ultimately result in premature $\gamma\beta$ -estradiol and inhibin are no longer produced from the ne negative feedback inhibition of FSH release from the a levels of FSH. Increased plasma levels of FSH results in acts via a non-genotoxic, threshold mechanism. VCHD electively cytotoxic to oocytes in the ovary resulting in increased plasma levels of FSH which acts as a tumour	
	Comparison with classification criteria		
	comparison with classification criteria		
	The proposal is for VCH to be classified as a catego substance classified as category 1B is:	ry 1B carcinogen. According to the CLP regulation, a	
		classification is largely based on animal evidence. The h of evidence together with additional considerations (see	
		nship between human exposure to a substance and the	
		ent (1) evidence to demonstrate animal carcinogenicity	
	(presumed human carcinogen). In addition, on a case-by	<i>x-case basis, scientific judgement may warrant a decision s showing limited evidence of carcinogenicity in humans</i>	
	Clearly there are no human studies so the evidence can	only come from the animal data in this case. The CLP imited evidence of carcinogenicity. Our opinion of the	
	Sufficient evidence of carcinogenicity		
	Criteria	Finding	
	A causal relationship has been established between	NO . The findings are only seen in mice. Evidence	
	the agent and an increased incidence of malignant neoplasms or of an appropriate combination of benign	from sub-chronic studies supports this to be a species specific finding.	
ll		·	· ·

and malignant neoplasms in two or more species of animals.		
A causal relationship has been established between the agent and an increased incidence of malignant neoplasms or of an appropriate combination of benign	NO . There is only a single study available.	
and malignant neoplasms in two or more independent studies in one species carried out at different times or in different laboratories or under different protocols.		
An increased incidence of tumours in both sexes of a single species in a well-conducted study, ideally conducted under Good Laboratory Practices, can also provide sufficient evidence. A single study in one	applicable here as the finding is in a female specific organ. The study is reliable but has some shortcomings. The tumour type is unusual but tumours	
species and sex might be considered to provide sufficient evidence of carcinogenicity when malignant neoplasms occur to an unusual degree with regard to incidence, site, type of tumour or age at onset, or when there are strong findings of tumours at multiple sites.		
Sufficient evidence of carcinogenicity		
Criteria	Finding	
The data suggest a carcinogenic effect but are limited for making a definitive evaluation because, the evidence of carcinogenicity is restricted to a single experiment.	YES . This is clearly the case here since the only reliable study is the one in female mice.	
The data suggest a carcinogenic effect but are limited for making a definitive evaluation because there are unresolved questions regarding the adequacy of the design, conduct or interpretation of the studies;	rendered unreliable by the high mortality rates. Even in the high dose females, there was a significant increase in mortality. The studies only used two rather than the normal three dose groups. It is likely that the top doses exceed the MTD. This means that there is only a single dose in which the elevated tumour response was seen in the absence of general toxicity.	
The data suggest a carcinogenic effect but are limited for making a definitive evaluation because, the agent increases the incidence only of benign neoplasms or lesions of uncertain neoplastic potential.	POSSIBLY : The report cites a clear increase in granulosa cell tumours or carcinomas (terminal rates 1/39, 9/38, 7/16). However, the rates of granulosa cell carcinomas alone were 0/39, 1/38, 2/16. Bearing in mind the latter result could be confounded by exceeding the MTD, this means a single incidence in the low dose group may be the only unequivocal	

finding of carcinoma.	
The data suggest a carcinogenic effect but are limited for making a definitive evaluation because the evidence of carcinogenicity is restricted to studies that demonstrate only promoting activity in a narrow range of tissues or organs. NOT RELEVANT: carcinogenic effects are seen, albeit in a single species.	
According to this assessment against the criteria, there is only limited evidence of a carcinogenic effect and therefore a classification category 2 rather than category 1B is most appropriate. It is important to also consider whether the mutagenicity data supports such a mode of action. From the available data, VCH itself is not mutagenic in an Ames test with or without metabolic activation (the former using standard rat liver S9) nor is it mutagenic using micronucleus assays in rats or mice. The proposal document dismisses the negative findings in the mouse micronucleus study (Bevan et al., 2001) because cyclophosphamide was not used as a positive control. While cyclophosphamide was used as the positive control substance for the assessment of VCH-induced genotoxicity in the rat, the positive control for mice was butadiene (1000ppm). In this study, VCH caused no increase in micronucleated polychromatic erythrocytes (MN-PCE) in the bone marrow of male or female mice at concentrations of up to 1000ppm (2 days or 13 weeks exposure). In contrast, butadiene caused a substantial and statistically significant increase in MN-PCE in both genders over both exposure durations, demonstrating that the test, as conducted, was capable of detecting a positive response and is therefore valid. Overall, the data shows no evidence for mutagenicity which supports the hypothesis that the tumours seen in mice occur via a non-genotoxic mode of action. The criteria document cites the "Guidance on information requirements and chemical safety assessment Chapter R.6: QSARs and grouping of chemicals" as justification for using the data on VCD to justify a category 1B classification. However, the full paragraph of this section, which is more related to the justification for defining metabolic categories of substances, is as follows:	
The underlying hypothesis for a metabolic series is a sequential metabolism of a parent chemical to downstream blood metabolites that are chemicals of interest. Hazard identification studies with the parent compound could then be used to identify the hazards associated with systemic blood levels of the downstream primary and secondary metabolites and once quantified, can be used in place of studies using direct exposure to primary and secondary metabolites themselves. In certain instances, the metabolism of the parent compound within barrier tissue (e.g. lung or gut tissue) occurs so rapidly that the initial primary metabolite is the predominant chemical found within the blood. Under these circumstances data from hazard identification studies conducted with that primary metabolite itself can be used to identify hazards for the parent compound.	
This indicates that in order to use a metabolite to support hazard identification of a parent compound, information is needed to quantify resultant systemic blood levels. Such information is not present for VCH, but the data that is available suggests that resultant blood levels will be sufficiently low (taking the rat as a better model than the mouse for the human situation) that no significant hazard exists. This approach of using data on the metabolite as justification for 'sufficient evidence' of carcinogenicity does not appear to be justified according to the full paragraph of guidance in chapter R.6 as there is no available data on quantified systemic blood levels in the test species. This is very important as the proposed mode of action suggests that levels of resultant metabolites are	

critical in determining the hazard from exposure to VCH. The use of the paragraph as cited in the proposal document seems to have been taken out of its intended context.	
Conclusion	
In conclusion, we do not believe that there is sufficient evidence to justify classification of VCH as a category 1B carcinogen. The evidence for a causal relationship between oral exposure to VCH and increased incidence of ovarian tumours is actually from a single study in mice that only used two dose levels, the higher of which clearly exceeded the maximum tolerated dose. No other significant tumours were seen in the study. These tumours are not seen in rats. Available data indicate that VCH is not genotoxic in vitro or in vivo. The existing data provide good evidence to support the hypothesis that mouse ovarian tumours occur by a mode of action with a threshold that is not exceeded in rats and is also unlikely to be exceeded in humans because of quantitative differences in metabolism between species. Classification should only be based objectively on the available data rather than on conjecture. The data can only be regarded to support a conclusion of 'limited evidence' of carcinogenicity and therefore only supports a classification of category 2 at worst.	
References	
Hoyer PB, Sipes IG (2007). "Development of an Animal Model for Ovotoxicity Using 4-Vinylcyclohexene: A Case Study". Birth Defects Research (Part B) 80:113–125.	
Smith BJ, Sipes IG (1991) "Epoxidation of 4-vinylcyclohexene by human hepatic microsomes." Tox Appl Pharmac 109(2), 367-71.	
Appendix.	
This section is the reproduced appendix B from the TCEQ development support draft document published for comment in January 2011 and is an evaluation of the proposed mode of action for mouse ovarian tumours. TCEQ website address: http://www.tceq.texas.gov	
4-Vinylcyclohexene -Proposed Pages 48-62	
Appendix B Sections 5.0 and 5.1 from the Sapphire Group (2008)	
 5.0 Mode of Action(s) of Mouse Ovarian Tumors An evaluation of the mode of action (MOA) by which VCH produces ovarian tumors in rodents was conducted using the IPCS Human Relevance Framework (Meek et al.,2003; Boobis et al., 2006). In this framework, three fundamental questions are considered for theMOA: 1.Is the weight of evidence sufficient to establish an MOA in animals? 2.Can human relevance of the MOA be reasonably excluded on the basis of fundamental, qualitative differences in key events between experimental animals and humans? 	
3.Can human relevance of the MOA be reasonably excluded on the basis of quantitative differences in either kinetic	

 or dynamic factors between experimental animals and humans? Following a consideration of these three questions, a confidence statement is given, along with a discussion of the implications of the MOA to the risk assessment. 5.1. Proposed Mode of Action for Mouse Ovarian Tumors Following exposure and uptake, VCH is metabolized primarily in the liver, to VCH-1,2-epoxide or VCH-7,8-epoxide, which are further metabolized to VCH-diepoxide VCH-diepoxide etters the blood and circulates through the body. Upon reaching the ovary,VCH-diepoxid selectively destroys the primordial and primary follicles through amechanism involving programmed cell death o apoptosis. Repeated exposures to VCH ultimately result in premature ovarian failure, due to complete follicula loss. Since 17-estradioland inhibin are no longer produced from the primordial and primary follicles inthe ovary. S.1.1. Key Events Following exposure and uptake of VCH, the key events leading to ovarian tumors. S.1.1. Key Events Following exposure and uptake of VCH, the key events leading to ovarian toxicity andtumor: are presented in Table 4 and outlined below. I.Systemic levels of VCHD Ia. Bioactivation of VCH to VCHD (via VCH-1, 2-epoxide) I b. Hydrolysis of VCHepoxide metabolites by epoxide hydrolase 2.Decreased follicularloss in ovaries from VCHD 3.Selective destruction of primordial and primary follicles through apoptosis 4.Ovarian failure (no estrous cyclicity) from complete oocyte loss 5.Ovarian failure (no estrous cyclicity) from complete oocyte loss 6.Increased plasma FSH levels from release of negative feedback of 17β-estradiol and inhibin on hypothalamus and pituitary. 7.Initiation and/or promotion of ovarian tumors from increased plasma FSH levels. 		
--	--	--

Key Events	Evidence in Animals	Confi- dence	Key References
1. Systemic levels of VCH diepoxide	Blood levels inferred from studies showing blood levels of VCH-1,2-epoxide in VCH-dose mice, and from toxicity studies with VCHD	High	Smith et al. 1990 a,b,c; Keller et al. 1997
1a. bioactivation of VCH to VCH diepoxide (via VCH-1,2-epoxide)1b hydrolysis of VCH epoxide	<i>In vitro</i> liver, lung, and ovary microsome studies, with formation greater in mice than rats. Inhibition of cytochrome P450 reduces VDH-1,2-epoxide formation <i>in vivo</i> and <i>in vitro</i>	High	
metabolites by epoxide hydrolase]	<i>In vitro</i> liver, lung and ovary microsome studies, with rats having higher epoxide hydrolase rates than mice	High	
3. Selective destruction of primordial and primary follicles through apoptosis	Secondary follicles not directly affected by VCHD treatment; morphological and biochemical pathway studies.	High	Hooser et al. 1994; Flaws et al. 1994; Springer et al. 1996; Kao et al. 1999; Mayer et al. 2002 ; Hu et al. 2001a,b ; 2002
4. Ovarian failure (no estrous cyclicity) from complete oocyte loss	Long-term studies (up to one year) from 30 day treatment with either VCH (mice) or VCHD (rats);	High	Hooser et al. 1994; Mayer et al. 2002
Key Events	Evidence in Animals	Confi-	Key References
		dence	
5. Increased plasma FSH levels	Long-term studies (up to one year) from 30 day treatment with either VCH (mice) or VCHD (rats)	High	Hooser et al. 1994; Mayer et al. 2002 ; Lohff et al. 2006
from release of negative feedback of 17β –extradiol and inhibin on hypothalamus and pituitary			

1						1	1
	ovarian granulosa ce follicles,particularly th for 13 weeks to VCH conclusions about the	ell tumors(Collins et ne primary follicles, we (Collins and Manus, ovarian tumor incidence ovarian toxicity or inc	al.,1987). Preceding re noted in the ovaries 1987; Bevan et al.,199 cein rats due to poor sur	the tumors, a reduct of female mice expose 6).Although it is diffic rvival in the oral chroni	mice to VCH resulted in ion in the number of ed orallyor by inhalation cult to reach any strong ic study, rats exposed to nd Manus, 1987;Collins		
	VCH epoxides (VC Following treatment of blood levels of VCH-I	H-1,2-epoxide, VCH- of female mice and rats ,2-epoxide (Smith et al icol resulted in reduce	7,8-epoxide and VCH swith a single intraperit .,1990a). Pretreatment	I-diepoxide)by cytoch toneal dose of VCH, o of VCH-dosed mice w	bioactivation of VCH to rrome P-450 enzymes. nly mice had detectable ith thecytochrome P450 npared to non-pretreated		
	of VCH that have the al.,1993; Doerr etal.,1 depleted follicles (Do diepoxide to induce compound VCH(Tabl injections of VCH, reduced the number o highest dose tested destructiondisappeared	potential to form only 994), whereas compour err et al., 1994). Indee oocyte loss wasconsid e 5). Furthermore, whe VCH-1,2-epoxide, VCH f small (pre-antral) ooc (Table4). However, th d when animals were a cen conducted and sho	amonoepoxide metabo nds which can form die d, the study by Smithe derably greater than t en male Fischer 344 rat H-7,8-epoxide (mice of cytes inmice, whereas n nis difference in susc dministered VCH-diepo	blite failed to deplete supporting such as BDar epoxides, such as BDar et al.(1990b) showed the monoepoxide meta ts and B6C3Fl mice w only), or VCH-diepox o detectable oocyte los eptibility between mi oxide. A13-week derm	destruction. Analogues mall follicles (Hooser et adisoprene, significantly natthe potency of VCH- abolites and the parent rere givenintraperitoneal ide for 30 days, VCH as occurred in rats at the ice and rats to oocyte al mousestudy of VCH- a decreased number of		
			Table 5		. 1		
	Species	VCH	luction in Small Oocyte VCH-1,2-epoxide	VCH-7,8-epoxide	VCH-diepoxide		
	Mouse	2.7	0.5	0.7	0.2		
	Rat	>7.4 ^b	1.4	ND ^c	0.2		
	¹ Results from Smith <i>e</i>		1.7		U.T		
		· · · · · · · · · · · · · · · · · · ·	nall oocyte count to 509	% of that observed in co	ontrol animals.		
 					ary follicles, but not the t following 12 days of		
			- 44 -				

dosing with VCH-diepoxide, thereis a significant loss of primordial and primary follicles in both rats and mice, with noeffect on secondary follicle numbers (Kao et al., 1999). Longer periods of dosing (30days) with either VCH in mice or VCD in rats result in additional reduction of secondaryfollicles, but this is likely a result of a reduced population of primordial and primaryfollicles from which to recruit (Hooser et al., 1994; Flaws et al., 1994). Mechanisticstudies in rats have determined that VCH-diepoxide causes ovotoxicity by acceleratingthe natural process of atresia -which occurs through apoptosis -and this requires repeated exposures (Hoyer and Sipes, 2007). In mice dosed with VCH/VCH-diepoxide or rats dosed with VCH-diepoxide, thepathological changes in the ovary are identical (Flaws et al., 1994; Springer et al., 1996;Mayer et al., 2002). VCH-diepoxide selectively destroys the primordial and primaryfollicles, accelerating the normal process of atresia via apoptosis (Springer et al., 1996). Accelerated oocyte depletion leads eventually to premature ovarian failure and cessationof the estrous cycle. Highly elevated FSH plasma levels occur in both in rats, mice andnonhuman primates treated with either VCH (mice only) or VCH-diepoxide. At the timeof ovarian failure, VCH-treated mice showed lesions in the ovary that appear similar topreneoplastic lesions reported in a genetically susceptible strain of mice for granulosa celltumors (Hooser et al., 1994; Tennant et al., 1990). Elevated FSH levels have beenconsistently seen in various animal models of ovarian cancer and are thought to be the underlying mechanism to ovarian cancer, perhaps through alteration in signalingpathways affecting cell growth (Murphy, 1980; Fuller et al., 2002).
Mice, but not rats, are susceptible to ovarian toxicity by VCH. However, a consistentassociation has been observed across species (mice, rats, and nonhuman primate)between VCH-diepoxide administration and primordial and primary follicle loss in theovary (Springer et al.,1996; Kao et al.,1999; Mayer et al.,2002; Appt et al.,2006).Unfortunately, no data are available for the tumorigenic response of VCH or VCH-diepoxideacross species. The consistent association of VCH-diepoxide exposure withfollicular loss across species, in contrast to VCH exposure where only the mouse issusceptible, can be explained by species differences in the kinetics of the metabolism ofVCH and its metabolites. The balance of activation versus detoxification reactions in ratsand mice suggest that the mouse may be more susceptible to VCH toxicity because of generation of high levels of epoxide metabolites. In general, the mouse is more efficientat metabolism of VCH to epoxides than is the rat. In contrast, the rat may be moreefficient at hydrolysis of epoxides. Thus, the rat would tend to have a lower circulatingconcentration of epoxide metabolites than the mouse at equal doess of VCH. If,however, the ultimate metabolite VCH-diepoxide to be formed insufficient quantity so that it can reach the ovary and target primordial and primaryfollicles. No VCH metabolism data exist for nonhuman primates. Data on olefiniccompounds, such as BD, indicate that nonhuman primates are similar tohumans with respect to cytochrome P-450 bioactivation of olefins to its epoxidemetabolites (Dahl and Henderson, 2000). Limited in vitro data with human livermicrosomes suggest that VCH metabolism in nonhuman primates is likely to be morelike the rat than the mouse (Smith and Sipes, 1991). In summary, there is strong evidence for an association of follicular loss in the mouseovary via VCH-diepoxide by a non-genotoxic pathway and the formaton of ovariantumors. The key events show strength, consistency and specificity of association.
5.1.2.2. Dose-Response Concordance The dose-response concordance between the ovarian toxicity and tumors in VCH-exposedmice cannot be evaluated. For inhalation exposure, a 13-week, but not a 2-yearchronic bioassay, was

conducted. The NTP conducted both 13-week and 2-year oralstudies in mice; however, only the high-dose (1200 mg/kg) female mice were evaluated for ovarian effects (follicle loss), and it is not known whether the ovarian effects were also present at the lower doses (75 to 600 mg/kg). The continuous breeding protocolstudy showed ovarian effects in mice dosed with 500 mg/kg VCH for 17 to 18 weeks;but, here again, the lower doses were not evaluated. Increased incidence of ovariantumors were seen in the 200 and 400 mg/kg dosefemale mice in the NTP chronicbioassay.	
Smith <i>et al.</i> (1990b) compared the dose-response relationship of the reduction in smalloocyte counts in the ovaries of mice and rats following 30 days of intraperitonealtreatment with VCH, VCH-1,2-epoxide, VCH-7,8-epoxide, and VCH-diepoxide. Thedoses of VCH and its epoxide metabolites that reduced the small oocyte count to 50% that of control are shown in the Table 5. In mice, the destruction of the small oocyteswas dependent on the administered dose of VCH. In contrast, VCH treatment producedno detectable change in oocyte number in the ovaries of rats. However, in both species, VCH mono-and di-epoxide metabolites were much more potent than the parentcompound in destroying small oocytes. The ED 50 of VCH-1,2-epoxide, VCH-7,8-epoxideand VCH-diepoxide was 5.4-, 3.9-, and 14-fold lower than that of VCH. The potency of VCH-diepoxide was the ultimate ovotoxicant. VCH-diepoxide is metabolically produced from VCH-1,2-epoxide, which in turn is metabolically formedfrom VCH. A comparison of the ED 50 of VCH between mice and rats is consistent with the susceptibility differencedisappears when the animals are treated with VCH-diepoxide, and to a lesser extent withVCH-1,2-epoxide.	
Nonhuman primates given a single daily intramuscular injection of VCH-diepoxide for15 days had nearly complete elimination of primordial, intermediate, primary andsecondary follicles in the ovaries 27 days after treatment with a 250 mg/kg dose, a 50% reduction in primordial and primary follicles with 160 mg/kg, and no effect with 80mg/kg (Appt et al., 2006). No studies, however, have been conducted to determine thedose-response relationship of follicle loss and ovarian tumors in nonhuman primates.	
In summary, a dose-response relationship is observed in the potency of VCH and itsepoxide metabolites in inducing follicular loss in the ovary, providing strong evidence forVCH-diepoxide as the compound responsible for the ovarian toxicity, as well as thereason for the species differences in susceptibility.	
5.1.2.3. Temporal Relationship A single intraperitoneal dose of 320 mg/kg VCH-diepoxide resulted in a time- dependent decrease of both primordial and small primary follicles beginning 6 days later (Devine etal., 2004). Larger follicle stages were not affected over the time period studied (12 daysfollowing dosing). The follicles that are selectively targeted by VCH-diepoxide are the primordial andprimary follicles, but not the secondary follicles (Springer et al., 1996). Results fromtime-course studies indicate that following 12 days of dosing with VCH-diepoxide, there is a significant loss of primordial and primary follicles in both rats and mice, with noeffect on secondary follicle numbers (Kao et al., 1999). Longer periods of dosing (30days) witheither VCHin mice or VCD in rats result in additional reduction of secondaryfollicles, but this is likely a result of a reduced population of primordial and primaryfollicles from which to recruit (Hooser et al., 1994; Flaws et al., 1994). Mechanisticstudies in rats have determined that VCH-diepoxide causes ovotoxicity by acceleratingthe	

complete loss of oocytes at 360 dayscoincided with the loss of estrous cyclicity, indicating ovarian failure. Follicular loss alsoresulted in increased follicle stimulating hormone (FSH) plasma levels, presumably due to the lack of 17β-estradiol and inhibin production from the follicles. 17β-Estradiol and inhibin exert negative feedback inhibition of FSH production in the hypothalamus and/orpituitary. Plasma FSH levels were not elevated above control levels until 240 daysfollowing the initiation of dosing, suggesting that virtually complete loss of follicles is needed before the release of the negative feedback inhibition at the hypothalamus/pituitary. Table 6 Long-Term Effects of 30 Days Dosing of FemaleB6C3F ₁ Mice With 800 mg/kg VCH by Intraperitoneal Injection ¹ Small follicles Serum FSH Day (% control) (% above Estrous control) cyclicity 30 11% 30 Yes 120 3% 50 Yes 240 <1% 130 Yes 360 0% 160 No Results from Hooser <i>et al.</i> , 1994. Day = day after onset of dosing.	(Hoo days, 6).At and g	ser et al., 1994; Ma there was >90% los 240 days of the stud growing follicles; ho	yer et a!., 2002). In mice g s of thesmall pre-antral for dy (210 days following VC wever, at 360 days, no oo	given dailyintraperitoneal llicles at the end of the do CH treatment), there were cytes at anystage were of	primordial and primary foll injections of 800 mg/kg VC sing period (Hooser et al.,199 few widelyscattered oocytes perved in the VCH-treated n cyclicity_indicating_ovarian	CH for 30 94; Table s in small nice. The
control levels until 240 daysfollowing the initiation of dosing, suggesting that virtually complete loss of follicles is needed before the release of the negative feedback inhibition at the hypothalamus/pituitary. Table 6 Long-Term Effects of 30 Days Dosing of FemaleB6C3F1 Mice With 800 mg/kg VCH by Intraperitoneal Injection ¹ Small follicles Serum FSH Day (% control) (% above Estrous control) cyclicity 30 11%* 30 Yes 120 3%* 50 Yes 240 <1%* 130* Yes 360 0%* 160* No	Follic	cular loss alsoresulte	ed in increased follicle stin	nulating hormone (FSH)	plasma levels, presumably d	lue to the
Long-Term Effects of 30 Days Dosing of FemaleB6C3F1 MiceWith 800 mg/kg VCH by Intraperitoneal Injection1Small folliclesSerum FSHDay(% control)(% aboveEstrous $control$)cyclicity3011%*30Yes1203%*50Yes240<1%*	contr	ol levels until 240 da	aysfollowing the initiation	of dosing, suggesting that	t virtually complete loss of fo	
Long-Term Effects of 30 Days Dosing of FemaleB6C3F1 MiceWith 800 mg/kg VCH by Intraperitoneal Injection1Small folliclesSerum FSHDay(% control)(% aboveEstrous $control$)cyclicity3011%*30Yes1203%*50Yes240<1%*130*Yes3600%*160*No			m -		$\mathbb{P}_{\mathcal{D}}$	
With 800 mg/kg VCH by Intraperitoneal Injection1Small folliclesSerum FSHDay(% control)(% aboveEstrous $control$)cyclicity3011%*30Yes1203%*50Yes240<1%*					DECOR Mine	
$\begin{array}{c cccc} & Small \ follicles & Serum \ FSH \\ \hline Day & (\% \ control) & (\% \ above & Estrous \\ & control) & cyclicity \\ \hline 30 & 11\%^* & 30 & Yes \\ 120 & 3\%^* & 50 & Yes \\ 240 & <1\%^* & 130^* & Yes \\ 360 & 0\%^* & 160^* & No \\ \hline \end{array}$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		with 800 mg/				
$\begin{array}{c ccc} & control) & cyclicity \\ \hline 30 & 11\%^* & 30 & Yes \\ 120 & 3\%^* & 50 & Yes \\ 240 & <1\%^* & 130^* & Yes \\ 360 & 0\%^* & 160^* & No \\ \hline \end{array}$	т	Dav			Estrous	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-	Jay	(70 condoi)			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	30	11%*	and a strategy of the second sec		
360 0% [*] 160 [*] No	-			50	Yes	
	2	240	<1%*.	130*	Yes	
¹ Results from Hooser <i>et al.</i> , 1994. Day = day after onset of dosing.	3	360	0%*	160*	No	
*Different from controls, p<0.05.					r onset of dosing.	

In the two-year NTP mouse bioassay on VCH, there were increased incidences ofuncommon ovarian tumors, including mixed benign tumors, granulosa-cell tumors, andgranulosa-cell tumors or carcinomas (combined), in female B6C3F1 mice given oraldoses ofVCH (in corn oil) for 103 weeks (Collins et al.,1987). The incidence of tubularcell or granulosa cell hyperplasia was also increased in the VCH-treated groups. Thesetumors were preceded by ovarian toxicity, characterized by a reduction in the number ofprimary follicles and mature graafian follicles, which was observed in female mice givenoral doses of VCH for 13 weeks (Collins and Manus, 1987).	
Likewise, in the two-year NTP dermal study on VCH-diepoxide, benign or malignantgranulosa cell tumors and or benign mixed tumors of the ovary was preceded by atrophyof the ovaries (decreased number of follicles), which was seen in the 13-week dermalstudy (Chhabra et al., 1990a,b).	
In summary, there is strong evidence for the temporal progression of the key events in the proposed MOA, leading to the formation of ovarian tumors. Metabolism precedes follicular loss.	
Complete follicular loss is required before the elevation in plasma FSHlevels and the subsequent appearance of pre-neoplastic lesions.	
5.1.2.4. Biological Plausibility and Coherence Embryonic development of the ovary involves extensive proliferation of germcells andsomatic cells. In the later stages of this development, germ cells differentiate intooccytes when they cease to divide mitotically and begin to undergo meiosis (Hirshfield,1991). However, the meiotic process is not completed and oocytes are arrested in anearly stage of prophase known as the diplotene stage of meiosis (Buccione et al.,1990;Hirshfield, 1991). Somatic follicular (granulosa) cells in the embryonic ovary continue toproliferate and envelop small oocytes within a single layer to form primordial follicles(Gondos, 1970; Bacharova, 1985). Therefore, at birth, the ovary contains a finite number primordial follicle contains an oocyte surrounded by a single layer of fusiform-shaped granulosa cells. During follicular development, the oocyte enlargesand the granulosa cells become cubiodal in appearance to form a primary follicle. Agrowing follicle results fromproliferation of the granulosa cells into multiple layers. Allof these stages of development occur in the preantral stage (25-250m in diameter). Larger, more mature follicles have developed a fluid-filled antrum, and thus classified asantral follicles at various stages of development by an apoptotic process called atresia. Agents that damage primordialand primary follicles to the extent of complete depletion of the available follicle poolproduce permanent infertility and premature menopause since, once destroyed, thosefollicles cannot be replaced.	
Several animal models initially drew attention to the possible involvement ofgonadotropins in ovarian tumorigenesis. Biskind and Biskind (1944) reported a highincidence of ovarian tumors in rats whose ovaries were autotransplanted to the spleen. However, the formation of the ovarian tumors did not occur when one ovary was leftintact or when the ovary was autotransplanted in previously hypophysectomized animals (Biskind and Biskind, 1948). This tumorigenesis has been attributed to elevated pituitarygonadotropins due to the deactivation of estrogen in the liver and the consequentdepletion of negative feedback of estrogen on the pituitary. Since then, the	

developmentof ovarian tumors has been reported in several transgenic or knockout animal models thatexhibit hypergonadotropism with high levels of circulating FSH and LH similar to thepostmenopausal state in women (Kumar et al., 1999; Risma et al., 1995). Granulosa cell tumors can also be induced by genetic deletion of germcells (Murphy, 1972; Murphy and Beamer, 1973), neonatal thymectomy (Nishizuka et al.,1972), or X- irradiaton (Marchant,1987). The hormonal tumorigenesis hypothesis for ovarian granulosa cell cancers is thatendocrine factors that control the normal growth of target organs can also providesuitable conditions for neoplastic transformation. The gonadotropin hypothesis has beenproposed as an underlying mechanism to ovarian cancer, in that excessive levels ofgonadotropins, related to the surge occurring during ovulation and the loss of gonadalnegative feedback in menopause and premature ovarian failure (oocyte depletion), mayplaya role in the development and progression of ovarian (granulosa cell) cancer. Theincidence of ovarian cancer in women climbs dramatically around the age at which mostwomen reach menopause. The onset of menopause, which happens at approximately 51years of age, involves changes in gonadotropin levels as a result of cessation of ovarian function and menstrual cycle. The complete cessation of ovarian function results in theloss of negative feedback of ovarian steroids (i.e., -estradiol) on gonadotropins. In 2to 3 years after menopause, gonadotropin levels are particularly high, such that theconcentrations of FSH and LH reach a peak of 10-20 times and 3-4 times the values recorded during the proliferative phase of the menstrual cycle, respectively (Chakravartiet al., 1976; Speroff et al., 1999). The increase in plasma gonadotropin levels is a result of the loss of feedback inhibition from 17-estradiol and inhibin, both of which areproduced from follicles. In the case of ovarian failure where there is complete loss ofoocytes in the ovary, the loss of 17-estradiol and inhibin from
In summary, there is strong evidence of biological plausibility and coherence in theproposed MOA for mouse ovarian tumors by a non-genotoxic, threshold mechanism. 5.1.3. Are Key Events in the Animal MOA Plausible in Humans? The key events in the animal MOA are plausible in humans. VCH-diepoxide has beenshown to selectively deplete primordial and primary follicles in the ovaries of nonhumanprimates (Macaca fascicularis) (Appt et al.,2006). The physiology and anatomy ofnonhuman primates are more similar to humans than rodents. The finding that VCH-diepoxidedepletes primordial and primary follicles in nonhuman primates is strongevidence that the MOA for VCH-induced ovarian cancer is plausible in humans. Humansand nonhuman primates possess the same ability to metabolize VCH as rodents,specifically cytochrome P- 450 CYP 2A, 2B and 2E1and epoxide hydrolase, as well asglutathione transferase in organs, such as the liver, lung and ovaries. Female human livermicrosomes have been shown to metabolize VCH to VCH-1,2-epoxide, but at lower ratesthan rat (2-fold) and mouse (13-fold) liver microsomes (Smith et al., 1991).
1-3-Butadiene (BD), a structural analogue of VCH, also produces ovarian atrophy(follicular loss) and ovarian tumors in mice, but not rats. The diepoxide of BD (DEB) isbelieved to be the metabolite responsible for the ovarian effects, and the speciessusceptibility is likely due to the decreased ability of the rat to produce BD diepoxide.Filser et al. (2007) was unable to detect DEB in venous blood of male Sprague-Dawleyrats (detection limit 0.01 µmol/L) exposed to 1,200 ppm for 6-8 hours, whereas DEB wasdetected in mice 3.2 µmol/Lat 1,280 ppm BD. Humans appear to be similar to rats intheir inability to produce the diepoxide metabolite. Albertini et al., (2007) reportedfindings of a molecular epidemiology study in the Czech Republic of occupationally-

exposedworkers with cumulative exposures up to 6.3 ppm-weeks. Any N,N-(2,3-dihydroxy-1,4-butadiyl) valine	
(pry-Val) hemoglobin adduct of DEB that may have beenpresent in these workers were below the limit of	
detection of the assay used. Swenberg etal. (2007) compared results in the Czech Republic occupationally-exposed	
workers toresults in mice and rats for a pry-Val adduct at similar BD concentrations. Itwasconcluded that production of DEB in humans is below levels produced in both mice andrats exposed to as little as 1 ppm BD by	
inhalation. Subsequently, Georgieva et al.(2007) reported in anabstract that these adducts were detected at a low	
concentrations inCzech Republic workers when a more sensitive analytical method to measure pry-Valadducts was	
used. There was, however, no clear dose-response relationship between pry-Valadducts and BD concentrations,	
indicating that pry-Val adducts may be formed fromother unknown sources besides the BD in the workplace	
environment.	
Thus, using BD as an analogy, it is possible that VCHmay be metabolized in human toVCH diepoxide in humans; but as is the case with BD, at extremely low levels whencompared to the mouse.	
but as is the case with BD, at extremely low levels whencompared to the mouse.	
5.1.4. Taking into Account Kinetic and Dynamic Factors, is the Animal MOA Plausible in Humans? The diepoxide	
appears to be the metabolite of VCHresponsible for the specific targeted destruction of promordial and primary	
follicles. There are species differences in the rates of formation or activation of the epoxide metabolites of VCH, as	
well as in the rate of detoxification. Mice have significantly greater capacity to metabolize VCH to the mono- anddi-epoxides than do rats, and in many cases performs the reactions more efficientlythan rats. In particular,	
mouse liver and lung tissue are very active in their ability tometabolize VCHto the epoxide metabolites. In	
contrast, the mouse does not hydrolyzeepoxides well, while the rat hydrolyzes the epoxides to a greater extent than	
the mouse. This balance of activation reactions with detoxification reactions leads to the conclusion that the mouse	
may be more susceptible to the toxic effects of VCH, since the VCHdiepoxide is considered the metabolite	
responsible for follicular destruction in the ovary. The prediction that VCHepoxidation rate in the liver and lung is	
the major factor whichdetermines the ovotoxicity and carcinogenesis of VCHis supported by the toxicity data.Ovarian effects are only observed in mice exposed to VCHeither orally or by inhalation, with tumors seen in	
mice dosed orally with VCH. Further support of the role of metabolism in the susceptibility of animal species to the	
ovotoxicity of VCH comes fromstudies which show that the rat develops follicular loss and, ultimately ovarian	
failure, ifdosed with VCH-diepoxide. Thus, if the epoxidation rate of VCH is the critical factorwhich determines	
the ovotoxicity and carcinogenicity of VCH, then the rat would be themore appropriate animal model for	
extrapolation of the VCHanimal data to humans.Based on the available in vitro human liver microsomes data, human metabolism of VCH is expected to be more similar to the rat than the mouse. Given that the rat did	
notdevelop ovarian effects (follicular loss) either from oral or inhalation exposure, humanswould also not be	
expected to develop ovotoxicity, and thus would not be expected to develop ovarian tumors at or below the	
exposures used in these animal studies.	
Defenses from Sampling (2009)	
References from Sapphire (2008)	
Albertini, R.J., Sram, R.J., Vacek, P.M., Lynch, I., Rossner, P., Nicklas, J.A., McDonald, J.A., Boysen, G.,	
Georgieva, N., and Swenberg, J.A. (2007) Molecular epidemiological studies in 1,3-butadiene exposedCzech	
workers: female-male comparisons. Chem. Biol. Int. 166: 63-77	
Appt, S.E., Kaplan, I.R., Clarkson, T.B., Cline, I.M., Christian, and Hoyer, P.B (2006) Destruction of primordial	
Appt, S.E., Kapian, I.K., Clarkson, T.D., Chile, I.M., Christian, and Hoyer, F.B (2000) Destruction of printordial	

ovarian follicles in adult cynomologous macaques after exposure to 4-vinylcyclohexene diepoxide: a nonhuman primate model of the menopausal transition. Feli. Steril. 86(Suppl. 3): 1210-1216.	
Boobis, A.R., Cohen, S.M., Dellarco, V., McGregor, D., Meek, M.E., Vickers, C., Willcocks, D., and Farland, W (2006) IPCS framework for analyzing the relevance of a cancer mode of action for humans. Crit. Rev. Toxicol. 36:781-792.	
Chhabra, R.S., Elwell, M.R., Peters, A. (1990). Toxicity of 4-vinyl-1-cyclohexene diepoxide after 13 weeks of dermal and oral exposure in rats and mice. Fundam. Appl. Toxicol. 14, 745–751.	
Collins, J. J.; and Manus, A. G. Toxicological evaluation of 4-vinylcyclohexene. Prechronic (14-day) and subchronic (13-week) gavage studies in Fischer 344 rats and B6C3F1 mice. (1987) J. Toxicol. Environ. Health 21, 493–505.	
Collins, J. J.; Montali, R. J.; and Manus, A. G. (1987) Toxicological evaluation of 4-vinylcyclohexene. II. Induction of ovarian tumors in female B6C3F1 by chronic oral administration of 4-vinylcyclohexene. J. Toxicol. Environ. Health 21, 507–524.	
Devine P.J., Sipes I.G., Hoyer P.B. (2001) Effect of 4-vinylcyclohexene diepoxide dosing in rats on GSH levels in liver and ovaries. Toxicol. Sci. 62:315–320.	
Doerr-Stevens, J. K., Liu, J., Stevens, G. J., Kraner, J. C., Fontaine, S. M., Halpert, J. R., and Sipes, I.G. (1999). Induction of cytochrome P-450 enzymes after repeated exposure to 4-vinylcyclohexene in B6C3F1 mice. Drug Metab. Dispos. 27, 281–287.	
Flaws JA, Doerr JK, Sipes IG, Hoyer PB. (1994) Destruction of pre-antral follicles in adult rats by 4-vinylcyclohexene diepoxide. Reprod Toxicol 8:509 –14.	
Fuller, P.J., Chu, S., Fikret, S. and Burger, H.G. (2002) Molecular pathogenesis of granulose cell tumors. Mol. Cell. Endocrinol. 191:89-96	
Hooser, S. B.; Parola, L. R.; Van Ert, M. D.; and Sipes, I. G. (1993). Differential ovotoxicity of 4-vinylcyclohexene and its analog, 4-phenylcyclohexene. Toxicol. Appl. Pharmacol. 119, 302–305.	
Hoyer, P.B., and Snipes, I.G. (2007) Development of an animal model for ovotoxicity using 4-vinylcyclohexene: A case study. Birth Defects Res. (part B) 80:113-125.	
Hu X, Christian PJ, Thompson KE, Sipes IG, Hoyer PB (2001) Apoptosis induced in rats by 4-vinylcyclohexene diepoxide is associated with activation of the caspase cascades. Biol Reprod 65:87–93.	
Hu X, Christian PJ, Sipes IG, Hoyer PB. (2001) Expression and redistribution of cellular Bad, Bax, and Bcl-X(L) protein is associated with VCD-induced ovotoxicity in rats. Biol Reprod 65:1489–95.	

		Kao SW, Sipes IG, Hoyer PB. (1999) Early effects of ovotoxicity induced by 4-vinylcyclohexene diepoxide in rats and mice. Reprod Toxicol13:67–75	
		Keller, D. A.; Carpenter, S. C.; Cagen, S. Z.; and Reitman, F. A. (1997) In vitro metabolism of 4-vinylcyclohexene in rat and mouse liver, lung, and ovary. Toxicol. Appl. Pharmacol. 144, 36–44.	
		MayerLP, Pearsall NA, Christian PJ, Payne CM, McCuskey MK, Marion SL, et al. (2002) Long term effects of ovarian follicular depletion in rats by 4-vinylcyclohexene diepoxide. Reprod Toxicol 16: 775–81.	
		Meek, M.E., Bucher, J.R., Cohen, S.M., Dellarco, V., Hill, R.N., Lehman-McKeeman, L.D., Longfellow, D.G., Pastoor, T., Seed, J., and Patton, D.E. (2003). A framework for human relevance analysis of information on carcinogenic modes of action. Crit. Rev. Toxicol. 33:591–653.	
		Murphy, E.D. (1980) Major experimental models of ovarian tumors: histogenesis and evaluation. In: Biology of ovarian neoplasia (E.D. Murphy and W.G. Beamer, Eds), UICC Technical Report Series 50: 66-73	
		Murphy, E.D., and Beamer, W.G. (1973) Plasma gonadotrophin levels during early stages of ovarian tumorigenesis in mice of the WX/Wv genotype. Cancer Res. 33:721-723.	
		Smith, B. J.; Carter, D. E.; and Sipes, I. G. (1990a) Comparison of the disposition and in vitro metabolism of 4-vinylcyclohexene in the female mouse and rat. Toxicol. Appl. Pharmacol., 105, 364–371.	
		Smith, B. J.; Mattison, D. R.; and Sipes, I. G.(1990b) The role of epoxidation in 4-vinylcyclohexene-induced ovarian toxicity. Toxicol. Appl. Pharmacol. 105, 372–381.	
		Smith, B. J., Sipes, I. G., Stevens, J. C., and Halpert, J. R. (1990c). The biochemical basis for the species difference in hepatic microsomal 4-vinylcyclohexene epoxidation between female mice and rats. Carcinogenesis 11, 1951–1957.	
		Smith,B.J. and Snipes, I.G. (1991) Epoxidation of 4-vinylcyclohexene by human hepatic microsomes. Toxicol. Appl. Pharmacol. 109: 367-371.	
		Springer LN, McAsey ME, Flaws JA, Tilly JL, Sipes IG, Hoyer PB. (1996) Involvement of apoptosis in 4-vinylcyclohexene diepoxide-induced ovotoxicity in rats. Toxicol Appl Pharmacol 139:394–401.	
		Tennent, B.J., Shultz, K.L. Sundberg, J.P., and Beamer, W.G. (1990) Ovarian granulose cell tumorgenesis in SWR-derived F1 hybrid mice: Preneoplastic follicular abnonnality and malignant disease progression. Am. J. Obstet. Gynecol. 163:625-634.	
Carcinogen	icity		

Carcinogenicity

Muta	agenicity				
Date	Country/	Comment	Dossier	RAC's resp	
	Organisation/		submitter's	to comme	ent
	MSCA		response to		
			comment		
06/07/2011	United States /	Pages 33-35. Section 4.9.1.2 In vivo data and Table 12	Thank you for this	We agree	with
	Individual	I was involved with the mouse and rat micronucleus assays as an industry representative in a consortia (my	information.	MSCA	
		employer at the time was Exxon Biomedical Sciences, Inc.). I am also the lead author of the published paper.	However, for		
			regulatory		
		The CLH report states that there were no concurrent positive controls in the mouse micronucleus studies by	purposes, a positive		
		Bevan et al. (2001). This, however, is incorrect. 1,3-Butadiene was used as the positive control for the mouse	control substance		
		studies. For both the 2-day and the 13-week inhalation studies, concurrent groups of mice were exposed to 1,000	should be		
		ppm 1,3-butadiene so that a comparison could be made between the two compounds. 1,3-Butadiene is a suitable	validated. Data on		
		positive control for mice since in a number of independent studies on 1,3-butadiene, positive results have been	historical		
		reported for the bone marrow and peripheral blood micronucleus assay in mice (EU Risk Assessment Report for	positive/negative		
		1,3-Butadiene, Volume 20). In the VCH mouse micronucleus assays, the 1,3-butadiene-exposed mice showed	controls would be		
		significantly more MN-PCEs than the control animals.	helpful.		
		Bevan, C., Keller, D.A, Pinepinto, A.S., and Bentley, K.S. (2001) Effect of 4-vinylcyclohexene on micronucleus			
		formation in the bone marrow of rats and mice. Drug Chemical Toxicol. 24: 273-285.			

Toxicity to reproduction

Date	Country /	Comment	Dossier	RAC's response
Dute	Organisation /		submitter's	to comment
	MSCA		response to	
			comment	
13/07/2011	Sweden /	We also agree with the submitting MS that the screening study show effects on testicular sperm concentration and	Thanks for your	The need for more
	Member State	oocyte/follicles without apparently impacting fertility. With the carcinogenic effect in the ovary and the lack of	support. We agree	information is
		data on reproduction KemI think that it is important that more data is gathered for evaluation of the reproductive	that reprotoxic	noted. However
		effects of VCH.	endpoint should be	substance
			evaluated during	evaluation is not
			substance	within the portfolio
			evaluation.	of RAC.
06/07/2011	United States /	ECHA comment: The document attached "Bevan C., 2009., ADDITIONAL COMMENTS ON THE CLH REPORT	Thanks for these	Noted. See also
	Christopher	ON 4-VINYLCYCLOHEXENE (VCH), (Comments on CLH Report on 4-VCH cjb.docx) is copied below:	interesting data on	comments from Dr.
	Bevan /		the MOA of VCH	Bevan in page 32,
	Individual	ADDITIONAL COMMENTS ON THE CLH REPORT ON 4-VINYLCYCLOHEXENE (VCH)	and its potential for	and our response.
			endocrine	
		Provided by Dr. Christopher Bevan, PhD, DABT, atoxicology consultant and managing principal of CJB	disruption. The	
		Consulting LLC	CLH report has	

Date	Country / Organisation / MSCA		Com	ment		Dossier submitter's response to comment	RAC's response to comment
		A proposed mode of action (Following exposure and upt epoxide, which are further through the body. Upon re follicles through a mechani ultimately result in prematur no longer produced from t inhibition of follicle-stimula high plasma levels of FSH. tumors. Bevan, C., Gargas, M., Kirm cancer and non-cancer refere Key Ev	ake, VCH is metabolized, p metabolized to VCH-diepo eaching the ovary, VCH-die sm involving programmed e ovarian failure, due to con he primordial and primary ting hormone (FSH) release Increased plasma levels of man, C., and Vergnes, J. (200 nce value for 4-vinylcyclobe	primarily in the liver, to VC oxide. VCH-diepoxide enter poxide selectively destroys cell death or apoptosis. Re nplete follicular loss. Since follicles in the ovary, los from the hypothalamus and FSH result in the initiation (MOA) er	CH-1,2-epoxide or VCH-7,8- ers the blood and circulates the primordial and primary Repeated exposures to VCH 17β -estradiol and inhibin are s of the negative feedback d pituitary occurs, leading to and/or promotion of ovarian valuation and derivation of a opl.), abstract #839	been revised to provide more information on this MOA, based on your communication and on the review from Hoyer and Sipes (2007).	
		Key Events	Evidence in Animals	Confidence	Key references		
		1. Systemic levels of VCHD 1a. Bioactivation of VCH to VCHD (via VCH-1,2-epoxide)	Blood levels inferred from studies showing blood levels of VCH-1,2- epoxide in VCH-dosed mice, and from toxicity studies with VCHD. In vitro liver, lung and ovary microsome studies., with formation greater in mice than rats. Inhibition of cytochrome P450 reduces VCH-1,2- epoxide formation in vivo and in vitro	High	Smith <i>et al.</i> , 1990a,b,c; Keller <i>et al.</i> , 1997		

Date	Country / Comment Organisation / MSCA			Dossier submitter's response to comment	RAC's response to comment		
		1b. Hydrolysis of VCH epoxide metabolites by epoxide hydrolase	In vitro liver, lung and ovary microsome studies, with rats having higher epoxide hydrolase rates than mice.	High			
		2. Increased follicular loss in ovaries from VCHD	VCHD more potent ovotoxicant than VCH monoepoxides and VCH; VCH analogue studies show ovotoxicity only from compounds producing the diepoxide; subchronic/chronic mouse studies of VCHD show same ovarian effects and tumors as with VCH; rats/mice dosed with VCHD show identical ovarian effects as with mice dosed with VCH.	High	Smith et al., 1990b; Hooser et al., 1993; Doerr et al., 1993; Doerr et al., 1995; Chhabra et al., 1990a,b; Flaws et al., 1994; Bevan et al., 1996; Collins and Manus, 1987; Collins et al., 1987; Collins et al.,		
		3. Selective destruction of primordial and primary follicles through apoptosis	Secondary follicles not directly affected by VCHD treatment; morphological and biochemical pathway studies.	High	Hooser <i>et al.</i> , 1994; Flaws <i>et al.</i> , 1994; Springer <i>et al.</i> , 1996; Kao <i>et al.</i> , 1999; Mayer <i>et al.</i> , 2002; Hu <i>et al.</i> , 2001a,b; 2002		
		4. Ovarian failure (no estrous cyclicity) from complete oocyte loss	Long-term studies (up to one year) from 30 day treatment with either VCH (mice) or VCHD (rats);	High	Hooser <i>et al.</i> , 1994; Mayer <i>et al.</i> , 2002		
		5. Increased plasma FSH levels from release of negative feedback of 17β-estradiol and inhibin	Long-term studies (up to one year) from 30 day treatment with either VCH (mice) or VCHD	High	Hooser <i>et al.</i> , 1994; Mayer <i>et al.</i> , 2002; Lohff <i>et al.</i> , 2006		

Date	Country / Organisation / MSCA		Com	ment		Dossier submitter's response to comment	RAC's response to comment
		on hypothalamus/pituitary	(rats)				
		6. Initiation and/or promotion of ovarian tumors from increased plasma FSH levels	Cystic structures in VCH-treated mice similar to preneoplastic lesions in genetically altered mice predisposed to granulosa cell tumors. Prolonged increased FSH plasmal levels associated with initiation/development of ovarian tumors.	Moderate	Hooser <i>et al.</i> , 1994; Tennent <i>et al.</i> , 1990; Murphy and Beamer, 1973; Murphy, 1980; Fuller <i>et al.</i> , 2002		
		References					
					oran, E., and Panepinto, A.S. n exposure. Fundam. Appl.		
		Chhabra, R.S., Elwell, M.R. or dermal or oral exposure in			ene diepoxide after 13 weeks		
					990b) Dermal toxicity and ice. Fundam. Appl. Toxicol.		
		Collins, J.J., and Manus, A.C subchronic (13-week) gavag 505.					
			e B6C3F1 mice by chronic		nylcyclohexene: II. Induction nylcyclohexnene. J. Toxicol.		
		Doerr, J.K., Hooser, S.B., Solefins in B6C3F1 mice. Che			vinylcyclohexene and relaed		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		Flaws, J.A., Doerr, J.K., Sipes, I.G., and Hoyer, P.B. (1994) Destruction of pre-antral follicles in adult rats by 4-vinylcyclohexene diepoxide. Reprod. Toxicol. 8: 509-514.		
		Fuller, P.J., Chu, S., Fikret, S., and Burger, H.G. (2002) Molecular pathogenesis of granulosa cell tumours. Mol. Cell. Endocrinol. 191: 89-96.		
		Hooser, S.B., Parola, L.R., Van Ert, M.D., and Sipes, I.G. (1993) Differential ovotoxicity of 4-vinylcyclohexene and its analog, 4-phenylcyclohexene. Toxicol. Appl. Pharmacol. 119: 302-305.		
		Hooser, S.B., Douds, D.P., DeMerell, D.G., Hoyer, P.B., and Sipes, I.G. (1994) Long-term ovarian and gonadotropin changes in mice exposed to 4-vinylcyclohexene. Reprod. Toxicol. 8: 315-323.		
		Hu, X., Christian, P., Thompson, K.E., Sipes, I.G., and Hoyer, P.B. (2001a) Apoptosis induced by rats by 4-vinylcyclohexene diepoxide is associated with activation of the caspase cascades. Biol. Reprod. 65: 87-93.		
		Hu, X., Christian, P., Sipes, I.G., and Hoyer, P.B. (2001b) Expression and redistribution of cellular Bad, Bax and Bcl-x(l) protein is associated with VCD-associated ovotoxicity in rats. Biol. Reprod. 65: 1489-1495.		
		Hu, E., Flaws, J.A., Sipes, I.G., and Hoyer, P.B. (2002) Activation of mitogen-activated protein kinases and AP-1 transcription factor in ovotoxicity induced by 4-vinylcyclohexene diepoxide in rats. Biol. Reprod. 67: 718-724.		
		Keller, D.A., Carpenter, S.C., Cagen, S.Z., and Reitman, F.A. (1997) In vitro metabolism of 4-vinylcyclohexene in rat and mouse liver, lung, and ovary. Toxicol. Appl. Pharmacol. 144: 36-44.		
		Kao, SW., Sipes, I.G., and Hoyer, P.B. (1999) Early effects of ovotoxicity induced by 4-vinylcyclohexene tdiepoxide in rats and mice. Reprod. Toxicol. 13: 67-75.		
		Lohff, J.C., Christian, P.J., Marion, S.L., and Hoyer, P.B. (2006) Effect of duration of dosing on onset of ovarian failure in a chemical-induced mouse model of perimenopause. Menopause 13: 482-488.		
		Mayer, L.P., Pearsall, P.J., Christian, P.J., Devine, P.J., Payne, C.M., McCuskey, M.K., Marion, S.L., Sipes, I.G., and Hoyer, P.B. (2002) Long-term effects of ovarian follicular depletion in rats by 4-vinylcyclohexene dipoxide. Reprod. Toxicol. 16: 775-781.		
		Murphy, E.D. (1980) Major experimental models of ovarian tumors: histogenesis and evaluation. In: Biology of ovarian neoplasia (E.D. Murphy and W.G. Beamer, Eds), UICC Technical Report Series 50: 66-73.		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		 Murphy, E.D., and Beamer, W.G. (1973) Plasma gonadotropin levels during early stages of ovarian tumorigenesis in mice of the Wx/Wv genotype. Cancer Res. 33: 721-723. Nishizuka, Y., Tanaka, Y., Sakakura, T., and Kojima, A. (1972) A frequent development of ovarian tumors from dysgenetic ovaries of neonatally thymectomized mice. Gann 63: 139-140. Smith, B.J., Carter, D.E., and Sipes, I.G. (1990a) Comparison of the disposition and in vitro metabolism of 4-vinylcyclohexene in the female mouse and rat. Toxicol. Appl. Pharmacol. 105: 364-371. Smith, B.J., Mattison, D.R., and Sipes, I.G. (1990b) The role of epoxidation in 4-vinylcyclohexene-induced ovarian toxicity. Toxicol. Appl. Pharmacol. 105: 372-381. Smith, B.J., Sipes, I.G., Stevens, J.C., and Halpert, J.R. (1990c) The biochemical basis for the species difference in hepatic microsomal 4-vinylcyclohexene epoxidation between female mice and rats. Carcinogenesis 11: 1951-1957. Springer, L.N., McAsey, M.E., Flaws, J.A., Tilly, J.L., Sipes, I.G., and Hoyer, P.B. (1996) Involvement of apoptosis in 4-vinylcyclohexene diepoxide-induced ovotoxicity in rats. Toxicol. Appl. Pharmacol. 139: 394-401. 	comment	
		Tennent, B.J., Shultz, K.L., Sundberg, J.P., and Beamer, W.G. (1990) Ovarian granulosa cell tumorigenesis in SWR-derived F1 hybrid mice: Preneoplastic follicular abnormality and malignant disease progression. Am. J. Obstet. Gynecol. 163: 625-634.		

