European Commission

Natory data Protection recipion of the ping of the pin Combined Draft Renewal Assessment Report prepared according to Regulation (EC) N° 1107/2009

Proposal for Harmonised Classification and Labelling (CLH Report) according to Regulation (EC) N° 1272/2008

Penconazole (ISO)

1-[2-(2,4-dichlorophenyl)pentyl]-1*H*-1,2,4-triazole

Volume 1

Rapporteur Member State: Norway Co-Rapporteur Member State: Germany Penconazole Volume 1

Version History

When 11th of June 2021 Initial dRAR to co-RMS (DE) Initial dRAR submitted to EFSA Initial	When	What	
Intell discontinued to EPSA Intell discontin	11 th of June 2021	Initial dRAR to co-RMS (DE)	-sino
Control of the property of the political district of the politic of the political district of th	12 th of November 2021	Initial dRAR submitted to EFSA	6 CO
Souther the first of the block of the book of the block o		0,000	000
School of this definition is the content of the con		ing region	Stolo,
Sound see of the doctorer of the sound state of the sound see of the sound		"ect to tritally or city	Ma,
and the different of the local described and the last the delivered and the last the delivered and the last the		e'll such old could have	
and the first of the folding the first condition with a day of the first of the fir		ind the edilate and do	
Social see of this document of the political description of the property of th			
and lee of this document of the locality of the land o		ded lest inderight une ret.	
And use of this document of the local tributed and use of this document of the local tributed and use of this document of the local tributed and use of this document of the local tributed and use of this document of the local tributed and use of this document of the local tributed and use of this document of the local tributed and use of this document of the local tributed and use of this document of the local tributed and use of this document of the local tributed and use of this document of the local tributed and use of this document of the local tributed and use of this document of the local tributed and use of this document of the local tributed and use of this document of the local tributed and use of the local		to in english in inches out	
and use of this document of the political of the political and the political of the political of the political and the political of the politi		126, 108, 24, 901, 04, 16, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15	
and use this document of the bearing of the property of the bearing of the bearin	Sinc	"Usuru succiolities	
Social self of the blocking of the book of the blocking of the blockin	LSP NO	The diol this city	
and use hines define the first of the prohibited and will be defined the first of the prohibited and will be a second to the prohibited and the prohibited and the prohibited	KEY CUIT &	300 910 60, ill	
Social se difficulties of the property of the	sitti oo tiis	(ob, "i, ill," in log	
And Use of this document of its one prohibited to the last of the	TOP N. OTO MON	ithough	
document is not the feet furth distribution of the prohibite of the prohib	12 6 1 18 Settle 1911 18	7,90	
Acting the string of the period of the perio	Of the Child Heart of the		
document to publicate or its poor to document or its p	"is "light 8. " " of " co, olo,		
doculing his documents your seducity shis documents your seducity this documents and use of this do	Well the Still Coll Life to		
and use of this documents of the state of th	Colling in Coll Cut		
And The Chilling of this doc	good this by the		
Arid Lise of this and Lise of this arid Lise of the list of the li	10 115 114. 90°		
and use of	hid religible		
and use	27 600 0x		
	othuse		
	and		

Table of contents

PREPAR	MENT OF SUBJECT MATTER AND PURPOSE FOR WHICH THIS REPORT HAS BEI RED AND BACKGROUND INFORMATION ON THE APPLICATION	
1.1 Con	NTEXT IN WHICH THIS DRAFT ASSESSMENT REPORT WAS PREPARED	9
1.1.1	Purpose for which the draft assessment report was prepared	. 6
1.1.2	Arrangements between rapporteur Member State and co-rapporteur Member State	. 9
1.1.3	EU Regulatory history for use in Plant Protection Products	. 9
1.1.4	Evaluations carried out under other regulatory contexts	9
1.2 APP	PLICANT INFORMATION	10
1.2.1	Name and address of applicant(s) for approval of the active substance	10
1.2.2	Producer or producers of the active substance.	10
1.2.3	Information relating to the collective provision of dossiers	10
1.3 IDE	Common name proposed or ISO-accepted and synonyms Chemical name (IUPAC and CA nomenclature)	11
1.3.1	Common name proposed or ISO accepted and synonyms	11
1.3.1	Chamical name (ILIDAC and CA namonalature)	11
1.3.2	Producer's development code number	11
1.3.4	CAS FFC and CIPAC numbers	11
1.3.4	Molecular and structural formula, molecular mass	11
1.3.6	Method of manufacture (synthesis pathway) of the active substance	11
1.3.7	Specification of purity of the active substance in g/kg	11
1.3.8	Identity and content of additives (such as stabilisers) and impurities	11
1.3.8	1 Additives	11
1.3.8	2 Significant impurities	11
1.3.8	3 Relevant impurities	11
139	Analytical profile of batches	11
1.4 INF	ORMATION ON THE PLANT PROTECTION PRODUCT	12
	6/1, 1/6 1/1 1/6 01/1 1/10	10
1.4.1	Applicant	12
1.4.2	Producer of the plant protection product	12
1.4.3	Trade name or proposed trade name and producer's development code number of the plant protecti	
1 4 4	product	
1.4.4	Detailed quantitative and qualitative information on the composition of the plant protection produ	
1.4.4	.1 Composition of the plant protection product	
1.4.4		
1.4.4		
1 4 5	Type and code of the plant protection product	
1.4.5	Type and code of the plant protection product	12
1.4.0	Field of use envisaged	
1.4.5 1.4.6 1.4.7 1.4.8	Effects on harmful organisms	12
17.0	Thets on nathral organisms	13
1.5 DET	PAILED USES OF THE PLANT PROTECTION PRODUCT	14
S 1.5d	Details of representative uses	14
1.5.1 1.5.2	Further information on representative uses	16
1.5.3	Details of other uses applied for to support the setting of MRLs for uses beyond the representati	
DI.	uses	
1.5.4	Overview on authorisations in EU Member States	17
2. SUMMA	ARY OF ACTIVE SUBSTANCE HAZARD AND OF PRODUCT RISK ASSESSMENT	19
2.1 IDE	NTITY	19
2.1.1	Summary or identity	19

2.2	Рну	SICAL AND CHEMICAL PROPERTIES [EQUIVALENT TO SECTION 7 OF THE CLH REPORT TEMPLATE]
2.2 2.2	2.2.1.	Summary of physical and chemical properties of the active substance
2.3	DAT	A ON APPLICATION AND EFFICACY28
2.3 2.3 2.3 2.3	3.1 3.2 3.3 3.4	Summary of effectiveness
2.4	FUR	THER INFORMATION31
2.4 2.4 2.4	1.1 1.2	Summary of methods and precautions concerning handling, storage, transport or fire
2.5	Мет	CHODS OF ANALYSIS
2.5 2.5	5.1	Methods used for the generation of pre-authorisation data
2.6	Effi	ECTS ON HUMAN AND ANIMAL HEALTH
2.6		Summary of absorption, distribution, metabolism and excretion in mammals [equivalent to section 9 of the CLH report template]
		proposed classification(s) 42 Summary of acute toxicity 43
2.6	o.2 2.6.2.	Summary of acute toxicity
	2.6.2.	
	2.6.2.	Acute toxicity - inhalation route [equivalent to section 10.3 of the CLH report template] 48
	2.6.2.	
	2.6.2.	
	2.6.2.	
	2.6.2.° 2.6.2.°	
	2.6.2.	~/ */A VO '// V/
	2.6.2.	Specific target organ toxicity-single exposure (STOT SE) [equivalent to section 10.11 of the CLH report template]
2.6	5.3	Summary of repeated dose toxicity (short-term and long-term toxicity) [section 10.12 of the CLH report]
,	2.6.3.	report]
~	4.0.3.	the CLH report template]
2.6	6.4	Summary of genotoxicity / germ cell mutagenicity [equivalent to section 10.8 of the CLH report
	11:	template]
01/2.6 00/1	2.6.4.	Short summary and overall relevance of the provided information on genotoxicity / germ cell
'N'S		mutagenicity
(9)	2.6.4 2.6.4	Comparison with the CLP criteria regarding genotoxicity / germ cell mutagenicity
2.6	2.0.4 i 50	Summary of long-term toxicity and carcinogenicity [equivalent to section 10.9 of the CLH report
5.0	0	template]
Ug 17	2.6.5.	Short summary and overall relevance of the provided information on long-term toxicity and carcinogenicity
	2.6.5.	
	2.6.5.	č č ·
2.6	o.6 2.6.6.	Summary of reproductive toxicity [equivalent to section 10.10 of the CLH report template] 78 Adverse effects on sexual function and fertility – generational studies [equivalent to section
•	۷.0.0.	10.10.1 of the CLH report template]
2	2.6.6.	

	2.6.6.	Adverse effects on or via lactation [equivalent to section 10.10.7 of the CLH report temp 89	plate]
	2.6.7	Summary of neurotoxicity	89
	2.6.7.	·	
	2.6.7.	·	
	2.6.8	Summary of other toxicological studies	
	2.6.8.		
	2.6.8.	1	90
	2.6.9	Summary of medical data and information	02
		Toyloological and maints for risk assessment (reference valves)	01 94
	2.6.10	Toxicological end points for risk assessment (reference values)	94
	2.6.10	(acceptable daily intake)	94
	2.6.10		
	2.6.10		OEL
		(acceptable operator exposure level)	95
	2.6.10		sks –
		AAOEL (acute acceptable operator exposure level) Summary of product exposure and risk assessment	95
	2.6.11	Summary of product exposure and risk assessment	95
٠.	. D		00
2.7	7 RES	IDUE	99
	2.7.1	Summary of storage stability of residues	99
	2.7.2	Summary of metabolism, distribution and expression of residues in plants, poultry, lact	ating
	2.1.2	ruminents pigg and figh	aung 101
	272	ruminants, pigs and fish. Definition of the residue	105
	2.7.3	Definition of the residue	. 105
	2.7.4	Summary of residue trials in plants and identification of critical GAP	
	2.7.5	Summary of feeding studies in poultry, ruminants, pigs and fish	. 113
	2.7.6	Summary of effects of processing	. 114
	2.7.7	Summary of residues in rotational crops	. 117
	2.7.8	Summary of other studies	. 120
	2.7.9	Estimation of the potential and actual exposure through diet and other sources	. 120
	2.7.10	Proposed MRLs and compliance with existing MRLs	. 124
	2.7.11	Proposed import tolerances and compliance with existing import tolerances	. 125
2.8	S FAT	E AND BEHAVIOUR IN THE ENVIRONMENT	. 126
	2.8.1	Summary of fate and behaviour in soil	126
	2.8.2	Summary of fate and behaviour in water and sediment [equivalent to section 11.1 of the CLH r	
	2.0.2	template]	
	202		
		7	
	2.8.2.		
		Comparison with the CLP criteria	
		Summary of fate and behaviour in air	
Ŋ.		Hazardous to the ozone layer	
J	2.8.4	Summary of monitoring data concerning fate and behaviour of the active substance, metabo	
Z C	0, 411	degradation and reaction products	. 145
0,	2.8.5	Definition of the residues in the environment requiring further assessment	. 145
5	2.8.6	Summary of exposure calculations and product assessment	. 145
2.9	EFFI	ECTS ON NON-TARGET SPECIES	. 146
2	2.9.1	Summary of effects on birds and other terrestrial vertebrates	146
	2.9.2	Summary of effects on aquatic organisms [section 11.5 of the CLH report]	
7	2.9.2		
1		1 1 1	
-	2.9.2.		
	2.9.2.		
	2.9.2.		
	2.9.2.	· · · · · · · · · · · · · · · · · · ·	
	2.9.3	Summary of effects on arthropods	
	2.9.3.	1 Summary of effects on bees	. 183
	2.9.3.	2 Other non-target arthropods	. 185

2.9.4	Summary of effects on non-target soil meso- and macrofauna	
2.9.5	Summary of effects on soil nitrogen transformation	
2.9.6	Summary of effects on terrestrial non-target higher plants	
2.9.7	Summary of effects on other terrestrial organisms (flora and fauna)	
2.9.8	Summary of effects on biological methods for sewage treatment	
2.9.9	Summary of product exposure and risk assessment	
2.9.9.		
2.9.9.		198
2.9.9.	Risk assessment for bees and non-target arthropods	201
2.9.9.	Risk assessment for non-target soil meso- and macrofauna	. 212
2.9.9.	4 Risk assessment for soil nitrogen transformation	214
2.9.9.	5 Risk assessment for terrestrial non-target plants	215
2.10 ENI	Risk assessment for bees and non-target arthropods Risk assessment for non-target soil meso- and macrofauna Risk assessment for soil nitrogen transformation Risk assessment for terrestrial non-target plants COCRINE DISRUPTING PROPERTIES Gather all relevant information ED assessment for humans L1 ED assessment for T-modality L2 ED assessment for EAS-modalities ED assessment for non-target organisms L3 ED assessment for T-modality L5 ED assessment for T-modality L6 ED assessment for T-modality L7 ED assessment for T-modality L8 ED assessment for T-modality L8 ED assessment for EAS-modalities Conclusion on the ED assessment	217
2 10 1	Gather all relevant information	217
2.10.1	ED assassment for humans	210
2.10.2	2.1 ED assessment for T modelity	219
2.10.2	2.1 ED assessment for EAS modelities	262
2.10.2	ED assessment for non-torget argenisms	204
2.10.3	ED assessment for non-target organisms	221
2.10.3	5.1 ED assessment for 1-modality	240
2.10.3	3.2 ED assessment for EAS-modalities	. 340
2.10.4	Conclusion on the ED assessment	354
2.11 I KU	TOSED HARMONISED CLASSIFICATION AND LABELLING ACCORDING TO THE CLI CRIT	CNIA
[CEC	TIONS 1-6 OF THE CI H DEDORT	356
2 11 1	The distribution of the state o	256
2.11.1	Identity of the substance [section 1 of the CLH report]	350
2.11.1	Name and other identifiers of the substance	. 330
2.11.1	1.2 Composition of the substance	35/
2.11.2	Proposed harmonized classification and labelling	360
2.11.2	2.1 Proposed harmonised classification and labelling according to the CLP criteria	360
2.11.2	2.2 Additional hazard statements / labelling	. 362
2.11.3	History of the previous classification and labelling	363
2.11.4	Identified uses Data sources	365
2.11.5	Data sources	365
2.12 REL	EVANCE OF METABOLITES IN GROUNDWATER	365
2.12.1	STEP 1: Exclusion of degradation products of no concern	
2.12.2	STEP 2: Quantification of potential groundwater contamination	
2.12.3	STEP 3: Hazard assessment – identification of relevant metabolites	365
2.12.3		365
2.12.3	3.2 STEP 3, Stage 2: screening for genotoxicity	365
2.12.	3.3 STEP 3, Stage 3: screening for toxicity	366
2.12.4	STEP 4: Exposure assessment – threshold of concern approach	367
	STEP 5: Refined risk assessment	
2.12.6	Overall conclusion	367
2.13 CON	SIDERATION OF ISOMERIC COMPOSITION IN THE RISK ASSESSMENT	368
2.13.1	Identity and physical chemical properties	360
2.13.1	Methods of analysis	308
2.13.2		
	Mammalian toxicity	
2.13.4	Operator, Worker, Bystander and Resident exposure	
2.13.5	Residues and Consumer risk assessment	
2.13.6	Environmental fate	
2.13.7	Ecotoxicology	308
2.14 RES	IDUE DEFINITIONS	369
2.14.1	Definition of residues for exposure/risk assessment	360
2.14.1	Definition of residues for exposure/lisk assessment	369
2.17.2	Definition of residues for monitoring	50)

3. PROPOSED D	DECISION WITH RESPECT TO THE APPLICATION	371
3.1 BACKGRO	OUND TO THE PROPOSED DECISION	371
3.1.1 Prop	oosal on acceptability against the decision making criteria – Article 4 and annex II of	regulation
) No 1107/2009	
3.1.1.1	Article 4	371
3.1.1.2	Submission of further information	نون 371
3.1.1.3	Restrictions on approval	372
3.1.1.4	Criteria for the approval of an active substance	2372
	oosal – Candidate for substitution	
3.1.3 Prop	oosal – Low risk active substance	388
3.1.4 List of	of studies to be generated, still ongoing or available but not peer reviewed	390
	Identity of the active substance or formulation	
3.1.4.2	Physical and chemical properties of the active substance and physical, chemical and	l technical
2.1.1.2	properties of the formulation	390
3.1.4.3	Data on uses and efficacy	
3.1.4.4	Data on handling, storage, transport, packaging and labelling	391
3.1.4.5	Methods of analysis	391
3.1.4.6 3.1.4.7	Toxicology and metabolism	391 202
3.1.4.8	Environmental fate and behaviour	 202
3.1.4.9	Environmental rate and benaviour	393 305
3.1.5 Issue	es that could not be finalised	390
3.1.6 Critic	Physical and chemical properties of the active substance and physical, chemical and properties of the formulation	399
3.1.7 Over	rview table of the concerns identified for each representative use considered	400
3.1.8 Area	n(s) where expert consultation is considered necessary	402
3.1.9 Critic	cal issues on which the Co RMS did not agree with the assessment by the RMS	404
3.2 PROPOSEI	D DECISION	404
3.2 I KOI OSEI	L FOR THE CONDITIONS AND RESTRICTIONS TO BE ASSOCIATED WITH THE APPR	······· TUT
3.3 RATIONAL	L FOR THE CONDITIONS AND RESTRICTIONS TO BE ASSOCIATED WITH THE APPR	OVAL OR
AUTHORIS	SATION(S), AS APPROPRIATEicular conditions proposed to be taken into account to manage the risks identified	405
3.3.1 Parti	icular conditions proposed to be taken into account to manage the risks identified	405
	ICES	
3.4.1 GUII	DANCE DOCUMENTS USED IN THIS ASSESSEMENT	406
3.4.2 MET	TABOLITES OVERVIEW TABLE	408
3.5 REFERE	DANCE DOCUMENTS USED IN THIS ASSESSEMENT TABOLITES OVERVIEW TABLE NCE LIST TABOLITES OVERVIEW TABLE	440
	St Ling of the Hip	
.6	90 x 20, 20, 10,	
The state of	in the second se	
Col Lis	3/11/100 1/10 /00	
Cill Well Y 6		
Ob cull ville	16,00	
100 Kill 30		
0, 6, 14, 5		
Will Vills is		
"in To, "illi"		
1 60, 01		
105.00		
2,702		
allo		
U		

1. STATEMENT OF SUBJECT MATTER AND PURPOSE FOR WHICH THIS REPORT HAS BEEN PREPARED AND BACKGROUND INFORMATION ON THE APPLICATION

1.1 CONTEXT IN WHICH THIS DRAFT ASSESSMENT REPORT WAS PREPARED

1.1.1 Purpose for which the draft assessment report was prepared

Penconazole is already an approved substance under Commission Regulation (EC) No. 1107/2009. This renewal assessment report (RAR) is prepared to evaluate the dossier submitted to support the renewal of the approval of penconazole.

Syngenta Crop Protection AG, on behalf of Syngenta Crop Protection AG and Ascenza Agro SA, submitted an application and a dossier to support the renewal of the approval of penconazole. This was in accordance with Commission Regulation (EU) 844/2012 of 18 September 2012 setting out the provisions necessary for the implementation of the renewal procedure for active substances, as provided for in Regulation (EC) No 1107/2009. Norway, acting as the RMS, evaluated all aspects of the renewal dossiers via a Renewal Assessment Report (RAR).

A proposal for a new MRL-setting is also included, as well as a proposal for new Classification & Labelling.

1.1.2 Arrangements between rapporteur Member State and co-rapporteur Member State

Norway, as RMS, made the assessment and prepared the RAR. Germany, acting as Co-RMS, agreed to review the RAR before the submission to the Commission and EFSA.

1.1.3 EU Regulatory history for use in Plant Protection Products

Penconazole was included as a New Active Substance in Annex I of EU Council Directive 91/414/EEC on 1 January 2010 (Commission Directive 2009/77/EC, 1 July 2009 and amended in Commission Directive 2010/34/EU, 31 May 2010). Syngenta was the sole data submitter in support of Annex I inclusion. Germany acted as Rapporteur Member State (RMS).

EFSA sent to the Commission its conclusion regarding the peer review of the pesticide risk assessment of the active substance penconazole (23 September 2008).

The Commission presented a Review Report (SANCO/4461/09 – rev 3, 26 February 2009, updated 26 January 2021) in support to the consideration of Annex I inclusion. The Review Report was updated 27 November 2009 confirming the reference specification purity set by the RMS in the evaluation report on the finalisation of the reference specification of penconazole (September 2009), as well as revision 2 was taken note of 11 May 2010 due to extension of inclusion as laid down in Chapter 1. It was also updated 26 January 2021 to include the agreed reference values and residue definitions for the triazole derived metabolites.

Penconazole was (and is currently) approved under Commission Regulation (EC) No. 1107/2009 (repealing Council Directive 91/414/EEC) via Commission Implementing Regulation (EU) No. 540/2011 of 25th May 2011. By way of derogation from the Implementing Regulation (EU) No 540/2011, the expiry dates for approval of certain active substances, including penconazole, was extended to 31 December 2022 (Commission implementing regulation (EU) 2021/1449). This allowed applicants to prepare, and for the Commission to then consider, applications for renewal of this active substance.

EFSA has published a Review of the existing maximum residue levels for penconazole according to Article 12 of Regulation (EC) No 396/2005 (EFSA Journal 2017; 15(6):4853).

1.1.4 Evaluations carried out under other regulatory contexts

The RMS is not aware of any other relevant EU-evaluations of penconazole carried out in the framework of other relevant EU-legislation (e.g. biocides, flavourings, food additives, cosmetics).

Penconazole is included in the Inventory of Evaluations performed by the Joint Meeting on Pesticide Residues (JMPR), where the most recent report is from 2015.

The RMS did not find any recent evaluation of penconazole from EPA (USA) or PMRA (Canada).

1.2 APPLICANT INFORMATION

Members of the Penconazole Task Force are: Syngenta Crop Protection AG and Ascenza Agro SA.

Jed Tor Giving the redulation data protection redunds such as intellectual property and section redunds to the redundate of the chion redunds to the chion reduce the chion redunds to the chion reduce the chion redunds t Dect to rights such and and any commercial exploited in the property and and any commercial exploited in the property and any commercial exploration and any commercial exploited in the property and any commercial exploited in the property and any commercial exploited in the property and any commercial exploration and any commercial exploited in the property and any commercial exploration and any comme Name and address of applicant(s) for approval of the active substance t for the Penconazole Task Force is Syngenta Crop Protection AG Rosentalstrasse 67 4058 Basel Switzerland rces): Producer or producers of the active substance Syngenta Crop Protection AG Rosentalstrasse 67 4058 Basel Switzerland): ance of the state of the owner. And the political of the owner. And the political of the owner. 1.2.1

The contact point for the Penconazole Task Force is

Address:

Contact (all sources):

Telephone number:

E-mail:

1.2.2

Syngenta

Address:

Contact (all sources):

Telephone number:

E-mail:

Ascenza Agro S.A. Address:

Avenida do Rio Tejo Herdade das Praias 2910-440 Setúbal

Portugal

Contact (all sources):

Telephone:

Fax:

E-mail:

1.2.3 Information relating to the collective provision of dossiers

For the renewal of approval of penconazole, a task force was established. Members of the Penconazole Task Force are: Syngenta Crop Protection AG and Ascenza Agro SA. The dossier was submitted by Syngenta Crop Protection AG, on behalf of the task force.

1.3 IDENTITY OF THE ACTIVE SUBSTANCE

1.3.1 Common name proposed or IS accepted and synonyms	O- Penconazole
1.3.2 Chemical name (IUPAC and CA n	omenclature)
IUPAC	1-[2-(2,4-dichlorophenyl)pentyl]-1 <i>H</i> -1,2,4-triazole
CA	1-[2-(2,4-dichlorophenyl)pentyl]-1 <i>H</i> -1,2,4-triazole
1.3.3 Producer's development conumber	ode CGA71818 (also known as CGA071818)
1.3.4 CAS, EEC and CIPAC numbers	Exter 32 Astis Williams
CAS	66246-88-6
EEC	266-275-6
CIPAC	446
1.3.5 Molecular and structural formula,	molecular mass
Molecular formula	C ₁₃ H ₁₅ Cl ₂ N ₃
Structural formula	C13H15C12N3
of EFSA and the of the original or	C ₁₃ H ₁₅ Cl ₂ N ₃ Cl N CH Selection of the selectio
Molecular mass	284.2 g/mol
1.3.6 Method of manufacture (synthe	Sis CONFIDENTIAL information - data provided
pathway) of the active substance	separately (Vol.4) by the Penconazole Task Force members.
1.3.7 Specification of purity of the acti	ive ≥ 950
substance in g/kg	
1.3.8 Identity and content of additives (s	such as stabilisers) and impurities
1.3.8.1 Additives	CONFIDENTIAL information - data provided separately (Vol.4) by the Penconazole Task Force members.
1.3.8.2 Significant impurities	CONFIDENTIAL information - data provided separately (Vol.4) by the Penconazole Task Force members.
1.3.8.3 Relevant impurities	The relevance of impurities is still unclear/not concluded on. See Volume 4.
1.3.9 Analytical profile of batches	CONFIDENTIAL information - data provided separately (Vol.4) by the Penconazole Task Force members.

1.4 INFORMATION ON THE PLANT PROTECTION PRODUCT

1.4.1 Applicant		art alparty
1.4.2 Producer of the plant product	protection	Address: Syngenta Crop Protection AG Rosentalstrasse 67 4058 Basel Switzerland Contact (all sources):
		Contact (all sources): Telephone number: E-mail:
1.4.3 Trade name or proposed and producer's develop number of the plant protect	ment code	Topas 100 EC A6209G
1.4.4 Detailed quantitative and protection product	qualitative	information on the composition of the plant
1.4.4.1 Composition of protection product	the plant	CONFIDENTIAL information - data provided separately (Vol.4; Syngenta)
	the active	, iologia
1.4.4.3 Information on synergists and co-for	safeners, rmulants	CONFIDENTIAL information - data provided separately (Vol.4; Syngenta)
1.4.5 Type and code of the plan product	t protection	Emulsifiable concentrate [EC]
1.4.6 Function	6 ₁₀	Fungicide
1.4.7 Field of use envisaged		Penconazole is a fungicide for foliar application to control diseases in fruits, berries and vegetables.

1.4.8 Effects on harmful organisms

access hidden with any outners or its be prohibited as access hidden with any outners or its be prohibited as access hidden with any outners or its be prohibited as access hidden with any outners or its be prohibited as access hidden with any outners or its be prohibited as access hidden with any outners or its be prohibited as access hidden with any outners or its be prohibited as access hidden with any outners or its beautiful any outners.

Penconazole is a fungicide used in agriculture for control of powdery mildews in various crops such as grape, pome fruits, stone fruits, strawberry, cucumber and other vegetables. When taken up by the plant, penconazole acts on the fungal pathogen during penetration and haustoria formation. It stops the development of fungi by interfering with the biosynthesis of sterols in cell membranes. Interference with sterol biosynthesis leads to disruption of membrane function, leakage of cytoplasmic contents and hyphal death.

Penconazole belongs to the triazole class of chemistry and its mode of action is similar to other triazoles (sterol demethylation inhibitors = DMIs). Its main biochemical mode of action is the inhibition of cytochrome P-450 sterol 14α -demethylase (P-45014DM), a key enzyme of the sterol biosynthetic pathway of fungi, which stops the development of fungi by interfering with the biosynthesis of sterols in cell membranes. It is thus classified by FRAC (Fungicide Resistance Action Committee) as a Sterol Biosynthesis Inhibitor (SBI: class 1) with other triazoles like difenoconazole, tebuconazole and myclobutanil.

Triazole fungicides are systemic or translaminar compounds with quick uptake and acropetal translocation in the xylem, resulting in good distribution in the plant tissue and protection from being washed off. When taken up by the plant, penconazole acts on the fungal pathogen during penetration and haustoria formation.

DETAILED USES OF THE PLANT PROTECTION PRODUCT

Details of representative uses

1.5 DE	ing the state of t														
Cimping Name Type Control Member Control Manual Man								PHI (days) (m)	Remark s						
Pome fruit: apple, pear, quince	EU	TOPAS 100 EC (A6209G)	F	Podosphaera leucotricha	EC	100 g/L	Foliar spray, mist blower	BBCH 71–89	Jor of	10 10 ON	2.7-8.0	500- 1500	40	14	Only tractor mounte d applicat ions
Grapes, table and wine	EU	TOPAS 100 EC (A6209G)	F	Uncinula necator	EC	100 g/L	Foliar spray	BBCH 13-85	ine2	8	3.0-20	150- 1000	30	14 (28 in NEU and France)	Only tractor mounte d applicat ions
Cucumbe r	EU	TOPAS 100 EC (A6209G)	F	Erysiphe Cichoracearu m, Sphaerotheca fuliginea	SEC (U	100 g/L	Foliar spray	BBCH 51-89	3	8	4.2-25	200- 1200	50	3	Only tractor mounte d applicat ions
Cucumbe r	NEU	TOPAS 100 EC (A6209G)	F(S)	Cichoracearu m, Sphaerotheca fuliginea	Sation is	0, 0	Foliar spray	BBCH 51-89	1	n/a	2.9- 17.5	200- 1200	35	3	Only tractor mounte d applicat ions

use situation should be described (e.g. fumigation of a structure)

⁽b) Outdoor or field use (F), greenhouse application (G) or indoor application (I)

⁽a) For crops, the EU and Codex classification (both) should be taken into account; where relevant, the (i) g/kg or g/L. Normally the rate should be given for the active substance (according to ISO) and not for the variant in order to compare the rate for same active substances used in different variants (e.g.

Volume 1 - Level 1 Penconazole

- (c) e.g. biting and sucking insects, soil born insects, foliar fungi, weeds
- e.g. wettable powder (WP), emulsifiable concentrate (EC), granule (GR)
- GCPF Codes GIFAP Technical Monograph N° 2, 1989
- All abbreviations used must be explained
- Method, e.g. high volume spraying, low volume spraying, spreading, dusting, drench
- acation possions was the more sold and the definite former of the de of application of app A kg whitevery of a steep of grant and gra Kind, e.g. overall, broadcast, aerial spraying, row, individual plant, between the plant – type of anigo ... or 125 panis anvestinteral and the study of the equipment used must be indicated
- fluoroxypyr). In certain cases, where only one variant synthesised, it is more appropriate to give the rate for the variant (e.g. benthiavalicarb-isopropyl).
- (j) Growth stage at last treatment (BBCH Monograph, Growth Stages of Plants, 1997, Blackwell, ISBN 3-8263-3152-4), including where relevant, information on season at time of application
 - (k) Indicate the minimum and maximum number of application possible under practical conditions of use
 - (1) The values should be given in g or kg whatever gives the more manageable number (e.g. 200 kg/ha

Further information on representative uses

an animises offrages

an an animises offrages

an animises offrage See 1.5.1. for details. The timing of application is not normally influenced by the growth stage of The state of the s Supplied of the Bed th

1.5.3 Details of other uses applied for to support the setting of MRLs for uses beyond the representative uses

Not relevant

1.5.4 Overview on authorisations in EU Member States

Penconazole is widely authorised in European countries including Estonia, Finland, Latvia, Lithuania, Sweden, Norway, Austria, Belgium, Czech Republic, Germany. Hungary. Netherlands. Boland. Boundary. Republic, Germany.

The currently authorised uses of the formulations containing penconazole are provided in the following: Syngenta formulation: A6209G, containing 100 g/L penconazole as an EC formulation Syngenta formulation: A9246B, containing 200 g/L penconazole as an EC formulation Ascenza Agro, S.A. formulation: SAP811F, containing 100 g/L penconazole as an EC formulation Penconazole can be used in a number of crops across such as apple.

pple articho .acco, toma ... squash ... squa cac reggi melon, zu, m (table and wine), melon, peppers, pumpkin, strawberries, tobacco, tomatoes, watermelon, zucchini, ornamentals, 2 Contents without the permission of the owner of the contents without the permission of the owner of the contents of t

Penconazole

Penconazole

2. <u>SUMMARY OF ACTIVE SUBSTANCE HAZARD AND OF PRODUCT RISK</u> ASSESSMENT

Summary of methodology used by the applicant for literature review and for all sections:

- A very broad search was conducted in a number of scientific source databases for penconazole and its metabolites. Details regarding the databases and search terms are listed in Volume 3CA B2 (Appendix 1), Volume 3CA B6 (Appendix 1), Volume 3CA B7 (Appendix 2), Volume 3CA B8 (B.8.6.1), and Volume 3CA B9 (Appendix 1). A separate search was also conducted for impurity/impurities in penconazole technical materials. Details of this literature search are summarised in Syngenta's Volume 4.
- Duplicate titles from within each database were automatically removed from the output.
- A rapid relevance assessment of the titles was conducted to remove any additional duplicates and any obviously irrelevant titles (where enough information was available from the title alone).
- Summary abstracts were requested for the remaining titles and a further rapid relevance assessment was conducted where again any clearly irrelevant titles were removed.
- A detailed assessment of the full-text documents for the remaining titles was conducted using the criteria developed for study relevance.
- Any relevant papers were highlighted and assessed for reliability.

A more extensive search has also been conducted using more specific endocrine disruption search terms and an extended duration to ensure that all available literature have been located. This additional search was carried out to identify *in vitro* and *in vivo* studies designed to assess the effects of penconazole on the endocrine system.

2.1 IDENTITY

2.1.1 Summary or identity

Data provided separately by the Penconazole Task Force members. See RAR Vol. 4 for each task force member.

2.2 PHYSICAL AND CHEMICAL PROPERTIES [EQUIVALENT TO SECTION 7 OF THE CLH REPORT TEMPLATE]

2.2.1 Summary of physical and chemical properties of the active substance

Table 1: Summary of physicochemical properties of the active substance

Property	Value The strict of the strict	Reference	Comment (e.g. measured or estimated)
Physical state at 20 °C and 101,3	Pure active substance colour: white aspect: powder odour: odourless	Das R. 2000a	Sensory observations
kPanonid Po	Technical grade active substance colour: off-white aspect: powder with lumps odour: weak	Das R. 2000b	observations
Melting/freezing point	60.3 °C to 61.0 °C	Das R. 1999	Measured
Boiling point	> 360 °C at 101.325 kPa 99.2°C at 1.9 Pa	Das R. 2000	Measured
Relative density	Not required under EU Regulation No 283/2013		
Vapour pressure	0.224 mPa at 25 °C 0.094 mPa at 20 °C	Vijayakuma r C. 2018	Measured
Surface tension	53.2 mN/m at 20.0 ± 0.5 °C	O'Connor B., 2015	

Property	Value	Reference	Comment (e.g. measured or estimated)
Water solubility	77 mg/L at 20 °C	Halarnakar R. 2018	Measured
Partition coefficient n-octanol/water	$P_{ow} = 6421 (\pm 94)$ log $P_{ow} = 3.8$ at 20 °C	Halarnakar R. 2018a	Measured
Henry's law constant	$3.4\cdot10^{\text{-4}}\text{Pa.m}^{3}/\text{mol}$ at 20 °C	RAR Vol. 3 B.2.2/02	Calculated from measurements in Halarnakar R. 2018 and Vijayakumar C. 2018
Flash point	Data lacking	Silog Solly	Waiving of testing based on penconazole's melting point, i.e. > 40°C
Flammability	Non-flammable	Jackson W. 2017	Measured
Explosive properties	Not explosive Data lacking Non-oxidising No data	Jackson W. 2017	Measured, or Waiving of testing based on penconazole's exothermic decomposition energy
Self-ignition temperature	Data lacking	-	Waiving of testing based on experience of handling
Oxidising properties	Non-oxidising	Jackson W. 2017	Measured
Granulometry	No data	-	
Solubility in organic solvents and identity of relevant degradation products	Solubility at 20 °C: acetone > 500 g/L dichloromethane > 500 g/L ethyl acetate > 500 g/L hexane 16 g/L methanol > 500 g/L octanol 350 g/L toluene > 500 g/L	Vijayakuma r C. 2018a	Measured
Dissociation constant	pKa = 1.51 at 20°C	Jäkel K. 1987b	Measured
Viscosity	Not required under EU Regulation No 283/2013		
Spectra (UV/VIS, IR, NMR, MS), molar extinction at relevant wavelengths, optical purity	Instrument parameters UV: methanol (solvent) IR: KBr pellet 13C-NMR: 75 MHZ, CDCl3 1H-NMR: 300 MHz, CDCl3 Mass Spectra: EI UV Absorption Characteristics	Oggenfuss P. 1999	Measured

Property	Value			Reference	Comment (e.g. measured or estimated)
		tinction coefficie were determined			
	Solution	Wavelength [nm]	Molar extinction coeff. [L/mol·cm]		.:C 0
	neutral	220	10564	•	bis Ildi.
		273	437		of Property
		281	401		, 01, 40, 6c
	acidic	220	10741		: 10. 1/2 of .
		273	410	(2)	A Silve City of
		281	376	illo	Ne oie ial
	basic	220	9607	10:01	6, 6, 40,
		273	453	480 051	sico allo elle
		281	417	18/15/10/19	COLLCTIVITY
			een 290 nm and 750	is sullate as	3,80
	nm was obse	rved.	ju'' . d'	, 60, 60	1/0,

Study reports for determination of the partition coefficient (n-octanol/water) (CA B.2.7) for three of the metabolites included in the residue definition for surface water, ground water and soil (2.14.1) are not acceptable. For the metabolites CGA179944 and CGA71019 the study report does not contain analytical certificates for the batches used. For CGA91305 no study report is provided whatsoever. For penconazole and the rest of the metabolites in the residue definition, adequate studies has been provided for determination of the partition coefficient.

2.2.1.1 Evaluation of physical hazards [equivalent to section 8 of the CLH report template]

2.2.1.1.1 Explosives [equivalent to section 8.1 of the CLH report template]

Table 2: Summary table of studies on explosive properties

Method	Results	Remarks	Reference
UN Test 2(b)	Effect of heating	Penconazole is not explosive	Jackson W. 2017
100	under confinement:	within the criteria of this study.	TC; Purity 98.1% w/w
.5 .00	10, 601, 101		
11 JII 1105	The tube was		
Col to sill in	unchanged "O" after		
11, 16, 16, 10,	five minutes of		
of the ville 160 de	heating applying		
100 6 AL 21/2 MIL.	orifice plate diameter		
0, 1, 200	of 1 mm.		
Wis Ville Co.	The test series		
10, 16, 11,	The test gave a		
6000	negative "-" result.		
UN Test 2(c)(i)	Effect of ignition	Penconazole is not explosive	Jackson W. 2017
011 1031 2(0)(1)	under confinement:	within the criteria of this study.	TC; Purity 98.1% w/w
10	under commement.	within the effectia of this study.	10,1 and 70.170 W/W
	The substance,		
	penconazole, failed to		
	produce a pressure		
	greater than the upper		
	threshold of 2070 kPa,		

Method	Results	Remarks	Reference
	the rise time could not		
	be determined.		
	The test gave a		
	negative "-" result.		
ASTM E537	Heat of	Series 2 type (a) test of	Jackson W. 2017
	decomposition:	sensitivity to detonative shock	TC; Purity 98.1% w/w
	584 J/g	is not required if the	10/10 11
		exothermic decomposition	Opp - Oly
		energy of organic materials is	0, 60, 60
		less than 800 J/g	11,010,10
		(CR (EU) No 1272/2008; p. 52)	0, 10; 18, 10;

2.2.1.1.1.1 Short summary and overall relevance of the provided information on explosive properties

Penconazole does not fulfil the criteria of the screening procedure as the substance contains chemical groups, e.g. contiguous nitrogen atoms, which can react to produce very rapid increase in temperature or pressure. Therefore the acceptance procedure (Test series 2 to 4; section 10.3 of ST/SG/AC.10/11/Rev.7), i.e. determining whether or not a product offered for transport is a candidate for Class 1, have to be performed (CR (EU) No 1272/2008; p. 52).

The explosive properties of penconazole (TC of purity 98.1% w/w) were studied using recommended test methods referred to in ST/SG/AC.10/11/Rev.7, i.e. Test 2(b; Koenen test) and Test 2(c)(i; Time/Pressure test). The tests were carried out as outlined in ST/SG/AC.10/11/Rev.7. In agreement with CR (EU) No 1272/2008 (p. 52) Test 2(a), i.e. UN gap test was waived based on Penconazole's decomposition energy of 584 J/g (< 800 J/g) determined by using method ASTM E537 (Differential Scanning Calometry).

The effect observed when heating penconazole for five minutes under confinement applying orifice plate diameter of 1 mm was «O» - Tube unchanged. The end of the reaction was well within five minutes.

The highest pressure achieved in the time/pressure test was 453 kPa which is well within the upper threshold of 2070 kPa. Hence, the rise time could not be determined.

Penconazole's exothermic decomposition energy and the negative ("-") outcome of the Koenen test and the Time/Pressure test, i.e. sensitivity towards shock, heating and ignition, respectively, concludes the substance is too insensitive for acceptance into Class 1 (ST/SG/AC.10/11/Rev.7).

2.2.1.1.1.2 Comparison with the CLP criteria

A substance is considered for classification as explosive where a positive result is obtained in a test series as outlined in Figure 2.1.2 of CR (EU) No 1272/2008, i.e. sensitivity towards heat, shock, or friction. Therefore, comparison with CLP criteria would not result in classification of the substance given the exothermic decomposition energy and the negative outcome from Test 2(b; Koenen test) and Test 2(c)(i; Time/Pressure test).

2.2.1.1.1.3 Conclusion on classification and labelling for explosive properties

Not classified – conclusive but not sufficient for classification

2.2.1.1.2 Flammable gases (including chemically unstable gases) [equivalent to section 8.2 of the CLH report template]

Hazard class not applicable, substance is a solid

2.2.1.1.3 Oxidising gases [equivalent to section 8.3 of the CLH report template]

Hazard class not applicable, substance is a solid

2.2.1.1.4 Gases under pressure [equivalent to section 8.4 of the CLH report template]

Hazard class not applicable, substance is a solid

2.2.1.1.5 Flammable liquids [equivalent to section 8.5 of the CLH report template]

Hazard class not applicable, substance is a solid

2.2.1.1.6 Flammable solids [equivalent to section 8.6 of the CLH report template]

Table 3: Summary table of studies on flammable solids

Method	Results	Remarks	Reference
UN Test N.1	Preliminary screening test:	Penconazole is not	Jackson W. 2017
	The test substance, formed	a flammable solid	TC; Purity 98.1% w/w
	into an unbroken powder	within the criteria	190 Mi. We
	train, melted and ignited but	of this test.	4,0000
	did not propagate combustion	200 50 1810	36 67
	along 200 mm train (within	in sing dille	10.15
	two minutes). The full	1, 10, 10, 10, 10,	
	burning time over 200 mm	10, 0, 0, 0, 1	O,
	could not be determined.	1, 76, 111, 16	•

2.2.1.1.6.1 Short summary and overall relevance of the provided information on flammable solids

The flammable properties of penconazole (TC of purity 98.1% w/w) were studied using recommended test methods referred to in ST/SG/AC.10/11/Rev.7, i.e. Test N.1 (test method for flammable solids). The tests were carried out as outlined in ST/SG/AC.10/11/Rev.7.

The preliminary screening test showed that penconazole melted and ignited but did not propagate combustion along the 200 mm of the train. The full test programme was not required as the full burning time over 200 mm is less than 2 minutes (could not be determined).

2.2.1.1.6.2 Comparison with the CLP criteria

A flammable solid shall be classified for this class using test N.1. The burning rate test was, however, waived due to the outcome of the preliminary screening test. Therefore, comparison with CLP criteria according to Table 2.7.1 in CR (EU) No 1272/2008 would not result in classification of the substance.

2.2.1.1.6.3 Conclusion on classification and labelling for flammable solids

Not classified – conclusive but not sufficient for classification

2.2.1.1.7 Self-reactive substances [equivalent to section 8.7 of the CLH report template]

Table 4: Summary table of studies on self-reactive substances

Method	Results	Remarks	Reference
Differential scanning	Heat of decomposition:	Penconazole is not	Jackson W. 2021
calorimetry	755 J/g	a self-reactive	TC; Purity 98.1% w/w
		substance within	

Method	Results	Remarks	Reference
		the criteria of this	
		test.	
		An earlier study	
		showed a heat of	
		decomposition of	
		584 J/g (TC of	
		purity 98.1% w/w;	C. C
		see section	Will "I'S
		2.2.1.1.1)	on our
UN Test H.4	Self-Accelerating	Penconazole is not	Jackson W. 2021
	decomposition temperature	a self-reactive	TC; Purity 98.1% w/w
	(SADT): >75 °C	substance within	6, 10, 18, 10,
		the criteria of this	e civi cili ett
		test.	1 10 die de de

2.2.1.1.7.1 Short summary and overall relevance of the provided information on self-reactive substances

UN test series A to H are required only for substances considered for classification. According to CLP, substances and mixtures must be considered for classification in the hazard class as a self-reactive substance or mixture unless:

- their heat of decomposition is less than 300 J/g, or
- their Self-Accelerating Decomposition Temperature (SADT) is greater than 75°C for a 50 kg package.

The heat of decomposition and self-accelerating decomposition temperature were studied for Penconazole (TC of purity 98.1% w/w) using recommended test methods referred to in ST/SG/AC.10/11/Rev.7, i.e., differential scanning calorimetry and UN Test H.4, respectively. Results showed a heat of decomposition of 755 J/g, and a self-accelerating decomposition temperature greater than 75 °C.

2.2.1.1.7.2 Comparison with the CLP criteria

Self-reactive substances or mixtures are classified in one of the seven categories of types A to G using UN Test Series A to H in ST/SG/AC.10/11Rev.5 (pp. 217-296). In agreement with CR (EU) No 1272/2008 (p. 63) the classification procedure was waived as penconazole:

- is not explosive (2.2.1.1.1)
- is not oxidising (2.2.1.1.13)
- is not an organic peroxide (2.2.1.1.14)
- has shown a heat of decomposition above 300 J/g
- has a SADT greater than 75 °C for a 50 kg package

Therefore, comparison with CLP criteria according to Section 2.8.2.3 in CR (EU) No 1272/2008 would not result in classification of the substance.

2.2.1.1.7.3 Conclusion on classification and labelling for self-reactive substances

Not classified - conclusive but not sufficient for classification

2.2.1.1.8 Pyrophoric liquids [equivalent to section 8.8 of the CLH report template]

Hazard class not applicable, substance is a solid.

2.2.1.1.9 Pyrophoric solids [equivalent to section 8.9 of the CLH report template]

2.2.1.1.9.1 Short summary and overall relevance of the provided information on pyrophoric solids

No data derived in accordance with the recommended test method in CR (EU) No 1272/2008 have been provided.

Penconazole has, however, been handled in air in other studies conducted and referred to in this dossier, where no incidences of self-ignition when exposed to air have been reported. In agreement with Section 2.10.4.1 of CR (EU) No 1272/2008 (p. 68), the classification procedure for pyrophoric solids need not be applied given the experience stated above (i.e. the substance is stable at room temperature for prolonged periods of time (days)).

2.2.1.1.9.2 Comparison with the CLP criteria

A pyrophoric solid shall be classified using test N.2 in ST/SG/AC.10/11Rev.7. This testing was waived based on the experience stated in above subsection (2.2.1.1.9.1). Therefore, comparison with CLP criteria according to Table 2.10.1 in CR (EU) No 1272/2008 (p. 68) would not result in classification of the substance.

2.2.1.1.9.3 Conclusion on classification and labelling for pyrophoric solids

Not classified - conclusive but not sufficient for classification

2.2.1.1.10 Self-heating substances [equivalent to section 8.10 of the CLH report template]

2.2.1.1.10.1 Short summary and overall relevance of the provided information on self-heating substances

No data derived in accordance with the recommended test method in CR (EU) No 1272/2008 have been provided.

It is, however, referred to ECHA-17-G-21-EN (subsection 2.11.4.2) stating «substances or mixtures with a low melting point, i.e. < 160 °C, should not be considered for classification in this class since the melting process is endothermic and the substance-air surface is drastically reduced. However, this criterion is only applicable if the substance or mixture is completely molten up to this temperature.»

The melting point of penconazole has been studied (Das R., 1999; CGA71818/4305) and reported in this dossier (RAR vol.4 3CA B2). Results showed a melting range starting at 60°C and was completely molten at 61°C.

In agreement with ECHA-17-G-21-EN, the classification procedure for self-heating substances need not be applied given penconazole's melting point.

2.2.1.1.10.2 Comparison with the CLP criteria

The self-heating substance or mixture shall be classified using test N.4 in ST/SG/AC.10/11Rev.7. This testing was waived (ECHA-17-G-21-EN) based on penconazole's melting point that is well below 160°C. Therefore, comparison with CLP criteria according to Table 2.11.1 in CR (EU) No 1272/2008 (p. 69) would not result in classification of the substance.

2.2.1.1.10,3 Conclusion on classification and labelling for self-heating substances

Not classified - conclusive but not sufficient for classification

2.2.1.1.11 Substances which in contact with water emit flammable gases [equivalent to section 8.11 of the CLH report template]

2.2.1.1.11.1 Short summary and overall relevance of the provided information on substances which in contact with water emit flammable gases

No data derived in accordance with the recommended test method in CR (EU) No 1272/2008 have been provided.

The chemical structure of penconazole does, however, not contain metals or metalloids. Further, penconazole has been handled in water in other studies, where no incidences of violent reaction and emission of flammable gases have been reported. In agreement with Section 2.12.4.1 of CR (EU) No 1272/2008 (p. 63), the classification procedure for substances or mixtures which in contact with water emit flammable gases need not be applied given the information and experience stated above.

2.2.1.1.11.2 Comparison with the CLP criteria

A substance or mixture which, in contact with water, emits flammable gases shall be classified in one of the three categories for this class, using test N.5 in ST/SG/AC.10/11Rev.7. This testing was waived based on the experience stated in above subsection (2.2.1.1.11.1). Therefore, comparison with CLP criteria according to Table 2.12.1 in CR (EU) No 1272/2008 (p. 72) would not result in classification of the substance.

2.2.1.1.11.3 Conclusion on classification and labelling for substances which in contact with water emit flammable gases

Not classified – conclusive but not sufficient for classification

2.2.1.1.12 Oxidising liquids [equivalent to section 8.12 of the CLH report template]

Hazard class not applicable, substance is a solid,

2.2.1.1.13 Oxidising solids [equivalent to section 8.13 of the CLH report template]

Table 5: Summary table of studies on oxidising solids

Method	Results	07,71,	Remarks	Reference
UN Test O.1	(0 ² 1. 0 ¹ ii) iii)	1,000	Penconazole	Jackson W. 2017
0,	Mean burning times (s); n =5		is not an	TC; Purity 98.1% w/w
: illo	Test substance	Reference	oxidising	
10,00	penconazole:cellulose*	Bromate:cellulose	solid within	
15,100	4.1	3:7	the criteria of this test.	
ent suritie	449 541	70	or this test.	
The Clip Og! K	* total weight: 30 g			
0,140,10,00				
Co. 111. 41.	The test substance ignited and burned fully			
90 01 31 00	with a flame. Mean burning times of the test			
18 14, 90	substance are both greater than the mean			
Sin of	burning time of the reference.			
Us The Filt.				

2.2.1.1.13.1 Short summary and overall relevance of the provided information on oxidising solids

Penconazole contain chlorine but since chlorine is chemically bonded only to carbon, the classification procedure for this class shall not apply according to subsection 2.1.4.4.1 of CR (EU) No 1272/2008. Regardless, the oxidative properties of penconazole (TC of purity 98.1% w/w) were studied using recommended test methods referred to in ST/SG/AC.10/11/Rev.7, i.e. Test O.1 (test for oxidising solids). The tests were carried out as outlined in ST/SG/AC.10/11/Rev.7.

The substance, penconazole, in the 4:1 and 1:1 sample-to-cellulose ratio (by mass) tested, exhibited a mean burning time less than the mean burning time of a 3:7 mixture (by mass) of potassium bromate and cellulose, i.e. category 3 in Table 2.14.1 in CR (EU) No 1272/2008). Consequently, the criteria for Categories 1 and 2 are not met and burning time of 2:3 and 3:2 mixture (by mass) of potassium bromate and cellulose is waived.

2.2.1.1.13.2 Comparison with the CLP criteria

An oxidising solid shall be classified for this class using test O.1 (subsection 34.4.1) outlined in ST/SG/AC.10/11/Rev.7. Test results showed that penconazole does not meet the CLP criteria according to Table 2.14.1 in CR (EU) No 1272/2008.

2.2.1.1.13.3 Conclusion on classification and labelling for oxidising solids

Not classified – conclusive but not sufficient for classification

2.2.1.1.14 Organic peroxides [equivalent to section 8.14 of the CLH report template]

Hazard class not applicable, the substance is not an organic peroxide.

2.2.1.1.15 Corrosive to metals [equivalent to section 8.15 of the CLH report template]

2.2.1.1.15.1 Short summary and overall relevance of the provided information on oxidising solids

No data derived in accordance with the recommended test method in CR (EU) No 1272/2008 have been provided.

2.2.1.1.15.2 Comparison with the CLP criteria

A substance or mixture corrosive to metals is classified using UN Test C.1 in ST/SG/AC.10/11Rev.7 unless it is impracticable to perform the test.

This testing was waived based on penconazole's melting point that is approximately 60° C (see Table 1) and above the test temperature (cut-off temperature) of 55° C (ECHA-17-G-21-EN). Therefore, comparison with CLP criteria according to Table 2.16.1 in CR (EU) No 1272/2008 (p. 80) would not result in classification of the substance.

2.2.1.1.15.3 Conclusion on classification and labelling for self-heating substances

Not classified - conclusive but not sufficient for classification

2.2.2 Summary of physical and chemical properties of the plant protection product

The representative formulation A6209G is an emulsifiable concentrate (EC). Its appearance is that of a colorless clear liquid with a sweetish odor.

A6209G need not be classified for explosive, oxidizing or flammable properties under CLP (CR (EU) No 1272/2008): The formulation's heat of decomposition was determined as 38 J/g. Waiving of further testing is acceptable, since the heat of decomposition was below 500 J/g. The formulation is not an oxidizing liquid

within the criteria of UN test O.2 nor flammable as the formulation's flashpoint was determined as $62.5 \pm 5^{\circ}$ C by the use of ISO 1523 Pensky-Martens closed cup testing. Also, the auto-ignition temperature was determined as $210 \pm 10^{\circ}$ C (performance of the test as described in IEC 60079-20-1; not useful for classification under CLP).

The pH of a 1 % dilution was determined to 6.5. The alkalinity (calculated as NaOH) was determined to be less than 0.01 %.

The viscosity of the formulation was determined to 9.08 mPa·s at 20 °C and 4.88 mPa·s at 40 °C. The viscosity is not significantly depending on the shear rate. Therefore, the test item can be considered as a Newtonian liquid.

The surface tension (σ) of the formulation at 20 °C was determined with the plate method to 33.3 mN/m (0.5 % w/v) 34.7 mN/m (0.1 % w/v) and 30.6 mN/m (undiluted).

The relative density of the liquid formulation was determined to be 0.986 g/cm³ at 20 °C (RD_{20 °C/4 °C} = 0.986)

Heat stability studies (accelerated storage) on the formulation showed that the formulation was physically and chemically stable for 2 weeks at 54 °C in package made from High Density Polyethylene (HDPE).

Low temperature stidies showed no separation after 7 days storage at 0 °C. Testing of emulsion properties at 30 °C after 7 days storage at 0 °C show no changes in emulsifiability, emulsion stability and re-emulsifiability compared to the emulsion properties of the fresh formulation.

Shelf life studies following two years storage of the formulation at ambient temperature (20 °C) showed no change of the content of the active ingredient (0 % change). Except for a reduction of the pH value of a 1 % dilution from 6.5 to 5.8, no other tested phys-chem property showed any change after two years compared with the initial results. Evaluation of the HDPE packaging (1 L) used for the shelf life studies showed some panelling and a 0.07 % gross weight increase. Else, none of the other packaging evaluation criteria changed after storage. The formulation AG6209G is considered chemically and physically stable following two years storage at 20 °C in a package made from High Density Polyethylene (HDPE).

The persistence of foaming of the formulation was tested according to CIPAC MT 47.3. The formulation was diluted with CIPAC water D. For a concentration of 0.5 % (v/v) the foaming was determined to be 12 mL after 1 min and 8 mL after 12 min. For a concentration of 0.1 % (v/v) the foaming was determined to be 32 mL after 1 min and 22 mL after 12 min. The FAO/WHO pesticide specifications recommends a limit of max. 60 mL foaming when tested with CIPAC MT 47.3.

The emulsion properties of the formulation was tested at 30 °C at concentrations 0.5 % (v/v) and 0.1 % (v/v) diluted with CIPAC water A and D. Emulsifiability was spontaneous and re-emulsifiability was complete for all cases. The emulsion stability test showed no cream and/or oil after 0.5 h and 2 h for all cases. However, after 24 h, trace cream at the bottom was observed at concentration 0.5 % (v/v) for CIPAC water A and D. No oil was observed. At concentration 0.1 % (v/v) after 24 h no cream and/or oil was observed for both waters. The emulsion stability test 0.5 h after re-emulsifiability show no cream and/or oil.

Studies regarding physical and chemical compatibility of tank mixes are not submitted as there are no tank mix recommendations proposed in the AIR supplementary dossier.

2.3 DATA ON APPLICATION AND EFFICACY

2.3.1 Summary of effectiveness

When taken up by the plant, penconazole, contained in the representative product A6209G, acts on the fungal pathogen during penetration and haustoria formation. It stops the development of fungi by interfering with the biosynthesis of sterols in cell membranes. Interference with sterol biosynthesis leads to disruption of membrane function, leakage of cytoplasmic contents and hyphal death.

Penconazole has been tested in field development trials and has demonstrated efficacious activity. A6209G has been registered in many EU countries based on detailed national assessments of the efficacy package in compliance with Regulation (EC) No. 545/2011 and according to the Uniform Principles (Regulation (EC) No. 546/2011), with which Member States authorities were satisfied.

2.3.2 Summary of information on the development of resistance

Penconazole is an ergosterol biosynthesis inhibitor (SBI) from the chemical class of the triazoles (FRAC group 3) blocking the demethylation of eburicol. It is active on a broad range of plant pathogens on many crop plants. Due to the supposed oligo-genetic mechanism of resistance the resistance risk is estimated as medium by the Fungicide Resistance Action Committee (FRAC, www.frac.info).

Baseline sensitivity and resistance to DMI fungicides (Penconazole)

More than 40 SBI fungicides are available to control many plant pathogens. Because the mechanism of resistance is mostly controlled by the accumulation of several independent mutations and is referred to as "quantitative resistance", the inherent resistance risk to DMI fungicides has been classified as medium risk. The resistance factors associated to single mutations at target gene (cyp51) are relative small. Resistance to DMI's has been shown to be in the form of small shifts occurring over a long period of time and the phenotype rather corresponds to reduced sensitivity than to resistance. Only in rare cases truly resistant isolates have been found to follow a disruptive resistance (e.g. *Ramularia collo-cygni*). In the majority of the cases, a combination of target site mutations on the cyp51 gene (cytochrome p450), overexpression or duplication of the cyp51 gene and effects on ABC transporters detoxifying the organism have been found to be the most common mechanisms of resistance to DMIs. In addition, it was demonstrated in several studies that DMIs have no cross resistance to any of the other major fungicide classes e.g. MBCs, QoIs, or SDHIs.

Prominent examples for the shifting behaviour of DMI fungicides are *Zymoseptoria tritici* (aka *Mycosphaerella graminicola*) and *Venturia inaequalis*. There are ample reports for shifting in Erysiphe species on cereals and *Cercospora beticola* in sugar beet. Several reports are also available for *Uncinula necator* and *Podosphaera fuliginea*. The exact mechanism conferring the resistance to DMIs for the diseases relevant for penconazole are not completely understood. Recent studies with *Uncinula necator* indicated that resistance seems to be due to at least two mechanisms, cyp51 over-expression and target-site mutation in CYP51.

Extensive resistance monitoring studies are conducted in Europe by several companies and the results are discussed at the FRAC meeting on an annual basis. In general, DMI sensitivity of *Uncinula necator*, *Podosphaera fuliginea*, *Erysiphe cichoracearum* and *Podosphaera leucotricha* is stable since many years after having experienced a sensitivity shift in the past.

Resistance risk assessment for TOPAS 100 EC (A6209G)

For estimating the risk of fungicide resistance three major components need to be evaluated: 1) the intrinsic risk of pathogens (determined by the biology of the pathogen), 2) the risk of active ingredients (determined by the mode of action) and 3) the agronomic risk (determined by the cultural practice and the use strategy).

Factors relating directly to disease epidemiology, and indirectly to disease management, combine with genetic factors to form the pathogen risk. The most important factors determining pathogen risk appear to be life cycle, reproduction, gene flow and mutation rate. Moreover, pathogen risk ranking into high, medium or low risk to evolve fungicide resistance consider the following aspects:

High:

resistance is known in the species from other crops
 close relation (genus) to with species developing resistance
 abundant sexual and asexual propagation and strong epidemics

Medinm

lower probability of selection due to moderate epidemics
 no resistance found, despite usage in the same crop to control other diseases

Low:

- mechanistic block of evolution of resistance
- low spread and no sexual recombination (e.g. soil borne pathogens)

The fungicide resistance risk varies for fungicide classes depending from specific mode of action. The combined risk a fungicide to evolve resistance should consider the agronomic risk that is based on weather conditions, fertilization, irrigation, cultural practices, crop density and degree of resistance of cultivars.

Members of the Fungicide Resistance Action Committee (FRAC) monitor the sensitivity changes towards DMI fungicides and provide guidelines for the use of DMI fungicides in different crops. General and specific guidelines for a responsible use of DMI fungicides are available under http://www.frac.info/.

Based on the multi-allelic and polygenic nature of resistance, the risk of resistance to DMIs can be considered as moderate. Risk assessment of sensitivity shifts to DMI fungicides in selected vegetable pathogens is shown in the **Summary table** below.

Use recommendation for TOPAS 100 EC (A6209G)

The Fungicide Resistance Action Committee (FRAC) has made the following general recommendations to minimize the risk of resistance occurring to the SBI fungicides (of which the DMI's are one class).

- Repeated application of SBI fungicides alone should not be used on the same crop in one season
 against a high-risk pathogen in areas of high disease pressure for that particular pathogen.
- For crop/pathogen situations where repeated spray applications (e.g. orchard crops/powdery mildew) are made during the season, alternation (block sprays or in sequence) or mixtures with an effective non cross-resistant fungicide are recommended (see <u>FRAC Code List</u>).
- Where alternation or the use of mixtures is not feasible because of a lack of effective or compatible non cross-resistant partner fungicides, then input of SBI's should be reserved for critical parts of the season or crop growth stage.
- If the performance of SBIs should decline and sensitivity testing has confirmed the presence of less sensitive isolates, SBIs should only be used in mixture or alternation with effective non crossresistant partner fungicides.
- The introduction of new classes of chemistry offers opportunities for more effective resistance management. The use of different modes of action should be maximized for the most effective resistance management strategies.
- Users must adhere to the manufacturers' recommendations. In many cases, reports of "resistance" have, on investigation, been attributed to cutting recommended use rates, or to poorly timed applications.
- Fungicide input is only one aspect of crop management. Fungicide use does not replace the need for resistant crop varieties, good agronomic practice, plant hygiene/sanitation, etc.
- Exclusive frequency measurements of single cyp51 mutations are not sufficient to describe the sensitivity situation towards DMIs but can help to better understand the background of sensitivity shifts.

Table 6: Summary table: Risk assessment of sensitivity shifts to DMI fungicide in selected pathogens

Pathogen	Resistance situation	Risk assessment
Podosphaera leucotricha	Stable	Low
Uncinula necator	Stable	Medium
Erysiphe cichoracearum	Stable	High
Podosphaera fuliginea	Stable	High

2.3.3 Summary of adverse effects on treated crops

Penconazole has been applied in all EU member states for many years without reports of phytotoxic effects on target or succeeding crops. Consequently no pageting impact is a provided by the consequently of phytotoxic effects on target. or succeeding crops. Consequently no negative impact is expected on treated crops.

2.3.4 Summary of observations on other undesirable or unintended side-effects

There is no evidence of any undesirable or unintended side-effects.

2.4 **FURTHER INFORMATION**

Summary of methods and precautions concerning handling, storage, transport or fire 2.4.1

Active substance - penconazole

Handling

Avoid contact with skin and eyes. When using, do not eat, drink or smoke. Wash hands and exposed skin before eating, drinking or smoking and when the handling of the substance is completed.

This material is capable of forming flammable dust clouds in air, which, if ignited, can produce a dust cloud explosion. Flames, hot surfaces, mechanical sparks and electrostatic discharges can serve as ignition sources for this material. Electrical equipment should be compatible with the flammability characteristics of this material. The flammability characteristics will be made worse if the material contains traces of flammable solvents or is handled in the presence of flammable solvents.

This material can become readily charged in most operations.

Storage

Keep in original containers, tightly closed, in a dry, cool and well-ventilated place. Keep out of reach of children. Keep away from food, drink and animal feeding stuffs.

Volume 1 - Level 2

Transport

UN Number: UN3077 Transport hazard class: Classification code: M7 Hazard Identification Number: 90 Packaging Group: Ш

Proper shipping name: ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S.

(PENCONAZOLE)

Suttable extinguishing media:
Extinguishing media - small fires: Use water spray, alcohol-resistant foam, dry chemical or carbon dioxide.
Extinguishing media - large fires: Use alcohol-resistant foam or water spray.

Extinguishing media which shall not be used for safet.

Do not use a solid water of

Specific hazards during fire fighting:
As the product contains combustible organic components, fire will produce dense black smoke containing hazardous products of combustion. Exposure to decomposition products may be a hazard to health.

Special protective equipment for firefighters:
Wear full protective clothing and self-contained breathing apparatus.

The representative formulation — ACCC [and line] /haza

Transport

Land transport

ADR/RID:

UN-Number: UN 3082

Class: Labels:

Packaging group

Proper shipping name: ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S.

(PENCONAZOLE)

Sea transport

IMDG:

UN-Number: UN 3082

Class: 9 Labels: Ш Packaging group:

ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S. Proper shipping name:

(PENCONAZOLE)

Marine pollutant: Marine pollutant

Air transport

Volume 1 - Level 2

IATA-DGR

UN-Number: UN 3082

Class:

Labels: 9 Miscellaneous

Packaging group: III

Proper shipping name: ENVIRONMENTALLY HAZARDOUS SUBSTANCE, LIQUID, N.O.S.

(PENCONAZOLE)

Fire

Suitable extinguishing media:

Extinguishing media - small fires: Use water spray, alcohol-resistant foam, dry chemical or carbon dioxide.

Extinguishing media - large fires: Use alcohol-resistant foam or water spray.

Extinguishing media which shall not be used for safety reasons: Do not use a solid water stream as it may scatter and spread fire.

Specific hazards during fire fighting: As the product contains combustible organic components, fire will produce dense black smoke containing hazardous products of combustion. Exposure to decomposition products may be a hazard to health. Flash back possible over considerable distance.

Special protective equipment for firefighters: Wear full protective clothing and self-contained breathing apparatus.

Further information minimise the hazards arising: Do not allow run-off from fire fighting to enter drains or water courses. Cool closed containers exposed to fire with water spray.

Hazardous decomposition products likely to be generated in the event of fire: Combustion or thermal decomposition will evolve toxic and irritant vapours.

2.4.2 Summary of procedures for destruction or decontamination

Active substance – penconazole

Where possible, recycling is preferred to disposal or incineration. It must undergo special treatment e.g. at suitable disposal site to comply with local regulations.

As the halogen content of penconazole is below the 60% trigger value, high temperature incineration is the preferred means of disposal for the active substances, formulated products, contaminated materials or contaminated packaging. Incineration should be carried out in a licensed incinerator operating at a temperature above 800°C and with a minimum gas phase residence time of two seconds.

Further details are available in the safety data sheet for penconazole.

The representative formulation - A6209G

Neutralisation procedure

In the event of accidental spillage, neutralisation (with acid or base to neutral pH) is not an effective procedure for the destruction or decontamination of the formulation.

Therefore, the spilled liquid formulation should first be adsorbed onto a solid, such as sand, inert clay filler, saw dust or soil, before being swept up into a safe container to await disposal.

Controlled incineration

As the halogen content of A6209G is below the 60% trigger value, high temperature incineration is the preferred means of disposal for the active substances, formulated products, contaminated materials or contaminated packaging. Incineration should be carried out in a licensed incinerator operating at a temperature above 800°C and with a minimum gas phase residence time of two seconds.

2.4.3 Summary of emergency measures in case of an accident

Active substance – penconazole

Personal Precautions

Ensure suitable personal protection during removal of spillages (for details see safety data sheet).

Environmental Precautions

Do not flush into surface water or sanitary sewer system. If the product contaminates rivers and lakes or drains inform respective authorities.

Methods of Cleaning Up:

Methods of Cleaning Up:

Contain spillage, pick up with an electrically protected vacuum cleaner or by wet-brushing and transfer to a container The Commercial of the tree of for disposal according to local regulations. Do not create a powder cloud by using a brush or compressed air. Clean contaminated surface thoroughly.

The representative formulation - A6209G

Containment of spillages

Containment and/or segregation is the most reliable technical protection measure if exposure cannot be eliminated. The extent of these protection measures depends on the actual risks in use. Maintain air concentrations below occupational exposure standards.

Where necessary, seek additional occupational hygiene advice.

b) Decontamination of areas, vehicles and buildings

Environmental precautions:

Prevent further leakage or spillage if safe to do so. Do not flush into surface water or sanitary sewer system.

Methods for cleaning up:

Contain spillage, and then collect with non-combustible absorbent material (e.g. sand, earth, diatomaceous earth, vermiculite) and place in container for disposal according to local/national regulations.

If the product contaminates rivers and lakes or drains inform respective authorities.

Do not contaminate ponds, waterways or ditches with chemical or used container.

Do not dispose of waste into sewer.

Where possible recycling is preferred to disposal or incineration.

If recycling is not practicable, dispose of in compliance with local regulations.

Additional advice:

If the product contaminates rivers and lakes or drains inform respective authorities.

c) Disposal of damaged packaging, absorbents and other materials

Contaminated packaging:

Empty remaining contents.

Triple rinse containers.

Empty containers should be taken to an approved waste handling site for recycling or disposal.

Do not re-use empty containers.

(a) Protection of emergency workers and residents, including bystanders

Protective measures:

The use of technical measures should always have priority over the use of personal protective equipment.

When selecting personal protective equipment, seek appropriate professional advice. Personal protective equipment should be certified to appropriate standards.

Respiratory protection:

No personal respiratory protective equipment normally required. When workers are facing concentrations above the exposure limit, they must use appropriate certified respirators.

Hand protection:

Nitrile rubber gloves, >480 min breakthrough time, 0.5 mm thickness. The selected protective gloves have to satisfy the specifications of EU Directive 89/686/EEC and the standard EN 374 derived from it.

Eye protection:

Wear tightly fitting safety goggles. Always wear eye protection when the potential for inadvertent eye contact with the product cannot be excluded.

Skin and body protection:

Choose body protection in relation to its type, to the concentration and amount of dangerous substances, and to the specific work-place. Remove and wash contaminated clothing before re-use. Wear as appropriate: Impervious clothing.

e) First aid measures

General advice:

Have the product container, label or Material Safety Data Sheet with you when calling the Syngenta emergency number, a poison control centre or physician, or going for treatment.

Inhalation:

Immediately move to fresh air. If breathing is irregular or stopped, administer artificial respiration. Keep patient warm and at rest. Call a physician or Poison Control Centre immediately.

Skin contact:

Take off all contaminated clothing immediately. Wash off immediately with plenty of water. If skin irritation persists, call a physician. Wash contaminated clothing before re-use.

Eve contact:

Rinse immediately with plenty of water, also under the eyelids, for at least 15 minutes. Remove contact lenses. Immediate medical attention is required.

Ingestion

If swallowed, seek medical advice immediately and show this container or label. Do NOT induce vomiting.

Medical advice:

There is no specific antidote available. Treat symptomatically.

2.5 METHODS OF ANALYSIS

2.5.1 Methods used for the generation of pre-authorisation data

Adequate methods have been used for the analysis of penconazole in the representative formulation (A6209G), and of penconazole and significant impurities in technical materials (Syngenta and Ascenza separately).

Adequate methods have been used for the generation of pre-approval data required for the risk assessment of and penconazole and its metabolites in the toxicology, residue, and environmental fate and behaviour section.

In a PPP study, the reliability of the measured test concentration generated in the acute toxicity testing of carp could not be concluded. The same analytical method was considered fit for purpose in an equivalent study i.e., acute toxicity testing of rainbow trout. However, the apparently low precision of the method could be due to the performance of the analytical method or the experimental set up. Otherwise, adequate methods have been used for the generation of pre-approval data required for the risk assessment of and penconazole and its metabolites in the ecotoxicology section.

2.5.2 Methods for post control and monitoring purposes

and of seasons of all the abolic CGA71015 aurole-OH included in the abol Adequate methods and ILV have been provided for monitoring of penconazole residues in commodities of plant origin, in commodities of animal origin, in soil and water, in air and in body fluids and tissues. Analytical methods and ILV for monitoring of the metabolite CGA179944, included in the residue definition for monitoring of

The state of the s Softed fight for the fight first of the fight for the first of the fir

2.6 EFFECTS ON HUMAN AND ANIMAL HEALTH

2.6.1 Summary of absorption, distribution, metabolism and excretion in mammals [equivalent to section 9 of the CLH report template]

Table 7: Summary table of toxicokinetic studies

Method	Results	Remarks	Reference
Distribution.	Distribution after 144 hours (6	Test substance:	Trefer ence
Degradation and	days):	CGA 71818 (penconazole)	(1980)
Excretion of CGA	Widely distributed in tissues, but	Radiochemical: LOT not reported	K-CA 5.1.1/01
71818 in the Rat	in low amounts, the highest	>98% purity	Document No.
,	residues in liver lungs and		41/80
Pre-OECD 417 (1984)	kidneys.	Oral route/Dose (average mg/kg bw):	(supplementar
, ,		Single low dose 0.5	$(C, A)^* (C, A)^* ($
Pre-GLP	Metabolism:	Single high dose 25	10, 40, 70
	Metabolised extensively. Polar		6, 6, 4,
	metabolites in urine (0-24 h).	Sampling up to 144 hours	a was sur
		Oral route/Dose (average mg/kg bw): Single low dose 0.5 Single high dose 25 Sampling up to 144 hours Rat: RAI f (SPF) Group size: 2 rats/sex/dose Only 2 rats/sex/dose were used; GI-tract was not examined; A biliary or an IV study was not performed, although >20% of the radioactivity.	(supplementary)
	Excretion after 144 hours (6	Rat: RAI f (SPF)	20 071
	days):	Group size: 2 rats/sex/dose	700
	Urinary: 62-85% (urinary	16 16 16	S
	excretion was higher and faster in	Only 2 rats/sex/dose were used; GI-	
	\bigcirc compared to \bigcirc)	tract was not examined; A biliary or	
	Faecal: 14-39%,	an IV study was not performed,	
	Expired uit. <0.170	annough >20% of the fadioactivity	
	Total excreted: 99-105	was excreted in the faeces; TLC	
		results for metabolic profiles were	
	No distinct excretion-profiles	insufficiently documented	
TT1	between low and high dose	3/10,0/1/	
The Major Urinary	Metabolism (0-48 h urine):	Test substance:	(1000)
Metabolites of CGA	The urinary metabolite U ₀₃ was	CGA71818 (penconazole)	(1982)
71818 in the Rat	identified as free triazole (CGA	Non-labelled: LOT not reported >98% purity Radiochemical: LOT	K-CA 5.1.1/02
Dro OECD 417 (1094)	71019). U ₀₃ accounted for 24% of the urinary radioactivity. The	not reported >98% purity	Report No. 15/82
Pre-OECD 417 (1984)	carboxylic acid metabolites	not reported >98% purity	(supplementar
Pre-GLP	identified were U ₀₇₋₁ (CGA	Oral route/Dose (average mg/kg bw):	
TIC-OLI	177279, pentanoic acid), U ₀₇₋₂	Single high dose 25	у)
	(CGA 177280 butyric acid) and	Single high dose 25	
.(U ₀₄₋₁ (CGA 179944, propanoic	Sampling up to 48 hours	
0,	acid). The α -hydroxy carboxylic	Samping up to 10 hours	
100 J	acid metabolites identified were	Rat: RAI f (SPF)	
	U ₀₆₋₁ (CGA 177281, α-hydroxy	Group size: 20 3 rats	
0,181	pentanoic acid) and U ₀₆₋₂	•	
15,000	(hydroxylated CGA 17780, α-	Only of rats were examined;	
1, 1, 1, 1, 1, 10°	hydroxy butyric acid). The	compounds which have been	
00, 42 3/1, 11	urinary metabolites U ₀₇ , U ₀₄ and	characterized in excreta as	
71, 6, 76, 10,	U ₆₆ accounted for 31, 10, and 8%	comprising 5% or greater of the	
2 1/1, 1/10, 160	of urinary radioactivity,	administered dose should be	
11. Kir 11. 20	respectively.	identified. However, this was not	
Junentis not the fi		always done; no data available on MS	
12 1/1 90		or NMR examinations; TLC results	
di oli vie		for metabolic profiles were	
The Mark II For C	Matabaltana	insufficiently documented	
The Metabolic Fate of CGA71818 in the Rat.	Metabolism:	Test substance:	(1094)
CGA/1818 in the Kat.	The most abundant metabolites, each accounting for >10% of dose,	CGA71818 (penconazole) Non-labelled: LOT not reported	(1984) V CA 5 1 1/02
. 0.	each accounting for >10% of dose,		K-CA 5.1.1/03
Pre-OECD 417 (1984)	were 1, 2, 4-triazole (CGA 71019) and the carboxylic acid metabolite	>98% purity Radiochemical: LOT not reported >98% purity	Report No. 23/83 (supplementary)
Pre-GLP	CGA177279. Free triazole was	not reported >30% purity	(supplementary)
110-OLI	eliminated in both urine and	Oral route/Dose (average mg/kg bw):	
	faeces. Some unchanged	Single high dose 25	
	penconazole (0.8% of dose) was		
	identified in faeces and is	Sampling up to 48 hours	
	considered to represent	F0 5F 15 15 MOME	
	unabsorbed dose.	Rat: RAI f (SPF)	
		/	

Method	Results	Remarks	Reference
Sur Donard and Sala	Excretion after 48 hours: Urinary: 62% Faecal: 33% Total excreted: 95% Metabolism:	Group size: 20 drats Only drats were examined; compounds which have been characterized in excreta as comprising 5% or greater of the administered dose should be identified. However, this was not always done and only 50% of the dose was characterized in terms of chemical structure; the documentation of results does not comply with current standards.	of Public red
Sex Dependency of the Metabolite Pattern of CGA71818 after Oral Administration to Rats. Pre-OECD 417 (1984)	Urinary fractions were identified as conjugates with glucuronic acid, free 1,2,4-triazole and several carboxylic acid metabolites. In total, 3 rats	Test substance: CGA71818 (penconazole) Radiochemical: LOT not reprorted >98% purity Oral route/Dose (average mg/kg bw):	(1985) K-CA 5.1.1/04 Report No. 1/85 – addendum to
Pre-GLP	excrete 13% of a dose of CGA 71818 as free 1,2,4-triazole in their 0-48 hours urines, whilst ♀ rats do so to a much lower extent. ♀ rats excreted much higher proportions of polar metabolites (glucuronide conjugates) than ♂ rats in urine. Excretion after 144 hours (6 days) — already presented in a previous study (RAR 1.1/01): Urinary: 62-85% (urinary excretion was higher and faster in ♀ compared to ♂) Faecal: 14-39%, Expired air: <0.1% Total excreted: 99-105	Oral route/Dose (average mg/kg bw): Single low dose 0.5 Single high dose 25 Sampling up to 144 hours Rat: RAI f (SPF) Group size: 2 rats/sex/dose Only 2 rats/sex/dose were used; GI-tract was not examined; A biliary or an IV study was not performed, although >20% of the radioactivity was excreted in the faeces; Compounds which have been characterized in excreta as comprising 5% or greater of the administered dose should be identified; however, this was not always done; only TLC was used for structural identification	(1980), Report No. 41/80 (supplementary)
Acute Kinetic Study with CGA71818 Technical in Albino Rats. No applicable guideline; however mainly in line with OECD 417 (2010) GLP	Excretion after 48 hours: Urinary: 46-90% (urinary excretion was higher and faster in ⊊ compared to ♂) Faecal: 9-27%	Test substance: CGA71818 (penconazole) Non-labelled: FL-840833 98.7% purity Radiochemical: GAN-IX-83 >98% purity Oral route/Dose Penconazole 0, 10, 100, 300, 500, 1000 or 2400 ppm Single dose + [3,5-14C -triazole]-penconazole 0.1 mg Single dose Sampling up to 48 hours after the	(1987) K-CA 5.1.1/05 Report No. 6117-123 (accepted with lim.)
Ser or		Rat: Sprague Dawley: CD (SD) BR Group size: 5 rats/sex/dose Mass balance should be determined by summation of the percent of the administered (radioactive) dose excreted in urine, faeces, and expired air, and the percent present in tissues,	

Method	Results	Remarks	Reference
		residual carcass, and cage wash;	
		however, air and tissue was not	
		examined, and total recoveries of	
		administered test substance was	
		below 90% in males and therefore	
		considered to be inadequate; A biliary or an IV study was not performed,	
		although >20% of the radioactivity	
		was excreted in the faeces in males	C
90-Day Subchronic	Excretion after 48 hours:	Test substance:	(1987)
Dietary Toxicity and	Urinary after IV dose: 47-66% in	CGA71818 (penconazole)	K-CA 5.1.1/06
Kinetic Study in	δ and 67-77% in \circ	Non-labelled: FL-840833 98.7%	Report No.
Albino Mice with	Faecal after IV dose: 20-31% ♂	purity	6117-121
CGA71818 Technical.	and 9-14 % in ♀	Radiochemical: GAN-IX-83 >98% purity	(supplementary)
No applicable	Urinary after oral dose: 47-62%	purity	CHO COLL STE
guideline; however	in β and 63-78% in φ	Oral route/Dose	
mainly in line with	Faecal after oral dose: 19-28% ♂	0, 10, 100, 300, 500, 1000 or 2400	0/0 (0) 100
OECD 417 (2010)	and 11-17% in ♀	ppm repeated for at least 90 days in	9, 40, 41,
		the diet	MI. We.
GLP	♀ excreted a higher proportion of	+ 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	(supplementary)
	the dose in urine and less via	[3,5- ¹⁴ C-triazole]-penconazole 25 µg	700
	faeces than \circlearrowleft . There were no marked differences in excretion	Single oral gavage or single intravenous dose	Store in the state of the state
	profiles across the range of dose	muavenous dose	
	levels investigated or between	Sampling up to 48 hours after the	
	administration of IV or oral dose.	[¹⁴ C]-dose	
	. 8	10 160 100 1181, All 100,	
		Mice CD-1(ICR)BR	
		Groupe size: 5 mice/sex/dose (20	
	19,10	mice/sex ctrl)	
	6, 63	Although the test guideline refers to	
		the rat (6-12 weeks) as the test	
	SK EN INE	species, mice (21 days) were used;	
	CK 1110 CD 411	Mass balance should be determined	
	3, 50, 90, 00,	by summation of the percent of the administered (radioactive) dose	
	10 90 VIS 60, 11	administered (radioactive) dose excreted in urine, faeces, and expired	
	oll, to the form	air, and the percent present in tissues,	
.0	6, 1, 40, 00, 40 vg	residual carcass, and cage wash;	
Ol.	Sh We Till All SI	however air and carcass were not	
	10,011,110,15,100	examined, and total recoveries of	
7,71	11th 4151 "61 :10il	administered test substance was	
10 761	En Co Con Chi.	below 90% in several of the groups	
19 110 35	101, 60, 010	and therefore considered to be inadequate	
Kinetic Study in	Excretion after 48 hours: <i>Urinary after IV dose:</i> 49-53% in	Test substance:	(1987a)
Albino Rats with	Urinary after IV dose: 49-53% in	CGA71818 (penconazole)	K-CA 5.1.1/07
CGA71818 Technical.	♂ and 73-77% in ♀	Non-labelled: FL-840833 98.7%	Report No.
	3		6117-122
No applicable	and 12-17% in ♀	Radiochemical: GAN-IX-83 >98%	(supplementary)
guideline; however mainly in line with	Uningmy after and decre 49 5000	purity	
OECD 417 (2010)	<i>Urinary after oral dose:</i> 48-59% in \circlearrowleft and 74-79% in \circlearrowleft	Oral route/Dose	
3100 11 (2010)	Faecal after oral dose: 26-31%	0, 10, 100, 300, 500, 1000 or 2400	
GLP	and 13-16% in \bigcirc	ppm repeated for at least 90 days in	
1,5	·	the diet	
oECD 417 (2010) GLP	♀ excreted a higher proportion of	+	
	the dose in urine and less via faeces than δ . There were no	0.1 mg [3,5-14C-triazole]- penconazole Single oral gavage or	
	marked differences in excretion	single intravenous dose	
	profiles across the range of dose		
	levels investigated or between	Sampling up to 48 hours after the	
	administration of IV or oral dose.	[¹⁴ C]-dose	

Method	Results	Remarks	Reference
		Rat Sprague Dawley: CD (SD)	
		BR	
		Group size: 5 rats/sex/dose	
		Normally, the rats should be 6-12	
		weeks at the time of dosing; however,	
		1 d	
		balance should be determined by	
		summation of the percent of the	:.C) 0
		administered (radioactive) dose	10 Hz
		excreted in urine, faeces, and expired air, and the percent present in tissues,	10000
		residual carcass, and cage wash;	" 0, '0, '60
		however, air and carcass were not	U, 16, W,
		examined, and total recoveries of	, 1/3, 4/0, 46
		administered test substance was	Cr rec 10,
		below 90% in several of the groups	10, 9,0
		and therefore considered to be inadequate	A O'
Penconazole: [U-	Absorption: The 2-5% of the	Test substance:	School of the Sc
¹⁴ C]-Phenyl CGA	dose present in faeces of bile duct	CGA71818 (penconazole) Non-	(1988)
71818: Absorption,	cannulated rats, was assumed to	labelled: P2 >99%	K-CA 5.1.1/08
Distribution,	represent the unabsorbed dose.	purity O S	Report No.
Excretion and	Distribution after 96 hours:	Radiochemical: GB-XXIX-57 B1	075666
Metabolism after Single and Repeated	Widely distributed in tissues, but	98% purity	(accepted)
Oral Administration	in low amounts, the highest	1)Balance study: [phenyl-U-14C]	
to the Rat.	residues in liver, kidney, adrenal	penconazole 0.5 or 50 mg/kg Single	
	gland, skin, carcass, blood and	dose	
EPA 85-1 (1984)	plasma	5, 19, 6, 10, 20	
CLD	Matabaliana is P	Sampling up to 96 hours after the	
GLP	Metabolism: CGA127841 (and/or conjugated	[¹⁴ C]-dose	
	CGA127841) was identified in	2)Bile excretion study: [phenyl-U-	
	urine, faeces, kidneys, liver and	¹⁴ C]-penconazole 0.5 mg/kg Single	
	bile and CGA189659 (and/or	dose	
	conjugated CGA189659) in	20 10 1 0 1	
	faeces, kidneys and liver; however, four urinary and one	Sampling up to 48 hours after the [14C]-dose	
	faecal metabolite present at over	[C]-dose	
		3)Repeated dose study: Penconazole	
6/	remained unidentified.	0.5 mg repeated for 14 days Single	
100	remained unidentified. Excretion	dose + [phenyl-U-14C]-penconazole	
Y	Excretion 1)In single-dosed rats after 96	0.5 mg/kg Single oral dose	
40, 40,	hours:	Sampling up to 96 hours after the	
11/2 11/2 05	d excreted similar amounts of the	[14C]-dose	
cell is afilla	dose in urine (47% of low dose)		
ounentis not the production	and faeces (44%), $\stackrel{\frown}{\circ}$ excreted a	Rat Wistar, KFM-WIST outbred	
angentis not the files of this document of this document of this document of this document of the files of th	higher amount in urine (69%) than in faeces (21%).	(SPF) Group size: 5 rats/sex/dose in balance	
100 Fill 14 111	ni iaeces (2170).	and repeated dose studies, only 3	
0, 1,0,700	2)In bile-canulated rats after 48	rats/sex in bile excretion study)	
Mis 417 CO	hours:		
10, 16, 1413	Urinary: 28% in \circlearrowleft and 48% in \circlearrowleft	In the bile duct cannulation	
60,01	Faecal: 5% in \circlearrowleft and 2% in \circlearrowleft	experiment, a group size of 3 male	
5 60	<i>Biliary:</i> 55% in \Diamond and 40% in \Diamond	and 3 female rats was used, instead of a minimum group size of 4 animals	
772	3)Repeated dose study: Similar	per sex; A number of metabolites	
CO	excretion profile as single-dosed	accounting for >5% of the	
	rats	administered dose in excreta have not	
DI 1 :		been identified/characterised	
Blood Kinetics,	Plasma kinetics:	Test substance:	(1000)
Tissue Distribution and Depletion	♂: C _{max} 7.76 ppm	CGA 71818 (penconazole) Non-labelled: AMS 204/102 99.5% purity	(1999) K-CA 5.1.1/09
Kinetics of [Phenyl-	T _{max} 4.0 h	Radiochemical: ILS-207.1 >98.5%	13 0/13.1.1/07
U- ¹⁴ C]-CGA71818	T½ 17 h	purity	

	ethod	Results	Remarks	Reference
	the Rat after Oral	AUC _{0-48 h} 141 μg·h /g		Report No.
Ad	ministration.	_	[3,5- ¹⁴ C-triazole]-penconazole 50	039AM01
		오:	mg/kg Single dose	(accepted)
OE	CD 417 (1984)	C _{max} 7.37 ppm		
		T _{max} 6.0 h	Sampling up to 48 hours after the	
GL	.P	T½ 9.0 h	[¹⁴ C]-dose	
		AUC _{0-48 h} 70 μg·h /g	D	
		T	Rat RAI f (SPF)	
		Distribution:	Group size: 6 rats/sex, only 3 rats/sex	::0 0
		ੈ: Rapid widely distributed in	in blood kinetic study	1 bx 110;
		tissues, concentrations reached a		00, 860
		maximum after 6 hours, with the	Groups of three rats instead of four	0, 60, 00
		highest concentration in the penis,	were used in the blood kinetic study.	10 010 10
		followed by liver and kidney. T _{1/2} =	A total of six animals/sex were used	0.00
		7-12 h (22 h in penis)	in the radioluminography study; however, results from each time point	of properties and a property of the property o
		♀: Rapid widely distributed in	is based on measurement of a single	o de la
		tissues, concentrations reached a	specimen (as one male and one	10 Cla 20
		maximum after 4 hours, with the	female were terminated at each time	26071
		highest concentration in the	point). The GI-tract was not	all ell
		adrenal gland, followed by liver	examined	oli, ilia
		and kidney. $T_{1/2} = 3-8 \text{ h}$.		citial proficial resident
1)Ide	entification of	Metabolism:	Toot anhatomos	1) Mercadante R.
	bolites of the	1)RAR 6.1.1/10:	CGA71818 (penconazole)	et al. (2016) K-
	icide Penconazole	Seven metabolites were identified	Non-labelled: LOT not reported,	CA 5.1.1/10
	ıman Urine	in the urine. The most abundant	98.7% purity (RAR 6.1.1/10) (Not	Report No.
		metabolite became penconazole-	reported for RAR 6.1.1/11)	Chemical
2) D	Development of a	OH (~0.80).	30.80 700.81. My 201.	research in
	narker for	10	1) Mercadante R. et al. (2016), K-CA	toxicology
Pence	onazole: A	2)RAR 6.1.1/11:	5.1.1/10: No exposure data, sampling	(2016)
Hum	an Oral	Penconazole-OH was excreted	24 h after the application of	29(7):1179-86
Dosi	ng Study and a	conjugated and is considered to be	penconazole in a vineyard (five urine	(supplementary)
Surve		a significant metabolite (25%-	samples from agricultural workers	
Resid	dents' Exposure	47% of the administered dose,	who worked with and were exposed	and
		comprising approximately 80% of	to penconazole (no exposure details	
No te	est guidline	the total metabolites).	given).	2) Sams C. et al.
37.4	CI D	Penconazole-COOH is excreted	30) d'	(2016) K-CA
Not 0	JLP	largely unconjugated and accounts	2) Sams C. et al. (2016), K-CA	5.1.1/11 Report
		for 7%–8% of the dose.	5.1.1/11: Penconazole 0.03 mg/kg	No. Toxics
		00 11, 10, 20, 100, 90	Single dose Sampling from 24 h predose to 48 hours post-dose	(2016) 4, 10 (supplementary)
	N. C.	M. Will office of the second	determined and quantified potential	(supplementary)
	-0, 7.	10 811:10 101	penconazole biomarkers from an oral	
	11/2/	ing city of site	dosing study of three human	
	01 of	The glis sie life.	volunteers	
	.61.36	Son, hole tion with one still the one still the one still the still the one still the		
	11 JII . 05	ations and	Both publications are not performed	
~6	S' S' S'I'I'	50 4 11 10°	according to any test guideline, and	
11/1	61, 00, 10	, O,	they do not comply with the data	
(A)	W. "9, On.	6,0	requirements given in Commission	
1,00	"W. " " " "	~	Regulation (EU) No 283/2013, which	
90,	oj sl. cn.		states, among others, that: Tests	
x5	"14. 40		involving the deliberate	
10,	an'i is		administration of the active substance	
12/1	is illi		or the plant protection product to	
COL	O)		humans and non-human primates shall not be performed for the	
P	\otimes		purpose of this Regulation. Despite	
100	7		this, RMS consider these publications	
10		Metabolism:	as supplementary information.	
Penc	onazole - In Vitro	Metabolism:	Test substance:	Daniel, P. (2019)
1 - 5110		The metabolism was almost	CGA 71818 (penconazole)	K-CA 5.1.2/01
Com	parative			
Com	parative bolism of	complete in rat after 60 min	Non-labelled: AMS 204/103 99.3%	Report No.
Com _j Meta		complete in rat after 60 min incubation, with only 1.4 % of	Non-labelled: AMS 204/103 99.3% purity	Report No. JT65VB
Meta [Phen 14C]F	bolism of nyl-U-Penconazole and	incubation, with only 1.4 % of [phenyl-U- ¹⁴ C] and 3.8% of	purity Radiochemical:	
Comp Meta [Phen 14C]F [Tria	bolism of nyl-U-	incubation, with only 1.4 % of	purity	JT65VB

Method	Results	Remarks	Reference
Human and Rat Liver	69.3% of the respective doses	[Triazolyl-U- ¹⁴ C]penconazole NP-	
Microsomes	remained.	III-13 98.3% purity	
No took ood deline	Incubations with [phenyl-U-	Concentration: 10 μM	
No test guideline	¹⁴ C]penconazole resulted in up to	Positive control:	
GLP	15 radio-HPLC peaks. The major	[¹⁴ C]-testosterone,	
	64.7% in rat and 24.9% in human.	100 μΜ	
	Up to 13 peaks were observed		. (,
	after incubation with [triazolyl-U-	With enzyme cofactor NADPH:	Will "J.
	¹⁴ C]penconazole.	Concentration 2 mM	One of S
	TI ' (1.1') DO	Analoga II CMC	0, 6000
	The major metabolite was R8, present at 68.9% in rat and 26.8%	Analysed by HPLC and LC-MS	10000
	in human. R5 and R8 contained	Recovery of Total radioactivity	0, 10, 18, 1
	three hydroxyl-metabolites of	99.0 - 102%	Cin Con Str
	penconazole, CGA132465 (a	"XX	
	mixture of two diastereoisomers	Liver microsomes:	010 (010 100
	CGA132465a and CGA132465b)	Human : mixed gender, pooled from	g lo li
	and CGA127841.	150 donors	alli ale
	The metabolism of	Radiochemical purity >99 % 100 μM With enzyme cofactor NADPH: Concentration 2 mM Analysed by HPLC and LC-MS Recovery of Total radioactivity: 99.0 - 102% Liver microsomes: Human: mixed gender, pooled from 150 donors Rat: Wistar, mixed gender, pooled from 65 Å and 24 ♀ The study was conducted according to criteria proposed by ECPA (P. Whalley et al 2017) and is mainly in line with key elements discussed on	0.00
	The metabolism of [14C]penconazole in human liver	pooled from 650 and 24\forall	900
	microsomes was not as extensive	The study was conducted according	5
	as rat over a period of 60 minutes,	to criteria proposed by ECPA (P.	
	but qualitatively comparable.	Whalley et al 2017) and is mainly in	
		line with key elements discussed on	
	No unique human metabolites	the EFSA Workshop on in vitro	
	were detected.	comparative metabolism studies in	
	240	regulatory pesticide risk assessment (nov.2018). However, the	
	.57,0	recommendation of using a broad	
	6, 63	species spectrum (i.e. rat, dog, mice,	
	31, 14, 30,	rabbit) was not fulfilled.	
	CR on me	Furthermore, in the previous	
	No unique human metabolites were detected.	evaluation of penconazole, ADI and	
	" K. C. 400 900	AOEL were based on studies from	
	10, 90 : 6 : 010 *10	dogs, whereas ARfD was based on	
	10 10 11. 10, 15	rabbit studies; consequently, RMS consider the comparison of only rat	
	6, 1, 10, W, Wog 4	and human insufficient.	
	D, 7' O, 70' 'XI, 'O,	and numan mountellt.	1

2.6.1.1 Short summary and overall relevance of the provided toxicokinetic information on the proposed classification(s)

Together, twelve toxicokinetic studies were evaluated. Several of the studies were considered supplementary only, and the major deviations are listed under remarks in the table above. Despite the deviations, the studies present relevant toxicokinetic data as summarized below.

Absorption

Distribution

Irrespective of dose or sex, penconazole and its metabolites are widely distributed in body tissues (1980), K-CA 5.1.1/01; (1988), K-CA 5.1.1/08; (1999), K-CA 5.1.1/09), with a trend towards higher levels and longer elimination half-lives in males than in females (1999), K-CA 5.1.1/09). All tissue residues of the parent and/or its

Excretion

Irrespective of dose or sex, a single oral dose of penconazole was rapidly excreted. Excretion was nearly complete within 72 h with >95% excreted (1985), K-CA 5.1.1/04); (1988), K-CA 5.1.1/08). In females, 69 - 85% of the administered radioactivity was excreted via urine and 14 - 31% via faeces. In males, 41 - 60% of the administered radioactivity was excreted via urine and 35 - 46% via faeces. Excretion was faster by females, irrespective of dose or position of radiolabelling. Radioactivity recovered in expired air was negligible.

Biliary elimination accounted for 55% of a 0.5 mg/kg [14C-triazole]-dose in males and 40% in females. Urinary excretion by the bile duct-cannulated rats accounted for 28% of the dose in males and 48% in females, with faecal excretion representing less than 5% of the dose. These results therefore confirmed the almost quantitative absorption of an oral dose of penconazole and also showed that some biliary metabolites were subject to reabsorption in both sexes. Whilst there was a sex difference in excretion profiles, there was no pronounced difference in excretion profiles between the contrasting dose levels of 0.5 and 25 or 50 mg/kg or between the two radiolabelled forms of the molecule.

Metabolism

Some of the experiments performed in order to elucidate the metabolic fate of penconazole in rats have been performed in the early to mid-1980s and they do not fully comply with current standards. Although considerable effort has been undertaken, the structure of relevant metabolites could only partly be disclosed, while for a substantial part (ca. 50%) of radioactivity found in the excreta, such attempts were not successful. A single oral dose of 0.5, 25 or 50 mg [\frac{14}{C}]-penconazole/kg to rats was subject to extensive biotransformation (RAR 6.1.1/03; RAR 6.1.1/04; RAR 6.1.1/08). Metabolites were isolated from urine and faeces of male and female rats administered a single oral dose of 0.5 or 50 mg [\frac{14}{C}-phenyl] and [\frac{14}{C}-triazole]-penconazole/kg, or a 0.5 mg/kg dose after 14 daily oral doses of 0.5 mg/kg of unlabelled penconazole (RAR 6.1.1/04; RAR 6.1.1/08). Whilst there were no qualitative differences in metabolite profiles, there were quantitative differences.

Primary metabolic reactions involved in the biotransformation of penconazole included cleavage of the triazole ring to CGA71019 (1,2,4-triazole) and oxidation of the ω -position of the alkane chain to form the respective carboxylic acid, CGA177279 (RAR 6.1.1/03). Both CGA71019 and CGA177279 accounted for >10% of the dose in male urine. Other metabolites observed were those following oxidation of the alkane chain to form mono and dihydroxy derivatives and oxidation of the triazole ring. Secondary metabolic reactions include α -oxidation of the carboxylic acids to form α -hydroxy carboxylic acids, decarboxylation, following oxidation to α -ketocarboxylic derivative, oxidation of the 3,4-dihydroxy derivatives to produce the corresponding 3- or 4-keto derivatives and conjugation with glucuronic acid of all alkanol derivatives. No unchanged parent compound was detected in urine, but a small amount of parent penconazole was identified in faeces and was considered to represent unabsorbed dose.

CGA127841 appeared as the main female metabolite (RAR 6.1.1/08), also identified as one of the major metabolites in a recent *in vitro* study of rat and human liver microsomes (RAR 6.1.1/12). Recent studies in human showed that penconazole-OH was the most abundant metabolite comprising approximately 80% of the total urinary metabolites (RAR 6.1.1/10; RAR 6.1.1/11).

2.6.2 Summary of acute toxicity

2.6.2.1 Acute toxicity - oral route [equivalent to section 10.1 of the CLH report template]

T	ıb.	le	8:	13	Sumi	mary	tabl	e of	animal	studies	on	acute	oral	toxicity	1
---	-----	----	----	----	------	------	------	------	--------	---------	----	-------	------	----------	---

Method, guideline, deviations ¹ if any	Species, strain, sex, no/group	Test substance	Dose levels, duration of exposure	Value LD ₅₀	Reference
Report On Acute Oral LD ₅₀ In The Rat Of Technical CGA71818 Guideline not reported; earliest OECD 401 version (May	Rat, RAIf (SPF) M and F 5/sex/group	Penconazole Tech. Purity: 88.4% Batch: P.2+3	500, 1000, 2000, 4000 mg/kg bw Administration orally by gavage Observed for 1 h following treatment, hourly for the first day,	$\begin{array}{l} \mbox{ oral } LD_{50} \\ \mbox{ (combined sexes)} \\ = 2125 \mbox{ mg/kg bw,} \\ \mbox{ for males only:} \\ 1000 \mbox{ mg/kg bw} < \\ LD_{50} < 2000 \\ \mbox{ mg/kg bw} \end{array}$	(1980) K-CA 5.2.1/01 Report No. 800553

Method, guideline, deviations ¹ if	Species, strain, sex, no/group	Test substance	Dose levels, duration of exposure	Value LD ₅₀	Reference
1981) not yet available at time of study According to the most recent OECD guidelines 420, 423 and 425, several deviations exist, among which the most severe are the excess use of animals in this study in addition to the administration of too high doses Study is acceptable Report On Acute Oral LD50 In The Hamster Of Technical CGA 71818 Guideline not reported; earliest OECD 401 version (May 1981) not yet available at time of study According to the most recent OECD guidelines 420, 423 and 425, several deviations exist, among which the most severe are the excess use of animals in this study in addition to the administration of too high doses Study is acceptable Report On Acute	Hamster Chinese hamsters M and F 5/sex/group	Penconazole Tech. Purity: 88.4% Batch: P.2+3	Administration orally by gavage Observed for 1 h following treatment, hourly	5000 mg/kg bw. For females only 4000 < LD ₅₀ <5000 mg/kg bw. For males only LD ₅₀ >5000	(1980a) K-CA 5.2.1/02 Report No. 800555
Oral LD ₅₀ In The Rabbit Of Technical CGA 71818 Guideline not reported; earliest OECD 401 version (May 1981) not yet available at time of study According to the most recent OECD guidelines	New Zealand white rabbits M and F 3/sex/dose	Tech. Purity: 88.4% Batch: P.2+3	2000 mg/kg bw Administration orally by intubation Observed for 1 h following treatment, hourly for the first day, and for the following 14 days	rabbits is 971 mg/kg bw	K-CA 6.2.1/03 Report No. 800554

Method, guideline,	Species, strain, sex, no/group	Test substance	Dose levels, duration of	Value LD ₅₀	Reference
deviations ¹ if			exposure		
any 420, 423 and 425, several deviations exist, among which the most severe are the excess use of animals in this study in addition to the administration of too high doses Study is acceptable					City of Public to the City of Public tion of Public tion of Public tion of the City of the
Report On Acute Oral LD ₅₀ In The Mouse Of CGA 71818, Technical Guideline not reported; earliest OECD 401 version (May 1981) not yet available at time of study	Mice MAG (SPF) mice M and F 5/sex/dose	Penconazole Tech. Purity: 88.4% Batch: P.2+3	1500, 2000, 3000, 5000 mg/kg bw Administration orally by gavage Observed for 1 h following treatment, hourly for the first day, and twice daily for 14 days	oral LD ₅₀ in mice is 2444 mg/kg bw	(1980) X CA 62 1/04
According to the most recent OECD guidelines 420, 423 and 425, several deviations exist, among which the most severe are the excess use of animals in this study in addition to the administration of too high doses Study is acceptable	s broberty the	Shardis of our share of shirt	Administration orally by gavage Observed for 1 h following treatment, hourly for the first day, and twice daily for 14 days	The Tits on	

Table 9: Summary table of human data on acute oral toxicity

5	Type of Test	Relevant information about the study (as	Observation	Reference
	data/report substance	e applicable)	S	
	2, 0, 1,2,00	No studies available		

Table 10: Summary table of other studies relevant for acute oral toxicity

1	Type of study/data	Test substance	Relevant information about the study (as applicable)	Observation s	Reference
1	0		No studies available		

2.6.2.1.1 Short summary and overall relevance of the provided information on acute oral toxicity

Four different studies were conducted, on rat, hamster, rabbit, and mice. All studies were conducted before the earliest version of any OECD guideline was available. The most severe differences to the OECD guidelines 420,

423, and 425 effective today are the excess use of animals and the administration of too high doses. Despite this, the studies are acceptable.

In all 4 studies, penconazole tech. (purity 88.4%) was administered orally by gavage/intubation. In rat (5/sex/group), polyethylene glycol was used as vehicle, and four different doses (500, 1000, 2000 and 4000 mg/kg bw) were given. In hamster (5/sex/group), polyethylene glycol was used as vehicle, and three different doses (2000, 4000 and 5000 mg/kg bw) were given. In rabbit (3/sex/dose), carboxymethyl-cellulose 2% (w/v) in water was used as vehicle, and four different doses (ctr, 600, 1000 and 2000 mg/kg bw) were given. In mice (5/sex/dose), polyethylene glycol was used as vehicle, and four different doses (1500, 2000, 3000 and 5000 mg/kg bw) were given.

In two studies, rat and rabbit, the doses administered were toxic, leading to deaths of 5/5 male and 4/5 female rats at 4000 mg/kg bw, and 3/5 males and 0/5 females at 2000 mg/kg bw, and 3/3 male and female rabbits at 2000 mg/kg bw, and 2/3 male and female rabbits at 1000 mg/kg bw. For rat, acute oral LD₅₀ (combined sexes) = 2125 mg/kg bw, and for males only: 1000 mg/kg bw/day < LD₅₀ < 2000 mg/kg bw/day. For rabbit, acute oral LD₅₀ is 971 mg/kg bw

In the studies with hamster and mice, the doses administered were less toxic, leading to deaths of 1/5 male and 3/5 female hamsters at 5000 mg/kg bw, and 5/5 male and female mice at 5000 mg/kg bw, 4/5 male and 5/5 female mice at 3000 mg/kg bw, and 0/5 male and female mice at 2000 mg/kg bw. For hamster, acute oral LD₅₀ for combined sexes ~ 5000 mg/kg bw for. For females only, acute oral LD₅₀: $4000 < \text{LD}_{50} < 5000$ mg/kg bw. For males only, acute oral LD₅₀ is 2444 mg/kg.

2.6.2.1.2 Comparison with the CLP criteria regarding acute oral toxicity

According to the CLP criteria, classification for acute oral toxicity is warranted if the LD₅₀ (experimentally derived ATE) of a substance is ≤ 2000 mg/kg bw. For rat, acute oral LD₅₀ (combined sexes) = 2125 mg/kg bw, and for males only: 1000 mg/kg bw/day < LD₅₀ < 2000 mg/kg bw/day. For rabbit, acute oral LD₅₀ is 971 mg/kg bw. For hamster, acute oral LD₅₀ for combined sexes ~ 5000 mg/kg bw for. For females only, acute oral LD₅₀: 4000 < LD₅₀ <5000 mg/kg bw. For males only, acute oral LD₅₀ >5000 mg/kg bw. For mice, acute oral LD₅₀ is 2444 mg/kg. Overall, the rat is the preferred species for acute oral toxicity studies with 1000 mg/kg bw/day < LD₅₀ < 2000 mg/kg bw/day. However, other species can also be used, and an ATE-value should be chosen from the most sensitive species. For penconazole, the most sensitive species was the rabbit, with LD₅₀ = 971 mg/kg bw; thus, ATE = 971 mg/kg bw, and classification as 'harmful if swallowed' H302 according to Regulation (EC) No. 1272/2008 is warranted.

For rat and rabbit, classification as 'harmful if swallowed' H302 according to Regulation (EC) No. 1272/2008 is warranted. For hamster and mice, no classification according to Regulation (EC) No. 1272/2008 is warranted. Taken together, classification as 'harmful if swallowed' H302 according to Regulation (EC) No. 1272/2008 is warranted.

2.6.2.1.3 Conclusion on classification and labelling for acute oral toxicity

Harmonised classification proposed. Classification as Acute tox. 4 "Harmful if swallowed" (H302) is considered appropriate. ATE = 971 mg/kg bw

2.6.2.2 Acute toxicity - dermal route [equivalent to section 10.2 of the CLH report template]

Table 11: Summar	v table of anim	al studies on ac	cute dermal toxicity

Method, guideline, deviations ¹ if any	Species, strain, sex, no/group	Test substance	Dose levels, duration of exposure	Value LD ₅₀	Reference
Report On Acute Dermal LD ₅₀ In The Rat Of Technical CGA 71818 Guideline not reported; earliest OECD 402 version (May 1981) not yet available at time of study	Rat RAIf (SPF) M and F 5/sex/dose	Penconazole Tech. Purity: 88.4% Batch: P.2+3	0, 2000, 2500, 3000 mg/kg bw for 24 hours	dermal LD50 >3000 mg/kg bw	(1980b) K-CA 5.2.2/01 Report No. 800559

Method, guideline,	Species, strain, sex, no/group	Test substance	Dose levels, duration of	Value LD50	Reference
deviations ¹ if any			exposure		
According to the					
most recent					
OECD guideline					
402 several					
deviations exist,					
among which the					
most severe are					
the excess use of					Will of S
animals in this					all sites
study in addition					19 00 0
to the					" O. "(O, 'O;
administration of					U, 74 0. 7
too high doses.					0,7,0, 40, 46
Study is				~ O	C/2 60, 0,
acceptable					0,000

Table 12: Summary table of human data on acute dermal toxicity

Type of Test data/report substance	Relevant information about the study (as applicable) Reference				
No studies available					

Table 13: Summary table of other studies relevant for acute dermal toxicity

Type of Test study/data subs		vations Reference			
e	The state of the state)`			
No studies available					

2.6.2.2.1 Short summary and overall relevance of the provided information on acute dermal toxicity

Groups of 5 male and 5 female rats were administered a single dermal dose (0, 2000, 2500 or 3000 mg/kg bw) of penconazole tech., purity 88.4% in polyethylene glycole vehicle. The treated area was covered with an occlusive dressing that was fastened around the trunk of the animals by elastic bandage. Exposure lasted 24 hours, thereafter the dressing was removed and the skin rinsed with water and soap. Animals were observed for 1 hour following treatment and at hourly intervals for the remaining day 1. For the following 14 days, observations took place twice a day. No animal deaths were recorded up to the highest achievable dose of 3000 mg/kg bw. The most common clinical symptoms were dyspnoea, ruffled fur, and curved body position. All symptoms were reversible within 8 days after treatment. Gross pathology did not show any particular findings in any organ or tissue at necropsy.

2.6.2.2.2 Comparison with the CLP criteria regarding acute dermal toxicity

According to the CLP criteria, a substance is classified for acute dermal toxicity if the LD₅₀ value is \leq 2000 mg/kg bw. The acute dermal LD₅₀ for penconazole (ISO) in rat is >3000 mg/kg bw, thus, no classification is warranted according to Regulation (EC) No. 1272/2008.

2.6.2.2.3 Conclusion on classification and labelling for acute dermal toxicity

Data conclusive but not sufficient for classification.

2.6.2.3 Acute toxicity - inhalation route [equivalent to section 10.3 of the CLH report template]

Table 14: Summary table of animal studies on acute inhalation toxicity

Method, guideline,	Species, strain, sex, no/group	Test substance, form and		Value LC ₅₀	Reference
deviations 1 if any	, 0 1	norticle cize	ovnocuro		
J. J		(MMAD)	F		(1987) Report No. 871169
OECD TG 433	Rat,	Penconazole	4.046 mg/l air	LC ₅₀ (dust, nose	4400
(2018)	RAIT (SPF)	Aerosol	(technical highest	only) >4.046	(1987)
Deviations:	M, F	MMAD = 3.5 -	tration) (4 hr	mg/L air/4n	871160 No.
- the use of ten	J/dose level	3.4 (IIICaii. 4.4)	nose-only	attainable	011103
animals (5 males			aerosol)	concentration)	1, 6, 0,
and 5 females)			,	(10	10, 10, 10
instead of five (only				ve,	Con Con Con
males, or the most				11. 11	3,000
sensitive sex) in one				i io de	6, 510, " 41,
dose group				100 S X	o We sur
- only one				911 92 910	alli, ille
concentration tested (the highest				, Ki, 10,	30 -07.
attainable and close			40.	SUNTON	90,
to the limit			:10 ⁶³ 1,4	is apply your	5
concentration for			(10); (11)	1600 de 1/1	
classification of				0,00	
aerosols)			760 410 101	Sills of	
- a slightly		2	100 100 is	S1, M1, V6,	
higher mass median		jio	10,11,16	, 0, 11,	
equivalent		(0'	2 19, 6	25.00	
aerodynamic		10, 10	10 101 K	6/10	
diameter (4.4 µm) than the		Ka 16	100,001 al	0,	
recommended (4		The Work	3, 3/0, 10		
μm).		Dolly We.	101, is its		
F	.4.	5, Up (1), 'G	, S. J. J. S.		
These deviations are		CAL 400 900	00 111.		
considered not to	0, %	20.00	0 120		
influence the quality	o like	11, 40, 11/1	:,010		
or integrity of the	00/1/10	10,000	1,		
present study.	10× 11. 2018	10, 111, 101	in and in in in it is		
C41 :4-11 G	6, 18, 44,	M. M. Y.O.			
Study is acceptable.	11, 10, 11	6 x 2 x 2			

Table 15: Summary table of human data on acute inhalation toxicity

	Type of Test data/report substance	Relevant information about the study (as applicable)	Observations	Reference
٢	Ch. "Kli of by We	No studies available		

Table 16: Summary table of other studies relevant for acute inhalation toxicity

Type of study/data		Relevant information about the study (as applicable)	Observations	Reference		
No studies available						

2.6.2.3.1 Short summary and overall relevance of the provided information on acute inhalation toxicity

The study follows the OECD TG 433 (adopted 25th June 2018), with the following deviations:

- the use of ten animals (5 males and 5 females) instead of five (only males, or the most sensitive sex) in one dose group

- only one concentration tested (the highest attainable and close to the limit concentration for classification of aerosols)
- a slightly higher mass median equivalent aerodynamic diameter (4.4 μm) than the recommended (4 μm).

In RMS's opinion, these deviations do not influence the quality or integrity of the present study. The study was conducted as a limit test with 10 animals. In contrast, the TG currently in force recommends an approach avoiding using death/moribundity of animals as either an exclusive or an intended endpoint by incorporating evident clinical signs of toxicity at one of a series of fixed dose levels, as an endpoint on which to base classification of the test chemical. Notably, no animal deaths were recorded upon exposure to the highest achievable penconazole dose of 4.05 mg/L air. When testing aerosols according to OECD TG 433 (2018), the primary goal should be to achieve a respirable particle size (i.e. an MMAD of \leq 4 μ m). This is possible with most test chemicals at a concentration of 2 mg/L. Aerosol testing at greater than 2 mg/L should only be attempted if a respirable particle size can be achieved.

The study is considered acceptable. As no animal deaths were recorded upon exposure to the highest achievable penconazole dose of 4046 mg/m^3 , the acute rat inhalation LC₅₀ (dust, nose only) should be >4.046 mg/L air/4h.

2.6.2.3.2 Comparison with the CLP criteria regarding acute inhalation toxicity

Classification for acute inhalation toxicity under Regulation (EC) No 1272/2008 (Section 3.1 of Annex I) is required for substances (dusts and mists) with an acute inhalation LC_{50} value of ≤ 5 mg/L. The acute rat inhalation LC_{50} (dust, nose only) was >4.046 mg/L air/4h (highest achievable concentration) and penconazole (ISO) thus does not fulfil the CLP classification criteria for inhalation toxicity. Based on the available data, no classification is required for acute inhalation toxicity according to Regulation (EC) No 1272/2008.

2.6.2.3.3 Conclusion on classification and labelling for acute inhalation toxicity

Data conclusive but not sufficient for classification.

2.6.2.4 Skin corrosion/irritation [equivalent to section 10.4 of the CLH report template]

Table 17: Summary table of animal studies on skin corrosion/irritation

Method,	Species,	Test	Dose	Results	Reference
guideline,	strain,	substance	levels,	- Observations and time point of onset ²	
deviations ¹	sex,	0, 70	duration of	- Mean scores/animal	
if any	no/group	is by	exposure	- Reversibility	
		Oly Mo	11 10		
Report On	Rabbit	Penconazole	0.5 g	- Time 0, 24, 48 and 72 h upon removal of the	K-CA 5.2.4/01
Skin	0	P.2+3, 88.4%	The Mile	pads, and after 7 days of study initiation	
Irritation In	New	purity	24 h	D	
The Rabbit		110.00	V .XO	 very slight erythema of treated skin was 	
After Single	white	JI 613	Prohible 1	noted in all animals at patch removal (time 0).	
Application	, 96 ,	(0, 0)	(0)	All 24-72 h mean scores were 0	
Of	3M and	ilo, co	6,		
Technical	3F	3 112 0	0		
CGA71818	0,0,10	, 0,			
C). " (10 . ")	J. P. JULY	Silotie 6			
EPA	1 9 M	0.			
163.81-5	30, 011.				
(1978);	200				
earliest	6				
OECD 404					
version					
(May 1981)					
not yet					
available at					
time of study					
L. GIR					
No GLP					
Accepted					

Table 18: Summary table of human data on skin corrosion/irritation

Type of data/report	Test substance	Relevant	Observations	Reference		
		information about				
		the study (as				
		applicable)				
No studies available						

Table 19: Summary table of other studies relevant for skin corrosion/irritation

Type	of	Test substance	Relevant	Observations	Reference	
study/data			information		11, 18, 11,	
			about the study		(10), 10, 10, 10	
			(as applicable)		LO CO COLOR	
No studies available						

2.6.2.4.1 Short summary and overall relevance of the provided information on skin corrosion/irritation

Skin irritation was investigated in groups of 3 male and 3 female New Zealand White rabbits after exposure to 0.5 g of penconazole tech. (88.4%) (penconazole concentration 50% in vehicle 70:30 v/v propylene glycol + saline) for 24 h. The study was conducted in 1980, prior to GLP, and there are some deviations from the current OECD 404 guideline (2015), e.g., exposure time was 24 hours instead of 4 hours; however, this is considered a worst-case as compared to a 4 h exposure period. Despite the deviations, the study is considered acceptable. The results show a slight erythema of treated skin on both intact and scarified skin areas in all animals at patch removal (time 0 h); however, no irritation effects were noted at any other time point. The mean scores for erythema or oedema at 24, 48 and 72 hours were zero. According to CLP Regulation (EC) No. 1272/2008, penconazole tech. should not be classified as a skin irritant.

2.6.2.4.2 Comparison with the CLP criteria regarding skin corrosion/irritation

A substance is irritant to skin when it produces reversible damage to the skin following its application for up to 4 hours. The criteria for the irritation category 2 are that at least 2 of 3 tested animals have a mean score of \geq 2.3 and \leq 4.0 for erythema/eschar or for oedema from gradings at 24, 48 and 72 hours after patch removal or, if reactions are delayed, from grades on 3 consecutive days after the onset of skin reactions. Classification is also required for inflammation that persists to the end of the observation period (normally 14 days) in at least 2 animals, particularly taking into account findings such as alopecia, hyperkeratosis, hyperplasia, and scaling. Classification may also be required in some cases where there is pronounced variability of response among animals. In the single study available, the mean scores for erythema or oedema at 24, 48 and 72 hours were zero. According to CLP Regulation (EC) No. 1272/2008, penconazole (ISO) should not be classified as a skin irritant.

2.6.2.4.3 Conclusion on classification and labelling for skin corrosion/irritation

Data conclusive but not sufficient for classification.

2.6.2.5 Serious eye damage/eye irritation [equivalent to section 10.5 of the CLH report template]

Table 20: Summary table of animal studies on serious eye damage/eye irritation

Method, guideline, deviations ¹ if any	Species, strain, sex, no/group	Test substance	Dose levels duration of exposure	Results - Observations and time point of onset ² - Mean scores/animal - Reversibility	Reference
CGA71818 - Primary Eye Irritation	Rabbits	Penconazole FL 840833, 98.7% purity	100 mg	The eyes were examined at 1, 24, 48 and 72 hours post dosing and after 4, 7, and 10 days using the recommended scoring system.	