Respiratory sensitisation

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		No comments	comment	

Other hazards and endpoints

Date	Country /	Comment	Dossier	RAC's response
	Organisation /		submitter's	to comment
	MSCA		response to	
			comment	

	response to comment	to comment	
Stateenvironment as Regulation baseStateenvironment as Regulation baseThe substance i 1.9 mg/L, since 	nt: The document attached "Synthetic Organic Chemical Manufacturers Association (SOCMA) 4- ne Work Group, 2006, 4-Vinylcyclohexene Group – Robust Summary and Test Plan, Chemical ice Registry Number: 100-40-3, Washington DC (100-40-3 Robust summary.pdf) ay Concern: clohexene Group comprised of ExxonMobil and INVISTA is providing the robust summary and test plan for the chemical Cyclohexene, 4-ethenyl- (CAS commonly known as 4-Vinylcyclohexene, or 4-VCH, under the auspices of the e Program. Enclosed is a computer disc containing the robust summary and test y questions or need additional information, please contact me at (202) 72 1-4 100. httick Director mbership O of Robust Summary and Test Plan	commentCf rules detailed in Art.36 of the CLP regulationFrom this IUCLID, only repeated toxicity, mutagenicity and carcinogenicity data have been re- examined as we consider that they are the only appropriate endpoints regarding our proposal. Then a mouse lymphoma assay performed by the NTP is now included in the revised version of the CLH report	Noted. RAC only assess effects proposed for harmonisation for VCH by the dossier submitter (MSCA). Noted

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		CH₂ H		
		U.S. EPA HPV Challenge Program Submission Submitted by: Synthetic Organic Chemical Manufacturers Association (SOCMA) 4-Vinylcyclohexene Work Group Prepared by: Experien Health Sciences, Inc. 6322 Water Point Court Kingwood, Texas 77346 28 1 -8 1 2-6667		
		Table of Contents		
		1. PLAIN LANGUAGE SUMMARY3		
		2. CHEMICAL DESCRIPTION		
		3. PRODUCTION, USE AND EXPOSURES		
		3.1. PRODUCTION AND USE		
		4. PYSICOCHEMICAL PROPERTIES7		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		5. ENVIRONMENTAL FATE7	comment	
		5.1. BIODEGRADATION		
		5.3. ATMOSPHERIC OXIDATION AND OZONATION		
		5.4. STABILITY IN WATER – HYDROLYSIS		
		5.5. REMOVAL BY WASTE TREATMENT PLANTS		
		5.6. DISTRIBUTION IN THE ENVIRONMENT (FUGACITY MODELING)		
		5.7. BIOACCUMULATION POTENTIAL		
		6. AQUATIC TOXICITY10		
		7. MAMMALIAN HEALTH EFFECTS DATA10		
		7.1. ACUTE TOXICITY		
		7.2. REPEATED DOSE TOXICITY		
		7.3. GENETIC TOXICITY		
		7.4. CARCINOGENICITY (NON-SIDS ENDPOINT)		
		7.5. Reproductive and Developmental Toxicity14		
		7.6. METABOLISM AND TOXICOKINETICS (NON-SIDS ENDPOINT)15		
		8. DATA AVAILABILITY AND TESTING PROPOSAL16		
		1. PLAIN LANGUAGE SUMMARY		
		Under the U.S. Environmental Protection Agency (EPA) High Production Volume (HPV) Chemical Challenge		
		Program, ExxonMobil Chemical Company and INVISTA S.à r.l committed thru the 4-Vinylcyclohexene		
		Working Group of the Synthetic Organic Chemical Manufacturers Association (SOCMA) to voluntarily compile		
		a Screening Information Data Set (SIDS) that can be used for an initial hazard assessment of 4-Vinylcyclohexene		
		(4-VCH), CAS No. 100-40-3. Robust summaries have been prepared for all key studies. The information		
		described in this test plan is a summary of the data presented in the Robust Summaries and should only be used		
		for the purposes of HPV Program and not for regulatory cleanup or criteria development processes. This test plan includes data for physicochemical, environmental fate, and mammalian and environmental effect		
		endpoints included in the U.S. HPV Program in a manner consistent with the requirements of an OECD SIDS		
		Level 1 data package. Additional mammalian data beyond the SIDS endpoints, and data / information on use and		
		exposure, have also been supplied with this submission. Based on an exhaustive literature search, combined with		
		data from accepted models to estimate partition coefficient, transport and distribution, photodegradation, and		
		stability in water, adequate information is available for all endpoints.		
		4-VCH is commercially produced in closed continuous process systems via the catalytic dimerization of 1,3-		
		butadiene. In addition, it is co-produced during the refining of crude butadiene and the production of		
		dodecanedioic acid and vinylnorbornene. It is used as a chemical intermediate and is not known to be used		

ANNEX 2 - COMMENTS AND RESPONSE TO COMMENTS ON CLH PROPOSAL ON 4 V	VINYLCYCLOHEXENE (VCH)
--	------------------------

Date	Country / Organisation / MSCA	ganisation /		RAC's response to comment
		directly as an ingredient in professional or consumer products (solvents, cleaners, adhesives, etc.). Given these conditions, exposures and releases to the environment are readily controlled and/or prevented. 4-VCH is not acutely toxic after inhalation, ingestion or skin contact, and no-more than moderately irritating to skin and eye. Results from repeated dose studies indicate that female mouse ovary is a potential target tissue, with alterations in other organs (including female rat ovary) expressed less consistently between species and sexes. Results from <i>in vitro</i> genetic toxicity testing have given mixed, predominately negative, findings while <i>in vivo</i> tests found no increase in micronuclei in rats and mice following high level, sub-chronic exposure. Interpretation of results from carcinogenicity data for 4-VCH in rats is confounded by poor survival; however the occurrence of ovarian tumors provided clear evidence of carcinogenicity in female mice. Ovarian toxicity was also apparent in a mouse continuous breeding study; however fertility and fetal development were unaffected. Structure-activity investigations indicate that metabolism of 4-VCH to a diepoxide is central to its ability to cause ovarian toxicity in the mouse. If released to the environment, 4-VCH may pose moderate toxicity to aquatic and terrestrial organisms but it is not expected to bioaccumulate. Releases are predicted to partition primarily to air where it will undergo rapid photodegradation in the presence of atmospheric hydroxyl radicals and ozone. 4-VCH is not readily biodegradable by standard tests. The table that follows summarizes the availability of data for each endpoint.	comment	

Date	Country / Organisation / MSCA		C	omment						Dossier submitter's response to comment	RAC's response to comment
		I	Data Ava	ilability	Matrix						
		4-Vinylcyclohexene CASRN 100-40-3 HPV Endpoint	Measured Data Available?	Guideline Study?	GLP Study?	Supporting Information?	Estimation Method Used?	Data Acceptable?	Testing Recommended?		
		Physical / Chemical			Y =	= Yes, N =	No				
		Melting Point	Y	N	N.	Y	N	Y	N		
		Boiling Point	Y	N	N	Y	N	Y	N		
		Density	Y	N	N	Y	N	Y	N		
		Vapor Pressure	Y	N	N	Y	N	Y	N		
		Partition Coefficient	Ν	N	N	N	Y	Y	N		
		Water Solubility	Y	N	N	Y	N	Y	N		
		Environmental Fate			Y =	= Yes, N =	No	•			
		Photodegradation	N	N	N	N	Y	Y	N		
		Stability in Water	Ν	N	N	N	Y	Y	N		
		Transport & Distribution	N	Ν	N	N	Y	Y	N		
		Biodegradation	Y	Y	Y	N	Y	Y	N		
		Bioaccumulation	Y	Y	Y	N	Y	Y	N		
		Ecotoxicity			Y =	= Yes, N =	No				
		Acute/Prolonged Fish	Y	Y	Y	Y	Y	Y	N		
		Acute Aquatic Invertebrates	Y	N	N	Y	Y	Y	N		
		Aquatic Plants	Y	N	N	Y	Y	Y	N		
		Chronic Fish	Y	N	N	N	Y	Y	N		
		Chronic Aquatic Invertebrates	Y	N	N	Y	Y	Y	N		
		Toxicity				= Yes, N =	1				
		Acute	Y	N	N	N	N	Y	N		
		Repeated Dose	Y	Y	Y	Y	N	Y	N		
		Genetic Toxicology in Vitro	Y	N	N	N	N	Y	N		
		Genetic Toxicology in Vivo	Y	N	Y	N	N	Y	N		
		Reproductive Toxicology	Y	N	N	Y	N	Y	N		
		Developmental Toxicology	N	N	N	Y	N	Y	N		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		2. CHEMICAL DESCRIPTION 4-Vinylcyclohexene (4-VCH, CASRN 100-40-3), a dimer of 1,3-butadiene, is a colorless liquid with the following chemical structure:		
		GH 2 H		
		Molecular Formula:C8-H12Molecular Weight:108.18		
		4-VCH can be sold commercially at \geq 97% pure. 4-VCH sold at high purity typically contains approximately 200 ppm of an appropriate oxidative inhibitor (e.g. <i>t</i> -butylcatechol). Impurities may include water and 1,5-Cyclooctadiene. Common synonyms for 4-Vinylcyclohexene include:		
		 1,2,3,4-Tetrahydrostyrene 1-Cyclohexene, 4-vinyl- 1-Vinylcyclohexene-3 4-Ethenyl-1-cyclohexene 4-Ethenylcyclohexene 4-Vinylcyclohexene 4-Vinylcyclohexene-1 		
		3. PRODUCTION, USE AND EXPOSURES 3.1. Production and Use		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		of 1,3-butadiene. In addition, it is co-produced during the refining of crude butadiene and the production of dodecanedioic acid and vinylnorbornene. It is used as a chemical intermediate and is not known to be used directly as an ingredient of professional or consumer products. 3.2. <u>Direct Worker Exposures</u>		
		Because 4-VCH is produced and handled only in professional settings within closed systems, worker exposures are readily controlled and/or prevented. Workers can be exposed to fugitive emissions from process equipment during production and use and as well as during process sampling, filter changes, drumming activities, bulk loading activities, line clearing, and equipment maintenance and repair activities. Historical exposure monitoring data available in the literature (CMA, 1990; CMA, 1991) for on-purpose production of 4-VCH indicate that workplace breathing zone concentrations, as an 8-hour time-weighted average, are generally below the current TLV® of 0.1 ppm. There are no reliable estimates of the number of workers who might be exposed to 4-VCH during its production and use.		
		3.3. <u>Indirect Worker Exposures</u> Workers can also be exposed to 4-VCH indirectly during the vulcanization of styrene-butadiene and polybutadiene rubber products, such as tires, shoe soles, hoses, power transmission belts, wire and cable products, and gaskets. In addition, workers may be exposed to 4-VCH as a result of passive emissions from styrene-butadiene (SB) latex adhesives used in the manufacture of carpets and laminated building materials. The 4-VCH is unintentionally formed in these products as a result of residual 1,3-butadiene monomer present. The nature and extent of exposures will depend largely on specific workplace conditions, but historical data available in the literature (Cocheo <i>et al.</i> , 1983; Rappaport <i>et al.</i> , 1977) suggests these exposures are below the current TLV® of 0.1 ppm. There are no reliable estimates of the number of workers who might be indirectly exposed to 4-VCH. 3.4. <u>Indirect Consumer Exposures</u>		
		Exposures to 4-VCH may also occur as a result of passive emissions from finished products such as carpets and laminated building materials where styrene-butadiene (SB) latex adhesives have been used during the manufacturing or installation process. With regards to carpets, residual monomer levels have trended downwards over the years and finished goods are increasingly being tested for conformance to various standards that limit total volatile organic emissions. These standards include the Carpet and Rug Institute "Green Label" and "Green Label Plus" testing programs, as well as various international standards. Environmental chamber studies suggest that airborne concentrations of 4-VCH from freshly milled and installed carpet will be in the order of a few parts per billion (ppb) and will decrease rapidly over several days as the carpet ages (Hodgson <i>et al.</i> , 1993). Given these factors, indirect exposures to 4-VCH emissions from finished goods are expected to be negligible. 3.5. <u>Releases to the Environment</u>		

ANNEX 2 - COMMENTS AND RESPONSE TO COMMENTS ON CLH PROPOSAL ON 4 VINYLCYCL	IEXENE (VCH)
--	--------------

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		Because 4-VCH is produced and handled only in professional settings within closed systems, environmental releases are readily controlled and/or prevented. There are no reliable estimates of the nature and extent of 4-VCH releases to the environment. However, in a survey conducted in response to EPA's 1991 Testing Consent Order for 4-VCH, manufacturers reported discharging 4-VCH to process sewers where it was sent to onsite wastewater treatment plants and destroyed before leaving the site (CMA, 1990). In a survey conducted prior to 1989 sponsored by the Effluent Guidelines Division of the U.S. EPA, 4-VCH was detected at waste water treatment facilities at 2 organics and plastics plants, 6 rubber processing plants, and 7 publicly owned treatment works at the following concentrations, respectively (USEPA, 1989):		
		 Median conc. 227 mg/L; max. conc. 446.7 mg/L Median conc. 78.8 mg/L; max. conc. 681.7 mg/L Median conc. 4.9 mg/L; max. conc. 8.5 mg/L Releases to the atmosphere have not been reported in the literature but, given its volatility, low-level fugitive emissions can be expected. 		
		4. PYSICOCHEMICAL PROPERTIES The physicochemical properties of 4-VCH have been published in several references (handbooks) considered reliable for screening purposes. The data in the table below are considered definitive for each endpoint listed:		

RAC's response Country / Comment Dossier Date **Organisation** / to comment submitter's MSCA response to comment Rel[†] Property Value Source SIDS endpoints Melting point -108.9°C Lide, D.R. (ed.) (2004) 2 128.9°C 2 Boiling point Lide, D.R. (ed.) (2004) Relative density 0.8299 g/cm³ 2 Lide, D.R. (ed.) (2004) Water solubility 50 mg/L @ 25°C 2 Yalkowsky, S.H.(2003) 2 Daubert, T.E. and Danner, R.P. (1994) Vapor pressure 15.7 mmHg @ 25°C Log Pow 3.93 2 MITI (1992) Non-SIDS endpoints Flash point 15.85°C, open cup 2 Daubert, T.E. and Danner, R.P. (1994) Autoflammability 269.85°C 2 Daubert, T.E. and Danner, R.P. (1994) [†] Reliability according to Klimisch criteria Conclusion: Adequate data are available to satisfy the required HPV physicochemical data elements for 4-VCH. No testing is proposed. **5. ENVIRONMENTAL FATE** 5.1. Biodegradation 4-VCH is not expected to readily biodegrade. A MITI-1 ready biodegradability test was conducted on 4-VCH under aerobic conditions by following biochemical oxygen demand (BOD) in accordance with OECD 301C, with 0% degradation observed after 28 days (Chemicals Inspection & Testing Institute, 1992). The activated sludge concentration was 30 mg/L and the concentration of 4-VCH was 100 mg/L. Aniline was the reference substance used. Biodegradation was also determined using BCFWIN version 3.12. The program contains six models, three linear and three non-linear regressions. The rate of biodegradation, the time to primary and ultimate biodegradation, and whether the substance would pass the OECD 301C ready biodegradation test are determined. Ultimate biodegradation was predicted to take weeks. **Conclusion:** Adequate data are available to satisfy this required HPV data element. No testing is proposed for this endpoint.

Country / **RAC's response** Date Comment Dossier **Organisation** / submitter's to comment MSCA response to comment 5.2. Photodegradation – Photolysis No information on direct photolysis of 4-VCH was found. It is assumed to be insignificant compared to the reaction of 4-VCH to hydroxyl radicals and ozone in the atmosphere. Conclusion: Experimental data on direct photolysis are not required under the HPV Program and, therefore, no testing is proposed. 5.3. Atmospheric Oxidation and Ozonation With a vapor pressure of 15.7 mmHg at 25°C, 4-VCH will volatilize to air where it is predicted to degrade rapidly through reactions with ozone (O_) and photosensitized oxygen in the form of hydroxyl radicals (OH-). 4-VCH has been experimentally shown to react with ozone (Weschler, 1992). Using the Atmospheric Oxidation Program for Microsoft Windows (AOPWIN, v1.91), 4-VCH has an estimated half-life, based on a 12-hour day, as follows: Reaction **Conc. of Sensitizer Rate Constant** Est. Half-Life Rel† Source (cm3/molecule-sec) (hours) (molecules/cm) Ozone 1.3 2 Modeled 7 x 10 21.2 x 10 OH-12 1.4 2 Modeled 1.5 x 10 89.3 x 10 * Reliability according to Klimisch criteria **Conclusion:** Adequate data on atmospheric oxidation and ozonation are available and, therefore, no testing is proposed. 5.4. Stability in Water – Hydrolysis Stability in water has not been quantitatively evaluated for 4-VCH, because it does not contain functional groups susceptible to hydrolysis. The structure is that of an alicyclic hydrocarbon, a class of molecule not considered water reactive at relevant environmental pH values. Given these factors, hydrolysis is not expected to significantly contribute to the removal of 4-VCH from the environment. Furthermore, quantitative stability determinations (e.g. OECD 111) and modeling are considered unnecessary for compounds lacking hydrolysable functional groups. Conclusion: Adequate technical understanding exists to satisfy this required HPV data element and, therefore, no testing is proposed. 5.5. Removal by Waste Treatment Plants

ANNEX 2 - COMMENTS AND RESPONSE TO COMMENTS ON CLH PROPOS	AL ON 4 VINYLCYCLOHEXENE (VCH)
---	--------------------------------

Date	Country / Organisation / MSCA			Commen	Dossier submitter's response to comment	RAC's response to comment		
		⁷ 4-VCH will partition partition to the soil and use of default emission e a more representative WIN TM in EPI Suite v. WIN TM in EPI Suite v.						
		Model Type						
		Level I Fugacity	Air Water Soil Sediment	99.1 0.108 0.814 0.018	M.W.: 108.18 g/mole Temp.: 25°C Log Kow: 3.93 Water Solubility: 50 g/m3 Vapor Pressure: 2102 Pa	LEVEL 1 version 3.00 Fugacity- based model		

Date	Country / Organisation / MSCA	Comment						Dossier submitter's response to comment	RAC's response to comment		
		this endpoint.		0.52 35.0 60.6 3.8 atisfy this req	M.W.: 108 Temp.: 25° Log Kow: Water Solu Vapor Pres Soil Koc: 3	$2^{-3.93}$ bility: 50 mg sure: 2102 Pa $49x10^{-3}$	LEV3EPI TM Fugacity Model EPI Suite (v.3.12) /L				
	5.7. Bioaccumulation Potential 4-VCH is not expected to bioaccumulate based on measured and estimated Bioconcentration Factors (BCF) as follows: Species Test Conc. BCF Rel [†] Source										
		Carp (<i>Cyprinus</i> <i>carpio</i>) Calculated by Log Kow	10 100* Not applicable	100^* 83 to 211 1 Not applicable 212 2 Modeled BCFWIN v. 2.15 (log BCF = 2.33) (log BCF = 2.33) (log BCF = 2.33)							
		Model Parameters: Log Kow = 3.93 † Reliability according to Klimisch criteria *Saturated Solution The carp noted above were exposed for 8 weeks under conditions according to the OECD 305C Bioconcentration Test as defined by the 12.05.1981 OECD Testing Guidelines for Chemicals. The carp were externally disinfected and sampled for mercury, acclimatized for 28 days, placed in 100 liter tanks under flow through conditions, and exposed to 4-VCH. The lipid content of the carp ranged from 2 to 6% with a mean of 4.1%. The two sets of BCF data indicate that 4-VCH has a low potential for bioaccumulation. Conclusion: Adequate data are available to characterize the bioaccumulative potential of 4-VCH. No testing is proposed for this endpoint.									
	6. AQUATIC TOXICITY										
		4-VCH is expected to be moderately toxic to aquatic organisms, based on experimental data available for fish (<i>Oryzias latipes</i> or rice fish), invertebrate (<i>Daphnia magna</i>), and green alga (<i>Pseudokichneriella subcapitata</i> ,									

Date	Country / Organisation / MSCA	Commen	Dossier submitter's response to comment	RAC's response to comment			
		former known as <i>Selenastrum capricornutum</i>). In additional relationships using Ecological Structural Activity Relation (10). The results of these studies and estimates are as follows:	onships (EC				
		Organism	Result (mg/L)	Rel [†]	Source		
		Acute Aquatic					
		Orange-Red Killifish (<i>Oryzias latipes</i>) 96-hr LC ₅₀ Orange-Red Killifish (<i>Oryzias latipes</i>) 48-hr LC ₅₀ Freshwater Fish Modeled 96-hr LC ₅₀	4.6 17 1.23	2 2 2	Ministry of Environment (2000) Chem. Insp. & Test Inst. (1992) Modeled (ECOSAR v. 0.99h)		
		Invertebrate (<i>Daphnia magna</i>) 48-hr EC ₅₀	1.9 1.51	2 2	Ministry of Environment (2000) Modeled (ECOSAR v. 0.99h)		
		Green Alga (<i>Pseudokichneriella subcapitata</i>) 72-hr EC ₅₀ Green Alga (<i>Pseudokichneriella subcapitata</i>) 48-hr EC ₅₀ Green Alga (<i>Pseudokichneriella subcapitata</i>) 72-hr NOEC Green Alga (<i>Pseudokichneriella subcapitata</i>) 48-hr NOEC Green Alga Modeled 96-hr EC ₅₀	>14 >14 7.7 >14 1.05	2 2 2 2 2	Ministry of Environment (2000) Ministry of Environment (2000) Ministry of Environment (2000) Ministry of Environment (2000) Modeled (ECOSAR v. 0.99h)		
		Chronic Aquatic					
		Freshwater Fish Modeled 30-day ChV	0.22	2	Modeled (ECOSAR v. 0.99h)		
		Invertebrates (<i>Daphnia magna</i>) 21-day EC ₅₀ Invertebrates (<i>Daphnia magna</i>) 16-day EC ₅₀ Invertebrates (<i>Daphnia magna</i>) 21-day NOEC	0.92 0.18 0.23	2 2 2	Ministry of Environment (2000) Modeled (ECOSAR v. 0.99h) Ministry of Environment (2000)		
		Green Algae Modeled 96-h ChV	0.32	2	Modeled (ECOSAR v. 0.99h)		

Date	Country / Organisation / MSCA	Comment					Dossier submitter's response to comment	RAC's response to comment	
		Terrestrial							
		Earthworm Modeled 14-day	y LC ₅₀		169 ppm*	2 Mode 0.99h	led (ECOSAR v.		
		$\underline{Model Parameters}: molecular weight = 108.18 g/mole; Log Kow = 3.93; Water Sol = 50 mg/L; Melting Pt. = -108.8°C; and SMILES Notation of C(=CCCC1C=C)C1. † Reliability according to Klimisch criteria *mg/kg soil$							
		Conclusion: Adequate data are available to satisfy the required HPV data elements. No testing is proposed for this endpoint.7. MAMMALIAN HEALTH EFFECTS DATA							
		Mammalian toxicity data for studies beyond those required				ollowing sec	tions. Additional data for		
		7.1. Acute Toxicity							
		Adequate data are available for an assessment of the acute toxicity of 4-VCH in animals after inhalation, ingestion and skin contact and are summarized below. While no definitive value is available for lethality following short term inhalation exposure (with 4 of 6 rats dying after a 4 hr exposure to a limit dose of 8,000 ppm), it can be concluded that 4-VCH would not classified as highly toxic by inhalation. Data are also available on skin and eye irritation potential (non-SIDS endpoints).							
		Route	Species	Result	Comme	nt Rel [†]	Source		
		Inhalation LC ₅₀	Rat	<8000 ppm	4-hr exposure	2	Smyth (1962); Smyth (1969)		
		Oral LD ₅₀	Rat	2560 mg/kg bwt	gavage dosing	2	Smyth (1962); Smyth (1969)		
		Dermal LD ₅₀	Rabbit	16600 mg/kg bwt [‡]	24-hr occluded	2	Smyth (1962); Smyth (1969)		
		Irritation (non-SIDS)		Dwi			,		
		Skin Irritation	Rabbit	Moderate	24-hr	2	Smyth (1962);		
			1.00011	1.10 401 400	occluded	-	Smyth (1969)		
		Eye IrritationRabbitSlightUndiluted2Smyth (1962); Smyth (1969)							
		Reliability according to Klimisch criteria [‡] Reported as 20 ml/kg bwt; conversion based relative density = 0.8299 g/cm^3							

Conclusion: Adequate data are ava this endpoint. 7.2. <u>Repeated Dose Toxicity</u>	uilable to satisfy the require	d HPV data elemen			
Results are available from a number or mice following exposure by inhal		gated the repeated d			
Species	Dose level	Duration	Source		
-	200010101	2			
Rat, Mouse	0, 240, 720, 1500	2 wk	Bevan <i>et al.</i> (1996)		
Rat	0, 250, 1000, 1500	13 wk			
Mouse	0, 50, 250, 1000	13 wk			
Ingestion (mg/kg body weight/d)				
Rat, Mouse	0, 300, 600, 1250, 2500, 5000	2 wk	NTP (1986)		
Rat	0, 50, 100, 200, 400, 800	13 wk			
Mouse	0, 75, 150, 300,	13 wk			
Rat, Mouse	0, 200, 400	2 yr			
information on the hazards of repeat each with a high degree of reliability and detailed further in the robust services robust summaries; however, since additional toxicological information Bevan <i>et al.</i> (1996) exposed groups inhalation 6 hours/day, 5 days/wee completion of the study, with mo incidence of lethargy was apparent and/or weight gain were observed f	ated inhalation or ingestion ty (≥ 2) according to Klimis summaries. Results from the they were designed print, they will not be discussed s of 10 male and female Sp k for 13 weeks. All high-d st animals dying on or be in males at 250 ppm and i for male and female rats ex	(gavage) exposure sch criteria, are desc ne 2 week investiga marily for dose-ran further in this docur rague-Dawley rats of lose male and 8 of efore day 12. For a in both sexes at 150 posed at 1000 ppm	to 4-VCH. These key studies, cribed in the paragraphs below ations are also summarized as age setting and contain little nent. or B6C3F1 mice to 4-VCH by 10 female mice died prior to rats, a statistically significant 00 ppm. Reduced body weight and 1500 ppm. Liver weights		
	Rat Mouse Ingestion (mg/kg body weight/d Rat, Mouse Rat Mouse Rat, Mouse Findings from the sub-chronic (11 information on the hazards of repeater each with a high degree of reliabilities and detailed further in the robust of robust summaries; however, since additional toxicological information Bevan et al. (1996) exposed groups inhalation 6 hours/day, 5 days/weet completion of the study, with motincidence of lethargy was apparent and/or weight gain were observed for were significantly increased in male	Rat, Mouse0, 240, 720, 1500Rat0, 250, 1000, 1500Mouse0, 50, 250, 1000Ingestion (mg/kg body weight/d)Rat, Mouse0, 300, 600, 1250, 2500, 5000Rat0, 50, 100, 200, 400, 800Mouse0, 75, 150, 300, 600 or 1200Rat, Mouse0, 75, 150, 300, 600 or 1200Rat, Mouse0, 200, 400Findings from the sub-chronic (13 wk) and chronic (2 yr) information on the hazards of repeated inhalation or ingestion each with a high degree of reliability (\geq 2) according to Klimis and detailed further in the robust summaries. Results from the robust summaries; however, since they were designed print additional toxicological information, they will not be discussedBevan et al. (1996) exposed groups of 10 male and female Sp inhalation 6 hours/day, 5 days/week for 13 weeks. All high-completion of the study, with most animals dying on or be incidence of lethargy was apparent in males at 250 ppm and i and/or weight gain were observed for male and female rats exposed \geq	Rat, Mouse0, 240, 720, 15002 wkRat0, 250, 1000, 150013 wkMouse0, 50, 250, 100013 wkIngestion (mg/kg body weight/d)13 wkRat, Mouse0, 300, 600, 1250, 2 wkRat0, 50, 100, 200, 13 wkMouse0, 75, 150, 300, 13 wkMouse0, 75, 150, 300, 13 wkMouse0, 75, 150, 300, 13 wk600 or 12002 yrRat, Mouse0, 200, 4002 yrFindings from the sub-chronic (13 wk) and chronic (2 yr) investigations provinformation on the hazards of repeated inhalation or ingestion (gavage) exposureeach with a high degree of reliability (\geq 2) according to Klimisch criteria, are descand detailed further in the robust summaries. Results from the 2 week investigatrobust summaries; however, since they were designed primarily for dose-raradditional toxicological information, they will not be discussed further in this docurBevan et al. (1996) exposed groups of 10 male and female Sprague-Dawley rats ofinhalation 6 hours/day, 5 days/week for 13 weeks. All high-dose male and 8 ofcompletion of the study, with most animals dying on or before day 12. Forincidence of lethargy was apparent in males at 250 ppm and in both sexes at 150and/or weight gain were observed for male and female rats exposed \ge 1000 ppm, and kidne	Rat, Mouse 0, 240, 720, 1500 2 wk Bevan et al. (1996) Rat 0, 250, 1000, 1500 13 wk Boun et al. (1996) Mouse 0, 50, 250, 1000 13 wk Boun et al. (1996) Ingestion (mg/kg body weight/d) Ingestion (mg/kg body weight/d) NTP (1986) Rat 0, 300, 600, 1250, 2 wk NTP (1986) Rat 0, 50, 100, 200, 13 wk NTP (1986) Mouse 0, 75, 150, 300, 13 wk Mouse Mouse 0, 200, 400 2 yr Findings from the sub-chronic (13 wk) and chronic (2 yr) investigations provide adequate screening level information on the hazards of repeated inhalation or ingestion (gavage) exposure to 4-VCH. These key studies, each with a high degree of reliability (≥2) according to Klimisch criteria, are described in the paragraphs below and detailed further in the robust summaries. Results from the 2 week investigations are also summarized as robust summaries; however, since they were designed primarily for dose-range setting and contain little additional toxicological information, they will not be discussed further in this document. Bevan et al. (1996) exposed groups of 10 male and female Sprague-Dawley rats or B6C3F1 mice to 4-VCH by inhalation 6 hours/day, 5 days/week for 13 weeks. All high-dose male and 8 of 10 female mice died prior to completion of the study, with most animals dying on or before day 12. For rats, a statistically significant incidence of lethargy was apparent in males at 250 ppm and in both sexes at 1500 ppm. Reduced body weight and/or	Rat 0, 240, 720, 1500 2 wk Bevan et al. (1996) Rat 0, 250, 1000, 1500 13 wk Bevan et al. (1996) Mouse 0, 50, 250, 1000 13 wk Bevan et al. (1996) Ingestion (mg/kg body weight/d) Rat, Mouse 0, 300, 600, 1250, 2 wk NTP (1986) Rat 0, 50, 100, 200, 13 wk Mouse NTP (1986) Rat 0, 50, 100, 200, 13 wk Mouse Mouse Mouse 0, 75, 150, 300, 13 wk Mouse Mouse Rat, Mouse 0, 200, 400 2 yr Pressource to 4-VCH. These key studies, each with a high degree of reliability (>2) according to Klimisch criteria, are described in the paragraphs below and detailed further in the robust summaries. Results from the 2 week investigations are also summarized as robust summaries; however, since they were designed primarily for dose-range setting and contain little additional toxicological information, they will not be discussed further in this document. Bevan et al. (1996) exposed groups of 10 male and female Sprague-Dawley rats or B6C3F1 mice to 4-VCH by inhalation 6 hours/day, 5 days/week for 13 weeks. All high-dose male and 8 of 10 female mice died prior to completion of the study, with most animals dying on or before day 12. For rats, a statistically significant incidence of lethargy was apparent in males at 250 ppm and in both sexes at 1500 ppm. Reduced body weight and/or weight gain were observed for male and female rats exposed at 1000 ppm. and kidney weights in males exposed to

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		increased incidences of lethargy, mortality and ovarian atrophy (diagnosed by microscopic examination) were observed at 1000 ppm. Hematological, clinical chemistry and urinalysis parameters were unaffected by treatment in both species. These findings are consistent with a sub-chronic NOAEC of 250 ppm for 4-VCH in rats and mice.		
		In a 13 week sub-chronic gavage study reported by NTP (1986), male and female F344 rats and B6C3F1 mice were administered 4-VCH in corn oil, 5 days/week for 13 weeks. Findings in rats were limited to decreased body weight gain in males at \geq 400 mg/kg body weight/day and females at 800 mg/kg/day; minimally increased severity of hyaline droplet degeneration of the renal proximal convoluted tubule of high dose males; and the occurrence of occasional inflammatory changes in non-glandular stomach from high dose males and females. In mice, a high level of early mortality was apparent in high dose animals of both sexes, although the toxicological relevance of this finding appears doubtful due to evidence of mis-dosing diagnosed at gross necropsy. Mild acute inflammation of the stomach was detected occasionally following microscopic examination of tissue from high dose males and females. Histological re-evaluation of ovaries from high dose females (subsequent to completion of the two year mouse study) revealed a reduction in the number of primary follicles and mature graafian follicles (lower dose groups not examined). No other microscopic tissue changes were present in mice. These findings point to a sub-chronic oral NOAEL of 200-400 mg/kg body weight/day for male and female rats, respectively, based on reduced body weight gain, and a marginal NOAEL of 600 mg/kg body weight/day for mice, reflecting occasional mild acute gastric inflammation detected in high dose animals. The occurrence of histopathological changes in mouse ovary is consistent with results obtained from other studies; however no no-effect level is available in this instance due to an absence of data for the lower treatment groups.		
		In a chronic gavage investigation (NTP, 1986), male and female F344 rats and B6C3F1 mice were administered 4-VCH in corn oil for 103 weeks. For rats, survival was significantly decreased by week 103 in males at all doses and in high-dose females. Both sexes also exhibited an increased incidence of epithelial hyperplasia of the forestomach (more pronounced in males), which was statistically significant in males surviving beyond week 93. For mice, survival was decreased in the high-dose animals of both sexes, with stomach abnormalities (including ulcers, inflammation, and epithelial hyperplasia of the forestomach) and lung congestion detected in survivors at necropsy. Histopathological examination revealed a significant increase in the incidence of hepatic centrilobular congestion and atrophy of spleenic red pulp in high dose males only, with adrenal gland congestion and cortex alterations and ovarian changes in females from both treatment groups. The microscopic changes present in ovary, which included tubular cell-, granulose cell-, and papillary-hyperplasia, appear biologically significant given the tumor and reproductive findings reported in other studies in mice (discussed further in sections 7.4 and 7.5, below). A chronic LOAEL of 200 mg/kg body weight per day is obtained from these studies based on decreased survival in male rats, and the occurrence of histological abnormalities in the stomach of rats and mice (both sexes), liver and spleen of male mice, and adrenal gland and ovary of female mice. Overall, results from sub-chronic and chronic testing indicate that female mouse ovary is a potential target for 4-VCH-induced systemic toxicity, with changes in stomach in rats and mice detected following oral (gavage)		

Date	Country / Organisation / MSCA					Com	ment					Dossier submitter's response to comment	RAC's response to comment
				icated in the	table belo	w, alteratior	is in other o	organs are e	xpressed	less consis	tently between		
		species and	sexes.										
		Species	Liver	Kidney	Ovary	Stomach	Adrenal	Spleen	Lung	NOAEC/I	Source		
		Inhalation			Ovary	Stomach	Aurenai	Spieen	Lung	NUAEC/I	Source		
		Rat	M,F	M, F						250 ppm	Bevan		
		1.000	,.	, 1						-co ppm	et al.		
											(1996)		
		Mouse			F					250 ppm			
											et al.		
		T	(12 W I. 64	1)						(1996)		
		Rat	(gavage, .	13-Week Stu M	idy) 	M, F		I		200-400	NTP		
		Kat		IVI		м, г				200-400 mg/kg/d			
		Mouse			F	M, F				600	NTP		
						, -				mg/kg/d			
		Ingestion	(gavage, 1	103-Week St	tudy)								
		Rat				M, F				<200	NTP		
										mg/kg/d	(1986)		
		Mouse	Μ		F	M, F	F	М	M, F	<200	NTP		
							_			mg/kg/d	(1986)		
		this endpoin 7.3. <u>Genetic</u>	t. <u>Toxicity</u> <i>vitro</i> and	ł <i>in vivo</i> da	ta are ava	nilable to cl	naracterize	the genoto:		-	s proposed for nd its primary		
		End p	oint	Test system	1	Condition	ıs	Result	Re	†	Source		
		In Vitro							110				
		Gene Mut	ation 1	Bacterial Cel		himurium T		Negative	2	NT	P (1989)		
					98, 1	00, 104, 153 cubation; ha	5; liquid						

Country / **RAC's response** Comment Dossier Date **Organisation** / to comment submitter's MSCA response to comment S. typhimurium TA98, 2 NTP (1981) Negative 100, 1535, 1537; liquid preincubation; hamster **S**9 Mouse lymphoma cells 2 NTP (undated) Positive Mammalian (L5178Y TK+/-); rat S9 Cells Chinese Hamster Ovary NTP (1984) Sister Chromatid Mammalian Negative 2 (CHO) exchange Cells Chinese Hamster Ovary 2 NTP (1984) Chromosomal Mammalian Negative Aberrations Cells (CHO) In Vivo Inhalation; 0, 250, 1000, DuPont (1994) Micronuclei 2 Bone marrow: Negative SD rats or 1500 ppm 4-VCH, 6 hr/day, 5 day/week, 13 weeks. Inhalation; 0, 50, 250, or Micronuclei 2 DuPont (1994) Bone marrow: Negative 1000 ppm 4-VCH, 6 B6C3F1mice hr/day, 5 day/week, 13 weeks. Metabolites (Summary Only) 2 4-Vinylcyclohexene diepoxide induced gene mutation, sister chromatid IARC (1994) exchange and chromosomal aberrations but not micronuclei in mammalian cells in vitro. It was mutagenic in bacteria and caused gene conversion and mitotic crossing-over in yeast cells (Saccharomyces cerevisiae). A metabolite of 4-vinylcyclohexene diepoxide, 4-epoxyethylcyclohexane-1,2-diol, was not mutagenic to Salmonella typhimurium. Two mono-epoxide metabolites, 4- Epoxyethylcyclohexene and 4-Vinyl-1,2-epoxycyclohexane, were not mutagenic to Salmonella typhimurium, but the latter induced micronuclei, but not hprt locus mutations, in cultured Chinese hamster cells. † Reliability according to Klimisch criteria **Conclusion:** Adequate data are available to satisfy the required HPV data elements. No testing is proposed for this endpoint. 7.4. Carcinogenicity (non-SIDS Endpoint)

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		NTP (1986) exposed male and female F344 rats and B6C3F1 mice to 4-VCH in corn oil by oral gavage at doses of 0, 200, or 400 mg/kg body-weight per day, 5 days per week, for 103 weeks. For rats, exposure to 4-VCH was associated with the occurrence of neoplastic lesions in skin, urinary bladder, pituitary, preputial gland and clitoral gland. For mice, exposure to 4-VCH was associated with the occurrence of neoplastic lesions in ovary, lung, hematopoietic system and adrenal gland. Unambiguous interpretation of these findings was confounded, however, by poor health and low survival which may have resulted in artefactual temporal and statistical associations between treatment and tumor incidence in animals dying from unrelated / undefined causes. Overall, NTP concluded that the study was inadequate and the results inconclusive with regard to the potential carcinogenicity of 4-vinylcyclohexene in the rat, but that the occurrence of ovarian tumors provided clear evidence of carcinogenicity of 4-vinylcyclohexene in the mouse. Van Duureen et. al. (1963) exposed 30 male Swiss mice to a 50% solution of 4-VCH in benzene, applied to clipped dorsal skin. The solution was applied 3 times per week for approximately 54 weeks. Under the conditions of this study, dermal exposure to 4-VCH resulted in an increased number of benign squamous cell papillomas in male Swiss mice. One malignant tumor was also observed in the group treated with 4-VCH, but was considered by the authors to have resulted from spontaneus formation of 4-VCH hydroperoxide following autoxidation of the parent substance.		
		Results are available from a continuous breeding study (Grizzle <i>et al.</i> , 1994) in which F ₀ male and female CD-1		
		mice were administered 4-VCH by oral gavage at doses of 0, 100, 250 or 500 mg/kg body weight/day for 16 weeks prior to conception of an F breeding generation. Subsequently, direct dosing (0 or 500 mg/kg body		
		weight/day, by gavage) of 21-day old weaning F_1 adults commenced 7-8 weeks prior to conception of an F_2		
		generation. As a result of the schedule adopted, adults were exposed to 4-VCH before and during mating and throughout pregnancy and lactation, with continuous exposure of the fetuses and pups occurring secondary to maternal treatment (i.e. occurring <i>in utero</i> or via milk, respectively). 4-VCH, at doses up to 500 mg/kg body weight/day, was without effect on reproductive performance of the F or F generations, including mating and		
		fertility indices, live litter size, sex ratio and pup survival to post-natal day 4. Clear ovarian toxicity was apparent in F_1 females however, as evidenced by significant, marked (up to 50%) decrements in numbers of primordial		
		oocytes, growing follicles and antral follicles together with slight (~15%), statistically significant reductions in sperm motility in F males (concentration and morphology unaffected). These findings indicate that while 4-VCH		
		is a gonadal toxicant in mouse ovary it did not adversely impact reproductive performance in F_0 or F_1 generations.		
		Mechanistic investigations have shown that female B6C3F1 mice are more sensitive to 4-VCH induced ovarian		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		toxicity than female F344 rats (Smith <i>et al.</i> , 1990a), with ED_{50} values (i.e. dose causing 50% reduction in oocyte		
		numbers) of 2.7 and >7.4 mmol/kg body weight/day i.p., respectively. Oocytes from both species were sensitive to <i>in vivo</i> administration of the epoxide- and diepoxide metabolites of 4-VCH (ED values in range 0.2-1.4 $_{50}$		
		mmol/kg/day), with ovarian toxicity in mice given 4-VCH reduced following inhibition of epoxide hydrolase activity (Smith <i>et al.</i> , 1990a). Structure-activity investigations indicate that metabolism to a diepoxide is central to the induction of ovarian toxicity by 4-VCH in the mouse (Doerr <i>et al.</i> , 1995), effects that occur without any alteration in plasma follicle stimulating hormone levels (Hooser <i>et al.</i> , 1993).		
		7.5.2 Fetal development		
		In the mouse continuous breeding study described above (Grizzle <i>et al.</i> , 1994), no adverse effects were reported on pregnancy or pre- and post-natal fetal development following exposure of two generations of pregnant female B6C3F1 mice to 4-VCH by gavage, at doses up to 500 mg/kg body weight/day. The results provide screening level information that 4-VCH is not fetotoxic or teratogenic in the mouse. Conclusion: Adequate data are available to satisfy the required HPV data elements. No testing is proposed for this endpoint. 7.6. <u>Metabolism and Toxicokinetics (non-SIDS Endpoint)</u>		
		Information is available on the toxicokinetics of 4-VCH and its metabolites in mice and rats <i>in vivo</i> and <i>in vitro</i> , and on the transformation of 4-VCH by human liver preparations <i>in vitro</i> . Urine and exhaled air are the main routes of excretion of 4-VCH-derived radioactivity following oral (gavage) administration to female rats and mice, with generally low levels of retention in both species (Smith <i>et al.</i> , 1990b).		
		Mice metabolize 4-VCH to the 1,2 epoxide <i>in vivo</i> more readily than the rat (Smith <i>et al.</i> , 1990b). Enzyme and antibody inhibition/induction studies demonstrate that constitutively-expressed hepatic microsomal cytochrome P450IIA and P450IIB are primarily responsible for this activity in female B6C3F1 mice, while cytochrome P450IIB present in female F344 rat liver is also able to perform this function but to a more limited extent (Smith <i>et al.</i> , 1990c). Epoxide hydrolase is also involved in the disposition of 4-VCH (Smith <i>et al.</i> , 1990d; Watabe <i>et al.</i> , 1981), with rapid conversion of the 1,2- and 7,8 monoepoxides to the diol in both species. 4-VCH and its mono-or diepoxide metabolites rapidly decrease hepatic glutathione <i>in vivo</i> , while the diepoxide is a good substrate for mouse hepatic glutathione transferease (Giannarini <i>et al.</i> , 1981). Enzyme kinetic data demonstrate that processes leading to formation of 4-VCH epoxides and diepoxides <i>in vitro</i> are generally more active (higher V , lower K) in microsomal fractions from mouse liver and lung than in		
		comparable tissue from rats. Hydrolysis of 4-VCH diepoxide was recorded in rat and mouse liver and lung and rat ovary (insufficient material for studies on mouse ovary), with the greatest V_{max} returned by rat liver (Keller <i>et al.</i> ,		
		1997).		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to	RAC's response to comment
	MOCA		comment	
		Air:tissue partition coefficient data for 4-VCH and its 1,2- and 7,8-epoxides demonstrate a generally higher affinity for mouse tissues and blood than for the corresponding rat samples, with the exception of ovary (where values were generally greater for the rat) (Keller, 1993). The epoxides were consistently more soluble than the parent substance, with adipose tissue exhibiting the greatest affinity (Keller <i>et al.</i> , 1993). Human hepatic microsomal fractions metabolized 4-VCH to the 1,2- and 7,8-epoxides in vitro, with production of the 1,2-epoxide predominating (in a range 0.23 to 1.25 nmol/mg microsomal protein/min; formation of the 7,8-epoxide formation was around 6 fold slower) (Smith <i>et al.</i> , 1991). This contrasts with rates of 4-VCH 1,2-epoxide formation by mouse hepatic microsomal fractions of 8-9 nmol/min/mg microsomal protein (Smith <i>et al.</i> , 1990)		
		 b,d). Species and tissue differences in activation and detoxication, as well as differences in tissue affinity and distribution, appear relevant to differences in susceptibility of rats and mice to 4-VCH-induced ovarian toxicity and neoplasia. Conclusion: Metabolism and toxicokinetics are not a required HPV data element. No testing is proposed. 8. DATA AVAILABILITY AND TESTING PROPOSAL 		
		Adequate physicochemical, environmental fate, aquatic toxicity, and mammalian toxicity data are available to address SIDS endpoints for 4-VCH. No further testing is proposed.		
		References		
		Bevan C, Stadler JC, Elliott GS, Frame SR, Baldwin JK, Heung H-W, Moran E and Panepinto AS (1996) Subchronic toxicity of 4-vinylcyclohexene in rats and mice by inhalation exposure. Fund Appl Toxicol 32, 1-10.		
		CMA (Chemical Manufacturers Association) (1990) Report on the survey of the Butadiene Panel of the Chemical Manufacturers Association on 4-vinylcyclohexene. Submitted to the U.S. Environmental Protection Agency, Office of Toxic Substances, Washington, D.C. May 3, 1990.		
		CMA (Chemical Manufacturers Association) (1991) Industrial hygiene sampling for 4-vinylcyclohexene in the workplace - final report. Submitted to the U.S. Environmental Protection Agency, Office of Toxic Substances, Washington, D.C. U.S. EPA/OPTS Public Files, Fiche #: OTS0533179. Doc#:40-91109046. October 1, 1991.		
		Chemicals Inspection & Testing Institute (1992) Biodegradation and Bioaccumulation Data of Existing Chemicals Based on the CSCL Japan. Ministry of International Trade and Industry, Published by Japan Chemical Industry Ecology-Toxicology & Information Center, Tokyo, Japan. ISBN: 4890741011.		
		Cocheo, V and Bellomo, ML (1983) Rubber manufacture: sampling and identification of volatile pollutants. Am Ind Hyg Assoc J 44, 521-527.		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		Daubert, T.E. and Danner, R.P. (1994) Physical and Thermodynamic Properties of Pure Chemicals Part 5. Taylor and Francis. p. not available.		
		Doerr, JK, Hooser, SB, Smith, BJ and Sipes, IG (1995) Ovarian toxicity of 4-vinylcyclohexene and related olefins in B6C3F1 mice: role of diepoxides. Chem Res Toxicol 8, 963-969.		
		DuPont (1994). Rat and Mouse Bone Marrow Micronucleus Assay of 4-Vinylcyclohexene Following Subchronic Inhalation Exposure Revision No. 1. Haskell Laboratory Report No. 506-93. February 22, 1994. EPA Docket #OPTS-42116.		
		Giannarini, C, Citti, L, Gervasi, PG and Turchi, G (1981) Effects of 4-vinylcyclohexene and its main oxirane metabolite on mouse hepatic microsomal enzymes and glutathione levels. Toxicol Lett 8, 115-121.		
		Grizzle, TB, George, JD, Fail, PA, et. al. (1994) Reproductive effects of 4-vinylcyclohexene in Swiss Mice assessed by a continuous breeding protocol. Fundam Appl Toxicol 22, 122-129.		
		Hodgson AT, Wooley JD, and Daisey, JM (1993) Emissions of volatile organic compounds from new carpets measured in a large-scale environmental chamber. Journal of the Air and Waste Management Association, 43, 316-324.		
		Hooser, SB, Parola, LR, Van Ert, MD and Sipes IG (1993) Short Communication: Differential ovotoxicity of 4- vinylcyclohexene and its analog, 4-phenylcyclohexene. Toxicol Appl Pharm 119, 302-305.		
		IARC (1994). International Agency for Research on Cancer. IARC monographs on the evaluation of carcinogenic risks to humans: 4-vinylcyclohexene. Vol 60, pages 347; 354-355; 361.		
		Keller, DA (1993) Partition coefficients of 4-vinyl cyclohexene and metabolites. Unpublished report, Haskell Laboratory Report No. 102-93 for Chemical Manufacturers Association, Washington DC, March 1993.		
		Keller, DA, Carpenter, SC, Cagen, SZ and Reitman, FA (1997) In vitro metabolism of 4-vinylcyclohexene in rat and mouse liver, lung and ovary. Toxicol Appl Pharmacol 144, 36-44.		
		Lide, D.R. (ed.) (2004) CRC Handbook of Chemistry and Physics. 85th Edition. CRC Press LLC Boca Raton, Florida p. 3-568.		
		Ministry of Environment (2000) 4-Vinylcyclohexene Ecotox data cited in the National Institute of Technology and Evaluation online database, Tokyo, Japan.		

ANNEX 2 - COMMENTS AND RESPONSE TO COMMENTS ON CLH PROPOSA	L ON 4 VINYLCYCLOHEXENE (VCH)
--	-------------------------------

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		MITI (Ministry of International Trade and Industry) (1992). Biodegradation and Bioaccumulation Data of Existing Chemicals Based on the CSCL Japan.CITI ed. (Chemicals Inspection & Testing Institute). Published by Japan Chemical Industry Ecology-Toxicology & Information Center.		
		NTP (1981) National Toxicology Program Database Search Application. http://ntp-apps.niehs.nih.gov/ntp_tox/index.cfm. CAS#100-40-3. Genetic Toxicity Studies. Salmonella. Study No. 777152. Detailed Study Data.		
		NTP (1984) National Toxicology Program Database Search Application. http://ntp- apps.niehs.nih.gov/ntp_tox/index.cfm. CAS#100-40-3. Genetic Toxicity Studies. CHO Cell Cytogenetics- Chromosome Abberations. Study No. 169960. Detailed Study Data.		
		NTP (1984) National Toxicology Program Database Search Application. http://ntp- apps.niehs.nih.gov/ntp_tox/index.cfm. CAS#100-40-3. Genetic Toxicity Studies. CHO Cell Cytogenetics-Sister Chromatid Exchange. Study No. 169960. Detailed Study Data.		
		NTP (1986) Toxicology and carcinogenesis studies of 4-vinylcyclohexene (CAS No. 100-40-3) in F344/N rats and B6C3F1 mice (gavage studies). NTP Technical Report 303, NIH Publication No. 86-2559, August 1986.		
		NTP (1989) National Toxicology Program Database Search Application. http://ntp- apps.niehs.nih.gov/ntp_tox/index.cfm. CAS#100-40-3. Genetic Toxicity Studies. Salmonella. Study No. 609542. Detailed Study Data.		
		NTP (undated) National Toxicology Program Database Search Application. http://ntp- apps.niehs.nih.gov/ntp_tox/index.cfm. CAS#100-40-3. Genetic Toxicity Studies. Mouse Lymphoma Studies. Study No. 971117. Detailed Study Data.		
		Rappaport, SM and Fraser, DA (1977) Air sampling and analysis in a rubber vulcanization area. Am Ind Hyg Assoc J, 38, 205-210.		
		Smith, BJ, Mattison, DR and Sipes, GI (1990a) The role of epoxidation in 4-vinyl cyclohexene-induce ovarian toxicity. Toxicol Appl Pharmacol 105, 371-381. Smith, BJ, Carter, DE and Sipes, GI (1990b) Comparison of the disposition and in vitro metabolism of 4-vinyl cyclohexene in the female mouse and rat. Toxicol Appl Pharmacol 105, 364-371.		
		Smith, BJ, Sipes, IG, Stevens, JC and Halpert, JR (1990c) The biochemical basis for the species difference in hepatic microsomal 4-vinylcyclohexene epoxidation between female mice and rats. Carcinogenesis 11, 1951-		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		1957.		
		Smith, BJ, Mattison, DR and Sipes, GI (1990d) The role of epoxidation in 4-vinyl cyclohexene-induce ovarian toxicity. Toxicol Appl Pharmacol 105, 371-381.		
		Smith, BJ and Sipes IG (1991) Epoxidation of 4-vinylcyclohexene by human hepatic microsomes. Toxicol Appl Pharmacol 109, 367-371.		
		Smyth HF, Carpenter, CP, Weil, CS et al. (1962) Range finding toxicity data: List VI. Am Ind Hyg Assoc J, 23, 95-107.		
		Smyth HF, Carpenter, CP, Weil, CS et al. (1969) Range finding toxicity data: List VII. Am Ind Hyg Assoc J, 30, 470-476.		
		USEPA (1989) Notice containing the ITC recommendation of 4-VCH to the Priority List and soliciting interested parties for developing a consent order for 4-VCH. 54 FR 51114. December 12, 1989.		
		Van Duureen, BL, Nelson, N, Orris, L, et. al. (1963) Carcinogenicity of epoxides, lactones and peroxy compounds. Journal of the National Cancer Institute 31, 41-55.		
		Watabe, T, Hiratsuka, A, Ozawa, N and Isobe, M (1981) A comparative study on the metabolism of d-limonene and 4-vinylcyclohex-1-ene by hepatic microsomes. Xenobiotica 11, 333-344.		
		Weschler, C.; Hodgson, A.T.; Wooley, J.D. (1992): Indoor Chemistry: Ozone, Volatile Organic Compounds, and Carpets. Environ. Sci. Technol. 26: 2371-2377.		
		Yalkowsky, S.H. (2003) Aqueous Solubility Data. CRC Press LLC Boca Raton, Forida p. 509		
		IUCLID Data Set		
		Existing Chemical ID: 100-40-3 CAS NO. 100-40-3 EINECS Name 4-vinylcyclohexene		
		EC NO. 202-848-9		
		Molecular Formula C8H12 Memo: 4-VCH dataset prepared by Experien Health Sciences Inc.		
		Printing date 10-JUL-2006		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		Revision date	comment	
		Date of last Update: 10-Jul 2006		
		•		
		Number of pages: 100		
		Chapter (profile) : Chapter: 1.7, 1.8.1, 1.10, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6.1, 2.7, 2.8, 3.1.1, 3.1.2, 3.3.1, 3.3.2, 3.5, 3.7, 4.1, 4.2, 4.3, 4.5:1, 4.5.2, 4.6.3, 5.0, 5.1.1, 5.1.2, 5.1.3, 5.2.1, 5.2.2, 5.4, 5.5, 5.6, 5.7, 5.8.1, 5.8.3, 5.10		
		Reliability (profile): Reliability: without reliability, 1, 2, 3, 4 Flags (profile): Flagg: without flag, confidential, non confidential, WGK (DE), TA-Luft (DE), Material Safety Dataset, Risk Assessment, Directive 67/548/EEC, SIDS.		
		1.7 Use Pattern		
		Type: industrial		
		Category: Chemical industry: used in synthesis		
		Remark: An intermediate chemical used to produce styrene, flame		
		retardants, fragrances, solvents, polyolefin products, and		
		specialty chemicals such as vinylcyclohexene diepoxide.		
		31-MAY-2006 (31) (69)		
		Type: industrial		
		Category: Chemical industry: used in synthesis		
		Remark: A precursor in the production of flame retardants and an		
		intermediate in the synthesis of hot melt adhesives and		
		specialty chemicals. 23-MAR-2006 (17)		
		Type: industrial		
		Category: Chemical industry: used in synthesis		
		Remark: An intermediate chemical isolated during the production of		
		Vinylnorbornene to produce ethylidene norborene. The		
		4-vinylcylcohexene is inadvertently generated and a portion is		
		isolated and converted to 4-vinylcyclohexene monoepoxide or		
		diepoxide, or is incinerated.		
		23-MAR-2006 (10)		
		Type: industrial		
		Category: Chemical industry: used in synthesis		
		Remark: An intermediate chemical generated during the trimerization of		
		butadiene to cyclododecatriene in the production of		
		dodecanedioic acid. The 4-vinylcylcohexene is a co-product of		
		the process and is either recycled for use as a catalyst		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		solvent, sold, or disposed of by burning in a boiler as fuel.	comment	
		23-MAR-2006 (10)		
		Type: industrial		
		Category: Chemical industry: used in synthesis		
		Remark: A byproduct generated unintentionally during the production of		
		styrene-butadiene (SB) rubber, SB latex, and polybutadiene		
		rubber products and then subsequently recovered along with		
		styrene for recycling / reuse in the process.		
		23-MAR-2006 (10)		
		1.8.1 Occupational Exposure Limit Values		
		Type of limit: TLV (US)		
		Limit value: .1 other: ppm		
		Remark: A3: Confirmed animal carcinogen with unknown relevance to		
		humans.		
		Excursion Limit Recommendation: Excursions in worker exposure		
		levels may exceed three times the TLV-TWA for no more than a		
		total of 30 min during a work day, and under no circumstances		
		should they exceed five times the TLV-TWA, provided that the		
		TLV-TWA is not exceeded		
		Reliability: (4) not assignable		
		Secondary literature.		
		27-MAR-2006 (2)		
		Type of limit: other: 8 hr TWA		
		Limit value: 5 other: ppm		
		Reliability: (4) not assignable		
		Secondary literature.		
		10-JUL-2006 (3)		
		<u>1.10 Source of Exposure</u>		
		Source of exposure: Human: exposure by production		
		Exposure to the: Substance		
		Remark: 4-Vinylcyclohexene (4-VCH, a dimer of 1,3-butadiene) is		
		present in process streams associated with the refining of		
		crude butadiene for the production of commercial grade		
		1,3-butadiene. Workers can be exposed to fugitive emissions		
		from process equipment, as well as during line clearing and		
		equipment maintenance and repair activities. The		
		concentration of 4-VCH in the primary process streams has		
		been reported as follows:		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		- From 10 to 4,600 ppm/w in crude butadiene streams	comment	
		- 50 to 2,200 ppm/w in refined product streams		
		- 0.025% to 100% in purge streams.		
		Purge streams were either incinerated, burned as boiler		
		fuel, or hydrotreated to destroy nearly all the 4-VCH; or		
		they were blended into gasoline or fuel oil.		
		23-MAR-2006 (9)		
		Source of exposure: Environment: exposure from processing		
		Exposure to the: Substance		
		Remark: In a survey conducted prior to 1989 sponsored by the		
		Effluent Guidelines Division of the U.S. EPA,		
		4-Vinylcyclohexene was detected at waste water treatment		
		facilities at 2 organics & plastics plants, 6 rubber processing plants, and		
		7 publicly owned treatment works at		
		the following concentrations, respectively:		
		- Median conc. 227 mg/L; max. conc. 446.7 mg/L		
		- Median conc. 78.8 mg/L; max. conc. 681.7 mg/L		
		- Median conc. 4.9 mg/L; max. conc. 8.5 mg/L		
		31-MAY-2006 (62)		
		Source of exposure: Environment: exposure from production		
		Exposure to the: Substance		
		Remark: 4-Vinylcylcohexene (4-VCH) is released into the air as		
		fugitive emissions during the production of 1,3-butadiene		
		and the on-purpose production of 4-VCH, and during		
		downstream processing as a chemical intermediate.		
		23-MAR-2006 (9)		
		Source of exposure: Environment: exposure from production		
		Exposure to the: Substance		
		Remark: 4-Vinylcylcohexene (4-VCH) is released into plant process		
		sewers and sent to plant waste treatment facilities where it		
		destroyed prior to leaving the site. In 1990, 1 company		
		representing 1 site did report releasing 35 lbs/year after		
		on-site treatment.		
		23-MAR-2006 (9)		
		Source of exposure: Human: indirect exposure		
		Exposure to the: Substance		
		Remark: 4-Vinylcylcohexene (4-VCH) may be present in styrene /		
		butadiene / acrylonitrile (SBA) copolymers used as a coating		
		Accurations , actionicities (pur, coportmers about as a coacting		1

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		for food packaging. The concentration of 4-VCH in the wet		
		latex is capped by the U.S. Food and Drug Administration at		
		200 ppm. Leaching into food has not been described.		
		23-MAR-2006 (65)		
		2.1 Melting Point		
		Value: = -108.9 degree C		
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.		
		Reliability: (2) valid with restrictions		
		Secondary literature (handbook or compilation of data).		
		27-APR-2006 (35)		
		2.2 Boiling Point		
		Value: = 128 degree C		
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.		
		Reliability: (2) valid with restrictions		
		Secondary literature (handbook or compilation of data).		
		27-APR-2006 (35)		
		2.3 Density		
		Type: density		
		Value: = .8299 g/cm ³		
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.		
		Reliability: (2) valid with restrictions		
		Secondary literature (handbook or compilation of data).		
		27-APR-2006 (35)		
		2.4 Vapour Pressure		
		Remark: Value = 15.7 mm Hg @ 25 degrees C		
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.		
		Reliability: (2) valid with restrictions		
		Secondary literature (handbook or compilation of data).		
		27-APR-2006 (16)		
L		2.5 Partition Coefficient		
		Partition Coeff.: octanol-water		
		log Pow: = 3.93		
		Method: other (measured): no details available		
		GLP: no data		
		Remark: The data are cited in the Biodegradation and Bioaccumulation		
				1

Date	Country / Organisation /	Comment		Dossier submitter's	RAC's response to comment
	MSCA			response to comment	
		Data of Existing Chemicals based on the CSCL Japan. They have			
		been assigned a reliability rating of 2 because there is			
		insufficient information available on the method and			
		analytical procedures, conducted by the Chemicals Inspection			
		and Testing Institute, Japan.			
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.			
		Reliability: (2) valid with restrictions			
		Secondary literature (handbook or compilation of data).			
			43)		
		2.6.1 Solubility in different media			
		Solubility in: Water			
		Remark: Value = 4.622E-04 mol/1 @ 25 degrees C.			
		Value = 5.000E-02 g/l @ 25 degrees C.			
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.			
		Reliability: (2) valid with restrictions			
		Secondary literature (handbook or compilation of data).	(
		27-APR-2006	(70)		
		2.7 Flash Point Value: = 15.9 degree C			
		Type: open cup Remark: Original data listed as 289.00 deg Kelvin.			
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.			
		Reliability: (2) valid with restrictions			
		Secondary literature (handbook or compilation of data).			
		27-APR-2006	(16)		
		2.8 Auto Flammability	(10)		
		Z.3 Auto Flammaonity Value: = 269.9 degree C			
		Remark: Original data listed as "autoignition temperature" 543.0	n dea		
		Kelvin; pressure not specified.	ucy		
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.			
		Reliability: (2) valid with restrictions			
		Secondary literature (handbook or compilation of data).			
		27-APR-2006	(16)		
		3.1.1 Photodegradation			
		Type: air			
		Light source: Sun light			
		INDIRECT PHOTOLYSIS			

Date	Country /	Comment	Dossier	RAC's response
	Organisation /		submitter's	to comment
	MSCA		response to	
			comment	
		Sensitizer: 03		
		Conc. of sens.: 7000000000 molecule/cm ³		
		Rate constant: = .000000000000000212 cm ³ /(molecule * sec)		
		Degradation: = 50 % after 1.3 hour(s)		
		Method: other (calculated): AOPWIN version 1.91		
		Remark: Calculated value using AOPWIN version 1.91, a subroutine of		
		the computer program EPI Suite version 3.12.		
		Indirect photodegradation, or atmospheric oxidation potential,		
		is based on the structure-activity relationship methods		
		developed by R. Atkinson under the following conditions:		
		Parameter Value / Units		
		Temperature: 25°C		
		Sensitizer: ozone		
		Concentration of Sensitizer: 7.0E11 OH-radicals/cm3		
		(Atkinson and Carter, 1984)		
		The half-life of 4-Vinylcyclohexene, based on a 12-hour day,		
		is 0.11 days or 1.3 hours. The half-life is normalized to a		
		12-hour day because atmospheric oxidation reactions only take		
		place in the presence of sunlight.		
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.		
		Reliability: (2) valid with restrictions		
		The value was calculated based on chemical structure as		
		modeled by EPI Suite. This robust summary has a reliability		
		rating of 2 because the data are modeled.		
		10-JUL-2006 (5) (21) (39)		
		Type: air		
		Light source: Sun light		
		INDIRECT PHOTOLYSIS		
		Sensitizer: OH		
		Conc. of sens.: 1500000 molecule/cm ³		
		Rate constant: = .0000000008934 cm ³ /(molecule * sec)		
		Degradation: = 50 % after 1.4 hour(s)		
		Method: other (calculated): AOPWIN version 1.91		
		Remark: Calculated value using AOPWIN version 1.91, a subroutine of		
		the computer program EPI Suite version 3.12.		
		Indirect photodegradation, or atmospheric oxidation potential,		
		is based on the structure-activity relationship methods		
		developed by R. Atkinson under the following conditions:		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		Parameter Value / Units	comment	
		Temperature: 25°C		
		Sensitizer: OH- radical		
		Concentration of Sensitizer: 1.5E6 OH- radicals/cm3		
		(Leifer, 1993; Mount		
		and Eisele, 1992)		
		The half-life of 4-Vinylcyclohexene, based on a 12-hour day,		
		is 0.12 days or 1.4 hours. The half-life is normalized to a		
		12-hour day because atmospheric oxidation reactions only take		
		place in the presence of sunlight.		
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.		
		Reliability: (2) valid with restrictions		
		The value was calculated based on chemical structure as		
		modeled by EPI Suite. This robust summary has a reliability		
		rating of 2 because the data are modeled.		
		10-JUL-2006 (4) (21) (34) (44)		
		3.1.2 Stability in Water		
		Type: abiotic		
		Method: other (calculated): calculated using HYDROWIN version 1.67		
		Remark: Calculated values using HYDROWIN version 1.67, a subroutine of		
		the computer program EPI Suite version 3.12.		
		Result: Due to a lack of hydrolysable functional groups, 4-VCH would		
		not be expected to hydrolyze appreciably in an aqueous		
		environment. The hydrolysis half-life is estimated to be		
		greater than a year.		
		The structure of 4-vinylcyclohexene is that of an alicyclic		
		hydrocarbon, a class of molecule not considered to be water		
		reactive at environmental pH values. HYDROWIN could not		
		calculate a hydrolysis rate for 4-Vinylcyclohexene, an		
		expected result.		
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.		
		Reliability: (2) valid with restrictions		
		The value was calculated based on chemical structure as		
		modeled by EPI Suite. This robust summary has a reliability		
		rating of 2 because the data are modeled.		
		10-JUL-2006 (21) (41)		
		3.3.1 Transport between Environmental Compartments		

Date	Country /	Comment	Dossier	RAC's response
	Organisation /		submitter's	to comment
	MSCA		response to	
		Type: fugacity model level I	comment	
		Media: other: air - soil - sediment - water		
		Method: other: LEVEL I version 3.00, a Fugacity-based model		
		Remark: Physicochemical data used in the calculation:		
		Parameter Value / Units		
		Molecular Weight 108.18 g/moleTemperature 25°CLog Kow		
		3.93Water		
		Solubility 50 mg/l		
		Vapor Pressure 2102 Pa Melting Point -108.9 degrees C		
		The program models environmental partitioning of a release of 100000 kg of 4-VCH under instaneous equilibrium conditions		
		using the Mackay Level I Fugacity model. Sediment is		
		considered to be part of the water column.		
		Additional partitioning was calculated:		
		Sediment: 0.0181% Result: Air: 99.1% (Fugacity Model Level I)		
		Water: 0.108% (Fugacity Model Level I)		
		Soil: 0.814% (Fugacity Model Level I)		
		Biota: 4.59E-05% (Fish - Fugacity Model Level I)		
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.		
		Reliability: (2) valid with restrictions		
		This robust summary has a reliability rating of 2 because the		
		distribution data are modeled.		
		10-JUL-2006 (8)		
		Type: fugacity model level III		
		Media: other: air - soil - sediment - water		
		Method: other: calculated using LEV3EPI		
		Remark: Physicochemical data used in the calculation:		
		Parameter Value / Units		
		Molecular Weight 108.18 g/moleTemperature 25°CLog Kow		
		3.93Water		
		Solubility 50 mg/l		
		Vapor Pressure 15.77 mm Hg		
		Soil Koc 3.49e+03 (calculated by model)		
		The program models environmental partitioning under		
		steady-state conditions using the Mackay Level III Fugacity		
		model. The standard emission rates to air, water and soil are:		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		1000 kg/hr to air, 1000kg/hr to water and 1000 kg/hr soil.		
		Sediment is considered to be part of the water column.		
		Result: Air: 0.52% (Fugacity Model Level III)		
		Water: 35.0% (Fugacity Model Level III)		
		Soil: 60.6% (Fugacity Model Level III)		
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.		
		Reliability: (2) valid with restrictions		
		The value was calculated based on chemical structure as		
		modeled by EPI Suite. This robust summary has a reliability		
		rating of 2 because the data are modeled.		
		10-JUL-2006 (21)		
		3.3.2 Distribution		
		Media: other: wastewater - surface water		
		Method: other (calculation): STPWIN		
		Remark: Percent removal in a wastewater treatment facility STPWIN is a		
		subroutine of the computer program EPI Suite version 3.12.		
		The predicted removal in a wastewater treatment facility		
		having a primary, aeration and settling tank is 95%.		
		Physicochemical data used in the calculation:		
		Parameter Value / Units		
		Molecular Weight 108.18 g/moleWater		
		Solubility 50 mg/l		
		Vapor Pressure 15.77 mm Hg		
		Henry's Law Constant 0.0448 atm-m3/mole		
		Octanol-water partition coefficient 1.83		
		Air-water partition coeffficient (Kow) 8511 (calculated by		
		program)		
		Log Kow 3.93		
		Biomass to water parttion coefficient 1703 (calculated by		
		program)		
		Temperature 25°C		
		The program models environmental partitioning under instaneous		
		steady-state conditions using the Toronto Model developed by		
		McKay and colleagues as described by Clark et. al.		
		The primary mode of removal was aeration off gas (78%)		
		followed by partitioning to sludge (15%). Biodegradation		
		accounted for 0.1% of total removal.		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.		
		Reliability: (2) valid with restrictions		
		The value was calculated based on chemical structure as		
		modeled by EPI Suite. This robust summary has a reliability		
		rating of 2 because the data are modeled.		
		10-JUL-2006 (12) (21)		
		Media: water - air		
		Method: other (measurement): HENRYWIN version 3.10		
		Remark: Calculation of Henry's Law constant using HENRYWIN version		
		3.10 a subroutine of the computer program EPI Suite version 3.12.		
		Result: Will volatilize from water.		
		Based on a water solubility of 50 mg/L and a vapor pressure of		
		15.7 mm Hg (at 25 degree C), a Henry's law constant of 0.155		
		atm-m3/mol or 1.57E+04 Pa-m3/mole is estimated.		
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.		
		Reliability: (2) valid with restrictions		
		The data are based on measured water solubility and measured		
		vapour pressure data using an accepted calculation method.		
		10-JUL-2006 (21) (36) (37)		
		Media: water - air		
		Method: other (calculation): HENRYWIN version 3.10		
		Result: Will volatilize from water.		
		0.044 atm-m3/mole at 25°C or 4.54E+03 Pa-m3/mole at 25°C.		
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.		
		Reliability: (4) not assignable The data was part of a compilation of values for various		
		compounds derived by USEPA OPPT from various publications and		
		articles.		
		10-JUL-2006 (21)		
		Media: water - air		
		Method: other (calculation): Volatilization from Water sub-routine		
		Remark: calculated by Volatilization from Water a subroutine of the		
		computer program EPI Suite version 3.12.		
		Result: 3.1-hours from river		
		4.1 days from lake		
		The volatilization half-life of 4-vinylcyclohexene from a		

Date	Country / Organisation /	Comment	Dossier submitter's	RAC's response to comment
	MSCA		response to	to comment
			comment	
		model river (water depth of 1 meter, current velocity of 1		
		m/sec, and wind velocity of 3 m/sec) and model lake (water depth of 1 meter, current of 0.05 m/sec, and wind velocity of		
		0.5 m/sec) was estimated.		
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.		
		Reliability: (2) valid with restrictions		
		The value was calculated based on chemical structure as		
		modeled by EPI Suite. This robust summary has a reliability		
		rating of 2 because the data are modeled.		
		10-JUL-2006 (21)		
		Media: water - soil		
		Method: other (calculation): PCKOCWIN version 1.66		
		Remark: Calculated value using PCKOCWIN version 1.66 a subroutine of		
		the computer program EPI Suite version 3.12.		
		Result: Moderate adsorption to soil predicted.		
		Koc (estimated) = 518		
		Method based on the Sabljic molecular connectivity method with		
		correction factors added to PCKOCWIN version 1.66 a subroutine		
		of the computer program EPI Suite version 3.12. Log Koc was		
		calculated using SMILES notation.		
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.		
		Reliability: (2) valid with restrictions		
		The value was calculated based on chemical structure as		
		modeled by EPI Suite. This robust summary has a reliability		
		rating of 2 because the data are modeled.		
		10-JUL-2006 (21) (38) (54) (55)		
		3.5 Biodegradation		
		Type: aerobic		
		Inoculum: activated sludge		
		Concentration: 30 mg/l related to DOC (Dissolved Organic Carbon)		
		100 mg/l related to Test substance		
		Contact time: 28 day(s)		
		Degradation: = 0 % after 28 day(s)		
		Result: other: not readily biodegradable		
		Kinetic: 28 day(s) = 0 %		
		Control Subst.: Aniline		
		Kinetic: 7 day(s) > 40 %		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		<pre>14 day(s) > 60 % Method: OECD Guide-line 301 C "Ready Biodegradability: Modified MITI Test (I)" Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3. Reliability: (1) valid without restriction Report not available for review and there is only limited information available on test parameters. Guideline study, results cited in recognised data compendium. 10-JUL-2006 (11) Type: aerobic Result: other: not readily biodegradable Method: other: calculated using BIOWIN version 4.02 Remark: Calculation of biodegradation and the timeframe for Primary and Ultimate biodegradation using BIOWIN version 4.02, a subroutine of the computer program EPI Suite version 3.12 as described by Howard, et. al. in 1994. BIOWIN contains six models (linear regression (BIOWIN 1), non-linear regression (BIOWIN 2), ultimate degradation to CO2 and H2O (BIOWIN 3), primary degradation (BIOWIN 5) and non-linear regression estimate of the probability of passing the OECD 301C / MITI-1 ready biodegradation test (BIOWIN 5) and non-linear regression estimate of the probability of passing the OECD 301C / MITI-1 ready biodegradation test (BIOWIN 6). BIOWIN 1 - "Biodegrades Fast" BIOWIN 1 - "Biodegrades Fast" BIOWIN 3 - "Weeks" BIOWIN 5 - "Does not biodegrade fast" BIOWIN 5 - "Does not biodegrade fast" BIOWIN 6 - "Biodegrades fast" According to the USEPA, BIOWIN 6 is better predictor of whether a chemical will pass or fail the OECD 301C / MITI-1 ready biodegradation test</pre>	comment	
		The value was calculated based on chemical structure as modeled by EPI Suite. This robust summary has a reliability rating of 2 because the data are modeled.		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		10-JUL-2006 (21) (28)	comment	
		3.7 Bioaccumulation		
		Species: Cyprinus carpio (Fish, fresh water)		
		Exposure period: 56 day(s) at 25 degree C		
		Concentration: 100 mg/l		
		BCF: = 83 - 211		
		Method: OECD Guide-line 305 C "Bioaccumulation: Test for the Degree		
		of Bioconcentration in Fish"		
		GLP: yes		
		Remark: Low bioconcentration.		
		Lipid content of test fish ranged from 2 - 6% with a mean of		
		4.1%. An improved apparatus for volatile substances was used.		
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.		
		Reliability: (1) valid without restriction		
		Report not available for review and there is only limited		
		information available on test parameters. Guideline study,		
		results cited in recognised data compendium.		
		10-JUL-2006 (11)		
		Species: Cyprinus carpio (Fish, fresh water)		
		Exposure period: 56 day(s) at 25 degree C		
		Concentration: 10 mg/1		
		BCF: = 110 - 208		
		Method: OECD Guide-line 305 C "Bioaccumulation: Test for the Degree of Bioconcentration in Fish"		
		GLP: yes		
		Remark: Low bioconcentration.		
		Lipid content of test fish ranged from 2 - 6% with a mean of		
		4.1%. An improved apparatus for volatile substances was used.		
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.		
		Reliability: (1) valid without restriction		
		Report not available for review and there is only limited		
		information available on test parameters. Guideline study,		
		results cited in recognised data compendium.		
		10-JUL-2006 (11)		
		Method: other: calculated using BCFWIN version 2.15		
		Remark: The potential for bioaccumulation of 4-Vinylcyclohexene in the		
		aquatic environment is expected to be low.		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		The bioconcentration factor (BCF) is calculated from the		
		octanol-water partition coefficient (Log Kow) using an		
		atom/fragment contribution method similar to that described		
		for KOWWIN as documented in a publication for the USEPA by		
		Meylan, et. al. in 1997.		
		A log BCF of 2.33 (BCF = 211.9) was calculated.		
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.		
		Reliability: (2) valid with restrictions		
		The value was calculated based on chemical structure as		
		modeled by EPI Suite. This robust summary has a reliability		
		rating of 2 because the data are modeled.		
		10-JUL-2006 (21) (40)		
		AQUATIC ORGANISMS		
		4.1 Acute/Prolonged Toxicity to Fish		
		Type: other: model		
		Species: other: freshwater fish		
		Exposure period: 96 hour(s)		
		Unit: mg/l Analytical monitoring:		
		LC50: = 1.23 - calculated		
		Method: other: calculated using ECOSAR version 0.99h		
		Remark: Calculated value using ECOSAR version 0.99h, a subroutine of		
		the computer program EPI Suite version 3.12.		
		Physicochemical data used in the calculation:		
		Parameter Value / Units		
		Molecular Weight 108.18 g/mole		
		Log Kow 3.93		
		Water Solubility 50 mg/l		
		Melting Point -108.90 deg C		
		SMILES Notation C(=CCCC1C=C)C1		
		ECOSAR utilized the SMILES notation to select the appropriate		
		compound class. The "Neutral Organics" structure-activity		
		relationship class was selected. Mortality data to fathead		
		minnows measured by Veith, et. al. (1983) for industrial		
		chemicals having narcotic effects was utilized by ECOSAR to		
		determine the freswater fish 96-hr LC50 for		
		4-Vinylcyclohexene.		
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		Reliability: (2) valid with restrictions	comment	
		The value was calculated based on chemical structure as		
		modeled by EPI Suite. This robust summary has a reliability		
		rating of 2 because the data are modeled.		
		31-MAY-2006 (21) (67)		
		Type: semistatic		
		Species: Oryzias latipes (Fish, fresh water)		
		Exposure period: 48 hour(s)		
		Unit: mg/l Analytical monitoring:		
		LC50: = 17 - measured/nominal		
		Method: other: Japanese Industrial Standard *JIS K 0102-1986-71)		
		GLP: yes		
		Test condition: 25 deg C, 48-hr exposure of 10 fish under static to		
		semi-static conditions at each concentration level.		
		Fish were disinfected and acclimatized according to		
		established protocol and analyzed for mercury content.		
		The measured 48-hr LC50 value was estimated by the Doudoroff method or the Probit method.		
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.		
		Reliability: (2) valid with restrictions		
		Report not available for review and there is only limited		
		information available on test parameters. Guideline study,		
		results cited in recognised data compendium.		
		10-JUL-2006 (11)		
		Species: Oryzias latipes (Fish, fresh water)		
		Exposure period: 96 hour(s)		
		Unit: mg/l Analytical monitoring:		
		LC50: = 4.6 - measured/nominal		
		Test condition: These data are based on emasured values.		
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.		
		Reliability: (2) valid with restrictions		
		The data are cited in the Biodegradation and Bioaccumulation		
		Data of Existing Chemicals Based on the CSCL Japan. This		
		robust summary has a reliability rating of 2 because there is		
		insufficient information available on the method and		
		analytical procedure.		
		10-JUL-2006 (42)		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		4.2 Acute Toxicity to Aquatic Invertebrates		
		Type: other: model		
		Species: Daphnia magna (Crustacea)		
		Exposure period: 48 hour(s)		
		Unit: mg/l Analytical monitoring:		
		EC50: = 1.51 - calculated		
		Method: other: calcualted using ECOSAR version 0.99h		
		Remark: Calculated value using ECOSAR version 0.99h, a subroutine of		
		the computer program EPI Suite version 3.12.		
		Physicochemical data used in the calculation:		
		Parameter Value / Units		
		Molecular Weight 108.18 g/mole		
		Log Kow 3.93		
		Water Solubility 50 mg/l		
		Melting Point -108.90 deg C		
		SMILES Notation C(=CCCC1C=C)C1		
		ECOSAR utilized the SMILES notation to select the appropriate		
		compound class. The "Neutral Organics" structure-activity		
		relationship class was selected by the program. Mortality data		
		to Daphnia magna measured by Hermans, et. al. (1984) for		
		chemical mixtures having anesthetic effects was utilized by		
		ECOSAR to determine the freswater Daphnia 48-hr LC50 for		
		4-Vinylcyclohexene.		
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.		
		Reliability: (2) valid with restrictions		
		The value was calculated based on chemical structure as		
		modeled by EPI Suite. This robust summary has a reliability		
		rating of 2 because the data are modeled.		
		10-JUL-2006 (21) (25)		
		Species: Daphnia magna (Crustacea)		
		Exposure period: 48 hour(s)		
		Unit: mg/l Analytical monitoring: EC50: = 1.9 - calculated		
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3. Reliability: (2) valid with restrictions		
		The data are cited in the Biodegradation and Bioaccumulation Data of Existing Chemicals Based on the CSCL Japan. This		
		Data of Existing Chemicals Based on the CSCL Japan. This		1

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		robust summary has a reliability rating of 2 because there is		
		insufficient information available on the method and		
		analytical procedure.		
		10-JUL-2006 (42)		
		4.3 Toxicity to Aquatic Plants e.g. Algae		
		Species: other algae: Pseudokirchneriella subcapitata (formely known as		
		Selenastrum capricornutum)		
		Endpoint: other: area under growth curve		
		Exposure period: 72 hour(s)		
		Unit: mg/l Analytical monitoring:		
		EC50: > 14 - measured/nominal		
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.		
		Reliability: (2) valid with restrictions		
		The data are cited in the Biodegradation and Bioaccumulation		
		Data of Existing Chemicals Based on the CSCL Japan. This		
		robust summary has a reliability rating of 2 because there is		
		insufficient information available on the method and		
		analytical procedure.		
		10-JUL-2006 (42)		
		Species: other algae: Pseudokirchneriella subcapitata (formely known as		
		Selenastrum capricornutum)		
		Endpoint: other: area under growth curve		
		Exposure period: 72 hour(s)		
		Unit: mg/l Analytical monitoring:		
		NOEC: = 7.7 - measured/nominal		
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.		
		Reliability: (2) valid with restrictions		
		The data are cited in the Biodegradation and Bioaccumulation		
		Data of Existing Chemicals Based on the CSCL Japan. This		
		robust summary has a reliability rating of 2 because there is		
		insufficient information available on the method and		
		analytical procedure.		
		10-JUL-2006 (42)		
		Species: other algae: Pseudokirchneriella subcapitata (formely known as		
		Selenastrum capricornutum)		
		Endpoint: other: growth		

Date	Country / Organisation /	Comment	Dossier submitter's	RAC's response to comment
	MSCA		response to	to comment
		\mathbf{T}	comment	
		Exposure period: 48 hour(s) Unit: mg/l Analytical monitoring:		
		EC50: > 14 - measured/nominal		
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.		
		Reliability: (2) valid with restrictions		
		The data are cited in the Biodegradation and Bioaccumulation		
		Data of Existing Chemicals Based on the CSCL Japan. This		
		robust summary has a reliability rating of 2 because there is		
		insufficient information available on the method and		
		analytical procedure.		
		10-JUL-2006 (42)		
		Species: other algae: model, freshwater green algae		
		Endpoint: other: growth		
		Exposure period: 96 hour(s)		
		Unit: mg/l Analytical monitoring:		
		EC50: = 1.05 - calculated		
		Method: other: calculated using ECOSAR version 0.99h		
		Remark: Calculated value using ECOSAR version 0.99h, a subroutine of		
		the computer program EPI Suite version 3.12.		
		Physicochemical data used in the calculation:		
		Parameter Value / Units		
		Molecular Weight 108.18 g/mole		
		Log Kow 3.93		
		Water Solubility 50 mg/l		
		Melting Point -108.90 deg C		
		SMILES Notation C(=CCCC1C=C)C1		
		ECOSAR utilized the SMILES notation to select the appropriate		
		compound class. The "Neutral Organics" structure-activity		
		relationship class was selected by the program. Growth data		
		for green algae measured by Calamari, et. al. (1983) for		
		selected chlorobenzenes, Galassi and Vighi (1981) for volatile		
		substances and USEPA (1991) data from PMN submissions were		
		utilized by ECOSAR to determine the freswater green algae		
		96-hr EC50 for 4-Vinylcyclohexene.		
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.		
		Reliability: (2) valid with restrictions		
		The value was calculated based on chemical structure as		
		modeled by EPI Suite. This robust summary has a reliability		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		rating of 2 because the data are modeled.	comment	
		<pre>10-JUL-2006 (7) (21) (22) Species: other algae: model, freshwater green algae Endpoint: other: growth (chronic value, ChV) Exposure period: 96 hour(s) Unit: mg/l Analytical monitoring: EC50: = .32 - calculated Method: other: calculated using ECOSAR version 0.99h Remark: Calculated value using ECOSAR version 0.99h, a subroutine of the computer program EPI Suite version 3.12. Physicochemical data used in the calculation: Parameter Value / Units Molecular Weight 108.18 g/mole Log Kow 3.93 Water Solubility 50 mg/l Melting Point -108.90 deg CSMILES Notation C(=CCCClC=C)Cl ECOSAR utilized the SMILES notation to select the appropriate compound class. The "Neutral Organics" structure-activity relationship class was selected. Growth data for green algae measured by Calamari, et. al. (1983) and USEPA (1991) data from PMN submissions were utilized by ECOSAR to determine the freshwater green algae 96-hr chronic value (ChV) for 4-Vinylcyclo-hexene. Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3. Reliability: (2) valid with restrictions The value was calculated based on chemical structure as modeled by EPI Suite. This robust summary has a reliability</pre>		
		rating of 2 because the data are modeled. 31-MAY-2006 (7) (21) (22) (64)		
		4.5 Chronic Toxicity to Aquatic Organisms		
		4.5.1 Chronic Toxicity to Fish		
		Species: other: model, freshwater fish		
		Endpoint: other: survival / growth		
		Exposure period: 30 day(s)		
		Unit: mg/l Analytical monitoring:		

chronic value (chv) : = .22 - calculated method: other: calculated using ECOSAR version 0.99h Remark: Calculated values using ECOSAR version 0.99h, a subroutine of the computer program EPT Suite version 3.12. Physicochemical data used in the calculation: Parameter Value / Units Molecular Meight 108.18 g/mole Log Kow 3.93 Water Solubility 50 mg/1 Melting Point -108.99 deg CSMLES Notation (CreCCCIC=CICI ECOSAR utilized the SMLES notation to select the appropriate compound class. The 'Neutral Organics' structure-activity relationship class was selected. USEPA (1991) survival / growth data from FNN submissions for freshwater fish 30-day chronic value (ChV) for 4-dinylcyclo-lexeme. Test obstance 4 + unyl-cyclohexeme. CAB No. 100-40-3. Rellability: (a) valid with restrictions The value was calculated based on chemical structure as modeled by EPT Suite. This robust summary has a reliability rating 7 2 because the data are modeled. 31-MMY-2006 WathY-2005 Method: other: calculated using ECOSAR version 0.99h Method: other: calculated using ECOSAR version 0.99h, a subroutine of the computer prorgram BPT Suite version 3.12. P	Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
<pre>= .22 - calculated Method: other: calculated using ECOSAR version 0.99h Remark: Calculated values using ECOSAR version 0.99h, a subroutine of the computer program EPI Suite version 3.12. Physiochemical data used in the calculation: Parameter Value / Units Nolecular Weight 100.18 g/mole Log Kow 3.93 Water Solubility 50 mg/l Melting Point -108.90 deg CCSMILES Notation (C-CCCC1C-C)C1 ECOSAR utilized the SMILES notation to select the appropriate compound class. The "Neutral Organics" structure-activity relationship class was selected. USEPR (1991) survival / growth data from PMW submissions for freshwater fish were utilized by ECOSAR to determine the freewater fish 30-day chronic value (ChV) for 4-Vinylcyclohexene. Test substance: 4-Vinylcyclohexene. CAS No. 100-40-3. Reliability: (2) valid with restrictions The value was calculated based on chemical structure as modeled by EFI Suite. This robust summary has a reliability rating of 2 because the data are modeled. 31-MAY-2006 (21) (63)</pre>			Chronic Value (ChV) :		
Method: other: calculated using ECOSAR version 0.99h Remark: Calculated values using ECOSAR version 0.99h, a subroutine of the computer program EPI Suite version 3.12. Physicochemical data used in the calculation: Parameter Value / Units Molecular Weight 108.18 g/mole Log Kow 3.93 Water Solubility 50 mg/l Melting Point -108.90 deg CSMILES Notation C(=CCCCIC=CCI ECOSAR utilized the SMILES notation to select the appropriate compound class. The "Neutral Organics" structure-activity relationship class was selected. USERA (1991) survival / growth data from PNN submissions for freshwater fish were utilized the X to determine the freshwater fish 0-day chronic value (ChV) for 4-Vinylcyclo-bexene. Test substance: 4-Vinylcyclo-bexene. modeled by EDT Suite. This robust summary has a reliability rating of 2 because the data are modeled. 31-MAY-2006 452 Chronic Toxicity to Aquatic Invertebrates Species: other: model, Daphnia magna Exposure period: 16 day(s) Unit: mg/l Analytical monitoring: ECO: = .18 - calculated using ECOSAR version 0.99h Method: other: calculated using ECOSAR version 0.99h Method: other: calculated using					
Remark: Calculated values using KCOSAR version 0.99h, a subroutine of the computer program EPI Suite version 3.12. Physicochemical data used in the calculation: Parameter Value / Units Molecular Weight 100.18 g/mole Log Kow 3.93 Water Solubility 50 mg/1 Melting Point108.90 deg CSMILES Notation CI-CCCC10 ECOSAR utilized the SMILES notation to select the appropriate compound class. The "Neutral Organics" structure-activity relationship class was selected. USEPA (1991) survival / growth data from PNN submissions for freshwater fish were utilized by ECOSAR to determine the freewater fish 30-day chronic value (ChV) For 4-Vinylcyclo-hexeme. Teet substance: 4-Vinylcyclo-hexeme. Text value was calculated based on chemical structure as modeled by BFI Suite. This robust summary has a reliability rating of 2 because the data are modeled. 11-WAY-2006 (21) (63) Unit: mg/1 Analytical monitoring: ECOSAR version 0.99h Remark: Calculated values using ECOSAR version 0.99h <					
<pre>the computer program EPI Suite version 3.12. Physicochemical data used in the calculation: Parameter Vale / Units Molecular Weight 108.18 g/mole Log Kow 3.93 Water Solubility 50 mg/l Melting Point -108.90 deg CSMLES Notation C1=CCCC1C=C)C1 ECOSAR utilized the SMLES notation to select the appropriate compound class. The "Neutral Organics" structure-activity relationship class was selected. USEPA (1991) survival / growth data from PMN submissions for freshwater fish were utilized by ECOSAR to determine the freewater fish 30-day chronic value (ChV) for 4-Vinylcyclo-hexeme. Test substance: 4-vinylcyclohexeme. CAS No. 100-40-3. Reliability: (2) valid with restrictions The value was calculated based on chemical structure as modeled by EPI Suite. This robust summary has a reliability rating of 2 because the data are modeled. 31-MAX-2005 (21) (63) 4.5.2 Chronic Toxicity to Aquatic Invertebrates Species: other: model, Daphnia magna Endpoint: other: reproduction Exposure period: 16 day(s) Unit: mg/l Amalytical monitoring: ECOS: = .18 - calculated Method: other: calculated using ECOSAR version 0.99h, a subroutine of the computer program EPI Suite vertion 3.12. Physicochemical data used in the calculation: Parameter Value (2) Units</pre>					
<pre>PhysicoChemical data used in the calculation: Parameter Value / Units Molecular Weight 108.18 g/mole Log Kow 3.93 Water Solubility 50 mg/l Melting Point -108.90 deg CSMILES Notation C(=CCCC10=C)C1 ECOSAR utilized the SMILES notation to select the appropriate compound class. The "Neutral Organics" structure-activity relationship class was selected. USEPA (1991) survival / growth data from PMN submissions for freshwater fish were utilized by ECOSAR to determine the freswater fish were utilized by ECOSAR to determine the freswater fish 30-day chronic value (ChV) for 4-Vinylcyclo-hexene. Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3. Reliability: (2) valid with restrictions The value was calculated based on chemical structure as modeled by EFI Suite. This robust summary has a reliability rating of 2 because the data are modeled. 31-MAY-2006 (21) (63) 4.5.2 Chronic Toxicity to Aquatic Invertebrates Species: other: model, Daphnia magna Endpoint: other: reproduction Exposure period: 16 day(s) Unit: mg/l Analytical monitoring: ECOS: - 1.8 - calculated using ECOSAR version 0.99h Method: other: calculated using ECOSAR version 0.99h, a subroutine of the computer program EFI Suite version 3.12. Physicochemical data used in the calculation: Parameter Value (Units</pre>					
Parameter Value / Units Nolecular Weight 108.18 g/mole Log Kow 3.93 Water Solubility 50 mg/l Melting Point - 108.90 deg CSMILES Notation C(=CCCC1C=C)C1 ECOSAR utilized the SMILES notation to select the appropriate compound class. The "Neutral Organics" structure-activity relationship class was selected. USEPA (1991) survival / growth data from PMN submissions for freshwater fish were utilized by ECOSAR to determine the freswater fish 30-day chronic value (CNV) for 4-Vinylcyclo-hexene. Test substance: 4-Vinylcyclo-hexene.					
<pre>Molecular Weight 108.18 g/mole Log Kow 3.93 Water Solubility 50 mg/1 Melting Point -108.90 deg CSMILES Notation C(=CCCC1C=C)C1 ECOSAR utilized the SMILES notation to select the appropriate compound class. The "Neutral Organics" structure-activity relationship class was selected. USEPA (1991) survival / growth data from PMM submissions for freshwater fish were utilized by ECOSAR to determine the freewater fish Were utilized by ECOSAR to determine the freewater fish 30-day chronic value (ChW) for 4-Vinylcyclo-hexene. Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3. Reliability: (2) valid with restrictions The value was calculated based on chemical structure as modeled by EFI suite. This robust summary has a reliability rating of 2 because the data are modeled. 31-MAY-2006 (21) (63)</pre>			-		
Log Kow 3.93 Water Solubility 50 mg/l Melting Point -108,90 deg CSMILES Notation C(=CCCC1=C)C1 ECOSAR utilized the SMLES notation to select the appropriate compound class. The "Neutral Organics" structure-activity relationship class was selected. USEPA (1991) survival // growth data from PMN submissions for freshwater fish were utilized by ECOSAR to determine the freswater fish were utilized by ECOSAR to determine the freswater fish were utilized by ECOSAR to determine the freswater state were utilized by ECOSAR to determine the freswater state rest substance: 4-vinyleyclohexene, CAS No. 100-40-3. Reliability: (2) valid with restrictions The value was calculated based on chemical structure as modeled by EDI Suite. This robust summary has a reliability rating of 2 because the data are modeled. 31-MAX-2006 (21) (63)					
<pre>Water Solubility 50 mg/l Melting Point -108.90 deg CSMILES Notation C(=CCCClC=C)Cl ECOSAR utilized the SMILES notation to select the appropriate compound class. The "Neutral Organics" structure-activity relationship class was selected. USEPA (1991) survival / growth data from PMN submissions for freshwater fish were utilized by ECOSAR to determine the freswater fish 30-day chronic value (ChV) for 4-Vinylcyclo-hexene. Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3. Reliability: (2) valid with restrictions The value was calculated based on chemical structure as modeled by EPI Suite. This robust summary has a reliability rating of 2 because the data are modeled. 31-MAY-2006 (21) (63) 4.5.2 Chronic Toxicity to Aquatic Invertebrates Species: other: model, Daphnia magna Endpoint: other: reproduction Exposure period: 16 day(s) Unit: mg/l Analytical monitoring: ECOSA = .18 - calculated Method: other: calculated using ECOSAR version 0.99h Remark: Calculated using ECOSAR version 0.99h, a subroutine of the computer program EPI Suite version 3.12. Physicochemical data used in the calculation: Parameter Value / Units</pre>					
CSMILES Notation C(=CCCC1C=C)C1 ECOSAR utilized the SMILES notation to select the appropriate compound class. The "Neutral Organics" structure-activity relationship class was selected. USEPA (1991) survival / growth data from PMN submissions for freshwater fish were utilized by ECOSAR to determine the freewater fish 30-day chronic value (ChV) for 4-Vinylcyclo-hexene. Test substance: 4-Vinylcyclo-hexene. CAS No. 100-40-3. Reliability: (2) valid with restrictions The value was calculated based on chemical structure as modeled by EPI Suite. This robust summary has a reliability rating of 2 because the data are modeled. 31-MAY-2006 (21) (63) 4.5.2 Chronic Toxicity to Aquatic Invertebrates Species: other: model, Daphnia magna Endpoint: other: reproduction Exposure period: 16 day(s) Unit: mg/l Analytical monitoring: ECSO: = .18 - calculated Method: other: calculated using ECOSAR version 0.99h Remark: Calculated using ECOSAR version 0.99h, a subroutine of the computer program EPI Suite version 3.12. Physicochemical data used in the calculation: Parameter Value / Units					
ECOSAR utilized the SMILES notation to select the appropriate compound class. The "Neutral Organics" structure-activity relationship class was selected. USEPA (1991) survival / growth data from PNN submissions for freshwater fish were utilized by ECOSAR to determine the freswater fish 30-day chronic value (ChV) for 4-Vinylcyclo-hexene. Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3. Reliability: (2) valid with restrictions The value was calculated based on chemical structure as modeled by EPI Suite. This robust summary has a reliability rating of 2 because the data are modeled. 31-MAY-2006 (21) (63) Association to the:: reproduction Exposure period: 16 day(s) Unit: mg/l Analytical monitoring: ECOS: = .18 - calculated Method: other: calculated using ECOSAR version 0.99h, a subroutine of the computer program EPI Suite version 3.12. Physicochemical data used in the calculation: Parameter Value / Units			Melting Point -108.90 deg		
<pre>compound class. The "Neutral Organics" structure-activity relationship class was selected. USEPA (1991) survival / growth data from PMN submissions for freshwater fish were utilized by ECOSAR to determine the freswater fish 30-day chronic value (ChV) for 4-Vinylcyclo-hexene. Test substance: 4-Vinylcyclo-hexene, CAS No. 100-40-3. Reliability: (2) valid with restrictions The value was calculated based on chemical structure as modeled by EPI Suite. This robust summary has a reliability rating of 2 because the data are modeled. 31-MAY-2006 (21) (63) 4.5.2 Chronic Toxicity to Aquatic Invertebrates Species: other: model, Daphnia magna Endpoint: other: reproduction Exposure period: 16 day(s) Unit: mg/1 Analytical monitoring: ECS0: = .18 - calculated Method: other: calculated using ECOSAR version 0.99h Remark: Calculated values using ECOSAR version 0.99h, a subroutine of the computer program EPI Suite version 3.12. Physiocchemical data used in the calculation: Parameter Value / Units</pre>			CSMILES Notation C(=CCCC1C=C)C1		
relationship class was selected. USBPA (1991) survival / growth data from PNN submissions for freshwater fish were utilized by ECOSAR to determine the freswater fish 30-day chronic value (ChV) for 4-Vinylcyclo-hexene. Test substance: 4-Vinylcyclo-hexene.			ECOSAR utilized the SMILES notation to select the appropriate		
<pre>growth data from PMN submissions for freshwater fish were utilized by ECOSAR to determine the freswater fish 30-day chronic value (ChV) for 4-Vinylcyclohexene. Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3. Reliability: (2) valid with restrictions The value was calculated based on chemical structure as modeled by EPI Suite. This robust summary has a reliability rating of 2 because the data are modeled. 31-MAY-2006 (21) (63) 4.5.2 Chronic Toxicity to Aquatic Invertebrates Species: other: model, Daphnia magna Endpoint: other: reproduction Exposure period: 16 day(s) Unit: mg/1 Analytical monitoring: EC50: = .18 - calculated Method: other: calculated using ECOSAR version 0.99h Remark: Calculated values using ECOSAR version 0.99h, a subroutine of the computer program EPI Suite version 3.12. Physicochemical data used in the calculation: Parameter Value / Units</pre>			compound class. The "Neutral Organics" structure-activity		
<pre>utilized by ECOSAR to determine the freswater fish 30-day chronic value (ChV) for 4-Vinylcyclo-hexene. Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3. Reliability: (2) valid with restrictions The value was calculated based on chemical structure as modeled by EPI Suite. This robust summary has a reliability rating of 2 because the data are modeled. 31-MAY-2006 (21) (63) 4.5.2 Chronic Toxicity to Aquatic Invertebrates Species: other: model, Daphnia magna Endpoint: other: reproduction Exposure period: 16 day(s) Unit: mg/l Analytical monitoring: ECSO: = .18 - calculated Method: other: calculated using ECOSAR version 0.99h Remark: Calculated values using ECOSAR version 0.99h, a subroutine of the computer program EPI Suite version 3.12. Physicochemical data used in the calculation: Parameter Value / Units</pre>			relationship class was selected. USEPA (1991) survival /		
chronic value (ChV) for 4-Vinylcyclo-hexene. Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3. Reliability: (2) valid with restrictions The value was calculated based on chemical structure as modeled by EPI Suite. This robust summary has a reliability rating of 2 because the data are modeled. 31-MAY-2006 (21) (63) 4.5.2 Chronic Toxicity to Aquatic Invertebrates Species: other: model, Daphnia magna Endpoint: other: reproduction Exposure period: 16 day(s) Unit: mg/1 Analytical monitoring: EC50: = .18 - calculated Method: other: calculated using ECOSAR version 0.99h Remark: Calculated values using ECOSAR version 0.99h, a subroutine of the computer program EPI Suite version 3.12. Physicochemical data used in the calculation: Parameter Value / Units			growth data from PMN submissions for freshwater fish were		
Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3. Reliability: (2) valid with restrictions The value was calculated based on chemical structure as modeled by EPI Suite. This robust summary has a reliability rating of 2 because the data are modeled. 31-MAY-2006 (21) (63) A.5.2 Chronic Toxicity to Aquatic Invertebrates Species: other: model, Daphnia magna Endpoint: other: reproduction Exposure period: 16 day(s) Unit: mg/l Analytical monitoring: EC50: = .18 - calculated Method: other: calculated using ECOSAR version 0.99h Remark: Calculated values using ECOSAR version 0.99h, a subroutine of the computer program EPI Suite version 3.12. Physicochemical data used in the calculation: Parameter Value / Units					
Reliability: (2) valid with restrictions The value was calculated based on chemical structure as modeled by EPI Suite. This robust summary has a reliability rating of 2 because the data are modeled. 31-MAY-2006 (21) (63) 4.5.2 Chronic Toxicity to Aquatic Invertebrates Species: other: model, Daphnia magna Endpoint: other: reproduction Exposure period: 16 day(s) Unit: mg/l Analytical monitoring: EC50: = .18 - calculated Method: other: calculated using ECOSAR version 0.99h Remark: Calculated values using ECOSAR version 0.99h, a subroutine of the computer program EPI Suite version 3.12. Physicochemical data used in the calculation: Parameter Value / Units					
The value was calculated based on chemical structure as modeled by EPI Suite. This robust summary has a reliability rating of 2 because the data are modeled. 31-MAY-2006 (21) (63)					
<pre>modeled by EPI Suite. This robust summary has a reliability rating of 2 because the data are modeled. 31-MAY-2006 (21) (63) 4.5.2 Chronic Toxicity to Aquatic Invertebrates Species: other: model, Daphnia magna Endpoint: other: reproduction Exposed in the reproduction Exposed is the indicative of the indicative o</pre>					
<pre>rating of 2 because the data are modeled. 31-MAY-2006 (21) (63) 4.5.2 Chronic Toxicity to Aquatic Invertebrates Species: other: model, Daphnia magna Endpoint: other: reproduction Exposure period: 16 day(s) Unit: mg/l Analytical monitoring: EC50: = .18 - calculated Method: other: calculated using ECOSAR version 0.99h Remark: Calculated values using ECOSAR version 0.99h, a subroutine of the computer program EPI Suite version 3.12. Physicochemical data used in the calculation: Parameter Value / Units</pre>					
<pre>31-MAY-2006 (21) (63) 4.5.2 Chronic Toxicity to Aquatic Invertebrates Species: other: model, Daphnia magna Endpoint: other: reproduction Exposure period: 16 day(s) Unit: mg/l Analytical monitoring: EC50: = .18 - calculated Method: other: calculated using ECOSAR version 0.99h Remark: Calculated values using ECOSAR version 0.99h, a subroutine of the computer program EPI Suite version 3.12. Physicochemical data used in the calculation: Parameter Value / Units</pre>					
<pre>4.5.2 Chronic Toxicity to Aquatic Invertebrates Species: other: model, Daphnia magna Endpoint: other: reproduction Exposure period: 16 day(s) Unit: mg/l Analytical monitoring: EC50: = .18 - calculated monitoring: EC50: = .18 - calculated using ECOSAR version 0.99h Method: other: calculated using ECOSAR version 0.99h Remark: Calculated values using ECOSAR version 0.99h, a subroutine of the computer program EPI Suite version 3.12. Physicochemical data used in the calculation: Parameter Value / Units</pre>					
Species: other: model, Daphnia magnaEndpoint: other: reproductionExposure period: 16 day(s)Unit: mg/l Analytical monitoring:EC50: = .18 - calculatedMethod: other: calculated using ECOSAR version 0.99hRemark: Calculated values using ECOSAR version 0.99h, a subroutine ofthe computer program EPI Suite version 3.12.Physicochemical data used in the calculation:Parameter Value / Units			31-MAY-2006 (21) (63)		
Species: other: model, Daphnia magnaEndpoint: other: reproductionExposure period: 16 day(s)Unit: mg/l Analytical monitoring:EC50: = .18 - calculatedMethod: other: calculated using ECOSAR version 0.99hRemark: Calculated values using ECOSAR version 0.99h, a subroutine ofthe computer program EPI Suite version 3.12.Physicochemical data used in the calculation:Parameter Value / Units					
<pre>Endpoint: other: reproduction Exposure period: 16 day(s) Unit: mg/l Analytical monitoring: EC50: = .18 - calculated Method: other: calculated using ECOSAR version 0.99h Remark: Calculated values using ECOSAR version 0.99h, a subroutine of the computer program EPI Suite version 3.12. Physicochemical data used in the calculation: Parameter Value / Units</pre>					
<pre>Exposure period: 16 day(s) Unit: mg/l Analytical monitoring: EC50: = .18 - calculated Method: other: calculated using ECOSAR version 0.99h Remark: Calculated values using ECOSAR version 0.99h, a subroutine of the computer program EPI Suite version 3.12. Physicochemical data used in the calculation: Parameter Value / Units</pre>					
<pre>Unit: mg/l Analytical monitoring: EC50: = .18 - calculated Method: other: calculated using ECOSAR version 0.99h Remark: Calculated values using ECOSAR version 0.99h, a subroutine of the computer program EPI Suite version 3.12. Physicochemical data used in the calculation: Parameter Value / Units</pre>					
<pre>EC50: = .18 - calculated Method: other: calculated using ECOSAR version 0.99h Remark: Calculated values using ECOSAR version 0.99h, a subroutine of the computer program EPI Suite version 3.12. Physicochemical data used in the calculation: Parameter Value / Units</pre>					
Method: other: calculated using ECOSAR version 0.99h Remark: Calculated values using ECOSAR version 0.99h, a subroutine of the computer program EPI Suite version 3.12. Physicochemical data used in the calculation: Parameter Value / Units					
Remark: Calculated values using ECOSAR version 0.99h, a subroutine of the computer program EPI Suite version 3.12. Physicochemical data used in the calculation: Parameter Value / Units					
the computer program EPI Suite version 3.12. Physicochemical data used in the calculation: Parameter Value / Units			-		
Physicochemical data used in the calculation: Parameter Value / Units					
Parameter Value / Units					
			Molecular Weight 108.18 g/mole		