Study In	New	3 F: 30 sec	The washing of eyes (3 F) was performed	
Rabbits.	Zealand	in washed	too early; hence, the results of these animals	
	White	group	were not used in the scoring.	
Similar to				
OECD 405	3 M and 6	3 F + 3 M:	Mean scores (24-72 h):	
	F	unwashed	Corneal opacity: M: 0-0-0.67 F: 0-0-0.33	
GLP			Iris lesions: M: 0.33-0.67-0.33 F: 0.33-	
			0.33-0.33	
Acceptable			Conjunctivae redness: M: 1.0-1.0-1.0 F:	
			1.0-1.0-1.0	
			Conjunctivae chemosis: M: 0.67-1.0-0.67	110,8
			F: 0.67-0.67-1.0	10, 44
			Recovery was complete after 10 days.	, 6, 00, °

Table 21: Summary table of human data on serious eye damage/eye irritation

	Type of data/report	Test substance	Relevant information about the study (as applicable)	Observations Reference	
No studies available					

Table 22: Summary table of other studies relevant for serious eye damage/eye irritation

Type	of	Test substance	Relevant information Observations	Reference		
study/data			about the study (as	*		
			applicable)			
No studies available						

2.6.2.5.1 Short summary and overall relevance of the provided information on serious eye damage/eye irritation

In an eye irritation study, groups of 3 male and 6 female New Zealand White rabbits, received an instillation of 100 mg penconazole tech. into the conjunctival sac of the right eye. The study was conducted in 1988, according to GLP, but there are some deviations from the current OECD 405 guideline (2020). Despite these deviations, the study is considered acceptable.

Examination of the eyes for corneal opacity, iris lesions and conjunctiva redness and chemosis showed slight ocular irritation. The rinsing of eyes was performed too early (already 30 sec after instillation of the test material) in 3 female rabbits. For this reason, only the results of the unwashed groups (3 males + 3 females) were used for overall scoring. According to the criteria defined in the CLP Regulation (EC) No. 1272/2008, the mean scores for corneal opacity, iritis, conjunctival redness and conjunctival chemosis (oedema), following grading at 24, 48 and 72 hours after installation of the test material, were below the trigger for classification as an eye irritant. Therefore, penconazole tech. is regarded as non-irritant to the eye and no classification is proposed.

2.6.2.5.2 Comparison with the CLP criteria regarding serious eye damage/eye irritation

A substance is to be classified in category 1 (serious eye damage) if it produces a) in at least one animal effects on the cornea, iris or conjunctiva that are not expected to reverse or have not fully reversed within an observation period of normally 21 days; and/or b) in at least 2 of 3 tested animals, a positive response of: (i) corneal opacity ≥3 and/or (ii) iritis >1.5 calculated as the mean scores following grading at 24, 48 and 72 hours after installation of the test material.

A substance is to be classified in category 2 (eye irritation) if it produces in at least in 2 of 3 tested animals, a positive response of: (a) corneal opacity ≥ 1 and/or (b) iritis ≥ 1 , and/or (c) conjunctival redness ≥ 2 and/or (d) conjunctival oedema (chemosis) ≥ 2 calculated as the mean scores following grading at 24, 48 and 72 hours after installation of the test material, and which fully reverses within an observation period of 21 days

Examination of the eyes for corneal opacity, iris lesions and conjunctiva redness and chemosis showed slight ocular irritation. Mean scores (24-72 h) were: Corneal opacity: M: 0-0-0.67 F: 0-0-0.33; Iris lesions: M: 0.33-0.67-

0.33 F: 0.33-0.33; Conjunctivae redness: M: 1.0-1.0-1.0 F: 1.0-1.0-1.0; Conjunctivae chemosis: M: 0.67-1.0-0.67 F: 0.67-0.67-1.0. Recovery was complete after 10 days. Penconazole (ISO) does therefore not require classification for serious eye damage (Category 1) or for eye irritation (Category 2) according to Regulation (EC) No 1272/2008.

2.6.2.5.3 Conclusion on classification and labelling for serious eye damage/eye irritation

Data conclusive but not sufficient for classification.

2.6.2.6 Respiratory sensitisation [equivalent to section 10.6 of the CLH report template]

Table 23: Summary table of animal studies on respiratory sensitisation

Method, guideline, deviations ¹ if any	Species, strain, sex, no/group	Test substance	Dose levels, duration of exposure	Results	12/2	
	No studies available					

Table 24: Summary table of human data on respiratory sensitisation

Type of	Test	Relevant	Observations	Reference		
data/report	substance	information about	(0, 0, 0, 0, 0)			
		the study (as	410 ch 201 Will 201 ch.			
		applicable)	is is in his all in			
No studies available						

Table 25: Summary table of other studies relevant for respiratory sensitisation

Type of	Test	Relevant Observations	Reference			
study/data	substance	information about				
		the study (as				
		applicable)				
	No studies available					

2.6.2.6.1 Short summary and overall relevance of the provided information on respiratory sensitisation

No relevant findings on respiratory sensitisation from the studies provided.

2.6.2.6.2 Comparison with the CLP criteria regarding respiratory sensitisation Hazard class not assessed in this dossier.

2.6.2.6.3 Conclusion on classification and labelling for respiratory sensitisation Hazard class not assessed in this dossier.

2.6.2.7 Skin sensitisation [equivalent to section 10.7 of the CLH report template]

Table 26: Summary table of animal studies on skin sensitisation

Method, guideline, deviations ¹ if any	Species, strain, sex, no/group	Test substance	Dose levels duration of exposure	Results	Reference
CGA71818 Tech. – Skin Sensitization In The Guinea	Himalayan Spotted	CGA71818, Penconazole Tech. Purity: 96%	5% in peanut oil,	Erythema: 2/20 animals at 24 h and 3/20 animals at 48 h. Oedema: 1/20 animals at 24 and 48 h. Overall, 2/20 animals (24 h) and 3/20 animals	(1998) K-CA 5.2.6/01
Pig	(GOHI)		Epidermal	(48 h) were affected. The sensitisation rate of	

Method, guideline, deviations ¹ if any	Species, strain, sex, no/group	Test substance	Dose levels duration of exposure	Results	Reference
(Maximization	M and F	Batch: EN	induction:	penconazole in this maximisation test system	Report No.
Test)	10 animals	603012	50% in	was 15%	983118
OECD 406	in control		vaseline (48		
(1992)	and 20		h exposure)		
Study is	animals in		Epidermal		10 8
acceptable	test group (4		challenge:		B. 101.
	additional		20% in	e e	00000
	animals, 2		vaseline (24	Č	, , 06 60
	M + 2 F		h exposure)	N. Comments of the Comment of the Co	01,0
	were used in				0. 10: 16
	the pre-test)				Chi oth

Table 27: Summary table of human data on skin sensitisation

Type of	Test	Relevant	information	Observations Reference		
data/report	substance	about the applicable)	• `	ing is sulationally do		
No studies available						

Table 28: Summary table of other studies relevant for skin sensitisation

Ī	Type of	Test	Relevant	information	Observations	Reference	
	study/data	substance	about the	study (as	1000, 91		
			applicable)	Co Co	at the solition of the		
	No studies available						

2.6.2.7.1 Short summary and overall relevance of the provided information on skin sensitisation

Penconazole tech., purity 96%, was tested on 20 (penconazole-treated) and 10 (vehicle control) female albino Guinea Pigs of the GOHI strain (Himalayan Spotted) using the maximisation method. During intradermal induction pre-test, doses of 0.5, 1.0, 3.0, and 5.0% penconazole tech. in peanut oil were administered. During epidermal induction pre-test, doses of 10, 20, 30, and 50% penconazole tech. in vaseline were administered. According to the results, 5% penconazole tech. in peanut oil was used for intradermal induction, 50% penconazole tech. in vaseline was used for epidermal induction, and 20% penconazole tech. in vaseline was used for epidermal challenge. At day 0, an area of 5x5 cm was shaved, and three pairs of injections of 0.1 mL of the test article (5.0% in peanut oil) were then given in the shaved area so that one injection of each pair was on each side of the midline:

0.1 mL FCA/saline (1:1 v/v)

0.1 mL peanut oil (control) or 5% penconazole tech. in peanut oil (treatment group)

- 0.1 mL peanut oil, 50% w/v with 1:1 adjuvant/physiological saline mixture (control) or 5% penconazole tech. in 1:1 FCA/saline mixture

At day 8, a filter paper patch was fully loaded (approximately 0.4 g) with 50% test article in vaseline (treated group) or vaseline vehicle alone (control) and held in place with the occlusive dressing for 48 h. At day 21, the flanks of all animals were shaved immediately prior to treatment. One chamber loaded with the 20% test article in vaseline (highest non-irritating dose, approximately 0.35 mL) was placed on one flank (test flank) and one chamber loaded with the vehicle alone was placed on the other flank (vehicle flank) of the animals of both groups. The chambers were held in place with an occlusive dressing for 24 h. 24 and 48 h after the challenge application, dermal reactions (erythema and oedema) were examined and graded according to the Draize scoring scale. Body weights were recorded at the start and end of the test. Clinical symptoms and mortality were checked daily. Application sites were examined for skin irritation reactions 1 h after removal of the epidermal induction dressing on day 10.

For the pre-test, intradermal injection of penconazole tech. in peanut oil caused erythema and oedema (grade 1) at concentrations of 0.5, 1.0, 3.0 and 5%. When administered epidermally in vaseline, penconazole did cause erythema of skin (but no oedema) at concentrations of 30% and 50%, but not at 10 or 20%. For the main test, positive dermal skin reactions were observed on all animals that received the test material, but not in the vehicle controls. After challenge application, erythema was evident at the application site in 2/20 animals at 24 h and in 3/20 animals at 48 h. Oedema was evident at the application site in 1/20 animals at 24 h and in 1/20 animals at 48 h. Based on these observations, the sensitisation rate of penconazole in this maximisation test system was 15%. There were no skin responses among the vehicle control group. There was neither mortality nor remarkable clinical signs in the guinea pigs of the control or test group, and body weights were not affected by treatment.

In accordance with the CLP criteria, a substance is classified if there are positive results from an appropriate animal test, i.e. redness (Score ≥1) in ≥30% of the test animals. The sensitisation rate of penconazole in this test system was 15% only. According to Parallic Test animals.

Conclusion on classification and labelling for skin sensitisation

Data conclusive but not sufficient for classification.

2.6.2.8 **Phototoxicity**

Table 29: Summary table of studies on phototoxicity

Method, guideline, deviations ¹ if any	Test substance	Dose levels duration of exposure	Results North Control of	Reference
Penconazole -	CGA71818	1000; 316; 100;	No phototoxic potential. PIF = 0.9	Gehrke H.
In Vitro 3T3	(penconazole)	31.6, 10.0; 3.16;	2, 10, 01, 49	(2015)
NRU	Purity: 99.3%	1.00 and 0.316	el o est all	K-CA 5.2.7/01
Phototoxicity	Lot/batch:	μg/mL	10, 413 113	Report No:
Test	AMS204/3	60 min	101, 011, 100	146848
OECD 432	×,	incubation + 50	y, 00 11.	
(2004)	0)	min irradiation	NO ME	
Study is	s K	1, 1/13 . Ch x	11, 0,0	
acceptable	SIX NO		, 1/8	

Table 30: Summary table of human data on phototoxicity

Type of data/report substan	Relevant information about the study (as applicable)	Observations	Reference
11/10/10/00/10	No stud	ies available	

Table 31: Summary table of other studies relevant for phototoxicity

	Type of	Test	Relevant information	Observations	Reference		
)	study/data	substance	about the study (as				
	S		applicable)				
S	150	No studies available					

2.6.2.8.1 Short summary and overall relevance of the provided information on phototoxicity

Under the experimental conditions reported, the test item penconazole did not possess any phototoxic potential. A PIF of 0.9 was calculated.

The study is acceptable. With exception of two minor deviations, the study follows OECD TG 432 (2004), which was in force at the time when the supplemental dossier was submitted, as well as the revised version of this TG, adopted in 2019 (OECD TG 432, 2019). One minor deviation from the TG is a change of the type of serum added to the cell culture medium (10% calf serum instead of the recommended 10% Newborn calf serum) since cells cultivated with several new NCS batches failed the acceptance criteria. A second minor deviation is the applicant's reference to the half-effective concentration (EC $_{50}$) instead of the added concentration of the test chemical at which the response amounts to 50% of the original value (IC $_{50}$). According to the study report, no distinction is normally made in practical applications between the EC $_{50}$ representing the bio-available concentration of the substance which is actually sensed by target and the IC $_{50}$. In RMS opinion, none of these deviations influence the quality or integrity of the present study.

Although RMS agrees with the assessment and conclusions of the applicant, there are some concerns to consider this study as relevant to evaluate phototoxicity. According to the available UV/VIS results, no absorption maximum between 290 nm and 750 nm was observed at any pH for penconazole (Batch AMS 204/102, purity 99.5%). Absorption was seen in the range of 220-281 nm at acidic, neutral and alkaline conditions. The irradiation wavelength used in the test for phototoxicity (>330 nm) may therefore be considered as not appropriate for the assessment of the phototoxicity of penconazole. To RMS's opinion, the phototoxicity of penconazole can therefore not be concluded. However, in the context of risk assessment this is of no importance since penconazole will be exposed to the visible spectrum where the lower irradiation wavelengths of the UV spectrum are not relevant.

2.6.2.8.2 Comparison with the CLP criteria regarding phototoxicity

N/A

2.6.2.8.3 Conclusion on classification and labelling for phototoxicity

Data inconclusive.

2.6.2.9 Aspiration hazard [equivalent to section 10.13 of the CLH report template]

Table 32: Summary table of evidence for aspiration hazard

Type of study/data	06	Relevant information about the study (as applicable)	Observations	Reference
	0	No study ava	ailable	

2.6.2.9.1 Short summary and overall relevance of the provided information on aspiration hazard

No evidence of aspiration hazard.

- 2.6.2,9.2 Comparison with the CLP criteria regarding aspiration hazard Hazard class not applicable.
- 2.6.2.9.3 Conclusion on classification and labelling for aspiration hazard Hazard class not applicable.

2.6.2.10 Specific target organ toxicity-single exposure (STOT SE) [equivalent to section 10.11 of the CLH report template]

Table 33: Summary table of animal studies on STOT SE (specific target organ toxicity-single exposure)

Method, guideline, deviations ¹ if	Test substance, route of exposure, dose	Results - NOAEL/LOAEL - target tissue/organ	Reference
any, species,	levels, duration	- critical effects at the LOAEL	<u>;</u> (0 , 8
strain, sex, no/group	of exposure		Olo eky
	Penconazole Tech.	Acute rat inhalation LC ₅₀ (dust, nose only) >4.046	(1987)
Acute Aerosol Inhalation	(EN 603012,	mg/L air/4h, no classification for acute inhalation is	(1987) K-CA 5.2.3/01 Report No. 871169
Toxicity In The	96.1%)	required.	Report No. 871169
Rat	Inhalation, nose- only	moderate sedation, moderate to severe dyspnoea.	i elle lore ila la
OECD 403 -the use of ten	control group:	curved body position and ruffled fur, which were	Mis Solowill.
animals (5 males	2472 mg F1/m ³ air;	observed in all animals at the end of the 4 h	gar all well
and 5 females) instead of five	4046 mg	rats exposed to penconazole, symptoms were of a	4,00,011
(only males, or the	penconazole/m ³ air	slightly more severe grade than in the vehicle	2117 90
most sensitive sex)	4 hours	recovered completely on day 5 (vehicle control) "His
in one dose group -only one		group) and on day 7 post-exposure (test group),	O
concentration		respectively.	
tested (the highest attainable and		ige iois my vis on.	1100
close to the limit		104 20, 1911 On 10 20	•
concentration for		10 101 kg 01, 93;	
classification of aerosols)		nd not in and in its	
-a slightly higher		Louis all of its ide	
mass median equivalent	/<	o, We call light sign to	
aerodynamic		00, 90,000 60,000	
diameter (4.4 µm) than the	o by	Linis (86, " in 1915)	
recommended (4	08/1/10	8, 10, 20, 9, 11	
μm).	0,014.40	Life Will SUL	
Rat RAIf (SPF)	3 1100011111	mg/L air/4h, no classification for acute inhalation is required. No animal deaths, symptoms included slight to moderate sedation, moderate to severe dyspnoea, curved body position and ruffled fur, which were observed in all animals at the end of the 4 h inhalation exposure and thereafter. Furthermore, in rats exposed to penconazole, symptoms were of a slightly more severe grade than in the vehicle control group and lasted 2 days longer. All rats had recovered completely on day 5 (vehicle control group) and on day 7 post-exposure (test group), respectively.	
M, F	is light dist		
5/sex/group	s. K. W. C.	1, 40,	

Table 34: Summary table of human data on STOT SE (specific target organ toxicity-single exposure)

	Type of	Test	Route of exposure	Observations	Reference	
	data/report	substance	Relevant information about			
1	Mis in	the study (as applicable)				
Ö	No study available					

Table 35: Summary table of other studies relevant for STOT SE (specific target organ toxicity-single exposure)

Type of study/data substance		Relevant information about the study (as applicable) Observations		Reference	
No study available					

2.6.2.10.1 Short summary and overall relevance of the provided information on specific target organ toxicity – single exposure (STOT SE)

No relevant findings on specific target organ toxicity – single exposure

2.6.2.10.2 Comparison with the CLP criteria regarding STOT SE (specific target organ toxicity-single exposure)

According to the CLP criteria, classification for STOT-SE is appropriate when it has been demonstrated from human or animal data that specific non-lethal target organ toxicity arises from a single exposure to a substance. STOT-SE Category 1 and 2 is assigned on the basis of findings of 'significant' or 'severe' toxicity. In this context 'significant' means changes which clearly indicate functional disturbance or morphological changes which are toxicologically relevant. 'Severe' effects are generally more profound or serious than 'significant' effects and are of a considerably adverse nature with significant impact on health. Both factors have to be evaluated by weight of evidence and expert judgement. Category 3 is specifically assigned for transient effects on the respiratory system and/or narcotic effects. All significant health effects that can impair function, both reversible and irreversible, immediate and/or delayed are included

2.6.2.10.3 Conclusion on classification and labelling for STOT SE (specific target organ toxicity-single exposure)

Data conclusive but not sufficient for classification.

2.6.3 Summary of repeated dose toxicity (short-term and long-term toxicity) [section 10.12 of the CLH report]

2.6.3.1 Specific target organ toxicity-repeated exposure (STOT RE) [equivalent to section 10.12 of the CLH report template]

Table 36: Summary table of animal studies on repeated dose toxicity (short-term and long-term toxicity) STOT RE (specific target organ toxicity - repeated exposure)

		16 10 11 11 00 01	, ,
Method,	Test substance,	Results	Reference
guideline,	route of exposure,	- NOAEL/LOAEL	
deviations ¹ if any,	dose levels,	- target tissue/organ	
species, strain,	duration of	- critical effects at the LOAEL	
sex, no/group	exposure	of the office of the	
~ · · · · · · · · · · · · · · · · · · ·	-GP	ell Me Ho, Wis His	
28-Day Oral	Penconazole	NOAEL: 20 < 100	(1984)
Cumulative Toxicity	(91.7%, P. 11-14),	LOAEL: 100 < 500	K-CA 5.3.1/01
Study In Rats	Oral (gavage),	15 01 "HE 181	Report No. 820822
OECD 407:	First week	Target organ: Liver.	
-doses were	0, 20, 100, 500	20, 20, 74	
increased after one	mg/kg bw/day	Mortality: No deaths.	
week of treatment	From 2 nd week:	7.0	
-functional	0, 100, 500, 1000	Clinical signs: 3/10 (F/M) at top dose (vs. 0 in	
parameters reactivity	mg/kg bw/day	ctr): marked apathy, lateral body position after	
to stimuli, grip	Doses were	dose increase. Recovered after a few days.	
strength and motor	increased after one		
activity were not		Ophthalmology: No relevant findings.	
measured	28 days		
-bile acids were not	No A	Body weight: M high dose (-13%)	
measured	CO.		
-epididymis, prostate		Bw gain: M high dose 1 st week (-8.9%), F (-17%,	
+ seminal vesicles		-21%) and M (-16%, -35%) at both top doses after	
with coagulating		2 nd week.	
glands and heart			
were not weighed		Food consumption: M/F top dose weeks 2-4 (-	
Supportive only (as		19%, -12%).	
dose levels were increased on day 8 of		Water congruentions E ton dage (+210/)	
treatment)		Water consumption: F top dose (+31%).	
Rat		Haematology: F two top doses (<u>Haemoglobin</u> : -	
RAIf (SPF)		4.2%, -6.3%; <u>Haematokrit</u> : -4.7%, -7.0%). M 500	
(Sprague-Dawley-		mg/kg-group (Haemoglobin: -3.2%, Haematokrit:	
derived)		-2.3%).	
M, F			
10/sex/dose		Clinical chemistry: Albumin: M top dose	
		(+15%), F top dose (+9.0%); <u>ALAT</u> : M/F top	
		dose (+48%); <u>Bilirubin</u> : M top dose (+267%);	

Method,	Test substance,	Results	Reference
guideline,	route of exposure,	- NOAEL/LOAEL	
deviations ¹ if any,	dose levels,	- target tissue/organ	
species, strain,	duration of	- critical effects at the LOAEL	
sex, no/group	exposure		
		Creatinin: M top dose (+11%); Globulin: F two	
		top dose-groups (+16%, +27%); $\underline{\mathbf{K}}$: F top dose (-	
		32%); <u>Phosphate</u> : F top dose (+32%); <u>Total</u>	
		<u>protein</u> : M top dose (+11%), F two top dose-	110 10
		groups (+6.6%, +17%).	Sight of Orderial man
		Urine volume: M top dose (+70%), F two top	1,00° 00
		dose-groups (+38%, +108%).	11, 6, 6, 6,
		One and the Line May 1	(10, 18, 10, 16,
		Organ weight: <u>Liver</u> : M two top dose-groups (abs. +46%, +67%; rel. +56%, +102%), F two	0 00 00 00
		top-dose groups (abs. +39%, +76%; rel. +50%,	" Sille TO, Clay To
		+102%); Kidney: M two top dose-groups (rel.	The second
		+16%, +24%), F two top dose groups (abs. +17%,	Yar Will Toll
		+22%; rel. +27%, +41%); <u>Adrenal</u> : F two top	0,01,011
		dose-groups (abs. +13%, +12%). Macro- and histopathology: Enlarged liver, hepatocyte hypertrophy: M/F top dose 10/10 (vs. 0/10 in ctr), 500 mg/kg-group: 8/10 M, 3/10 F.	strip of Log to be to be strip of the strip
		Macro- and histopathology: Enlarged liver,	0.5
			' ill'
28-Day Subacute,	Penconazole		
Oral Toxicity Study	Batch A: 96.2%	LOAEL: 100	(1991)
In Rats	(w/w); batch B:	10 10 110 115 0h 1	K-CA 5.3.1/02
OECD 407:	96.1% (w/w), Batch	NOAEL: <100 LOAEL: 100 Target organ: Liver.	Report No. 901026
-For each batch of	A: op. 3-23.01.90; batch B: EN	NOAEL: <100 LOAEL: 100 Target organ: Liver. Mortality: M top dose 1/10 (B) sacrificed, F top	
test material only two dose levels were	603012	dose 1/10 (A) and 2/10 (B) sacrificed,	
tested (100 and 500	Oral (gavage)	The last significant	
mg/kg) with toxicity	0-100-500 mg/kg	Clinical signs: F top dose (B): Hunch-backed	
already at the low	bw/day 28 days	posture, piloerection, laboured breathing.	
dose-level and mortality at the high	20 days	Body weight/BW gain: No significant, dose-	
	×10000	- 100 100 com	
-functional	Self (No. 3)	Food consumption: F top dose (-3.3% (A), -4.2%	
parameters	100 M. 1016	(B)).	
reactivity to stimuli, grip strength and	5, 18, 214, 100	Sh do	
motor activity were	CV illo silli	Haematology: Platelets: M top dose (+30% (A),	
not measured	COL OLIVE	(A/B), F top dose (-15% (A) -18% (B))	
-epididymis,	Signification of the control of the	Food consumption: F top dose (-3.3% (A), -4.2% (B)). Haematology: Platelets: M top dose (+30% (A), +25% (B)); Prothrombin time: M top dose (-17% (A/B), F top dose (-15% (A), -18% (B)). Clinical chemistry: Glucose: F top dose (+44% (A), +39% (B)); Urea: M top dose (+37% (A)), F top dose (+19% (A)); Total protein: M top dose (+9.3% (A), +7.6% (B)), F 100 mg/kg-group (+5.3% (A), +4.1% (B)) 500 mg/kg-group (+7.1% (A), +8.7% (B)); Globulin: M top dose (+14%	
prostate + seminal	1. Car. 112 00	Clinical chemistry: Glucose: F top dose (+44%	
vesicles were not weighed	0112,01	(A), +39% (B)); <u>Urea</u> : M top dose (+37% (A)), F	
-only a limited	el.	(+9.3% (A), +7.6% (B)), F 100 mg/kg-group	
number of	IL.	(+5.3% (A), +4.1% (B)) 500 mg/kg-group (+7.1%	
	_	1 · ·	
examined histopathologically		(A), +12% (B)), F top dose (+10.6% (A), +16% (B)); Cholesterol: M top dose (+44% (A), +25%	
Supportive only (as		(B)), F top dose (+60% (A), +91% (B)); <u>ALAT</u> :	
only two dose levels		M top dose (+40% (A), +62% (B)), F top dose	
were tested, and because of the		(+18% (A), +39% (B)).	
deficiencies in dose		Organ weight: <u>Liver</u> : M 100 mg/kg-group (abs.	
level selection;		+9.3% (A), +11% (B), rel. +10.2% (A), +9.0%	
toxicity already at		(B)), M 500 mg/kg-group (abs. +43% (A), +58%	
the low dose and excessive toxicity at		(B), rel. +45% (A), +60% (B)), F 100 mg/kg-group (abs. +14% (B), rel. +13% (B)), F 500	
the high dose)		mg/kg-group (abs. +46% (A), +56% (B), rel.	
Rat		+46% (A), +52% (B)); <u>Kidney</u> : M top dose (abs.	
		+14% (A), +18% (B), rel. +16% (A), +19% (B)),	
		F top dose (abs. +23% (A), +20% (B), rel. +22%	

Method,	Test substance,	Results	Reference
guideline,	route of exposure,	- NOAEL/LOAEL	Reference
deviations ¹ if any,	dose levels,	- target tissue/organ	
species, strain,	duration of	- critical effects at the LOAEL	
sex, no/group	exposure		
	_		
Tif:RAIf (SPF)		(A) +14% (B)); Adrenal: M top dose (abs. +18%	
(Sprague-Dawley-derived)		(A), +14% (B)); <u>Thyroids</u> : M 100 mg/kg-group (abs. +9.9% (A) +43% (B), rel. +10.9% (A),	
M, F		(abs. +3.9% (A) +43% (B), lef. +10.9% (A), +40% (B)), M 500 mg/kg-group (abs. +32% (A),	C 0
10/sex/dose		+50% (B), rel. +34% (A), +53% (B)).	10 Ki.
			zidht of Public tol
		Macro- and histopathology: Hepatocyte	, 0, ,0, ,0
		hypertrophy: M top dose 10/10 (A), 9/10 (B) (vs.	14, 16, 0, 10
		0/10 in ctr), F top dose 7/10 8A), 8/10 (B) (vs. 0/10 in ctr); Hepatocellular necrosis: M top dose	40 Ms. 40,
		2/10 (A), 3/10 (B) (vs. 0/10 in ctr); <u>Thyroid</u>	S CCC XOC YOU
		follicle epithelium hypertrophy: M top dose 7/10	" Ollo 10, Cla VS.
		(A), 10/10 (B) (vs. 2/10 in ctr), F top dose 2/10	11. 26 61
2.16 d. W. 1.11	D 1	(A), 8/10 (B) (vs. 0/10 in ctr).	sight of proficial na
3-Month Toxicity Study In Rats	Penconazole (91.7%, P. 11-14)	NOAEL: (300) M: 19.4; F: 20.7 LOAEL: (3000) M: 202; F: 209 Target organ: Liver. Mortality: No deaths occurred.	(1982)
Guideline not	Oral (diet)	LOTAGE. (3000) W. 202, F. 203	K-CA 5.3.2/01
reported, OECD 408		Target organ: Liver.	Report No. 801194
came into force	3000 ppm)	Target organ: Liver. Mortality: No deaths occurred. Clinical signs: No clinical signs noted. Ophthalmology: No treatment-related effects.	· 1/1/
shortly after study	M: 0-2.0-	Mortality: No deaths occurred. Clinical signs: No clinical signs noted. Ophthalmology: No treatment-related effects. Body weight/BW gain: F top dose week 13 (-16%), F top dose weeks 1-13 (-26%).	5)
start -dose intervals	19.4-202 mg/kg bw/day; F:	Clinical signar Norlinis Chicago stad	٠.
exceeded the	0-2.1-20.7-	Clinical signs: No clinical signs noted.	(O,
recommended	209 mg/kg bw/day	Ophthalmology: No treatment-related effects.	•
optimum (2-4) but	90 days	0,000,100,100,110,110	
were within		Body weight/BW gain: F top dose week 13 (-	
recommended maximum (10).		16%), F top dose weeks 1-13 (-26%).	
-grip strength and	C	Food consumption: M top dose week 1 (-10.6%),	
motor activity were	2.5Y	E top doco wooks 1 12 (0 00/)	
not assessed, but this		11, 10co 470, 0s, "He	
may be considered	0, 700	Water consumption: M top dose week 12	
as in agreement with the guideline in	ix on the	(+15%), F top dose week 12 (+24%).	
absence of clinical	00, 11, 10,	Haematology: Nucleated RBC-normoblasts F	
signs indicating any	10, M. 40, 14	two top doses (0.25 and 0.30 vs 0.05 in ctr).	
functional deficits.	6/1/2 0/11:100		
-thyroid hormones (T4, TSH, T3), LDL	() till isti	Clinical chemistry: No dose-dependent,	
and HDL were not	. Kn. o. Wir	significant relevant changes compared with cir.	
measured.	S. 101, CO	Organ weight: <u>Liver</u> : M 300 ppm-group (abs.	
-oestrus cycle stage	S. Carl 112 00	+10.85, rel. +7.0%), M 3000 ppm-group (abs.	
was not determined	Olio, Ol	+22%, rel. +28%), F 300 ppm-group (abs. +7.4%,	
at sacrificethe following	Jr Sills	Water consumption: M top dose week 12 (+15%), F top dose week 12 (+24%). Haematology: Nucleated RBC-normoblasts F two top doses (0.25 and 0.30 vs 0.05 in ctr). Clinical chemistry: No dose-dependent, significant relevant changes compared with ctr. Organ weight: Liver: M 300 ppm-group (abs. +10.85, rel. +7.0%), M 3000 ppm-group (abs. +22%, rel. +28%), F 300 ppm-group (abs. +7.4%, rel. +8,0%), F 3000 ppm-group (abs. +21%, rel. +40%). Macro- and histopathology: Hepatocyte	
organs were not	ille	140/0).	
weighed:	9.	Macro- and histopathology: Hepatocyte	
epididymis, prostate		hypertrophy M top dose 20/20, F top dose 9/20	
+ seminal vesicles		(vs. 0/20 in ctrs).	
with coagulating glands as a whole			
complex), uterus,			
pituitary gland and			
thyroid gland.			
-no			
histopathological examination was			
conducted on the			
vagina, cervix and			
the coagulating			
glands.			
Supportive only			

Mothod	Toot substance	Dogula	Reference
Method,	Test substance,	Results - NOAEL/LOAEL	Reference
guideline, deviations ¹ if any,	route of exposure, dose levels,		
species, strain,	duration of	- target tissue/organ - critical effects at the LOAEL	
sex, no/group	exposure	- Critical Criccis at the LOALL	
sea, norgroup	caposure		
(due to deviations			
from the test			
guideline currently			
in place) Rat,			Mic 70
RAIf;			Olle ell.
20M+20F			0, 60, 60
3-Month Toxicity	Penconazole	NOAEL: (>100) M: 7.1; F: 7.3	6, 7,
Study In Rats	(91.7%, P. 11-14)		(1983)
OECD 408	Oral (diet)	Mortality: No deaths during test period.	K-CA 5.3.2/02
-grip strength and motor activity were	(0-10-30-100 ppm) M: 0-0.8-	Clinical signs: No treatment-related clinical	Report No. 821054
not assessed, but this	2.1-7.1 mg/kg	signs.	110 6, 810 x 11.
may be considered as	bw/day; F: 0-	40,00	1810 Mills Colls
in agreement with	0.8-2.1-7.3 mg/kg	Clinical signs: No treatment-related clinical signs. Ophthalmology: No treatment-related incidences. Body weight and bw gain: Comparable to ctr in all treatment groups, except increased weight (+9.8%) and weight gain in F 30 ppm-group. Food and water consumption: Comparable to ctr in all groups.	(1983) K-CA 5.3.2/02 Report No. 821054
the guideline in	bw/day	incidences.	1000
absence of clinical signs indicating any	90 days	Rady weight and hw gains Compared to as in	30,00
functional deficits.		all treatment groups except increased weight	"WIS
-thyroid hormones		(+9.8%) and weight gain in F 30 ppm-group.	
(T4, TSH, T3), LDL		10, 10 01 000	
and HDL were not		Food and water consumption: Comparable to	E.
measured.		Food and water consumption: Comparable to ctr in all groups. Haematology: No treatment-related dosedependent findings. Clinical chemistry: <u>Urea-N</u> : F top dose (-14%);	
-oestrus cycle stage was not determined		Haamatalogy: No treatment related dose	
at sacrifice.		dependent findings	
-the following		9/2/2/2/2010/01/20	
organs were not		Clinical chemistry: <u>Urea-N</u> : F top dose (-14%);	
weighed:	Stobelty Liberty	Total proteins: M top dose (+2.5%) w/increasing	
epididymis, prostate + seminal vesicles	14.5	trend, F top dose (+4.1%) w/increasing trend; <u>Phosphate inorg.</u> : M top dose (-13.7%)	
with coagulating	, V , C)	w/decreasing trend.	
glands as a whole	10, 90	With the state of	
complex), uterus,	Sign No X	Organ weight: Liver: M 10 ppm and 30 ppm-	
pituitary gland and	16, 1, 16,	groups (abs. +14%, +23%, rel. +11%, +15%), but	
thyroid gland.	Ol 24. WO 1	not evident at top dose.	
-no histopathological	illo ell illo	Macro- and histopathology: No treatment-	
examination was	(, till , ist , e	related dose-dependent findings.	
conducted on the	60 0 0 0 U		
vagina, cervix and	S. *101, EQ. (w/decreasing trend. Organ weight: Liver: M 10 ppm and 30 ppm-groups (abs. +14%, +23%, rel. +11%, +15%), but not evident at top dose. Macro- and histopathology: No treatment-related dose-dependent findings.	
the coagulating	1.031 1/12 00	*	
glands. Supportive only	01, 0,		
(due to deviations			
from the test	ILLE		
gardennie carrently	~		
in place)			
Rat,			
20M+20F			
90-Day Subchronic	Penconazole	NOAEL: (300) M: 23.2; F: 28.3	
Toxicity Study In	(98.7%, FL-840833)	LOAEL: (500) M: 37.5, F: 45.2	(1987b)
Albino Rats	Oral (diet)		K-CA 5.3.2/03
FIFRA § 82-1;	(0-10-100-	Target organ: Liver.	Report No. 6117-
while not being	300-500- 1000-2400 ppm)	Mortality No deaths	120
referenced in the report OECD 408	1000-2400 ppm) M: 0-0.8-	Mortality: No deaths.	
(1981) was in force	7.5-23.2-	Clinical signs: No treatment-related clinical	
at the time of the	37.5-72-179 mg/kg	signs.	
study	bw/day;		
	F: 0-1.0-9.8-	Ophthalmology: No incidences.	

Ī	Method,	Test substance,	Results	Reference
	guideline,	route of exposure,	- NOAEL/LOAEL	Kerer ence
	deviations ¹ if any,	dose levels,	- target tissue/organ	
	species, strain,	duration of	- critical effects at the LOAEL	
	sex, no/group	exposure		
	/ B 1	•		
	-histopathological	28.3-45.2-86-		
	examination was limited to the liver as	209 mg/kg bw/day	Body weight and bw gain: Bw F two top doses (-	
	a target organ.	90 days	6.2% and -10%), bw gain F two top doses (-8.9% and -15%).	:: (1)
	-grip strength and		and -13 /0).	10 x 10
	motor activity were		Food consumption: F top dose (-8.9%). M all	i our ell in
	not assessed.		groups deceased food consumption (-8-12%), no	0, 10, 10
	However, this may		dose-dependent effect.	1/1 18 010
	be considered as in		Hoomotology, No treatment related effects on	(10, 118, 410, 16,
	agreement with the guideline in absence		Haematology: No treatment-related effects on any parameter compared with ctr.	5 60 60 61
	of clinical signs		any parameter compared with etc.	" Sille "Or cia, " S
	indicating any		Clinical chemistry: <u>Urea-N</u> : M two top doses (+35% and +22%).	ile a le at le
	functional deficits.		(+35% and +22%).	Agic Mill Joll
	-thyroid hormones		Owen micht Live M 1000	COL TILL
	(T4, TSH, T3), LDL and HDL were not		Organ weight: <u>Liver</u> : M 1000 ppm-groups (re. +13%), M top dose (abs. +29%, rel. +31%, rel. to	and of Orderial Land
	measured.		brain +32%), F 500 ppm-group (rel. +10.2%), F	21.5
	-oestrus cycle stage		1000 ppm-group (abs. +18%, rel. +20%, rel. to	' ill'
	was not determined		brain +18%), F top dose (abs. +18%, rel. +29%,	5
	at sacrifice.		rel. to brain $+17\%$).	< .
	-the following (and several other) organs		Macro- and histopathology: Hepatocellular hypertrophy: M 1000 ppm-group 12/15 M/F	(6)
	were not weighed:		hypertrophy: M 1000 ppm-group 12/15, M/F	
	epididymis, prostate		2400 ppm-group 15/15, F 1000 ppm-group 10/15	
	+ seminal vesicles		(vs. 0/15 in ctrs); Hepatocellular degeneration: M	
	with coagulating		2400 ppm-group 5/15, F 2400 ppm-group 7/15	
	glands as a whole complex), uterus,	EN HILDER STEELS	(vs. 0/15 in ctrs); Hepatocytic vacuolization: M	
	pituitary gland and	,6/2	2400 ppm-group 11/15 (vs. 0/15 in ctr).	
	thyroid gland.		illi och mo sell ille	
	Supportive only	0,1,00	0,000	
	(due to deviations	14 00 W	ils ill la	
	from the test guideline currently	Selection of	3 011 110	
	in place)	,00 4. 000	Oli illo	
	Rat,	6, 184, 14, 10,	C. W. Y.O.	
	CD(SD)BR	CO THE STILL	(vs. 0/15 in ctrs); Hepatocytic vacuolization: M 2400 ppm-group 11/15 (vs. 0/15 in ctr).	
ļ				
	Toxicity Study In Dogs	1 Cheomazore	NOALL. (100) W. 5.5, 1. 5.6	(1094).
	Study In Dogs Not reported;	(91./%, P. 11-14) Oral (diet)	LOAEL: (500) M: 17.5; F: 18	(1984); K-CA 5.3.2/04
	guidelines in force	(0-100-500-	Target organ: Liver.	Report No. 801187
	at the time the study	5000/2500 ppm)		*
Q	was performed:	M**: 0-	Mortality: No deaths during test period.	
,	OECD 409 (1981)	3.4-18.2-132 mg/kg	Clinical signar Disasters show 12 11	
	-length of acclimatisation	bw/day; F**: 0-3.8-19.4-	Clinical signs: Diarrhoea observed in all groups, also ctr. Vomiting in the 5000 ppm-group (M/F).	
	period is not	137 mg/kg bw/day	and car. Comming in the 5000 ppin-group (W/1).	
	formally reported	90 days	Ophthalmology: Spot on cornea (one F), spot on	
7	(animals bred in-		lens (one F).	
1	house/same site).		Dody weight and besselve M/F (1 1 1 1	
)	-animals were observed daily for		Body weight and bw gain: M/F top dose body weight loss (-9-12%).	
	mortality and signs		Worgin 1000 (-7-12/0).	
	of local or systemic		Food consumption: M top dose (-34%), F top	
	toxicity, while the		dose (-36%).	
	guideline states that		Hermatale and H. Maria L. (2001) PRG 35	
	all animals should be inspected for signs of		Haematology: <u>Hb</u> : M top dose (-9.3%); <u>RBC</u> : M top dose (-10.3); <u>Lymphocytes</u> : M top dose	
	morbidity and		(+9.1%), F top dose (+12%); Eosinophils: M top	
	y and		dose (-75%); <u>Platelets</u> : M top dose (+9.2%), F top	

Method,	Test substance,	Results	Reference
guideline,	route of exposure,	- NOAEL/LOAEL	Reference
deviations ¹ if any,	dose levels,	- target tissue/organ	
species, strain,	duration of	- critical effects at the LOAEL	
sex, no/group	exposure		
/ 8 1	•		
mortality at least		dose (+35%). Of note, most values within HCD	
twice daily.		mean.	
-urine analysis was not performed		Clinical chemistry: Glucose: M top dose (-13%);	
midway through the		OCT: M top dose (+418%), F top dose (+480%);	10/10/10
study.		<u>Urea-N</u> : F top dose (-32%); <u>Globulin</u> : M top dose	0018-8(0)
-urine volume was		(+12%); <u>inorganic PO₄</u> : M top dose (+11%), F top	0, 60, 60
not investigated as		dose (+36%); <u>ALP</u> : M top dose (+390%), F top	10, 10, 10,
urine was collected		dose (+366%); $\underline{\gamma}$ -GT: M top dose (+1800%), F top	(10) 181 (10) 101
via catheterisation.		dose (+932%); <u>AST</u> : M top dose (+154%), F top	S COLOCULOTION
-The following organs were not		dose (+143%); <u>ALT</u> : M top dose (+790%), F top dose (+808%).	allo to take as
weighed: gall		dose (+808%).	16 6, 310, XU,
bladder, uterus,		Organ weight: Liver: M 500 ppm-group (abs.	data profession explains a la comment de la
thymus and spleen		+20%, rel. +15%), M 5000 ppm-group (abs.	0,00,100
(unclear whether		+30%, rel. +75%), F 500 ppm-group (abs. +15%,	1,10,00
gall bladder was		rel. +24%), F 5000 ppm-group (abs. +22%, rel.	and a political to a state of the state of t
included in liver weight and whether		+88%); <u>Kidney</u> : M top dose (abs. +16%, rel. +60%), F top dose (abs. +18%, rel. +55%);	"I'll's
parathyroids were		Gonads: M top dose (abs. +47%, rel. +33%);	Sing the children was
weighed together		dose (abs37%, rel17%).	
with thyroids).			O.
Study is acceptable.		Macro- and histopathology: M/F top dose:	
Dog, Beagle		Emaciation of all animals except one M;	
4M+4F		Cytoplasmic vacuolisation liver: M top dose 2/4 (vs. 0/4 in ctr); Inflammatory cell infiltration	
11/11/11		liver: M/F top dose 4/4 (vs. 0/4 in ctrs);	
		Hepatocyte necrosis: M/F top dose 4/4 (vs. 0/4 in	
		ctrs); <u>Reduced spermatogenesis</u> : M top dose 4/4	
	150.	(vs. 0/4 in ctr); <u>Epididymis cellular debris</u> : M top	
Toxicity	Penconazole	dose 4/4 (vs. 0/4 in ctr). NOAEL: (100) M; 3.1; F: 3.3	
Study In Dogs	(91.7%, P. 11-14)	LOAEL: (500) M: 16.9; F: 16.7	(1984);
Not reported;	Oral (diet)	ite to with the same	K-CA 5.3.2/04
guidelines in force	(0-100-500-	Target organ: Liver.	Report No. 801187
at the time the study	5000/2500 ppm)	Jo Will St.	
was performed: OECD 409 (1981)	M**: 0-3.0- 16.8-	Mortality: No deaths during test period.	
and OECD 452	10.8- 108 mg/kg bw/day;	Clinical signs: Diarrhoea observed in all groups,	
(1981)	F**: 0-3.2-16.5-	also ctr, less frequent towards end of study period.	
-the deviations listed	110 mg/kg bw/day	Vomiting in the 5000 ppm-group (M/F), only in F	
for the 90-day part of	1 year	after dose reduction.	
the study concerning length of	light of the plant	Ophthalmology: Spot on lens (one F).	
acclimatisation	, ell	Ophthamology. Spot on lens (one r).	
period, clinical signs	ILL	Body weight and bw gain: Bw F top dose (-	
and urine volume		13%), bw gain M top dose (-44%), bw gain F top	
-the following		dose (-58%).	
clinical pathology		Food consumption: M top does (110/) E tom	
parameters were not determined: MCV,		Food consumption: M top dose (-11%), F top dose (-5.8%). Drastically reduced during first	
MCH, MCHC,		weeks of study, gradually improved, especially	
activated partial		after dose reduction.	
thromboplastin time,			
total cholesterol		Haematology: Platelets: M top dose (+44%), F	
-the following		top dose (+40%), no clear dose response.	
organs were not weighed: uterus and		Clinical biochemistry: OCT: M top dose	
spleen (unclear		(+1273%), F top dose (+1700%); Globulin: M top	
whether		dose (+16%); <u>ALP</u> : M 500 ppm-group (+60%), M	
parathyroids were		top dose (+425%), F top dose (+381%); $\underline{\gamma}$ -GT: M	
weighed together		top dose (+504%), F top dose (+313%); <u>AST</u> : M	

Mothod	Tost substance	Dogulta	Reference
Method,	Test substance,	Results - NOAEL/LOAEL	Reference
guideline, deviations ¹ if any,	route of exposure,		
	dose levels, duration of	- target tissue/organ - critical effects at the LOAEL	
species, strain, sex, no/group		- crucal effects at the LOAEL	
sex, no/group	exposure		
with thyroids)		top dose (+157%), F top dose (+109%); <u>ALT</u> : M	
-there was no		top dose (+454%), F top dose (+683%).	
histopathological		•	
examination of		Organ weight: Liver: M top dose (abs. +27%,	110 18
cervix, coagulating		rel. +35%), F 500 ppm-group (abs. +27%, rel.	Mo. Ha
gland, seminal vesicles, vagina and		+28%), F top dose (abs. +46%, rel. +21%); <u>Kidney</u> : M top dose (abs. +12%, rel. +21%), F	10 00 011
the Harderian gland.		500 ppm-group (abs. +15%, rel. +15%), F top	10, 10, 100
Study is acceptable.		dose (abs. +25%, rel. +39%); <u>Adrenals</u> : M top	10, 10, 16, 10;
Dog,		dose (abs. +12%, rel. +22%), F top dose (abs.	of the city of
Beagle		+34%, rel. +54%).	The off of all
4M+4F and 2M+4F		<u> </u>	101, 010 (0) (1,0)
for		Macro- and histopathology: Cytoplasmic	1, x3 , 46, 47,
recovery		vacuolisation liver: M/F top dose 2/4 (vs. 0/4 in ctrs); Inflammation with fibrosis liver: M/F top	90 WI, WG,
		dose 4/4 (vs. 0/4 in ctrs); Hepatocyte necrosis: F	Sight of Ploper and Astronomy of Plant
		top dose 2/4 (vs. 0/4 in ctr); Reduced	and a property of the state of
		spermatogenesis: M top dose 2/4 (vs. 0/4 in ctr);	0.5
		Tubular autophy tesus. Ivi top dose 2/4 (vs. 6/4 in	· 1/1,
		ctr).	<u></u>
90-Day Subchronic	Penconazole	NOAEL: M: (500) 85; F: (1000) 237 LOAEL: M: (1000) 163; F: (2400) 614 Target organ: Liver	(1007)
Dietary Toxicity And Kinetic Study	(98.7%, FL-840833) Oral (diet)	LOAEL: M: (1000) 163; F: (2400) 614	(1987) K-CA 5.3.2/05
In Albino Mice	(0-10-100-	Target organ: Liver	Report No. 6117-
EPA guideline No.	300-500-	Target organic Edge	121
82-1; OECD 408	1000-2400 ppm)	Mortanty: 1 wo F (2400 ppm and 1000 ppm-	
(1981) not	M: 0-1.7-	group), one M (500 ppm-group).	
referenced but was in	17.1-51.8-		
force at the time of the study	84.7-163- 423 mg/kg bw/day;	Clinical signs: No clinical signs reported.	
-histopathological	F: 0-2.5-	Ophthalmology: No incidences.	
examination was	23.9-72.2-	opposition of the control of the con	
limited to the liver	115.6-237-	Body weight gain: M top dose (-13%), F top dose	
(expected target	614 mg/kg bw/day	(-17%) (vs pooled week 0 data).	
organ).	90 days	or the second	
-grip strength and motor activity were	90 days	Food consumption: No differences to ctr, trend to slightly higher consumption in F top dose	
not assessed, but this	ille of the state of the	(+8 5%)	
may be considered as	(, , , , , , , , , , , , , , , , , , ,	(10.5.10),-	
in agreement with	Elling lighting	Haematology: No differences to ctr.	
the guideline in	5. 10, 60	D)	
absence of clinical	1.30 11 00	Clinical chemistry: Total protein: M 1000 ppm-	
signs indicating any functional deficits.	Suration its per still its per	group (-8.3%), M top dose (-6.7%), F top dose (-10%); <u>Albumin</u> : F top dose (-14%); <u>A/G ratio</u> : F	
-thyroid hormones		top dose (-13%); <u>Cholesterol</u> : M 1000 ppm-group	
(T4, TSH, T3), LDL	ILLO	(-31%), M top dose (-61%), F 1000 ppm-group (-	
and HDL were not	<i>3</i>	36%), F top dose (-40%); <u>ALT</u> : M top dose	
measured.		(+170%); <u>γ-GT</u> : M 500 ppm-group (-75%), M	
-oestrus cycle stage		1000 ppm-group (-92%), M top dose (-100%).	
was not determined		Ourses	
at sacrificethe following		Organ weight: <u>Liver</u> : M 500 ppm-group (abs. +11%, rel. +10.5%), M 1000 ppm-group (abs.	
organs were not		+11%, rel. +10.5%), M 1000 ppin-group (abs. +21%, rel. +17%), M top dose (abs. +34%, rel.	
weighed: testes,		+42%), F top dose (abs. +24%, rel. +32%);	
epididymis, prostate		Kidney: F top dose (abs11.5%).	
+ seminal vesicles			
with coagulating		Macro- and histopathology: Hepatocyte	
glands as a whole		hypertrophy: M 1000 ppm-group (6/15), M top	
complex), uterus, thymus, pituitary		dose (14/15), F top dose 7/15 (vs. 0/15 in ctrs); Hepatocyte degeneration: M top dose 7/15 (vs.	
gland and thyroid		0/15 in ctr); Hepatocyte vacuolisation: M top dose	
gland.		, , <u></u>	

Method,	Test substance,	Results	Reference
guideline,	route of exposure,	- NOAEL/LOAEL	ACICI CIICC
deviations ¹ if any,	dose levels,	- target tissue/organ	
species, strain,	duration of	- critical effects at the LOAEL	
sex, no/group	exposure		
Supportive only		10/15 (vs. 0/15 in ctr); Coagulative necrosis liver:	
Mouse,		M top dose 4/15 (vs. 0/15 in ctr).	
CD-			
1(ICR)BR 15M+15F			Pilo 13
90 Day	Penconazole	NOAEL: (500) M: 69; F: 87	VI (8)
Preliminary	(97.7%, WS007001)	LOAFI (1500) M 220 F 274	(2002)
Carcinogenicity	Oral (diet)		K-CA 5.3.2/06
Study In Mice This study was	(0-100-500- 1500-3000-	Target organ: Liver	Report No. CTL/PM12
conducted as a	5000 ppm)	Mortality: 5000 ppm-group: All animals killed N	K-CA 5.3.2/06 Report No. CTL/PM12 35
preliminary	M: 0-14-69-	for humane reasons. Two additional animals	"Syla do "Cia do
carcinogenicity	229-437-837 mg/kg	died/were killed (3000 ppm-group and 500 ppm-	I TO TO THE
study and was not	bw/day;	group).	you will was
intended to comply with any regulatory	F: 0-18-87- 274-545-983 mg/kg	Clinical signs: No treatment-related clinical signs	1, co, cii,
guidelines. OECD	bw/day	in surviving animals.	1 10°
408 (1998) was in	90 days	in Sills dilled	0:5
force at the time of		Body weight gain: M/F 5000 ppm-group (-11-	E III.
the study.		17%, before killing in second week). M 1500	0,
-No haematology and no		ppm-group (-19%), M 3000 ppm-group (-52%), F 1500 ppm-group (-9.8%), F 3000 ppm-group (-	٥(٠
ophthalmological		38%).	6
examination		The sub all sub se on	
performed.		Clinical chemistry: Cholesterol: M 500 ppm-	
-histopathological examination was		group (-10%), M 1500 ppm-group (-43%), M 3000 ppm-group (-54%), F 100 ppm-group (-	
limited to the		13%) F 500 ppm-group (-29%) F 1500 ppm-	
adrenals, brain,	orobeity the god	group (-42%), F 3000 ppm-group (-58%); <u>ALP</u> :	
epididymis, ovary,	15	M 1500 ppm-group (+22%), F 3000 ppm-group	
kidney, liver and	(V) C	(+25%); <u>Albumin</u> : F 1500 ppm-group (-5.7%), F	
testisgrip strength and	,0,900	3000 ppm-group (-6.5%); <u>Total protein</u> : F 1500 ppm-group (-7.7%), F 3000 ppm-group (-8.1%);	
motor activity were	Second in the se	Triglycerides: M/F 3000 ppm-group (-20%);	
not assessed.	00 11 10.	<u>Calcium</u> : F 3000 ppm-group (-4.4%).	
-thyroid hormones	Sication its of	in with the	
(T4, TSH, T3), LDL, HDL, sodium,	dis 130 of 1	Organ weight: Liver (adjusted for body weight): M 500 ppm-group (+12%), M 1500 ppm-group	
potassium, blood	(, , , , , , , , , , , , , , , , , , ,	(+33%), M 3000 ppm-group (+48%), F 1500	
urea nitrogen, were	60 0 0 Us	ppm-group (+10%), F 3000 ppm-group (+28%).	
not measured.	S. 10, 80	Adrenals (adjusted for body weight): F 3000 ppm-	
-oestrus cycle stage	(31 , 112 10)	group (+52%); <u>Epididymides</u> : M 3000 ppm-group (abs21%, rel5.8%, adjusted for body weight -	
was not determined at sacrifice.	01,0	(abs21%, fet3.8%, adjusted for body weight - 22%).	
-the following	inertorite per	2270).	
organs were not		Macro- and histopathology: Hepatocyte	
weighed: prostate +	ř	, II C I	
seminal vesicles		4/10 (vs. 0/10 in ctrs); Increased nuclear	
(with coagulating		pleomorphism liver: M ≥1500 10/10 (vs. 0/10 in ctr).	
glands as a whole complex), thymus,		Cti).	
pituitary gland and			
thyroid gland.			
Supportive only			
(considering the			
purpose of the study and due to			
deviations from the			
test guideline			
currently in place)			
Mouse, C57BL/10J			
CJ/DL/10J	l	<u> </u>	I

Method, guideline, deviations ¹ if any, species, strain, sex, no/group	Test substance, route of exposure, dose levels, duration of exposure	Results - NOAEL/LOAEL - target tissue/organ - critical effects at the LOAEL	Reference
fCD-1 10M+10F			
21-Day Repeated Dose Dermal	Penconazole (91.7%, P. 11-14)	NOAEL: M/F: 2000	(1983) K-CA 5.3.3/01
Toxicity Study in Rabbits	M/F: 0-1000-1500-	Mortality: No deaths.	Report no 820206.
OECD 410 -Initial weight was 1.5-3 kg versus the	2000 mg/kg bw/day 21 days	Clinical signs: No treatment-related clinical signs.	idit of 101 105
recommended 2-3 kg.		Body weight and bw gain: Not affected by treatment.	s lection et a
decarboxylase was not measured		Haematology and Clinical chemistry: No treatment-related, dose-dependent, biologically relevant findings.	R-CA 5.3.3/01 Report no 820206.
Study is acceptable Rabbit, NZW;		Organ weight: No treatment-related, dose-	14 90 cm
5M+5F		dependent, biologically relevant findings. Macro- and histopathology: No treatment-	s illis
		related, dose-dependent, biologically relevant findings.	Ø.

^{*} exceeding the range of historical control data provided by the applicant for the renewal

Table 37: Summary table of human data on repeated dose toxicity STOT RE (specific target organ toxicity-repeated exposure)

Type of data/report		Route of exposure Relevant information about the study (as applicable)	Observations	Reference				
	No study available							

Table 38: Summary table of other studies relevant for repeated dose toxicity STOT RE (specific target organ toxicity-repeated exposure)

	J 1	Test	Relevant	Observations	Reference			
	study/data	substance	information					
	2, 5	S. Alle Co.	about the study					
	THE SUL	08. Pllo *	(as applicable)					
4	01. 101. 10	No study available						

2.6.3.1.1 Short summary and overall relevance of the provided information on specific target organ toxicity – repeated exposure (short-term and long-term toxicity)

The short-term oral toxicity of penconazole was evaluated by means of two 28-day (gavage) and three 90-day (diet) studies in rats, two 90-day dietary studies in mice, and by means of a combined 90-day and one-year capsule feeding study in the dog. In all three species, the liver was the main target organ following oral administration of penconazole. In addition, some evidence for a disturbance of protein and lipid metabolism was found in all species. Histopathological evidence for organ toxicity was accompanied by reductions in body weight gain and food consumption.

In the 28-day gavage studies in rats, clinical signs and/or mortality, reduced body weight development and food consumption, and some changes in haematology parameters (not necessarily consistent between the two available studies) were seen at dose levels ≥500 mg/kg bw/day. Changes in clinical pathology parameters – at least partly associated with an induced liver function (increased ALAT, increased albumin, globulin or total protein, increased cholesterol) - were most marked at 1000 mg/kg bw/day, with occasional changes seen already at 500 mg/kg bw/day.

^{**} based on recalculated intake of penconazole during the renewal

Liver weights were increased at ≥ 100 mg/kg bw/day and associated with hepatocyte hypertrophy and other histopathological findings at ≥ 500 mg/kg bw/day. Kidney and adrenal weights were increased at ≥ 500 mg/kg bw/day, but only the latter was associated with adrenal cortical atrophy in females in one study at 500 mg/kg bw/day. Observed variations in thyroid weight were inconsistent between the two studies and the two sexes: in the 1st study, thyroid weights were increased in females and somewhat decreased in males (at 1000 mg/kg bw/day) while the situation was reversed in the 2^{nd} study, where an increase in thyroid weight was seen in males and a slight decrease in females (500 mg/kg bw/day). However, in the 2^{nd} study, increased incidences of thyroid follicular hypertrophy were seen in both sexes at 500 mg/kg bw/day. Considering both available 28-day studies, the NOAEL is considered to be between 20 and 100 mg/kg bw/day.

In the 90-day feeding studies in rats, reduced body weight gain and food consumption was seen at ≥1000 ppm primarily in females (only slight effects at 3000 ppm in males). Water consumption was increased in both sexes at 3000 ppm. A number of clinical pathology parameters achieved statistical significance in the available studies at higher dose levels, but most of these variations were within the range of available historical control data (HCD), except from increased cholesterol (3000 ppm) and blood urea nitrogen (≥1000 ppm). Absolute and relative liver weights were increased at ≥1000 ppm and associated with increased incidences of hepatocyte hypertrophy (both sexes), hepatocyte vacuolation (males) and hepatocytic degeneration (males). Low incidences of hepatocyte hypertrophy and hepatocytic vacuolisation were also seen at 500 ppm-treated males in one study. Considering the three available 90-day studies, the overall subchronic NOAEL for rats is considered to be 300 ppm, corresponding to 19.4/20.7 and 23/28 mg/kg bw/day in males/females from two of the studies, respectively. This is in line with the previous evaluation (DAR, 2007) and EFSA's conclusion on the peer review of penconazole (EFSA, 2008), where the relevant overall oral NOAEL in rats was set to 25 mg/kg bw/d (90-d rat, overall NOAEL).

Two 90-day oral (feeding) toxicity studies are available in mice. Excessive toxicity (body weight loss) was observed at 5000 ppm in the 2nd study and animals were sacrificed in the 2nd week. Reduced body weight gain was seen in the 1st study at 2400 ppm and at ≥1500 ppm in the 2nd study. Food utilisation was also reduced in the 2nd study at ≥1500 ppm. Changes in blood biochemistry parameters were also seen at higher dose levels and comprised reduced total protein and albumin (more marked in females), reduced A/G ratio (1st study only), reduced cholesterol, increased ALT (1st study in males only), and reduced triglycerides (2nd study). The liver was the primary target organ with increased weight (≥500 ppm) and histopathological findings (e.g. hepatocyte hypertrophy also at ≥500 ppm) with males showing more marked effects as compared to females. However, during the reassessment, it has been noted that the reported effects at 500 ppm were quite mild with an increase in liver weight of 10-12% compared to controls, associated with only a slight increase in hepatocyte hypertrophy in the 1st study. In contrast to the conclusion during the previous evaluation (DAR, 2007), these changes at 500 ppm can be considered as an adaptive response to the increased metabolic load, and not adverse. During the previous evaluation it was concluded that the overall NOAEL in short term mouse studies was 300 ppm, corresponding to an intake value of 52 mg/kg bw/day. When considering both available 90-day studies in mice, it is now proposed that the overall subchronic NOAEL for mice should be 500 ppm, corresponding to an intake value of 69 mg/kg bw/day.

A combined 90-day/1-year oral (feeding) toxicity study is available in dogs. Due to excessive toxicity (body weight loss, markedly reduced food consumption) the top dose level had to be reduced from 5000 to 2500 ppm from week 20 onwards. While top dose animals then partly compensated for the earlier body weight loss in the remaining treatment period (up to 1 year), overall body weight development was still reduced. A relation to treatment was not excluded for a slightly lower body weight gain over the 1-year period at 500 ppm (females) but could also have been due to the slightly higher body weight at start of the study in this group. At the top dose level, haemoglobin and erythrocyte count and blood glucose were transiently decreased (90-day part) but normalised after the dose level had been reduced towards the end of the 1-year treatment period. However, several changes were seen consistently at the top dose level within the 90-day part of the study and after the dose level had been reduced to 2500 ppm (1year part of the study): increased globulin and inorganic phosphate (males), and markedly increased liver-related enzymes in both sexes. Liver weights were increased at ≥500 ppm and were associated with histopathological findings at the top dose level, both at the 90-day and 1-year sacrifice (cytoplasmatic vacuolisation, inflammatory cell infiltration (90-day) or inflammation with fibrosis (1-year), hepatocyte necrosis). Increased kidney weight (at 90-day and 1-year sacrifices) at the top dose level was not associated with any histopathological findings. Reduced testes weight and reduced spermatogenesis (90-day and 1-year sacrifices) and tubular atrophy (1-year sacrifice), as well as cellular debris in the epididymis (90-day sacrifice only) was noted at the top dose level. These effects may be considered due to the body weight loss during the first 19 weeks of the study (sensitive time window during sexual maturation of dogs) and/or indicate an adverse endocrine effect. Also, a slight increase in c-cell hyperplasia was noted at the top dose level only at the 90-day sacrifice. Based on the reduced body weight gain and hepatotoxicity observed in the combined 90-day/1-year study, the subchronic NOAEL for dogs was considered to be 100 ppm, corresponding to 3.4 and 3.8 mg/kg bw/day for males and females for the 90-day part of the study, and 3.0 and 3.2 mg/kg bw/day for males and females for the 1-year part of the study, respectively. The relevant overall

NOAEL in dogs, based on this combined 90-day/1-year study, will still be 3 mg/kg bw/day, as previously concluded (EFSA, 2008).

The subchronic toxicity of penconazole was also studied by the dermal route in rabbit. In the available 21-day dermal toxicity study, no relevant treatment-related findings were noted up to the top dose level of 2000 mg/kg bw/day. Consequently, the NOAEL for local irritation was 2000 mg/kg bw/day, and the NOAEL for systemic toxicity higher than 2000 mg/kg bw/day. However, as pointed out earlier (Penconazole addendum DAR, 2008), these results are compromised by the fact that the test material was applied as a solid powder moistened with water, in which penconazole is known to be only poorly soluble.

2.6.3.1.2 Comparison with the CLP criteria regarding STOT RE (specific target organ toxicity-repeated exposure)

According to the CLP criteria, effects considered to support classification for specific target organ toxicity following repeated exposure are:

- Morbidity or death resulting from repeated or long-term exposure

Morbidity resulting in sacrifisation were seen in one 28-days study in rats and one 90-days study in mice both at the top dose level.

- Significant functional changes in the central or peripheral nervous systems or other organ systems

No relevant findings in any of the studies affecting the nervous system. Functional changes in the liver occurred in the 28-days studies in rats, 90-days studies in mice and 1-year study in dogs, all at the top dose level.

- Any consistent and significant adverse changes in clinical chemistry, haematology or urinalysis parameters

Significant changes in clinical chemistry, mostly related to liver function, was seen at the higher doses in all studies. Changes in haematology were seen in some of the studies at the top doses, and also some changes in urinalysis parameters.

- Significant organ damage noted as necropsy and/or subsequently seen or confirmed at microscopic examination

Hepatocyte hypertrophy and other histopathological findings were seen in all studies at the top doses.

In the combined 90-days/1-year study in dogs, cytoplasmatic vacuolisation, inflammatory cell infiltration (90-day) or inflammation with fibrosis (1-year), and hepatocyte necrosis were observed. In addition, some incidences of adrenal and thyroid hypertrophy at the top doses were reported.

In the 90-day oral rat study, evidence of hepatotoxicity was also found. Observations included dose-related centrilobular hypertrophy of hepatocytes (in males 0/15, 3/15, 12/15 and 15/15 for 300, 500, 1000 and 2400 ppm, weaker in females), hepatocellular degeneration around the central vein, and an increase in the incidence of hepatocytic vacuolisation (in males 0/15, 1/15, 5/15 for 500, 1000 and 2400 ppm, weaker in females).

Multifocal or diffuse necrosis, fibrosis or granuloma formation in organs with regenerative capacity

No relevant findings

Morphological changes that are potentially reversible but provide clear evidence of marked organ dysfunction

No relevant findings

- Evidence of appreciable cell death in vital organs incapable of regeneration

No relevant findings.

In summary, among the reported repeated dose toxicity studies on rats (three studies), mice (two studies) and dogs (two studies), the dog appeared to be the most sensitive species, with an overall NOAEL of 3 mg/kg bw/day (100 ppm). Severe liver changes, below the guidance value, are noted at 500 ppm in dog studies (necrosis in 1 male out of 4 in the 90-day study and fibrosis in the 1-year study) and hepatic degeneration is also observed in one rat 90-day study at 1000 ppm (72 mg/kg bw/day) and the effective dose level of 500 ppm (16.9-18 mg/kg bw/day).

2.6.3.1.3 Conclusion on classification and labelling for STOT RE (specific target organ toxicity-repeated exposure)

Harmonised classification proposed. The Committee for Risk Assessment (RAC) previously (RAC, 2012) concluded that classification for specific target organ toxicity after repeated exposure to penconazole is considered not required according to Classification Regulation (EC) No 1272/2008. The reported liver changes in dogs at 500 ppm and in rats at 1000 ppm (below the guidance value) were considered as only adaptive responses to the increased metabolic load, and it was pointed out that although some of these effects could be considered as severe (necrosis and fibrosis in dogs and hepatic degeneration in rats), they appeared as isolated cases. In RMS' opinion, it should be rediscussed whether the observed cases with fibrosis in dogs should be considered as isolated cases. Awaiting the outcome of further discussion on this, RMS proposes that classification and labelling for STOT RE Cat. 2, H373 (liver) is warranted according to Regulation (EC) No. 1272/2008.

2.6.4 Summary of genotoxicity / germ cell mutagenicity [equivalent to section 10.8 of the CLH report template]

The genotoxicity of penconazole has been investigated in several guideline- and GLP-compliant *in vitro* tests and one *in vivo* bone marrow micronucleus tests using different batches of penconazole.

As the phototoxicity test revealed no phototoxic potential of penconazole, a photomutagenicity test is not required, in accordance with EFSA technical report 2016 (Outcome of the pesticides peer review meeting on general recurring issues in mammalian toxicology, EFSA Supporting publication 2016:EN-1074).

In vitro

The gene mutation potential of penconazole has been investigated *in vitro* in bacterial gene mutation studies (Ames tests) and in HPRT mammalian cell gene mutation assay (V79 cells). The clastogenic potential of penconazole was investigated *in vitro* in an chromosomal aberration assay (CHO), which is considered supplementary. An unscheduled DNA synthesis test was conducted, also considered supplementary.

Table 39: Summary table of genotoxicity/germ cell mutagenicity tests in vitro

	Method, guideline, deviations ¹ if any		Relevant information about the study including rationale for dose selection (as applicable)	Observations /Results	Reference
1	Salmonella/Mammalian-	Penconazole	S. typhimurium	Negative (±S9)	Deparade (1984)
)	Microsome	Tech.	TA98, TA100,		K-CA 5.4.1/01
	Mutagenicity Test	(91.7%,	TA1535,	Cytotoxicity at 2560 µg/plate	Report No 830750
)	1 st Ames test;	P.11-14)	TA1537), plate		
	OECD 471		incorporation		
8			assay, ±S9	Positive controls induced the	
	GLP		5 concentrations	appropriate increases in	
			from 10 to	mutant frequencies	
	Only four bacterial		2560 µg/plate		
	strains (all S.		(progression		
	typhimurium strains)		factor 4), acetone		
	were tested, instead of				
	five as recommended;		(three replicates)		

	lethod, guideline,	Test	Relevant	Observations /Results	Reference
de	eviations ¹ if any	substance	information about the study including rationale for dose selection (as applicable)		
	rain <i>E. coli</i> WP2 or <i>S.</i> phimurium TA102 was		(as applicable)		Deparade (1999) K-CA 5.4.1/02 Report No 983114
	ot included;				, bright
	ne historical negative olvent/vehicle) and				1, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1
	ositive control data ere not provided				6 Children Child
	ıpplementary			, y C	collegion cità de
	almonella and scherichia/	Penconazole Tech.	S. typhimurium (TA98, TA100,	Negative (±S9)	Deparade (1999) K-CA 5.4.1/02
	ammalian-Microsome utagenicity Test	(96.1%,	TA102, TA1535,	Precipitation at 5000 µg/plate in S.t. strains (±S9)	Report No 983114
	d Ames test;	EN 603012)	TA1537), E.coli (WP2 uvrA),	Cytotoxicity at 1667 and 5000	any document
0	ECD 471		plate incorporation	μg/plate in S.t. strains (±S9)	
G	LP		and pre- incubation assay,	1st confirmatory assay: Growth inhibition observed in a wide	01.
A	cceptable		±S9 S.typhimurium	concentration range in strains TA100, TA102, and TA1537 and	
			strains: Range- finding assay:	(±S9), a 2nd confirmatory experiment was conducted in	
			20.6 – 5000 µg/plate (±S9),	these strains with concentrations of 12.5 to 500 µg/plate.	
		,0	original assay:	:101, 418, 418.	
			125 - 2000 μg/plate (±S9),	Appropriate positive & solvent controls gave the	
		130,00	1 st confirmatory assay: 61,73 -	expected results	
	,0	50, 41, W	5000 μg/plate (- S9), 24.69 - 2000	97,	
	100 P	Show!	μg/plate (+S9), 2 nd confirmatory		
	iot et	Will gist	assay: 31.25 - 500 µg/plate (-		
	is under	tion, co	S9), 12.5 - 200 μg/plate (+S9),		
1	Religion Odition	in of the to	3 rd confirmatory assay: 61.73 -		
500	Churling 1674	SUL	5000 μg/plate (+S9).		
90	The Little by Still b		E. coli WP2 uvrA: Range-		
: 03	is hilly is		finding assay: 20.6 - 5000		
0	do of the		μg/plate (±S9), original assay		
3	The Little of the State of the		312.5 - 5000 μg/plate (±S9),		
3/10	Jeg of this document of the control		1 st confirmatory assay 61.73 -		
			5000 μg/plate (±S9)		
	everse Mutation Assay	Penconazole Tech.	S. typhimurium (TA98, TA100,	Negative (±S9)	Donath (2010) K-CA 5.4.1/03
(S	almonella phimurium)	(100.15%, 0704)	TA102, TA1535,	Experiment 1: cytotoxicity at ≥316 µg/plate for TA100,	Report No 100829
	d Ames test	0704)	TA1537), plate	TA1535 and TA102 (+/-S9) and	

Method, guideline, deviations ¹ if any	Test substance	Relevant information about the	Observations /Results	Reference
		study including rationale for dose selection		
		(as applicable)	C TAOO 1TA1527 (CO) 1	
OECD 471		incorporation and pre-	for TA98 and TA1537 (-S9), and at \geq 1000 µg/plate for TA98 and	e italit of public to the city of public to the city of public to the city of
GLP		incubation assay, ±S9	at ≥1000 µg/plate for TA98 and TA1537 (+S9). Experiment 2 (pre-incubation method): cytotoxicity at ≥316 µg/plate for TA98 (+/ S9) and at ≥100 µg/plate for TA100 (+/ S9). In tester strains TA1535, TA1537 and TA102, cytotoxicity was noted at ≥100 µg/plate (-S9), and at ≥316 µg/plate (+S9). Appropriate positive & solvent controls gave the expected results	Ollo elia
		Pre-test (TA98,	method): cytotoxicity at ≥316	10, 10, 10 v
Acceptable		TA100), +/-S9: 3.16, 10, 31.6,	method): cytotoxicity at ≥316 μg/plate for TA98 (+/ S9) and at ≥100 μg/plate for TA100 (+/ S9). In tester strains TA1535, TA1537 and TA102, cytotoxicity was noted at ≥100 μg/plate (-S9), and at ≥316 μg/plate (+S9). Appropriate positive & solvent controls gave the expected results	10: 10: 10:
		100, 316, 1000, 2500, 5000	In tester strains TA1535,	e civect et
		μg/plate	was noted at $\geq 100 \mu\text{g/plate}$ (-S9),	Kelle Olo Cila W
		Experiment 1, all	and at \geq 316 µg/plate (+S9).	Mistor Weight
		strains, +/S9: 3.16, 10, 31.6,	Appropriate positive &	1000 OHILLE
		100, 316, 1000, (2500 TA98 +S9	solvent controls gave the expected results	1,47 %
		only) µg/plate	Jing his dilled	divis
		Experiment 2, all	(9/2 /10) 163 9/1	O. T.
		strains, +/S9: 1, 3.16, 10, 31.6,	The strate will be	<u> </u>
		100, 316, 1000	Seguile Modie, On "	Co
		μg/plate, DMSO	≥100 µg/plate for TA100 (+/ S9). In tester strains TA1535, TA1537 and TA102, cytotoxicity was noted at ≥100 µg/plate (-S9), and at ≥316 µg/plate (+S9). Appropriate positive & solvent controls gave the expected results	
		DMSO	10 10 10 M	
		DMSO (three replicates)	in an sion his	
		(three replicates)	10 15° 10'	
Mutagenicity study in the Salmonella	Penconazole Tech.	S. typhimurium (TA98, TA100,	≥100 μg/plate for TA100 (+/ S9). In tester strains TA1535, TA1537 and TA102, cytotoxicity was noted at ≥100 μg/plate (-S9), and at ≥316 μg/plate (+S9). Appropriate positive & solvent controls gave the expected results	Flügge (2010) K-CA 5.4.1/04
Typhimurium reverse	(100.15%,	TA102,	Cytotoxicity at concentrations	Report No 25505
mutation assay 4 th Ames test	0704)	TA1535, TA1537), plate	≥316 µg/plate (plate incorporation) and ≥100 µg/plate	
OFCD 471	B. 4. 01	incorporation and pre-	(preincubation) in both experiments in all strains (±S9).	
OLCD 471	18 Oldi	incubation assay,		
GLP	Hillyisti	±S9 Preliminary tests	Appropriate positive & solvent controls gave the	
Acceptable	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(plate	expected results	
Miles.	atil its	incorporation and		
Ames test OECD 471 GLP Acceptable	01	preincubation		
Carly Mile 16 M		methods), TA100, -S9:		
900 of all suggesting		0.316-5000 μg/plate		
115 114. 90°		Experiment 1		
10,00, 14,13		(plate incorporation),		
560,01		all strains, +/S9:		
1,150		1.0, 3.16, 10, 31.6, 100, 316		
		μg/plate		
		Experiment 2 (preincubation),		
		all strains, +/S9:		
		0.316, 1.0, 3.16, 10, 31.6, 100		
		μg/plate		

Method, guideline,	Test	Relevant	Observations /Results	Reference
deviations ¹ if any	substance	information		
		about the		
		study		
		including rationale for		
		dose selection		
		(as applicable)		
		(three replicates)		.;,0
Cytogenetic Test On	Penconazole	CHO cells, ±S9	Negative* (±S9)	(1999)
Chinese Hamster Ovary Cells Chromosome	Tech.	Test concentrations	Cytotoxicity at 50 µg/mL, the	K-CA 5.4.1/05 Report No 983116
aberrations	(96%,	between 0.78		- 0 (0 10
OF GD 453	EN 603012)	and 100 µg/mL;	for chromosome aberrations was	Report No 983116
OECD 473		except in the original assay	25 µg/mL (except in experiment 1 (3h/18h recovery, -S9) 50	e cirect et
GLP		(6.25-800	µg/ml was used as the highest	alle dor ciai
		$\mu g/mL)$	concentration).	Mis Show all
Only 200 metaphases scored (vs.		(Quadruplicate	*A significant increased number	garalli Veli
recommended (vs. 300);		cultures)	of metaphases with specific	Strice of the strict of the st
cytotoxicity not		·	chromosomal aberrations was	24 900
measured as Relative Population Doubling			observed (4%) at 25 µg/ml	0.18
(RPD) or Relative			(experiment 4, 3h/18h recovery, +S9); negative HCD range 0-6%,	C. III.
Increase in Cell Count			however HCD was not	
(RICC), but by mitotic		4	contemporary to the study being	E.
index (MI); positive HCD not		ii.	evaluated (e.g. within a period of up to around 5 years of the study)	
included in report.		2010	and the 95% confidence limits	
G 1		15/17	were not calculated.	
Supplementary		19 July	Positive and negative	
		A and is provided to	controls gave the expected	
			results.	
Gene mutation in mammalian cells, HPRT	Penconazole	V79 cells ±S9	Negative* (±S9)	(1999) K-CA 5.4.1/06
assay	Tech.	Test	The maximum concentration	Report No 983115
	(96%, EN 603012)	concentrations in		
OECD 476	EN 603012)	Promising.	(80 μg/ml (original), 70 μg/ml (confirmatory) +S9, and 40	
GLP	SIN SILLO	(both with and	μg/ml (orginal and confirmatory)	
" He C!	, Ho chi	without S9)	-S9)) although the highest	
Target range of 10-20% cloning efficiency (CE)	Jithe Heiro	ranged from 0.39 to 800 µg/mL	concentration did not meet the 20-10% RS. The dose spacing	
after treatment	,"OL, CO	(separated by 2-	between the highest	
corresponding to 80-	Still die ti	fold intervals),	concentrations, however, was	
90% letauve survivar	Stion, or	iii uie	narrow and covered the range up	
(RS) was not quite met; concurrent negative		mutagenicity assays	to excessive cytotoxicity and the target range for cytotoxicity are	
control should ideally be		concentrations	therefore considered acceptable.	
within the 95% control		ranged between	*In the confirmateur	
limits of the negative HCD, and the results		10 to 80 μg/mL and 8.75 to 70	*In the confirmatory experiment, +S9, the observed mutant	
should be within the		μ g/mL(-S9), and	frequencies in the concurrent	
distribution of the		5 to 40 μg/mL	control and the two lowest	
negative HCD; the observed mutant		(+S9)	concentrations of penconazole exceeded the HCD range;	
frequencies for the			however the mutant frequencies	
confirmatory experiment			were well below the range of the	
in presence of S9 the concurrent control and			positive HCD.	
the two lowest			Positive and negative controls	
concentrations of			gave the expected	
penconazole exceeded the HCD range;			results (the positive control, S9, in the original experiment was	
uic rico range,			below the range of the positive	

Method, guideline, deviations ¹ if any	Test substance	Relevant information about the study including rationale for dose selection (as applicable)	Observations /Results	Reference
The period during which the historical control data were built up was not provided Acceptable			HCD, but the mutagenicity frequency was sufficiently increased above background and the response was considered valid).	Puri (1984) K-CA 5.4.1/07 Report No 811522
DNA-repair/Unscheduled DNA synthesis Conducted prior to OECD 482 The results of the original experiment were not verified in an independent experiment; Data from the preliminary study (cytotoxicity test) were not reported.	Penconazole Tech. (91.7%, P.11-14)	Primary hepatocytes Toxicity test: 5 to 320 µg/mL; UDS test: 0.32, 1.6, 8.0, and 40 µg/mL (concentrations selected based on the cytotoxicity results in the preliminary toxicity test), DMSO	Boditive and Sective controls	of this document in
Supplementary (The study is not a data requirement in Commission Regulation No 283/2013)		Pandis Pinal	Positive and negative controls gave the expected results	

Penconazole did not reveal any genotoxic potential in all available *in vitro* studies. All tests were considered acceptable except for one out of four Ames tests, the chromosome aberration assay and an unscheduled DNA synthesis test, which were considered supplementary. The negative Ames tests and the *in vitro* HPRT mammalian cell gene mutation test confirm that penconazole does not induce gene mutations in bacterial cells and in mammalian cells. In addition to the supplementary chromosomal aberration assay, a negative *in vitro* micronucleus test with technical penconazole spiked for several impurities is available in the RAR (Volume 4). The *in vitro* micronucleus test confirms the absence of both aneugenic and clastogenic potential for penconazole and the negative result for clastogenicity in the supplementary chromosomal aberration assay.

In vivo

The potential of penconazole to induce chromosomal damage in rodents has been investigated *in vivo* in one bone marrow micronucleus test (mice).

Table 40: Summary table of genotoxicity/mutagenicity tests in mammalian somatic or germ cells in vivo

g	Aethod, uideline, eviations ¹ f any	Test substance	Relevant information about the study (as applicable)	Observations/Results	Reference
n a	one marrow nicronucleus ssay	Penconazole Tech. (96.1%, EN 603012)	Mouse orally by gavage, M: 200-800 mg/kg bw, F: 125-500 mg/kg bw Doses were	` ,	(1999a) K-CA 5.4.2/01 Report No 983117
C	SLP		selected based on		

Method,	Test	Relevant	Observations/Results	Reference
guideline,	substance	information		
deviations ¹		about the study		
if any		(as applicable)		
		the maximum	Clinical signs: reduced	
2000		tolerated dose	locomotor activity, ventral	
polychromatic		(MTD) as		
(immature)		determined in a	posture at 800 mg/kg bw in	
erythrocytes		preliminary range-	M in the main study (and	a to all of this document of the city of t
were scored		finding/tolerability	pre-test) and at 500 mg/kg	::0
per animal;		test.	bw in F in the pre-test.	V_{ii} U_{ij}
The study was			No notable effect of	On ell
conducted			treatment on body weights	2, 200
using 5			was reported.	
animals of				6 70 16 16:
each sex;			Blood samples were not	and the city of
Blood samples			taken at appropriate times	*10 100 ×100 010
were not taken			to demonstrate that	"O "SIL MO CHO M
at appropriate			exposure of the bone	it in the second in the
times to			marrow occurred; however,	40 05 Jail all cell
demonstrate			statistically significant	81, 70, 10, 0k, 1kk
that exposure			reductions of PCE/NCE	1, 10, 10, 10, 10,
of the bone			and PCE/(PCE+NCE)	So site and 40
marrow			ratios (at high dose 48 h, M & F), clinical signs, and	is apply yours
occurred.			available additional ADME	100 110 " ill.
Supplementary			information in mice	2, 0, 0,
Supplementary			support the exposure of the	ille of the
			bone marrow.	stect to the light of provide the city of
				0, 11
			No evidence for	W. CO
			0'0 () (1, 6, 113
		1,0	effects, however the	O'
		200	number of analysed cells is	its its one in the its of its of its one its o
		10. Y	too low (only 2000	~
		Shoel	polychromatic (immature)	
		CX III	erythrocytes were scored	
		of Elshandi	per animal)	
		10 00 115	6, 10, 19,	
		J' 6 111. 1	Positive and negative	
	200	1, 16, 50,	controls gave the expected	
	(0)	1. 0, 10, 1	results	

Penconazole was investigated for its ability to induce micronucleated immature erythrocytes in the bone marrow of ICO:CD1(CRL) mice.

Doses were selected based on the maximum tolerated dose (MTD), and dose range was determined according to a stepwise fixed-dose procedure, one male and one female at each step. In the tolerability assay, one male and one female were exposed to penconazole dissolved in 0.5% w:v carboxymethyl-cellulose (CMC) at the highest dose level of 2000 mg/kg bw by gavage (dosing volume 10 mL/kg). Based on the results from the preliminary range-finding/tolerability test, five male mice received oral doses of 200, 400, or 800 mg/kg bw, and five females 125, 250, or 500 mg/kg bw in the micronucleus assay. Suspensions of penconazole in the vehicle or the vehicle alone (negative control) were applied once by gavage. Cyclophosphamide (64 mg/kg bw) provided the positive control. Groups of animals treated at the highest dose or with the vehicle alone were killed 24 and 48 hours after administration, whereas animals administered the intermediate or lowest dose, or the positive control substance, were sacrificed 24 hours after administration. The animals were sacrificed by CO2 asphyxiation.

In the high dose animals at both sampling times, males showed occasionally signs of toxicity (ventral recumbence, hunched posture, reduced locomotion activity). In all dose groups, animals exposed to penconazole showed no significant increase in micronucleus frequencies at any dose level, investigation time, or sex. The exact Linear-by-linear trend test for an increase with all groups included was not statistically significant for both males and females at 24 hours sacrifice (p=0.129 and p=0.210, respectively). The positive control, cyclophosphamide, induced a drastic and statistically significant 100-fold increase in the frequencies of micronuclei in both male and female animals when compared to vehicle controls (p < 0.05). Regarding bone marrow exposure, evidence of test article-induced toxicity to the bone marrow was noted with reductions of PCE/NCE and PCE/(PCE+NCE) ratios at the high dose at 48h in both sexes. The clinical signs at MTD and above also supports evidence for systemic bioavailability, and available additional ADME data in CD1 mice (comparing the excretion pattern after single

radiolabelled oral (gavage) or iv application at 0.25 mg/kg bw in groups of 5 male and 5 female mice after 90 days of pre-treatment at different dietary dose levels of non-radiolabelled penconazole) supports that exposure of the bone marrow occurred.

It should be noted, that only 2000 instead of 4000 PCEs were evaluated per animal. The study was conducted using 5 animals of each sex and there are therefore data from 10 animals from each of the 3 dose levels in the study. The low, mid, high dose levels however used for males and females were not quite identical as males were more tolerant than females and could therefore be treated at higher dose levels. According to OECD 474 (2016) a study should be performed using a minimum of 5 analysable animals of one sex, or of each sex if both are used, per group. Therefore, 4000 PCEs should have been evaluated per animal.

Nevertheless, under the conditions of the study, penconazole was not genotoxic in vivo in mice.

Table 41: Summary table of human data relevant for genotoxicity / germ cell mutagenicity

Type of Test data/report subs		Relevant information about the study (as applicable)	Observations	the lieting	Reference
		" 10 Yer of	10/2 We		

2.6.4.1 Short summary and overall relevance of the provided information on genotoxicity / germ cell mutagenicity

Penconazole has been tested for potential genotoxic properties in a standard battery of *in vitro* assays and one *in vivo* assay.

There was no evidence that the different batches of penconazole was mutagenic or clastogenic in the available *in vitro* tests.

The genotoxicity of penconazole was tested *in vivo* in one supplementary bone marrow micronucleus test conducted in mice.

There is no evidence from the available data set that penconazole is a somatic cell mutagen, and there is therefore no reason to believe that penconazole would have the potential to induce mutations in germ cells.

2.6.4.2 Comparison with the CLP criteria regarding genotoxicity / germ cell mutagenicity

In accordance with the CLP criteria, penconazole did not demonstrate any genotoxic potential in six *in vitro* and one *in vivo*, guideline- and GLP-compliant studies, and therefore the criteria for classification are not met.

2.6.4.3 Conclusion on classification and labelling for genotoxicity / germ cell mutagenicity

Not classified - data conclusive but not sufficient for classification

2.6.5 Summary of long-term toxicity and carcinogenicity [equivalent to section 10.9 of the CLH report template]

Table 42: Summary table of animal studies on long-term toxicity and carcinogenicity

any, species,	Test substance, dose levels duration of exposure	Results - NOAEL/LOAEL - target tissue/organ - critical effects at the LOAEL	Reference
OECD TG 453		NOAEL (ppm) mg/kg bw/day : (300) 41/36 (M/F)	(1985). K-CA
(adopted 25 th June	(91.7%, P. 11-		5.5/01
2018)	14)	No LOAEL. At 300 ppm	Report No. 811414
	0, 5, 75, 150 and	only weak effects without clear toxicological	
Mouse	300 ppm,	significance: prothrombin time ↑, albumin ↑	
MAGf (SPF)/	equivalent to:	,	
80 M/F	-		

Method,	Test	Results	Reference
guideline, deviations¹ if any, species, strain, sex, no/group	substance, dose levels duration of exposure	- NOAEL/LOAEL - target tissue/organ - critical effects at the LOAEL	
Several deviations, the most severe is that the selected dose levels are too low to produce significant toxicological effects Supportive only	0 - 0.8/0.7 - 9.8/8.8 - 19.3/17.2 - 41/36 mg/kg bw/day (M/F) duration of exposure: 106 and 107 weeks (M, F)	Prostate and adrenal wt ↑ (M) at ≥75 ppm, but without associated histopathological findings. No effect on survival or tumour incidence.	(2004). K-CA 5.5/02, Report No.
OECD 451 Mouse C57BL/10JfCD-1 50 M/F Acceptable	Penconazole (97.7%, WS007001[CH]) 0, 25, 200, 1500 ppm, equivalent to: 0 - 2.7/3.5 - 21.7/28.2 - 177.7/221.5 mg/kg bw/day (M/F) duration of exposure: 80 weeks	NOAEL (ppm) mg/kg bw/day: 21.7/28.2 (M/F) Effects at LOAEL: bw ↓, liver wt ↑, kidney wt ↓, increased incidence and severity of hepatocyte vacuolation (M+F) No effect on survival or tumour incidence. NOAEL (ppm) mg/kg bw/day: (300) 10.4/11.9 (M/F)	
Rat RAIf (SPF) 50 M/F Several deviations are noted, the most severe is that the selected dose levels are too low to produce significant toxicological effects Supportive only	(91.7%, P. 11- 14) 0, 5, 75, 150, 300	No LOAEL, No relevant treatment-related effects at the highest dose level tested No effect on survival or tumour incidence.	(1985a). K-CA 5.5/03. Report No. 811415

Table 43: Summary table of human data on long-term toxicity and carcinogenicity

. 1		 Relevant information about the study (as applicable)	Observations	Reference
0	5 60	No studies a	available	

Table 44: Summary table of other studies relevant for long-term toxicity and carcinogenicity

Type of Test	Relevant information about	Observations	Reference			
study/data substan	ce the study (as applicable)					
No studies available						

2.6.5.1 Short summary and overall relevance of the provided information on long-term toxicity and carcinogenicity

Three carcinogenicity bioassays have been performed with Penconazole. Details (if not presented here) including study design, a description of the results (including information on incidences and severities of findings and extent of changes relative to controls, etc.) are given in the RAR (section B.6.5.1-2).

In two of these studies (1985), K-CA 5.5/01; (1985a), K-CA 5.5/03), one in mice and one in rats, the highest tested dose was 300 ppm (corresponding to 40.8 mg/kg bw/day (M) and 35.7 mg/kg bw/day (F) and to 10.4 mg/kg bw/day (M) and 11.9 mg/kg bw/day (F) for mice and rats, respectively). No adverse findings, including tumours, were seen in these studies. However, as no toxicity was seen at the top dose, it was previously concluded (DAR, 2007) that the tested doses were too low and that the studies could only be considered supportive.

In the mouse study by ((1985), K-CA 5.5/01), change in prothrombin time (PT), albumin concentration and prostate and adrenal weight was noted. Statistical tests were performed at significance level 0.05 (noted with a star) (comparison between control and treated group, dose levels 0; 5; 75; 150 and 300 ppm) or 0.01 (trend from control to highest dose group at 300 ppm).

Prothrombin time (PT)

In males, PT showed a statistically significant (p \leq 0.01) positive trend from control to highest dosage group in week 27 (PT 11.4; 11.2 (-1.8%); 11.7* (+2.6%); 11.6 (+1.8%); 11.7 (+2.6%) for dose level 0; 5; 75; 150; 300, respectively), week 81 (PT 11.4; 12.0 (+5.2%); 11.9 (+4.4%); 11.8* (+3.5%); 12.2 (+7%) for dose level 0; 5; 75; 150; 300, respectively) and week 105 (PT 11.5; 11.5 (+/-0%); 11.0 (-4.4%); 11.6 (+0.9%); 12.0* (+4.3%) for dose level 0; 5; 75; 150; 300, respectively). No such trends were observed at week 14 or 52. In females, PT showed a statistically significant (p \leq 0.01) positive trend from control to highest dosage group in week 81 (PT 11.0; 11.1 (+1.0%); 11.2 (+1.8%); 11.1 (+1.0%); 11.4* (+3.6%) for dose level 0; 5; 75; 150; 300, respectively) and week 105 (PT 10.9; 10.9 (+/-0%); 11.1 (+1.8%); 11.1 (+1.8%); 11.4 (+4.6%) for dose level 0; 5; 75; 150; 300, respectively). No such trends were observed at week 14 or 52.

Importantly, the available HCD confirm that the variations seen in the penconazole study for prothrombin time were within the normal biological variation.

Albumin

Albumin concentrations showed a statistically significant (p \leq 0.01) negative trend from control to highest dosage group in males in week 27 (Albumin g/L 30.8; 30.1 (-2.3%); 29.3 (-4.9%); 28.7* (-6.8%); 29.2* (-5.2%) for dose level 0; 5; 75; 150; 300, respectively) and in females in week 81 (Albumin g/L 31.7; 30.4 (-4.1%); 30.5 (-3.8%); 30.1 (-5%); 29.6* (-6.6%) for dose level 0; 5; 75; 150; 300, respectively). No such trends were observed at week 81 or 105.

Importantly, the available HCD confirm that the variations seen in the penconazole study for albumin levels were within the normal biological variation.

Prostate weight

At terminal sacrifice (wk 106), prostate weights showed a statistically significant (p \leq 0.01) negative trend from control to highest dosage group. Absolute prostate weight was 111; 117 (+5.4%); 135* (+22%); 147* (+32%) and 157* (+41%) mg at dose level 0;5,75,150 and 300 ppm, respectively. Relative prostate weight was 2.46; 2.51 (+2%); 3.02* (+23%); 3.10* (+26%) and 3.42* (+39%) at dose level 0; 5; 75; 150 and 300 ppm, respectively. While prostate weight at the interim sacrifice were also higher than controls in all treated groups, these variations never reached statistical significance and were in absence of any dose relationship.

Adrenal weight

A statistically significant trend was noted for increased absolute and realtive adrenal weights at the terminal sacrifice in males (for dose level 0; 5; 75; 150 and 300 ppm, the corresponding absoulte adrenal weight was 15.8; 16.6; (+5.1%); 19.4* (+23%); 17.4 (+10%) mg, wheras the corresponding realtive adrenal weight was 0.37; 0.36 (-2.2%); 0.41 (+9.9%); 0.42* (+13%); 0.38 (+3%). However, this was in absence of a dose relationship, not associated with relevant histopathological changes and the values were within the range of available HCD. Variations in adrenal weights achieving statistical significance in females (decrease at terminal sacrifice) were in absence of a dose relationship.

In rats, the only dose-related finding of potential toxicological relevance that attained statistical significance was a slight increase in absolute and relative liver weight in females of the mid- and high-dose groups. Statistical tests were performed at significance level 0.05 (noted with a star) (comparison between control and treated group, dose

levels 0; 5; 75; 150 and 300 ppm) or 0.01 (trend from control to highest dose group at 300 ppm). A significant trend from control to highest dose group at 300 ppm was observed in females in week 52 (absolute and relative) and week 104 (relative). For dose level 0; 5; 75; 150 and 300 ppm the corresponding absolute liver weight in female rats in week 52 was 12.4; 13.7 (+11%); 13.2 (+6.5%); 14.1 (+14%) and 14.8* (+20%). The relative liver weight in female rats in week 52 was 2.97; 2.99 (+0.5%); 3.08 (+3.5%); 3.37* (+13) and 3.41* (+15%), wheras the relative liver weight in week 104 was 3.19; 3.19 (+0.2%); 3.29 (+3.3%); 3.29 (+3.1%) and 3.66 (+15%). Absolute liver weights in week 52 for top dose females also exceeded mean +- SD (13.0+/-1.2) and the range (10.8-13.7) of available limited HCD. However, these findings lacked a biochemical or histopathological correlate and were therefore not considered adverse.

In the third study in mice (2004), K-CA 5.5/02), a top dose of 1500 ppm, corresponding to 178 mg/kg bw/day (M) and 222 mg/kg bw/day (F), was used. This dose caused toxic effects but no tumours. At 1500 ppm, the body weight development was reduced and an increase in liver weight was associated with an increase in hepatocyte vacuolisation.

Statistical tests were performed at significance level 0.05 and 0.01, noted with one or two stars, respectively (comparison between control and treated group, dose levels 0; 25; 200 and 1500 ppm).

Body weight

There was an effect on bodyweight development in both sexes at 1500 ppm. The maximum difference from control of adjusted body weights were at week 73 (males) and weeks 33/37 (females). Bodyweights and bodyweight gain in g and % variation to controls were noted. Body weight in male control was 21.1; 22.7; 28.8; 31.8; 37.1; 38.0; 40.5; 41.9 and 41.9 for week, 1; 2; 8; 15; 33; 37; 51; 73 and 81 respecively. The corresponding effect at the highest dose level (1500 ppm) in male was 21.1 (+/-0); 21.8** (-4.0); 27.3** (-5.2); 29.3** (-7.9); 32.8** (-12); 33.4** (-12); 35.0** (-14); 35.7** (-15) and 36.5** (-13). Body weight in female control was 17.2; 18.0; 22.6; 25.1; 29.2; 30.1; 31.2; 32.6 and 33.0 for week, 1; 2; 8; 15; 33; 37; 51; 73 and 81 respecively. The corresponding effect at the highest dose level (1500 ppm) in female was 17.3 (+0.6); 17.5** (-2.8); 21.3** (-5.8); 23.4** (-6.8); 26.4** (-9.6); 27.2** (-9.6); 28.8** (-7.7); 30.2** (-7.4) and 30.5** (-7.6), respectively. There were no effects on bodyweight in males receiving 200 ppm penconazole. Small differences in adjusted bodyweight in the 200 ppm females occasionally achieved statistical significance but the maximum difference from control was as low as 2-3%. There were no effects on bodyweight in either sex in the 25 ppm group.

Liver weight

Liver weights were increased in top dose males. Absolute weight was 1.88 g **(+11%), adjusted weight 2.10** (+27%) and relative weight 5.17 (+28 %), while values in control was 1.69, 1.65 and 4.03, respectively. After excluding the high value for female 273 (25 ppm group), there was evidence of slightly higher liver weights (approximately 5% higher than control) in females receiving 1500 ppm, but the value did not reach statistical significance. There were no effects on liver weight in either sex in the 25 and 200 ppm groups.

Hepatocyte vaculation

There was an increase in the incidence and severity of hepatocyte vacuolation of the liver in the high dose (1500 ppm) males and females. Minimal, slight, moderate and marked vaculation was reported in 13/50; 15/50; 9/50 and 0/50 high dose male (in total 37/50). In comparison, the incidence in male control was 6; 6; 1 and 0 (in total 13/50). In high dose females 9/50 showed minimal, 6/50 slight, 1/50 moderate and 0/50 slight vaculation (in total 16/50), wheras only 1/50 of the female control was affected (minimal hypertrophy).

Kidney weight

Kidney weights were lower than controls in both sexes receiving 1500 ppm penconazole. However, in males, the difference was no longer evident after adjustment for bodyweight, and in females, there was no difference from control after exclusion of high values obtained for female 223 (control) and female 275 (25 ppm).

EFSA previously concluded (EFSA, 2008) that penconazole had no carcinogenic potential and did not need to be tested at higher doses in rats. Furthermore, the Committee for Risk Assessment (RAC) previously (RAC, 2012) concluded that classification for carcinogenicity after exposure to penconazole is considered not required according to Classification Regulation (EC) No 1272/2008. According to RAC, the negative result of the 2004 study in mice (2004), K-CA 5.5/02), together with the supportive 1985 studies in mice (1985), K-CA 5.5/01) and rats (1985a), K-CA 5.5/03) indicates no carcinogenic potential of penconazole. In RMS' opinion, it should be re-discussed to what extent these three available long term studies are sufficient to exclude a carcinogenic potential of penconazole, and whether additional testing of long-term toxicity and carcinogenesis at higher doses in rats may be needed. To support this discussion, a statement concerning the justification for the dose selection of the long-term toxicity and carcinogenesis studies, has been provided by the applicant upon request from the RMS (see summary in section B.6.5 in Volume 3 of the RAR). To further substantiate a conclusion and to avoid

unnecessary testing in animals, other properties of or aspects concerning the toxicity of penconazole could be taken into account, including the genotoxic potential of penconazole, that further data is requested to address potential thyroid effects of penconazole and the classification of other triazole substances. At the current stage, it is not possible to conclude on classification for genotoxicity according to Regulation (EC) No 1272/2008 as amended and RMS is of the opinion that sufficiency on thyroid effects may be discussed.

2.6.5.2 Comparison with the CLP criteria regarding carcinogenicity

Annex I Section 3.6.1.1 of the CLP Regulation defines a carcinogen as a substance which induces cancer or increases its incidence. Substances which have induced benign and malignant tumours in well-performed experimental studies on animals are considered also to be presumed or suspected human carcinogens unless there is strong evidence that the mechanism of tumour formation is not relevant for humans. Carcinogenic substances are allocated to Category 1 (known or presumed human carcinogens) or Category 2 (suspected human carcinogens).

A substance is classified in Category 1 for carcinogenicity on the basis of epidemiological and/or animal data. Substances known to have carcinogenic potential for humans (based largely on human evidence) are classified in Category 1A. Substances presumed to have carcinogenic potential for humans (based largely on animal evidence) are classified in Category 1B. In addition, on a case-by-case basis, scientific judgement may warrant a decision of presumed human carcinogenicity derived from studies showing limited evidence of carcinogenicity in humans together with limited evidence of carcinogenicity in experimental animals.

The placing of a substance in Category 2 is done on the basis of evidence obtained from human and/or animal studies, but which is not sufficiently convincing to place the substance in Category 1A or 1B, based on strength of evidence together with additional considerations. Such evidence may be derived either from limited evidence of carcinogenicity in human studies or from limited evidence of carcinogenicity in animal studies.

Since no increased incidence in tumours were seen, classification for carcinogenicity is not proposed. However, in RMS's opinion, it should be re-discussed to what extent these three available long-term studies are sufficient to exclude a carcinogenic potential of penconazole, and whether additional testing of long-term toxicity and carcinogenesis at higher doses in rats may be needed.

Table 45: Compilation of factors to be taken into consideration in the hazard assessment

Species	Tumour	Multi-site	Progressi	Reduced	Responses	Confound	Route of	MoA and	
and	type and	responses	on of	tumour	in single or	ing effect	exposure	relevance	
strain	backgrou	187. 111	lesions to	latency	both sexes	by		to	
	nd	"NO H	malignan	200		excessive		humans	
	incidence	11/1 412	Cy.			toxicity?			
	N/A								

2.6.5.3 Conclusion on classification and labelling for carcinogenicity

Data lacking. Since no increased incidence in tumours were seen, classification for carcinogenicity is not proposed. However, in RMS's opinion, it should be re-discussed to what extent these three available long-term studies are sufficient to exclude a carcinogenic potential of penconazole, and whether additional testing of long-term toxicity and carcinogenesis at higher doses in rats may be needed.

2.6.6 Summary of reproductive toxicity [equivalent to section 10.10 of the CLH report template]

2.6.6.1 Adverse effects on sexual function and fertility – generational studies [equivalent to section 10.10.1 of the CLH report template]

Table 46: Summary table of animal studies on adverse effects on sexual function and fertility – generational

studies

Method,	Test substance,	Results	Reference
guideline,	dose levels	- NOAEL/LOAEL (for sexual function and fertility,	
deviations ¹ if	duration of	parents)	
any, species,	exposure	- target tissue/organ	
strain, sex,		- critical effects at the LOAEL	
no/group			
Two-generation	Penconazole: P. 11-	Systemic NOAEL (adults, pups) 400 ppm corresponding to	(1983)
reproduction	14, 91.7% purity	29.9 (\circlearrowleft) and 29.7 (\updownarrow) mg/kg bw/day	K-CA
toxicity study			5.6.1/01,/02,
Similar to OECD	0-80-400-2000 ppm	Reproductive NOAEL 400 ppm corresponding to 29.7 mg/kg bw/day	/03 Report No
Similar to OECD 416	Oral: diet	bw/day	811410
	oran area	P (F0):	903 Report No. 811416
Non-GLP	about 110 days of	Mortality: No deaths during pre-mating period. Mortality	(O) (O) (O)
Cumplementers	treatment	after parturition: 1 F 400 ppm-group, 3 F 2000 ppm-group. Clinical signs: No clinical signs during pre-mating.	6, 8,0,44,
Supplementary		Body weight gain: M similar to ctr group, F top dose (-8.3%)	alle offer
Rat,		during premating, -7.7 during gestation, -94% on lactation	ll illi
RAIf(SPF)		day 1 compared with gestation day 0).	2005
20M 20E		Food consumption: M similar to ctr, F top dose (-4.5% during premating, -5.1% during gestation.)	protection of the state of the
20M+20F		Length of pre-coital interval: Comparable to ctr.	
		Mating and gestation data: Duration of gestation in F top	
		dose increased (21.8 vs. 21.1 in ctr). Other parameters	
		comparable to ctr.	
		F1, F2: 0 5 5 1 2 1 2 1 2 1 2 1 2 1 2 1	
		Mortality: No deaths during pre-mating period. Mortality	
		after parturition: 1 F ctr-group, 1 F 400 ppm-group, 3 F 2000	
		ppm-group. Clinical signs: No clinical signs during pre-mating.	
		Body weight gain: M top dose (-10.6%), F top dose (-6.9%	
		during premating, -16% during gestation, -75% on lactation	
		day 1 compared with gestation day 0).	
	70.9	Food consumption: M top dose (-7.1%), F top dose (-4.2 during premating, -8.8% during gestation).	
	ell', le	Length of pre-coital interval: Comparable to ctr.	
	10, 1, 90,	Mating and gestation data: Comparable to ctr.	
	6, 13, 14,	Litter parameters: Comparable to ctr. Pup body weight/bw gain: Bw comparable to ctr. Bw gain	
	The ONE CALL	F1 M top dose (-22.6%), F top dose (-15.9%).	
	el Colle glis	Offspring development: General development, behavioural	
.6	20, 00, 00	tests, and sexual development concidered comparable to ctr.	
ant, and	ries still its	Organ weights: Liver: F1 adults F top dose (abs. +29%, rel. +37%), F1 weanlings M top dose (abs. +11%, rel. +31%) F	
ing sits of	Million Of I	top dose (abs. +8.2%, rel. +28%), F2 weanlings M top dose	
10, Wo "9 b	Ollegit	(abs. +21%, rel. +28%) F top dose (abs. +16%, rel. +22%).	
Co. Hull	, ille	Macro- and histopathology: Hepatocyte hypertrophy: F1 M	
90 01 31	CO	top dose 17/20 (ctr. 0/20), F1 F 400 ppm-group 14/16, F top dose 16/16 (ctr 0/18).	
Two-generation	Penconazole tech. Purity: 98.7%	Systemic and reproductive NOAEL of 250 ppm	
reproduction	Purity: 98.7%	(corresponding to 21.2 (males) and 22.7 (females) mg/kg	(1983)
toxicity study	Batch: FL 840833	bw/day)	K-CA 5.6.1/04
EPA guideline No 83-4;	0, 25, 250 and 2500 ppm	P (F0):	Report No. 382-119
comparable with	Orally via diet	Mortality: 1 M top dose (week 11)	/
OECD guideline	Duration of exposure	Clinical signs: No clinical signs.	
416 (1983)	for 63 days (9 weeks,	Body weight gain: F top dose Premating (-21%)	
Supplementary Rat	F0) and 84 days (12 weeks, F1) prior to	Food consumption: F top dose Premating (-7.1%), F top dose Gestation (-7.0).	
	mating, during the	Pre-coital intervals: Comparable to ctr.	
COBS CD	maximum 3 weeks	Mating and gestation data: Comparable to ctr.	
(Sprague Dawley)	mating period	Organ weight: Comparable to ctr. Increased rel. ovary weight at top dose due to decreased F body weight.	
M and F	through to termination, i.e. after	weight at top dose due to decreased r body weight.	
	i.c. arter		

no/group		dose duratio	n	tance, levels of	Results - NOAEL/LOAEL (for sexual function and fertility, parents) - target tissue/organ - critical effects at the LOAEL	Reference
30/sex/dose and	F0 F1	the li weaned.	itters	had	F1, F2: Mortality: No deaths	
generation	1 1	weamed.			Clinical signs: No clinical signs.	::0
generation					Body weight gain: M top dose premating (-6.9%), mating (-	b. "01.
					24%), overall (-10.5%). F top dose premating (-7.1%).	, 0, 00
					Food consumption: F top dose Premating (-7.6%).	0),07,0
					Pre-coital intervals: Comparable to ctr.	or originate of original origi
					Mating and gestation data: Post-implantation loss: Top	13, 40, 10
					dose 2.0 (16.7%) per dam (vs. 1.5 (10.2%) in ctr).	Co Co Cor
					Litter parameters: Total pups stillborn: F1 top dose 11 /vs.	10, 10,
					1 in ctr), F2 top dose 24 (vs. 11 in ctr). Mean live pups/dam F1 top dose M pups 5.3 (vs0 in ctr). Not seen in F2. No.	6, 0, 4,
					live pups day4/day 0: F1 top dose 96.1% (vs. 98.4% in ctr),	Chusigues de la companya de la compa
					F2 top dose 95.6% (vs. 98.8% in ctr).	W. We
					Pup body weight gain: F1 M top dose (-7.1%), F1 F top	Social Language Control of the Contr
						90
					Offspring development: Comparable to ctr, apart from No.	
					pups that died or born dead: F1 top dose 13 (vs. 3 in ctr), F2	
					top dose 29 (vs. 11 in ctr).	
					Organ weight: Comparable to ctr. Increased rel. ovary	
					weight (F1 adults) at top dose due to decreased F body weight.	
					Macro- and histopathology: Comparable to ctr.	

Table 47: Summary table of human data on adverse effects on sexual function and fertility

Type of	Test	Relevant information Observations	Reference			
data/repor	substance	about the study (as				
t		applicable)				
No studies available						

Table 48: Summary table of other studies relevant for toxicity on sexual function and fertility

Type of study/data	Test substance	Relevant about the applicable)	information study (as	Observations	Reference
X	110.05.	10, 20 6	No studies	s available	

2.6.6.1.1 Short summary and overall relevance of the provided information on adverse effects on sexual function and fertility – generational studies

Two 2-generation reproductive studies in rat were delivered. Both had major deviations from OECD guideline 416 (2001), the most severe being (in one or both studies) using too high dose intervals, not continuing dosing 10 weeks before mating period, oestrous cycle length was not evaluated, testis and epididymis weight not recorded, sperm count, motility and morphology not evaluated, anogenital distance was not measured, not all organs from both generations were weighed at termination, histopathological examinations were not conducted for all organs from both generations and the number of corpora lutea were not determined.

In both studies, similar unspecific toxicity was seen at the top dose level (reduced body weight gain and food consumption in adults). For females, this was most pronounced during premating, but also during gestation in the first study (1983). Males were only affected in the F1 generation. Reduced body weight gain of pups during lactation was reported in both generations in the second study (1987) at the top dose of 2500 ppm. Furthermore, an increase in liver weight was noted at the top dose level in the first study for adults and weanlings, associated with hepatocyte hypertrophy in adults.

In the first study, an increase in dam mortality at/shortly after parturition and during lactation was noted, as well as a slight prolongation of gestation period. An increase in post-implantation loss was seen at 2500 ppm in the second study. In both generations, the mean number of dead pups at birth/pups that died (until day 4) was slightly but not statistically higher at 2500 ppm when compared with control.

Taken together, systemic NOAELs of the two studies were 400 ppm (29.7/29.9 mg/kg bw/day for males/females) in the first study (1983) and 250 ppm (21.2/22.7 mg/kg bw/day° for males/females) in the second study (1987). The reproductive NOAELs were 400 ppm (29.9 mg/kg bw/day for females) in the first study (1983) and 250 ppm (22.7 mg/kg bw/day for females) in the second study (1983).

2.6.6.1.2 Comparison with the CLP criteria regarding adverse effects on sexual function and fertility

According to the CLP criteria, adverse effects on sexual function and fertility include those that interfere with the reproductive system, onset of puberty, gamete production/transport, reproductive cycle, sexual behaviour, fertility, parturition, pregnancy outcome, reproductive senescence or any other function that is dependent on the reproductive system. Not all of these effects have been sufficiently investigated, as several critical reproductive endpoints were not addressed in the available studies.

Considering the adverse findings, only a slight prolongation of the gestation period and an increase in dam mortality at/shortly after parturition and during lactation at the top dose, both findings from the first study, are related to sexual function and fertility. However, due to the fact that these findings are not reproduced in the second study where a higher top dose of penconazole (ISO) with higher purity was applied, these findings are not consistent enough to lead to a classification.

Thus, penconazole (ISO) does not meet the criteria for classification for adverse effects on sexual function and fertility.

2.6.6.1.3 Conclusion on classification and labelling for sexual function and fertility

Data conclusive but not sufficient for classification

2.6.6.2 Adverse effects on development [equivalent to section 10.10.4 of the CLH report template]

Table 49: Summary table of animal studies on adverse effects on development

Method, guideline, deviations ¹ if any, species, strain, sex, no/group	Elitholisting ute	for developmental effects) - target tissue/organ - critical effects at the LOAEL	Reference
Developmental toxicity Earliest OECD 414 version (1981) not yet available at time of study Acceptable Rat RAIf (SPF) F Preliminary study: 10/dose Main study: 25/dose Supplementary study: 15/dose	Penconazole tech. Purity: 88.4% Batch: P. 2+3 Administered orally by gavage Preliminary study: 0, 300 mg/kg bw/day (days 6-15 of gestation) Main study: 0, 30, 100, 300 mg/kg bw/day (days 6-15 of gestation) Supplementary study: 0, 300, 450 mg/kg bw/day (days 10-14 of gestation)	Maternal and developmental NOAEL of 100 mg/kg bw/day Mortality at 300 (2/25 (8%) and 4/15 (26%) dams in main and supplementary study, respectively) and 450 mg/kg bw (2/15 (13%) dams). Bw gain ↓, food ↓ in dams Postimplantation loss ↑ Dead foetuses ↑ (450 mg/kg bw) Foetal weight ↓ Skeletal anomalies ↑	(1981) K-CA 5.6.2/01 Report No. 800549
Developmental toxicity OECD 414 (1981), EPA guideline 83-3 (1982) Acceptable Rat	Penconazole tech. Purity: 98.7% Batch: FL840833 Administered orally by gavage	Maternal and developmental NOAEL of 100 mg/kg bw/day Mortality at 500 mg/kg bw (3 dams) Clinical signs: stomach and intestinal lesions, crusty eye(s), crusty nose and/or muzzle, damp and yellow/brown-stained fur in perianal and/or	(1985) K-CA 5.6.2/03 Report No. 450-2087

Test substance, dose levels duration of deviations¹ if any, species, strain, sex, no/group Content of the strain of the str
deviations¹ if any, species, strain, sex, no/group Sprague Dawley F
species, strain, sex, no/group O, 5, 100, 500 mg/kg bw/day (days 6-15 of gestation) By a badominal region, staggered gait, emaciation, loose stool, weakness, and/or lethargy. Bw gain ↓, food ↓ in dams Postimplantation loss ↑ Life foetuses per dam ↓ Runt foetuses ↑ Skeletal findings ↑ Developmental toxicity OECD 414 O-25-75-150 mg/kg bw/d (days 6 - 18 p.c.) GLP Acceptable Rabbit Chinchilla 20 F/dose
Sprague Dawley F Sprague Dawley Spragu
Sprague Dawley F 25/dose 0, 5, 100, 500 mg/kg bw/day (days 6-15 of gestation) Rw gain ↓, food ↓ in dams Postimplantation loss ↑ Life foetuses per dam ↓ Runt foetuses ↑ Skeletal findings ↑ Developmental toxicity Penconazole: P. 11-14; 91.7% purity OECD 414 O-25-75-150 mg/kg bw/d (days 6 - 18 p.c.) GLP Acceptable Rabbit Chinchilla 20 F/dose
bw/day (days 6-15 of gestation) Bw gain ↓, food ↓ in dams Postimplantation loss ↑ Life foetuses per dam ↓ Runt foetuses ↑ Skeletal findings ↑ Developmental toxicity Penconazole: P. 11-14; 91.7% purity Maternal and developmental NOAEL of 75 mg/kg bw/day K-CA 5.6,2/04, /05 Report No. GLP Acceptable Rabbit Chinchilla 20 F/dose
Bw gain ↓, food ↓ in dams Postimplantation loss ↑ Life foetuses per dam ↓ Runt foetuses ↑ Skeletal findings ↑ Developmental toxicity Penconazole: P. 11-14; 91.7% purity Maternal and developmental NOAEL of 75 mg/kg bw/day (1982) K-CA 5.6.2/04, /05 Report No. GLP Acceptable Rabbit Chinchilla 20 F/dose
Postimplantation loss ↑ Life foetuses per dam ↓ Runt foetuses ↑ Skeletal findings ↑ Developmental toxicity Penconazole: P. 11-14; 91.7% purity Maternal and developmental NOAEL of 75 mg/kg bw/day (1982) K-CA 5.6.2/04, /05 Report No. 911354 Acceptable Rabbit Chinchilla 20 F/dose
Life foetuses per dam ↓ Runt foetuses ↑ Skeletal findings ↑ Developmental toxicity OECD 414 OECD 414 OECD 414 Acceptable Rabbit Chinchilla 20 F/dose
Developmental toxicity Penconazole: P. 11-14; 91.7% purity Maternal and developmental NOAEL of 75 mg/kg bw/day OECD 414 OECD 414 OCCD 414 O
Developmental toxicity Penconazole: P. 11-14; 91.7% purity Maternal and developmental NOAEL of 75 mg/kg bw/day OECD 414 OECD 414 OCCD 414 O
Developmental toxicity Penconazole: P. 11-14; 91.7% purity Maternal and developmental NOAEL of 75 mg/kg bw/day OECD 414 OECD 414 OCCD 414 O
toxicity OECD 414 OECD 414 OECD 414 OECD 414 OCCD
OECD 414 OECD 414 OECD 414 OECD 414 OECD 414 OF Acceptable Rabbit Chinchilla 20 F/dose OECD 414 OF Acceptable Rabbit Chinchilla
OECD 414 O=25-75-150 mg/kg bw/d (days 6 - 18 p.c.) GLP Acceptable Rabbit Chinchilla 20 F/dose OECD 414 O=25-75-150 mg/kg bw/d (days 6 - 18 p.c.) Bw gain ↓, food ↓ in dams /05 Report No. 911354
GLP Acceptable Rabbit Chinchilla 20 F/dose
GLP Acceptable Rabbit Chinchilla 20 F/dose (days 6 - 18 p.c.) Internal Hydrocephalus 2/125 foetuses, 2/16 litters Internal Hydrocephalus 2/125 foetuses, 2/16 litters 911354
Acceptable Rabbit Chinchilla 20 F/dose
Acceptable Rabbit Chinchilla 20 F/dose
Rabbit Chinchilla 20 F/dose
Rabbit Chinchilla 20 F/dose
Chinchilla 20 F/dose
20 F/dose
20 F/dose
L Developmental Penconazole: EL X/IIX 33: L Maternal and developmental NLIA EL of 511 mg/kg
toxicity 98.7% purity bw/day 0-10-50-200 mg/kg bw/d (days 7 - 19 p.i.) bw/day bw/day 1 circonazote. 1 Ex-toxos3, whatering and developmental 1/0/152 of 30 mg/kg (1985) K-CA 5.6.2/06 Report No. 82004
K-CA 5.6.2/06
OECD 414 0-10-50-200 mg/kg bw/d Bw gain ↓, food ↓ in dams Report No.
(days 7 - 19 p.i.) 82004
GLP Embryonic resorptions compared to HCD mean ↑,
Oral: diet post implantation loss compared to HCD mean \(^1\), live
Acceptable foetuses/litters compared to HCD mean ↓, % of
New Zealand White reduced ossification of the skull ↑, Bw in offspring ↓
Ivew Zealand winte
Rabbit New Zealand White 20F /dose foetuses with hyoid body and/or arches unossified and reduced ossification of the skull ↑, Bw in offspring ↓

Table 50: Summary table of human data on adverse effects on development

Type of Test substance	Relevant information about the study (as applicable)	Observations	Reference
61, x2 off, (Co	No studies	s available	

Table 51: Summary table of other studies relevant for developmental toxicity

וכ	Type of	Test	Relevant	Observations	Reference			
Ġ	study/data	substance	information about					
	300 01		the study (as					
	5 0,		applicable)					
	No studies available							

2.6.6.2.1 Short summary and overall relevance of the provided information on adverse effects on development

Two developmental studies were conducted in rats. Both had several deviations from the current OECD guideline 414 (2018), the most severe being (in one or both studies) that test substance should be administered from implantation day onwards to one day prior to the day of scheduled humane killing, weight and histopathological

assessment of the thyroid gland should be taken, number of corpora lutea should be determined, the anogenital distance should be measured, and blood samples should be collected to assess thyroid hormones and TSH.

In both available developmental toxicity studies in rats, unspecific maternal toxicity was shown by mortality, reduced body weight development and food consumption at the top doses of 300/450 mg/kg bw/day in the first study (1981) and 500 mg/kg in the second study (1985). In the second study, clinical signs were also reported. Increases in post-implantation loss were seen in both studies, partly exceeding available HCD, and leading to a reduced number of live foetuses in the second study. In the first study, an increase in dead foetuses were seen at 450 mg/kg bw/day. Reduced foetal weights were reported in both studies. An increase in runt foetuses were reported in the second study. Skeletal findings were reported in both studies, mainly increases in incomplete ossification and occurrence of extra ribs. However, the individual skeletal findings contributing to these increases were not reproducible within the same study nor between the two studies except for some indications for delayed ossification. Taken together, both maternal and developmental NOAELs in both studies are 100 mg/kg bw/day.