Date	Country / Organisation /	Comment	Dossier submitter's	RAC's response to comment
	MSCA		response to	to comment
	MOCA		comment	
		Log Kow 3.93	comment	
		Water Solubility 50 mg/l		
		Melting Point -108.90 deg		
		CSMILES Notation C(=CCCC1C=C)C1		
		ECOSAR utilized the SMILES notation to select the appropriate		
		compound class. The "Neutral Organics" structure-activity		
		relationship class wasselected. Reproductive data to Daphnia		
		magna measured by Hermans, et. al. (1984) for chemical		
		mixtures having anesthetic effects was utilized by ECOSAR to		
		determine the freswater Daphnia 15-day EC50 for		
		4-Vinylcyclohexene.		
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.		
		Reliability: (2) valid with restrictions		
		The value was calculated based on chemical structure as		
		modeled by EPI Suite. This robust summary has a reliability		
		rating of 2 because the data are modeled.		
		31-MAY-2006 (21) (25)		
		Species: Daphnia magna (Crustacea)		
		Endpoint: other: reproduction		
		Exposure period: 21 day(s)		
		Unit: mg/l Analytical monitoring:		
		EC50: = .92 - measured/nominal		
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.		
		Reliability: (2) valid with restrictions		
		The data are cited in the Biodegradation and Bioaccumulation		
		Data of Existing Chemicals Based on the CSCL Japan. This		
		robust summary has a reliability rating of 2 because there is		
		insufficient information available on the method and		
		analytical procedure.		
		10-JUL-2006 (42)		
		Species: Daphnia magna (Crustacea)		
		Endpoint: other: reproduction		
		Exposure period: 21 day(s)		
		Unit: mg/l Analytical monitoring:		
		EC50: = .23 - measured/nominal		
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.		
		Reliability: (2) valid with restrictions		

Date	Country / Organisation /	Comment	Dossier submitter's	RAC's response to comment
	MSCA		response to comment	to comment
		The data are cited in the Biodegradation and Bioaccumulation		
		Data of Existing Chemicals Based on the CSCL Japan. This		
		robust summary has a reliability rating of 2 because there is		
		insufficient information available on the method and		
		analytical procedure.		
		10-JUL-2006 (42)		
		TERRESTRIAL ORGANISMS		
		4.6.3 Toxicity to Soil Dwelling Organisms		
		Species: other: earthworm		
		Endpoint: other: mortality		
		Exposure period: 14 day(s)		
		Unit: other: ppm (dry soil wt)		
		LC50: = 169.3 - calculated		
		Method: other: calculated using ECOSAR version 0.99h		
		Remark: Calculated values using ECOSAR version 0.99h, a subroutine of		
		the computer program EPI Suite version 3.12.		
		Physicochemical data used in the calculation:		
		Parameter Value / Units		
		Molecular Weight 108.18 g/mole		
		Log Kow 3.93		
		Water Solubility 50 mg/l		
		Melting Point -108.90 deg		
		CSMILES Notation C(=CCCC1C=C)C1		
		ECOSAR utilized the SMILES notation to select the appropriate		
		compound class. The "Neutral Organics" structure-activity		
		relationship class was selected. Mortality data to Eisenia		
		fetida and other earthworm species was measured by Neuhauser,		
		et. al. (1985, 1986) for selected organic chemicals was		
		utilized by ECOSAR to determine the earthworm 14-day LC50 for		
		4-Vinylcyclohexene.		
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.		
		Reliability: (2) valid with restrictions		
		The value was calculated based on chemical structure as		
		modeled by EPI Suite. This robust summary has a reliability		
		rating of 2 because the data are modeled. 10-JUL-2006 (21) (45) (46)		
		10-JUL-2006 (21) (45) (46)		
		5.0 Toxical insting Matchaligm and Distribution		
		5.0 Toxicokinetics, Metabolism and Distribution		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		Type: Toxicokinetics		
		Species: other: comparative distribution and metabolism		
		studies in rats and mice		
		Method: Female B6C3F1 mice (17-23 g) and Fischer 344 rats (175-250 g)		
		were fasted overnight, administered 4-VCH (containing		
		14C-labelled material) by gavage at 400 mg/kg body weight and		
		subsequently sacrificed at selected time-points (1-48 hr		
		post-dose). The amount of radioactivity given (4-45 uCi/mouse;		
		4-80 uCi/rat) was varied to maximise detection of 14C-4-VCH in		
		the ovary at the later time-points used.		
		Excreta (urine, feces, exhaled air) were collected with the		
		animals housed in glass metabolism cages, with subgroups of		
		animals $(n = 3-4)$ sacrificed (carbon dioxide) at pre-selected		
		intervals (hourly or 4 hourly, up to 48 hr) for necropsy.		
		Major organs were weighed, sampled and stored at -20 degrees C		
		prior to sample oxidation in duplicate and quantitation of total 14C-carbon dioxide by liquid scintillation counting.		
		Radioactivity present in exhaled air (volatile fraction		
		trapped using 2-methoxyethyl ether, exhaled carbon dioxide		
		using Carbosorb/ethylene glycol; arranged in series) or urine		
		was subject to direct liquid scintillation counting, while 14C		
		in feces was digested with potassium hydroxide prior to sample		
		oxidation.		
		In other studies blood, muscle, skin, adipose tissue and ovary		
		(selected on the basis of results for disposition studies,		
		described above) from female rats and mice given 4-VCH (400		
		mg/kg body weight, i.p.) were sampled (1-8 hr post-treatment),		
		snap frozen (liquid nitrogen) and stored on dry ice prior to		
		processing (homogenisation/hexane extraction; decane internal		
		standard) and analysis for 4-vinylcyclohexene by GC-FID.		
		Tissue recovery studies demonstrated an extraction and		
		recovery efficiency of 80-89%, with a detection limit of at		
		least 0.05 ug 4-VCH/g tissue for ovary.		
		The time-course for appearance of		
		4-vinylcyclohexene-1,2-epoxide (4-VCH 1,2-EP) and		
		4-vinylcyclohexene-7,8-epoxide (4-VCH 7,8-EP) in blood was		
		investigated in female rats and mice given 4-VCH at 800 mg/kg		
		body weight by i.p. injection. Animals were sacrificed 0.5, 1,		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		2, 4 or 6 hr post-dose, blood (cardiac puncture) collected	comment	
		into heparinsed tubes and the epoxides quantified by capillary		
		GC after hexane extraction (cis-cyclodecane internal standard;		
		detectable at 1.25 nmol/sample and above).		
		NADPH-dependent metabolism of 4-VCH to 4-VCH 1,2-EP by hepatic microsomal		
		fractions from rat and mouse was investigated in		
		vitro (pH 7.5) in screw capped vials in the presence of		
		3,3,3-trichloropropene oxide (inhibitor of microsomal epoxide		
		hydrolase). Samples were analyzed using capillary GC (as for		
		blood samples, above).		
		Statistically significant differences between means were		
		investigated using Student's t-test.		
		Result: Elimination of radioactivity associated with oral		
		administration of a single oral dose of 4-VCH (400 mg/kg bwt)		
		was virtually complete in the mouse within 24 hr, whereas rats		
		required 48 hr. The main routes of excretion of 4-VCH-derived		
		radioactivity were urine and expired air, with small amounts in feces and the tissues:		
		In reces and the tissues.		
		Percent total dose		
		Parameter Rat Mouse		
		Time (hr) 48 24		
		Urine 52.1 57.7		
		Expired organics* 36.0 31.4		
		Feces 9.6 3.1		
		Tissues 2.4 1.8		
		Cage wash 0.6 2.9		
		Recovery 100.7 96.9		
		• negligible amounts of 14C-carbon dioxide excreted.		
		Tissue distribution studies generally demonstrated retention		
		of only trace amounts (up to 1%) of 4-VCH derived		
		radioactivity in skin, muscle, liver and blood from both		
		species 24 hr post-dose, with approx. 3% rat adipose tissue		
		(trace amounts in mouse). Levels in rat and mouse ovary were		
		minimal (<0.02% of dose in rat, 0.03% or less in mouse).		
		Comment: although percent retention of total administered dose		
		in ovary was low, the peak concentration of [14C]-derived		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		4-VCH equivalents (0.7-1.3 nmol/mg tissue, both species) was		
		comparable to that found in liver (1.1-1.6 nmol/mg).		
		Investigations into tissue distribution of the parent		
		substance (analysed as 4-VCH) showed that levels were greatest		
		in adipose tissue, which peaked in the mouse 1-2 hr post-dose		
		(approx. 4 nmol 4-VCH/mg tissue; negligible by 6 hr) but		
		continued to accumulate in the rat until at least 6 hr after		
		oral administration (approx. 6 nmol 4-VCH/mg tissue). The		
		concentration 4-VCH in other tissues was one tenth or less		
		than that of adipose tissue with negligible amounts remaining		
		6-8 hr post-dose, with slightly higher values obtained for		
		rats compared to mice.		
		Blood analyses for 4-VCH 1,2-EP indicated a peak in mice of 41		
		nmol/ml (2 hr post-dose) but 4-VCH 7,8-EP was absent (limit of		
		detection 2.5 nmol/ml). Neither metabolite was detectable in		
		blood from rats given 800 mg/kg 4-VCH by gavage.		
		Conversion of 4-VCH to epoxide metabolites by hepatic microsomal fractions		
		in vitro revealed that formation of the		
		1,2-epoxide was approx. 6.5-fold greater for mouse than for		
		rat when expressed on the basis of mg microsomal protein, or		
		4-fold greater when expressed as specific activity (per nmol		
		cytochrome P450):		
		4-VCH 1,2-EP		
		Species nmol/min/mg nmol/min/nmolP450		
		Rat 1.4 1.6		
		Mouse 9.1** 6.6**		
		** p<0.05		
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.		
		Conclusion: These studies demonstrate that urine and exhaled air are the		
		main routes of excretion of 4-VCH following oral (gavage)		
		administration to female rats and mice. Tissue distribution		
		studies indicated generally low levels of retention of 4-VCH		
		derived material in both species, with slight preferential		
		partitioning in adipose tissue but not ovary. Mice more		
		rapidly metabolize 4-VCH to the 1,2-epoxide than the rat.		
		Reliability: (2) valid with restrictions		
		Study available for review. Non-guideline experimental study.		
		Well reported methods and results, acceptable for evaluation.		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
-		10-JUL-2006 (57)		
		Type: Toxicokinetics Species: other: comparative distribution and metabolism studies in rats and mice		
		<pre>Method: Appearance of 4-VCH 1,2 epoxide (4-VCH 1,2-EP) in blood after treatment with 4-VCH was investigated in groups of female B6C3F1 mice (Harlan Spargue-Dawley, Indianapolis, IN; age 28 d; n = 3-4 per treatment) administered 0, 100, 400 or 800 mg 4-VCH/kg body weight by single i.p. injection in corn oil (2.5 ml/kg body weight). Animals were sacrificed 2 hr post-dose (carbon dioxide), blood collected by cardiac puncture and analyzed for 4-VCH 1,2-EP by capillary GC after hexane extraction (cis-cyclodecane internal standard). In other studies the time course for removal of 4-VCH (2.7 mmol/kg) or 4-VCH 1,2-EP (0.49 mmol/kg) from blood was investigated in female mice after i.p. administration. Groups of animals (n = 3-4 per time point) were sacrificed 0, 15, 30, 60 120, 180 and 240 minutes post-dose, blood collected (cardiac puncture) and analysed for 4-VCH 1,2-EP (as above) and 4-VCH (GC-FID after hexane extraction with decane internal standard). The AUC was estimated graphically. Comment: dose selection was based on ovarian toxicity studies performed by these authors and reported in section 5.8.3 of these Robust Summaries. The impact of chloramphenicol (an inhibitor of cytochrome P-450 mediated epoxidation; 0, 50, 100, 200 or 300 mg/kg body weight in saline) administered by i.p. injection 1 hr prior to 4-VCH treatment (800 mg/kg body weight, i.p. in corn oil) on the appearance of 4-VCH 1,2-EP in blood was also investigated in female mice (n = 4 per group). Hepatic microsomal fractions were also prepared from control (saline, i.p.) or chloramphenicol (200 mg/kg, i.p.) treated female mice 1 hr post-treatment, and NADPH-dependent conversion of 4-VCH (1 mM) to 4-VCH 1,2-EP followed in vitro (pH 7.5) in screw capped</pre>		
		vials in the presence of 3,3,3-trichloropropene oxide		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		<pre>(inhibitor of microsomal epoxide hydrolase). Samples were analysed using capillary GC (as for blood samples, above). Dose-response curves were obtained by non-linear regression, and significant differences between curves analyzed using the sum of squares of the two data sets under comparison and as a single pool to calculate ant F value. Student's t-test was used to determine the significance of differences between group means while multiple comparisons used one-way ANOVA and the Newman-Kuels range test. Result: The concentration of 4-VCH 1,2-EP in blood increased in a dose-related manner 2 hr after i.p. administration of 4-VCH to female mice: Dose 4-VCH 4-VCH 1,2-EP (mg/kg bW) (nmol/ml blood) 0 0.0 100 3.5 400 27 800 42 Graphical results showed that i.p. administration of overtly ovotoxic doses of 4-VCH (2.7 mmol/kg bW) or 4-VCH 1,2-EP (0.49 mmol/kg bW) resulted in clear differences in blood concentration/time profiles in female mice i.e. - from 5-15 min post-treatment, the blood concentration of 4-VCH 1,2-EP (approx. 100 nmol/ml blood); - from 30-120 min post-treatment, the concentration of 4-VCH 1,2-EP (approx. 100 nmol/ml blood); - from 30-120 min post-treatment, the concentration of 4-VCH (max. approx. 25 nmol/ml blood and declining but detectable thereafter) was much greater than that of 4-VCH 1,2-EP (<10 nmol/ml blood at 30 min, undetectable from 60 min); However the AUCE for blood concentration were comparable (50 and 26 nmol/ml*hr for 4-VCH or 4-VCH 1,2-EP treated mice, respectively). Administration of a single dose of chloramphenicol 1 hr prior to treatment with 4-VCH inhibited formation of 4-VCH 1,2-EP and its appearance in blood in a dose-dependent manner: Chloramphenicol 4-VCH 1 2-EP</pre>		
L		Chloramphenicol 4-VCH 1,2-EP		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		(mg/kg bw) (nmol/ml blood)		
		0 100%		
		50 73% *		
		100 50% *		
		200 40% *		
		300 45% *		
		* P<0.05		
		(Values obtained by interpolation from graphical data.)		
		Conversion of 4-VCH to 4-VCH 1,2-EP by hepatic microsomal fractions from female mice in vitro was also decreased after pre-treatment with chloramphenicol (200 mg/kg bw): 4-VCH 1,2-EP		
		(nmol/min/mg Cytochrome P-450		
		microsomal protein) (nmol/mg protein)		
		Control (saline)8.80.88Chloramphenicol2.7 **0.75 *		
		Chloramphenicol 2.7 ** 0.75 * * P<0.05		
		** P<0.01		
		Comment: part of this decrease may reflect a small but significant reduction in microsomal P-450 content. Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.		
		Conclusion: Results from these investigations demonstrate differences in		
		the toxicokinetics of 4-VCH and 4-VCH 1,2-EP in mouse, with		
		the latter exhibiting more rapid uptake and clearance from		
		blood after i.p. administration than the parent substance.		
		Metabolism of 4-VCH to 4-VCH 1,2-EP in vivo and by hepatic		
		microsomal fractions in vitro was inhibited by pre-treatment		
		of mice with chloramphenicol (an epoxide hydrolase inhibitor).		
		Reliability: (2) valid with restrictions		
		Study available for review. Non-guideline experimental study.		
		Well reported methods and results, acceptable for evaluation.		
		10-JUL-2006 (58)		
		In Vitro/in vivo: In vitro		
		Type: Distribution		
		Species: other: rats and mice		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
	0	<pre>GLP: yes Method: Air:tissue partition coefficients for 4-VCH (99% pure) and its 1,2 epoxide (>95% pure) and 7,8 epoxide (>97% pure) metabolites were determined using a vial equilibration technique (Gargas et al (1989) Toxicol. Appl. Pharmacol. 98, 87-99) and blood, liver, lung ovary, fat and muscle preparations obtained from untreated female Cr1:CD rats (body weight = 200-300 g) and untreated female B6C3F1 mice (body weight = 26-37 g). Incubations (2-4 replicates per tissue, dependent on amount of sample available) were conducted in vials pre-treated with silicone-based glass deactivator (to minimize adsorption of test substance) containing enzyme deactivated tissue homogenate, pre-equilibrated to 37 degrees C. Experiments (37 degrees with mixing, duration 20-180 min) were initiated by removal of 0.5-1.0 ml of headspace air and its replacement with an equivalent of vaporized test substance (750-2000 ppm). 1,1,1-Tichloropropene oxide was added to vials containing epoxide substrates to prevent expression of any residual epoxide hydrolase activity. Headspace samples were taken at regular intervals and analyzed by GC-FID. Partition coefficients were calculated using Microsoft Excel. Comment: no equilibrium was reached in the test systems (presumed due to adsorption of test substances to vial wall) with the derived partition coefficients changing with time (as the concentration in the headspace altered). This was corrected by plotting the apparent partition coefficients against time, and back-extrapolating to time zero using linear regression. Comment: partition coefficients for 4-VCH diepoxide could not be measured since it was insufficiently volatile for the methods used in this study. Result: 4-VCH The solubility of 4-VCH in mouse tissues and blood was</pre>	response to	to comment
		generally slightly higher than the corresponding rat tissue, with the exception of ovary. It was very soluble in fat		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		relative to air. Rat Mouse Blood:air 17 20 Liver:air 63 88 Lung:air 26 52 Ovary:air 81 41 Fat:air 332 899 Muscle:air 20 47 4-VCH 1,2 epoxide The solubility of 4-VCH 1,2 epoxide in mouse tissues and blood was generally higher than the corresponding rat tissue, with the exception of ovary. It was very soluble in fat, rat ovary and mouse liver: Rat Mouse Blood:air 171 291 Liver:air 302 913 Lung:air 149 394 Ovary:air 695 353 Fat:air 2152 6346 Muscle:air 109 302 4-VCH 7,8 epoxide The solubility of 4-VCH 7,8 epoxide in mouse tissues and blood was generally higher than the corresponding rat tissue, with the exception of liver (greater for rat) and ovary (comparable for rats and mice). It was very soluble in fat.		
		Rat Mouse Blood:air 230 113 Liver:air 365 275 Lung:air 244 522 Ovary:air 497 435 Fat:air 1072 4727 Muscle:air 138 208		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.	comment	
		Conclusion: Air:tissue partition coefficients for 4-VCH and its 1,2 and		
		7,8 epoxides in mouse tissues and blood were generally higher		
		than that of the corresponding rat tissue, with the exception		
		of ovary (where the air:tissue partition coefficient was		
		generally higher for the rat). Air: fat partition coefficients		
		were greater than those for other tissues and blood in both		
		species. Tissue/blood solubility of the epoxide metabolites		
		was consistently higher than that of the parent substance in		
		both rats and mice.		
		Reliability: (2) valid with restrictions		
		Study available for review. Non-guideline GLP-compliant		
		experimental study. Well reported methods and results,		
		acceptable for evaluation.		
		10-JUL-2006 (32)		
		In Vitro/in vivo: In vitro		
		Type: Metabolism		
		Species: other: rats and mice		
		Method: Adult female mice (B6C3F1 strain, Harlan Sprague Dawley,		
		Indianapolis, IN; 129/J strain, Jackson Laboratories, Bar		
		Harbor, ME) and F344 rats (Harlan Sprague Dawley) were given		
		0.1% phenobarbital in drinking water for 6 days or		
		dexamethasone (100 mg/kg body weight, in corn oil) by i.p.		
		injection for 4 days (B6C3F1 mice only). Animals were then		
		sacrificed (cervical dislocation) and the hepatic microsomal		
		fraction isolated from individual rat livers, or from two		
		pooled 2 mouse livers.		
		In some studies B6C3F1 mice were pre-treated with		
		chloramphenicol sodium succinate (as chloramphenicol base, 200		
		mg/kg in saline) by i.p. injection (2.5 ml/kg body weight) one		
		hour prior to sacrifice and preparation of the microsomal		
		fraction.		
		Androsterone hydroxylase and testosterone hydroxylase		
		activities present in hepatic microsomal fractions were		
		quantified using published methods. Hepatic microsomal 4-VCH		
		epoxidase activity (1 mM 4-VCH, 0.1-0.5 mg/ml microsomal		
		protein, NADPH generating system) was determined using		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		capillary GC; under these conditions, no inhibitor of epoxide		
		hydrolase was required. Microsomal fractions from control or pre-treated		
		rats and mice were used in these studies, with		
		some incubations performed in the presence of antibodies		
		specific to rat- or mouse cytochrome P450 isozymes (anti-rat		
		P450 PB-B, reactive to P450IIB; anti-rat P450PCNb, reactive to		
		P450IIIA; anti-mouse P45015a, reactive to P450IIA).		
		Microsomal proteins were separated using standard Western blot		
		methods, visualized using horseradish peroxidase (Immuno-Blot		
		assay kit) and immunoreactive material quantified using a		
		Joyce-Lobel laser densitometer.		
		Student's t-test was used to compare means.		
		Result: Chloramphenicol pre-treatment of female B6C3F1 mice resulted		
		in a statistically significant loss of testosterone		
		hydroxylation at the 15a (decreased 46%) and 6B positions		
		(62%), consistent with it inhibiting cytochrome P450IIA- and		
		cytochrome P450IIIA-dependent isozymes.		
		Pre-treatment of B6C3F1 mice with phenobarbital (inducer of		
		P450IIB) increased metabolism of 4-VCH to 4-VCH 1,2-EP approx.		
		5-fold and hydroxylation of testosterone by approx. 3-5 fold.		
		Pre-treatment with dexamethasone (inducer of P450IIIA)		
		increased 4-VCH epoxidation approx. 3-fold, and testosterone		
		hydroxylation in the 16a and 6B positions by around 2 and		
		4-fold, respectively.		
		These findings suggest involvement of cytochrome P450IIB and		
		P450IIIA in metabolism of 4-VCH by female mice.		
		Pre-treatment of female F344 rats with phenobarbital increased hepatic microsomal 4-VCH epoxidase activity by around 9-fold		
		and androsterone 16B hydroxylation by approx. 47-fold, and		
		support a role for cytochrome P450IIB in the metabolism of		
		4-VCH.		
		Pre-incubation of hepatic microsomes from untreated female		
		B6C3F1 mice with anti-rat P450PB-B immunoglobulin G resulted		
		in a 35% decrease in 4-VCH epoxidase activity and a 48%		
		decrease in testosterone-16a-hydroxylase activity (negligible		
		effect on testosterone hydroxylation in other positions).		
		Pre-incubation with anti-rat P450PCNb immunoglobulin G was		
		without effect on epoxidation of 4-VCH while		
		without circle on epoxidation of a ven white		1

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		testosterone-6B-hydroxylation was inhibited by 68%. Incubation		
		of control mouse microsomal fractions with anti-rat P45015a		
		immunoglobulin G decreased 4-VCH epoxidase activity by 47%,		
		and testosterone-15a-hydroxylase activity by 86%. These		
		results indicate that cytochrome P450IIA and IIB (but not		
		IIIA) are responsible for 4-VCH epoxidase activity in		
		untreated female mice.		
		In studies using microsomal fractions from female F344 rats,		
		anti-rat P450PB-B immunoglobulin G decreased hepatic		
		microsomal epoxidation of 4-VCH and		
		androsterone-16B-hydroxylase activity by 33% and 38%,		
		respectively, in control preparations and by 89% and 93% in phenobarbital-		
		induced fractions, respectively. These findings		
		indicate that cytochrome P450IIB isozymes play a relatively		
		minor role in the metabolism of 4-VCH in untreated female		
		rats, but are induced and responsible for increased metabolism		
		of 4-VCH after phenobarbital treatment.		
		A role for cytochrome P450IIB in the metabolism of 4-VCH was		
		also demonstrated in studies using strain 129/J mice, which		
		possess low constitutive levels of this isozyme in the liver.		
		In these experiments, expression 4-VCH epoxidase- and		
		testosterone-16a-hydroxylase activities in control female		
		129/J mice were both around one third lower than those of		
		control female B6C3F1 mice, but both were increased 8 to		
		9-fold after phenobarbital pre-treatment.		
		Western blot analysis confirmed that constitutive levels of		
		hepatic cytochrome P450IIB were around 4-fold lower in female		
		129/J mice relative to female B6C3F1 mice but is inducible in		
		both strains after phenobarbital treatment. Cytochrome P450IIB		
		was undetectable in untreated female F344 rats, but increased		
		after treatment with phenobarbital. Immunoblots obtained using		
		anti-mouse P45015a immunoglobulin showed the presence of a		
		single band (cytochrome P450IIA) in hepatic microsomes from		
		female B6C3F1 mice which was induced following treatment with		
		phenobarbital. No immuno-reactivity corresponding to		
		cytochrome P450IIA was present in female F344 rats.		
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.		
		Conclusion: Enzyme and antibody inhibition/induction studies demonstrate		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to	RAC's response to comment
			comment	
		that constitutively-expressed hepatic microsomal cytochrome		
		P450IIA and P450IIB are the isozymes primarily responsible for		
		conversion of 4-VCH to the 1,2 epoxide by untreated female		
		B6C3F1 mice. Constitutive forms of cytochrome P450IIB present		
		in female F344 rat liver are also able to metabolise 4-VCH to		
		the epoxide, however this was a relatively minor pathway in		
		control rats relative to that present in control mice. These		
		differences in enzyme expression and metabolism of 4-VCH may		
		be responsible for the differential susceptibility of rats and		
		mice to 4VCH-induced ovarian neoplasia.		
		Reliability: (2) valid with restrictions		
		Study available for review. Non-guideline experimental study.		
		Reasonably well reported methods and results, acceptable for		
		evaluation. (59)		
		10-JUL-2006 (59) In Vitro/in vivo: In vitro		
		Type: Metabolism		
		Species: rat		
		Method: Washed hepatic microsomal preparations from untreated male		
		Wistar rats (180-200 g) were used to investigate the		
		NADPH-dependent metabolism of 4-VCH to monoepoxide and diol products in		
		vitro (pH 7.4, 37 degrees C, 5 min). The		
		incubation mixtures were extracted with n-hexane (d-limonene		
		as internal standard for epoxy metabolites) or ethyl acetate		
		(n-tetradec-1-ene internal standard for diol metabolites), and		
		quantified by GC-FID with structure confirmed by MS.		
		Result: Incubation of 4-VCH with rat microsomal fraction and a NADPH		
		regenerating system resulted in the formation of		
		4-vinylcyclohex-1-ene 1,2-glycol (4-VCH 1,2 DL) and		
		(-(1',2'-dihydroxyethyl)-cyclohex-1-ene (4-VCH 7,8 DL) in the		
		ratio 3.5:1. Inclusion of 3,3,3-trichloropropene oxide (TCPO)		
		in the incubation mixture lead to formation of the 1,2-epoxide		
		(4-VCH 1,2 EP) and the 1',2' epoxide (4-VCH 7,8 EP) in the		
		ratio 4:1, with complete inhibition of diol formation.		
		pmol/mg protein/min		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		1,2 EP 7,8 EP 1,2 DL 7,8 DL		
		- TCPO ND ND 534 150		
		+ TCPO 494 120 ND ND		
		ND = not detected		
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.		
		Conclusion: Results from this study demonstrate that metabolism 4-VCH by		
		rat hepatic microsomal enzymes to monoepoxide and diol		
		products, with epoxidation occurring preferentially at the		
		Cl-double bond. Detection of the 1,2 and 7,8 monoepoxide		
		products in vitro is only possible, however, after inclusion		
		the epoxide hydrolase inhibitor 3,3,3-trichloropropene,		
		suggesting further metabolism to the diol is normally rapid.		
		Reliability: (2) valid with restrictions		
		Study available for review. Non-guideline experimental study. Well reported methods and results, acceptable for evaluation.		
		10-JUL-2006 (68)		
		In Vitro/in vivo: In vitro		
		Type: Metabolism		
		Species: mouse		
		Method: Male albino Swiss mice (25-35 g; n = 5-8 per treatment) were		
		given 4-VCH, 4-vinylcyclohexene monoxide (4-VCH MO; isomeric		
		form not stated) and 4-vinylcyclohexene dioxide (4-VCH DO;		
		isomeric form not stated) by i.p. injection (500 mg/kg body		
		weight/day in corn oil, on two consecutive days; 0.3-0.5 ml		
		corn oil per injection).		
		Animals were sacrificed 24 hr after the second injection, the		
		livers removed and pooled cytosol- and microsomal fractions		
		isolated by differential centrifugation.		
		Cytochrome P450 and b5 content, NADPH cytochrome c reductase		
		activity, aminopyrine-N-demethylase activity,		
		p-nitroanisole-O-demethylase activity,		
		glutathione-S-transferase activity (toward styrene oxide) and		
		epoxide hydrolase activity (toward safrole oxide) were quantified using		
		standard methods (3-4 replicates per assay).		
		Kinetic constants (Km, Vmax) for the interaction of 4-VCH DO		
		with mouse hepatic glutathione-S-transferase was also		
		investigated (no further details).		
		The impact of 4-VCH and its monoxide and dioxide metabolites		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		on cytosolic glutathione concentration was also investigated		
		(time-course study with animals sacrificed 0, 1, 2, 4, 10 and		
		24 hr post-dose).		
		Differences between the groups were analyzed using Student's		
		t-test.		
		Result: Aminopyrine-N-demethylase (AP-N-D), NADPH-cytochrome c		
		reductase (Cyt c) and epoxide hydrolase (EH) activities and		
		microsomal content cytochrome P450 (P450) content were		
		increased significantly in mice treated with 4-VCH and 4-VCH monoxide:		
		nmol/min/mg protein nmol/mg protein		
		AP-N-D Cyt c EH P450		
		Control (corn oil) 12.5 51 105 0.86		
		4-VCH 21.5* 74* 113 0.96		
		4-VCH MO 28.7* 102* 147* 1.26*		
		Comment: p-Nitroanisole-O-demethylase, cytochrome b5 content		
		and glutathione-S-transferase activity were comparable in		
		control and treated animals and are not tabulated above.		
		Comment : comparable data for 4-VCH DO treated mice not		
		collected/reported.		
		Graphical results indicated that the glutathione (GSH) content		
		of mouse liver declined markedly 1-4 hr after treatment with		
		4-VCH and its monoxide- and dioxide metabolite, but had		
		recovered to control levels within 24 hr post-dose:		
		GSH content		
		Time (hr) 4-VCH 4-VCH MO 4-VCH DO 0 100% 100% 100%		
		1 42% 13% 10%		
		2 19% 12% 4%		
		45%10% - (a)		
		10 62% 69% 45%		
		24 93% 98% 93%		
		(a) = data not reported		
		Values obtained by interpolation from graphical data.		
		A Km of 3.7 mM and Vmax of 66 nmol/min/mg protein were		
		obtained for 4-VCH DO and mouse hepatic glutathione		
		transferase.		
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.		

Date	Country / Organisation /	Comment	Dossier submitter's	RAC's response to comment
	MSCA		response to comment	
		Conclusion: Pre-treatment of male mice with 4-VCH or its monoxide (2 x 500		
		mg/kg body weight, i.p.) altered expression of certain hepatic		
		microsomal enzymes (N-demethylase, cytochrome c reductase,		
		epoxide hydrolase) and cytochrome P450 content, while a single dose i.p.		
		treatment with 4-VCH or its monoxide- or dioxide		
		metabolites rapidly decreased hepatic glutathione levels		
		within 1-2 hours of treatment. 4-VCH dioxide was also shown to be a good substrate for mouse hepatic glutathione transferase		
		(Km 3.7 mM, Vmax 66 nmol/min/mg protein). These findings		
		suggest that 4-VCH may modulate its own metabolism in vivo.		
		Reliability: (2) valid with restrictions		
		Study available for review. Non-guideline experimental study.		
		Briefly reported methods, adequate results, suitable for		
		evaluation.		
		10-JUL-2006 (23)		
		In Vitro/in vivo: In vitro		
		Type: Metabolism		
		Species: other: rats and mice		
		Method: Liver, lung and ovary microsomal fractions were prepared from		
		female Crl:CD BR rats (approx. 42-71 days old, body weight		
		200-300g) and female B6C3F1 mice (approx. 72 days old, body		
		weight 20-27 g) by differential centrifugation, and stored		
		frozen at -80 degrees C until use.		
		Experimental incubations (15 min, 37 degrees C) were performed		
		in sealed vials containing microsomal fraction in phosphate		
		buffer (pH 7.4), magnesium chloride and EDTA. An NADPH		
		regenerating was included in incubations where cytochrome		
		P450-dependent metabolism was predicted but omitted when		
		epoxide hydrolase activity (NADPH-independent process) was		
		monitored. 1,1,1-Trichloropropene (inhibitor of epoxide		
		hydrolase) was included in experiments where formation of an		
		epoxide metabolite was predicted. Control incubations		
		(containing boiled microsomal fraction) were run in parallel.		
		The following metabolic processes were investigated:		
		- conversion of 4-VCH to 4-VCH 1,2-epoxide and 4-VCH		

ANNEX 2 - COMMENTS	AND RESPONSE TO	COMMENTS	ON CLH PROPOSAL	ON 4 VINYLCYCLOHEXEN	E (VCH)
--------------------	-----------------	----------	-----------------	----------------------	---------

Date	Country /		Comment		Dossier	RAC's response
	Organisation / MSCA				submitter's response to	to comment
					comment	
		7,8-epoxide;				
		- conversion of 4-VCH 1,2-e	poxide to 4-VCH diep	oxide and		
		4-VCH 1,2-diol;				
		- conversion of 4-VCH 7,8-e	poxide to 4-VCH diep	oxide and		
		4-VCH 7,8-diol; - hydrolysis of 4-VCH diepo	wide			
		Initial concentrations for		rtod) woro		
		stated to be in excess of t				
		substrate and covered at le				
		upper limit of 5 mM. With t				
		(limited tissue availabilit				
		duplicate.	••••	-		
		Samples were extracted with				
		addition of cyclodecane int	ernal standard and a	nalyzed by		
		GC-FID.				
		The air:microsomal fraction	-			
		was determined (Gargas et a 98, 87-99) and used to corr				
		the experimental incubation		iosses during		
		Rates of metabolism, correct		loss were		
		calculated per nmol cytochr	_			
		protein. Kinetic constants				
		EZ-FIT computer program.		5		
		Measurement of other parame	ters (microsomal cyt	ochrome P450		
		content, microsomal protein				
		Result: Conversion of 4-VCH				
		Metabolism of 4-VCH to the				
		rates in liver and lung (un				
		species) and returned the f	5			
		Km (mM)	Vmax			
		(mM) Rat liver 1.58	per mg protein 0.20	per nmol P450 0.13		
		Mouse liver 2.71		7.36		
		Rat lung 1.06	1.39	7.64		
		Mouse lung 0.61	3.49	29.5		
		Comment: Vmax presented as				

Date	Country / Organisation / MSCA		C	omment		Dossier submitter's response to comment	RAC's response to comment
		nmol/min/nmol cytochro	me P450.				
				1 0 ' 1	, ,, ,		
		Vmax/Km ratios for for					
		lung (when expressed p markedly greater for m			(450) Was		
		markedry greater for m	ice compared c	o racs.			
				x/Km			
			per mg prote	—			
		Rat liver	0.13		08		
		Mouse liver	4.10		71		
		Rat lung	1.31		21		
		Mouse lung	5.72	48	.4		
		Conversion of 4-VCH to Metabolism of 4-VCH to detectable rates in li lung or ovary from eit kinetic constants: Rat liver Mouse liver Rat lung Mouse lung	the 7,8 epoxi ver and mouse her species) a (mM) per 1.10 2.14	de proceeded lung (undete nd returned Vmax mg protein 0.007 0.91 ND	ctable in rat the following		
		ND = not detected Comment: Vmax presente nmol/min/nmol cytochro		mg microsoma	l protein and		
		Vmax/Km ratios for for	mation of the	7,8 epoxide	(when		
		expressed per mg prote mice tissue compared t	in and per mg				
		Vmax/Km					
			per mg prot	ein	per nmol P450		
		Rat liver	0.006		0.005		
		Mouse liver	0.43		0.29		
		Rat lung					

Date	Country / Organisation / MSCA			Comment		Dossier submitter's response to comment	RAC's response to comment
		Mouse lung	2.	73	23.1	comment	
		Conversion of 4-VCH 1 Metabolism of the 1,2 detectable in liver an in ovary from either s kinetic constants:	,2-epoxide epoxide t nd lung fr	to 4-VCH 1,2 diep o 4-VCH diepoxide om rats and mice (oxide: was undetectable		
				Vmax			
					per nmol P450		
		Rat liver	0.59 0.51	3.69	3.80		
		Mouse liver Rat lung	0.51 0.29	5.35 2.06	3.64 14.4		
		Mouse lung	0.29 0.10	2.06	14.4 12.7		
		Comment: Vmax presente					
		nmol/min/nmol cytochro			procern and		
		Vmax/Km ratios for for per mg protein and per compared to rat tissue	r mg P450) e:	were greater for	mice tissue		
				Vmax/Km			
			per mg p		per nmol P450		
		Rat liver	6.25 10.5		6.44 7.13		
		Mouse liver Rat lung	10.5		7.13 49.7		
		Mouse lung	27.0		49.7 127		
		Conversion of 4-VCH 7		to 4-VCH diepovid			
		Metabolism of the 7,8					
		detectable in liver an	-	—			
		in ovary from either s					
		kinetic constants:	_ ,		2		
			Km	Vmax			
					per nmol P450		
		Rat liver	0.67		6.84		
		Mouse liver		8.83	5.94		
		Rat lung	0.60	1.35	11.2		
		Mouse lung	0.20	11.8	59.8		

Date	Country / Organisation / MSCA		Comment		Dossier submitter's response to comment	RAC's response to comment
		Comment: Vmax presente	ed as nmol/min/mg mic	rosomal protein and		
		nmol/min/nmol cytochro				
		Vmax/Km ratios for for	_			
		epoxide (when expresse				
		comparable in liver bu	it greater for mouse	lung when compared		
		to rat lung:				
				nax/Km		
			per mg protein		150	
		Rat liver	14.1	10.2		
		Mouse liver	15.5	10.2		
		Rat lung	2.25	18.7		
		Mouse lung	59.0	299		
		Conversion of 4-VCH er	poxides to 4-VCH diol	3:		
		Metabolism of the 1,2				
		in liver (both species	-	_		
		4-VCH 7,8 diol only ir	ı rat liver:			
			1,2 epoxide	7,8 epoxide		
			Km Vmax(+)	Km Vmax(+)		
			(mM)	(mM)		
		Rat liver	0.19 6.53	0.57 135.8		
		Mouse liver	0.14 5.76	ND ND		
		ND = not detected				
		(+) = expressed only p	per mg microsomal pro	tein (independent of		
		cytochrome P450)				
		Vmax/Km ratios for for	mation of the 1 2 di	ol from the 1.2		
		epoxide were 34.4 and				
		respectively, and 238				
		epoxide by rat liver.				
		Hydrolysis of 4-VCH di	epoxide:			
		Hydrolysis of 4-VCH di		a tetrol		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		metabolite) was detectable in rat and mouse liver and lung,		
		and in rat ovary:		
		Km Vmax(+) Vmax/Km		
		(mM)		
		Rat liver 0.19 5.51 29.0		
		Mouse liver 0.03 0.63 21.0		
		Rat lung(a) 0.39		
		Mouse lung 1.06		
		Rat ovary 0.90		
		Mouse ovary(b)		
		(+) = expressed only per mg microsomal protein (independent of cytochrome P450)		
		(a) = insufficient data for calculation		
		(b) = insufficient tissue to perform experiment		
		Vmax/Km ratios for hydrolysis of the diepoxide were comparable		
		for rat and mouse liver.		
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.		
		Conclusion: Metabolic processes leading to the formation of 4-VCH epoxides		
		and diepoxides were generally more active (higher Vmax, lower		
		Km) in microsomal fractions from mouse liver and lung than in		
		comparable tissue from rats. Hydrolysis of 4-VCH diepoxide was		
		recorded in rat and mouse liver and lung and also in rat ovary		
		microsomes (insufficient material for studies on mouse ovary),		
		with the greatest Vmax returned by rat liver. Species		
		differences in the balance of these activation and		
		detoxication processes may result in lower systemic exposure		
		to epoxide and diepoxide metabolites in the rat relative to		
		the mouse after equivalent exposures to 4-VCH.		
		Reliability: (2) valid with restrictions		
		Study available for review. Non-guideline experimental study.		
		Well reported methods and results, acceptable for evaluation.		
		10-JUL-2006 (33)		
		In Vitro/in vivo: In vitro		
		Type: Metabolism		
		Species: human		
		Method: Samples of human liver were obtained from 2 sources. Eight		

Date	Country / Organisation / MSCA			Comment		Dossier submitter's response to comment	RAC's response to comment
		_		rom organ donors accide			
		_		ned from patients underg			
				mal liver tissue resecte	ed away from		
		tumorous mate	rial.				
		All samples w	ere placed	in Sack's buffer for no	ot more than 6		
		_	-	preparation. The micros			
		was isolated	by differe	ntial centrifugation, an	nd metabolic		
				d by measuring cytochrom			
			ochrome P4	50 content, and aniline	hydroxylase		
		activity.					
		The methods u	sed for mi	crosomal incubation and	4-VCH		
		epoxidation w	ere report	ed as in Smith, et al (1	1990a). Vials		
		containing mi	crosomal p	rotein, NADP, glucose-6	-phosphate		
				6-phosphate. MgCl2, EDT			
				ide in methanol, were p			
		_	_	e-incubated for 3 min a	z 37 degrees C,		
				ted by the addition of			
		-		e reaction was terminate			
				After organic extraction was analyzed by gas-liqu			
		chromatograph	-	was analyzed by gas-lig			
		5 1	÷	s, from 12 human livers	metabolized 4-VCH in		
				,8-epoxides, even in the			
				major metabolite was V			
				of the 1,2-epoxide range			
		1.25 nmol/mg	microsomal	protein/min. VCH-7,8-e	poxide was		
			es approxi	mately 6 fold slower that	an the		
		1,2-epoxide.					
		Sample	Sex	VCH-1,2-Epoxide	VCH-7,8-Epoxide		
				(nmol/min/mg)	(nmol/min/mg)		
		D08	M	0.23	<0.01		
		D09 D10	M M	0.68 0.85	0.11 0.11		
		D10 D14	M M	0.85	<0.01		
		D14 D13	M	0.56	0.08		
		D13	M	0.54	<0.01		

Date	Country / Organisation / MSCA			Comment		Dossier submitter's response to	RAC's response to comment
						comment	
		D07 F	(0.45	0.06		
		D20 F	(0.36	0.07		
		R09 F	(0.82	0.15		
		R10 F	· ·	1.14	0.20		
		R12 F	(0.68	0.11		
		R13 F	:	1.25	0.21		
		No dramatic differ females in the pro			es and		
		Parameter	Male/Female	Female	Male		
		nmol/min/mg	0.67±0.30	0.71±0.35	0.57±0.20		
		Number of samples	12	5	6		
		4-VCH epoxidase ac fractions in vitro Reliability: (2) v Study available for Reasonably well re evaluation. 10-JUL-2006	nst rates of mo epoxide hydroi e of VCH epoxid Vinylcyclohexen sults demonstra tivity in human alid with restr r review. Non-9	ouse and rat epox lase inhibitor wa des in human micr ne, CAS No. 100-4 ate the presence n human hepatic m rictions guideline experim	idation from s required to osomes. 0-3. of detectable levels icrosomal ental study.	of	
		5.1 Acute Toxicity 5.1.1 Acute Oral Toxic Type: LD50 Species: rat Strain: other: Car Sex: male/female No. of Animals: 5 Doses: log 2 serie	worth-Wistar				

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to	RAC's response to comment
		Value: = 3.08 ml/kg bw	comment	
		Method: other: see methods GLP: no		
		Method: Groups of 5 rats (age 4-5 weeks, bw 90-120 g) were intubated		
		and given a single dose of undiluted 4-VCH (doses arranged in		
		a log 2 series). Rats observed for 14 days. LD50 calculated by		
		the method of Thompson.		
		Remark: This LD50 value has been referenced many times in the		
		literature, however review of the primary data source reveals		
		that this information is for screening purposes only, thus the		
		methods used are not well documented.		
		Result: LD50 = 3.08 ml/kg bw (+/- 1.96 SD = $2.49-3.81 \text{ ml/kg bw}$) after		
		oral gavage administration.		
		Comment: based on a density of 0.8299 g/ml, this is equivalent		
		to 2560 mg/kg body weight.		
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.		
		Reliability: (2) valid with restrictions		
		Study available for review. Pre-guideline, pre-GLP		
		investigation. Briefly described methods, limited reporting of		
		results but acceptable for assessment.		
		10-JUL-2006 (60) (61)		
		5.1.2 Acute Inhalation Toxicity		
		Type: LCO		
		Species: rat		
		Strain: no data		
		Sex: male/female		
		No. of Animals: 6		
		Doses: limit test: saturated vapor		
		Method: other: see methods		
		GLP: no		
		Method: 6 male or female albino rats were exposed to vapor-laden air		
		for exposure periods of 15 min to 8 hr (log 2 series).		
		Remark: This value has been referenced many times in the literature,		
		however review of the primary data source reveals that this		
		information is for screening purposes only, thus the methods used are not		
		well documented.		
		Result: There were no deaths following 15 minute exposure to a		
		saturated atmosphere of 4-VCH vapor.		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.		
		Reliability: (2) valid with restrictions		
		Study available for review. Pre-guideline, pre-GLP		
		investigation. Briefly described methods, limited reporting of		
		results but acceptable for assessment.		
		10-JUL-2006 (60) (61)		
		Type: LC50		
		Species: rat		
		Strain: no data		
		Sex: male/female		
		No. of Animals: 6		
		Doses: limit test: 8000 ppm		
		Value: < 8000 ppm		
		Method: other: see methods		
		GLP: no		
		Method: Groups of 6 male or female albino rats were exposed to 8000		
		ppm 4-VCH vapor for 4 hr, then observed for a 14 day follow-up		
		period. The reported exposure was a nominal value (based on		
		weight of material vaporized) and not verified analytically.		
		Remark: This LC50 value has been referenced many times in the		
		literature, however review of the primary data source reveals		
		that this information is for screening purposes only, thus the		
		methods used are not well documented.		
		Result: A 4 hr exposure of 8000 ppm 4-VCH killed 4/6 rats, indicating		
		the LC50 is below 8000 ppm.		
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.		
		Reliability: (2) valid with restrictions		
		Study available for review. Pre-guideline, pre-GLP		
		investigation. Briefly described methods, limited reporting of		
		results but acceptable for assessment.		
		$10-JUL-2006 \tag{60} \tag{61}$		
		Remark: A LC50 value of 6095 ppm is reported for the rat.		
		This toxicity value has been referenced by others in the		
		literature; however the primary data source has not been		
		discovered. This report is a review document, from 2001.		
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3. Reliability: (4) not assignable		
l		Secondary literature.		
		Secondary interacule.		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		10-JUL-2006 (1)		
		Remark: A LC50 value of 10610 ppm is reported for the mouse.		
		This toxicity value has been referenced by others in the		
		literature; however the primary data source has not been		
		discovered. This report is a review document, from 2001.		
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.		
		Reliability: (4) not assignable		
		10-JUL-2006 (1)		
		5.1.3 Acute Dermal Toxicity		
		Type: LD50		
		Species: rabbit		
		Strain: New Zealand white		
		Sex: male		
		No. of Animals: 4		
		Doses: not reported		
		Value: >= 20 ml/kg bw		
		Method: other: see methods		
		GLP: no		
		Method: Fur was clipped from the trunk of 4 male rabbits. Dose applied		
		and occluded with an impervious plastic film for 24 hours,		
		during which time animals were immobilized. Observed for 14		
		days post-treatment. LD50 measured using the Thompson method.		
		Remark: This LD50 value has been referenced many times in the		
		literature, however review of the primary data source reveals		
		that this information is for screening purposes only, thus the		
		methods used are not well documented.		
		Result: LD50 = 20 ml/kg bw, 24 hr occluded application. Comment: the method notes that treatment volumes in excess of		
		20 ml/kg cannot be retained in contact with the skin. It is therefore possible that this was a 'limit test' and that the		
		actual LD50 was, in fact, greater than 20 ml/kg. No		
		information on mortality was provided, however.		
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.		
		Reliability: (2) valid with restrictions		
		Study available for review. Pre-guideline, pre-GLP		
		investigation. Briefly described methods, limited reporting of		
		results but acceptable for assessment.		
		10-JUL-2006 (60) (61)		
				1]

RAC's response Country / Dossier Date Comment **Organisation** / to comment submitter's MSCA response to comment **5.2 Corrosiveness and Irritation 5.2.1 Skin Irritation** Species: rabbit **Concentration:** other: undiluted Exposure: Open **Exposure Time:** 24 hour(s) No. of Animals: 5 **Result:** moderately irritating Method: other: see methods GLP: no Method: Skin reactions were recorded 24 hr after application of 0.01 ml of undiluted sample to clipped albino rabbit skin (n = 5animals). Results are based on the severest reaction present, based on the following scale: Grade 1 = no reaction Grade 2 = minimal capillary injection Grade 6 = necrosisComment: the test site was uncovered (non-occluded) and rapid evaporative loss of test sample seems probable. Remark: This irritation value has been referenced many times in the literature, however review of the primary data source reveals that this information is for screening purposes only, thus the methods used are not well documented. **Result:** Moderate skin irritation (Grade 4) was reported using the authors' own scoring system. Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3. **Reliability:** (2) valid with restrictions Study available for review. Pre-quideline, pre-GLP investigation. Briefly described methods, limited reporting of results but acceptable for assessment. 10-JUL-2006 (60) (61) **5.2.2 Eye Irritation** Species: rabbit Concentration: other: undiluted Dose: other: not stated Exposure Time: unspecified

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		Result: slightly irritating		
		Method: other: see methods		
		GLP: no		
		Method: Corneal reactions were recorded following instillation into		
		rabbit eye.		
		Results represent the degree of corneal necrosis present,		
		based on the following scale:		
		Grade 1 = very small area affected, resulting from		
		instillation of 0.5 ml undiluted substance		
		Grade 5 = severe burn following instillation of 0.005 ml		
		undiluted test substance.		
		Comment: group sizes not reported.		
		Remark: This irritation value has been referenced many times in the		
		literature, however review of the primary data source reveals		
		that this information is for screening purposes only, thus the		
		methods used are not well documented.		
		Result: Minimal corneal irritation (Grade 2) was reported using the		
		authors' own scoring system.		
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.		
		Reliability: (2) valid with restrictions		
		Study available for review. Pre-guideline, pre-GLP		
		investigation. Briefly described methods, limited reporting of		
		results but acceptable for assessment.		
		10-JUL-2006 (60) (61)		
		5.4 Repeated Dose Toxicity		
		Type: Sub-acute		
		Species: rat Sex: male/female		
		Strain: Sprague-Dawley		
		Route of administration: inhalation		
		Exposure period: 2 wk		
		Frequency of treatment: 6 hr/d, 5 d/wk; 1 rest day between 1st and 2nd wk		
		Post exposure period: 3 d		
		Doses: 0, 240, 720 or 1500 ppm		
		Control Group: yes, concurrent vehicle		
		NOAEL: = 720 - 1500 ppm		
		Method: EPA OTS 798.2450		
1		GLP: yes		
		Method: Male and female Sprague-Dawley rats (5/sex/dose level) were		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		<pre>exposed by inhalation to 4-VCH (0 (air), 240, 720 or 1500 ppm) 6 hr/day, 5 days/week for 2 weeks, with 1 day of rest between each week. Animals individually housed in stainless steel cages, with free access to Purina Rodent Chow no. 5002 and tap water during non-exposure periods. Observed and weighed daily and monitored during and after exposure period for clinical signs. The achieved concentration within each chamber was monitored (GC-FID) approximately once every 30 min during each 6 hr exposure. Statistical analysis was conducted on body weights. Result: Mean body weight gain over study days 1-11 was significantly decreased in high dose males relative to controls, and numerically (but not significantly) decreased in high dose females. Final body weights were also were decreased non-significantly decreased in these animals: Body weight, day 11: - males 100%, 97%, 95%, 89% - females 100%, 97%, 91%, 72% * - females survived to the end of the recovery period. Reversible lethargy was noted in all rats from the mid- and high dose groups following removal from the exposure chambers. Tremor (affecti</pre>	comment	
		males and 1500 ppm (the highest dose tested) for females. Reliability: (1) valid without restriction		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		Study available for review. Comparable to guideline study.		
		Well reported methods and results, acceptable for evaluation.		
		10-JUL-2006 (19)		
		Type: Sub-acute		
		Species: mouse Sex: male/female		
		Strain: B6C3F1		
		Route of administration: inhalation		
		Exposure period: 2 wk		
		Frequency of treatment: 6 hr/d, 5 d/wk; 1 rest day between 1st and 2nd wk		
		Post exposure period: 3 d		
		Doses: 0, 240, 720 or 1500 ppm		
		Control Group: yes, concurrent vehicle		
		NOAEL: = 720 ppm		
		Method: EPA OTS 798.2450		
		GLP: yes		
		Method: Male and female B6C3F1 mice were exposed by inhalation to		
		4-VCH (0 (air), 240, 720 or 1500 ppm) 6 hr/day, 5 days/week		
		for 2 weeks, with 1 day of rest between each week.		
		[Other methodological details as for the rat 2 wk inhalation		
		study, described elsewhere in this section.]		
		Result: All groups of mice, including controls, lost weight over study		
		days 1-3. This effect was particularly marked in high dose		
		animals (both sexes) which lost 18-20% of their initial body		
		weight (statistically significant) during this time.		
		All high dose males, and 4/5 high dose females, were found		
		dead on study day 4. (Remaining high dose female sacrificed in		
		extremis on study day 4.)		
		Mice from the control, low and mid dose groups exhibited		
		inconsistent increases in body weight over the remainder of		
		the study (i.e. from study day onwards):		
		Body weight gain, males:		
		- days 1-11: 1.7g 1.5g 1.6g		
		- days 11-14 -1.0g -0.3g -0.2g		
		Body weight gain, females:		
		- days 1-11: 2.0g 0.0g* 1.5g		
		- days 11-14 -1.1g 0.7g* -1.0g		
		* P <0.05		
		Reversible lethargy was seen in all mice from the mid- and		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		high dose groups after removal from the exposure chambers.		
		Tremor was present in 7/10 mice on study day 3, and was		
		considered by the report as a significant feature preceeding		
		death.		
		Based on tremor and mortality recorded after exposure to 1500		
		ppm 4-VCH, a NOAEC of 720 ppm was obtained for male and female		
		mice.		
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.		
		Conclusion: Tremor and mortality were the principal finding in mice		
		exposed to 4-VCH by inhalation, with a NOAEC of 720 ppm for		
		males and females.		
		Reliability: (1) valid without restriction		
		Study available for review. Comparable to guideline study.		
		Well reported methods and results, acceptable for evaluation.		
		10-JUL-2006 (19)		
		Type: Sub-acute		
		Species: rat Sex: male/female		
		Strain: Fischer 344		
		Route of administration: gavage		
		Exposure period: 2 wk		
		Frequency of treatment: consecutive days		
		Post exposure period: none		
		Doses: 0, 300, 600, 1250, 2500 or 5000 mg/kg bw/d		
		Control Group: yes, concurrent vehicle		
		NOAEL: = 600 mg/kg bw		
		LOAEL: = 1250 mg/kg		
		Method: other: standard NTP methodology		
		GLP: no data		
		Method: Groups of 5 male and 5 female F344 rats (Charles River		
		Breeding Laboratories; age 7 wk at start of treatment) were		
		administered 4-VCH (>99% pure) in corn oil by gavage at doses		
		of 0, 300,600, 1250, 2500 or 5000 mg/kg bw/d for 14		
		consecutive days. Dose volume = 5.81 ml/kg.		
		The animals were group housed (5/sex/cage) with feed (Lab Chow		
		Checkers) and tap water (acidified to pH 2.5 to prevent		
		bacterial growth) ad libitum, and observed twice daily for		
		mortality and once daily for clinical signs. Body weight		
		recorded on day 0 and day 14.		