In the first study in rats (1981), four different doses of penconazole technical (0, 30, 100 and 300 mg/kg bw/day) were given to 25 mated female rats (RAIf (SPF)) per group orally via gavage (GD 6-15) (main study). The report also includes a preliminary study with treatment of 10 mated female rats at 0 and 300 mg/kg bw/day (GD 6-15) and a supplementary study to further investigate the foetal skeletal development with treatment at 0 and 300 mg/kg bw/day (GD 6-15), and with 450 mg/kg bw/day (GD 10-14).

Further details (if not presented here) including study design, a description of the results (including information on incidences and severities of findings and extent of changes relative to controls, etc.) are given in the RAR (section B.6.5).

Mortality was seen at 300 mg/kg bw/day (2/25 (8%) and 4/15 (26%) dams in main and supplementary study, respectively) and 450 mg/kg bw/day (2/15 (13%) dams in supplementary study). Autopsy did not reveal any obvious pathological condition, but deaths are considered to be related to treatment. Further general toxicity was observed via consistently reduced body weight development and food consumption at ≥300 mg/kg bw/day. Maternal body weight gain corrected for gravid uterus weight was also markedly decreased at ≥300 (See table below).

Table 52: Maternal body weights and food consumption

101 90 18 010 X10 18

	Maiı	n study	11. 10.	Ji jio	Supp	lementary stu	dy
mg/kg	0	30	100	300	0	300	450°°
bw/day	Olo	M. Wo	Tille Will.	Ol'			
Body weight [g	g] (% cl	nange vs cont	rols)	>			
GD 0	200	199 (-0.5)	200 (+/-0)	198 (-1.0)	197	198 (+0.5)	201 (+2.0)
GD 6	225 <	225 (+/-0)	224 (-0.4)	226 (+0.4)	223	220 (-1.3)	226 (+1.3)
GD 10 5	xies.	. ~(1)	of		240		247 (+2.9)
GD 10 GD 15 GD 16	illo-	dio its	0		272		270 (-0.7)
GD 16	291	287 (-1.4)	287 (-1.4)	287 (-1.4)	282	267 (-5.3)	280 (-0.7)
GD 21 GD21°	356	355 (-0.3)	358 (+0.6)	350 (-1.7)	337	312 (-7.4)	335 (-0.6)
GD21°	265	261 (-1.5)	266 (+0.4)	260 (-1.9)	244	230 (-6.0)	241 (-1.5)
100 / 11 30							
Body weight g		(% change vs			1	r	
GD 0-6	25	26 (+4.0)	24 (-4.0)	28 (+12.0)	26	22 (-15.4)	25 (-3.8)
GD 6-16	66	62 (-4.6)	63 (-4.5)	61 (-7.6)	59	47 (-20.3)	54 (-8.5)
GD 10-15					32		23 (-28.1)
GD 16-21	65	68 (+4.6)	71 (+9.2)	63 (-3.1)	55	45 (-18.2)	55 (+/-0)
GD 6-21	131	130 (-0.8)	134 (+2.3)	124 (-5.3)	114	92 (-19.3)	109 (-4.4)
GD 6-21°	39.4	35.7 (-9.4)	42.2	34.6 (-12.2)	20.9	9.4 (-54.9)	15.2 (-27.6)
			(+7.1)				
Gravid uterus	weight	[g] (% chang	ge vs controls)			
GD 21	91.5	93.8	92.0	89.6 (-2.1)	92.7	82.3 (-11.2)	94.7 (+2.1
		(+2.5)	(+0.5)				
Food consum	ption [g/animal/day] (% change v	s controls)			
GD 0-6	20.9	21.7	21.2	20.9 (+/-0)	19.9	20.0 (+0.5)	21.2 (+6.5)
		(+3.8)	(+1.4)				

GD 6-11	24.5	22.7 (-	22.2 (-	20.5 (-16.3)	22.3	18.6 (-16.6)	22.0 (-1.3)
		7.3)	9.4)				
GD 11-16	26.2	25.3 (-	25.1 (-	25.6 (-2.3)	21.2	21.0 (-0.9)	19.9 (-6.1)
		3.4)	4.2)				
GD 16-21	23.5	23.6	24.2	24.5 (+4.3)	21.1	18.8 (-10.9)	19.3 (-8.5)
		(+0.4)	(+3.0)				
GD 6-16	25.3	24.0 (-	23.6 (-	23.0 (-9.1)	22.7	19.8 (-12.8)	20.9 (-7.9)
		5.3)	6.9)				

[°] corrected for uterus weight, °° treatment for gestation days 10-14

Slightly higher post-implantation loss was seen at ≥ 300 mg/kg bw/day in all studies, due to an increase in early resorptions. Post-implantation loss exceeded limited HCD in preliminary study only. The number of dead foetuses was increased at 450 mg/kg bw/day, but were comparable to control for the other treatment groups. Foetal weights were decreased at ≥ 300 mg/kg bw/day in supplementary study only (see selected Caesarean section observations in the table below). Foetal sex ratio was not affected by penconazole treatment.

Table 53: Selected Caesarean section observations

study	prelin	ninary		m	ain	7/1		plemen	tary \	HCD
mg/kg bw/day	0	300	0	30	100	300	0	300	450	Mean
					(1/4, 40		JUS.	Elli	+/- SD
					100	,O,	0	2 . C)`	(range)
Resorptions/dam					2	3 20	, VIII	10	S	
- Early/embryonic	1.5	2.3	0.7	0.8	(I.I.)	1.3	0.7	1.2	1.0	7.4 +/- 2.8
(% of	(10.1)	(15.1)	(4.8)	(5.9)	(8.1)	(9.0)	(5.0)	(9.8)	(7.1)	(2.7-15)
implantations)				010	0 1	v. '6.	ill.	5		
				5 1	0007	710, C	3 %			
- Late/foetal	0	0.1	0	0.04	0	0.05	0	0.1	0.1	0.4 +/- 0.9
			0,	11.00	10.00	5	0,			(0-5.1)
Live	13.4	12.9	12.8	12.7	12.3	12.9	[©] 12.7	10.9	12.6	12.6 +/- 1.0
Foetuses/Dam			illi	CD. 7/7	o' el	3/1/6				(10.1-14.9)
Dead	0	1	Or 9	0.00		2	1	2	5	
Foetuses/group	100	0. 90	1315	ebiji;	Jiolai (
		100	11.	10.71	Jio.					
Dead foetuses [%	260	1, 6	. 00,	700	6					0.04+/-0.11
of implantations]	10.71	. 20.	All .	11, 01						(0-0.5)
Post-implantation	10.1	16.5	5.2	6.2	8.1	10.0	5.4	12.5	10.4	7.8 +/-
loss [%]	N. 18	Sil	C. 1.	JIG.						2.9
20, 31	, (n)	9, 0	10 101	7						(3.5-15.0)
Mean foetal	5.19	5.35	5.17	5.31	5.38	5.32	5.26	5.03*	4.96*	5.29 +/-
weight [g] (%	aillo	(+3.0)	, <	(+2.7)	(+4.1)	(+2.8)		(-4.5)	(-5.8)	0.11
change vs	Jico J	, 0,								(5.11-5.5)
control)	b. 1/2									

* p < 0.05 (t-test)

The overall number of skeletal anomalies was increased at 300 mg/kg bw/day (main study only) and 450 mg/kg bw/day (supplementary study). The individual skeletal findings contributing to these increases were not reproducible between the main and supplementary study. A slight increase in the number of still unossified phalangeal nuclei of the hindlimb at the mid and high dose was observed (main study, within HCD range). An increase in the number of still unossified phalangeal nuclei of the forelimb (supplementary study, 450 mg/kg bw/day, outside the HCD range), hindlimb and calcaneous (at ≥300 mg/kg bw/day, within HCD range). In addition, wide sutures of the fronto-parietal region was seen in 11 fetuses from one litter at 450 mg/kg bw/day. No external nor visceral anomalies related to treatment were observed. (See selected findings on foetal abnormalities and incidences of individual skeletal findings in the table below).

Table 54: Selected foetal examinations - Foetuses with abnormalities (% of total examined) and Incidences of individual skeletal findings

	Main study				Supplem	entary s	tudy	Limited HCD
mg/kg bw/day	0	30	100	300	0	300	450	mean/ range (%)
with skeletal anomalies:	2/187 (1.1)	2/211 (0.9)	2/197 (1.0)	11/182 (6.0)	1/191 (0.5)	0/98 (0)	12/164 (7.3)	(0.63), (0- 2.3)
								Mic 18
Phalangeal nuclei unossified							N. C.	(0-12.3),
Forelimb (%)	1 (0.5)	1 (0.5)	4 (2.0)	4 (2.2)	7 (3.7)	3 (3.1)	22 (13)	(0-10.7)
Hindlimb (%)	27 (15)	41 (19)	72 (37)	45 (25)	42 (25)	51 (52)	82 (50)	(4.5- 65.6)
Wide sutures foetuses (%)	0	0	0	0	0 40	0 %	11 (6.7)	(0-1.4)
Litter (%)	0	0	0	0	011101		1 (7,7)	

In the second study in rats (1985), four different doses of penconazole technical (0, 5, 100 and 500 mg/kg bw/day) were given to groups of 25 mated female rats (Sprague-Dawley) via oral gavage (GD 6-15).

Mortality was observed in one gravid female at 5 mg/kg bw/day and two gravid and one non-gravid females at 500 mg/kg bw/day.

Clinical signs were observed at 500 mg/kg bw/day and comprised stomach and intestinal lesions, crusty eye(s), crusty nose and/or muzzle, damp and yellow/brown-stained fur in perianal and/or abdominal region, staggered gait, emaciation, loose stool, weakness, and/or lethargy.

Additional maternal toxicity observed at 500 mg/kg bw/day was reduced body weight development (absolute and corrected for gravid uterus weight) and food consumption. Body weight gain on GD 6-20 in top-dose females was -19% compared with controls. Corrected body weight gain on GD 6-20 was reduced by 41% and gravid uterus weights were 12% lower than concurrent controls in high-dose females. Body weight development in the low and mid-dose groups was not relevantly affected by treatment. A slightly lower food consumption on GD 6 for mid-dose animals were reported, but is not considered adverse.

Post-implantation loss was increased at 500 mg/kg bw/day (due to both early (2.2 per dam vs. 0.3 in ctr) and late (0.6 per dam vs. 0.0 in ctr) resorptions) (18.9% vs. 2.2% in ctr), and a slightly lower number of live foetuses per dam were reported at 500 mg/kg bw/day (12.2 vs. 14.6 in ctr).

Foetal weights were also reduced at this dose (M -5.9%, F -3.1%).

Pre-implantation loss and sex ratio were unaffected by treatment at all dose levels, as well as post-implantation loss, number of foetuses per dam and foetal weight in the low and mid-dose groups.

Increases in runt foetuses were seen at 500 mg/kg bw/day (4.3% vs 0.6% in ctr). Some other external findings were reported, including shortened tail and umbilical hernia, but these were not considered to be treatment related. Incidences of overall visceral findings were unaffected by treatment and within the range of historical controls.

Skeletal findings at 500 mg/kg bw/day included occurrence of ribs from cervical sternebrae and dual ossification centres of sternebrae, incomplete ossification of frontals and parietals and an increase in 14th ribs, all reported to be outside the range of HCD. See table below.

Table 55: Selected foetal skeletal findings

mg/kg bw/day	0	5	100	500	HCD °
Foetuses/litter examined	174/23	155/21	162/22	109/16	

Ribs from cervical foetuses (%)	1 (0.6) 1 (4.3)	2 (1.3) 1 (4.8)	0 0	8 (7.3) 5 (31)	Not available
vertebrae litter (%)					
Dual ossification foetuses (%) centres sternebrae litter (%)	0	0	1 (0.6) 1 (4.5)	3 (2.8) 2 (12.5)	(0-0.6)
Incompletely ossified					
Frontals+parietals	3 (1.7)	8 (5.2)	8 (4.9)	15 (13.8)	(0-8.8)
foetuses (%)	3 (13.0)	5 (24)	6 (27)	9 (56)	:.0 9
litter (%)					Vr. 110;
14th ribs foetuses (%)	2 (1.1)	3 (1.9)	1 (0.6)	16 (14.7)	(0-10.7)
litter (%)	2 (8.7)	2 (9.5)	1 (4.5)	8 (50)	0,00,00

One of HCD data only available for foetal incidences (not for litter incidences); based on results from 9 studies provided by the laboratory within the report of the penconazole study

Two developmental studies were conducted in rabbits. Both had several deviations from the current OECD guideline 414 (2018), the most severe being (in one or both studies) that test substance should be administered from implantation day onwards to one day prior to the day of scheduled humane killing, each test and control group should contain a sufficient number of females to result in approximately 20 female animals with implantation sites at necropsy, weight of the thyroid gland and histopathological assessment of the thyroid gland should be taken, and brain, nasal passages and tongue should be examined from one-half of the foetuses.

In both available developmental toxicity studies in rabbits, unspecific maternal toxicity was shown by reduced body weight development and food consumption during treatment at the top doses of 150 mg/kg bw/day in the first study (1982) and 200 mg/kg bw/day in the second study (1985). In addition, clinical signs were reported in the second study. Post-implantation loss was observed in the second study, exceeding HCD mean, but not exceeding HCD range; however, the number of live foetuses per litter were slightly reduced. Moreover, two foetuses were dead in the second study. In the first study, the incidences of internal hydrocephalus slightly exceeded available HCD. This was not seen in the second study. In addition, three foetuses in the first study had microphthalmia (within the range of HCD), including two which also had hydrocephalus. In the second study, foetuses with hyoid body and/or arches unossified and reduced ossification of the skull were observed and exceeded available HCD ranges. Taken together, both maternal and developmental NOAELs were 75 and 50 mg/kg bw/day in the first study (1982) and in the second study (1985), respectively.

In the first study (1982), CGA71818 (dose levels of 0, 25, 75 and 150 mg/kg bw/day) was administered orally, via gavage, to Chinchilla rabbits. The major findings of the study regarding general toxicity at the high dose of 150 mg/kg bw/day were reduced food consumption (GD 6-11 (-22%), GD 11-15 (-12%), GD 6-19 (-13%)) and body weight development (GD 6-19 (-11%), GD 0-28 corrected for gravid uterus weight (-7.4%)) during the treatment period. Two high-dose dams died during the gestation period, but so did one control. Consequently, these deaths can be considered spontaneous.

Pregnancy parameters were comparable to controls. Number of corpora lutea and implantations, pre- and post-implantation loss, number of live or dead foetuses, foetal weights and sex ratio were similar in treated and control groups. A slightly higher number of early resorptions (9.7% vs 4.8% in ctr) was observed at the high dose (but within the range of HCD). However, the number of implantations and live foetuses was also higher (as compared to controls). Hence, the higher number of resorptions is considered unrelated to treatment.

External findings were comparable between groups. Bilateral microphthalmia were seen in three high-dose foetuses (in two foetuses, microphthalmia was associated with internal hydrocephalus). The total incidence of microphthalmia in foetuses and litter was within the range of HCD; however, mean +/-SD was exceeded. The incidence of internal hydrocephalus at the high dose was with two affected foetuses slightly above the range of HCD, both for foetuses and litter. See table below.

Table 56: Selected foetal visceral findings

1	mg/kg bw/day	0	25	75	150	HCD°°
Foetuses/l	litter examined	113 / 16	104 / 15	102 / 15	125 / 16	
Individual finding	gs					
Microphthalmia (%) (bilateral)	foetuses litter (%)	0	0 0	0	3° (2.4) 2 (12.5)	(0.5+/-1.2, 0-4.1)°°° (1.8+/-4.1, 0-12.5)
Internal (%) hydrocephaly	foetuses	0	0	0	2° (1.6) 2 (12.5)	(0.2+/-0.3, 0-0.9)°°° (1.1+/-2.5, 0-7.1)

[°] both foetuses with internal hydrocephalus also had microphthalmia

In the second study (1985), CGA71818 (dose levels of 0, 10, 50 and 200 mg/kg bw/day) was administered orally, via gavage, to New Zealand White rabbits. Two females (both gravid) died during the course of the study: one in the top dose group on day 18 and one in the vehicle control group on day 28. During the treatment period, decreased defecation and urination were seen in the majority of the high dose group animals.

The major findings regarding general toxicity at the high dose of 200 mg/kg bw/day were reduced food consumption and body weight development, most markedly in the first week of treatment. See table below.

Table 57: Maternal body weight development and food consumption

mg/kg bw/day	0	10	50	200
Body weight [g] (%	variation to contr	ols)	1, 1/01, 60, 0M	
GD 0	4093	4057 (-0.9)	4021 (-1.8)	4086 (-0.2)
GD 7	4276	4136 (-3.3)	4132 (-2.7)	4239 (-0.9)
GD 20	4276	4139 (-3.2)	4243 (-0.8)	4058 (-5.1)
GD 29	4144	4088 (-1.4)	4105 (-0.9)	4087 (-1.4)
GD 29°	3717	3837 (+3.2)	3748 (+0.8)	3844 (+3.4)
Body weight gain [g]	(% variation to c		Ç.	
GD 0-7	183	79* (-57) [105 (-43)]°°	140 (-23)	153 (-16)
GD 7-10	2 2	O12	23	-104**
GD 10-14	10 85 01°	45	95	-19**
GD 14-20	-87	30	-37	-36
GD 7-20		45 -30 4 -51	81	- 150
GD 20-29	114	-51 31 (-60) [77 (-1.3)]°°	-159	29
GD 20-29 GD 0-29	5 78	31 (-60) [77 (-1.3)]°°	48 (-38)	27 (-65)
GD 0-29°	-114 78 -349	-208	-304	-175
Gravid uterus weigh	t [g] (% variation	to controls)		
GD 29	426.6	348.5 (-18)	410.5 (-3.8)	289.5 (-32)
Food consumption [g/rabbit/day] (% v	variation to controls)		
GD 0-7	194	157** (-19)	184 (-5.2)	181 (-6.7)
GD 7-10	185	154 (-17)	177 (-4.3)	106** (-43)
GD 10-14	182	142** (-22)	165 (-9.3)	83** (-54)
GD14-20	125	115 (-8.0)	144 (+15)	106 (-15)
GD 7-20	157	133 (-15)	158 (+0.6)	99** (-37)
GD 20-29	82	97 (+18)	76 (-7.3)	113 (+38)
GD 0-29	143	127 (-11)	138 (-3.5)	123 (-14)

^{*} p <0.05, ** p <0.01

^{°°} limited information based on 16 studies (same laboratory/rabbit strain/breeder) the applicant has access to: mean +/-standard deviation, range (% incidences)

^{°°°} including one foetus that had internal hydrocephalus and microphthalmia

[°] corrected for gravid uterus weight

^{°°} excluding dam 3850 (10 mg/kg bw/day)

Five dams delivered 1-2 days prior to the scheduled Caesarean section in absence of a dose relationship (2 each in low and mid dose group, 1 in high dose group). All the foetuses were normal and necropsy findings were negative. The incidence of dams delivering prior to CS are within the range of HCD.

The number of embryonic (early) resorptions (16 vs. 9 in ctr) and post-implantation loss (21.4% vs. 9.2% in ctr) was higher at the top dose, and live foetuses/dam (4.8 vs. 6.9 in ctr) was reduced at the top dose compared to control. The numbers were within the range of HCD but exceeded the mean +/-SD and may be related to treatment. In addition, two dead foetuses were recorded at the top dose (vs. 0 in ctr).

External findings were limited to mostly single incidences in the control and mid dose group and did not show any dose-relationship. The % of foetuses with hyoid body and/or arches unossified and reduced ossification of the skull exceeded the range of HCD at the top dose level while the litter incidences of both findings were well within the range of HCD. See table below.

range of HCD. See table below.	•	of bild sight sion of		
Table 58: S	elected skeleta	al variations		ing of box less inger to less
mg/kg bw/day	0	10	50	200 HCD°
Foetuses/litter examined	118/17	76/13	87/12	77/14
Hyoid body and/or foetuses (%)	1 (0.8) 1 (5.9)	1 (1.3) 1 (7.7)	3 (3.4) 3 (25)	6 (7.8) (0.7+/-1.6, 0-7.0)°°° (3.2+/-7.2, 0-30)
arches unossified litter (%)	_	_	1600	0 0 00
Reduced ossifi- foetuses (%) cation of skull litter (%)	0	0		5 (6.5) 1 (7.1) (2.8+/-6.1, 0-25)

Table 58: Selected skeletal variations

2.6.6.2.2 Comparison with the CLP criteria regarding adverse effects on development

According to the CLP criteria, developmental toxicity includes any effect which interferes with normal development of the conceptus, either before or after birth, and resulting from exposure of either parent prior to conception, or exposure of the developing offspring during pre-natal development, or postnatally, to the time of sexual maturation. The major manifestations of developmental toxicity include death of the developing organism, structural abnormality, altered growth and functional deficiency.

Several adverse findings in the respective top dose groups from all four studies were related to developmental effects. Increases in post-implantation loss were seen in both rat studies and in the second rabbit study. In the first rat study, an increase in dead foetuses were seen at 450 mg/kg bw/day. Reduced foetal weights were reported in both rat studies. In the second rabbit study, two foetuses were dead, and the number of live foetuses per litter were reduced.

An increase in runt foetuses were reported in the second rat study. Skeletal findings were reported in both rat studies, mainly increases in incomplete ossification and occurrence of extra ribs. However, the individual skeletal findings contributing to these increases were not reproducible within the same study nor between the two studies except for some indications for delayed ossification. In the first rabbit study, the incidences of internal hydrocephalus slightly exceeded available HCD. This was not seen in the second study. In addition, three foetuses in the first study had microphthalmia (within the range of HCD), including two which also had hydrocephalus. In the second rabbit study, foetuses with hyoid body and/or arches unossified and reduced ossification of the skull were observed and exceeded available HCD ranges.

Taken together, these findings contribute to the need for classification in a weight of evidence assessment. Since the data are from animal studies only and are not sufficiently convincing to classify in category 1b, classification in category 2 is warranted. Substances are classified in Category 1 for reproductive toxicity when they are known to have produced an adverse effect on sexual function and fertility, or on development in humans or when there is evidence from animal studies, possibly supplemented with other information, to provide a strong presumption that the substance has the capacity to interfere with reproduction in humans. The classification of a substance in Category 1A is largely based on evidence from humans. For Penconazole (ISO), only evidence from animal studies is provided. The classification of a substance in Category 1B is largely based on data from animal studies. Such data shall provide clear evidence of an adverse effect on sexual function and fertility or on development in the absence of other toxic effects, or if occurring together with other toxic effects the adverse effect on reproduction is considered

o mean +/-standard deviation, range; based on HCD information in Appendix D of report: 25 studies using NZW rabbits performed by the laboratory starting July 1980 to February 1985; assumption that incidence was 0 where finding was not listed for an individual study

^{°°°} includes reduced ossification of hvoid body and/or arches

not to be a secondary non-specific consequence of other toxic effects. For Penconazole (ISO), the adverse effects are not consistent enough throughout the different species and studies to classify it in Category 1b. Moreover, the evidence for adverse effects on development are present, and all data taken together in a weight of evidence approach, warrants classification. Development of the offspring throughout gestation and during the early postnatal stages can be influenced by toxic effects in the mother either through non-specific mechanisms related to stress and the disruption of maternal homeostasis, or by specific maternally-mediated mechanisms. The studies in rats showed some maternal toxicity at the top dose, such as some mortalities, clinical signs, reduced weight gain and food consumption. The maternal toxicity in rabbits was milder, primarily affecting body weight gain and food consumption. The maternal toxicity is not considered severe enough to explain the adverse effects on development. of the offspring seen in all the studies. Substances are classified in Category 2 for reproductive toxicity when there is some evidence from humans or experimental animals, possibly supplemented with other information, of an adverse effect on development, and where the evidence is not sufficiently convincing to place the substance in Category 1. If deficiencies in the study make the quality of evidence less convincing, Category 2 could be the more appropriate classification.

The fact that other triazoles are classified for developmental effects could also be considered supportive.

2.6.6.2.3 Conclusion on classification and labelling for reproductive toxicity

Harmonised classification proposed. Classification for adverse effects on development of the offspring, category 2, H361d, is warranted.

2.6.6.3 Adverse effects on or via lactation [equivalent to section 10.10.7 of the CLH report template]

Table 59: Summary table of animal studies on effects on or via lactation

Method,	Test substance,	Results	Reference
guideline,	dose levels	- NOAEL/LOAEL	
deviations ¹ if	duration of	target tissue/organ	
any, species,	exposure	- critical effects at the LOAEL	
strain, sex,		The lie wit as elo wis	
no/group	7	s and we introduce in the	
	,45	The CALL CLICK SILL VO	
	No relevant findi	ngs on or via lactation from the studies provided	

Table 60: Summary table of human data on effects on or via lactation

alle	9- 40, 40, 40, 40		
Type o Test	Relevant information	Observations	Reference
data/report substance	about the study (as		
**** \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	applicable)		
20, 31, (1)	No studies	s available	

Table 61: Summary table of other studies relevant for effects on or via lactation

	Type of	Test	Relevant	information	Observations	Reference
)	study/data	substance	about the	study (as		
	10 %	31.	applicable)			
5	, S . W.	700		No studies	s available	

2.6.6.3.1 Short summary and overall relevance of the provided information on effects on or via lactation

No relevant findings on or via lactation from the studies provided.

Comparison with the CLP criteria regarding effects on or via lactation 2.6.6.3.2 Hazard class not assessed in this dossier.

2.6.6.3.3 Conclusion on classification and labelling for reproductive toxicity Hazard class not assessed in this dossier.

Summary of neurotoxicity 2.6.7

Table 62: Summary table of animal studies on neurotoxicity

guidev any stra	· • · · ·	Test substance, dose levels duration of exposure	Results: - NOAEL/LOAEL - target tissue/organ -critical effect at LOAEL	Reference	
			No studies available	10 31	
	2.6.7.1 Co	omparison with essed in this doss:		onnerial maying on the contraction of the contracti	ilos Signification of the significant of the signif
	class not ass	onclusion on classes on this doss. of other toxical	assification and labelling for reproductive toxicity ier. Dological studies	Studiociol explina	
oxicit	y studies are	available with me	blogical studies f metabolites and impurities tabolites CGA179944, CGA91305, CGA132465 and severa	l common triazole	

Summary of other toxicological studies 2.6.8

2.6.8.1 Toxicity studies of metabolites and impurities

Toxicity studies are available with metabolites CGA179944, CGA91305, CGA132465 and several common triazole metabolites: 1,2,4-Triazole (1,2,4-T, CGA71019), triazole alanine (TA, CGA131013), triazole acetic acid (TAA, CGA142856) and triazole lactic acid (TLA, CGA205369).

The common triazole metabolites have been recently evaluated in the EU¹. From the common triazole metabolites, only TAA exceeds the limit in groundwater modelling that triggers a non-relevance case. Therefore, only this common triazole metabolite is potentially relevant. Study summaries for TAA are not repeated in this document as recently evaluated in the EU; however, details of the studies relied on (reports) have been provided. Toxicity studies with the remaining common triazole metabolites are not included within this submission (please refer to the existing EU evaluations).

Further toxicity studies are available with CGA91305 (tentatively identified in groundwater) but as a non-relevance case is not triggered, the toxicity studies are not included within this submission (see list of non-submitted studies).

Several genotoxicity studies with CGA179944 were also already evaluated at EU as part of the last evaluation of tetraconazole due to the fact that CGA179944 is also a metabolite of tetraconazole (CGA179944 is called 'M14360acid' within tetraconazole DAR). In addition to the studies previously presented, an additional Ames test and developmental toxicity studies were performed since the last EU evaluation and the negative response in the existing in vivo micronucleus test was supported by further work (trend test calculation, updated HCD, slide re-evaluation).²

For metabolite CGA132465, genotoxicity data and a 28-days oral toxicity study in rats are available.

Toxicological relevance of several dietary metabolites (excluding the common triazole metabolite above) -CGA190503, CGA132465, CGA127841, CGA177279, CGA177281, CGA179944, CGA189659 - is further discussed in a statement based on structural relationship and available OSAR modelling as compared to penconazole. Essentially, all dietary metabolites evaluated were similar to parent in OSAR modelling. However, concerning CGA127841, CGA132465, CGA177279 and CGA177281, one of the models is out of the applicability domain and therefore may not be reliable to support read-across to parent. CGA179944 and CGA190503 would support a read-across to parent and the use of penconazole toxicological reference values for risk assessment for the dietary metabolites, if required. The latter is supported by the absence of a relevant genotoxic potential for CGA132465 for which studies are available.

Upon request from the RMS, the available QSAR information was additionally presented in agreement with the EFSA template for reporting QSAR.

90

¹ European Commission: Peer review of the pesticide risk assessment for the triazole derivative metabolites in light of confirmatory data submitted, 29th June 2018

Triazole Derivative Metabolites: Addendum - Confirmatory Data; B.5 Methods of analysis, B.6 Mammalian Toxicology & Metabolism, B.7 Residues, revised May 2016 and February 2018

² With the exception of the Ames test done by Isagro with M14360-acid = CGA179944, as the applicant has performed another Ames test showing the same results: negative +/-S9. Also not included is a tolerability study in non-pregnant rabbits.

Additionally, during the last EU review, CGA127841 was considered as a major rat metabolite covered by the studies performed with penconazole. CGA132465 and CGA190503 were considered likely to be of the same or lower toxicity than penconazole, based on their structural similarity with the parent compound and some rat metabolites³.

CGA179944 was negative in the available Ames test. The existing *in vitro* mammalian cell gene mutation study was considered to be equivocal by RMS and should be repeated to confirm a clearly negative outcome. Notably, a positive outcome of this test would have triggered a requirement to conduct a Comet assay or a Transgenic Rodent Assay. The chromosome aberration test was reconfirmed to be positive. Overall, a novel *in vitro* mammalian cell gene mutation study should be provided, and a justification regarding *i.p.* administration in the *in vivo* micronucleus assay should be provided.

After 7 days of oral application of CGA179944, dose levels up to 1000 mg/kg bw/day (gavage) and 10000 ppm (via diet, 737 mg/kg bw/day) were well tolerated in the rat without relevant signs of toxicity. Minimal and/or transient maternal effects were seen in the preliminary and main developmental toxicity at 10000 ppm, except for bodyweight gain corrected for gravid uterus weight at 10000 ppm, and to a lesser degree at 3000 ppm, which was markedly reduced. Concerning foetal toxicity, early intrauterine deaths showed a dose-response, with a marked increase at 3000 and 10000 ppm compared with control, although not statistically significant. Accordingly, post-implantation loss is elevated at 3000 and 10000 ppm compared with control. An increase in minor abnormalities and variant findings are seen at both 3000 and 10000 ppm. RMS suggests a maternal and a developmental NOAEL of 1000 ppm (84 mg/kg bw/day).

In the main rabbit study, there was one death related to treatment in the high-dose group, in addition to one death in the control group. Maternal toxicity was further manifested as body weight loss from day 6 to day 12, lower body weight gain and food intake at the top dose compared with control. Concerning foetal toxicity, there was a slight increase in the number of late intra-uterine deaths and the number of litters affected in the group given 600 mg/kg/day. At 600 mg/kg bw/day, group mean foetal weights (total, males and females) were statistically significantly lower than controls. Litter weight was also decreased at 600 mg/kg bw/day compared with control. Different major foetal abnormalities were seen in all treatment groups. However, at 600 mg/kg bw/day, two cases of incomplete interventricular septum were detected. Different variations were seen in all treatment groups; however, cerv vert, odontoid process, extra 13th rib and forelimb epiphyses not ossified were markedly elevated in 600 mg/kg bw/day compared with control, with statistical significance, and in some cases also at 300 mg/kg bw/day. RMS suggests a maternal NOAEL of 300 mg/kg bw/day and a developmental NOAEL of 100 mg/kg bw/day.

RMS suggests a classification for CGA179944 according to Regulation (EC) No. 1272/2008: H361d, "Suspected of damaging the unborn child», similar to the classification for penconazole. The NOAEL for CGA179944 is comparable with the NOAEL for penconazole from the developmental studies on rat (100 mg/kg bw/day). For rabbit, both maternal and developmental NOAEL is higher for CGA179944 in rabbit compared with penconazole (75 and 50 mg/kg bw/day for developmental studies in rabbit).

Another available study – tolerability in non-pregnant rabbits - with CGA179944 was not submitted (included in list of non-submitted studies), as it was considered not to add relevant information required for the evaluation of CGA179944⁴.

CGA142856 (TAA) was negative in the available genotoxicity studies (Ames, mammalian cell gene mutation, chromosome aberration). It is therefore considered non-genotoxic and a classification for genotoxicity is not required.

The available acute and repeated dose toxicity studies in rats and mice indicate that CGA142856 (TAA) is less toxic (with NOAELs at or close to the limit dose) than the parent penconazole.

The latter was confirmed by the available reproductive toxicity studies (2-generation study in rats, rat and rabbit developmental toxicity studies) not showing relevant reproductive or developmental effects and NOAELs again being higher as compared to the respective penconazole studies.

The recent EU evaluation resulted in an ADI and ARfD of 1 mg/kg bw/day for CGA142856 (TAA) based on the NOAELs of 100 mg/kg bw/day of the available reproductive toxicity (rat) and developmental toxicity (rabbit) studies.

⁴ While it contained additional TK information (as compared to the submitted studies), the latter was not used to set the dose levels for the submitted studies (dose levels based on toxic effects).

³ EFSA (2016). Scientific Report of EFSA on scientific support for preparing an EU position in the 48th Session of the Codex Committee on Pesticide Residues (CCPR). EFSA Journal 2016;14(8):4571.

CGA132465 was negative in the available genotoxicity studies (Ames, mammalian cell gene mutation, in vitro micronucleus). It is therefore considered non-genotoxic and a classification for genotoxicity is not required.

Available QSAR indicates that CGA132465 should not be more toxic than the parent penconazole; however, one of the models is out of applicability domain and may not be reliable. A 28-days oral (feeding) study in rats confirmed the modelling prediction revealing the liver as target organ (increased liver weight and hepatocellular necrosis comparable with effects seen with penconazole) and a NOAEL of 1000 ppm equivalent to 75/74 mg/kg bw/day which was also comparable with the NOAEL seen in 28-days studies with penconazole (20 < NOAEL < 100 mg/kg bw/day). Therefore, CGA132465 is considered similar to parent and it is considered justified to use the reference doses based on studies with penconazole for risk assessment of CGA132465 as well.

and potential immunotoxic effects of penconazole were evaluated based on results from 14 existing repeated dose data studies. Studies with penconazole that were reviewed include short-term, subchronic and chronic studies in rats, mice, rabbits and dogs and multi-generation reproduction studies in rats. The following parameters were invocation in some or all of the studies: spleen, thymus and adrenal organ micropathology. levels, micropathology in immune-related tissues, tumour increase in immune-related tissues, and enhanced infections.

Generally, very few immune-related findings were revealed; thus, the investigated studies show no immunotoxic potential of penconazole.

A supplementary study on liver enzyme induction was conducted with perconazole in rats and mice. The animals were given daily oral doses of penconazole via gavage for 14 days (dose levels of 10, 80, 160, or 320 mg/kg bw/d). The treatment caused a marked liver enlargement in both species at 80 mg/kg bw/day and higher (dose-dependent). Proliferation of smooth endoplasmic reticulum membranes, and a pronounced induction in the activity of several hepatic xenobiotic metabolising enzymes (ethoxycoumarin-O-deethylase, epoxide hydrolase, UDP-glucuronosyltransferase, glutathione-S-transferase) was seen. The results suggested that in both species liver enlargement was due to a combination of both hyperplasia and hypertrophy of the hepatocytes. They also indicated that, like other triazole derivatives, penconazole belongs to the phenobarbital class of monooxygenase inducers. Taken together, RMS proposes a NOAEL of 80 mg/kg bw/day in both rats and mice.

An open literature article on transcriptionally altered cancer-related genes induced by penconazole was considered to be relevant and reliable by RMS and included as a supplementary study on the active substance. Cells from the T-47D cell line were treated with commercial penconazole or penconazole-contaminated grape extracts for 4 h at doses close to the MRL. The whole-genome transcriptomic profile was assessed by using genome 44 K oligomicroarray slides. The analysis returned a set of genes involved in Thyroid Cancer Pathway as common genes significantly altered from both treatments and showing the same trend of modulation. Due to the fact that the experiment was performed in a cell line, and only one cell line was applied, RMS considers these finding supplementary only, but recognizes that the findings might contribute to a weight of evidence setting.

Summary of medical data and information 2.6.9

Medical surveillance on manufacturing plant personnel and monitoring studies

The applicant has maintained a data base of incidents involving chemical exposure of workers since 1983. A query of the Syngenta internal database in January 2019 for penconazole produced one record of adverse health effects reported in February 2016. A bitter taste following access to samples of formulated products in a non-extracted fume cupboard. The taste was quickly eliminated following the use of mouthwash. The investigation concluded that the symptoms were most likely to be associated with volatile solvent rather than penconazole technical material. No other cases have been reported during the manufacture or formulation of penconazole-containing products over a 32-year period.

Data collected on humans

The applicant did not perform any studies that would collect data from humans.

A number of publications appeared in the literature search that may have been potentially relevant as potentially containing information on adverse health effects in humans. However, they were considered insufficiently reliable to be included here and/or a relation between penconazole exposure and reported indications for adverse health effects could not be established.

Diagnosis of poisoning (determination of active substance, metabolites), specific signs of poisoning, clinical test

Penconazole is of low acute toxicity. Intoxication is only likely if large quantities are ingested. In animal studies,

General advice: Have the product container, label or Material Safety Data Sheet with you when calling the

antidotes, medical tres.

ainer, label or Material \$
.control center or physician, o.

air, If breathing is irregular or st
ysician or poison control centre imm.
aminated clothing immediately. Wash of
cian. Wash contaminated clothing before re
ately with plenty of water, also under the eyelids.
al attention is required.
atton available
.wed, seek medical advice immediately and show this

.t There is no specific antidote available. Treat symptomatica
.catment.

cd effects of poisoning
.mazole is of low toxicity in animals (and humans) as indicated by available anim.
.vant health effects reported in medical surveillance of manufacturing facilities. Inhalation: Move the victim to fresh air. If breathing is irregular or stopped, administer artificial respiration. Keep

Skin contact: Take off all contaminated clothing immediately. Wash off immediately with plenty of water. If skin

Eye contact: Rinse immediately with plenty of water, also under the eyelids, for at least 15 minutes. Remove contact

Ingestion: If swallowed, seek medical advice immediately and show this container or label. Do NOT induce

Medical advice: There is no specific antidote available. Treat symptomatically. No antidote is known, apply

Expected effects of poisoning
Penconazole is of low toxicity in animals (and humans) as indicated by available animal studies and the absence of relevant health effects reported in medical surveillance of manufacturing facilities COONED THE DATE OF THE BOUNDER HE CONFERNMENT OF THE PRINCE OF THE PRINC To head a finis do time to the be prohibled and wind a finished and wild be the finished and will be the finished and wil

2.6.10 Toxicological end points for risk assessment (reference values)

Table 63: Overview of relevant studies for derivation of reference values for risk assessment

Species	Study (method/type, length, route of exposure)	Test substance	Critical effect	NOAEL	LOAEL	Cross reference
Dog	Toxicity Study In Dogs, 90-days/1 year Orally via diet	Penconazole (91.7%, P. 11-14)	Target organ: Liver 90 days: Bw gain ↓; liver: weight ↑, hepatocyte necrosis 1 year: Bw gain ↓; liver: weight ↑, hepatocyte necrosis, inflammation, fibrosis	Maternal and developmental NOAEL of 50 mg/kg bw/day	90 days: (500) M: 17.5; F: 18 1 year: (500) M: 16.9; F: 16.7	(1984);
Rabbit	Developmental toxicity GD 7-19 Orally via diet	Penconazole: FL840833; 98.7% purity	resorptions	Maternal and developmental NOAEL of 50 mg/kg bw/day	Most.	(1985) K-CA 5.6.2/06 Report No.

2.6.10.1 Toxicological end point for assessment of risk following long-term dietary exposure – ADI (acceptable daily intake)

In line with the previous evaluation (DAR, 2007), the ADI is based on the NOAEL (3 mg/kg bw/day) from the 90 days/1 year toxicity study in dogs. From a comparison of NOAELS/LOAELs potentially relevant for setting an ADI, i.e. those from short-term, long-term and reproduction toxicity studies, it was concluded that the species most sensitive to repeated administration of penconazole was the dog, with the most relevant NOAEL of ca. 3 mg/kg bw/day, being derived from the combined 90-day/1-year oral gavage study (1984) on the basis of reduced body weight development and hepatotoxicity at about 17 mg/kg bw/day and above.

With respect to safety factors, it was previously (DAR, 2007) decided to use a default value of 100 (accounting for potential interspecies as well as for intraspecies variation), resulting in an ADI of 0.03 mg/kg bw/day. During this re-assessment an extra safety factor of 2 is proposed to be applied, to account for the extrapolation from sub-chronic to chronic studies. Notably, the histopathological findings in the combined 90-day/1-year oral gavage study indicate a time-dependent increase in the number of animals with inflammation with fibrosis in the liver. In addition, more severe effects in the liver are seen at lower penconazole levels after 1 year compared with 90 days.

In total, three chronic/long term studies were conducted (two in mice and one in rats). However, in line with the previous evaluation (DAR, 2007), it was concluded that the tested doses in two of these studies (1985,

and 1985a) were too low and that the studies could only be considered supportive, as no toxicity was seen at the top dose. In the third long-term study in mice (2004), a NOAEL of 21.7 mg/kg bw/day was derived, based on reduced body weight development and an increase in liver weight associated with an increase in hepatocyte vacuolisation at the highest dose tested. Notably, a NOAEL of 69 mg/kg bw/day was derived for a 90 - Day Preliminary Carcinogenicity Study In Mice (2002), based on reduced body weight development and an increase in liver weight associated with an increase in hepatocellular hypertrophy at increasing dose.

The proposed ADI was calculated as follows:

ADI = NOAEL 90-day/1-year, dog/SF = (3 mg/kg bw/day)/200 = 0.015 mg/kg bw/day.

2.6.10.2 Toxicological end point for assessment of risk following acute dietary exposure - ARfD (acute reference dose)

During the previous evaluation (DAR, 2007), the setting of an ARfD for penconazole was considered unnecessary, based on an evaluation in accordance with recommendations of the WHO published in 2004 (JMPR, 2004. Guidance for the derivation of an acute reference dose, pesticide residues in food-2004, Report of the JMPR, FAO Plant Production and Protection Paper, 178).

During the current evaluation, an ARfD of 50 mg/kg bw/day is proposed, based on the NOAEL from a developmental toxicity study in rabbit (1985). With respect to uncertainty factors, it is proposed to use a default value of 100, accounting for potential interspecies as well as for intraspecies variation. Based on the comparative intravenous (iv) vs. oral data, the oral absorption of penconazole can be assumed to be practically complete, and no additional correction factor is proposed.

The proposed ARfD was calculated as follows:

ARfD = NOAEL dev. Tox rabbit /SF = (50 mg/kg bw/day)/100 = 0.5 mg/kg bw/day

2.6.10.3 Toxicological end point for assessment of occupational, bystander and residents risks - AOEL (acceptable operator exposure level)

In line with the previous evaluation (DAR, 2007), the AOEL is based on the NOAEL (3 mg/kg bw/d) from the 90 days/1 year toxicity study in dogs. From a comparison of potentially relevant NOAELs/LOAELs for short-term and reproduction toxicity, the combined 90-d/1-yr study in dogs (1984) was chosen as being the most relevant one for the setting of the systemic AOEL (AOEL-S). As oral absorption of penconazole exceeded 80%, no need was seen to use an additional correction factor.

With respect to safety factors, it is, in line with the previous evaluation (DAR, 2007), decided to use a default value of 100, accounting for potential interspecies as well as for intraspecies variation. Based on the comparative intravenous (iv) vs. oral data, the oral absorption of penconazole can be assumed to be practically complete, and no additional correction factor is proposed.

The proposed AOEL was calculated as follows:

AOEL-S = NOAEL 90-day/1-year, dog /SF = (3 mg/kg bw/day)/100 = 0.03 mg/kg bw/day

2.6.10.4 Toxicological end point for assessment of occupational, bystander and residents risks - AAOEL (acute acceptable operator exposure level)

An EU-wide harmonised approach for the derivation of the AAOEL is still pending. However, based on the Commission Guidance Document SANTE-108322015 rev. 1.7, 24 January 2017, the ARfD is suggested as a value for the AAOEL.

The proposed AAOEL was calculated as follows:

AAOEL = NOAEL dev. Tox rabbit /SF = (50 mg/kg bw/day)/100 = 0.5 mg/kg bw/day

2.6.11 Summary of product exposure and risk assessment

The representative plant protection product "Topas" A6209G is an emulsifiable concentrate (EC) containing 100 g penconazole/L intended for use as a fungicide on pome fruit, grapes and cucumber.

Operator exposure:

According to the intended uses submitted by the applicant, the maximum applied dose is 40 g a.s./ha in pome fruit, 30 g a.s./ha in grapes, and 50 g a.s./ha in cucumber, with a minimum volume of 500 L/ha in pome fruit, 150 L/ha in grapes, and 200 L/ha in cucumber. The exposure estimates according to the different scenarios are summarized in the tables below.

EFSA Guidance on the assessment of exposure of operators, workers, residents and bystanders in risk assessment for plant protection products [EFSA Journal 2014;12(10):3874 [55 pp.] has been used as a model to estimate exposure.

Table 64: Summary of estimated operator exposure to penconazole (longer term exposure)

Model data	Level of PPE	Total absorbed dose (mg/kg/day)	% of systemic AOEL
Tractor-mounted/trailed ba	roadcast air assisted spray ap	plication outdoors to high cro	ps-pome fruit
Application rate		0.04 kg a.s./ha	Tato and doe
Spray application (AOEM; 75 th percentile) Body weight: 60 kg	Work wear (arms, body and legs covered) M/L and App.	0.0069	22.87
Tractor-mounted/trailed ba	roadcast air assisted spray ap	plication outdoors to high cro	pps grapes
Application rate		0.03 kg a.s./ha	500
Spray application (AOEM; 75 th percentile) Body weight: 60 kg	Work wear (arms, body and legs covered) M/L and App.	0.0053	17.76
Tractor-mounted boom sp	ray application outdoors to lo	ow crops-cucumber	
Application rate	7 Con 90 0	0.05 kg a.s./ha	
Spray application (AOEM; 75 th percentile) Body weight: 60 kg	Work wear (arms, body and legs covered) M/L and App.	0.0024	7.92

Table 65: Summary of estimated operator exposure to penconazole (acute exposure)

Model data	Level of PPE	Total absorbed dose (mg/kg/day)	% of systemic AAOEL	
Tractor-mounted/trailed b	roadcast air assisted spray ap	plication outdoors to high cro	pps-pome fruit	
Application rate		0.04 kg a.s./ha		
Spray application (AOEM; 95 th percentile) Body weight: 60 kg	Work wear (arms, body and legs covered) M/L and App.	0.0217	4.34	
Tractor-mounted/trailed b	roadcast air assisted spray ap	plication outdoors to high cro	ops grapes	
Application rate		0.03 kg a.s./ha		
Spray application (AOEM; 95 th percentile) Body weight: 60 kg	Work wear (arms, body and legs covered) M/L and App.	0.0164	3.28	
Tractor-mounted boom sp	ray application outdoors to lo	ow crops-cucumber		
Application rate		0.05 kg a.s./ha		

Model data	Level of PPE	Total absorbed dose (mg/kg/day)	% of systemic AAOEL
Spray application (AOEM; 95 th percentile) Body weight: 60 kg	Work wear (arms, body and legs covered) M/L and App.	0.0203	4.07

Therefore, according to the model calculations, it can be concluded that the risk for the operator using A6209G for the proposed uses is acceptable without the use of personal protective equipment.

the proposed uses is acceptable without the use of personal control of the proposed uses is acceptable without the use of personal control of the proposed uses is acceptable without the use of personal control of the proposed uses is acceptable without the use of personal control of the proposed uses in acceptable without the use of personal control of the proposed uses in acceptable without the use of personal control of the proposed uses in acceptable without the use of personal control of the proposed uses in acceptable without the use of personal control of the proposed uses in acceptable without the use of personal control of the proposed uses in acceptable without the use of personal control of the proposed uses in acceptable without the use of personal control of the proposed uses in acceptable without the use of personal control of the personal contr	onal protective equipment.	he operator using A6209G for
Worker:		of Oroperojing in
Therefore, according to the model calculations, it can be the proposed uses is acceptable without the use of personal to the proposed uses is acceptable without the use of personal to the proposed uses is acceptable without the use of personal to the proposed uses is acceptable without the use of personal to the proposed uses is acceptable without the use of personal to the proposed uses is acceptable without the use of personal to the proposed uses is acceptable without the use of personal to the proposed uses is acceptable without the use of personal to the proposed uses is acceptable without the use of personal to the proposed uses is acceptable without the use of personal to the proposed uses is acceptable without the use of personal to the proposed uses is acceptable without the use of personal to the proposed uses is acceptable without the use of personal to the proposed uses is acceptable without the use of personal to the proposed uses is acceptable without the use of personal to the proposed uses in the proposed u	apes and cucumbers after treat	ment to perform tasks such as
Model data Level of PPE	Total absorbed dose	% of systemic AOEL
Reaching, picking pome fruit Outdoor Work rate: 8 hours/day ⁽¹⁾ , DT ₅₀ : 30 days ⁽²⁾ DFR: 3 µg/cm ² /kg a.s./ha ⁽²⁾ Interval between treatments: 10 days	2 × 0.04 kg/a s/ha	Sourcet.
Number of applications and application rate	2×0.04 kg a.s./ha	
Body weight: 60 kg (3)Work wear (arms, body and legs covered) TC: 4500 cm²/person/h	0.0284	94.71
Reaching, picking grapes Outdoor Work rate: 8 hours/day ⁽¹⁾ , DT ₅₀ : 2.38 days ⁽⁴⁾ DFR: 2.0 µg/cm²/kg a.s./ha ⁽⁴⁾ Interval between treatments: 8 days Number of applications and application rate Body weight: 60 kg (3)Work wear (arms, body and legs covered)	2 × 0.04 kg a.s./ha 0.0284 2 × 0.03 kg a.s./ha	
Number of applications and application rate	2×0.03 kg a.s./ha	
Body weight: 60 kg (3)Work wear (arms, body and legs covered) TC: 10100 cm²/person/h	0.0195	65.02
Reaching, picking cucumber Outdoor Work rate: 8 hours/day ⁽¹⁾ , DT ₅₀ : 30 days ⁽²⁾ DFR: 3 µg/cm ² /kg a.s./ha ⁽²⁾ Interval between treatments: 8 days		
Number of applications and application rate	3 × 0.05 kg a.s./ha	
Body weight: 60 kg (3)Work wear (arms, body and legs covered) TC: 2500 cm²/person/h (1) 8 h/day for professional applications for harvesting, pruni	0.0277	92.48

- (1) 8 h/day for professional applications for harvesting, pruning, tying, thinning or weeding activities
- (2) EFSA Guidance on the assessment of exposure of operators, workers, residents and bystanders in risk assessment for plant protection products [EFSA Journal 2014;12(10):3874 [55 pp.]
- (3) no PPE: Worker wearing shoes, socks, long-sleeved shirt, and long trousers
- (4) DFR value derived from experimental data.

It is concluded that there is no unacceptable risk anticipated from penconazole for the worker wearing adequate work clothing (but no PPE), when re-entering crops treated with A6209G. As a standard rule, it should be mentioned on the label that treated crops should not be re-entered before spray deposits on leaf surfaces have completely dried.

Bystander and residents:

The acute exposure assessment for bystanders covers the exposure that a resident could reasonably be expected to incur in a single day. Therefore, there is no need for a separate acute risk assessment for residents. Resident exposure is therefore determined by average exposure over a longer duration, and higher exposures on one day will tend to be offset by lower exposures on other days.

Table 67: Summary of estimated bystander (acute) exposure to penconazole

			ill lie off is
Model data		Total absorbed dose (mg/kg bw/day)	% of systemic AAOEL
Buffer zone: 5(m) Drift reduction technology		ay application outdoors to high o	crops-pome fruit
Application rate		0.04 kg	g a.s./ha
Bystander child	Drift (95 th perc.)	0.0056	1.12
Body weight: 10 kg	Vapour (95 th perc.)	0.0011	0.21
	Deposits (95 th perc.)	0.0008	0.17
	Re-entry (95 th perc.)	0.0027	0.53
Bystander adult	Drift (95 th perc.)	0.0031	0.62
Body weight: 60 kg	Vapour (95 th perc.)	0.0002	0.05
	Deposits (95 th perc.)	0,0003	0.06
	Re-entry (95th perc.)	0.0015	0.30
Buffer zone: 5(m) Drift reduction techno	6. 192 (4, 10), 2	ay application outdoors to high o	crops-grapevines
Application rate	S. 101, CO. 010.	0.03 kg a.s./ha	
Bystander child	Drift (95th perc.)	0.0140	2.81
Body weight: 10 kg	Vapour (95th perc.)	0.0011	0.21
o Continued	Deposits (95 th perc.)	0.0002	0.03
0,48,44,90	Re-entry (95 th perc.)	0.0008	0.16
Bystander adult	Drift (95 th perc.)	0.0078	1.55
Body weight: 60 kg	Vapour (95th perc.)	0.0002	0.05
ing 126	Deposits (95 th perc.)	0.0001	0.01
3/10	Re-entry (95 th perc.)	0.0005	0.09

^{*}Experimentally derived value. See Section CP 6.4.3.1

 Table 68:
 Summary of estimated resident (longer term) exposure to penconazole

Model data		Total absorbed dose (mg/kg bw/day)	% of systemic AOEL
Buffer zone: 5(m) Drift reduction technology	•	ay application outdoors to high c	crops-pome fruit
Number of application	ns and application rate	2×0.041	kg a.s./ha
Resident child	Drift (75 th perc.)	0.0025	8.17
Body weight: 10 kg	Vapour (75 th perc.)	0.0011	3.57
	Deposits (75 th perc.)	0.0003	1.04
1	Re-entry (75 th perc.)	0.0027	10 10 8.88 CIP (12
1	Sum (mean)	0.0050	16.66
Resident adult	Drift (75 th perc.)	0.0014	d 4.52 J
Body weight: 60 kg	Vapour (75 th perc.)	0.0002	0.77
	Deposits (75 th perc.)	0.0001	0.39
	Re-entry (75 th perc.)	0.0015	4.93
1	Sum (mean)	0.0024	7.90
Buffer zone: 5(m) Drift reduction technology		ay application outdoors to high c	crops-grapes
Number of application	ns and application rate		kg a.s./ha
Resident child	Drift (75 th perc.)	0.0061	20.42
Body weight: 10 kg	Vapour (75 th perc.)	0.0011	3.57
	Deposits (75 th perc.)	0.0001	0.24
	Re-entry (75th perc.)	0.0008	2.72
11/6	Sum (mean)	0.0058	19.35
Resident adult	Drift (75 th perc.)	0.0034	11.31
Body weight: 60 kg	Vapour (75 th perc.)	0.0002	0.77
Resident adult Body weight; 60 kg	Deposits (75 th perc.)	0.00002	0.09
Con the tild &	Re-entry (75th perc.)	0.0005	1.51
2.00 1.11 July	Sum (mean)	0.0028	9.43

*Experimentally derived value. See Section CP 6.4.3.1

It is concluded that there is no undue risk to any bystander or resident from penconazole during and following local application of A6209G.

2.7 RESIDUE

2.7.1 Summary of storage stability of residues

The potential for degradation of residues of penconazole during freezer storage in plant commodity categories applicable to representative uses (i.e., High Water and High Acid) has been assessed in the framework of the peer review for penconazole.

The second interim report for the new study (Homazava, N, 2020, VV-244513) demonstrates freezer storage stability for penconazole across all 5 plant commodity categories for at least 18 months. This tested period of 18

months thereby covers the actual period of freezer storage prior to analysis in all the residue and processing trials to support representative uses.

A new storage stability study for crop metabolites (CGA132465, CGA127841 and CGA190503) has been conducted (Connor, 2020, VV-743150). This study demonstrates storage stability for each analyte across all 5 plant commodity categories for the maximum duration of the studies. The study demonstrates stability for the metabolites for at least 24 months in High Water (cucumber), High Oil (oil seed rape seed), High Protein (dry beans) and High Starch (cereal grain) commodities, and at least 30 months in High Acid (grapes) commodities.

Storage stability of penconazole in crops:

The maximum period of freezer storage prior to analysis for penconazole in residue trials is 10 months for representative uses and 5.1 months for supplementary data crops. Since all samples analysed and presented belong to High Water or High Acid groups, the penconazole analyses are covered by Homazava, (2020).

Storage stability of metabolites in crops:

The maximum period of freezer storage prior to analysis for crop metabolites (CGA132465, CGA127841 and CGA190503, after deconjugation) in residue trials is 24 months for representative uses and 13 months for supplementary data crops. Since all samples analysed belong to High Water or High Acid groups, the crop metabolite analyses are covered by the new crop metabolite storage stability study (Connor, 2020).

Storage stability of penconazole and metabolites in processed crop commodities:

The maximum period between first sampling and last analysis for freezer storage, prior to analysis for penconazole, in magnitude of residue processing studies reported prior to 2018 is 16 months. The maximum periods for freezer storage for penconazole and crop metabolites in the latest grape (Brown, 2019) and apple (Brown, 2019a) magnitude of residue processing studies reported are approximately 15 and 10 months, respectively. Correspondingly, demonstration of storage stability for parent and crop metabolites is covered by Connor (2020).

Table 69: Summary of stability data for metabolites (CGA132465, CGA127841 and CGA190503) in plant commodities

Commodity Category	Commodity	Maximum Storage Period	Report Reference	EU reviewed
High Acid Content	Grapes	30 months*	© Me	
High Water Content	Cucumber	Co this too this tole		
High Oil	Oilseed rape seed	24 months*	225935 (Conner, S., 2020 ; VV-743150)	No
High Protein	Dried beans	M's Rico Kilo		
High Starch	Wheat grain	15 00 015		

^{*} Storage at -20°C

Table 70: Summary of stability data for total residues of CGA71818 and its metabolites containing the 2,4-dichlorobenzyl moiety in plant commodities

Commodity Category	Commodity	Maximum Storage Period	Report Reference	EU reviewed
High Acid Content	Grapes	6 months*	ABR-85051 (Kahrs, R. A., 1985 ; CGA71818/0844)	No

^{*} Storage at -15°C

Except for sample preparation and the removal of a sub-sample for analysis, the samples in the residue trials were stored at or below -18°C for a maximum period of 9.9 months (301 days) from sampling to analysis of penconazole residues.

2.7.2 Summary of metabolism, distribution and expression of residues in plants, poultry, lactating ruminants, pigs and fish

Metabolism studies conducted with three different crops from the fruit/fruiting vegetable group (tomatoes, apples and cucumbers; the only metabolic group applicable to the presented GAP) based on the commercially recommended use pattern, i.e. post emergence foliar treatment, have provided a detailed understanding of the metabolism of penconazole (CGA71818) in food commodities. The metabolic pathways in the studies are similar, and, consequently, the available crop metabolism studies fully support the current proposed uses of CGA71818 on fruit/fruiting vegetable crops.

Penconazole (CGA71818) was present in all commodities. Levels of penconazole in food commodities ranged from 7.2% to 19.0% TRR in tomato fruit, 11.6% in whole apples and 12.5% to 20.1% in cucumbers.

Metabolism was extensive in most crops and the metabolites identified in tomatoes and apples included cleaved molecules (see Figure below). The principal metabolic transformations of penconazole in tomatoes and apples occurred via oxidation of the propyl side chain of the parent molecule to produce predominately the hydroxylation product CGA132465 as a mixture of diastereomers. Additional hydroxylation products CGA190503 and CGA127841, as well as further oxidation products, were present at much lower levels. Identified metabolites were found in both their conjugated and/or their free non-conjugated form.

In tomatoes and apples, cleavage of the triazole ring led only to trace amounts of free triazole. Triazole conjugates CGA131013, and to a lesser extent CGA205369 (triazolyllactic acid), CGA142856 and CGA205373 (triazolylglycolic acid) were observed at higher levels.

In cucumbers, with the exception of Unk-1, all residues were <0.01 mg/kg and were not identified. Unk-1 (31.1% to 36.9% TRR, 0.011 to 0.012 mg/kg), obtained by hydrolysis of the aqueous extracts was also not identified. However, Unk-1 was characterized subsequently by the same TLC system used for an unknown soil degradate and the resulting chromatograms were very similar. Since CGA132465 elutes in the same place as Unk-1 and was also the major metabolite in all plant metabolism studies by the applicant, the structure of "Unk-1" was assigned to CGA132465.

The metabolism of ¹⁴C-triazolyl- and ¹⁴C-phenyl-penconazole was measured in foliar-applied tomato whole fruit and leaves 7 and 40 days after four applications, 4 x 40 g a.s./ha (1X nominal rate). Total radioactivity from the fruits was calculated by combination of surface methanol rinses, followed by combustion for penetrated radioactivity.

The level of metabolism in surface washes of tomato fruit was minimal, with penconazole as the most significant residue detected accounting for 71.0 - 92.6% of the radioactivity in the surface wash (equitable to (12.5-13.0%) TRR (7 days PHI) and 1.7-2.2% TRR (40 days PHI) in whole fruit). Metabolism in the washed whole tomato fruit was much more extensive. Hydrolysis of the combined plant surface rinse and fruit extracts with aqueous HCl produced predominantely free CGA132465 as a mixture of diastereomers (61.6-66.9% TRR (7 days PHI) and 55.2-63.0% TRR (40 days PHI)). Similar levels of penconazole (7.8-8.7% TRR (7 days PHI) and 0.3-4.1% TRR (40 days PHI)) and CGA132465 (64.4-67.4% TRR (7 days PHI) and 59.9-70.1% TRR (40 days PHI)) were observed in the hydrolysed leaf extracts.

Minor metabolites CGA127841 and CGA190503 were observed in both leaves and fruit. With the exception of CGA190503 in leaves (10.8 - 16.4% TRR), both accounted for $\leq 4.3\% \text{ TRR}$ in any sample.

The only significant cleavage product detected was CGA131013 in 40 days PHI fruit samples (15.4% TRR). Residues of CGA131013 (leaves), CGA205369, CGA142856 and CGA71019 were also observed in 40 days PHI fruit and leaves; however, at levels of $\leq 2.3\%$ TRR.

In addition, in the same tomato metabolism study, an exaggerated foliar application of [triazole-U-14C]-penconazole to tomato plants at 4 x 200 g ai/ha (5X, nominal) was performed to produce metabolites for identification. The total achieved rate was 766.5 g ai/ha. Foliage, immature and mature fruit were harvested 40 days after last application for analysis. The metabolic profiles of the exaggerated rate (5X) were qualitatively similar to those obtained at the lower application rate (1X).

Following ten foliar applications at 2.5 g ai/hL and after a 34 days PHI, the level of metabolism of ¹⁴C-triazolyl-penconazole was the most extensive in apples.

The principal metabolic transformation product of penconazole in apple whole fruit occurred via conjugation of free triazole to produce CGA131013 (23.0% TRR). An additional triazole conjugation product, CGA205369 (leaves: 2.4% TRR; apple peels: 5.0% TRR and apple pulp (7.6% TRR) was observed in both leaves and fruit. Other significant residues included parent penconazole (whole fruit: 11.6% TRR and leaves: 6.8% TRR) and hydroxylation product CGA132465 (whole fruit: 14.3% TRR and leaves: 37.9% TRR) as a mixture of diastereomers. The latter was present in both free and conjugated forms. Multiple minor residues, including CGA127841, CGA142856, CGA190503, CGA205373, CGA189659, CGA179944 and mixtures of propyl-dihydroxy parent were also detected in the fruit, none exceeding 5.6% TRR. A similar metabolic pattern was observed in leaves, although quantitatively different.

RMS did not evaluate the studies on grape. (The meeting of experts considered that the grape data were not acceptable, and they were not considered further.) EFSA Scientific Report (2008) 175, 1-104 Conclusion on the peer review of penconazole.

Cucumber plants were treated three times with [phenyl-14C]-penconazole or [triazole-14C]-penconazole emulsion concentrate formulated product (100 g/L EC) at a rate of ca 50 g active ingredient (ai) per hectare (ha). The plants denti della and the second s were treated based on a worst case of a minimum pre-harvest interval of 3 days and an interval of 12-14 days between each application. With the exception of Unk-1, all residues were <0.01 mg/kg and were not identified. Unk-1 (31.1% to 36.9% TRR, 0.011 to 0.012 mg/kg), obtained by hydrolysis of the aqueous extracts was also not

esent the monathic part of the property of the

Proposed metabolic pathway for penconazole in crops

T = tomato; A = apple (F = fruit; L = leaves); C = cucumber

ernur hion in the dand violate the rights of the order of

AN COULD STORY OF STREET STORY OF STREET STR

Solution of May the report

Proposed metabolic pathway for penconazole in crops (continued)

CGA142856 T(F,L); A(F,L)

T = tomato; A = apple (F = fruit; L = leaves)

Poultry

The representative uses are not considered to be poultry feed items in the EU. Therefore, poultry studies are not required. Nevertheless, the applicant submitted a metabolism study in hens following oral administration (capsule) for completeness. RMS did not evaluate this study.

Livestock ruminants

According to existing EU guidance, investigating the metabolism of penconazole in ruminants is not required, Nevertheless, the applicant submitted the metabolism of penconazole in lactating goat for completeness. RMS did not evaluate this study.

Pigs

Since the commodities that may be derived from the representative crops are not considered relevant to pigs feeding, metabolism and feeding studies in pigs are not required.

Fish

Since the commodities that may be derived from the representative crops are not considered relevant to fish feeding, metabolism and feeding studies in fish are not required.

2.7.3 Definition of the residue

The existing Residues Definitions for Monitoring in commodities of plant are parent penconazole, only (EFSA Scientific Report (2008) 175, 1-104). No changes are proposed to the Monitoring Residue Definitions. Since metabolism and residue studies in ruminants, poultry and pigs are not required, the Residue Definition for Risk Assessment in livestock commodities is also proposed to be parent, only.

The existing Residue Definition for Risk Assessment in plant commodities (fruit and fruiting vegetables, only) is the sum of penconazole and free and conjugated CGA132465, CGA190503 and CGA127841, expressed as penconazole (EFSA Scientific Report (2008) 175, 1-104 and EFSA Journal 2017;15(6):4853). No changes are proposed to the residue definition for risk assessment in plants. However, this needs to be confirmed after toxicological risk assessment. The rationale for the proposed dietary residue definitions is outlined below.

The toxicological relevance of several dietary metabolites (including CGA132465, CGA190503, CGA127841, CGA179944, CGA177279 and CGA177281) has been thoroughly discussed. Quantitative Structure–Activity Relationship modelling was performed and should be considered as weight of evidence. For CGA132465, indexes in CAESAR are below the cut-off value for compounds to be considered within the Applicability Domain of the model. Therefore, the prediction may not be reliable. CGA179944 and CGA190503 are classified with a higher reliability.

Genotoxicity studies with CGA132465 and down-stream metabolite CGA179944, support read-across to parent and between the dietary metabolites evaluated: the dietary metabolites are considered non-genotoxic and not to be more toxic than the parent. Of note, CGA179944 is considered to possess comparable developmental toxicity to penconazole, and RMS suggests the same classification for CGA179944 with regard to developmental toxicity, H361d. For CGA132465, a 28-days oral toxicity study was assessed, and the metabolite possesses comparable toxicity as parent penconazole.

EFSA Scientific Report in preparation for the 48th CCPR (EFSA Scientific Report (2016a) 14, 4571): "During the EU peer review, CGA127841 was considered as a major rat metabolite covered by the studies performed with penconazole. CGA132465 and CGA190503 were considered likely to be of the same or lower toxicity than penconazole, based on their structural similarity with the parent compound and some rat metabolites."

In conclusions, it is therefore considered justified to use the toxicological reference values of the parent for the evaluated dietary metabolites.

Definition of the Residue in Plants

The metabolism of penconazole was investigated for foliar application to apples and tomatoes using ¹⁴C-triazole and ¹⁴C-phenyl-labelled-penconazole. Studies have been conducted using ¹⁴C-triazole-labelled penconazole under hydrolytic conditions to investigate the effect of processing on the nature of penconazole. Penconazole was shown to be stable under hydrolytic conditions, and this has also been demonstrated for crop metabolites CGA132465, CGA190503 and CGA127841 (*Kelly, D*, 2019, VV-733090; *Kelly, D*, 2019a, VV-733072; and *Mound, R*, VV-733065). The metabolism of penconazole in rotational crops was investigated in leafy vegetables (lettuce), root and

tuber vegetables (radish) and cereals (wheat). The metabolites identified in the rotational crop studies were the same as determined in the metabolism studies on primary crops:

EFSA Scientific Report for Penconazole (**EFSA Scientific Report** (2008) 175, 1-104): "The peer review agreed to establish for fruiting crops the residue definition for enforcement as the parent compound. The current residue definition set in Regulation (EC) No 396/2005 is identical to the residue definition for enforcement derived in the peer review. For risk assessment, the residue definition was set as penconazole + CGA132465 + CGA190503 + CGA127841 and the conjugates of the metabolites, expressed as penconazole. For fruits and fruiting vegetables, a conversion factor (CF) of 6 from enforcement to risk assessment residue definition was established to consider the three metabolites. Pending the submission and assessment of the confirmatory data on TDMs requested for triazole pesticides, the residue definition should be regarded as provisional."

The metabolism studies in tomatoes with 4 applications demonstrate that following the critical representative uses, penconazole should not lead to significant residues of any TDM in edible commodities. Whilst triazole alanine (TA) comprises 15% TRR in tomato fruit (K-CA 6.2.1/01; 1X study), residues of TA are only 0.004 mg/kg. For the other TDMs, tomato fruit residues are <10% TRR and \leq 0.001 mg/kg (report K-CA 6.2.1/01; 1X study). In the apple metabolism study, higher levels of TDMs were discovered. However, penconazole was applied excessively compared to representative GAP. Correspondingly, the TDMs are not considered suitable for inclusion within Residue Definitions for Monitoring or Risk Assessment in Primary Crops or honey and bee products.

Recognising that residues of TDMs may be significant in rotational crops following treatment of penconazole (K-CA 6.2.1/01), the TDMs are considered applicable to penconazole's Residue Definition for Risk Assessment in Rotational Crops (relevant to representative uses on cucumbers). However, based on the findings in rotational metabolism and residue studies, no penconazole-specific residues are expected to be detectible in food (<0.01 mg/kg), and penconazole-specific residues in feed are not expected to meet the OECD (2018) trigger of 0.05 mg/kg.

The metabolism studies were all previously reviewed (**EFSA Scientific Report** (2008) 175, 1-104), except for KCA 6.2.1/09 [14 C]-Penconazole: Metabolism in Cucumber. The tomato metabolism studies were conducted at 4 × 40 g/ha (1X rate; reports 97JS25 and 97JS26) and 4 x 200 g/ha (5X rate; report 97JS25), which correspond to total seasonal rates of 160 g/ha and 800 g/ha, respectively. Representative uses have GAPs of up to 3 × 50 g/ha (total seasonal rate of 150 g/ha). Representative uses during the Peer Review (**EFSA Scientific Report (2008) 175, 1-104**) had GAPs of up to 4 × 50 g/ha (total seasonal rate of 200 g/ha). The tomato metabolism studies sampled fruit after 7 and 40 days PHI. Representative uses, and most authorised uses considered during the review of MRLs (**EFSA Journal 2017;15(6):4853**), have PHIs of \leq 28 days.

During the review of existing MRLs under the Article 12 process, a concern was raised that crop metabolism studies might be under-dosed compared to the critical GAPs that had been selected at that time (EFSA, Journal 2017;15(6):4853). However, based on the assessment below, it may be concluded that the same metabolic profile was seen in tomato fruit when penconazole was applied to tomatoes at the 5X rate as when the 1X rate was applied.

Following the 1X rate, the sum amounts of II_{13} and II_{16} in tomato fruit pre-hydrolysis are approximately 69% TRR at 7 days PHI and 44% TRR at 40 days PHI (summarised in the table below). Similarly, following the 5X rate, the sum amounts of II_{13} and II_{16} in fruit pre-hydrolysis is 55% TRR at 40 d PHI. When acid hydrolysis was applied to tomato samples from the 1X rate tomato studies, II_{13} and II_{16} are substantively replaced by free CGA132465 (see table below). Although the 5X rate tomato metabolism study did not use a hydrolysis step, it is reasonable to conclude that free CGA132465 would have been the predominate residue found if a hydrolysis step had been used (at PHIs similar to 7 or 40 days).

Taking into consideration the similarity of GAPs, the Peer Review (**EFSA Scientific Report (2008) 175, 1-104**) and the 1X rate tomato studies, the metabolism studies are considered to support residue definitions for penconazole in plants (fruit and fruiting vegetables metabolism group) for the representative uses. Taking into consideration the similarity of metabolic profile across the 1X and 5X rate tomato studies, it is further proposed that the metabolism studies support GAPs that are more critical, such as those presented in the review of existing penconazole MRLs (**EFSA Journal 2017;15(6):4853**).

The residue definition for monitoring in plants is proposed to be parent penconazole, only. The residue definition for risk assessment in plants is proposed to be the sum of penconazole + CGA132465 + CGA190503 + CGA127841, and the conjugates of the metabolites, expressed as penconazole (fruit and fruiting vegetables, only). The residue definition for risk assessment in processed plant commodities (fruit and fruiting vegetables, only) is proposed to be the same as for unprocessed plant commodities.

Table 71: Summary of tomato residue level changes for selected analytes following hydrolysis

	%TRR in tomato fruit harvested at PHIs of 7 or 40 d PHI									
	Pre-hydrolysis					Post-hydrolysis				
Selected analytes	7 d		40 d			7	7 d		40 d	
		1X l	Rate		5X Rate	1X Rate				
	Ph.	Tri.	Ph.	Tri.	Tri.	Ph.	Tri.	Ph.	Tri.	
Parent	15.0	18.6	6.1	11.8	6.6	15.1	19.0	7.2	12.6	
CGA132465/CGA127841	0.4	n/a	0.1	n/a	n/a	61.6	n/a	63.0	n/a	
CGA132465	n/a	0.8	n/a	0.8	0.8	n/a	66.9	n/a	55.2	
CGA127841	n/a	ND	n/a	ND	ND	n/a	ND	n/a	OND	
II_{13}	15.3	17.6	27.8	28.4	27.6	ND	ND	<0.1	0.3	
Total II ₁₆	58.2	46.0	14.8	17.0	27.0	0.30	ND	ND	0.1	
$II_{13} + total II_{16}$	73.5	63.6	42.6	45.4	516	0.3	ND	<0.1	0.4	
Mean II ₁₃ + total II ₁₆	68.6		44.0		54.6	0.3				

Ph.: Results from Phenyl-labelled tomato study 97JS26. Tri.: Results from Triazole-labelled tomato study 97JS25.

In order to support residue trials that have only measured penconazole, a Conversion Factor (CF) approach has been taken making use of residue trials for which the full proposed $RD_{(RA)}$ has been analysed (penconazole and, after deconjugation, total CGA127841, CGA132465 and CGA190503). In order to support robust proposals, CFs were calculated using residue trials with representative crops and supplementary crops with residue data according to the $RD_{(RA)}$ (sweet/bell peppers and raspberries). All crops for which CFs were calculated are members of the fruit and fruiting vegetables metabolism group.

In line with guidance within the template for MRL Evaluations under "new" data requirements (Section 3.1.3; EFSA, 2015a https://ec.europa.eu/food/plant/pesticides/max_residue_levels/guidelines_en#council):

- CFs were calculated across each sampling intervals (PHIs) for which the RAC was sampled.
- Each CF was calculated by dividing total residues according to the proposed RD_(RA) by the proposed RD_(Mo), penconazole.
- CF proposals considered the overall evolution of the CF values at the different PHIs.

In line with advice on dealing with <LOQ results within EFSA, 2015a and Scholz, 2018 (European database of processing factors for pesticides. EFSA supporting publication 2018: EN-1510. 50 pp.), a CF was only calculated where a detectable residue of penconazole was found.

A CF was calculated per crop, per PHI, per trial, or as a combined value across crops per PHI, per trial. Subsequently, median CFs were calculated per PHI, and then summarised in the table below. Finally, in line with EFSA (2015a), it was assessed whether single CF values could be proposed to cover the applicable fruit and fruiting vegetables crop group.

Table 72: Median CF estimated at the different PHIs in the supervised residue trials^(a)

RAC	Statis tic ^(a)	PHI ^(b) (days)										
		0	1	3	5	6-7	10 , <	13-14	21-22	27-28	21-28	
Pome	CF	2.00	-	-	-	2.50	2.50	3.25	3.25	-	3.25	
fruits	n	8 (Mo: 0.02; 0.03 x5; 0.04 x2) (RA: 0.05; 0.06 x5; 0.07 x2)	-	-	-	6 (Mo: 0.01 x2; 0.02 x2; 0.03 x2) (RA: 0.04; 0.05 x3; 0.06 x2)	4 (Mo: 0.02 x3; 0.04) (RA: 0.05 x3; 0.07)	8 (Mo: 0.01 x4; 0.02; 0.03; 0.04 x2) (RA: 0.04 x4; 0.05; 0.06; 0.07; 0.08)	2 (Mo: 0.01; 0.02) (RA: 0.04; 0.05)	-	2 (Mo: 0.01; 0.02) (RA: 0.04; 0.05)	
Grape	CF	1.50	-	1.68	-	2.25	D - 0	3.00	4.00	3.50	4.00	
S ^(c)	n	8 (Mo: 0.01; 0.03; 0.04; 0.06 x2; 0.07; 0.09; 0.25) (RA: 0.04; 0.06; 0.07; 0.09 x2; 0.10; 0.13; 0.29)	-	4 (Mo: 0.02; 0.04; 0.05; 0.09) (RA: 0.05; 0.07; 0.08; 0.13)	4:500	6 (Mo: 0.02 x2; 0.03 x3; 0.08) (RA; 0.05 x2; 0.06 x2; 0.08; 0.14)	olishing Olishing Olishing	7 (Mo: 0.01 x2; 0.02 x4; 0.03) (RA: 0.04 x2; 0.05 x2; 0.06 x2; 0.07)	3 (Mo: 0.01 x2; 0.02) (RA: 0.04; 0.05; 0.06)	2 (Mo: 0.01; 0.03) (RA: 0.05; 0.06)	5 (Mo: 0.01 x3; 0.02; 0.03) (RA: 0.04; 0.05 x2; 0.06 x2)	
Cucu	CF	2.00	2.50	2.50	4.00	(1) (2) (3)	Nie -	-	-	-	-	
mbers (d)	n	10 (Mo: 0.01; 0.02; 0.03 x5; 0.04; 0.05 x2) (RA: 0.04; 0.05; 0.06 x5; 0.07; 0.08 x2)	10 (Mo: 0.01 x2; 0.02 x6; 0.03 x2) (RA: 0.04 x2; 0.05 x6; 0.06 x2)	9 (Mo: 0.01 x4; 0.02 x4; 0.03) (RA: 0.04 x4; 0.05 x4; 0.06)	2 (Mo: 0.01 x2) (RA: 0.04 x2)	TO PATE THE THE	Э <u>-</u>	-	-	-	-	
Sweet	CF	2.67	2.67	3.00	3.00	110-	-	-	-	-	-	
/ bell pepper s	n	4 (Mo: 0.02 x2; 0.03; 0.05) (RA: 0.06 x2; 0.07; 0.09)	4 (Mo: 0.01; 0.02; 0.03 x2) (RA: 0.05; 0.06; 0.07 x2)	5 (Mo: 0.01 x2; 0.02 x2; 0.04) (RA: 0.04; 0.05 x2; 0.06; 0.07)	1 (Mo: 0.02) (RA: 0.06)	.° -	-	-	-	-	-	
Raspb	CF	1.15	1.27	1.38	1.63	-	-	-	-	-	-	
erries	n	2 (Mo: 0.2; 0.21) (RA: 0.23; 0.24)	2 (Mo: 0.1; 0.13) (RA: 0.13; 0.16)	4 (Mo: 0.02; 0.07; 0.09; 0.21) (RA: 0.05; 0.10; 0.12; 0.24)	2 (Mo: 0.04; 0.06) (RA: 0.07; 0.09)	-	-	-	-	-	-	
Combi	CF	2.00	2.50	2.50	3.00	2.50	2.50	3.00	4.00	3.50	4.00	
ned (all 5	n	32,10,10	16	22	5	12	4	15	5	2	7	

Penconazole	Volume 1 – Level 2		to Didic to and	
crops above)			· dry of blocking of one	
(a): Median CFs calculated at the su (b): 0 for samples collected just afte (c): Grape CFs were calculated for J (d): B.7.3.4 has been excluded since n: Number of CFs calculated at the	apported PHIs are underlined and in bold. er the last application. plots that had received either 2 or 3 applications. e it uses a less-critical cucurbits (edible peel) GAP than B.7 respective PHI (i.e. the number of trials with detectible pen	3.3. conazole residues).	Stock of the line of the city of the line of the city of the line of the city	
	SA 2nd is p	olige of the control	the the owner.	
	of the property the destribited with	and indicate the		
This is	upported PHIs are underlined and in bold. er the last application. plots that had received either 2 or 3 applications. e it uses a less-critical cucurbits (edible peel) GAP than B.7 respective PHI (i.e. the number of trials with detectible pen			
S. C.	and use	109		

- (a): Median CFs calculated at the supported PHIs are underlined and in bold.
- (b): 0 for samples collected just after the last application.
- (c): Grape CFs were calculated for plots that had received either 2 or 3 applications.
- (d): B.7.3.4 has been excluded since it uses a less-critical cucurbits (edible peel) GAP than B.7.3.3.
- n: Number of CFs calculated at the respective PHI (i.e. the number of trials with detectible penconazole residues).

Based on the information within the table, CFs tend to increase moderately as PHIs increase, and median CFs are similar across crops for a given PHI. Correspondingly, CF proposals for calculating residues according to the proposed RD_(RA) when only penconazole is measured have been based on the combined dataset. In summary, for when only penconazole is measured, CFs of 2.5, 3.0, and 4.0 are proposed for PHIs of 3 days, 14 days and 21-28 days, respectively.

Definition of the Residue in Livestock

The dietary burden triggering the submission of livestock metabolism studies is >0.004 mg/kg bw/d for the active substances falling under Population (ELD) No. 202/2010 Color in the submission of livestock metabolism studies is >0.004 mg/kg bw/d for the active Proposed ends substances falling under Regulation (EU) No 283/2013. Calculated dietary burden calculations for feed-related representative crops (apple, only) are below the trigger in Regulation (EU) No 283/2013 (>0.004 mg/kg bw/d) for ruminants, and zero for poultry, pigs and fish. Therefore, residue definitions for ruminants, and zero for poultry, pigs and fish. Therefore, residue definitions for monitoring and risk assessment in animal commodities are not required.

All proposed residue definitions are summarised in the table below.

Table 73: Dietary Residue Definitions for Penconazole

Endpoint	EU agreed endpoint ^(a)	Proposed endpoint
Residue Definition for Monitoring in plants	Penconazole	Penconazole (sum of all constituent isomers) (limited to fruit crops only) ^(b)
Residue Definition for Risk Assessment in treated plants, and processed plant commodities	Penconazole + CGA132465 + CGA190503 + CGA127841 and the conjugates of the metabolites, expressed as penconazole	Sum of penconazole and free and conjugated CGA132465, CGA190503 and CGA127841, expressed as penconazole ^(b)
Residue Definition for Risk Assessment in rotational plants	Not required	Triazole Derivative Metabolites
Residue Definition for monitoring in animal commodities	Not required	Not required
Residue Definition for Risk Assessment in animal commodities	Not required	Not required

⁽a): Definitions from the Peer Review (EFSA, 2008; EC, 2010).

Summary of residue trials in plants and identification of critical GAP

Four trials on apple and four trials on pear from both Northern and Southern Europe are presented, thus covering the minimum of 8 trials required per residue zone.

Table 74: Overview of the available residue trials data

⁽b): This definition matches the definition in the review of existing MRLs (EFSA Journal 2017;15(6):4853). This needs to be confirmed after toxicological risk assessment.

Commodi- ty	Residue region,	Reviewed/ new	Individual trial results (mg/kg)	STMR (mg/kg)	HR (mg/kg)	MRL (mg/kg)	
	Outdoor/ Indoor		Enforcement ^(a) & Risk assessment ^(b)	(a)	(a)	(u-1)	
			GAP: 2 ´ 40 g a.s./ha, 10 d interval, 14 d PHI				
	NEU, outdoor	New	Mo: 3 x <0.01, 2 x 0.01, 0.02, 0.03, 0.04 RA: 3 x <0.04, 2 x 0.04, 0.05, 0.06, 0.08	Mo: 0.01 RA: 0.04	Mo: 0.04 RA: 0.08	Mo: 0.07	
Danie finit	CELL		GAP: 2 ´40 g a.s./ha, 10 d interval, 14 d PHI	Mo: 0.01		Mo:	
Pome fruit	SEU, outdoor	New	Mo: 5 x <0.01, 2 x 0.01, 0.04 RA: 3 x <0.04, 2 x 0.04, 2 x 0.05, 0.07	RA: 0.04	Mo: 0.04 RA: 0.07	0.06	
			GAP: Identical in both zones	Shorto	7 700)	
	Combined ^(c)	Combined ^(c) New	New	Mo: 8 x <0.01, 4 x 0.01, 0.02, 0.03, 2 x 0.04 RA: 6 x <0.04, 4 x 0.04, 3 x 0.05, 0.06, 0.07, 0.08	Mo; <u>0.01</u> RA: <u>0.04</u>	Mo: <u>0.04</u> RA: <u>0.08</u>	Mo: <u>0.06</u>

⁽a): The proposed residue definition for monitoring (Mo) is parent penconazole only.

Sixteen trials on grapes from Northern Europe and eight trials on grapes from Southern Europe are presented, thus covering the minimum of 8 trials required per residue zone.

Table 75: Overview of the available residue trials data

Commodi-	Residue	Reviewed/ new	Individual trial results (mg/kg)	STMR	HR	MRL
ty	ty region, Outdoor/ Indoor		Enforcement ^(a) & Risk assessment ^(b)	(mg/kg) (c)	(mg/kg)	(mg/kg) (c-e)
Pochly Survey	9 60 Siplier	,0,	GAP: 2 × 30 g a.s./ha, 8 d interval, 28 d PHI		Mo:	
Grape	NEU, outdoor ^(f)	new New	Mo: 8 x <0.01, 3 x 0.01, 2 x 0.02, 2 x 0.03 RA: 2 x <0.04, 3 x <0.04, 2 x 0.04, 2 x 0.04, 0.05, 0.06, 2 x 0.08, 0.08, 0.12	Mo: 0.01 RA: 0.04	0.03 RA: 0.12	Mo: 0.05
Grape	SEU, outdoor		GAP: 2 × 30 g a.s./ha, 8 d interval, 14d PHI	Mo:	Mo:	
· 0.		New	Mo: 2 x <0.01, 2 x 0.01, 3 x 0.02, 0.03 RA: 2 x <0.04, 0.04, 3 x 0.05, 2 x 0.06	0.015 RA: 0.05	0.03 RA: 0.06	Mo: 0.05

⁽b): The proposed residue definition for risk assessment (RA) is penconazole + CGA132465 + CGA190503 + CGA127841 and the conjugates of the metabolites, expressed as penconazole.

⁽c): In accordance with the results of the U-Test (EFSA, 2015), the NEU and SEU datasets can be combined.

⁽d): Values selected for use in risk assessments have been underlined.

⁽e): Calculated using the OECD method (ENV/JM/MONO(2011)3); rounded value.

⁽f): Values presented according to (b) are presented to support the calculation of the TMDI.

- (a): The proposed residue definition for monitoring (Mo) is parent penconazole only.
- (b): The proposed residue definition for risk assessment (RA) is penconazole + CGA132465 + CGA190503 + CGA127841 and the conjugates of the metabolites, expressed as penconazole. The proposed Conversion Factors (CFs) from monitoring to risk assessment at 14- and 28-days PHI (3.0 and 4.0, respectively) were used with 7 NEU trials that only quantified penconazole (in **bold** for identification), and with TMDI calculations.
- (c): Values selected for use in risk assessments have been underlined.
- (d): Calculated using the OECD method (ENV/JM/MONO(2011)3); rounded value.
- (e): Values presented according to (b) are presented to support the calculation of the TMDI.
- (f): The value of 0.26 mg/kg penconazole (KCA 6.3.2/01) has been excluded as an outlier (please see text below).

Fourteen trials on cucumber and courgettes (3 applications) from Northern Europe and eight trials from Southern Europe are presented, thus covering the minimum of 8 and 4 trials required within the NEU and SEU, respectively.

Table 76: Overview of the available residue trials data

Commodity	Residue region,	Reviewed/ new	Individual trial results (mg/kg)	STMR (mg/kg)	HR (mg/kg)	MRL (mg/kg)
	Outdoor/ Indoor		Enforcement ^(a) & Risk assessment ^(b)	Suchator	11,4 90c	JITTI(U-1)
			GAP: 3 × 50 g a.s./ha, 8 d interval, 3 d PHI	Mo:	Mo:	
	NEU, outdoor	New	Mo: 7 x <0.01, 0.01, 5 x 0.02, 0.03 RA: 2 x <0.025, 4 x <0.04, 2 x 0.04, 3 x 0.05, 2 x 0.05, 0.075	0.01 RA: 0.04	0.03 RA: 0.075	Mo: 0.05
cucumbers (3 applications)	SEU, outdoor	LE New Tel	GAP: 3 × 50 g a.s./ha, 8 d interval, 3 d PHI Mo: 4 x <0.01, 2 x 0.01, 0.02, 0.03 RA: 4 x <0.04, 2 x 0.04, 0.05, 0.06	Mo: 0.01 RA: 0.04	Mo: 0.03 RA: 0.06	Mo: 0.05
mentis ur	Combined ^(c)	New hi	GAP: Identical in both zones Mo: 10 x <0.01, 4 x 0.01, 6 x 0.02, 2 x 0.03 RA: 2 x <0.025, 8 x <0.04, 4 x 0.04, 6 x 0.05, 0.06, 0.075	Mo: <u>0.01</u> RA: <u>0.04</u>	Mo: <u>0.03</u> RA: <u>0.075</u>	<u>Mo:</u> 0.05

⁽a): The proposed residue definition for monitoring (Mo) is parent penconazole only.

- (c): In accordance with the results of the U-Test (EFSA, 2015), the NEU and SEU datasets can be combined.
- (d): Values selected for use in risk assessments have been underlined.
- (e): Calculated using the OECD method (ENV/JM/MONO(2011)3); rounded value.
- (f): Values presented according to (b) are presented to support the calculation of the TMDI.

Sixteen trials on cucumber and courgettes (1 application) from Northern Europe are presented, thus covering the minimum of 8 trials required within the NEU.

⁽b): The proposed residue definition for risk assessment (RA) is penconazole + CGA132465 + CGA190503 + CGA127841 and the conjugates of the metabolites, expressed as penconazole. The proposed conversion factor from monitoring to risk assessment at 3-day PHI is 2.50 and it was used with 5 NEU residue trials (in **bold** for identification), and MRLs.

Commodi-	Residue	Reviewed/	Individual trial results (mg/kg)	STMR	HR	MRL
ty	ty region, new Outdoor/ Indoor		Enforcement ^(a) & Risk assessment ^(b)	(mg/kg)	(mg/kg)	(mg/kg) (c-e)
			GAP: 1 × 35 g a.s./ha, 3 d PHI			: ()
Cucumber	NEU, outdoor	New	Mo: 7 x <0.01, 6 x <0.01, 0.01, 0.01, 0.01, 0.02 RA: 6 x <0.025, 0.025, 7 x <0.04, 2 x 0.04	Mo: 0.01 RA: 0.04	Mo: 0.02 RA: 0.05	Mo: 0.02

Table 77: Overview of the available residue trials data

2.7.5 Summary of feeding studies in poultry, ruminants, pigs and fish

Penconazole is proposed for use on cucumbers, grapes and pome fruit. Apple wet pomace might be fed to livestock. The median and maximum dietary burdens have been calculated for the different groups of livestock using the methodology described by the OECD (OECD, 2013) based on residues in apple.

On the basis of the OECD feeding tables only apple wet pomace is considered to form part of livestock diets in the EU. Since apple wet pomace may be bulked/blended prior to consumption by livestock and applications to apple trees are made pre-harvest, the STMR is the appropriate statistic for both median and maximum dietary burden calculations.

Table 78: Penconazole residue values used for calculation of livestock dietary burdens based on the residue definition for risk assessment (a)

	Maximum dietary burden		Median dietary burden		
Commodity	Input value (mg/kg)	Comment	Input value (mg/kg)	Comment	
Apple pomace	162, 110, 1	STMR for risk assessment		STMR for risk assessment	
wet (By-products	0.128	(0.04 mg/kg x measured PF	0.128	(0.04 mg/kg) x measured PF	
group)	101, 40,	(3.19)		(3.19)	

⁽a): The proposed residue definition for monitoring is parent penconazole only. The proposed residue definition for risk assessment is penconazole + CGA132465 + CGA190503 + CGA127841 and the conjugates of the metabolites, expressed as penconazole.

All dietary burden calculations were performed using the tool published on the Guidelines - Maximum Residue levels page of the Europa.eu website⁵ in 2017 (pesticides_mrl_guidelines_animal_model_2017.xls).

Poultry 0

The representative uses are not considered to be poultry feed items in the EU. Therefore, poultry studies are not required. Nevertheless, a feeding study was subitted by applicant for completeness. RMS did not evaluate this study.

⁽a): The proposed residue definition for monitoring (Mo) is parent penconazole only.

⁽b): The proposed residue definition for risk assessment (RA) is penconazole + CGA132465 + CGA190503 + CGA127841 and the conjugates of the metabolites, expressed as penconazole. The conversion factor from monitoring to risk assessment at 3-day PHI is 2.50 and it was used with 7 residue trials (in **bold** for identification), and the MRL.

⁽c): Calculated using the OECD method (ENV/JM/MONO(2011)3); rounded value.

⁽d): Values presented according to (b) are presented to support the calculation of the TMDI (Volume 1, 2.7.9.).

⁽e): The residues associated with this GAP are less critical than those obtained in cucumber with three applications and are therefore not included in the dietary risk assessments.

https://ec.europa.eu/food/plant/pesticides/max_residue_levels/guidelines_en#council

Ruminants

Calculated dietary burdens relating to the representative uses do not trigger the need for mammalian livestock studies. Nevertheless, a feeding study was submitted by applicant for completeness. RMS did not evaluate this study.

Pigs

Since the commodities that may be derived from the representative crops are not considered relevant to pigs feeding, metabolism and feeding studies in pigs are not required.

Fish

Since the commodities that may be derived from the representative crops are not considered relevant to fish feeding metabolism and feeding studies in fish are not required.

2.7.6 Summary of effects of processing

Residues of penconazole, CGA132465, CGA190503 and CGA127841 in Raw Agricultural Commodities are each ≥0.01 mg/kg. Correspondingly, the nature of the residue for penconazole and its dietary metabolites (CGA132465, CGA190503 and CGA127841) have been determined under conditions representative of pasteurisation, baking/brewing/boiling and sterilisation.

Penconazole and its dietary metabolites (CGA132465, CGA190503 and CGA127841) were hydrolytically stable under conditions representative of pasteurisation, baking/brewing/boiling and sterilisation.

Guidance on defining how to handle <LOQ findings in processing studies (Scholz, 2018. European database of processing factors for pesticides. EFSA supporting publication 2018: EN-1510. 50 pp) was taken into consideration when calculating Processing Factors within studies Brown, 2019 and Brown 2019a, and when deriving median Processing Factors. Individual Processing Factors for studies Brown, 2019 and Brown 2019a, were defined as being "less than" a numerical value if all the corresponding analytes quantified in the processed commodity were <LOQ. Similarly, when calculating median Processing Factors for grape and apple commodities, they were defined as being "less than" a numerical value if all the corresponding individual Processing Factors had been defined as being "less than".

An overview of available Processing Factors for the proposed Residue Definition for Monitoring in primary crops (penconazole, only) and for total residues according to the proposed Residue Definition for Risk Assessment in primary crops⁶ for grape and apple commodities is presented in the tables below.

Table 79: Summary of Processing Factors for the proposed Residue Definition for Monitoring in primary crops (penconazole, only) in grape commodities

Cuon	Commo	Stady its	Review	Processing	Factor
Crop	dity	Shah Shah	status	Value	Median
	is unde	Anderson and Mason, 2007 (CGA71818/4786)	Acceptable	1.22	
chil. a	Must	JOI di		0.40	0.59
OC CILL	Kills of 6	Me.	Acceptable	0.71	0.39
,00 x50	"14. 90°	Brown (2019) (VV-733683)	Acceptable	0.47	
	Mis			< 0.27	
Grape	Juice	Brown (2019) (VV-733683)	Acceptable	< 0.29	< 0.27
5000	0			< 0.13	. 0.27
and use		Anderson and Mason, 2007 (CGA71818/4786)	Acceptable	0.19	
	Wine			< 0.27	0.23
		Brown (2019) (VV-733683)	Acceptable	< 0.29	
				< 0.13	

⁶ Sum of penconazole and free and conjugated CGA132465, CGA190503 and CGA127841, expressed as penconazole.

Cwar	Commo	Ctude	Review	Processing	Factor
Crop	dity	Study	status	Value	Median
				3.20	
	Raisins	Brown (2019) (VV-733683)	Acceptable	1.71	2.29
				2.29	2.29
	Dry	Anderson and Mason, 2007 (CGA71818/4786)	Acceptable	11	;(O . 1
	pomace			8.36	8.66
	F	Brown (2019) (VV-733683)	Acceptable	8.95	8.66
				5.11	16,00
	Wet	Anderson and Mason, 2007 (CGA71818/4786)	Acceptable	491 1100	orecija po orecija po orecija po
	pomace	Brown (2019) (VV-733683)	Acceptable	2.40 4.29 3.32	CUMP 3.72
	Seed	Brown (2019) (VV-733683)	Acceptable	2.93 16.29 4.84	4.84
	Oil	Brown (2019) (VV-733683)	Acceptable	8.00 39.14 11.03	11.03

Tal	ole 80: Summary	of Processing Factors for penconazole in	apple commoditi	es		
Crop	Commodity	Commodity Study	Study		sing Factor	
		Boxwell, 2007 (CGA71818/4761)	Status Acceptable	Value < 0.07	Median	
	Juice	The West III My SI	-	< 0.19	< 0.19	
	11001	Brown (2019a) (VV-733255)	Acceptable	< 0.33		
	Coryella	Boxwell, 2007 (CGA71818/4761)	Acceptable	0.17		
	Sauce	Brown (2019a) (VV-733255) Canned Brown (2019a) (VV-733255)	Acceptable	< 0.19	< 0.19	
~	The Still is			< 0.33		
CILL	Canned		Acceptable	< 0.19	< 0.26	
Apple	in A w		Песершоге	< 0.33	V 0.20	
()	Dried		Acceptable	3.2	4.6	
idhis	Diled 90	Brown (2019a) (VV-733255)	Песершые	6.0	4.0	
	S. His	<i>Boxwell, 2007</i> (CGA71818/4761)	Acceptable	8.52		
M'sed	Dry pomace	Proving (2010a) (VIV 722255)	Agantable	12.4	9.0	
31015	0	Brown (2019a) (VV-733255)	Acceptable	9.0		
79.0		Boxwell, 2007 (CGA71818/4761)	Acceptable	2.32		
9,	Wet pomace	Provin (2010a) (VIV 732255)	Accentable	5.4	4.0	
		Brown (2019a) (VV-733255)	Acceptable	4.0		

Table 81: Summary of Processing Factors for the proposed Residue Definition for Risk Assessment in primary crops⁷ in grape commodities

Cmar	Commo 3!4	C4 A	Review	Processin	g Factor	
Crop	Commodity	Study	status	Value	Median	
				0.51	, out of	
	Must	Brown (2019) (VV-733683)	Acceptable	0.69	0.51	
				0.43	200	
				< 0.37	in scill	
	Juice	Brown (2019) (VV-733683)	Acceptable	< 0.50	0.46	
				0.46	b, oly	
			2,5	0.35	Ull Wal.	
	Wine	Brown (2019) (VV-733683)	Acceptable	0.63	0.55	
			9/0.	0.38	90,	
			idin shis	4.32		
	Raisins	Brown (2019) (VV-733683)	Acceptable	2.38	2.54	
Grape		740	200	2.54		
Grape		.80	80 140 118	6.56		
	Dry pomace	Brown (2019) (VV-733683)	Acceptable	7.38	6.56	
		9,00 7	10,017,11	4.27		
		9/201/10	2011	1.69		
	Wet pomace Brown	Brown (2019) (VV-733683)	Acceptable	3.08	2.29	
		St off the ijo	Ulz Uz	2.29		
		(Ex CALL 3000 9010 00	ille	1.56		
	Seed	Brown (2019) (VV-733683)	Acceptable	9.50	2.34	
		47 6 111, 10, 11, 10,		2.34		
	90,			3.59		
	Oil	Brown (2019) (VV-733683) Brown (2019) (VV-733683)	Acceptable	19.38	4.72	
				4.72		

 $^{^{7}\,}Sum\ of\ penconazole\ and\ free\ and\ conjugated\ CGA132465,\ CGA190503\ and\ CGA127841,\ expressed\ as\ penconazole.$

Cron	Commodity	Commodity Study	Review	Processing Factor	
Crop	Commodity		status	Value	Median
	Juice	Province (2010a) (XIXI 722255)	Aggentable	< 0.48	< 0.58
	Juice	Brown (2019a) (VV-733255)	Acceptable	< 0.67	< 0.58
	Sauce	Proving (2010a) (VIV 722255)	Aggantabla	< 0.48	< 0.58
	Sauce	Brown (2019a) (VV-733255)	Acceptable	< 0.67	(0.36/1)
	Canned	Brown (2019a) (VV-733255)	Aggantabla	< 0.48	< 0.58
Apple	Callifed	Brown (2019a) (VV-733233)	Acceptable	< 0.67	0.36
	Dried	Province (2010a) (VIV. 722255)	Aggentable	2.88	3.36
	Dried	Brown (2019a) (VV-733255)	Acceptable	3.83	3.30
	Davi nomena	Province (2010a) (XIXI 722255)	Aggentable	10.88	8.11
	Dry pomace	Brown (2019a) (VV-733255)	Acceptable	25.33	0.11
	Wet pomace	Brown (2019a) (VV-733255)	Acceptable	3.88	3.19

Table 82: Summary of Processing Factors for the proposed Residue Definition for Risk Assessment in primary crops⁸ in apple commodities

2.7.7 Summary of residues in rotational crops

The principal metabolic transformations of penconazole in all rotated crop commodities occurred via oxidation of the parent molecule to produce CGA132465, CGA127841 and CGA179944 and by conjugation of CGA71019 to produce CGA13013, CGA142856 and CGA205369 ([1,2,4]-triazol-1-yl-lactic acid).

The metabolism of penconazole was measured in two confined rotational crop studies conducted separately with [Triazole-(U)¹⁴C]- and [Phenyl-(U)¹⁴C]-penconazole. In both studies, single spray application was made to soil at a nominal application rate of 240 g a.s./ha. The radiochemical was formulated as an emulsifiable concentrate (EC) containing 100 g ai/L. Treatment plots were maintained outdoors.

In the [Triazole-(U)¹⁴C]-penconazole study, the greatest uptake of total radioactive residues was found in cereal commodities. Total radioactive residues in spring wheat were: \leq 0.231 mg/kg (whole tops), \leq 1.39 mg/kg (fodder) and \leq 3.28 mg/kg (grain). Residues in winter wheat were markedly lower, 0.171, 0.084, 0.337 and 0.418 mg/kg for whole tops (25% maturity), whole tops (50% maturity), fodder and grain, respectively. Relatively low uptakes were observed in lettuce (\leq 0.072 mg/kg) and radish tops and root (\leq 0.084 mg/kg). There was no clear correlation between residue levels and planting interval.

Solvent extractability with methanol was within the range 61-99% TRR for all commodities. A further 1-18% was released by microwave extraction of the PES. Unextracted residues accounted for <16% TRR in lettuce, \leq 7.9% TRR in radish (roots and tops), <11% TRR in wheat whole tops, <17% TRR in wheat fodder and <28% TRR in wheat grain.

Parent penconazole was identified, with the exception of 179 DAT wheat (3.3% TRR, 0.011 mg/kg), only in small amounts (<0.01 mg/kg) and was predominantly found at the first planting interval. CGA131013, CGA205369 and CGA142856 were the major metabolites identified. CGA131013 was a major metabolite in wheat, lettuce and radishes with highest residues in grain (highest in 126 DAT grain: 57.4% TRR, 1.89 mg/kg). CGA142856 was a minor residue in lettuce and radishes (≤1.7% TRR, 0.001 mg/kg). Residues were more significant in wheat commodities with the highest residues observed in wheat grain (highest in 126 DAT grain: 26.4% TRR, 0.868 mg/kg). CGA205369 ([1,2,4]-triazol-1-yl-lactic acid) was a major metabolite in lettuce, wheat tops and wheat fodder and tops and a minor (<0.01 mg/kg) metabolite in radishes and wheat grain. Highest residues were observed in 126 DAT spring wheat fodder (38.3% TRR, 0.532 mg/kg). CGA71019 was a minor metabolite in wheat and radishes and not detected in lettuce. The highest residue was observed in 126 DAT spring wheat fodder (4.1% TRR, 0.057 mg/kg). No other metabolites were present in significant amounts.

Non-extractable radioactivity, once characterised, was found to be made up of CGA13013, CGA142856 and CGA71019 and several polar components.

In the [Phenyl-(U)¹⁴C]-penconazole study, the greatest uptake of radioactive residues was found in cereal commodities. Total radioactive residues in spring wheat were: \leq 0.035 mg/kg (whole tops), \leq 0.286 mg/kg (fodder) and \leq 0.132 mg/kg (grain). Residues in winter wheat were markedly lower, 0.027, 0.012, 0.077 and 0.005 mg/kg for

_

⁸ Sum of penconazole and free and conjugated CGA132465, CGA190503 and CGA127841, expressed as penconazole.

whole tops (fall cutting), whole tops (50% maturity), fodder and grain, respectively. Relatively low uptakes were observed in lettuce (≤ 0.071 mg/kg) and radish tops and root (≤ 0.032 mg/kg).

In lettuce and radish, residue levels decreased at longer planting intervals; however, for wheat, there was no clear correlation between residue levels and planting interval.

Solvent extractability with methanol within the range 53-95% TRR was achieved for all commodities, apart from wheat grain; where low extractability of 22-47% was obtained. A further 11-20% was released by microwave extraction of the PES of wheat grain samples. Unextracted residues accounted for 2.8% TRR in lettuce, ≤10% TRR in radish (roots and tops), \le 33\% TRR in wheat whole tops, \le 36\% TRR in wheat fodder and \le 64\% TRR in wheat

amounts (≤0.004 mg/kg) and was predominantly found at the first planting interval. Conjugates of CGA132465 and CGA127841 co-eluted and were the major identified metabolites in nearly all commodities. They were noted in wheat grain or radish roots and the highest residue. mg/kg). The 32 DAT wheat fodder extract was hydrolysed with aqueous HCl and the resulting ratio of unconjugated CGA132465 to CGA127841 was determined to be approximately 6:1. CGA179944 was a major metabolite in all plant parts, with the exception of grains, where it was not present. The highest residue observed was in 126 DAT wheat fodder (6.6% TRR, 0.019 mg/kg). No other metabolites were present in significant amounts.

In summary, the qualitative nature of the residues in rotated crops is similar to and consistent with the pathways found in the representative primary crops. A proposed overall metabolic pathway for penconazole in confined a confined rota

a conf rotational crops is presented in the Figure below.

Consequently and publication, distribution, introduction and production of the produ Proposed overall metabolic pathway for penconazole in confined rotational crops copyrights of third parties to come the ritis contents without the parties of the ritis contents of the ritis contents without the parties of the ritis contents of the ritis co

W = wheat (T = tops, F = fodder, G = grain), L = lettuce, R = radish (T = tops, R = roots)

In conclusion, Tier II rotational field trials with penconazole are not required by penconazole-specific residues in order to support the GAPs described in **Volume 1**.

Nevertheless, Tier II rotational field trials quantifying penconazole, 1,2,4-triazole (CGA071019), triazole alanine (CGA131013), triazole acetic acid (CGA142856) and triazole lactic acid (CGA205369) have been previously performed and are presented as additional information in this submission.

In summary, penconazole was applied, as A6209G, as one application to soil with lightly sown grass at an overdosed TSR of 200 g a.s./ha (1.3X) in the NEU (A7402T_10154) and SEU (A7402T_10149). Residues of penconazole were \leq 0.01 mg/kg, or <0.008 mg/kg after scaling to the TSR of 158 g/ha/year. Based on findings scaled

to the TSR, no detectible penconazole-specific residues in food are expected. In conclusion, the results of these Tier II rotational field trials are considered to align with the results of the Tier I rotational studies, and the potential relevance of penconazole-specific residues in rotational crops can be considered negligible.

2.7.8 Summary of other studies

Effect on the residue level in pollen and bee products

The data requirement objective of these studies is to determine the residue in pollen and bee products for human consumption resulting from residues taken up by honeybees from crops at blossom.

According to available guidelines (Commission Services, 2018), all representative crops within GAP are considered to possess melliferous capacity. In accordance with GAP, penconazole may be applied before or during flowering. Thus, honey residue trials are appropriate to generate residue data for dietary risk assessment.

Some criteria for the study are fulfilled, but there are several limitations according to the guideline. The trial is worst-case culture. conducted regarded in rape can be as a Austrian site: The dose of 4 x 50 mg a.i./ ha mirrors the GAP. The bee hive was placed in the tunnel the day before the third spraying and the last spraying was before the end of flowering. Honey was collected at the end of flowering. No residues of penconazole, or CGA127841, CGA132465 and CGA190503 (after deconjugation), at or above the limit of quantification (LOQ, 0.01 mg/kg) were found in the untreated or treated honey samples. Italian site: The dose of the test item 2 x 50 mg a.i./ ha was applied at the BBCH stage 64 and after end of flowering. It thus does not mirror the GAP. There was also very little honey to analyse from the treated beehive and the origin of the honey was not well documented. The analytical results from the Italian site cannot be relied on.

There are not enough data in honey to derive an MRL for penconazole for honey. A minimum of 4 trials are required.

2.7.9 Estimation of the potential and actual exposure through diet and other sources

In accordance with the EFSA Scientific Report for Penconazole (EFSA Scientific Report (2008) 175, 1-104), a 6-fold Conversion Factor (CF) may be used to convert between measurements of parent in crop commodities to the full proposed Residue Definition for Risk Assessment (penconazole + CGA132465 + CGA190503 + CGA127841 and the conjugates of the metabolites, expressed as penconazole). Residue data for each of CGA132465, CGA190503 and CGA127841 (total, after deconjugation) have been prepared and presented, and were used where applicable. In order to support robust proposals, novel CFs were calculated using residue trials with representative crops and supplementary crops with residue data according to the RD_(RA) (sweet/bell peppers and raspberries). All crops for which CFs were calculated are members of the fruit and fruiting vegetables metabolism group. In summary, for when only penconazole is measured, CFs of 2.5, 3.0, and 4.0 are proposed for PHIs of 3 days, 14 days and 21-28 days, respectively.

Chronic and acute exposure calculations for penconazole were performed using revision 3.1 of the EFSA Pesticide Residues Intake Model (PRIMo⁹). Although apples are EU feed items within the OECD feeding tables, livestock commodities are excluded from the risk assessment. This exclusion is conducted because representative uses lead to calculated livestock dietary burdens of <0.004 mg/kg bw/d.

Acceptable Daily Intake (ADI) and Dietary Exposure Calculation

The current ADI for penconazole is 0.03 mg/kg bw/day (**EFSA Scientific Report** (2008) 175, 1-104. Following a review of the available toxicological data for penconazole and penconazole's metabolites, RMS proposes an ADI of 0.015 mg/kg bw/d.

Theoretical Maximum Daily Intake (TMDI) and International Estimated Daily Intake (IEDI) are calculated based on the proposed uses according to this document. The residue levels used for each commodity is based on either the calculated MRL (\times CF) for TMDI calculations, or the STMR (using a CF for subsets of residue trials only measuring penconazole¹⁰) for IEDI calculations. In the table below, the input values for the chronic exposure as entered in the EFSA PRIMo model are presented.

The TMDI and IEDI calculations are presented below. According to the TMDI calculation, the survey population with the highest calculated exposure is the NL Toddler at 20% of ADI (the highest contributing commodity is apples at 13%). The highest chronic exposure according to the IEDI is 5% of ADI for the NL toddler survey population (the highest contributing commodity is apples at 3%).

The results indicate that there is no unacceptable chronic risk to human health from the consumption of commodities treated with penconazole according to the uses considered.

120

_

⁹ EFSA (European Food Safety Authority), 2017. Guidance document on the use of the EFSA Pesticide Residue Intake Model (EFSA PRIMo revision 3). EFSA Journal 2018;16(1):5147, 45 pp. doi:10.2903/j.efsa.2018.5147

¹⁰ 7/15 NEU grape trials, and 5/14 NEU trials supporting cucumbers with 3 applications (more critical than the 1-application cucumber GAP).

Table 83: Input Values for Penconazole Chronic Risk Assessment

	Chronic risk assessment						
Commodity	Input valu	ıe (mg/kg)	Comment				
	MRL	STMR	Comment				
Penconazole + CGA132465 + CG expressed as penconazole	A190503 + CG						
Apples	$0.06 \times CF$	0.04	J. 1161.				
Pears	(3.0)		1000				
Quinces			10 010 16				
Medlar			io no io				
Loquats/Japanese medlars			the lect test by				
Other pome fruit			a to interior of soil of				
Table grapes		0.05	He is still the self				
	$0.05 \times CF$ (4.0)		Allie of the original of the child of the ch				
Wine grapes	0.05 × CF	$0.05 \times YF$	his allo dallie				
	$ \begin{array}{ccc} (4.0) & \times & \text{YF} \\ (0.7) & & & \\ \end{array} $	(0.7)	10, 100 Buch 111,				
Cucumbers		SO SOL	So, Till To, St.				
Gherkins	$0.05 \times \text{CF}$	0.04	Plis On Muse				
Courgettes	(2.50)	62, 6011	8) *110 :45				
Other cucurbits – edible peel	4.18 27	196 0:04 11 10 10 10 10 10 10 10 10 10 10 10 10	0 01				
Honey ^a	<0.04	<0.04	W.				

⁽a): Due to adverse weather conditions in 2019, only 2 of the 4 initiated honey residue trials were able to generate residue data at the applicable GAP and as such, 2 additional trials are underway in 2020.

TMDI based on calculated MRLs.

TMDI calculation:

Pe	enconazole)	
LOQs (mg/kg) range from:		to:	
Toxicol	ogical reference v	alues	
ADI (mg/kg bw/day):	0,015	ARfD (mg/kg bw):	0,5
Source of ADI: Year of evaluation:	M-CA 5 2019	Source of ARfD: Year of evaluation:	M-CA 5 2019

O,	1 Kr. 3.	20			<u> NOTTI</u>	iai illoue				
16:	and his	jo	Chronic risk assessment: JMPR methodology (IEDI/TMDI)							
11.	90, 8,01.	No of diets exceeding the ADI:								
5	Calculated		Expsoure	Highest contributor		2nd contributor to				
0),	exposure		(μg/kg bw per	•	Commodity/	MS diet	Commodity/			
~ A	(% of ADI)	MS Diet	day)	(in % of ADI)	group of commodities	(in % of ADI)	group of commodities			
2	20%	NL toddler	3,06	13%	Apples	5%	Pears			
3	18%	DE child	2,73	15%	Apples	2%	Table grapes			
	10%	NL child	1,51	7%	Apples	1%	Pears			
	5%	DK child	0,78	3%	Apples	1%	Cucumbers			
	5%	DE women 14-50 yr	0,70	3%	Apples	0,8%	Wine grapes			
	5%	FR toddler 2 3 yr	0,69	4%	Apples	0,4%	Pears			
	4%	PT general	0,66	2%	Wine grapes	1%	Apples			
Ē	4%	DE general	0,66	3%	Apples	0,8%	Wine grapes			
nmption)	4%	RO general	0,58	2%	Apples	2%	Wine grapes			
Ĕ	4%	GEMS/Food G11	0,55	2%	Apples	1,0%	Wine grapes			

CF: Conversion Factor derived from available residue trials

YF: In line with the conclusions of EFSA (EFSA Journal 2016;14(7):4553), a Yield Factor (YF) of 0.70 has been applied to the chronic risk assessment to account for 100 kg of wine grapes being used to produced 70 kg of wine.

IEDI calculation:

	Penconazole	
LOQs (mg/kg) range from:	to:	
Tox	icological reference values	λ
ADI (mg/kg bw/day):	0,015 ARfD (mg/kg bw): 0,5
Source of ADI:	M-CA 5 Source	e of ARfD: M-CA 5
Year of evaluation:	2019 Year o	f evaluation: 2019

Commen	ts:				10, 10, 10 P	reditation
					Refined calculation mode	1,90,90
					Chronic risk assessment: JMPR methodo	logy (IEDI/TMDI)
				No of diets exceeding	g the ADI:	, 20,
	Calculated exposure (% of ADI)	MS Diet	Expsoure (µg/kg bw per day)	Highest contributor to MS diet (in % of ADI)		Commodity/
	5% 4%	NL toddler DE child	0,69 0,63	3% 3%	Apples 1%	Pears Table grapes
	2%	NL child	0,34	2%	Apples 0,3%	Table grapes
	1% 1%	DK child DE women 14-50 yr	0,19 0,17	0,6% 0,7%		Cucumbers Wine grapes
	1%	FR toddler 2 3 yr	0,16	0,8%		Pears
	1%	PT general	0,16	0,6%	1 - J - \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Apples
É	1%	DE general	0,16	0,6%	Apples 0,2%	Wine grapes

Acute Reference Dose (ARfD) and Dietary Exposure Calculation
The ARfD for penconazole is 0.5 mg/kg but a recommendation. The ARfD for penconazole is 0.5 mg/kg bw according to EFSA Scientific Report for Penconazole (EFSA Scientific Report (2008) 175, 1-104). Following a review of the available toxicological data for penconazole and penconazole's metabolites, the ARfD is proposed to remain as 0.5 mg/kg bw.

International estimated short-term intake (IESTI) values are calculated based on the proposed uses according to this document. The residue levels used for each commodity is based on either the HR or STMR depending on the commodity in question (×CF for subsets of residue trials only measuring penconazole¹¹). In the table below, the input values for the acute exposure as entered in the EFSA PRIMo model are presented.

The results of the IESTI calculation for penconazole are shown below. The highest IESTI for the consumption of Raw Agricultural Commodities is for pears by children, representing 2% of ARfD. The highest IESTI for the consumption of Processed Commodities is for 'Courgettes / boiled', by children, representing 0.5% of ARfD.

The results indicate that there is no unacceptable acute risk to human health from the consumption of commodities treated with penconazole according to the uses considered.

 Table 84: Input Values for Penconazole Acute Risk Assessment

Och Hill Abille		Acute risk assessment						
Commodity		Input value (mg/kg)						
in this till, so	STMR	HR	Comment					
Penconazole + CGA132465 + expressed as penconazole	CGA190503 + CGA12	7841 and the conjugates of the metaboli	ites,					
Apples								
Pears	Not applied blo							
Quinces	Not applicable	0.08						
Medlar								

¹¹ 7/15 NEU grape trials, and 5/14 NEU trials supporting cucumbers with 3 applications (more critical than the 1-application cucumber GAP).

122

Loquats/Japanese medlars		
Other pome fruit		
Apple juice	$0.04 \times PF(0.6)$	
Pear juice	$0.04 \times PF(0.6)$	Not applicable
Quinces / jam ^a	0.04	
Table grapes		$0.03 \times CF(4.0)$
***		Children: $0.03 \times CF(4.0) \times YF(0.75)$
Wine grapes	Not applicable	Adults: 0.03 × CF (4.0) × YF (0.70)
Table grapes / raisins		0.03 × CF (4.0) × PF (2.54)
Wine grapes / wine		$0.03 \times CF(4.0) \times PF(0.55)$
Wine grapes / juice	$0.05 \times PF(0.46)$	Not applicable
Cucumbers	,	10 18 10 10 10 10 10 10 10 10 10 10 10 10 10
Gherkins		" of sill to live
Courgettes		0.03 × CF (2.50)
Other cucurbits – edible peel	Not applicable	0.03 × CF (4.0) Children: 0.03 × CF (4.0) × YF (0.75) Adults: 0.03 × CF (4.0) × YF (0.70) 0.03 × CF (4.0) × PF (2.54) 0.03 × CF (4.0) × PF (0.55) Not applicable 0.03 × CF (2.50) 0.03 × CF (2.50) × 1 (PF)
Gherkins / pickled		$0.03 \times CF(2.50) \times 1 (PF)$
Courgettes / boiled		$0.03 \times CF(2.50) \times 1 (PF)$
Courgettes / boiled		0.03 × CF (2.50) × 1 (PF)
Honey ^b (a): No Processing Factor (PF) is app to OECD (2008) guidance, and in acceposures from quinces are less <10 (b): Due to adverse weather condition	ddition, residues and expose MRfD, and contribution ons in 2019, only 2 of the 4	<0.04 ause pome fruit jam is not a required processing step accours would not trigger investigating jamming of quinces (s from quinces to the TMDI are <10% ADI). initiated honey residue trials were able to generate residue.
Honey ^b (a): No Processing Factor (PF) is apple to OECD (2008) guidance, and in acceposures from quinces are less <10 (b): Due to adverse weather conditionat the applicable GAP and as such, 2 CF: Conversion Factor derived from PF: Processing Factor YF: In line with the conclusions of F	Idition, residues and expose MR ARfD, and contribution ons in 2019, only 2 of the 42 additional trials are under available residue trials (CEFSA (EFSA Journal 2012 account for 100 kg of grap exposure assessment), residue trials (CEFSA)	ause pome fruit jam is not a required processing step accours would not trigger investigating jamming of quinces (s from quinces to the TMDI are <10% ADI). initiated honey residue trials were able to generate residu way in 2020. F = 2.50 or 4.0). (10(6):2769), Yield Factors (YF) of 0.70 and 0.75 have been being used to produce 70 kg of wine (adult exposure ectively.