Date	Country / Organisation /	Comment	Dossier submitter's	RAC's response to comment
	MSCA		response to comment	
		Necropsies were performed on all animals (macroscopic		
		observations only, histopathology limited to stomach =		
		putative target organ).		
		Dosing solutions prepared at least weekly (stored at room		
		temperature), achieved concentration and stability determined		
		using GC-FID.		
		It is not stated if any statistical analysis was applied to the data.		
		Result: GC-FID demonstrated that the achieved concentration of dosing		
		solutions was +/- 10% of nominal.		
		All rats given 1250 mg/kg bw/d and above died before the end		
		of the study. Moribund animals were inactive with perianal wetness, tremors, soft stools and an unsteady gait. There were		
		no substance-related deaths at lower doses.		
		Mean weight gain among survivors (including controls) over the		
		14 d of the study was highly erratic:		
		- males: -53g, +10 g, -4 g		
		- females: +1 g, -1 g, -3 g		
		(Results by dose level for 0, 300 and 600 mg/kg bw/d groups)		
		No gross lesions were detected at necropsy, or in the stomach		
		following microscopic evaluation.		
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.		
		Conclusion: Under the conditions of the study, the sub-acute NOAEL for		
		4-VCH in male and female rats was 600 mg/kg bw/d (based on		
		survival).		
		Reliability: (1) valid without restriction		
		Study available for review. Comparable to guideline study. Briefly reported methods and results, acceptable for		
		evaluation.		
		10-JUL-2006 (14) (50)		
		Type: Sub-acute		
		Species: mouse Sex: male/female		
		Strain: B6C3F1		
		Route of administration: gavage		
		Exposure period: 2 wk		
		Frequency of treatment: consecutive days		
		Post exposure period: none		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		Doses: 0, 300, 600, 1250, 2500 or 5000 mg/kg bw/d		
		Control Group: yes, concurrent vehicle		
		NOAEL: = 1250 mg/kg bw		
		LOAEL: = 2500 mg/kg bw		
		Method: other: standard NTP methodology		
		GLP: no data		
		Method: Groups of 5 male and 5 female B6C3F1 mice (Charles River		
		Breeding Laboratories; age 8 wk at start of treatment) were		
		administered 4-VCH (>99% pure) in corn oil by gavage at doses		
		of 0, 300, 600, 1250, 2500 or 5000 mg/kg bw/d for 14		
		consecutive days. Dose volume = 5.81 ml/kg.		
		[Other methodological details as reported above for the rat 14		
		d sub-acute study.]		
		Result: GC-FID demonstrated that the achieved concentration of dosing		
		solutions was +/- 10% of nominal.		
		All mice given 2500 mg/kg bw/d and above, and 3/5 males given		
		1250 mg/kg bw/d, died before the end of the study. Moribund		
		animals were inactive with tremors. There were no		
		substance-related deaths at lower doses.		
		With the exception of females given 300 mg/kg bw/d, all groups		
		of survivors (including controls) lost weight over the 14 d of		
		the study:		
		- males: -1.6 g, -1.6 g, -1.8 g, -2.0 g		
		- females: -1.4 g, +0.6 g, -1.4 g, -1.4 g		
		(Results by dose level for 0, 300, 600 and 1250 mg/kg bw/d		
		(nebulos s, abbe level loi o, soo, ooo ana liso mg, ng sm, a groups)		
		No gross lesions were detected at necropsy, or in the stomach		
		following microscopic evaluation.		
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.		
		Conclusion: Under the conditions of the study, the sub-acute NOAEL for		
		4-VCH in male and female mice was 1250 mg/kg bw/d (based on		
		survival).		
		Reliability: (1) valid without restriction		
		Study available for review. Comparable to guideline study.		
		Briefly reported methods and results, acceptable for		
		evaluation.		
		10-JUL-2006 (14) (50)		
	I			

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to	RAC's response to comment
		Type: Sub-chronic	comment	
		Species: rat Sex: male/female		
		Strain: Sprague-Dawley		
		Route of administration: inhalation		
		Exposure period: 13 wk		
		Frequency of treatment: 6 hr/d, 5 d/wk		
		Post exposure period: none		
		Doses: 0, 250, 1000 or 1500 ppm		
		Control Group: yes, concurrent vehicle		
		NOAEL: = 250 ppm		
		LOAEL: = 1000 ppm		
		Method: EPA OTS 798.2450		
		GLP: yes		
		Method: Male and female Sprague-Dawley rats were exposed by inhalation		
		to 4-VCH (0 (air), 250, 1000 or 1500 ppm) 6 hr/day, 5		
		days/week for 13 weeks. In addition, another group of rats was		
		exposed to 1000 ppm butadiene to permit comparison between the		
		two compounds.		
		Animals individually housed in stainless steel cages. Free		
		access to Purina Rodent Chow no. 5002 and tap water during		
		non-exposure periods.		
		The achieved concentration in the chambers was monitored		
		(GC-FID) approximately once every 30 min during each 6 hr		
		exposure.		
		Animals observed daily during and after exposure period for		
		clinical signs. Observations were made twice daily for		
		morbundity and mortality on weekdays and once daily on		
		weekends. Body weights were recorded weekly and food		
		consumption was determined.		
		Hematological and serum chemistry, as well as urine analysis,		
		were performed on all animals surviving to study termination.		
		Necropsies were performed on all decedent and surviving		
		animals, and a comprehensive range of tissues from the		
		controls and 1500 ppm group were subject to microscopic		
		examination.		
		Comprehensive statistical analysis was conducted on body		
		weights, body weight gains, organ weights, and clinical		
		laboratory measurements.		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		Result: The most notable compound-related clinical sign was lethargy	comment	
		observed in rats exposed to 1500 ppm 4-VCH.		
		Male rats exposed to 1500 ppm 4-VCH had significantly lower		
		body weights compared to controls, with significantly lower		
		body weight gains in both sexes at this level.		
		None of the 4-VCH-exposed (butadiene-exposed) rats showed any		
		compound-related alteration in hematological, clinical		
		chemistry or urine parameters.		
		Absolute and/or relative liver weights were increased in both		
		sexes exposed to 1000 or 1500 ppm 4-VCH or 1000 ppm butadiene,		
		with increased renal weights in these males. Microscopically,		
		increased accumulation of hyaline droplets was observed in the		
		kidneys of male rats from all 4-VCH exposure groups. Although		
		compound-related, the droplets were not accompanied by		
		cytotoxicity.		
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.		
		Conclusion: For 4-VCH exposure, the no-observed-adverse-effect-level is		
		250 ppm for rats based on organ weight increases at higher		
		exposures.		
		Reliability: (1) valid without restriction		
		Study available for review. Comparable to guideline study.		
		Well reported methods and results, acceptable for evaluation.		
		10-JUL-2006 (6)		
		Type: Sub-chronic		
		Species: mouse Sex: male/female		
		Strain: B6C3F1		
		Route of administration: inhalation		
		Exposure period: 13 wk		
		Frequency of treatment: 6 hr/d, 5 d/wk		
		Post exposure period: none		
		Doses: 0, 50, 250 or 1000 ppm		
		Control Group: yes, concurrent vehicle		
		NOAEL: = 250 ppm		
		LOAEL: = 1000 ppm Method: EPA OTS 798.2450		
		GLP: yes		
		Method: Male and female B6C3F1 mice were exposed by inhalation to		
		4-VCH (0 (air), 50, 250 or 1000 ppm) 6 hr/day, 5 days/week for		
		F-Ven (0 (all), 50, 250 of 1000 ppm) o mr/day, 5 days/week tor		1

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		13 weeks. In addition, another group of mice was exposed to	comment	
		1000 ppm butadiene to permit comparison between the two		
		compounds.		
		[With the exception of urinanalysis (not conducted on mice),		
		other methodological details as for the rat 13 wk inhalation		
		study described elsewhere in this section.]		
		Result: Exposure to 1000 ppm 4-VCH resulted in deaths of all male mice		
		and 5/10 female mice on test days 11 or 12. Three additional		
		female mice exposed to 1000 ppm VCH died prior to study completion.		
		The most notable compound-related clinical sign was lethargy		
		observed in the 1000 ppm 4-VCH-exposed mice.		
		None of the 4-VCH-exposed animals showed any compound-related		
		hematological effects, although mild macrocytic anemia was		
		present in positive control mice exposed to 1000 ppm		
		butadiene.		
		The most notable histopathological finding was ovarian atrophy		
		in females exposed to 1000 ppm 4-VCH or 1000 ppm butadiene		
		(slightly more severe after 4-VCH-exposure than in the		
		butadiene-exposed females). No other compound-related		
		pathological effects in male or female mice exposed to 4-VCH.		
		Comment: butadiene-exposed male mice also had decreased		
		testicular weights, accompanied by slight testicular		
		degeneration and atrophy.		
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.		
		Conclusion: For 4-VCH exposure, the no-observed-adverse-effect-level is		
		250 ppm for mice based on mortality and ovarian atrophy.		
		Reliability: (1) valid without restriction		
		Study available for review. Comparable to guideline study.		
		Well reported methods and results, acceptable for evaluation.		
		10-JUL-2006 (6)		
		Type: Sub-chronic		
		Species: rat Sex: male/female Strain: Fischer 344		
		Route of administration: gavage		
		Exposure period: 13 wk		
l		Frequency of treatment: 5 d/wk		
		Frequency of creatment. 5 d/wh		

Date	Country /	Comment	Dossier	RAC's response
	Organisation / MSCA		submitter's response to	to comment
	MISCA		comment	
		Post exposure period: none	comment	
		Doses: 0, 50, 100, 200, 400 or 800 mg/kg bw/d		
		Control Group: yes, concurrent vehicle		
		NOAEL: = $200 - 400 \text{ mg/kg bw}$		
		LOAEL: = $400 - 800 \text{ mg/kg bw}$		
		Method: other: standard NTP methodology		
		GLP: no data		
		Method: Groups of 10 male and 10 female F344 rats (Charles River		
		Breeding Laboratories; age 7 wk at start of treatment) were		
		administered 4-VCH (>99% pure) in corn oil by gavage at doses		
		of 0, 50, 100, 200 400 or 800 mg/kg bw/d 5 d/wk for 13 wk.		
		Dose volume = 3.33 ml/kg .		
		The animals were group housed with feed (NIH 07 Rat and Mouse		
		Ration pellets) and water (acidified to pH 2.5 to prevent		
		bacterial growth) available ad libitum. They were observed twice daily for		
		mortality, and animals judged to be moribund		
		taken to necropsy. Body weight and detailed clinical		
		observations were recorded once per week.		
		Necropsies were performed on all animals surviving to the end		
		of the treatment period. A comprehensive range of tissues		
		(including blood smear) from the controls and 800 mg/kg bw/d		
		group were subject to microscopic examination, together with		
		the stomach (both sexes; putative target organ) and kidneys		
		(males only) from the intermediate treatment groups.		
		Dosing solutions were prepared at least weekly (stored at room		
		temperature), achieved concentration and stability determined		
		using GC-FID.		
		It is not stated if any statistical analysis was applied to		
		the data.		
		Result: GC analysis of the dosing solutions demonstrated that the		
		achieved concentration was 95 - 100% of target.		
		There were premature deaths in single animals from the 400		
		mg/kg bw/d (male) and 800 mg/kg bw/d (female) groups. (No		
		further details.)		
		Body weight gain was decreased in the higher dose males, with		
		a less marked effect in females. Final bw by dose level		
		relative to controls:		
		- males: 100%, 101%, 96%, 97%, 93%, 87%		

Date	Country /	Comment	Dossier	RAC's response
	Organisation / MSCA		submitter's	to comment
	MSCA		response to comment	
		- females: 100%, 101%, 96%, 97%, 99%, 94%	comment	
		No gross macroscopic lesions are described in the report.		
		Microscopic examination revealed hyaline droplet degeneration		
		of the proximal convoluted tubule of the kidney in males (not		
		females). Severity was diagnosed as minimal for all groups		
		with the exception of 800 mg/kg males (no further details;		
		presumed mild). Inflammation of the submucosa of the		
		nonglandular stomach (severity not defined) was present in 1		
		male and 3 females given 800 mg/kg bw/d. No other		
		treatment-related histologic abnormalities present.		
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.		
		Conclusion: Under the conditions of the study, the sub-chronic NOAEL for		
		4-VCH in the rat was 200 mg/kg bw/d in males and 400 mg/kg		
		bw/d in females (based on inflammation of the stomach and		
		decreased terminal body weight at higher doses in both sexes).		
		Reliability: (1) valid without restriction		
		Study available for review. Comparable to guideline study.		
		Briefly reported methods and results, acceptable for		
		evaluation.		
		10-JUL-2006 (14) (50)		
		Type: Sub-chronic		
		Species: mouse Sex: male/female		
		Strain: B6C3F1		
		Route of administration: gavage		
		Exposure period: 13 wk		
		Frequency of treatment: 5 d/wk		
		Post exposure period: none		
		Doses: 0, 75, 150, 300, 600 or 1200 mg/kg bw/d		
		Control Group: yes, concurrent vehicle		
		NOAEL: = 600 mg/kg bw		
		LOAEL: = 1200 mg/kg bw		
		Method: other: standard NTP methodology		
		GLP: no data		
		Method: Groups of 10 male and 10 female B6C3F1 mice (Charles River		
		Breeding Laboratories; age 8 wk at start of treatment) were		

	submitter's response to	to comment
	comment	
administered 4-VCH (>99% pure) in corn oil by gavage at doses		
of 0, 75, 150, 300, 600 or 1200 mg/kg bw/d 5 d/wk for 13 wk.		
[Other methodological details as reported above for the rat 13		
wk sub-chronic study.]		
Result: GC analysis of the dosing solutions demonstrated that the		
achieved concentration was 95 - 100% of target.		
A high level of early mortality was recorded for high dose		
males (9/10 dying in study wk 1-9) and high dose females		
(4/10, study wk 9 and 12), with lower mortality (2/10, study		
wk 12) in females given 300 mg/kg bw/d. (Other deaths (1 or 2		
per group) for females from the 150-600 mg/kg bw/d groups were		
considered due to dosing errors; diagnosis based on tissue		
damage visible at necropsy).		
Female mice from the 600 mg/kg bw/d groups weighed approx. 5%		
less than the corresponding controls, while body weight for		
the sole surviving high dose male was around 7% lower than the		
male controls. Body weights for the other groups of treated		
mice (including high dose females) were highly comparable to		
the controls.		
Mild acute inflammation of the stomach was detected		
microscopically in 3 decedent males and one surviving female		
given 1200 mg/kg bw/d. Histological re-evaluation of ovaries		
from high dose females (decedents and survivors) revealed a		
decrease in the number of primary follicles and mature		
graafian follicles (no quantitative information provided;		
lower treatment groups not examined). No other lesions were		
present.		
Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.		
Conclusion: Under the conditions of the study, the sub-chronic NOAEL for		
4-VCH in the mouse was 600 mg/kg bw/d for males (based on		
early mortality and stomach lesions) and females (based on		
early mortality and microscopic changes in stomach). Given an		
absence of gross lesion, the limited evaluation of any		
microscopic changes present in tissues from the intermediate		
dose group and a relatively high incidence of mis-dosing		
reported in the study as a whole, no conclusions can be drawn		
as to the toxicological relevance of decreased survival		
recorded for females given 300 mg/kg bw/d.		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to	RAC's response to comment
			comment	
		Reliability: (1) valid without restriction		
		Study available for review. Comparable to guideline study.		
		Briefly reported methods and results, acceptable for		
		evaluation.		
		10-JUL-2006 (14) (50)		
		Type: Chronic		
		Species: rat Sex: male/female		
		Strain: Fischer 344		
		Route of administration: gavage		
		Exposure period: 103 wk		
		Frequency of treatment: 5 d/wk		
		Post exposure period: none		
		Doses: 0, 200 or 400 mg/kg bw/d		
		Control Group: yes, concurrent vehicle		
		NOAEL: < 200 mg/kg bw		
		LOAEL: = 200 mg/kg bw		
		Method: other: standard NTP methodology		
		GLP: no data		
		Method: Groups of 50 male and 50 female F344 rats (Charles River		
		Breeding Laboratories ; age 7 wk at start of treatment) were		
		administered 4-VCH (>98% pure) in corn oil by gavage at doses		
		of 0, 200 or 400 mg/kg bw/d 5 d/wk for 103 wk. Dose volume =		
		3.33 ml/kg.		
		The animals were group housed with feed (NIH 07 Rat and Mouse		
		Ration pellets) and acidified water (pH 2.5) available ad		
		libitum in an air conditioned environment (22-24 deg. C,		
		30-70% rel. humidity, 12 hr light cycle, 12-15 air		
		changes/hr). They were observed twice daily for mortality,		
		once weekly for clinical signs, and palpated once monthly.		
		Body weights were initially recorded weekly (study wk 1-13)		
		then monthly thereafter. Any animals judged to be moribund		
		taken to necropsy.		
		Necropsies were performed on all animals (survivors and		
		decedents), and the following tissues sampled for processing		
		(H&E staining) and microscopic examination:		
		gross lesions and masses		
		adrenal glands		

RAC's response Country / Comment Dossier Date **Organisation** / to comment submitter's MSCA response to comment blood smear brain colon esophagus eyes heart kidnevs liver lung and mainstem bronchi mammary gland mandibular and mesenteric lymph nodes ovaries/uterus pancreas parathyroid glands pituitary gland prostate/testes regional lymph nodes salivary glands small intestine spinal cord stomach sternebrae (incl. marrow) thymus thvroid trachea urinary bladder Dosing solutions were prepared at least weekly (stored at room temperature), achieved concentration and stability determined using GC-FID. The probability of survival was estimated using the procedure of Kaplan and Meier, with dose-related effects analyzed by the methods of Cox and of Tarone. (Animals dying from non-natural causes or missing from the study were excluded.) Where differences were present, additional analysis was carried out to identify the time point at which differences became significant. The Fisher exact test was used to compare the incidence of non-tumor lesions in control and treated animals. Result: GC-FID analysis demonstrated that approx. 94% of the dosing

ANNEX 2 - COMMENTS	5 AND RESPONSE TO	D COMMENTS ON CLH PR	ROPOSAL ON 4 VINYLCY	CLOHEXENE (VCH)
--------------------	-------------------	----------------------	----------------------	-----------------

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to	RAC's response to comment
			comment	
		solutions were within specification during the study:		
		Nominal concentration (mg/ml)		
		60.1 120.1		
		Mean (mg/ml) 59.3 117.5		
		SD 3.54 4.58		
		Coeff. Varn 6.0 3.9		
		Range (mg/ml) 49.7-66.2 110.0-126.9		
		No. analyzed 17 17		
		Body weight and clinical signs		
		High dose males exhibited a 5-14% reduction in bw relative to		
		controls from study wk 72; reason for this late weight loss		
		not known. Other bw values (low dose males, all females)		
		similar to controls.		
		Comment: non-optimal randomization resulted in marked bw		
		differences at time of allocation to groups:		
		- males: 100%, 93%, 109%		
		- females: 100%, 113%, 114%		
		(initial bw as percentage of control, by treatment group)		
		No clinical signs were described.		
		Survival		
		Survival of high dose males was significantly lower than that		
		of controls from wk 5 (5/50 alive at wk 103; P<0.001), and		
		significantly lower for low dose males from wk 88 (13/50 alive		
		at wk 103; P<0.001). Overall survival of high dose females		
		was also lower than controls (13/50 alive at wk 103; P<0.001),		
		and decreased non-significantly in low dose females (28/50		
		alive at wk 103).		
		Comment: the authors comment that there is no explanation for		
		the poor survival of the high dose males from wk 5 i.e. not		
		replicated at this treatment level in sub-chronic study, no		
		gross or microscopic lesions detected.		
		Non-tumor pathology		
		The incidence of epithelial hyperplasia of the forestomach was		
		higher in treated animals, particularly for males from the 400		
		mg/kg bw/d groups. Incidence by dose level:		
		- males: 2%, 6%, 11%		
		- females: 0%, 4%, 4%		
l		This late-appearing lesion was increased significantly		

Dossier **RAC's response** Date Country / Comment **Organisation** / submitter's to comment MSCA response to comment (P<0.01) for males surviving beyond wk 93. Incidence by dose level: - males: 3%, 14%, 36% There was a dose-related decrease in incidence of cataracts in males, and a dose related increase for females. Comment: the authors suggest this may reflect placement of cages within the animal room (cannot be verified, records unavailable). No other non-tumor microscopic lesions were reported. Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3. Conclusion: Under the conditions of the study, decreased survival and epithelial hyperplasia in forestomach were recorded in male and female rats administered 4-VCH by oral gavage for 103 wk. The results support a chronic LOAEL of 200 mg/kg bw/d, based on the occurrence of effects in the low dose group (more pronounced in males than females). **Reliability:** (1) valid without restriction Study available for review. Comparable to quideline study. Well reported methods and results, acceptable for evaluation. 10-JUL-2006 (50)Type: Chronic Species: mouse Sex: male/female Strain: B6C3F1 Route of administration: gavage **Exposure period:** 103 wk **Frequency of treatment:** 5 d/wk Post exposure period: none **Doses:** 0, 200 or 400 mg/kg bw/d Control Group: yes, concurrent vehicle **NOAEL:** < 200 mg/kg bw **LOAEL:** = 200 mg/kg bwMethod: other: standard NTP methodology GLP: no data Method: Groups of 50 male and 50 female B6C3F1 mice (Charles River Breeding Laboratories ; age 8 wk at start of treatment) were administered 4-VCH (>98% pure) in corn oil by gavage at doses of 0, 200 or 400 mg/kg bw/d 5 d/wk for 103 wk. Dose volume =

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		3.33 ml/kg.		
		[Other methodological details as reported above for the rat		
		103 wk study. Gall bladder was included in the list of tissues		
		collected at necropsy for subsequent histopathological		
		assessment.]		
		Result: GC-FID analysis demonstrated that approx. 94% of the dosing		
		solutions were within specification during the study. [See rat		
		103 wk study, above, for further details.]		
		Body weight and clinical signs		
		Mean body weight was 5-13% lower in high dose male mice		
		relative to controls between study wk 8-76, but had fully		
		recovered by wk 100. In high dose females, mean body weight		
		was at least 5% lower than control values from study wk 20,		
		with a 12% weight reduction apparent at the end of the study.		
		Smaller fluctuations (5-7% decreases) were also apparent in		
		the low dose groups during the mid-phase of the study but this		
		had resolved by study termination.		
		No clinical signs were described. Survival		
		Survival Survival of high males was decreased significantly relative to		
		controls from study wk 29, with only 7/50 animals alive at		
		study termination (P<0.001). Survival of high dose females		
		lower than controls after wk 32, with 17/50 alive at wk 103		
		(P<0.001). No gross or microscopic observations present to		
		explain reduction in survival. Survival of the low dose groups		
		was comparable to that of the controls (39/50 alive at		
		termination).		
		Non-tumor pathology		
		Ulcers, mild inflammation and epithelial hyperplasia of the		
		forestomach was observed in both sexes. Incidence by dose		
		level:		
		- males:		
		ulcer: 0%, 6%, 15%		
		inflammation: 0%, 14%, 35%		
		epithelial hyperplasia: 0%, 14%, 15%		
		- females:		
		ulcer: 0%, 0%, 9%		
		inflammation: 2%, 4%, 22%		

Date	Country / Organisation /	Comment	Dossier submitter's	RAC's response to comment
	MSCA		response to	to comment
	MOCA		comment	
		epithelial hyperplasia: 2%, 6%, 9%	comment	
		Tubular cell hyperplasia, granulosa cell hyperplasia and		
		papillary hyperplasia of the ovary observed at increased		
		incidence in female mice. Incidence by dose level:		
		- females:		
		tubular cell hyperplasia: 0%, 21%, 28%		
		granulosa cell hyperplasia: 0%, 10%, 2%		
		papillary hyperplasia: 0%, 0%, 4%		
		(Comment: tumor site - see section 5.7)		
		Congestion of the lung recorded at increased incidence in high		
		dose mice. Incidence by dose level:		
		- males: 4%, 4%, 72%		
		- females: 0%, 2%, 40%		
		In the absence of statistical analysis, findings in low dose		
		animals are considered to be of doubtful toxicological		
		relevance.		
		(Comment: tumor site - see section 5.7)		
		Atrophy of the spleenic red pulp observed at increased		
		incidence in high dose males only (22% versus 0% in controls;		
		absent from all other groups).		
		(Comment: tumor site (lymphoma) - see section 5.7)		
		The incidence of histological abnormalities of the adrenal		
		gland increased in treated female mice (males unaffected).		
		Incidence by dose level:		
		- alteration of the adrenal cortex (subcapsular cell		
		hyperplasia, Type B cells): 0%, 49%, 29%		
		- congestion of the adrenal gland: 0%, 0%, 17%		
		(Comment: tumor site - see section 5.7)		
		Hepatic centrilobular congestion increased in high dose males		
		only (14% versus 0% in controls; absent from all other		
		groups).		
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.		
		Conclusion: Under the conditions of the study, decreased survival and		
		histopathological tissue alterations in adrenal gland,		
		forestomach, liver, lung and spleen were recorded in male and		
		female mice administered 4-VCH by oral gavage for 103 wk. The		
		results support a chronic LOAEL of 200 mg/kg bw/d in males		
		(based the presence of ulcers, mild inflammation and		

epithelial hyperplasia in forestomach) and females (based on histological abnormalities of the adrenal gland and ovary). Reliability: (1) valid without restriction Study available for review. Comparable to guideline study. Well reported methods and results, acceptable for evaluation. 10-JUL-2006 (15) (50) <u>5.5 Genetic Toxicity 'in Vitro'</u> Type: Bacterial reverse mutation assay System of testing: Salmonella typhimurium TA100, TA104, TA1535, TA97, TA98 Concentration: 1-10000 ug/plate or 1-1666 ug/plate Cytotoxic Concentration: 333 ug/plate (slight toxicity -S9 and +S9) Metabolic activation: with and without Result: negative Method: other: US-NTP standard protocol GLP: no data Remark: Only limited information is available for this study which was conducted in the absence or presence of 10% or 30% rat or hamster S9 using a preincubation protocol. Tests were run with an independent repeat.	submitter's response to comment	RAC's response to comment
histological abnormalities of the adrenal gland and ovary). Reliability: (1) valid without restriction Study available for review. Comparable to guideline study. Well reported methods and results, acceptable for evaluation. 10-JUL-2006 (15) (50) <u>5.5 Genetic Toxicity 'in Vitro'</u> Type: Bacterial reverse mutation assay System of testing: Salmonella typhimurium TA100, TA104, TA1535, TA97, TA98 Concentration: 1-10000 ug/plate or 1-1666 ug/plate Cytotoxic Concentration: 333 ug/plate (slight toxicity -S9 and +S9) Metabolic activation: with and without Result: negative Method: other: US-NTP standard protocol GLP: no data Remark: Only limited information is available for this study which was conducted in the absence or presence of 10% or 30% rat or hamster S9 using a preincubation protocol.		
Reliability: (1) valid without restriction Study available for review. Comparable to guideline study. Well reported methods and results, acceptable for evaluation. 10-JUL-2006 (15) (50) <u>5.5 Genetic Toxicity 'in Vitro'</u> Type: Bacterial reverse mutation assay System of testing: Salmonella typhimurium TA100, TA104, TA1535, TA97, TA98 Concentration: 1-10000 ug/plate or 1-1666 ug/plate Cytotoxic Concentration: 333 ug/plate (slight toxicity -S9 and +S9) Metabolic activation: with and without Result: negative Method: other: US-NTP standard protocol GLP: no data Remark: Only limited information is available for this study which was conducted in the absence or presence of 10% or 30% rat or hamster S9 using a preincubation protocol.		
<pre>Well reported methods and results, acceptable for evaluation. 10-JUL-2006 (15) (50) 5.5 Genetic Toxicity 'in Vitro' Type: Bacterial reverse mutation assay System of testing: Salmonella typhimurium TA100, TA104, TA1535, TA97, TA98 Concentration: 1-10000 ug/plate or 1-1666 ug/plate Cytotoxic Concentration: 333 ug/plate (slight toxicity -S9 and +S9) Metabolic activation: with and without Result: negative Method: other: US-NTP standard protocol GLP: no data Remark: Only limited information is available for this study which was conducted in the absence or presence of 10% or 30% rat or hamster S9 using a preincubation protocol.</pre>		
<pre>10-JUL-2006 (15) (50) 5.5 Genetic Toxicity 'in Vitro' Type: Bacterial reverse mutation assay System of testing: Salmonella typhimurium TA100, TA104, TA1535, TA97, TA98 Concentration: 1-10000 ug/plate or 1-1666 ug/plate Cytotoxic Concentration: 333 ug/plate (slight toxicity -S9 and +S9) Metabolic activation: with and without Result: negative Method: other: US-NTP standard protocol GLP: no data Remark: Only limited information is available for this study which was conducted in the absence or presence of 10% or 30% rat or hamster S9 using a preincubation protocol.</pre>		
5.5 Genetic Toxicity 'in Vitro' Type: Bacterial reverse mutation assay System of testing: Salmonella typhimurium TA100, TA104, TA1535, TA97, TA98 Concentration: 1-10000 ug/plate or 1-1666 ug/plate Cytotoxic Concentration: 333 ug/plate (slight toxicity -S9 and +S9) Metabolic activation: with and without Result: negative Method: other: US-NTP standard protocol GLP: no data Remark: Only limited information is available for this study which was conducted in the absence or presence of 10% or 30% rat or hamster S9 using a preincubation protocol.		
Type: Bacterial reverse mutation assay System of testing: Salmonella typhimurium TA100, TA104, TA1535, TA97, TA98 Concentration: 1-10000 ug/plate or 1-1666 ug/plate Cytotoxic Concentration: 333 ug/plate (slight toxicity -S9 and +S9) Metabolic activation: with and without Result: negative Method: other: US-NTP standard protocol GLP: no data Remark: Only limited information is available for this study which was conducted in the absence or presence of 10% or 30% rat or hamster S9 using a preincubation protocol.		
System of testing: Salmonella typhimurium TA100, TA104, TA1535, TA97, TA98 Concentration: 1-10000 ug/plate or 1-1666 ug/plate Cytotoxic Concentration: 333 ug/plate (slight toxicity -S9 and +S9) Metabolic activation: with and without Result: negative Method: other: US-NTP standard protocol GLP: no data Remark: Only limited information is available for this study which was conducted in the absence or presence of 10% or 30% rat or hamster S9 using a preincubation protocol.		
Concentration: 1-10000 ug/plate or 1-1666 ug/plate Cytotoxic Concentration: 333 ug/plate (slight toxicity -S9 and +S9) Metabolic activation: with and without Result: negative Method: other: US-NTP standard protocol GLP: no data Remark: Only limited information is available for this study which was conducted in the absence or presence of 10% or 30% rat or hamster S9 using a preincubation protocol.		
Cytotoxic Concentration: 333 ug/plate (slight toxicity -S9 and +S9) Metabolic activation: with and without Result: negative Method: other: US-NTP standard protocol GLP: no data Remark: Only limited information is available for this study which was conducted in the absence or presence of 10% or 30% rat or hamster S9 using a preincubation protocol.		
Metabolic activation: with and without Result: negative Method: other: US-NTP standard protocol GLP: no data Remark: Only limited information is available for this study which was conducted in the absence or presence of 10% or 30% rat or hamster S9 using a preincubation protocol.		
Result: negative Method: other: US-NTP standard protocol GLP: no data Remark: Only limited information is available for this study which was conducted in the absence or presence of 10% or 30% rat or hamster S9 using a preincubation protocol.		
Method: other: US-NTP standard protocol GLP: no data Remark: Only limited information is available for this study which was conducted in the absence or presence of 10% or 30% rat or hamster S9 using a preincubation protocol.		
GLP: no data Remark: Only limited information is available for this study which was conducted in the absence or presence of 10% or 30% rat or hamster S9 using a preincubation protocol.		
Remark: Only limited information is available for this study which was conducted in the absence or presence of 10% or 30% rat or hamster S9 using a preincubation protocol.		
conducted in the absence or presence of 10% or 30% rat or hamster S9 using a preincubation protocol.		
hamster S9 using a preincubation protocol.		
Tests were run with an independent repeat.		
DMSO was the vehicle control with (currently unspecified)		
positive controls for each strain.		
Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.		
Conclusion: Under the conditions of the test, no mutagenic activity was		
detected in 5 strains of Salmonella typhimurium (including		
TA100, TA104, TA1535, TA97, TA98) in the absence or presence		
of rat or hamster S9.		
Reliability: (2) valid with restrictions		
Comparable to guideline study. Data tables and briefly reported methods/results available for review, acceptable for		
evaluation.		
10-JUL-2006 (51)		
Type: Bacterial reverse mutation assay		
System of testing: Salmonella typhimurium TA100, TA1535, TA1537, and TA98		
Concentration: 1-1000 ug/plate		
Cytotoxic Concentration: 1000 ug/plate (at 10% Rat S9)		
Metabolic activation: with and without		
Result: negative		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		Method: other: US-NTP standard protocol	••••••••	
		GLP: no data		
		Remark: Only limited information is available for this study which was		
		conducted in the absence or presence of 10% rat or hamster S9		
		using a preincubation protocol.		
		Tests were run with an independent repeat.		
		DMSO was the vehicle control with (currently unspecified)		
		positive controls for each strain.		
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.		
		Conclusion: Under the conditions of the test, no mutagenic activity was		
		detected in 4 strains of Salmonella typhimurium (including		
		TA100, TA1535, TA1537, and TA98) in the absence or presence of		
		rat or hamster S9.		
		Reliability: (2) valid with restrictions		
		Comparable to guideline study. Data tables and briefly		
		reported methods/results available for review, acceptable for		
		evaluation.		
		10-JUL-2006 (47)		
		Type: Mammalian cell gene mutation assay		
		System of testing: mouse lymphoma L5178Y TK+/- cells		
		Concentration: 20 to 150 ug/mL		
		Metabolic activation: with and without		
		Result: positive		
		Method: other: US-NTP standard protocol		
		GLP: no data Method: Treated cultures contained 6 x 10e6 cells in 10 mL of medium,		
		which included the S9 fraction in those experiments performed with metabolic activation. Incubation with the test chemical		
		continued for 4 hours, at which time the medium plus chemical		
		was removed and the cells were re-suspended in 20 mL of fresh		
		medium and incubated for an additional 2 days to express the		
		mutant phenotype. Cell density was monitored so that log phase		
		growth was maintained.		
		After the 48-hour expression period, 3 x 106 cells were plated		
		in medium and soft agar supplemented with TFT for selection of		
		TFT-resistant cells (TK-/-) and in nonselective medium and		
		soft agar to determine cloning efficiency. Plates were		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		incubated at 37 C. in 5% CO2 for 10 to 12 days. At the end of		
		incubation, colonies were counted with an automated counter.		
		The test was initially performed without S9. If a clearly		
		positive response was not obtained, the test was repeated		
		using freshly prepared S9 from the livers of either Aroclor		
		1254-induced or non-induced male Fischer 344 rats.		
		Each exposure concentration was tested in triplicate, and the		
		experiment was performed with an independent repeat.		
		Minimum validity criteria included acceptable cloning		
		efficiencies and relative total growth, absence of test		
		chemical precipitate and two or more acceptable cultures per		
		dose set.		
		Data were evaluated statistically for trend and peak		
		responses. Both responses had to be significant ($P < 0.05$) for		
		a chemical to be considered capable of inducing TFT		
		resistance; a single significant response led to a		
		"questionable" conclusion, and the absence of both a trend and		
		a peak response resulted in a "negative" call.		
		Result: An average mutation frequency of 112 mutants/10 ⁶ surviving		
		colonies was reported after exposure to 60 ug/mL, 149 after		
		exposure to 80 ug/mL, 108 after exposure to 100 ug/mL, and 148		
		after exposure to 120 ug/mL in one of the three trials with S9		
		activation.		
		Elevated mutation frequency were observed also in the 2 other		
		trials but the increases were considered equivocal.		
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.		
		Conclusion: Under the conditions of the assay, 4-VCH was reported to be		
		mutagenic in mouse lymphoma cells in the presence of S9		
		metabolic activation. However, from the data presented, it is		
		not clear if there was a statistically significant		
		dose-related increase in the mutant frequency, or if the		
		increases observed at specific concentrations was reproducible		
		and statistically significant.		
		Reliability: (2) valid with restrictions		
		Comparable to guideline study. Data tables and briefly		
		reported methods/results available for review but only limited		
		information provided concerning statistical basis for study		
		conclusions. Acceptable for evaluation.		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to	RAC's response to comment
			comment	
		10-JUL-2006 (52)		
		Type: Sister chromatid exchange assay		
		System of testing: Chinese Hamster Ovary (CHO) Cells in vitro		
		Concentration: 5, 16.7, 50 and 166.7 ug/mL.		
		Cytotoxic Concentration: 166.7 (presumed from data)		
		Metabolic activation: with and without		
		Result: negative		
		Method: other: US-NTP standard protocol		
		GLP: no data		
		Method: In experiments performed without S9, Chinese Hamster Ovary		
		(CHO) cells were incubated with the test chemical for 26 hours		
		in supplemented McCoy's 5A medium, with BrdU added 2 hours		
		after culture initiation. The medium was replaced (no test		
		chemical but BrdU and colcemid present) after 26 hours		
		incubation, then cells harvested 2 hours later for fixation		
		and staining (Hoechst 33258 and Giemsa).		
		In studies with S9 present, cells were incubated with the test		
		chemical + S9 in serum-free medium 2 hours, the medium		
		replaced (serum and BrdU present but no test chemical) and		
		incubation continued for an additional 26 hours; colcemid was		
		added for the final 2 hours. Cells were then fixed and stained		
		as above.		
		Slides were scored blind, with 50 second-division metaphase		
		cells evaluated to determine SCE frequency per cell for each		
		dose level. If significant chemical-induced cell cycle delay		
		was seen in treated cultures, the incubation time was		
		lengthened to ensure the accumulation of a sufficient number		
		of scorable (second-division metaphase) cells. Approximately 1020		
		chromosomes were examined at each dose.		
		Mitomycin C used as a positive control for tests performed		
		without S9 activation, cyclophosphamide as a positive control		
		in the presence of S9.		
		-		
		Statistical analyses were conducted to assess the presence of		
		a dose-response (trend test) and the significance of the		
		individual dose points was also compared to the vehicle		
		control. A 20% increase in SCE frequency at any single dose		
		was considered indicative of a weak positive response;		
		increases at two or more doses indicated a positive result.		

Date	Country / Organisation /	Comment	Dossier submitter's	RAC's response to comment
	MSCA		response to comment	
		Result: The total number of SCE, SCE per chromosome, and SCE per cell		
		were elevated approximately 8% and 12% over the solvent		
		control at the 5 ug/mL and 50 ug/mL doses, and approximately		
		6% at the 16.7 ug/mL dose, with and without S9 activation.		
		Cells at the 166.7 ug/mL were not examined, presumably due to		
		toxicity.		
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.		
		Conclusion: Under the conditions of the test, 4-VCH did not produce any		
		statistically significant increases in sister chromatid		
		exchanges in CHO cells with or without activation at any of		
		the concentrations tested, nor was there a positive		
		dose-related trend.		
		Reliability: (2) valid with restrictions		
		Comparable to guideline study. Data tables and briefly		
		reported methods/results available for review, acceptable for		
		evaluation.		
		10-JUL-2006 (49)		
		Type: Chromosomal aberration test		
		System of testing: Chinese Hamster Ovary (CHO) cells in vitro		
		Concentration: 25 to 149.5 ug/mL and 12.5 to 99.8 ug/ml		
		Metabolic activation: with and without		
		Result: negative		
		Method: other: US-NTP standard protocol		
		GLP: no data		
		Method: Chinese Hamster Ovary (CHO) cells were incubated for 8-12		
		hours with the test chemical in supplemented McCoy's 5A		
		medium; colcemid was added and incubation continued for 2		
		hours.		
		The incubation time and the dose levels selected were		
		determined from the information on cell cycling and toxicity		
		obtained from the SCE test; if cell cycle delay was		
		anticipated in the CA test, the incubation period was extended		
		to permit accumulation of sufficient cells in first metaphase		
		for analysis.		
		In experiments without S9 activation, cells were harvested		
		after 10.5 hours treated or after 12.5 hours for incubations in the presence		
		of S9 activation. Cells were then harvested		
		fixed, and stained with Giemsa.		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		Mitomycin C used as a positive control for tests performed	comment	
		without S9 activation, cyclophosphamide for tests performed		
		with S9 activation.		
		Cells were selected for scoring on the basis of good		
		morphology and completeness of karyotype (21 +/- 2		
		chromosomes). One hundred (100) first-division metaphase cells		
		were scored at each dose level. Aberrations were recorded as		
		"simple" (breaks and terminal deletions), "complex"		
		(rearrangements and translocations), and "other" (pulverized		
		cells, despiralized chromosomes, and cells containing 10 or		
		more aberrations).		
		Statistical analyses were conducted to assess the presence of		
		a dose-response (trend test) and the significance of the		
		individual dose points relative to the vehicle control. For a		
		single trial, a statistically significant (P<0.05) difference		
		for one dose point and a significant trend (P<0.015) was		
		considered weak evidence for a positive response; significant		
		differences for two or more doses indicated the trial was		
		positive.		
		Result: A 0% to 4% increase in total abberations was recorded across		
		the various test concentrations, with and without S9		
		activation, compared to 0% to 1% in the negative and vehicle		
		controls. The response was not dose-dependent.		
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.		
		Conclusion: Under the conditions of the test, 4-VCH did not produce any		
		statistically significant increases in total abberations, complex abberations, simple abberations, or other abberations		
		in CHO cells with or without activation at any of the		
		concentrations tested.		
		Reliability: (2) valid with restrictions		
		Comparable to guideline study. Data tables and briefly		
		reported methods/results available for review, acceptable for		
		evaluation.		
		10-JUL-2006 (48)		
		Type: other: various in vitro tests		
		Remark: Information presented below refers to 4-VCH metabolites:		
		4-Vinylcyclohexene diepoxide induced gene mutation, sister		
		chromatid exchange and chromosomal aberrations but not		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		micronuclei in mammalian cells in vitro. It was mutagenic in	comment	
		bacteria and caused gene conversion and mitotic crossing-over		
		in Saccharomyces cerevisiae.		
		A metabolite of 4-vinylcyclohexene diepoxide,		
		4-epoxyethylcyclohexane-1,2-diol, was not mutagenic to		
		Salmonella typhimurium.		
		Saimoneira cyphiniarrain.		
		Two mono-epoxide metabolites, 4-Epoxyethylcyclohexene and		
		4-Vinyl-1,2-epoxycyclohexane, were not mutagenic to Salmonella		
		typhimurium, but the latter induced micronuclei, but not hprt		
		locus mutations, in cultured Chinese hamster cells.		
		Test substance: Other test substance: metabolites of 4-VCH.		
		Reliability: (4) not assignable		
		31-MAY-2006 (30)		
		5.6 Genetic Toxicity 'in Vivo'		
		Type: Micronucleus assay		
		Species: mouse Sex: male/female		
		Strain: B6C3F1		
		Route of admin.: inhalation		
		Exposure period: 13 wk		
		Doses: 0, 50, 250, and 1000 ppm		
		Result: negative		
		Method: EPA OTS 798.5395		
		GLP: yes		
		Method: Groups of 5 male and 5 female B6C3F1/CrlBR mice (Charles River		
		Breading Laboratories), approximately 5 weeks old on the first		
		day of treatment, were exposed whole body to 0 (air), 250,		
		1000 or 1500 ppm 4-VCH for 6 hours/day, 5 days per week for 13		
		weeks. A positive control group of 5 male and 5 female mice		
		were exposed concurrently to 1000 ppm of 1,3-butadiene.		
		They were fed Purina® Certified Rodent Chow (chunk) #5002 and		
		tap water ad libitum when in their home cages.		
		Chamber concentrations were verified by GC-FID at		
		approximately 30-minute intervals. Temperature and relative		
		humidity within the chambers were similar to housing		
		conditions (target: 22 degrees C, 40% RH).		
		Animals were observed regularly for clinical signs, morbidity		
		or abnormal behavior and appearance. Body weights were		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		recorded prior to the first exposure, at weekly intervals	comment	
		thereafter, and prior to sacrifice.		
		Approximately 24 hours after the final exposure, animals were		
		sacrificed (carbon dioxide), the femurs removed and bone		
		marrow smears prepared (Miniprep® automatic blood smearing		
		instrument). At least two slides per animal were prepared,		
		fixed in methanol and stained with acridine orange in		
		phosphate buffer (pH 7.4). Good quality cell preparations were		
		examined (blind) using incident light fluorescence microscopy,		
		and the proportion of PCEs among 1000 erythrocytes (PCE		
		frequency) and the proportion of MN PCEs among 1000 PCEs (MN		
		PCE frequency) were determined.		
		Data for PCE frequency and MN PCE Frequency were transformed prior to		
		statistical analysis using arcsin square root		
		transformation. If the transformed data was normally		
		distributed, parametric methods were used for statistical		
		analysis; if not, nonparametric methods (Kruskal-Wallis test,		
		Mann-Whitney U test) were applied to the non-transformed data.		
		Body weight gain data were analyzed using parametric methods.		
		Result: Purity of test samples		
		Laboratory analysis of the test substance and positive		
		indicator compound (1,3-butadiene) at the start of the study		
		and again at the end indicated that the composition of the		
		test materials were unchanged over the course of the study.		
		The purity of the 4-VCH was 99.4% to 99.75% while the purity		
		of 1,3-butadiene was found to be 99.9%. The inhibitor present		
		in both substances was 4-tertbutylcatechol.		
		Exposure concentrations and chamber conditions		
		Mean chamber concentrations for 4-VCH over the length of the		
		study (with SD in parenthesis) were 53 ppm (9.7 ppm), 250 ppm		
		(27 ppm), and 1000 ppm (80 ppm) and, for 1,3-butadiene, 980		
		ppm (140 ppm). Chamber temperatures, humidity, and airflow		
		were reported to be within targeted parameters throughout the		
		study. Clinical signs of toxicity		
		All male mice and one-half of the female mice exposed to 1000		
		ppm 4-VCH were found dead by day 12 of the study. By the end		
		of the study, only 2 female mice survived at this		
		of the study, only 2 female mile sufvived at this		