⁽a): No Processing Factor (PF) is applicable to quinces jam because pome fruit jam is not a required processing step according to OECD (2008) guidance, and in addition, residues and exposures would not trigger investigating jamming of quinces (acute exposures from quinces are less <10% ARfD, and contributions from quinces to the TMDI are <10% ADI).

⁽b): Due to adverse weather conditions in 2019, only 2 of the 4 initiated honey residue trials were able to generate residue data at the applicable GAP and as such, 2 additional trials are underway in 2020.

CF: Conversion Factor derived from available residue trials (CF = 2.50 or 4.0).

YF: In line with the conclusions of EFSA (EFSA Journal 2012;10(6):2769), Yield Factors (YF) of 0.70 and 0.75 have been applied to acute risk assessments to account for 100 kg of grapes being used to produce 70 kg of wine (adult exposure assessment) or 75 kg of juice (child exposure assessment), respectively.

			Sho	w result	s for all crop	os		
Unprocessed commodities	Results for childre No. of commoditie exceeded (IESTI):	en s for which ARfD/ADI is			Results for adults No. of commodities exceeded (IESTI):	s for which ARfD/ADI is		
o pe	IESTI				IESTI			
SS			MRL / input				MRL/input	
l ö	Highest % of		for RA	Exposure	Highest % of		for RA	Exposure
ğ	ARfD/ADI	Commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Commodities	(mg/kg)	(µg/kg bw)
ă	2%	Pears	0/0,08	11	0,8%	Table grapes	0/0,12	4,1
	2%	Table grapes	0/0,12	8,8	0,5%	Pears	0/0,08	2,4
	2%	Apples	0/0,08	8,6	0,4%	Apples	0 / 0,08	2,2 2,1
	1,0%	Cucumbers	0/0,08	4,9	0,4%	Cucumbers	0 / 0,08	2,1
	0,7%	Courgettes	0/0,08	3,5	0,4%	Wine grapes	0 / 0,08	2,0
	0,4%	Quinces	0/0,08	2,0	0,3%	Courgettes	0/0,08	2 1.7
	0,2%	Medlar	0/0,08	1,1	0,2%	Quinces	0 / 0,08	(1,2
	0,2%	Wine grapes	0/0,09	0,84	0,1%	Medlar	0/0,08	0,55
	0,04 %	Gherkins	0/0,08	0,21	0,09 %	Gherkins	0/0,08	0,45
	0,04 %	Honey and other	0/0,05	0,18	0,01 %	Honey and other	0/0,05	0,45
	Expand/collapse li	st				"III "IC, "OL	7,00,00	<i>y</i>
	Total number of c children and adult (IESTI calculation)		ne ARfD/ADI in		iding	ollie sollate	any do	

ies	Results for childre	n			Results for adults	3000		
鼍	No of processed co	ommodities for which			No of processed co	mmodities for which		
l e	ARfD/ADI is exceed	led (IESTI):			ARfD/ADI is exceed	ed (IESTI):		
E O	IESTI			16,5	IESTO JI	11/13 ON WILL		
o g			MRL/input	.07	50,000	'n, 'o o,	MRL / input	
SSE	Highest % of		for RA	Exposure	Highest % of	24. 114. 5	for RA	Exposure
oce	ARfD/ADI	Processed commodities	(mg/kg)	(µg/kg bw)	ARfD/ADI	Processed commodities	(mg/kg)	(µg/kg bw)
P.	0,5%	Courgettes / boiled	0/0,08	2,7	0,343%	Courgettes / boiled	0/0,08	1,7
	0,3%	Gherkins / pickled	0 / 0,08	1,7	0,07 %	Table grapes / raisins	0/0,27	0,34
	0,1%	Wine grapes / juice	0 / 0,01	0,59	0,06 %	Wine grapes / juice	0/0,01	0,28
	0,1%	Apples / juice	0/0,01	0,41	0,05 %	Wine grapes / wine	0/0,03	0,26
	0,0%	Pears / juice	0/0,01	0,25	0,05 %	Apples / juice	0/0,01	0,25
	0,0%	Quinces / jam	0/0,04	0,12	0,01 %	Quinces / jam	0/0,04	0,05

2.7.10 Proposed MRLs and compliance with existing MRLs

EU MRLs for penconazole are currently detailed in the Regulation (EC) No 2019/89.

The data presented in this document demonstrate that the proposed representative use of penconazole does not lead to an exceedance of the recommended MRLs for pome fruits, grapes and cucumbers (or cucurbits with edible peel), or those for products of animal origin. Whilst residues in raspberries exceed the existing MRL for that crop, new MRLs for raspberries (and blackberries by extrapolation) have been proposed to Germany separately to penconazole's renewal process.

EU MRLs for the commodities relevant to the representative crop use of penconazole are detailed in the table below. The applicant has provided novel studies with regard to residues in plants. The calculated MRLs presented by the applicant based on these novel studies are lower compared with the current EU MRLs.

Table 85: Current and proposed EU MRLs for penconazole for representative crops

Code	Commodity	Current EU MRL ^(a-b) (mg/kg)	Proposed EU MRL ^(c) (mg/kg)
0130000	Pome fruits (excluding Loquats/Japanese medlars)	0.15	0.06
0130050	Loquats/Japanese medlars	0.07	
0151000	Grapes	0.5	0.05
0232010	Cucumbers	0.06	0.05 ^d
			0.02°
1000000	Products of animal origin – terrestrial animals	0.01*	0.01
1040000	Honey and other apiculture products	0.05*	No MRL proposal
1100000	Fish, fish products and any other marine and freshwater food product	None established	None required®
1200000	Products or part of products exclusively used for animal feed production	None established	None required ^(h)

- (a): The current and proposed residue definition for monitoring is parent penconazole only.
- (b): Regulation (EU) 2019/89.
- (c): Calculations based on representative uses; rounded OECD values presented.
- (d): Results of the calculation for the 3-application cucumber GAP.
- (e): Results of the calculation for the 1-application cucumber GAP.
- (f): The MRLs are proposed, based on negligible livestock dietary burdens, to be at the LOQ.
- (g): Penconazole is not applied to crops within the fruit and fruiting vegetables metabolism group considered to form components of fish feed (B.7.2.5; EFSA Journal 2017;15(6):4853).
- (h): Penconazole is not applied to crops within the fruit and fruiting vegetables metabolism group that provide commodities that are considered to be exclusively fed to animals in the EU.
- *: These MRLs are currently set at respective LOQs.

...posed in animal composed in a The QuEChERS method is proposed for the monitoring of penconazole in crops with a limit of analytical determination of 0.01 mg/kg (see reports S14-02175 and 20140165). The QuEChERS method is also proposed for the monitoring of penconazole in animal commodities with a limit of analytical determination of 0.01 mg/kg (see

2.7.11 Proposed import tolerances and compliance with existing import tolerances

Not applicable. The crop residue data lead to calculated, rounded OECD MRLs that do not exceed MRLs within

2.8 FATE AND BEHAVIOUR IN THE ENVIRONMENT

2.8.1 Summary of fate and behaviour in soil

Aerobic laboratory studies

Data on the route and rate of degradation of penconazole in soils were previously submitted and evaluated in context of the first EU review of penconazole (2007). The route of aerobic soil degradation was investigated in seven studies (Völkl, 2002, Glänzel, 1999, Knoch, 1993, Abildt, 1989, 1989a and 1989b and Keller, 1982) in six different soils (pH 7.0-7.5, OC 1.4 – 5.8) incubated at 15-25 °C with ¹⁴C-penconazole labelled at either the triazole-ring or the phenyl ring. In these studies, the major metabolite formed by microbial degradation was CGA71019 (1,2,4-triazole), a metabolite common to many azole active substances. Another major metabolite occurring > 10% AR was CGA179944. Following the previous EU evaluation, it was discovered that the penconazole metabolite CGA179944 is a common metabolite with a metabolite of tetraconzole, namely M14360-acid.

In the study by Knoch, 1993, an unknown metabolite (U1) was formed in amounts > 10% AR. The metabolite was later, as part of confirmatory data, identified to be CGA142856 (triazole acetic acid; TAA). The RMS considers that this conclusion is still valid. Additionally, two new soil metabolism studies (Dobson, 2010 and Brands, 2010) investigated whether the unknown U1 metabolite may be formed and identified. In both studies, CGA142856 was confirmed at low levels well below 5% AR. However, in Dobson (2010), an unidentified metabolite (M9) was present up to 7.5% of applied radioactivity at the study end on day 60 (3.3% on day 30) in a soil dosed with a high rate of penconazole. A retrospective elucidation study was conducted (Edwards, 2019) to identify unknown M9. The retrospective elucidation work assigned the identity of the unknown soil metabolite (M9) as CGA91305.

The penconazole task force also submitted two new soil metabolism studies (Crabtree, 2016; Corral and Brands, 2009) that were instigated to determine the behaviour of penconazole over a wider pH range than the old studies and at an application rate closer to the current rate. No new metabolites were identified in either of these studies.

The table below shows the different penconazole laboratory studies that were performed and the formation of metabolites, CO_2 and bound residues in these studies.

Table 86: Overview of the formation of metabolites, CO2 and bound residues in the penconazole laboratory aerobic route of degradation studies (needs to be updated)

Reference	Soil, application rate	Title gie		Label	CGA71019 (1,2,4- triazole)	CGA179944	CGA142856 (triazole acetic acid; TAA)	CGA91305	CO ₂	NER
		ation's			Max occi	urrence (%AR)) at (day)		% AR days	after 100
Völkl S, 2002	Weide, 209 g/ha	Silt loam	7.5 ⁽¹	TRZ	19.5 (188)	2.0 (28) (***	-	-	2.8 (120) 6.8 (188)	17.1 (120) 27.3 (188)
ons use	Pappelacker, 209 g/ha	Sandy loam	7.44 ⁽¹⁾	TRZ	38.6 (188)	7.2 (58)	-	-	5.4 (120) 9.6 (188)	25.5 (120) 35.8 (188)
Glänzel A. 1999	Gartenacker, 320 g/ha	Loam	7.18 ⁽¹⁾	TRZ	34.8 (180)	1.8 (14) (***	3.6 (90) (***	-	2.3 (90) 4.1 (210)	12.6 (90) 35.1 (210)
Knoch E., 1993	Itingen, 63 g/ha	Silt loam/loam	7.4 ⁽¹	TRZ	14.3 (56)	13.1 (56)	-	-	6.4 (105)	18.4 (105) 40.2 (364)

Reference	Soil, application rate	Soil type	рН	Label	CGA71019 (1,2,4- triazole)	CGA179944	CGA142856 (triazole acetic acid; TAA)	CGA91305	CO ₂	NER
					Max occ	urrence (%AR) at (day)		% AR days	after 100
									26.9 (364)	John Li
	Itingen, 630 g/ha	Silt loam/loam	7.4 ⁽¹	TRZ	5.5 (182)	10.9 (364)	12.5 (364)	0	3.5 (105) 11.0 (364)	14.5 (105) 23.7 (364)
Abildt U, 1989	Les Barges (Strassenacker), 727 g/ha	Sandy loam/loam	7.0 ⁽²	РН	-	5.3 (56)	- offer	25/9	19.3 (84)	13.3 (84)
Abildt U, 1989a	Les Barges (Strassenacker), 727 g/ha	Sandy loam/loam	7.0 ⁽²	PH	-	13.4 (182)	it's gul	10 X	15.3 (182)	14.6 (182)
Abildt U, 1989b	Les Barges (Strassenacker) , 735 g/ha (*	Sandy loam/loam	7.0 ⁽²	TRZ	20.3 (546)	10.2 (364)	lishing	NIC	0.4 (130)	17.8 (130)
Keller A, 1982	Les Barges, 750 g/ha	Sandy loam	7.3 ⁽²	TRZ	29 (336)	1/3/10/6	11/6 14°	,	1.4 (84)	15.2 (84)
Crabtree G et al., 2016	Gartenacker, 50 g/ha (*	Loam	7.4 ⁽³	PH	SUL V	2.2 (59) (***	-is	-	1.2 (105)	35.7 (76)
	18 Acres, 50 g/ha	Sandy clay loam	7.2 ⁽³	PH	- Juctilo	3.9 (120) (***	-	-	0.7 (105)	13.1 (105)
	Hepler, 50 g/ha	Silt loam	6.2 ⁽³	PH	-41/10	1.0 (90) (***	-	-	5.7 (45)	32.6 (120)
	East Anglia, 50 g/ha	Sandy loam	7.6 ⁽³	PH	oly M	3.1 (120) (***	-	-	0.4 (90)	22.6 (120)
	Capay, 50 g/ha	Clay loam	6.7 ⁽³⁾	PH C) -	0.7 (76) (***	-	-	1.0 (45)	52.8 (120)
Corral E. and Brands C, 2009	Speyer 2.2, 100 g/ha	Loamy sand	5.4	TRZ	-	-	-	-	0.1 (122)	15.5 (122)
Ment	Speyer 2.3, 100 g/ha	Sandy loam	6.4(4	TRZ	-	-	-	-	0.5 (122)	34.4 (60)
O CUIT	Speyer 6S, 100 g/ha	Clay	7.2 ⁽⁴	TRZ	-	-	-	-	0.1 (14)	19.2 (60)
Dobson R, 2010(**	Stolpe, 65 g a.s./ha	Sand	5.5 ⁽⁴	TRZ	3.3 (60)	3.0 (60) (***	-	2.0 (60) (***	0.2 (28)	4.5 (60)
T'sedy d	Fislis, 65 g a.s./ha	Silt loam	7.3 ⁽⁴	TRZ	15.4 (60)	0.9 (60) (***	-	3.7 (28) (***	5.5 (60)	22.0 (60)
and its	Fislis, 650 g a.s./ha	Silt loam	7.3 ⁽⁴	TRZ	7.8 (60)	3.9 (28) (***	-	7.5 (60)	1.3 (60)	14.4 (60)

TRZ: triazole ring label, PH: Phenyl ring label

⁽¹ pH in KCl; (2 pH medium not stated; (3 pH in H₂O; (4 pH in CaCl₂ (*suggested to be excluded from the results (see Vol 3 CA Part B.8 for full study summary and evaluation) – will be removed from this vol. 1 summary if agreed upon in peer review

^{(**} study only to be used for supporting information - will be removed from this vol. 1 summary if agreed upon in peer review

^{(***} metabolites that do not exceed 5% AR in the study. Will be removed from table after peer review.

The proposed metabolic pathway for penconazole in soil incubated under aerobic condition, based on the results obtained, is presented in the following scheme:

Bound residues and CO2

Penconazole is essentially stable in soil to photolysis and under anaerobic conditions (see summary of anaerobic laboratory studies below). Under sterile conditions, penconazole was not significantly degraded (Keller, 1982). This indicates that the degradation of penconazole is microbially driven.

Penconazole degraded slowly in aerobic soil. Mineralization was relatively low (0.1-19.3% AR after up to 120 days). Volatiles were formed at very low levels and were in most cases not observed >LOD of the respective studies. Bound residues amounted to a maximum of 52.5% AR after 120 days.

The results from the laboratory aerobic degradation studies of penconazole in soil are summarized in Table 80. Please refer to the individual study summaries in Vol. 3 B.8 CA for more details.

The degradation rates of the metabolites CGA179944, CGA71019, CGA142856 and CGA91035 are given in Table 81 to 84. Formation fractions are given in Table 85. Please refer to the individual study summaries in Vol. 3 B.8 CA for more details.

Table 87: Summary of kinetic evaluation of laboratory data on aerobic degradation of penconazole in soil.

Study	Soil	pН	Persiste	Persistence endpoint				ng endpoin	t (20°C, pF	2)
and use			Best fit model	DT50, days	DT90, days	χ^2 error, %	Model	Factor to normalize moisture	Factor to normalize temperatur	DT50, days
	Weide, silt loam	7.5(1	SFO	154	511	3.2	SFO	1	1	154
Völkl S, 2002	Pappelacker, sandy loam	7.44 ⁽¹⁾	SFO	54.2	180	3.3	SFO	1	1	54.2
Glänzel A. 1999	Gartenacker, loam	7.18 ⁽¹⁾	SFO	77.2	256	4.1	SFO	1	1	77.2

Study	Soil	pН	Persiste	nce end	point		Modelli	ng endpoin	t (20°C, pF	(2)
-			Best fit model	DT50, days	DT90, days	χ^2 error, %	Model	Factor to normalize moisture	Factor to normalize temperatur	DT50, days
	Itingen (low dose 20°C/60%), silt loam	7.4 ⁽¹	DFOP	108	515	4.8	SFO	0.699	1	92.4
Knoch E., 1993	Itingen (high dose 10°C/60%), silt loam	7.4 ⁽¹	SFO	484	1610	3.02	-	-	ION TO THE	HOP 18
	Itingen (high dose 20°C/30%), silt loam	7.4 ⁽¹	SFO	474	1580	3.42	-	chio ini	Nec 1018	icial c
Abildt U, 1989	Les Barges (Strassenacker), 25°C/75%FC, sandy loam	7.0 ⁽²	DFOP	103	683	4.93	SFO	0.818	1.606	192
Abildt U, 1989b	Les Barges (Strassenacker), 15°C/75%FC, sandy loam	7.0 ⁽²	SFO	301	999	5.26	SFO O	0.818	0.623	154
Keller A, 1982	Les Barges, sandy loam	7.3 ⁽²⁾	SFO	132	438	2.18	SFO	0.818	1.606	169
				20	6.5 %	9, 6	11/10	*5		
	18 Acres, sandy clay loam	7.2 ⁽³	SFO .	418	1390	1.35	SFO	T	1	418
C1-4 C -4	Hepler, silt loam	$6.2^{(3)}$	DFOP	193	806	2.88	SFO	0.959	1	197
Crabtree G et al., 2016	East Anglia, sandy loam	7.6 ⁽³	DFOP	227	850	1.55	SFO	1	1	228
	Capay, clay loam	6.7 ⁽³	DFOP	126	651	2.51	DFOP k2	0.868	1	196
Corral E. and	Speyer 2.2, loamy sand	5.4(4	SFO	628	2090	1.54	SFO	1	1	628
Brands C, 2009	Speyer 2.3, sandy loam	6.4(4)	SFO	239	792	1.78	SFO	0.798	1	191
	Speyer 6S, clay	$7.2^{(4}$	DFOP	700	2640	3.74	SFO	0.469	1	298
Geometric mean	(n=14)	اللي اللي		(0)						180.6

(1 pH in KCl; (2 pH medium not stated; (3 pH in H₂O; (4 pH in CaCl₂

Table 88: Summary of kinetic evaluation of laboratory data on aerobic degradation of the metabolite **CGA 179944** in soil.

Study	Soil	pН	Persistence	e endp	oint	•	Modelli	ng endpoin	t (20°C, pF	2)
Aights of the	is 90 cm		Best fit model	DT50, days	DT90, days	χ^2 error, %	Model	Factor to normalize moisture	Factor to normalize temperature	DT50, days
Völkl S, 2002	Weide	7.5 ⁽¹⁾	SFO- SFO	45.5	151	11.0	SFO- SFO	1	1	45.5
Knoch E.,	Itingen (high dose)	7.4 ⁽¹	SFO- SFO	247	820	13	SFO- SFO	0.699	1	173
1993	Itingen (low dose)	7.4 ⁽¹⁾	SFO- SFO	-	-	-	SFO- SFO	-	-	-
Abildt U, 1989	Les Barges (Strassenacker),	7.0 ⁽²	SFO- SFO	16.4	54.6	20.5	SFO- SFO	0.818	1.606	21.0

Study	Soil	pН	Persistenc	e endp	oint		Modelling endpoint (20°C, pF2)				
			Best fit model	DT50, days	DT90, days	χ^2 error, %	Model	Factor to normalize moisture	Factor to normalize temperature	DT50, days	
	25°C/75%FC, sandy loam										
Abildt U, 1989b	Les Barges (Strassenacker), 15°C/75%FC, sandy loam (*	7.0 ⁽²⁾	SFO- SFO	196	650	6.54	SFO- SFO	0.818	0.623	101	
Cualitaria	18 Acres, sandy loam	$7.2^{(3)}$	SFO- SFO	100 0*	3320	16.4	SFO- SFO	1	(D) (1)	1000*	
Crabtree, 2016	East Anglia, sandy loam	7.6 ⁽³	SFO- SFO	100 0*	3320	19.0	SFO- SFO	1 11	Ne Noile	1000*	
	Weide, silt	7.5 ⁽¹⁾	HS	39.8	61.8	1.34	SFO		Jo me	25.8	
Völkl, 2002a	Pappelacker, sandy loam	7.44 ⁽¹	HS	27.6	49.5	0.97	SFO	J. 04	100	21.5	
	Gartenacker, silt loam	7.3 ⁽¹⁾	HS	21.3	37	1.83	SFO	7/9/ 3/	100	16.2	
	18 Acres, sandy clay loam	6.0 ⁽⁴	SFO	23.6	78.4	4.2	SFO		1	23.6	
Hurst, 2011	Ohio, clay	5.6 ⁽⁴	FOMC	22.3	113	3.8	SFO	JUL JUE	1	26.2	
	Frensham, sandy loam	5.0 ⁽⁴	HS	23.0	198	4.2	HS	The state of the s	1	101	
	Speyer 2.1, sand	6.0 ⁽⁴	SFO	218	724	3.0	SFO	0.9765	1	213	
Scacchi and Pizzingrilli, 2000	Speyer 2.2, loamy sand	5.8(4	DFOP	316 (k2 slow phas e)	748	1,2°	DFOP	1	1	316	
	Speyer 2.3, sandy loam	6.6 ⁽⁴)	SFO	114	380	1.4	SFO	0.8711	1	99.3	
	Speyer 2.2, loamy sand	5.4 ⁽⁴	SFO	31.0	103	8.7	SFO	1	1	31.0	
Corral and Brands, 2009a	Speyer 2.3, sandy loam	6.4 ⁽⁴	SFO	31.8	106	3.7	SFO	0.798	1	25.4	
21anas, 2007a	Speyer 6S, clay	7.2(4	SFO	112	373	4.7	SFO	0.469	1	52.5	
Geometric mea		1,15	07		1	1	ı	1	1	71.8	

⁻No reliable degradation half-lives could be determined.

Table 89: Summary of kinetic evaluation of laboratory data on aerobic degradation of the metabolite CGA142856 in soil.

Study	Soil	pН	Persistence endpoint				Modelling endpoint (20°C, pF2)				
oug ree			Best fit model	DT50, days	DT90, days	χ^2 error, %	model	Factor to normalize moisture	Factor to normalize temperature	DT50, days	
Scacchi and	SP-2.1, sand	$5.2^{(1)}$	HS ^{a)}	8.47	14.2	14.9	HS ^{a)}	1	1	4.28 b), c)	
Pizzingrilli, 2003	SP-2.2, loamy sand	5.6 ⁽¹⁾	HS ^{a)}	10.7	14.9	7.21	HS ^{a)}	1	1	4.49 b), c)	

⁽¹ pH in KCl; (2 pH medium not stated; (3 pH in H₂O; (4 pH in CaCl₂ * DT50 fixed to extrapolate ffm

Study	Soil	pН	Persiste	ence end	lpoint		Mode	lling endp	oint (20°C,	, pF2)
			Best fit model	DT50, days	DT90, days	χ^2 error, %	model	Factor to normalize moisture	Factor to normalize temperature	DT50, days
	SP-2.3, sandy loam	6.3(1	HS ^{a)}	16.3	21.6	8.10	HS ^{a)}	1	1	6.51 b), c)
Mainolfi and Colombini, 2019	IGM, loamy sand	7.9 ⁽¹	HS ^{a)}	19.2	30.1	2.01	HS ^{a)}	1	1	9.07 ^{b)}
Geometric mean	(n=4)						•		, 0,	5.80

⁽¹ pH in CaCl₂

	SP-2.3, saloam	andy 6	5.3 ⁽¹	HS ^{a)}	16.3	21.6	8.10	HS ^{a)}	1	1	6.51 b), c)	6
Mainolfi a	and IGM, lo	amy 7	.9(1	HS ^{a)}	19.2	30.1	2.01	HS ^{a)}	1	1	9.07 ^{b)}	01
Colombini,	sand										10, 47	°6. ∨
2019											5, 00,	10: 11:
Geometric m	nean (n=4)	•	•				•			0	5.80	D. Wille
(1 pH in CaCl ₂										11/1	6, 0,	Ollo Sic
Initial break po	oint value was man	ually set p	prior to free	optimisat	ion					40, 10	10, 10	010 01
DT ₅₀ derived fr	rom lag phase hocl	key stick I	$OT_{90}/3.32$ ac	cording t	o FOCU	S kinetics g	uidance ((2006, 20)	16a)	, 90	CO. OT	-1 4/1
Soils not norma	alised for moisture	as a cons	ervative ass	umption					ille	11000	() ()	K
									XO X	O. U.	10° 10°	
									9. 10	, D. Y	10, 71,	
Table 90	0: Summary o	f kinetic	evaluati	on of la	borator	y data on	aerobi	c degra	dation of	the metab	olite	
	2					-		0,,,		0. 41.	.0	
CGA7	1019 (1.2.4-tris	azole) in	ı soil.					. \	1 - 1 /-	_()	.	
CGA7	1019 (1,2,4-tria	azole) in	ı soil.				65	111	ich, OH	100		
CGA7	1019 (1,2,4-tria	azole) in	Persiste	ence enc	lpoint		M	odelling	endpoint	(20°C, pF	2)	
CGA7.	1019 (1,2,4-tria	pH	Persist	ence enc	lpoint		OM (1)	odelling	g endpoint	(20°C, pF	2)	
CGA7 Study	1019 (1,2,4-tria	pH	Persist	ence enc	lpoint		OM OM	odelling	g endpoint	(20°C, pF	2)	
CGA7 Study	1019 (1,2,4-tria	pH	Persiste	ence enc	lpoint		OM Jill Jill	odelling	g endpoint	(20°C, pF	2) Ság	
CGA7 Study	1019 (1,2,4-tria	pH	Persiste	ence ence	lpoint	, and ,	OM OM id	odelling	rice chipoint	rollize constitution (20°C, pF	2) sáp (
CGA7 Study	nean (n=4) pint value was man rom lag phase hock alised for moisture 0: Summary of 1019 (1,2,4-trial soil	pH	Persiste	E20, days	dpoint	orton 6	M M	odelling	ctor rmalize isture	ctor to 20°C, pF	(20) days	
CGA7 Study	1019 (1,2,4-tria	pH	Persiste pode pode pode pode pode pode pode pod	DT50, days	lpoint	or o	M	odelling	Factor to a property to a prop	Factor to 50.00 hormalize	DT50, days	
CGA7 Study			Best	DTS			3 3 3 3	Olis,	Fac mori	Factor to 500 Temperature 4d d	TIG	
CGA7 Study	Laacher Hof	pH 6.9 ⁽¹⁾	Persiste Persiste	DL20, days		25 35	3 3 3 3	odelling	Eactor to Factor normalize moisture	Factor to 500 Temperature 1 Te	2) DL20, days 47.2	
	Laacher Hof AXXa, sandy		Best	DTS			3 3 3 3	Olis,	Fac mori	Factor to 500 Temperature 4d	TIG	
Slangen,	Laacher Hof AXXa, sandy loam	6.9(1	DFOP	59.2	7.0	3.5 5.		FOR	0.798	1 Fact	47.2	
	Laacher Hof AXXa, sandy loam BBA 2.2,		Best	59.2	7.0			Olis,	Fac mori	Factor to Additional temperature	TIG	
Slangen,	Laacher Hof AXXa, sandy loam	6.9(1	DFOP DFOP	59.2 247	78	3.5 5. 12.5 5.		FOP	0.798	1 Fact	47.2	
Slangen,	Laacher Hof AXXa, sandy loam BBA 2.2, loamy sand	6.9 ⁽¹ 6.19 ⁽¹	DFOP	59.2	78	3.5 5.		FOR	0.798	1 Fact	47.2	

⁽¹ pH in H₂O

Table 91: Summary of kinetic evaluation of laboratory data on aerobic degradation of the metabolite CGA91305 in soil.

Study	Soil	pH	Persisten	e endpoi	nt		Modelling	g endpoint (20°C, pF2)	
Ochule Lie	Solding	dio ite	Best fit model	DT50, days	DT90, days	χ^2 error, %	Model	Factor to normalize moisture	Factor to normalize temperature	DT50, days
0,900,4	18 Acres, sandy loam	6.2(1	SFO	25.7	85.4	3.62	SFO	0.97	1	24.9
Cashmore, 2020	Gartenacker, loam	7.5 ⁽¹⁾	SFO	8.59	28.5	7.84	SFO	0.94	1	8.07
Mill Mel	East Anglia, sandy loam	7.1 ⁽¹	SFO	34.1	113	4.35	SFO	0.97	1	33.1
Geometric m	ean (n=3)									18.8

¹ pH in CaCl₂

Table 92: Summary of formation fractions from kinetic modelling of penconazole and its metabolites

Soil	Formation fraction estimates in each soil	n						
	Penconazole → CG	A	Penconazole -	*	Penconazole	\rightarrow	Penconazole	\rightarrow
	179944		CGA71019		CGA91305		CGA142856	
Weide	-							

a) Initial break point value was manually set prior to free optimisation

b) DT₅₀ derived from lag phase hockey stick DT₉₀/3.32 according to FOCUS kinetics guidance (2006, 2016a)

c) Soils not normalised for moisture as a conservative assumption

Itingen (high dose)	0.2436		
Strassenacker(*	0.4855		
Strassenacker(*	0.4004		
18 Acres	0.2069		
East Anglia	0.1056		
Fislis, normal dose		0.235	
Fislis, high dose		0.453	

(*suggested to be excluded from the results (see Vol 3 CA Part B.8 for full study summary and evaluation) – will be removed from this vol. 1 summary if agreed upon in peer review

Anaerobic laboratory studies

Two studies were submitted investigating the anaerobic transformation of penconazole in soil. Under anaerobic soil conditions, the degradation of penconazole was much slower than under aerobic conditions and no rate of degradation could be established due to its stability. Metabolite CGA71019 (1,2,4-triazole) was formed, principally during the initial aerobic phase of the experiment, in amounts exceeding 5% AR (max 27.2% AR). Minor amounts of metabolite CGA142856 (triazole acetic acid; max 5.5 % AR at one time point) and CGA 179944 (max 0.5 % AR) were formed. Penconazole and metabolite CGA71019 were mainly found in the soil phase. Non-extractable residues reached a maximum of 22.1 % AR after 133 days. Mineralisation was low under anaerobic conditions and did not exceed 1.7% AR.

The anaerobic degradation of metabolite CGA71019 was further investigated in one study. Degradation was slower than under aerobic conditions. The DT50 was 80.6 days. One metabolite, CGA142856 (TAA) was formed at levels up to 50.3% AR at study end (122 days after flooding). Several other minor metabolites were observed but occurred at <5% AR. CGA71019 was mainly found in the soil phase, while metabolite CGA142856 was found in slightly higher amounts in the water phase than the soil phase. Non-extractable residues reached a maximum of 21.4 % AR after 60 days. Mineralisation was low under anaerobic conditions and CO₂ levels did not exceed 1.3% AR.

Photochemical transformation

Two studies were provided on the photochemical transformation of penconazole in soil, Mamouni (2003a) and Spare (1987). Both were previously evaluated and accepted in the DAR (2007). The two studies show similar results, however the RMS is uncertain whether Spare (1987) should still be considered acceptable due to the shortcomings of the study and because it is of lower quality than the study by Mamouni (2003). The RMS therefore suggest that the study by Spare (1987) should be considered as supportive information only.

In the study by Mamouni (2003a) penconazole is slowly broken down under artificial sunlight conditions. Penconazole accounted for mean 95% of AR by the end of the study duration under irradiated conditions, no phototransformation products were observed, unextracted residues reached a maximum mean value of 4.4% AR and CO₂ accounted for a maximum mean value of 4.5% AR. Similar results were obtained in the dark control as well. Degradation half-life was calculated to be 282 days (corrected for latitudes equivalent to summer sunlight days at 30-50°N).

Field studies

Soil dissipation studies

Five soil dissipation studies were performed with penconazole, Offizorz (1990, 1991, 1991a, 1991b) and Tournayre (1985). Quantifiable residues of penconazole were detected in the first 20 cm of the soils. No residue above the LOQ were detected at depth 10-20 cm in any sample at any of the five sites. Altogether, although the studies have several shortcomings, they indicated that penconazole does not show any significant tendency to move into deeper soil layers indicating low potential to leach to groundwater.

None of the studies were by the RMS and co-RMS considered to be of good enough quality to estimate dissipation and degradation rates and are only considered as supporting information (Tournayre (1985) is considered not acceptable). Therefore, none of the studies should be used for risk assessment or the assessment of the P-criteria. The main shortcomings were lack of replicates and that there were too few datapoints for field studies with several other shortcomings. As the DT50-values for penconazole are greater than 60 days in laboratory studies, field studies are considered required in accordance with Commission Regulation (EU) No 283/2013, this is therefore considered a data gap by the RMS. However, we would like the opinion of the other MS and EFSA on this matter.

⁻ No acceptable estimate of formation fraction determined

Four new field dissipation studies were provided for the metabolite CGA17994, Ahrens (2019 and 2020), Ahrens and Bisharat (2020 and 2020a). The Ahrens (2019) study is considered as supportive only and cannot be used to derive dissipation/degradation endpoints due to questionable data quality of the residues data.

Kinetic assessment and the persistency and modelling endpoints were assessed in Hardy and Agostini 2021 and 2021a, respectively. PEARL was used to calculate the daily moisture content of the top 10 cm of the soil and used for normalisation, instead of the actual measured moisture data in all three studies. Based on comments from co-RMS the applicant was requested to provide a comparison of the measured and simulated moisture content and detailed calculations of the time-step normalisation, refer to grey commenting boxes in 3CA B8 (section B.8.1.1.5.1.). The persistency DT50 endpoints range from 22.3 – 118 days. However, we would like the opinion of the other MS and EFSA on the choice of kinetic model for the persistency endpoints. For modelling, normalized DT50 endpoints range from 45.3 – 125, with a geomean of 72.2 days. All studies indicate that residues of CGA179944/M14360-acid declined in soil under field conditions.

A soil storage stability study at -18°C (Soddu, 2020) showed that the CGA179944 residues were stable at 18 months.

Field dissipation of the metabolite CGA71019 (1,2,4-Triazole) has been summarized and assessed in the CRD 2013 report "Triazole Derived Metabolite: 1,2,4-Triazole. Proposed revision to DT50. Summary, Scientific Evaluation and Assessment. July 2011, revised September 2011 (after comments from MS and EFSA) and further revised January 2013 (minor clarifications added post-commenting)". This report is still considered valid, and no new assessment has been performed. The persistency DT50 endpoints range between 6.8 – 28.1 days. The normalized DT50 endpoints for modelling range between 0.5 – 4.6 days (geomean 1.68 days) for fast phase and 25.1 – 126.0 days (geomean 60.5 days) for the slow phase and "g" range between 0.365 – 0.655 (arithmetic mean 0.489).

Table 93: Summ	ary of kinetic evaluation of	f field dissipation data o	f the metabolite CC	3A179944 in soil.
----------------	------------------------------	----------------------------	---------------------	-------------------

Compound	Soil type	Locati	$pH^{a)}$	Persisten	ce endpoi	nt \	3 11				
		on (countr y or USA state)	KSAS	Best fit model	Kerror, %	DT50, days	DT90, days	Model	t. oC / % MWHC	χ^2 error, %	DT50 (d) Norm ^{b)} .
	Loam	Spain	7.57	SFO	9.0	28.8	95.7	SFO	20°C / pF2	11.9	66.4
CGA179944	Sandy loam	Portugal	4.60	DFOP	20.1	22.3	117	SFO	20°C / pF2	19.0	45.3
	Sandy loam	UK	6.67	SFO	13.7	118.0	547	SFO	20°C / pF2	14.3	125
Geometric m	ean (n=3)		Sil of	i ilo							72.18

a) Measured in 0.01M CaCl₂ solution

Table 94: Summary of kinetic evaluation of field dissipation data of the metabolite CGA71019 (1,2,4-Triazole) in soil.

)	Compound	Soil type	Locati	pH ^{a)}	Persistence	e endpoi	nt		Modelling	g endpoint		
5000	ons its of		on (countr y or USA state)		Best fit model	χ^2 error, %	DT50, days	DT90, days	Model	t. oC / % MWHC	χ^2 error, %	DT50 (d) Norm ^{b)} .
	and	Silt loam	Germany	6.36	FOMC	15.2	7.8	366. 7	DFOP	20°C / pF2	18.8	2.5/70.7 (0.655) ^{c)}
	CGA71019	Silty clay loam	Italy	7.56	DFOP	10.7	21.2	207. 4	DFOP	20°C / pF2	10.6	1.4/59.8 (0.364) c)
	(1,2,4- Triazole)	Sandy loam	UK	7.37	DFOP	17.8	6.8	109. 3	DFOP	20°C / pF2	18.1	0.5/25.1 (0.458) ^{c)}
		Loam	Spain	5.81	DFOP	13.3	28.1	717. 6	DFOP	20°C / pF2	12.7	4.6/126.0 (0.489) c)

b) Normalised using a Q10 of 2.58 and Walker equation coefficient of 0.7, values are DegT50matrix

Geometric mean (n=4) ("g" arithmetic mean)	1.68/60.5
	$(0.489)^{c}$

a) Measured in 0.01M CaCl₂ solution

Soil accumulation studies

Ten existing studies were included in the previous EU evaluation of penconazole. The studies are considered again for the renewal of approval of penconazole.

Several long-term soil residue trials were performed in grapes and in apple or pear orchards applying various penconazole formulations according to common agricultural practice. The application rates covered a broad spectrum reflecting the wide range of different uses, e.g. the annual treatment in grapes ranged from $3 \times 37 = 111$ to $5 \times 103 = 515$ g as/ha, in apples from $3 \times 25 = 75$ to $14 \times 70 = 980$ g as/ha and in pears from $9 \times 25 = 225$ to $11 \times 25 = 275$ g as/ha.

Four studies were considered acceptable as supportive information (Kuhne-Thu 1997 and 1997a, Formica 1992 and 1992a), while six were rejected because they were outdated, or the data was unreliable.

In the opinion of the RMS, the only thing that can be concluded with certainty from these supporting studies is that penconazole or its metabolites had not been completely degraded between the last application of the season and the date of soil sampling (48-119 days after last application).

According to the data requirements of the commission regulation (EU) No 283/2013, soil accumulation studies shall provide estimates of the time required for dissipation of 50 % and 90 % (DisT50 field and DisT90 field).

This is not the case for these studies. The RMS asked the applicant to fulfil this data requirement by model calculations instead. Review of the reported residue data for the soil accumulation studies indicates that the calculation of $DT_{50/90}$ is not possible. Single yearly residue analysis at various times does not allow for kinetic evaluations. Thus, this data requirement is not filled.

Two soil storage stability studies were submitted (Emburey 2004 and Shadrick et al. 1999). They showed that the residues of penconazole and CGA179944 were stable at \leq -18°C for 12 months, and the residues of CGA71019 were stable at -25°C for 3.5 years.

Assessment in relation to the P-criteria

The criteria for persistence in soil, as stated in Annex II to Reg (EC) 1107/2009:

- DT50 120 days (PBT)
- DT50 180 days (POP and vPvB)

RMS has based the assessment in relation to the P-criteria on the DG SANCO Working Document on «Evidence Needed to Identify POP, PBT and vPvB Properties for Pesticides» rev. 3, September 2012. According to this document:

- The kinetic model that gives the best description of the chemical's behaviour should be selected. Guidance provided in FOCUS Degradation Kinetics Guidance (Sanco/10058/2005, ver 2.0, June 2006) on how to derive best fit DT50 should be applied.
- Laboratory studies: DT50 values should be normalised to a temperature of 20°C, as this is the current practice in recent assessments of soil degradation rates of active substances.
- DT50 values from different studies should not be aggregated. A Weight of Evidence approach should be
 used for the evaluation of laboratory and/or field studies. Significant variations among studies should be
 described and explained to inform decision making by risk managers.

The maximum DT50 estimated for penconazole in soil from laboratory studies is 700 days (DFOP best fit, non-normalised, study conducted at 20° C). When considering degradation at 20° C 11 of 14 laboratory DT50 values are above the criteria for PBT (126-700 days) and 7 of 14 DT50 values above the criteria for POP and vPvB (193-700 days). The 3 DT50 values that are below both criteria range from 54.2-108 days. Additionally, DT50 values from two studies that were conducted at a different temperature, and where normalisation to 20° C have not been done, are available, 484 days (SFO best fit, 10° C) and 103 days (DFOP best fit, 25° C).

b) Normalised using a Q10 of 2.58 and Walker equation coefficient of 0.7, values are DegT50matrix

c) Fast phase/slow phase ("g")

There was no simple and apparent explanation to the variation in degradation rate in terms of soil characteristics. It should be noted that the DT50 of 700 days was estimated in a clay soil (which is not one of the recommended representative soils in the OECD 307 Guidance) and that the initial microbial biomasses and decrease towards the end of incubation were quite high in the study (Corral and Brands, 2009). However, this was discussed with co-RMS and it was decided that the results were reliable and the study results should be used.

Based on a WoE approach, as the degradation of penconazole is slow in most cases and the longest DT50 values is 700 days, RMS is of the opinion that both criteria for persistence in soil (PBT: 120 days; POP/vPvB: 180 days) are fulfilled.

The SANCO Working Document also states that field dissipation studies should be included in the assessment if it is possible to derive degradation half-lives from them and that data on photolysis should also be considered when relevant. None of the field studies provided for penconazole were by the RMS and co-RMS considered to be of good enough quality to estimate dissipation and degradation rates and are only considered as supporting information. From a study on soil photolysis a half-life (DegT50) of 282 days was calculated (corrected for latitudes equivalent to summer sunlight days at 30-50°N) and it showed that penconazole is slowly broken down under artificial sunlight conditions and can be considered to be stable to sunlight irradiation on soil surfaces.

Adsorption, desorption, and mobility in soil

Two studies on adsorption/desorption of penconazole were available, Keller (1982a) and Martinson (1988). Both studies were previously evaluated and accepted in the DAR (2007). Both are summarised in the table below.

Table 95:	Adsorption o	f penconazole.
-----------	--------------	----------------

studies were previously evaluated and accepted in the DAR (2007). Both are summarised in the table below.								
Table 9	lei.							
Study	Soil	OC %	© pH/	K _F ml/g	r ² *	1/n	K _{F,oc} ml/g	
Keller,	Silt loam (Collombey)	1.30	7.8	10.03	n.s.	0.89	786	
1982a	Sandy loam (Vetroz)	3.2	6.7	69.80	n.s.	0.75	2149	
	Silt clay loam (Les Evouettes)	2.1	6.1	33.45	n.s.	0.77	1602	
	Silt loam (Lakeland)	0.7	6.3	24.42	n.s.	0.86	3508	
Martinson,	California clay loam	07.10	7.8	11.2	0.999	0.798	998	
1988	California sandy loam	0.75	4.9	31.3	0.977	0.844	4120	
	Arkansas silt loam	0.29	5.9	7.28	0.999	0.801	2510	
	New York loam	1.8	6.5	35.9	0.997	0.816	1970	
Arithmetic	0.82	•						
Geometric mean (n=8)							1931	

n.s. not stated

Adsorption/desorption data were evaluated for metabolites CGA179944, CGA142856, CGA71019, and CGA91305. Out of nine studies, two (Mamouni 2003b, Hawkins 1988) had been previously evaluated and accepted in the DAR (2007). Three new studies (Scacchi and Pizzingrilli 1999, with further work in Rizzo 2010, and Scacchi et al 2002) were rejected by the RMS. The studies deemed acceptable are summarised in the three tables below. For metabolite CGA142856, it was not possible to accurately determine Kd values with the batch equilibrium method. The RMS recommends using a conservative default value for very mobile substances in environmental exposure modelling of CGA142856. In the one study on metabolite CGA71019 (Hawkins 1988), one soil (Lakeland) was excluded by the RMS due to its low organic carbon content.

 Table 96: Adsorption of metabolite CGA179944.

Study	Soil	OC %	pН	K _F ml/g	\mathbf{r}^2	1/n	K _{F,oc} ml/g
Mamouni A,	Weide, silt loam	2.14	7.5	0.36	0.9954	0.89	17
2003b	Vetroz, silt loam	5.0	7.2	0.55	0.9984	0.93	11
	Gartenacker, loam	2.59	7.13	0.26	0.9750	0.84	10
	Borstel, loamy sand	1.5	5.8	0.19	0.9717	0.71	12

^{*} calculated by RMS

Hurst L,	18 Acres, sandy clay loam	2.2	6.0	0.44	0.9993	0.8913	20
Alderman D,	Ohio, clay loam	2.9	5.6	1.06	0.9997	0.8598	37
Gilbert J, 2011	Frensham, sandy loam	1.8	5.0	0.61	0.9995	0.8684	34
Corral E and	Speyer 2.2, loamy sand	2.16	5.4	0.678	0.990	0.82	31.4
Brands C,	Speyer 2.3, sandy loam	0.98	6.4	0.177	0.942	0.84	18.1
2009b	Speyer 6S, clay	1.75	7.2	0.322	0.962	0.88	18.4
Arithmetic mea	0.85						
Geometric mea	-	18.9					

Table 97: Adsorption of metabolite CGA71019.

Aritimetic	mean (n=10)					0.05	-	
Geometric	mean (n=10)					-	18.9	100
Table 9	7: Adsorption of metabolite CGA	71019.				Ó	Orobeits	pitation to
Study	Soil	OC %	pН	K _F ml/g	r ²	1/n	K _{F,oc} ml/g	Jo. G.
	Silt clay (Alpaugh)	0.7	8.8	0.833	1/3	0.897	120	2
	Clay loam (Hollister)	1.7	6.9	0.748	, v	0.827	43	0
	Silty clay (Lawrenceville)	0.7	7.0	0.722	COL CO	0.922	104	
	Sandy loam (Pachappa)	0.8	6.9	0.720	100	1.016	89	
Arithmetic	mean (n=4)	•		111	7, C/V	0.92	<i>-'''</i>), -	
Geometric	mean (n=4)			160	SULVE	27- 40	83.1	

n.s. not stated

Table 98: Adsorption of metabolite CGA91305.

Study	Soil	OC pH K _F r ²	1/n	K _{F,oc} ml/g
	Loamy sand (Pappelacker)	1,2 7.2 2,01	0.92	165
	Silt loam (Gartenacker)	1.7 7.4 22.13	0.93	122
	Silty clay (Marsillargues)	1.0 7.6 3.19	0.89	305
Arithmetic mea	nn (n=3)	CONTROL OF THE	0.91	-
Geometric mea	n (n=3)	30,000	-	183.1

n.s. not stated

pH dependency of sorption

There is an indication of sorption being pH dependent for penconazole and its metabolites CGA179944 and CGA71019. There is too little data to conclude on metabolite CGA91305. The co-RMS analyzed the pH-dependence of adsorption according to the recommendations described in the draft "Considering pH-dependent degradation and adsorption in soil for groundwater leaching assessment" (UBA, 1. April 2021) using the accompanying pHADe tool. For the active substance penconazole and its metabolites CGA179944 (excluding soils from Scacchi and Pizzingrilli, 1999) and CGA71019 (excluding the soil Lakeland) the co-RMS found indications for pH-dependent adsorption behavior. For details, please see the Excel file "pH dependence sorption".

The evaluations with the pHADe-tool require pKa values. For the active substance, a value of 1.51 is reported in the LoEP. Avery different value was found in the literature (5.2, see Cadková et al. (2013)¹²) which fits much better to the adsorption data. It has not been finalised which value is correct and should be used for risk assessment.

Summary of fate and behaviour in water and sediment [equivalent to section 11.1 of the **CLH** report template]

Route of degradation in the aquatic compartment Hydrolytic degradation

^{*} calculated by RMS

^{*} calculated by RMS

 $^{^{12}\,}Eva\,Cadkova\,et\,al.\,(2013)\,pKa\,constant\,determination\,of\,two\,triazole\,herbicides: Tebuconazole\,and\,Penconazole.$ Journal of Solution Chemistry, Springer Verlag (Germany), 2013, 42, pp.1075-1082.

Two studies were provided for the hydrolysis of penconazole (van der Gaauw, 2002 and Spare, 1987a). One study showed that penconazole was stable to hydrolysis at pH 4, 5, 7, and 9 at 50 °C for 7 days and the other study at pH 5, 7 and 9 at 25 °C for 30 days. Penconazole is therefore considered as hydrolytically stable under environmentally relevant pH conditions. No hydrolysis products were detected in either of the studies.

Two studies were also provided for the hydrolysis of the metabolite CGA179944 (Mamouni 2002 and Oudhoff, 2008). One study showed that CGA17994 was stable to hydrolysis at pH 4, 7, and 9 at 50 °C for 5 days and the other study at pH 5, 7 and 9 at 50 °C for 5 days. CGA179944 is therefore considered as hydrolytically stable under environmentally relevant pH conditions.

For the metabolite CGA71019 one study was provided (Spare, 1983), however this was only considered as supportive information, but indicate that CGA71019 is stable to hydrolysis at pH 5, 7, and 9 at 25 °C for 30 days.

Direct and indirect photochemical degradation

Data to address the data requirement for direct photochemical degradation are not required since the molar absorption coefficient ε is ≤ 10 L / (mol \cdot cm). Data on indirect photochemical degradation is not required either.

Rate of degradation in the aquatic compartment

Ready biodegradability

The "ready biodegradability" of penconazole was investigated in one study, Grade (1999), which was assessed and accepted during the previous EU evaluation, DAR (2007). The study was conducted following the OECD guideline 301/B (CO₂ evolution test). Inoculum was prepared at concentration 25.3 mg sludge/L (activated sludge was collected from a sewage treatment plant) and was dosed with 41.1 and 40.8 mg/l penconazole, incubated for 29 days at $20 \pm 2^{\circ}$ C. Validation criteria were met. Penconazole reached a mean of -9% ThCO₂ by day 29 (negative values are a consequence of comparison of values obtained in the blank controls and the low values obtained in presence of test item) and can be considered «not readily biodegradable».

Aerob mineralisation in surface water

One new study was submitted considering aerobic mineralisation of penconazole in surface water, Hurst and Sutcliffe (2015). The mineralisation rate and route for degradation of penconazole was investigated in Fountains Abbey natural water plus suspended sediment system at two concentrations (nominal rates of 10 and 95 μ g/L). Both systems were incubated under aerobic conditions at 20°C for 59 days. The study shows that mean levels of penconazole remained similar throughout the incubation period for both low and high concentration and no significant degradation of penconazole was observed, therefore no characterisation of metabolites was required. Penconazole was measured to range from mean 92.7- 97.0% AR (low concentration) and 93.3-95.8% AR (high concentration). Low levels of volatile radioactivity were observed, < 1.5% AR. This suggest that penconazole is stable to aerobic mineralisation in surface water. The degradation rates (DT₅₀) of penconazole were estimated using CAKE software by fitting single first-order kinetics (SFO) to the data. However, the degradation rates could not be accurately determined due to high prob > t values.

Degradation in water/sediment systems

Two studies were provided for evaluating the degradation in water/sediment systems, Mamouni (1998) assessed and accepted in DAR (2007) and a new study Brands (2009). In both studies two different water/sediment systems were incubated under aerobic conditions at 20°C, in the dark. In Mamouni (1998) samples were incubated for up to 706 days and in Brands (2009) 100 days. Both studies show that penconazole dissipated rapidly from the water phase to sediment. In Mamouni (1998) the route of degradation was similar in both water/sediment systems with CGA179944 as the major degradation product observed. In one of the water/sediment systems the metabolite reached a maximum of 22.1% AR in the total system, in the other system a maximum of 5.8% AR. In Brands (2009) no metabolites were detected in either the water layer or the sediment extract of both systems.

New kinetic analysis for both studies is presented in Hardy and Agostini (2019e) for the sake of renewal. The kinetic analysis shows that penconazole is degraded slowly in sediment and is stable in the two systems in both Mamouni (1998) and Brands (2009). Refer to Table 93 and 94 for persistence and modelling endpoints (DT50-values) for penconazole in water and total system.

Assessment in relation to the P-criteria

The criteria for persistence in water and sediment, as stated in Annex II to Reg (EC) 1107/2009, are:

- Water: DT50 40 days (freshwater in PBT), 60 days (POP, marine water in PBT, and all water in vPvB),
- Sediment: DT50 120 days (freshwater sediment in PBT), 180 days (POP, marine sediment in PBT, and

all sediments in vPvB).

No data was available for marine water or sediment. This is not considered as a data gap since data from marine compartments are not routinely required.

Penconazole is hydrolytically stable and not readily biodegradable. A study showed that penconazole is stable to aerobic mineralisation in surface water, however reliable degradation rates could not be determined. The results from the water/sediment studies (OECD 309) indicate that distribution to sediment is an important aspect of the dissipation of penconazole in aquatic systems. Penconazole dissipate rapidly from the water phase to sediment where it is degraded slowly and kinetic assessment show that penconazole i stable in water/sediment systems. The half-lives for water in the water/sediment systems did not exceed the criteria for persistency in water (however the rates in water reflect both degradation as well as distribution to another environmental compartment). The DT50-values for the whole systems represent both degradation in water and sediment, but as penconazole is rapidly distributed to the sediment RMS has compared the DT50-values for whole system against the P-criteria for sediment. DT50_{whole system} indicates that both criteria for persistence in fresh water (PBT: 120 days; POP/vPvB: 180 days) are exceeded. Refer to section 2.8.2.2.4 for summary of the water/sediment system studies and Table 93 and 94 for endpoints.

2.8.2.1 Rapid degradability of organic substances

Relevant studies on degradation of penconazole are listed in the table below. These studies show that penconazole is hydrolytically stable, not readily biodegradable and is not rapidly degraded in aquatic systems. In natural water system penconazole is stable and in water/sediment systems penconazole rapidly dissipate to sediment where it is slowly degraded.

Table 99: Summary of relevant information on rapid degradability

Method	Results*	Key or	Remarks	Reference
	and .	Supportive	ionis	
	10. X	study	55.01	
Ready biodegradability.	Penconazole measure	Acceptable	The reference substance	Grade (1999a)
29 days, 20 \pm 2°C	-9% of the theoretical	1000	reached the pass level of	
Penconazole (96.6%	CO ₂ within 29 days	100 6 X	>60% ThCO ₂ within a	
purity).	(negative values are a	6. 111, %	10-day time window.	
OECD 301/B.	consequence of	Oll Me		
GLP.	comparison of values	10 10		
9	obtained in the blank	Contino diologica		
***************************************	controls and the low	O.		
	values obtained in			
6 76,	presence of test item).			
1,19 110 65	Penconazole can be			
of is still	considered not readily			
Hydrolysis. Incubation temperature was 50°C, for 7 days at pH 4, 5, 7 and 9, 14C-	biodegradable.			
Hydrolysis.	Hydrolytically stable	Acceptable	Only minor	van der Gaauw
Incubation temperature	at pH 4, 5, 7 and 9 for		transformation products	(2002)
was 50°C, for / days at	up to 7 days at 50°C.		(<1.2% AR) were observed.	
			observed.	
phenyl penconazole at a concentration of 2 mg				
a.s./L was investigated.				
OECD 111.				
GLP				
Hydrolysis.	Hydrolytically stable	Acceptable	Analysis for	Spare (1987a)
Incubation temperature	at pH 5, 7 and 9 for up	1 1 1	transformation products	
was 25°C, for 30 days at	to 30 days at 25°C.		was not performed since	
pH 5, 7 and 9. 14C-	•		no hydrolysis was	
triazole penconazole at			observed.	
a concentration of 10				
mg a.s./L was				
investigated.				

Method	Results*	Key or	Remarks	Reference
		Supportive		
OF GP 111		study		
OECD 111.				
GLP. Aerobic mineralisation	The	A t - h 1 -	The degradation of	Hurst and
in surface water.	The parent compound remained stable	Acceptable	The degradation of sodium ¹⁴ C-benzoate to	Hurst and Sutcliffe (2015)
Aerobic conditions in	throughout the test.		14C carbon diovide	
the dark at 20°C for up	Levels of parent		indicated a viable	()
to 59 days. Sterile	ranged from 92.7 to		microbial population was	To property
controls were	97.0% AR (low		established (average 82.8	, 00° 00°
maintained under the	concentration) and		and 92.8 % AR at 14 and	" 0, '0, '60
same conditions.	93.3 to 95.8% AR		59 days after treatment,	Strapping to the state of the s
Application rates of 10	(high concentration)		respectively). No	2 73, 40, 46
and 95 µg/L ¹⁴ C-phenyl	AR at the end of the		significant degradation	201 × 80° × 8'
penconazole	incubation period (59		of ¹⁴ C- penconazole was	0,90
(radiochemical purity:	DAT).		observed under the test	a coloxil
>98.3%).			conditions,	in Will Soll
OECD 309.			10 20 20	COLL TILL
GLP.			(1), 10, 10, 1	Mamouni
Degradation in	Recalculated DT50	Acceptable	The mean mass barance	Wainouin
water/sediment	values were 1.88 days		from all aerobic	(1998)
systems.	and 5.32 days for river	, (water/sediment systems	
¹⁴ C-phenyl penconazole	and pond systems,	(90)	was 100.2% AR (range	
at a nominal rate of	respectively. Total	00.00	94.1 to 105.8% AR).	
0.092 mg/550 mL water	system half-lives were	100 101	Maximum 114CO	
= 0.167 mg/L water	563 and 1150 days for	No vided to le	mineralisation and ¹⁴ CO ₂	
(equivalent to a field rate of 500 g a.s./ha,	river and pond	6,00 4,	evolved was 8.4% and 4.6% AR in the River	
assuming a uniform	systems, respectively.	3 Co.	and Pond systems,	
distribution in a water		W. C. S.	respectively, by the end	Hardy and
body of 30 cm depth),	CR SOL	" (O) " (O)	of the incubation.	Agostini
radiochemical purity: >	Ks. We	m. Cr. Su	Maximum levels of	(2019e)
99%, maintained in	1 Cn. 40.	000 8	bound residues for River	(20170)
dark conditions at 20 ±	0, 90:18	0/0 1/10 13/1	and Pond systems were	
1 °C for up to 706 days.	16 16 111. 16	111, 110,	17.6% and 18.7% AR,	
OECD 308.	6, 1, 46, 41,7	0,97	respectively.	
GLP.	M. Co. Itilo Mi	all all		
Description (Control of the Control	10 01: 100	Q 11	TP1	D 1. (2000)
Degradation in	Recalculated DT ₅₀	Acceptable	The mean mass balance	Brands (2009)
water/sediment	values were 8.77 days,		were between 96.2-106.1% AR for the	
systems. 14C-triazole	Goorven and 17.1			
	days, Schoonrewordsewiel.		Goorven system and between 96.5- 101.8%	
penconazole at a nominal rate of 38.1	Corresponding total		AR for the	
μg/L (Goorven) or 39.0	system half-lives were		Schoonrewoerdsewiel	
μg/L (Goolveir) of 59.0	2010 days and		system. Mineralization	
(Schoonrewordsewiel),	>10,000 days,		was negligible $\leq 0.1\%$	Hardy and
maintained in dark	respectively.		AR in both test systems.	Agostini
conditions at 20 ± 2 °C	P		Bound residues	(2019e)
for up to 100 days.			accounted for maximum	(=====)
Radiochemical purity:			15% (Goorven) and 11%	
99.86%.			AR	
OECD 308.			(Schoonrewoerdsewiel).	
GLP.			·	

^{*} data on full mineralization should be reported

2.8.2.1.1 Ready biodegradability

The "ready biodegradability" of penconazole was investigated in one study, Grade (1999), which was assessed and accepted during the previous EU evaluation, DAR (2007). It is concluded that penconazole can be considered as "not readily biodegradable".

Grade (1999)

The study was conducted following the OECD guideline 301/B (CO2 evolution test). The test was conducted with penconazole (molecular formula: $C_{13}H_{15}Cl_2N_3$, a purity of 96.6% and organic carbon content of 54.94%). Inoculum was prepared at concentration 25.3 mg sludge/L (activated sludge was collected from a sewage treatment plant (CH-4153 Reinach), treating predominantly domestic wastewater) and was dosed with 41.1 and 40.8 mg penconazole, incubated for 29 days at $20 \pm 2^{\circ}C$.

The percentage degradation of the reference compound, sodium benzoate, reached the pass level of 60% ThCO2 within a 10-day window. The 10-d window begins when the degree of biodegradation has reached 10% ThCO2 and must end before day 28 of the test. By day 3 it had reached 53% and by day 13, 96% ThCO2, confirming the suitability of the inocula used. Based on the toxicity test (test substance + reference compound) the test substance is not assumed to be inhibitory, more than 25% ThCO2 is reached by day 14. Validation criteria were met. Penconazole reached a mean of -9% ThCO2 by day 29 (negative values are a consequence of comparison of values obtained in the blank controls and the low values obtained in presence of test item), meaning there was no biodegradation of penconazole. Based on these findings penconazole can be considered «not readily biodegradable».

2.8.2.1.2 BOD5/COD

No data provided.

2.8.2.2 Other convincing scientific evidence

2.8.2.2.1 Aquatic simulation tests

One new study was submitted considering aerobic mineralisation of penconazole in surface water, Hurst and Sutcliffe (2015). The study shows that mean levels of penconazole remained similar throughout the incubation period for both low and high concentration and that no significant degradation of penconazole was observed. Low levels of volatile radioactivity were measured (< 1.5% AR). This suggest that penconazole is stable to aerobic mineralisation in surface water.

Hurst and Sutcliffe (2015)

The study was conducted following OECD guideline 309 Aerobic Mineralisation in Surface Water – Simulation Biodegradation Test (13 April 2004). The mineralisation rate and route for degradation of ¹⁴C-phenyl labelled penconazole (specific radioactivity: 2.12 MBq/mg, radiochemical purity: 98.3 %) was investigated in Fountains Abbey natural water plus 0.02 g/L suspended sediment systems. ¹⁴C-phenyl labelled penconazole was applied in acetonitrile to the water at nominal rates of 10 and 95 μg/L (low and high, respectively). The 95 μg/L rate was also applied to sterifised test systems (natural water plus 0.02 g/L suspended sediment), for examining possible abiotic degradation or other non-biological removal of the test substance. The systems were incubated under aerobic conditions and maintained in dark conditions at 20°C for 59 days. Duplicate samples were collected for each system at 0, 6, 14, 28, 45 and 59 DAT. Sterilised samples were collected at 59 DAT.

Reference samples (natural water plus 0.02 g/L suspended sediment) treated with $10 \mu g/L$ sodium benzoate, to confirm viable microbial activity and blank control (natural water and 0.02 g/L suspended sediment), to measure water quality, were similarly incubated. Reference samples were collected at 3, 6, 9, 12, 14, 21, 28, 35, 42, 49, 56 and 59 DAT. Blank controls were collected at 0, 6, 14, 28, 45 and 59 DAT.

At each sampling interval, the quantity of radioactivity in the water and suspended sediment was determined by liquid scintillation counting (LSC). The water was aspirated into a pot containing acetonitrile (50 mL) and centrifuged to separate the water and sediment. The water was analysed by reverse phase high performance liquid chromatography (HPLC), with gradient elution, whilst the suspended sediment was not analysed further.

The test vessels and magnetic stirrer bar were rinsed with methanol:water (80:20 v/v, ca 100 mL) and the quantity of radioactivity in the organic wash was determined by LSC. The organic rinse of the test vessel was not further analysed as it contained <3% of the applied radioactivity (AR) at all sampling intervals.

Any volatile radioactivity was continuously flushed from the vessels, collected in 2M NaOH traps and quantified by LSC. A mass balance was determined for each sample.

The overall mean mass balance for low concentration ranged from 94.9-97.9% AR, with an overall mean of 96.6 \pm 1.1% AR. For the high concentration the range was between 96.0-97.3% AR, with an overall mean of $96.6 \pm 0.5\%$ AR. The mean mass balance for the sterilised test system was 102.6% AR.

Penconazole was measured to range from mean 92.7- 97.0% AR (low concentration) and 93.3-95.8% AR (high concentration). For the sterilised samples, the mean level of penconazole was 99.9% AR at 59 DAT.

No significant degradation of penconazole was observed within this study and therefore no characterisation of metabolites was required. Penconazole was mineralised to a small amounts of volatile radioactivity (< 1.5% AR in both treatment rates), this was assumed to be CO₂.

The degradation of sodium ¹⁴C-benzoate to ¹⁴C-carbon dioxide (82.8% AR at 14 DAT and 92.8% AR at 59 DAT) indicated a viable microbial population was established.

The degradation rates (DT₅₀) of penconazole were estimated using CAKE software by fitting single first-order kinetics (SFO) to the data. However, the degradation rates could not be accurately determined due to high prob > t values.

Field investigations and monitoring data (if relevant for C&L) 2.8.2.2.2

No data provided.

Inherent and enhanced ready biodegradability tests enconazole is not readily biodegradable. Soil and sediment degradation data provided for analysis 2.8.2.2.3

No data provided. Penconazole is not readily biodegradable.

2.8.2.2.4

Two studies were provided for evaluating the degradation in water/sediment systems, both following OECD Guideline 308, April 2002. Mamouni (1998) assessed and accepted in DAR (2007) and a new study Brands (2009). Kinetic assessments for both studies are presented in Hardy and Agostini (2019e). Both studies show that penconazole dissipate rapidly from the water phase to the sediment, where degradation is slow. The kinetic assessment show that penconazole is very stable in both systems, in both studies.

Mamouni (1998)

The study was conducted with ¹⁴C-phenyl labelled penconazole (specific radioactivity: 2.12 MBq/mg; radiochemical purity: > 99%). The rout and rate of degradation of ¹⁴C-penconazole was investigated in two different water/sediment systems, River (Rhine) and Pond (Judenweiher). ¹⁴C-labelled penconazole was applied dissolved in acetone to the surface water using a Hamilton syringe at a nominal rate of 0.092 mg penconazole/550 mL water = 0.167 mg/L water (equivalent to a field rate of 500 g a.s./ha, assuming a uniform distribution in a water body of 30 cm depth). Samples were incubated under aerobic conditions at 20 ± 1 °C, in the dark for 706 days, Samples were taken at 0, 1, 3, 7, 14, 28, 56, 120, 188, 240, 365 DAT. Additional samples were taken after 678 and 686 (river) and 706 (pond) days. Radioactivity in the water layers and the sediment extracts were quantified by LSC. Aliquots of the water layers were analysed by HPLC and TLC. Sediment extracts containing >1% AR were concentrated via rotary evaporation and the resulting extracts were quantified by LSC then analysed, primarily, by HPLC. Confirmatory analysis was performed by TLC. The remaining radioactivity content of the sediment residues after the extraction steps was determined by combustion.

Mean mass balance of the River system was 98.4% AR (ranging from 84.5-103.7% AR) and 102.0% AR (ranging from 95.5-105.8% AR) in the Pond system.

Penconazole dissipated rapidly from the water phase to the sediment in both systems. In water by day 28 penconazole represented 7.1% AR in the River system and by day 14 10.9% AR in the Pond system. At the end of the study duration penconazole represented 1.3% and 1.2% AR in the River and Pond system, respectively. Penconazole initially increased in the sediment reaching a maximum of 91.9% AR at day 14 in the River system and 92.7% AR at day 56 in the Pond system, the levels in the sediment then declined towards the end of the study. The route of degradation was similar in both water/sediment systems with CGA179944 as the major degradation product observed. In the River system CGA179944 was detected at maximum mean levels of 17.3 and 4.8% AR in the water and sediment phases, respectively, with a maximum of 22.1% AR in the total system. In the Pond system CGA17994 reached a maximum of 5.8% AR at 246 DAT in the total system. A minor metabolite (M1) was observed but occurred at <5% AR in the total system in all sampling intervals.

Maximum ¹⁴CO₂ evolved was 8.4% and 4.6% AR in the River and Pond systems, respectively, by the end of the incubation.

Bound residues increased throughout the incubation period. Maximum levels for River and Pond systems were found to be 17.6% and 18.7% AR, respectively.

The half-lives (DT50) of penconazole are presented in the two tables below, under Hardy and Agostini (2019e).

Brands (2009)

The rout and rate of degradation of 14 C-triazole labelled penconazole (specific radioactivity: 2.18 GBq/mmol, radiochemical purity: 99.86%) was investigated in two different water/sediment systems, Goovern (GV) and Schoonrewordsewiel (SW). 14 C-labelled penconazole was applied dissolved in acetonitrile. The initial test substance concentration in the water layer was 38.1 μ g/L (GV) and 39.0 μ g/L (SW). The aquatic sediment systems were incubated under aerobic conditions, in the dark at $20 \pm 2^{\circ}$ C for up to 100 days. Duplicate samples were taken for analysis after 0, 3, 7, 14, 29, 60 and 100 days. Volatiles were trapped by polyurethane foam, ethylene glycol monoethyl ether and NaOH traps. The water layer and the sediment layer were analysed (extraction of sediment with 80/20 (v/v) acetonitrile/Milli-Q water). Bound residues were determined by combustion. Extracts were analysed by HPLC. 14C-penconazole was identified based on comparison of retention time with a reference standard; identification was confirmed by TLC.

The mean mass balance were between 96.2-106.1% AR for the Goorven system and between 96.5-101.8% AR for the Schoonrewoerdsewiel system.

In the GV system, mean 11.3% AR was recovered in the water layer and 83.0% AR in the sediment extract after 14 days of incubation. At study end 8.7% AR was found in the water layer and 81.2% AR in sediment. In the SW system, 16.6% AR was recovered in the water layer after 14 days of incubation which gradually decreased to 5.6% AR at the end of incubation. In the sediment extract penconazole increased to 71.4% AR after 14 days, and measured 82.4% AR at the end of incubation. No metabolites were detected in either the water layer or the sediment extract of both systems.

Mineralisation was negligible (\leq 0.1%). Bound residues (non-extractable) accounted for maximum 15% (GV) and 11% (SW) AR.

The half-lives (DT50) for perconazole are presented in the two tables below, under Hardy and Agostini (2019e).

Hardy and Agostini (2019e)

In this study, the data from Brands (2009) and Mamouni (1998) were re-evaluated using the FOCUS guidance (2006 and 2014) and modelling using CAKE v. 3.3 (2016). Revised calculated DT50 values are shown in the tables below.

 Table 100: Summary of persistence endpoint DT50 values for penconazole

Reference	System	Derivation	DT50
10 18 14, 90		of DT ₅₀	(days)
Mamouni, (1998)	Pond Judenweiher, water	FOMC	2.39
Mamouni, (1998)	River Rhine, water	HS	1.87
Brands, (2009)	Goovern, water	DFOP	2.49
Brands, (2009)	Schoonrewoerdsewiel, water	HS	4.12
Worst-case water co	lumn		4.12
Mamouni, (1998)	Pond Judenweiher, Total system	SFO	1150
Mamouni, (1998)	River Rhine, Total system	SFO	563
Brands, (2009)	Goovern, Total system	SFO	2010
Brands, (2009)	Schoonrewoerdsewiel, Total system	SFO	>10000
Worst-case whole sy	stem		>10000

Reference	System	Derivation	DT50
		of DT50	(days)
Mamouni, (1998)	Pond Judenweiher, water	FOMC DT ₉₀ /3.32	5.32
Mamouni, (1998)	River Rhine, water	HS DT ₉₀ /3.32	1.88
Brands, (2009)	Goovern, water	DFOP DT ₉₀ /3.32	8.77
Brands, (2009)	Schoonrewoerdsewiel, water	HS DT ₉₀ /3.32	17.1
Geometric mean w	ater column		6.2
Mamouni, (1998)	Pond Judenweiher, Total system	SFO	1150
Mamouni, (1998)	River Rhine, Total system	SFO	563
Brands, (2009)	Goovern, Total system	SFO	2010
Brands, (2009)	Schoonrewoerdsewiel, Total system	SFO	>10000
Geometric mean w	>1000		

Table 101: Summary of modelling endpoint DT50 values for penconazole

2.8.2.2.5 Hydrolysis

Two studies were provided for the hydrolysis of penconazole, van der Gaauw (2002) and Spare (1987), both previously submitted and accepted in DAR (2007). Both studies suggest that penconazole can be considered as hydrolytically stable under environmentally relevant pH conditions. No hydrolysis products were detected in either of the studies.

van der Gaauw (2002)

The test was conducted with 14 C-phenyl labelled penconazole (specific radioactivity: 2.3 MBq/mg; radiochemical purity: 98.2 %), dissolved in buffer solutions at a concentration of 1.80 to 1.85 mg penconazole/L, at 50°C for 7 days. Samples were taken at 0, 1, 3, 5 and 7 DAT. Sterility was confirmed at 0 DAT and at study termination. Mean observed levels of penconazole at day 7 was measured to be 90.9%, 95.1%, 90.1% and 93.5% AR at pH 4, 5, 7 and 9, respectively. Mean mass balance for the respective pH- levels were 96.1 \pm 3.2 %, 95.5 \pm 3.2 %, 95.8 \pm 3.5 %, and 94.5 \pm 3.3 % AR. Individual metabolites were observed at a maximum mean level of 1.2% AR. Less than 10 % of hydrolysis is observed after day 7, penconazole can therefore be considered hydrolytically stable at pH 4, 5, 7 and 9.

Spare (1987a)

The test was conducted with 14 C-triazole labelled penconazole (specific radioactivity: 0.77 MBq/mg; radiochemical purity: 98.3 %), the nominal test concentration was 10 mg penconazole/L for all pH values tested and was incubated at $25 \pm 1^{\circ}$ C for a duration of 30 days. Samples were taken at 0, 1, 3, 7, 14, and 30 DAT. Sterility was not confirmed. Mean observed levels of penconazole at day 30 was measured to be 89.7%, 92.6% and 92.5% AR at pH 5, 7 and 9, respectively. Mean mass balance for the respective pH-levels were $102.5 \pm 7.3\%$, $98.2 \pm 4.4\%$ and $91.8 \pm 4.4\%$. Analysis for transformation products was not performed since no hydrolysis was observed. Despite deviations from the current guideline (the study was conducted before the current guideline, OECD 111, was implemented), these do not affect the study results, which are confirmed by the newer study, van der Gaauw (2002). Penconazole can be considered to be hydrolytically stable at pH 5, 7 and 9.

2.8.2.2.6 Photochemical degradation

Data to address the data requirement for direct photochemical degradation are not required since the molar absorption coefficient ε is < 10 L / (mol \cdot cm). Data on indirect photochamical degradation is not required either.

2.8.2.2.7 Other / Weight of evidence

No data provided.

2.8.2.3 Comparison with the CLP criteria

Penconazole is considered "not readily biodegradable", as no degradation was observed over a 29-day test period, following OECD guideline 301/B. Penconazole is considered hydrolytically stable under environmentally relevant pH conditions.

In natural water system penconazole was stable to aerobic mineralisation as mean levels of penconazole remained

similar throughout the study period. In water/sediment systems penconazole dissipated rapidly from the water phase to the sediment, where degradation was slow. Penconazole is stable in water/sediment systems with half-lives for the whole system ranging from 563 to >10,000 days (n=4).

Penconazole is therefore considered to be **not** rapidly degradable for the purpose of classification according to the CLP Criteria Guidance Document (ECHA, 2017).

2.8.3 Summary of fate and behaviour in air

2.8.3.1 Hazardous to the ozone layer

Table 102: Summary table of studies on hazards to the ozone layer

2.8.3 Summary of fate and behaviour in air				
2.8.3.1 Hazardous to the ozone layer			dito Property	itation of the control of the contro
2.8.3.1 Hazardous to the ozone layer Table 102: Summary table of studies on hazards to the ozone layer Method Results Remarks Reference Atmospheric Oxidation Of penconazole by hydroxy radicals, rate estimation, derived by the Atmospheric OH x cm ⁻³]				
Method	Results	Remarks XO X	Reference	b 3
Atmospheric oxidation of penconazole by hydroxy radicals, rate estimation, derived by the Atmospheric Oxidation Programme (AOP, v. 1.85 and 1.91) based on Atkinson model.	DT ₅₀ of 1.32 days, assuming OH (12 h) concentration = 1.5×10^6 [OH x cm ⁻³] DT ₅₀ of 1.99 days, assuming OH (24 h) concentration = 0.5×10^6 [OH x cm ⁻³]	Cights and all of	inis of	
Volatilization of penconazole from bean leaves. ¹⁴ C-triazole labelled penconazole. 19 - 21°C, 36 - 40 % relative humidity for 24 hours. Air exchange per hour = 220, indirect method. BBA guideline, July 1990 (outdated). Non GLP.	Results DT ₅₀ of 1.32 days, assuming OH (12 h) concentration = 1.5x10 ⁶ [OH x cm ⁻³] DT ₅₀ of 1.99 days, assuming OH (24 h) concentration = 0.5x10 ⁶ [OH x cm ⁻³] Penconazole sprayed to young bean plants volatilised at a rate of 50% of the initial residues under laboratory conditions during a 24-hour period.	Not acceptable Not acceptable	Šandmeier, 1992	
from soil surfaces. ¹⁴ C-triazole labelled penconazole. 20°C, 35	penconazole is considered to be non-volatile from soil surfaces at an air velocity between 0.003 and 1 m/sec.	Not acceptable	Schulze-Aurich, 1993	

2.8.3.1.1 Short summary and overall relevance of the provided information on hazards to the ozone layer

The half-life of penconazole in the atmosphere was calculated to be 1.32 days at an assumed average atmospheric OH concentration of 1.5×10⁶ cm⁻³ for a 12-hour day, and 1.99 days assuming an average atmospheric concentration of 0.5 x 106 OH radicals cm⁻³ for a 24-hour day (Stamm, 1999). This was determined using the Atmospheric Oxidation Program (AOP, version 1.85 and 1.91), based on the Atkinson model. Both derived DT50-values are below the trigger value of 2 days (FOCUS, 2008)¹³, further consideration of long-range transport is therefore not necessary for penconazole as it is unlikely. The dominant degradation process for penconazole in the atmosphere is considered to be via reaction with OH (via alkyl hydrogen abstraction and aromatic-ring-addition mechanisms).

¹³ FOCUS (2008) Pesticides in Air, SANCO/10553/2006 Rev. 2 June 2008

Two studies were provided on the transport via air, Sandmeier (1992) and Schulze-Aurich (1993), neither are considered acceptable. Penconazole has a low vapour pressure of 9.4×10^{-5} Pa at 20° C. This is under the trigger for volatilisation from soil, but over the trigger for volatilisation from plants¹⁴. If a step 4 calculation for FOCUS Surface water becomes necessary, input values on volatilization for modelling can be calculated based on the vapour pressure with the EVA tool.

2.8.3.1.2 Comparison with the CLP criteria

According to the CLP Criteria Guidance Document (ECHA, 2017) "any substances having an Ozone Depleting Potential (ODP) greater or equal to the lowest ODP (i.e. 0.005) of the substances currently listed in Annex I to Regulation (EC) No 1005/2009 should be classified as hazardous to the ozone layer (category 1)".

The ODP is not reported for penconazole, hence a comparison with the CLP criteria cannot be made. The hazard is not considered further in this report.

2.8.3.1.3 Conclusion on classification and labelling for hazardous to the ozone layer

Data conclusive but not sufficient for classification.

2.8.4 Summary of monitoring data concerning fate and behaviour of the active substance, metabolites, degradation and reaction products

A groundwater monitoring programme (Naeb and Liss 2018) was conducted in prominent sugar beet and cereal areas in Germany. The aim of the study was to assess residue concentrations of the metabolite 1,2,4-triazole in groundwater following the use of azole fungicides in agricultural crops. None of the analysed samples showed 1,2,4-triazole concentrations $>0.1 \mu g/L$. Please refer to Vol. 3 B.8 CA for more information.

2.8.5 Definition of the residues in the environment requiring further assessment

Compartment	Residue definition
Soil	Penconazole CGA179944 CGA142856 (triazole acetic acid; TAA) CGA91305 CGA71019 (1,2,4-triazole)
Groundwater	Penconazole CGA179944 CGA142856 (triazole acetic acid; TAA) CGA91305 CGA71019 (1,2,4-triazole)
Surface water	Penconazole CGA179944 CGA142856 (triazole acetic acid; TAA) CGA91305 CGA71019 (1,2,4-triazole)
Sediment	Penconazole
Air	Penconazole

2.8.6 Summary of exposure calculations and product assessment

To be completed with updated calculations, hence has not been summarised here by the RMS. For current calculations see Volume 3 CP B.8 of the dRAR.

_

¹⁴ Commission Regulation (EU) No 283/2013

The table below shows a comparison of endpoints in the draft supplied by the applicant (old endpoint, currently used in modelling) and the endpoints suggested by RMS (new endpoints). In the opinion of the RMS the modelling needs an update, but we will leave the final decision up to the MS and EFSA during/after the peer review.

If deemed necessary by MS/EFSA the following adjustments should also be made for the new modelling:

- PECsoil using geometric mean lab DT50. For PECsoil modelling, field DT50 values were used. The soil
 dissipation studies that this DT50 value was based on have not been approved by the RMS. Modelling
 should be done with geometric mean laboratory DT50 values
- PECgw and cucumber using "spring cereals" as a surrogate crop (based on co-RMS commenting table, comment 59)
- PECsw Steps 1-2 calculations covering the entire application period. See RMS' grey commenting box in Vol. 3CP B.8, under section B.8.5 for an overview of the additional modelling that should be provided.
- Any new calculations provided for metabolite CGA91305 should be conducted using the correct molecular weight of 258.1 g/mol.

Table 103: Comparison of old endpoints (used in modelling) and new endpoints suggested by RMS

Substance	Endpoint	Laboratory	Formation	Degr.	Kfoc	1/n	Sorption
	old or	DT50 (d) 20	fraction	pН	(mL/g)	(arithmetic	pH dep.?
	new?	°C pF2	(arithmetic	dep.?	(geometric	mean)	
		(geometric	mean)	16:	mean)	10 KI	
		mean)		(0)	1100 100		
				9,00, 4	ger wing	lei oi.	
Penconazole	Old	179	- ;,6%	No	1931	0.82	No
	New	180.6	- 407	No	1931	0.82	Yes
CGA179944	Old	71.3	0.256	No	26.5	0.85	No
	New	71.8	0.288	No O	18.9	0.85	Yes
CGA142856	Old	5.80		No	0	1	No
	New	5.80	10,000	No	0,0	1	No
CGA71019	Old	*	(* C), (C)	- 0/1	83.1	0.92	No
	New	* * \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	**/0	200	83.1	0.92	Yes
CGA91305	Old	19.6	0.288	No	183.1	0.91	No
	New	18.8	0.344	No	183.1	0.91	Maybe

^{*}No reliable lab DT50 or f.f. values. Field data used in modelling.

2.9 EFFECTS ON NON-TARGET SPECIES

2.9.1 Summary of effects on birds and other terrestrial vertebrates

Birds

Acute toxicity

Four acute oral studies with birds exposed to penconazole have been evaluated by the RMS. Two of the studies have been accepted, while one of the studies (1980a; CGA71818/0062) was only considered supportive due to several deviations from the test guideline, non-compliance with GLP and lack of certificate of analysis. The last study (1980a; CGA71818/0060) was considered not acceptable due to regurgitation among the threated birds. The geomean between the two acceptable acute oral studies (1984; CGA71818/0067, 1984a; CGA71818/0066) of 1998 mg/kg bw has been used in the acute risk assessment. Two additionally acute oral studies with the metabolites CGA71019 (2014; CGA071019_50000) and CGA142856 (2003; VV_510365) have been used as supportive information in the avian risk assessment of these metabolites.

Short-term toxicity

Several short-term studies with birds have been submitted and the endpoints from these studies are only considered supportive. Such studies with penconazole are not a data requirement under Commission Regulation (EU) No

283/2013, as the mode of action, or results from mammalian studies do not indicate a potential for the dietary LD_{50} measured by the short term dietary (5-day) studies to be lower than the LD_{50} based on an acute oral studies. Furthermore, the results from the short-term studies do not indicate higher toxicity than what was observed in the acute oral studies with birds. Two of the studies with the metabolite CGA 131013 have been used as supportive information in the avian risk assessment of this metabolite.

Reproductive toxicity

Two reproductive studies with birds have been evaluated by the RMS. Only one of the studies (CGA71818/0068) is still considered acceptable since two of the validity criteria were not fulfilled in the second study (1985a; CGA71818/0069). The EFSA Guidance Document on Risk Assessment for Birds and Mammals (2009) states that the acute $LD_{50}/10$ should be used as an endpoint in long-term risk assessment when it is lower than the long-term endpoint. For penconazole the lowest endpoint from the reproduction studies (28.9 mg a.s./kg bw) will be used in risk assessment since this endpoint is lower than the acute geomean $LD_{50}/10$ ($LD_{50}/10 = 200$ mg a.s./kg bw).

The endpoints relevant for the avian risk assessment are summarised in the table below.

Table 104: Summary of acceptable and supportive endpoints for birds exposed to penconazole. Endpoints in **bold** are used in the risk assessment.

			2,0	110 01 0
Organism	Test item	Test type	Endpoints	Reference (author, date, Document No.)
			Acute oral	illiano, ot.
Mallard duck (Anas platyrhynchos)	Penconazole	Acute oral	LD ₅₀ >1590 mg/kg bw ^a * NOEL = 1590 mg/kg bw	1984; CGA71818/0067
Bobwhite quail (Colinus virginianus)	Penconazole	Acute oral	LD ₅₀ >2510 mg/kg bw ^a * NOEL < 398 mg/kg bw mg/kg bw	1984a; CGA71818/0066
Japanese quail (Coturnix japonica)	Penconazole	Acute oral	$LD_{50} = 2424$ mg/kg bw NOEL = 600 mg/kg bw	1980a; CGA71818/0062 ^b
Bobwhite quail (Colinus virginianus)	CGA71019	Acute oral	$LD_{50} = 770 \text{ mg/kg bw}$ NOEL = 245 mg/kg bw	& 2014; CGA071019_50000 ^d
Bobwhite quail (Colinus virginianus)	CGA142856	Acute oral	$LD_{50} = >2000 \text{ mg/kg bw}$ NOEL = 2000 mg/kg bw	2003; VV_510365 ^d
on is	artilla i Calanti	Diet	ary short term	
Mallard duck (Anas platyrhynchos)	Penconazole	Dietary short term °	LD ₅₀ >1845 mg/kg bw/d) NOEL = 987 mg/kg bw/day*	1985; CGA71818/0065
Peking duck (Anas domestica)	Penconazole	Dietary short term ^c	$LC_{50} > 1000 \text{ mg/kg feed}$ NOEC = 1000 mg/kg feed	1980b; CGA71818/0061
Japanese quail (Coturnix Japonica)	Penconazole	Dietary short term ^c	$LC_{50}\!>\!1000~mg/kg~feed$ $NOEC=1000~mg/kg$ $feed$	1980c; CGA71818/0063
Mallard duck (Anas platyrhynchos)	CGA131013	Dietary short term ^c	$\begin{array}{c} LD_{50}\!>\!1404~mg/kg~bw/d\\ NOEL=1404~mg/kg\\ bw/day \end{array}$	& 1983; CGA131013/0034
Bobwhite quail (Colinus virginianus)	CGA131013	Dietary short term ^c	$\begin{array}{c} LD_{50}{>}1342~mg/kg~bw/d\\ NOEL=1342~mg/kg\\ bw/day \end{array}$	& 1983a; CGA131013/0033 ^b

Organism	Test item	Test type	Endpoints	Reference (author, date, Document No.)			
Acute oral							
		R	eproductive				
Mallard duck (Anas Penconazole platyrhynchos)		Sub-chronic toxicity and reproductive	NOAEL = 28.9 mg/kg bw/d*	1985; CGA71818/0068			

^a Used in the geomean calculation of the acute endpoint: LD₅₀(geomean) =1998 mg/kg bw

Mammals

Acute toxicity

The acute oral study with the representative formulation A6209G (**1996**; **CGA71818/1239**) shows 3.8 times higher toxicity than the corresponding lowest endpoint from the studies with the active substance (based on a.s. content). Therefore, the acute risk assessment for wild mammals has been conducted both with endpoints derived from studies with the active substance and the product (LD₅₀ = **971** and **257** mg as/kg bw, respectively). Endpoints are available from three acute oral studies with the metabolites CGA131013, CGA142856 and CGA205369 (**1981**; CGA71818/0764, **1980**; CGA71818/0763 and **1980a**; CGA71818/0693) Furthermore, two new 7-day tolerability studies with pregnant rats exposed to the metabolite CGA179944 (**2017**; CGA179944_10014 and **2017**; CGA179944_10015) have been submitted. Studies with rabbits exposed to CGA179944 (developmental study; **2018**, CGA179944_10027) and rats exposed to CGA132465 (28-day oral toxicity study; **2019**, **01166003**) have also been submitted. Data from the studies above have been used as supportive information in the mammalian risk assessment of the relevant metabolites.

The acute endpoints relevant for the mammalian risk assessment are summarised in the table below.

Table 105: Summary of acute oral toxicity endpoints for mammals. Endpoints in **bold** are used in the risk assessment

Organism	Test item	Test type	Endpoints	Reference (author, date, File No.)
Rabbit	Penconazole	Acute oral	LD ₅₀ = 971 mg a.s./kg bw	1981; CGA71818/0764
Rat	Penconazole	Acute oral	LD ₅₀ = 2125 mg a.s./kg bw	1980; CGA71818/0763
Chinese hamster	Penconazole	Acute oral	LD ₅₀ = 5000 mg a.s./kg bw	1980a; CGA71818/0693
Mouse	Penconazole	Acute oral	LD ₅₀ = 2444 mg a.s./kg bw	1980; CGA71818/0707
Rat	A6209G (Topas 100 EC)	Acute oral	LD ₅₀ = 2574 mg A6209G/kg bw, corresponding to 257 mg a.s./kg bw	1996; CGA71818/1239 TOX 96-50626

^b Study only considered supportive due to several deviations from the test guideline, non-compliance with GLP and lack of certificate of analysis.

^c Study only considered supportive. Dietary short-term studies no longer a data requirement under **Commission Regulation (EU)** No 283/2013.

^d Study not previously evaluated.

^{*} Note that the batch used is not equivalent with the reference specification (finalised September 2009 by RMS Germany) or the appli-cants proposed technical specification (global specification). However, studies are still considered protective when used in the risk assessment with regard to the representative uses. For further details, see Volume 3 (AS) B.9.11 and Volume 4 (Syngenta).

Organism	Test item	Test type Endpoints		Reference (author, date, File No.)
Rat	CGA131013	Acute oral	LD ₅₀ >5000 mg/kg bw	1982; CGA131013/0030 ^b
Rat	CGA142856	Acute oral	LD ₅₀ >5000 mg/kg bw	1984; CGA142856/0001 ^b
Rat	CGA205369	Acute oral	LD ₅₀ >2000 mg/kg bw	2006; CGA205369/000°1
Rat	CGA179944	7-day tolerability and TK in non- pregnant rat (gavage)	Dose levels up to 1000 mg/kg bw/day well tolerated	2017; CGA179944_10014
Rat	CGA179944	7-day tolerability and TK in non- pregnant rat (dietary)	Dose levels up to 10000 ppm (737 mg/kg bw/day) well tolerated	2017; CGA179944_10015

^a Studies evaluated in section B.6

Reproductive toxicity

marised in the most The endpoints relevant for the ecotoxicological risk assessment are summarised in the table below. In terms of the chronic endpoint, the NOAEL of 21.2 mg a.s./kg bw/d is considered the most relevant ecological endpoint for use in the mammalian risk assessment. This endpoint is based on reduced body weights for both adults and pups during lactation. Please refer to Volume 3 (PPP) - B.9.2.2.1 for details on the selection of the ecotoxicologically relevant endpoint.

Table 106: Summary of short-term dietary and long-term endpoints for mammals. Endpoints in bold are used in the risk assessment.

Organism	Test item Test type		Endpoints ^a	Reference (author, date, File No.)
Rat	Rat Penconazole		NOAEL = 29.9 (males) and 29.7 (females) mg/kg bw/day	1983; CGA71818/0755
Rat	Penconazole	2-generation reproduction study	NOAEL= 21.2 (males) and 22.7 (females) mg/kg bw/day	1987; CGA71818/0756
Aid Rat His	Penconazole	Developmental study	NOAEL = 100 mg/kg bw/day	1981; CGA71818/0751
Rat	Penconazole	Developmental study	NOAEL = 100 mg/kg bw/day	1985; CGA71818/0752
Rabbit	Penconazole	Developmental study	NOAEL = 75 mg/kg bw/day	1982; CGA71818/0753
Rabbit	Penconazole	Developmental study	NOAEL = 50 mg/kg bw/day	1985; CGA71818/0754

^b Evaluated and accepted during the previous EU evaluation of penconazole.

^c Reviewed in triazole derivative metabolite assessment (COP no. 2011.00502)

Organism	Test item	Test type	Endpoints ^a	Reference (author, date, File No.)
Rat	Penconazole	28-day oral toxicity study	NOAEL = 20/100 mg/kg bw/day	1984; CGA71818/0759
Rat	Penconazole	28-day oral toxicity study	NOAEL < 100 mg/kg bw/day	1991; CGA71818/0837
Rat	Penconazole	Sub-chronic oral toxicity study	NOAEL = 19.4 (males) and 20.7 (females) mg/kg bw/day	1982; CGA71818/0714
Rat	Penconazole	Sub-chronic oral toxicity study	NOAEL = 7.1 (male) and 7.3 (female) mg/kg bw/day	1983; CGA71818/0715
Rat	Penconazole	Sub-chronic oral toxicity study	NOAEL = 23.2 (males) to 28,3 (females) mg/kg bw/day	1987; CGA71818/0716
Dog	Penconazole	Sub-chronic oral toxicity study	NOAEL = 3,4 (males) and 3,8 (females) mg/kg bw/day	1984; CGA71818/0718
Dog	Penconazole	Sub-chronic oral toxicity study	NOAEL = 3.0 (males) and 3.2 (females) mg/kg bw/d	1984; CGA71818/0718
Mouse	Penconazole	Sub-chronic oral toxicity study	NOAEL = 85 (male) and 237 (female) mg/kg bw/day	1987; CGA71818/0717
Mouse	Penconazole	Sub-chronic oral toxicity study	NOAEL = 69 (males) and 87 (females) mg/kg bw/d	2002; CGA71818/4393
Rat	CGA132465	28-day oral toxicity study	NOAEL = 75 and 74 mg/kg bw/day	2019; 01166003 ^b
CUIT RACTE OF	CGA131013	2-generation reproduction	NOAEL = 100 mg/kg bw/day	et.al., 1986; CGA131013/0020 ^b
Rat	CGA71019	2-generation reproduction	NOAEL = 34.4 mg/kg bw/day	et.al., 2005; CGA71019/0084 ^c
Rabbit	CGA179944	Developmental study (OECD 414) Dose levels 0, 100, 300 and 600 mg/kg/day (gavage)	Maternal NOAEL = 300 mg/kg bw/day; foetal/developmental NOAEL = 600 mg/kg bw/day	2018; CGA179944_10027

^a Study evaluated in **Volume 3 - B.6 (AS)**^b Evaluated and accepted during the previous EU evaluation of penconazole

^c Reviewed in triazole derivative metabolite assessment (COP no. 2011.00502)

2.9.2 Summary of effects on aquatic organisms [section 11.5 of the CLH report]

Since penconazole is not intended solely for use in enclosed spaces, studies to address the data requirements in accordance with Commission Regulation (EU) No 283/2013 and Commission Regulation (EU) No 284/2013 have been provided.

Toxicity data have been provided for penconazole, relevant metabolites and the formulation A6209G. Many of the studies were already available during the previous evaluation (Penconazole B9: Ecotoxicology, June 2007, Volume 3 DAR and DAR addenda (April 2008, November 2009). Updated study summaries have been included in **Volume** 3 - B.9 (AS) and Volume 3 - B.9 (PPP) and the studies have been re-evaluated according to recent guidelines and standards. In addition, new studies with penconazole metabolites have been provided to meet specific data gaps.

2.9.2.1

Table 107: Summary of relevant information on bioaccumulation

- B.9 (AS) and Volume 3 - B.9 (PPP) and the studies have been re-evaluated according to recent guidelines and tandards. In addition, new studies with penconazole metabolites have been provided to meet specific data gaps. 2.9.2.1 Bioaccumulation [equivalent to section 11.4 of the CLH report template] Table 107: Summary of relevant information on bioaccumulation								
Method	Species	Test material	Results	Relevant study	Remarks	Reference		
OECD 107 (shake flask method)	NA	Penconazole technical Purity: 99.3 % Batch: AMS 204/3	log P _{ow} = 3.8 at 20 °C	Reliable (key study)	Measured partition coefficient n octanol/water	Halarnakar R. 2018; CGA071818/105 90		

^a Evaluated according to OECD 305 (2012)

2.9.2.1.1 Estimated bioaccumulation

Not relevant, see paragraph 2.9.2.1.2.

Vo. Yes Mr.

Measured partition coefficient and bioaccumulation test data

A study on Bioaccumulation should always be provided for substances with a log $K_{ow} > 3$. As penconazole fulfils this criterion (Log $K_{ow} = 3.8$), a study has been provided.

The metabolites which are considered relevant and need to be addressed in the aquatic risk assessment are CGA179944, CGA71019, CGA142856 and CGA91305. None of these metabolites have a log Kow >3 (see Volume 3 (CA) B2 and the table below).

Penconazole	CGA71019*	CGA179944*	CGA142856**	CGA91305***
Log 3.8 at 20 °C and pH 6.9	-0.62 at pH 5 -0.71 at pH 7 -0.68 at pH 9	0.26 at pH 5 -1.3 at pH 7 -1.7 at pH 9	-1.4 at 25°C and pH 4 -2.22 at 25°C and pH 7	2.1 at pH 7.5 to 8.7

Log Pow-value not finally verified, seeVolume 3 (CA) B2

(2018), Report No. SMG14669, Data point: K-CA 2.7/01

The measured logarithmic n-octanol/water partition coefficient of penconazole is 3.8 (log $K_{ow} = 3.8$ at 20 °C).

(1988) Report No. 85-2-1729, Data point: K-CA 8.2.2.3/01

One bioaccumulation study with the bluegill sunfish, Lepomis macrochirus, is available (not included in the summary table). In this study, a maximum whole fish bioconcentration factor (BCF) of 320 was derived.

Log Pow-value verified, see Volume 3 (CA) B2

Log Pow-value not verified. Needs further confirmation by applicant, see Volume 3 (CA) B2

In the current study TOC was not measured during the test. Organic matter content, quantified as total organic carbon (TOC) and dissolved organic carbon (DOC) can have a significant effect on the amount of freely dissolved test substance during flow-through fish tests, especially for highly lipophilic substances. A metabolism study with a 7-day semi static exposure was available, and during this part of the study partitioning of penconazole between the aqueous and organic phase in water was investigated. The results show that 85-98% of ¹⁴C-residues were extracted from the organic phase. Sorption of the test substance to organic matter may reduce its bioavailability and therewith result in an underestimation of the BCF¹⁵. In total, this brings uncertainty about the accuracy of calculated BCF.

In addition, there was a lack of lipid and growth measurements which prevented normalisation of the BCF, and the calculation of the BCF was not done according to the guideline. The BCF was instead calculated based on the mean maximum concentration in fish and the concentration in fish was highest at the start of the exposure period. RMS asked coRMS DE for their opinion regarding the validity of the study, and received the following comment (excerpt): (...) In our opinion, this study should not be considered valid. The relation of the BCF to the high concentration at the beginning might be conservative, but might also be due to the fact that the test substance was not completely bioavailable in the further course of the study. Consequently, there is a high uncertainty attributed to the BCF. (...)

RMS thus consider the study not valid, and recommend a new valid study is conducted to conclude on the BCF. For further details, see **Volume 3 - B.9.2.2.3 (AS).**

Fulfilment of the data requirements (PPP-legislation)

According to Commission Regulation (EU) No 283/2013 data requirement 8.2.2.3. Bioconcentration in fish: The test on bioconcentration in fish shall provide the steady-state bioconcentration factors, uptake rate constants and depuration rate constants, incomplete excretion, metabolites formed in fish and, if available, information on organ-specific accumulation.

All data shall be provided with confidence limits for each test substance. Bioconcentration factors shall be expressed as a function of both total wet weight and of the lipid content of the fish.

The available study reports a maximum BCF in whole fish, muscle and viscera, and also includes a metabolite study. The study does not report a **steady state BCF**, **uptake or depuration rate constants**, and the BCF is instead based on the mean maximum concentration in fish (highest at the start of the exposure period). Further, **confidence intervals (CI)** of the reported BCF are not included, and neither is the **growth or the lipid content** of fish. In addition, the study has not been regarded as reliable by RMS, due to lack of measurements of TOC and uncertainties about the bioavailability of penconazole in water. The data requirement is thus not considered fulfilled.

CLP

For a comparison with the CLP-criteria, please see section 2.9.2.4.

2.9.2.1.3 Assessment of bioaccumulation (B)-criteria, in Annex II to Regulation (EC) 1107/2009

The criteria for bioaccumulation in aquatic organisms, as stated in Annex II to Regulation (EC) 1107/2009, is BCF or BAF > 2000 (PBT) and > 5000 (POP and vBvP). As indicated above, the available study on bioaccumulation is not regarded reliable by RMS. A decision regarding the bioaccumulative potential can thus not be reached.

2.9.2.2 Acute aquatic hazard [equivalent to section 11.5 of the CLH report template]

In the table, studies regarded as acceptable and supportive for risk assessment and hazard classification are

¹⁵ OECD (2017). Guidance Document on Aspects of OECD TG 305 on Fish Bioaccumulation. ENV/JM/MONO(2017)16

listed. Studies regarded as not acceptable have not been included.

Table 108: Summary of relevant information on acute aquatic toxicity

Method	Species	Test material	Results	Relevant study	Remarks	Reference
OECD 203 (1981) a GLP	Rainbow trout (Oncorhync hus mykiss)	A6209G (Topas 100 EC) Purity: 100 g/L penconazo le Batch: Not reported	96 h (static) LC ₅₀ > 5.6 mg formulation/L (nom) (LC ₅₀ < 6.8 mg formulation/L (nom)) Equivalent to: LC ₅₀ > 0.56 mg a.s./L (nom) (LC ₅₀ < 0.68 mg formulation/L (nom)) 96 h (flow-through) LC ₅₀ > 10 mg formulation/L (nom) (LC ₅₀ < 12.1 mg formulation/L (nom))	Reliable Rel	concentrations were not maintained within ± 20 % of nominal for all treatments. In addition.	1984; CGA71818/0 005
OECD 203 (1981) ^a GLP	Carp (Cyprinus carpio)	A6209G (Topas 100 EC) Purity: 99% Batch: P 401013	96 h (flow-through) $LC_{50} > 10$ mg formulation/L (nom) ($LC_{50} < 12.1$ mg formulation/L (nom)) Equivalent to: $LC_{50} > 1.0$ mg a.s./L) (nom) ($LC_{50} < 1.21$ mg formulation/L (nom))	Reliable	Unknown batch used Expiry date of batch not reported In the study report, the LC50 is estimated to be 12.1 mg prod/L (nom). Concentrations were not maintained within ± 20 % of nominal for all	1984a; CGA71818/0 006

	Method	Species	Test material	Results	Relevant study	Remarks	Reference
				die broide gloie	ing the state of t	10 mg prod/L (nom) and a	Old Control of Control
	OECD 203 (1981) ^a	Rainbow trout (Onchorync hus mykiss)	Penconaz ole Tech. Purity: 87.3% Batch: FL 30634	96 h (static) LC ₅₀ ≤ 1.3 mg a.s./L (im)	Supportive for risk assessment Reliable for hazard classification (please see justification in section 2.9.2.4.1)	No analytical measurement at the end of the study, endpoint thus established to be either equal or lower than the derived endpoint	1984; CGA71818/0 073
S	OECD 203 (1981) ^a	Carp (Cyprinus carpio)	Penconaz ole Tech. Purity: 99% Batch: P 401013	96 h (static) LC ₅₀ = 3.8 mg a.s./L (nom)	Reliable	Not GLP Expiry date of technical penconazole not reported	1984a; CGA71818/0 076
10 10 00 V	OECD 203 (1981) ^a	Rainbow trout (Onchorync hus mykiss)	CGA7101 9 (1,2,4- Triazole) Purity: 91.9% Batch: EN 38530	96 h (static) LC ₅₀ = 529 mg/L (mm)	Reliable	Not GLP Expiry date of technical penconazole not reported	1983; CGA71019/0 024
<u>ئ</u>	OECD 203 (1992) ^a GLP	Fathead minnow (Pimephales promelas)	CGA1799 44 Purity: 99 ± 2% Batch: MLA- 437/1,3,4	96 h (static) LC ₅₀ > 60 mg/L (nom)	Reliable		& 2001; CGA179944/ 0009

Method	Species	Test material	Results	Relevant study	Remarks	Reference
OECD 203 (1992) ^a GLP	Fathead minnow (Pimephales promelas)	CGA1799 44 Purity: 99.44 % Batch: PH18I	96 h (static) LC ₅₀ >100 mg/L (nom)	Reliable		& 2010; CGA179944_ 10032
OECD 203 ^a Directive 92/69/EEC, C.1 ^a GLP	Rainbow trout (Oncorhync hus mykiss)	CGA1428 56 (triazole acetic acid) Purity: 96.95% wt/wt Batch: FCF/T/19 7-01 (ex 20689117)	96 h (static) LC ₅₀ >100 mg/L (nom)	Reliable	ouner of our of the control of the c	& 2003; CGA142856/ 0025
OECD 203 (1992) ^a GLP	Rainbow trout (Oncorhync hus mykiss)	CGA9130 5 Purity: 99 ± 2% Batch: KI 6437/2	96 h (static) LC ₅₀ = 23.7 mg/L (nom)	Reliable	its owner.	2001; CGA77502/0 001
OECD 202 (1984) ^b GLP	Daphnia magna	A6209G (Topas 100 EC) Purity: 100 g/L (nominal); 108 g/L (analysed) Batch: P.609143	V - (O - '(' - '(O	Reliable	Shand strist	Palmer et al, 2001; CGA71818/4 379
US EPA- 660/3-75- 009 b	Daphnia magna	Penconaz ole tech. Purity: NA Batch: P. 11-14	EC ₅₀ = 3.88 mg a.s./L (nom) 48 h (static) EC ₅₀ = 6.75 mg/L (nom)	Supportive	Not GLP Purity unknown The batch not equivalent with the reference specification (finalised September 2009 by RMS Germany) or the applicants proposed technical specification (global specification). See Volume 4 (Syngenta).	Hitz, 1981; CGA71818/0 079
OECD 202 (1984) ^b Dir	Daphnia magna	CGA7101 9 (1,2,4-	48 h (static) EC ₅₀ >100 mg/L (nom)	Reliable	/	Bell, 1995; CGA169374/ 2320

Method	Species	Test material	Results	Relevant study	Remarks	Reference
92/69/EEC, C.2 (1992) GLP		Triazole) Purity: 100.8 % Batch: JC 16/215854 /3				
OECD 202 (1984) ^b GLP	Daphnia magna	CGA1799 44 Purity: MLA- 437/1,3,4 Batch: 99 ± 2%	48 h (static) EC ₅₀ >120 mg/L (nom)	Reliable		Swarbrick & Woodyer, 2001a; CGA179944/ 0011
OECD 202 (1984) ^b Dir 92/69/EEC, C.2 (1992)	Daphnia magna	CGA1799 44 Purity: 99.75% Batch: PH18I	48 h (static) EC ₅₀ >120 mg/L (nom)	Reliable of Single Sing	onunel on one of	Kuhl & Wydra, 2009; CGA179944_ 10031
OECD 202 (1984) ^b Dir 92/69/EEC, C.2 (1992) GLP	Daphnia magna	CGA1428 56 (triazole acetic acid) Purity: 96.95% Batch: FCF/T/19 7-01 (ex 20689/17)	48 h (static) EC ₅₀ >120 mg/L (nom) 48 h (static) EC ₅₀ >100 mg/L (nom) 48 h (static) EC ₅₀ >110 mg/L (nom)	Réliable The	its only	Hertl & Breitwieser, 2003a; CGA142856/ 0026
OECD 202 (1993) ^b GLP	Daphnia magna	CGA9130 5 Purity: 99 ± 2% Batch: KI 6437/2	48 h (static) EC ₅₀ >110 mg/L (nom)	Reliable		Wallace, 2001a; CGA77502/0 002
OECD 201 (1984) °	Green algae (Scenedesm us subspicatus)	g glis lie	72 h (static) $E_rC_{50} = 7.9 \text{ mg/L}$ (nom) Equivalent to: $E_rC_{50} = 0.79 \text{ mg a.s./L}$ (nom) $E_rC_{20} = 4.3 \text{ mg/L}$ (nom) $E_rC_{10} = 3.1 \text{ mg/L}$ (nom) $E_bC_{50} = 3.9 \text{ mg/L}$ (nom) $E_bC_{10} = 2.1 \text{ mg/L}$ (nom) $E_bC_{10} = 1.6 \text{ mg/L}$ (nom) NOEC = 1.0 mg a.s./L (nom)	Reliable		Memmert & Knoch, 1994; CGA71818/1 234 & Schuster, 2016; A6209G_111 42 d
OECD 201 (1984) ° OPPTS 850.5400, C.3 (1996)	Green algae (Pseudokirc hneriella subcapitata)	Penconaz ole tech. Purity: NA Batch: WS00700	72 h (static) E _r C ₅₀ = 4.9 mg/L (mm) E _r C ₂₀ = 2.94 mg/L (mm)	Reliable	Purity unknown	Desjardins et al, 2001; CGA71818/4 378 & Schuster,

Method	Species	Test material	Results	Relevant study	Remarks	Reference
GLP		1	$E_rC_{10} = 2.39 \text{ mg/L}$ (mm)			2016; CGA071818_
OLI			(IIIII)			10472 d
			$E_bC_{50} = 2.0 \text{ mg/L (mm)}$			
			$E_bC_{20} = 0.78 \text{ mg/L}$ (mm)			,
			$E_bC_{10} = 0.50 \text{ mg/L}$			110 30
			(mm)			Up! His To
			NOEC = 0.56 mg a.s./L		Ó	1,08° 6011
			(mm)		::4/12	6,0,00
			72 h (static) $E_rC_{50} = 3.41 \text{ mg/L}$		onnoniel.	reciple to
			(mm)		to it fellow	is claiman
			$E_rC_{20} = 0.62 \text{ mg/L}$ (mm)	. c. C	ci sillata e	US CIT
		Penconaz	$E_rC_{10} = 0.26 \text{ mg/L}$	il elli	1037 9:00 OU	Kley & Wydra, 2009:
OECD 201	Green algae	ole tech.	(mm)	Will SI	1, 201, 47, 40	CGA071818_
(2006) ^c	(Pseudokirc hneriella	Purity:99. 86%	$E_{y}C_{50} = 0.42 \text{ mg/L}$	Reliable	Allo danis	& &
GLP	subcapitata)	Batch:	(mm)	1, 110, 10	2011 0111	Lührs & Wydra, 2018:
		0701	(mm)	Library Sel Skill	ingle of	CGA071818_
			$E_yC_{10} = 0.10 \text{ mg/L}$	Mis blis.	ONING	10633 ^d
			(11111)	11. 67. FUE	.,5	
			NOEC = 0.234 mg/L	10,00,0	Study from open	
			$E_{r}C_{10} = 0.26 \text{ mg/L}$ (mm) $E_{y}C_{50} = 0.42 \text{ mg/L}$ (mm) $E_{y}C_{20} = 0.16 \text{ mg/L}$ (mm) $E_{y}C_{10} = 0.10 \text{ mg/L}$ (mm) $NOEC = 0.234 \text{ mg/L}$ (mm) 72 h (static) $E_{r}C_{50} = 3.62 \text{ mg/L}$ $(measured)$	20, 41,2	Study from open	
		1.5	Sie Colonino Selie	~ (16)	literature	
		(K) (C)	71,900,0972,68,6	ELL.	Not GLP	
		Penconaz	is col "the olar		Batch/purity/expi	
	Green algae	ole tech.	W. 10019 4		ry date not	
OECD 201 (2006/2011)	(Pseudokirc	Purity:	72 h (static)	Supportive	reported	Durjava et al., 2013: ATLA,
c	hneriella subcapitata)	NA Batch	(measured)	Supportive	Concentrations of penconazole	41:65-75.
"	Jel Fill	NA	cohile		measured, but not	
1,15	in ies di	.x5 0	2		reported	
Me, Suis	Ostrolico	01100			Validity criteria not reported	
CUMPENTS NO CONTROL OF	(Pseudokira hneriella subcapitata)		72 h (static) E _r C ₅₀ = 3.62 mg/L (measured)			
	100 nu		72 h (static)			
(1984) ^c	300	CC 45101	$E_rC_{50} > 31 \text{ mg/L (mm)}$			
O.J. No.		CGA7101 9	$E_rC_{20} = 11.3 \text{ mg/L}$ (mm)			Palmer et al, 2001;
L383A, Method C.3	Green algae	(1,2,4-	$E_rC_{10} = 8.3 \text{ mg/L (mm)}$			CGA71019/0 044
(1992)	(Pseudokirc hneriella	Triazole) Purity: 99	$E_bC_{50} = 13 \text{ mg/L (mm)}$	Reliable		&
OPPTS	subcapitata)	± 2%	$E_bC_{20} = 7.2 \text{ mg/L (mm)}$			Hefner, 2014;
850.5400,		Batch: R200	$E_bC_{10} = 5.9 \text{ mg/L (mm)}$			CGA071019_ 10010 ^d
C.3 (1996)			NOEC = 3.1 mg/L			
GLP	Green algae	CGA1799	(mm)		Deviations in pH.	Cyyophaiol- 0-
OPPTS	(Pseudokirc	44	72 h (static)	Reliable	Study still	Swarbrick & Woodyer,

Method	Species	Test material	Results	Relevant study	Remarks	Reference
850.5400, C.3 (1996) °	hneriella subcapitata)	Purity: MLA- 437/1,3,4	$E_rC_{50} > 32 \text{ mg/L (mm)}$ $E_bC_{50} > 32 \text{ mg/L (mm)}$		considered acceptable (see RAR Volume	2001b; CGA179944/ 0010
GLP		Batch: 99 ± 2%	NOEC >32 mg/L		3CA, B.9.)	
OPPTS 850.5400, C.3 (1996) ° GLP	Green algae (Selenastru m capricornut um)	CGA9130 5 Purity: 99 ± 2% Batch: KI 6437/2	72 h (static) $E_rC_{50} = 19.1 \text{ mg/L}$ (nom) $E_rC_{20} = 11.5 \text{ mg/L}$ (nom) $E_rC_{10} = 8.9 \text{ mg/L (nom)}$ $E_bC_{50} = 9.6 \text{ mg/L (nom)}$ $E_bC_{20} = 6.7 \text{ mg/L (nom)}$ $E_bC_{10} = 4.7 \text{ mg/L (nom)}$	Reliable	St. 10 in the local of the validary	Wallace & Woodyer, 2001; CGA77502/0 003 & Hefner, 2014a; CGA091305_1011
			NOEC =3.2 mg/L (nom)		ch of col	STILLE
OECD 221 (2006) e US EPA Proposed Guidelines for Registering Pesticides in the United States, Subpart J, 1980; Holst RW and TC Ellwanger, 1982	Lemna gibba	Pencona zole tech. Purity: 87.3% Batch: FL-830634	14 days (statio) $E_b \otimes_{50} = 0.49 \text{ mg/b}$ Ground (umber) $E_b \otimes_{50} = 0.000 \text{ mg/b}$ (dry weight)	Noto asceptable Included in table for completenes	The validity	Hughes J.S., 1985a; CGA71818/ 0082

^a Evaluated according to OECD 203 (2019)

Bold values represent the lowest endpoint for the respective organism group and test substance.

2.9.2.2.1 Acute (short-term) toxicity to fish

Five studies with penconazole technical and five studies with metabolites (CGA71019/1,2,4-Triazole, CGA179944, CGA142856/triazole acetic acid and CGA91305) have been provided. In addition, two studies with the representative formulation A6209 (Topas EC 100) are available. Reliable and supportive studies are summarised in the table, above. Full study summaries and the assessment and conclusion by the applicant and by RMS are available in **Volume 3 - B.9 (AS)** and **Volume 3 - B.9 (PPP)**.

According to **Commission Regulation (EU) No 283/2013** studies performed to obtain data on the properties or safety with respect to animal health and the environment *shall be* conducted in accordance with the **GLP-principles** (principles laid down in Directive 2004/10/EC of the European Parliament and of the Council (OJ L 50, 20.2.2004, p. 44)). Two of the fish studies (study with penconazole technical and CGA71019) were however not conducted according to GLP. As a *way of derogation from this requirement* studies with vertebrates may be integrated into the

^b Evaluated according to OECD 202 (2004)

^c Evaluated according to OECD 201 (2006/2011)

^d Statistical re-analysis to determine EC₁₀- and/or EC₂₀-estimates.

^e Evaluated according to OECD 221 (2006)

assessment, when accepted by the competent authorities as scientifically valid, thereby removing the need for repeating animal tests. Both non-GLP studies fulfils the validity criteria of the OECD guideline, and the studies are thus considered reliable.

Penconazole

One Reliable study (1985), fulfilling the validity criteria of OECD TG 203, however non-GLP) with penconazole technical considered suitable for use in hazard classification and risk assessment is presented below. Four fish studies did not fulfill all of the OECD TG 203 validity criteria, as penconazole was measured initially, however no measurements were performed at the end of the test. It is thus not possible to determine if concentrations were maintained, and an accurate LC₅₀ cannot be estimated with certainty, which is necessary in order to conclude on the risk. Three of these studies were thus not considered further, and regarded as not reliable. The fourth study (1984) was conducted with rainbow trout, and was also the study providing the lowest endpoint of the available fish studies. As concentrations were measured at test start, it can be concluded with certainty that the LC₅₀ from this study is either equal to or lower than the established endpoint. The study also fulfilled the remaining validity criteria, and was conducted according to the OECD TG. In the data requirements for AS (Commission regulation 283/2013), a study with rainbow trout shall be conducted. RMS is of the opinion that the study provides relevant information for deciding on the endpoint to be used in the risk assessment for fish, and the study has thus been regarded as supportive information for classification purposes have been included in see section 2.9.2.4.

(1984), Report No. BW-84-5-1583, Data Point: K-CA 8.2.1/01 (supportive for risk assessment, reliable for classification)

The 96-hour semi-static study was conducted with Rainbow trout (*Oncorhynchus mykiss*) exposed to penconazole technical with a nominal exposure range of 0.77, 1.7, 2.3, 3.6 or 6.0 mg a.s./L. Exposure solutions were prepared with the aid of the solvent Dimethyl formamide (DMF) and a solvent control was included. Initial measured concentrations were 0.45, 1.0, 1.6, 2.1 and 6.5 mg/L, corresponding to 58 to 108% of nominal concentrations. The estimated LC₅₀ were derived using the initial measured concentrations. Two of three validity criteria in OECD TG 203 (2019) was fulfilled, and the remaining study conditions were considered acceptable. One validity criteria was not fulfilled, as the concentrations were not measured at test end. It is thus not possible to determine an accurate LC₅₀ However, the endpoint can with certainty be estimated to be either equal to or lower than the **1.3 mg a.s./L**_{im}, which is the LC₅₀ estimated in the study. In the previous EFSA conclusion (2008) it was decided that the estimated LC₅₀ should be corrected for the low purity of test material used in this study (87.3%), however, this is not necessary when measured concentrations are used (see EFSA Supporting publication 2019:EN-1673). Thus, RMS consider the relevant endpoint to be \leq **1.3 mg a.s./L**_{im} instead of 1.13 mg a.s./L_{im} agreed in the previous EFSA conclusion (2008). The 96-hour endpoint was estimated to be:

96h, Oncorhynchus mykiss, $LC50 \le 1.3$ mg a.s./ L_{im} with 95 % confidence limits of ≤ 1.0 to ≤ 1.6 mg/L

(1985), Report No. 840736, Data Point: K-CA 8.2.1/05

The 96-hour semi-static study was conducted with Carp (*Cyprinus carpio*) exposed to penconazole technical with a nominal exposure range of 0.5, 1.0, 1.8, 3.2 or 5.8 mg a.s./L. Exposure solutions were prepared with the aid of the solvent Dimethyl formamide (DMF) and Arkopal N150 and a solvent control was included. Study conditions were considered acceptable. Measured concentrations were within \pm 20 % of the nominal concentration, except for the treatment with the lowest concentration at test end, which were 76% of nominal. As the estimated LC₅₀-value lies between the two treatments with the highest concentrations (5.8 and 3.2 mg a.s./L_{nom}), the slight reduction below \pm 20% of nominal in the lowest test concentration at 96h is not expected to affect the estimated LC₅₀. The LC₅₀ values were thus derived using nominal concentrations. It is noted that the study is a **non-GLP-study**, however, as the study fulfills the validity criteria it is considered sufficiently robust and to be valid. The 96-hour endpoint was estimated to be:

Cyprinus carpio, 96h LC50 = 3.8 mg a.s./L with 95 % confidence limits of 2.5 to 5.2 mg/L

Metabolites

Five reliable studies (fulfilling the validity criteria of OECD TG 203) with penconazole metabolites considered suitable for use in hazard classification and risk assessment are presented below.

(1983), Report No. 82 14 18, Data Point: K-CA 8.2.1/06

The 96-hour semi-static study was conducted with *Oncorhynchus mykiss* (rainbow trout) exposed to the metabolite CGA71019 (1,2,4-Triazole) with a nominal exposure range of 100, 180, 320, 580 and 1000 mg/L and a dilution water control. Exposure solutions were prepared without the aid of a solvent. Study conditions were considered acceptable. Measured concentrations were 47 to 67% of nominal at the end of the study period and results were

based on mean measured concentrations. This is considered conservative and acceptable for the purpose of hazard classification. The 96-hour endpoint was estimated to be:

Oncorhynchus mykiss, 96h LC₅₀ = 529 mg CGA71019 (1,2,4-Triazole)/L_{mm} with 95 % confidence limits of 472 to 592 mg CGA71019 (1,2,4-Triazole)/L.