Organisation / MSCA submitter's comment to comment concentration. Tremors and lethargy were observed in 1 male and 2 female mice at 50 ppm. but no clinical signs of toxicity were observed at 280 ppm. All negative control, positive indicator. 50 ppm-exposed, and 250 ppm-exposed animals survived until sacrificed. Body weight gain Mean body weight gain data were reported at weekly intervals and over the duration of the study. A statistically significant (alpha = 0.05) decrease in weight gain was reported at 250 ppm for female mice but not at other concentrations for either sex. Cytogenetic evaluation The arcsin square root transformed PCE frequency data were found to be normally distributed and, therefore, were analyzed using parametric methods (ANOVA). The mean PCE frequency data were reported as follows: Conc. Sex N Mean(%) 95% Conf. Limits (ppm) 0 M 5 55.1 49.8, 60.3 50 M 4* 57.5 47.8, 66.9 250 M 5 54.9 49.6, 60.1 1000 M 0 No Data 1000 M 0 No Data 1000 M 0 No Data 1000 F 2 63.2 47.5, 77.5 1, 3-BD F 5 59.4 50.4, 63.1 250 P 5 59.4 50.4, 63.1 250 P 5 60.2 53.2, 67.1 1, 3-BD F 5 72.3 64.8, 79.2 The arcsin square root transformed MN PCE frequency data were analyzed using parametric methods (ANOVA). The mean NN PCE frequency data were analyzed using parametric methods (ANOVA). The mean NN PCE frequency data were reported as follows: Conc. Sex N Mean(%) 95% Conf. Limits Conc. Sex N Mean(%) 95% Conf. Limits ppm) 0 M 5 0.14 0.00, 0.50 Image: Second S	Date	Country /				Comme	nt	Dossier	RAC's response
MSCA response to comment concentration. Tremors and lethargy were observed in 1 male and 2 female mice at 50 ppm. but no clinical signs of toxicity were observed at 250 ppm. All negative control. positive indicator. 50 ppm-exposed, and 250 ppm-exposed animals survived until sacrificed. Body weight gain Negative control. positive indicator. 50 ppm-exposed, and 250 ppm-exposed animals aurvived until sacrificed. Body weight gain Negative control. positive indicator. 50 ppm-exposed, and 250 ppm-exposed animals aurvived until sacrificed. Body weight gain mean body weight gain data were reported at weekly intervals and over the duration of the study. A statistically significant (alpha = 0.05) decrease in weight gain was reported at 250 ppm for female mice but not at other concentrations for either sax. Cytogenetic evaluation The arcsin gquare root runaformed PCE frequency data were found to be normally distributed and, therefore, were analyzed using parametric methods (ANOVA). The mean PCE frequency data were reported as follows: Conc. Sex N Mean(%) 95% Conf. Limits (ppm) 0 M 5 5.1 49.8, 60.3 50 50 50.1 50.2 51.2 51.4 51.7 51.7 <									-
comment comment and 2 female mice at 50 ppm, but no clinical signs of toxicity were observed at 250 ppm. All negative control, positive indicator, 50 ppm-exposed, and 250 ppm-exposed animals survived until sacrificed. Body weight gain Mean body weight gain data were reported at weekly intervals and over the duration of the study. A statistically significant (alpha = 0.05) decrease in weight gain was reported at 250 ppm for female mice but not at other concentrations for either sex. Cytogenetic evaluation The arcsin square root transformed PCE frequency data were found to be normally distributed and, therefore, were analyzed using parametric methods (ANOVA). The mean PCE frequency data were reported as follows: Conc. Sex N Mean(%) 95% Conf. Limits (ppm) 0 N 5 55.1 49.8, 60.3 50 N 4* 57.5 47.8, 66.9 250 M 5 54.9 49.6, 60.1 1000 M 0 No Data 1,3-BD M 4* 61.1 48.1, 73.4 0 F 5 59.8 48.5, 70.6 50 F 5 59.4 50.4, 66.1 250 F 5 5								response to	
concentration. Tremors and lethargy were observed in 1 maleand 2 female mice at 50 ppm. All negative control, positiveindicator, 50 ppm-exposed, and 250 ppm-exposed animalsaurvived until sacrificed.Body weight gain data were reported at weekly intervalsand over the duration of the study. A statisticallysignificant (alpha = 0.05) decrease in weight gain wasreported at 250 ppm for female mice but not at otherconcentrations for either sex.Cytogenetic evaluationThe arcsin square root transformed PCE frequency data werefound to be normally distributed and, therefore, were analyzedusing patrametric methods (ANOVA). The mean PCE frequency datawere reported as follows:Conc.Conc.Stat250M50M4*51.149.8, 60.35050M4*51.49.81000M0F59.848.5, 70.6505152535454555657575859507550755173.87475757575757575757575757575 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>-</th><th></th></t<>								-	
and 2 female mice at 50 ppm, but no clinical signs of toxicity wrer observed at 250 ppm, All negative control, positive indicator, 50 ppm-exposed, and 250 ppm-exposed animals survived until sacrificed. Body weight gain Mean body weight gain data were reported at weekly intervals and over the duration of the study. A statistically significant (alpha = 0.05) decrease in weight gain was reported at 250 ppm for female mice but not at other concentrations for either sex. Cytogenetic evaluation The arcsin square root transformed PCE frequency data were found to be normally distributed and, therefore, were analyzed using parametric methods (ANOVA). The mean PCE frequency data were reported as 5010ws: Conc. Sex N Mean(%) 95% Conf. Limits (ppm) 0 M 5 55.1 49.8, 60.3 50 M 5 55.1 49.8, 60.3 50 M 5 55.1 49.8, 60.1 1000 M 0 No Data 1,3-BD M 4* 61.1 48.1, 73.4 0 F 5 59.8 48.5, 70.6 50 F 5 59.4 50.4, 68.1 250 F 5 59.4 50.4, 68.1 250 F 5 59.4 50.4, 68.1 250 F 5 72.3 67.1 1000 F 2 63.2 47.5, 77.5 1,3-BD F 5 72.3 67.1 1000 F 2 63.2 47.5, 77.5 1,3-BD F 5 72.3 60.7 The arcsin square root transformed MN PCE frequency data were analyzed using parametric methods (ANOVA). The mean NM PCE frequency data were reported at 50.10 0 M 5 0.14 0.00, 0.50 50 M 5 0.14 0.01, 0.50 50 M 5 0.24 0.12, 0.41			concentrat	ion. Trem	ors and l	ethargy were	observed in 1 male		
Indicator, 50 ppm-exposed, and 250 ppm-exposed animals survived until sacrified. Body weight gain Mean body weight gain data were reported at weekly intervals and over the duration of the study. A statistically significant (alpha = 0.05) decrease in weight gain was reported at 250 ppm for female mice but not at other concentrations for either sex. Cytogenetic evaluation The arcsin square root transformed PCE frequency data were found to be normally distributed and, therefore, were analyzed using parametric methods (ANOVA). The mean PCE frequency data were reported as follows: Conc. Sex N Mean(%) 95% Conf. Limits (ppm)0M555.149.6, 60.350M4*57.547.8, 66.9250M559.848.5, 70.61000M0No bata 80.4, 68.1250F559.848.5, 70.6250F560.253.2, 67.11000F263.247.5, 77.51.3-BDF572.364.8, 79.2The arcsin square root transformed MN PCE frequency data were alao found to be normally distributed and, therefore, were analyzed using parametric methods (ANOVA). The mean MN PCE frequency data were reported as follows: Conc. Sex N Mean(%)95% Conf. Limits0F572.364.8, 79.2The arcsin square root transformed MN PCE frequency data were analyzed using parametric methods (ANOVA). The mean MN PCE frequency data were reported as follows: Conc. Sex N Mean(%)95% Conf. Limitsppm)0M50.140.00, 0.500M50.14<									
survived until secrificed. Body weight gain Mean body weight gain data were reported at weekly intervals and over the duration of the study. A statistically significant (alpha = 0.05) decrease in weight gain was reported at 250 ppm for female mice but not at other concentrations for either sex. Cytogenetic evaluation The arcsin square root transformed PCE frequency data were found to be normally distributed and, therefore, were analyzed using parametric methods (ANOVA). The mean PCE frequency data were reported as follows: Conc. Sex N Mean(%) 95% Conf. Limits (ppm) M 5 55.1 49.8, 60.3 50 M 4* 57.5 47.8, 66.9 250 M 5 54.9 49.6, 60.1 1000 M 0 No Data No Data 1,3-BD M 4* 61.1 48.1, 73.4 0 F 5 59.4 49.6, 60.1 1000 F 2 63.2 47.5, 77.5 1,3-BD F 5 59.4 50.4, 68.1 250 F 5 59.4 50.4, 68.1 250 F 5 59.4 50.4, 68.1 250 F 5 72.3 64.8, 79.2 The arcsin square root transformed NN PCE frequency data were also found to be normally distributed and, therefore, were analyzed using parametric methods (ANOVA). The mean NN PCE frequency data were reported as follows: Conc. Sex N Mean(%) 95% Conf. Limits ppm) 0 M 5 0.14 0.000, 0.50 50 M 4* 0.24 0.122, 0.41			were obser	ved at 25	0 ppm. Al	l negative co	ontrol, positive		
Body weight gainMean body weight gain data were reported at weekly intervals and over the duration of the study. A statistically significant (alpha = 0.05) decrease in weight gain was reported at 250 pm for female mice but not at other concentrations for either sex. Cytogenetic evaluationThe arcsin square root transformed PCE frequency data were found to be normally distributed and, therefore, were analyzed using parametric methods (ANOVA). The mean PCE frequency data were reported as follows: Conc. Sex N Mean(%) 95% Conf. Limits (ppm)0M 555.149.8, 60.350M 4*57.547.8, 66.9250M 554.949.6, 60.11000M 0No Data No Data 1,3-BDM4*61.11,3-BDM 4*61.148.1, 73.40F 559.450.4, 68.1250F 559.450.4, 68.1250F 559.450.4, 77.51,3-BDF 572.364.8, 79.2The arcsin square root transformed NN PCE frequency data were also found to be normally distributed and, therefore, were analyzedand 1000F 263.247.5, 77.51,3-BDF 572.364.8, 79.2The arcsin square root transformed NN PCE frequency data were also found to be normally distributed and, therefore, were analyzed using parametric methoda (ANOVA). The mean NN PCE frequency data were reported as follows: Conc. Sex N Mean(%) 95% conf. Limits ppm)0M 50.140.00, 0.500M 4*0.240.12, 0.41			indicator,	50 ppm-e	xposed, a	nd 250 ppm-ez	xposed animals		
Mean body weight gain data were reported at weekly intervals and over the duration of the study. A statistically significant (alpha = 0.05) decrease in weight gain was reported at 250 ppm for female mice but not at other concentrations for either sex. Cytogenetic evaluation The arcsin square root transformed PCE frequency data were found to be normally distributed and, therefore, were analyzed using parametric methods (ANOVA). The mean PCE frequency data were reported at follows: Conc. Sex N Mean(%) 95% Conf. Limits (ppm)0M555.149.8, 60.350M4*50M4*61.148.1, 73.40F5250M5250F51000M01000M0F5250F5250F5250F5250F5250F5250F5250F5250F5250F5250F5250F5250F5250F526148.5, 70.6270F5280F5291F572.364.8, 79.2The arcsin square root transformed MN PCE frequency data were also found to be normally distributed and, therefore, were analyzed using parametric methods (ANOVA). The mean MN PCE frequency data were reported as follows: Conc. Con			survived u	ntil sacr	ificed.				
and over the duration of the study. A statistically significant (alpha = 0.05) decrease in weight gain was reported at 250 ppm for female mice but not at other concentrations for either sex. Cytogenetic evaluation The arcsin square root transformed PCE frequency data were found to be normally distributed and, therefore, were analyzed using parametric methods (ANOVA). The mean PCE frequency data were reported as follows: Conc. Sex N Mean(%) 95% Conf. Limits (ppm) 0 M 5 55.1 49.8, 60.3 50 M 4* 57.5 47.8, 66.9 250 M 5 54.9 49.6, 60.1 1000 M 0 No Data No Data 1,3-BD M 4* 61.1 48.1, 73.4 0 F 5 59.8 48.5, 70.6 50 F 5 59.4 50.4, 68.1 250 F 5 72.3 64.8, 79.2 The arcsin square root transformed MN PCE frequency data were also found to be normally distributed and, therefore, were analyzed using parametric methods (ANOVA). The mean MN PCE frequency data were reported as follows: Conc. Sex N Mean(%) 95% Conf. Limits ppm) 0 M 5 0.14 0.000, 0.50 50 M 4* 0.24 0.12, 0.41			Body weigh	ıt gain					
<pre>significant (alpha = 0.05) decrease in weight gain was reported at 250 ppm for female mice but not at other concentrations for either sex. Cytogenetic evaluation The arcsin square root transformed PCE frequency data were found to be normally distributed and, therefore, were analyzed using parametric methods (ANOVA). The mean PCE frequency data were reported as follows: Conc. Sex N Mean(%) 95% Conf. Limits (ppm) 0 M 5 55.1 49.8, 60.3 50 M 4* 57.5 47.8, 66.9 250 M 5 54.9 49.6, 60.1 1000 M 0 No Data No Data 1,3-BD M 4* 61.1 48.1, 73.4 0 F 5 59.8 48.5, 70.6 50 F 5 59.4 50.4, 68.1 250 F 5 60.2 53.2, 67.1 1000 F 2 63.2 47.5, 77.5 1,3-BD F 5 72.3 64.8, 79.2 The arcsin square root transformed MN PCE frequency data were also found to be normally distributed and, therefore, were analyzed using parametric methods (ANOVA). The mean NN PCE frequency data were reported as follows: Conc. Sex N Mean(%) 95% Conf. Limits ppm) 0 M 5 0.14 0.000, 0.50 50 M 4* 0.24 0.12, 0.41</pre>			Mean body	weight ga	in data w	ere reported	at weekly intervals		
reported at 250 ppm for female mice but not at other concentrations for either sex. Cytogenetic evaluation The arcsin square root transformed PCE frequency data were found to be normally distributed and, therefore, were analyzed using parametric methods (ANOVA). The mean PCE frequency data were reported as follows: Conc. Sex N Mean(%) 95% Conf. Limits (ppm) 0 M 5 55.1 49.8, 60.3 50 M 4* 57.5 47.8, 66.9 250 M 5 54.9 49.6, 60.1 1000 M 0 No Data No Data 1,3-BD M 4* 61.1 48.1, 73.4 0 F 5 59.8 48.5, 70.6 50 F 5 59.4 50.4, 68.1 250 F 5 60.2 53.2, 67.1 1000 F 2 63.2 47.5, 77.5 1,3-BD F 5 72.3 64.8, 79.2 The arcsin square root transformed MN PCE frequency data were also found to be normally distributed and, therefore, were analyzed using parametric methods (ANOVA). The mean MP PCE frequency data were reported as follows: Conc. Sex N Mean(%) 95% Conf. Limits ppm) 0 M 5 0.14 0.00, 0.50 50 M 4* 0.24 0.12, 0.41			and over t	he durati	on of the	study. A sta	atistically		
concentrations for either sex. Cytogenetic evaluation The arcsin square root transformed PCE frequency data were found to be normally distributed and, therefore, were analyzed using parametric methods (ANOVA). The mean PCE frequency data were reported as follows: Conc. Sex N Mean(%) 95% Conf. Limits (ppm) 0 M 5 55.1 49.8, 60.3 50 M 5 54.9 49.6, 60.1 1000 M 0 No Data No Data 1,3-BD M 4* 61.1 48.1, 73.4 0 F 5 59.8 48.5, 70.6 50 F 5 60.2 53.2, 67.1 1000 F 2 63.2 47.5, 77.5 1,3-BD F 5 72.3 64.8, 79.2 The arcsin square root transformed MN PCE frequency data were analyzed using parametric methods (ANOVA). The mean NM PCE frequency data were reported as follows: Conc. Sex N Mean(%) 95% Conf. Limits ppm) 0 M 5 0.14 0.00, 0.50 50 M 4 × 0.24 0.12, 0.41									
Cytogenetic evaluation The arcsin square root transformed PCE frequency data were found to be normally distributed and, therefore, were analyzed using parametric methods (ANOVA). The mean PCE frequency data were reported as follows: Conc. Sex N Mean(%) 95% Conf. Limits (ppm) 0 M 5 55.1 49.8, 60.3 50 M 4* 57.5 47.8, 66.9 250 M 5 54.9 49.6, 60.1 1000 M 0 No Data No Data 1,3-BD M 4* 61.1 48.1, 73.4 0 F 5 59.8 48.5, 70.6 50 F 5 59.4 50.4, 68.1 250 F 5 60.2 53.2, 67.1 1000 F 2 63.2 47.5, 77.5 1,3-BD F 5 72.3 64.8, 79.2 The arcsin square root transformed MN PCE frequency data were also found to be normally distributed and, therefore, were analyzed using parametric methods (ANOVA). The mean MN PCE frequency data were reported as follows: Conc. Sex N Mean(%) 95% Conf. Limits ppm) 0 M 5 0.14 0.00, 0.50 50 M 4* 0.24 0.12, 0.41			reported a	t 250 ppm	for fema	le mice but n	not at other		
The arcsin square root transformed PCE frequency data were found to be normally distributed and, therefore, were analyzed using parametric methods (ANOVA). The mean PCE frequency data were reported as follows: Conc. Sex N Mean(%) 95% Conf. Limits (ppm)0M555.149.8, 60.30M555.149.8, 66.9250M554.949.6, 60.11000M0No Data No DataNo Data1,3-BDM4*61.148.1, 73.40F559.848.5, 70.650F559.450.4, 68.1250F560.253.2, 67.11000F263.247.5, 77.51,3-BDF572.364.8, 79.2The arcsin square root transformed NN PCE frequency data were analyzed using parametric methods (ANOVA). The mean MN PCE frequency data were reported as follows: Conc.Conc.SexNMean(%)95% Conf. Limits ppm)0M50.140.00, 0.500M4*0.240.12, 0.41			concentrat	ions for	either se	x.			
$ \left \{ \begin{array}{ccccccccccccccccccccccccccccccccccc$			Cytogeneti	c evaluat	ion				
using parametric methods (ANOVA). The mean PCE frequency data were reported as follows: Conc. Sex N Mean(%) 95% Conf. Limits (pgm) 0 M 5 55.1 49.8, 60.3 0 M 5 55.1 49.8, 60.4 250 M 5 54.9 49.6, 60.1 1000 M 0 No Data No Data 1,3-BD M 4* 61.1 48.1, 73.4 0 F 5 59.8 48.5, 70.6 50 F 5 60.2 53.2, 67.1 1000 F 2 63.2 47.5, 77.5 1,3-BD F 5 72.3 64.8, 79.2 1,3-BD F 5 72.3 64.8, 79.2 The arcsin square root transformed NN PCE frequency data were analyzed using parametric methods (ANOVA). The mean MN PCE frequency data were analyzed using parametric methods (ANOVA). The mean MN PCE frequency data were reported as follows: Conc. Sex N Mean(%) 95% Conf. Limits ppm) 0 M 5 0.14 0.00, 0.50			The arcsin	. square r	oot trans	formed PCE fi	requency data were		
were reported as follows:Conc.SexNMean(\S)95% Conf. Limits(ppm)0M555.149.8, 60.350M4*57.547.8, 66.9250M554.949.6, 60.11000M0No DataNo Data1,3=BDM4*61.148.1, 73.40F559.450.4, 68.1250F560.253.2, 67.11000F263.247.5, 77.51,3-BDF572.364.8, 79.2The arcsin square root transformed MN PCE frequency data were also found to be normally distributed and, therefore, were analyzed using parametric methods (ANOVA). The mean MN PCE frequency data were reported as follows:Conc.SexNMean(\S)95% Conf. Limitsppm)0M50.140.00, 0.5050M4*0.240.12, 0.41			found to b	e normall	y distrib	outed and, the	erefore, were analyzed		
Conc. Sex N Mean(%) 95% Conf. Limits (ppm) 0 M 5 55.1 49.8, 60.3 0 M 4* 57.5 47.8, 66.9 250 M 5 54.9 49.6, 60.1 1000 M 0 No Data No Data 1,3-BD M 4* 61.1 48.1, 73.4 0 F 5 59.8 48.5, 70.6 50 F 5 60.2 53.2, 67.1 1000 F 2 63.2 47.5, 77.5 1,3-BD F 5 72.3 64.8, 79.2 The arcsin square root transformed MN PCE frequency data were also found to be normally distributed and, therefore, were analyzed using parametric methods (ANOVA). The mean MN PCE frequency data were reported as follows: Conc. Sex N Mean(%) 95% Conf. Limits ppm) 0 M 5 0.14 0.00, 0.50 0 M 5 0.14 0.12, 0.41 0.12, 0.41			using para	metric me	thods (AN	OVA). The mea	an PCE frequency data		
(ppm) 0 M 5 55.1 49.8, 60.3 50 M 4* 57.5 47.8, 66.9 250 M 5 54.9 49.6, 60.1 1000 M 0 No Data No Data 1,3-BD M 4* 61.1 48.1, 73.4 0 F 5 59.8 48.5, 70.6 50 F 5 59.4 50.4, 68.1 250 F 5 60.2 53.2, 67.1 1000 F 2 63.2 47.5, 77.5 1,3-BD F 5 72.3 64.8, 79.2 The arcsin square root transformed MN PCE frequency data were also found to be normally distributed and, therefore, were analyzed using parametric methods (ANOVA). The mean MN PCE frequency data were reported as follows: Conc. Sex N Mean(%) 95% Conf. Limits ppm) 0 M 5 0.14 0.00, 0.50 0 M 5 0.14 0.24 0.12, 0.41			were repor	ted as fo	llows:				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			Conc.	Sex	N	Mean(%)	95% Conf. Limits		
$ \begin{bmatrix} 50 & M & 4^* & 57.5 & 47.8, 66.9 \\ 250 & M & 5 & 54.9 & 49.6, 60.1 \\ 1000 & M & 0 & No Data & No Data \\ 1,3-BD & M & 4^* & 61.1 & 48.1, 73.4 \\ 0 & F & 5 & 59.8 & 48.5, 70.6 \\ 50 & F & 5 & 59.4 & 50.4, 68.1 \\ 250 & F & 5 & 60.2 & 53.2, 67.1 \\ 1000 & F & 2 & 63.2 & 47.5, 77.5 \\ 1,3-BD & F & 5 & 72.3 & 64.8, 79.2 \\ \end{bmatrix} $			(ppm)						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			0	М			49.8, 60.3		
1000 M 0 No Data No Data 1,3-BD M 4* 61.1 48.1, 73.4 0 F 5 59.8 48.5, 70.6 50 F 5 59.4 50.4, 68.1 250 F 5 60.2 53.2, 67.1 1000 F 2 63.2 47.5, 77.5 1,3-BD F 5 72.3 64.8, 79.2 The arcsin square root transformed MN PCE frequency data were also found to be normally distributed and, therefore, were analyzed using parametric methods (ANOVA). The mean MN PCE frequency data were reported as follows: Conc. Sex N Mean(%) 95% Conf. Limits ppm) 0 M 5 0.14 0.00, 0.50 50 M 4* 0.24 0.12, 0.41			50	М			-		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			250	М	5	54.9			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1000	М		No Data			
50 F 5 59.4 50.4, 68.1 250 F 5 60.2 53.2, 67.1 1000 F 2 63.2 47.5, 77.5 1,3-BD F 5 72.3 64.8, 79.2 The arcsin square root transformed MN PCE frequency data were also found to be normally distributed and, therefore, were analyzed using parametric methods (ANOVA). The mean MN PCE frequency data were reported as follows: Conc. Sex N Mean(%) 95% Conf. Limits ppm) 0 M 5 0.14 0.00, 0.50 0 M 5 0.14 0.12, 0.41			1,3-BD			61.1			
250 F 5 60.2 53.2, 67.1 1000 F 2 63.2 47.5, 77.5 1,3-BD F 5 72.3 64.8, 79.2 The arcsin square root transformed MN PCE frequency data were also found to be normally distributed and, therefore, were analyzed using parametric methods (ANOVA). The mean MN PCE frequency data were reported as follows: Conc. Sex N Mean(%) 95% Conf. Limits ppm) 0 M 5 0.14 0.00, 0.50 50 M 4* 0.24 0.12, 0.41			0	=					
1000F2 63.2 $47.5, 77.5$ $1, 3-BD$ F5 72.3 $64.8, 79.2$ The arcsin square root transformed MN PCE frequency data were also found to be normally distributed and, therefore, were analyzed using parametric methods (ANOVA). The mean MN PCE frequency data were reported as follows: Conc. SexConc.SexNMean(%)95% Conf. Limits ppm)0M5 0.14 $0.00, 0.50$ 50 M $4*$									
1,3-BDF572.364.8,79.2The arcsin square root transformed MN PCE frequency data were also found to be normally distributed and, therefore, were analyzed using parametric methods (ANOVA). The mean MN PCE frequency data were reported as follows: Conc. SexNMean(%)0M50.140.00, 0.500M50.140.12, 0.41			250						
The arcsin square root transformed MN PCE frequency data were also found to be normally distributed and, therefore, were analyzed using parametric methods (ANOVA). The mean MN PCE frequency data were reported as follows: Conc. Sex N Mean(%) 95% Conf. Limits ppm) 0 M 5 0.14 0.00, 0.50 50 M 4* 0.24 0.12, 0.41						63.2			
also found to be normally distributed and, therefore, were analyzed using parametric methods (ANOVA). The mean MN PCE frequency data were reported as follows: Conc. Sex N Mean(%) 95% Conf. Limits ppm) 0 M 5 0.14 0.00, 0.50 50 M 4* 0.24 0.12, 0.41			1,3-BD	F	5	72.3	64.8, 79.2		
also found to be normally distributed and, therefore, were analyzed using parametric methods (ANOVA). The mean MN PCE frequency data were reported as follows: Conc. Sex N Mean(%) 95% Conf. Limits ppm) 0 M 5 0.14 0.00, 0.50 50 M 4* 0.24 0.12, 0.41			The arcsin	square r	oot trans	formed MN PC	E frequency data were		
analyzed using parametric methods (ANOVA). The mean MN PCEfrequency data were reported as follows:Conc.SexNMean(%)95% Conf. Limitsppm)0M50M4*0.240.12, 0.41									
frequency data were reported as follows: Conc. Sex N Mean(%) 95% Conf. Limits ppm) 0 M 5 0.14 0.00, 0.50 50 M 4* 0.24 0.12, 0.41					-				
Conc. Sex N Mean(%) 95% Conf. Limits ppm) 0 M 5 0.14 0.00, 0.50 50 M 4* 0.24 0.12, 0.41									
ppm) 0 M 5 0.14 0.00, 0.50 50 M 4* 0.24 0.12, 0.41							95% Conf. Limits		
0 M 5 0.14 0.00, 0.50 50 M 4* 0.24 0.12, 0.41						. ,			
50 M 4* 0.24 0.12, 0.41				М	5	0.14	0.00, 0.50		
			50						
			250	М	5	0.33	0.12, 0.66		

Date	Country / Organisation / MSCA				Comment		Dossier submitter's response to	RAC's response to comment
		1000	М	0	No Data	No Data	comment	
		1,3-BD	M	4*	1.56	0.24, 3.98		
		0	F	5	0.10	0.24, 3.98		
		50	ч т	5	0.14	0.01, 0.43		
		250	F	5	0.23	0.11, 0.39		
		1000	F	2	0.19	0.00, 3.58		
		1,3-BD	т Ч	5	0.78	1.29, 2.10		
			-	-		dy due to technical		
		error.						
		Given the	e data pre	sented abo	ve, there was n	o statistically		
			-			PCEs among 1000		
		_	_			VCH-treated group,		
					roup (1,3-butad			
		exhibited	d a statis	tically si	gnificant eleva	tion of MN PCEs		
		(proporti	lon of PCE	s per 1000	erythrocytes u	naffected).		
		Test subs	stance: 4-	Vinylcyclo	hexene, CAS No.	100-40-3.		
		Conclusio	on: Under	the condit	ions of this st	udy, it can be concluded that		
		4-VCH did	l not caus	e any appa	rent physiologi	c or toxic effects		
		on the bo	one marrow	or induce	chromosomal or	spindle damage in		
				hroblast c				
			-		ut restriction			
		-				uideline study.		
		_		ods and re	sults, acceptab	le for evaluation.		
		10-JUL-20				(20)		
			cronucleus	-				
		-		male/femal	e			
			Sprague-Da					
				nhalation				
		-	period: 1					
				0, and 150	0 ppm			
		Result: n	5					
			EPA OTS 79	8.5395				
		GLP: yes						
						D®BR rats (Charles River		
		-			-	ks old on the first		
						50, 1000 or 1500		
1					s per week for			
		positive	control g	roup of 5	male and 5 fema	le rats received a		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		single intraperitoneal injection of cyclophosphamide USP in	comment	
		sterile water (40 mg/kg body weight) at the end of the 13 week		
		period.		
		[Other methodological details as for the rat 13 week		
		inhalation exposure micronucleus study described avove.]		
		Result: Purity of test substance		
		Laboratory analysis of the test substance at the start of the		
		study and again at the end indicated that the composition was		
		unchanged over the course of the study. The purity was 99.4%		
		to 99.75% with 4-tertbutylcatechol as an inhibitor.		
		Exposure concentrations and chamber conditions		
		Mean chamber concentrations for 4-VCH over the length of the		
		study (SD in parenthesis) were reported as 250 ppm (27 ppm),		
		1000 ppm (80 ppm) and 1500 ppm (79 ppm). Chamber temperatures,		
		humidity, and airflow were reported to be within targeted		
		parameters throughout the study.		
		Clinical signs of toxicity		
		Lethargy, clear discharge from the mouth, and stained fur were		
		the most prevalent clinical signs observed and were evident at		
		all 4-VCH chamber concentrations. All animals survived until		
		sacrificed.		
		Body weight gain		
		Mean body weight gain was decreased in a dose-related manner		
		in males, which was statistically significant (alpha=0.05) at		
		1000 ppm and 1500 ppm. For females, body weight gain was		
		decreased but this was not significant (alpha = 0.05) at any		
		exposure concentration.		
		CYTOGENETIC EVALUATION		
		The arcsin square root transformed PCE frequency data were		
		found to be normally distributed and, therefore, were analyzed		
		using parametric methods (ANOVA). The mean PCE frequency data		
		were reported as follows:		
		Conc. Sex N Mean(%) 95% Conf. Limits		
		(ppm) 0 M 5 43.5 29.7, 57.9		
l		250 M 5 49.1 42.7, 55.6 1000 M 5 47.2 35.4, 59.3		
l		1500 M 5 47.2 35.4, 59.5 1500 M 5 51.6 45.7, 57.5		
		1300 M 3 31.0 T.I., 31.3		

Date	Country / Organisation / MSCA			Cor	nment	Dossier submitter's response to comment	RAC's response to comment
		40mg/kg CP M	5 25.2 8.9	. 46.3		comment	
		0 F 5 41.3 2		, 1010			
		250 F 5 42.7					
		1000 F 5 49.					
		1500 F 5 48.					
		40mg/kg CP F					
					PCE frequency data were		
					n and, therefore, were		
		analyzed usi:	ng non-para	metric methods	(Kruskal-Wallis). The		
		mean MN PCE	frequency da	ata were repor	ted as follows:		
		Conc. Se	x N	Mean(%)	Std. Error		
		(ppm)					
		0 M	-	0.08	0.05		
		250 M	-	0.08	0.04		
		1000 M	-	<mark>0.16</mark>	0.09		
		1500 M	-	0.06	0.04		
		40mg/kg CP M		0.96	0.20		
		0 F	-	0.20	0.10		
		250 F	5	0.16	0.06		
		1000 F	5	0.12	0.06		
		1500 F	-	0.10	0.08		
		40mg/kg CP F	5	0.78	0.12		
					was no statistically		
		-	-		ion of PCEs among 1000		
					in any VCH-treated group,		
		_			treated) exhibited a		
					of MN PCEs. The		
					cytes was also depressed		
					was not noted as		
		statisticall					
					AS No. 100-40-3.		
					his study, it can be concluded th	nat	
					iologic or toxic effects		
					mal or spindle damage in		
		the nucleate					
		-		without restri			
		Study availa	ble for rev	iew. GLP-compl	iant guideline study.		

<pre>Well reported methods and results, acceptable for evaluation. 10-JUL-2006 (20) 5.7 Carcinogenicity Species: rat Sex: male/female Strain: Fischer 344 Route of administration: gavage Exposure period: 103 wk Prequency of treatment: consecutive days Post exposure period: none Doses: 0, 200 or 400 mg/kg bw/d Result: ambiguous Control Groups yes, concurrent vehicle Method: other: standard NTF methodology GLP: no data Method: Groups of 50 male and 50 female F344 rats (Charles River Breeding Laboratorics : age 7 wk at start of treatment) were administered 4-VCH (>98% pure) in corn oil by gavage at doses of 0, 200 or 400 mg/kg bw/d 5 d/wk for 103 wk. Dose volume = 3.33 ml/kg. 101her methodological details as reported above for the rat 103 wk chronic study (see section 5.4).] Statistical methods: - survival analyses The probability of survival was estimated using the procedure of Kaplan and Muier, with dose-related effects analyzed by the methods of Cox and of Tarone. (Animals dying from non-natural causes or missing from the study were excluded.) Where differences were present, additional analysis was carried out to identify the time point at which differences became significant. - analysis of tumor incidence Results were analyzed using life table analysis (computational methodology of Haseman) and unadjuated incidence analysis (based on Fisher exact test and Cochran-Armitage linear trend tot). .</pre>	Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
<pre>10-JUL-2006 (20) 5.7 Carcinogencity Bpcies: at Sax: male/female Strain: Fischer 344 Rotte of administration: gavage Exposure period: 103 wk Frequency of treatment: consecutive days Fost exposure period: none Doese: 0, 200 or 400 mg/Kg bw/d Result: ambiguous Control Group: yes, concurrent vehicle Method: other: standard NTP methodology GLP: no data Method: Groups of 50 male and 50 female F344 rats (Charles River Breeding Laboratories : age 7 wk at start of treatment) were administered 4-VCH (>988 purd in cont ol by gavage at doses of 0, 200 or 400 mg/Kg bw/d 5 d/wk for 103 wk. Dose volume = 3.33 m1/kg. [Other methodological details as reported above for the rat 103 wk chronic study (see section 5.4).] Statistical methods: - survival analyzes The probability of survival was estimated using the procedure of Kaplan and Meier, with dose-related effects analyzed by the methods of Cox and of Tarone. (Animals dying from non-natural causes or missing from the study ware excluded.) Where differences were present, additional analysis was carried out to identify the time point at which differences became significant. - analysis of tumor incidence Results were analyzed using life table analysis (method of Cox and of Tarone), incidentel tumor analysis (computational methodology of Haseman) and unadjuted incidence analysis (based on Fisher exact test and Cochran-Armitage linear trend test).</pre>			Well reported methods and results, acceptable for evaluation.		
<pre>5.7 Chromosonicity Species: rat Sex: male/female Strain: Fischer 344 Route of administration: gavage Exposure period: 103 wk Frequency of treatment: connecutive days Post exposure period: none Doses: 0, 200 or 400 mg/kg bw/d Result: ambiguous Control Group: yes, concurrent vehicle Method: other: standard NTP methodology GLP: no data Method: droups of 50 male and 50 female F344 rats (Charles River Breeding Laboratories / ager / wk at start of treatment) were administered 4-VCH (>99% pure) in corn oil by gavage at doses of 0, 200 or 400 mg/kg bw/d 5 d/wk for 103 wk. Dose volume = 3,33 mL/kg. Iother methodological details as reported above for the rat 103 wk chronic study (see section 5.4).1 Statistical methods: - survival analyses The probability of survival was estimated using the procedure of Kapian and Meir, with dose-related effects analyzed by the methods of Cox and of Tarone. (Animals dying from non-natural causes or missing from the study were excluded.) Where differences were present, additional analysis was carried out to idintify the time point at which differences became significant. - analysis of tumor incidence Results were analyzed using life table analysis (method of Cox and of Tarone), incidental tumor analysis (method of Cox and of Tarone), incidental tumor analysis (method of Cox and of Tarone), incidental tumor analysis (method of Cox and of Tarone), incidental tumor analysis (method of Cox and of Tarone), incidental tumor analysis (method of Cox and of Tarone), incidental tumor analysis (method of Cox and of Tarone), incidental tumor analysis (method of Cox and of Tarone), incidental tumor analysis (method of Cox and of Tarone), incidental tumor analysis (method of Cox and of Tarone), incidental tumor analysis (method of Cox and of Tarone), incidental tumor analysis (method of Cox and of Tarone), incidental tumor analysis (method o</pre>					
<pre>species: rat Sex: male/female Strain: Fischer 344 Route of administration: gavage Exposure period: 103 wk Frequency of treatment: consecutive days Post exposure period: none Domes: 0, 200 or 400 mg/kg bw/d Result: ambiguous Control Group: yes, concurrent vehicle Method: other: standard NTP methodology GLP: no data Method: Groups of 50 male and 50 female F344 rats (Charles River Breeding Laboratories : age 7 wk at start of treatment) were administered 4-VCH (>98% pure) in corn oil by gavage at doses of 0, 200 or 400 mg/kg bw/d 5 d/wk for 103 wk. Dose volume = 3.33 ml/kg. [Other methodological details as reported above for the rat 103 wk chronic study (see section 5.4).] Statistical methods: - survial analyses The probability of survial was estimated using the procedure of Kaglan and Meier, with dose-related effects analyzed by the methods of Cox and of Tarone. (Animals dying from non-natural causes or missing from the study were excluded.) Where differences were present, additional analysis was carried out to identify the time point at which differences became significant. - analysis of tumor incidence Results were analyzed using life table analysis (method of Cox and of Tarone), incidental tumor analysis (computational methodology of Haseman) and unadjusted incidence analysis (based on Fisher exact test and Cochran-Armitage linear trend test).</pre>					
<pre>species: rat Sex: male/female Strain: Fischer 344 Route of administration: gavage Exposure period: 103 wk Frequency of treatment: consecutive days Post exposure period: none Domes: 0, 200 or 400 mg/kg bw/d Result: ambiguous Control Group: yes, concurrent vehicle Method: other: standard NTP methodology GLP: no data Method: Groups of 50 male and 50 female F344 rats (Charles River Breeding Laboratories : age 7 wk at start of treatment) were administered 4-VCH (>98% pure) in corn oil by gavage at doses of 0, 200 or 400 mg/kg bw/d 5 d/wk for 103 wk. Dose volume = 3.33 ml/kg. [Other methodological details as reported above for the rat 103 wk chronic study (see section 5.4).] Statistical methods: - survial analyses The probability of survial was estimated using the procedure of Kaglan and Meier, with dose-related effects analyzed by the methods of Cox and of Tarone. (Animals dying from non-natural causes or missing from the study were excluded.) Where differences were present, additional analysis was carried out to identify the time point at which differences became significant. - analysis of tumor incidence Results were analyzed using life table analysis (method of Cox and of Tarone), incidental tumor analysis (computational methodology of Haseman) and unadjusted incidence analysis (based on Fisher exact test and Cochran-Armitage linear trend test).</pre>			5.7 Carcinogenicity		
<pre>strain: Fischer 344 Route of administration: gavage Exposure period: 103 wk Prequency of treatment: consecutive days Post exposure period: none Doses: 0, 200 or 400 mg/kg bw/d Result: ambiguous Control Group: yes, concurrent vehicle Method: other: standard NTP methodology GLP: no data Method: Groups of 50 male and 50 female F344 rats (Charles River Breeding Laboratories ; age 7 wk at start of treatment) were administered 4-VCH (>99% pure) in corn oil by gavage at doses of 0, 200 or 400 mg/kg bw/d 5 d/wk for 103 wk. Dose volume = 3.33 ml/kg. [Other methodological details as reported above for the rat 103 wk chronic study (see section 5.4).] Statistical methods:</pre>					
Route of administration: gavage Exposure period: 103 wk Frequency of treatment: consecutive days Post exposure period: none Doses: 0, 200 or 400 mg/kg bw/d Result: ambiguous Control Group: yes, concurrent vehicle Method: other: standard NTP methodology GLP: no data Method: Groups of 50 male and 50 female F344 rats (Charles River Breeding Laboratories ; age 7 wk at start of treatment) were administered 4-VCH (>988 pure) in corn oil by gavage at doses of 0, 200 or 400 mg/kg bw/d 5 d/wk for 103 wk. Dose volume = 3.33 ml/kg. IOther methodological details as reported above for the rat 103 wk chronic study (see section 5.4).] Statistical methods: - survival analyses The probability of survival was estimated using the procedure of Kaplan and Meier, with dose-related effects analyzed by the methods of Cox and of Tarone. (Animals dying from non-natural causes or missing from the study were excluded.) Mhere differences were present, additional analysis was carried out to identify the time point at which differences became significant. - analysis of tumor incidence Results were analyzed using life table analysis (method of Cox and of Tarone), incidental tumor analysis (computational methodology of Haseman) and unadjusted incidence analysis (based on Fisher exact test and Cochran-Armitage linear trend test).			-		
Exposure period: 103 wkFrequency of treatment: consecutive daysPoses: 0, 200 or 400 mg/kg bw/dResult: ambiguousControl Group: yes, concurrent vehicleMethod: other: standard NTP methodologyGLP: no dataMethod: Groups of 50 male and 50 female F344 rats (Charles RiverBreeding Laboratories : age 7 wk at start of treatment) wereadministered 4-VCH (>98% pure) in corn oil by gavage at dosesof 0, 200 or 400 mg/kg bw/d 5 d/wk for 103 wk. Dose volume =3.33 ml/kg.[Other methodological details as reported above for the rat103 wk chronic study (see section 5.4).]Statistical methods:- survival analysesThe probability of survival was estimated using the procedureof Kaplan and Meier, with dose-related effects analyzed by themethods of Cox and of Tarone. (Animals dying from non-naturalcauses or missing from the study were excluded.) Wheredifferences were present. additional analysis (method of Coxanalysis of tumor incidenceResults were analyzed using life table analysis (method of Coxand of Tarone.), incidental tumor analysis (computationalmethodology of Haseman) and unadjusted incidence analysis(based on Fisher exact test and Cochran-Armitage linear trendtest.).					
Frequency of treatment: consecutive daysPost exposure period: noneDoses: 0, 200 or 400 mg/kg bw/dResult: ambiguousControl Group: yes, concurrent vehicleMethod: other: standard NTP methodologyGLF: no dataMethod: Groups of 50 male and 50 female F344 rats (Charles RiverBreeding Laboratories ; age 7 wk at start of treatment) wereadministered 4-VCH (>984 pure) in corn oil by gavage at dosesof 0, 200 or 400 mg/kg bw/d 5 d/wk for 103 wk. Dose volume =3.3 m1/kg.[Other methodological details as reported above for the rat103 wk chronic study (see section 5.4).]Statistical methods:- survival analysesThe probability of survival was estimated using the procedureof Kaplan and Meier, with dose-related effects analyzed by themethods of Cox and of Tarone. (Animals dying from non-naturalcauses or missing from the study were excluded.) Wheredifferences were present, additional analysis was carried outto identify the time point at which differences becamesignificant analysis of tumor incidenceResults were analyzed using life table analysis (computationalmethodology of Haseman) and unadjusted incidence analysis(based on Fisher exact test and Cochran-Armitage linear trendtest.					
<pre>Post exposure period: nome Doses: 0, 200 or 400 mg/kg bw/d Result: ambiguous Control Group: yes, concurrent vehicle Method: other: standard NTP methodology GLP: no data Method: Groups of 50 male and 50 female F344 rats (Charles River Breeding Laboratories : age 7 wk at start of treatment) were administered 4-VCH (>98% pure) in corn oil by gavage at doses of 0, 200 or 400 mg/kg bw/d 5 d/wk for 103 wk. Dose volume = 3.33 ml/kg. [Other methodological details as reported above for the rat 103 wk chronic study (see section 5.4).] Statistical methods: - survival analyses The probability of survival was estimated using the procedure of Kaplan and Meier, with dose-related effects analyzed by the methods of Cox and of Tarone. (Animals dying from non-natural causes or missing from the study were excluded.) Where differences were present, additional analysis was carried out to identify the time point at which differences became significant. - analysis of tumor incidence Results were analyzed using life table analysis (method of Cox and of Tarone.), incidental tumor analysis (computational methodology of Haseman) and unadjusted incidence analysis (based on Fisher exact test and Cochran-Armitage linear trend test).</pre>					
Doses: 0, 200 or 400 mg/kg bw/d Result: ambiguous Control Group: yes, concurrent vehicle Method: other: standard NTP methodology GLP: no data Method: Groups of 50 male and 50 female F344 rats (Charles River Breeding Laboratories ; age 7 wk at start of treatment) were administered 4-VCH (>98% pure) in corn oil by gavage at doses of 0, 200 or 400 mg/kg bw/d 5 d/wk for 103 wk. Dose volume = 3.33 ml/kg. [Other methodological details as reported above for the rat 103 wk chronic study (see section 5.4).] Statistical methods: - survival analyses The probability of survival was estimated using the procedure of Kaplan and Meier, with dose-related effects analyzed by the methods of Cox and of Tarone. (Animals dying from non-natural causes or missing from the study were excluded.) Where differences were present, additional analysis was carried out to identify the time point at which differences became significant. - analysis of tumor incidence Results were analyzed using life table analysis (method of Cox and of Tarone), incidental tumor analysis (computational methodology of Haseman) and unadjusted incidence analysis (based on Fisher exact test and Cochran-Armitage linear trend test).					
Result: ambiguous Control Group: yes, concurrent vehicle Method: other: standard NTP methodology GLP: no data Method: Groups of 50 male and 50 female F344 rats (Charles River Breeding Laboratories ; age 7 wk at start of treatment) were administered 4-VCH (>98% pure) in corn oil by gavage at doses of 0, 200 or 400 mg/kg bw/d 5 d/wk for 103 wk. Dose volume = 3.33 ml/kg. [Other methodological details as reported above for the rat 103 wk chronic study (see section 5.4).] Statistical methods: - survival analyses The probability of survival was estimated using the procedure of Kaplan and Meier, with dose-related effects analyzed by the methods of Cox and of Tarone. (Animals dying from non-natural causes or missing from the study were excluded.) Where differences were present, additional analysis was carried out to identify the time point at which differences became significant. - analysis of tumor incidence Results were analyzed using life table analysis (method of Cox and of Tarone), incidental tumor analysis (computational methodology of Haseman) and unadjusted incidence analysis (based on Fisher exact test and Cochran-Armitage linear trend test).					
Control Group: yes, concurrent vehicle Method: other: standard NTP methodology GLF: no data Method: Groups of 50 male and 50 female F344 rats (Charles River Breeding Laboratories ; age 7 wk at start of treatment) were administered 4-VCH (>98% pure) in corn oil by gavage at doses of 0, 200 or 400 mg/kg bw/d 5 d/wk for 103 wk. Dose volume = 3.33 ml/kg. [Other methodological details as reported above for the rat 103 wk chronic study (see section 5.4).] Statistical methods: - survival analyses The probability of survival was estimated using the procedure of Kaplan and Meier, with dose-related effects analyzed by the methods of Cox and of Tarone. (Animals dying from non-natural causes or missing from the study were excluded.) Where differences were present, additional analysis was carried out to identify the time point at which differences became significant. - analysis of tumor incidence Results were analyzed using life table analysis (method of Cox and of Tarone), incidental tumor analysis (computational methodology of Haseman) and unadjusted incidence analysis (based on Fisher exact test and Cochran-Armitage linear trend test).					
<pre>Method: other: standard NTP methodology GLP: no data Method: Groups of 50 male and 50 female F344 rats (Charles River Breeding Laboratories ; age 7 wk at start of treatment) were administered 4-VCH (>98% pure) in corn oil by gavage at doses of 0, 200 or 400 mg/kg bw/d 5 d/wk for 103 wk. Dose volume = 3.33 ml/kg, [Other methodological details as reported above for the rat 103 wk chronic study (see section 5.4).] Statistical methods: - survival analyses The probability of survival was estimated using the procedure of Kaplan and Meier, with dose-related effects analyzed by the methods of Cox and of Tarone. (Animals dying from non-natural causes or missing from the study were excluded.) Where differences were present, additional analysis was carried out to identify the time point at which differences became significant. - analysis of tumor incidence Results were analyzed using life table analysis (method of Cox and of Tarone), incidental tumor analysis (computational methodology of Haseman) and unadjusted incidence analysis (based on Fisher exact test and Cochran-Armitage linear trend test).</pre>			-		
<pre>GLP: no data Method: Groups of 50 male and 50 female F344 rats (Charles River Breeding Laboratories : age 7 wk at start of treatment) were administered 4-VCH (>98% pure) in corn oil by gavage at doses of 0, 200 or 400 mg/kg bw/d 5 d/wk for 103 wk. Dose volume = 3.33 ml/kg. [Other methodological details as reported above for the rat 103 wk chronic study (see section 5.4).] Statistical methods: - survival analyses The probability of survival was estimated using the procedure of Kaplan and Meier, with dose-related effects analyzed by the methods of Cox and of Tarone. (Animals dying from non-natural causes or missing from the study were excluded.) Where differences were present, additional analysis was carried out to identify the time point at which differences became significant. - analysis of tumor incidence Results were analyzed using life table analysis (method of Cox and of Tarone), incidental tumor analysis (computational methodology of Haseman) and unadjusted incidence analysis (based on Fisher exact test and Cochran-Armitage linear trend test).</pre>					
<pre>Method: Groups of 50 male and 50 female F344 rats (Charles River Breeding Laboratories ; age 7 wk at start of treatment) were administered 4-VCH (>98% pure) in corn oil by gavage at doses of 0, 200 or 400 mg/kg bw/d 5 d/wk for 103 wk. Dose volume = 3.33 m1/kg. [Other methodological details as reported above for the rat 103 wk chronic study (see section 5.4).] Statistical methods: - survival analyses The probability of survival was estimated using the procedure of Kaplan and Meier, with dose-related effects analyzed by the methods of Cox and of Tarone. (Animals dying from non-natural causes or missing from the study were excluded.) Where differences were present, additional analysis was carried out to identify the time point at which differences became significant. - analysis of tumor incidence Results were analyzed using life table analysis (method of Cox and of Tarone), incidental tumor analysis (computational methodology of Haseman) and unadjusted incidence analysis (based on Fisher exact test and Cochran-Armitage linear trend test).</pre>					
<pre>Breeding Laboratories ; age 7 wk at start of treatment) were administered 4-VCH (>98% pure) in corn oil by gavage at doses of 0, 200 or 400 mg/kg bw/d 5 d/wk for 103 wk. Dose volume = 3.33 ml/kg. [Other methodological details as reported above for the rat 103 wk chronic study (see section 5.4).] Statistical methods: - survival analyses The probability of survival was estimated using the procedure of Kaplan and Meier, with dose-related effects analyzed by the methods of Cox and of Tarone. (Animals dying from non-natural causes or missing from the study were excluded.) Where differences were present, additional analysis was carried out to identify the time point at which differences became significant. - analysis of tumor incidence Results were analyzed using life table analysis (method of Cox and of Tarone), incidental tumor analysis (computational methodology of Haseman) and unadjusted incidence analysis (based on Fisher exact test and Cochran-Armitage linear trend test).</pre>					
<pre>administered 4-VCH (>98% pure) in corn oil by gavage at doses of 0, 200 or 400 mg/kg bw/d 5 d/wk for 103 wk. Dose volume = 3.33 ml/kg. [Other methodological details as reported above for the rat 103 wk chronic study (see section 5.4).] Statistical methods: - survival analyses The probability of survival was estimated using the procedure of Kaplan and Meier, with dose-related effects analyzed by the methods of Cox and of Tarone. (Animals dying from non-natural causes or missing from the study were excluded.) Where differences were present, additional analysis was carried out to identify the time point at which differences became significant. - analysis of tumor incidence Results were analyzed using life table analysis (method of Cox and of Tarone), incidental tumor analysis (computational methodology of Haseman) and unadjusted incidence analysis (based on Fisher exact test and Cochran-Armitage linear trend test).</pre>			-		
<pre>of 0, 200 or 400 mg/kg bw/d 5 d/wk for 103 wk. Dose volume = 3.33 ml/kg. [Other methodological details as reported above for the rat 103 wk chronic study (see section 5.4).] Statistical methods: - survival analyses The probability of survival was estimated using the procedure of Kaplan and Meier, with dose-related effects analyzed by the methods of Cox and of Tarone. (Animals dying from non-natural causes or missing from the study were excluded.) Where differences were present, additional analysis was carried out to identify the time point at which differences became significant analysis of tumor incidence Results were analyzed using life table analysis (method of Cox and of Tarone), incidental tumor analysis (computational methodology of Haseman) and unadjusted incidence analysis (based on Fisher exact test and Cochran-Armitage linear trend test).</pre>					
<pre>3.33 ml/kg. [Other methodological details as reported above for the rat 103 wk chronic study (see section 5.4).] Statistical methods: - survival analyses The probability of survival was estimated using the procedure of Kaplan and Meier, with dose-related effects analyzed by the methods of Cox and of Tarone. (Animals dying from non-natural causes or missing from the study were excluded.) Where differences were present, additional analysis was carried out to identify the time point at which differences became significant. - analysis of tumor incidence Results were analyzed using life table analysis (method of Cox and of Tarone), incidental tumor analysis (computational methodology of Haseman) and unadjusted incidence analysis (based on Fisher exact test and Cochran-Armitage linear trend test).</pre>					
<pre>[Other methodological details as reported above for the rat 103 wk chronic study (see section 5.4).] Statistical methods: - survival analyses The probability of survival was estimated using the procedure of Kaplan and Meier, with dose-related effects analyzed by the methods of Cox and of Tarone. (Animals dying from non-natural causes or missing from the study were excluded.) Where differences were present, additional analysis was carried out to identify the time point at which differences became significant. - analysis of tumor incidence Results were analyzed using life table analysis (method of Cox and of Tarone), incidental tumor analysis (computational methodology of Haseman) and unadjusted incidence analysis (based on Fisher exact test and Cochran-Armitage linear trend test).</pre>					
<pre>103 wk chronic study (see section 5.4).] Statistical methods: - survival analyses The probability of survival was estimated using the procedure of Kaplan and Meier, with dose-related effects analyzed by the methods of Cox and of Tarone. (Animals dying from non-natural causes or missing from the study were excluded.) Where differences were present, additional analysis was carried out to identify the time point at which differences became significant analysis of tumor incidence Results were analyzed using life table analysis (method of Cox and of Tarone), incidental tumor analysis (computational methodology of Haseman) and unadjusted incidence analysis (based on Fisher exact test and Cochran-Armitage linear trend test).</pre>					
<pre>Statistical methods: - survival analyses The probability of survival was estimated using the procedure of Kaplan and Meier, with dose-related effects analyzed by the methods of Cox and of Tarone. (Animals dying from non-natural causes or missing from the study were excluded.) Where differences were present, additional analysis was carried out to identify the time point at which differences became significant. - analysis of tumor incidence Results were analyzed using life table analysis (method of Cox and of Tarone), incidental tumor analysis (computational methodology of Haseman) and unadjusted incidence analysis (based on Fisher exact test and Cochran-Armitage linear trend test).</pre>					
 survival analyses The probability of survival was estimated using the procedure of Kaplan and Meier, with dose-related effects analyzed by the methods of Cox and of Tarone. (Animals dying from non-natural causes or missing from the study were excluded.) Where differences were present, additional analysis was carried out to identify the time point at which differences became significant. analysis of tumor incidence Results were analyzed using life table analysis (method of Cox and of Tarone), incidental tumor analysis (computational methodology of Haseman) and unadjusted incidence analysis (based on Fisher exact test and Cochran-Armitage linear trend test). 					
The probability of survival was estimated using the procedure of Kaplan and Meier, with dose-related effects analyzed by the methods of Cox and of Tarone. (Animals dying from non-natural causes or missing from the study were excluded.) Where differences were present, additional analysis was carried out to identify the time point at which differences became significant. - analysis of tumor incidence Results were analyzed using life table analysis (method of Cox and of Tarone), incidental tumor analysis (computational methodology of Haseman) and unadjusted incidence analysis (based on Fisher exact test and Cochran-Armitage linear trend test).					
<pre>of Kaplan and Meier, with dose-related effects analyzed by the methods of Cox and of Tarone. (Animals dying from non-natural causes or missing from the study were excluded.) Where differences were present, additional analysis was carried out to identify the time point at which differences became significant analysis of tumor incidence Results were analyzed using life table analysis (method of Cox and of Tarone), incidental tumor analysis (computational methodology of Haseman) and unadjusted incidence analysis (based on Fisher exact test and Cochran-Armitage linear trend test).</pre>			1		
<pre>methods of Cox and of Tarone. (Animals dying from non-natural causes or missing from the study were excluded.) Where differences were present, additional analysis was carried out to identify the time point at which differences became significant. - analysis of tumor incidence Results were analyzed using life table analysis (method of Cox and of Tarone), incidental tumor analysis (computational methodology of Haseman) and unadjusted incidence analysis (based on Fisher exact test and Cochran-Armitage linear trend test).</pre>					
<pre>causes or missing from the study were excluded.) Where differences were present, additional analysis was carried out to identify the time point at which differences became significant. - analysis of tumor incidence Results were analyzed using life table analysis (method of Cox and of Tarone), incidental tumor analysis (computational methodology of Haseman) and unadjusted incidence analysis (based on Fisher exact test and Cochran-Armitage linear trend test).</pre>					
<pre>differences were present, additional analysis was carried out to identify the time point at which differences became significant. - analysis of tumor incidence Results were analyzed using life table analysis (method of Cox and of Tarone), incidental tumor analysis (computational methodology of Haseman) and unadjusted incidence analysis (based on Fisher exact test and Cochran-Armitage linear trend test).</pre>					
<pre>to identify the time point at which differences became significant. - analysis of tumor incidence Results were analyzed using life table analysis (method of Cox and of Tarone), incidental tumor analysis (computational methodology of Haseman) and unadjusted incidence analysis (based on Fisher exact test and Cochran-Armitage linear trend test).</pre>					
<pre>significant analysis of tumor incidence Results were analyzed using life table analysis (method of Cox and of Tarone), incidental tumor analysis (computational methodology of Haseman) and unadjusted incidence analysis (based on Fisher exact test and Cochran-Armitage linear trend test).</pre>					
- analysis of tumor incidence Results were analyzed using life table analysis (method of Cox and of Tarone), incidental tumor analysis (computational methodology of Haseman) and unadjusted incidence analysis (based on Fisher exact test and Cochran-Armitage linear trend test).					
Results were analyzed using life table analysis (method of Cox and of Tarone), incidental tumor analysis (computational methodology of Haseman) and unadjusted incidence analysis (based on Fisher exact test and Cochran-Armitage linear trend test).			5		
and of Tarone), incidental tumor analysis (computational methodology of Haseman) and unadjusted incidence analysis (based on Fisher exact test and Cochran-Armitage linear trend test).			-		
methodology of Haseman) and unadjusted incidence analysis (based on Fisher exact test and Cochran-Armitage linear trend test).					
(based on Fisher exact test and Cochran-Armitage linear trend test).					
test).					
			-		
	l		- historical control data		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		Historic control tumor incidences from the NTP database were		
		used in some instances to assist interpretation.		
		Result: GC-FID analysis demonstrated that approx. 94% of the dosing		
		solutions were within specification during the study.		
		[See rat 103 wk study, section 5.4, for further details.]		
		Body weight and clinical signs		
		Body weight was decreased 5-14% in high dose males from study		
		wk 72.		
		[See rat 103 wk study, section 5.4, for further details.]		
		No clinical signs were described.		
		Survival		
		Survival of high dose males was significantly lower than that		
		of controls from wk 5, and for low dose males from wk 88.		
		Overall survival of high dose females was also lower than		
		controls.		
		[See rat 103 wk study, section 5.4, for further details.]		
		Tumor pathology		
		Neoplastic lesions present in skin, urinary bladder,		
		pituitary, preputial gland and clitoral gland.		
		- skin		
		Squamous cell papillomas and squamous papillomas or carcinomas		
		(combined) occurred with a significant positive trend in male		
		rats. First recorded between study wk 60-88 with an average of		
		23 wk between detection and death. Incidence by dose level:		
		Overall rate: 0%, 2%, 6%		
		Adjusted rate: 0%, 3.6%, 31.9%		
		Terminal rate: 0%, 0%, 20%		
		- urinary bladder		
		A transitional cell papilloma was present in 1/47 high dose		
		females, and a transitional cell carcinoma in 1/49 low dose		
		females (males unaffected). Comment: the report notes these		
		are rare tumors, with a historical incidence of 3/1084 (0.3%;		
		corn oil vehicle females).		
		- anterior pituitary gland		
		Incidence of adenoma or adenoma and carcinoma (combined)		
		increased significantly (life table test) in low dose females		
		only. Incidence for adenoma and carcinoma (combined), by dose	1	<u> </u>