(2001), Report No. BL7204/B, Data Point: K-CA 8.2.1/07

The 96-hour semi-static study was conducted with Fathead minnow (Pimephales promelas) exposed to the metabolite CGA179944 with a nominal exposure range of 7.5, 15, 30, 60 and 120 mg CGA179944/L and a dilution water control. Exposure solutions were prepared without the aid of a solvent. Study conditions were considered acceptable, except for the top concentration wich were excluded due to low pH in the exposure water of 4.12 and a 100% mortality. The recommended pH for fathead minnow is 6.0-8.5, and it cannot be exlcuded that the mortality of the study period and results were based on nominal concentrations. This is considered conservative and acceptable for the purpose of hazard classification. The 96-hour endpoint was estimated to be a suppose of hazard classification.

Pimephales promelas, 96h LC50 > 60 mg CGA179944/L < 120 mg CGA179944/L

(2010), Report No. 55391230, Data Point: K-CA 8.2,1/08

The 96-hour semi-static study was conducted with Fathead minnow (*Pimephales promelas*) exposed to the metabolite CGA179944 with a nominal exposure of 100 mg CGA179944/L and a dilution water control. Exposure solutions were prepared without the aid of a solvent. Study conditions were considered. Measured concentrations were within ± 20 % of the nominal concentration at the end of the study period and results were based on nominal concentrations. This is considered conservative and acceptable for the purpose of hazard classification. The 96-hour endpoint was estimated to be:

Pimephales promelas, 96h LC50 > 100 mg CGA179944/L

(2003), Report No. TM 92 14361230, Data Point: K-CA 8.2.1/09

The 96-hour semi-static study was conducted with Oncorhynchus mykiss (rainbow trout) exposed to the metabolite CGA142856 (triazole acetic acid) with a nominal exposure of 100mg/L and a negative control. Exposure solutions were prepared without the aid of a solvent. Study conditions were considered acceptable. Measured concentrations were within ± 20 % of the nominal concentration at the end of the study period and results were based on nominal concentrations. This is considered conservative and acceptable for the purpose of hazard classification. The 96-hour endpoint was estimated to be:

Oncorhynchus mykiss, 96h LC₅₀ = 100 mg CGA142856/L_{nom}

(2001), Report No. BL7153/B, Data Point: K-CA 8.2.1/10

The 96-hour semi-static study was conducted with *Oncorhynchus mykiss* (rainbow trout) exposed to the metabolite CGA142856 (triazole acetic acid) with a nominal exposure range of 5.6, 10, 18, 32 and 56 mg R116857/L and a dilution water control, Exposure solutions were prepared without the aid of a solvent. Study conditions were considered acceptable. Measured concentrations were within ± 20 % of the nominal concentration at the end of the study period and results were based on nominal concentrations. This is considered conservative and acceptable for the purpose of hazard classification. The 96-hour endpoint was estimated to be:

Oncorhynchus mykiss, 96h LC50 = 24 mg CGA91305/L_{nom} with 95 % confidence limits of 18 to 32 mg CGA91305/L_{nom}

Representative formulation A6209G (Topas EC 100)

Two reliable studies (fulfilling the validity criteria of OECD TG 203) with the representative formulation A6209 (Topas EC 100) considered supportive for use in hazard classification and suitable for use in risk assessment are presented below.

(1984), Report No. AFT-84-056, Data Point: K-CP 10.2.1/01 (O. mykiss) & (1984a), Report No. AFT-84-07, Data Point: K-CP 10.2.1/02 (C. carpio)

One 96-hour flow-through study was conducted with Oncorhynchus mykiss (rainbow trout) exposed to the representative formulation A6209 (Topas EC 100) with a nominal exposure range of 0.94, 1.88, 3.28, 5.62 and 10 mg A6209/L and a dilution water control. Exposure solutions were prepared without the aid of a solvent. Study conditions were considered acceptable.

In addition, one 96-hour flow-through study was conducted with C. carpio (rainbow trout) exposed to the representative formulation A6209 (Topas EC 100) with a nominal exposure range of of 3.2, 5.6, 10, 18 and 32 mg A6209/L and a dilution water control. Exposure solutions were prepared without the aid of a solvent. Study

conditions were considered acceptable. Based on nominal concentrations, the 96-hour LC₅₀ of A-6209G for rainbow trout (O. mykiss) was 6.8 mg formulation/L (equivalent to 0.68 mg as/L) and 96-hour LC50 of A-6209G for carp (C. Carpio) was 12.1 mg formulation/L (equivalent to 1.21 mg as/L).

In both studies there were some uncertainties with regard to the analytical verification of the test substance, as concentrations were not maintained within ± 20% of nominal at all dose levels tested (mean measured concentrations were 73.6-100.2% and 61-93 in study with for O. mykiss and C. carpio, respectively). Ideally, the mean measured concentrations should be used to derive the endpoint. However, this was not possible as concentrations were not measured at all dose levels. In the study with O. mykiss mortality was mainly observed at the highest dose levels (100%), and only 10% was observed at the second highest dose level. Thus, RMS has proposed to set the endpoint as higher than the second highest test concentration. This is considered sufficient protective, and in the interest of limiting further vertebrate studies (in keeping with A still 62 of R

Fulfilment of the data requirements (PPP-legislation)

According to Commission Regulation (EU) No 283/2013 data requirement 8.2.1. Acute toxicity to fish: A study shall be provided on the acute toxicity to fish (LC50) and details of observed effects. (...) A test on rainbow trout (Oncorhynchus mykiss) shall be carried out. As no valid study with rainbow trout (O. mykiss) and teath penconazole was available, RMS propose to use the endpoint from the study with representation of the study with

For a comparison with the CLP-criteria and justification for the use of endpoints, please see chapter 2.9.2.4. Comparison with the CLP criteria.

Acute (short-term) toxicity to aquatic invertebrates

One study with penconazole technical and five studies with metabolites have been provided. In addition, one study with the representative formulation A6209 (Topas EC 100) is available. Valid studies are summarised in the table, above. Study summaries and the assessment and conclusion by the applicant and by RMS are available in Volume 3 - B.9 (AS) and Volume 3 - B.9 (PPP).

One **non-GLP** acute toxicity study with Daphnia and **penconazol technical** was available (*D. magna* 48 h (static) EC₅₀ = 6.75 mg/L_{non}; Hitz, 1981). According to Commission Regulation (EU) No 283/2013 studies performed to obtain data on the properties or safety with respect to animal health and the environment shall be conducted in accordance with the GLP-principles (principles laid down in Directive 2004/10/EC of the European Parliament and of the Council (OJ L 50, 20.2.2004, p. 44)). The study was not a GLP-study, however, is considered supportive as it fulfils the validity criteria of OECD 202 (2004). In addition, valid studies with aquatic invertebrates (D. magna) are available for all relevant aquatic metabolites. The studies indicate that the metabolites are not acutely toxic to aquatic invertebrates (LC₅₀ in the range >100 mg/L to >120 mg/L), and less toxic than the active substance. For further details, see Volume 3 - B.9 (AS).

Penconazole

One study (non-GLP) with penconazole technical considered supportive for use in hazard classification and risk assessment is presented below.

Hitz H.R.. (1981) Report No. 810763, Data point : CA 8.2.4.1/01 (supportive)

The 48-hour static study was conducted with Daphnia magna (water flea) exposed to penconazole technical with a nominal exposure range of 0. 2.3, 3.4, 5.1, 7.6, 10 and 15 mg a.s./L. Measured concentrations were within \pm 20 % of the nominal concentration at the end of the study period and results were based on nominal concentrations. Study conditions were considered acceptable and the study fulfilled the validity criteria. However, the study were poorly reported and was a non- GLP-study. The batch not equivalent with the reference specification (finalised

September 2009 by RMS Germany) or the appli-cants proposed technical specification (global specification), for details, see Volume 4 (Syngenta). In an overall assessment the study is considered **supportive only**. The supportive 48-hour endpoint was estimated to be:

Daphnia magna, 48h $EC_{50} = 6.75$ mg a.s. /L (95% C.I.: 5.76 - 8.01)

Metabolites

Five reliable studies (fulfilling the validity criteria of OECD TG 202) with penconazole metabolites considered suitable for use in hazard classification and risk assessment are presented below.

COA/1019 (1,2,4-Triazole) with a nominal exposure of 100 mg/L and a dilution water control. Exposure solutions were prepared without the aid of a solvent. Study conditions were considered acceptable. Measured concentrations were within ± 20 % of the nominal concentration at the end of the study period and results were based. exposure of 100 mg/L and a dilution water control. Exposure solvent. Study conditions were considered acceptable. Measured concentrations were within ± 20 % of the nominal concentration at the end of the study period and results were based on nominal concentrations. The 48-hour endpoint was estimated to be:

Daphnia magna, 48h EC₅₀ > 100 mg CGA71019 (1,2,4-Triazole)/L

Swarbrick R.H. & Woodyer J.M. (2001a) Postational concentrations.

The 48-hour static study was conducted with Daphnia magna (water flea) exposed to penconazole metabolite CGA179944 with a nominal exposure of 120 mg/L and a dilution water control. Exposure solutions were prepared without the aid of a solvent. Study conditions were considered acceptable. Measured concentrations were within ± 20 % of the nominal concentration at the end of the study period and results were based on nominal concentrations. The 48-hour endpoint was estimated to be:

Daphnia magna, 48h EC₅₀ > 120 mg CGA179944/L

Kuhl R. & Wydra V. (2009) Report No. 42552220, Data point: K-CA 8.2.4.1/04

The 48-hour static study was conducted with Daphnia magna (water flea) exposed to penconazole metabolite CGA179944 with a nominal exposure of 120 mg/L and a dilution water control. Exposure solutions were prepared without the aid of a solvent. Exposure solutions were prepared without the aid of a solvent. Study conditions were considered acceptable. Measured concentrations were within ± 20 % of the nominal concentration at the end of the study period and results were based on nominal concentrations. The 48-hour endpoint was estimated to be: Daphnia magna, 48h EC₅₀ > 120 mg CGA179944/L

Hertl J. & Breitwieser H. (2003a) Report No. TM 93 14362220, Data point: K-CA 8.2.4.1/05

The 48-hour static study was conducted with Daphnia magna (water flea) exposed to penconazole metabolite CGA142856 (triazole acetic acid) with a nominal exposure of 100 mg/L and a dilution water control. Study conditions were considered acceptable. Measured concentrations were within ± 20 % of the nominal concentration at the end of the study period and results were based on nominal concentrations. The 48-hour endpoint was estimated to be:

Daphnia magna, 48h EC₅₀ > 100 mg CGA142856 (triazole acetic acid /L

Wallace S.J. (2001a) Report No. BL7154/B, Data point: K-CA 8.2.4.1/06

The 48-hour static study was conducted with Daphnia magna (water flea) exposed to penconazole metabolite CGA91305 with a nominal exposure range of 10, 18, 32, 56, 100 and 180 mg R116857/L and a dilution water control. Exposure solutions were prepared without the aid of a solvent. Study conditions were considered acceptable. Measured concentrations were within ± 20 % of the nominal concentration at the end of the study period and results were based on nominal concentrations. The 48-hour endpoint was estimated to be: Daphnia magna, 48h EC₅₀ = 110 mg CGA91305/L (95 % c.i.: 99-130 mg/L)

Representative formulation A6209G (Topas EC 100)

One acceptable study (fulfilling the validity criteria of OECD TG 202) with the representative formulation A6209 (Topas EC 100) considered supportive for use in hazard classification and suitable for use in risk assessment are presented below.

Palmer et al. (2001) Report No. 528A-106, Data point: K-CP 10.2.1/03

The 48-hour static study was conducted with *Daphnia magna* (water flea) exposed to penconazole metabolite A-6209G (TOPAS 100 EC) with a nominal exposure range of 7.5, 15, 30, 60 and 120 mg/L A-6209G and a dilution water control. Exposure solutions were prepared without the aid of a solvent. Study conditions were considered acceptable. Measured concentrations were within \pm 20 % of the nominal concentration at the end of the study period

and results were based on nominal concentrations. The 48-hour endpoint was estimated to be: $Daphnia\ magna$, 48h $EC_{50} = 36$ mg A-6209G $/L_{nom}$ equivalent to 3.88 mg a.s./ L_{nom}

Fulfilment of the data requirements (PPP-legislation)

According to Commission Regulation (EU) No 283/2013 data requirement 8.2.4.1. Acute toxicity to Daphnia magna: A test shall be provided on the 24- and 48-hour acute toxicity of the active substance to Daphnia magna, expressed as the median effective concentration (EC50) for immobilisation, and where possible, the highest concentration causing no immobilisation. As the study with aquatic invertebrates (D. magna) and technical penconazole was considered supportive only, RMS has preliminary accepted the endpoint from the study with the representative formulation A6209G and D. magna (Palmer et al. (2001) Report No. 528A-106, Data point: K-CP 10.2.1/03) to address the Commission regulation (EU) 283/2013 data requirement 8.2.4.1. Acute toxicity to Daphnia magna. However, EFSA should consider whether a new valid study with D. magna and penconazole technical should be provided. The study is also used to address Commission regulation (EU) 284/2013 data requirement 10.2.1: Acute toxicity to fish, aquatic invertebrates, or effects on aquatic algae and macrophytes for the representative formulation.

The information provided is also sufficient to address the **Commission regulation (EU) 283/2013** data requirement 8.2.4.1. Acute toxicity to Daphnia magna with regard to the penconazole metabolites CGA71019/1,2,4-Triazole, CGA179944, CGA142856/triazole acetic acid and CGA91305.

CLP

For a comparison with the CLP-criteria, please see section 2.9.2.4

2.9.2.2.3 Acute (short-term) toxicity to algae or aquatic plants

Please see Section 2.9.2.3.3 'Chronic toxicity to algae or aquatic plants' where both acute (short-term) and chronic toxicity to algae and aquatic plants are discussed.

Penconazole

Two reliable studies (fulfilling the validity criteria of OECD TG 201) with penconazole technical considered suitable for use in hazard classification and risk assessment is presented in chapter 2.9.2.3.3. A study from open literature is also available. The study could not be fully verified according to the validity criteria in OECD TG 201, however it provide an endpoint in the same range as the two valid studies and are thus considered supportive. One study with *Lemna gibba* is avaliable, however was considered as not reliable, as it did not fulfill the validity criteria in OECD TG 221, please see section 2.9.2.3.3.2 for a summary of this study.

<u>Desjardins D., Kendell T.Z. & Krueger H.O. (2001) Report No. 528A-112, Data point: K-CA 8.2.6.1/01 Pseudokirchneriella subcapitata</u>, 72 h $E_rC_{50} = 4.9 \text{ mg}$ a.s./ L_{mm} (95 % c.i.: 4.9 -5.0 mg/ L_{mm})

<u>Kley A. & Wydra V. (2009) Report No. 42541210, Data point: K-CA 8.2.6.1/03a</u> *Pseudokirchneriella subcapitata*, 72 h $E_rC_{50} = 3.41$ mg a.s./ L_{mm} (95 % c.i.: 2.63–4.61 mg/ L_{mm})

Durjava, M.K., Kolar, B., Arnus, L., Papa, E., Kovarich, S., Sahlin, U., Peijnenburg, W. (20014) Report ATLA, 41:65-75., Data Point: K-CA 8.2.6.1/14 (Supportive)

Pseudokirchneriella subcapitata, 72 h ErC₅₀ 3.62 mg a.s./L_{measured}

Metabolites

Three valid studies (fulfilling the validity criteria of OECD TG 201) with penconazole metabolites considered suitable for use in hazard classification and risk assessment is presented below.

Palmer S.J., Kendall T.Z. & Krueger H.O. (2001) Report No. 528A-101, Data point: K-CA 8.2.6.1/04 Pseudokirchneriella subcapitata, 72 h $E_rC_{50} > 31$ mg/L mg CGA71019 (1,2,4-Triazole)/ L_{nom}

Swarbrick R.H. & Woodyer J.M. (2001b) Report No. BL7206/B, AJ0287/D, Data point: K-CA 8.2.6.1/08 *Pseudokirchneriella subcapitata*, 72 h E_rC₅₀ > 32 mg/L mg a. CGA179944/L_{nom}

 $\frac{\text{Wallace S.J. \& Woodyer J.M. (2001) Report No. BL7155/B, AJ0228/D, Data Point: K-CA 8.2.6.1/12}{Pseudokirchneriella subcapitata, 72 h ErC50 = 19.1 mg CGA91305/L_{nom} (95\% confidence limits = 16.6 - 21.7 mg CGA91305/L_{nom})}$

Representative formulation A6209G (Topas EC 100)

One reliable study (fulfilling the validity criteria of OECD TG 201) with the representative formulation A6209 (Topas EC 100) considered supportive for use in hazard classification and suitable for use in risk assessment are presented below.

CLP

2.9.2.2.4 Acute (short-term) toxicity to other aquatic organisms

Table 109: Summary of relevant information on chronic aquatic toxicity

rt template] Reference e of le d
to public ty and
to bush equipment
The stole of the stole
English of the se.
Cy Leo Je, M.
40 5/0 V.O.
object of
rt template]
300
Reference
e of
le
d
test
to
test
t as
ter
ive
zed
r lost 1984c;
CGA71818/00
74 &
y &
2016;
nt. CGA071818_
10494 ^b
on
MS
or
nts
nts
t tt to z

Method	Species	Test material	Results	Relevant study	Remarks	Reference
No specific guideline reported. a Embryo development, 4 h post-fertilisation – 96 h post hatch, semi-static	Zebrafish (Danio rerio)	Topas 100 EC Purity: NA Batch: NA	NOEC < 0.8 mg a.s./L $LC_{50} \leq 3.73$ mg penconazole/L	Supportive	(Syngenta). Study from open literature Not GLP Could not be determined whether the validity criteria of the relevant OECD test guideline (OECD 210) were fulfilled No measurement of test concentrations	Aksakal & Ciltas, 2018; Chemosphere, 200:8-15.
OECD 234, draft ver. 2 (2010) GLP	Fathead	e tech.	98 d (flow-through) NOECapical endpoints = 0.60 mg a.s./L (mm) (NOECmechanistic, VTG = 0.28 mg a.s./L (mm))	Reliable	No significant (apical) effects were observed on embryo time to hatch, embryo hatching success, sex ratio, length, weight, abnormal behaviour, morphological abnormalities, or survival. ↓vitellogenin observed in male and female fish at concentrations above 0.28 mg/L (mm) Age of embryos at test start: <24 hours. According to the TG the test should start as soon as possible after the eggs have been fertilized and no later than 12 h post fertilisation to ensure exposure during early embryonic	2012; CGA71818_1 0278

Method	Species	Test material	Results	Relevant study	Remarks	Reference
(2000) tr	Rainbow rout Oncorhync uus mykiss)	CGA71019 Purity: 99.9 % Batch: NLL 7052-1	28 d (semi-static) NOEC = 3.2 mg/L (nom)	Supportive	Study is no longer a data requirement (European Commission (EU) 283/2011) and has thus been regarded as supportive	& 2002; CGA71019/00 52
Internal method US EPA-660/3-75-009 GLP	Daphnia nagna	Penconazol e tech. Purity: 87.3% Batch: FL- 830634	21 d (flow-through) NOEC ≤ 0.069 mg a.s./L (mm) 21 d (semi-static)	Supportive for risk assessment Reliable for hazard classificati on (please see r justificatio n in section 2.9.2.4.2)	As there are some uncertainties regarding the applied statistics, the lowest dose tested (0.069 mg a.s./L) may actually be the LOEP, rather than the NOEC. The study has thus been regarded supportive for use in risk assessment. The study is still considered relevant for hazard classification purposes. The applicant intends to provide new data to clarify the correct endpoint.	Surprenant, 1984d; CGA71818/00 80
OECD 202 (1984) ° D GLP	Daphnia magna	A6209G (Topas 100 EC) Purity: 100 g/L penconazole (nom) Batch: Op 211 052	NOEC = 0.32 mg prod./L (nom) Equivalent to: NOEC = 0.032 mg a.s./L EC ₁₀ = 0.49 mg prod./L Equivalent to: EC ₁₀ = 0.049 mg a.s./L EC ₂₀ = 0.81 mg prod./L Equivalent to: EC ₂₀ = 0.081 mg a.s./L	Reliable	Expiry date of technical penconazole not reported	Memmert & Knoch, 1994a; CGA71818/12 35
Proposal for	Chironomus ciparius	e tech. Purity:	28 d (static) Water-spiked:	Reliable	All validity criteria not fulfilled, but	Grade, 1999; CGA71818/13 90

Method	Species	Test material	Results	Relevant study	Remarks	Reference
with Chironomida e (May 1998) ^d		97.4% Batch: EN 603012	NOEC = 0.8 mg/L (im) Sediment-spiked: NOEC = 25.2 mg/kg sed dw (nom) EC ₁₀ = 41.8 mg /kg sed dw (nom) EC ₂₀ = 50.2 mg /kg sed dw (nom)	Carlier of	41600	& Kümmich, 2016b; CGA071818_ 10483
OECD 201 (1984) ° GLP	Green algae (Scenedesm us subspicatus)	A6209G (Topas 100 EC) Purity: 100 g/L (nominal) Batch: OP 211 052	$\begin{split} E_r C_{50} &= 7.9 \text{ mg/L} \\ \text{(nom)} \\ \text{Equivalent to:} \\ E_r C_{50} &= 0.79 \text{ mg a.s./L} \\ \text{(nom)} \\ E_r C_{10} &= 3.1 \text{ mg/L} \\ \text{(nom)} \\ E_t C_{20} &= 4.3 \text{ mg/L} \\ \text{(nom)} \\ \end{split}$ $E_b C_{50} &= 3.9 \text{ mg/L} \\ \text{(nom)} \\ E_b C_{20} &= 2.1 \text{ mg/L} \\ \text{(nom)} \\ E_b C_{10} &= 1.6 \text{ mg/L(nom)} \\ \end{split}$	Reliable		Memmert & Knoch, 1994; CGA71818/12 34 & Schuster, 2016; A6209G_1114 2 d
OECD 201 (1984) ° OPPTS 850.5400, C.3 (1996) GLP	Green algae (Pseudokirc hneriella subcapitata)	Penconazol e tech. Purity: NA Batch: WS007001	72 h (static) $E_rC_{50} = 4.9 \text{ mg/L (mm)}$ $E_rC_{20} = 2.94 \text{ mg/L}$ (mm) $E_rC_{10} = 2.39 \text{ mg/L}$ (mm) $E_bC_{50} = 2.0 \text{ mg/L (mm)}$ $E_bC_{20} = 0.78 \text{ mg/L}$ (mm) $E_bC_{10} = 0.50 \text{ mg/L}$ (mm) $E_bC_{10} = 0.50 \text{ mg/L}$ (mm)	Reliable	Purity unknown	Desjardins et al, 2001; CGA71818/43 78 & Schuster, 2016; CGA071818_ 10472 d
OECD 201 (2006) °	Green algae (Pseudokirc	Penconazol e tech.	72 h (static)	Reliable		Kley & Wydra, 2009:

Method	Species	Test material	Results	Relevant study	Remarks	Reference
GLP	hneriella subcapitata)	Purity:99.86 % Batch: 0701	$E_rC_{50} = 3.41 \text{ mg/L}$ (mm) $E_rC_{20} = 0.62 \text{ mg/L}$ (mm) $E_rC_{10} = 0.26 \text{ mg/L}$ (mm) $E_yC_{50} = 0.42 \text{ mg/L}$ (mm) $E_yC_{20} = 0.16 \text{ mg/L}$ (mm) $E_yC_{10} = 0.10 \text{ mg/L}$ (mm) NOEC = 0.234 mg/L (mm)		and of this do	CGA071818_ 10633 & Lührs & Wydra, 2018: CGA071818_ 10633 d
OECD 201 (1984) ° O.J. No. L383A, Method C.3 (1992) OPPTS 850.5400, C.3 (1996) GLP	Green algae (Pseudokirc hneriella subcapitata)	CGA71019 (1,2,4- Triazole) Purity: 99 ± 2% Batch: R200	72 h (static) $E_rC_{50} > 31 \text{ mg/L (mm)}$ $E_rC_{20} = 11.3 \text{ mg/L (mm)}$ $E_rC_{10} = 8.3 \text{ mg/L (mm)}$ $E_bC_{50} = 13 \text{ mg/L (mm)}$ $E_bC_{20} = 7.2 \text{ mg/L (mm)}$ $E_bC_{10} = 5.9 \text{ mg/L (mm)}$ NOEC = 3.1 mg/L (mm)	Reliable	Dovietions in	Palmer et al, 2001; CGA71019/00 44 & Hefner, 2014; CGA071019_ 10010 d
OPPTS 850.5400, C.3	Green algae (Pseudokirc hneriella subcapitata)	CGA179944 Purity: MLA- 437/1,3,4 Batch: 99 ± 2%	72 h (static) ErCso > 32 mg/L (mm) EbCso > 32 mg/L (mm) NOEC > 32 mg/L	Reliable	Deviations in pH. Study still considered acceptable (see RAR Volume 3CA, B.9.)	Swarbrick & Woodyer, 2001b; CGA179944/0 010
OPPTS 850.5400, C.3 (1996) GLP USEPA Proposed Guidelines	Green algae (Selenastru m capricornut um)	CGA91305 Purity: 99 ± 2% Batch: KI 6437/2	72 h (static) $E_rC_{50} = 19.1 \text{ mg/L}$ (nom) $E_rC_{20} = 11.5 \text{ mg/L}$ (nom) $E_rC_{10} = 8.9 \text{ mg/L}$ (nom) $E_bC_{50} = 9.6 \text{ mg/L}$ (nom) $E_bC_{20} = 6.7 \text{ mg/L}$ (nom) $E_bC_{10} = 4.7 \text{ mg/L}$ (nom) NOEC =3.2 mg/L (nom)	Reliable		Wallace & Woodyer, 2001; CGA77502/00 03 & Hefner, 2014a; CGA091305_1011
Proposed Guidelines for Registering Pesticides in the United States, Subpart J, 1980; Holst	Lemna gibba	Penconazo le tech. Purity: 87.3% Batch: FL- 830634	14 days (static) $E_bC_{50} = 0.19 \text{ mg/L}$ (frond number) $E_bC_{50} = 0.096 \text{ mg/L}$ (dry weight)	Not valid. Included in table for completene ss, as the study was considered the key study in the RAC	The validity criteria in OECD 221 (2006) were not fulfilled: frond doubling time were 2.6 days and average specific growth rate	Hughes J.S., 1985a; CGA71818/0 082

Penconazole

Method	Species	Test material	Results	Relevant study	Remarks	Reference
RW and TC				opinion	0.268d-1,	
Ellwanger,				from 2012	whereas the	
1982 ^e					validity criteria	
					require a	
					doubling time	
					of less than 2.5	2
					days and an	5 50
					average	19/0 1.01
					specific	The del de
					growth rate of	6,00, 411,
					0.275 d-1.	~(0, (0,0) ×(
					All's	(6, 0, 10),
					No analytical	1, 40, TO,
					measurement	100 OL X
					oftest	Ke los
					substance o	"C, "U,
				GG	during the test.	Vo. Vir.
				1,40	32 /3 W	, %.
		ĺ		(O, X	1 1 0	. 111

^a Evaluated according to OECD 210 (2013)

mm: mean measured; nom: nominal concentration; im: immediately measured

Bold values represent the lowest endpoint for the respective organism group and test substance.

2.9.2.3.1 Chronic toxicity to fish

Four studies investigating chronic effects of penconazole, or relevant metabolite(s) have been provided. One study from open literature is also available. Valid studies are summarised in the table above. Study summaries and the assessment and conclusion by the applicant and by RMS are available in **Volume 3 - B.9** (**AS**) and **Volume 3 - B.9** (**PPP**).

Penconazole

Two reliable studies (fulfilling the validity criteria of the respective OECD TG) with penconazole technical considered suitable for use in hazard classification and risk assessment is presented below. One study from open literature is considered supportive. To further investigate the effects of endocrine disruption, a **fish full life-cycle study** has been initiated. Preliminary results are available **Volume 3 - B.9 (AS)**. However, as the final study report is not available, these results cannot be verified by RMS at the current stage of the evaluation.

(1984c) Report No. BW-84-7-1600, Data point: K-CA 8.2.2.1/01

A 35-day (30 days post-hatch) flow-through **early life stage** (**ELS**) **test** with fathead minnow (*Pimephales promelas*) exposed to penconazole technical with a nominal exposure range of 0.25, 0.5, 1.0, 2.0 and 4.0 mg a.s./L. Exposure solutions were prepared with the aid of the solvent Dimethyl formamide (DMF). A solvent and a dilution water control were included. Mean measured concentrations were 68-88% of nominal, and the mean measured concentrations have been used to derive the endpoint. Study conditions were considered acceptable. The batch not equivalent with the reference specification (finalised September 2009 by RMS Germany) or the applicants proposed technical specification (global specification), for details, see Volume 4 (Syngenta). Statistically significant effects on growth (mean total length and average wet weight) were observed at the dose levels 0.68 and 1.5 mg a.s./L_{mm}. At the top dose (3 mg a.s./L_{mm}) the % egg hatchability/survival was 0%. The validity criteria are either fulfilled or considered acceptable. The endpoint was estimated to be: 35 d, *P. promelas*, NOEC = 0.36 mg a.s./L_{mm}.

Aksakal, F.I., Ciltas, A. (2018) Report No. Chemosphere, 200:8-15, Data point: K-CA 8.2.2.1/03 (**Open literature**, supportive data)

One study from open literature have assessed the embryo development of Zebrafish (*Danio rerio*) after exposure to penconazole Embryos were exposed 4 h post-fertilisation – 96 h post hatch in a semi-static test regime. There were no analytical verification during or prior to the test it cannot be determined whether exposure were maintained at \pm 20 percent of nominal concentrations According to the study authors, the LC₅₀ of penconazole to zebrafish embryos

^b Statistical re-analysis to determine EC₁₀- and/or EC₂₀-estimates.

^c Evaluated according to OECD 211 (2012)

^d Evaluated according to OECD 218 and OECD 219 (2004)

^e Evaluated according to OECD 221 (2006)

was calculated to be 3.73 mg penconazole/L. However, as concentrations of penconazole have not been analytically verified, the endpoint is set to \leq 3.73 mg penconazole/L. The effects on mortality (>10% ->30%) was observed at all test concentrations (0.8, 1.2 and 2.4 mg a.s./L_{nom}). Body length, heartbeat rate and malformations were significantly affected at the two top dose-levels compared to the control. Gene expression levels of various genes were affected at all test concentrations compared to the control. The study was evaluated according to the relevant validity criteria of OECD 210, however, the validity criteria was not fully met. The results are in line with the valid chronic toxicity tests with penconazole and is considered as *supportive* information. According to the applicant, the study is reliable with restrictions, with a Klimisch score of 2. The RMS consider the study supportive. The **supportive** endpoint was estimated to be:

96h, D. rerio NOEC < 0.8 mg a.s./L_{nom}

 LC_{50} of penconazole to zebrafish embryos ≤ 3.73 mg penconazole/L

(2012) Report No. 1781.6770, Data point: K-CA 8.2.3/03

To assess the potential for endocrine disruption of penconazole, a 98 d sexual development test (FSDT) with fathead minnow (P. promelas) exposed to penconazole technical with a nominal exposure range of 0.038, 0.075, 0.15, 0.30 and 0.60 mg/L under flow-through conditions. Measured concentrations were within \pm 20 % of the nominal concentration, and nominal consentrations were used to derive the endpoint. The study indicates no effects on the apical endpoints: survival, growth (length, weight) or histological sex ratio at doses up to the top dose (0.6 mg a.s./L). However, a significant reduction in vitellogenin (VTG) levels were observed for both males and females at the top dose. In addition, a clear dose response curve was observed for this parameter also at lower doses, however these reductions were not statistically significant. Already at the lowest dose level (0.041 mg a.s./L) a decrease in VTG levels compared to the control can be visually observed. The endpoint was estimated to be:

98 d, P. promelas, NOEC = $0.60 \text{ mg a.s./L}_{mm}$

Metabolites

One juvenile growth test (28 d) with the metabolite CGA71019/1,2,4-triazole have been provided. The study was considered valid according to the assessment in the RAR of Metconazole (August 2019). As the study is no longer a data requirement in **Commission Regulation** (EU) **No 283/2013**, the study is considered *supportive only*, by RMS.

Representative formulation A6209G (Topas EC 100)

One prolonged flow-through test (OECD TG 204) with the representative formulation A6209 (Topas EC 100) and fish has been provided. The study is no longer a data requirement and has thus not been evaluated by RMS. RMS note that the endpoint is in the same range as the endpoint from the ELS study and technical penconazole.

Fulfilment of the data requirements (PPP-legislation)

According to Commission Regulation (EU) No 283/2013 data requirement 8.2.2.1. Fish early life stage test: A fish early life stage toxicity test shall determine effects on development, growth and behaviour, and details of observed effects on fish early life stages. The EC10 and EC20 shall be reported together with the NOEC. Where EC10 and EC20 cannot be estimated, an explanation shall be provided. The information provided is sufficient to address the Commission regulation (EU) 283/2013 data requirement 8.2.2.1. Fish early life stage test.

For the assessment of available data to address the potential endocrine disruption for fish, please see section 2.10 in this document.

CLP

For a comparison with the CLP-criteria, please see section 2.9.2.4.

2,9.2.3.2 Chronic toxicity to aquatic invertebrates

Two studies investigating the chronic toxicity of penconazole technical to aquatic invertebrates have been provided, one study with *Daphnia magna* and one with the sediment dwelling Chironomidae *Chironomus riparius*. In addition, one chronic study with the representative formulation A6209G and *Daphnia magna* is available. Acceptable studies are summarised in the table, above. Study summaries and the assessment and conclusion by the applicant and by RMS are available in **Volume 3 - B.9 (AS)** and **Volume 3 - B.9 (PPP)**.

Studies to estimate EC_{10} - and EC_{20} -values have also been provided, and where reliable EC_x -estimates were derived, they have been included in the table, above.

2.9.2.3.2.1 Daphnia magna

Penconazole

One study (fulfilling the validity criteria of OECD TG 211) with penconazole technical is available. However, it was pointed out by coRMS during commenting, that there are some uncertainties with the applied statistics, and co RMS points out that the NOEC derived from the study may actually be the LOEC. RMS has thus concluded that the NOEC from this study is either equal to or lower than the derived NOEC. In order to conclude on the risk with high certainty, a lower-than endpoint cannot be used in the risk assessment. The study is thus regarded as supportive for risk assessment. However, as the study fulfills the validity criteria, and the endpoint can be established to be either equal to or lower than the derived endpoint, it is regarded to provide valuable information for hazard classification and is considered reliable for hazard classification purposes. Please see section 2.9.2.4 comparison with the CLP criteria for further details.

Surprenant D.C. (1984d) Report No. BW-84-8-1614, Data point: K-CA 8.2.5.1/01 (supportive for risk assessment and reliable for hazard classification)

A 21-day flow-through study with the aquatic invertebrate *Daphnia magna* exposed to penconazole technical at nominal exposure range of 0.25, 0.5, 1.0, 2.0 and 4.0 mg a.s./L. Exposure solutions were prepared with the solvent dimethyl formamide (DMF). A dilution water and a solvent control were included. Measured concentrations were not maintiained within \pm 20% of nominal, and mean measured concentrations (0.069, 0.39, 0.73, 1.6 and 3.6 mg a.s./L) are thus used to derive the endpoint. Mean percent survival was 0% at the top dose (3.6 mg a.s./L_{mm}) and mean cumulative offspring/female was significantly reduced at the dose levels 0.39, 0.73 and 1.6 mg a.s./L_{mm}. The NOEC generated from the study was thus 0.069 mg/L. The applicant tried to calculate an EC₁₀ which were estimated to be 0.1 mg a.s./L. However, the EC₁₀ was not accepted as the lower limit of the confidence interval could not be derived. The OECD validity criteria and the study conditions were considered acceptable.

The statistical evaluation performed in the study report was however questioned by the coRMS. CoRMS states that a possible re-evaluation of the statistical data might result in a LOEC of 0.069 mg/L. A question was sent to the applicant to clarify this the 22nd of September 2021. The following comment was received by the applicant the 13th of October 2021:

The applicants thank DE for their comments and acknowledge that the existing Daphnia chronic exposure study (CGA71818/0080) has some limitations according to today's standards. Therefore, the Penconazole Task Force intend to conduct a new study according to OECD TG 211, which fully complies with current guidance, with the data ready to be delivered on request by Q2 2022. Calculation of the ECx values will be included in this new report. We also note the additional statistical deficiencies raised within the existing report (comparison of controls, choice of statistical test and use of mean values) and will ensure that these are addressed in the new study. In the meantime, a statistical re-evaluation will be performed to confirm the correct NOEC/LOEC values based on the existing data.

A statistical re-evaluation was however not submitted prior to sending the RAR to EFSA (autumn 2021). In order to take account for the uncertainty raised by coRMS, RMS concludes that the NOEC from this study should be set to either equal to or lower than 0.069 mg a.s/L. EFSA and/or ECHA should thus consider requesting the statistical re-evaluation and/or the new study according to OECD TG 211 referred to by the applicant, above.

The relevant endpoint is: 21 d, *D. magna*, NOEC \leq 0.069 mg a.s./ L_{mm}

Representative formulation A6209G (Topas EC 100)

One reliable study (fulfilling the validity criteria of OECD TG 211) with the representative formulation A6209 (Topas EC 100) is considered suitable for use in hazard classification and risk assessment are presented below.

Memmert U. & Knoch E. (1994a) Report No. 428938, Data point: K-CP 10.2.2/03

A 21-day semi-static study with the aquatic invertebrate $Daphnia\ magna\$ exposed to A6209G (Topas EC 100) a nominal exposure range of 0.1, 0.32, 1.0, 3.2 and 10.0 mg/L A-6209G and a dilution water control. Exposure solutions were prepared without the use of a solvent. For semi-static tests where the concentration of the test substance is expected to remain within \pm 20 per cent of the nominal it is recommended that, as a minimum, the highest and lowest test concentrations should be analysed when freshly prepared and at the time of renewal on one occasion during the first week of the test, and this should be repeated at least at weekly intervals thereafter. This is not fully fulfilled. Analytical data may also indicate that concentrations in test solutions contining algae fell somewhat below \pm 20% of nominal (74% of nominal at the lowest test concentration in old water at sampling day 19. Concentrations measured at the top dose were maintiained within \pm 20% of nominal. Endpoint is thus based on nominal concentrations. Study conditions were considered acceptable. Mean percent survival was 20% at the top

dose (10 mg A6209G/L_{nom} and mean cumulative offspring/female was significantly reduced at the dose levels 10, 3.2 and 1 mg / L_{nom} . The endpoint was estimated to be:

21 d, D. magna, NOEC = $0.32 \text{ mg A} 6209 \text{G/L}_{\text{nom}}$ (equivalent to $0.032 \text{ mg a.s./L}_{\text{nom}}$).

Fulfilment of the data requirements (PPP-legislation)

According to Commission Regulation (EU) No 283/2013 data requirement 8.2.5 Long-term and chronic toxicity to aquatic invertebrates: The aim of the test on reproductive and development toxicity to Daphnia magna shall be to measure adverse effects such as immobilisation and loss of reproductive capacity and to provide details of observed effects. The EC_{10} , and EC_{20} shall be reported together with the NOEC. Where EC_{10} and EC_{20} cannot be

Chironomus riparius

Penconazole
One reliable study (fulfilling the validity criteria of OECD TG 218 and 219) with penconazole technical considered suitable for use in hazard classification and risk assessment is presented below.

Grade R. (1999) Report No. 983757, Data point: K-CA 8.2.5.3/01

A 28-day static study with the sediment dwelling Chironomidae Chironomus riparius exposed pencetechnical with a nominal exposure range of 0.50, 1.0, 2.0, 4.0, 8.0 and 16 mg/L (water spiker).

201.5 and 403 mg/kg dry sediment (sediment spiked), together with a diultion of the sediment spiked test acetone was used as a solvential using the initial measured considered to the spiker of the sediment spiked test was not be adopted in the endpoint (initial measured concentrations are lower than the mean measured concentrations). There were several deviations, however, in an overall assessment these have been considered acceptable by RMS. For further details, see Volume 3 - B.9.5.4 (AS).

In the test emergence and development rate were investigated. Development rate was the most sensitive endpoint in the water spiked test, whereas emergence rate gave the lowest NOEC in the sediment spiked test. No effects were observed on the average weight of larvae. The endpoints were estimated to be:

C. riparius, 21 d

Water spiked: NOEC = 0.8 mg a.s./L_{im}

Sediment spiked: NOEC = 25.2 mg/kg sed dw_{nom}

Fulfilment of the data requirements (PPP-legislation)

According to Commission regulation (EU) 283/2013, 8.2.5.4. Sediment dwelling organisms: When accumulation of an active substance in aquatic sediment is indicated or predicted by environmental fate studies, the impact on a sediment-dwelling organism shall be assessed. The chronic risk to Chironomus riparius or Lumbriculus spp. shall be determined. An appropriate alternative test species may be used where a recognised guideline is available. The active substance shall be applied to either the water or the sediment phase of a water/sediment system and the test shall take account of the major route of exposure. The key endpoint from the study shall be presented in terms of mg substance/kg dry sediment and mg substance/L water and the EC_{10} and EC_{20} shall be reported together with the NOEC.

The Guidance on tiered risk assessment for edge-of-field surface waters (AGD; EFSA Journal 2013;11(7):3290) gives further guidance to assess this requirement. According to the AGD, the test shall be required when the water/sediment study show > 10 % of applied radioactivity (AR) at or after day 14 present in the sediment and chronic daphnia test (or other comparable study with insects) EC10 (or NOEC) < 0.1 mg/L

Water/sediment-studies show that penconazole dissipated preliminary by partitioning to the sediment, and that 80-90% of the AR is present in sediment after 14 days. Preliminare investigations of the e-fate data indicate that penconazole has a DT_{50} of 1.86 - 4.12 days in water, and a DT_{50} between 565 and >10 000 days in sediment. The, DT₉₀ is between 1870 og > 10 000 in sediment (for further details, see Volume 3 - B.8 (AS). The 21 day chronic daphnia study gave a NOEC = 0.06 mg a.s./L, and thus fulfills the second part of the requirement.

The main metabolite in the water/sediment studies was CGA179944. The metabolite was present in the water phase up to 17.3% of the AR after 365 days, however, only accounted for a maximum of 4.8% of the applied rate in sediment. The metabolite M1 (3-(1,2,4-triazol-1-yl)-L-alanine) is also present in the water/sediment studies, however, at levels <5% of the AR. This metabolite is not considered a major metabolite, neither in water or soil. Acute toxicity studies with the aquatic invertebrate Daphnia magna is available for the metabolites CGA71019 (1,2,4-Triazole), CGA179944, CGA142856 (triazole acetic acid) and CGA91305. None of the metabolites acutely toxic to Daphnia magna and all are much less toxic than the active substance. Thus, further investigations of sediment dwelling organisms with the metabolites are not needed.

It is concluded that the circumstances for when **Commission Regulation (EU) 283/2013** data requirement 8.2.5.4. Sediment dwelling organisms need to be addressed are fulfilled. In addition, the information provided is sufficient to address the requirement.

RMS notes that *Lumbriculus* is recommended in AGD as the most relevant species for a.s. with fungicidal activity (such as penconazole). to the fight protection of

2.9.2.3.3 Chronic toxicity to algae or aquatic plants

Three studies with penconazole technical and six studies with metabolites have been provided. In addition, one study with the representative formulation A6209 (Topas EC 100) are available. One study with penconazole technical and the aquatic plant Lemna gibba was also provided. Reliable studies are summarised in the table, above. The study on Lemna gibba which was not regarded as reliable by RMS is included on request by ECHA and for completeness, as it was the key study in the hazard classification in the RAC opinion 2012. Study summaries and the assessment and conclusion by the applicant and by RMS are available in Volume 3 - B.9 (AS) and Volume 3 - B.9 (PPP).

2.9.2.3.3.1 Algae

Two toxicity studies with green algae (Pseudokirchneriella subcapitata) and penconazol technical was available (P. subcapitata 72h (static) $E_rC_{50} = 4.9 \text{ mg/L}_{mm}$ and P. subcapitata 72h (static) $E_rC_{50} = 3.41 \text{ mg/L}_{mm}$). Both studies were considered reliable and fulfilled the validity criteria of OECD 201 (2006, 2011). One study from open literature was considered supportive only, as the data was insufficient to assess whether the validity criteria were fulfilled. The endpoint in the study from open literature was in the same range as the two valid studies. In addition, valid studies with green algae (P. subcapitata or Selenastrum capricornutum) were available for the relevant aquatic metabolites CGA71019/1,2,4-Triazole, CGA179944 and CGA91305. The studies indicate that the metabolites are less toxic to than technical penconazole (E_rC_{50} in the range 19.1 mg/L to >32 mg/L). No valid study with the metabolite CGA142856 (triazole acetic acid) was available, and the need for requesting further data for this metabolite should be considered. In total, three studies with green algae were considered not reliable. Two studies, with CGA71019 (1,2,4-Triazol) and CGA142856 (triazole acetic acid), did not fulfil the validity criteria for sectionby-section specific growth rate, and one study with CGA179944 was disregarded due to a non-monotonic dose response pattern. For further details, see Volume 3 - B.9 (AS).

In addition, one study with the representative formulation A6209 (Topas EC 100) and green algae (Scenedesmus subspicatus 72 h (static) ErC50 = 7.9 mg/L_{nom}, equivalent to 0.79 mg a.s./L_{nom}) was available in the dossier. The study is considered reliable. For further details, see Volume 3 - B.9 (PPP).

Studies to estimate EC10- and EC20-values has also been provided, and where reliable ECx-estimates were derived, they have been included in the table, above.

Penconazole

Two reliable studies (fulfilling the validity criteria of OECD TG 201) and one supportive study with penconazole technical considered suitable for use in hazard classification and risk assessment are presented below.

Desjardins D., Kendell T.Z. & Krueger H.O. (2001) Report No. 528A-112, Data point: K-CA 8.2.6.1/01

The 96-hour static study was conducted with Pseudokirchneriella subcapitata exposed to penconazole technical with a nominal exposure range of 0.56, 1.1, 2.3, 4.5 and 9.0 mg a.s./L and a culture medium control. Exposure solutions were prepared without the aid of a solvent. Study conditions were considered acceptable. Measured concentrations were within ± 20 % of the nominal concentration at the end of the study period and results were based on nominal concentrations. The validity criteria in OECD 201 was fulfilled both when investigating the data for 72h and 96h. According to the test guideline, the 72h endpoint is the preferred endpoint. The 72-hour endpoint was estimated to be:

Pseudokirchneriella subcapitata, 72 h

 $E_rC_{50} = 4.9 \text{ mg a.s./L}_{mm} (95 \% \text{ c.i.: } 4.9 - 5.0 \text{ mg/L}_{mm})$ $E_rC_{20} = 2.94 \text{ mg a.s./L}_{mm} (95 \% \text{ c.i.: } 2.8 - 3.1 \text{ mg/L})*$

```
E_r C_{10\,=} 2.49 mg a.s./L mm (95 % c.i.: 2.2 - 2.6 mg/L)* NOEC = 0.56 mg a.s./L mm
```

*EC_{10 and 20}-values were calculated by Schuster 2016 (Report No. S16-02793, Data point: CA 8.2.6.1/02).

Kley A. & Wydra V. (2009) Report No. 42541210, Data point: K-CA 8.2.6.1/03a

The 72-hour static study was conducted with *Pseudokirchneriella subcapitata* exposed to penconazole technical with a nominal exposure range of 0.08, 0.25, 0.80, 2.5 and 8.0 mg test item/L and a test water control. Exposure solutions were prepared without the aid of a solvent. Study conditions were considered acceptable. Measured concentrations were 73-108% and results were based on mean measured concentrations. The 72-hour endpoint was estimated to be:

Pseudokirchneriella subcapitata, 72 h

 $E_rC_{50} = 3.41 \text{ mg a.s./L}_{mm} (95 \% \text{ c.i.: } 2.63 - 4.61 \text{ mg/L}_{mm})$

 $E_rC_{10} = 0.26 \text{ mg a.s./L}_{mm} (95 \% \text{ c.i.: } 0.12 - 0.42 \text{ mg/L})$

 $E_rC_{20} = 0.62 \text{ mg a.s./L}_{mm} (95 \% \text{ c.i.: } 0.38 - 0.87 \text{ mg/L})*$

 $NOEC = 0.234 \text{ mg a.s./L}_{mm}$

* EC_{20} -values were calculated by Lührs U. & Wydra V. 2018 (Report No. 42541210, Data point: CA 8.2.6.1/03b). As these calculations were based on nominal rather then mean measured concentrations, the EC_{20} was recalculated by RMS

Durjava, M.K., Kolar, B., Arnus, L., Papa, E., Kovarich, S., Sahlin, U., Peijnenburg, W. (20014) Report ATLA, 41:65-75., Data Point: K-CA 8.2.6.1/14 (Supportive data)

The 96-hour static open literature study was conducted with *Pseudokirchneriella subcapitata* exposed to the penconazole technical. Dilution water control, two positive controls and at least five nominal concentrations (concentrations not reported) arranged in a geometric series. Test concentrations were measured by chemical analysis (values not reported). The concentration range at which effects were likely to occur was determined on the basis of results from range-finding experiments. It was ensured that the lowest concentration selected did not have any observed effect on the growth of the algae. The validity criteria could not be assessed with the data avilable in the study report. The study is not conducted according to GLP. Reliable with restrictions. According to the applicant, the study design is appropriate for the determination of penconazole effects on algal growth and methodology is adequately documented, and the study has a \Klimisch score of 2. The reported EC₅₀ is in line with data available in the dossier of penconazole. The study is by the RMS regarded as supportive. The 72-hour **supportive** endpoint was estimated to be:

Pseudokirchneriella subcapitata, 72 h E_rC₅₀ 3.62 mg a.s./L_{measured}

Metabolites

Three acceptable studies (fulfilling the validity criteria of OECD TG 201) with penconazole metabolites considered suitable for use in hazard classification and risk assessment are presented below.

Palmer S.J., Kendall T.Z. & Krueger H.O. (2001) Report No. 528A-101, Data point: K-CA 8.2.6.1/04

The 96-hour static study was conducted with *Pseudokirchneriella subcapitata* exposed to the penconazole metabolite CGA71019 (1,2,4-Triazole) with a nominal exposure range of 1.9, 3.8, 7.5, 15 and 30 mg 1,2,4-triazole/L and a culture medium control. Exposure solutions were prepared without the aid of a solvent. Measured concentrations were within \pm 20 % of the nominal concentration at the end of the study period and results were based on nominal concentrations. Study conditions were considered acceptable. The validity criteria in OECD 201 was fulfilled both when investigating the data for 72h and 96h. According to the test guideline, the 72h endpoint is the preferred endpoint. The 72-hour endpoint was estimated to be:

Pseudokirchneriella subcapitata, 72 h

 $E_rC_{50} > 31 \text{ mg/L} \text{ mg CGA71019 } (1,2,4-\text{Triazole})/L_{nom}$

 $E_{r}C_{20} = 11.33$ mg CGA71019 (1,2,4-Triazole) /L (95% confidence limits = 10.7-12.0 mg CGA71019 (1,2,4-Triazole) /L)*

 $E_rC_{10} = 8.31 \text{ mg CGA71019 } (1,2,4-\text{Triazole})/L (95\% \text{ confidence limits} = 8.03-8.58 \text{ mg CGA71019 } (1,2,4-\text{Triazole})/L)*$

NOEC = $3.1 \text{ mg CGA} / 1019 (1,2,4-\text{Triazole}) / L_{\text{nom}}$

*EC_{10 and 20}-values were calculated in Volume 3 – B9: Ecotoxicology in the RAR of Metconazole (August 2019) by RMS BE

Swarbrick R.H. & Woodyer J.M. (2001b) Report No. BL7206/B, AJ0287/D, Data point: K-CA 8.2.6.1/08

The 96-hour static study was conducted with *Pseudokirchneriella subcapitata* exposed to the penconazole metabolite CGA179944 with a nominal exposure range of 3.2, 5.6, 10, 18, 32, 56, 100 and 180 mg/L and a culture medium control. Exposure solutions were prepared without the aid of a solvent. Measured concentrations were within ± 20 % of the nominal concentration at the end of the study period and results were based on nominal concentrations. Study conditions were considered acceptable, except for the three top concentrations wich were excluded due to low pH (5.21- 8.26, 3.75-4.1 and 3.54-3.56 at 56, 100 and 180 mg/L, respectively). It is not known whether the growth of algae has been affected by the low pH, however this cannot be excluded. The validity criteria in OECD 201 was fulfilled both when investigating the data for 72h and 96h. According to the test guideline, the 72h endpoint is the preferred endpoint. The 72-hour endpoint was estimated to be:

Pseudokirchneriella subcapitata, 72 h $E_rC_{50}\!>\!32$ mg/L $\,$ mg a. CGA179944/L $_{nom}$ NOEC> 32 mg CGA17994/L $_{nom}$

Wallace S.J. & Woodyer J.M. (2001) Report No. BL7155/B, AJ0228/D, Data Point: K-CA 8.2.6.1/12

The 96-hour static study was conducted with *Pseudokirchneriella subcapitata* exposed to the penconazole metabolite CGA91305 (R116857) with a nominal exposure range of 0.56, 1.0, 1.8, 3.2, 5.6, 10, 18 and 32 mg/L and a culture medium control. Exposure solutions were prepared without the aid of a solvent. Study conditions were considered acceptable. Measured concentrations were within \pm 20% of the nominal concentration at the end of the study period and results were based on nominal concentrations. The validity criteria in OECD 201 was fulfilled both when investigating the data for 72h and 96h. According to the test guideline, the 72h endpoint is the preferred endpoint. The 72-hour endpoint was estimated to be:

Pseudokirchneriella subcapitata, 72 h

 $E_rC_{50} = 19.1 \text{ mg CGA} 91305/L_{nom}$ (95% confidence limits = 16.6 - 21.7 mg CGA 91305/L_{nom})

 $E_rC_{20} = 11.5 \text{ mg/L}_{nom} (95\% \text{ confidence limits} = 10.4 - 12.6 \text{ mg/L}_{nom})^*$

 $E_rC_{10} = 8.9 \text{ mg/L}_{nom} (95\% \text{ confidence limits} = 7.7 - 9.9 \text{ mg/L}_{nom})$

 $NOEC = 3.2 \text{ mg/L}_{nom}$

Representative formulation A6209G (Topas EC 100)

One reliable study (fulfilling the validity criteria of OECD TG 201) with the representative formulation A6209 (Topas EC 100) is considered suitable for use in hazard classification and risk assessment and are presented below.

Memmert U. & Knoch E. (1994) Report No. RCC 428916, Data Point: K-CP 10.2.1/04

The 72-hour static study was conducted with *Scenedesmus subspicatus* exposed to the Representative formulation A6209G (Topas EC 100) with a nominal exposure range of 0.032, 0.10, 0.32, 1.0, 3.2 and 10.0 mg/L mg A-6209G/L and a culture medium control. Exposure solutions were prepared without the aid of a solvent. Study conditions were considered acceptable. Measured concentrations were within \pm 20 % of the nominal concentration at the end of the study period and results were based on nominal concentrations. The validity criteria in OECD 201 was fulfilled. The 72-hour endpoint was estimated to be:

Scenedesmus subspicatus, 72 h

 $E_rC_{50} = 7.9 \text{ mg A6209G L}_{nom}$ (95 % c.i.: 3.3 – 18.5 mg A6209G /L), equivalent to 0.79 mg a.s./L

 $E_rC_{20} = 4.3$ mg A6209G /L_{nom} (95 % c.i.: 4.25 - 4.33 mg A6209G /L)*

 $E_rC_{10} = 3.1 \text{ mg A}6209\text{G./L}_{nom} (95 \% \text{ c.i.: } 3.0 - 3.2 \text{ mg A}6209\text{G./L})$

 $NOEC = 1.0 \text{ mg a.s./L}_{nom}$

Fulfilment of the data requirements (PPP-legislation)

According to Commission Regulation (EU) No 283/2013 data requirement 8.2.6.1. Effects on growth of green algae: A test shall be provided establishing EC10, EC20, EC50 for green algae and corresponding NOEC values for algal growth rate and yield, based on measurements of biomass or surrogate measurement variables. The information provided is considered sufficient to address the Commission regulation (EU) 283/2013 data requirement 8.2.6.1. Effects on growth of green algae for penconazole technical and the metabolites CGA71019/1,2,4-Triazole, CGA179944 and CGA91305. The information provided is also considered sufficient to address the Commission regulation (EU) 283/2013 data requirement 10.2.1: Acute toxicity to fish, aquatic invertebrates, or effects on aquatic algae and macrophytes for the representative formulation. A data gap has been identified for the metabolite CGA142856/triazole acetic acid and green algae, and it should be considered whether additional data is needed to address the toxicity of this metabolite.

^{*}EC₂₀-values were calculated by Hefner N. 2014a (Report No. D79317H, Data point: K-CA 8.2.6.1/13.

^{*}EC₂₀-values were calculated by Schuster A.K. 2016 (Report No. S16-02797, Data point: K-CP 10.2.1/05

CLP

For a comparison with the CLP-criteria, please see section 2.9.2.4.

2.9.2.3.3.2 Aquatic plants

One study with the aquatic plant *Lemna gibba* and **penconazole technical** was provided, but was considered not reliable. A study summary has still been provided for completeness, as requested by ECHA.

Hughes J.S. (1985a) Report No. MPI-267-22-1100-2, Data Point: K-CA 8.2.7/01 (Study not reliable)

The 14-d static study was conducted with *Lemna gibba* exposed to penconazole technical with a nominal exposure range of 0.05, 0.10, 0.20, 0.40 and 0.80 mg/L mg a.s./L and a culture medium control. Exposure solutions were prepared with the solvent aceton. No analytical verification of the test substance was performed and it was not possible to verify if the concentrations had been maintained throughout the test. The RMS also investigated the fulfilment of the validity criteria in OECD TG 221 using the statistical software ToxRat Professional 3.3.0 for the interval 0-7 days. The validity criteria were however not fulfilled (frond doubling time were 2.6 days and average specific growth rate 0.268d⁻¹, whereas the validity criteria require a doubling time of less than 2.5 days and an average specific growth rate of 0.275 d⁻¹). The study could thus not be regarded as valid and not reliable for in the risk assessment nor hazard classification purposes.

The endpoint listed in the LoEP of Penconazole (2008):

Lemna gibba, 14-day:

 $E_bC_{50:dry\ weight\ =\ }0.096\ mg\ a.s./L_{nom}$ (endpoint listed in the EFSA Journal (2008), 175, 1-104, re-calculated to 100% purity of active substance to account for the low purity of test material used in this study (87.3%).

 $NOEC = 0.096 \text{ mg a.s.}/L_{nom}$

Note, that as the study does not fulfill the validity criteria, only a very brief evaluation of the study have been performed by the RMS, e.g. suitability of the study conditions according to the OECD TG, the applied statistics and whether the estimated ECx/NOEC are correct have not been controlled by RMS

Fulfilment of the data requirements (PPP-legislation)

According to Commission Regulation (EU) No 283/2013 data requirement 8.2.7 Effects on aquatic macrophytes: (...) A laboratory test with Lemna species shall be performed for herbicides and plant growth regulators and for substances where there is evidence from information submitted under point 8.6 of Part A of this Annex or point 10.6 of Part A of the Annex to Regulation (EU) No 284/2013 that the test substance has herbicidal activity. (...). Penconazole is a fungicide, and there is no evidence of herbicidal activity in tests with terrestrial non-target higher plants (see Volume 3 - B.9.11 (PPP)). However, the non-reliable study with Lemna gibba may indicate that penconazole technical is toxic to aquatic plants at concentrations below 1 mg a.s./L. Thus, requesting a new study on aquatic plants and technical penconazole may be warranted. This should be further considered by EFSA.

CLP

For a comparison with the CLP-criteria, please see section 2.9.2.4.

2.9.2.3.4 Chronic toxicity to other aquatic organisms

No chronic toxicity data to other aquatic organisms are available.

2.9.2.3.5 Assessment of the toxicity (T) -criteria, in Annex II to Regulation (EC) 1107/2009

Penconazole fulfils the criteria for a toxic substance according to the criteria Annex II to Regulation (EC) 1107/2009:

- An active substance is toxic for aquatic organisms if the long-term no-observed effect concentration for marine and freshwater organisms is less than 0.01 mg/L. From laboratory studies on the toxicity of penconazole to aquatic organisms the preliminary long-term NOEC for daphnia is ≤ 0.069 mg a.s./L. Hence, the T-criterion is currently not fulfilled for penconazole. However, the study is regarded as supportive, due to uncertainty regarding the applied statistics. The applicant has informed RMS that the Penconazole Task Force intend to conduct a new study according to OECD TG 211, which fully complies with current guidance, with the data ready to be delivered on request by Q2 2022. Thus, the assessment for toxicity to marine or freshwater organisms may still change.
- the substance is not classified as carcinogenic (category 1A or 1B) or mutagenic (category 1A or 1B);

however, the substance is toxic for reproduction (category 2) pursuant to Regulation (EC) No 1272/2008

there is evidence of chronic toxicity, as identified by the classification as STOT RE 2 pursuant to Regulation (EC) No 1272/2008 (Please see Section 2.6.3.1.)

2.9.2.4 Comparison with the CLP criteria

2.9.2.4	Comparison	with the CLP crite	e ria			
2.9.2.4.	.1 Acute aqı	ıatic hazard				ic and
Table 110:	Summary of introphic level)	formation on acute	aquatic toxicity relev	ant for classifi	cation (the mo	ost critical
Method	Species	Test material	Results	Key or Supportive study	Remarks	Reference
OECD 203 (1981) ^a	Carp (Cyprinus carpio)	Penconazole Tech. Purity: 99% Batch: P 401013	96 h (static) LC ₅₀ = 3.8 mg a.s./L (nom)	Supportive	Not GLP Expiry date of technical penconazole not reported	1984a; CGA71818/0 076
OECD 203 (1981) ^a	Rainbow trout (Onchorynchu s mykiss)	Penconazole Tech. Purity: 87.3% Batch: FL 30634	96 h (static) LC ₅₀ ≤ 1.3 mg a.s./L (im) 96 h (static) LC ₅₀ > 5.6 mg	Key study	No analytical measuremen t at the end of the study, endpoint thus established to be either equal or lower than the derived endpoint	1984; CGA71818/0 073
OECD 203 (1981) ^a GLP	Rainbow trout (Onchorynchu s mykiss) Carp (Cyprinus carpio)	A6209G	96 h (static) LC ₅₀ > 5.6 mg formulation/L (nom) (LC ₅₀ < 6.8 mg formulation/L (nom)) Equivalent to: LC ₅₀ > 0.56 mg a.s./L (nom) (LC ₅₀ < 0.68 mg formulation/L (nom))	Supportive	Unknown batch used Expiry date of batch not reported	1984; CGA71818/0 005
OECD 203 (1981) ^a GLP	Carp (Cyprinus carpio)	A6209G (Topas 100 EC) Purity: 99% Batch: P 401013	$\begin{array}{c} 96 \text{ h (flow-through)} \\ LC_{50} > 10 \text{ mg} \\ \text{formulation/L} \\ \text{(nom)} \\ \text{($LC_{50} < 12.1$ mg} \\ \text{formulation/L} \\ \text{(nom))} \\ \\ \text{Equivalent to:} \\ LC_{50} > 1.0 \text{ mg} \\ \text{a.s./L) (nom)} \\ \text{($LC_{50} < 1.21$ mg} \\ \text{formulation/L} \\ \text{(nom))} \end{array}$	Supportive	Unknown batch used Expiry date of batch not reported	1984a; CGA71818/0 006

Method	Species	Test material	Results	Key or Supportive study	Remarks	Reference
US EPA- 660/3-75- 009 b	Daphnia magna	Penconazole tech. Purity: NA Batch: P. 11-14	48 h (static) EC ₅₀ = 6.75 mg/L (nom)	Key study	Not GLP Purity unknown	Hitz, 1981; CGA71818/0 079
OECD 202 (1984) ^b GLP	Daphnia magna	A6209G (Topas 100 EC) Purity: 100 g/L (nominal); 108 g/L (analysed) Batch: P.609143	48 h (static) EC ₅₀ = 36 mg /L (equivalent to 3.88 mg a.s./L) (nom)	Supportive	idhtó	Palmer et al, 2001; CGA71818/4 379
OECD 201 (2006) ° GLP	Green algae (Pseudokirch neriella subcapitata)	Penconazole tech. Purity:99.86% Batch: 0701	72 h (static) E _r C ₅₀ = 3.41 mg/L (mm)	Key study	of siries	Kley & Wydra, 2009: CGA071818_ 10633 & Lührs & Wydra, 2018: CGA071818_ 10633 d

^a Evaluated according to OECD 203 (2019)

mm: mean measured, nom: nominal. **Bold** provides the two lowest endpoints, both the lowest among the key studies and among the supportive studies performed on technical penconazole.

Acute aquatic hazard

According to the Guidance on the Application of the CLP Criteria (2017)¹⁶ fish, crustacea and aquatic plants represents the 'base-set' in most hazard profiles and represent a minimum dataset for a fully valid description of hazard. The lowest of the available toxicity values will normally be used to define the hazard category. Reliable studies with fish (*Cyprinus carpio* and *O. mykiss*) and green algae (*Pseudokirchneriella subcapitata*) are available for penconazole technical. In addition, a supportive study with crustacea (*Daphnia magna*) is available. Studies conducted with penconazole metabolites provide higher toxicity endpoints than studies with penconazole technical and have thus not been considered further with regard to the classification.

Algae/aquatic plants:

In the RAC opinion for penconazole (2012)¹⁷, the endpoint derived from a study with *Lemna gibba* (14-day EC₅₀ = 0.096 mg/l based on frond numbers) provided the lowest acute endpoint, and the reason penconazole was classified as: Aquatic hazard - category Acute 1 with an M-factor of 1. RMS has re-evaluated the Lemna-study and have regarded the study as not reliable due to major deficiencies: the validity criteria of OECD TG 221 were not fulfilled and exposure concentrations were not analytically verified, thus the endpoint cannot be considered reliable. RMS is thus of the opinion that this endpoint cannot be used for classification purposes anymore. However, RMS is of the opinion that there remains uncertainty regarding the toxicity for Lemna sp. and has proposed that EFSA should consider requesting a new study with Lemna.

Of the reliable studies with algae, the study by Kley and Wydra (2009) provided the lowest endpoint (P. subcapitata 72h (static) $E_rC_{50} = 3.41 \text{ mg/L}_{mm}$) is regarded as the key study for this organism group.

Aquatic invertebrates:

Only one acute (48h) study with *D. magna* (EC₅₀ = 6.75 mg a.s. /L) and technical penconazole by Hitz (1981) is available. The study is not considered fully reliable, as it is not conducted according to GLP. However, the study does fulfil the validity criteria of the OECD TG 202. Further, the available study with the representative formulation A6209G support (*D. magna*, EC₅₀ = 36 mg A-6209G /L_{nom} equivalent to 3.88 mg a.s./L_{nom}) supports that the endpoint

^b Evaluated according to OECD 202 (2004)

^c Evaluated according to OECD 201 (2006/2011)

^d Statistical re-analysis to determine EC₁₀- and/or EC₂₀-estimates.

¹⁶ ECHA 2017. Guidance on the Application of the CLP Criteria. Guidance to Regulation (EC) No 1272/2008 on classification, labelling and packaging (CLP) of substances and mixtures Version 5.0. July 2017.

¹⁷ Committee for Risk Assessment Opinion proposing harmonised classification and labelling at EU level of Penconazole. ECHA/RAC/CLH-O-000002679-61-01/F

is in the range established in the supportive study with penconazole technical. The study by Hitz (1981) is thus regarded as the key study for this organism group.

Fish:

In the dossier a study with rainbow trout (96h, Oncorhynchus mykiss, $LC_{50} \le 1.3$ mg a.s./ L_{im}) provides the lowest endpoint of the available fish studies, and the endpoint is ~ three time as low as the available study with carp (Cyprinus carpio, 96 h (static) $LC_{50} = 3.8$ mg a.s./ L_{nom}). In the study with rainbow trout, no measurement of the test substance was performed at the end of the test. However, in all other aspects, the study was conducted according to the requirements in OECD TG 203 and considered valid. When concentrations are only measured at the start of the test, it is not known whether the concentrations were maintained at test end. If concentrations at test end are not within $\pm 20\%$ of nominal, the endpoint should be based on mean measured concentrations. In the current study, the initial measured concentration of the top dose was 108% of nominal, wheras the remaining 4 concentrations were between ~60-70% of nominal. When we look at the whole dataset for aquatic studies conducted with penconazole technical (excet the study on O. myikss and excluding those studies considered not reied on), endpoints from two studies were in the end based on nominal concentrations (concentrations were maintained within $\pm 20\%$ of nominal in these studies), wheras endpoints from eight studies were based on mean measured concentrations (one of these were based on initial measured). Thus, it can be concluded that in the majority of the studies concentrations were not maintained. This further supports the RMS view that it cannot be excluded that the true endpoint of the study with O. mykiss may be below 1 mg a.s./L.

In another line of evidence, we may look at the two fish studies in the dossier with the representative formulation A6209G. In these studies it was concluded that in the study with O. mykiss 96 h (static), the LC_{50} was below 6.8 mg $A6209G/L_{nom}$ and above 5.6 mg $A6209G/L_{nom}$ (equivalent to < 0.68 mg a.s./ L_{nom} and >0.56 mg a.s./ L_{nom}). In the study with C. carpio 96 h (static) the LC_{50} was below 12.1 mg $A6209G/L_{nom}$ and above 10 mg $A6209G/L_{nom}$ (equivalent to <1.21 mg a.s./ L_{nom} and >1.0 mg a.s./ L_{nom}). The endpoints derived from these studies also indicate that rainbow trout is a more sensitive species than carp, and that relying on the active substance study with carp for classification is not conservative. The endpoint from the study with the representative formulation and O. mykiss is below 1 mg a.s./L, when expressed in terms of the active substance. However, there seem to be a general trend that the studies conducted with the representative formulation provides lower endpoints when expressed in terms of active substance, than the studies conducted with the active substance (technical). Thus relying on the O. mykiss product study alone for classification of the active substance, should be made with cation.

Another relevant isse is that the active substance study with carp is not conducted according to a GLP protocol (a non-GLP study). In the plant protection regulation, there is an independent requirement to reduce the need for repeating vertebrate studies. RMS has thus accepted the study to be sufficiently reliable, as the study do fulfill the the validity criteria of the relevant OECD TG. However, this may also be considered in the weight of evidence when deciding which endpoint to rely on for fish.

In an overall weight of evidence, RMS is thus of the opinion that the study with *O. mykiss* and penconazole technical cannot be disregarded for classification purposes. The study provides the lowest acute endpoint, and it can be established that the study with *O. mykiss* and penconazole technical provide an endpoint close to, but possible also below 1 mg/L, RMS is of the opinion that the study with *O. mykiss* should be regarded the key study for classification for this organism group.

The acute study providing the lowest toxicity value is the study with rainbow trout (96h, Oncorhynchus mykiss, $LC_{50} \le 1.3$ mg a.s./ L_{im}). As the acute toxicity endpoint is either close to or below 1 mg a.s./L, it cannot be excluded that the criteria for classifying as category 1 Acute in Commission Regulation (EC) No 1272/2008 Annex I: table 4.1.0 is fulfilled. In a conservative approach, RMS would thus propose that penconazole should be classified as Aquatic hazard: Category Acute 1. However, RMS acknowledges that this approach is conservative, and this may be further considered by ECHA.

M-factor

The supportive LC₅₀ used to set the acute aquatic hazard (96h, *Oncorhynchus mykiss*, LC50 \leq 1.13 mg a.s./L_{im}) may indicate a toxicity between \leq 1 and > 0.1. Thus, according to **Commission Regulation (EC) No 1272/2008 Annex I**: **Table 4.1.3**, the relevant M-factor is 1.

2.9.2.4.2 Long-term aquatic hazard (including bioaccumulation potential and degradation)

Table 111: Summary of information on long-term aquatic toxicity relevant for classification

Method	Species	Test material	Results ¹	Key or supportive study	Remarks	Reference
Test was conducted to an internal protocol ^a	Fathead minnow (Pimephales promelas)	Penconazole tech. Purity: 87.3% Batch: FL 830634	35 d (flow-through) NOEC = 0.36 mg a.s./L (mm) EC _{10; weight} =0.43 mg a.s./L _{mm} EC _{20;weight} =0.603 mg a.s./L _{mm}	Key study	Expiry date of technical penconazole not reported Age of embryos at test start: <48 hours. According to the TG the test should start as soon as possible after the eggs have been fertilized and no later than 12 h post fertilisation to ensure	1984c; CGA71818/00 74 & 2016; CGA071818_ 10494 ^b
Internal method US EPA-660/3-75-009 GLP	Daphnia magna	Penconazole tech. Purity: 87.3% Batch: FL-830634	21 d (flow-through) NOEC ≤ 0.069 mg a.s./L (mm)	Key study	exposure during early embryonic development. As there are some uncertainties regarding the applied statistics, the lowest dose tested (0.069 mg a.s./L) may actually be the LOEP, rather than the NOEC. The study has thus been regarded supportive for use in risk assessment. The study is still considered relevant for hazard classification purposes. The applicant intends to provide new data to clarify the correct endpoint.	Surprenant, 1984d; CGA71818/00 80
OECD 202 (1984) ° GLP	Daphnia magna	A6209G (Topas 100 EC) Purity: 100 g/L penconazole (nom) Batch: Op 211	21 d (semi-static) NOEC = 0.32 mg/L (nom) Equivalent to: NOEC = 0.032	Supportive	Expiry date of technical penconazole not reported	Memmert & Knoch, 1994a; CGA71818/12 35

				T7		
Method	Species	Test material	Results ¹	Key or supportive study	Remarks	Reference
		052	mg a.s./L EC ₁₀ = 0.49 mg prod./L Equivalent to: EC ₁₀ = 0.049 mg a.s./L EC ₂₀ = 0.81 mg prod./L Equivalent to: EC ₂₀ = 0.081 mg a.s./L		othe flecture	original and a section to the section to the section of the sectio
OECD, Proposal for Toxicity Test with Chironomidae (May 1998) d	Chironomus riparius	Penconazole tech. Purity: 97.4% Batch: EN 603012 Penconazole tech. Purity: 99.86% Batch: 0701	Water-spiked: NOEC = 0.8 mg/L (im) Sediment-spiked:	Supportive	regarded	Grade, 1999; CGA71818/13 90 & Kümmich, 2016b; CGA071818_ 10483 b
OECD 201 (2006) ° GLP	Green algae (Pseudokirc hneriella subcapitata)	Penconazole tech. Purity:99.86% Batch: 0701	72 h (static) $NOEC = 0.234$ $mg/L (mm)$ $E_rC_{20} = 0.62$ $mg/L (mm)$ $E_rC_{10} = 0.26$ $mg/L (mm)$	Key study		Kley & Wydra, 2009: CGA071818_ 10633 & Lührs & Wydra, 2018: CGA071818_ 10633 d

^a Evaluated according to OECD 210 (2013)

mm: mean measured, nom: nominal. Bold provides lowest endpoint.

Degradation

Penconazole is considered "not readily biodegradable", as no degradation was observed over a 29-day test period,

^b Statistical re-analysis to determine EC₁₀- and/or EC₂₀-estimates.

Evaluated according to OECD 211 (2012) dEvaluated according to OECD 218 and OECD 219 (2004)

^e Evaluated according to OECD 305 (2012)

following OECD guideline 301/B (Grade, 1999). Penconazole is considered hydrolytically stable under environmentally relevant pH conditions (van der Gaauw, 2002 and Spare, 1987a).

In natural water system penconazole was stable to aerobic mineralisation as mean levels of penconazole remained similar throughout the study period (Hurst and Sutcliffe, 2015). In water/sediment systems penconazole dissipated rapidly from the water phase to the sediment, where degradation was slow. Penconazole is stable in water/sediment systems with half-lives for the whole system ranging from 563 to >10,000 days (n=4) (Mamouni, 1998, Brands, 2009 and Hardy and Agostini, 2019e). For more detailed study summaries refer to section 2.8.2.

Penconazole is therefore considered to be not rapidly degradable for the purpose of classification according to the CLP criteria (2017).

Bioaccumulation

In the Guidance on the Application of the CLP Criteria (2017)¹⁸, it is stated that in order to assess the bioaccumulation potential, experimentally derived "BCF values of high quality" are ultimately preferred for classification purposes. According to Commission Regulation (EC) No 1272/2008 (CLP-regulation), Annex I: 4.1.2.8.1 A experimental derived BCF in fish of ≥ 500 is indicative of the potential to bioconcentrate for classification purposes.

As described in **section 2.9.2.1.2** above, one bioaccumulation study with the bluegill sunfish, *Lepomis macrochirus*, has been submitted. In this study, a maximum whole fish **bioconcentration factor (BCF) of 320** was derived. However, the study had deficiencies e.g., lack of measurement of TOC, as well as growth and lipid content of fish. These are parameters which may have a direct effect on the calculated BCF and may have contributed to an underestimation of the BCF in the available study. The study was thus regarded as not reliable, and do not fulfil the requirement of «high quality data ».

In the CLP-guidance, it is further noted that BCF derived from studies with poor or questionable quality should not be used for classification purposes, if high quality data on log K_{ow} are available. According to **Commission Regulation (EC) No 1272/2008**, Annex I: 4.1.2.8.1 . *Using a cut-off value of log K_{ow} \ge 4 is intended to identify only those substances with a real potential to bioconcentrate*. The measured logarithmic n-octanol/water partition coefficient of penconazole is 3.8 (log $K_{ow} = 3.8$ at 20 °C).

Therefore, in according to **Commission Regulation (EC) No 1272/2008 Annex I :4.1.2.8.1** and considering that the log $K_{ow} = 3.8$, the available data *does not give evidence* that penconazole has the potential to bioaccumulate.

RMS notes that there are uncertainties with regard to experimental derived BCF, and that the BCF may be underestimated in the available study. Thus, a new study investigating the BCF may provide a different conclusion.

Chronic hazard

According to the Guidance on the Application of the CLP Criteria (2017)¹⁹ fish, crustacea and algae/aquatic plants represents the 'base-set' in most hazard profiles and represent a minimum dataset for a fully valid description of hazard. The lowest of the available toxicity values will normally be used to define the hazard category. Valid studies with fish, aquatic invertebrates and green algae are available for penconazole technical. Studies conducted with penconazole metabolites provide higher toxicity endpoints than studies with penconazole technical and have thus not been considered further.

Algae/aquatic plants:

For a discussion regarding the relevance of *Lemna gibba* study, please see the section presenting the comparison with the CLP-criteria for the acute hazard (2.9.2.4.1), above. Of the valid studies with penconazole technical, the by Kley & Wydra, 2009 provided the lowest chronic endpoint: *P. subcapitata* 72h (static) $E_rC_{10} = 0.26 \text{ mg/L}$ (mm), and is regarded the key study for this organism group.

Fish:

Of the available chronic fish studies, the early life stage (ELS) toxicity test Surprenant (1984c) provides the lowest endpoint 35 d, *P. promelas*, EC_{10; weight}=0.43 mg a.s./L_{mm}, and is regarded the key study for this organism group.

¹⁸ ECHA 2017. Guidance on the Application of the CLP Criteria. Guidance to Regulation (EC) No 1272/2008 on classification, labelling and packaging (CLP) of substances and mixtures Version 5.0. July 2017. Section 4.1.3.2.3.3. Bioaccumulation p. 500-501.

¹⁹ ECHA 2017. Guidance on the Application of the CLP Criteria. Guidance to Regulation (EC) No 1272/2008 on classification, labelling and packaging (CLP) of substances and mixtures Version 5.0. July 2017.

RMS notes that a fish-full-life-cycle study which is already initiated, will probably be requested by EFSA during EFSA-stop-the-clock.

Aquatic invertebrates:

Of the available chronic studies with aquatic invertebrates and penconazole technical, the 21-day (flow-through) study with D. magna (NOEC \leq 0.069 mg a.s./L) by Suprenant (1984d) provides the lowest endpoint. An attempt was done to calculate the EC₁₀ from this study, and the EC₁₀ was estimated to be 0.1 mg a.s./L. However, the EC₁₀ was regarded as not reliable, as the lower limit confidence interval could not be determined. Due to some uncertainties raised by coRMS, as a conservative approach the NOEC is established to be either equal to or lower than 0.069 mg a.s./L. As the study provides the lowest endpoint of the available studies with aquatic invertebrates and penconazole technical (see table above) and this "lower-than"-endpoint in any case can be established to be below the CLP trigger of 0.1 mg/L RMS consider the study as reliable for hazard classification purposes, and also the key study. RMS are aware that it is preferred to use reliable EC₁₀-values for classification purposes and only the NOEC is available here. We further note that the available EC₁₀ from the study with the representative formulation A6209G (D. Magna, 21 d (semi-static) EC₁₀ = 0.49 mg prod./L, equivalent to: EC₁₀ = 0.049 mg a.s./L) may be regarded as supportive evidence, even though there are some uncertainties in using an endpoint where additional co-formulants are present.

RMS notes that the applicant has also informed that a new chronic study with *D. magna* is being generated, and will be ready to be delivered Q2 2022, and thus may be requested by ECHA and/or EFSA.

According to Commission Regulation (EC) No 1272/2008 Annex I: table 4.1.0 and considering that the lowest chronic effect concentration is < 0.1 mg/L (NOEC $\le 0.069 \text{ mg}$ a.s./L_{mm}) and that penconazole is not rapidly degradable, penconazole is proposed to be classified as Aquatic hazard: Category Chronic 1.

M-factor

The NOEC used to set the chronic hazard (\leq 0.069 mg a.s./ L_{mm}) is \leq 0.1 and > 0.01. Thus, according to **Commission Regulation (EC) No 1272/2008 Annex I: Table 4.1.3**, the relevant M-factor is 1.

NB. New data may become available during EFSA-stop-the-clock (fish full life cycle study and chronic toxicity study with *D. magna*), which may influence the M-factor.

2.9.2.5 Conclusion on classification and labelling for environmental hazards

Table 112: Summary of proposed classification for penconazole technical

Aquatic acute hazard	Aquatic chronic hazard	
Classification M-factor	Classification	M-factor
Hazardous to the aquatic environment —	Hazardous to the aquatic environment —	
Acute Hazard, Category 1	Chronic Hazard, Category 1	
H400: Very toxic to aquatic life	H410: Very toxic to aquatic life with	1
GHS09	long lasting effects	
Oli	GHS09	

The classification proposed above, is in line with the harmonised classification for penconazole provided in the RAC opinion for penconazole $(2012)^{20}$.

2.9.3 Summary of effects on arthropods

2.9.3.1 Summary of effects on bees

Table 113: Summary of acceptable toxicity endpoints for bees exposed to penconazole and the

 $^{^{20}}$ Committee for Risk Assessment Opinion proposing harmonised classification and labelling at EU level of Penconazole. ECHA/RAC/CLH-O-0000002679-61-01/F

representative formulation A62069G. Endpoints in **bold** are used in the risk assessment.

Organism	Test item	Test type		Endpoints ^a	Reference (author, date, document No.)
		Acute oral 48 hours	NI	48 h LD _{50, oral} >864 μg product /bee (equivalent to > 88.1μg a.s./bee) ^b	Franke, 2019;
Honey bee	A6209G	Acute contact 96 hours	New study	48 h LD _{50,contact} = 1000 μg product/bee (equivalent to 102 μg a.s./bee) 96 h LD _{50,contact} = 841 μg product/bee (equivalent to 85.8 μg a.s./bee)	VV-725130
Honey bee	A6209G	Chronic adult 10 days	New study	10 d LDD ₅₀ >19.5 μg product/bee/day 10 d NOEDD = 19.5 μg product/bee/day (equivalent to 1.94 μg a.s./bee/day)	Kling, 2015; A6209G_11060
Honey bee	A6209G	Chronic larva 8 days, repeated exposure	New study	8-day LD ₅₀ = 377.9 μg product /larva/development period 8-day NOED = 173.3 μg product /larva/development period (equivalent to 17.2 μg a.s./larva/ development period)	Eckert, 2016; A6209G_11082
Bumble bee (Bombus terrestris)	Penconazole technical (purity: 97.4%)	Acute oral, 48 hours Acute contact, 48 hours	New study	48 h LD ₅₀ = 157.1 μg a.s./bumble bee 48 h NOED = 47.8.0 μg a.s./bumble bee 48 h LD ₅₀ > 400 μg a.s./bumblebee 48 h NOED ≥ 400 μg a.s./bumblebee	Schmidt, 2019 ; VV-733640

^aNew study: study not previously submitted

Acute and chronic studies on honey bees have been performed with the representative formulation A6209G instead of technical penconazole. A justification from the applicant has been provided in **Volume 3 - B.9 (AS)**, section B.9.4.1. There are no studies on the residue levels of metabolites in nectar or pollen, nor any effect studies on honey bees and relevant metabolites available. Therefore, the data requirement regarding metabolites might be considered as not to be fulfilled. EFSA should considered if this constitutes a data gap and if additional data is required, or if the approach suggested for addressing the risk of metabolites according to the EFSA Bee GD (2013) as presented in **Volume 3 - B.9 (PPP)**, section **B.9.6.1.3** is sufficient.

Acute toxicity to bees

Four acute oral and contact toxicity studies with the representative formulation (A6209G) and honey bees are available. The study summaries have been included in **Volume 3 - B.9** (PPP). Three of the studies (**Kleiner, 1993: CGA71818/1230**; **Tornier, 1993: CGA71818/1236; Petto, 1994; CGA71818/1233**) have previously been evaluated and accepted in the EU in the Penconazole B9: Ecotoxicology, June 2007, Volume 3 DAR and DAR addendum (April 2008). These studies were, however, performed before the current test guidelines for testing acute contact (OECD 214) and acute oral (OECD 213) toxicity to honey bees were adopted and have several shortcomings. The current validity criteria with respect to the response of the toxic standard were considered not to be completely fulfilled, and in the direct contact tests the exposure doses were not well defined as the bees were sprayed with the test solution. Furthermore, the studies were not designed to determine LD₅₀ values as the bees were exposed to one low dose, only. RMS therefore consider that these studies are not acceptable for use in the risk assessment. In addition, a new acute oral and contact toxicity study with A6209G and honeybees (**Franke, 2019; VV-725130**), which are in accordance with the current testing guidelines, have been submitted. The study is considered acceptable and endpoints from this study are therefore used in the acute risk assessment for honey bees.

^b Highest dose tested. 43.3% mortality observed.

In addition, an acute toxicity study with technical penconazole and bumblebees (*Bombus terrestris*) (**Schmidt**, **2019**; **VV-733640**) has been submitted and is considered acceptable by RMS. The study summary have been included in **Volume 3 - B.9** (**AS**). The endpoints from the study is used in the acute risk assessment for bumble bees. No studies with solitary bees are available.

The information provided is considered sufficient to address the **Commission regulation (EU) 283/2013** data requirement for active substances (8.3.1.1. Acute toxicity to bees) and the **Commission regulation (EU) 284/2013** data requirement for the representative formulation (10.3.1.1. Acute toxicity to bees).

Chronic toxicity to honey bees

A new study investigasting the chronic toxicity of A6209G to adult honey bees (Kling, 2015; A6209G_11060) have been submitted. The study summary have been included in Volume 3 - B.9 (PPP). No mortality was observed up to and including 1000 mg A6209G /kg feeding solution, the highest concentration tested. All validity criteria were met, but the exposure concentrations were not verified as no samples of the stock or feeding solutions were analysed for determination of the actual content of penconazole. In the study report it was stated that 1000 mg A6209G/kg sucrose solution was the highest possible concentration according to the results of a non-GLP solubility test. Analytical verification is a requirement according to OECD guideline No. 245 (2017). However, as the study was performed before OECD 245 came into force, the feeding solutions were prepared daily (identical test concentrations each day), the highest possible concentration was tested with regard to the solubility problems and no mortality was observed during the study at any of the tested concentrations, the study is considered as acceptable. The endpoint is used in the chronic risk assessment for honey bees.

The information provided is considered sufficient to address the **Commission regulation** (EU) 283/2013 data requirement for active substances (8.3.1.2. Chronic toxicity to bees) and the **Commission regulation** (EU) 284/2013 data requirement for the representative formulation (10.3.1,2. Chronic toxicity to bees).

Effects on honey bee development and other honey bee life stages

A new chronic study with the representative formulation and honey bee larvae (Eckert, 2016; A6209G_11082) are available, in which the protocol of the single dose study (OECD TG 237, 2013) was followed except dosing the larvae repeatedly (from day 3 until day 6). The study was terminated at day 8, and a 8-day NOED was determined. A 7/8 day- NOED was considered acceptable as the endpoint to be used in the chronic risk assessment scheme for larvae described in the EFSA Bee guidance document (2013). However, since then the OECD TG 239 (2016) has been finalised, in which larvae are dosed repeatedly (from day 3 until day 6) and followed until adult emergence on day 22. Preferably, a 22-day NOED should be used in the chronic larvae risk assessment. No brood damaging properties (IGR) are, however known for the active substance penconazole and accordingly no significant increase in mortality is expected during the pupation and emergence phase of the larval study. The 8-day NOED from the study by Eckert (2016) is therefore used in the risk assessment.

The information provided is considered sufficient to address the **Commission regulation (EU) 283/2013** data requirement for active substances (8.3.1.3. *Effects on honeybee development and other honeybee life stages*) and and the **Commission regulation (EU) 284/2013** data requirement for the representative formulation (10.3.1.3. *Effects on honeybee development and other honeybee life stages*).

The endpoints relevant for the risk assessment on bees are summarised in the table above.

2.9.3.2 Other non-target arthropods

Several standard and extended lab studies with the representative formulation A6209G have been evaluated by the RMS. Most of these are still considered reliable and acceptable for the risk assessment. Additional new extended laboratory studies with $Typhlodromus\ pyri$ and $Aphidius\ rhopalosiphi$ have been submitted. These studies have been commissioned to provide more detailed toxicity data (LD₅₀ and ED₅₀ values) to further support the risk assessment. Furthermore, the previously evaluated semi-field and field studies with $Aphidius\ rhopalosiphi$ and $Typhlodromus\ pyri$ are still considered acceptable for the risk assessment.

The endpoints relevant for the risk assessment for arthropods other than bees are summarised in the table below.

Table 114: Summary of acceptable and supportive endpoints for non-target arthropods exposed to A6209G.

Endpoints in **bold** are used in the risk assessment.

Test species	Test Item	Exposed life stage	Test type	Endpoint	Reference (author, date, Document No.)
		Standard	laboratory stud	ies	
Aphidius rhopalosiphi	Penconazole in A6209G	Adult	Tier I	LR ₅₀ >50 <100 g a.s./ha; NOER _{repro} <10 g a.s./ha	Aldershof, 1999; CGA71818/1389
Typhlodromus pyri	Penconazole in A6209G	Proto- nymphs	Tier I	LR ₅₀ >10 <50 g a.s./ha; NOER _{repro} <10 g a.s./ha	Calis, 1999; CGA71818/1386
Poecilus cupreus	A6209G	Adult	Tier I	LR ₅₀ >100 g a.s./ha; NOER _{feeding} = 100 g a.s./ha	Hoogendoorn, 1999; CGA71818/1387
		Extended	laboratory stud		S/10 10 1/0 US
Aphidius rhopalosiphi	Penconazole in A6209G	Adult	Tier II (3- dimensional test design)	LR ₅₀ and ER ₅₀ >400 g a.s./ha); NOER _{repro} = 400 g a.s./ha)	Stevens, 2019; VV-471932
Typhlodromus pyri	Penconazole in A6209G	Proto- nymphs	Tier II (2- dimensional test design)	LR ₅₀ = 138 g a.s./ha; NOER _{mortality} = 50 g a.s/ha; ER ₅₀ >100 g a.s./ha; NOER _{repro} = 100 g a.s./ha	Fallowfield, 2019; VV-619272
Typhlodromus pyri	A6209G	Proto- nymphs	Tier II	LR50 >9.6 g a.s./ha; NOER _{repro} <9.6 g a.s./ha	Kleiner, 1993a; CGA71818/1228
Chrysoperla carnea	A6209G	Larvae	Tier II	LR ₅₀ >200 g a.s./ha; NOER _{repro} = 200 g a.s./ha	Manley, 2001; CGA71818/4377
Coccinella septempunctata	A6209G	Larvae	Tier II	LR ₅₀ >200 g a.s./ha; NOER _{repro} = 200 g a.s./ha	Halsall, 2002; CGA71818/4384
Orius laevigatus	A6209G	Nymphs	Tier II (3-D)	LR50 >200 g a.s./ha; NOERrepro = 200 g a.s./ha	Vinall, 2002; CGA71818/4383 ^a
	10, 10 , 10°, 1	Sen	i-field studies		
Aphidius rhopalosiphi	A6209G	Adult	Semi field	NOER _{repro} = 135 g a.s./ha	Reber, 2002; CGA71818/4380
of xs	All Colonials	F	ield studies		
Predatory mites (Acari: Phytoseiidae)	A6209G	Adult	Field	No statistically significant effects on mite populations following 5 applications at 10 and 50 g a.s./ha with 11-13 day spray intervals.	Aldershof, 1999; CGA71818/1385

^a Study only considered supportive due to deviations from the test guideline

2.9.4 Summary of effects on non-target soil meso- and macrofauna

Table 115: Summary of acceptable and supportive endpoints for non-target soil meso- and macrofauna exposed to penconazole, the representative formulation A6209G and relevant metabolites. Endpoints in

bold are used in the risk assessment.

Organism	Test item	Applic. method of test a.s./OM	Test type		Endpoints	Reference (author, date: document No.)
	Penconazole		Acute ^a	EU°	LC _{50corr} >500 mg a.s./kg soil dw (331.5 mg as/kg, adjusted to 100 % a.s)	Schlaepfer, 1984; CGA71818/ 0085
	Penconazole in A6209G		Acute ^a	EU°	LC _{50corr} >500 mg a.s./kg soil dw	Rang, 1993) CGA71818/ O 1231
Earthworm	CGA71019		Acute ^a	EU°	$LC_{50} > 1000$ mg d_{50} so it dw	Heimbach, 1986; CGA71019/ 0021
Eisenia fetida	CGA179944		Acute ^a	EU° ;	iC 50 8 1000 mg/kg (Soil 40)	Baetscher, 2002; CGA179944 /0012
			Acute ^{ab} ii	Cont.	100 50 \$1000 mg/kg soil dw	Lührs, 2009; CGA179944 _10030
	CGA142856	, FSF	A A A aute ab	Conf.	C ₅₀ 0000 mg/kg soil dw	Lührs, 2002; CGA142856 /0024
	Penconazole in A6209G	Mixed into the soil / 10% peat	56 day Sublethal reproduction test	EU°	NOEC ≥ 100 mg A6209G/kg soil dw (≥ 10 mg a.s./kg soil dw) NOEC _{corr} ≥5 mg a.s./kg soil dw ^h	Gillham, 2002; CGA71818/ 4381
cunent is	CGA71019	Mixed into the soil/ 10% peat	56 day Sublethal reproduction test	EU°	NOEC > 0.0708 mg/kg soil dw	Ehlers, 2000; CGA64250/ 4385
Earthworm	III SILLE	Mixed into the soil/ 10% peat	56 day Sublethal reproduction test	EU ^{ec}	NOEC = 1.0 mg/kg soil dw ^e	Moser & Scheffczyk 2004; CGA64250/ 4683
fetida (CGA179944	Mixed into the soil/ 10% peat	56 day Sublethal reproduction test	New study	NOEC ≥ 1000 mg/kg soil dw	Friedrich, 2016; CGA179944 _10010
	CGA142856 (triazole acetic acid)	Mixed into the soil/ 10% peat	56 day Sublethal reproduction test	New study	NOEC ≥ 1000 mg/kg soil dw	Friedrich, 2017; CGA142856 _10038
	CGA91305	Mixed into the soil/	56 day Sublethal	EUf	NOEC = 309 mg/kg soil dw $EC_{10} = 239$ mg/kg soil dw $EC_{10, corr} = 120$ mg/kg soil dw ^h	Friedrich, 2013;

Organism	Test item	Applic. method of test a.s./OM	Test type	Endpoints		Reference (author, date: document No.)
		5% peat	reproduction test		$EC_{20} = 343 \text{ mg/kg soil dw}$	CGA091305 _10001
	Penconazole in A6209G	Mixed into the soil/ 10% peat	28 day Reproductio n test	EU°	NOEC= 973 mg A6209G/kg soil dw (98.8 mg a.s./kg soil dw) EC ₁₀ = 97.6 mg a.s./kg soil dw EC _{10corr} = 48.8 mg a.s./kg soil dw ^h EC ₂₀ = 112.7 mg a.s./kg soil dw	Barth, 2001; CGA71818/ 4376
	CGA71019 (1,2,4-	Mixed into the soil/	28 day Reproductio n test	EU°	NOEC = 1.8 mg/kg soil dw	Moser & Scheffczyk, 2002; CGA71019/ 0053
Folsomia candida	triazole)	Mixed into the soil/	28 day Reproductio n test	New study	NOEC = 4.0 mg/kg soil dw	Lührs, 2009c; CA469_100 78
	CGA179944	Mixed into the soil/	28 day Reproductio n test	New study	NOEC ≥ 1000 mg/kg soil dw	Friedrich, 2016a; CGA179944 _10009
	CGA142856 (triazole acetic acid)	Mixed into the soil/ 10% peat	28 day Reproductio n test	Conf. data	NOEC = 15.6 mg/kg soil dw	Klein & Rosenkranz , 2002; CGA142856 /0022
÷. C	CGA91305	Mixed into the soil/ 5% peat	28 day Reproductio n test	EU ^f	NOEC = 309 mg /kg soil dw NOEC _{corr} = 155 mg/kg soil dw^h	Friedrich, 2013a; CGA091305 _10000
Shights hill	Penconazole in A6209G	Mixed into the soil/	14 day Reproductio n test	New study	NOEC \geq 1000 mg A6209G /kg soil dw (\geq 101.4 mg a.s./kg soil dw) NOEC _{corr} \geq 50.7 mg a.s./kg soil dw ^h	Schulz, 2016; A6209G_11 122
Hypoaspis	CGA71019 (1,2,4- triazole)	Mixed into the soil/	14 day Reproductio n test	EUg	NOEC = 171 mg/kg soil dw $EC_{10} = 190$ mg a.s./kg soil dw $EC_{20} = 241$ mg a.s./kg soil dw	Schulz, 2014; CGA071019 _10008
aculeifer	CGA179944	Mixed into the soil/	14 day Reproductio n test	New study	NOEC ≥ 1000 mg/kg soil dw	Schulz, 2016a; CGA179944 _10007
	CGA142856 (triazole acetic acid)	Mixed into the soil/	14 day Reproductio n test	New study	NOEC ≥ 1000 mg/kg soil dw	Schulz, 2017; CGA142856 _10040

Organism	Test item	Applic. method of test a.s./OM	Test type		Endpoints	Reference (author, date: document No.)
	CGA91305	Mixed into the soil/	14 day Reproductio n test	EUf	$\begin{aligned} & \text{NOEC} \geq 1000 \text{ mg/kg dw soil} \\ & \textbf{NOEC}_{corr} \; \geq \; 500 \; \; \textbf{mg/kg soil} \\ & \textbf{dw}^{h} \end{aligned}$	Schulz, 2014a; CGA091305 _10002

^a Supporting information. Studies submitted and evaluated for the first EU approval review of penconazole but no longer a data requirement under Commission Regulation (EU) No 283/2013 and 284/2013.

No sub-lethal toxicity studies on earthworms, collembolans (*folsomia candida*) or predatory mites (*Hypoaspis aculeifer*) and technical penconazole have been submitted. Instead, the chronic studies on these soil organisms were carried out with the representative formulation A6209G. A justification from the applicant has been provided in **Volume 3 - B.9 (CA)**, section B.9.4.1. The study summaries have been included in **Volume 3 - B.9 (PPP)**.

Two studies on earthworms and the representative formulation A6209G (Nienstedt, 2000; CGA71818/4328; Gillham, 2002; CGA71818/4381) have been submitted. The study by Nienstedt (2000; CGA71818/4328) is considered as not acceptable by RMS, since one of the validity criteria was not met (coefficient of variation for reproduction in the controls >30%), and since A6209G was sprayed onto the soil surface, whereas according to Commission Regulation (EU) 283/2013 8.4.1 "The test substance shall be incorporated into the soil to obtain a homogenous soil concentration". Furthermore, the study design was limited by few and low test concentrations. The study by Gillham (2002; CGA71818/4381) is considered acceptable by RMS and only the endpoint from this study is is included in the table above.

One study on *Folsomia candida* and the representative formulation A6209G (**Barth, 2001; CGA71818/4376**) has been submitted. This study has previously been evaluated and accepted in the EU. In addition, a new study on *Hypoaspis aculeifer* and A6209G (**Schulz, 2016; A6209G_11122**). Both studies are considered acceptable by RMS.

Totally five Sub-lethal toxicity studies on earthworms, five on collembolans (*folsomia candida*) and four on predatory mites (*Hypoaspis aculeifer*) and the relevant soil metabolites CGA71019, CGA179944, CGA142856 and CGA91305 have been provided. The study summaries have been included in **Volume 3 - B.9 (AS).** All the 14 studies are considered acceptable by RMS and endpoints from the studies are included in the table above.

The information provided is considered sufficient to address the **Commission regulation (EU) 283/2013** data requirement for active substances (8.4.1 Earthworm – sub-lethal effects and 8.4.2.1. Species level testing.) and the **Commission regulation (EU) 284/2013** data requirement for the representative formulation (10.4.1.1 Earthworms - sub-lethal effects and 10.4.2. Effects on non-target soil meso- and macrofauna (other than earthworms).

2.9.5 Summary of effects on soil nitrogen transformation

Table 116: Summary of acceptable and supportive endpoints for nitrogen transformation. Endpoints in **bold** are considered relevant for the risk assessment.

^b Supporting information. Confirmatory data, but no longer a data requirement under Commission Regulation (EU) No 283/2013.

^c Study listed in the EFSA Journal (2008) 175, 1-104 and in the Draft Assessment Report for Penconazole (2007) Volume 3 Annex B.9.

^d Values estimated in accordance with **Commission Regulation (EU) No 283/2013**. EC₁₀ and/or EC₂₀ values only shown for endpoints where estimation was possible and accepted by RMS

^e Reviewed in triazole derivative metabolite assessment (COP no. 2011.00502)

f Previously evaluated in the EU: Volume 3, B.9 of the DRAR for Propiconazole (April 2017; RMS Finland)

g Previously evaluated in the EU: Volume 3, B.9 of the DRAR for metconazole (August 2019; RMS Belgium).

h Penconazole and its metabolite CGA91305 have log Pow values of 3.8 and 2.1, respectively (*i.e.* greater than 2), and therefore it is necessary to correct the endpoints that should be used in the risk assessment by a factor of 2 regardless of the organic matter content in the test soil, as was agreed in EFSA Supporting publication 2015;EN-924)

Organism	Test item	Test type		Reference (author, date, document no.)	
Nitrogen transformation	Penconazole in A6209G	Nitrate formation	New study	< 25% deviation from control after 28 days of exposure at 13.13 mg A6209G/kg soil d.w. (1.34 mg a.s./kg d.w. soil)	Persdorf, 2019; VV-716611
Nitrogen transformation	Penconazole in A6209G	Nitrate formation	EU	< 25% deviation from control after 28 days of exposure at 0.32 mg a.s./kg d.w. soil (240 g a.s./ha) a	Lang, 1993; CGA71818/1232
Nitrogen transformation	CGA71019 (1,2,4- Triazole)	Nitrate formation	EU	<25 % deviation from control after 28 days of exposure at 0.35 mg/kg d.w. soil	Völkel, 2000; CGA71019/0042
Nitrogen transformation	GG 11500 11	Nitrate formation	EU	< 25% deviation from control after 28 days of exposure at 0.20 mg/kg d.w. soil	Völkel, 2001; CGA179944/0008
Nitrogen transformation	CGA179944	Nitrate formation	New study	< 25% deviation from control after 28 days of exposure at 0.067 mg/kg d.w. soil	Feil, 2009; CGA179944_10036
Nitrogen transformation	CGA142856 (triazole acetic acid)	Nitrate formation	Confirmatory data	< 25% deviation from control after 28 days of exposure at at 0.08043 mg/kg d.w. soil	Reis, 2002; CGA142856_0023
Nitrogen transformation	CGA91305 (R116857)	Nitrate formation	New study	< 25% deviation from control after 28 days of exposure at 0.377 mg/kg d.w. soil	Völkel, 2002; CGA77502/0006

^a Study considered supportive only, as the validity criteria could not be properly assessed.

d.w.: dry weight

Five studies with penconazole metabolites have been submitted and are summarised in **Volume 3 – B.9 (AS).** No studies with penconazole technical are available. However, studies with the representative formulation have been provided and are included in **Volume 3 – B.9 (PPP).**

According to **Commission regulation** (**EU**) **283/2013** data requirements <u>8.5 Effects on soil nitrogen transformation</u>: A test shall provide sufficient data to evaluate the impact of active substances on soil microbial activity, in terms of nitrogen transformation. (...) Soils used shall be freshly sampled agricultural soils. The sites from which soil is taken shall not have been treated during the previous two years with any substance that could substantially alter the diversity and levels of microbial populations present, other than in a transitory manner. As no studies on nitrogen transformation and technical penconazole was available, RMS accepts to use the studies with the representative formulation A6209G to address the **Commission regulation** (**EU**) **283/2013** data requirement 8.5 Effects on soil nitrogen transformation for the active substance. The available studies fulfil the validity criteria of the respective OECD guideline (except the study by Lang (1993), which is considered supportive), and for all metabolites and the representative formulation <25% effects on soil nitrogen transformation were observed after 28 days of exposure. The studies also meet the test conditions specified in the data requirements. Thus, the **Commission regulation** (**EU**) **283/2013** data requirement 8.5 Effects on soil nitrogen transformation is considered addressed for the penconazole, A6209G and the metabolites.

2.9.6

2.9.6 Summar Table 117: S A6209G. Er	ry of effects on t Summary of accep ndpoints in bold an	terrestrial non-ta table and supportive te considered relevan	rget higher plants e endpoints for Non-target terrestri nt for the risk assessment. Endpoints Seedling emergence & vegetative vigour 50%	al plants with the	and ineration of
Organism	Test item	Test type	Endpoints Sulling	Reference (author, date, File No.)	
Non-target terrestrial plants (6 plant species from 5 plant families)	A6209G (Topas 100 EC)	Screening data on vegetative vigour & seedling emergence	Seedling emergence & vegetative vigour <50% effect \$300 g/ha (30 g a.s./ha) a	Wälder, 2000 ©CGA71818/4342	
Non-target terrestrial plants (6 plant species from 5 plant families)	A6209G (Topas 100 EC)	Screening data on vegetative vigour seedling emergence	No effects observed on New seedling energence & vegetarive vigour ≥200 g a.s./ha	Tomoroga, 2011 A6209G/10023	

^a Supportive endpoint. The doses used in the current study are not sufficiently high to cover the worst-case GAP. Endpoints in **bold** used in the risk assessment

Two screening studies with the representative formulation A6209G (Topas 100 EC) and higher plants have been submitted. Study summaries are presented below, and the studies have been evaluated according to recent guidelines and standards.

According to European commission (EU) 284/2013 data requirements 10.6.1. Summary of screening data: (...) Screening data shall be required for plant protection products other than those exhibiting herbicidal or plant growth regulator activity, and if the toxicity cannot be established from data on the active substance (point 8.6.1 of Part A of the Annex to Regulation (EU) No 283/2013). The data shall include testing from at least six plant species from six different families including both mono- and dicotyledons. The tested concentrations/rates shall be equal or higher than the maximum recommended application rate. If screening studies do not cover the specified range of species or the concentrations/rates necessary, then tests in accordance with point 10.6.2 shall be carried out.

In the data requirements it is stated that the tested concentrations/rates shall be equal or higher than the maximum recommended application rate. In the study by Wälder (2000), the doses were too low to cover the worst-case GAP of the representative uses. The new study by Tomoraga (2011) meets the data requirement with regard to the doses tested. RMS further notes that two of the tested species (Avena fatua (wild oats) and Zea mays (maize)) are in the same plant family (Poaceae) and thus only 5 plant families are represented, as opposed to 6 stated in the data requirements.

Further, the studies either do not fully comply with the validity criteria and/or exhibit other deviations from the OECD test guidelines. For example, no analytical verification of the dose rates has been performed in the two available studies which is considered a major deviation. In addition, the provided studies have not been conducted according to GLP (non-GLP study), which is a requirement according to Commission Regulation (EU) No **284/2013.** The studies have thus been regarded as supportive only.

Even though no effects were reported at up to 200 g a.s./ha in the newest study by Tomoroga (2011), RMS notes that some phytotoxic effects were observed at the two highest doses tested (15 and 30 g a.s./ha) in the study by Wälder (2000). Information on the number of plants exhibiting these effects per concentration, or the type of phytotoxic effects is however not reported. RMS also notes that a study with technical penconazole and the aquatic plants are available (L. gibba, 14-d (static) $EC_{50} = 0.11$ mg a.s./ L_{nom}). This study is not considered acceptable, due to lack of analytical verification of the test substance at test-end. However, it is reasonable to assume that the endpoint will either be equal to or lower 0.11 mg a.s./L, and thus indicate that penconazole may be toxic to higher plants.

As the two available studies have been regarded as "Supportive only" by RMS, RMS have informed the applicant that we consider a new valid study complying with the GLP-criteria should be provided to finalise the risk assessment. We have thus asked them (22nd of September 2021) to consider conducting a new valid study on terrestrial plants. To take into account the slight effects observed in Wälder (2000), and the effects observed in the study with aquatic plants, we have recommended a full study rather than a screening test. The 13th of October 2021, we received the following comment by the applicant:

The applicants acknowledge the deficiencies in the existing non-target plant screening studies (Tomoroga, 2011; Wälder, 2000) as stated by the RMS (non-GLP and no analytical dose verification).

In addition to the submitted data, two additional studies according to OECD TG 208 and 227 are available to the Penconazole Task Force for the penconazole 10% EC formulation, DOURO (carried out in lieu of the technical active substance), which the notifier now has the right of access to:

- 1. Bramby-Gunary J. (2009a). Evaluation of the Phytotoxicity of "DOURO" (Penconazole 100 g a.s./l) GLP Vegetative Vigour Test, Terrestrial Non-Target Plants (Based on OECD Guideline 227). Document No. ACE-08-159.
- 2. Bramby-Gunary J. (2009b). Evaluation of the Phytotoxicity of "DOURO" (Penconazole 100 g a.s./l) GLP Seedling Emergence and Seedling Growth Test Terrestrial Non-Target Plants (Based on OECD Guideline 208). Document No. ACE-08-158

Both studies are available for submission during the EFSA-stop-clock if requested by EFSA during peer review. They both meet the validity criteria according to the current guidance and were carried out in compliance with GLP. Analytical dose verification of the test substance confirms that the test item concentrations were within acceptable limits (88% to 90% of nominal values).

Treatments were applied to two monocotyledon and four dicotyledon plant species from six different families (Avena sativa, Allium cepa, Cucumis sativus, Glycine max, Brassica napus and Beta vulgaris), using a dose range of 0.78 to 50 g a.s./ha in both studies. Following both pre- and post-emergence applications on 7 species, the NOER was confirmed as 50 g a.s./ha, and the ER50 values were >50 g a.s./ha.

Syngenta also intends to conduct two new studies with the formulated product (A6209G; penconazole 100 g/L EC) in full accordance with current guidance (OECD TG 208 and 227). However, these data are unlikely to be available before Q3 2022.

Requesting a new GLP-study on non-target terrestrial plants should be considered by EFSA.

- 2.9.7 Summary of effects on other terrestrial organisms (flora and fauna)
- 2.9.8 Summary of effects on biological methods for sewage treatment

 Table 118:
 Summary of acceptable and supportive endpoints for activated sludge with the penconazole

Organism	Test item	Test type		Endpoints	Reference (author, date, document no)
Activated Sludge	Penconazole	Activated sludge respiration Inhibition test	EU	$EC_{50} > 100 \text{ mg/L}_{nom}$ $EC_{20} = 82.1 \text{ mg/L}_{nom}$ $NOEC = 32 \text{ mg/L}_{nom}$	Grade, 1999a; CGA71818/4323

technical. Endpoints in bold are considered relevant for the risk assessment.

According to Commission Regulation (EU) No 283/2013 data requirement 8.8. <u>Effects on biological methods for sewage treatment</u>: A test shall provide an indication as to the potential of the active substance on biological sewage treatment systems. (...) Effects on biological methods for sewage treatment shall be reported where the use of plant protection products containing the active substance can give rise to adverse effects on sewage treatment plants. One study with penconazole on activated sludge has been provided and is considered valid for the risk assessment (see the table, above). The data requirement is thus considered fulfilled.

The EC20 of 82.1 mg a.s./ L_{nom} is 5335 times greater than the worst-case FOCUS step 1 initial PEC_{SW} of 0,01537 mg/l (cucumber, BBCH 51-89, 3 x 50 g a.s./ha). Dilution prior to reaching sewage treatment works may also be expected to reduce the risk further. These results suggest limited risk to sewage treatment facilities.

2.9.9 Summary of product exposure and risk assessment

2.9.9.1 Risk assessment for birds and other terrestrial vertebrates

Birds

The risk assessment for birds has been performed according to the latest EFSA Guidance Document on Risk Assessment for Birds and Mammals (2009)²¹.

Table 119: Summary of endpoints used in the risk assessment for birds

Organism	Testitem	Test type	Endpoints ^a	Reference (author, date, File No.)
Mallard duck (Anas platyrhynchos)	Penconazole	Acute oral	LD ₅₀ >1590 mg/kg bw ^a	1984; CGA71818/0067
Bobwhite quail (Colinus virginianus)	Penconazole	Acute oral	LD ₅₀ >2510 mg/kg bw ^a	1984a; CGA71818/0066
Mallard duck (Anas platyrhynchos)	Penconazole	Sub-chronic toxicity and reproductive	NOEL = 28.9 mg/kg bw/d	1985; CGA71818/0068

Used in the geomean calculation of the acute endpoint: $LD_{50}(geomean)$ =1998 mg/kg bw

Table 120: Screening step – acute risk assessment for birds

GAP	Indicator species	Shortcut value	Rate (kg a.s/ha)	MAF ₉₀	DDD (mg a.s/kg bw/day)	LD ₅₀ (geomean) (mg a.s/kg bw)	TERA
-----	-------------------	----------------	------------------------	-------------------	------------------------------	--	------

²¹ European Food Safety Authority; Guidance Document on Risk Assessment for Birds & Mammals on request from EFSA. EFSA Journal 2009; 7(12):1438. doi:10.2903/j.efsa.2009.1438. Available online: www.efsa.europa.eu

193

Pome fruit	Small insectivorous bird	46.8	0.04	1.3	2.43		822
Vines		95.3	0.03	1.4	4.0	1998	500
Cucumber		1.70.0	0.05	1.6	12.70		157
Cucumber		158.8	0.035	1.0	5.56		359

The TER_A values for penconazole are greater than the relevant trigger value of 10, indicating **acceptable acute risk** to birds following the use of A6209G, according to the proposed use pattern.

Table 121: Screening step – long-term risk assessment for birds

GAP crop	Indicator species	Shortcut value	Rate (kg a.s/ha)	MAFm	$f_{ m twa}$	DDD (mg a.s/kg bw/day)	NOAEL (mg a.s/kg bw/day)	TERLT
Pome fruit	Small insectivorous bird	18.2	0.04	1.5		0.58	ud dithis	50
Vines	Small	38.9	0.03	1.6	0.53	0.99	28.9	29
Cucumber	omnivorous bird	64.8	0.05	2.0	437/9/0.	3.43		8
Cucumber		04.8	0.035	1.00	ion dissil	1.20		24

The TER_{LT} values for penconazole are greater than the trigger value of 5, indicating acceptable long-term risk to birds following the use of A6209G, according to the proposed use pattern.

Risk for birds through drinking water

Table 122: Ratios of effective application rate (AR_{eff}) to acute and long-term endpoints for penconazole following the use of A6209G - puddle scenario

Exposure scenario AR _{eff} (g a.s/ha) ^a	xposure scenario (g (mL/g)		Ratio of effective application rate to endpoint	Ratio trigger
Acute	2122	LD ₅₀ >1998	< 0.072	2000
Long-term 145	2123	NOEL = 28.9 5		3000

The resulting ratios are less than the trigger of 3000 indicating that further assessment of the acute and long-term risk to birds, from drinking water from puddles, is not required for penconazole.

Secondary poisoning

Risk to earthworm-eating birds

Table 123: Long-term risk from secondary poisoning to earthworm-eating birds

Test item	Maximum PEC _{Saccumulation} (mg/kg)	Kow	foc	Koc	BCF	PECworm (mg/kg)	DDD (mg a.s./kg bw/day)	NOEL (mg a.s./kg bw/day	TER _{LT}
Penconazol e	0.0421	5248	0.02	2123	1.25	0.053	0.055	28.9	526

The TER value for penconazole is greater than the long-term trigger value of 5, indicating **acceptable risk to earthworm eating birds** following use of penconazole in A6209G, according to the proposed use pattern. The RMS notes that at the current stage of the evaluation, the input for the PEC_{soil} modelling may be changed during peer review, and new modelling may be necessary. The values presented are thus regarded as preliminary values. However, as the margins of safety are large, the outcome of the risk assessment is not expected to change following new modelling.

Risk to fish-eating birds

Table 124: Long-term risk from secondary poisoning to fish-eating birds

Test item	Maximum Step 3 PECsw (mg a.s./L)	BCF	PEC _{fish} (mg a.s./kg)	DDD Long-term NOEL (mg a.s./kg bw/day) bw/day)	TER _{LT}
Penconazole	0.00159	320	0.509	0.081 28.9	357

The TER value for penconazole is greater than the long-term trigger value of 5, indicating **acceptable risk to fisheating birds** following use of penconazole in A6209G, according to the proposed use pattern. The RMS notes that at the current stage of the evaluation, the input for the PECsw modelling may be changed during peer review, and new modelling may be necessary. Likewise, the bioconcentration study with fish has not been accepted by the RMS and no reliable BCF is available. The values presented are thus regarded as preliminary values. However, as the margins of safety are large, the outcome of the risk assessment is not expected to change following new input values.

Metabolites

Eight metabolites are found in relevant concentrations as residues in plant material and should be considered for the avian risk assessment:

CGA71019 (1,2,4-triazole): Maximum Total Radioactive Residues (TRR) of 6.1 % in plants

CGA179944: TRR of 12.6 % in plants

CGA131013 (triazolyl alanine): TRR of 86.7 % in plants

CGA205369 (triazolyl lactic acid): TRR of 76.1 % in plants

CGA142856 (triazolyl acetic acid): TRR of 33.2 % in plants

CGA132465: TRR of 66.9 % in plants

CGA190503: TRR of 4.3 % in plants, later detected at maximum concentrations of 0.02 mg/kg in fruits

CGA127841: TRR of 3.2 % in plants, later detected at maximum concentrations of 0.02 mg/kg in fruits

Based on the available mammalian and avian toxicity data – and that the risk assessment for birds with the active substance is acceptable already at the screening level – it is considered that **the risk to birds is acceptable following exposure to the relevant metabolites.** Please refer to **Volume 3 (PPP) - B.9.2.1.2** for details on the risk assessment.

Mammals

The risk assessment for mammals has been performed according to the latest EFSA Guidance Document on Risk Assessment for Birds and Mammals (2009)²².

²² European Food Safety Authority; Guidance Document on Risk Assessment for Birds & Mammals on request from EFSA. EFSA Journal 2009; 7(12):1438. doi:10.2903/j.efsa.2009.1438. Available online: www.efsa.europa.eu

Table 125: Summary of the endpoints used in the risk assessment for mammals

Organism	Test item	Test type	Endpoints ^a	Reference (author, date, File No.)
Rabbit	Penconazole	Acute oral	LD ₅₀ = 971 mg a.s./kg bw	1981; CGA71818/0764
Rat	A6209G (Topas 100 EC)	Acute oral	LD ₅₀ = 2574 mg A6209G/kg bw, corresponding to 257 mg as/kg bw	1996; CGA71818/1239 TOX 96-50626
Rat	Penconazole	2-generation reproduction study	NOAEL= 21.2 (males) and 22.7 (females) mg/kg bw/day	1987; CGA71818/0756

Table 126: Screening step – acute risk assessment for mammals with penconazole

GAP crop	Indicator species	Shortcut value	Rate (kg a.s/ha)	MAF90	DDD (mg a.s/kg bw/day)	LD50 (mg a.s/kg bw)	TERA
Pome fruit			0.04	1.33	7.09	SOMINE	137
Vines	Small herbivorous mammal	136.4	0.03	1.4	5.73	971	170
Cucumber	mammai		0.05	1.6	510.91		89
Cucumber		CKS.	0.035	1.00	4.77		204

The TER_A values for penconazole are greater than the relevant trigger value of 10, indicating **acceptable acute risk** to mammals following use of A6209G, according to the proposed use pattern.

Table 127: Screening step – acute risk assessment for mammals with the representative formulation A6209G

GAP Indicator species	Shortcut value	Rate (kg a.s/ha)	MAF90	DDD (mg a.s/kg bw/day)	LD ₅₀ (mg a.s/kg bw)	TERA
Pome fruit		0.04	1.3	7.09		36
Vines Small herbivorous	136.4	0.03	1.4	5.73	257	45
Cucumber		0.05	1.6	10.91		24
Cucumber		0.035	1.0	4.77		54

The TER_A values for A6209G (Topas 100 EC) are greater than the relevant trigger value of 10, indicating **acceptable acute risk to mammals** following use of A6209G, according to the proposed use pattern.

Table 128: Screening step – long-term risk assessment for mammals with penconazole

GAP crop	Indicator species	Shortcut value	Rate (kg a.s/ha)	MAFm	$f_{ m twa}$	DDD (mg a.s/kg bw/day)	NOAEL (mg a.s/kg bw/day)	TER _{LT}
Pome fruit	Small herbivorous		0.04	1.5		2.30		9.2
Vines		72.3	0.03	1.6	0.53	1.84	21.2	12
Cucumber	mammal		0.05	2.0		3.83		5.5
Cucumber			0.035	1.0		1.34		0, 10, 60

The TER_{LT} values for penconazole are greater than the trigger value of 5, indicating **acceptable long-term risk to mammals** following use of A6209G, according to the proposed use pattern.

Risk for mammals through drinking water

Table 129: Ratios of effective application rate (AR_{eff}) to acute and long-term endpoints for penconazole following the use of A6209G - puddle scenario

Exposure scenario	AR _{eff} (g a.s/ha) ^a	K _{oc} (mL/g)	Relevant endpoint (mg/kg bw) Ratio of effective application rate to endpoint	Ratio trigger
Acute	1.45	2122	LD ₅₀ 971 0.15	2000
Long-term	145	2123	NOEL = 21.2 6.8	3000

The resulting ratios are less than the trigger of 3000 indicating that further assessment of the acute and long-term risk to mammals, from drinking water from puddles, is not required for penconazole.