Date	Country / Organisation /	Comment	Dossier submitter's	RAC's response to comment
	MSCA		response to comment	
		level:		
		Overall rate: 38%, 50%, 16%		
		Adjusted rate: 44.9%, 66.0%, 39.9%		
		Terminal rate: 43%, 56%, 23%		
		- preputial gland		
		Incidence of adenoma or carcinoma (combined) increased with a		
		positive trend (life table test), although incidence in the		
		high dose groups did not differ from controls. Incidence by		
		dose level:		
		Overall rate: 2%, 2%, 6%		
		Adjusted rate: 2.4%, 5.3%, 20.9%		
		Terminal rate: 0%, 0%, 0%		
		- clitoral gland		
		Incidence of adenoma or squamous cell carcinoma (combined)		
		increased significantly (life table test, incidental tumor		
		test) in low dose females only. Incidence by dose level:		
		Overall rate: 2%, 10%, 0%		
		Adjusted rate: 2.5%, 17.9%, 0.0%		
		Terminal rate: 3%, 18%, 0%		
		Remark		
		When reviewing results from this study, the NTP Peer Review		
		Panel concluded that interpretation of the study findings was		
		confounded by poor health and low survival of the animals.		
		It is also noted in the report that the apparent statistical		
		significance of some tumors may have reflected their earlier		
		detection in rats dying of unrelated/undefined causes rather		
		than due to 4-VCH reducing tumor latency and/or increasing		
		tumor frequency. Conversely, it also noted that poor survival		
		might have artefactually decreased the occurrence of some late		
		developing tumors.		
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.		
		Conclusion: Under the conditions of this study, gavage (oral)		
		administration of 4-VCH to rats was associated with the		
		occurrence of neoplastic lesions in skin, urinary bladder,		
		pituitary, preputial gland and clitoral gland. Interpretation		
		of these findings is confounded by poor health and low		
		survival which may have resulted in artefactual temporal and		
		statistical associations between treatment and tumor incidence		

Date	Country /	Comment	Dossier	RAC's response
	Organisation / MSCA		submitter's	to comment
	MISCA		response to comment	
		in animals dying of unrelated/undefined causes. Overall, NTP	comment	
		concluded that the study was inadequate and the results		
		inconclusive with regard to the potential carcinogenicity of		
		4-vinylcyclohexene in the rat.		
		Reliability: (2) valid with restrictions		
		Study available for review. Comparable to guideline study,		
		with restrictions. Well reported methods and results,		
		acceptable for evaluation.		
		10-JUL-2006 (50)		
		Species: mouse Sex: male/female		
		Strain: B6C3F1		
		Route of administration: gavage		
		Exposure period: 103 wk		
		Frequency of treatment: consecutive days		
		Post exposure period: none		
		Doses: 0, 200 or 400 mg/kg bw/d		
		Result: positive		
		Control Group: yes, concurrent vehicle		
		Method: other: standard NTP methodology		
		GLP: no data		
		Method: Groups of 50 male and 50 female B6C3F1 mice (Charles River		
		Breeding Laboratories ; age 8 wk at start of treatment) were		
		administered 4-VCH (>98% pure) in corn oil by gavage at doses		
		of 0, 200 or 400 mg/kg bw/d 5 d/wk for 103 wk. Dose volume =		
		3.33 ml/kg.		
		[Other methodological details as for the rat bioassay		
		(reported above) and the rat 103 wk chronic study (see section		
		(reported above) and the fact tos wit enfonce beauty (bee beetion 5.4).]		
		Result: GC-FID analysis demonstrated that approx. 94% of the dosing		
		solutions were within specification during the study.		
		[See rat 103 wk study, section 5.4, for further details.]		
		Body weight and clinical signs		
		Mean body weight was decreased (5-13%) in high dose males		
		between study wk 8-76 only and in high dose females (~5%) from		
		study wk 20 with a 12% weight reduction apparent at		
		termination.		
		[See mouse 103 wk study, section 5.4, for further details.]		
	L	The make is an baar, beston ser, for farmer actaris.	I	

RAC's response Date Dossier Country / Comment **Organisation** / submitter's to comment MSCA response to comment No clinical signs were described. Survival Survival of high males decreased significantly relative to controls from study wk 29, and that of high dose females from wk 32. [See mouse 103 wk study, section 5.4, for further details.] Tumor pathology Neoplastic lesions were detected primarily in ovary, lung, hematopoietic system and adrenal gland. - ovary Mixed benign tumors, granulosa cell tumors and granulosa cell tumors or carcinomas (combined) occurred in treated female mice with a positive trend and incidence that was significantly greater than in controls irrespective of the method of analysis (i.e. significance unaffected by poor survival). Incidence by dose level: * mixed tumor. benign Overall rate: 0%, 52%, 23% Adjusted rate: 0.0%, 64.1%, 43.3% Terminal rate: 0%, 63%, 25% * granulosa cell tumor Overall rate: 2%, 19%, 23% Adjusted rate: 2.6%, 23.7%, 47.3% Terminal rate: 3%, 24%, 38% * granulosa cell tumor or carcinoma Overall rate: 2%, 21%, 28% Adjusted rate: 2.6%, 25.5%, 54.9% Terminal rate: 3%, 24%, 44% - luna Alveolar/bronchiolar adenomas occurred with significant positive trend in males only; incidence in high dose males significantly greater than control (life table test). Incidence by dose level: Overall rate: 2%, 8%, 6% Adjusted rate: 2.7%, 9.7%, 30.9% Terminal rate: 3%, 8%, 29% - hematopoietic system Malignant lymphoma occurred in male mice with significant

ANNEX 2 - COMMENTS AND RESPONSE TO COMMENTS ON CLH PROPOSAL ON 4 VINYLCYCLOHEXENE (VCH)

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		positive trend; significantly increased in high dose males	comment	
		after adjustment for survival. Incidence by dose level:		
		Overall rate: 8%, 14%, 10%		
		Adjusted rate: 10.5%, 16.7%, 62.5%		
		Terminal rate: 8%, 13%, 57%		
		-adrenal gland		
		Capsular adenomas detected with significant positive trend in		
		female mice; significantly increased incidence in the high		
		dose group (life table test). Incidence by dose level:		
		Overall rate: 0%, 6%, 8%		
		Adjusted rate: 0.0%, 7.7%,18.3%		
		Terminal rate: 0%, 8%, 12%		
		Comment: the report notes that these lesions may be secondary		
		to ovarian tumors described above.		
		Remark		
		The report notes that early death of the majority of high dose		
		male mice confounds interpretation of hematopoietic and lung		
		findings. Since tumor incidences were not altered in low dose		
		males, the apparent statistical significance achieved in the		
		high dose group may reflect earlier detection in animals dying		
		of unrelated/undefined causes rather than as a result of		
		reduced tumor latency and/or increased tumor frequency.		
		Conversely it also noted that poor survival might have also		
		artefactually decreased the occurrence of some late developing		
		tumors. Overall, NTP concluded that the study was inadequate		
		and the results inconclusive with regard to the potential		
		carcinogenicity of 4-vinylcyclohexene in male mice.		
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.		
		Conclusion: Under the conditions of this study, gavage (oral)		
		administration of 4-VCH to mice was associated with the		
		occurrence of neoplastic lesions in ovary, lung, hematopoietic		
		system and adrenal gland. Interpretation of findings for males		
		(lung, hematopoietic system) is confounded by poor health and		
		low survival which may have resulted in artefactual temporal		
		and statistical associations between treatment and tumor		
		incidence in animals dying of unrelated/undefined causes. In		
		females, 4-VCH significantly increased the incidence of		
		several types of uncommon ovarian tumors in both dose groups		

Date	Country / Organisation /	Comment	Dossier submitter's	RAC's response to comment
	MSCA		response to comment	
		in a manner that was independent of survival. The incidence of	comment	
		adrenal gland tumors was also increased in females, however it		
		was unclear if this was a direct effect of 4-VCH or secondary		
		altered ovarian function. Overall, NTP concluded that the		
		occurrence of ovarian tumors provided clear evidence of		
		potential carcinogenicity of 4-vinylcyclohexene in the mouse.		
		Reliability: (2) valid with restrictions		
		Study available for review. Comparable to guideline study,		
		with restrictions. Well reported methods and results,		
		acceptable for evaluation.		
		10-JUL-2006 (15) (50)		
		Remark: The carcinogenicity of 4-VCH has been considered by IARC. Administration of 4-VCH by gastric intubation produced granulosa-cell and mixed tumors of the ovary and adrenal subcapsular tumors in female mice. In male mice, there was an increase in the incidence of lymphoma and lung tumors. Following gastric intubation in rats, increased incidences of squamous-cell tumors of the skin in males and of clitoral		
		gland tumors in females were onserved.		
		IARC Evaluation:		
		There is inadequate evidence in humans for the carcinogenicity		
		of 4-vinylcyclohexene.		
		There is sufficient evidence in experimental animals for the		
		carcinogenicity of 4-vinylcyclohexene		
		Overall evaluation: 4-vinylcyclohexene is possibly		
		carcinogenic to humans (Group 2B).		
		31-MAY-2006 (29)		
		Species: mouse Sex: male		
		Strain: Swiss		
		Route of administration: dermal		
		Exposure period: Not specified: lifetime, median survival 54 weeks.		
		Frequency of treatment: 3 applications per week		
		Post exposure period: none		
		Doses: Approx. 54 mg of test substance per painting		
		Result: ambiguous		
		Control Group: other: various included, see methods		
		Method: Thirty (30) male Swiss Mice (Millerton Research Farms),		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		approximately 8 weeks old on the first day of exposure, were		
		painted 3 times per week with 4-VCH in 50% benzene using an		
		artist's watercolor brush, which reportedly delivered 45 mg of		
		solution per application. The entire backs of the animals were		
		painted. When necessary, the hair was clipped. The test		
		solution was reported to be of commercial quality (K&K		
		Laboratories) and purified with aqueous ferrous sulfate		
		followed by distillation in a nitrogen atmosphere to remove		
		oxidation products. Purity was verified prior to the study by		
		vapor phase gas chromatography, with no indication of similar		
		testing at the end of the study.		
		Four types of control groups were included in the study: 1)		
		groups that received 3 paintings per week of 100 mg of benzene		
		only (100% benzene), 2) groups that received 3 paintings per		
		week of 100 mg of acetone only (100% acetone), 3) positive		
		control groups that received 100 mg of benzo[a]pyrene (BaP)		
		solution at 0.01% in either benzene (0.1% BaP in benzene) or		
		acetone (0.1% BaP in acetone), and 4) groups receiving no		
		treatment (no treatment).		
		Tumors were excised at death and confirmed microscopically.		
		For each compound tested and for the untreated controls, the		
		total tumor and malignant tumor indices were calculated and		
		defined as 10,000 times the reciprocals of the computed time		
		in days to produce tumors in 50 percent of mice using		
		life-table analysis. Thus, a compound that produced tumors,		
		benign or malignant, in 50% of the mice after 100 days and		
		cancers in 50% of the mice after 200 days would have a total		
		tumor index of 100 and a malignant tumor index of 50.		
		No statistical analysis was reported.		
		Result: CLINICAL SIGNS OF TOXICITY		
		Extensive skin damage was reported in the 4-VCH exposed group.		
		TUMOR EVALUATION		
		The number of animals tested (n), median survival time (ST),		
		total number of tumors (TT), total number of cancers (TC),		
		total tumor index (TTI), and malignant tumor index (MTI) for		
		the test substance and control groups, were reported as		
		follows:		
		Substance n ST TT TC TTI MTI		
			1	

Date	Country / Organisation / MSCA					Co	omment			Dossier submitter's response to comment	RAC's response to comment
		4-VCH in:									
		50% Benzene	30	375	б	1	13	10			
		100% Benzene	30	264	2	0	10	<10			
		100% Benzene	30	262	5	0	19	<10			
		100% Benzene	30	412	2	0	<10	<10			
		100% Benzene	60	292	2	1	<10	<10			
		100% Acetone	30	240	2	0	10	<10			
		100% Acetone	30	652	0	0	<10	<10			
		100% Acetone	30	330	4	0	14	<10			
		100% Acetone		134	2	0	18	<10			
		0.01% BaP in:									
		Acetone	30	211	16	7	50	32			
		Acetone	30	378	24	20	34	29			
		Acetone	30	240	25	11	45	27			
		Acetone	30	259	18	11	45	36			
		0.01% BaP in:									
		Benzene	30	351	16	7	42	27			
		Benzene	30	348	10	6	24	21			
		Benzene	30	370	23	13	36	26			
		No Treatment	30	175	2	1	14	<10			
			30	342	0	0	<10	<10			
			30	730	0	0	<10	<10			
			30	624	0	0	<10	<10			
			30	217	5	0	20	<10			
			30	112	1	0	<10	<10			
			28	253	4	0	<10				
			60	345	1	0	<10	<10			
		During the ye									
		of tumors in							nd were		
		reported to b									
		During the st									
		in 20% of mic									
		in 6.7% of th						-			
		untreated mic									
		be squamous c			s and o	ccurred	d in the	test popu	ulation		
		as well as co									
		During part o	f th	e study	y, ectr	omelia	was pre	sent in			

Date	Country /	Comment	Dossier	RAC's response
	Organisation /		submitter's	to comment
	MSCA		response to	
			comment	
		experimental and control groups and, as a result, animals had		
		to be vaccinated against the disease.		
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.		
		Conclusion: Under the conditions of this study, it can be concluded that		
		4-VCH in a 50% solution of benzene resulted in an increased		
		number of benign squamous cell papillomas when painted on the		
		skin of male Swiss mice. The one malignant tumor observed in		
		the group treated with 4-VCH was not thought to be necessarily		
		attributable to the test substance, but instead was attributed		
		to speculative formation of 4-VCH hydroperoxide in the test		
		substance via autoxidation in air.		
		Reliability: (2) valid with restrictions		
		Study available for review. Pre-guideline, pre-GLP		
		investigation. Acceptable for assessment.		
		10-JUL-2006 (66)		
		5.8.1 Toxicity to Fertility		
		Type: other: continuous breeding study		
		Species: mouse		
		Sex: male/female		
		Strain: CD-1		
		Route of administration: gavage		
		Exposure Period: continuous		
		Frequency of treatment: once daily		
		Doses: 0, 100, 250, and 500 mg/kg/day (F0); 0 and 500		
		mq/kq/day (F1)		
		Control Group: yes, concurrent vehicle		
		Method: other: US-NTP Continuous Breeding Protocol		
		GLP: yes		
		Method: Male and Female CD-1 (ICR)BR outbred Swiss albino mice		
		(VAF/plus; Charles River Breeding Laboratories, Inc., Raleigh,		
		NC), approximately 9 weeks old upon arrival, were used for this study. They		
		were fed deionized and filtered water and		
		pelleted food (NIH-07, Zeigler Brothers, Gardners PA) ad		
		libitum, and housed in environmentally controlled conditions		
		(72 degree F, 53% RH, 14 hr light/10 hr dark cycle).		
		At age 11 weeks, animals for the F0 generation were assigned		
		to treatment groups and administered 0, 100, 250 or 500 mg/kg		
		body weight/d 4-VCH in corn oil by gavage. There were 40 male		

Date	Country / Organisation /	Comment	Dossier submitter's	RAC's response to comment
	MSCA		response to comment	
		and 40 female control mice, with 25 per sex in each 4-VCH		
		treatment group. During the first week of treatment, animals		
		were housed in pairs by sex by dose group, then in breeding		
		pairs within dose groups during weeks 2-15. Pups born during		
		this time were euthanized immediately after examination. At		
		week 16, the F0 breeding pairs were separated and the dams		
		allowed to deliver and rear their final litter (F1 generation)		
		to PND 21. Food and water consumption and body weight data		
		were collected during weeks 1, 2, 5, 9, 13 and 18 (females).		
		For the F1 fertility assessment, 21 day old pups (20 males, 20		
		females) from the control and the high-dose groups were housed		
		in same sex pairs and treatment with 4-VCH begun the following		
		day. At approximately 74 days of age, the animals were		
		allocated to nonsibling breeding pairs for up to 7 days and		
		the females allowed to litter. Feed and water consumption were		
		measured during weeks 1 (breeding), 2, 3, and 4.		
		Parent (F0) cohabitation parameters included: date of delivery		
		of each litter, number, sex, weight of pups per litter, number		
		of litters per pair, and PND 0 dam body weight. On PND 0, 4,		
		7, 14, and 21, surviving pups were counted, sexed, and weighed		
		for all dams delivering a litter after week 16.		
		F1 generation cohabitation parameters included: date of		
		delivery of each litter, number, sex, weight of pups per		
		litter, number of litters per pair, and PND 0 dam body weight. After delivery of the litters, vaginal smears were collected		
		daily for 12 days. At study end, F1 parents were subject to		
		necropsy and body wieght, kidney/adrenal weights, liver,		
		testis, prostate, seminal vesicle (+ coagulating gland),		
		ovary/oviduct and uterus weights collected. The ovaries were		
		processed for microscopic assessment. Sperm parameters		
		(including sperm motility, concentration, morphology) and		
		homogenization-resistant spermatid concentration were also		
		recorded.		
		Data were analysed using Williams'modification of Dunn's or		
		Shirley's nonparametric multiple comparison procedures.		
		Result: Survival		
		Five (5) parental generation (F0) animals reportedly died		
		during F0 cohabitation, including 2 out of 40 control males, 1		
	1			

Date	Country /	Comment	Dossier	RAC's response
	Organisation /		submitter's	to comment
	MSCA		response to	
			comment	
		out of 40 control females, and 2 out of 20 females from the		
		high-dose group from indeterminate causes. Seven (7) animals		
		were removed from the study due to gavage-related injuries and		
		4 for cage-mate inflicted fatalities. This brings the total number of		
		animals excluded from the study to 16. However, the		
		total number of breeding pairs reported was 36 control pairs,		
		19 low-dose pairs, 19 mid-dose pairs, and 16 high-dose pairs		
		for a total of 180 out of 200 animals included in the study.		
		The 4 animals not accounted for are presumed to be the cage		
		mate of an animal that was removed for cause.		
		Five (5) F1 animals died during the F1 fertility assessment		
		phase, including 1 control male and 3 males and 1 female from		
		the high dose group from indeterminate causes. A total of 18		
		control and high dose animals were injured during gavage		
		dosing and had to be removed from the study. Most were removed		
		within 1 week after weaning. Despite these loses, presumably		
		because most or all occurred prior to the selection of pairs		
		for cohabitation, a total of 20 control and 19 treated pairs		
		appear to have survived the study.		
		Parental effects		
		4-VCH at all treatment doses had no effect on reproductive		
		competence including initial fertility, litters per pair, live		
		pups per litter, total pups born alive, proportion of pups		
		born alive, and sex ratio of pups. High-dose females exhibited		
		slight general toxicity evident as an 8% reduction in body		
		weight compared to controls (data not reported). A 4%		
		decrease in body weight was also reported to be statistically		
		significant but only among the high-dose group where the total		
		number of surviving females was reduced from 20 to 16.		
		Preweaning growth and survival were not affected and, when		
		adjusted for the number of pups per litter, the reduction in		
		pup weights was no longer significant. Other than some		
		transient increases in water consumption in the low and high		
		dose groups during weeks 5, 9 and/or 27, no significant		
		effects were observed regarding food and water intake. Data		
		are as follows:		
		Parameter Dose (mg/kg bwt/d)		
		0 100 250 500		

Date	Country / Organisation / MSCA		Con	nment			Dossier submitter's response to comment	RAC's response to comment
		No. fertile/No. Cohabitated	36/36	19/19	19/19	16/16	comment	
		Litters per pair	4.8	4.7	4.8	4.6		
		Live pups per litter	12.2	13.5	12.5	11.5		
		Pups born alive (%)	97	99	99	99		
		Live males per litter	49	48	48	49		
		Live pup weight (g)	1.64	1.58	1.58	1.58*		
		Adjusted live pup weight (g)	1.63	1.61	1.58	1.55		
		*Reported as statistically si	gnificant	E Contraction of the second seco				
		F1 body weight effects						
		Body weights of Male and Fema	le F1 pup	os born a	after the en	nd of		
		F0 cohabitation (Week 16)on p	ostnatal	days (PN	ND) 0, 7, 23	1, 77,		
		and 117 were slightly reduced	when cor	mpared to	controls B	out		
		only the reductions observed	at weeks	77 and 1	17 were			
		identified as statistically s	-		-			
		attributable to the different				d at this stage of		
		the study. Male/Female F1 bod	y weight:	s (g) wer	re			
		reported as follows:						
				/Female (
				-	′kg bwt/d) ·			
		0	100		250	500		
		0 1.75/1.66 1.						
		7 4.38/4.27 4.	35/4.08	1	.75/4.22	4.23/4.08		
		21 11.07/10.3 10.	98/9.36	10	0.79/10.20	10.94/10.56 31.51*/26.20* 32.79*/28.00*		
		77 34.07/28.4 -	/	-	/	31.51*/26.20*		
		117 35.24/.0.6 -	/		/	32.79*/28.00*		
		*Reported as statistically si	gnificant					
		Fertility and reproductive pe	rformance	9				
		4-VCH at all treatment doses	had no et	ffect on	reproductiv	ve		
		competence including mating i						
		length, live F2 pups per litt	er, tota	l number	of F2 pups	born		
		alive, total number of F2 mal						
		weight. Data were presented a	s follows	3 :				
		Dose						
		mg	/kg bi	wt/day				
		Parameter 0	-	00				
		Mating index [^] 16/2		3/20				
		Fertility index [^] 19/2		9/20				

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		Number of days to litter 18.7 19.2		
		Live F2 pups per litter 11.6 10.6		
		F2 pups born alive 99 98		
		F2 male pups born alive 41 39		
		Live F2 pup weight 1.52 1.47		
		<pre>^Number of females vaginal plug positive / number cohabitated ^^Number of females delivering a litter / number cohabitated</pre>		
		F1 relative organ weights		
		4-VCH caused a statistically significant increase in liver		
		weights in F1 males (55.59 +-1.2 for controls vs. 60.46 +-1.37		
		for treated) and in F1 females (57.52 +-1.18 for controls vs.		
		62.08 +-1.28 for treated) at necropsy compared to controls.		
		All other organ weights assessed were considered normal.		
		Twenty (20) male controls, 20 female controls, 19 male		
		high-dose, and 20 female high-dose were evaluated.		
		Fl sperm analysis		
		4-VCH had no effect on epididymal sperm concentration or		
		morphology, but did cause a statistically significant increase		
		in sperm motility and a statistically significant decrease		
		(16%) in spermatid concentration in the right testis		
		homogenates. No histopathologic lesions were noted for the		
		testis. Data were reported as follows:		
		mg/kg bwt/day		
		Parameter 0 500		
		(n=20) (n=19)		
		Epididymal sperm concentration 988 876		
		Epididymal sperm motility 68.9 85.5*		
		Epididymal sperm morphology 2.4 2.9		
		Testicular sperm concentration 13.6 11.3*		
		*Reported as statistically significant		
		F1 vaginal cytology		
		4-VCH had no effect on normal cyclic patterns of vaginal		
		cytology or mean cycle length following approximately 95 days		
		of exposure to 500 mg/kd bw/day.		
		F1 sectioned ovary results		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		4-VCH at 500 mg/kg bw/day for approximately 95 days caused a	comment	
		statistically significant reduction in the number of		
		primordial oocytes/folicles by 33%, the number of growing		
		follicles by 55%, and the number of antral follicles by 33%.		
		Data were reported as follows:		
		mg/kg bwt/day		
		Follicular stage 0 500		
		(n=20) (n=19)		
		Primordial oocytes/follicles 208.9 140.6*		
		Growing follicles 51.2 23.2*		
		Antral follicles 7.4 4.95*		
		*Reported as statistically significant		
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.		
		Conclusion: Under the conditions of this study, 4-VCH administered at 500		
		mg/kg bw/day was clearly toxic to ovarian follicles in female		
		offspring and produced a slight but statistically significant		
		effect on spermatogenesis in male offspring, but did not		
		adversely affect reproductive performance in either the F0 or		
		F1 generations.		
		Reliability: (1) valid without restriction		
		Study available for review. GLP-compliant near-guideline		
		study. Well reported methods and results, acceptable for		
		evaluation.		
		10-JUL-2006 (24)		
		5.8.3 Toxicity to Reproduction, Other Studies		
		Type: other: ovarian toxicity		
		In Vitro/in vivo: In vivo		
		Species: mouse		
		Strain: B6C3F1 Sex: female		
		Route of administration: i.p.		
		Exposure period: 30 days		
		Frequency of treatment: once daily		
		Method: Groups of female B6C3F1 mice and Fischer 344 rats (Harlan		
		Spargue-Dawley, Indianapolis, IN; age 28 d; n = 4-10 per		
		treatment) received the following daily treatments by i.p.		
		injection in corn oil (2.5 ml/kg body weight) for 30 days:		
1		4-vinylcyclohexene (4-VCH): 0, 100, 400 or 800 mg/kg body		
		weight/day		

ANNEX 2 - COMMENTS	AND RESPONSE TO	COMMENTS ON CLH PROPOSAL	ON 4 VINYLCYCLOHEXENE (VCH)
--------------------	-----------------	--------------------------	-----------------------------

<pre>(equivalent to 0, 0.9, 3.7 or 7.4 mmol/kg/d) 4-vinylcyclohexene diepoxide (4-VCH DE): 0, 10, 40 or 80 mg/kg body weight/day (equivalent to 0, 0.07, 0.20 or 0.57 mmol/kg/d) 4-vinylcyclohexene-1,2 epoxide (4-VCH 1,2-EP): 0. 0.34, 1.37 or 2.74 mg/kg body weight/day (equivalent to 0, 0.9, 3.7 or 7.4 mmol/kg/d) 4-vinylcyclohexene-7,8 epoxide (4-VCH 7,8-EP): 0. 0.34, 1.37 or 2.74 mg/kg body weight/day (equivalent to 0, 0.9, 3.7 or 7.4 mmol/kg/d) Animals were sacrificed (carbon dioxide) on day 31 and the ovaries removed, fixed (Bouin's solution) and processed (6 um section, H&E staining) for microscopic examination, with oocytes identified and counted. In other studies, the time course for 4-VCH-induced ovarian damage was investigated in mice (n = 5/treatment) injected with 0 or 800 mg/kg bw/d 4-VCH for 5, 10, 15 or 30 days (ovaries processed as above). The effect of chloramphenicol (an inhibitor of cytochrome P-450 mediated epoxidation) on 4-VCH-induced damage to the ovary was investigated in female mice (n = 5-f/group) treated by i, p. injection for 15 consecutive days as follows: Group 1: saline followed by corn oil; Group 2: chloramphenicol (200 mg/kg body weight in saline) followed by corn oil;</pre>	Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
Group 3: saline followed by 4-VCH (800 mg/kg body weight in corn oil); Group 4: chloramphenicol followed by 4-VCH. The were administered 1 hr apart using a dose volume of 2.5 ml/kg body weight/day. On day 16 the animals were sacrificed and the ovaries processed (as above) for histological assessment. Dose-response curves were obtained by non-linear regression, and the ED50 (defined as dose reducing the oocyte number to 50% of control) calculated. Significant differences between curves were analyzed using the sum of squares of the two data sets under comparison and as a single pool to calculate an F			<pre>4-vinylcyclohexene diepoxide (4-VCH DE): 0, 10, 40 or 80 mg/kg body weight/day (equivalent to 0, 0.07, 0.20 or 0.57 mmol/kg/d) 4-vinylcyclohexene-1,2 epoxide (4-VCH 1,2-EP): 0. 0.34, 1.37 or 2.74 mg/kg body weight/day (equivalent to 0, 0.9, 3.7 or 7.4 mmol/kg/d) 4-vinylcyclohexene-7,8 epoxide (4-VCH 7,8-EP): 0. 0.34, 1.37 or 2.74 mg/kg body weight/day (equivalent to 0, 0.9, 3.7 or 7.4 mmol/kg/d) Animals were sacrificed (carbon dioxide) on day 31 and the ovaries removed, fixed (Bouin's solution) and processed (6 um section, H&E staining) for microscopic examination, with oocytes identified and counted. In other studies, the time course for 4-VCH-induced ovarian damage was investigated in mice (n = 5/treatment) injected with 0 or 800 mg/kg bw/d 4-VCH for 5, 10, 15 or 30 days (ovaries processed as above). The effect of chloramphenicol (an inhibitor of cytochrome P-450 mediated epoxidation) on 4-VCH-induced damage to the ovary was investigated in female mice (n = 5-6/group) treated by i.p. injection for 15 consecutive days as follows: Group 1: saline followed by corn oil; Group 2: chloramphenicol (200 mg/kg body weight in saline) followed by corn oil; Group 3: saline followed by 4-VCH (800 mg/kg body weight in corn oil); Group 4: chloramphenicol followed by 4-VCH. The were administered 1 hr apart using a dose volume of 2.5 ml/kg body weight/day. On day 16 the animals were sacrificed and the ovaries processed (as above) for histological assessment. Dose-response curves were obtained by non-linear regression, and the ED50 (defined as dose reducing the oocyte number to 50% of control) calculated. Significant differences between curves were analyzed using the sum of squares of the two data</pre>		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to	RAC's response to comment
			comment	
		value. Student's t-test was used to determine the significance		
		of differences between group means while multiple comparisons		
		used one-way ANOVA and the Newman-Kuels range test.		
		Result: Graphical data demonstrate clear differences in response		
		between rats and mice to the ovarian toxicity associated with		
		4-VCH. In mice, small oocyte counts were decreased in a		
		dose-dependent manner from around 300/ovary in controls to		
		50-100/ovary in treated animals given 800 mg/kg bw/d by i.p.		
		injection for 30 days; oocyte numbers in rats, in contrast,		
		were unaffected (approx. 150 oocytes/ovary).		
		The epoxides and diepoxide of 4-VCH were more potent		
		ovotoxins, and all markedly reduced oocyte numbers in both		
		rats and mice in a dose-related manner.		
		The ED50 values for oocyte reduction were calculated as		
		follows:		
		ED50 (mmol/kg/day)		
		4-VCH 4-VCH 1,2EP 4-VCH 7,8-EP 4-VCH DE		
		Mouse 2.7 0.5 0.7 0.2		
		Rat >7.4 (a) 1.4 ND (b) 0.4		
		a = highest dose given		
		b = not done		
		Time course studies revealed no significant reduction in		
		oocyte numbers in mice given 800 mg/kg/d 4-VCH until after 15		
		days treatment after which time number continued to decline:		
		Small oocyte count		
		Day (approx. % of control)		
		5 100		
		10 84		
		15 35		
		30 8		
		(Values obtained by interpolation from graphical data.)		
		The oocyte loss induced by 4-VCH was partially overcome by		
		pre-treatment of female mice with chloramphenicol:		
		Small oocyte count		
		Controls 100% (a) Saline / 4-VCH 38% *		
		Chloramphenicol / 4-VCH 58% *		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		a = data for saline and chloramphenicol-pretreated control		
		groups combined for statistical analysis		
		* P<0.05		
		(Values obtained by interpolation from graphical data.)		
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.		
		Conclusion: Results from these investigations demonstrate species		
		differences in the ovarian toxicity of 4-VCH, with mice (ED50		
		= 2.7 mmol/kg body weight/day) more sensitive than rats (ED50		
		not established; > 7.4 mmol/kg body weight/day, the highest		
		dose tested). Both species, in contrast, were sensitive to the		
		epoxide- and diepoxide metabolites of 4-VCH (ED in range		
		0.2-1.4 mmol/kg body weight/day). 4-VCH-dependent oocyte loss was reduced in mice pre-treated with chloramphenicol, an		
		inhibitor of epoxide hydrolase.		
		Reliability: (2) valid with restrictions		
		Study available for review. Non-guideline experimental study.		
		Well reported methods and results, acceptable for evaluation.		
		10-JUL-2006 (58)		
		Type: other: ovarian toxicity		
		In Vitro/in vivo: In vivo		
		Species: mouse		
		Strain: B6C3F1 Sex: female		
		Route of administration: i.p.		
		Exposure period: 30 days		
		Frequency of treatment: once daily		
		Method: Female B6C3F1 mice (Harlan, Inc., Indianapolis, IN;		
		approximately 21 days old on delivery) were housed five per		
		cage in sawdust bedding and given food (Teklad, Harlan Sprague_Dawley, Inc. Madison, WI) and water ad libitum. The		
		animal room was maintained on a 12 hr light/dark cycle and		
		animal room was maintained on a 12 in right/dark cycle and animals were allowed to acclimatize for 7 days before use.		
		At age approximately 28 days, groups of mice (n=15/group) were		
		administered sesame seed oil (vehicle control), 4-VCH (650		
		mg/kg 4-VCH in sesame seed oil) or 4-phenylcyclohexene (4PC;		
		475 or 950 mg/kg in sesame seed oil) once daily by i.p.		
		injection for 30 days. As a positive control, a group of 10		
		mice was treated with 80 mg/kg benzo[a]pyrene (BaP) on the		

MSCA response to comment first day of dosing and again 7 days later. on a daily basis, animals were weighed and vaginal smears were collected to determine the stage of estrus. On the first day of diestrus, the animals were exchanced via CO2 asphyxiation. Blood was collected from the posterior vena cava and plasma was separated and frozen for determination of follocle-stimulating hormone (FSH) concentrations. Ovaries were removed and fixed in Bourin's solution for 74 hours followed by immersion in 70% ethanol. Ovaries were then processed, embedded in paraffin, step-sectioned at 5 to 6 un, and stained with hematoxylin and essin. Every 20th section of the right ovary of each mouse was examined to determine the number of small and growing follicles according to the method of Federson and Peters (1968). Statistical analysis was performed using the Number Cruncher Statistical system 5.0 (NCSS Kaysville, UT). Differences were commidered significant When pc 0.05. Newaltr Daily dosing with 4-VCE was resulted in reductions in the numbers of small and growing follicles, as did the two doses of the positive control compound, but not the weblel control or treatment with APC. The authors report that, in most sections, the follicles were completely absent. Although no specific data were presented, her number of small follicles per ovary (SFO) and the number of small follicles per ovary (GFO) are estimated, using a ruler and the bar chart presented, as follows: Croup SFO Control 275 115 4FC (high-dose) 252 113 4-VCH 30* 32* BaP 42* 50* * Ped.05 There were no statistically significant reductions reported in the concentrations of plasma follicle-stimulating hormone (FSH) observed in treatment groups when compared to controls:	Date	Country /	Comment	Dossier	RAC's response
comment first day of dosing and again 7 days later. On a daily basis, animals were weighed and vaginal smears were collected to determine the stage of servus. On the first day of diestrus, the animals were euthanized via CO2 asphyxiation. Blood was collected from the posterior vena cava and plasma was separated and frozen for determination of follicle-stimulating hormone (FSH) concentrations. Ovaries were removed and fixed in Bouin's solution for 24 hours followed by immersion in 70% ethanol. Ovaries were then processed, embedded in parafilm, step-sectioned at 5 to 6 um, and stained with hematoxylin and eosin. Every 20th section of small and growing follicles according to the method of Pederson and Peters (1968). Statistical analysis was performed using the Number Cruncher Statistical System 5.0 (NCS Karyville, UT). Differences were considered significant when p < 0.05. Result: Daily dosing with 4-VCH was resulted in reductions in the number of small and growing follicles, as did the two doses of the positive control computed, basent. Although no specific data were presented, the number of small follicles per ovary (GO) and the number of growing follicles per ovary (GO) are estimated, using a ruler and the bar chart presented, as follows: grow GPO Control 275 115 40C (high-dose) 274 125 50 47 400 30* 32* Ba? 42* 50* 47* 20.05 There were no statistically significant reductions reported in the concentration corputed in basen follicles were control compound (FSH) observed in treatment groups when compared to controls:		Organisation /		submitter's	to comment
first day of dowing and again 7 days later. On a daily basis, animals were weighed and vaginal smears were collected to determine the stage of estrus. On the first day of diestrus, the animals were euchanized via CO2 apphysiation. Blood was collected from the posterior vena cava and plasma was separated and frozen for determination of follicle-atimulating hormone (FSH) concentrations. Ovaries were removed and fixed in Bouin's solution for 24 hours followed by immersion in 70% etchanol. Ovaries were then processed, embedded in paraffin, step-sectioned at 5 to 6 um, and stained with hematoxylin and eosin. Every 20th section of the right ovary of each mouse was examined to determine the number of small and graving follicles according to the method of Pederson and Peters (1968). Statistical analysis was performed using the Number Cruncher Statistical analysis was performed using the Number Cruncher Statistical analysis was performed using the Number Cruncher Statistical analysis was performed using the two doses of the positive control compound, but not the vehicle control or treatment with 4PC. The authors report that, in most sections, the follicles were completely absent. Although no specific data were presented, the number of small followes Group SFO GFO Control 275 115 4PC(low-dose) 274 115 4PC(low-dose) 275 115 4PC(low-dose) 274 115 4PC(low-dose) 275 115 4PC(low-dose) 275		MSCA		-	
On a daily basis, inimals were weighed and vaginal smears were collected to determine the stage of estrue. On the first day of diestrus, the animals were euthanized via CO2 aphyxiation. Blood was collected from the posterior vena cava and plasma was separated and frozen for determination of follicle-stimulating hormone (FSH) concentrations. Ovaries were removed and fixed in Bouin's solution for 24 hours followed by immersion in 70% ethanol. Ovaries were then processed, embedded in paraffin, step-sectioned at 5 to 6 um, and stained with hematoxylin and eosin. Every 20th section of and stained with hematoxylin and eosin. Every 20th section of of Pederson and Peters (1968). Statistical analysis was performed using the Number Cruncher Statistical System 5.0 (NCS Kaysville, UT). Differences were considered significant when p < 0.05. Result: Daily dosing with 4-VCH was resulted in reductions in the numbers of small and growing follicles, as did the two doses of the positive control compound, but not the vehicle control or treatment with 4PC. The authors report that, in most sections, the follicles were completely absent. Although no specific data were presented, the number of growing follicles per ovary (GFO) are estimated, using a ruler and the bar chart presented, as follows: Group 2F0 UF 252 113 4PC (high-dose) 2F1 115 4PC (high-dose) 2F2 115 4PC (high-dose) 2F4 115 4PC (high-dose) 2F4 115 4PC (high-dose) 2F2 115 4PC (high-dose) 2F4 115 4PC (high-dose) 2F2 115 4PC (high-dose) 2F4 115 4PC (high-dose) 2F4 115 4PC (high-dose) 2F2 115 4PC			first day of desing and easin 7 days later	comment	
<pre>collected to determine the stage of estrus. On the first day of diestrus, the animals were euthanized via CO2 asphyxiation. Blood was collected from the posterior vena cave and plasma was separated and forzen for determination of follicle-stimulating hormone (FSH) concentrations. Ovaries were removed and fixed in Bouin's solution for 24 hours followed by immersion in 708 ethanol. Ovaries were then processed, embedded in paraffin, step-sectioned at 5 to 6 um, and stained with hematoxylin and eosin. Every 20th section of the right ovary of each mouse was examined to determine the number of small and growing follicles according to the method of Pederson and Peters (1968). Statistical analysis was performed using the Number Cruncher Statistical system 5.0 (NCSS Kaysville, UT). Differences were considered significant when p < 0.05. Pesult: Daily dosing with 4-VCH was resulted in reductions in the numbers of small and growing follicles, as did the two doses of the positive control compound, but not the vehicle control or treatment with 4PC. The authors report that, in most sections, the follicles were completely absent. Although no specific data were presented, the number of growing follicles per ovary (SFO) and the number of growing follicles per ovary (GFO) are estimated, using a ruler and the bar chart presented, as follows: Group SFO GFO Control 275 115 4PC(low-dose) 274 115 4PC(low</pre>					
of diestrus, the animals were euthanized via CO2 apphysiation.Blood was collected from the posterior vena cava and plasma was separated and frozen for determination offollicle-stimulating hormome (FSH) concentrations. Ovaries were removed and fixed in Bourn's solution for 24 hours followed by immersion in 70% ethanol. Ovaries were then processed, embedded in parafin, step-sectioned at 5 to 6 um, and stained with hematoxylin and eosin. Every 20th section of the right ovary of each mouse was examined to determine the number of small and growing follicles according to the method of Pederson and Peters (1968).Statistical snalysis was performed using the Number Cruncher Statistical system 5.0 (NCSS Kayaville, UT). Differences were considered significant when y < 0.05.					
Blood was collected from the posterior vena cava and plasma was separated and frozen for determination of follicle-stimulating hormone (FSH) concentrations. Ovaries were removed and fixed in Bouin's solution for 24 hours followed by immersion in 70% ethanl. Ovaries were then processed, embedded in paraffin, step-sectioned at 5 to 6 um, and stained with hematoxylin and cosin. Every 20th section of the right ovary of each mouse was examined to determine the number of small and growing follicles according to the method of Pederson and Peters (1968). Statistical system 5.0 (NCS Kaysville, UT). Differences were considered significant when p < 0.05. Result: Daily dosing with 4-VCE was resulted in reductions in the numbers of small and growing follicles, as did the two doses of the positive control compound, but not the vehicle control or treatment with 4PC. The auchors report that, in most sections, the follicles were completely absent. Although no specific data were presented, the number of small follicles per ovary (SFO) and the number of growing follicles per ovary (GFO) are estimated, using a ruler and the bar chart presented, as follows: Group SFO GFO Control 275 115 4PC(10w-dose) 274 115 4PC(10w-dose) 275 115 4PC(10w-dose) 275 115 4PC(10w-dose) 274 115 4PC(10w-dose) 274 115 4PC(10w-dose) 275 115 4PC(10w-dose) 274 123 BaP 42* 50* * Pc0.05 There were no statistically significant reductions reported in the concentrations of plasma follicle-stimulating hormone (FSH) observed in treatment groups when compared to controls:					
<pre>was separated and frozen for determination of follicle-stimulating hormone (FSH) concentrations. Ovaries were removed and fixed in Bouin's solution for 24 hours followed by immersion in 70% ethanol. Ovaries were then processed, embedded in parafiln, step-sectioned at 5 to 6 um, and stained with hematoxylin and eosin. Every 20th section of the right ovary of each mouse was examined to determine the number of small and growing follicles according to the method of Pederson and Peters (1968). Statistical analysis was performed using the Number Cruncher Statistical System 5.0 (NCSS Kaysville, UT). Differences were considered significant when p < 0.05. Result: Daily dosing with 4-VCH was resulted in reductions in the numbers of small and growing follicles, as did the two doses of the positive control compound, but not the vehicle control or treatment with 4PC. The authors report that, in most sections, the follicles were completely absent. Although no specific data were presented, the number of small follicles per ovary (SPO) and the number of growing follicles per ovary (GFO) are estimated, using a ruler and the bar chart presented, as follows: Group SPO GFO Control 275 115 4PC(low-dose) 274 115 4PC(low-dose) 274 115 4PC(low-dose) 252 113 4-VCH 30* 32* PaP 42* 50* * pe0.05 There were no statistically significant reductions reported in the concentrations of plasma follicle-stimulating hormone (FSH) observed in treatment groups when compared to controls:</pre>					
<pre>follic_le=stimulating hormone (FSH) concentrations. Ovaries were removed and fixed in Bouin's solution for 24 hours followed by immersion in 70% ethanol. Ovaries were then processed, embedded in paraffin, step-sectioned at 5 to 6 um, and stained with hematoxylin and eosin. Every 20th section of the right ovary of each mouse was examined to determine the number of small and growing follicles according to the method of Pederson and Peters (1968). Statistical analysis was performed using the Number Cruncher Statistical System 5.0 (NCSS Kaysville, UT). Differences were considered significant when p < 0.05. Result: Daily dosing with 4-VCH was resulted in reductions in the numbers of small and growing follicles, as did the two doses of the positive control compound, but not the vehicle control or treatment with 4PC. The authors report that, in most sections, the follicles were completely abbent. Although no specific data were presented, the number of small follicles per ovary (SFO) and the number of growing follicles per ovary (GFO) are estimated, using a ruler and the bar chart presented, as follows: Group SFO GFO Control 275 115 4PC(low-dose) 274 115 4PC(low-dose) 252 113 4-VCH 30* 32* BaP 42* 50* * Pe0.05 There were no statistically significant reductions reported in the concentrations of plasma follicle-stimulating hormone (FSH) observed in treatment groups when compared to controls:</pre>					
<pre>were removed and fixed in Bouir's solution for 24 hours followed by immersion in 70% ethanol. Ovaries were then processed, embedded in paraffin, step-sectioned at 5 to 6 um, and stained with hematoxylin and eosin. Every 20th section of the right ovary of each mouse was examined to determine the number of small and growing follicles according to the method of Pederson and Peters (1968). Statistical analysis was performed using the Number Cruncher Statistical System 5.0 (NCSS Kaysville, UT). Differences were considered significant when p < 0.05. Result: Daily dosing with 4-VCH was resulted in reductions in the numbers of small and growing follicles, as did the two doses of the positive control compound, but not the vehicle control or treatment with 4PC. The authors report that, in most sections, the follicles were completely absent. Although no specific data were presented, the number of small follicles per ovary (SFO) and the number of growing follicles per ovary (GFO) are estimated, using a ruler and the bar chart presented, as follow: Group SFO GFO Control 275 115 4PC(ing-dose) 252 113 4-VCH 30* 32* BaP 42* 50* * P<0.05 There were no statistically significant reductions reported in the concentrations of plasma follicle-stimulating hormone (FSH) observed in treatment groups when compared to controls:</pre>					
<pre>followed by immersion in 70% ethanol. Ovaries were then processed, embedded in paraffin, step-sectioned at 5 to 6 um, and stained with hematoxylin and eosin. Every 20th section of the right ovary of each mouse was examined to determine the number of small and growing follicles according to the method of Pederson and Peters (1968). Statistical analysis was performed using the Number Cruncher Statistical system 5.0 (NCSS Kaysville, UT). Differences were considered significant when p < 0.05. Result: Daily dosing with 4-VCH was resulted in reductions in the numbers of small and growing follicles, as did the two doses of the positive control compound, but not the vehicle control or treatment with 4PC. The authors report that, in most sections, the follicles were completely absent. Although no specific data were presented, the number of small follicles per ovary (SPO) and the number of growing follicles per ovary (GFO) are estimated, using a ruler and the bar chart presented, as follows: Group SFO GFO Control 275 115 4PC(low-dose) 252 113 4-VCH 30* 32* BaP 42* 50* * p<0.05 There were no statistically significant reductions reported in the concentrations of plasma follicle-stimulating hormone (FSH) observed in treatment groups when compared to controls:</pre>					
<pre>processed, embedded in paraffin, step-sectioned at 5 to 6 um, and stained with hematoxylin and eosin. Every 20th section of the right ovary of each mouse was examined to determine the number of small and growing follicles according to the method of Pederson and Peters (1968). Statistical analysis was performed using the Number Cruncher Statistical system 5.0 (NCSS Kaysville, UT). Differences were considered significant when p < 0.05. Result: Daily dosing with 4-VCH was resulted in reductions in the numbers of small and growing follicles, as did the two doses of the positive control compound, but not the vehicle control or treatment with 4PC. The authors report that, in most sections, the follicles were completely absent. Although no specific data were presented, the number of small follicles per ovary (SFO) and the number of growing follicles per ovary (GFO) are estimated, using a ruler and the bar chart presented, as follows: Group SFO GFO Control 275 115 4PC(high-dose) 274 115 4PC (high-dose) 252 113 4-VCH 30* 32* BaP 42* 50* * Pc0.05 There were no statistically significant reductions reported in the concentrations of plasma follicle-stimulating hormone (FSH) observed in treatment groups when compared to controls:</pre>					
and stained with hematoxylin and eosin. Every 20th section of the right ovary of each mouse was examined to determine the number of small and growing follicles according to the method of Pederson and Peters (1968). Statistical analysis was performed using the Number Cruncher Statistical System 5.0 (NCSS Kaysville, UT). Differences were considered significant when p < 0.05. Result: Daily dosing with 4-VCH was resulted in reductions in the numbers of small and growing follicles, as did the two doses of the positive control compound, but not the vehicle control or treatment with 4PC. The authors report that, in most sections, the follicles were completely absent. Although no specific data were presented, the number of small follicles per ovary (SFO) and the number of growing follicles per ovary (GFO) are estimated, using a ruler and the bar chart presented, as follows: Group SFO GFO Control 275 115 4PC(low-dose) 274 115 4PC(high-dose) 252 113 4-VCH 30* 32* BaP 42* 50* * Pc0.05 There were no statistically significant reductions reported in the concentrations of plasma follicle-stimulating hormone (FSH) observed in treatment groups when compared to controls:			-		
<pre>the right ovary of each mouse was examined to determine the number of small and growing follicles according to the method of Pederson and Peters (1968). Statistical analysis was performed using the Number Cruncher Statistical System 5.0 (NCSS Kaysville, UT). Differences were considered significant when p < 0.05. Result: Daily dosing with 4-VCH was resulted in reductions in the numbers of small and growing follicles, as did the two doses of the positive control compound, but not the vehicle control or treatment with 4PC. The authors report that, in most sections, the follicles were completely absent. Although no specific data were presented, the number of small follicles per ovary (SFO) and the number of growing follicles per ovary (GFO) are estimated, using a ruler and the bar chart presented, as follows: Group SFO GFO Control 275 115 4PC(low-dose) 274 115 4PC(high-dose) 252 113 4-VCH 30* 32* BaP 42* 50* * P<0.05 There were no statistically significant reductions reported in the concentrations of plasma follicle-stimulating hormone (FSH) observed in treatment groups when compared to controls:</pre>					
and growing follicles according to the method of Pederson and Peters (1968). Statistical analysis was performed using the Number Cruncher Statistical System 5.0 (NCSS Kaysville, UT). Differences were considered significant when p < 0.05. Result : Daily dosing with 4-VCH was resulted in reductions in the numbers of small and growing follicles, as did the two doses of the positive control compound, but not the vehicle control or treatment with 4PC. The authors report that, in most sections, the follicles were completely absent. Although no specific data were presented, the number of small follicles per ovary (SFO) and the number of growing follicles per ovary (GFO) are estimated, using a ruler and the bar chart presented, as follows: Group SFO GFO Control 275 115 4PC(low-dose) 274 115 4PC(ligh-dose) 252 113 4-VCH 30* 32* BaP 42* 50* * p<0.05 There were no statistically significant reductions reported in the concentrations of plasma follicle-stimulating hormone (FSH) observed in treatment groups when compared to controls:					
of Pederson and Peters (1968).Statistical analysis was performed using the Number CruncherStatistical System 5.0 (NCSS Kaysville, UT). Differences wereconsidered significant when p < 0.05.					
Statistical analysis was performed using the Number CruncherStatistical System 5.0 (NCSS Kaysville, UT). Differences wereconsidered significant when p < 0.05.					
<pre>Statistical System 5.0 (NCSS Kaysville, UT). Differences were considered significant when p < 0.05. Result: Daily dosing with 4-VCH was resulted in reductions in the numbers of small and growing follicles, as did the two doses of the positive control compound, but not the vehicle control or treatment with 4PC. The authors report that, in most sections, the follicles were completely absent. Although no specific data were presented, the number of small follicles per ovary (SFO) and the number of growing follicles per ovary (GFO) are estimated, using a ruler and the bar chart presented, as follows: Group SFO GFO Control 275 115 4PC(high-dose) 274 115 4PC(high-dose) 252 113 4-VCH 30* 32* BaP 42* 50* * P<0.05 There were no statistically significant reductions reported in the concentrations of plasma follicle-stimulating hormone (FSH) observed in treatment groups when compared to controls:</pre>					
<pre>considered significant when p < 0.05. Result: Daily dosing with 4-VCH was resulted in reductions in the numbers of small and growing follicles, as did the two doses of the positive control compound, but not the vehicle control or treatment with 4PC. The authors report that, in most sections, the follicles were completely absent. Although no specific data were presented, the number of small follicles per ovary (SFO) and the number of growing follicles per ovary (GFO) are estimated, using a ruler and the bar chart presented, as follows: Group SFO GFO Control 275 115 4PC(low-dose) 274 115 4PC(low-dose) 252 113 4-VCH 30* 32* BaP 42* 50* * P<0.05 There were no statistically significant reductions reported in the concentrations of plasma follicle-stimulating hormone (FSH) observed in treatment groups when compared to controls:</pre>					
Result: Daily dosing with 4-VCH was resulted in reductions in the numbers of small and growing follicles, as did the two doses of the positive control compound, but not the vehicle control or treatment with 4PC. The authors report that, in most sections, the follicles were completely absent. Although no specific data were presented, the number of small follicles per ovary (SFO) and the number of growing follicles per ovary (GFO) are estimated, using a ruler and the bar chart presented, as follows: GroupGFO SFOGFO GFO Control275115 4PC(low-dose)274115 4PC 10*42*50* * * P<0.0520* There were no statistically significant reductions reported in the concentrations of plasma follicle-stimulating hormone (FSH) observed in treatment groups when compared to controls:20* The state of the control is the contro					
<pre>numbers of small and growing follicles, as did the two doses of the positive control compound, but not the vehicle control or treatment with 4PC. The authors report that, in most sections, the follicles were completely absent. Although no specific data were presented, the number of small follicles per ovary (SFO) and the number of growing follicles per ovary (GFO) are estimated, using a ruler and the bar chart presented, as follows: Group SFO GFO Control 275 115 4PC(low-dose) 274 115 4PC(high-dose) 252 113 4-VCH 30* 32* BaP 42* 50* * P<0.05 There were no statistically significant reductions reported in the concentrations of plasma follicle-stimulating hormone (FSH) observed in treatment groups when compared to controls:</pre>					
of the positive control compound, but not the vehicle control or treatment with 4PC. The authors report that, in most sections, the follicles were completely absent. Although no specific data were presented, the number of small follicles per ovary (SFO) and the number of growing follicles per ovary (GFO) are estimated, using a ruler and the bar chart presented, as follows: Group SFO GFO Control 275 115 4PC(low-dose) 274 115 4PC(high-dose) 252 113 4-VCH 30* 32* BaP 42* 50* * P<0.05 There were no statistically significant reductions reported in the concentrations of plasma follicle-stimulating hormone (FSH) observed in treatment groups when compared to controls:					
or treatment with 4PC. The authors report that, in most sections, the follicles were completely absent. Although no specific data were presented, the number of small follicles per ovary (GFO) and the number of growing follicles per ovary (GFO) are estimated, using a ruler and the bar chart presented, as follows: Group SFO GFO Control 275 115 4PC(low-dose) 274 115 4PC(high-dose) 252 113 4-VCH 30* 32* BaP 42* 50* * P<0.05 There were no statistically significant reductions reported in the concentrations of plasma follicle-stimulating hormone (FSH) observed in treatment groups when compared to controls:					
<pre>sections, the follicles were completely absent. Although no specific data were presented, the number of small follicles per ovary (SFO) and the number of growing follicles per ovary (GFO) are estimated, using a ruler and the bar chart presented, as follows: Group SFO GFO Control 275 115 4PC(low-dose) 274 115 4PC(high-dose) 252 113 4-VCH 30* 32* BaP 42* 50* * P<0.05 There were no statistically significant reductions reported in the concentrations of plasma follicle-stimulating hormone (FSH) observed in treatment groups when compared to controls:</pre>					
<pre>specific data were presented, the number of small follicles per ovary (SFO) and the number of growing follicles per ovary (GFO) are estimated, using a ruler and the bar chart presented, as follows: Group SFO GFO Control 275 115 4PC(low-dose) 274 115 4PC (high-dose) 252 113 4-VCH 30* 32* BaP 42* 50* * P<0.05 There were no statistically significant reductions reported in the concentrations of plasma follicle-stimulating hormone (FSH) observed in treatment groups when compared to controls:</pre>					
<pre>per ovary (SFO) and the number of growing follicles per ovary (GFO) are estimated, using a ruler and the bar chart presented, as follows: Group SFO GFO Control 275 115 4PC(low-dose) 274 115 4PC(high-dose) 252 113 4-VCH 30* 32* BaP 42* 50* * P<0.05 There were no statistically significant reductions reported in the concentrations of plasma follicle-stimulating hormone (FSH) observed in treatment groups when compared to controls:</pre>					
<pre>(GFO) are estimated, using a ruler and the bar chart presented, as follows: Group SFO GFO Control 275 115 4PC(low-dose) 274 115 4PC (high-dose) 252 113 4-VCH 30* 32* BaP 42* 50* * P<0.05 There were no statistically significant reductions reported in the concentrations of plasma follicle-stimulating hormone (FSH) observed in treatment groups when compared to controls:</pre>					
presented, as follows: Group SFO GFO Control 275 115 4PC(low-dose) 274 115 4PC (high-dose) 252 113 4-VCH 30* 32* BaP 42* 50* * P<0.05 There were no statistically significant reductions reported in the concentrations of plasma follicle-stimulating hormone (FSH) observed in treatment groups when compared to controls:					
Group SFO GFO Control 275 115 4PC(low-dose) 274 115 4PC (high-dose) 252 113 4-VCH 30* 32* BaP 42* 50* * P<0.05 There were no statistically significant reductions reported in the concentrations of plasma follicle-stimulating hormone (FSH) observed in treatment groups when compared to controls:					
Control 275 115 4PC(low-dose) 274 115 4PC (high-dose) 252 113 4-VCH 30* 32* BaP 42* 50* * P<0.05 There were no statistically significant reductions reported in the concentrations of plasma follicle-stimulating hormone (FSH) observed in treatment groups when compared to controls:			T		
4PC(low-dose)2741154PC (high-dose)2521134-VCH30*32*BaP42*50** P<0.05			-		
4PC (high-dose)2521134-VCH30*32*BaP42*50** P<0.05					
4-VCH 30* 32* BaP 42* 50* * P<0.05 There were no statistically significant reductions reported in the concentrations of plasma follicle-stimulating hormone (FSH) observed in treatment groups when compared to controls:					
BaP 42* 50* * P<0.05 There were no statistically significant reductions reported in the concentrations of plasma follicle-stimulating hormone (FSH) observed in treatment groups when compared to controls:			-		
* P<0.05 There were no statistically significant reductions reported in the concentrations of plasma follicle-stimulating hormone (FSH) observed in treatment groups when compared to controls:					
There were no statistically significant reductions reported in the concentrations of plasma follicle-stimulating hormone (FSH) observed in treatment groups when compared to controls:					
the concentrations of plasma follicle-stimulating hormone (FSH) observed in treatment groups when compared to controls:					
(FSH) observed in treatment groups when compared to controls:					
Control 100%					
			Control 100%		