Secondary poisoning

Risk to earthworm-eating mammals

Table 130: Long-term risk from secondary poisoning to earthworm-eating mammals

Test item 21d TWA PEC _{soil} (mg/kg)	Kow foc	K _{oc}	BCF	PECworm (mg/kg)	DDD (mg a.s./kg bw/day)	NOAEL (mg a.s./kg bw/day)	TER _{LT}
Penconazole 0.0421	5248 0.02	2123	1.25	0.055	0.070	21.2	303

The TER value for penconazole is greater than the long-term trigger value of 5, indicating **acceptable risk to earthworm eating mammals** following use of penconazole in A6209G, according to the proposed use pattern. The RMS notes that at the current stage of the evaluation, the input for the PEC_{soil} modelling may be changed during peer review, and new modelling may be necessary. The values presented are thus regarded as preliminary values. However, as the margins of safety are large, the outcome of the risk assessment is not expected to change following new modelling.

Risk to fish-eating mammals

Table 131: Long-term risk from secondary poisoning to fish-eating mammals

Test item	Maximum Step 3 PECsw (mg a.s./L)	BCF	PEC _{fish} (mg a.s./kg)	DDD (mg a.s./kg/bw/day)	Long-term NOAEL (mg a.s./kg bw/day)	TER _{LT}
Penconazole	0.00159	320	0.509	0.072	21.2	294

The TER value for penconazole is greater than the long-term trigger value of 5, indicating **acceptable risk to fisheating mammals** following use of penconazole in A6209G, according to the proposed use pattern. The RMS notes that at the current stage of the evaluation, the input for the PEC_{SW} modelling may be changed during peer review, and new modelling may be necessary. Likewise, the bioconcentration study with fish has not been accepted by the RMS and no reliable BCF is available. The values presented are thus regarded as preliminary values. However, as the margins of safety are large, the outcome of the risk assessment is not expected to change following new input values.

Metabolites

Eight metabolites are found in relevant concentrations as residues in plant material and should be considered for the mammalian risk assessment:

CGA71019 (1,2,4-triazole): Maximum Total Radioactive Residues (TRR) of 6.1 % in plants

CGA179944: TRR of 12.6 % in plants

CGA131013 (triazolyl alanine): TRR of 86.7 % in plants

CGA205369 (triazolyl lactic acid): TRR of 76.1 % in plants

CGA142856 (triazolyl acetic acid): TRR of 33.2 % in plants

CGA132465: TRR of 66.9 % in plants

CGA190503: TRR of 4.3 % in plants, later detected at maximum concentrations of 0.02 mg/kg in fruits CGA127841: TRR of 3.2 % in plants, later detected at maximum concentrations of 0.02 mg/kg in fruits

Based on the available mammalian toxicity data – and that the risk assessment for mammals with the active substance is acceptable already at the screening level – it is considered that **the risk to mammals is acceptable following exposure to the relevant metabolites.** Please refer to **Volume 3 (PPP) - B.9.2.2.2** for details on the risk assessment.

2.9.9.2 Risk assessment for aquatic organisms

The risk assessment for aquatic organisms has been conducted according to **EFSA Aquatic Guidance** (2013)²³. The assessment is a tiered procedure which derives Regulatory Acceptable Concentrations (RACs) from the effects data by applying assessment factors appropriate to the taxon and tier assessed. The RAC is compared to the appropriate PEC_{SW} value. If the RAC is >PEC, then the risk is acceptable, otherwise the assessment should be refined with higher tiers. RMS notes that at the input for the FOCUS-modelling may change and that new modelling may be necessary. The FOCUS PEC_{SW} and PEC_{SED} values presented are thus regarded as preliminary values.

Risk assessment for penconazole

The risk assessment for the most sensitive species (worst-case RACs) are compared to the PEC_{sw} and PEC_{SED} for all the applied uses (representative uses). A complete risk assessment for all species is presented in Volume 3 - B.9 (PPP).

Acute effects: The lowest Tier 1 RAC_{SW, ac} is >5.6 μ g a.s./L, based on the toxicity to rainbow trout. Chronic effects: The lowest Tier 1 RAC_{SW, ch} is 3.2 μ g a.s./L, based on the toxicity to *Daphnia magna*. The lowest tier 1 RAC_{SED, ch} is 2520 μ g a.s./kg, based on the toxicity to *Chironomus riparius*.

Following the EFSA Aquatic Guidance Document (2013), these Tier 1 RACs are compared to the exposure values to determine if the risk is acceptable. The risk assessment is presented in the tables, below.

Table 132: Risk assessment for acute effects in aquatic organisms and the representative uses for

_

²³ EFSA Guidance on tiered risk assessment for plant protection products for aquatic organisms in edge-of-field surface waters (EFSA Journal 2013;11(7):3290)

penconazole.

Crop	FOCUS Step	Maximum PECsw (μg/L) ^a	Acute Tier 1 RACsw (µg/L)	PEC/RAC	Trigger
Pome fruit	1	11.653		<2.1	
2 x 40 g a.s./ha BBCH 71-89	2	2.208		<0.4	~
Vines (early)	1	6.135		<1.1	Mic Jal
2 x 30 g a.s./ha BBCH 13	2	1.268		<0.2	" Only often
Vines (late)	1	7.201		<1.3	10, 40, 600;
2 x 30 g a.s./ha BBCH 85	2	1.174	>5.6 ^b	<0.2	May Fight 410
Cucumber	1	15.367		<2.7	Jes al
3 x 50 g a.s./ha BBCH 51-89	2	1.973		<0.4	Such the supplier of the suppl
Cucumber	1	3.586		⟨√0 ⟨0.6 ⟨0.7	Wy Well
35 g a.s./ha BBCH 51-89	2	0.505	(1)	JC/ <0:1/ J C), C/1/1,

^a Worst-case FOCUS Step 2-value has been used

PEC/RAC values in **bold** are above the trigger of 1

west acute RAC-value (based on acute data for *O. mykiss*)
//RAC values in **bold** are above the trigger of 1

Table 133: Risk assessment for chronic effects in aquatic organisms and the representative uses for penconazole.

Сгор	FOCUS Step	Maximum PECsw (µg/L) ^a	Chronic Tier 1 RACsw (µg/L)	PEC/RAC	Trigger
Pome fruit	1	9 11.653	THE THE PARTY OF T	3.6	
2 x 40 g a.s./ha BBCH 71-89	2	2:208	E Pare Inc.	0.7	
Vines (early)	1,47,0	6.135	1010	1.9	
2 x 30 g a.s./ha BBCH 13	, o 2	1.268	7	0.4	
Vines (late)	66 3 111	7.201		2.3	
2 x 30 g a.s./ha BBCH 85	2,411	1.174	3.2 ^b	0.4	<1
Cucumber		15.367		4.8	
3 x 50 g a.s./ha BBCH 51-89	110° C2' 115	1.973		0.6	
Cucumber	10,40.	3.586		1.1	
35 g a.s./ha BBCH 51-89	2	0.505		0.2	

^a Worst-case FOCUS Step 2-value has been used

Table 134: Risk assessment for sediment dwelling organisms and the representative uses for penconazole

Crop	FOCUS Step*	Maximum PEC _{SED} (μg/kg) ^a	Chronic Tier 1 RAC _{SED} (µg/L)	PEC/RAC	Trigger
Pome fruit	1	166.6		0.066	
2 x 40 g a.s./ha BBCH 71-89	2	32.0	2520 ь	0.013	<1
	1	110.9		0.044	

^b Lowest acute RAC-value (based on acute data for *O. mykiss*)

^b Lowest acute RAC-value (based on chronic data for *D. magna*)

PEC/RAC values in **bold** are above the trigger of 1

Vines (early) 2 x 30 g a.s./ha BBCH 13	2	23.6	0.009	
Vines (late)	1	116.6	0.046	
2 x 30 g a.s./ha BBCH 85	2	20.2	0.008	
Cucumber	1	277.4	0.110	
3 x 50 g a.s./ha BBCH 51-89	2	36.3	0.014	110 35
Cucumber	1	64.7	0.026	Supraid of
35 g a.s./ha BBCH 51-89	2	9.2	0.004	of 7,08°,09]

a Worst-case FOCUS Step 2-value has been used

PEC/RAC values in **bold** are above the trigger of 1

The Tier 1 RAC_{SW, acute} of 5.6 μ g a.s./L is lower than the FOCUS Step 1 PEC_{SW}-values (which ranged from 3.6 to 15.4 μ g a.s./L), for three of four representative use scenarios indicating an unacceptable risk at these three representative uses at FOCUS step 1. The Tier 1 RAC_{SW, chronic} of 3.2 μ g a.s./L are lower than the FOCUS Step 1 PEC_{SW}-values (which ranged from 3.6 to 15.4 μ g a.s./L), indicating an unacceptable risk at FOCUS step 1 for all four representative use scenarios. However, both the chronic and acute Tier 1 RACs are greater than the FOCUS Step 2 PEC_{SW}-values (which ranged from 0.3 to 2.2 μ g a.s./L) thereby **indicating an acceptable risk to aquatic** (**free-swimming**) **organisms from penconazole following all proposed uses of A6209G.** No higher tier refinements are required.

For all proposed use patterns, the Tier 1 RAC_{SED, chronic} of 2520 μg a.s./kg is above the Step 1 PEC_{SED} values (which ranged from 65 to 277 μg a.s./kg), **indicating an acceptable risk to sediment dwelling organisms following the proposed uses of A6209G.**

Risk assessment for metabolites

The relevant aquatic metabolites were CGA71019, CGA179944, CGA142856 and CGA91305. Studies to assess the toxicity of these metabolites to fish (96 h acute), daphnia (48 h acute) and algae (96 h chronic) was provided, and valid endpoints could be derived. All of the metabolites are less toxic than penconazole to aquatic species. The exception was the toxicity to algae and the metabolite CGA142856, where no valid study was available. As a worst-case assumption, the metabolite is assumed to be 10x more toxic than the a.s.

The risk assessment with the metabolites for all the applied uses (representative uses) were acceptable at FOCUS Step 1. Full details can be found in **Volume 3 - B.9.4.3** (**PPP**). Below, the risk assessment for the worst-case RACs out of all the metabolites RACs, are compared to the PEC_{sw} for all the applied uses (representative uses).

<u>Acute effects:</u> The lowest Tier 1 RAC_{sw,ac} is 237 μg CGA91305/L based on the toxicity to rainbow trout (*Oncorhynchus mykiss* 96 h, LC ₅₀).

<u>Chronic effects:</u> The lowest Tier 1 RAC_{SW,ch} is 34 µg CGA142856/L, based on the endpoint for penconazole and *Desmodesmus subspicatus* divided by 10.

Table 135: Risk assessment for the lowest of the metabolite acute RACs, and FOCUS Step 1 PECsw for the representative uses for penconazol.

Use Use	FOCUS Step	Maximum PECsw (μg/L)	Acute Tier 1 RACsw (μg CGA91305/L)	PEC/RAC
Pome fruit, BBCH 71-89 2 x 40 g a.s./ha	1	1.465		0.006
Vines (early), BBCH 13 2 x 30 g a.s./ha	1	1.092	237	0.005
Vines (late), BBCH 85 2 x 30 g a.s./ha	1	1.092		0.005
Cucumber, BBCH 51-89	1	2.729		0.012

^b Chronic RAC-value (based on chronic data for sediment dwelling *C. riparius*)

3 x 50 g a.s./ha			
nber, BBCH 51-89	1	0.637	0.003
35 g a.s./ha	-	0.027	0.002

Table 136: Risk assessment for the lowest of the metabolite chronic RACs, and FOCUS Step 1 PECsw for the representative uses for penconazol.

Use	FOCUS Step	Maximum PECsw (μg/L)	Chronic Tier 1 RACsw (µg CGA142856/L)	PEC/RAC
Pome fruit, BBCH 71-89 2 x 40 g a.s./ha	1	1.492	:8	0.044
Vines (early), BBCH 13 2 x 30 g a.s./ha	1	1.119	"11° 11°	0.033
Vines (late), BBCH 85 2 x 30 g a.s./ha	1	1.119	34, tO :10, to 11	0.033
Cucumber, BBCH 51-89 3 x 50 g a.s./ha	1	2.797	11 846 32 936	0.082
Cucumber, BBCH 51-89 35 g a.s./ha	1	0.653	" O " E SA SI	0.019

The risk assessment for aquatic species and the metabolites for all the applied uses (representative uses) were 2.9.9.3 Risk assessment for bees and non-target arthropods

2.9.9.1.1 Risk assessment for acceptable at FOCUS Step 1.

In the currently notified Guidance Document on Terrestrial Ecotoxicology under Council Directive 91/414/EEC (SANCO/10329/2002), only data on acute oral and contact toxicity to adult honey bees are considered in the first tier risk assessment scheme. Thus, the risk assessment scheme is not sufficient as it does not cover the data requirements according to Commission Regulation (EU) No. 283/2013 on the chronic risk to adult honey bees and honey bee larvae. A new guidance document on the risk assessment of plant protection products on bees (Apis mellifera, Bombus spp. and solitary bees) has been published in 2013 by EFSA²⁴, in which risk assessment schemes for the chronic fisk to adult honeybees and honey bee larvae, and for the risk to bumblebees are described. This Guidance Document is however not yet noted by the Standing Committee on Plants, Animals, Food and Feed. Nevertheless, during the pesticide peer review meeting on general occurring issues in ecotoxicology (EFSA Supporting publication 2015:EN-924), it was agreed that the tier 1 risk assessment to honey bees should be performed according to the EFSA Guidance document (2013). Furthermore, for bumblebees and solitary bees, it was agreed that if any data are submitted, they should be evaluated.

Therefore, the screening and tier 1 risk assessment for honey bees are performed according to the EFSA guidance document (2013). A refined chronic adult risk assessment according to ECPA (2017)²⁵ is also included for some of the GAP uses/scenarios. Since acute toxicity data for bumblebees are available, an acute risk assessment for bumble bees according to the EFSA guidance document (2013) is also performed, as this is the only risk assessment scheme for bumble bees currently available. By doing so, all available data on bees is taken into account in a risk assessment.

A complete risk assessment for honey bees and bumble bees is presented in Volume 3 - B.9 (PPP), section B.9.6.1.

Bee-Risk-Assessment-Version-09-June-17.pdf

²⁴ European Food Safety Authority, 2013 (updated 04 July 2014). EFSA Guidance Document on the risk assessment of plant protection products on bees (Apis mellifera, Bombus spp. and solitary bees). EFSA Journal 2013;11(7):3295, 268 pp., doi:10.2903/j.efsa.2013.3295

²⁵ ECPA (2017). Proposal for a protective and workable regulatory European bee risk assessment scheme based on the EFSA bee guidance and other new data and available approaches. Available at https://croplifeeurope.eu/wp-content/uploads/2020/12/28028_ECPA-Proposal-for-a-protective-and-workable-EU-

Risk assessment for penconazole and A6209G

The acute risk to adult honey bees and bumble bees, and the chronic risk to honey bee larvae from penconazole and the representative formulation A6209G are acceptable at the screening level for all proposed uses of A6209G. The chronic risk to adult honey bees for the proposed post flowering uses (BBCH \geq 70) in pome, vines and cucumber from penconazole and A6209G is acceptable at tier 1. The chronic risk to adult honey bees from penconazole for the proposed uses in vines (BBCH 10-69) and cucumber (BBCH 50-69) is considered acceptable according to a refined risk assessment. Also, the acute and chronic risk to honey bees from exposure to contaminated water are acceptable. The screening assessment for acute and chronic exposure of honey bees, as well as the first tier and refined risk assessment for the adult chronic exposure from pollen and nectar for the worst-case use and scenario (i.e. cucumber BBCH 50-69 at 3 x 50 g a.s./ha), are shown below.

Table 137: Screening step - Risk assessment of acute adult contact exposure to penconazole

Test substance	Application Category	Crop Group	Species	App. rate (g a.s./ha)	LD ₅₀ contact (μg a.s./bee)	HQcontact	Trigger
	Sideward/upward	Pome fruit		40	10.55.1181	0.5	0.5
	(SUW) spray applications	Vines		30	idition in	0.3	>85
A6209G	Downward spray	Fruiting vegetables (cucumber)	Honey bee	10 10 10 10	85.8	0.6	. 42
	applications	Fruiting vegetables (cucumber)	30000	35/01	LO TO THE TEST	0.4	>42

HQ (Hazard Quotient) for adult contact exposure. HQ values shown in **bold** are above the relevant trigger and require further refinement.

Table 138: Screening step - Risk assessment of acute adult oral exposure to penconazole from contaminated pollen and nectar

Test substance	Application Category	Crop Group	Species	App. rate (kg a.s./ha)	SV	LD50 oral (µg a.s./ bee)	ETR _{acute}	Trigger
. Co	Sideward/	Pome fruit	g Honey bee 0.050			< 0.005		
CHINER	upward (SUW) spray applications	Vines		0.030	10.6	>88.1*	<0.004	> 0.2
A6209G	Downward	Fruiting vegetables (cucumber)		0.050	7.6		<0.004	
light ent	spray applications	Fruiting vegetables (cucumber)	1	0.035	7.0		< 0.003	

SV = shortcut value for sideward/upward spray applications and downward spray applications

ETR = Exposure Toxicity Ratio

ETRs in **bold** are above the relevant trigger and require further refinement

Highest dose tested. 43.3% mortality observed.

Table 139: Screening step - Risk assessment of chronic larva exposure to penconazole

Test substance	Application Category	Crop Group	Species	App. rate (kg a.s./ha)	SV	8 D NOED _{oral} (µg a.s./larva/ developmen t period)	ETRlarvae	Trigger
	Sideward/	Pome fruit		0.040			0.014	VIIC 7
	upward (SUW) spray applications	Vines		0.030	6.1		0.011	2106 (60)
A6209G	Downward	Fruiting vegetables (cucumber)	Honey bee	0.050	4.4	17.2*	0.013	>0.2
	spray applications	Fruiting vegetables (cucumber)		0.035	4.4	" SHOCK TO	0.009	ille of the

SV = shortcut value for sideward/upward spray applications and downward spray applications

The ETR_{larvae} values for penconazole were from 14.1 to 22.3 times lower than the trigger value of 0.2. Although an uncertainty still remains concerning whether the use of the 8D NOED is protective enough, the results indicates that the risk to honeybee larvae is acceptable at the screening level following use of A6209G according to the proposed use pattern. This is also supported by the aspect, that for the active substance no brood damaging properties (IGR) are known and accordingly no significant increase in mortality is expected during the pupation and emergence phase of the larval study.

Table 140: Screening step - Risk assessment of chronic adult oral exposure to penconazole from contaminated pollen and nectar

Test substance	Application Category	Crop Group	Species	App. rate (kg a.s./ha)	SV	LDD ₅₀ oral (µg a.s./bee /day)	ETR _{chronic} adult oral	Trigger
	Sideward/up	Pome fruit	Kill	0.040			<0.219	
inerti's	ward (SUW) spray applications	Vines		0.030	10.6		<0.164	
A6209G	Downward	Fruiting vegetables (cucumber)	Honey bee	0.050	7.6	>1.94*	<0.196	>0.03
high is in	applications	Fruiting vegetables (cucumber)		0.035	7.6		<0.137	

SV = shortcut value for sideward/upward spray applications and downward spray applications

All the ETR_{chronic adult oral} values for penconazole are greater than the trigger of 0.03 for sideward/upward and downward sprays, indicating that the chronic risk to honeybees following exposure to penconazole requires further assessment at Tier 1 following use of A6209G according to the proposed use pattern.

<u>Tier 1 assessment - Chronic adult exposure</u>

ETR = Exposure Toxicity Ratio

ETRs in **bold** are above the relevant trigger and require further refinement

^{*8-}day NOED from a repeated larva exposure study, terminated at day 8.

ETR = Exposure Toxicity Ratio ETRs in **bold** are above the relevant trigger and require further refinement

^{*} Highest possible concentration according to the results of a non-GLP solubility test; this concentration resulted in no mortality

The worst-case tier 1 scenario is considered to be "foraging on the treated crop" when application takes place during flowering in cucumber (BBCH 50-69), at 50 g a.s./ha. The worst-case risk assessment shown below (**Table 134**) is considered to cover all other proposed use patterns.

Table 141: Tier 1 - Risk to adult honeybees following chronic oral exposure to penconazole from foraging on the <u>treated crop</u>

Application Category	ввсн	Species	App. rate (kg a.s./ha)	SV	LDD ₅₀ oral (µg a.s./bee/ day)	Ef	TWAª	ETR _{chronic} adult oral	Trigger	
Fruiting vege	Fruiting vegetables (cucumber)									
DW	50-69	Honey bee	0.050	5.8	>1.94*	1	0.72	<0.108	>0.03	

^a The twa value of 0.72 is based on a default DT₅₀ of 10 days and a 10-day time window.

ETRs in **bold** are above the relevant trigger and require further refinement

SUW: Sidewards/upwards spray application

DW: Downwards spray application

The ETR_{chronic adult oral} value for the worst-case scenario "foraging on the treated crop" when application takes place during flowering in cucumber (BBCH 50-69) at 50 g a.s./ha are greater than the trigger of 0.03. Thus, **the chronic risk to honey bees requires further evaluation.**

Refined assessment- Chronic adult exposure

According to the ECPA approach $(2017)^{26}$ a NOEDD or LDD₁₀ could be used together with an appropriate adjustment in the EFSA 2013 trigger in a refined risk assessment in cases where it is not possible to achieve an experimentally measured LDD₅₀. No LDD50 could be derived from the study by **Kling** (2015; A6209G_11060) as no mortality was observed at the highest dose tested (1.94 μg a.s./bee/day). The NOEDD was therefore determined to be $\geq 1.94 \ \mu g$ a.s./bee/day.

The appropriate trigger can be calculated using the same method as presented by EFSA (2013). If it is assumed that the observed NOEDD is equivalent to the LDD $_{10}$ then the trigger can be calculated as:

10%/1.43% = 6.99, which is equivalent to ETR 1.43/10 = 0.143

The ETR_{chronic adult oral} value within the treated crop for the worst-case use of A6209G in cucumber (BBCH 50-69) at 50 g a.s./ha, are compared to the refined trigger in the table below.

Table 142: Refined Tier 1 - Risk to adult honeybees following chronic oral exposure to penconazole from foraging on the <u>treated crop</u>

Crop	App. method	App. rate (kg a.s./ha)	Shortcut Value (SUW / downward spray)	Ef	TWA	NOEDD (µg a.s./bee/ day)	ETR	Trigger
Fruiting vegetables (cucumber)	DW	0.050	5.8	1	0.72	≥1.94*	≤0.1076	>0.143

ETRs in **bold** are above the relevant trigger and require further refinement

Bee-Risk-Assessment-Version-09-June-17.pdf

SV = shortcut value for sideward/upward spray applications and downward spray applications

ETR = Exposure Toxicity Ratio

^{*} Highest possible concentration according to the results of a non-GLP solubility test; this concentration resulted in no mortality

²⁶ ECPA (2017). Proposal for a protective and workable regulatory European bee risk assessment scheme based on the EFSA bee guidance and other new data and available approaches. Available at <a href="https://croplifeeurope.eu/wp-content/uploads/2020/12/28028_ECPA-Proposal-for-a-protective-and-workable-EU-to-a-protective-and-workable-and-workable-and-workable-and-workable-and-workable-and-workable-and-workable-and-workable-and-workable-and-workable-and-workable-and-workable-and-workable-and-workable-and-workable-and-workable-and-workable-and-workable-and-workable-and

The ETR_{chronic adult oral} value for penconazole/A6209G for the worst-case use in cucumber (BBCH 50-69) at 50 g a.s./ha is less than the refined trigger of 0.143, indicating that the chronic oral risk to adult honey bees is considered acceptable following use of A6209G according to the proposed use pattern. No further evaluation is considered necessary.

Risk to honey bees from exposure to contaminated water

For the assessment of risk from exposure to surface water, the worst case FOCUS Step 1 PEC_{SW} values are used. The risk assessment (ETR values) for the worst-case use in cucumber (BBCH 50-69) at 3 x 50 g a.s./ha (shown in the table below) is considered to cover all other proposed use patterns.

Table 143: Risk to adult honey bees and honey bee larvae following the consumption of surface water contaminated with penconazole following the proposed uses of A6209G

Type of assessment	Water	Max. PECsw	Endpoint ETR Trigger
	consumption	$(\mu g/\mu L)^2$	10 18c 18c 18c
	$(\mu l)^1$		
Cucumber (3 x 50 g	a.s./ha, BBCH 51	-89)	the local distriction of the state of the st
Acute oral exposure	11.4		$>88.1 \mu\text{g/bee}$ 1.99×10^{-6} >0.2
adult bees			10, 10, 21, 20, 11,
Chronic oral	11.4	1.54 x 10 ⁻⁵	$>1.94 \mu g/bee/day$ 9.03×10^{-5} >0.03
exposure adult bees		1.34 X 10	0, 63 10, 50, 00
Chronic oral	111		17.2 μg/larva/development 9.92 x 10 ⁻⁵ >0.2
exposure larvae			period O

water consumption per adult bee per day, or per larva per development period (i.e. 5 days)

ETRs in **bold** are above the relevant trigger and require further refinement

All the ETR values are well below the relevant triggers, indicating that the acute and chronic risk to adult honey bees and honey bee larvae from exposure to surface water is acceptable following the proposed use pattern of A6209G.

As the Step 1 PEC_{SW} values used in the assessment for surface water are worst case compared to the concentrations calculated for the runoff scenarios (at FOCUS Step 3), the risk assessment for surface water covers the assessment for water in puddles.

Risk assessment for metabolites

There are no studies on the residues of metabolites in pollen or nectar. The risk assessment scheme for metabolites provided in the **EFSA Bee Guidance Document** (2013) was followed. The metabolites considered to be relevant (CGA71019 and CGA132465) were identified based on plant metabolisms and rotational crop studies, and toxicity reported for other organism groups/QSAR (for details see **Volume 3 - B.9 (PPP), section B.9.6.1**). CGA132465 was detected over the limits (>10% TRR or > 0.01 mg/kg) in both plant metabolism studies and rotational crops studies, whereas CGA71019 was only detected over the limit in a rotational crop study. The risk for the relevant metabolites is assessed, assuming 10 times higher toxicity of the metabolites compared to penconazole.

The acute risk to adult honey bees and the chronic risk to honey bee larvae from the relevant metabolites are acceptable at the screening level for all proposed uses of A6209G. For CGA71019 the chronic risk to adult honey bees for all the proposed uses of A6209G is considered acceptable at tier 1. For CGA132465, the chronic risk to adult honey bees for the proposed post flowering uses (BBCH \geq 70) uses in cucumber is considered acceptable at tier 1. The chronic risk to adult honey bees from CGA132465 for the proposed post flowering uses (BBCH \geq 70) uses in pome and wine is considered acceptable according to the refined risk assessment. The chronic risk to adult honey bees from CGA132465 for the proposed uses in vine (BBCH 10-69) and cucumber (BBCH 50-69) is considered acceptable based on a weight of evidence approach.

Table 144: Screening assessment - Acute oral risk to adult honey bees from metabolites in the <u>treated crop</u> following the proposed use of A6209G. A molecular weight of 284.2 g/mol for penconazole (parent) was

² The PEC_{SW} -values are derived from FOCUS step 1 modelling

used in the calculations.

Metabolite	Applic. Category	Crop Group	App. rate (kg a.s /ha)	SV	Mwmet (g/mol)	Ftrr	LD50 oral (µg a.s./be e)	ETR	Trigger
	SUW	Pome fruit	0.040	10.6	10.6			0.001	
CGA71019	SUW	Vines	0.030	10.0	60	0.061	8.81ª	0.001	>0.2
CGA/1019	DW	Cucumber	0.050	7.6	69	0.001		0.001	>0.2
	DW	Cucumber	0.035	7.6				0.0004	61001
	SUW	Pome fruit	0.040	10.6		0.660	O	0.03	cill etc
CC 4 122465	SUW	Vines	0.030	10.6	200		11/1/6	0.03	0
CGA132465	DW	Cucumber	0.050	7.6	300	0.669	8.81ª	0.03	>0.2
	DW	Cucumber	0.035	7.6			2000	0.02	Nel

^aAssuming 10 times higher toxicity than the parent compound.

Furcilt molecule for SUW and DW spray applications

Firr: fraction of metabolite formed (%TRR/100)

ETR values in **bold** are above the relevant trigger and require further refinement.

For both CGA71019 and CGA132465 all the ETR_{acute adult continual acceptable acute oral risk to adult honey bees at the} For both CGA71019 and CGA132465 all the ETR_{acute adult oral} values are below the trigger of 0.2 indicating an acceptable acute oral risk to adult honey bees at the screening following the proposed uses of A6209G.

Table 145: Screening assessment - Chronic risk to honey bee larvae from metabolites in the treated crop following the proposed use of A6209G. A molecular weight of 284.2 g/mol for penconazole (parent) was used in the calculations.

Metabolite	Applic. Category	Crop Group	App. rate	SV	Mw _{met} (g/mol)	Ftrr	NOED larva	ETR	Trigger
	ine piol	SM- WOLE	(kg a.s /ha)	20 2010			(μg a.s./larva/ develop. period)		
	SUW	Pome fruit	0.040	6.1				0.0021	
.6	3011	Vines	0.030	0.1	69	0.061	1.72a	0.0016	>0.2
CGA71019	DW	Cucumber	0.050	4.4	09	0.001	1.72	0.0019	
oel, or		Cucumber	0.035	4.4				0.0013	
Thy of	SUW	Pome fruit	0.040	<i>c</i> 1				0.100	
400° JIN 10	O SOW	Vines	0.030	6.1	200	0.660	1.72ª	0.075	>0.2
CGA132465	DWILL	Cucumber	0.050	4.4	300	0.669	1./2"	0.090	
0,00	L.O. DW	Cucumber	0.035	4.4				0.063	

^a 8-day NOED, assuming 10 times higher toxicity than the parent compound.

SUW: Sidewards/upwards spray supplication

DW: Downwards spray application

SV = shortcut value for the parent molecule for SUW and DW spray applications

Mwmet: molecular mass of the metabolite

Ftrr: fraction of metabolite formed (%TRR/100)

ETR values in **bold** are above the relevant trigger and require further refinement

For both CGA71019 and CGA132465 all the ETR_{larvae} values were lower than the trigger value of 0.2 indicating an acceptable chronic risk to honey bee larvae at the screening level following the proposed uses of A6209G.

<u>Tier 1 assessment - Chronic adult exposure</u>

As all ETR values at the screening assessment for adult chronic oral exposure for the parent compound was above the trigger, the risk assessment for the metabolites is started directly at tier 1.

Of the two metabolites (CGA71019 and CGA132465) identified as relevant for the risk assessment, only CGA132465 was detected above the limit (TRR 66.9 %) in a plant metabolite study following foliar application of penconazole. Therefore, the assessment of risk from "foraging on the treated crop", "weeds in the treated field", "the field margin" and "an adjacent crop" are performed for CGA132465 using the TRR from this study.

Risk from foraging on the treated crop is considered worst-case when application takes place during flowering in vines and cucumber. As the tier 1 ETR values for the parent was above the trigger of 0.03 for these uses, a refined tier 1 assessment according to ECPA (2017) for CGA132465 is shown further below (See Table 141).

For post-flowering (i.e., from BBCH 70 onwards) uses in pome fruit and vines, risk from foraging on weeds in the treated crop can be considered worst-case and are shown in Table 139.

ing chronic oral

'crop. A mo' Both CGA71019 and CGA132465 were detected over the limits in rotational crop studies following application of penconazole to bare soil. The maximum TRR for CGA71019 (6.1%) and CGA132465 (20.2%) from these studies are therefore used in the assessment of risk from "foraging on a succeeding crop for annual crops". RMS consider that there are not sufficient/consecutive. that there are not sufficient/appropriate data available for the metabolite residues for the "permanent crop the following year", and therefore this scenario is not included in the risk assessment. The risk from "foraging the following year on a succeeding crop for annual crops", for the worst-case use of A6209G in cucumber (3 x 50 g a.s./ha) are shown in **Table 140**.

Table 146: Tier 1 - Risk to adult honey bees following chronic oral exposure to the metabolite CGA132465 from foraging on weeds in the treated crop. A molecular weight of 284.2 g/mol for penconazole (parent) was used in the calculations.

		Ö	1 700.0	0,40,	LO LIE				
Metabolite	App. rate (kg a.s./ha)	SV	fDep/Ef	TWAª	Mw _{met} (g/mol)	Ftrr	LDD ₅₀ oral ^b (µg a.s./bee/ day)	ETR _{chronic} adult oral	Trigger
Pome fruit: F	BCH≥70	En C	The office of	CILO					
CGA132465	0.04	2.9	0.30	0.72	300	0.669 ^c	>0.194*	< 0.091	0.03
Vine: BBCH	≥70	Carli	00						
CGA132465	0.03	2.9	0.3	0.72	300	0.669 ^c	>0.194*	<0.068	0.03

^a The twa value of 0.72 is based on a default DT₅₀ of 10 days and a 10-day time window.

ETR = Exposure Toxicity Ratio

ETRs in **bold** are above the relevant trigger and require further refinement

Table 147: Tier 1 - Risk to adult honey bees following chronic oral exposure to metabolites from foraging on a succeeding crop for annual crops for the worst-case use in cucumber. A molecular weight of 284.2

^b Assuming 10 times higher toxicity than the parent compound.

^c The maximum TRR in a plant metabolism study following foliar treatment

SV = shortcut value

^{*} Highest possible concentration according to the results of a non-GLP solubility test; this concentration resulted in no mortality

SV **TWA**^a LDD₅₀ Metabolite App. fDep/Ef Mw_{met} Ftrr **ETR**chronic **Trigger** (g/mol) oralb rate adult oral (µg (kg a.s./bee/ a.s./ha) day) Fruiting vegetables (cucumber): BBCH 50-69 and BBCH ≥70 CGA71019 69 0.061^{c} < 0.002 0.03 >0.194* 0.05 0.54 1

g/mol for penconazole (parent) was used in the calculations.

U.03

CO.021
Co.03
Co.03 to both CGA71019 and CGA132465 for the and ≥70), indicating an accental

For the proposed post-flowering use in pome fruit (BBCH ≥70) and vines (BBCH ≥70) the ETR_{chronic adult oral} values for the worst-case scenario "weeds in the treated field" are above the trigger for the metabolite CGA132465. Thus, the chronic risk to honey bees requires further evaluation for CGA132465 for these proposed uses of A6209G.

Refined assessment- Chronic adult exposure

According to the ECPA approach (2017)²⁷ a NOEDD or LDD₁₀ could be used together with an appropriate adjustment in the EFSA 2013 trigger in a refined risk assessment in cases where it is not possible to achieve an experimentally measured LDD₅₀. The calculated ETR_{chronic adult oral} values calculated at tier 1, are compared to the refined trigger (0.143) in the tables below.

The ETR_{chronic adult oral} values for chronic oral exposure to CGA132465 from foraging on the treated crop following applications of A6209G in vines (BBCH 10-69) and cucumber (BBCH 50-69) are shown in **Table 132**. The ETR_{chronic adult oral} values for chronic oral exposure to CGA132465 from foraging on the weeds in the treated field following post-flowering applications of A6209G in pome fruit and vine (BBCH \geq 70) are shown in **Table 133.**

Table 148: Refined tier 1 assessment - Risk to adult honeybees following chronic oral exposure to CGA132465 from foraging on the treated crop S. 10

Metabolite	App. rate (kg a.s./ha)	Sy	fDep/Ef	TWAª	Mw _{met} (g/mol)	Ftrr	NOEDD ^b (μg a.s./bee/ day)	ETR _{chronic}	Refined Trigger
Vines: BBCH	10-69								
CGA132465	0.030	8.2	1	0.72	300	0.669°	≥ 0.194*	≤0.6447	0.143
Cucumber: B	BCH 50-6	59							
CGA132465	0.050	5.8	1	0.72	300	0.669°	≥ 0.194*	≤0.7601	0.143
Cucumber: B	BCH 50-6	59							
CGA132465	0.035	5.8	1	0.72	300	0.669°	≥ 0.194*	≤0.5320	0.143

^a The twa value of 0.72 is based on a default DT₅₀ of 10 days and a 10-day time window.

208

²⁷ ECPA (2017). Proposal for a protective and workable regulatory European bee risk assessment scheme based on the EFSA bee guidance and other new data and available approaches. Available at https://croplifeeurope.eu/wp-content/uploads/2020/12/28028_ECPA-Proposal-for-a-protective-and-workable-EU-Bee-Risk-Assessment-Version-09-June-17.pdf

SV = shortcut value

ETR = Exposure Toxicity Ratio

ETRs in **bold** are above the relevant trigger and require further refinement

Table 149: Refined Tier 1 assessment- Risk to adult honey bees following chronic oral exposure to the metabolite CGA132465 from foraging on weeds in the treated field

Metabolite	App. rate (kg a.s./ha)	SV	fDep/Ef	TWAª	Mw _{met} (g/mol)	Ftrr	NOEDD ^b (μg /bee/ day)	ETRchronic adult oral	Refined Trigger
Pome fruit: B	BBCH ≥70						,OX	"Glle O'O'	,c/0, 10
CGA132465	0.04	2.9	0.3	0.72	300	0.669°	≥0.194*	≤0.091	0.143
Vine: BBCH	≥70						Sillo	19,0 Oll 1	Me.
CGA132465	0.03	2.9	0.3	0.72	300	0.669°	≥0.194*	≤0.068	0.143

^a The twa value of 0.72 is based on a default DT₅₀ of 10 days and a 10-day time window.

SV = shortcut value

ETR = Exposure Toxicity Ratio

ETRs in **bold** are above the relevant trigger and require further refinement

For the **post-flowering uses in pome fruit and vine (BBCH ≥70)** the ETR_{chronic adult oral} values for CGA132465 are below the refined trigger of 0.143 for the worst-case scenario (foraging on weeds in the treated field), indicating an acceptable chronic risk to adult honey bees following these proposed uses of A6209G.

For the proposed uses of A6209G in vines (BBCH 10-69) and cucumber (BBCH 50-69) the ETR_{chronic adult oral} values for CGA132465 for the worst-case scenario (foraging on the treated crop), exceeds the refined trigger of **0.143** with a factor ranging from 3.7 to 5.3. The trigger of 0.143 is still conservative as it suggests that the SPG defined in the EFSA Bee Guidance Document (2013) is met at a dose which is 7x (i.e. 6.99x) lower than the endpoint which gave no effect. In addition, the NOEDD used for CGA132465 in the risk assessment above is conservative at it was derived by dividing the NOEDD for penconazole (>1.94 µg a.s./bee/ day, the highest concentration tested) by 10, assuming 10 times higher toxicity of the metabolite. It is therefore likely that the **chronic** risk of CGA132465 to adult honey bees from foraging on the treated crop is acceptable following these proposed uses of A6209G vines (BBCH 10-69) and cucumber (BBCH 50-69).

2.9.9.1.2 Risk assessment for arthropods other than bees

The risk assessment for non-target arthropods other than bees has been performed according to ESCORT 2 document (Candolfi et al., 2001)²⁸ and the Guidance Document on Terrestrial Ecotoxicology.

Risk assessment for in-field exposure

irst tier risk assessment

Table 150: In-field risk assessment for non-target arthropods other than bees. HQ values in **bold** are above

^b Assuming 10 times higher toxicity than the parent compound.

^c The maximum TRR in a plant metabolism study following foliar treatment

Highest possible concentration according to the results of a non-GLP solubility test; this concentration resulted in no mortality

^b Assuming 10 times higher toxicity than the parent compound.

^c The maximum TRR in a plant metabolism study following foliar treatment

Highest possible concentration according to the results of a non-GLP solubility test; this concentration resulted in no mortality

²⁸ Candolfi, M.P., Barrett, K.L., Campbell, P.J., Forster, R., Grandy, N., Huet, M-C., Lewis, G., Oomen, P.A., Schmuck, R., Vogt, H. (2000). 'Guidance Document on regulatory testing procedures for plant protection products with non-target arthropods' From the workshop, European Standard Characteristics of Non-target Arthropod Regulatory Testing (ESCORT 2) 21-23 March

the trigger value of 2.

Test item	Crop	Test species	LR ₅₀ (g a.s./ha)	PER (g a.s./ha)	НQ	Trigger
		A. rhopalosiphi	>50	10	<1.36	2
	Pome fruit	T. pyri	>10	68	<6.8	\sim \sim \sim
		P. cupreus	>100		< 0.68	20.00
		A. rhopalosiphi	>50		<1.02	Poled Station
	Vines	T. pyri	>10	51	<5.1	2,0
Penconazole		P. cupreus	>100	×	<0.51	2
(as A6209G)		A. rhopalosiphi	>50	VIII BACK SE	2.3	2
	Cucumber	T. pyri	>10	1515	4 <11.5 J	2
		P. cupreus	>100	in engice	<1.15	2
		A. rhopalosiphi	>50	inglis 60) il	<0.70	2
	Cucumber	T. pyri	>10	35	<3.50	2
		P. cupreus	>100	Collies Mil	<0.35	2

The first tier risk assessment shows that most of the hazard quotients for *A. rhopalosiphi* are lower than the trigger value of 2, except from the use with multiple applications in cucumber. In the case of *T. pyri* all the hazard quotients are greater than 2. ESCORT 2 recommend the use of more realistic higher tier testing procedures for the species failing at Tier 1 of the risk assessment. Consequently, both *A. rhopalosiphi* and *T. pyri* have been tested in higher tier tests. Furthermore, two fully reliable extended laboratory studies have been conducted with the additional species *C. septempunctata* and *C. carnea*.

Tier 2 risk assessment

Table 151: In-field risk assessment for non-target arthropods other than bees. Unacceptable risk is indicated in **hold**

Species	Endpoint (g a.s./ha)	GAP Crop	In-field PER _{foliar} (g a.s./ha)	Acceptable risk
THE CLIP BOIL	1010	Pome fruit	68	Yes
Aphidius rhopalosiphi	NOED - 125	Vines	51	Yes
(semi-field)	$NOER_{repro} = 135$	Cucumber	115	Yes
in this dily; do		Cucumber	35	Yes
His of Sills		Pome fruit	68	Yes
1,200 of	LD > 400	Vines	51	Yes
Aphidius	$LR_{50}>400$	Cucumber	115	Yes
rhopalosiphi		Cucumber	35	Yes
(Tier 2; 3-D study)		Pome fruit	68	Yes
	$ER_{50} > 400$	Vines	51	Yes
		Cucumber	115	Yes

Species	Endpoint (g a.s./ha)	GAP Crop	In-field PER _{foliar} (g a.s./ha)	Acceptable risk
		Cucumber	35	Yes
		Pome fruit	68	Yes
		Vines	51	Yes
	$LR_{50}=138$	Cucumber	115	Yes
=Typhlodromus		Cucumber	35	Yes World
pyri (Tier 2; 2-D study)		Pome fruit	68	Yes of too
	ED . 100	Vines	51	Yes
	$ER_{50} > 100$	Cucumber	115	No ^a C
		Cucumber	35	Yes
		Pome fruit	68 480 25	Nob Comment
	ID > 0.6	Vines	51 111 167 17	Nob
	$LR_{50} > 9.6$	Cucumber	115	Nob
=Typhlodromus		Cucumber	35:01 (80)	Nob
pyri (Tier 2; 2-D study)		Pome fruit	68	Nob
	ED 40.6	Vines	510 list on at	Nob
	ER ₅₀ <9.6	Cucumber	115	Nob
		Cucumber	35 0 0	Nob
	i	Pome fruit	68	Yes
	ID 200 (SP	Vines	51	Yes
	LR ₅₀ >200	Cucumber	115	Yes
Coccinella	11 0 80 Hz.	Cucumber	35	Yes
septempunctata (Tier 2)	10° (11, 1°)	Pome fruit	68	Yes
0	TER SOOTH SOUTH	Vines	51	Yes
d'ille	ER ₅₀ >200	Cucumber	115	Yes
:5,0,96	Kn. C. Our	Cucumber	35	Yes
	Sa Still its bed	Pome fruit	68	Yes
THUR BUTT BY	N. P. C. 200	Vines	51	Yes
30 CAL WILL AS	LN ₅₀ >200	Cucumber	115	Yes
Chrysoperla carnea (Tier 2)	<i>y</i>	Cucumber	35	Yes
Chrysoperla carnea (Tier 2)		Pome fruit	68	Yes
M. Soll Of it.	ED > 200	Vines	51	Yes
013,150	LIN5() >200	Cucumber	115	Yes
		Cucumber	35	Yes

a 9 % effect on fecundity at the highest tested dose in the fecundity assessment (100 g a.s./ha - lower than PER)

It is considered that the in-field risk for *T.Pyri* still is unresolved for the highest dose in cucumber. The new study (**Fallowfield, 2019; VV-619272**) indicates acceptable risk for all other uses. Overall, the RMS considers this study to be more reliable than the old study. It is noted that the study, as opposed to the old study, provides rate-response

^b New rate-response study with *T. Pyri* exposed to severral dose rates has been submitted (Fallowfield, 2019; VV-619272)

endpoints (LR₅₀, ER₅₀), which is in accordance with the requirements in Commission regulation (EU) No 283/2013. Furthermore, the field study conducted in apple orchards in the Netherlands (Aldershof, 1999; CGA71818/1385) indicates acceptable in-field risk for the use in pome fruits. Since no significant effects were observed and no recovery was necessary it is considered that the results from this study may be attributed to the whole EU. Some uncertainties still remain regarding the relevance of the old study (Kleiner, 1993a; CGA71818/1228) for the risk assessment.

Risk assessment for off-field exposure

First tier risk assessment

Off-field risk assessment for non-target arthropods other than bees

		target artimopous	s other than bees		ce idlinal ki	or slo
Test item	Crop	Test species	LR ₅₀ (g a.s./ha)	Off-field PER x 10 (CF) (g a.s./ha)	Political Property of the Control of	Trigg
		A. rhopalosiphi	>50	16.5	0.33 €0.33	2
]	Pome fruit	T. pyri	>10	16.5	≪1.65	2
		P. cupreus	>100	11900	<0.17	2
		A. rhopalosiphi	50 C	de listillare	<0.15	2
	Vines	T. pyri	01 >10	0110 73	< 0.73	2
enconazole		P. cupreus	>100		< 0.07	2
s A6209G)		A. rhopalosiphi	>5000	:0/lis	< 0.92	2
•	Cucumber	T. pyri	>10	4.6.	< 0.46	2
	×	P. cupreus	>100		< 0.05	2
	Selty V	A. rhopalosiphi	ji; iii ≥50	1.9	< 0.04	2
•	Cucumber	T. pyri	>10		< 0.19	2
3/19	3/1/0/01	P. cupreus	>100		< 0.02	2
	Cucumber Cucumber the hazard qualicating accomp	rhopalosiphi T. pyri P. cupreus A. rhopalosiphi T. pyri P. cupreus otients for the spe	>10	4.6.	<0.46 <0.05 <0.04 <0.19 <0.02	han

The risk assessment on non-target soil meso- and macrofauna has been performed according to the **Guidance Document on Terrestrial Ecotoxicology** (2002)²⁹. As an acute risk assessment on earthworms is no longer required in accordance with **Commission Regulation** (EU) No 283/2013 and 284/2013, only the risk assessment including chronic effects have been performed. Also the outcome of the pesticides peer review meetings on recurring issues in ecotoxicology (EFSA Supporting publication 2015:EN-924³⁰ and EFSA Supporting publication 2019:EN-1673³¹) were considered. Based on these publications the EC₁₀ should be considered instead of the NOEC if it is available, reliable, and lower than the NOEC value. Furthermore, it was concluded that the relevant endpoint from all first tier studies should be divided by a factor of 2 for all substances with a logPOW > 2 regardless of the percentage of organic matter used in the standard test, i.e. even if the test was performed with 5% organic matter (EFSA Supporting publication 2015:EN-924¹¹).

The exposure to soil organisms was estimated by calculating the maximum initial predicted environmental concentrations in soil (PEC_{SOIL}) or, where relevant, the peak accumulative PEC_{SOIL} (PEC_{SOIL}, ACCUMULATION) for the proposed use pattern of A6209G. The PEC_{SOIL} value was calculated for each of the proposed crops assuming 65%, 50% and 85% crop interception for Pome fruit, Grapes and cucumber, respectively. The PEC_{SOIL,ACCUMULATION} values were calculated following yearly application to the various crops using a mixing depth of 5 cm for each application and tillage depths of 5 and 20 cm for permanent and annual crops, respectively. For full details on PEC_{SOIL} calculations see **Volume 3 - B.8** (**PPP**), Section B.8.1.3. RMS notes that the input for the PEC_{SOIL} and PEC_{SOIL}, ACCUMULATION</sub> modelling may change, and new modelling may be necessary. The values presented are thus regarded as preliminary values.

The worst-case risk assessment for penconazole and the most toxic metabolite are shown for the most sensitive organism (earthworms) below. The risk assessment concluded that the chronic risk to non-target soil meso- and macrofauna is acceptable at tier 1 for all proposed uses of the representative formulation A6209G. A complete risk assessment for earthworms, *folsomia candida* and *Hypoaspis aculetfer* is presented in **Volume 3 - B.9 (PPP)**, section **B.9.8**.

Risk assessment for penconazole and A6209G

All the studies on soil meso- and macro fauna have been performed with the representative formulation A6209G. The long-term risk assessment presented below will therefore cover the risk assessment for both the active substance and the representative formulation.

The most sensitive organism was earthworms with the lowest NOEC of ≥ 5 mg a.s./kg soil dw. The worst case PEC_{soil,accumulation} values and correponding long-term TER values for all proposed uses of A6209G are shown for earthworms in the table below. A complete risk assessment for *folsomia candida* and *Hypoaspis aculeifer* is presented in **Volume 3 - B.9 (PPP)**, section **B.9.8.4**.

Table 152: Worst-case chronic risk (TER _{LT}) of penconazole to the most sensitive soil meso- and
macorfauna (earthworms) following the proposed uses of A6209G.

Use	NOEC (mg a.s./kg soil dw)	Maximum PECs accumulation (mg/kg soil)	TER _{LT} d	Trigger value
Pome fruit (2 x 40 g a.s./ha)		0.0390	≥130	
Vines (2 x 30 g a.s./ha)	>5 ^{ab}	0.0421	≥120	5
Cucumber (3 x 50 g a.s./ha)	≥3	0.0303	≥170	3
Cucumber (1 x 35 g a.s./ha)		0.0100	≥500	

^a The log POW of penconazole is greater than 2 (i.e. 3.8), and therefore, NOEC has been divided by a factor of 2 (as was agreed in EFSA Supporting publication 2015:EN-924)³²

213

(

²⁹ Guidance Document on Terrestrial Ecotoxicology in the context of the Directive 91/414/EEC. SANCO/10329/2002 rev. 2 (final). 17 October 2002.

³⁰ EFSA (European Food Safety Authority), 2015. Technical report on the outcome of the pesticides peer review meeting on general recurring issues in ecotoxicology. EFSA supporting publication 2015:EN-924. 62 pp.

³¹ EFSA (European Food Safety Authority), 2019. Technical report on the outcome of the Pesticides Peer Review Meeting on general recurring issues in ecotoxicology. EFSA supporting publication 2019:EN-1673. 117 pp. doi:10.2903/sp.efsa.2019.EN-1673

³² EFSA (European Food Safety Authority), 2015. Technical report on the outcome of the pesticides peer review meeting on general recurring issues in ecotoxicology. EFSA supporting publication 2015:EN-924. 62 pp.

Risk assessment for metabolites

Based on the available studies on route and rate of degradation in soil, CGA71019, CGA179944, CGA142856 and CGA91305 are considered to be the relevant metabolites that have to be addressed in the risk assessment for nontarget soil Meso- and Macrofauna (For details, see **Volume 3 - B.8 (AS)**. Acceptable endpoints for earthworms, *folsomia candida* and *hypoaspis aceulifer* and all the relevant metabolites are available.

The most toxic of the metabolites is CGA71019, with earthworms and *folsomia candida* showing comparable sensitivity (NOEC of 1.0 and 1.8 mg/kg soil dw, respectively). The results indicates that this metabolite is slightly more toxic than penconazole. The worst case PEC_{soil,accumulation} values and correponding long-term TER values for CGA71019 following all proposed uses of A6209G are shown for earthworms in the table below.

Table 153: Worst-case chronic risk (TER_{LT}) of the metabolite **CGA71019** to the most sensitive soil meso-and macrofauna (earthworms) following the proposed uses of A6209G.

Test item	NOEC (mg/kg soil dw)	Maximum PECs accumulation (mg/kg soil)	TERLT	Trigger value
Pome fruit (2 x 40 g a.s./ha)		0.0022	460	
Vines (2 x 30 g a.s./ha)		0.0024	420	
Cucumber (3 x 50 g a.s./ha)	1.0	0.0017	5 590	5
Cucumber (1 x 35 g a.s./ha)	andlinas	0.0006	1700	

The worst case long-term TER values for penconazole and the most toxic metabolite CGA71019 are all greater than the trigger value of 5, indicating that the long-term risk to non-target soil meso- and macrofauna is acceptable following the proposed uses of A6209G.

2.9.9.4 Risk assessment for soil nitrogen transformation

Soil organisms may be exposed to penconazole and its major metabolites. Based on the available studies on route and rate of degradation in soil, CGA71019, CGA179944, CGA142856 and CGA91305 are considered to be the relevant metabolites that have to be addressed in the risk assessment (For details, see **Volume 3 - B.8 (AS)**.

The exposure to soil organisms was estimated by calculating the maximum initial predicted environmental concentrations in soil (PEC_{SOIL}) or, where relevant, the peak accumulative PEC_{SOIL} (PEC_{SOIL}, ACCUMULATION</sub>) for the Use pattern of A6209G in Table 9.10-2. The PEC_{SOIL} value was calculated for each of the proposed crops assuming 65%, 50% and 85% crop interception for Pome fruit, Grapes and cucumber, respectively. The PEC_{SOIL,ACCUMULATION} values were calculated following yearly application to the various crops using a mixing depth of 5 cm for each application and tillage depths of 5 and 20 cm for permanent and annual crops, respectively. For full details on PEC_{SOIL} calculations see **Volume 3 - B.8 (PPP)**, Section B.8.1.3. RMS notes that the input for the PEC_{SOIL} and PEC_{SOIL,ACCUMULATION} modelling may change, and new modelling may be necessary. The values presented are thus regarded as preliminary values.

Table 154: Risk assessment for effects on soil micro-organisms

^b The endpoint is derived from a study with the representative formulation A6209G

d Rounded TER values are shown

Values in **bold** are below the trigger of 5

Use pattern	Test item	Endpoint (< 25% deviation from control) mg/kg d.w. soil	PECs, accumulation (mg/kg)	Acceptable risk? Y/N
	Penconazole	1.34	0.0390	Y
5	CGA179944	0.20	0.0074	Y
Pome fruit 2 x 40 g a.s./ha	CGA71019	0.35	0.0022	Y
2 x 40 g a.s./11a	CGA142856	0.08043	0.0037	Kloj, kl
	CGA91305	0.377	0.0027	O Y 00 00
	Penconazole	1.34	0.0421	Wil K
	CGA179944	0.20	0.0080	You A
Vines 2 x 30 g a.s./ha Cucumber 3 x 50 g a.s./ha	CGA71019	0.35	0.0024	NO OY O
	CGA142856	0.08043	0.0040	Carlo Carlo
	CGA91305	0.377	0.0029	99 WIN
	Penconazole	1.34	0.0303	70,00
	CGA179944	0.20	0.0058	Y
	CGA71019	0.35	0.0017	Y
	CGA142856	0.08043	0.0028	Y
	CGA91305	0.377	0.0021	Y
Cucumber 1 x 35 g a.s./ha	Penconazole	1.34	0.0100	Y
	CGA179944	0.20	0.0019	Y
	CGA71019	0.35 000	0.0006	Y
	CGA142856	0.08043	0.0009	Y
	CGA91305	0.377	0.0007	Y

Aacceptable risk on soil nitrogen transformation is expected after exposure of penconazole or the penconazole metabolites.

2.9.9.5 Risk assessment for terrestrial non-target plants

The risk assessment for terrestrial non-target plants has been conducted according to Terrestrial guidance document³³.

Spray drift reaching the off- field environment is considered the key exposure route for non-target terrestrial plants located in the vicinity of the treated area. The amount of spray drift reaching off-crop habitats is calculated using the 90th percentile estimates derived by the BBA (2000) 34 from the spray-drift predictions of Ganzelmeier & Rautmann (2000) 35. This procedure is further described in Terrestrial guidance document. During the pesticides peer review meeting on general recurring issues in ecotoxicology³⁶ it was agreed that, from a scientific point of view, there is a logical reason to account for multiple applications in the risk assessment for NTTP. However, the experts could not agree which approach should be applied to the risk assessment and it was agreed that for the risk

215

Anonymous (2002b). Guidance Document on terrestrial ecotoxicology under Council Directive 91/414/EEC. SANCO/10329/2002. 17 October 2002.

³⁴ BBA (2000). Bundesanzeiger Jg. 52 (Official Gazette), Nr 100, S. 9879-9880 (25.05.2000) Bekanntmachung über die Abtrifteckwerte, die bei der Prüfung und Zulassung von Pflanzenschutzmitteln herangezogen werden. Public domain.

³⁵ Ganzelmeier H., Rautmann D. (2000). Drift, drift-reducing sprayers and sprayer testing. Aspects of Applied Biology 57, 2000, Pesticide Application. Public domain.

³⁶ Arena et al. (2019). Outcome of the Pesticides Peer Review Meeting on general recurring issues in ecotoxicology. EFSA Supporting publication 2019:EN-1673. doi:10.2903/sp.efsa.2019.EN-1673

assessment of active substances, no MAF-values should be used by default, until a guidance document has been developed. Thus, multiple applications are not accounted for when calculating the PER-values, below.

	Table 155:	Off-field PER	values for	application	of A6209G
--	-------------------	---------------	------------	-------------	-----------

Test item	Crop	ввсн	Application rate (g a.s./ha)	No. of applications (max)	Basic drift values for one application (%)	PER (g a.s./ha)
	Pome Fruit	71–89	40	2	15.73 ^a	6.29
A C200C	Vines	13-85	30	2	8.02 ^b	2.41
A6209G	Cucumber	51-89	50	3	8.02°	4.01 +9
	Cucumber	51-89	35	1	8.02°	2.81

PER: Predicted Environmental Residue. The worst-case PER-value is given in bold.

Risk assessment for A6209G

According to the Terrestrial guidance document, endpoints measured in most screening studies cannot be interpreted as a NOEC-value covering germination and biomass production. However, it is assumed that the available information usually allows the use of a conservative approach, assuming, for example, that when an untreated control has been run in parallel, any effect accounting for at least 50 % reduction in biomass production could be identified in a visual inspection. In the current screening study, no phytotoxic effects above 50% was detected at an application rate of 200 g a.s./ha covering the worst-case GAP (including accumulation). According to these data, acceptable risk may be anticipated. However, this study is regarded as « supportive only », due to e.g. non-GLP and lack of analytical verification of the test substance. RMS is of the opinion that a new valid study should be provided in order to conclude on the risk for terrestrial plants.

A quantitative risk assessment, as described in the Terrestrial guidance document, with the **supportive endpoint** is also presented for completeness:

The potential risk to non-target plants associated with the application of A6209G was assessed considering the available screening endpoint (Table 9.12-1) and the worst-case off-field PER for application in pome fruit (see Table 9.12-2), according to the following formula:

$$TER = \frac{ER_{50} (g/ha)}{PER_{off-field} (g/ha)}$$

Table 156: Worst case TER values for A6209G

Test item	Most sensitive species and endpoint (g a.s./ha)	ER50 (g a.s./ha)	PER (g a.s./ha)	TER
A6209G (seedling emergence)	All tested species	>200	6.29	>32
A6209G (vegetative vigour)	All tested species	>200	6.29	>32

The TER values exceed the trigger value of 5, indicating that the risk to terrestrial non-target plants in off-crop areas is acceptable following the proposed uses of A6209G. However, a new valid study should be provided in order to finalise the risk assessment.

^aWorst case drift value for fruite crops (late)

^bWorst case drift value for vines (grapevine late)

^cWorst case drift value for vegetables/ornamentals/small friute (hight > 50 cm)

2.10 ENDOCRINE DISRUPTING PROPERTIES

According to the ED criteria a substance shall be considered as having ED properties if it meets all of the following criteria:

- a) it shows an adverse effect in [an intact organism or its progeny]/[non-target organisms], which is a change in the morphology, physiology, growth, development, reproduction or life span of an organism, system or (sub)population that results in an impairment of functional capacity, an impairment of the capacity to compensate for additional stress or an increase in susceptibility to other influences;
- b) it has an endocrine mode of action, i.e. it alters the function(s) of the endocrine system;
- c) the adverse effect is a consequence of the endocrine mode of action.

An assessment of the ED-criteria in accordance with Guidance for the identification of endocrine disruptors in the context of Regulations (EU) No 528/2012 and (EC) No 1107/2009 (EFSA, 2018) have been performed by RMS and is presented below.

2.10.1 Gather all relevant information

Regarding the mammalian toxicology area, data were gathered from all repeated dose toxicity studies in mammals including *in vivo* mechanistic data and *in vitro* mechanistic assays included in the RAR, as well as ToxCast data from the US EPA CompTox Chemicals Dashboard (http://comptox.epa.gov/dashboard).

For non-target organisms, in the dossier for penconazole, 2 reproductive studies on birds (internal protocol similar to OECD TG 206). One of the reproductive studies with birds (1985a) was considered not acceptable by RMS, and has not been included further in the overview of the data or in the excel-spreadsheet (see Volume 3 – B.9 (AS), K-CA 8.1.1.3/02 for further details). In addition, a fish early life stage toxicity test (OECD TG 210; Surprenant 1984c) and a fish sexual development test (draft OECD TG 234; 2012) is available in the dossier. A study from open literature on the developmental toxicity of Zebrafish embryos (Aksakal and Ciltas, 2018) is also available. Even though the study is not fully reliable, due to e.g. no analytical verification of the exposure concentrations, the study is still considered supportive for the ED-assessment. A fish full life cycle test (OECD Draft Proposal for Fish Two-Generation Test Guideline (2002) and Draft OPPTS 850.1500 Test Guideline) has been initiated to further assess effects on endocrine activity and especially adversity. Currently only preliminary results have been presented by the applicant. The study has not been evaluated by the RMS as a full study report is not available (for the applicant's summary of the preliminary results, see Volume 3 – B,9.2.2.2. (AS)).

An extensive literature search has been performed, using specific endocrine disruption search terms and an extended duration to ensure that all available literature have been located (Charlton A, Pickford D. (2019), document no. CGA071818_10703). This additional search was carried out to identify *in vitro* and *in vivo* studies designed to assess the effects of penconazole on the endocrine system. The literature search process has been sufficiently documented according to the EFSA Journal 2011; 9(2):2092 (EFSA, 2011), however, RMS is of the opinion that the relevance criteria and the rapid and detailed evaluation for ED-specific search could have been better described by the applicant, in order to fully determine whether the search strategy is appropriate. Please see Volume 3 – B.9 (AS) Appendix where the search has been summarised by RMS (both tox and ecotox). Toxicology: The search identified 5 relevant and reliable toxicology publications which are summarised in Volume 3 - B.6.8.3 (AS). A further 5 publications were discarded following detailed assessment. Full details are provided in Volume 3 - B.6 (AS) Appendix and Volume 3 - B.6.8.3 (AS). Ecotoxicology: In addition, the search identified 3 possibly ED relevant ecotox publications (two of these were also identified relevant for mammalian tox), where all were discarded. One study on the developmental toxicity of Zebrafish embryos (Aksakal and Ciltas, 2018), was identified in the general ecotox literature search, and has by RMS also been considered relevant for the assessment of the ED criteria.

Data were populated in the Excel template provided as Appendix E to the EFSA/ECHA guidance for the identification of endocrine disruptors by the applicant, and updated by RMS (EDGD_Appendix-E1_2021-06-11). According to this template each study was given a unique identification number (Study ID Matrix) that is important for its identification in the data-matrix and Lines of Evidence (LoE) spreadsheets of the Excel.

A summary of all studies considered for the mammalian toxicology and non-target organism evaluation, including the Study ID Matrix is outlined in the table below.

217

Table 157: Outline of dataset considered for mammalian toxicology and non-target organism assessment

Type of toxicity	Study type	Study ID Matrix
Repeated dose	Subacute oral in rodent (open literature)	1*
toxicity studies	Volume 3 (AS) B.6 AP1.5. KCA 9/16. El-Sharkawy et al (2013)	
in mammals	Repeated dose 28-day oral toxicity study in rat Volume 3 (AS) B.6.3.1/01 KCA 5.3.1/01. (1984)	28
	Repeated dose 28-day oral toxicity study in rat	29a, 29b
	Volume 3 (AS) B.6.3.1/02 KCA 5.3.1/02. (1991)	. 10, 15
	Repeated dose 90-day oral toxicity study in rat	30
	Volume 3 (AS) B.6.3.2/01 K-CA 5.3.2/01. (1982)	4 - 1 - 10
	Repeated dose 90-day oral toxicity study in rat	101131
	Volume 3 (AS) B.6.3.2/02 K-CA 5.3.2/02. (1983)	
	Repeated dose 90-day oral toxicity study in rat	018 32 cital of
	Volume 3 (AS) B.6.3.2/03 K-CA 5.3.2/03. (1987b)	281
	Repeated dose 90-day oral toxicity study in mouse Volume 3 (AS) B.6.3.2/05 K-CA 5.3.2/05. (1987)	32
	Repeated dose 90-day oral toxicity study in dog	34a
	Volume 3 (AS) B.6.3.2/04 K-CA 5.3.2/04. (1984)	27 20
	1-year dog toxicity study	34b
	Volume 3 (AS) B.6.3.2/04 K-CA 5.3.2/04. (1984)	11/1,
	Repeated dose 90-day oral toxicity study in rat Volume 3 (AS) B.6.3.2/06 K-CA 5.3.2/06. (2002)	35
	Repeated dose 21-day dermal toxicity study in rabbit	36
	Volume 3 (AS) B.6.3.3/01 K-CA 5.3.3/0.1. (1983)	
	Combined chronic toxicity/carcinogenicity studies in mouse	37
	Volume 3 (AS) B.6.5.5.1/01 K-CA 5.5/01. (1985)	20
	Carcinogenicity study in mouse Volume 3 (AS) B.6.5.5.1/02 K-CA 5.5/02. (2004)	38
	Carcinogenicity study in rat	39
	Volume 3 (AS) B.6.5.5.2/01 K-CA 5.5/03. (1985a)	39
	Two-generation reproduction toxicity test in rat	40a
	Volume 3 (AS) B.6.6.1 K-CA 5.6.1/01. (1983)	104
	Two-generation reproduction toxicity test in rat	40b
	Volume 3 (AS) B.6.6.1 K-CA 5.6.1/04. (1987)	
	Prenatal developmental toxicity study in rat	41a, 41b
	Volume 3 (AS) B.6.6.2 K-CA 5.6.2/01. (1981)	
X,	Prenatal developmental toxicity study in rat	42
ocumentis not	Volume 3 (AS) B.6.6.2 K-CA 5.6.2/03. (1985)	
11, 61,10	Prenatal developmental toxicity study in rabbit	43
el is	Volume 3 (AS) B.6.6.2 K-CA 5.6.2/04. (1982)	43
1111 611 6	Prenatal developmental toxicity study in rabbit	44
ochuleurich 6	Volume 3 (AS) B.6.6.2 K-CA 5.6.2/06. (1985)	
Non-target	Avian reproduction test (OECD 206, CF 4)	46
organisms	Volume 3 (AS) B.9.1.1.3. K-CA 8.1.1.3/01. (1985)	40
other than	Fish early life stage test (OECD 210, CF 4)	
mammals	Volume 3 (AS) B.9.2.2.1 K-CA 8.2.2.1/01.	47
1, 60, 01	(1984c)	
on use	Developmental toxicity in Zebrafish embryos (Open literature)	50
70	Volume 3 (AS) B.9.2.2.1 K-CA 8.2.2.1/03. Aksakal and Ciltas (2018) Fish sexual development test (OECD 234, CF 4)	
<i>₽</i> ′	Volume 3 (AS) B.9.2.3 K-CA 8.2.3/03. (2012)	48
	Fish life cycle toxicity test (OPPTS 850.1500, CF 5)	Study (reporting)
	Volume 3 (AS) B.9.2.2.2 Preliminary results as provided by	ongoing, thus not
	applicant (not validated by RMS	included in
7	¥ * · · · · · · · · · · · · · · · · · ·	current evaluation
In vivo mechanistic	Subacute oral in rodent (open literature)	49
meenamoue	218	

		Т
	Volume 3 (AS) B.6.8.2 K-CA 5.8.2/02. Waechter F, Bentley P,	
	Staeubli W (1985)	
In vitro	In vitro AR binding assay (open literature)	2
mechanistic	Volume 3 (AS) B.6.8.3 K-CA 5.8.3/04. Roelofs et al (2014)	
	In vitro AR binding assay (open literature)	7*
	Volume 3 (AS) B6 Appendix1, Table AP1-5. Lv et al. (2017)	
	In vitro method (general) (open literature)	3
	Volume 3 B.6.8.2 KCA 9/41. Perdichizzi S. et al (2014)	
	In vitro aromatase assay (open literature)	4 110
	Volume 3 B.6.8.3 K-CA 5.8.3/07. Sanderson et al (2002)	allo de
	In vitro aromatase assay (open literature)	45000
	Volume 3 (AS) B.6.8.3 K-CA 5.8.3/05. Trösken et al (2004)	1,00,00,00
	In vitro aromatase assay (open literature)	ight 186 in
	Volume 3 (AS) B.6.8.3 K-CA 5.8.3/06. Trösken et al (2006)	to dis dist
	In vitro ER binding assay (open literature)	160, 80, 710
	Volume 3 (AS) B.6.8.3 K-CA 5.8.3/08. Schlotz et al (2017)	S, 10, 10, 13,
	In vitro ToxCast ER prediction model (receptor binding assay)	
	Volume 3 (AS) B.6.8.3	70, 41, 40,
	In vitro ToxCast ER prediction model (receptor binding assay)	10
	Volume 3 (AS) B.6.8.3	N 200
	In vitro ToxCast ER prediction model (receptor binding assay)	11
	Volume 3 (AS) B.6.8.3	*KII3
	In vitro ToxCast ER prediction model (agonism)	12
	Volume 3 (AS) B.6.8.3	
	In vitro ToxCast ER prediction model (antagonism)	13
	Volume 3 (AS) B.6.8.3	
	In vitro ToxCast ER prediction model (agonism)	14
	Volume 3 (AS) B.6.8.3	
	In vitro ToxCast ER prediction model (antagonism)	15
	In vitro ToxCast ER prediction model (agonism)	16
	Volume 3 (AS) B.6.8.3	
	In vitro ToxCast AR prediction model (antagonism)	17
	Volume 3 (AS) B.6.8.3	
	In vitro ToxCast AR prediction model (agonism)	18
	Volume 3 (AS) B.6.8.3	
	In vitro ToxCast AR prediction model (antagonism)	19
	Volume 3 (AS) B.6.8.3	
	In vitro ToxCast AR prediction model (antagonism)	20
×		
Š.	In vitro ToxCast TR transactivation assay (agonism)	21
600	Volume 3 (AS) B.6.8.3	
11/2/11/2	In vitro ToxCast TR transactivation assay (antagonism)	22
0,125	Volume 3 (AS) B.6.8.3	
111 010	In vitro ToxCast TR (cellular proliferation)	23
10, 140, 140,	Volume 3 (AS) B.6.8.3	
Schullus Light of the Control of the	In vitro ToxCast TSHR transactivation assay (agonism)	24
	I Waluma 2 (AC) D 6 9 2	21
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	In vitro ToxCast TSHR transactivation assay (antagonism)	25
idhtsenting	Volume 3 (AS) B.6.8.3	25
U. M. H.	In vitro ToxCast TSHR transactivation assay	26
, 60, 0,	Volume 3 (AS) B.6.8.3	۷۵
15	In vitro ToxCast Steroidogenesis (aromatase assay)	27
ights of this	Volume 3 (AS) B.6.8.3	21
ALC:	In vitro steroidogenesis assay (H295R assay)	45
and use of this	Volume 3 (AS) B.6.8.3 K-CA 5.8.3/03. Venkaart S. (2019)	4.7
	event, but not reliable	<u> </u>

^{*}study considered relevant, but not reliable.

2.10.2 ED assessment for humans

2.10.2.1 ED assessment for T-modality

2.10.2.1.1 Have T-mediated parameters been sufficiently investigated?

Table 158: Have T-mediated parameters been sufficiently investigated?

Sufficiently investigated
No (to consider the T modality as 'sufficiently investigated'
for mammals, the thyroid parameters foreseen to be
investigated in the following studies OECD test guidelines
407, 408, 409 (and/or the one-year dog study, if available),
416 (or 443 if available) and 451-3 should have been
measured and the results included in the dossier. Studies
following the recommended TG or similar design have been performed, but due to several deviations from current
guidelines, a number of parameters indicative of T have not
been investigated (see Table 161: for details)
However, according to the EFSA "Technical report on the
outcome of the pesticides peer review meeting on general
recurring issues in mammalian toxicology" (EFSA
supporting publication 2020:EN-1837, page 7,
doi:10.2903/sp.efsa.2020.EN-1837), the dataset for thyroid
can be considered complete on a case-by-case basis, pending
whether the duration and doses selection allow a proper
assessment of the thyroid histology (thyroid histopathology
is generally considered more sensitive and informative than
thyroid weight).
thy old weight).
RMS is of the opinion that sufficiency may be discussed.
The dosing was not optimal in the short term 28-day studies
following the OECD TG 407 (study ID 28, 29a, 29b), the
110 days study following the OECD TG 416 (study ID 40a)
or in the 2-year study the OECD TG 451-3 (study ID 39)
(see Table 103 for details).
NO.
'O',
assessment of the thyroid histology (thyroid histopathology is generally considered more sensitive and informative than thyroid weight). RMS is of the opinion that sufficiency may be discussed. The dosing was not optimal in the short term 28-day studies following the OECD TG 407 (study ID 28, 29a, 29b), the 110 days study following the OECD TG 416 (study ID 40a) or in the 2-year study the OECD TG 451-3 (study ID 39) (see Table 103 for details).
The dosing was not optimal in the short term 28-day studies following the OECD TG 407 (study ID 28, 29a, 29b), the 110 days study following the OECD TG 416 (study ID 40a) or in the 2-year study the OECD TG 451-3 (study ID 39) (see Table 103 for details).
110 days study following the OECD TG 416 (study ID 40a) or in the 2-year study the OECD TG 451-3 (study ID 39) (see Table 103 for details).

2.10.2.1.2 Lines of evidence for adverse effects and endocrine activity related to T-modality

Table 159: Lines of evidence for adverse effects and endocrine activity related to T-modality

										ctivity related to T-modality ated to T-modality Observed effect (positive and negative)	Cial May the less of the less	Siore Siore	
Stu dy ID Ma trix	Effec t classi ficati on	Effect target	Species	Dura tion of expo sure	Dura tion unit	Route of administ ration	Lowest Effect dose	Dose unit	Effect directi on	160 20 1810 11 10 10 10 10 10 10 10 10 10 10 10 1		evidence	Mod ality
21	In vitro mech anisti c	Thyroid receptor	rat, pituitary gland, cell line	28	Hr	Uptake from the medium (in vitro)	0	μM	No effect	ToxCast TR model: No TR-mediated agonistic activity	Evidence for TR mediated antagonistic activity <i>in vitro</i> , (Penconazole was	Overall, indication of endocrine activity, based on <i>in vivo</i>	Thyr oid
22		Thyroid receptor	rat, pituitary gland, cell line	28	Hr	Uptake from the medium (in vitro)	56.89	μM	Change	ToxCast TR model: TR-mediated antagonistic activity	active in one of these assays (TOX21_TR_LU C_GH3_Antagoni st); however, the viability readout was also active and interference with cytotoxicity cannot be excluded.)	mechanistic data (study ID 49a and 49b) showing marked liver enlargement in rats and mice at 80 mg/kg bw/day and higher (dose-	
24		TSH receptor (in vitro)	human, kidney, cell line	0,5	Hr	Uptake from the medium (in vitro)	SOUTH	μM	No effect	ToxCast TSHR: No TSHR-mediated activity	Negative, no effect on TSHR in vitro	dependent) and a pronounced induction in	
25		TSH receptor (in vitro)	human, kidney, cell line	0,5	Hr	Uptake from the medium (in vitro)	111.95	pM O	No effect	ToxCast TSHR: No TSHR-mediated activity		the activity of several hepatic xenobiotic metabolising	
26		TSH receptor (in vitro)	human, kidney, cell line	0,58 50/1/1 60/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1		Uptake from the medium (in vitro)		μM	No effect	ToxCast TSHR: No TSHR-mediated activity		enzymes (uridine diphosphate [UDP]- glucuronyl transferase).	

28	EAT S- medi ated	Thyroid histopath ology	rat	28	Days	Oral		mg/k g bw/d ay	No effect	No effect on thyroid histopathology at the highest dose of 1000 mg/kg bw.	No consistent treatment-related effects on thyroid, but not	No consistent EATS- mediated adverse	Thyr oid
29a			rat	28	Days	Oral		mg/k g bw/d ay	Change and is a series of the control of the contro	Increased incidences of minimal hypertrophy of the follicle epithelium were seen in male from 100 mg/kg bw/day (5/10 low dose, 10/10 high dose) and female top dose animals (8/10). Study considered supportive only; for each batch of test material (Batch A 96.2% and Batch B 96.1%) only two dose levels were tested (100 and 500 mg/kg) with toxicity already at the low dose-level and mortality at the high dose-level. One female dosed with 500 mg/kg/day (Batch A) and one male and two females dosed with 500 mg/kg/day (Batch B) were sacrificed in moribund condition at experimental days 2 and 3, respectively. This indicates that a dose of 500 mg/kg/day exceeded the MTD, however, effects observed are still considered adverse. Effect on thyroid is observed at the same dose level as liver effects (100 mg/kg bw/day).	sufficiently investigated. Increased thyroid weight in female rats treated at 500/1000 mg/kg/day is not considered adverse: The observed variations in thyroid weight were within the range of the limited HCD. Increased thyroid weight and incidences of minimal hypertrophy of the follicle epithelium was seen in low dose (100 mg/kg bw/day) and high dose (500 mg/kg bw/day) rats and were considered adverse. Effects in dogs were not	effects, but not sufficiently investigated.	
		2	This to	ind is sold in the second seco		ing only	300			222			

										considered	5
29b		rat	28	Days	Oral	500	mg/k g bw/d ay	Change	Increased incidences of minimal hypertrophy of the follicle epithelium were seen in males (with higher incidences) at 500 mg/kg bw (7/10 animals) and in females (2/10). Study considered supportive only; for each batch of test material (Batch A 96.2% and Batch B 96.1%) only two dose levels were tested (100 and 500 mg/kg) with toxicity already at the low dose-level and mortality at the high dose-level. One female dosed with 500 mg/kg/day (Batch A) and one male and two females dosed with 500 mg/kg/day (Batch B) were sacrificed in moribund condition at experimental days 2 and 3, respectively. This indicates that a dose of 500 mg/kg/day exceeded the MTD, however, effects observed are still considered adverse. Effect on thyroid is observed at the same dose level as liver effects (100 mg/kg bw/day).	exposure - Thyroid C-cell hyperplasia were seen in 2/4 top dose males (control dog incidence 1/4) at	store .
30		rat	90	Days	Oral		mg/k g bw/d ay	No effect	No effect on thyroid histopathology up to top dose (208.6 mg/kg bw/day) in F.	However, C-cell hyperplasia is not considered adverse for T3/T4 activity). 12	
30		rat	90	Days	Oral		mg/k g bw/d ay	No effect	No effect on thyroid histopathology up to top dose (202.3 mg/kg bw/day) in M.	months exposure - no effects observed.	
31		rat	90	Days	Oral	Selicity of	mg/k g bw/d ay	No effect	No effect on thyroid histopathology up to highest dose tested (7.07 mg/kg bw/day) in M.		
31		rat	90	Days	Oral	Jith &	mg/k g bw/d ay		No effect on thyroid histopathology up to highest dose tested (7.27 mg/kg bw/day) in F.		
34a		Dog	Olimei 90	Days	Oral	132	mg/k g bw/d ay	Change	Thyroid C-cell hyperplasia were seen in 2/4 top dose males (control dog incidence 1/4). Observed in the presence of significant systemic toxicity; decreased body weight and body weight gain associated with drastically reduced food intake.		
34a		Dogo	grits	Days	Oral	137	mg/k g bw/d ay	Change	Thyroid C-cell hyperplasia were seen in 3/4 top dose females (control dog incidence 2/4). Observed in the presence of significant systemic toxicity; decreased body weight and body weight gain associated with drastically reduced food intake.		

									Thyroid C-cell hyperplasia in 1/4 top dose males, same incidence as in control dogs 1/4) up to highest dose tested (108 mg/kg bw/day). No effect on thyroid histopathology up to highest dose tested (110 mg/kg bw/day) in F.	
34b		Dog	12	Mont hs	Oral	108	mg/k g bw/d ay	No effect	Thyroid C-cell hyperplasia in 1/4 top dose males, same incidence as in control dogs 1/4) up to highest dose tested (108 mg/kg bw/day).	
34b		Dog	12	Mont hs	Oral		mg/k g bw/d ay	No effect	No effect on thyroid histopathology up to highest dose tested (110 mg/kg bw/day) in F.	
38		mouse	80	Week s	Oral		mg/k g bw/d ay	No effect	tested (177.7 mg/kg bw/day) in M. Thyroid gland was not weighed	
38		mouse	80	Week s	Oral		mg/k g bw/d ay	No effect	No effect on thyroid histopathology up to highest dose tested (221.5 mg/kg bw/day) in F. Thyroid gland was not weighed	
39		rat	116	Week s	Oral		mg/k g bw/d ay	No effect	No effect on thyroid histopathology (examined together with parathyroid) up to highest dose tested (10.4 mg/kg bw/day) in M.	
39		rat	117	Week	Oral	617	mg/k g bw/d ay	No effect	No effect on thyroid histopathology (examined together with parathyroid) up to highest dose tested (11.9 mg/kg bw/day) in F. 1-year interim sacrifice: Hyperplasia of C-cells was found more frequently in the thyroid of females treated with 5.7 mg/kg bw/day (14/80). As the incidence of both these changes showed no dose-relationship, these changes are not considered to be a result of treatment with penconazole.	
40a		rat	110	days	Oral	Jilly S	mg/k g bw/d ay	No effect	No effect on thyroid histopathology up to highest dose tested (156 mg/kg bw/day in M and 153 mg/kg bw/day in F).	
28	Thyroid weight	rat	28	Days	Oral	500	mg/k g bw/d ay	Increas e	Increased thyroid weight in females only treated at 500/1000 mg/kg/day (the observed variations in thyroid weight were within the range of the limited HCD - concurrent control was lower than the available HCD).	
	(This to	School Septiment of the		Sacrain Sacrain				224	

										Jolic Hand	
29a		rat	28	Days	Oral	100	mg/k g bw/d ay	Increas e	2 and 3, respectively. This indicates that a dose of 500 mg/kg/day exceeded the MTD, however, effects observed are still considered adverse. Effect on thyroid is observed at the same dose level as liver effects (100 mg/kg bw/day).	anent may the faction of the faction	
29b		rat	28	Days	Oral	100	mg/k g bw/d ay	Increas e	Increase in thyroid weight in treated males (abs + rel) up to 500 mg/kg bw. Study considered supportive only; for each batch of test material (Batch A 96.2% and Batch B 96.1%) only two dose levels were tested (100 and 500 mg/kg) with toxicity already at the low dose-level and mortality at the high dose-level. One female dosed with 500 mg/kg/day (Batch A) and one male and two females dosed with 500 mg/kg/day (Batch B) were sacrificed in moribund condition at experimental days 2 and 3, respectively. This indicates that a dose of 500 mg/kg/day exceeded the MTD, however, effects observed are still considered adverse. Effect on thyroid is observed at the same dose level as liver effects (100 mg/kg bw/day).		
34a		Dog	90	Days	Oral	IN STATE OF	mg/k g bw/d ay	No effect	No effect on thyroid weight. It is unclear whether parathyroids were weighed together with thyroids.		
34a		Dog	90	Days	Oral	Siloni	mg/k g bw/d ay	No effect	No effect on thyroid weight. It is unclear whether parathyroids were weighed together with thyroids.		
34b		Dog	12	Mont hs	Oral		mg/k g bw/d ay		No effect on thyroid weight. It is unclear whether parathyroids were weighed together with thyroids.		
	7	This of	ignie ignie	SOLIT					225		_

										د ح	of objections of the state of t	5	
34b			Dog	12	Mont hs	Oral		mg/k g bw/d ay	No effect	No effect on thyroid weight. It is unclear whether parathyroids were weighed together with thyroids.	This is all the state of the st	io le	
39			rat	116	Week s	Oral		mg/k g bw/d ay	No effect	No effect on thyroid weight were observed in males. Thyroid gland was weighed together with parathyroid.	inert not		
39			rat	117	Week s	Oral		mg/k g bw/d ay	No effect	No effect on thyroid weight were observed in females. Thyroid gland was weighed together with parathyroid.	5		
29a	Sensi tive to, but not diagn ostic of, EAT S	Adrenals histopath ology	rat	28	Days	Oral	500	mg/k g bw/d ay	Change	Cortical atrophy was noted in most top dose females (8/10*) *two females were sacrificed in moribund condition on day 3 (500 mg/kg bw/day). Study considered supportive only; for each batch of test material (Batch A 96.2% and Batch B 96.1%) only two dose levels were tested (100 and 500 mg/kg) with toxicity already at the low dose-level and mortality at the high dose-level. One female dosed with 500 mg/kg/day (Batch A) and one male and two females dosed with 500 mg/kg/day (Batch B) were sacrificed in moribund condition at experimental days 2 and 3, respectively. This indicates that a dose of 500 mg/kg/day exceeded the MTD; however, the observed effects are still considered treatment related	Indications of treatment-related adverse effects on adrenal, based on observed effects in rats (atrophy and increased weight at 500 mg/kg/bw/day) and dogs (increased weight at 110 mg/kg bw/day). Increased adrenals	Overall, evidence of adverse effects sensitive to but not diagnostic of EATS (based on effects on adrenal and anomalies in rat and rabbit)	Thyr oid
29b			rat	28 SUMPO	Days	Oral Andeles	Still it	mg/k g bw/d ay	Change	Cortical atrophy was noted in most top dose females (9/10*) *one female was sacrificed in moribund condition on day 2 (500 mg/kg bw/day). Study considered supportive only; for each batch of test material (Batch A 96.2% and Batch B 96.1%) only two dose levels were tested (100 and 500 mg/kg) with toxicity already at the low dose-level and mortality at the high dose-level. One female dosed with 500 mg/kg/day (Batch A) and one male and two females dosed with 500 mg/kg/day (Batch B) were sacrificed in moribund condition at experimental days 2 and 3, respectively. This indicates that a dose of 500 mg/kg/day exceeded the MTD; however, the observed effects are still considered treatment related	weight in mouse (signficant trend at 75, 150 and 300 ppm) was in absence of a dose relationship and not associated with relevant histopathological changes.		
		C.	Color Second	ing he	3, 11,					226			

			-					10° (iii) 30° 9° (iii) 30°
31		rat	90	Days	Oral	mg		No effect on adrenals histopathology up to highest dose tested (7.07 mg/kg bw/day) in M. No effect on adrenals histopathology up to highest dose tested (7.27 mg/kg bw/day) in F. No effect on adrenals histopathology in male dogs up to highest dose tested 132 mg/kg bw/day
						g		t tested (7.07 mg/kg bw/day) in M.
						bw	/d	(10, 10, 10, 10,
						ay		
31		rat	90	Days	Oral	mg		No effect on adrenals histopathology up to highest dose
						g		t tested (7.27 mg/kg bw/day) in F.
						bw		
2.4	-	Ъ	00	D	0.1	ay		NT CC
34a		Dog	90	Days	Oral	mg		No effect on adrenals histopathology in male dogs up to
						g 1		nignest dose tested 132 mg/kg bw/day
						bw		
34a	-	Dog	90	Days	Oral	mg		No effect on adrenals histopathology in female dogs up
34a		Dog	90	Days	Orai			
						bw		to highest dose tested 157 hig/kg bw/day
						ay		Eg Eg gg Elli Me El.
34b	-	Dog	12	Mont	Oral	mg		No effect on adrenals histopathology in male dogs up to
		- 6		hs		g		
						bw		01,00 110 4 6 111.112
						ay		3,70,00,90,00
34b		Dog	12	Mont	Oral	mg	/k Ne	No effect on adrenals histopathology in female dogs up
				hs		g	effe	t to highest dose tested 110 mg/kg bw/day
						bw	d\	1 10 110 110 110 110 110 110 110 110 11
						ay		0, "0, 61, "0
35		mouse	90	Days	Oral	pp		
						, 0, 8	effe	t control and high dose groups only).
35	-		90	D	Oral	9, 12%	n No	No effect on adrenals histopathology in M (examined
33		mouse	90	Days	Orai	pp	effe	
					A'C	14. 70,	Circ	it in control and high dose groups only).
37		mouse	106	Week	Oral	pp	n No	No effect on adrenals histopathology up to highest dose
				S	11/2/1	15 19%	effe	
				-	, , , V	110. 413	×6, ~;	
38		mouse	80	Week	Oral	mg		No effect on adrenals histopathology up to highest dose
				S	100.00	i O		t tested (177.7 mg/kg bw/day) in M.
			o'.		Modifies.	bw	1-	
20			180		0, 0	ay		N. CC
38		mouse	80	Week	Oral	mg		No effect on adrenals histopathology up to highest dose
		70	YOCIJI	S	74 2	§ 8		t tested (221.5 mg/kg bw/day) in F.
		.5	70°	10	16,2 011,	bw		
39		1 2nt 1:0	1170	Week	Oral	ay		No effect on advances historichelegy 1 year interim
39		rat	117	week	Grai	mg		No effect on adrenals histopathology. 1-year interim t sacrifice: nodular hyperplasia was observed in the
		35	6, 1	Sision		g	ene	adrenal cortex of females treated with 2.9 mg/kg
		C. 7		1 6 7				auterial Cortex of Telliates freated with 2.9 mg/kg

										Stiple to Sugar Stiple to the Stiple to the Stiple to Sugar	
							bw/d ay		bw/day (19/79) and 5.7 mg/kg bw/day (12/80). However, in the absence of a dose-response relationship this was not attributed to treatment with penconazole.	TOP TO TOP TOP TOP TOP TOP TOP TOP TOP T	
39		rat	116	Week s	Oral		mg/k g bw/d ay	No effect	No effect on adrenals histopathology up to highest dose tested (10.4 mg/kg bw/day) in males.	Sciol Way	
40a		rat	110	days	Oral		mg/k g bw/d ay	No effect	in F).	ille.	
28	Adrenals weight	rat	28	Days	Oral	500	mg/k g bw/d ay	Increas e	Increased adrenal weights in males and females treated at 100/500 mg/kg/day and above.		
29a		rat	28	Days	Oral	500	mg/k g bw/d ay	Increas e	Increase in absolute adrenal weight at 500 mg/kg bw/day. Relative adrenal weights — while higher than concurrent controls - were within the range of HCD in females and in males. Study considered supportive only; for each batch of test material (Batch A 96.2% and Batch B 96.1%) only two dose levels were tested (100 and 500 mg/kg) with toxicity already at the low dose-level and mortality at the high dose-level. One female dosed with 500 mg/kg/day (Batch A) and one male and two females dosed with 500 mg/kg/day (Batch B) were sacrificed in moribund condition at experimental days 2 and 3, respectively. This indicates that a dose of 500 mg/kg/day exceeded the MTD.		
29b		rat &	28	Days	Oral C			Increas e	Increase in absolute adrenal weight at 500 mg/kg bw. Study considered supportive only; for each batch of test material (Batch A 96.2% and Batch B 96.1%) only two dose levels were tested (100 and 500 mg/kg) with toxicity already at the low dose-level and mortality at the high dose-level. One female dosed with 500 mg/kg/day (Batch A) and one male and two females dosed with 500 mg/kg/day (Batch B) were sacrificed in moribund condition at experimental days 2 and 3, respectively. This indicates that a dose of 500 mg/kg/day exceeded the MTD.		
31		rat	90 890	Days	Oral		mg/k g bw/d ay	No effect	No effect up to highest dose tested (7.07 mg/kg bw/day) in F.		

31		rat	90	Days	Oral		mg/k g bw/d ay	No effect	No effect up to highest dose tested (7.27 mg/kg bw/day) in M. Significant increase in relative adrenals weight (15%) at top dose only (absence of a dose relationship). No effect on adrenals weight up to highest dose tested (2400 ppm).
32		rat	90	Days	Oral	2400	ppm	Increas e	Significant increase in relative adrenals weight (15%) at top dose only (absence of a dose relationship).
33		mouse	90	Days	Oral		ppm	No effect	No effect on adrenals weight up to highest dose tested (2400 ppm).
34a		Dog	90	Days	Oral		mg/k g bw/d ay	No effect	Slight increase in relative adrenals weight at 132 mg/kg bw/day (top dose) due to low BW in top dose males at termination
34a		Dog	90	Days	Oral	137	mg/k g bw/d ay	Increas e	Increase in relative adrenals weight at 137 mg/kg bw/day (35%), but not absolute weight, due to low BW in top dose females at termination (-25%)
34b		Dog	12	Mont hs	Oral		mg/k g bw/d ay	No effect	No effect on adrenals weight up to highest dose tested 108 mg/kg bw/day; however, slight increase in top dose males mainly was noted due to lower body weights
34b		Dog	12	Mont hs	Oral	110	mg/k g bw/d ay	Increas	Absolute and relative adrenal weights were increased (abs: 34%, rel: 54%) in top dose females (in absence of histopathological changes) and in presence of lower BW
35		mouse	90	Days	Oral	3000	ppm	Increas e	Adrenal weights adjusted for bodyweight were higher than control in females receiving 3000 ppm.
35		mouse	90	Days	Oral	NO ST	ppm	No effect	No effect on adrenal weight up to highest dose tested (5000 ppm).
37		mouse	106	enis	Oral	Ail Of I	ppm	Increas e	A statistically significant trend was noted for increased absolute and adrenal weights at the terminal sacrifice in males, this was in absence of a dose relationship, not associated with relevant histopathological changes and the values were within the range of available HCD (relative increases; 75 ppm +10%, 150 ppm +13%, 300 ppm +3%).
37		mouse	107	Week s	Oral		ppm	No effect	Variations in adrenal weights achieving statistical significance (absolute changes only at 75 and 150 ppm) in females (decrease at terminal sacrifice) were in absence of a dose relationship. Relative change: 5 ppm -38%, 75 ppm -28%, 150 ppm -35%, 300 ppm -36%.

									Adrenal weight was unaffected by treatment up to highest dose tested (177.7 mg/kg bw/day) in M. Adrenal weight was unaffected by treatment up to highest dose tested (221.5 mg/kg bw/day) in F. No effect on adrenal weight were observed up to highest dose tested (11.9 mg/kg bw/day) in females. No effect on adrenal weight were observed up to highest dose tested (10.4 mg/kg bw/day) in males.	Thicky and	
38		mouse	80	Week s	Oral		mg/k g bw/d ay	No effect	Adrenal weight was unaffected by treatment up to highest dose tested (177.7 mg/kg bw/day) in M.	Cilon ed the	kote
38		mouse	80	Week s	Oral		mg/k g bw/d ay	No effect	Adrenal weight was unaffected by treatment up to highest dose tested (221.5 mg/kg bw/day) in F.	dial may	
39		rat	117	Week s	Oral		mg/k g bw/d ay	No effect	No effect on adrenal weight were observed up to highest dose tested (11.9 mg/kg bw/day) in females.	70.	
39		rat	116	Week s	Oral		mg/k g bw/d ay		regiect de listilianes		
43	Foetal developm ent	rabbit	14	days	Oral		mg/k g bw/d ay	No effect	No effect on foetal development up to highest dose tested 150 mg/kg bw/day, except foetal visceral findings were observed, three cases of bilateral microphthalmia, two in combination of internal hydrocephalus at the top dose (2/125 foetus with internal hydrocephalus at 75 ppm). Developmental NOAEL is based on this effect. Test chemical only administered from GD 6-18 only (prenatal developmental toxicity study)	Negative, no effect on foetal development	
40a	Litter size	rat	110	days	Oral	Solid	mg/k g bw/d ay	No effect	No effect up to highest dose tested 153 mg/kg bw/day: while initial litter sizes were slightly smaller than controls at the top dose level in both generations, the litter sizes in all treated groups are well within the range of limited HCD	Negative, no consistent effect on litter size	
40b		rat	19	Week	Oral	Jiliko.	mg/k g bw/d ay	No effect	No effect in litter size up to highest dose tested 225 mg/kg bw/day in F0 adults: Litter size (all pups and live-born pups) was comparable to controls		
40b		rat	25 5U/M	Week	Oral	atilo is	mg/k g bw/d ay	No effect	No effect in litter size up to highest dose tested 225 mg/kg bw/day in F1 adults: Litter size (all pups and live-born pups) was comparable to controls		
41a		rat d	10 ⁵	Days	Oral		mg/k g bw/d ay	No effect	No effect in litter size up to highest dose tested 300 mg/kg bw/day. Penconazole technical were given GD 6-15 only		
	Q	This to	is us						230		

										Negative, no	^
30	Pituitary histopath ology	rat	90	Days	Oral		mg/k g bw/d ay	No effect	No effect on pituitary histopathology up to top-dose 202.3 mg/kg bw/day in M.	Negative, no consistent treatment-related effects on	Solo I
30		rat	90	Days	Oral		mg/k g bw/d ay	No effect	No effect on pituitary histopathology up to top-dose 206.6 mg/kg bw/dayin F.	pituitary. Observed effects on histopathology in rat were in	
31		rat	90	Days	Oral	0.77	mg/k g bw/d ay	Change	Slightly increased incidence of developmental cysts in the adenohypophysis in males in all treated groups; however, with no dose-relationship (males). Control animals (0/20 animals), low dose (2/20 animals), mid dose (3/20 animals) and top dose (2/20 animals). The incidences were within the range of the available limited HCD.	absence of a dose relationship and within the HCD range, and the decrease in weight was transient.	
34a		Dog	90	Days	Oral		mg/k g bw/d ay	No effect	No effect on pituitary histopathology up to highest dose tested 132 mg/kg bw/day (M) in the presence of systemic toxicity (> MDT)		
34a		Dog	90	Days	Oral		mg/k g bw/d ay	No effect	No effect on pituitary histopathology up to highest dose tested 137 mg/kg bw/day (F) in the presence of systemic toxicity (> MDT)		
34b		Dog	12	Mont hs	Oral	o	mg/k g bw/d	No effect	No effect on pituitary histopathology up to highest dose tested 108 mg/kg bw/day (M)		
34b		Dog	12	Mont hs	Oral	Sold	mg/k g bw/d ay	No effect	No effect on pituitary histopathology up to highest dose tested 110 mg/kg bw/day (M)		
37		mouse	106	Week	Oral	Jill 8	ppm	No effect	No effect on pituitary histopathology up to highest dose tested (300 ppm) in M.		
37		mouse	107	Week s	Oral	stilo, it	ppm	No effect	No effect on pituitary histopathology up to highest dose tested (300 ppm) in F.		
38		mouse	90011	Week s	Oral	200	mg/k g bw/d ay	No effect	No effect on pituitary histopathology was observed up to highest dose tested (177.7 mg/kg bw/day) in M.		
38		mouse	0/80	Week s	Oral		mg/k g	No effect	No effect on pituitary histopathology was observed up to highest dose tested (221.5 mg/kg bw/day) in F.		

							bw/d ay			Stob Topical	iore	
39		rat	116	Week s	Oral		mg/k g bw/d ay	No effect	No effect on pituitary histopathology was observed up to highest dose tested (10.4 mg/kg bw/day) in M.	or of the state of		
39		rat	117	Week s	Oral		mg/k g bw/d ay	No effect	to highest dose tested (11.9 mg/kg bw/day) in F.	Meyr		
40a		rat	110	days	Oral		mg/k g bw/d ay	No effect	No effect on pituitary histopathology up to highest dose tested (156 mg/kg bw/day in M and 153 mg/kg/bw/day in F).			
40b		rat	19	Week s	Oral		mg/k g bw/d ay	No effect	No effect on pituitary histopathology was observed up to highest dose tested (225 mg/kg bw/day) in F0.			
40b		rat	25	Week s	Oral		mg/k g bw/d ay	No effect	No effect on pituitary histopathology was observed up to highest dose tested (225 mg/kg bw/day) in F1.			
40b		rat	21	Days	Oral	NO	mg/k g bw/d	No effect	No effect on pituitary histopathology was observed up to highest dose tested (221 mg/kg bw/day) in offspring (F1+F2).			
37	Pituitary weight	mouse	107	Week s	Oral	Sel L	ppm	No effect	No effect on pituitary weight was observed up to highest dose tested (300 ppm) in F.			
37		mouse	106	Week s	Oral	lift of	ppm	No effect	No effect on pituitary weight was observed up to highest dose tested (300 ppm) in M.			
39		rat	116	Week	Oral	10.4	mg/k g bw/d ay	Decrea se	Pituitary weights were decreased in high dose males (treated with 10.4 mg/kg bw/day) at the 1-year interim sacrifice (-29%), but not after the 2-year or terminal sacrifice.			
39		rat do	117 0011	Week s	Oral	SUL	mg/k g bw/d ay	No effect	No effect on pituitary weight was observed up to highest dose tested (11.9 mg/kg bw/day) in F.			
41a	Presence of anomalie	rat vo	100	Days	Oral	300	mg/k g	Increas e	The overall number of skeletal anomalies was increased at 300 mg/kg bw/day (main study only) and 450 mg/kg bw/day (supplementary study).	Positive, presence of anomalies in rat and rabbit		

										The overall number of skeletal anomalies was increased at 450 mg/kg bw/day (supplementary study). Incidences of skeletal anomalies were increased and in runt foetuses were seen at 500 mg/kg bw/day Increase in internal hydrocephalus and bilateral microphthalmia (within range, but exceeded mean ±SD) at the top dose (150 ppm) Increase in skeletal variations: The % of foetuses with	uplic ty and	5	
		s (external, visceral,						bw/d ay			Sion Politique	KOKO	
41b		skeletal	rat	5	Days	Oral	450	mg/k g bw/d ay	Increas e	The overall number of skeletal anomalies was increased at 450 mg/kg bw/day (supplementary study).	sicial way the		
42			rat	10	days	Oral	500	mg/k g bw/d ay	Increas e	Incidences of skeletal anomalies were increased and in runt foetuses were seen at 500 mg/kg bw/day	Men		
43			rabbit	14	days	Oral	150	mg/k g bw/d ay	Increas e	Increase in internal hydrocephalus and bilateral microphthalmia (within range, but exceeded mean ±SD) at the top dose (150 ppm)			
44			rabbit	13	days	Oral	200	mg/k g bw/d ay	Increas e	hyoid body and/or arches unossified and reduced ossification of the skull exceeded the range of HCD at the top dose level (200 mg/kg bw/day) while the litter incidences of both findings were well within the range of HCD			
40a		Pup developm ent	rat	35	days	Oral		mg/k g bw/d ay	No effect	No effect on pup development up to highest dose tested 156 mg/kg bw/day (F1 offspring, M)	Negative, no consistent treatment-related effects on pup		
40a			rat	35	days	Oral	perity of	mg/k g bw/d ay	No effect	No effect on pup development up to highest dose tested 153 mg/kg bw/day (F1 offspring, F)	development		
40a			rat	35	days	Oral	Jith &	mg/k g bw/d ay	No effect	No effect on pup development up to highest dose tested 153 mg/kg bw/day (F2 offspring)			
28	Targe t organ toxici ty	Kidney weight	rat	28	12. 1		500	mg/k g bw/d ay	Increas e	Increase in kidney weight at 500/1000 mg/kg bw. The relative kidney weights at 1000 mg/kg bw/day exceeded the range of the limited HCD for both sexes.	Nephrotoxicity (rat and dog). Kidney weight (abs/rel) was increased.	Overall evidence of target organ systemic toxicity:	Over all evide nce of
29a			rat de	285 30 ¹ 15	Days	Oral	500	mg/k g bw/d ay	Increas e	Increase in kidney weight (abs + rel) at 500 mg/kg bw/day. Study considered supportive only; for each batch of test material (Batch A 96.2% and Batch B 96.1%) only two dose levels were tested (100 and 500 mg/kg) with toxicity already at the low dose-level and mortality at the high dose-level. One female dosed with		Kidney and liver are considered target organs. Spleen and thymus are	syste mic toxic ity

									× 2	0, 111, 00	.01	
									500 mg/kg/day (Batch A) and one male and two	They wanted	not	
									females dosed with 500 mg/kg/day (Batch B) were	6, U, 101, '6	sufficiently	
									sacrificed in moribund condition at experimental days	46, VO,	investigated	
									2 and 3, respectively. This indicates that a dose of 500	80, 61, 111,		
									mg/kg/day exceeded the MTD.	(6)		
29b		rat	28	Days	Oral	500	mg/k	Increas	Increase in kidney weight (abs + rel) at 500 mg/kg bw.	10. 41		
							g	e	Study considered supportive only; for each batch of test	ogli		
							bw/d		material (Batch A 96.2% and Batch B 96.1%) only two	Lo.		
							ay		dose levels were tested (100 and 500 mg/kg) with			
									toxicity already at the low dose-level and mortality at			
									the high dose-level. One female dosed with 500			
									mg/kg/day (Batch A) and one male and two females			
									dosed with 500 mg/kg/day (Batch B) were sacrificed in			
									moribund condition at experimental days 2 and 3,			
									respectively. This indicates that a dose of 500			
									mg/kg/day exceeded the MTD.			
30		rat	90	Days	Oral	208.6	mg/k	Increas	Increase in relative kidney weight (17%) at 208.6			
							g	e	mg/kg bw/day, the increase co-incided with a lower			
							bw/d		body weight in that group.			
							ay	- 7/2	7, 60, 9, 0,			
31		rat	90	Days	Oral	0.78	mg/k		Relative (but not absolute) kidney weights were slightly			
							g	se	lower in all treated groups in absence of a dose-			
							bw/d	0	relationship (weights were within the range of available			
- 22			0.0	-	0.1	2400	ay	70,00	limited HCD).			
32		rat	90	Days	Oral	2400	ppm		Significant increase in relative kidney weight (17%) at			
						\	90	.ce	top dose only.			
33		mouse	90	Days	Oral	2400	ppm	Decrea	Reduction in absolute kidney weight (left kidney only)			
33		mouse	70	Days	Oran	D-104	PPIII.	se	at 2400 ppm only.			
					a'C	19.	0,		at 2-100 ppin only.			
34a		Dog	90	Days	Oral	132	mg/k	Increas	Significant increase in relative kidney weight (60%) in			
				-	1/2/1/) "Ve.	g	i e	top dose males only (absolute increase 16%). Observed			
						11/0. 9	bw/d	8, 10,	in the presence of significant systemic toxicity;			
				- 0	70, <	(, , , ,	ay	.0//	decreased body weight and body weight gain associated			
				6	100.00.	:(0):)	01	with drastically reduced food intake.			
34a		Dog	90	Days	Oral	137	mg/k	Increas	Absolute (18%) and relative (55%) kidney weights			
			200	2012	20, 7/1/	0	g	e	were increased in top dose females. Observed in the			
			-17,	6. 4	L M	0,	bw/d		presence of significant systemic toxicity; decreased			
		70	(U)	Will.	14 2	B.	ay		body weight and body weight gain associated with			
		.60	200	111.	4 14				drastically reduced food intake.			
34b		Dog	12	Mont	Oral		mg/k	No	No effect.			
		. 1 . 10	1/1/2	hs	0		g	effect				
		353 3	0. (0)		2		bw/d					
		CO 11	. 40	6 1/1			ay					

									, c	Hepatotoxicity (rat. dog).	
34b		Dog	12	Mont hs	Oral	110	mg/k g bw/d ay	Increas e	Increase observed at the top dose level in the presence of significant systemic toxicity; decreased body weight and body weight gain associated with drastically reduced food intake.	Stiple 45 There	Hote
28	Liver histopath ology	rat	28	Days	Oral	500	mg/k g bw/d ay	Change	Enlarged livers and slight hypertrophy of the hepatocytes in some animals at 500 mg/kg bw (M: 8/10, F: 3/10), and in all rats in the high dose group.	Hepatotoxicity (rat, dog). Consistent treatment-related	
29a		rat	28	Days	Oral	100	mg/k g bw/d ay	Change	Increased incidences of minimal hypertrophy of centrilobular hepatocytes; in all treated male groups* (2/10 and 9/10 animals at low dose and high dose, respectively) and at 500 mg/kg bw/day in females* (8/10), minimal to moderate hepatocellular necrosis (3/10 top dose males), and an increase in inflammatory cell infiltrations at the top dose level (minimal to moderate severity in males (8/10 animals), and minimal degree in females (6/10). *It should be noted that minimal to moderate increase in the mitotic activity of hepatocytes was reported in the animals (one male and two females), which were sacrificed in moribund condition on day 3 (500 mg/kg bw/day). A dose of 500 mg/kg/day exceeded the MTD.	effects on liver weight (increased) and liver histopathology.	
29b		rat	28	Days	Oral	100	mg/k g bw/d ay	Change	Increased incidences of minimal hypertrophy of the follicle epithelium was seen in male from 100 mg/kg bw/day (5/10 low dose, 10/10 high dose) and female top dose animals (8/10). A dose of 500 mg/kg/day exceeded the MTD.		
30		rat	90	Days	Oral	208.6	mg/k g bw/d ay	Change	Minimal hepatocyte hypertrophy at top-dose (9/20 animals) in F.		
30		rat	90	Days	Oral	202.3	mg/k g bw/d ay	Change	Minimal hepatocyte hypertrophy at top-dose (20/20 animals) in M.		
32		rat		Days	Oral III	500	ppm	Change	Centrilobular hepatocyte hypertrophy at ≥1000 ppm, and some degeneration of the hepatocytes around the central vein in the 2400 ppm group in M. Higher incidences of hepatocytic vacuolisation was observed from ≥500 ppm.		
32		rat , o	90	Days	Oral	1000	ppm	Change	Centrilobular hepatocyte hypertrophy at ≥1000 ppm, and some degeneration of the hepatocytes around the central vein in the 2400 ppm group in F.		

33		mouse	90	Days	Oral	500	ppm	Change	Centrilobular hepatocyte hypertrophy was observed at ≥500 ppm in males (14/15 males at top dose). Focal coagulative necrosis was found in some males at ≥1000 ppm (4/15 males at top dose). Degeneration of the hepatocytes around the central vein (7/15 males) and hepatocytic vacuolisation (10/15 males) were observed at 2400 ppm in males only.	TOP TO THE TOP TOP TOP TO THE TOP TOP TO THE TOT TO THE TOP TO THE	goie	
33		mouse	90	Days	Oral	2400	ppm	Change	Centrilobular hepatocyte hypertrophy was observed at 2400 ppm in females (7/15 females).	ille.		
34a		Dog	90	Days	Oral	132	mg/k g bw/d ay	Change	At the highest dose, cytoplasmic vacuolisation was noted in 2/4 males, inflammatory cell infiltration in 4/4 males and hepatocyte necrosis in 4/4 males. In mid dose males, 1/4 was noted with inflammatory cell infiltration and 1/4 males with hepatocyte necrosis.			
34a		Dog	90	Days	Oral	137	mg/k g bw/d ay	Change	Inflammatory cell infiltration was noted in 4/4 and hepatocyte necrosis in 4/4 top dose females.			
34b		Dog	12	Mont hs	Oral	108	mg/k g bw/d ay	Change	At the highest dose, cytoplasmic vacuolisation was noted in 2/4 males, inflammation with fibrosis in 4/4 males and hepatocyte necrosis in 1/4 males. In mid dose males, 2/4 was noted with inflammatory cell infiltration and 2/4 males with inflammation with fibrosis.			
34b		Dog	12	Mont hs	Oral	110	mg/k g bw/d ay	Change	Inflammation with fibrosis was noted in 4/4 females and hepatocyte necrosis in 2/4 animals.			
35		mouse	90	Days	Oral	1500	ppm	Change	No effect on liver histopathology. Hepatocyte hypertrophy and increased nuclear pleomorphism was present in all males at ≥1500 ppm.			
35		mouse	90	Days	Oral	3000	ppm	Change	No effect on liver histopathology. Hepatocyte hypertrophy was observed in 4/10 females at 3000 ppm.			
37		mouse	106	Week s	Oral	StiO' it	ppm		No effect on liver histopathology up to the highest dose level tested (300 ppm).			
37		mouse	107	Week s	Oral		ppm	No effect	No effect on liver histopathology up to the highest dose level tested (300 ppm).			
38		mouse	980 980	Week s	Oral	177.7	mg/k g bw/d ay	Change	There was an increase in the incidence and severity of hepatocyte vacuolation of the liver in the high dose males (control 13/50, top dose 37/50).			

									18/16 18/20 C.
38		mouse	80	Week s	Oral	221.5	mg/k g bw/d ay	Change	There was an increase in the incidence and severity of hepatocyte vacuolation of the liver in the high dose females (control 1/50, top dose 16/50). Increases in slight (mainly centrilobular) hepatocyte hypertrophy was observed at the mid (14/16 females) and high dose level (16/16 females) and slight recent necrosis (2/16) was seen in top dose females. Increases in slight (mainly centrilobular) hepatocyte hypertrophy was observed at the mid (5/19 males) and high dose level (17/20 males).
40a		rat	110	days	Oral	29.9	mg/k g bw/d ay	Change	Increases in slight (mainly centrilobular) hepatocyte hypertrophy was observed at the mid (14/16 females) and high dose level (16/16 females) and slight recent necrosis (2/16) was seen in top dose females.
40a		rat	110	days	Oral	29.7	mg/k g bw/d ay	Change	Increases in slight (mainly centrilobular) hepatocyte hypertrophy was observed at the mid (5/19 males) and high dose level (17/20 males).
49a		Rat	14	Days	Oral	320	mg/k g bw/d ay	Increas e	Increased proliferation of smooth endoplasmic reticulum membranes at 320 mg/kg bw/day
49b		Mouse	14	Days	Oral	320	mg/k g bw/d ay	Increas e	Increased proliferation of smooth endoplasmic reticulum membranes at 320 mg/kg bw/day
28	Liver weight	rat	28	Days	Oral	100	mg/k g bw/d	Increas e	Liver weight (abs + rel) increase in both sexes, increase in F from 100 mg/kg bw and in M from 500 mg/kg bw.
29a		rat	28	Days	Oral	100	mg/k g bw/d ay	Increas	Increase in liver weight (abs + rel) from 100 mg/kg bw/day.
29b		rat	28	Days	Oral	100	mg/k g bw/d	Increas e	Increase in liver weight (abs + rel) from 100 mg/kg bw and above (M) and increase at 500 mg/kg bw (F).
30		rat	90	Days	Oral	2.1	mg/k g bw/d ay	Increas e	Increase in F in relative liver weight from 2.1 mg/kg (3.7%) onwards (40% top dose) and in absolute at 208.6 mg/kg bw.
30		rat	190	Days	Oral	2	mg/k g bw/d ay	Increas e	Increase in M in relative liver weight from 2 mg/kg (5%) and onwards (28% top dose) and in absolute at 2 and 202.3 mg/kg bw
31		rat C	90	Days	Oral	0.77	mg/k g	Increas e	Increase in liver weight (abs +rel) at low-dose (rel 11%) and mid-dose (rel 15%); however, no weight change in the top dose males.

								Marginally reduced liver weight (-9.6%) only in the mid dose females. Increase in relative liver weight (13%) at 1000 ppm and increase (re + abs) at top dose (31%). Increase in relative liver weight (10.2%) at 500 ppm and further increase in abs+rel liver weight at the two highest doses (20 and 29% relative increase). Absolute and relative liver weights were significantly
						bw/d ay		idit of Stope to ditation to
31	rat	90	Days	Oral	2.14	mg/k g bw/d ay	Decrea se	Marginally reduced liver weight (-9.6%) only in the mid dose females.
32	rat	90	Days	Oral	1000	ppm	Increas e	Increase in relative liver weight (13%) at 1000 ppm and increase (re + abs) at top dose (31%).
32	rat	90	Days	Oral	500	ppm	Increas e	Increase in relative liver weight (10.2%) at 500 ppm and further increase in abs+rel liver weight at the two highest doses (20 and 29% relative increase).
33	mouse	90	Days	Oral	500	ppm	Increas e	Absolute and relative liver weights were significantly increased at ≥500 ppm in males (relative weights: 10% at 500 ppm, 17% at 1000 ppm and 42% at 2400 ppm).
33	mouse	90	Days	Oral	2400	ppm	Increas e	Absolute (24%) and relative (32%) liver weights were significantly increased at 2400 ppm in females. Relative liver weight was also slightly increased significantly at ≥500 ppm (≤10%).
4a	Dog	90	Days	Oral	18.2	mg/k g bw/d ay	Increas	Absolute and relative liver weights were increased at the top dose level (abs: 30%, rel: 75%) and mid dose males (abs: 20%, rel: 15%).
4a	Dog	90	Days	Oral	19.4	mg/k g bw/d	Increas	Absolute and relative liver weights were increased at the top dose level (abs: 22%, rel: 88%) and for mid dose females (abs: 15%, rel: 24%).
4b	Dog	12	Mont hs	Oral	108	mg/k g bw/d	Increas e	Absolute and relative liver weights were increased at the top dose level (abs: 27%, rel: 35%).
4b	Dog	12	Mont hs	Oral	16.5	mg/k g bw/d ay	Increas	Absolute and relative liver weights were increased at the top dose level (abs: 46%, rel: 63%) and for mid dose females (abs: 27%, rel: 28%).
15	mouse	90,6	Days	Oral	500	ppm	Increas e	Relative liver weights were increased in males at 500 ppm. Increase in adjusted weights: 12%, 33% and 48% at 500, 1500 and 300 pmm, respectively.
35	mouse	90	Days	Oral	1500	ppm	Increas e	Relative liver weights were increased in females at ≥1500 ppm. Increase in adjusted weights: 10% and 28% at 1500 and 300 pmm, respectively.
	mouse	and Je	SULL	\$				238

										thic is and		
37		mouse	106	Week s	Oral	150	ppm	Increas e	Relative liver weight was increased in M in 300 ppm dose group (10%) at the 1-year sacrifice and at 150 ppm (but not 300 ppm) 53 weeks sacrifice (23%). No doserelated trend or corresponding histopathological correlate were seen.		in the state of th	
37		mouse	107	Week s	Oral	300	ppm	Increas e	Relative liver weight was increased in F in 300 ppm dose group (15%). No dose-related trend or corresponding histopathological correlate were seen.	Stolog Way		
38		mouse	80	Week s	Oral	177.7	mg/k g bw/d ay	Increas e	Liver weights were increased in top dose males (adjusted weight +27%, relative weight +28%).			
38		mouse	80	Week s	Oral		mg/k g bw/d ay	No effect	Slightly higher liver weights (approximately 5% higher than control) in females receiving the top dose (221.5 mg/kg bw/day), but the value did not reach statistical significance.			
39		rat	117	Week s	Oral	5.7	mg/k g bw/d ay	Increas e	Increase in F in absolute ($\pm 20\%$) in top dose group and in relative liver weight (± 13 and 15% at 5.7 and 11.9 mg/kg bw/day, respectively) at week 52. The increase at week 52 was associated with an increase in γ -GT. There was also a statistically significant trend in relative weight at week 104 ($\pm 15\%$) for the top dose group.			
39		rat	116	Week s	Oral	Š	mg/k g bw/d ay	No effect	No effect on liver weight were observed in males up to the highest dose level tested (10.4 mg/kg bw/day).			
40a		rat	35	days	Oral	156	mg/k g bw/d ay	Increas	Relative liver weights were increased significantly in high dose group (+31%), absolute increase non-significantly (+11%). Offspring (F1) Male.			
40a		rat	35	days	Oral	1532	mg/k g bw/d ay	Increas e	Relative liver weights were increased significantly in high dose group (+28%), absolute increase non-significantly (+8.2%). Offspring (F1) female.			
40a		rat	110	days	Oral	153.	mg/k g bw/d ay	Increas e	Relative liver weights were significantly increased in F1 adults F (+37%), absolute weight was increased non-significantly (+20%).			
40a		rat d	110	days	Oral	156	mg/k g bw/d ay	Increas e	Relative liver weights were significantly increased in F1 adults M (+11%), absolute weight was slightly increased (+4%).			
	Ó	This to	is of the						239			

											plic Hand	
40a			rat	35	days	Oral	153	mg/k g bw/d ay	Increas e	Relative liver weights were significantly increased in F2 weanlings (+22%), absolute liver weight non-significantly increased (+16%). It should be noted that only five/sex/group F1 and F2 weanlings were necropsied.	they they the	stole
40a			rat	35	days	Oral	156	mg/k g bw/d ay	Increas e	necronsied	Ruey Lyon	
49a		<u> </u>	Rat	14	Days	Oral	80	mg/k g bw/d ay	Increas e	Significantly increased at 80 mg/kg bw/day		
49b		<u>-</u>	Mouse	14	Days	Oral	160	mg/k g bw/d ay	Increas e	Significantly increased at 80 mg/kg bw/day		
29a	his	oleen topath logy	rat	28	Days	Oral	500	mg/k g bw/d ay	Change	Minimal extramedullary haematopoiesis was found in high-dosed females (3/10).	Effects on spleen are not sufficiently investigated	
29b			rat	28	Days	Oral	100	mg/k g bw/d ay	Change	Minimal extramedullary haematopoiesis was found in low-dosed males (2/10), in high-dosed males (2/10) and in high-dosed females (2/10).	-	
38			mouse	80	Week s	Oral	Say	mg/k g bw/d ay	No effect	No effect on spleen histopathology in M up to the highest dose level tested (177.7 mg/kg bw/day).		
38			mouse	80	Week	Oral	Jill S	mg/k g bw/d ay	No effect	No effect on spleen histopathology in F up to the highest dose level tested (221.5 mg/kg bw/day).		
38		oleen eight	mouse	80 Sime	Week		177.7	mg/k g bw/d ay	Decrea se	Reduced spleen weight in top dose males (adjusted weight -40%).		
38			mouse	980°	Week s	Oral	221.5	mg/k g bw/d ay	Decrea se	Reduced spleen weight in top dose females (adjusted weight -38%).		
_		0	This to	ing its	20, ill.					240		

											Heffects on thymnis	5
29a		Thymus histopath ology	rat	28	Days	Oral	500	mg/k g bw/d ay	Change	cells exhibiting condensed nuclear material in their cytoplasm and being responsible for lymphophagocytosis) in thymus cortex was recorded in all moribund-sacrificed animals as well as in one female of the 500 mg/kg bw/day dose level at study termination. Total N=10	Effects on thymus are not sufficiently investigated	Biore .
29b			rat	28	Days	Oral	500	mg/k g bw/d ay	Change	Occurrence of tangible body macrophages (phagocytic cells exhibiting condensed nuclear material in their cytoplasm and being responsible for lymphophagocytosis) in thymus cortex was recorded in one female, which was sacrificed in moribund condition on day 2 (500 mg/kg bw/day). Variations in absolute or relative organ weights occasionally reached statistical significance in the thymus but were in absence of a dose-relationship. They were also not associated with any relevant histopathological changes. Total N=10, effect observed at the top dose		
30		Thymus weight	rat	90	Days	Oral	2.1	mg/k g bw/d ay	Increas e	Increase in relative thymus weight at 2.10 and 208.6 mg/kg bw/day (10% and 12%), the increase co-incided with a lower body weight in that group at the top dose. Study considered supportive only (due to deviations from the test guideline currently in place). Variations in absolute or relative organ weights occasionally reached statistical significance in the thymus but were in absence of a dose-relationship. They were also not associated with any relevant histopathological changes. Total N=10, effect observed at the top dose		
1	Syste mic toxici ty	Body weight	rat	9	Mont hs	Oral C	7 50.		Decrea	Significant decrease compared to the control group. Reporting deficiencies, unclear test item and dosing scheme, inadequate reporting of body weight development, and no reporting of clinical signs or food consumption. Serious methodological deficiencies, flawed/unsuitable histopathological methodology, no consideration of circadian variation in testosterone measurement.	Sufficient evidence of systemic toxicity based on reduced Bw, food consumpiton, alteration in clinical chemistry	Overall evidence of systemic toxicity. MTD ≥500 mg/kg bw (M), ≥500 mg/kg bw (F)
28			rat	28	Days	Oral	500	mg/k g bw/d ay	Decrea se	Decreased BW (M: \downarrow 13%) week 4 and BW gain (M: \downarrow 28% and F: \downarrow 14%) for weeks 0-4.	and haematology and/or clinical signs. MTD was exceeded at 500	
30			rat	90	Days	Oral	208.6	mg/k g	Decrea se	Decrease in BW and a marked effect in BW gain (average reduction 16%) from week 4 onwards at the top dose. Reduced BW (-14%) at termination.	mg/kg bw/day in males and 500 mg/kg bw/day in	

										6.		
										Pilo A Sur		
	1	,		ı	ı	ı	1	ı		Dir Oll Jille 10	.0	i
							bw/d ay			females (28 days rat) (three female	Olo	
31		rat	90	Days	Oral	2.14	mg/k	Increas	Increased bodyweights (9.8%) and BW gain (16%) in F	and one male rat		
31		rat	90	Days	Orai	2.14	g g	e	only at 2.14 mg/kg bw/d, not confirmed at top-dose.	dosed with 500 mg/kg/day were		
							bw/d		" " " " " " " " " " " " " " " " " " "	sacrificed in		
32		rat	90	Days	Oral	500	ay ppm	Decrea	Bodyweights were significantly lower throughout the	moribund condition at		
				,			FF	se	study in the 2400 ppm (-10% week 13), and in the 1000	experimental days		
									ppm treated group at weeks 6, 7, 9, 12, and 13 (-6.2%). BW gain significantly reduced in the 1000 (-8.9%) and	2-3, and in		
									2400 ppm (-15%) treated females. Overall mean food	surviving animals, symptoms such as		
									consumption in females was slightly reduced at 1000	hunch-backed		
									and 2400 ppm reaching statistical significance at a few weeks during the dosing period.	posture,		
33		mouse	90	Days	Oral	2400	ppm	Increas	Lower BW gain for the 13 weeks period was seen in the	piloerection and laboured breathing		
								e	2400 ppm group (-13% vs. control in males and -17%	were observed		
34a		Dog	90	Days	Oral	132	mg/k	Decrea	in females). In the male high dose group, the dogs lost weight	that were more pronounced in		
314		Dog	,,	Days	Oran	132	g	se S	mostly during the first month of the study associated	female than in		
							bw/d	, O.	with drastically reduced food intake; the weight loss	male animals).		
							ay	10. K	reached 12% (males) of the initial weights during the first 13 weeks of the study. Animals gained weight in			
							150,	Me,	the lowest doses; however, BW gain was lower in the			
						8	(V)	7, 90,	low (-18%) and mid dose males (-25%) compared to control animals. Group mean terminal body weights			
						240	90	is di	were reduced (26%) at the top dose level at the interim			
				_		ell'	(0)	0.6	(13 weeks)			
34a		Dog	90	Days	Oral	137	mg/k g	Decrea se	In the female high dose group, the dogs lost weight mostly during the first month of the study associated			
						13,01	bw/d	N'S NI	with drastically reduced food intake; the weight loss			
					Sill Co				reached 9% (females) of the initial weights during the			
				0	D'AR'	77,	COUL	OUL	first 13 weeks of the study. Animals gained weight in the lowest doses; however, BW gain was lower in mid			
				1,19	11000	101	, ,	6,	dose females (-22%) compared to control animals.			
			0	15	afille	300	100		Group mean terminal body weights were reduced			
34b		Dog	12	Mont	Oral	108	mg/k	Decrea	(25%) at the top dose level at the interim (13 weeks). The top dose level was reduced from 132 mg/kg bw/day			
		90	000	hs	76.4	8	g	se	to 108 mg/kg bw/day in week 20, but overall BW gain			
		Nis	900		y, Chi		bw/d		was markedly below controls for the top dose group (M \ \dag{44\%}). The overall weight gain was also slightly lower			
		11. 10	N'S	ild.	90		ay		in mid dose dogs (M\14%), whereas there were no			
		-053 ;	0, 6		?				differences at the low dose level. Group mean terminal			
	S	5000	COOL	0,					242			
	0	0	3.6	ろ					272			
		0	9.									
		O	,									

									body weights were reduced (8.2%) at the top dose level at terminal sacrifice (53 weeks).	CODITION OF	ioic	
34b		Dog	12	Mont hs	Oral	16.5	mg/k g bw/d ay	Decrea se	The top dose level was reduced from 137 mg/kg bw/day to 110 mg/kg bw/day in week 20, but overall BW gain was markedly below controls for the top dose group (F \pm 58%). The overall weight gain was also lower in mid dose dogs (F\pm 33%), whereas there were no differences at the low dose level. Group mean terminal body weights were reduced (11%) at the top dose level at terminal sacrifice (53 weeks).	rest inet		
35		mouse	90	Days	Oral	1500	ppm	Decrea se	Slighty reduced BW compared to control day 92 (\$\sqrt{5.6%}\$) while adjusted body weight loss during the study (days 2-92) was \$\sqrt{19\%}\$ on day 92 in the 1500 ppm dose group. In the 3000-ppm group, reduced BW compared to control was \$\sqrt{15\%}\$ and adjusted body weight loss (days 2-92) during the study was \$\sqrt{52\%}\$. Animals in the 5000-ppm group lost weight throughout the first week of the study (10-17% of initial body weights) and were terminated in the second week.			
35		mouse	90	Days	Oral	3000	ppm	Decrea se	Animals in the 5000-ppm group lost weight throughout the first week of the study (8-11% of initial body weights) and were terminated in the second week. Animals in the 1500 and 3000 ppm group had reduced bodyweights with most BW reduction in the 3000-ppm group: \$\psi\$1\% at day 92 and adjusted BW loss during the study (days 2-92) was \$\psi\$3\%.			
38		mouse	80	Week s	Oral	221.5	ay		Marked effect on bodyweight development in females at 221.5 mg/kg bw/day. Week 1-33 (-19%), week 1-51 (-17%) week 1-81 (-16%). The maximum difference from control of adjusted body weights were at weeks 33/37 (-9.6%).			
38		mouse	80	Week	Oral V	177.7 C	mg/k g bw/d ay	Decrea se	Marked effect on bodyweight development in males at 177.7 mg/kg bw /day. Week 1-33 (-27%), week 1-51 (-29%), week 1-81 (-26%). The maximum difference from control of adjusted body weights were at week 73 (-15%).			
39		rat do	116	Week 8	Oral		mg/k g bw/d ay	No effect	Body weight development in all treated animals was similar to controls up to highest dose tested (10.4 mg/kg bw/day) in M.			
39		rat	117	Week s	Oral		mg/k g	No effect	No effect on body weight development in all treated animals was similar to controls up to highest dose tested (11.7 mg/kg bw/day) in F.			

							bw/d ay		idit al proper addition	ight ore
40a		rat	110	days	Oral	153	mg/k g bw/d ay	Decrea se	The markedly lower body weight (-12%) of high dose F0 females on lactation day 1 indicates that the net body weight of dams (without gravid uterus, not measured) during gestation would have been more markedly affected than measured body weights. Body weight development was slightly decreased in high dose females during premating (day 1-60, -8.3%). During gestation, a slight reduction in body weight gain was also noted for high dose F0 dams (day 0-21, -7.7%). During lactation, high dose females of both generations gained slightly more weight than controls.	
40a		rat	110	days	Oral	153	mg/k g bw/d ay	Decrea se	The markedly lower body weight (-11%) of high F1 females on lactation day 1 indicates that the net body weight of dams (without gravid uterus, not measured) during gestation would have been more markedly affected than measured body weights. Body weight development was slightly decreased in high dose females during premating (day 1-60, -6.9%). During gestation, a more marked decrease (day 0-21, -16%) was seen in F1 dams at this dose level. During lactation, high dose females of both generations gained slightly more weight than controls.	
40a		rat	110	days	Oral	1560	mg/k g bw/d ay	iloriik	A slightly lower body weight gain was seen during premating (-2.7%) in F1 high dose males with a more marked reduction after mating (-10.6%). Due to lower body weights at start of the pre-mating period, absolute bodyweights of F1 males were consistently lower than controls over the whole treatment period. Significantly reduced BW at termination (-7.5%).	
40b		rat	19	HAIR	103 111	8		Decrea se	Body weight development of high dose females during pre-mating were reduced at 225 mg/kg bw/day in both generations (premating; F0 9 weeks exposure: -21%, F1 age weeks 4-16: -7.1%). Absolute body weights of high dose F0 and F1 females remained below control values, while body weight gain during gestation was comparable with controls. During lactation, high dose females gained more weight than controls.	
40b		rat	25	Week s	Oral	225	mg/k g bw/d ay	Decrea se	Body weight development of high dose females during pre-mating were reduced at 225 mg/kg bw/day in both generations (premating; F0 9 weeks exposure: -21%, F1 age weeks 4-16: -7.1%). Absolute body weights of high	

									dose F0 and F1 females remained below control values,	
									while body weight gain during gestation was	
									comparable with controls. During lactation, high dose	
									dose F0 and F1 females remained below control values, while body weight gain during gestation was comparable with controls. During lactation, high dose females gained more weight than controls. Body weight gain of high dose F1 males was decreased during pre-mating and during the complete treatment period (-10.5% w 0-28)	
40b		rat	25	Week	Oral	211	mg/k	Decrea	Body weight gain of high dose F1 males was decreased	
				s			g	se	during pre-mating and during the complete treatment	
							bw/d		period (-10.5% w 0-28).	
							av		dose F0 and F1 females remained below control values, while body weight gain during gestation was comparable with controls. During lactation, high dose females gained more weight than controls. Body weight gain of high dose F1 males was decreased during pre-mating and during the complete treatment period (-10.5% w 0-28).	
41a		rat	10	Days	Oral	300	mg/k	Decrea	At 300 mg/kg bw/day, body weight gain was decreased	
							g	se	during treatment (by 8% on GD 6-16) and the corrected	
							bw/d		body weight gain (minus gravid uterus weight) on GD	
							ay		day 6-21 (by 12%).	
41b		rat	5	Days	Oral	300	mg/k	Decrea	At 300 mg/kg bw/day, body weight gain was markedly	
							g	se	decreased during treatment (by 20% on GD 6-16) and	
							bw/d		GD 6-21 corrected body weight gain (by 55%), During	
							ay		the more limited treatment period (GD 10-14), body	
									weight gain at 450 mg/kg bw/day was reduced by 28%	
									and also GD 6-21 corrected body weight gain was 28%	
									lower than controls.	
42	ľ	rat	10	days	Oral	500	mg/k	Decrea	Maternal body weight development: corrected bw gain	
		140	10	aays	0141	200	g	se	on GD 6-20 was reduced by 41%. BW at GD 20 was	
							bw/d	SI, X	significantly reduced (-4.2%: corrected for gravid	
							ay	- 300	uterus weight: -2.2%)	
43	ľ	rabbit	14	days	Oral	150	mg/k	Decrea	Reduced body weight development in high dose	
		140011	1	aays	0141	100	g	se	females; BW gain GD 0-28; -7.4%, BW gain during GD	
						Ò	bw/d	.5	6-19; -11% (test chemical was administrated GD 6-18)	
						/×	av	0.0	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
44	ľ	rabbit	13	days	Oral	200	mg/k	Decrea	Reduced BW gain in high dose females, most markedly	
		140010	10	aays	01	()	g	Ose	in the first week of treatment* (GD 7-10: -104%, GD	
					010	M.	bw/d	11 111	10-14; -19%). *The test chemical was administrated	
					00	1.0. 0.	ay	×5	from GD 7-19 only.	
49a	ľ	Rat	14	Days	Oral	No	mg/k	No	No effect on body weight up to the highest dose tested	
.,		24	1	Dujs	D ()	effect	g	effect	(320 mg/kg bw/day)	
				.6	96, <	100	bw/d	(0,411		
				110	111.05.	110,	b ay	6,		
49b	ŀ	Mouse	140	Days	Oral	No	mg/k	No	No effect on body weight up to the highest dose tested	
.//		1110450	in.		00000	effect	g	effect	(320 mg/kg bw/day)	
			9, 0	Co 6	1 7 JUN	, Tilott	bw/d		(0-0 mg/ng 0 m/mg/)	
		70	(1)	in	7 / 20	0,	ay			
28	Clinical	rat	28	Days	Oral	500	mg/k	Decrea	A trend to slightly decreased haemoglobin (\(\frac{1}{4}.2\)\)	
20	chemistry	1/1/4	0.20	Denis	70	300	g g	se	to \downarrow 6.3%) and haematocrit values (\downarrow 4.7% to \downarrow 7%) in	
	and	1 20	Mis	1117	0		bw/d	50	female groups from 500 to 1000 mg/kg/ bw.	
	unu	653	0) (0)	27	2		ay		Tomate groups from 500 to 1000 mg/kg/ 0 m.	
		-W 1	1 1)	I . X//		l	ау	l		

28	haematol ogy	rat	28	Days	Oral	500	mg/k g bw/d ay	Change	in M, but the levels of these parameters did not appear to be dose-dependent.	ment may the restricted to the	io (®	
29a		rat	28	Days	Oral	100	mg/k g bw/d ay	ilis ie	A dose-related increase in platelets and decrease in prothrombin time was observed in male and female groups reaching statistical significance mostly at 500 mg/kg bw/day (exceeding HCD). Clinical biochemistry: A series of parameters were affected by treatment, dose-related increase of plasma protein concentrations, associated with higher globulin levels and minimally lower albumin-to-globulin (A/G) ratios in both sexes (A/G ratios and albumin levels were within the range of available HCD). Elevated alanine aminotransferase and cholesterol levels were also noted at the top dose level. Total bilirubin was somewhat lower in treated groups as compared to concurrent controls (but well within the range of available HCD). Reductions in plasma chloride levels were within the range of available HCD. Changes in ASAT and ALP (mostly reductions) were within the range of the available HCD. A dose of 500 mg/kg/day exceeded the MTD.			
29b		rat		Days	Oral John Collins		mg/k g bw/d ay	Change	A dose-related increase in platelets and decrease in prothrombin time was observed in male and female groups reaching statistical significance mostly at 500 mg/kg bw/day (exceeding HCD). Clinical biochemistry: A series of parameters were affected by treatment, dose-related increase of plasma protein concentrations, associated with higher globulin levels and minimally lower albumin-to-globulin (A/G) ratios in both sexes (A/G ratios and albumin levels were within the range of available HCD). Urea levels were slightly increased at 500 mg/kg bw/day in both sexes. Elevated alanine aminotransferase and cholesterol levels were also noted at the top dose level. Total bilirubin was somewhat lower in treated groups as			

									compared to concurrent controls (but well within the range of available HCD). Reductions in plasma
									compared to concurrent controls (but well within the range of available HCD). Reductions in plasma chloride levels were within the range of available HCD. Changes in ASAT and ALP (mostly reductions) were within the range of the available HCD. A dose of 500 mg/kg/day exceeded the MTD. Haematology: statistically significant effects on RBC parameters: \psegmented neutrophils (208.6 mg/kg bw/day). \tag moncytes and nucleated RBC-normoblasts.
30		rat	90	Days	Oral	20.7	mg/k g bw/d ay	Change	(from 20.7 mg/kg bw). Blood chemistry: statistically significant changes in: ↑cholesterol and albumin, ↓potassium, chloride. Note that the most findings reflected the normal physiological variation of the respective parameters and were within a limited available HCD.
30		rat	90	Days	Oral	19.4	mg/k g bw/d ay	ents in	Haematology: statistically significant effects on RBC parameters: ↓leukocytes (at 2 and 202.3 mg/kg bw/day only) ↑segmented neutrophils (at 19.4 mg/kg bw only), ↓lymphocytes (from 19.4 mg/kg bw/day). Blood chemistry: statistically significant changes in: ↓glucose (from 19.4 mg/kg bw/day), ↑ureas-N values (from 19.4 mg/kg bw/day), ↑ cholesterol (202.3 mg/kg bw/day), ↑ total proteins and albumin (from 2 mg/kg bw), ↑total globulin and A/G ratio (increasing trend, significant at 202.3 mg/kg bw/day), ↓ lactate dehydrogenase (decreasing trend from 19.4 mg/kg bw/day), ↑ potassium (at 2 and 202.3 mg/kg bw only), ↑chloride (at 2 and 19.4 mg/kg bw/day only). Note that the most findings reflected the normal physiological variation of the respective parameters and were within a limited available HCD. Only the marginally increased cholesterol in high dose males slightly exceeded the range of the available limited HCD.
31		rat	90	Days	Oral	0.78	mg/k g bw/d ay	Change	Haematology: reduced reticulocyte count at all doses (no clear dose-relationship). Clinical chemistry: \(^1\)GGT from mid-dose and globulin and total proteins at top-dose. Most findings reflected the normal physiological variation of the respective parameters and in the absence of clear dose-relationship.
31		Tall 10	Olite 900	Days	Oral	0.77	mg/k g bw/d ay	Change	Haematology: inceased reticulocyte count at all doses (no clear dose-relationship). Clinical chemistry: ↑ in total proteins from mid-dose and in albumin at top-dose, ↓ inorganic phosphate and a slight increase in sodium. Most findings reflected the normal

									physiological variation of the respective parameters and in the absence of clear dose-relationship. ↑slightly increase in protein (males only), ↓ albumin (females only), and slighty reduced A/G ratio in both sexes in top dose animals. Increased urea nitrogen in treated males (11% at 10 ppm to 35% at 1000 ppm and 22% at 2400 ppm). It should be noted that the value of control males appears
32		rat	90	Days	Oral	2400	ppm	Decrea se	↑slightly increase in protein (males only), ↓ albumin (females only), and slighty reduced A/G ratio in both sexes in top dose animals.
32		rat	90	Days	Oral	10	ppm	Increas e	ppm to 35% at 1000 ppm and 22% at 2400 ppm). It should be noted that the value of control males appears to be rather low (139 mg/L) as compared to control females (151 g/L).
33		mouse	90	Days	Oral	1000	ppm	Change	Lower total protein (↓8.3% and 6.7% at 1000 ppm and 2400 ppm, respectively) and cholesterol (↓31% and 61% at 1000 ppm and 2400 ppm, respectively). ALT at 2400 ppm (↑170%) whereas gamma-GT was significantly reduced at ≥500 ppm.
33		mouse	90	Days	Oral	1000	ppm		Reduced albumin (↓14%) and A/G ratio (↓13%) in top dose females, wheras cholesterol was decreased at ≥1000 ppm (↓36% to ↓40% in top dose females). Total protein was reduced in top dose females (↓10%).
34b		Dog	12	Mont hs	Miles.			Stolify, Sto	Increased platelet counts were recorded among female dogs of the high-dose group already from the pre-test. Haematological parameters of which reaching increased statistical significance were noted in monocytes in mid dose and high dose females. Red cell parameters (Hb, RBC) among female dogs of the high dose group were slightly lower as compared to controls from week 13. After reduction of the top dose level to 110 mg/kg bw/day in week 20, red blood cell parameters recovered within the range of availble limited HCD in week 52. Clinical biochemistry: mainly change at the high dose level: OCT, AST, ALT, ALP, and \(\gamma \)-GT were markedly increased during the complete treatment period, indicating the liver as a clear target organ. Further effects were most marked at week 13 (\frac{1}{2}\)glucose and urea-nitrogen, \(\frac{1}{2}\)inorganic phosphate), but normalised when dose level was reduced.
34b		Dog		Mont hs	Oral	108	mg/k g bw/d ay	Change	Red cell parameters (Hb, RBC) in high dose M were slightly lower at week 13. After reduction of the top dose level to 108 mg/kg in week 20, red blood cell parameters recovered within the range of HCD in week 52. Variations in haematological parameters (some statistically significant) were noted in eosinophils, lymphocytes and monocytes in absence of a dose-

									increased during the complete treatment period, indicating the liver as a clear target organ. Globulin was slightly but consistently increased in high dose males. Further effects were most marked at week 13 (\dag{glucose})	The Light Log in the Least Control of the Control o	joie	
									and chloride, †inorganic phosphate), but normalised when dose level was reduced. †inorganic phosphate			
35		mouse	90	Days	Oral	500	ppm	Change	seen up to the end of treatment. Treatment and dose related reduction in cholesterol in all dose group, significant from ≥500 ppm (↓54% at 3000 ppm). Plasma ALP was increased at ≥1500 ppm (13% and 22% increase).			
35		mouse	90	Days	Oral	3000	ppm	Decrea se	Treatment and dose related reduction in cholesterol in all dose group, significant from ≥ 100 ppm ($\downarrow 54\%$ at 3000 ppm). Plasma ALP was increased at ≥ 1500 ppm ($\uparrow 25\%$ at 3000 ppm). Plasma albumin ($\downarrow 2.2$ -6.5%) and total protein ($\downarrow 2.6$ -8.1%) were lower in all female groups, and plasma calcium was lower in females at 3000 ppm ($\downarrow 4.4\%$).			
39		rat	116	Week s	Oral	of the second	mg/k g bw/d ay	No effect	Observed variations in blood biochemistry parameters were considered unrelated to treatment tested up to the highest dose level (10.4 mg/kg bw/day) in M.			
39		rat	117	Week s	Oral	0.2	mg/k g bw/d	Change	Slightly higher γ-GT values in high dose females at weeks 27 (top dose only) and 52 (increase at 0.2, 2.9 and 11.9 mg/kg bw/day).			
49a		Rat	14 CURE	inite	Patiles.		mg/k g bw/d ay	Increas e	a strong dose-dependent increase of microsomal protein (up to about 60% vs. control) and phospholipid contents (practically doubled at 320 mg/kg bw/day vs. controls). Activities of xenobiotic-metabolising liver enzymes were drastically increased (UDP-glucuronosyltransferase was increased from 80 mg/kg bw/day and up to the top dose).			
49b		Mouse	694 6715	Days	Oral	80	mg/k g bw/d ay	Increas e	a strong dose-dependent increase of microsomal protein (up to about 60% vs. control) and phospholipid contents (practically doubled at 320 mg/kg bw/day vs. controls). Activities of xenobiotic-metabolising liver enzymes			

										"plic 49 sug
										were drastically increased (UDP-glucuronosyltransferase was increased from 80 mg/kg bw/day and up to the top dose).
29a		Clinical signs	rat	28	Days	Oral	500	mg/k g bw/d ay	Change	were drastically increased (UDP-glucuronosyltransferase was increased from 80 mg/kg bw/day and up to the top dose). Due to marked clinical signs of acute toxicity, one male and two females dosed with 500 mg/kg/ bw/day (Batch B, 96.1% purity) were sacrificed in moribund condition at experimental day 3. In surviving animals, symptoms such as hunch-backed posture, piloerection and laboured breathing were observed that were more pronounced in female than in male animals.
29b			rat	28	Days	Oral	500	mg/k g bw/d ay	Change	Due to marked clinical signs of acute toxicity, one female dosed with 500 mg/kg/day (Batch A, 96.2% purity) was sacrificed in moribund condition at experimental day 2. In surviving animals, some females had symptoms such as hunch-backed posture, piloerection and laboured breathing.
34a			Dog	90	Days	Oral		mg/k g bw/d ay	No effect	Diarrhoea was observed in treatment groups as well as in the control group (there were no differences between the groups). At the high dose, diarrhoea was seen less frequently during the 1 st 20 weeks, which was considered due to reduced diet intake.
34a			Dog	90	Days	Oral	Ŏ	mg/k g bw/d ay	No effect	Diarrhoea was observed in treatment groups as well as in the control group (there were no differences between the groups). At the high dose, diarrhoea was seen less frequently during the 1 st 20 weeks, which was considered due to reduced diet intake.
34b			Dog	12	Mont hs	Oral	Solin	mg/k g bw/d ay	No effect	Increased incidence of vomiting was seen in dogs receiving the top dose (132 mg/kg bw/day) diet during the first 13 weeks. No vomiting was seen in males after the dose level had been reduced to 108 mg/kg bw/day. Diarrhoea was observed in treatment groups as well as in the control group (there were no differences between the groups).
34b			Dog Allis	12 Surrel	Mont hs	Paridi Parid Parid Paridi Parid Parid Parid Parid Parid Parid Parid Parid Parid Parid Parid P	311	mg/k g bw/d ay	Decrea se	Increased incidence of vomiting was seen in dogs receiving the top dose (137 mg/kg bw/day) diet during the first 13 weeks. Vomiting still continued in the females during the whole study dose level even after the dose had been reduced to 110 mg/kg bw/day. Diarrhoea was observed in treatment groups as well as in the control group (there were noe differences between the groups) but was observed less frequently in all groups during the second half of the study.
	_	2	This to	ing its	S					250

38	[[mouse	80	Week	Oral	177.7	mg/k	Change	Increased number of males appeared to be thin in top dose group (6/50 animals). Crusty eye(s), crusty nose and/or muzzle, damp and yellow/brown-stained fur in perianal and/or abdominal region were noted in several high dose females. Additionally, staggered gait, emaciation, loose stool, weakness, and/or letharpy were noted for 4 high dose	1
		1110 0150	00	S	0141	2,,,,,	g	Change	dose group (6/50 animals).	
							bw/d			
							ay		o co ot its	
42		rat	10	days	Oral	500	mg/k	Increas	Crusty eye(s), crusty nose and/or muzzle, damp and	
							g	e	yellow/brown-stained fur in perianal and/or abdominal	
							bw/d		region were noted in several high dose females.	
							ay		Additionally, staggered gait, emaciation, loose stool,	
									weakness, and/or lethargy were noted for 4 high dose	
									dams	
28	Food	rat	28	Days	Oral	500	mg/k	Decrea	Dose-dependent trend to lower food intake in treated	
	consumpt						g	se	male and female at 500 and 1000 mg/kg bw (Overall M:	
	ion						bw/d		↓18% and F: ↓12%) for weeks 1-4, especially during	
							ay		the first two weeks following the dose changes (F: \12	
									to M: 19% vs. control weeks 2-4).	
29a		rat	28	Days	Oral	500	mg/k	Decrea	In high-dosed animals, the mean food consumption was	
							g	se	decreased during week 1 in both males and females (-	
							bw/d		10 to -13% vs. control) and to a lesser extent in females	
							ay		during the 2 nd week also (-5 to -7%). The overall food	
								7.10	consumption during the study was similar in all male	
								0	groups but remained slightly decreased in high-dosed	
							-	D, X,	females (-3 to -4%). Study considered supportive only;	
							.CX	Ment	for each batch of test material (Batch A 96.2% and	
							/.	100-0	Batch B 96.1%) only two dose levels were tested (100	
						ς.	V . C	D. 70.	and 500 mg/kg) with toxicity already at the low dose-	
						, 0	, 90,	.5	level and mortality at the high dose-level. One female	
						. 135	0 ×	0) (0)	dosed with 500 mg/kg/day (Batch A) and one male and	
						O, 1/	Joie!	01	two females dosed with 500 mg/kg/day (Batch B) were	
					, C	4 7.	-01	$(i_j, (O_j))$	sacrificed in moribund condition at experimental days	
					-6,	10 1	(1)	1, 1,	2 and 3, respectively. This indicates that a dose of 500	
				_	300	1,01	, ill	×5	mg/kg/day exceeded the MTD.	
29b		rat	28	Days	Oral	500	mg/k	Decrea	In high-dosed animals, the mean food consumption was	
				0	201	50.	g bw/d	se	decreased during week 1 in both males and females (-	
				.6	· 10 5.	, 00,	bw/d	Olo	10 to -13% vs. control) and to a lesser extent in females	
				1.	7, ×10,	Ni Ollo	ay	X	during the 2 nd week also (-5 to -7%). The overall food	
			20	1,710	Sign in	30 11	10,		consumption during the study was similar in all male	
			110.	0,7	6, 10,	X. O			groups but remained slightly decreased in high-dosed	
			50 . K	1, 16					females (-3 to -4%). Study considered supportive only;	
		290	, CO,	110,	01, 10				for each batch of test material (Batch A 96.2% and	
		Nis	90	5	Dr. Con.				Batch B 96.1%) only two dose levels were tested (100	
		1, 10	xS	14,	90				and 500 mg/kg) with toxicity already at the low dose-	
		65	16,	10,1	5				level and mortality at the high dose-level. One female	
		1/1/5 to	100	S. 10	Oral Control of the C				dosed with 500 mg/kg/day (Batch A) and one male and	
L		C 207	00	<u></u>					two females dosed with 500 mg/kg/day (Batch B) were	

									sacrificed in moribund condition at experimental days 2 and 3, respectively. This indicates that a dose of 500 mg/kg/day exceeded the MTD. Food consumption of the high-dosed animals was generally lower, but not significantly lower than in other groups (average reduction of 10% vs. control) Reduced food intake week 1-13 was noted in males (34%)	ĺ
									2 and 3, respectively. This indicates that a dose of 500 mg/kg/day exceeded the MTD.	
30		rat	90	Days	Oral	208.6	mg/k	Decrea	Food consumption of the high-dosed animals was	
				, ~			g	se	generally lower, but not significantly lower than in	
							bw/d		other groups (average reduction of 10% vs. control)	
							ay			
34a		Dog	90	Days	Oral	132	mg/k	Decrea	Reduced food intake week 1-13 was noted in males	
		C					g	se	(34%)	
							bw/d		"" " " " " " " " " " " " " " " " " " "	
							ay			
34a		Dog	90	Days	Oral	137	mg/k	Decrea	Reduced food intake week 1-13 was noted in females	
							g	se	(36%).	
							bw/d		60, 60, 60, 60,	
		_					ay			
34b		Dog	12	Mont	Oral	16.8	mg/k	Decrea	Food consumption at the top dose level was drastically	
				hs			g	se	reduced during the first weeks 1-19 (M129%) of the	
							bw/d		study and improved slowly during the following weeks.	
							ay	.0	Food consumption returned to normal when top dose	
34b	-	D	12	M 4	01	16.5	/1-	D.O.	was reduced from 5000 to 2500 ppm. Food consumption at the top dose level was drastically	
340		Dog	12	Mont	Oral	10.5	mg/k	Decrea	reduced during the first weeks 1-19 (F\$\frac{1}{2}\)% of the	
				hs			g bw/d	se	study and improved slowly during the following weeks.	
							ay	20.	Food consumption returned to normal when top dose	
						6.		70,	was reduced from 5000 to 2500 ppm.	
35		mouse	90	Days	Oral	. 0	ppm	No	Food consumption was reduced in both sexes receiving	
						ls.	0	effect	3000 and 5000 ppm on day 1, but there were no	
						0/1/	0.5		consistent effects as the study progressed.	
38		mouse	80	Week	Oral (C	K. M.	mg/k	No	No consistent evidence of an effect of treatment on food	
				S	-6,	12 16	g	effect	consumption but food utilisation was less efficient than	
					The !!	100	bw/d	X5 .x	that of controls in females in the top dose group.	
					X	(11)	ay	$ O_i ' _{S}$		
38		mouse	80	Week	Oral	0.	mg/k	No	No consistent evidence of an effect of treatment on food	
				(S)	10, 3.	0(1)	g,	effect	consumption but food utilisation was less efficient than	
			~		7. 4162	J. 16	bw/d	X	that of controls in males in the top dose group	
40			130	-1/2	00 701	167	ay	Б		
40a		rat	110	days	Oral	153	mg/k	Decrea	FC was slightly reduced during pre-mating (-4.5%) and	
		20	ال ا	Mile	16,7	2)	g bw/d	se	gestation (-5.1%) in adult F0 female.	
		.60	200	111.	14, 14,		bw/d			
40a		rat	110	days	Oral	153	ay mg/k	Decrea	FC was slightly reduced during premating (-4.2%) and	
+0a		Tat XO	1100	days	Gran	133	g g	se	gestation (-8.8%, days 0-6) in adult F1 female.	
		 SS	0, '(11.			5	50	gestation (0.070, days 0 0) in addit 1 1 formation	

1		1					bw/d			or of the state of	O'S	
							ay		:B ⁽¹⁾ :	6, or policy		
40a		rat	110	days	Oral	156	mg/k	Decrea	FC was slightly reduced (-7.1%) after mating in F1	Cill of the		
							g bw/d	se	adult M.	Cial Cay		
							ay		Chillips of the control of the contr	11/2/15		
40b		rat	19	Week s	Oral	225	mg/k g	Decrea se	A slight reduction was seen during premating for high dose females of both generations (F0: -7.1%, F1 -7.6%).	We,		
				3			bw/d	30	FC during gestation was also significantly lower than	2,		
							ay		controls for high dose F0 females (-7%), slight			
									reduction seen for F1 females (-3.7%). During lactation,			
									high dose females of both generations also consumed slightly less (not significant) food than controls (F0: -			
									4.5%, F1: -4.2%).			
40b		rat	25	Week	Oral	225	mg/k	Decrea	A slight reduction was seen during premating for high			
				S			g bw/d	se	dose females of both generations (F0: -7.1%, F1 -7.6%). FC during gestation was also significantly lower than			
							ay		controls for high dose F0 females (-7%), slight			
								6	reduction seen for F1 females (-3.7%). During lactation,			
								.6	high dose females of both generations also consumed			
							- 0	SI Ch	slightly less (not significant) food than controls (F0: -4.5%, F1: -4.2%).			
41a		rat	10	Days	Oral	300	mg/k	Decrea	Reduced FC at 300 mg/kg bw/day (by 16% for GD 6-			
						ę.	g) se O	11), FC during complete treatment period was reduced			
						0,	bw/d ay	35	by 9%. FC reductions were slight at the low and mid dose group for GD 6-11 (low dose -7.3%, mid dose -			
						O'C'	0 .	91. 6	9.4%)			
41b		rat	5	Days	Oral	300	mg/k		At 300 mg/kg bw/day, food consumption gain was			
					6,6,	134.1	g bw/d	se	markedly decreased during the first days of treatment (by 17% on GD 6-11) and overall by 13% during the			
					110011) 'KOO.	ay	n'is it	complete treatment period (GD 6-16). Food			
						Silv 9	\~ \(\(\(\) \)	s. Pilo.	consumption was also still decreased during GD 16-21.			
				.6	190 e.	1000	COU	10,	FC at 450 mg/kg bw/day was somewhat decreased			
42		rat	10	days	Oral	500	mg/k	Decrea	(treatment for gestation days 10-14 only). FC was transiently reduced for high (-42%) dose			
172		141	100	aujus	Symile	300	g	se	animals on GD 6 following the first dosing while it was			
			b. "C	5,.00	, Poulle	10,0	bw/d		comparable to controls at GD 13 and 19. A slightly			
		90	CO	1/1/1	n. 4 km	0	ay		lower food consumption on GD 6 for mid-dose animals			
43	ŀ	rabbit	014.	days	Oral	150	mg/k	Decrea	was reported but is not considered adverse. Reduced FC in high dose females during GD 6-19; -			
73		7140011	15		90,111	150	g g	se	13%. (test chemical was administrated GD 6-18)			
		65	0, (0)	31	2		bw/d		·			
		~C° ~1	90	80			ay					

1 44 1		111	l 10	1 .	l o 1	1 200	I a	l p			√S 1
44		rabbit	13	days	Oral	200	mg/k	Decrea	Reduced FC in high dose females, most markedly in the first week of treatment* (GD 7-10: -43%, GD 10-14; -	10 K),
							g bw/d	se	11rst week 01 treatment" (GD /-10: -45%, GD 10-14; -	40°	
							bw/d		54%, GD 7-20: -37%). *The test chemical was	10.	
20	34 . 12		00	Ъ	0.1		ay	NT	administrated from GD 7-19 only.		
32	Mortality	rat	90	Days	Oral		ppm	No	No effect on mortality up to the highest dose level tested		
								effect	Reduced FC in high dose females, most markedly in the first week of treatment* (GD 7-10: -43%, GD 10-14; -54%, GD 7-20: -37%). *The test chemical was administrated from GD 7-19 only. No effect on mortality up to the highest dose level tested (2400 ppm). One female in each of the 2400- and the 1000-ppm dose groups and one male in the 500-ppm dose group died		
33		mouse	90	Days	Oral	500	ppm	Increas	One remaie in each of the 2400- and the 1000-ppin dose		
								e			
									during study week 8. No clinical observations were		
									reported for these animals before death.		
35		mouse	90	Days	Oral	5000	ppm	Increas	Killed for humane reasons due to BW loss during the		
								e	first week.		
40			110	1	0.1	152	Л	т			
40a		rat	110	days	Oral	153	mg/k	Increas	Three dams died post partum in Adult (F0): one dam		
							g	e	died day 4, one dam died day 11 and one dam died		
							bw/d		shortly after delivery. No observations on possibly		
							ay		impaired parturition were recorded for any of these		
									dams and all of these dams completed parturition and		
								1.6	delivered all pups. Dam mortalities after parturition may be related to maternal toxicity; however, RMS		
								00	cannot exclude a link to dystocia.		
40a		mot.	110	darra	Oral	153	ma/le	Increas	Three dams died post partum in Adult (F1): one dam		
40a		rat	110	days	Orai	133	mg/k	increas	died day 4, and two dams died day 2. No observations		
							g bw/d	JIL E JU	on possibly impaired parturition were recorded for any		
						ς.	V (17. 90,	of these dams and all of these dams completed		
						, 0)	ay	300	parturition and delivered all pups. Dam mortalities after		
						. 10%	0 3	(0)	parturition may be related to maternal toxicity;		
					al de la companya de	0, 1/	.013	01	however, RMS cannot exclude a link to dystocia.		
41a		rat	10	Days	Oral	300	mg/k	Increas	At 300 mg/kg bw/day, 2 dams died shortly before the		
41a		rat	10	Days	Orai	200	1	HICIEAS	autopsy on gestation day 21. Autopsy did not reveal any		
					100 /1	15,001	g bw/d	is in	obvious pathological condition.		
					10 6	1/11	av	101: 15	Tovious paniological condition.		
41b		rat	5	Days	Oral	300	mg/k	Increas	Four and 2 dams died at 300 and 450 mg/kg bw/day,		
				1.6	100.00.	10/1	\mathcal{G}_{g} .	O e	respectively, shortly before the autopsy on gestation		
			~	12	a villa	3/1/1/	bw/d		day 21. Autopsy did not reveal any obvious		
			200	"VIS	31 11	5	ay		pathological condition.		
42		rat	10	days	Oral	500	mg/k	Increas	Two gravid and one non-gravid females at 500 mg/kg		
		20	2 21	Mile	1, 9	D)	g	e	bw/day (on day 10, 11 and 12, respectively; clinical		
		. 60	100	111	11, 60		bw/d		signs were observed ante mortem and occurrence of		
		1013	0, (D, ' (D. C.		ay		stomach and intestinal lesions).		
46		Mallard	230	week	Oral	No	ppm	No	No effects on survival in the parental generation up to		
		duck	0)	s	S	effect		effect	the highest dose level tested (1000 ppm).		
		-0° 1'	1277	111							

										This is sug
49a			Rat	14	Days	Oral	No effect	mg/k g bw/d ay	No effect	No effect up to the highest dose level tested 320 mg/kg bw/day No effect up to the highest dose level tested 320 mg/kg bw/day changes in RNA of T-47D cells treated with PNZ or
49b			Mouse	14	Days	Oral	No effect	mg/k g bw/d ay	No effect	No effect up to the highest dose level tested 320 mg/kg bw/day
3	[Not in list]	[Not in list]	human, breast, cell line	4	Hr	Uptake from the medium (in vitro)		μМ	Change	extract from PNZ-treated grapes
36	No relev ant effect obser ved	No relevant effect observed	rabbit	21	days	Dermal		mg/k g bw/d ay	No effect	No relevant effect observed up to the highest dose level (2000 ppm) No differences in the turious incidences up to highest
37	No relev ant effect obser ved	No relevant effect observed	mouse	107	Week s	Oral		ppm	No effect	dose tested (300 ppm)
37	No relev ant effect obser ved	No relevant effect observed	mouse	106	Week s	Oral	A (/)		No effect	No differences in the tumour incidences up to highest dose tested (300 ppm)
38	No relev ant effect obser ved	No relevant effect observed	mouse	80	Week	Oral	Jille !	mg/k g bw/d ay	No effect	No increase in malignant or benign tumours up to the highest dose tested (177.7 mg/kg bw/day)
38	No relev ant effect obser ved	No relevant effect observed	mouse	900 M	Week	Oral		mg/k g bw/d ay	No	No increase in malignant or benign tumours up to the highest dose tested (221.5 mg/kg bw/day)
		C	Coloria de	ing its						255

39	No relev ant effect obser ved	No relevant effect observed	rat	117	Week s	Oral	l n	ng/k g ow/d ay	No effect	no differences in the tumour incidences up to the highest dose tested (10.4 mg/kg bw/day)
39	No relev ant effect obser ved	No relevant effect observed	rat	116	Week s	Oral	b	ng/k g ow/d ay	No effect	no differences in the tumour incidences up to the highest dose tested (11.9 mg/kg bw/day)
			This to	of the state of th		Still Property of the	Seit Lie	KSP Sold Strib	in sold is sold in the sold in the sold is sold in the sold is sold in the sol	no differences in the tumour incidences up to the highest dose tested (10.4 mg/kg bw/day) no differences in the tumour incidences up to the highest dose tested (11.9 mg/kg bw/day) 256

2.10.2.1.2.1 Assessment of the integrated lines of evidence and weight of evidence for T-mediated adversity and endocrine activity

Table 160: WoE for T-mediated adversity

- Overall conclusion: No consistent T-mediated adversity, but not sufficiently investigated.
- Increased thyroid weight and incidences of minimal hypertrophy of the follicle epithelium was observed in one species (rat) in a short term 28 days study and considered adverse (study ID 29 a and b, 1991). The effect was observed at the two dose levels tested: low dose (100 mg/kg bw/day) and high dose (500 mg/kg bw/day). Three female and one male rat dosed with 500 mg/kg/day were sacrificed in moribund condition at experimental days 2-3. This indicates that a dose of 500 mg/kg/day exceeded the MTD; however, effects observed in thyroid are still considered adverse.
- The effects were not confirmed in longer term studies or in other species (mice and dogs).
- Target organ toxicity was observed in the adrenal and kidney at the high dose level (500 mg/kg/bw/day) and in the liver at both low dose (100 mg/kg bw/day) and high dose (500 mg/kg bw/day) (study ID 29 a and b, 1991).
- For the liver, target organ toxicity was mainly characterized by hypertrophy; however, necrosis and fibrosis in dogs (500 ppm) and hepatic degeneration in rats (1000 ppm) could be considered adverse.

Although the available dataset for T-mediated adversity is negative, this dataset is not considered sufficient. To consider the T modality as 'sufficiently investigated' for mammals the thyroid parameters foreseen to be investigated in the following studies OECD test guidelines 407, 408, 409 (and/or the one-year dog study, if available), 416 (or 443 if available) and 451-3 should have been measured and the results included in the dossier. Studies following the recommended TG or similar design have been performed, but due to the age of these studies they do not assess all parameters which are required by the EFSA-ECHA ED guidance document to conclude that all parameters indicative of T-mediated adversity have been sufficiently investigated. The major deviations from current guideline are summarized in Table 161: . However, according to the EFSA "Technical report on the outcome of the pesticides peer review meeting on general recurring issues in mammalian toxicology" (EFSA supporting publication 2020:EN-1837, page 7, doi:10.2903/sp.efsa.2020.EN-1837), the dataset for thyroid can be considered complete on a case-by-case basis, pending whether the duration and doses selection allow a proper assessment of the thyroid histology (thyroid histopathology is generally considered more sensitive and informative than thyroid weight).

Dose-levels were not optimal in a number of the included studies. Of significant importance, the rat 28 days study (study ID 29) only had two dose levels, whereas an intermediate dose would have been preferred. Dose-levels were considered to be too low in some of the long-term studies following TG 451-3 (Combined chronic toxicity/carcinogenicity study in mice, study ID 37 and rat, study ID 39) and 416 (Two-generation reproduction toxicity test in rats, study ID 40a and b).

Consequently, RMS is in the opinion that sufficiency may be discussed. See Table 106 for details on the studies included to assess T-adversity (based on thyroid histopathology).

Table 161: Overview over selected parameters investigated and missing parameters in the studies recommended.

Test guideline	OECD TG 407	OECD TG 408	OECD TG 409 and/or the one-year dog study	OECD TG 451-3	OECD TG 416 (a)
	study ID 28 and 29	study ID 30, 31, 32 and 33	study ID 34b	study ID 37, 38, 39	study ID 40a and 40b
Parameter Indicative of T- mediated adversity			nmended investigat	ed in TG	ata une cial
Colloid area (thyroid histopathology)	X Not measured			1 Steel as in	ata hinelent !
Follicular cell height (thyroid histopathology)	X Not measured		in the second	Vie Only O	X Not measured
HDL/LDL ratio(c)		X Not measured	X Not measured	(8,000,0)	
Liver weight(c)	X Yes	X Yes	Not measured X Yes X Yes	X Not measured	Measured only in F1 and F2 in study ID 40a, not measured in in study ID 40b.
Thyroid histopathology	X Yes	ID 30 and 31, not in study ID	City of the second	X Yes	x (optional) Only F1 in study ID 40a, not measured in in study ID 40b.
Thyroid weight	x (optional) Not measured	Not measured	Yes, but unclear whether parathyroids were weighed together with thyroids	X Yes	X Not measured

While there was no consistent observable T-mediated adversity in the included studies, some parameters sensitive to, but not diagnostic of, EATS were observed on adrenal in rats (atrophy and increased weight at 500 mg/kg/bw/day) and dogs (increased weight at 110 mg/kg bw/day, as well as anomalies in rat and rabbit. The data also showed an overall evidence of target organ systemic toxicity for kidney and liver whereas spleen and thymus were considered not sufficiently investigated. There was overall evidence of systemic toxicity. MTD \geq 500 mg/kg bw (M), \geq 500 mg/kg bw (F).

Table 162: Overview studies included to assess T-adversity (based on thyroid histopathology)

Study	Study	Species	Doses	Duration	Acceptance for the ED assessment
principle	ID		tested in	of	
	Matrix		mg/kg	exposure	
			bw/day	_	

Repeated dose 28-days	28	Rat	0; 20/100; 100/500; 500/1000	28 days	Study considered supportive only (as dose levels were increased on day 8 of treatment)
Repeated dose 28-days	29a and 29b	Rat	0; 100; 500	28 days	Study considered as supportive only, due to the fact that only two dose levels were tested, and because of the deficiencies in dose level selection (toxicity already at the low dose, excessive toxicity at the high dose)
Repeated dose 90-days	30	Rat	In F: 0; 2.1; 20.7; 208.6 In M: 0; 2; 19.4; 202.3	90 days	(toxicity already at the low dose, excessive toxicity at the high dose) Study accepted Study accepted Study accepted
Repeated dose 90-days	31	Rat	In F: 0; 0.78; 2.14; 7.27 In M: 0; 0.77; 2.12; 7.07	90 days	Study accepted Study accepted Study accepted
Repeated dose 90-days	34a	Dog	In F: 0; 3.8; 19.4; 137 In M: 0; 3.4; 18.2; 132	90 days	Study accepted
Carcinogenicity	38	Mouse	In F: 0; 3.5; 28.2; 221.5 In M: 0; 2.7; 21.7; 177.7	80 weeks	Study accepted
Carcinogenicity Two-generation	ariles	Rat his	In F: 0; 0.2; 2.9; 5.7; 11.9 In M: 0; 0.2; 2.7; 5; 10.4	116/117 weeks	Study concidered supportive only (as the selected dose levels were too low to produce significant toxicological effects
Two-generation reproduction toxicity test	40a	Rat	In F: 0; 5.9; 29.9; 153 In M: 0; 6; 29.7; 156	110 days	Study considered supportive only, as dose levels were considered too low (based on weight loss in the rats not consistently exceeding 10% of their body weight)

Table 163: WoE for T-mediated endocrine activity

• Overall conclusion: Indication of endocrine activity (based on increased UDP-GT), but not sufficiently investigated.

- In one *in vivo* mechanistic study (open literature study, ID 49, 1985) marked liver enlargement in rats and mice at 80 mg/kg bw/day and higher (dose-dependent) and a pronounced induction in the activity of several hepatic xenobiotic metabolizing enzymes (uridine diphosphate [UDP]-glucuronyl transferase) was observed. Increased UDP-GT may be indicative of T-mediated endocrine activity.
- Evidence for TR-mediated antagonistic activity *in vitro*, (Penconazole was active in one of these assays (TOX21_TR_LUC_GH3_Antagonist); however, the viability readout was also active and interference with cytotoxicity cannot be excluded) (study ID 22). As only one single assay was tested to determine the potential of penconazole to interact with the TR as an antagonist, the result should be interpreted with caution.
- ToxCast TSHR showed no TSHR-mediated activity (study ID 24, 25, 26).

The overall dataset is considered limited with regard to investigation of T-mediated endocrine activity. As described in the previous section, the included mammalian studies have several limitations, and they do not follow current guidelines. There is no measurement of T3, T4 or TSH levels in the studies included. These hormone levels are recommended investigated in TG 407 (relevant for study ID 28,29), 408 (relevant for study ID 30,31,32,33) and 409 and/or the one-year dog study (relevant for study ID 34b). However, according to the Technical report on the outcome of the pesticides peer review meeting on general recurring issues in mammalian toxicology" (EFSA supporting publication 2020:EN-1837, page 7, doi:10.2903/sp.efsa,2020.EN-1837), EFSA clarified that in the old versions of the OECD TGs the measurement of thyroid hormones was optional. Therefore, in these cases, the lack of THs measurement cannot be used to conclude that the dataset for adversity is not complete. A level 3 *in vivo* mechanistic study (Study ID 49, (1985), K-CA 5.8.2/02) is considered by RMS to provide information indicative of T-mediated endocrine activity.

2.10.2.1.3 Initial analysis of the evidence and identification of relevant scenario for the ED assessment of T-modality

 Table 164:
 Selection of relevant scenario

Adversity based on T mediated parameters	Positive mechanistic OECD CF level 2/3 Test	Scenario	Next step of the assessment	Scenario selected
No (sufficiently investigated)	Yes/No	1a	Conclude: ED criteria not met because there is not " T-mediated " adversity	
Yes (sufficiently investigated)	Yes/No	1b	Perform MoA analysis	
No (not sufficiently investigated)	Yes	2a (i)	Perform MoA analysis (additional information may be needed for the analysis)	X
No (not sufficiently investigated)	No (sufficiently investigated)	2a (ii)	Conclude: ED criteria not met because no T-mediated endocrine activity observed	
No (not sufficiently investigated)	No (not sufficiently investigated)	2a (iii)	Generate missing level 2 and 3 information. Alternatively, generate missing "EATS-mediated" parameters. Depending on the outcome move to corresponding scenario	
Yes (not sufficiently investigated)	Yes/No	2b	Perform MoA analysis	

2.10.2.1.4 MoA analysis for T-modality

2.10.2.1.4.1 Postulate MoA

Table 165: Description of the postulated MoA

	Description	Supporting Evidence
		10 10 10 10 10 10 10 10 10 10 10 10 10 1
MIE	CAR-PXR activation	Not investigated
KE1	Phase I /Phase II catabolic activation	Uridine diphosphate [UDP]-glucuronyl transferase (Phase II) was investigated in one study (short term 14 day) and was increased in rat and mouse hepatocytes (study ID 49 a and b, 1985).
KE2	Decrease serum concentration of T4	Not investigated
KE3	Increase in TSH	Not investigated
KE4	Increase in follicular cells proliferation	Not investigated
AO	Increased thyroid weight and incidences of minimal hypertrophy of the follicle epithelium	No consistent T-mediated adverse effects, but not sufficiently investigated. Increased thyroid weight and incidences of minimal hypertrophy of the follicle epithelium was observed in one study (short term 28 day) in one species (rat) and were considered adverse (study ID 29 a and b, 1991); however, these findings were not confirmed in other studies.

2.10.2.1.4.2 Further information to be generated to postulate MoA

The MoA suggested by RMS for penconazole follows the example in the EFSA-ECHA ED guidance document:

An example of a postulated mode of action is reported below:

However, the empirical support of the postulated MoA is limited. No consistent endocrine adversity was observed, but as highlighted in section 2.10.2.1.2.1 relevant ED parameters are missing from the available studies. Although there were no consistent effects on thyroid, RMS is of the opinion that the dose levels in many of these studies are not optimal to address the examined endpoints and that higher dose levels may be needed to remove the concern arising from the available *in vivo* mechanistic data. Furthermore, no data are available on hormone levels, which is a KE in the postulated MoA.

In RMS's opinion, it is therefore recommended to investigate these parameters as described in Table 154 in a new study following the latest version of TG 407/408 and 416.

According to the ED guidance, three pieces of information are needed to investigate whether liver enzyme induction is responsible for the effects seen on thyroid histopathology and weight, as well as to determine whether the effect is likely to be human relevant or not:

- 1) A specifically designed *in vivo* toxicity study should be considered to measure TSH, T3 and T4 and, where possible, additional data on liver enzyme induction (e.g. measurement of UDPGT) should be included.
- 2) Comparative studies of enzyme activity induced by the test substance in liver *in vitro* systems should be measured in both the relevant test species (e.g. rat, mouse and dog) and humans.

3) The presence of other possible thyroid-disrupting modes of action such as interference with TH synthesis should also be excluded, e.g. by evaluating *in vitro* the potential for inhibition of the sodium–iodide symporter (NIS) and thyroid peroxidase (TPO).

RMS suggests that these pieces of information is investigated if adversity or activity is confirmed in a new study and if liver enzyme induction is found potentially responsible for the effects.

If changes in circulating THs is observed and human relevance cannot be clearly excluded as a result of these assays, a thyroid assessment study conducted in the foetus and pups in line with the US EPA, Office of Pesticide Programs, Health Effects Division, Washington (DC) is recommended. Available online: https://www.epa.gov/sites/production/files/2015-06/documents/thyroid_guidance_assay.pdf.

According to the ECHA/EFSA-ED GD, to appropriately investigate thyroid concerns, existing test protocols need to be modified. When considering such modifications, the recommendations on how to investigate thyroid effects in rodent models from the American Thyroid Association should be considered (et al., 2014).

In addition, the following points should be considered and reported in the study report:

- The methodology for sampling and the analytical method to evaluate the thyroid hormones and TSH.
- Laboratory documentation of the method validation with inclusion of the LOD for foetus and pups.
- Considering the inclusion of a positive control.
- Control of iodine content in diet (should not be exceeding 5 μg/kg food, which is the rodent daily need).
- Select appropriate dose range (e.g. highest dose from the rat studies with thyroid follicular hyperplasia and/or above the MTD of 500 mg/kg bw/day).

2.10.2.1.4.3 Empirical support of the postulated MoA

Not applicable considering the limited data available (see Table 165:).

2.10.2.1.4.4 Empirical support of the postulated MoA

Not applicable considering the limited data available (see Table 165:).

2.10.2.1.5 Conclusion of the assessment of T-modality

Overall, the WoE indicates that T-mediated adversity was not observed for penconazole. However, the dataset for the assessment of T-mediated adversity is not considered sufficient, and the available dataset for endocrine activity was positive for the T-modality. Consequently, a complete dataset is needed to investigate adversity e.g., that OECD TG 416 (latest version) and 407/408 should be conducted. A complete dataset from these studies would address the concern arising from the positive outcome of the *in vivo* mechanistic study. Furthermore, the execution of the endpoints in a single experimental set is expected to minimize the uncertainties associated with comparing endpoints between different study designs and uncertainties associated with the study design. The proposed MoA also needs further investigations if adversity or activity is confirmed in a new study and if liver enzyme induction is found potentially responsible for the effects. Also, if changes in circulating THs is observed and human relevance cannot be clearly excluded as a result of these assays, a thyroid assessment study conducted in the foetus and pups is recommended (as described above).

2.10.2.2 ED assessment for EAS-modalities

2.10.2.2.1 Have EAS-mediated parameters been sufficiently investigated?

Table 166: Have EAS-mediated parameters been sufficiently investigated?

	Sufficiently investigated
EAS-mediated parameters	No (to have the EAS-mediated adversity with regard to
	humans and mammals (as non-target organisms) sufficiently
	investigated, all the data requirements of the specific

Regulations, must be fulfilled. This should include all the 'EAS-mediated' parameters foreseen to be investigated in an extended one-generation reproductive toxicity study (EOGRTS; OECD TG 443; with cohort 1a/1b including the mating of cohort 1b to produce the F2 generation (OECD, 2012b)) or a two-generation reproductive toxicity study (OECD TG 416; test protocol according to latest version of January 2001 (OECD, 2001)

or the light of the late of th acertal deviation of parameters indicated and the parameters in the paramete after of a some after of a som

2.10.2.2.2 Lines of evidence for adverse effects and endocrine activity related to EAS-modalities

Table 167: Lines of evidence for adverse effects and endocrine activity related to EAS-modalities

										ed to EAS-modalities Observed effect (positive and negative)	Stiplic to Sud	S C C C C C C C C C C C C C C C C C C C	
Stu dy ID Ma	Effec t classi ficati	Effect target	Species	Dura tion of expo	Dura tion unit	Route of administ ration	Lowest Effect dose	Dose unit	Effect directi on	Observed effect (positive and negative)	Assessment of each line of evidence	line of	Mod ality
8	In vitro mech anisti c	Estrogen receptor	human, breast, cell line	24	Hr	Uptake from the medium (in vitro)	32.1	μМ	No effect	Non-GLP literature study acceptable as supplementary. Inactive ER binding assay: weak inducer of ER activation in T47Dluc cells (EC ₅₀ = 32.1 µM), but cytotoxic effect in T47D cells was evident in the same concentration range as the derived EC ₅₀ in T47Dluc cells	Positive, evidence for ER-mediated antagonistic activity in vitro	evidence Overall evidence of AR and ER- mediated activity (antagonism),	E
9			bovine, uterus, tissue- based cell-free	18	Hr	Uptake from the medium (in vitro)	0	μМ	No effect	ToxCast ER model; no ER binding		and effects (inhibition) on steroidogenesi s activity in vitro.	
10			human, cell-free	18	Hr	Uptake from the medium (in vitro)	0.21	μМ	No effect	ToxCast ER model: no ER binding			
11			mouse, cell-free	18	Hr	Uptake from the medium (in vitro)	50,0	@μM O(O	No effect	ToxCast ER model: no ER binding			
12			human, kidney, cell line	24	Hr	Uptake from the medium (in vitro)	90,36	μM	No effect	ToxCast ER model: No ER-mediated agonistic activity			
13			human, kidney, cell line	24 S	Hrs	Uptake from the medium (in vitro)	38.17	р₩	Change	ToxCast ER model: ER-mediated antagonistic activity (only highest conc. above baseline, active)			
14			human, breast, cell line	22 01 ¹⁵	Hr	Uptake from the medium (in vitro)	0	μМ	No effect	ToxCast ER model: No ER-mediated agonistic activity			

									پ <u>ج</u>	Positive, evidence for AR-mediated
15		human, breast, cell line	22	Hr	Uptake from the medium (in vitro)	66.37	μМ	Change	ToxCast ER model: ER-mediated antagonistic activity (less than 50% efficacy)	Still of Stills is followed
2	Androge n receptor	human, breast, cell line	24	Hr	Uptake from the medium (in vitro)	17.1	μМ	Decrea se	Non-GLP literature study acceptable as supplementary. Inhibition of testosterone-induced AR activation in a concentration-dependent manner (IC ₅₀ = $17.1 \mu M$)	Positive, evidence for AR-mediated antagonistic activity in vitro
7		yeast	2	Hr	Uptake from the medium (in vitro)	18.28	μМ	Change	AR-mediated antagonistic effects: $IC_{50} = 18.3 \mu M$ (literature study not reliable as the publication has several deficiencies)	2.
16		human, kidney, cell line	24	Hr	Uptake from the medium (in vitro)	0	μМ	No effect	ToxCast AR model: No AR-mediated agonistic activity	
17		human, kidney, cell line	24	Hr	Uptake from the medium (in vitro)	38.35	μМ	Change	ToxCast AR model: AR-mediated antagonistic activity (assay was near or in the cytotoxicity range)	
18		human, breast, cell line	24	Hr	Uptake from the medium (in vitro)	0	μМ	No effect	ToxCast AR model: No AR-mediated agonistic activity	
19		human, breast, cell line	24	Hr	Uptake from the medium (in vitro)	(39)	QuM	Change	ToxCast AR model: AR-mediated antagonistic activity	
20		human, breast, cell line	24	Hr	Uptake from the medium (in vitro)	58.77	μM	Change	ToxCast AR model: AR-mediated antagonistic activity	
45	Estradiol synthesis	human, adrenal corticoca rcinoma, cell line	488	Hour	Uptake from the medium (in vitro)	0.1	other	Decrea se	Inhibition of estradiol synthesis (H295R steroidogenesis assay)	Positive, evidence of effects on steroidogenesis <i>in vitro</i> (decreased estradiol synthesis)
	(corticoca rcinoma, cell line	id is	SOLILI					265	

											riplic thy and	<u></u>	
45			human, adrenal corticoca rcinoma, cell line	48	Hour s	Uptake from the medium (in vitro)	3160	other	Decrea se	Inhibition of estradiol synthesis (H295R steroidogenesis assay)	Silo to jirot	OIC	
2		Testoster one level (in vitro)	mouse, leydig, cell line	48	Hr	Uptake from the medium (in vitro)		μМ	No effect	Non-GLP literature study acceptable as supplementary. No inhibition of Leydig cell testosterone excretion in MA-10 cells	Positive, evidence of effects on steroidogenesis <i>in</i> <i>vitro</i> (decreased		
45		Testoster one synthesis	human, adrenal corticoca rcinoma, cell line	48	Hour s	Uptake from the medium (in vitro)	0.1	other	Decrea se	Inhibition of testosterone synthesis (H295R steroidogenesis assay)	testosteronel synthesis)		
45			human, adrenal corticoca rcinoma, cell line	48	Hour s	Uptake from the medium (in vitro)	3160	other	Decrea se	Inhibition of testosterone synthesis (H295R steroidogenesis assay)			
4		CYP19	human, adrenal corticoca rcinoma, cell line	24	Hr	Uptake from the medium (in vitro)	20	μM	Change	Non-GLP literature study acceptable as supplementary. Inhibition of CYP19: in vitro weak competitive aromatase inhibition in H295R cells (IC50 $=20~\mu M)$	Positive, evidence for aromatase inhibition <i>in vitro</i>		
5			n/a			[Not in list]	0.85	μM	Change	Non-GLP literature study acceptable as supplementary. Inhibition of CYP19: in vitro aromatase inhibition using dibenzylfluorescein as substrate (IC50 = $0.85 \mu M$)			
6			n/a		6	[Not in list]	Jill 8	μM	Change	Non-GLP literature study acceptable as supplementary. Inhibition of CYP19: <i>in vitro</i> weak aromatase inhibition, LC-MS/MS method using testosterone as substrate (IC ₅₀ = 47 μM)			
27			human, breast, cell line	24	H	Uptake from the medium (in vitro)	12.32	ųМ		ToxCast Steroidogenesis model: inhibition of CYP19			
38	S- medi ated	Cervix histopath ology	mouse	80.11 80.11	Week s	Oral	o`	mg/k g bw/d ay	No effect	No effect on cervix histopathology up to highest dose tested 221.5 mg/kg bw (carcinogenicity study)	Negative, no effect on oviduct histopathology	Overall negative, no evidence for a consistent	E, A,
		C	Chils to	is in	S Q, '',					266			

40b	Coagulati ng gland histopath ology	rat	19	Week s	Oral		mg/k g bw/d ay	No effect	No effect on coagulating gland histopathology up to highest dose tested 211 mg/kg bw/day in F0 adults	Negative, no effect on coagulating gland histopathology	pattern of endocrine adversity. However, the
40b		rat	25	Week s	Oral		mg/k g bw/d ay	No effect	No effect on coagulating gland histopathology up to highest dose tested 211 mg/kg bw/day in F1 adults	instopaniology	EAS-modality is not sufficiently investigated
40b		rat	21	Days	Oral		mg/k g bw/d ay	No effect	No effect on coagulating gland histopathology up to highest dose tested 211 mg/kg bw/ day in 10 randomly selected F1 and F2 weanlings		
28	Epididym is histopath ology	rat	28	Days	Oral		mg/k g bw/d ay	No effect	No effect on epididymides histopathology up to highest dose tested 1000 mg/kg bw/day. Study acceptable as supplementary as dose levels were increased on day 8 of treatment. Does not fulfil requirements of OECD TG 407	Negative, no consistent effects on epididymides. Effects in dogs were not	
31		rat	90	Days	Oral	0,50	KK OC	No effect	No effect on epididymides histopathology up to highest dose tested 7.07 mg/kg bw/day; considered supportive only as several ED parameters are missing including; epididymis, prostate + seminal vesicles with coagulating glands as a whole complex were not weighed and no histopathological examination was conducted on the coagulating glands. Does not fulfil requirements of OECD TG 408	considered adverse: 90 days exposure - Change in the epididymis (4/4 animals) at 132 mg/kg bw/day, in the presence of severe	
34a		Dog	90	Days	767	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Change Change	under GLP/Officially recognised testing facilities (no formal GLP statement provided, but a quality assurance statement)	systemic toxicity (> MTD: extreme body weight loss and liver toxicity). 12 months exposure - no effects observed at 108 mg/kg bw/day (top dose > MTD,	
34b		Dog	12©	Mont	Oral	eri oli	mg/k g bw/d ay	No effect	No effect on epididymis histopathology up to highest dose tested 108 mg/kg bw/day. Study not conducted under GLP/Officially recognised testing facilities (no formal GLP statement provided, but a quality assurance statement)	132 mg/kg bw/day, was reduced during week 20; top dose animals then	
	7	Dog	id is	SUIT	5				267		

	i		0.0	ь	0 .	ı		3.7	NT 00
35		mouse	90	Days	Oral		ppm	No	No effect on epididymis histopathology (only
								effect	examined in control and high dose groups, 5000 ppm);
									study considered supportive due to deviations from the
									test guideline. The study was conducted as a
									preliminary carcinogenicity study and was not
									intended to comply with any regulatory guidelines.
39		rat	116	Week	Oral		mg/k	No	No effect on epididymis histopathology up to highest
				S			g	effect	dose tested 10.4 mg/kg bw/day. Study acceptable as
							bw/d		supplementary as selected dose levels were too low to
							ay		produce significant toxicological effects. Does not
									fulfil OECD TG 453
40a		rat	110	days	Oral		mg/k	No	No effect in F0 males on epididymis histopathology up
							g	effect	to highest dose tested 156 mg/kg bw/day. Study
							bw/d		acceptable as supplementary as dose levels were
							ay		considered too low and due to major deviations from
							_		current guideline OECD TG 416. Epididymis
									histopathology was only examined in F0 males.
40b		rat	19	Week	Oral		mg/k	No	No effect in F0 males on epididymis histopathology up
				s			g	effect	to highest dose tested 211 mg/kg bw/day. Study
							1 / 1	(,/2	acceptable as supplementary due to low dosing and
							ay	sug!	major deviations from guideline OECD TG 416;
								D, X	dosing was continued for 9 weeks only for both sexes
							C.P	Silve	in F0 (it should be continued for at least 10 weeks
							,4,5	and a	before the mating period), and was continued in both
						6.	() c	0, 70,	sexes for 20 days during mating period (it should have
						o'	70,	. 6	been 14 days only)
40b		rat	25	Week	Oral	ls.	mg/k	No.	No effect in F1 adults on epididymis histopathology
				s		0/1/	g	effect	up to highest dose tested 211 mg/kg bw/day. Study
					.0	8	g bw/d	10:	acceptable as supplementary due to low dosing and
					0	ON S	ay	C. VII	major deviations from guideline OECD TG 416;
					1,00	10	, 10,		dosing was continued for 9 weeks only for both sexes
					111. ()	, "//	S	10,01	in F0 (it should be continued for at least 10 weeks
					2, 3,	111	CONT	, Vilo	before the mating period), and was continued in both
				.6	96	-0,	CO,	₍ 0)	sexes for 20 days during mating period (it should have
					11.05.	ilo, ra		6.	been 14 days only)
35	Epididym	mouse	900	Days	Oral	3000	ppm	Decrea	Decrease in absolute weight (21%) and adjusted
	is weight		10	o'C'	0,0,10	, O,	11 .	se	epididymis weight (22%) in the 3000 ppm group. No
			C) .d	6, 6	1,000	10,			effect in the top dose group (5000 ppm); The lower
		%	C/7,	1011	7 x 2/	0			epididymis weights in the study are considered to
		.5	70,		$V_{L,j}$ $C(I)_{L,j}$				reflect the marked BW effects in the animals. Study
		111,0		P \ 1	200				considered supportive due to deviations from the test
		This to	1/13		0				guideline. The study was conducted as a preliminary
	•	55 ×	0, (0)		(3		i .		,

gained more
weight for the
remainder of the
treatment period
as the other
groups, including
controls, while
overall BW gain
was reduced
(44%). Decrease
in epididymis
weight in mouse
not considered
adverse (no effect
observed in top
dose males)

			T	T		I	T	ı	carcinogenicity study and was not intended to comply with any regulatory guidelines No effect on epididymes weight up to highest dose tested 177.7 mg/kg bw/day No effect on epididymis weight up to highest dose tested 156 mg/kg bw/day, measured in F0 males only No effect on mammary area histopathology up to	Jolic Hand
									with any regulatory guidelines	Sciol explination
38		mouse	80	Week s	Oral		mg/k g bw/d ay	No effect	No effect on epididymes weight up to highest dose tested 177.7 mg/kg bw/day	THE LITTERS TO STATE OF THE STA
40a		rat	110	days	Oral		mg/k g bw/d ay	No effect	No effect on epididymis weight up to highest dose tested 156 mg/kg bw/day, measured in F0 males only	3.
28	Mammar y gland histopath ology	rat	28	Days	Oral		mg/k g bw/d ay	effect	mgnest dose tested 1000 mg/kg bw/day	on mammary gland
31	(female)	rat	90	Days	Oral		mg/k g bw/d ay	No effect	No effect on mammary area histopathology up to highest dose tested 7.27 mg/kg bw/day. Study acceptable as supplementary. Does not fulfil requirements of OECD TG 408	histopathology
34a		Dog	90	Days	Oral	Ó	mg/k g bw/d ay	No effect	No effect on mammary area histopathology up to highest dose tested 137 mg/kg bw/day	
34b		Dog	12	Mont hs	Oral	Sold	mg/k g bw/d ay	No effect	No effect on mammary area histopathology up to highest dose tested 110 mg/kg bw/day	
37		mouse	107	Week	Oral	Still I	ppm	No effect	No effect on mammary gland histopathology up to highest dose tested 300 ppm, corresponding to 35.7 mg/kg bw/day for females. Study acceptable as supplementary due to the selected doses that were too low to reveal any adverse effect on the examined endpoints. Does not fulfil OECD TG 453	
38		mouse	90C/1	Week			mg/k g bw/d ay	No effect	No effect on mammary gland histopathology up to highest dose tested 221.5 mg/kg bw/day	
	C	This o	ind is	SOLIL	S				269	·

20	1		115	*** 1	0.1	1			N 66	الله الله على	"
39		rat	117	Week	Oral		mg/k	No effect	No effect on mammary gland histopathology up to highest dose tested 11.9 mg/kg bw/day. Study	Ment Hay the	K
				S			g bw/d	effect	acceptable as supplementary as the selected dose	1.01.010.01	Ö.
							ay		levels were too low to produce significant	Cill of the Wo	l
							ау		toxicological effects. Does not fulfil OECD TG 453	3 2	l
31	Mammar	rat	90	Days	Oral		mg/k	No	No effect on mammary area histopathology up to	"Clo "Co.	l
	y gland	144	, ,	Zujo	0141		g	effect	highest dose tested 7.07 mg/kg bw/day. Study	2, 15	l
	histopath						bw/d		acceptable as supplementary. Does not fulfil	S.	l
	ology						ay		requirements of OECD TG 408		l
34a	(male)	Dog	90	Days	Oral		mg/k	No	No effect on mammary area histopathology up to		
344		Dog	70	Days	Oran		g g	effect	highest dose tested 132 mg/kg bw/day		l
							bw/d	Circci	ingliest dost tested 152 inglig 5 maay		l
							ay		9, 40, 40, 31, 41,		l
34b		Dog	12	Mont	Oral		mg/k	No	No effect on mammary area histopathology up to		l
340		Dog	12	hs	Orai		g g	effect	highest dose tested 108 mg/kg bw/day		l
				113			bw/d	Circci	ingless dose tested for ing kg owidgy		l
							ay		The substitution of the		l
37		mouse	106	Week	Oral		ppm	No	No effect on mammary gland histopathology up to		
31		mouse	100	S	Orai			offort	highest dose tested 300 ppm, corresponding to 40.8		l
				3				SUCCE	mg/kg bw/day for males. Study acceptable as		l
								D) X	supplementary due to the selected doses that were too		l
							C.P	- O'L'	low to reveal any adverse effect on the examined		l
							/5	, no	endpoints. Does not fulfil OECD TG 453.		l
39		rat	116	Week	Oral	κ.	mg/k	No.O	No effect on mammary gland histopathology up to		l
				S		, 0)	g	effect	highest dose tested 10.4 mg/kg bw/day. Study		l
						10%	bw/d	11, 6	acceptable as supplementary as the selected dose		l
						DO. V.	ay	0,	levels were too low to produce significant		l
	~				<u><</u> C	4.	0	10. 14	toxicological effects. Does not fulfil OECD TG 453		ł
28	Ovary	rat	28	Days	Oral	10,00	mg/k	No	No effect on ovary histopathology up to highest dose	Negative, no	l
	histopath				1/10/1	11/0	g	effect	tested 1000 mg/kg bw/day	consistent effects	l
	ology			_ (110. 9	bw/d	s, 'ilo,		on ovaries	l
				.0.	76, <		ay	,0)			l
31		rat	90	Days	Oral	diolika	mg/k	No	No effect on ovary histopathology up to highest dose		l
			O.	\ xS	o dilo	30, 11	g	effect	tested 7.27 mg/kg bw/day. Study acceptable as		l
			100	S.C.	03. 10/1		bw/d		supplementary. Does not fulfil requirements of OECD		l
		_	30.	6.6	60 Mpl	10	ay		TG 408		
34a		Dog	90	Days	Oral	0	mg/k	No	No effect on ovary histopathology up to highest dose		l
		::6	90,	1	1, 011		g	effect	tested 137 mg/kg bw/day		l
		V//, "O	*5	11/2	700		bw/d				l
		65	Mr	$C_{D_{i}}$,	5		ay				

34b	
35	
37	
38	
39	
40a	
40b	
40b	

								by a	
Dog	12	Mont	Oral		mg/k	No	No effect on ovary histopathology up to highest dose	iologia, sign	
- 78		hs			g bw/d ay	effect	tested 110 mg/kg bw/day	Stion 18 lotte le	30
mouse	90	Days	Oral		ppm	No effect	with any regulatory guidelines.	They that the state of the stat	
mouse	107	Week s	Oral		ppm	No effect	No effect on ovary histopathology up to highest dose tested 300 ppm, corresponding to 35.7 mg/kg bw/day for females. Study acceptable as supplementary due to the selected doses that were too low to reveal any adverse effect on the examined endpoints. Does not fulfil OECD TG 453		
mouse	80	Week s	Oral		mg/k g bw/d ay	No effect	No effect on ovary histopathology up to highest dose tested 221.5 mg/kg bw/day		
rat	117	Week s	Oral	Š	mg/k g bw/d ay	No effect	No effect on ovary histopathology up to highest dose tested 11.9 mg/kg bw/day. Study acceptable as supplementary as the selected dose levels were too low to produce significant toxicological effects. Does not fulfil OECD TG 453		
rat	110	days	Oral	Selection	mg/k g bw/d ay	No effect	No effect on ovary histopathology up to highest dose tested 153 mg/kg bw/day in F1 adults		
rat	19 Sumer	Week s	11. 10	Silon in		No effect	No effect on ovary histopathology up to highest dose tested 225 mg/kg bw/day in F0 adults. Study acceptable as supplementary due to low dosing and major deviations from guideline OECD TG 416; dosing was continued for 9 weeks only for both sexes in F0 (it should be continued for at least 10 weeks before the mating period), and was continued in both sexes for 20 days during mating period (it should have been 14 days only)		
rat	025 071 ⁵	Week	Oral		mg/k g bw/d ay	No effect	No effect on ovary histopathology up to highest dose tested 225 mg/kg bw/day in F1 adults. Study acceptable as supplementary due to low dosing and major deviations from guideline OECD TG 416;		

_										" Public Hare. or	.01
										dosing was continued for 9 weeks only for both sexes in F0 (it should be continued for at least 10 weeks before the mating period), and was continued in both sexes for 20 days during mating period (it should have been 14 days only) No effect on ovary histopathology up to highest dose tested 225 mg/kg bw/day in 10 randomly selected F1 and F2 weanlings	
	40b		rat	21	Days	Oral		mg/k g bw/d ay	No effect		
	31	Ovary weight	rat	90	Days	Oral	0.78	mg/k g bw/d ay	Decrea se	Decrease at 0.78 mg/kg bw (Relative ovary weights were significantly lower in low dose and mid dose females (-13%), while the top dose at 7.27 mg/kg bw/day was not significantly reduced (-11%). The reduced weights were within the range in the available limited HCD.)	
	32		rat	90	Days	Oral	2400	ppm	Increas e	Significant increase in relative ovary weight (17%) in top dose group only at 2400 ppm observed in the presence of reduced BW (10%), BW gain (15%) and FC (9%), increased liver weight (29%) and hypertrophy and hepatocellular degeneration (NOAEL is 300 ppm corresponding to 28.3 (females) mg/kg bw/day)	
	33		mouse	90	Days	Oral	ó	ppm	No effect	No effect on ovary weight up to highest dose tested 2400 ppm	
	34a		Dog	90	Days	Oral	SOLL	mg/k g bw/d ay	No effect	No effect on ovary weight up to highest dose tested 137 mg/kg bw/day; variations in ovary weight are considered unrelated to treatment and mostly due to high (week 13) concurrent control	
	34b		Dog	12	Mont hs.	Oral	Silon is	mg/k g bw/d ay	No effect	No effect on ovary weight highest dose tested 110 mg/kg bw/day. Variations in ovary weight could be attributed to low concurrent control values and therefore not considered treatment related (increase abs weight low dose: 13%, mid dose 85%, high dose 50%; increase relative weight low dose 11%, mid dose 86%, high dose 68%)	
	37		mouse	107	Week s	Oral		ppm	No effect	No effect on ovary weight up to highest dose tested 300 ppm	
		(1 20 CON	ised)	Z					272	
			2)."							

38	
39	
40a	
40a	
40a	
40b	
40b	

mouse	80	Week s	Oral		mg/k g bw/d ay	No effect	No effect on ovary weight up to highest dose tested 221.5 mg/kg bw/day
rat	117	Week s	Oral		mg/k g bw/d ay	No effect	No effect on ovary weight up to highest dose tested 221.5 mg/kg bw/day No effect on ovary weight were observed in females up to highest dose tested 11.9 mg/kg bw/day Highest dose tested 153 mg/kg bw/day. Absolute ovary weights were non-significantly increased (+17%) and relative ovary weights were significantly increased (+38%) in F1 offspring. It should be noted
rat	35	days	Oral		mg/k g bw/d ay	No effect	Highest dose tested 153 mg/kg bw/day. Absolute ovary weights were non-significantly increased (+17%) and relative ovary weights were significantly increased (+38%) in F1 offspring. It should be noted that only five/sex/group F1 and F2 weanlings were necropsied and that pup weight development in top dose F1 weanlings was lower compared to control. In mid dose F1 weanlings, absolute and relative ovary weights increased non-significantly +17% and +25%, respectively, while pup weight development was not affected
rat	110	days	Oral		mg/k g bw/d ay	No effect	No effect on ovary weight up to highest dose tested 153 mg/kg bw/day. Increase in relative ovary weight in F1 adults (relative +16%, absolute +9.1%); however, the body weight was lower in top dose adults (-6% at termination, non-significant reduction)
rat	35	days	Oral	Reity O	mg/k g bw/d ay	No effect	No effect on ovary weight up to highest dose tested 153 mg/kg bw/day in five/sex/group randomly selected F2 weanlings
rat	19	Week s	Oral		mg/k g bw/d ay	No effect	In parent F0 (exposure 19 weeks) and F1 animals (exposure 25 weeks) statistically significant decreases in mean body weights in high dose females (225 mg/kg bw/day) led to a corresponding increase in relative ovary weights, but absolute ovary weights were not affected.
rat	250	Week s	Oral		mg/k g bw/d ay	No effect	In parent F0 (exposure 19 weeks) and F1 animals (exposure 25 weeks) statistically significant decreases in mean body weights in high dose females (225 mg/kg bw/day) led to a corresponding increase in relative ovary weights, but absolute ovary weights were not affected.

											λ	
											Thic id and	
40b			rat	21	Days	Oral		mg/k g bw/d ay	No effect	No effect on ovary weight up to highest dose tested 225 mg/kg bw/day in 10 randomly selected F1 and F2 weanlings	Nadina no	
31		Oviduct nistopath ology	rat	90	Days	Oral		mg/k g bw/d ay	No effect	No effect on oviduct histopathology up to highest dose tested 7.27 mg/kg bw/day	Negative, no effect on oviduct histopathology	
28	ł	Prostate nistopath ology (with seminal	rat	28	Days	Oral		mg/k g bw/d ay	No effect	No effect on prostate histopathology (with seminal vesicles and coagulating glands) at the highest dose of 1000 mg/kg bw/day. Epididymis, prostate + seminal vesicles with coagulating glands and heart were not weighed in the study	Negative, no consistent treatment-related effect on prostate histopathology	
34a	C	vesicles and coagulati ng	Dog	90	Days	Oral		mg/k g bw/d ay	No effect	No effect on prostate histopathology up to highest dose tested 132 mg/kg bw/day (not stated if it included seminal vesicles and coagulating glands)	and prostate weight	
34b		glands) Prostate weight	Dog	12	Mont hs	Oral		mg/k g bw/d ay	No effect	No effect on prostate histopathology up to highest dose tested 108 mg/kg bw/day (not stated if it included seminal vesicles and coagulating glands)		
37			mouse	106	Week s	Oral	, do	ppm	No effect	No effect on prostate histopathology up to highest dose tested 300 ppm		
38			mouse	80	Week s	Oral		mg/k g bw/d ay	No effect	No effect on prostate histopathology up to highest dose tested 177.7 mg/kg bw/day; histopathology did not incl. coagulating glands		
39			rat	116	Week			mg/k g bw/d ay	No effect	No effect on prostate histopathology up to highest dose tested 10.4 mg/kg bw/day; histopathology did not incl. coagulating glands (the selected dose levels in the study were too low to produce significant toxicological effects)		
40a			rat	70011	days	∨ Orai∨	sili	mg/k g bw/d ay	No effect	No effect on prostate histopathology up to highest dose tested 156 mg/kg bw/day (only examined in F1 adults, seminal vesicles and coagulating glands not included)		
		7	Cool of the cool o	isedi	SULLIN	5				274		
			S. S	ind is								

									ę C	Ment may the foliogo
40b		rat	19	Week s	Oral		mg/k g bw/d ay	No effect	No effect on prostate histopathology up to highest dose tested 211 mg/kg bw/day in F0 adults	Still oxy their love
40b		rat	25	Week s	Oral		mg/k g bw/d ay	No effect	No effect on prostate histopathology up to highest dose tested 211 mg/kg bw/day in F1 adults	Ment hay
40b		rat	21	Days	Oral		mg/k g bw/d ay	No effect	dose tested 211 mg/kg bw/day in 10 randomly selected F1 and F2 weanlings	
37		mouse	106	Week s	Oral	75	ppm	Increas e	At terminal sacrifice (wk 106), prostate weights were dose-dependently increased in males at 75, 150, and 300 ppm (relative increase +23%, 26% and 39% at 75, 150 and 300 ppm, respectively). However, the NOAEL is considered to be 300 ppm, corresponding to 40.8 mg/kg bw/day for males and the study is acceptable as supplementary due to the selected doses that were too low to reveal any adverse effect on the examined endpoints.	
38		mouse	80	Week s	Oral	Ó	mg/k g bw/d ay	No effect	No effect on prostate weight up to highest dose tested 177.7 mg/kg bw/day	
39		rat	116	Week s	Oral	Solch	mg/k g bw/d ay	No effect	No effect on prostate weight up to highest dose tested 10.4 mg/kg bw/day	
37	Seminal vesicles histopath ology	mouse	106	Week s	Oral	Jillin &	ppm	No effect	No effect on seminal vesicles histopathology up to highest dose tested 300 ppm	No effect on seminal vesicles histopathology
38		mouse	800 2011	Week s	Oral	srit of the	mg/k g bw/d ay	No effect	No effect on seminal vesicles histopathology up to highest dose tested 177.7 mg/kg bw/day	
39		(rat o	0116	Week	Oral		mg/k g bw/d ay	No effect	No effect on seminal vesicles histopathology up to highest dose tested 10.4 mg/kg bw/day	

40b		rat	19	Week s	Oral		mg/k g bw/d ay	No effect	No effect on seminal vesicles histopathology up to highest dose tested 211 mg/kg bw/day in F0 adults	Sign to ditail
40b		rat	25	Week s	Oral		mg/k g bw/d ay	No effect	No effect on seminal vesicles histopathology up to highest dose tested 211 mg/kg bw/day in F1 adults	Moly Logicing
40b		rat	21	Days	Oral		mg/k g bw/d ay	No effect	No effect on seminal vesicles histopathology up to highest dose tested 211 mg/kg bw/day in 10 randomly selected F1 and F2 weanlings	>
1	Testis histopath ology	rat	9	Mont hs	Oral	50	mg/k g bw/d ay	Change	Necrobiotic changes of seminiferous tubules. NOTE: Literature study considered not acceptable and not reliable	Indications of testicular toxicity in dogs at the highest dose
28		rat	28	Days	Oral		mg/k g bw/d ay	No effect	No effect on testis histopathology up to highest dose tested 1000 mg/kg bw/day	tested; however, these effects may be considered to be secondary to systemic toxicity;
31		rat	90	Days	Oral	Ó	mg/k g bw/d ay	No effect	No effect on testis histopathology up to 7.27 mg/kg bw/day	reduced spermatogenesis, reduced testis weight (90 days
34a		Dog	90	Days	Oral	ON CHARLES	mg/k g bw/d ay	Will	drastically reduced food intake. Non-GLP study (no formal GLP statement provided, but a quality assurance statement)	and 12 months exposure) and tubular atrophy (12 months exposure) observed at the highest dose
34b		Dog Anis do	ohis	Mont	n Orals	108	mg/k g bw/d ay	Change	Reduced spermatogenesis in 2/4 top dose males (unilateral in one dog) characterised by tubular atrophy of the seminiferous epithelium associated with formation of giant cells. Tubular atrophy was also noted in recovery animals (2/2) sacrificed week 57, while spermatogenesis was not affected after the recovery period (four weeks). Animals were fed diets containing 0; 3.4; 18.2; 132 mg/kg bw/day of test material for 19 weeks. During week 20, the highest dose level was reduced to 108 mg/kg bw/day due to	levels. No consistent treatment-related effects on testis in rats and mice.

										iic and	
									excessive reduction in food consumption and body weight gain (body weight loss) of the animals in that group. After dose reduction, top dose animals then gained more weight for the remainder of the treatment period as the other groups, including controls, while overall BW gain was reduced (-44%), Non-GLP study (no formal GLP statement provided, but a quality assurance statement)	stion to pitatic	
35		mouse	90	Days	Oral		ppm	No effect	No effect on testis histopathology, examined in control and high dose groups (5000 ppm) only		
38		mouse	80	Week s	Oral		mg/k g bw/d ay	No effect	No effect on testis histopathology up to highest dose tested 177.7 mg/kg bw/day		
39		rat	116	Week s	Oral		mg/k g bw/d ay	No effect	No effect on testis histopathology up to highest dose tested 10.4 mg/kg bw/day		
40a		rat	110	days	Oral	*	mg/k g bw/d ay	No effect	No effect on testis histopathology in F0 adult up to highest dose tested 156 mg/kg bw/day		
40a		rat	110	days	Oral	Self	mg/k g bw/d ay	No effect	No effect on testis histopathology in F1 adult up to highest dose tested 156 mg/kg bw/day		
40b		rat	19	Week	Oral	Night of	mg/k g bw/d ay	No effect	No effect on testis histopathology in F0 adult up to highest dose tested 211 mg/kg bw/day		
40b		rat	25 CHINE	Week	Oral	SUL OF THE	mg/k g bw/d ay	No effect	No effect on testis histopathology in F1 adult up to highest dose tested 211 mg/kg bw/day		
40b		rat	(21) (0) ¹⁵	Days	Oral		mg/k g bw/d ay	No effect	No effect on testis histopathology up to highest dose tested 211 mg/kg bw/day in 10 randomly selected F1 and F2 weanlings		
	7	, cc 001	ised is	3					277		

									Significant decrease compared to the control group at dose levels 50 and 100 mg/kg bw/day. NOTE: Literature study considered not acceptable and not reliable Increase in relative (+10%) and absolute (+5.3g) testis weight at top-dose only at 202 mg/kg bw/day. Changes in absolute organ weight were within a limited historical control range and no histopathological alterations were observed, while increase in relative testis weight exceeded the limited.
1	Testis weight	rat	9	Mont hs	Oral	50	mg/k g bw/d ay	Decrea se	Significant decrease compared to the control group at dose levels 50 and 100 mg/kg bw/day. NOTE: Literature study considered not acceptable and not reliable
30		rat	90	Days	Oral	202.3	mg/k g bw/d ay	Increas e	Increase in relative (+10%) and absolute (+5.3g) testis weight at top-dose only at 202 mg/kg bw/day. Changes in absolute organ weight were within a limited historical control range and no histopathological alterations were observed, while increase in relative testis weight exceeded the limited HCD. Study acceptable as supplementary due to deviations from the test guideline currently in place
31		rat	90	Days	Oral		mg/k g bw/d ay	No effect	No effect; however absolute weight significantly increased in the top dose males 7.07 mg/kg bw/day (relative increase 5% both in low dose and high dose males)
33		mouse	90	Days	Oral		ppm	No effect	No effect on testis weight up to highest dose tested 2400 ppm
34a		Dog	90	Days	Oral	132	mg/k g bw/d ay	Decrea se	Testis weights were reduced at the top dose level 132 mg/kg bw/day (abs: -47%, rel: -27%). Observed in the presence of significant systemic toxicity; decreased body weight and body weight gain associated with drastically reduced food intake. Non-GLP study (no formal GLP statement provided, but a quality assurance statement)
34b		Dog	12 CUMP	Mont hs	Oral C	TION THE STATE OF	mg/k g bw/d ay	Decrea se	Testis weights were reduced at the top dose level 108 mg/kg bw/day (abs: -15%, rel: -9%). Testis weights were still low after a four-week recovery period (abs: -42%, rel -49%: 2 animals sacrificed week 57). Animals were fed diets containing 0; 3.4; 18.2; 132 mg/kg bw/day of test material for 19 weeks. During week 20, the highest dose level was reduced to 108 mg/kg bw/day due to excessive reduction in food consumption and body weight gain (body weight loss) of the animals in that group. Non-GLP study (no formal GLP statement provided, but a quality assurance statement)
	Q	7115 00 00 00 00 00 00 00 00 00 00 00 00 00	indus industrial	S CHILL	5				278

								Main and
35	mo	use 90	Days	Oral		ppm	No effect	No effect on testis weight up to highest dose tested 5000 ppm No effect on testis weight up to highest dose tested 177.7 mg/kg bw/day No effect on testis weight were observed in males up to highest dose tested 10.4 mg/kg bw/day A slightly higher testes weight was recorded in high dose 100 mg/kg bw/day absolute in males up to highest dose tested 10.4 mg/kg bw/day
38	mo	use 80	Week s	Oral		mg/k g bw/d ay	No effect	No effect on testis weight up to highest dose tested 177.7 mg/kg bw/day
39	ra	nt 116	Week s	Oral		mg/k g bw/d ay	No effect	No effect on testis weight were observed in males up to highest dose tested 10.4 mg/kg bw/day
40a	r	nt 110	days	Oral	156	mg/k g bw/d ay	Increas e	A slightly higher testes weight was recorded in high dose F0 males (156 mg/kg bw/day; absolute increase +10.9%, relative increase +7.2%), but the weights were well within the range of available limited HCD ranges. The relative testes weights were not significantly affected
40a	r	nt 110	days	Oral		mg/k g bw/d ay	No effect	Increase in relative testis weight in high dose adult F1 males was observed (156 mg/kg bw/day; absolute +2.6%, relative +12%), but lower body weight was also recorded in this group
40a	r	at 35	days	Oral	ortil of	mg/k g bw/d ay	No effect	No effect on testis weight up to highest dose tested 156 mg/kg bw/day in five/sex/group randomly selected F1 and F2 weanlings
40b	r	nt 19	Week s	Oral	SM.	mg/k g bw/d ay	No effect	No effect on testis weight up to highest dose tested 211 mg/kg bw/day in F0 adults
40b	ra	at 25	Week	Oral	Still it	mg/k g bw/d ay	No effect	No effect on testis weight up to highest dose tested 211 mg/kg bw/day in F1 adults
40b	ra	t 21	Days	Oral		mg/k g bw/d ay	No effect	No effect on testis weight up to highest dose tested 211 mg/kg bw/day in 10 randomly selected F1 and F2 weanlings
		Cougus	S. J. J.	5				279

										ingic thand
28	Uterus histopath ology (with	rat	28	Days	Oral		mg/k g bw/d ay	No effect	No effect on uterus histopathology with cervix up to highest dose tested 1000 mg/kg bw/day	Negative, no consistent treatment-related
31	cervix)	rat	90	Days	Oral		mg/k g bw/d ay	No effect	bw/day	effects on uterus
34a		Dog	90	Days	Oral		mg/k g bw/d ay	No effect	No effect on uterus histopathology (cervix was not examined) up to highest dose tested 137 mg/kg bw/day	
34b		Dog	12	Mont hs	Oral		mg/k g bw/d ay	No effect	No effect on uterus histopathology (cervix was not examined) up to highest dose tested 110 mg/kg bw/day	
38		mouse	80	Week s	Oral		mg/k g bw/d ay	No effect	No effect on uterus histopathology up to highest dose tested 221.5 mg/kg bw/day	
39		rat	117	Week s	Oral	Ó	mg/k g bw/d ay	No effect	No effect on uterus histopathology up to highest dose tested (cervix was not examined) up to 11.9 mg/kg bw/day	
40b		rat	19	Week s	Oral	Solch	mg/k g bw/d ay	No effect	No effect on uterus histopathology up to highest dose tested 225 mg/kg bw/day in F0 adults	
40b		rat	25	Week	Oral	Jitin 6	mg/k g bw/d ay	No effect	No effect on uterus histopathology up to highest dose tested 225 mg/kg bw/day in F1 adults	
40b		rat		Days	n. 4 km	erit of "	mg/k g bw/d ay	No effect	No effect on uterus histopathology up to highest dose tested 225 mg/kg bw/day in 10 randomly selected F1 and F2 weanlings	
35	Uterus weight (with cervix)	mouse	Olytica 900	Days	Oral		ppm	No effect	No effect on uterus weight up to highest dose tested 5000 ppm	

										iblic wand
38		mouse	80	Week	Oral		mg/k g bw/d ay	No effect	No effect: Gravid uterus weights were recorded (it is not stated if it included the cervix) up to highest dose tested 300 mg/kg bw/day. Prenatal developmental toxicity study: it should be noted that the test chemical was administered from GD 6-15 only No effect: Gravid uterus weights were recorded (it is not stated if it included the cervix) at any dose levels. Supplementary study to Prenatal developmental toxicity study 41a: treatment at 0 and 300 mg/kg bw/day (GD 6-15), and with 450 mg/kg bw/day (GD	Still of Still still of the still still of the still s
41a		rat	10	Days	Oral		mg/k g bw/d ay	No effect	No effect: Gravid uterus weights were recorded (it is not stated if it included the cervix) up to highest dose tested 300 mg/kg bw/day. Prenatal developmental toxicity study: it should be noted that the test chemical was administered from GD 6-15 only	inent may
41b		rat	5	Days	Oral		mg/k g bw/d ay	No effect	10-14)	
42		rat	10	days	Oral	500	mg/k g bw/d ay	Decrea se	Gravid uterus weights were 12% lower than concurrent controls in high dose females at 500 mg/kg bw/day (it is not stated if it included the cervix). Prenatal developmental toxicity study: it should be noted that the test chemical was administered from GD 6-15 only	
43		rabbit rabbit	14	days	Oral Oral	Ó	mg/k g bw/d ay	No effect No	No effect: Gravid uterus weights were weighted (it is not stated if it included the cervix) up to highest dose tested 150 mg/kg bw/day. Prenatal developmental toxicity study; it should be noted that the test chemical was administered from GD 6-18 only	
			13	days	"Le bi	Sol.	mg/k g bw/d ay	effect	No effect: Gravid uterus weights were weighted (it is not stated if it included the cervix) up to highest dose tested 200 mg/kg bw/day. Prenatal developmental toxicity study: it should be noted that the test chemical was administered from GD 7-19 only	N:
38	Vagina histopath ology	rat	80	Week	Oral	Stion	mg/k g bw/d ay mg/k	No effect	No effect on vagina histopathology up to highest dose tested 221.5 mg/kg bw/day No effect on vagina histopathology up to highest dose	Negative, no consistent treatment-related effect on vagina
39		18			NA CILL		g bw/d ay	effect	tested at 11.9 mg/kg bw/day	
	C.	SCE CONT	id is	30,111	3				281	

40b			rat	19	Week s	Oral		mg/k g bw/d ay	No effect	No effect on vagina histopathology up to highest dose tested at 225 mg/kg bw/day in F0 adults	ment nay the strict of the str	ioie	
40b			rat	25	Week s	Oral		mg/k g bw/d ay	No effect	No effect on vagina histopathology up to highest dose tested at 225 mg/kg bw/day in F1 adults	nent nad		
40b			rat	21	Days	Oral		mg/k g bw/d ay	No effect	No effect on vagina histopathology up to highest dose tested at 225 mg/kg bw/day in 10 randomly selected F1 and F2 weanlings	<i>></i>		
29a	Sensi tive to, but not diagn ostic of, EAT S	Adrenals histopath ology	rat	28 28 28	Days	Patiles.	500 2500	mg/k g bw/d ay	Change	Cortical atrophy was noted in most top dose females (8/10*) *two females were sacrificed in moribund condition on day 3 (500 mg/kg bw/day). Study considered supportive only; for each batch of test material (Batch A 96.2% and Batch B 96.1%) only two dose levels were tested (100 and 500 mg/kg) with toxicity already at the low dose-level and mortality at the high dose-level. One female dosed with 500 mg/kg/day (Batch A) and one male and two females dosed with 500 mg/kg/day (Batch B) were sacrificed in moribund condition at experimental days 2 and 3, respectively. This indicates that a dose of 500 mg/kg/day exceeded the MTD; however, the observed effects are still considered treatment related Cortical atrophy was noted in most top dose females (9/10*) *one female was sacrificed in moribund condition on day 2 (500 mg/kg bw/day). Study considered supportive only; for each batch of test material (Batch A 96.2% and Batch B 96.1%) only two dose levels were tested (100 and 500 mg/kg) with toxicity already at the low dose-level and mortality at the high dose-level. One female dosed with 500 mg/kg/day (Batch A) and one male and two females dosed with 500 mg/kg/day (Batch A) and one male and two females dosed with 500 mg/kg/day (Batch B) were sacrificed in moribund condition at experimental days 2 and 3, respectively. This indicates that a dose of 500 mg/kg/day exceeded the MTD; however, the observed effects are still considered treatment related	Indications of treatment-related adverse effects on adrenal, based on observed effects in rats (atrophy and increased weight at 500 mg/kg/bw/day) and dogs (increased weight at 110 mg/kg bw/day). Increased adrenals weight in mouse (significant trend at 75, 150 and 300 ppm) was in absence of a dose relationship and not associated with relevant histopathological changes.	Overall evidence of adverse effects sensitive to but not diagnostic of EATS based on effects on adrenal and anomalies in rat and rabbit, evidence of decreased litter/pup weight during development in rats (both 2-generation studies) and slightly reduced birth weights in rats (development al toxicity studies), decreased number of	E, A, S

31	
31	
34a	
34a	
34b	
34b	
35	
35	
37	
38	

			1	1		1	
rat	90	Days	Oral		mg/k g bw/d ay	No effect	No effect on adrenals histopathology up to highest dose tested (7.07 mg/kg bw/day) in M.
rat	90	Days	Oral		mg/k g bw/d ay	No effect	No effect on adrenals histopathology up to highest dose tested (7.27 mg/kg bw/day) in F.
Dog	90	Days	Oral		mg/k g bw/d ay	No effect	No effect on adrenals histopathology in male dogs up to highest dose tested 132 mg/kg bw/day
Dog	90	Days	Oral		mg/k g bw/d ay	No effect	No effect on adrenals histopathology in female dogs up to highest dose tested 137 mg/kg bw/day
Dog	12	Mont hs	Oral		mg/k g bw/d ay	No effect	No effect on adrenals histopathology in male dogs up to highest dose tested 108 mg/kg bw/day
Dog	12	Mont hs	Oral	Ó	mg/k g bw/d ay	No effect	No effect on adrenals histopathology in female dogs up to highest dose tested 110 mg/kg bw/day
mouse	90	Days	Oral	ROLL	(ppm	No effect	No effect on adrenals histopathology in F (examined in control and high dose groups only).
mouse	90	Days	Oral	Jill's	ppm	No effect	No effect on adrenals histopathology in M (examined in control and high dose groups only).
mouse	106	Week	1.0	SO OF THE SERVICE SERV	ppm	No effect	No effect on adrenals histopathology up to highest dose tested (300 ppm).
mouse	OKIE ORIE	Week	Oral		mg/k g bw/d ay	No effect	No effect on adrenals histopathology up to highest dose tested (177.7 mg/kg bw/day) in M.

live births in rats (in 2-generation study at 225 mg/kg bw/day and prenatal developmenta 1 toxicity study at 450 mg/kg bw/day) and effects on numbers of embryonic or foetal deaths and post implantation loss in rats and rabbits viable foetuses in rat and rabbit.