RAC's response Country / Dossier Date Comment **Organisation** / to comment submitter's MSCA response to comment 4PC (low-dose) 928 4PC (high-dose) 108% 4-VCH 85% BaP 1928 Values obtained by interpolation from graphical results presented in the paper. Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3. Conclusion: Under the conditions of this study, 4-VCH administered at 650 mg/kg bw/day by i.p. injection for 30 days was clearly toxic to ovarian follicles but did not result in a statistically significant reduction in plasma follicle-stimulating hormone. **Reliability:** (2) valid with restrictions Study available for review. Non-quideline research investigation containing limited data, acceptable for evaluation. 10-JUL-2006 (27)**Type:** other: ovarian toxicity In Vitro/in vivo: In vivo Species: mouse Strain: B6C3F1 Sex: female Method: Groups of female B6C3F1 mice (age 28 days) were administered 4-VCH (7.5 mmol/kg body weight; positive control), sesame seed oil (2.5 ml/kg body weight; vehicle control) or a series of structural analogues by i.p. injection for 30 days: mmol/kg body weight/day 4-VCH 7.5 Ethylcyclohexene 7.5 Vinylcyclohexane 7.5 Cyclohexene 7.5 Ethylcyclohexene oxide 1.43 Vinvlcvclohexane oxide 1.43 Cvclohexene oxide 1.43 Epoxybutane 1.43 Butadiene monoepoxide 1.43 0.14 Butadiene diepoxide 7.34 Isoprene Comment: dose selection was either equimolar to 4-VCH, or the

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		maximum tolerated by mice over 30 days (based on preliminary experiments).		
		diepoxide. An absence of activity in these experiments suggests that 1,2 or 7,8 mono epoxides are not ovarian toxicants.		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		Sub-acute treatment of mice with the monoepoxide derivatives		
		of the three analogues (1.43 mmol/kg body weight for 30 days)		
		was without effect on the number of small- and growing		
		follicles in mouse ovary, however a marked reduction in both parameters was again recorded after treatment with 4-VCH (7.5		
		mmol/kg body weight):		
		Follicle counts		
		Small Growing		
		Control (sesame oil) 148 43		
		Ethylcyclohexene oxide 12630Vinylcyclohexane oxide 11933		
		Vinylcyclohexane oxide11933Cyclohexene oxide14750		
		4-VCH 17* 7*		
		Comment: these results confirm that monoepoxides corresponding to the 1,2- (ethylcyclohexene oxide, cyclohexene oxide) or 7,8 (vinylcyclohexane) epoxide of 4-VCH were not ovarian toxicants.		
		In a third series of experiments, isoprene (1.43 mmol/kg),		
		butadiene monoepoxide (1.43 mmol/kg) and butadiene diepoxide		
		(0.14 mmol/kg) (but not epoxybutane, 1.43 mmol/kg) were		
		clearly ovotoxic after repeated administration to female mice,		
		leading to decreases in the number of small and growing		
		follicles comparable to those produced by 4-VCH:		
		Follicle counts Small Growing		
		Control (sesame oil) 131 51		
		Epoxybutane 150 42		
		Butadiene monoepoxide 3* 7*		
		Butadiene diepoxide 20* 19*		
		Isoprene 31* 28*		
		4-VCH 17* 14*		
		Comment: these findings suggest that biotransformation of		
		olefinic structures to products that are, or that can form,		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		diepoxides is an important requirement for induction of	comment	
		ovarian toxicity. Epoxybutane, despite being a monoepoxide,		
		cannot be metabolized to a diepoxide and was therefore		
		inactive.		
		The ovarian toxicity of this series of structural analogues		
		was found to correlate with their ability to alkylate		
		nicotinamide in vitro (used as a surrogate indicator of chemical reactivity		
		in vivo). Graphical results demonstrate		
		that 4-VCH diepoxide (2 mM; activity reported as approx. 150		
		fluorescence units/hr) was around 3-fold more potent than		
		equimolar levels of cyclohexene oxide, ethylcyclohexene oxide,		
		vinylcyclohexane oxide and 4-VCH 1,2 epoxide in this assay.		
		Alkylation of nicotinamide by butadiene diepoxide (2 mM;		
		activity reported as around 550 fluorescence units/hr) was 3.5		
		to 10-fold greater than that associated with equimolar levels		
		of butadiene monoepoxide, epoxybutane and isoprene oxide		
		(2-methyl-2-vinyloxirane). These findings suggest a		
		relationship between the chemical reactivity of epoxide and		
		diepoxides in vitro and ovarian toxicity reported in vivo in		
		the mouse.		
		Test substance: 4-Vinylcyclohexene, CAS No. 100-40-3.		
		Conclusion: Results from studies using structural analogues of 4-VCH		
		demonstrate that metabolism to the diepoxide is central to		
		induction of ovarian toxicity in the mouse.		
		Reliability: (2) valid with restrictions Study available for review. Non-guideline experimental study.		
		Well reported methods and results, acceptable for evaluation.		
		10-JUL-2006 (18)		
		5.10 Exposure Experience Type of experience: other: Measurements of airborne concentrations (area		
		samples) Remark: Measurements of airborne concentrations of		
		4-vinylcyclohexene (4-VCH) and other pollutants were		
		obtained in a press room where bias-ply passenger and truck		
		tires were being cured. Sampling was performed using		
		personal air sampling pumps affixed to ladders and		
		equipment to draw workplace air (area samples) at a nominal		
		flow rate of 1.0 to 1.5 liters per minute through glass		
	I	110% face of 1.0 to 1.5 ficers per minute through grass		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		tubes containing 100 mg of activated coconut shell charcoal		
		in the front section and 50 mg in the back. A total of 9		
		consecutive 30- to 45-minute samples were collected at 2		
		locations to represent a 6-hour period during a single		
		shift. The two sampling locations were reported to include		
		the center of the passenger tire curing area and at its		
		periphery away from truck tire curing. Samples were		
		prepared for analysis by placing the charcoal from the		
		front and back sections of the sorbent tube in separate		
		vials then adding approximately 1 micro-liter of carbon		
		disulfide to remove (desorb) any contaminants collected on		
		the charcoal. After gentle swirling and holding for 4		
		hours, a known quantity of the aliquot (3 to 5		
		micro-liters) was removed from each vial and injected into		
		a gas chromatograph (GC) equipped with a flame ionization		
		detector (FID) and a suitable separation column. Separate		
		analysis of each backup section suggested that sorbent		
		breakthrough did not occur. Desorption efficiencies and GC		
		performance were also evaluated in the study and found to be acceptable.		
		Results:		
		Arithmetic mean concentrations of 4-VCH were 71.0 ppb in		
		the center of the passenger tire curing area and 92.3 ppb		
		at it's periphery away from truck tire curing.		
		Conclusions:		
		From this study, it can be concluded that, historically		
		speaking, exposures to 4-VCH have occurred in the workplace		
		during the curing of bias-ply tires but the nature and		
		extent of these exposures was not comprehensively		
		characterized by this study.		
		Limitations:		
		The area measurements obtained in this study may		
		substantially over-estimate or under-estimate actual		
		breathing zone concentrations. In addition, the		
		measurements were made 30 or more years ago and are not		
		expected to be representative or relevant to workplace		
		conditions that would be encountered today. As such, this		
		data is not suitable for rigorous risk assessment purposes.		
		Reliability: (3) invalid		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		Study available for review. Significant methodological	comment	
		deficiences.		
		23-MAR-2006 (53)		
		Type of experience: other: Measurements of airborne concentrations (area		
		samples)		
		Remark: Volatile pollutants, including 4-vinylcyclohexene (4-VCH),		
		were sampled and analyzed from workplace air (area samples)		
		associated with several rubber goods manufacturing		
		processes in Italy, including the vulcanization area of a		
		shoe factory, the vulcanization and extrusion areas of a		
		tire re-treading factory, and the extrusion area of an		
		electrical cable insulation plant. Measurements were		
		obtained by using personal air sampling pumps to draw		
		workplace air (area samples) at a nominal flow rate of 1		
		liter per minute through each of 4 glass tubes containing		
		500 mg of charcoal arranged in parallel. A total of 35		
		samples (140 sampling tubes) were collected at the four		
		locations. To minimize the risk of breakthrough, sample		
		durations were limited to 30 minutes. Samples were		
		prepared for analysis by placing the charcoal from the 4		
		sorbent tubes that constituted each of the 35 samples in		
		seperate screw cap test tubes and then adding approximately		
		8 mL of trichlorofluoromethane (Freon 11) to remove		
		(desorb) any contaminants collected on the charcoal. After		
		occasional shaking for 1 hour, an internal standard of		
		ethylene glycol ethyl ether acetate in Freon 11 was added.		
		The volume of the solution was then reduced to		
		approximately 0.2 mL by evaporation under a stream of dry		
		helium. Then, a known quantity of the aliquot (approx. 5 micro-liters) was		
		removed from each test tube and injected		
		into a gas chromatograph (GC) - mass spectrometer (MS)		
		equipped with a fused-silica capillary column. Desorption		
		efficiencies and GC performance were evaluated in the study		
		and found to be acceptable.		
		Results:		
		The concentration range of 4-VCH measured in each of the 4		
		sampling locations were reported as follows: 30 to 210		
		mg/m3 (6.8 ppb to 47.5 ppb) in the shoe sole vulcanization		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		area; non-detected (ND) in the tire re-treading	comment	
		vulcanization area; ND to 3 mg/m3 (ND to 0.68 ppb) in the		
		tire re-treading extrusion area; and ND to 10 mg/m3 (ND to		
		2.3 ppb) in the electrical cable insulation plant.		
		Conclusions:		
		From this study, it can be concluded that, historically		
		speaking, exposures to 4-VCH have occurred in workplaces		
		where rubber goods are vulcanized or extruded but the		
		nature and extent of these exposures was not		
		comprehensively characterized by this study.		
		Limitations:		
		The area measurements obtained in this study may		
		substantially over-estimate or under-estimate actual		
		breathing zone concentrations. In addition, the		
		measurements were made more than 20 years ago and may not		
		be representative or relevant to workplace conditions that		
		would be encountered today. As such, this data is not		
		suitable for rigorous risk assessment purposes.		
		Reliability: (3) invalid		
		Study available for review. Significant methodological		
		deficiences.		
		23-MAR-2006 (13)		
		Type of experience: other: Worker breathing zone measurements		
		Remark: The airborne concentrations of 4-vinylcyclohexene (4-VCH)		
		were measured in the breathing zones of workers engaged in		
		the production of 1,3-butadiene (BD) and other unspecified		
		downstream products and were reported to the U.S EPA as		
		part of testing consent order negotiations. Actual methods		
		and data are not presented in the report, only a summary of		
		the data.		
		Results:		
		One company collected 12 short term (< 30 minute) samples.		
		The average concentration was 0.354 ppm with a range of		
		non-detectable to 2.22 ppm. Thirty-two long term samples		
		were also collected (TWA > 450 min.). The average		
		concentration was 0.03 ppm, with a range of non-detectable		
		to 0.18 ppm. A second company conducted personnel sampling		
	1	for a seven year period from 1983-1989. Twenty 8-hour TWA		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to	RAC's response to comment
	MSCA		comment	
		samples were collected with an average concentration of <0.9 ppm. A third		
		company (the BD producer) conducted		
		personnel sampling for a three day period in 1978. The		
		average concentration for the seven samples was 0.04 ppm,		
		ranging from 0.01 to 1.2 ppm.		
		Conclusions: From this report, it can be concluded that, historically		
		speaking, exposures to 4-VCH have occurred during the		
		production of BD and downstream products but the nature and		
		extent of these exposures was not comprehensively		
		characterized in this report.		
		Limitations:		
		The report does not provide sufficient detail to evaluate		
		the reliability of the data or its relevance to exposures		
		that might be encountered in the workplace today. As such,		
		this data is not suitable for rigorous risk assessment		
		purposes.		
		Reliability: (4) not assignable		
		Secondary literature.		
		27-MAR-2006 (9)		
		Type of experience: other: Worker breathing zone measurements		
		Remark: The airborne concentrations of 4-vinylcyclohexene (4-VCH)		
		were measured in the breathing zones of workers engaged in: - the production of 1,3-butadiene (BD);		
		- the on-purpose isolation of 4-VCH in the production of		
		vinylnorbornene (VNB) for isomerization to ethylidene		
		norborene (ENB);		
		- the on-purpose isolation of 4-VCH during the		
		trimerization of BD to produce dodecanedioic acid (DDDA);		
		- conversion of 4-VCH to mono- and di-epoxide; and		
		- the inadvertent production of 4-VCH as a byproduct of BD		
		use in rubber production and tire manufacturing. Actual		
		methods and data are not presented in the report, only a		
		summary of the data, which were compiled from		
		questionnaires completed by private companies.		
		Comment: The data presented in the report is expected to		
		include some of the same data summarized and referenced		
		separately in these robust summaries under: Chemical		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		Manufacturers Association (CMA) (1990) Report on the survey	comment	
		of the Butadiene Panel of the Chemical Manufacturers		
		Association on 4-Vinylcyclohexene. Submitted to the U.S.		
		Environmental Protection Agency, Office of Toxic		
		Substances, Washington, D.C. May 3, 1990.		
		Results:		
		The concentration of 4-VCH measured in the worker's		
		breathing zone and representing full-shift time-weighted		
		average exposures, were reported as follows:		
		- BD Production: 4 companies reporting; 110 samples; Range		
		<0.01 to <0.04 ppm		
		- On-Purpose Isolation: 2 companies reporting; 95 samples;		
		Range <0.01 to 1.2 ppm		
		- Conversion to Epoxide: 1 company reporting; 19 samples;		
		Range <0.01 to 0.09 ppm		
		- Rubber Production: 10 companies reporting; 411 samples;		
		Range <0.01 to 1.2 ppm		
		- Tire Manufacturing: 3 companies reporting; 24 Samples;		
		Range 0.002 to 0.02 ppm		
		Conclusions:		
		From this report, it can be concluded that historical		
		exposures to 4-VCH have generally been below 1 ppm, as an 8-hour time-weighted average in the industry sectors		
		surveyed, but the nature and extent of exposures occurring		
		at each facility was not comprehensively characterized.		
		Limitations:		
		The report does not provide sufficient detail to evaluate		
		the reliability of the data or its relevance to exposures		
		that might be encountered in the workplace today. As such,		
		this data is not suitable for rigorous risk assessment		
		purposes.		
		Reliability: (4) not assignable		
		Secondary literature.		
		23-MAR-2006 (10)		
		Type of experience: other: Measurement of carpet emisisons		
		Remark: The emissions of volatile organic compounds, including		
		4-Vinylcyclohexene (4-VCH), were quantified from new		
		carpets placed in a large-scale (20 cubic meter)		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		environmental chamber. Four different carpets were		
		studied, including 2 that incorporated a styrene-butadiene		
		(SB) latex backing adhesive. No pads or adhesives were		
		used. The carpets selected were reported to be		
		representative of the types used in residences, schools,		
		and offices. Carpets were obtained directly from the		
		finishing line at the manufacturer's mills, sealed in		
		Tedlar bags, and shipped by air freight for delivery to the		
		laboratory. The large chamber was insulated and		
		environmentally controlled, with all interior surfaces clad		
		in stainless steel. Air presented to the chamber was		
		filtered and tested to ensure no outside contaminants were		
		inadvertently introduced. The chamber was operated to		
		ensure 1 air-change per hour with air velocities of 6.5 to		
		9 cm/sec. at a temperature of 22.8 to 23.5 °C and a		
		relative humidity of 46.5 to 50.2%. Air samples inside the		
		chambers were obtained at approximately 1, 3, 6, and 12		
		hours after closing the chamber, then again at 24 hours,		
		using multi-sorbent samplers packed with Tenax-TA,		
		Ambersorb XE-240, and activated charcoal in series. Air		
		flow rates through the sorbent tubes was 50 to 200 cubic		
		centimeters per minute, with sample volumes of 1.25 to 10		
		liters. Samples were then thermally desorbed, concentrated, and introduced		
		into a capillary gas		
		chromatograph with a mass spectrometer detector (GC/MS).		
		In the field study, samples were collected and quantified		
		for only 2 analytes, which did NOT include 4-VCH.		
		Results:		
		The two carpets with the SB latex adhesive emitted, in		
		order of decreasing emission rates, styrene,		
		4-phenylcyclohexene, 4-VCH, and alkyl benzenes followed by		
		other organic compounds. The concentration of 4-VCH in the		
		chamber ranged from approximately 6 ppb to 17 ppb during		
		the first hour, 3 ppb to 14 ppb during the 3 hour, and 2		
		ppb to 7 ppb during the 6th hour. The emission rates		
		calculated for 4-VCH ranged from 7.3 to 24.2 micrograms per		
		square meter per hour during the first 24 hours, and 0.6 to		
		2.7 micrograms per square meter per hour over the entire 7		

RAC's response Country / Dossier Date Comment **Organisation** / to comment submitter's MSCA response to comment day test period. The concentration of 4-VCH decayed by 89 to 91% from the first 24 hours to the end of the experiment 7 days later. Conclusions: From this study, it can be concluded that historically carpets that incorporate a styrene-butadiene backing adhesive have emitted 4-VCH at levels lower than other contaminants such as styrene and 4-phenylcyclohexene. Limitations: The results of this study are historical in nature and do not fully describe the nature and extent of exposures to 4-VCH from carpets manufactured today and installed in typical occupied spaces. This data is suitable for screening level risk assessments, but may not be suitable for a rigorous risk assessment. **Reliability:** (1) valid without restriction Study available for review. Test procedure in accordance with generally accepted scientific standards. Adequately reported methods and results, acceptable for evaluation. 27-MAR-2006 (26)(1) ACGIH (2001) 4-VINYL CYCLOHEXENE, Cas number 100-40-3. Documentation for TLV. (2) American Conference of Governmental Industrial Hygienists TLVs and BEIs (2005) Threshold Limit Values for Chemical Substances and Physical Agents and Biological Exposure Indices. Cincinatti, OH, p59. (3) American Industrial Hygiene Association (2006) The AIHA 2006 Emergency Response Planning Guidelines and Workplace Environmental Exposure Level Guides Handbook. American Industrial Hygiene Association. Fairfax, VA, p39. (4) Atkinson, R (1989) Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds. J Phys Chem Ref Data Monograph No. 1. NY: Amer Inst Physics & Amer Chem Soc. (5) Atkinson, R and Carter, WPL (1984) Kinetics and mechanisms of the gas-phase reactions of ozone with organic compounds under atmospheric conditions. Chem Rev 84: 437-470.

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		(6) Bevan C, Stadler JC, Elliott GS, Frame SR, Baldwin JK, Heung	comment	
		H-W, Moran E and Panepinto AS (1996) Subchronic toxicity of		
		4-vinylcyclohexene in rats and mice by inhalation exposure.		
		Fundamental and Applied Toxicology, 32, 1-10.		
		(7) Calamari, D, Galassi, S, Setti, F and Vighi, M (1983)		
		Toxicity of selected chlorobenzenes to aquatic organisms.		
		Chemosphere 12, 253-262.		
		(8) Canadian Environmental Modelling Center (2004) Level I:		
		Fugacity-Based Environmental Equilibrium Partitioning Model,		
		Version 3.00. Canadian Environmental Modelling Centre, Trent		
		University, Petersborough, Canada.		
		(9) Chemical Manufacturers Association (CMA) (1990) Report on		
		the survey of the Butadiene Panel of the Chemical		
		Manufacturers Association on 4-vinylcyclohexene. Submitted		
		to the U.S. Environmental Protection Agency, Office of Toxic		
		Substances, Washington, D.C. May 3, 1990.		
		(10) Chemical Manufacturers Association (CMA) (1991) Industrial		
		hygiene sampling for 4-vinylcyclohexene in the workplace -		
		final report. Submitted to the U.S. Environmental Protection		
		Agency, Office of Toxic Substances, Washington, D.C. U.S.		
		EPA/OPTS Public Files, Fiche #: OTS0533179. Doc#:		
		40-91109046. October 1, 1991.		
		(11) Chemical Products Safety Division, Basic Industries Bureau,		
		Ministry of International Trade and Industry, Chemicals		
		Inspection and Testing Instutute (1992). Biodegradation and		
		Bioaccumulation Data of Existing Chemicals Based on the CSCL		
		Japan. Japan Chemical Industry Ecology-Toxicology and		
		Information Center, Japan.		
		(12) Clark, B, Henry, JG and Mackay D. (1995) Fugacity analysis		
		and model of organic chemical fate in a sewage treatment		
		plant. Environ Sci Technol 29, 1488-1494.		
		(13) Cocheo, V and Bellomo, ML (1983) Rubber manufacture:		
		sampling and identification of volatile pollutants. Am Ind		
		Hyg Assoc J. 44, 521-527.		
		(14) Collins, JJ and Manus, AG (1987) Toxicological evaluation of		
		4-vinylcyclohexene. I. Prechronic (14-day) and subchronic		
		(13-week) gavage studies in Fischer 344 rats and B6C3F1		
		mice. J Toxicol Environ Hlth, 21, 493-505.		

Date	Country /	Comment	Dossier	RAC's response
	Organisation /		submitter's	to comment
	MSCA		response to	
		(15) Collins, JJ, Montali, RJ and Manus, AG (1987) Toxicological	comment	
		evaluation of 4-vinylcyclohexene. II. Induction of ovarian		
		tumors in female B6C3F1 mice by chronic oral administration		
		of 4-vinylcyclohexene. J Toxicol Environ Hlth, 21, 507-524.		
		(16) Daubert, TE and Danner, RP. (1994) Physical and		
		Thermodynamic Properties of Pure Chemicals Part 5. Taylor		
		and Francis. (page number not available.)		
		(17) Degussa AG (undated) High Performance Building Blocks		
		(brochure).		
		(18) Doerr, JK, Hooser, SB, Smith, BJ and Sipes, IG (1995)		
		Ovarian toxicity of 4-vinylcyclohexene and related olefins		
		in B6C3F1 mice: role of diepoxides. Chem Res Toxicol 8,		
		963-969.		
		(19) DuPont (1993) Two-week range-finding study with		
		4-vinylcyclohexene in rats and mice. Haskell Laboratory		
		Report Number 759-793.		
		(20) DuPont (1994). Rat and mouse bone marrow micronucleus assay		
		of 4-vinylcyclohexene following subchronic inhalation		
		exposure, Revision No. 1. Haskell Laboratory Report No.		
		506-93. February 22, 1994. EPA Docket #OPTS-42116.		
		(21) EPI Suite (2004) Estimation Program Interface for Windows		
		Suite. Version 3.12. Office of Pollution Prevention and		
		Toxics and Syracuse Research Corporation, United States		
		Environmental Protection Agency, Washington, DC, USA.		
		(22) Galassi, S and Vighi, M (1981) Testing toxicity of volatile		
		substances with algae. Chemosphere 10, 1123-1126.		
		(23) Giannarini, C, Citti, L, Gervasi, PG and Turchi, G (1981)		
		Effects of 4-vinylcyclohexene and its main oxirane		
		metabolite on mouse hepatic microsomal enzymes and		
		glutathione levels. Toxicol Lett 8, 115-121.		
		(24) Grizzle, TB, George, JD, Fail, PA, et. al. (1994)		
		Reproductive effects of 4-vinylcyclohexene in Swiss Mice		
		assessed by a continuous breeding protocol. Fundam Appl		
		Toxicol 22, 122-129.		
		(25) Hermans, J, Canton, H, Janssen, P and De Jong, R (1984)		
		Quantitative structure-activity relationships and toxicity		
		studies of mixtures of chemicals with anaesthetic potency:		
		acute lethal and sublethal toxicity to Daphnia magna.		
		acute ternat and subternat toxicity to Daphnia magna.		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		Aquatic Toxicology 5, 143-154.	comment	
		(26) Hodgson, AT, Wooley, JD, and Daisey, JM. (1993) Emissions of		
		volatile organic compounds from new carpets measured in a		
		large-scale environmental chamber. Journal of the Air and		
		Waste Management Association, 43, 316-324.		
		(27) Hooser, SB, Parola, LR, Van Ert, MD and Sipes IG (1993).		
		Short Communication: Differential ovotoxicity of		
		4-vinylcyclohexene and its analog, 4-phenylcyclohexene.		
		Toxicol Appl Pharm 119, 302-305.		
		(28) Howard, PH, Boethling, RS, Stiteler, WM, Meylan, WM, Hueber,		
		AE, Beauman, JA and Larosche, ME (1992) Predictive model for		
		aerobic biodegradability developed from a file of evaluated		
		biodegradation data. Environ Toxicol Chem 11, 593-603.		
		(29) International Agency for Research on Cancer (1994) IARC		
		monographs on the evaluation of carcinogenic risks to		
		humans: 4-vinylcyclohexene. Vol 60, pages 347-359.		
		(30) International Agency for Research on Cancer (1994) IARC		
		monographs on the evaluation of carcinogenic risks to		
		humans: 4-vinylcyclohexene. Vol 60, pages 347; 354-355; 361.		
		(31) INVISTA, Inc. (2005) Vinylcyclohexene (VCH) Product		
		Technical Data Sheet. INVISTA (TM) Specialty Intermediates.		
		(32) Keller, DA (1993) Partition coefficients of 4-vinyl		
		cyclohexene and metabolites. Unpublished report, Haskell		
		Laboratory Report No. 102-93 for Chemical Manufacturers		
		Association, Washington DC, March 1993.		
		(33) Keller, DA, Carpenter, SC, Cagen, SZ and Reitman, FA (1997)		
		In vitro metabolism of 4-vinylcyclohexene in rat and mouse liver, lung and ovary. Toxicol Appl Pharmacol 144, 36-44.		
		(34) Leifer, A (1993) Determination of rates of reaction in the		
		gas-phase in the troposphere: theory and practice. 5. Rate		
		of indirect photoreaction. EPA/744/R-93/001 (NTIS		
		PB93-149334). U.S. Environmental Protection Agency, OPPT,		
		Washington, DC.		
		(35) Lide, DR (ed.) (2004) CRC Handbook of Chemistry and Physics.		
		85th Edition. CRC Press LLC Boca Raton, FL p. 3-568.		
		(36) Mackay, D et al. (1996) Evaluating the environmental fate of		
		a variety of types of chemicals using the EQC model.		
		Environ Toxicol Chem 15, 1627-1637.		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		(37) Mackay, D. et al. (1996) Assessing the fate of new and	comment	
		existing chemicals: a five-stage process. Environ Toxicol		
		Chem 15, 1618-1626.		
		(38) Meylan, W, Howard, PH and Boethling, RS (1992) Molecular		
		topology/fragment contribution method for predicting soil		
		sorption coefficients. Environ Sci Technol 26, 1560-1567.		
		(39) Meylan, WM and Howard, PH (1993) Computer estimation of the		
		atmospheric gas-phase reaction rate of organic compounds		
		with hydroxyl radicals and ozone. Chemosphere 26, 2293-99.		
		(40) Meylan, WM, Howard, PH, Boethling, RS et al. (1999) Improved		
		method for estimating bioconcentration / bioaccumulation		
		factor from octanol/water partition coefficient. Environ		
		Toxicol Chem 18, 664-672.		
		(41) Mill, T, Haag, W, Penwell, P, Pettit, T and Johnson, H		
		(1987) Environmental fate and exposure studies development		
		of a PC-SAR for hydrolysis: esters, alkyl halides and		
		epoxides. EPA Contract No. 68-02-4254. Menlo Park, CA: SRI		
		International.		
		(42) Ministry of Environment (2000). 4-Vinylcyclohexene ecotox		
		data cited in the National Institute of Technology and		
		Evaluation database. Tokyo, Japan.		
		(43) MITI (Ministry of International Trade and Industry) (1992).		
		Biodegradation and Bioaccumulation Data of Existing		
		Chemicals Based on the CSCL Japan. CITI ed. (Chemicals		
		Inspection & Testing Institute). Published by Japan Chemical		
		Industry Ecology-Toxicology & Information Center. (44) Mount, GH and Eisele, FL (1992) An intercomparison of		
		tropospheric OH measurements at Fritz Peak Observatory,		
		Colorado. Science 256, 1187-8.		
		(45) Neuhauser, EF, Durkin, PR, Malecki, MR, and Anatra, M (1986)		
		Comparative toxicity of ten organic chemicals to four		
		earthworm species. Comp Biochem Physiol 83C, 197-200.		
		(46) Neuhauser, EF, Loehr, RC, Malecki, MR, Milligan, DL, and		
		Durkin, PR (1985) The toxicity of selected organic chemicals		
		to the earthworm Eisenia fetida. Journal of Environmental		
		Ouality 14, 383-388.		
		(47) NTP (1981) National Toxicology Program Database Search		
l		Application.		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		http://ntp-apps.niehs.nih.gov/ntp_tox/index.cfm.		
		CAS#100-40-3. Genetic Toxicity Studies. Salmonella. Study		
		No. 777152. Detailed Study Data.		
		(48) NTP (1984) National Toxicology Program Database Search		
		Application.		
		http://ntp-apps.niehs.nih.gov/ntp_tox/index.cfm.		
		CAS#100-40-3. Genetic Toxicity Studies. CHO Cell		
		Cytogenetics-Chromosome Abberations. Study No. 169960.		
		Detailed Study Data.		
		(49) NTP (1984) National Toxicology Program Database Search		
		Application.		
		http://ntp-apps.niehs.nih.gov/ntp_tox/index.cfm.		
		CAS#100-40-3. Genetic Toxicity Studies. CHO Cell		
		Cytogenetics-Sister Chromatid Exchange. Study No. 169960.		
		Detailed Study Data.		
		(50) NTP (1986) Toxicology and carcinogenesis studies of		
		4-vinylcyclohexene (CAS No. 100-40-3) in F344/N rats and		
		B6C3F1 mice (gavage studies). NTP Technical Report 303, NIH		
		Publication No. 86-2559, August 1986.		
		(51) NTP (1989) National Toxicology Program Database Search		
		Application.		
		http://ntp-apps.niehs.nih.gov/ntp_tox/index.cfm.		
		CAS#100-40-3. Genetic Toxicity Studies. Salmonella. Study		
		No. 609542. Detailed Study Data.		
		(52) NTP (undated) National Toxicology Program Database Search		
		Application.		
		http://ntp-apps.niehs.nih.gov/ntp_tox/index.cfm.		
		CAS#100-40-3. Genetic Toxicity Studies. Mouse Lymphoma		
		Studies. Study No. 971117. Detailed Study Data.		
		(53) Rappaport, SM and Fraser, DA (1977) Air sampling and		
		analysis in a rubber vulcanization area. Am Ind Hyg Assoc J,		
		38, 205-210.		
		(54) Sabljic, A (1984) Predictions of the nature and strength of		
		soil sorption of organic pollutants by molecular topology. J		
		Agric Food Chem 32, 243-246.		
		(55) Sabljic, A (1987) On the prediction of soil sorption		
		coefficients of organic pollutants from molecular structure:		
		application of molecular topology model. Environ Sci		

ANNEX 2	- COMMENTS A	AND RESPONSE TO	COMMENTS O	N CLH PROPOSAL	. ON 4 VINYLO	CYCLOHEXENE (VCH)
---------	--------------	-----------------	------------	----------------	---------------	-------------------

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		Technol 21, 358-366.	comment	
		(56) Smith, BJ and Sipes IG (1991) Epoxidation of		
		4-vinylcyclohexene by human hepatic microsomes. Toxicol Appl		
		Pharmacol 109, 367-371.		
		(57) Smith, BJ, Carter, DE and Sipes, GI (1990) Comparison of the		
		disposition and in vitro metabolism of 4-vinyl cyclohexene		
		in the female mouse and rat. Toxicol Appl Pharmacol 105,		
		364-371.		
		(58) Smith, BJ, Mattison, DR and Sipes, GI (1990) The role of		
		epoxidation in 4-vinyl cyclohexene-induce ovarian toxicity.		
		Toxicol Appl Pharmacol 105, 371-381.		
		(59) Smith, BJ, Sipes, IG, Stevens, JC and Halpert, JR (1990) The		
		biochemical basis for the species difference in hepatic		
		microsomal 4-vinylcyclohexene epoxidation between female		
		mice and rats. Carcinogenesis 11, 1951-1957.		
		(60) Smyth, HF, Carpenter, CP, Weil, CS et al. (1962) Range		
		finding toxicity data: List VI. Am Ind Hyg Assoc J, 23,		
		95-107.		
		(61) Smyth, HF, Carpenter, CP, Weil, CS et al. (1969) Range		
		finding toxicity data: List VII. Am Ind Hyg Assoc J, 30, 470-476.		
		(62) United States Environmental Protection Agency (USEPA) (1989)		
		Notice containing the ITC recommendation of 4-VCH to the		
		Priority List and soliciting interested parties for		
		developing a consent order for 4-VCH. 54 FR 51114. December		
		12, 1989.		
		(63) United States Environmental Protection Agency (USEPA) (1991)		
		Fish chronic toxicity data base. Duluth, MN: Environmental		
		Research Laboratory (ERL), Office of Research and		
		Development, USEPA, 6201 Congdon Boulevard, 55804; contact		
		C.L. Russom (218) 720-5500.		
		(64) United States Environmental Protection Agency (USEPA) (1991)		
		OTS PMN ECOTOX. Washington, DC: USEPA, Office of Toxic		
		Substances.		
		(65) USFDA (2002) Effective notifications for food contact		
		substances. FCN No. 244. September 26, 2002.		
		(66) Van Duureen, BL, Nelson, N, Orris, L, et. al. (1963)		
		Carcinogenicity of epoxides, lactones and peroxy compounds.		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to	RAC's response to comment
			comment	
		Journal of the National Cancer Institute 31, 41-55.		
		(67) Veith, GD, Call, DJ, and Brooke, LT (1983)		
		Structure-toxicity relationships for the fathead minnow,		
		Pimephales promelas: narcotic industrial chemicals.		
		Canadian Journal of Fisheries and Aquatic Sciences 40,		
		743-748. (68) Watabe, T, Hiratsuka, A, Ozawa, N and Isobe, M (1981) A		
		comparative study on the metabolism of d-limonene and		
		4-vinylcyclohex-1-ene by hepatic microsomes. Xenobiotica 11,		
		333-344.		
		(69) Wong, V and Wang, S-H (1996) Styrene from butadiene via		
		4-vinylcyclohexene by the Dow process. Process Economics		
		Program Review (#94-2-4), SRI Consulting, January 1996.		
		(70) Yalkowsky, SH (2003) Aqueous Solubility Data. CRC Press LLC		
		Boca Raton, FL p. 509.		
		ECHA comment: View document attached (Experien Health Sciences Inc., 2006, IUCLID Data Set, (100-40 3 IUCLID 4.pdf)		
		ECHA comment: The document attached (Acros Organics, 10/11/2010, Safety Data Sheet, (100-40 3 SDS.pdf)) is copied below:		
		1. PRODUCT AND COMPANY IDENTIFICATION Product Identifier Product Description: 4-Vinyl-1-cyclohexene, stabilized Cat No. 140880000; 140880050; 140885000		
		Synonyms Butadine dimer; Cyclohexene, 4-ethenyl-; Cyclohexenylethylene		
		Relevant identified uses of the substance or mixture and uses advised against		
		Recommended Use Laboratory chemicals Uses advised against No Information available		
		Details of the supplier of the safety data sheet		
		E-mail address begel.sdsdesk@thermofisher.com		
		Emergency Telephone Number		
		For information in the US, call: 800-ACROS-01		
		For information in Europe, call: +32 14 57 52 11		
		Emergency Number, Europe: +32 14 57 52 99 Emergency Number, US: 201-796-7100		
		CHEMTREC Phone Number, US: 800-424-9300		
		CHEMTREC Phone Number, Europe: 703-527-3887		

Date	Country / Organisation / MSCA	Co	omment	Dossier submitter's response to comment	RAC's response to comment
		2. HAZARDS IDENTIFICATION			
		Classification of the substance or mixture REGULATION (EC) No 1272/2008			
		Skin Corrosion / irritation	Category 2		
		Carcinogenicity	Category 2		
		Chronic aquatic toxicity	Category 3		
		Flammable liquids.	Category 2		
		Classification according to EU Directives 67/548/EE For the full text of the R phrases mentioned in this Sec Symbol(s) F - Highly flammable Xn - Harmful R -phrase(s) R11 - Highly flammable R38 - Irritating to skin R40 - Limited evidence of Risk Combination Phrases R52/53 - Harmful to aqua aquatic environment 2. HAZARDS IDENTIFICATION Label Elements	tion, see Section 16		

Date	Country / Organisation / MSCA			Dossier submitter's response to comment	RAC's response to comment					
		Signal Word Da Hazard Statem H315 - Causes S H351 - Suspecte H412 - Harmful H225 - Highly fla Precautionary S P281 - Use pers P273 - Avoid rel P302+ P352 - IF P210 - Keep aw P240 - Ground/E Other Hazards No information a	ents skin irritation ed of causing ca to aquatic life wit ammable liquid a Statements - EL conal protective e ease to the envir FON SKIN: Was ay from heat/spa Bond container a	th long lasting e and vapor J (§28, 1272/20 equipment as re ronment h with plenty of arks/open flame and receiving eq	08) quired soap and water s/hot surfaces uipment	· No smoking				
		3. COMPOS	EC No.	Weight %	CAS-No	Classification	GHSCLAS	REACH Reg. No.		
		4- Vinylcyclohexe ne 100-40-3	EEC No. 202- 848-9	99	100-40-3	F; R11 Xi; R38 Carc. Cat. 3; R40 R52/53;	Flam. Liq. 2 (H225) Skin Irrit. 2 (H315) Carc. 2 (H351) Aquatic Chronic 3 (H412)	NO.		
		4. FIRST AI Description of the Eye Contact Rim medical attention Skin Contact W shoes Obtain me Ingestion Clear Inhalation Rem Notes to Physic 5. FIRE-FIG Extinguishing the Suitable Exting	D MEASUR first aid measur hase immediately a dash off immedia edical attention in mouth with wat ove from exposu- cian Treat symp HTING MEA media usishing Media	ES res with plenty of w ately with soap a rer Get medical ure, lie down Mo tomatically ASURES	vater, also under and plenty of wat attention attention air	ection, see Sect r the eyelids, for a ter removing all co	t least 15 minute	nes and		

Date	Country / Organisation / MSCA			Commo	ent			Dossier submitter's response to	RAC's response to comment
	MSCA							comment	
		foam Extinguishing media No information availab Special hazards arisi Flammable Vapors ma Advice for fire-fighter As in any fire, wear sel and full protective gea 6. ACCIDENTAL Personal precautions Ensure adequate venti Environmental preca Prevent further leakag Methods and materia Soak up with inert abso suitable and closed containers for disposal 7. HANDLING A Precautions for Safe Avoid contact with skir provided with appropria exhaust ventilation Uso Conditions for safe s Keep in a dry place Ke Refrigerator/flammable nitrogen Specific End Uses 8. EXPOSURE C Control parameters	le. ng from the subsi y travel to source of s lf-contained breath r RELEASE M s, protective equip lation utions e or spillage if safe I for containment orbent material (e.g . Remove all source ND STORAGI Handling and eyes Do not I ate e explosion-proof et torage, including the p container tightly as Keep under	tance or mixture of ignition and flash ing apparatus pres IEASURES pment and emerge e to do so and cleaning up g. sand, silica gel, a ces of ignition. Use E breathe dust Do no equipment Use only any incompatibili y closed Keep awa	a back sure-demand, MS ency procedures acid binder, univer spark-proof tools t breathe vapors of non-sparking too ties y from heat and so	sal binder, sawdu and explosion-pro or spray mist Use o Is	st). Keep in of equipment.		
		Exposure limits							
		Component 4-Vinylcyclohexene	European Union	The United Kingdom	France	Belgium TWA: 0.1 ppm	Spain VLA-ED: 0.1 ppm		
		4-villyicycionexerie				TWA: 0.45 mg/m ³	VLA-ED: 0.45 mg/m ³		
		Component	Italy	Portugal	The Netherlands	Finland	Denmark		
		4-Vinylcyclohexene		TWA: 0.1 ppm			TWA: 0.4 mg/m ³ TWA: 0.1 ppm		
		Component	Austria	Switzerland	Poland	Norway	Ireland		
		4-Vinylcyclohexene	, add tu	MAK: 0.1 ppm	NDS: 10 mg/m ³		TWA: 0.1 ppm TWA: 0.4 mg/m ³		

RAC's response Country / Date Comment Dossier **Organisation** / submitter's to comment MSCA response to comment Derived No Effect Level (DNEL) No information available. Predicted No Effect Concentration (PNEC) No information available. Exposure controls Engineering Measures Use explosion-proof electrical/ventilating/lighting/equipment Ensure that eyewash stations and safety showers are close to the workstation location Personal protective equipment **Eye Protection** Goggles Hand Protection Protective gloves Skin and body protection Wear appropriate protective gloves and clothing to prevent skin exposure Respiratory Protection Follow the OSHA respirator regulations found in 29 CFR 1910.134 or European Standard EN 149. Use a NIOSH/MSHA or European Standard EN 149 approved respirator if exposure limits are exceeded or if irritation or other symptoms are experienced Hygiene Measures Handle in accordance with good industrial hygiene and safety practice Environmental exposure controls No information available. 9. PHYSICAL AND CHEMICAL PROPERTIES Physical State Liquid Appearance Clear odor odorless **pH** No information available. Vapor Pressure 15 mbar @ 20 °C Vapor Density 3.76 Viscosity 0.7 mPa s at 20 °C Boiling Point/Range 126 - 127°C / 258.8 - 260.6°F@ 760 mmHg Melting Point/Range -101°C / -149.8°F Flash Point 16°C / 60.8°F **Explosion Limits** Lower 0.6 Upper 9.1 Water Solubility 0.05 g/L (20°C) Specific Gravity 0.832 Molecular Formula C8 H12 Molecular Weight 108.18 **10. STABILITY AND REACTIVITY** Reactivity **Chemical Stability**

Date	Country / Organisation / MSCA		Comment						
		Incompatible Materials Strong oxidizing agents, Alc Hazardous Decomposition Carbon monoxide (CO). Ca 11. TOXICOLOGICA Information on Toxicologi Acute Toxicity Product Information	Reactions Hazardous polymerizatio information available. es, hot surfaces and source cohols, Amines. Products rbon dioxide (CO ₂).	n does not occur. es of ignition, Excess heat, Inco	ompatible products.				
		Component Information Component	LD50 Oral	LD50 Dermal	LC50 Inhalation				
		4-Vinylcyclohexene	3080 µL/kg (Rat)	20 mL/kg (Rabbit)					
		Chronic Toxicity Carcinogenicity The table below indicates w Component 4-Vinylcyclohexene	hether each agency has lis IARC Group 2B	sted any ingredient as a carcin UK	ogen				
		Sensitization No information Mutagenic Effects No information Reproductive Effects No in Developmental Effects No Target Organs No informate Other Adverse Effects The for complete information Endocrine Disruptor Infor 12. ECOLOGICAL IN Toxicity Ecotoxicity effects	mation available nformation available. information available. ion available. e toxicological properties h mation None known	ave not been fully investigated	. See actual entry in RTECS				

Date	Country / Organisation / MSCA				Dossier submitter's response to comment	RAC's response to comment		
		Component	Freshwater Algae	Freshwater Fish	Microtox	Water Flea		
		4- Vinylcyclohexene	Aigae	Oncorhynchus mykiss: LC50=17 mg/L 48h		>100 mg/L 48h		
		Persistence and degr Not readily biodegrada	adability ble					
		Bioaccumulative pote No information available						
		Mobility in soil No information availabl	le.					
		Results of PBT and v Other adverse effects No information available	<u> </u>	<u>t</u>				
		13. DISPOSAL C	ONSIDERAT	TIONS				
		Waste treatment meth Waste from Residues Products Contaminated Packag	/ Unused	Dispose of in accordance containers should be taken	-	ons recovery or waste disposal		
		14. TRANSPOR IMDG/IMO UN-No 1993 Hazard Class 3 Packing Group II Proper Shipping Nam						
		<u>ADR</u> UN-No 1993 Hazard Class 3 Packing Group II Proper Shipping Nam	ne Flammable L	.IQUID, N.O.S.				

Date	Country /	Comment	Dossier	RAC's response
	Organisation /		submitter's	to comment
	MSCA		response to	
			comment	
		UN-No 1993 Hazard Class 3		
		Packing Group II		
		Proper Shipping Name FLAMMABLE LIQUID, N.O.S.*		
		15. REGULATORY INFORMATION		
		Safety, health and environmental regulations/legislation specific for the substance or mixture		
		Component EINECS ELINCS NLP TSCA DSL NDSL PICCS ENCS CHINA AICS KECL		
		4-Vinylcyclohexene 202-848-9 - X X - X X X X KE-35356 X		
		Legend		
		TSCA - United States Toxic Substances Control Act Section 8(b) Inventory EINECS/ELINCS - European Inventory Lists		
		DSL/NDSL - Canadian Domestic Substances List/Non-Domestic Substances List		
		PICCS - Philippines Inventory of Chemicals and Chemical Substances		
		ENCS - Japan Existing and New Chemical Substances		
		CHINA - China Inventory of Existing Chemical Substances		
		AICS - Inventory of Chemical Substances		
		KECL - Existing and Evaluated Chemical Substances Chemical Safety Assessment		
		16. OTHER INFORMATION		
		Text of R phrases mentioned in Section 2-3		
		R11 - Highly flammable		
		R38 - Irritating to skin R40 - Limited evidence of a carcinogenic effect		
		R40 - Limited evidence of a carcinogenic effect R52/53 - Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment		
		Revision Date 10-Nov-2010		
		Revision Summary Not applicable		
		This safety data sheet complies with the requirements of Regulation (EC) No. 1907/2006		
		Disclaimer		
		The information provided on this SDS is correct to the best of our knowledge, information and belief at the date of its		
		publication. The information given is designed only as a guide for safe handling, use, processing, storage,		
		transportation,		
		disposal and release and is not to be considered as a warranty or quality specification. The information		
		relates only to the		
		specific material designated and may not be valid for such material used in combination with any other		

Date	Country / Organisation / MSCA	Comment	Dossier submitter's response to comment	RAC's response to comment
		material or in any process, unless specified in the text End of Safety Data Sheet		

ATTACHMENTS RECEIVED:

General Comments

Comment to the French proposal for Harmonized Classification and Labeling of 4-Vinylcyclohexene (CAS 100-40-3), (**BASF_CLH_100-40-3.pdf**) – Submitted by Germany / AffiliatedWithOrganisation / Company-Manufacturer

Letter from Cefic, PlasticsEurope and SRP, 12/07//2011, 4-vinyl cyclohexene (VCH) Response to proposal for harmonised classification and labelling (**CEFIC Letter re 4VCH.pdf**) - Submitted by Belgium / Graeme Wallace / Cefic / BehalfOfAnOrganisation / Industry or trade association

Carcinogenicity

4-vinyl cyclohexene (VCH) Response to proposal for harmonised classification and labelling, (VCH-Comments.docx) – Submitted by Belgium / Graeme Wallace / Cefic / BehalfOfAnOrganisation / Industry or trade association

Comments from Evonik Industries, 12/07/2011, (evonik_statement_CLH_VCH_France.pdf) - Submitted by Germany / BehalfOfAnOrganisation / Company-Manufacturer

Toxicity to Reproduction

Bevan C., 2009., ADDITIONAL COMMENTS ON THE CLH REPORT ON 4-VINYLCYCLOHEXENE (VCH), (Comments on CLH Report on 4-VCH cjb.docx) – Submitted by United States / Christopher Bevan / Individual

Other Hazards and Endpoints

Synthetic Organic Chemical Manufacturers Association (SOCMA), 4-Vinylcyclohexene Work Group, 2006, 4-Vinylcyclohexene Group – Robust Summary and Test Plan, Chemical Abstracts Service Registry Number: 100-40-3, Washington DC (100-40-3 Robust summary.pdf) – Submitted by Spain / Manuel Carbo / Member State

Experien Health Sciences Inc., 2006, IUCLID Data Set, (100-40 3 IUCLID 4.pdf) – Submitted by Spain / Manuel Carbo / Member State

Acros Organics, 10/11/2010, Safety Data Sheet, (100-40 3 SDS.pdf) - Submitted by Spain / Manuel Carbo / Member State