										No effect on adrenals histopathology up to highest dose tested (221.5 mg/kg bw/day) in F. No effect on adrenals histopathology. 1-year interim sacrifice: nodular hyperplasia was observed in the adrenal cortex of females treated with 2.9 mg/kg bw/day (19/79) and 5.7 mg/kg bw/day (12/80). However, in the absence of a dose-response	
										. so this little	
20		I		00	337 1	0.1		Л	NT.		`{©
38			mouse	80	Week s	Oral		mg/k g	No effect	No effect on adrenals histopathology up to highest dose tested (221.5 mg/kg bw/day) in F.	0,
					~			bw/d		(10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	
								ay			
39			rat	117	Week	Oral		mg/k	No	No effect on adrenals histopathology. 1-year interim	
					S			g bw/d	effect	sacrifice: nodular hyperplasia was observed in the	
								ay		adrenal cortex of females treated with 2.9 mg/kg bw/day (19/79) and 5.7 mg/kg bw/day (12/80).	
								4.5		However, in the absence of a dose-response	
										relationship this was not attributed to treatment with	
39	_			116	Week	Oral		/1-	NI.	penconazole. No effect on adrenals histopathology up to highest	
39			rat	110	week	Orai		mg/k g	No effect	dose tested (10.4 mg/kg bw/day) in males.	
								bw/d	Circut	dose tested (10.4 mg/kg ow/day) in indies.	
								ay		9/30, 90, Williams 81.	
40a	ι		rat	110	days	Oral		mg/k	No	No effect on adrenals histopathology up to highest	
								g	effect	dose tested (156 mg/kg bw/day in M and 153	
								bw/d ay	. 6	mg/kg/bw/day in F).	
28	_	Adrenals	not	20	Dores	Omal	500	,	Inakaaa	desperate days of the interclass and famous a twested	
28		weight	rat	28	Days	Oral	300	mg/k g	Increas e	Increased adrenal weights in males and females treated at 100/500 mg/kg/day and above.	
		Weight						bw/d	SUL	The state of the s	
								ay	1100	or Me Sur The	
29a	ı		rat	28	Days	Oral	500	mg/k	Increas	Increase in absolute adrenal weight at 500 mg/kg	
							B	g bw/d	rise e	bw/day. Relative adrenal weights – while higher than	
							0/1/			concurrent controls - were within the range of HCD in females and in males. Study considered supportive	
						,(0	N. 19.	0,0	Stop of the state	only; for each batch of test material (Batch A 96.2%	
						0,0	10, 31	10:	N. C. W.	and Batch B 96.1%) only two dose levels were tested	
						11/2/	Niji G	Still	and with	(100 and 500 mg/kg) with toxicity already at the low	
					~), 0; \	111	10-11	Hill	dose-level and mortality at the high dose-level. One female dosed with 500 mg/kg/day (Batch A) and one	
					.6	100 C.	, 00.	CO.	io.	male and two females dosed with 500 mg/kg/day	
				~	11 6	My Stiles.	Sill It	OP	X	(Batch B) were sacrificed in moribund condition at	
				.no	aniles.	03/1/1/	Silon,	Q		experimental days 2 and 3, respectively. This indicates	
291			rat	28	Dave	Oral	500	mg/k	Increas	that a dose of 500 mg/kg/day exceeded the MTD. Increase in absolute adrenal weight at 500 mg/kg bw.	
290	,		rat	200	Days	Oral	500	nig/k g	e	Study considered supportive only; for each batch of	
			wis -	90	5	D. C.		bw/d		test material (Batch A 96.2% and Batch B 96.1%) only	
			1, 10	MS	1114,	90		ay		two dose levels were tested (100 and 500 mg/kg) with	
			653	0) (0)	11.15	?				toxicity already at the low dose-level and mortality at	
		J	CO 1	1 40	(1)					the high dose-level. One female dosed with 500	ļ

	-
31	
31	
32	
33	
34a	
34a	
34b	
34b	

							mg/kg/day (Batch A) and one male and two females dosed with 500 mg/kg/day (Batch B) were sacrificed in moribund condition at experimental days 2 and 3, respectively. This indicates that a dose of 500 mg/kg/day exceeded the MTD. No effect up to highest dose tested (7.07 mg/kg bw/day) in F.
rat	90	Days	Oral		mg/k g bw/d ay	No effect	No effect up to highest dose tested (7.07 mg/kg bw/day) in F
rat	90	Days	Oral		mg/k g bw/d ay	No effect	No effect up to highest dose tested (7.27 mg/kg bw/day) in M.
rat	90	Days	Oral	2400	ppm	Increas e	Significant increase in relative adrenals weight (15%) at top dose only (absence of a dose relationship).
mouse	90	Days	Oral		ppm	No effect	No effect on adrenals weight up to highest dose tested (2400 ppm).
Dog	90	Days	Oral	,,,0	mg/k g bw/d ay	No effect	Slight increase in relative adrenals weight at 132 mg/kg bw/day (top dose) due to low BW in top dose males at termination
Dog	90	Days	Oral	©137	mg/k g bw/d ay	Increas	Increase in relative adrenals weight at 137 mg/kg bw/day (35%), but not absolute weight, due to low BW in top dose females at termination (-25%)
Dog	12	Mont hs	Oral	Stion &	mg/k g bw/d ay	No effect	No effect on adrenals weight up to highest dose tested 108 mg/kg bw/day; however, slight increase in top dose males mainly was noted due to lower body weights
Dog	12 ¹	Mont hs	Oral	110	mg/k g bw/d ay	Increas e	Absolute and relative adrenal weights were increased (abs:34%, rel: 54%) in top dose females (in absence of histopathological changes) and in presence of lower BW
This is	Sedie	Suit, Suit,	5800				285

										6,	
										iplicity sire.	5
35		mouse	90	Days	Oral	3000	ppm	Increas e	Adrenal weights adjusted for bodyweight were higher than control in females receiving 3000 ppm.	Silor Solitain	KOTE
35		mouse	90	Days	Oral		ppm	No effect	No effect on adrenal weight up to highest dose tested (5000 ppm).	Ricia May	
37		mouse	106	Week s	Oral	150	ppm	Increas e	Adrenal weights adjusted for bodyweight were higher than control in females receiving 3000 ppm. No effect on adrenal weight up to highest dose tested (5000 ppm). A statistically significant trend was noted for increased absolute and adrenal weights at the terminal sacrifice in males, this was in absence of a dose relationship, not associated with relevant histopathological changes and the values were within the range of available HCD (relative increases; 75 ppm +10%, 150 ppm +13%, 300 ppm +3%).	<i>y</i>	
37		mouse	107	Week s	Oral		ppm	No effect	Variations in adrenal weights achieving statistical significance (absolute changes only at 75 and 150 ppm) in females (decrease at terminal sacrifice) were in absence of a dose relationship. Relative change: 5 ppm -38%, 75 ppm -28%, 150 ppm -35%, 300 ppm -36%.		
38		mouse	80	Week s	Oral	.0	mg/k g bw/d ay	No effect	Adrenal weight was unaffected by treatment up to highest dose tested (177.7 mg/kg bw/day) in M.		
38		mouse	80	Week s	Oral	Seigh,	mg/k g bw/d ay	No effect	Adrenal weight was unaffected by treatment up to highest dose tested (221.5 mg/kg bw/day) in F.		
39		rat	117	Week	Oral	Figure 1	mg/k g bw/d ay	No effect	No effect on adrenals weight were observed up to highest dose tested (11.9 mg/kg bw/day) in females.		
39		rat	116	Week	Oral	erit of the	mg/k g bw/d ay	No effect	No effect on adrenals weight were observed up to highest dose tested (10.4 mg/kg bw/day) in males.		
28	Brain weight	riat c	28	Days	Oral		mg/k g bw/d ay	No effect	No effect on brain weight up to highest dose tested 1000 mg/kg bw/day	Negative, no consistent treatment-related	

									No effect on brain weight up to highest dose tested effects on brain	
29a		rat	28	Days	Oral		mg/k g bw/d ay	No effect	No effect on brain weight up to highest dose tested 500 mg/kg bw/day No effect on brain weight up to highest dose tested 500 mg/kg bw/day Increase in adjusted brain weight in males (4.7%)	e oie
29b		rat	28	Days	Oral		mg/k g bw/d ay	No effect	No effect on brain weight up to highest dose tested 500 mg/kg bw/day	
35		mouse	90	Days	Oral	3000	ppm	Increas e	diving the solitor and strike	
38		mouse	80	Week s	Oral		mg/k g bw/d ay	No effect	No effect on brain weight up to highest dose tested 177.7 mg/kg bw/day (males)	
38		mouse	80	Week s	Oral		mg/k g bw/d ay	No effect	No effect on brain weight up to highest dose tested 221.5 mg/kg bw/day (females)	
39		rat	116	Week s	Oral	Ó	mg/k g bw/d ay	No effect	No effect on brain weight were observed in males up to highest dose tested 10.4 mg/kg bw/day	
39		rat	117	Week s	Oral	Solg !	mg/k g bw/d ay	No effect	No effect on brain weight were observed in females up to highest dose tested 11.9 mg/kg bw/day	
40a		rat	110	days	Oral		mg/k g bw/d ay	No effect	No effect on brain weight up to highest dose tested 153 mg/kg bw/day in F1 adults (F)	
40a		rat	110	days	Oral	SOLO!	mg/k g bw/d ay	No effect	No effect on brain weight up to highest dose tested 156 mg/kg bw/day in F1 adults (M)	
1	Fertility (mammal s)	Trat to	dries	Mont hs	Otal	50	mg/k g bw/d ay	Decrea se	Leydig cells were significantly decreased: NOTE: literature study considered not reliable Negative, no consistent treatment-related effects on fertility	

									ر ح	They way the to the state of th
1		rat	9	Mont hs	Oral	50	mg/k g bw/d ay	Change	Ultrastructural investigation showed Sertoli: NOTE: literature study considered not reliable	Still of Still is the
40a		rat	110	days	Oral		mg/k g bw/d ay	No effect	No effect on fertility in F0 adults up to highest dose tested 153 mg/kg bw/day	Ment hay
40a		rat	110	days	Oral		mg/k g bw/d ay	No effect	No effect on fertility in F1 adults up to highest dose tested 153 mg/kg bw/day	2,
40b		rat	19	Week s	Oral		mg/k g bw/d ay	No effect	No effect on fertility in F0 adults up to highest dose tested 225 mg/kg bw/day	
40b		rat	25	Week s	Oral		mg/k g bw/d ay	No effect	No effect on fertility in F1 adults up to highest dose tested 225 mg/kg bw/day	
43	Foetal developm ent	rabbit	14	days	Oral	Sold Constitution of the C	mg/k g bw/d ay	No effect	No effect on foetal development up to highest dose tested 150 mg/kg bw/day, except foetal visceral findings were observed; three cases of bilateral microphthalmia, two in combination of internal hydrocephalus at the top dose (2/125 foetus with internal hydrocephalus at 75 ppm). Developmental NOAEL is based on this effect. Test chemical only administered from GD 6-18 only (prenatal developmental toxicity study)	Negative, no effect on foetal development
l0a	Gestation length	rat	110	days	Oral	153	mg/k g bw/d ay	Increas	Gestation length was slightly, but significantly increased in top dose F0 females (Control: 21.1 days, 153 mg/kg bw/day: 21.8 days)	Negative (no effect was observed in study 40b, although the
l0a		rat	1102 CUIT	days	Oral	153	mg/k g bw/d ay	Increas e	The mean duration of pregnancy appeared to be slightly increased in high dose F1 females and exceeds the available limited HCD (control: 21.4 days, 153 mg/kg bw/day: 22.2 days) but variation of gestation length in individual animals did not exceed the concurrent control range in any treated group	dose level was higher than in study 40a)
	C	COST.	ignie in		Oral				288	

								Wile id and
	rat	19	Week s	Oral		mg/k g bw/d ay	No effect	No effect, gestation length was similar to controls in all treated groups (F0 adults), highest dose 225 mg/kg bw/day No effect, gestation length was similar to controls in all treated groups (F1 adults), highest dose 225 mg/kg bw/day
•	rat	25	Week s	Oral		mg/k g bw/d ay	No effect	No effect, gestation length was similar to controls in all treated groups (F1 adults), highest dose 225 mg/kg bw/day
Litter size	rat	110	days	Oral		mg/k g bw/d ay	No effect	while initial litter sizes were slightly smaller than consistent effect on litter sizes in all treated groups are well within the range of limited HCD
	rat	19	Week s	Oral		mg/k g bw/d ay	No effect	No effect in litter size up to highest dose tested 225 mg/kg bw/day in F0 adults: Litter size (all pups and live-born pups) was comparable to controls
	rat	25	Week s	Oral		mg/k g bw/d ay	No effect	No effect in litter size up to highest dose tested 225 mg/kg bw/day in F1 adults: Litter size (all pups and live-born pups) was comparable to controls
	rat	10	Days	Oral	, vo	mg/k g bw/d ay	No effect	No effect in litter size up to highest dose tested 300 mg/kg bw/day. Penconazole technical were given GD 6-15 only
Litter/pu p weight	rat	35	days	Oral	©153 \	mg/k g bw/d ay	Decrea se	Offspring F1 (females): Pup weight development was significantly reduced in top dose pups day 4-21 (- 22.6%) Evidence of decreased litter/pup weight during
	rat	35	days	70. /	(a.	mg/k g bw/d ay	Decrea se	Offspring F1 (males): Pup weight development was reduced non-significantly in top dose pups day 4-21 (-15.9%) development in rats (both 2-generation studies) and slightly reduced
	rat	30° (Days	Oral	211	mg/k g bw/d ay	Decrea se	Pup body weight gain during lactation was reduced (statistically significant at day 21 pp) for both sexes in both F1 and F2 generations for the high dose group (Day 0-21 pp; F1 -8%, F2 -9%). Pup body weights at birth were similar to control for all treatment groups
7	cool	ig its	SUILL	S				289
	Litter/pu p weight	Litter size rat rat rat rat rat rat rat rat	rat 25 Litter size rat 110 rat 19 rat 25 rat 10 Litter/pu p weight rat 35	rat 25 Week s Litter rat 110 days rat 19 Week s rat 25 Week s rat 10 Days Litter/pu p weight rat 35 days	rat 25 Week Oral Litter rat 110 days Oral rat 19 Week Oral rat 25 Week Oral rat 25 Week Oral rat 10 Days Oral Litter/pu p weight rat 35 days Oral	Tat 25 Week Oral I Litter size rat 110 days Oral rat 19 Week Oral rat 25 Week Oral rat 25 Week Oral s Oral rat 10 Days Oral Litter/pu p weight rat 35 days Oral 153 rat 35 days Oral 156	rat 25 Week Oral mg/k g bw/d ay Litter size rat 110 days Oral mg/k g bw/d ay rat 19 Week Oral mg/k g bw/d ay rat 25 Week Oral mg/k g bw/d ay rat 10 Days Oral mg/k g bw/d ay Litter/pu p weight rat 35 days Oral 153 mg/k g bw/d ay rat 35 days Oral 156 mg/k g	rat 25 Week Oral mg/k g bw/d ay rat 110 days Oral mg/k g bw/d ay rat 19 Week Oral mg/k g bw/d ay rat 25 Week Oral mg/k g bw/d ay rat 25 Week Oral mg/k g bw/d ay rat 25 Week Oral mg/k g bw/d ay rat 10 Days Oral mg/k g bw/d ay Litter/pu p weight rat 35 days Oral 153 mg/k p becrea se bw/d ay rat 35 days Oral 156 mg/k Decrea se

										6
									. <	iplicity sug.
41a		rat	10	Days	Oral		mg/k g bw/d ay	No effect	No effect on litter/pup weight up to highest dose tested 300 mg/kg bw/day. Test chemical administered from GD 6-15 only	orgin explication
·1b		rat	5	Days	Oral	300	mg/k g bw/d ay	Decrea se	Foetal body weight was slightly, but significantly reduced in both treatment groups (300 mg/kg bw/day: -4.5%, 450 mg/kg bw/day: -5.8%). Treatment at 0 and 300 mg/kg bw/day (GD 6-15), and with 450 mg/kg bw/day (GD 10-14)	Meurinaline of
12		rat	10	days	Oral	500	mg/k g bw/d ay	Decrea se	Foetal body weights were slightly reduced at 500 mg/kg bw/day (males -5.9%, females -3.1%). Exposure from GD 6-15 only	
14		rabbit	13	days	Oral		mg/k g bw/d ay	No effect	No effect on litter/pup weight up to highest dose tested 200 mg/kg bw/day. Test chemical administered from GD 7-19 only	
0a	Number of implantat ions, corpora	rat	110	days	Oral	150	mg/k g bw/d ay	No effect	No effect on number of implantations up to highest dose tested 153 mg/kg bw/day in F0 adults. Corpora lutea was not recorded	Negative, no effect on number of implantations, corpora lutea
.0a	lutea	rat	110	days	Oral	153	mg/k g bw/d ay	Decrea se	The number of implantation sites was slightly, but significantly lower in F1 high dose females (mean implantation sites per dam: control 15.9 and high dose 15.1), values of all treated groups were well within the range of available limited HCD. Corpora lutea was not recorded	
Юь		rat	19	Week s	Oral	Jill &	mg/k g bw/d ay	No effect	No effect on number of implantations up to highest dose tested 225 mg/kg bw/day in F0 adults. Corpora lutea was not recorded	
-0b		rat	25	Week s	Oral	Stion's	mg/k g bw/d ay	No effect	No effect on number of implantations up to highest dose tested 225 mg/kg bw/day in F1 adults. Corpora lutea was not recorded	
11a		rat) 10 j	Days	Oral	2)	mg/k g bw/d ay	No effect	No effect on number of implantations up to highest dose tested 300 mg/kg bw/day. Test chemical administered from GD 6-15 only	
	6	Screen A	iging in	s of it,					290	
	(This to	ind us	201					290	

										ic and
41b		rat	5	Days	Oral		mg/k g bw/d ay	No effect	No effect on number of implantations up to highest dose tested 450 mg/kg bw/day. Treatment at 0 and 300 mg/kg bw/day (GD 6-15), and with 450 mg/kg bw/day (GD 10-14)	Ment may the following the strict of the str
42		rat	10	days	Oral		mg/k g bw/d ay	No effect	No effect on number of implantations up to highest dose tested 500 mg/kg bw/day. Test chemical administered from GD 6-15 only	arient man
43		rabbit	14	days	Oral		mg/k g bw/d ay	No effect	No effect on number of implantations up to highest dose tested 150 mg/kg bw/day. Test chemical administered from GD 6-18 only	>
44		rabbit	13	days	Oral		mg/k g bw/d ay	No effect	No effect on number of implantations up to highest dose tested 200 mg/kg bw/day. Test chemical administered from GD 7-19 only	
40a	Number of live births	rat	35	days	Oral		mg/k g bw/d ay	No effect	No effect in F1 offspring up to highest dose tested 156 mg/kg bw/day, but for a number of litters, it was unclear whether the pups were born alive (e.g. died on lactation day 0), the % of (confirmed) liveborn pups were lower at the mid (F1, 43 pups uncertain) and high dose group (F1, 66 pups uncertain)	Evidence of decreased number of live births in rats (in 2- generation study at 225 mg/kg
40a		rat	35	days	Oral	oeity of	mg/k g bw/d ay	No effect	No effect in F2 offspring, but for a number of litters, it was unclear whether the pups were born alive (e.g. died on lactation day 0), the % of (confirmed) liveborn pups were lower at the high dose group (F2, 44 pups uncertain)	bw/day and prenatal developmental toxicity study at 450 mg/kg
40b		rat	25	Week s	Oral (225	mg/k g bw/d ay	Decrea se	In both generations, the mean number of dead pups at birth/pups that died until day 4 was slightly but not statistically higher at 225 mg/kg bw/day when compared with control. Mean number of stillborn pups was higher in high dose group in both generations (F1 control, 1 vs 11 stillborn in high dose; F2 control, 11 vs 24 stillborn in high dose)	bw/day) and evidence of treatment-related effects on numbers of embryonic or foetal deaths and
41b		rat	SURTING OF	Days	Oral	450	mg/k g bw/d ay	Decrea se	The number of dead foetuses was increased at 450 mg/kg bw/day (control group 1 dead foetus, 450 mg/kg bw/day 5 dead foetuses). Treatment at 0 and 300 mg/kg bw/day (GD 6-15), and with 450 mg/kg bw/day (GD 10-14)	viable foetuses in rat and rabbit
	(rat	iditis isedu	SULL					291	

										Plic A sug
43		rabbit	14	days	Oral		mg/k g bw/d ay	No effect	No effect on number of live births up to highest dose tested 150 mg/kg bw/day. Test chemical administered from GD 6-18 only	ment may the following the strict of the str
41a	Numbers of embryoni c or	rat	10	Days	Oral		mg/k g bw/d ay	No effect	No effect up to highest dose tested 300 mg/kg bw/day. Test chemical administered from GD 6-15 only	rent may
41b	foetal deaths and viable foetuses	rat	5	Days	Oral	450	mg/k g bw/d ay	Change	The number of dead foetuses was increased at 450 mg/kg bw/day (control group 1 dead foetus, 450 mg/kg bw/day 5 dead foetuses) while live births were comparable to respective control group. Treatment at 0 and 300 mg/kg bw/day (GD 6-15), and with 450 mg/kg bw/day (GD 10-14)	
42		rat	10	days	Oral	500	mg/k g bw/d ay	Change	A slightly lower number of life foetuses per dam (-16%) were reported at 500 mg/kg bw/day (below limited available HCD). Exposure from GD 6-15 only	
44		rabbit	13	days	Oral	200	mg/k g bw/d ay	Change	Live foetuses/litters were reduced compared to control (live foetuses/dam control: 6.9, live foetuses/dam high dose: 4.8). The numbers were within the range of HCD but exceeded the mean +/- SD and may be related to treatment. In addition, two dead foetuses were recorded in high dose females only. Test chemical administered from GD 7-19 only	
30	Pituitary histopath ology	rat	90	Days	Oral	Solicy A	mg/k g bw/d ay	No effect	No effect on pituitary histopathology up to top-dose 202.3 mg/kg bw/day in M.	Negative, no consistent treatment-related effects on
30		rat	90	Days	Oral	FILLING	mg/k g bw/d ay	No effect	No effect on pituitary histopathology up to top-dose 206.6 mg/kg bw/day in F.	pituitary. Observed effects on histopathology in rat were in absence of a dose
31		rat (Nis to	90 et en	Days	Oral	0.77	mg/k g bw/d ay	Change	Slightly increased incidence of developmental cysts in the adenohypophysis in males in all treated groups; however, with no dose-relationship (males). Control animals (0/20 animals), low dose (2/20 animals), mid dose (3/20 animals) and top dose (2/20 animals). The incidences were within the range of the available limited HCD.	relationship and within the HCD range, and the decrease in weight was transient.
	2	rat	igne,						292	

34a	
34a	
34b	
34b	
37	
37	
38	
38	
39	
39	

							is and	
Dog	90	Days	Oral		mg/k g bw/d ay	No effect	No effect on pituitary histopathology up to highest dose tested 132 mg/kg bw/day (M) in the presence of systemic toxicity (> MDT) No effect on pituitary histopathology up to highest dose tested 137 mg/kg bw/day (F) in the presence of systemic toxicity (> MDT) No effect on pituitary histopathology up to highest	י
Dog	90	Days	Oral		mg/k g bw/d ay	No effect	No effect on pituitary histopathology up to highest dose tested 137 mg/kg bw/day (F) in the presence of systemic toxicity (> MDT)	
Dog	12	Mont hs	Oral		mg/k g bw/d ay	No effect	No effect on pituitary histopathology up to highest dose tested 108 mg/kg bw/day (M)	
Dog	12	Mont hs	Oral		mg/k g bw/d ay	No effect	No effect on pituitary histopathology up to highest dose tested 110 mg/kg bw/day (M)	
mouse	106	Week s	Oral		ppm	No effect	nay this and long to	
mouse	107	Week s	Oral	Ó	ppm	No effect	No effect on pituitary histopathology up to highest dose tested (300 ppm) in F.	
mouse	80	Week s	Oral	Solita	mg/k g bw/d ay	No effect	No effect on pituitary histopathology was observed up to highest dose tested (177.7 mg/kg bw/day) in M.	
mouse	80	Week	Oral	Jilin	mg/k g bw/d ay	No effect	No effect on pituitary histopathology was observed up to highest dose tested (221.5 mg/kg bw/day) in F.	
rat	116	Silil	Oral	SUL OF THE	mg/k g bw/d ay	No effect	No effect on pituitary histopathology was observed up to highest dose tested (10.4 mg/kg bw/day) in M.	
Criat 10	Onis Onis	Week	Ofal		mg/k g bw/d ay	No effect	No effect on pituitary histopathology was observed up to highest dose tested (11.9 mg/kg bw/day) in F.	

										iic and
40a		rat	110	days	Oral		mg/k	No effect	No effect on pituitary histopathology up to highest dose tested (156 mg/kg bw/day in M and 153	ment nay the foote
40b		rat	19	Week	Oral		bw/d ay mg/k	No	mg/kg/bw/day in F). No effect on pituitary histopathology was observed up	igo to the
40b		wat.	25	S Week	Oral		g bw/d ay	effect	to highest dose tested (225 mg/kg bw/day) in F0. No effect on pituitary histopathology was observed up	Mont
400		rat	23	S	Orai		mg/k g bw/d ay	effect	to highest dose tested (225 mg/kg bw/day) in F1.	
40b		rat	21	Days	Oral		mg/k g bw/d ay	No effect	No effect on pituitary histopathology was observed up to highest dose tested (221 mg/kg bw/day) in offspring (F1+F2).	
37	Pituitary weight	mouse	107	Week s	Oral		ppm	No effect	No effect on pituitary weight was observed up to highest dose tested (300 ppm) in F.	
37		mouse	106	Week s	Oral	0	ppm	No effect	No effect on pituitary weight was observed up to highest dose tested (300 ppm) in M.	
39		rat	116	Week s	Oral	10,4	mg/k g bw/d ay	Decrea	Pituitary weights were decreased in high dose males (treated with 10.4 mg/kg bw/day) at the 1-year interim sacrifice (-29%), but not after the 2-year or terminal sacrifice.	
39		rat	117	Week	Oral	, Jilling	mg/k g bw/d ay	No effect	No effect on pituitary weight was observed up to highest dose tested (11.9 mg/kg bw/day) in F.	
40a	Post implantat ion loss	rat	1102	days	Oral	ent of the	mg/k g bw/d ay	No effect	No effect on post implantation loss up to highest dose tested 153 mg/kg bw/day in F0 adults	Positive, evidence of post implantation loss in rats and rabbits
40a		Trial 10	OP10	days	Oral		mg/k g bw/d ay	No effect	No effect on prenatal loss: pups delivered vs implantation sites (F1 adults)	

									. •	Jolic Hand
40b		rat	25	Week s	Oral	225	mg/k g bw/d ay	Increas e	A slightly higher post-implantation loss was seen in F1 dams (control F1 dams 10.2% loss, high dose F1 dams: 16.7% loss) while litter size (all pups and liveborn pups) was comparable to controls in F1 dams (F2 pups)	Stick that the tople of the stick of the stick of the state of the sta
41a		rat	10	Days	Oral	300	mg/k g bw/d ay	Increas e	Slightly higher post-implantation loss was seen at ≥300 mg/kg bw/day in all studies (preliminary, main and supplementary study), due to an increase in early resorptions. Post-implantation loss exceeded limited HCD in preliminary study only	inent no
41b		rat	5	Days	Oral	300	mg/k g bw/d ay	Increas e	Slightly higher post-implantation loss was seen at ≥300 mg/kg bw/day due to an increase in early resorptions (control 5.4%, mid dose 12.5%, top dose 10.4%)	
42		rat	10	days	Oral	500	mg/k g bw/d ay	Increas e	Increase in post-implantation loss was seen at 500 mg/kg bw/day due to increases in early and late resorptions (control dams; 2.2% vs high dose dams; 18.9%)	
43		rabbit	14	days	Oral		mg/k g bw/d ay	No effect	No effect on post-implantation loss up to highest dose tested 150 mg/kg bw/day	
44		rabbit	13	days	Oral	200	mg/k g bw/d ay	Increas e	Increased post-implantation loss in high dose females: control dams 9.2% and high dose dams 21.4%; however, within the range of available HCD	
42	Pre- implantat ion loss	rat	10	days	Oral	Say	mg/k g bw/d ay	on's oil	No effect on pre-implantation loss up to highest dose tested 500 mg/kg bw/day	Negative, no effect on pre- implantation loss
43		rabbit	14	days	Oral	Stion !	mg/k g bw/d ay	No effect	No effect on pre-implantation loss up to highest dose tested 150 mg/kg bw/day	
44		rabbit	90011	days	Oral		mg/k g bw/d ay	No effect	No effect on pre-implantation loss up to highest dose tested 200 mg/kg bw/day	
	Q	ccess in	ind is	SUILL	Oralo I				295	

										or sing on a
			ı	,	Ī	T	ı	1	4	in out in ion is
41a	Presence of	rat	10	Days	Oral	300	mg/k g	Increas e	The overall number of skeletal anomalies was increased at 300 mg/kg bw/day (main study only) and	Positive, presence of anomalies in rat
	anomalie						bw/d		450 mg/kg bw/day (supplementary study).	of anomalies in rat and rabbit
41b	s (external,	rat	5	Days	Oral	450	ay mg/k	Increas	The overall number of skeletal anomalies was	to los
110	visceral, skeletal	Tut		Days	Oran	150	g	e	increased at 450 mg/kg bw/day (supplementary study).	SIC, THE
	skeretar						bw/d ay		Stor Se Astruck	Mel!
42		rat	10	days	Oral	500	mg/k	Increas	Incidences of skeletal anomalies were increased and in	27.
							g bw/d	e	runt foetuses were seen at 500 mg/kg bw/day	
							ay		dishi toll to of the title	
43		rabbit	14	days	Oral	150	mg/k	Increas e	Increase in internal hydrocephalus and bilateral microphthalmia (within range, but exceeded mean+-	
							g bw/d		SD) at the top dose (150 ppm)	
4.4		11.	12	1	0 1	200	ay	,	10 110, 110, 110, 00 VI	
44		rabbit	13	days	Oral	200	mg/k g	Increas e	Increase in skeletal variations; The % of foetuses with hyoid body and/or arches unossified and reduced	
							bw/d	29/2	ossification of the skull exceeded the range of HCD at the top dose level (200 mg/kg bw/day) while the litter	
							ay	SI CL	incidences of both findings were well within the range	
40a	Pup	rat	35	days	Oral		/mg/k	No	of HCD No effect on pup development up to highest dose	Negative, no
	developm					Ŏ	g	effect	tested 156 mg/kg bw/day (F1 offspring, M)	consistent
	ent					City	bw/d ay	11/2 16		treatment-related effects on pup
40a		rat	35	days	Oral	B. M.	mg/k	No	No effect on pup development up to highest dose	development
					"Hell	19/1/01	g bw/d	effect	tested 153 mg/kg bw/day (F1 offspring, F)	
						, ille	c ay	3) : (0)		
40a		rat	35	days	Oral		mg/k g	No effect	No effect on pup development up to highest dose tested 153 mg/kg bw/day (F2 offspring)	
			c'	11.5	Moriles.	Sijon i	bw/d	Q		
40a	Pup	rat	35	days	Oral	201	ay mg/k	No	No effect up to highest dose tested 156 mg/kg bw/day.	Negative, no
τoa	survival	7at		uays	76	Silv	g	effect	Survival during lactation (day 1-4 viability and day 4-	consistent
	index	Wis -	900	5	il, Chil		bw/d ay		21 lactation index) was higher in mid dose (F1 pups) and high dose pups (F1+F2) vs controls	treatment-related effects
		Cooling Cool	Wis	itis.	5	l	I .,	1	5 11 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	· I
		Cos N	11001	S. F.L.						
	7	2 COL	50.0	2					296	
		Co	900							
		Ò	11,							

										iplicity and
40b		rat	21	Days	Oral		mg/k g bw/d	No effect	No effect up to highest dose tested 225 mg/kg bw/day in F1 and F2 offsprings	Negative, no consistent treatment-related
40a	Reproduc tion	rat	110	days	Oral		mg/k g bw/d ay	No effect	No effect up to highest dose tested 153 mg/kg bw/day in F0 adults (F)	Negative, no consistent treatment-related effects
40a		rat	110	days	Oral		mg/k g bw/d ay	No effect	No effect up to highest dose tested 156 mg/kg bw/day in F0 adults (M)	
40a		rat	110	days	Oral		mg/k g bw/d ay	No effect	No effect up to highest dose tested 153 mg/kg bw/day in F1 adults (F)	
40a		rat	110	days	Oral		mg/k g bw/d ay	No effect	No effect up to highest dose tested 156 mg/kg bw/day in F1 adults (M)	
l0a	Sex ratio	rat	35	days	Oral	Ó	mg/k g bw/d ay	No effect	No effect on sex ratio in F1 offspring up to highest dose tested 156 mg/kg bw/day	Negative, no consistent treatment-related effects
10b		rat	21	Days	Oral	Solicy	mg/k g bw/d ay	No effect	No effect on sex ratio in F1+F2 offspring up to highest dose tested 225 mg/kg bw/day	
11a		rat	10	Days	Oral	Jillin &	mg/k g bw/d ay	No effect	No effect on sex ratio up to highest dose tested 300 mg/kg bw/day	
41b		rat	5 e	Days	Oral	SULOI	mg/k g bw/d ay	No effect	No effect on sex ratio up to highest dose tested 450 mg/kg bw/day	
42		Trial io	010	days	Ofal		mg/k g bw/d ay	No effect	No effect on sex ratio up to highest dose tested 500 mg/kg bw/day	

										No effect on sex ratio up to highest dose tested 150 mg/kg bw/day No effect on sex ratio up to highest dose tested 200 mg/kg bw/day No effect up to highest dose tested 153 mg/kg bw/day, F0 adults (F) No effect up to highest dose tested 156 mg/kg bw/day,	ingic its and	<u>.</u>	
43			rabbit	14	days	Oral		mg/k g bw/d ay	No effect	No effect on sex ratio up to highest dose tested 150 mg/kg bw/day	Sciol of Solitain	Oic	
44			rabbit	13	days	Oral		mg/k g bw/d ay	No effect	No effect on sex ratio up to highest dose tested 200 mg/kg bw/day	riciai may		
40a		Time to mating	rat	110	days	Oral		mg/k g bw/d ay	No effect	No effect up to highest dose tested 153 mg/kg bw/day, F0 adults (F)	Negative, no consistent treatment-related effects		
40a			rat	110	days	Oral		mg/k g bw/d ay	effect	Aide This The admis (M)			
40a			rat	110	days	Oral		mg/k g bw/d ay	No effect	No effect up to highest dose tested 153 mg/kg bw/day, F1 adults			
40b			rat	19	Week s	Oral	eith of	mg/k g bw/d ay	No effect	No effect up to highest dose tested 225 mg/kg bw/day, F0 adults: The % of pairings resulting in positive evidence of mating was slightly reduced in both generations in high dose females vs. controls. However, for 2-3 pairings without evidence of mating in the high dose groups, dams were pregnant after all			
40b			rat	25	Week s	Oral	Ships of	mg/k g bw/d ay	No effect	No effect up to highest dose tested 225 mg/kg bw/day, F1 adults: The % of pairings resulting in positive evidence of mating was slightly reduced in both generations in high dose females vs. controls. However, for 2-3 pairings without evidence of mating in the high dose groups, dams were pregnant after all			
28	Targe t organ toxici	Kidney weight	rat	28 CUITIE	Days	Oral	500	mg/k g bw/d ay	Increas e	Increase in kidney weight at 500/1000 mg/kg bw. The relative kidney weights at 1000 mg/kg bw/day exceeded the range of the limited HCD for both sexes.	Nephrotoxicity (rat and dog). Kidney weight (abs/rel) was	Overall evidence of target organ systemic	Over all evide nce
29a	ty		rat d	128°	Days	Oral	500	mg/k g bw/d ay	Increas e	Increase in kidney weight (abs + rel) at 500 mg/kg bw/day. Study considered supportive only; for each batch of test material (Batch A 96.2% and Batch B 96.1%) only two dose levels were tested (100 and 500 mg/kg) with toxicity already at the low dose-level and	increased.	toxicity: Kidney and liver are considered target organs.	of syste mic toxic ity

									<u>, Q</u>
									mortality at the high dose-level. One female dosed
									with 500 mg/kg/day (Batch A) and one male and two females dosed with 500 mg/kg/day (Batch B) were
									sacrificed in moribund condition at experimental days
									2 and 3, respectively. This indicates that a dose of 500
									mg/kg/day exceeded the MTD.
29b		rat	28	Days	Oral	500	mg/k	Increas	Increase in kidney weight (abs + rel) at 500 mg/kg bw.
							g	e	Study considered supportive only; for each batch of
							bw/d		test material (Batch A 96.2% and Batch B 96.1%) only two dose levels were tested (100 and 500 mg/kg) with
							ay		toxicity already at the low dose-level and mortality at
									the high dose-level. One female dosed with 500
									mg/kg/day (Batch A) and one male and two females
									dosed with 500 mg/kg/day (Batch B) were sacrificed
									in moribund condition at experimental days 2 and 3, respectively. This indicates that a dose of 500
									mg/kg/day exceeded the MTD.
30		rat	90	Days	Oral	208.6	mg/k	Increas	Increase in relative kidney weight (17%) at 208.6
				-			g	e	mg/kg bw/day, the increase co-incided with a lower
							bw/d	7.12	body weight in that group.
							ay	200.	(10, 17), 31, 50, 14, 2
31		rat	90	Days	Oral	0.78	mg/k	Decrea	Relative (but not absolute) kidney weights were
							g bw/d	se	slightly lower in all treated groups in absence of a dose-relationship (weights were within the range of
						ķ.	ay	7, 40,	available limited HCD).
32		rat	90	Days	Oral	2400	ppm	Increas	Significant increase in relative kidney weight (17%) at
32		Tut	70	Days	Oran	2,700	Shin "	e	top dose only.
					.0	50, 1	10,	12.70.	top dose only.
					OFF	Dy. "		LI WII	
33		mouse	90	Days	Oral	2400	ppm	Decrea	Reduction in absolute kidney weight (left kidney only)
					10.	1/11	NS X	se	at 2400 ppm only.
				100	90,	(-0;	COLL	,01	
34a		Dog	90 _<	Days	Oral	132	mg/k	Increas	Significant increase in relative kidney weight (60%) in
3-44		Dog	20	Duy	2/11/11	0132	g	e	top dose males only (absolute increase 16%).
			JII	(0) >	6, 70,	1,	bw/d		Observed in the presence of significant systemic
		20	11:2	"Will	76,4	3,	ay		toxicity; decreased body weight and body weight gain
34a		Dog	90	Days	Oral	137	mg/k	Ingrees	associated with drastically reduced food intake. Absolute (18%) and relative (55%) kidney weights
34a		Apog XO	×90 (Days	Giai	137	mg/k g	Increas e	were increased in top dose females. Observed in the
		S.	Mr.	10,1	5		bw/d		presence of significant systemic toxicity; decreased
		CO 11	120	S. H.	•		ay		
	l l	\sim							

. 0	iplicity sure.	5
dosed	100, co, xoil	Spleen and
and two	6, U, Oll,	thymus are
) were	40, 76, 01	not
ntal days	C. OL. A.	sufficiently
e of 500	Ka la:	investigated
0	10, 100	
g/kg bw.	0. 01.	
atch of	Vo.	
1%) only		

Proberty sind

										body weight and body weight gain associated with drastically reduced food intake. No effect. Increase observed at the top dose level in the presence of significant systemic toxicity; decreased body weight and body weight gain associated with drastically reduced food intake.
34b			Dog	12	Mont hs	Oral		mg/k g bw/d ay	No effect	No effect.
34b			Dog	12	Mont hs	Oral	110	mg/k g bw/d ay	Increas e	Increase observed at the top dose level in the presence of significant systemic toxicity; decreased body weight and body weight gain associated with drastically reduced food intake.
28		Liver histopath ology	rat	28	Days	Oral	500	mg/k g bw/d ay	Change	Enlarged livers and slight hypertrophy of the hepatocytes in some animals at 500 mg/kg bw (M: 8/10, F: 3/10), and in all rats in the high dose group. Hepatotoxicity (rat, dog). Consistent treatment-related
29a			rat	28	Days	Oral	Soli	690	Change of the control	Increased incidences of minimal hypertrophy of centrilobular hepatocytes; in all treated male groups* (2/10 and 9/10 animals at low dose and high dose, respectively) and at 500 mg/kg bw/day in females* (8/10), minimal to moderate hepatocellular necrosis (3/10 top dose males), and an increase in inflammatory cell infiltrations at the top dose level (minimal to moderate severity in males (8/10 animals), and minimal degree in females (6/10). *It should be noted that minimal to moderate increase in the mitotic activity of hepatocytes was reported in the animals (one male and two females), which were sacrificed in moribund condition on day 3 (500 mg/kg bw/day). A dose of 500 mg/kg/day exceeded the MTD.
29b	-		rat	28	Days	Oral	100	mg/k g bw/d ay	Change	Increased incidences of minimal hypertrophy of the follicle epithelium were seen in male from 100 mg/kg bw/day (5/10 low dose, 10/10 high dose) and female top dose animals (8/10). A dose of 500 mg/kg/day exceeded the MTD.
30			rat	200 N	Days	Oral O	208.6	mg/k g bw/d ay	Change	Minimal hepatocyte hypertrophy at top-dose (9/20 animals) in F.
		(Color Secretary	id is	SULL					300

30	
32	
32	
33	
33	
34a	
34a	
34b	

rat	90	Days	Oral	202.3	mg/k	Change	Minimal hepatocyte hypertrophy at top-dose (20/20	ion
					g bw/d ay		animals) in M.	
rat	90	Days	Oral	500	ppm	Change	Minimal hepatocyte hypertrophy at top-dose (20/20 animals) in M. Centrilobular hepatocyte hypertrophy at ≥1000 ppm, and some degeneration of the hepatocytes around the central vein in the 2400 ppm group in M. Higher incidences of hepatocytic vacuolisation was observed from ≥500 ppm. Centrilobular hepatocyte hypertrophy at ≥1000 ppm, and some degeneration of the hepatocytes around the central vein in the 2400 ppm group in F.	
rat	90	Days	Oral	1000	ppm	Change	Centrilobular hepatocyte hypertrophy at ≥1000 ppm, and some degeneration of the hepatocytes around the central vein in the 2400 ppm group in F.	
nouse	90	Days	Oral	500	ppm	.(5)	≥500 ppm in males (14/15 males at top dose). Focal coagulative necrosis was found in some males at ≥1000 ppm (4/15 males at top dose). Degeneration of the hepatocytes around the central vein (7/15 males) and hepatocytic vacuolisation (10/15 males) were observed at 2400 ppm in males only.	
nouse	90	Days	Oral	2400	ppm	Change	Centrilobular hepatocyte hypertrophy was observed at 2400 ppm in females (7/15 females).	
Dog	90	Days	Oral	1320	mg/k g bw/d ay	Change	At the highest dose, cytoplasmic vacuolisation was noted in 2/4 males, inflammatory cell infiltration in 4/4 males and hepatocyte necrosis in 4/4 males. In mid dose males, 1/4 was noted with inflammatory cell infiltration and 1/4 males with hepatocyte necrosis.	
Dog	90	Days	Oral	1370	mg/k g bw/d ay	Change	Inflammatory cell infiltration was noted in 4/4 and hepatocyte necrosis in 4/4 top dose females.	
Dog	12 SURPLE	Mont hs	Oral	7108	mg/k g bw/d ay	Change	At the highest dose, cytoplasmic vacuolisation was noted in 2/4 males, inflammation with fibrosis in 4/4 males and hepatocyte necrosis in 1/4 males. In mid dose males, 2/4 was noted with inflammatory cell infiltration and 2/4 males with inflammation with fibrosis.	
essi	Cool	SUITA	5				301	

34b	
35	
35	
37	
37	
38	
38	
40a	
40a	
49a	

							λ	
							Oldic sty and	
Dog	12	Mont hs	Oral	110	mg/k g bw/d ay	Change	Inflammation with fibrosis was noted in 4/4 females and hepatocyte necrosis in 2/4 animals. No effect on liver histopathology. Hepatocyte hypertrophy and increased nuclear pleomorphism was present in all males at ≥1500 ppm.	
mouse	90	Days	Oral	1500	ppm	Change	No effect on liver histopathology. Hepatocyte hypertrophy and increased nuclear pleomorphism was present in all males at ≥1500 ppm.	
mouse	90	Days	Oral	3000	ppm	Change	No effect on liver histopathology. Hepatocyte hypertrophy was observed in 4/10 females at 3000 ppm.	
mouse	106	Week s	Oral		ppm	No effect	No effect on liver histopathology up to the highest dose level tested (300ppm).	
mouse	107	Week s	Oral		ppm	No effect	No effect on liver histopathology up to the highest dose level tested (300ppm).	
mouse	80	Week s	Oral	177.7	mg/k g bw/d ay	Change	There was an increase in the incidence and severity of hepatocyte vacuolation of the liver in the high dose males (control 13/50, top dose 37/50).	
mouse	80	Week s	Oral	221.5	mg/k g bw/d ay	Change	There was an increase in the incidence and severity of hepatocyte vacuolation of the liver in the high dose females (control 1/50, top dose 16/50).	
rat	110	days	Oral	29.9	mg/k g bw/d ay	Change	Increases in slight (mainly centrilobular) hepatocyte hypertrophy was observed at the mid (14/16 females) and high dose level (16/16 females) and slight recent necrosis (2/16) was seen in top dose females.	
rat	110	days	Oral	29.7	mg/k g bw/d ay	Change	Increases in slight (mainly centrilobular) hepatocyte hypertrophy was observed at the mid (5/19 males) and high dose level (17/20 males).	
Rat	074 0715	Days	Ofal	320	mg/k g bw/d ay	Increas e	Increased proliferation of smooth endoplasmic reticulum membranes at 320 mg/kg bw/day	

									Increased proliferation of smooth endoplasmic reticulum membranes at 320 mg/kg bw/day Liver weight (abs + rel) increase in both sexes, increase in F from 100 mg/kg bw and in M from 500 mg/kg bw.	ig
49b		Mouse	14	Days	Oral	320	mg/k g bw/d ay	Increas e	Increased proliferation of smooth endoplasmic reticulum membranes at 320 mg/kg bw/day	ottotion of the control of the contr
28	Liver weight	rat	28	Days	Oral	100	mg/k g bw/d ay	Increas e	Liver weight (abs + rel) increase in both sexes, increase in F from 100 mg/kg bw and in M from 500 mg/kg bw.	3
29a		rat	28	Days	Oral	100	mg/k g bw/d ay	Increas e	Increase in liver weight (abs + rel) from 100 mg/kg bw/day.	
29b		rat	28	Days	Oral	100	mg/k g bw/d ay	Increas e	Increase in liver weight (abs + rel) from 100 mg/kg bw and above (M) and increase at 500 mg/kg bw (F).	
30		rat	90	Days	Oral	2.1	mg/k g bw/d ay	Increas e.s	Increase in F in relative liver weight from 2.1 mg/kg (3.7%) onwards (40% top dose) and in absolute at 208.6 mg/kg bw.	
30		rat	90	Days	Oral	2	mg/k g bw/d ay	Increas	Increase in M in relative liver weight from 2 mg/kg (5%) and onwards (28% top dose) and in absolute at 2 and 202.3 mg/kg bw	
31		rat	90	Days	Oral	0.77	mg/k g bw/d ay	Increas	Increase in liver weight (abs +rel) at low-dose (rel 11%) and mid-dose (rel 15%), however no weight change in the top dose males.	
31		rat	90	Days	Oral	2.14	mg/k g bw/d ay	Decrea se	Marginally reduced liver weight (-9.6%) only in the mid dose females.	
32		rat	900) 51/17	Days	Oral	1000	ppm	Increas e	Increase in relative liver weight (13%) at 1000 ppm and increase (rel + abs) at top dose (31%).	
32		Trat C	990 0715	Days	Oral	500	ppm	Increas e	Increase in relative liver weight (10.2%) at 500 ppm and further increase in abs+rel liver weight at the two highest doses (20 and 29% relative increase).	

33	
33	
34a	
34a	
34b	
34b	
35	
35	
37	

mouse	90	Days	Oral	500	ppm	Increas e	Absolute and relative liver weights were significantly increased at ≥500 ppm in males (relative weights: 10% at 500 ppm, 17 % at 1000 ppm and 42% at 2400 ppm). Absolute (24%) and relative (32%) liver weights were significantly increased at 2400 ppm in females. Relative liver weight was also slightly increased significantly at ≥500 ppm (≤10%). Absolute and relative liver weights were increased at
mouse	90	Days	Oral	2400	ppm	Increas e	Absolute (24%) and relative (32%) liver weights were significantly increased at 2400 ppm in females. Relative liver weight was also slightly increased significantly at ≥500 ppm (≤10%).
Dog	90	Days	Oral	18.2	mg/k g bw/d ay	Increas e	Absolute and relative liver weights were increased at the top dose level (abs: 30%, rel: 75%) and mid dose males (abs: 20%, rel: 15%).
Dog	90	Days	Oral	19.4	mg/k g bw/d ay	Increas e	Absolute and relative liver weights were increased at the top dose level (abs; 22%, rel: 88%) and for mid dose females (abs; 15%, rel: 24%).
Dog	12	Mont hs	Oral	108	mg/k g bw/d ay	Increas e s	Absolute and relative liver weights were increased at the top dose level (abs: 27%, rel: 35%).
Dog	12	Mont hs	Oral	16.5	mg/k g bw/d ay	Increas	Absolute and relative liver weights were increased at the top dose level (abs: 46%, rel: 63%) and for mid dose females (abs: 27%, rel: 28%).
mouse	90	Days	Oral	500	фрт	Increas	Relative liver weights were increased in males at 500 ppm. Increase in adjusted weights: 12%, 33% and 48% at 500, 1500 and 300 ppm, respectively.
mouse	90	Days	Oral	1500	ppm	Increas	Relative liver weights were increased in females at ≥ 1500 ppm. Increase in adjusted weights: 10% and 28% at 1500 and 300 ppm, respectively.
mouse	106	Week	Oral	150	ppm	Increas e	Relative liver weight was increased in M in 300 ppm dose group (10%) at the 1-year sacrifice and at 150 ppm (but not 300 ppm) 53-week sacrifice (23%). No dose-related trend or corresponding histopathological correlate were seen.
711, 10 2085 1	is is	SUIT	Oral				304

37	
38	
38	
39	
39	
40a	
40a	
40a	
40a	

mouse	107	Week s	Oral	300	ppm	Increas e	Relative liver weight was increased in F in 300 ppm dose group (15%). No dose-related trend or	ation
							corresponding histopathological correlate were seen.	le le
mouse	80	Week s	Oral	177.7	mg/k g bw/d ay	Increas e	Relative liver weight was increased in F in 300 ppm dose group (15%). No dose-related trend or corresponding histopathological correlate were seen. Liver weights were increased in top dose males (adjusted weight +27%, relative weight +28%). Slightly higher liver weights (approximately 5%	
mouse	80	Week s	Oral		mg/k g bw/d ay	No effect	Slightly higher liver weights (approximately 5% higher than control) in females receiving the top dose (221.5 mg/kg bw/day), but the value did not reach statistical significance.	
rat	117	Week s	Oral	5.7	mg/k g bw/d ay	Increas e	Increase in F in absolute (+20%) in top dose group and in relative liver weight (+13 and 15% at 5.7 and 11.9 mg/kg bw/day, respectively) at week 52. The increase at week 52 was associated with an increase in γ-GT. There was also a statistically significant trend in relative weight at week 104 (+15%) for the top dose group.	
rat	116	Week s	Oral	4	mg/k g bw/d ay	No effect	No effect on liver weight were observed in males up to the highest dose level tested (10.4 mg/kg bw/day).	
rat	35	days	Oral	156	mg/k g bw/d ay	Increas	Relative liver weights were increased significantly in high dose group (+31%), absolute increase non-significantly (+11%). Offspring (F1) Male.	
rat	35	days	Oral	153 1111101	mg/k g bw/d ay	Increas	Relative liver weights were increased significantly in high dose group (+28%), absolute increase non-significantly (+8.2%). Offspring (F1) female.	
rat	110	days	Oral	153	mg/k g bw/d ay	Increas e	Relative liver weights were significantly increased in F1 adults F (+37%), absolute weight was increased non-significantly (+20%).	
rat 30	110)	days	Oral	ð 156	mg/k g bw/d ay	Increas e	Relative liver weights were significantly increased in F1 adults M (+11%), absolute weight was slightly increased (+4%).	
CC ON	10,10	SO, IL					305	·

										Mic wand
40a		rat	35	days	Oral	153	mg/k g bw/d ay	Increas e	Relative liver weights were significantly increased in F2 weanlings (+22%), absolute liver weight non-significantly increased (+16%). It should be noted that only five/sex/group F1 and F2 weanlings were	String the string of the strin
40a		rat	35	days	Oral	156	mg/k g bw/d ay	Increas e	necropsied. Relative liver weights were significantly increased in F2 weanlings (+28%), absolute liver weight nonsignificantly increased (+21%). It should be noted that only five/sex/group F1 and F2 weanlings were necropsied.	arcia mas
49a		Rat	14	Days	Oral	80	mg/k g bw/d ay	Increas e	Significantly increased at 80 mg/kg bw/day	
49b		Mouse	14	Days	Oral	160	mg/k g bw/d ay	Increas e	Significantly increased at 80 mg/kg bw/day	
29a	Spleen histopath ology	rat	28	Days	Oral	500	mg/k g bw/d ay	Change	Minimal extramedullary haematopoiesis was found in high-dosed females (3/10).	Effects on spleen are not sufficiently investigated
29b		rat	28	Days	Oral	100	mg/k g bw/d ay	Change	Minimal extramedullary haematopoiesis was found in low-dosed males (2/10), in high-dosed males (2/10) and in high-dosed females (2/10).	
38		mouse	80	Week s	Oral	Sani	mg/k g bw/d ay	No effect	No effect on spleen histopathology in M up to the highest dose level tested (177.7 mg/kg bw/day).	
38		mouse	80	Week	Oral	Sation is	mg/k g bw/d ay	No effect	No effect on spleen histopathology in F up to the highest dose level tested (221.5 mg/kg bw/day).	
38	Spleen weight	mouse	9001	Week s	Oral	177.7	mg/k g bw/d ay	Decrea se	Reduced spleen weight in top dose males (adjusted weight -40%).	
	?	Cool of the second	ind is	SUIT	5				306	

20				0.0	*** 1	0.1	221.5		ъ		112 dl. 110	. (0)
38			mouse	80	Week s	Oral	221.5	mg/k g bw/d ay	Decrea se	Reduced spleen weight in top dose females (adjusted weight -38%).	Effects on thymus	io,
29a		Thymus histopath ology	rat	28	Days	Oral	500	mg/k g bw/d ay	Change	cells exhibiting condensed nuclear material in their cytoplasm and being responsible for lymphophagocytosis) in thymus cortex was recorded in all moribund-sacrificed animals as well as in one female of the 500 mg/kg bw/day dose level at study termination. Total N=10	Effects on thymus are not sufficiently investigated	
29b			rat	28	Days	Oral	500	mg/k g bw/d ay	Change	Occurrence of tangible body macrophages (phagocytic cells exhibiting condensed nuclear material in their cytoplasm and being responsible for lymphophagocytosis) in thymus cortex was recorded in one female, which was sacrificed in moribund condition on day 2 (500 mg/kg bw/day). Variations in absolute or relative organ weights occasionally reached statistical significance in the thymus but were in absence of a dose-relationship. They were also not associated with any relevant histopathological changes. Total N=10, effect observed at the top dose		
30		Thymus weight	rat	90	Days	Oral Oral	1.0	UOIO,	x5	Increase in relative thymus weight at 2.10 and 208.6 mg/kg bw/day (10% and 12%), the increase co-incided with a lower body weight in that group at the top dose. Study considered supportive only (due to deviations from the test guideline currently in place). Variations in absolute or relative organ weights occasionally reached statistical significance in the thymus but were in absence of a dose-relationship. They were also not associated with any relevant histopathological changes. Total N=10, effect observed at the top dose		
1	Syste mic toxici ty	Body weight	rat	o do constitution of the c	Mont fis	Oral Control of Contro	550 3110	mg/k g bw/d ay	Decrea se	Significant decrease compared to the control group. Reporting deficiencies, unclear test item and dosing scheme, inadequate reporting of body weight development, and no reporting of clinical signs or food consumption. Serious methodological deficiencies, flawed/unsuitable histopathological methodology, no consideration of circadian variation in testosterone measurement.	Sufficient evidence of systemic toxicity based on reduced Bw, food consumpiton, alteration in clinical chemistry and haematology and/or clinical signs. MTD was	Overall evidence of systemic toxicity. MTD ≥500 mg/kg bw (M), ≥500 mg/kg bw (F)

		ı						I		Indicated and	
								and it	Decreased BW (M:\13%) week 4 and BW gain (M:\\28% and F:\14%) for weeks 0-4	mg/kg bw/day in males and 500 mg/kg bw/day in females (28 day	
28		rat	28	Days	Oral	5000	bw/d ay		28% and F: 14%) for weeks 0-4.		
30		rat	90	Days	Oral	208.6	mg/k g bw/d ay	Decrea se	Decrease in BW and a marked effect in BW gain (average reduction 16%) from week 4 onwards at the top dose. Reduced BW (-14%) at termination.		
31		rat	90 SUME	Days	Oral	2.14	mg/k g bw/d ay	Increas e	Increased bodyweights (9.8%) and BW gain (16%) in F only at 2.14 mg/kg bw/d, not confirmed at top-dose.		
32		rat de	90 J	Days	Oral	500	ppm	Decrea se	Bodyweights were significantly lower throughout the study in the 2400 ppm (-10% week 13), and in the 1000 ppm treated group at weeks 6, 7, 9, 12, and 13 (-6.2%). BW gain significantly reduced in the 1000 (-8.9%) and 2400 ppm (-15%) treated females. Overall		

33	
34a	
34a	
34b	
34b	

							k C	Thic ty and
							mean food consumption in females was slightly reduced at 1000 and 2400 ppm reaching statistical significance at a few weeks during the dosing period.	Stion of Shither Told
mouse	90	Days	Oral	2400	ppm	Increas e		Stigg Lay the store
Dog	90	Days	Oral	132	mg/k g bw/d ay	Decrea se	In the male high dose group, the dogs lost weight mostly during the first month of the study associated with drastically reduced food intake; the weight loss reached 12% (males) of the initial weights during the first 13 weeks of the study. Animals gained weight in the lowest doses; however, BW gain was lower in the low (-18%) and mid dose males (-25%) compared to control animals. Group mean terminal body weights were reduced (26%) at the top dose level at the interim (13 weeks)	
Dog	90	Days	Oral	137	mg/k g bw/d ay	Decrea Se	In the female high dose group, the dogs lost weight mostly during the first month of the study associated with drastically reduced food intake; the weight loss reached 9% (females) of the initial weights during the first 13 weeks of the study. Animals gained weight in the lowest doses; however, BW gain was lower in mid dose females (-22%) compared to control animals. Group mean terminal body weights were reduced (25%) at the top dose level at the interim (13 weeks).	
Dog	12	Mont hs	Oral Control of the C			Decrea se	The top dose level was reduced from 132 mg/kg bw/day to 108 mg/kg bw/day in week 20, but overall BW gain was markedly below controls for the top dose group (M ↓44%). The overall weight gain was also slightly lower in mid dose dogs (M↓14%), whereas there were no differences at the low dose level. Group mean terminal body weights were reduced (8.2%) at the top dose level at terminal sacrifice (53 weeks).	
Dog	oris	Mont hs	Oral Oral Oral Oral Oral Oral Oral Oral	16.5	mg/k g bw/d ay	Decrea se	The top dose level was reduced from 137 mg/kg bw/day to 110 mg/kg bw/day in week 20, but overall BW gain was markedly below controls for the top dose group (F↓58%). The overall weight gain was also lower in mid dose dogs (F↓33%), whereas there were no differences at the low dose level. Group mean	
3000	ised)						309	

35	
35	
38	
38	
39	
39	
40a	

							<u> </u>	11 00 All) 0.
							terminal body weights were reduced (11%) at the top dose level at terminal sacrifice (53 weeks).	Silo othine	31010
mouse	90	Days	Oral	1500	ppm	Decrea se	Slightly reduced BW compared to control day 92 (\$\\$5.6\%) while adjusted body weight loss during the study (days 2-92) was \$\$\\$19\%\$ on day 92 in the 1500 ppm dose group. In the 3000 ppm group, reduced BW compared to control was \$\$\$\\$15\%\$ and adjusted body weight loss (days 2-92) during the study was \$\$\$\$\$\$\$\$\$\$\$\$\$\$52\%\$. Animals in the 5000 ppm group lost weight throughout the first week of the study (10-17\% of initial body weights) and were terminated in the second week.	TOP CONTRIBUTED	
mouse	90	Days	Oral	3000	ppm	Decrea se	Animals in the 5000 ppm group lost weight throughout the first week of the study (8-11% of initial body weights) and were terminated in the second week. Animals in the 1500 and 3000 ppm group had reduced bodyweights with most BW reduction in the 3000 ppm group: ↓11% at day 92 and adjusted BW loss during the study (days 2-92) was ↓38%.		
mouse	80	Week s	Oral	221.5	mg/k g bw/d ay	Decrea se	Marked effect on bodyweight development in females at 221.5 mg/kg bw/day. Week 1-33 (-19%), week 1-51 (-17%) week 1-81 (-16%). The maximum difference from control of adjusted body weights were at weeks 33/37 (-9.6%).		
mouse	80	Week s	Oral	177.7	mg/k g bw/d ay	Decrea se	Marked effect on bodyweight development in males at 177.7 mg/kg bw /day. Week 1-33 (-27%), week 1-51 (-29%), week 1-81 (-26%). The maximum difference from control of adjusted body weights were at week 73 (-15%).		
rat	116	Week	Oral		mg/k g bw/d ay	No effect	Body weight development in all treated animals was similar to controls up to highest dose tested (10.4 mg/kg bw/day) in M.		
rat		Week	Oral		mg/k g bw/d ay	No effect	No effect on body weight development in all treated animals was similar to controls up to highest dose tested (11.7 mg/kg bw/day) in F.		
Chat io	0110 0115	days	Oral	153	mg/k g bw/d ay	Decrea se	The markedly lower body weight (-12%) of high dose F0 females on lactation day 1 indicates that the net body weight of dams (without gravid uterus, not measured) during gestation would have been more		

40a	
40a	
40b	
40b	

							Chipic Hy	uo.u
							markedly affected than measured body weights. Body weight development was slightly decreased in high dose females during premating (day 1-60, -8.3%). During gestation, a slight reduction in body weight gain was also noted for high dose F0 dams (day 0-21, -7.7%). During lactation, high dose females of both generations gained slightly more weight than controls. The markedly lower body weight (-11%) of high F1 formules on lectation day 1 indicates that the rest body.	Situation of the second
rat	110	days	Oral	153	mg/k g bw/d ay	Decrea se	The markedly lower body weight (-11%) of high F1 females on lactation day 1 indicates that the net body weight of dams (without gravid uterus, not measured) during gestation would have been more markedly affected than measured body weights. Body weight development was slightly decreased in high dose females during premating (day 1-60, -6.9%). During gestation, a more marked decrease (day 0-21, -16%) was seen in F1 dams at this dose level. During lactation, high dose females of both generations gained slightly more weight than controls.	
rat	110	days	Oral	156	mg/k g bw/d ay	Decrea se	A slightly lower body weight gain was seen during pre-mating (-2.7%) in F1 high dose males with a more marked reduction after mating (-10.6%). Due to lower body weights at start of the pre-mating period, absolute bodyweights of F1 males were consistently lower than controls over the whole treatment period. Significantly reduced BW at termination (-7.5%).	
rat	19	Week s	Oral	2250 Othor	mg/k g bw/d ay	Decrea se	Body weight development of high dose females during pre-mating were reduced at 225 mg/kg bw/day in both generations (premating; F0 9 weeks exposure: -21%, F1 age weeks 4-16: -7.1%). Absolute body weights of high dose F0 and F1 females remained below control values, while body weight gain during gestation was comparable with controls. During lactation, high dose females gained more weight than controls.	
rat	25 SUMP	Week	Oral	225 3110111	mg/k g bw/d ay	Decrea se	Body weight development of high dose females during pre-mating were reduced at 225 mg/kg bw/day in both generations (premating; F0 9 weeks exposure: -21%, F1 age weeks 4-16: -7.1%). Absolute body weights of high dose F0 and F1 females remained below control values, while body weight gain during gestation was comparable with controls. During lactation, high dose females gained more weight than controls.	
rat 2000 of the control of the contr	ind us	SULL	Ś				311	

		-							<u> </u>	3 00 411 110)` .0.
40b		rat	25	Week s	Oral	211	mg/k g bw/d ay	Decrea se	Body weight gain of high dose F1 males was decreased during pre-mating and during the complete treatment period (-10.5% w 0-28).	Stion of Jikel	
41a		rat	10	Days	Oral	300	mg/k g bw/d ay	Decrea se	At 300 mg/kg bw/day, body weight gain was decreased during treatment (by 8% on GD 6-16) and the corrected body weight gain (minus gravid uterus weight) on GD day 6-21 (by 12%).	Cion of hitely	
41b		rat	5	Days	Oral	300	mg/k g bw/d ay	Decrea se	At 300 mg/kg bw/day, body weight gain was markedly decreased during treatment (by 20% on GD 6-16) and GD 6-21 corrected body weight gain (by 55%). During the more limited treatment period (GD 10-14), body weight gain at 450 mg/kg bw/day was reduced by 28% and also GD 6-21 corrected body weight gain was 28% lower than controls.	G.	
42		rat	10	days	Oral	500	mg/k g bw/d ay	Decrea se	Maternal body weight development: corrected bw gain on GD 6-20 was reduced by 41%. BW at GD 20 was significantly reduced (-4,2%: corrected for gravid uterus weight: -2.2%)		
43		rabbit	14	days	Oral	150	mg/k g bw/d ay	Decrea se	Reduced body weight development in high dose females; BW gain GD 0-28; -7.4%, BW gain during GD 6-19; -11% (test chemical was administrated GD 6-18)		
44		rabbit	13	days	Oral	200	mg/k g bw/d ay	Decrea se	Reduced BW gain in high dose females, most markedly in the first week of treatment* (GD 7-10: -104%, GD 10-14; -19%). *The test chemical was administrated from GD 7-19 only.		
49a		Rat	14	Days	Oral	No effect	mg/k g bw/d ay	No effect	No effect on body weight up to the highest dose tested (320 mg/kg bw/day)		
49b		Mouse	14	Days	Oral	No effect	mg/k g bw/d ay	No effect	No effect on body weight up to the highest dose tested (320 mg/kg bw/day)		
28	Clinical chemistry and	rat 40	28.1	Days	Oral	500	mg/k g bw/d ay	Decrea se	A trend to slightly decreased haemoglobin (↓4.2% to↓6.3%) and haematocrit values (↓4.7% to ↓7%) in female groups from 500 to 1000 mg/kg/ bw.		
	C.	This to	ing he						312		

		-									
28	hae	ematol	rat	28	Days	Oral	500	mg/k	Change	A series of parameters were affected in one or both	
		ogy						g		sexes, including products of the metabolism, increased	
								bw/d		cholesterol and proteins, and increased activity of	
								ay		A series of parameters were affected in one or both sexes, including products of the metabolism, increased cholesterol and proteins, and increased activity of enzymes related to the hepatic function (ALAT og ALP). Sodium, calcium and inorganic phosphate levels were increased, whereas potassium and chloride were decreased. A slight, but statistically significant increase in calcium, creatinine and potassium levels, and decrease in sodium levels, and decrease in sodium levels, was noted at 100 mg/kg.	
										ALP). Sodium, calcium and inorganic phosphate levels	
										were increased, whereas potassium and chloride were	
										decreased. A slight, but statistically significant	
										increase in calcium, creatinine and potassium levels,	
										and decrease in sodium levels was noted at 100 mg/kg	
										bw in M, but the levels of these parameters did not	
										appear to be dose-dependent.	
29a		F	rat	28	Days	Oral	100	mg/k	Change	A dose-related increase in platelets and decrease in	
290			rai	20	Days	Orai	100	_	Change	prothrombin time was observed in male and female	
								g bw/d			
										groups reaching statistical significance mostly at 500	
								ay		mg/kg bw/day (exceeding HCD). Clinical	
										biochemistry: A series of parameters were affected by	
										treatment, dose-related increase of plasma protein	
										concentrations, associated with higher globulin levels	
										and minimally lower albumin-to-globulin (A/G) ratios	
									7.10	in both sexes (A/G ratios and albumin levels were	
									0	within the range of available HCD). Elevated alanine	
									D. X.	aminotransferase and cholesterol levels were also	
								.68	THUGUE	noted at the top dose level. Total bilirubin was	
									, n	somewhat lower in treated groups as compared to	
							ζ.	V' -C	ilis ie	concurrent controls (but well within the range of	
							. 0	70,	.5	available HCD). Reductions in plasma chloride levels	
							65.	0, 5	(1)	were within the range of available HCD. Changes in	
							0/1/	0.1	· · · · ·	ASAT and ALP (mostly reductions) were within the	
						٠,٥	R	No.	1. O'	range of the available HCD.	
						0	· Oh.	60 "	10 111	A dose of 500 mg/kg/day exceeded the MTD.	
29b			rat	28	Days	Oral	100	mg/k	Change	A dose-related increase in platelets and decrease in	
						" (1) (()	11/1	g bw/d ay	10.01	prothrombin time was observed in male and female	
					~)	111 9	bw/d	orokiloti	groups reaching statistical significance mostly at 500	
					.6	90	00,	ay	⁷ (O)	mg/kg bw/day (exceeding HCD). Clinical	
					110	11.00	ilo.		6.	biochemistry: A series of parameters were affected by	
				0	, x5		1, 0	00		treatment, dose-related increase of plasma protein	
				'W	S.C.	0, 10	, 0,	_		concentrations, associated with higher globulin levels	
				<i>.</i> , 2	6. B	7 711	100			and minimally lower albumin-to-globulin (A/G) ratios	
			70	(1)	"I'II"	14 2	O			in both sexes (A/G ratios and albumin levels were	
			.5	200	10	10,2 11,				within the range of available HCD). Urea levels were	
			1/1/2 V	0 (D` \ '	,00				slightly increased at 500 mg/kg bw/day in both sexes.	
			1. 10	N'iS	illy,	0				Elevated alanine aminotransferase and cholesterol	
			rat	0)	in The	9				levels were also noted at the top dose level. Total	
			CO 1	, 47	(11)					bilirubin was somewhat lower in treated groups as	
		L	CY = OJ			1	l	L	l	omacin national in telescond groups as	

	-								Ý Ý
									compared to concurrent controls (but well within the
									range of available HCD). Reductions in plasma
									chloride levels were within the range of available
									HCD. Changes in ASAT and ALP (mostly reductions)
									were within the range of the available HCD. A dose of
									500 mg/kg/day exceeded the MTD.
30		rat	90	Days	Oral	20.7	mg/k	Change	Haematology: statistically significant effects on RBC
							g	-	parameters: \segmented neutrophils (208.6 mg/kg
							bw/d		bw/day), ↑ moncytes and nucleated RBC-normoblasts
							ay		(from 20.7 mg/kg bw). Blood chemistry: statistically
							_		significant changes in: †cholesterol and albumin,
									↓potassium, chloride. Note that most findings reflected
									the normal physiological variation of the respective
									parameters and were within a limited available HCD.
30		rat	90	Days	Oral	19.4	mg/k	Change	Haematology: statistically significant effects on RBC
							g	Ü	parameters: \$\pm\$ leukocytes (at 2 and 202.3 mg/kg
							bw/d		bw/day only) \(\gamma\) segmented neutrophils (at 19.4 mg/kg
							ay		bw only), ↓ lymphocytes (from 19.4 mg/kg bw/day).
							_		Blood chemistry: statistically significant changes in: ↓
								6	glucose (from 19.4 mg/kg bw/day), \u00e7ureas-N values
								0	(from 19.4 mg/kg bw/day), ↑ cholesterol (202.3 mg/kg
								D) X	bw/day), ↑ total proteins and albumin (from 2 mg/kg
							G.P	Silv	bw), total globulin and A/G ratio (increasing trend.
							150	and o	significant at 202.3 mg/kg bw/day), ↓ lactate
							(V) c	70, 70,	dehydrogenase (decreasing trend from 19.4 mg/kg
						Ó	690	. 60	bw/day), \(\gamma\) potassium (at 2 and 202.3 mg/kg bw only),
						· Kx	0, 5	ille le	chloride (at 2 and 19.4 mg/kg bw/day only). Note
						0 XX		0, 1,	that most findings reflected the normal physiological
					.0	8	NO.	10:	variation of the respective parameters and were within
					0	an .	60 "	C. WI	a limited available HCD. Only the marginally
					1,00	10	, '(6,	x5	increased cholesterol in high dose males slightly
					, ill . ()	J. Mr.	S	10 VI	exceeded the range of the available limited HCD.
31		rat	90	Days	Oral	0.78	mg/k	Change	Haematology: reduced reticulocyte count at all doses
				.6	290	(0.78	g bw/d	ζO.	(no clear dose-relationship). Clinical chemistry: †GGT
			,	11.	71,63	ilo .xc		5.	from mid-dose and globulin and total proteins at top-
			(0_	1, xe	200	10	ay		dose. Most findings reflected the normal physiological
			10	O.	0,0 10	, O,	, and		variation of the respective parameters and in the
			S). (C	5,	, 00,	100			absence of clear dose-relationship.
31		rat 80	90	Days	Oral	0.77	mg/k	Change	Haematology: increased reticulocyte count at all doses
		136	80,	1	y, ch,		g		(no clear dose-relationship). Clinical chemistry: ↑ in
		V//, "O	25	11/	700		bw/d		total proteins from mid-dose and in albumin at top-
		-6	11,5	(1)	S		ay		dose, ↓ inorganic phosphate and a slight increase in
		65	6	5, 70,	, ,				sodium. Most findings reflected the normal

									60°0' 410'	,01
									physiological variation of the respective parameters and in the absence of clear dose-relationship.	318101
32		rat	90	Days	Oral	2400	ppm	Decrea se	physiological variation of the respective parameters and in the absence of clear dose-relationship. ↑slightly increase in protein (males only), ↓ albumin (females only), and slightly reduced A/G ratio in both sexes in top dose animals.	
32		rat	90	Days	Oral	10	ppm	Increas e	Increased urea nitrogen in treated males (11% at 10 ppm to 35% at 1000 ppm and 22% at 2400 ppm). It should be noted that the value of control males appears to be rather low (139 mg/L) as compared to control females (151 g/L).	
33		mouse	90	Days	Oral	1000	ppm	Change	Lower total protein (↓8.3% and 6.7% at 1000 ppm and 2400 ppm, respectively) and cholesterol (↓31% and 61% at 1000 ppm and 2400 ppm, respectively). ALT at 2400 ppm (↑170%) whereas gamma-GT was significantly reduced at ≥500 ppm.	
33		mouse	90	Days	Oral	1000	ppm	Change	Reduced albumin (↓14%) and A/G ratio (↓13%) in top dose females, whereas cholesterol was decreased at ≥1000 ppm (↓36% to ↓40% in top dose females). Total protein was reduced in top dose females (↓10%).	
34b		Dog	oline do la company	Mont hs	Oral Notice St.	TIO STATE OF THE S	mg/k g bw/d ay	Change his is	Increased platelet counts were recorded among female dogs of the high-dose group already from the pre-test. Haematological parameters of which reaching increased statistical significance were noted in monocytes in mid dose and high dose females. Red cell parameters (Hb, RBC) among female dogs of the high dose group were slightly lower as compared to controls from week 13. After reduction of the top dose level to 110 mg/kg bw/day in week 20, red blood cell parameters recovered within the range of available limited HCD in week 52. Clinical biochemistry: mainly change at the high dose level: OCT, AST, ALT, ALP, and γ-GT were markedly increased during the complete treatment period, indicating the liver as a clear target organ. Further effects were most marked at week 13 (↓glucose and urea-nitrogen, ↑inorganic phosphate), but normalised when dose level was reduced.	

34b	
35	
35	
39	
39	

								Thicky and	8
Dog	12	Mont hs	Oral	108	mg/k g bw/d ay	Change	Red cell parameters (Hb, RBC) in high dose M were slightly lower at week 13. After reduction of the top dose level to 108 mg/kg in week 20, red blood cell parameters recovered within the range of HCD in week 52. Variations in haematological parameters (some statistically significant) were noted in eosinophils, lymphocytes and monocytes in absence of a dose-relationship, and within the range of HCD. Platelets increased over time (statistical significance at week 52). The proportion of lymphocytes was increased and eosinophils were reduced in high dose M. Clinical biochemistry: mainly change at the high dose level: OCT, AST, ALT, ALP and γ-GT were markedly increased during the complete treatment period, indicating the liver as a clear target organ. Globulin was slightly but consistently increased in high dose males. Further effects were most marked at week 13 (†glucose and chloride, †inorganic phosphate), but normalised when dose level was reduced. †inorganic phosphate seen up to the end of treatment.	cilo et el inel	jote
mouse	90	Days	Oral	500	ppm	Change	Treatment and dose related reduction in cholesterol in all dose group, significant from ≥500 ppm (↓54% at 3000 ppm). Plasma ALP was increased at ≥1500 ppm (13% and 22% increase).		
mouse	90	Days	Oral Oral	3000	ppm	Decrea se	Treatment and dose related reduction in cholesterol in all dose group, significant from ≥ 100 ppm ($\downarrow 54\%$ at 3000 ppm). Plasma ALP was increased at ≥ 1500 ppm ($\uparrow 25\%$ at 3000 ppm). Plasma albumin ($\downarrow 2.2$ -6.5%) and total protein ($\downarrow 2.6$ -8.1%) were lower in all female groups, and plasma calcium was lower in females at 3000 ppm ($\downarrow 4.4\%$).		
rat	116	Week	Oral	Silori	mg/k g bw/d ay	No effect	Observed variations in blood biochemistry parameters were considered unrelated to treatment tested up to the highest dose level (10.4 mg/kg bw/day) in M.		
rat do	17 (30 CUI	Week	Oral	0.2	mg/k g bw/d ay	Change	Slightly higher γ-GT values in high dose females at weeks 27 (top dose only) and 52 (increase at 0.2, 2.9 and 11.9 mg/kg bw/day).		
coordinate of the coordinate o	ind is	SUIL	Oral				316		

										in to the straight of the stra	
49a		Rat	14	Days	Oral	10	mg/k g bw/d ay	Increas e	A strong dose-dependent increase of microsomal protein (up to about 60% vs. control) and phospholipid contents (practically doubled at 320 mg/kg bw/day vs. controls). Activities of xenobiotic-metabolising liver enzymes were drastically increased (UDP-glucuronosyltransferase was increased from 80 mg/kg bw/day and up to the top dose).	Light Way the least of the least of the least of the last of the least	ioie
49b		Mouse	14	Days	Oral	80	mg/k g bw/d ay	Increas e	A strong dose-dependent increase of microsomal protein (up to about 60% vs. control) and phospholipid contents (practically doubled at 320 mg/kg bw/day vs. controls). Activities of xenobiotic-metabolising liver enzymes were drastically increased (UDP-glucuronosyltransferase was increased from 80 mg/kg bw/day and up to the top dose).	iller.	
29a	Clinical signs	rat	28	Days	Oral	500	mg/k g bw/d ay	Change	Due to marked clinical signs of acute toxicity, one male and two females dosed with 500 mg/kg/ bw/day (Batch B, 96.1% purity) were sacrificed in moribund condition at experimental day 3. In surviving animals, symptoms such as hunch-backed posture, piloerection and laboured breathing were observed that were more pronounced in female than in male animals.		
29b		rat	28	Days	Oral	500	mg/k g bw/d ay	Change	Due to marked clinical signs of acute toxicity, one female dosed with 500 mg/kg/day (Batch A, 96.2% purity) was sacrificed in moribund condition at experimental day 2. In surviving animals, some females had symptoms such as hunch-backed posture, piloerection and laboured breathing.		
34a		Dog	90	Days	Oral	Sold	mg/k g bw/d ay	No effect	Diarrhoea was observed in treatment groups as well as in the control group (there were no differences between the groups). At the high dose, diarrhoea was seen less frequently during the 1 st 20 weeks, which was considered due to reduced diet intake.		
34a		Dog	90	Days	Oral	Sajion is	mg/k g bw/d ay	No effect	Diarrhoea was observed in treatment groups as well as in the control group (there were no differences between the groups). At the high dose, diarrhoea was seen less frequently during the 1 st 20 weeks, which was considered due to reduced diet intake.		
34b		Dog	12 12 10 10 10 10 10 10 10 10 10 10 10 10 10	Mont hs	Oral		mg/k g bw/d ay	No effect	Increased incidence of vomiting was seen in dogs receiving the top dose (132 mg/kg bw/day) diet during the first 13 weeks. No vomiting was seen in males after the dose level had been reduced to 108 mg/kg bw/day. Diarrhoea was observed in treatment groups		
	C	Scoopy, Scoopy	is die	30, 11,					317		

									as well as in the control group (there were no differences between the groups). Increased incidence of vomiting was seen in dogs receiving the top dose (137 mg/kg bw/day) diet during
34b		Dog	12	Mont hs	Oral	110	mg/k g bw/d ay	Decrea se	as well as in the control group (there were no differences between the groups). Increased incidence of vomiting was seen in dogs receiving the top dose (137 mg/kg bw/day) diet during the first 13 weeks. Vomiting still continued in the females during the whole study even after the dose had been reduced to 110 mg/kg bw/day. Diarrhoea was observed in treatment groups as well as in the control group (there were no differences between the groups), but was observed less frequently in all groups during the second half of the study.
38		mouse	80	Week s	Oral	177.7	mg/k g bw/d ay	Change	Increased number of males appeared to be thin in top dose group (6/50 animals).
42		rat	10	days	Oral	500	mg/k g bw/d ay	Increas e	Crusty eye (s), crusty nose and/or muzzle, damp and yellow/brown-stained fur in perianal and/or abdominal region were noted in several high dose females. Additionally, staggered gait, emaciation, loose stool, weakness, and/or lethargy were noted for 4 high dose dams
28	Food consumpt ion	rat	28	Days	Oral	500	mg/k g bw/d ay	Decrea se	Dose-dependent trend to lower food intake in treated male and female at 500 and 1000 mg/kg bw (Overall M: \$\pm\$18% and F: \$\pm\$12%) for weeks 1-4, especially during the first two weeks following the dose changes (F:\$\pm\$12 to M: 19% vs. control weeks 2-4).
29a		rat	28	Days	Orability of the state of the s		mg/k g bw/d ay	Decrea se	In high-dosed animals, the mean food consumption was decreased during week 1 in both males and

29b	
30	
34a	
34a	
34b	
34b	

						1		0, 41, 10	.0.
							This indicates that a dose of 500 mg/kg/day exceeded the MTD.	Sijo oto ikor	i ore
rat	28	Days	Oral	500	mg/k g bw/d ay	Decrea se	In high-dosed animals, the mean food consumption was decreased during week 1 in both males and females (-10 to -13% vs. control) and to a lesser extent in females during the 2nd week also (-5 to -7%). The overall food consumption during the study was similar in all male groups but remained slightly decreased in high-dosed females (-3 to -4%). Study considered supportive only; for each batch of test material (Batch A 96.2% and Batch B 96.1%), only two dose levels were tested (100 and 500 mg/kg) with toxicity already at the low dose-level and mortality at the high dose-level. One female dosed with 500 mg/kg/day (Batch A) and one male and two females dosed with 500 mg/kg/day (Batch B) were sacrificed in moribund condition at experimental days 2 and 3, respectively. This indicates that a dose of 500 mg/kg/day exceeded the MTD.	Stop to jirote	
rat	90	Days	Oral	208.6	mg/k g bw/d ay	Decrea	Food consumption of the high-dosed animals was generally lower, but not significantly lower than in other groups (average reduction of 10% vs. control)		
Dog	90	Days	Oral	132	mg/k g bw/d ay	Decrea se	Reduced food intake week 1-13 was noted in males (34%)		
Dog	90	Days	Oral	137	mg/k g bw/d ay	Decrea se	Reduced food intake week 1-13 was noted in females (36%).		
Dog		Mont hs	Oral Oral	16.8	mg/k g bw/d ay	Decrea se	Food consumption at the top dose level was drastically reduced during the first weeks 1-19 (M↓29%) of the study and improved slowly during the following weeks. Food consumption returned to normal when top dose was reduced from 5000 to 2500 ppm.		
Dog	012	Mont	Oral	16.5	mg/k g bw/d ay	Decrea se	Food consumption at the top dose level was drastically reduced during the first weeks 1-19 (F\\$32%) of the study and improved slowly during the following		

35	
38	
38	
40a	
40a	
40a	
40b	
40b	

							<i>y y</i>	Dis 1111 00	0.
								Cion regiment	
mouse	90	Days	Oral		ppm	No effect	Food consumption was reduced in both sexes receiving 3000 and 5000 ppm on day 1, but there were no consistent effects as the study progressed.	elegit Has	
mouse	80	Week s	Oral		mg/k g bw/d ay	No effect	No consistent evidence of an effect of treatment on food consumption but food utilisation was less efficient than that of controls in females in the top dose group.	U.	
mouse	80	Week s	Oral		mg/k g bw/d ay	No effect	No consistent evidence of an effect of treatment on food consumption but food utilisation was less efficient than that of controls in males in the top dose group		
rat	110	days	Oral	153	mg/k g bw/d ay	Decrea se.	FC was slightly reduced during pre-mating (-4.5%) and gestation (-5.1%) in adult F0 female.		
rat	110	days	Oral	153	mg/k g bw/d ay	Decrea se	FC was slightly reduced during premating (-4.2%) and gestation (-8.8%, days 0-6) in adult F1 female.		
rat	110	days	Oral	156 2N	mg/k g bw/d ay	Decrea se	FC was slightly reduced (-7.1%) after mating in F1 adult M.		
rat	-1).	Week	Oral	225°	mg/k g bw/d ay	Decrea se	A slight reduction was seen during premating for high dose females of both generations (F0: -7.1%, F1 - 7.6%). FC during gestation was also significantly lower than controls for high dose F0 females (-7%), slight reduction seen for F1 females (-3.7%). During lactation, high dose females of both generations also consumed slightly less (not significant) food than controls (F0: -4.5%, F1: -4.2%).		
rat (N)	0715 0715	Week s	Oral	225	mg/k g bw/d ay	Decrea se	A slight reduction was seen during premating for high dose females of both generations (F0: -7.1%, F1 - 7.6%). FC during gestation was also significantly lower than controls for high dose F0 females (-7%), slight reduction seen for F1 females (-3.7%). During		

									lactation, high does famales of both generations also	2.
									lactation, high dose females of both generations also consumed slightly less (not significant) food than controls (F0: -4.5%, F1: -4.2%). Reduced FC at 300 mg/kg bw/day (by 16% for GD 6-	
41a		rat	10	Days	Oral	300	mg/k g bw/d ay	Decrea se	lactation, high dose females of both generations also consumed slightly less (not significant) food than controls (F0: -4.5%, F1: -4.2%). Reduced FC at 300 mg/kg bw/day (by 16% for GD 6-11), FC during complete treatment period was reduced by 9%. FC reductions were slight at the low and mid dose group for GD 6-11 (low dose -7.3%, mid dose -9.4%)	
41b		rat	5	Days	Oral	300	mg/k g bw/d ay	Decrea se	At 300 mg/kg bw/day, food consumption gain was markedly decreased during the first days of treatment (by 17% on GD 6-11) and overall by 13% during the complete treatment period (GD 6-16). Food consumption was also still decreased during GD 16-21. FC at 450 mg/kg bw/day was somewhat decreased (treatment for gestation days 10-14 only).	
42		rat	10	days	Oral	500	mg/k g bw/d ay	Decrea se	FC was transiently reduced for high (-42%) dose animals on GD 6 following the first dosing while it was comparable to controls at GD 13 and 19. A slightly lower food consumption on GD 6 for middose animals was reported but is not considered adverse.	
43		rabbit	14	days	Oral	150	mg/k g bw/d ay	Decrea se	Reduced FC in high dose females during GD 6-19; - 13% (test chemical was administrated GD 6-18)	
44		rabbit	13	days	Oral	200	mg/k g bw/d ay	Decrea se	Reduced FC in high dose females, most markedly in the first week of treatment* (GD 7-10: -43%, GD 10-14; -54%, GD 7-20: -37%). *The test chemical was administrated from GD 7-19 only.	
32	Mortality	rat	90	Days	Oral	ALION OF	ppm	No effect	No effect on mortality up to the highest dose level tested (2400 ppm).	
33		mouse	2001/ 21/1001/	Days	Oral	500	ppm	Increas e	One female in each of the 2400- and the 1000-ppm dose groups and one male in the 500-ppm dose group died during study week 8. No clinical observations were reported for these animals before death.	
	9	mouse	lorits lorits lorits	30,110	500				321	

35	
40a	
40a	
41a	
41b	
42	
46	
49a	

				1		1			-0
mouse	90	Days	Oral	5000	ppm	Increas e	Killed for humane reasons due to BW loss during the first week.	Control italia	,,016
rat	110	days	Oral	153	mg/k g bw/d ay	Increas e	Three dams died post partum in Adult (F0); one dam died day 4, one dam died day 11 and one dam died shortly after delivery. No observations on possibly impaired parturition were recorded for any of these dams and all of these dams completed parturition and delivered all pups. Dam mortalities after parturition may be related to maternal toxicity; however, RMS cannot exclude a link to dystocia.	illely ligg	
rat	110	days	Oral	153	mg/k g bw/d ay	Increas e	Three dams died post partum in Adult (F1): one dam died day 4, and two dams died day 2. No observations on possibly impaired parturition were recorded for any of these dams and all of these dams completed parturition and delivered all pups. Dam mortalities after parturition may be related to maternal toxicity; however, RMS cannot exclude a link to dystocia.		
rat	10	Days	Oral	300	mg/k g bw/d ay	Increas	At 300 mg/kg bw/day, 2 dams died shortly before the autopsy on gestation day 21. Autopsy did not reveal any obvious pathological condition.		
rat	5	Days	Oral	300	mg/k g bw/d ay	Increas	Four and 2 dams died at 300 and 450 mg/kg bw/day, respectively, shortly before the autopsy on gestation day 21. Autopsy did not reveal any obvious pathological condition.		
rat	10	days	Oral	500	mg/k g bw/d ay	Increas e	Two gravid and one non-gravid females at 500 mg/kg bw/day (on day 10, 11 and 12, respectively; clinical signs were observed ante mortem and occurrence of stomach and intestinal lesions).		
Mallard duck	23	week	Oral	No effect	ppm	No effect	No effects on survival in the parental generation up to the highest dose level tested (1000 ppm).		
Rat	3914 3000 3000	Days	Oral	No effect	mg/k g bw/d ay	No effect	No effect up to the highest dose level tested 320 mg/kg bw/day		
1/1/5,0	ignie Grin	SQUIL					322		

										Chipic in Sugar
49b			Mouse	14	Days	Oral	No effect	mg/k g bw/d ay	No effect	No effect up to the highest dose level tested 320 mg/kg bw/day
36	No relev ant effect obser ved	No relevant effect observed	rabbit	21	days	Dermal		mg/k g bw/d ay	No effect	No effect up to the highest dose level tested 320 mg/kg bw/day
37	No relev ant effect obser ved	No relevant effect observed	mouse	107	Week s	Oral		ppm	No effect	ded to the total string of this
37	No relev ant effect obser ved	No relevant effect observed	mouse	106	Week s	Oral		ppm	No effect	Ployle Store of Store
38	No relev ant effect obser ved	No relevant effect observed	mouse	80	Week s	Oral	oeith y	mg/k g bw/d ay	No effect	On the being the
38	No relev ant effect obser ved	No relevant effect observed	mouse	80	Week	1. 100 E)	Jith of	mg/k g bw/d ay	No effect	
39	No relev ant effect obser ved	No relevant effect observed	rat		Week	Oral Political Control of the Contro	76 1	mg/k g bw/d ay	No effect	
		C.		ind is	SUIT OF THE	Oral Pallifil Solution				323

										O'DO SICH THE OF
39	No relev ant effect obser ved	No relevant effect observed	rat	116	Week s	Oral		mg/k g bw/d ay	No effect	TO THE HOLD TO TOO TO THE TOP TO
	ved		.5	AOCUMO AOCUM		inder Still of the	Solid Lines	LE SPANOR	Supply Su	The state of the s
		Q	COOK	idnis Isedus	30,111	500				324

2.10.2.2.2.1 Assessment of the integrated lines of evidence and weight of evidence for EAS-mediated adversity and endocrine activity

Table 168: WoE for EAS-mediated adversity

- Overall conclusion: No evidence for a consistent pattern of endocrine adversity. However, the EAS-modality is not sufficiently investigated.
- The most relevant studies for adversity are two 2-generations rat studies which did not show any ED effects; however, several relevant ED parameters are missing. In both studies, the doses chosen were too low (based on weight loss in the rats not consistently exceeding 10% of their body weight).
- Testicular toxicity observed in the 90-day study and in the 1-year dog study receiving top dose: Cellular debris in epididymis (90 days), reduced spermatogenesis and reduced testis weight (90 days and 1-year) and tubular atrophy (1-year). Effects observed above the MTD (90 days) and around the MTD (1-year).
- EAS parameters were also examined in other studies at different dose levels and of different durations in rats and mice by oral administration of the substance and no adversity was observed. However, in several studies, dose levels were not optimal. Three available carcinogenic long-term studies are available (two in mice and one in rats). The selected dose levels in the first mouse study and in rats were conducted below the MTD (too low to reveal any adverse effect on the examined endpoints).
- Target organ toxicity was observed in the adrenal and kidney
- For the liver, target organ toxicity was mainly characterized by hypertrophy; however, necrosis and fibrosis in dogs (500 ppm) and hepatic degeneration in rats (1000 ppm) could be considered adverse.

Although the available dataset for EAS-mediated adversity is negative this dataset is not considered sufficient based on two old OECD TG 416 studies conducted prior to 2001. The two studies are considered supportive only as dose levels were considered too low (based on weight loss in the rats not consistently exceeding 10% of their body weight) and due to the age of these studies that they do not assess all parameters which are required by the EFSA-ECHA ED guidance document to conclude that all "EATS-mediated" parameters have been sufficiently investigated. The major deviations from current guideline are summarized in the table below:

Table 169: Overview over selected parameters investigated and missing parameters in the two-generation studies according to OECD TG 416.

Parameter	Assessed in two-generation study (study ID 40a)	Assessed in two-generation study (study ID 40b)
Gross necropsy	Yes	Yes
Time to mating		

Gestation length		
Number of implantations		
Litter size	Yes	Yes
Fertility		
Post-implantation loss		
Tool impullation tool		of Public ties
Number of live births	Yes (but for some litters it was uncertain whether the pups were born alive or dead)	Weschial City of
Number of corpora lutea	No	Child Wood of Child
Sex ratio	Yes	Tes offilms
Oestrus cyclicity	No	No do
Sperm analysis (morphology, motility, numbers)	No No	STORY OF NOT
Ano-genital distance*	No *(should be measured at postnatal day 0 in F2 pups if	No *(should be measured at postnatal day 0 in F2 pups if
	triggered by alterations in F1 sex ratio or timing of sexual maturation)	triggered by alterations in F1 sex ratio or timing of sexual maturation)
Age of vaginal opening and preputial separation	No (incidences of vaginal opening and whether testes had descended recorded at predefined ages considered reasonable substitute for measuring age when sexual developmental landmarks were reached (however suboptimal reporting)	No
Organ weights: uterus, ovaries, testes, epididymis (total and cauda), prostate, seminal vesicles with coagulating glands and their fluids (as one unit), pituitary, thyroid, and adrenal glands Histopathological examination:	Only testes/epididymis weighed in P (F0) adults, coagulating gland, epididymis, uterus, prostate, seminal vesicles, pituitary, and thyroid not weighed in F1 adults, 5 weanlings/sex/group used for organ weights	Testes and ovaries were weighed in P (F0) and F1 adults, and selected F1 and F2 pups (10 sex/group), uterus, epididymis, prostate, seminal vesicles with coagulating glands, brain, liver, kidneys, spleen, pituitary, thyroid, adrenals not weighed in adults, and brain, spleen and thymus not weighed in pups
Histopathological examination: vagina, uterus (with cervix), ovaries, testis, epididymis, seminal vesicles, prostate (and coagulating gland)	Several tissues not examined in adults (uterus, vagina, seminal vesicle, coagulating gland; epididymis only in F0), 5 weanlings/sex/group used for histopathological examinations	Yes 10 weanlings/sex/group used for histopathological examinations

While there was no observable EAS-mediated adversity in the two 2-generation studies, some parameters sensitive to, but not diagnostic of, EATS occurred in the 2-generation studies and in the developmental toxicity studies. There were no consistent effects on sexual function and fertility throughout the studies. Although some effects, like for instance increased gestation length was seen in the 2-generation study 40a, there was no effect on gestation length in 2-generation study 40b conducted with a slightly higher top dose. Several effects indicative of developmental toxicity was however observed in the available studies in accordance with penconazole being classified as H361d (Suspected of damaging the unborn child):

- Post-implementation loss in the form of early resorptions was seen in all developmental studies except one study in rabbits (study ID 43; the higher number of resorptions was considered unrelated to treatment).
- Litter/pup weight was decreased postnatally in both 2-generation studies at the top dose.
- Presence of anomalies were seen in the developmental toxicity studies; however, the effects are not pronounced and consistent in the different studies: the most severe malformations were seen in one study in rabbit (study ID 43) with increase in internal hydrocephalus and bilateral microphthalmia (within range but exceeded mean +-SD) at the top dose (150 ppm). Variations or delays in development were otherwise seen throughout the other studies; incomplete/absent ossification occurred in rats (study ID 41 and 42) and in rabbits (study ID 44) in addition to supernumerary cervical ribs (study ID 42), all in the presence of maternal toxicity.
- A slightly change occurred in the numbers of embryonic or foetal deaths and viable foetuses in the developmental toxicity studies; number of dead foetuses slightly increased in two rat studies at the top dose (study ID 41 and 42) and reduced live foetuses/litters in addition to two dead foetuses were recorded in rabbits (study ID 44).

EAS-mediated adversity (anti-androgenic activity) was observed in male dogs only (study ID 34a and 34b; 90-day study and 1-year study), but these effects were observed largely above the MTD at 5000 ppm (132 mg/kg bw/day) in the 90-day study and around the MTD at 2500 ppm (108 mg/kg bw/day) in the 1-year study. Cellular debris in epididymis (90 days), reduced spermatogenesis and reduced testis weight (90 days and 1-year) and tubular atrophy of the seminiferous epithelium associated with formation of giant cells (1-year) were observed. Reduced spermatogenesis was however not observed in the 2 dogs sacrificed after a four-week recovery period. The relative decreases in gonad weights in the 90-day study were not consistent compared to control, low to high dose (+23%, -4%, -27%) but both absolute weight (-47%) and relative testis weight (-27%) were markedly decreased at the top-dose.

In the 90-day study, body weight gain was reduced -12% and food consumption was reduced -34%, week 1-13 in males. Dogs (90 days) received only the highest dose level (132 mg/kg bw/day), while this dose level was reduced to 108 mg/kg bw/day (1-year study) during week 20 due to excessive reduction in food consumption -19% and body weight gain, -29% of the animals in that group. After dose reduction, top dose animals then gained more weight for the remainder of the treatment period as the other groups, including controls, while overall BW gain was reduced (-44%). Notably, the two males sacrificed after the recovery period also gained weight during the recovery weeks (body weight at termination was increased +11% compared to control).

A dose-dependent increase in relative liver weight was also observed in the 90-days study: +2, +15, +75% for males while there was no dose-dependent increase in liver weight for males in the 1-year study with increase at the top dose only, +21%. In addition, hepatocyte necrosis was observed in 4/4 males in the 90-day study compared to 1/4 males in the 1-year study.

Taking the body weight effects in the 90-days study and in the 1-year study into consideration (week 1-19), the reduced testis weight and associated histopathological findings can be considered secondary to systemic toxicity. Further, these anti-androgenic effects were not observed in rats or mice. However, it should be noted that in the 2-generation studies, the carcinogenicity study (rats) and in several of the 90-day studies in rats, the doses chosen were not considered to be high enough to reveal adverse effects on the examined endpoints. In addition, several of the studies are considered supportive due to deviations from their respective current guideline.

The dataset available shows positive S-modality activity based on the inhibition of testosterone and estradiol synthesis at the OECD TG 456. As an endocrine gland, producing also steroid hormones and cortisol, the adrenal can be directly linked to steroidogenesis. Effects on adrenals are addressed in the EFSA-ECHA ED GD (EFSA Journal 2018;16(6):5311) as a "sensitive to, but not diagnostic of ED" parameter. Although the effects on the adrenal

cannot be considered diagnostic on their own the effects might contribute to the evaluation of adversity and provide indications of an endocrine MoA that might warrant further investigation. There were indications of treatment-related adverse effects on adrenal based on findings in rats and dogs. In rats treated with a top dose of 500 mg/kg/bw/day for 28 days, absolute adrenal weight was increased (male 18% and female 24% in study ID 29a and male 14% and female 22% in study ID 29b) and cortical atrophy was observed in 8/10 females and 9/10 females (study ID 29a and ID 29b, respectively). In female dogs treated with a top dose of 110 mg/kg/bw/day for 12 months, absolute and relative adrenal weights were increased (abs:34%, rel: 54%) in absence of histopathological changes and in presence of lower BW (study ID 34b). Adrenal histopathology and weight were investigated in rats, dogs and mice, in totally 8 (histopathology) and 10 (weight) studies. Although there were no consistent adverse effects on adrenal, dosing was not optimal in several of the studies, as described in the previous sections.

Table 170: WoE for EAS-mediated endocrine activity

- Overall conclusion: Evidence of AR and ER-mediated activity (antagonism) and effects (inhibition) on steroidogenesis activity in vitro
- Several *in vitro* assays were positive, providing evidence of ER and AR-mediated antagonistic activity:
- ToxCast ER bioactivity (agonism: neg- and antagonism: pos+)
- ToxCast AR bioactivity (agonism: neg- and antagonism: pos+)
- Open literature study: Inhibition of testosterone-induced AR activation
- Several in vitro assays were positive, providing evidence of inhibition of steroidogenic activity:
- ToxCast Steroidogenesis activity (inhibition of aromatase)
- Open literature studies (inhibition of aromatase)
- OECD 456 (inhibition of testosterone and estradiol synthesis)

Penconazole is examined in the United States Environmental Protection Agency's ToxCast™ programme, which includes binding, transactivation and steroidogenic assays equivalent to OECD Conceptual Framework Level 2. In addition, open literature studies are available. For penconazole, the EAS-mediated endocrine activity is not sufficiently investigated e.g., studies are missing for E-modality (ToxCast ER Bioactivity Model and OECD TG 455 not available) and A-modality (AR Bioactivity Model and OECD TG 458 not available). However, the available *in vitro* dataset from ToxCast and open literature is positive for ER and AR-mediated antagonism as well as for inhibition of steroidogenic activity; both inhibition of CYP19 and of inhibition of testosterone and estradiol synthesis (OECD TG 456.) Taken together, these results provide evidence indicative of endocrine activity for the E, A and S-modality, which is sufficient to start a MoA analysis.

2.10.2.2.3 Initial analysis of the evidence and identification of relevant scenario for the ED assessment of EAS-modalities

Table 171: Selection of relevant scenario

Adversity based on EAS-mediated parameters	Positive mechanistic OECD CF level 2/3 Test	Scenario	Next step of the assessment	Scenario selected
No (sufficiently investigated)	Yes/No	1a	Conclude: ED criteria not met because there is not "EAS-mediated" adversity	
Yes (sufficiently investigated)	Yes/No	1b	Perform MoA analysis	
No (not sufficiently investigated)	Yes	2a (i)	Perform MoA analysis (additional information may be needed for the analysis)	X

Adversity based on EAS-mediated parameters	Positive mechanistic OECD CF level 2/3 Test	Scenario	Next step of the assessment	Scenario selected
No (not sufficiently investigated)	No (sufficiently investigated)	2a (ii)	Conclude: ED criteria not met because no EAS- mediated endocrine activity observed	
No (not sufficiently investigated)	No (not sufficiently investigated)	2a (iii)	Generate missing level 2 and 3 information. Alternatively, generate missing "EATS-mediated" parameters. Depending on the outcome move to corresponding scenario	ublic titl
Yes (not sufficiently investigated)	Yes/No	2b	Perform MoA analysis	0,00,60

2.10.2.2.4.1 Postulate MoA

Parameter	5	2/3 Test							
No (not suffi investigated)	iciently	No (sufficiently investigated)	2a (ii) C	Conclude: ED criteria not met because no EAS- nediated endocrine activity observed					
No (not suffi investigated)	ciently	No (not sufficiently investigated)	2a (iii) G A pa	Generate missing level 2 and 3 information. Alternatively, generate missing "EATS-mediated" parameters. Depending on the outcome move to					
Yes (not suff investigated)	ficiently)	Yes/No	2b Po	erform MoA analysis	editatio.				
2.10 2.10.2.2.4.1	D.2.2.4 M Postula	MoA analysis for te MoA	EAS-modal	lities full effect to the ellectrotter is the entire of the ellectrotter is the ellec	May				
Table 1	1/2; Desc	emption of the postu	nated MoA (ar	ndrogen receptor antagonist)					
Table 1	Descrip	tion	nated MoA (ar	ndrogen receptor antagonist) Supporting Evidence	_				
Table 1	Descrip	tion	nated MoA (ar	Supporting Evidence	_				
Table 1	Descrip Androge	tion en receptor antagonist	and is pro	In vitro assays using human cell lines (ToxCast) and one open literature using human cell line showing inhibition of testosterone-induced AR activation. Concordance between assays. (supporting evidence of anti-androgenic activity) (study ID 2, 17, 19, 20)	e n e				
Table 1 MIE KE1	Descrip Androge Decrease androger	tion en receptor antagonist e in transcription n receptor.	of genes by	In vitro assays using human cell lines (ToxCast) and one open literature using human cell line showing inhibition of testosterone-induced AR activation. Concordance between assays. (supporting evidence of anti-androgenic activity) (study ID 2, 17, 19, 20) the No data/studies available for penconazole	e n e				
MIE KE1 KE2	Descrip Androge Decrease androge Reduced	en receptor antagonist e in transcription n receptor. I testis weights	of genes by	Conclude: ED criteria not met because no EAS- nediated endocrine activity observed Generate missing level 2 and 3 information. Alternatively, generate missing "EATS-mediated" arameters. Depending on the outcome move to corresponding scenario erform MoA analysis Supporting Evidence In vitro assays using human cell lines (ToxCast) and on- open literature using human cell line showing inhibition of testosterone-induced AR activation. Concordance between assays. (supporting evidence of anti-androgenic activity) (study ID 2, 17, 19, 20) the No data/studies available for penconazole Shown in 90-days and 1 year dog study (study ID 34a b)	e n e y				
1112	Descrip Androge Decrease androger Reduced	tion en receptor antagonist e in transcription n receptor. I testis weights	of genes by	In vitro assays using human cell lines (ToxCast) and one open literature using human cell line showing inhibition of testosterone-induced AR activation. Concordance between assays. (supporting evidence of anti-androgenic activity) (study ID 2, 17, 19, 20) The No data/studies available for penconazole Shown in 90-days and 1 year dog study (study ID 34a b) Shown in 90-days and 1 year dog study (study ID 34a b)	·•				
MIE KE1 KE2 KE3 KE4	Reduced	tion en receptor antagonist e in transcription n receptor. I testis weights I spermatogenesis atrophy of the semired with formation of g	niferous epitheli	b) Shown in 90-days and 1 year dog study (study ID 34a b)	·•				

Table 173: Description of the postulated MoA (inhibition of steroidogenesis)

900 91	Description	Supporting Evidence
io die di	4.5	
MEUL	Inhibition of steroidogenic enzymes (testicular steroidogenesis) in Leydig cells	No data available on inhibition of steroidogenic enzymes catalysing the steps from cholesterol to testosterone while <i>in vitro</i> studies, both open literature and ToxCast, show inhibition of CYP19 (enzyme responsible of catalysing the aromatization of androgens to estrogens) (study ID 4, 5, 6, 27)
KE1	Inhibition of testosterone synthesis Decreased testicular testosterone	Measured in H295R steroidogenesis assay (study ID 45) No data/studies available for penconazole
KE2	Decrease in transcription of genes by the androgen receptor.	No data/studies available for penconazole
KE3	Reduced testis weights	Shown in 90-days and 1 year dog study (study ID 34a, b)

Ų.	Description	Supporting Evidence
KE4	Reduced spermatogenesis	Shown in 90-days and 1 year dog study (study ID 34a, b)
KE5	Tubular atrophy of the seminiferous epithelium associated with formation of giant cells	Shown in 1-year dog study (Study ID 34b)
AO	Impairment of male reproductive capacity	Shown in 90-days and 1 year dog study (study ID 34a, b)

The postulated Mode of Actions include three KE (reduced testis weights, reduced spermatogenesis and tubular atrophy) observed above the MTD (90 days dog) and/or around the MTD (1-year dog). These effects may be considered secondary to systemic toxicity. There were no consistent treatment related effects on testis in rats and mice; however, dosing was not optimal in several of these studies.

2.10.2.2.4.2 Further information to be generated to postulate MoA

No endocrine adversity was observed in rats and mice, but as highlighted in section 2.2.2.1, relevant ED parameters are missing from the two available 2-generation studies. It is therefore not possible to postulate a MoA in rats to address the positive Level 2 outcome for endocrine activity for the EAS-modalities. A MoA analysis for anti-androgenic activity is therefore postulated here to address the adversity observed in male dogs; however, the reduced testis weights associated with histopathological changes can be considered secondary to systemic toxicity. Although there were no consistent effects on testis weights or testis histopathology in rats or mice, RMS is of the opinion that the dose levels chosen in many of these studies are not high enough to address the examined endpoints and that higher dose levels may be needed to remove the concern arising from the available *in vitro* mechanistic data. The MoA presented here is therefore a theoretical explanation that the findings in dogs could arise from penconazole acting as an androgen receptor antagonist action and/or inhibition testosterone synthesis, but a biological plausible link between endocrine activity and EAS-mediated adversity is not possible to establish as the adversity is observed together with excessive systemic toxicity, in addition, there are no *in vivo* mechanistic data available for penconazole to support the postulated MoA.

RMS proposes that a complete dataset is needed to investigate adversity e.g., that OECD TG 416 (latest version) should be conducted, with investigation of the following parameters in line with the EFSA "Technical report on the outcome of the pesticides peer review meeting on general recurring issues in mammalian toxicology" (EFSA supporting publication 2020:EN-1837, page 6-7, doi:10.2903/sp.efsa.2020.EN-1837)): anogenital distance (AGD), nipple retention, mammary gland histopathology and hormone measurements. A complete dataset from a Level 5 study would fully address the concern arising from the positive outcome of the Level 2 studies, which would be sufficient to conclude whether the ED criteria are met or not.

2.10.2.2.4.3 Empirical support of the postulated MoA

Not applicable considering the limited data available.

2.10.2,2.4.4 Empirical support of the postulated MoA

Not applicable considering the limited data available.

2.10.2,2.5 Conclusion of the assessment of EAS-modality

Overall, the WoE indicates that EAS-mediated adversity was not observed for penconazole. However, the dataset for the assessment of EAS-mediated adversity was not considered sufficient. According to the ECHA/EFSA ED GD, the available dataset for endocrine activity is short of Level 2 studies in line with OECD TG 455 (ER transactivation assays) and OECD TG 458 (AR STTA assays). However, as also literature and *in vitro* mechanistic ToxCast data were collected, the overall results are considered sufficient as evidence indicative of endocrine activity for the E, A and S- modality which triggers a MoA analysis. In RMS's opinion, a complete dataset is needed to investigate adversity e.g., that OECD TG 416 (latest version) should be conducted, with investigation of the following parameters: anogenital distance (AGD), nipple retention, mammary gland histopathology and hormone measurements. A complete dataset from a Level 5 study would fully address the concern arising from the positive outcome of the Level 2 studies. Further, the execution of the endpoints in a single experimental set is expected to

minimize all the uncertainties associated with comparing endpoints between different study designs uncertainties associated with the study design.

2.10.2.2.6 Overall conclusion on the ED assessment for humans

The available dataset was indicative of T-mediated activity: Uridine diphosphate [UDP]-glucuronyl transferase was increased in rat and mouse hepatocytes. There was no consistent evidence of T-mediated adversity: Increased thyroid weight and incidences of minimal hypertrophy of the follicle epithelium was observed in one study (short term 28 day) in one species (rat) and were considered adverse. However, these findings were not confirmed in other studies. Although there were no consistent effects on T-mediated adversity and activity, RMS is of the opinion that these parameters may not have been sufficiently investigated.

The available dataset was positive for EAS-mediated activity. There was evidence of AR and ER-mediated activity (antagonism) and effects (inhibition) on steroidogenesis activity *in vitro*. There was no consistent evidence of EAS-mediated adversity: Testicular toxicity was observed in the 90-day study and in the 1-year dog study receiving top dose (cellular debris in epididymis (90 days), reduced spermatogenesis and reduced testis weight (90 days and 1-year) and tubular atrophy (1-year)). These effects were observed above the MTD (90 days) and around the MTD (1-year). EAS parameters were also examined in other studies at different dose levels and of different durations in rats and mice by oral administration of the substance and no adversity was observed. However, RMS is of the opinion that EAS-adversity has not been sufficiently investigated.

In summary, as the endocrine disrupting properties of penconazole have not been sufficiently investigated, a firm conclusion regarding the endocrine disruption potential of penconazole cannot be drawn.

2.10.3 ED assessment for non-target organisms

2.10.3.1 ED assessment for T-modality

2.10.3.1.1 Have T-mediated parameters been sufficiently investigated?

Table 174: Have T-mediated parameters been sufficiently investigated?

,0	Sufficiently investigated
T-mediated parameters	Non-target organisms other than mammals
0, 80	No, as none of the following studies, measuring
S. Br.	T-mediated adversity and/or activity, in non-target
00, 4,6	organisms other than mammals are available:
10P W. 201	- LAGDA (OECD 241)
6, 10, 10, 11, 11	- AMA (OECD 231)
The Children was a start of th	- XETA (OECD 248)
T-mediated parameters T-mediated parameters This do do the first and current to the first and	Mammals as non target organisms
· 60 / 60 / 60	Mammals as non-target organisms T-mediated parameters for mammals as non-target
24. Oli 10° All 15°	organisms have not been sufficiently investigated, please
Col to Still lice of the to	see Section 2.10.2.1.
THE SOLVE TO THE STATE OF	500 500tion 2.10.2.11.
40 CIN MILL I POR	<u> </u>
110 60 1 th 210 cult	
17,000	
's Mi Millis	
62 140 116, Hu	
2 80 01	
0 10 0	
0, 70,	

2.10.3.1.2 Lines of evidence for adverse effects and endocrine activity related to T-modality

Table 175: Lines of evidence for adverse effects and endocrine activity related to T-modality

	2.10.3.1.2 Lines of evidence for adverse effects and endocrine activity related to T-modality Table 175: Lines of evidence for adverse effects and endocrine activity related to T-modality Table 175: Lines of evidence for adverse effects and endocrine activity related to T-modality Table 175: Lines of evidence for adverse effects and endocrine activity related to T-modality Table 175: Lines of evidence for adverse effects and endocrine activity related to T-modality Table 175: Lines of evidence for adverse effects and endocrine activity related to T-modality Table 175: Lines of evidence for adverse effects and endocrine activity related to T-modality Table 175: Lines of evidence for adverse effects and endocrine activity related to T-modality Table 175: Lines of evidence for adverse effects and endocrine activity related to T-modality Table 175: Lines of evidence for adverse effects and endocrine activity related to T-modality Table 175: Lines of evidence for adverse effects and endocrine activity related to T-modality Table 175: Lines of evidence for adverse effects and endocrine activity related to T-modality Table 175: Lines of evidence for adverse effects and endocrine activity related to T-modality Table 175: Lines of evidence for adverse effects and endocrine activity related to T-modality Table 175: Lines of evidence for adverse effects and endocrine activity related to T-modality													
Stu dy ID Ma trix	Effec t classi ficati on	Effect target	Species	Dura tion of expo sure	Dura tion unit	Route of administ ration	Lowest Effect dose	Dose unit	Effect directi on	Observed effect (positive and negative)	9 1/11 7.0 16		Mod ality	
21	In vitro mech anisti	Thyroid receptor	rat, pituitary gland, cell line	28	Hr	Uptake from the medium (in vitro)	0	μМ	No effect	ToxCast TR model: No TR mediated agonistic activity	Evidence for TR mediated antagonistic activity <i>in vitro</i> , (Penconazole was active in one of these assays	Overall, indication of endocrine activity, based on <i>in vivo</i> mechanistic data (study ID 49a and 49b)	T	
22	С	Thyroid receptor	rat, pituitary gland, cell line	28	Hr	Uptake from the medium (in vitro)	56.89	μМ	Change	ToxCast TR model: TR mediated antagonistic activity	(TOX21_TR_LUC_GH3_Antag onist); however, the viability readout was also active and interference with cytotoxicity cannot be excluded.)	showing marked liver enlargement in rats and mice at 80 mg/kg bw/day and higher (dose- dependent) and a		
24		TSH receptor (in vitro)	human, kidney, cell line	0,5	Hr	Uptake from the medium (in vitro)	0	μM	No effect	ToxCast TSHR: No TSHR mediated activity	Negative, no effect on TSHR in vitro	pronounced induction in the activity of several hepatic xenobiotic metabolising enzymes		
25		TSH receptor (in vitro)	human, kidney, cell line	0,5	Hr	Uptake from the medium (in vitro)	111.95	μM	No effect	ToxCast TSHR: No TSHR mediated activity		(uridine diphosphate [UDP]-glucuronyl transferase).		
26		TSH receptor (in vitro)	human, kidney, cell line	0,5	Hr	Uptake from the medium (in vitro)	Jill 8	μΜΟ	No effect	ToxCast TSHR: No TSHR mediated activity				
48	Sensi tive to, but	Behaviou r (fish)	Fathead	94 (post hatch	Days	Uptake from water	Still it	mg/L water	No effect	No effects on behaviour	No effects on behaviour or appearance.	Parameters investigated are sensitive to but not diagnostic of EATS and cannot be assigned to a	May indic ate a speci	
48	not diagn ostic of,	Appearan ce [Not in list]	minnow	94 (post hatch	Days	Uptake from water	No effect	mg/L water	No effect	In the study report it is stated that "No abnormal appearance" was observed. No further information is provided.		specific modality. These data cannot by themselves provide (or support) evidence of adversity.	fic moda lity, but not	

											Decreased fish length and weight observed at doses of 0.68 mg a.s./L and above in one study.	ingino.
46	EAT S	Behaviou r [Not in list]	Mallard duck	23	week s	Oral	No effect	ppm	No effect	No abnormal behavioural reactions noted which could be attributed to the treatment	ing inglinal biol	istolitations
47				30 (post hatch	Days	Uptake from water	0.68	mg/L water	Decrea se	Dose dependent effect	Decreased fish length and weight observed at doses of 0.68 mg a.s./L and above in one study. Decrease embryo length observed at 0.8 mg a.s./L and	Ug.
48		Body weight (fish)	Fathead minnow	94 (post hatch)	Days	Uptake from water		mg/L water	No effect*	No effects in males, females or combined. The highest dose tested was 0.6 mg a.s./L. *12.7% reduction in males was observed at the top dose of 0.6 mg a.s./L however not statistically significant).	above. In neither of the fish	
46		Body weight (bird)	Mallard duck	23	week s	Oral		ppm	No effect	No effects on bird weight.	C V	
47		Length	Fathead	30 (post hatch	Days	Uptake from water	0.680	mg/L water	Decrea	Dose dependent effect		
48		(fish)	minnow	94 (post hatch	Days	Uptake from water	Sincipal	mg/L water	No effect	No effects in males, females or combined. The highest dose tested was 0.6 mg/L .		
501		Larval length	Zebrafish (Danio rerio) ¹	4	Days	Uptake from water		mg/L water	Decrea se	Significantly (p $<$ 0.05) decreased body length at 1.6 mg a.s./L and above (dose dependent response).		
50¹		Morphol ogical abnormal ities	Zebrafish (Dendo verio)!	olije olije	Days (Uptake from water	0.8	mg/L water	Increas e	Significantly (p < 0.05) increased malformations (including pericardial edema, yolk-sac edema, axial malformation, tail malformation and spinal curvature) in embryos at		

diagn ostic of EAT S

									concentrations of 0.8 mg/L and above (dose dependent response).	Impaired (0%) hatching at the
47		Fathead	4 to 5 (11)	Days	Uptake from water	3.3	mg/L water	Decrea se	Impaired hatching at highest dose	the ELS. In neither of the fish studies effects on hatching was
48	Hatching success	minnow	4	Days	Uptake from water		mg/L water	No effect	No effect (the highest dose tested was 0.6 mg a.s./L.)	observed at lower doses. Effects on hatchability also observed for Mallards at the top dose.
501		Zebrafish (Danio rerio) ¹	4	Days	Uptake from water	0.8	mg/L water	Decrea se	Significantly reduced hatching rate at 0.8 mg/L and above in a dose-	observed for Mallards at the top dose.
46	Hatchabil ity	Mallard duck	23	week s	Oral	1000	ppm	Decrea se	73 % of the eggs hatched at top dose compared to 86% in the control.	5 (.KS)
46	Cracked eggs					Ó	KKSP KKSP	ingo	No effect	No effects were observed on eggs (other than hatchability, see above) or embryos of Mallards up to the top dose (1000 ppm).
46	Egg productio n				880	Solicy	010:		No effect	
46	Eggshell thickness	Mallards	23	week	Oral	Silon,	ppm	No effect	No effect	
46	Viable embryos	90	Chille	SKILL	ogrifi)	ent of the	00		73 % of the eggs hatched at top dose compared to 86% in the control. No effect No effect	
46	Viability ducklings [Not in list]	This to	ights	SLITA.	9,90cn				No effect on % viability of 14-day old ducklings at any test concentration	

46		Eggs set [Not in list] Embryos [Not in list]								no effects on eggs set at any test concentration No effect on no. of or % live 17-day embryos at any test concentration	Stick of School of the state of	
501		survival of embryos	Zebrafish (Danio rerio) ¹	4	Days	Uptake from water	0.8	mg/L water	Decrea se	In the study, survival of embryos and larvae have been merged, and is significantly decreased at the lowest dose tested in a dose dependent manner. Absolute decrease is not reported but seem from the figure to be \$10%	Still and	
501	unkn own	Heartbeat rate [Not in list]	Zebrafish (Danio rerio) ¹	4	Days	Uptake from water	1.6	mg/L water	Decreso	Significantly reduced embryo heartbeat rate at 0.6 mg/L and above in a dose dependent manner	5 . its	
47	Syste mic toxici ty	Survival (fish)	Fathead minnow	30 (post hatch	Days	Uptake from water	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	mg/L	Decrea se	Post-hatch survival was not significantly reduced at the second highest dose (1.5 mg a.s./L).	In the ELS hatchability was 0% at the top dose (3.3. mg a.s./L), and thus survival was also 0%. 3.3 mg a.s./L is thus above the MTC (at least for eggs/embryos). No other effects on systemic toxicity were observed at the tested doses in fish or in mammals.	Syste mic toxic ity

This is an open literature study regarded as supportive by RMS. The main reasons why it is considered supportive is the lack of analytical verification of the test substance and uncertainty on whether the study fulfils the validity criteria. RMS is still of the opinion that the results of the study may provide valuable information to be included in a WoE the ED-criteria. For further details, see Volume 3 – B.9.2.2.1, K-CA 8.2.2.1/03. ¹This is an open literature study regarded as supportive by RMS. The main reasons why it is considered supportive is the lack of analytical verification of the test substance and uncertainty on whether

2.10.3.1.2.1 Assessment of the integrated lines of evidence and weight of evidence for T-mediated adversity and endocrine activity

Table 176: WoE for T-mediated adversity

- Overall conclusion: No indication of endocrine adversity, however not sufficiently investigated.
- No specific endpoints for T-mediated adversity were examined as neither the LAGDA (OECD TG 241) nor the AMA (OECD TG 231) are available.
- Sensitive to, but not diagnostic of EATS parameters have been investigated in the Fish sexual development test (FSDT; Study ID 48) and a fish early life stage toxicity test (ELS; study ID 47) with Fathead minnow (98 and 30 days of exposure, respectively), and in an open literature study (Study ID 50) on embryonic development of Zebrafish (4 days of exposure). The open literature study is regarded as supportive, please see Volume 3 B.9.2.2.1 for further details.
- In zebrafish (*Danio rerio*) embryos/larvae, malformations such as pericardial edema, yolk-sac edema, axial malformation, tail malformation and spinal curvature was observed at all doses (0.8, 1.6 mg a.s./L and 2.4 mg a.s./L) in a dose dependent manner. Pericardial edema and yolk sac edema were common malformations in zebrafish embryos exposed to penconazole as compared to other malformations.
- Reduced Zebrafish larval length was observed at 1.6 mg/L and above, whereas reduced weight and length in 30-day old Fathead minnow larvae were observed at 0.68 mg a.s./L and above. No statistically significant effects on weight/length of adult fish were observed up to the top dose of 0.6 mg a.s./L in the FSTD. However, RMS notes that a non-statistically significant weight reduction (-12.7%) in male fish was observed at the top dose of 0.6 mg a.s./L in the FSDT.

Table 177: WoE for T-mediated endocrine activity

- Overall conclusion: Indication of endocrine activity (based on increased UDP-GT in mice and rats), however not sufficiently investigated.
- In one in vivo mechanistic study (open literature study, ID 49, 1985) marked liver enlargement in rats and mice at 80 mg/kg bw/day and higher (dose-dependent) and a pronounced induction in the activity of several hepatic xenobiotic metabolising enzymes (uridine diphosphate [UDP]-glucuronyl transferase) was observed. Increased UDP-GT may be indicative of T-mediated endocrine activity.
- Evidence for TR mediated antagonistic activity in vitro, (Penconazole was active in one of these assays (TOX21_TR_LUC_GH3_Antagonist); however, the viability readout was also active and interference with cytotoxicity cannot be excluded) (study ID 22).
- ToxCast TSHR showed no TSHR mediated activity (study ID 24, 25, 26).

No studies investigating T-mediated activity in amphibians are available.

The overall dataset is considered limited with regard to investigation of T-mediated endocrine activity. Please see **Section 2.10.2.1.2.1** for further details. Even though induction of UDP-GT were observed in mammals (mice, rat), the phase II enzyme UDP-GT superfamily is present in all kingdoms of life and is thus also considered relevant for non-mammalian vertebrates such as amphibians and fish (**2016.** The UDP-glycosyltransferase (UGT) superfamily expressed in humans, insects and plants: Animal-plant arms-race and co-evolution. Biochem Pharmacol. 2016 Jan 1;99:11-7. doi: 10.1016/j.bcp.2015.10.001).

2.10.3.1.3 Initial analysis of the evidence and identification of relevant scenario for the ED assessment of T-modality

Table 178: Selection of relevant scenario

Adversity based on T- mediated parameters	Positive mechanistic OECD CF level 2/3 Test	Scenario	Next step of the assessment	Scenario selected
No (sufficiently investigated)	Yes/No	1a	Conclude: ED criteria not met because there is not "T-mediated" adversity	
Yes (sufficiently investigated)	Yes/No	1b	Perform MoA analysis	
No (not sufficiently investigated)	Yes	2a (i)	Perform MoA analysis (additional information may be needed for the analysis)	X
No (not sufficiently investigated)	No (sufficiently investigated)	2a (ii)	Conclude: ED criteria not met because no T-mediated endocrine activity observed	
No (not sufficiently investigated)	No (not sufficiently investigated)	2a (iii)	Generate missing level 2 and 3 information. Alternatively, generate missing "EATS-mediated" parameters. Depending on the outcome move to corresponding scenario	
Yes (not sufficiently investigated)	Yes/No	2b	Perform MoA analysis	

2.10.3.1.4 MoA analysis for T-modality

Mammals as non-target organisms

Please see **Section 2.10.2.1.4.** Mammals as non-target organisms will be further assessed when a conclusion has been reached in the assessment of the T-modality for humans.

Non-target organisms other than mammals

Even though UDP-GT may also be relevant for non-target organisms other than mammals, the ecotoxicology data-base only included parameters 'sensitive to, but not diagnostic of, EATS'. In addition, no specific evidence investigating endocrine activity in amphibians are available. Therefore, a MoA analysis for the T-modality is not currently possible.

2.10.3.1.4.1 Further information to be generated to postulate MoA

According to the ECHA/EFSA Guidance and in line with the general principle of reduction of unnecessary animal testing, it is recommended to first conclude on the ED properties with regard to humans and in parallel, using the same data package, on mammals as non-target organisms. Only if the criteria are not met for mammals as non-target organisms, the assessment should proceed considering other taxonomic groups, in particular fish and amphibians. As concluded in Section 2.10.2.1.4.2, Tmediated adversity has not been sufficiently investigated, and data should first be generated for mammals. Anyhow, RMS would like to propose a testing strategy for non-target organisms other than mammals regarding the T-modality if the outcome of the assessment based on mammalian data indicates that either:

- The ED criteria are not met for humans and mammals as non-target organisms.
- The ED criteria are met for humans but not for mammals as not-target organisms as the adverse effects, based on the same data package, are not considered relevant at population level for mammals as non-target organisms mammals as non-target organisms

Testing strategy for non-target organisms other than mammals:

o be set strategy a before prop scheme below s. organisms. O the below As no evidence is available for amphibians, further Level 2 and 3 information may need to be generated. EFSA has The testing non-target org. The desting non-target org. The testing non-target org. recently published a guideline on when to choose either the AMA or the XETA in the test strategy³⁷. As highlighted in the figure below, RMS propose to await the data from the mammalian tox section before proposing the next step in the testing strategy for non-target organisms other than mammals. The testing scheme below should be followed

³⁷ Annex A – Use of the XETA in the assessment strategy of the ECHA/EFSA Guidance https://efsa.onlinelibrary.wiley.com/action/downloadSupplement?doi=10.2903%2Fj.efsa.2018.5311&file=efs2531 1-sup-0002-Annex.pdf

A – Use of the XETA in the assessment strategy of the ECHA/EFSA Guidance

2.10.3.1.5 Conclusion of the assessment of T-modality

There is evidence of endocrine activity, however, endocrine adversity has not been sufficiently investigated (Scenario 2a (i)). According to **Commission Implementing Regulation (EU) 2018/1659** Penconazole is considered a pending application (submission of the application for renewal (Art. 1 of the Reg. 844/2012) before 10th of November 2018, more specifically the administrative application was 31st of December 2016).

Commission implementing Regulation (EU) 2018/1659 further states: For such pending applications, it is possible that the information submitted by the applicant does not allow to conclude the assessment as regards whether the scientific criteria for the determination of endocrine disrupting properties set out in point 3.6.5 and point 3.8.2 of Annex II to Regulation (EC) No 1107/2009 are met or not and to conclude whether the ap-proval criteria set out in those points are met or not. Therefore, the European Food Safety Authority ('the Authority') should be able to request additional information from the applicant in order to conclude whether the approval criteria set out in those points are met or not.

The T-modality has not been sufficiently investigated for mammals as non-target organisms, nor for amphibians. A testing strategy have been presented for mammals in in **Section 2.10.2.1.4.2** and for amphibians in **Section 2.10.3.1.4.1**. According to the flow chart (Figure 1) for AMA and XETA, further data should be generated for mammals prior to deciding on the next step in the test strategy for amphibians.

2.10.3.2 ED assessment for EAS-modalities

2.10.3.2.1 Have EAS-mediated parameters been sufficiently investigated?

Table 179: Have EAS-mediated parameters been sufficiently investigated?

	Sufficiently investigated
EAS-mediated parameters	Non-target organisms other than mammals
ALCO CONTRACTOR OF THE PROPERTY OF THE PROPERT	No, based on non-availability of (a final) study measuring
GP G	EAS-mediated adversity, such as:
K. K. S. IMB	-MEOGRT (OECD 240) or FLCTT measuring all
1 CO 8	endpoints foreseen to be measured in OECD 240 Studies measuring EAS-mediated activity.
W Solvie	240 Studies measuring EAS-mediated activity.
Self the sittle	A FLCTT have been initiated. As the final results and
iol m. or iol	study report is currently not available, these data have not
66, 192, 144, 107, 67	been included in the current evaluation.
Ein The Chart	·× [©]
COLLECTION OF CLE HI	Mammals as non-target organisms
, is 1,00° s. 1.00° co of or	EAS-mediated parameters for mammals as none-target
all so the call its to	organisms have not been sufficiently investigated, please see Section 2.10.2.2 .
146 845 08, 19110 , OI	See Section 2.10.2.2.
100, 14, 110, 6, Oly	
or och the way the	
*O ** 5 * 14 * 50 C	
of this will is	
This the file	
5, 60, 0,	
EAS-mediated parameters As-mediated parameters As-me	
Sold ise of this document of the property of the popular of the property of the popular of the property of the popular of the property of the	
D.	

2.10.3.2.2 Lines of evidence for adverse effects and endocrine activity related to EAS-modalities

Table 180: Lines of evidence for adverse effects and endocrine activity related to EAS-modalities

	Table 1									ectivity related to EAS-modalit	Assessment of each line of evidence		
Stu dy ID Ma trix	Effec t classi ficati on	Effect target	Species	Dura tion of expo sure	Dura tion unit	Route of administ ration	Lowest Effect dose	Do se uni t	Effect directi on	Observed effect (positive and negative)	Assessment of each line of evidence	Assessment on the integrated line of evidence	Mod ality
8	In vitro mech anisti c	Estrogen receptor	human, breast, cell line	24	Hr	Uptake from the medium (in vitro)	32.1	μМ	No effect	Non GLP literature study acceptable as supplementary. Inactive ER binding assay: weak inducer of ER activation in T47Dluc cells (EC50 = 32.1 µM), but cytotoxic effect in T47D cells was evident in the same concentration range as the derived EC50 in T47Dluc cells	Positive, evidence for ER mediated antagonistic activity in vitro	Overall evidence of AR and ER mediated activity (antagonism), and effects (inhibition) on	EAS
9			bovine, uterus, tissue- based cell-free	18	Hr	Uptake from the medium (in vitro)	0	μM	No effect	ToxCast ER model: no ER binding		steroidogenesi s activity in vitro, as well as decreased VTG in vivo.	
10			human, cell-free	18	Hr	Uptake from the medium (in vitro)	0.21	μM	No effect	ToxCast ER model: no ER binding			
11			mouse, cell-free	18	Hr	Uptake from the medium (in vitro)	Single His	μM	No effect	ToxCast ER model: no ER binding			
12			human, kidney, cell line	24	Hr	Uptake from the medium (in vitro)	90.36	uM V	No effect	ToxCast ER model: No ER mediated agonistic activity			
13			human, kidney, cell line	C 24 10 10 10 10 10 10 10 10 10 10 10 10 10	Signal Control	Uptake from the medium (in vitro)	38.17	μM	Change	ToxCast ER model: ER mediated antagonistic activity (only highest conc. above baseline, active)			

										Mic A sug
14		human, breast, cell line	22	Hr	Uptake from the medium (in vitro)	0	μM	No effect	ToxCast ER model: No ER mediated agonistic activity	Positive, evidence for AR mediated antagonistic activity in vitro
15		human, breast, cell line	22	Hr	Uptake from the medium (in vitro)	66.37	μM	Change	ToxCast ER model: ER mediated antagonistic activity (less than 50% efficacy)	Sintelle Protection mon
2	Androge n receptor	human, breast, cell line	24	Hr	Uptake from the medium (in vitro)	17.1	μM	Decrea se	Non GLP literature study acceptable as supplementary. Inhibition of testosterone-induced AR activation in a concentration-dependent manner (IC50 = 17.1 µM)	Positive, evidence for AR mediated antagonistic activity in vitro
7		yeast	2	Hr	Uptake from the medium (in vitro)	18.28	μΜ	Change	Non GLP iterature study acceptable as supplementary. AR mediated antagonistic effects: IC50 = 18.3 mM (literature study not reliable as the publication has several deficiencies)	oniel.
16		human, kidney, cell line	24	Hr	Uptake from the medium (in vitro)	0	μM	No effect	ToxCast AR model: No AR mediated agonistic activity	
17		human, kidney, cell line	24	Hr	Uptake from the medium (in vitro)	38.35	μM	ilie 16	ToxCast AR model: AR mediated antagonistic activity (assay was near or in the cytotoxicity range)	
18		human, breast, cell line	24	Hr	Uptake from the medium (in vitro)	Jame lu	μM O	No effect	ToxCast AR model: No AR mediated agonistic activity	
19		human, breast, cell line	24	Hr	Uptake from the medium (in vitro)	31 39 d	μM	6,0,	ToxCast AR model: AR mediated antagonistic activity	
20		human, breast, cell line	000	Ar C	Uptake from the medium (in vitro)	58.77	μM	Change	ToxCast AR model: AR mediated antagonistic activity	
	G.	breast, cell line	id is	SOLILI,	500				342	

										c 2/10
45	Estradiol synthesis	human, adrenal corticoca	48	Hr	Uptake from the medium	0.1	oth er	Decrea se	Inhibition of estradiol synthesis (H295R steroidogenesis assay)	Positive, evidence of effects on steroidogenesis <i>in vitro</i> (decreased estradiol synthesis)
45		rcinoma, cell line human, adrenal corticoca rcinoma,	48	Hr	Uptake from the medium (in vitro)	3160	oth er	Decrea se	Inhibition of estradiol synthesis (H295R steroidogenesis assay)	estradiol synthesis)
2	Testoster one level (in vitro)	mouse, leydig, cell line	48	Hr	Uptake from the medium (in vitro)		μM	No effect	as supplementary. No inhibition of Leydig cell testosterone excretion in MA-10 cells	steroidogenesis in vitro (decreased testosteronel synthesis)
45	Testoster one synthesis	human, adrenal corticoca rcinoma, cell line	48	Hr	Uptake from the medium (in vitro)	0.1	oth er	Decrea se	Inhibition of testosterone synthesis (H295R steroidogenesis assay)	one of .
45		human, adrenal corticoca rcinoma, cell line	48	Hr	Uptake from the medium (in vitro)	3160	oth er	Decrea	Inhibition of testosterone synthesis (H295R steroidogenesis assay)	
4	CYP19	human, adrenal corticoca rcinoma, cell line	24	Hr	Uptake from the medium (in vitro)	205	μM ,©	Change	Non GLP literature study acceptable as supplementary. Inhibition of CYP19: <i>in vitro</i> weak competitive aromatase inhibition in H295R cells (IC50 = 20 µM)	Positive, evidence for aromatase inhibition in vitro
5		n/a		.is.n	[Not in list]	0.85	μM	Change	Non GLP literature study acceptable as supplementary. Inhibition of CYP19: <i>in vitro</i> aromatase inhibition using dibenzylfluorescein as substrate (IC50 = 0.85 µM)	
6		n/a	guner		[Not in list]	31 47 K	μM	Change	Non GLP literature study acceptable as supplementary. Inhibition of CYP19: in vitro weak aromatase inhibition, LC-MS/MS method using testosterone as substrate (IC50 = 47 μ M)	
	7	SCESS I	isedille	SULLY SULLY					343	
		0	.00							

27			human, breast,	24	Hr	Uptake from the	12.32	μΜ	Change	ToxCast Steroidogenesis model: inhibition of CYP19	Decreased VTG may be indicative of endocrine activity		
			cell line			medium (in vitro)					the location from the land		
48	In vivo mech	Vitelloge nin (VTG) in females	Fathead minnow	94 (post hatch	Days	Uptake from water	0.6	mg/ L wat er	Decrea se	Decrease in VTG at top dose	Decreased VTG may be indicative		
48	anisti c	Vitelloge nin (VTG) in males	Fathead minnow	94 (post hatch	Days	Uptake from water	0.6	mg/ L wat er	Decrea se	Decrease in VTG at top dose	id sitis		
48		Sex ratio (Female biased)	Fathead minnow	94 (post hatch	Days	Uptake from water		mg/ L wat er	No effect	No effects on sex-ratio		Overall, no evidence of EAS- mediated	
48	EAT S- medi ated	Specific gonad histopath ology	Fathead minnow	94 (post hatch)	Days	Uptake from water	ing gi	tiil)	75 .x		and fertility) have not been investigated.	adversity, but not sufficiently investigated.	
48	Sensi tive to, but	Behaviou r (fish)	Fathead	94 (post hatch	Days	Uptake from water	SUI OF	mg/ L wat er	No effect	No effects on behaviour	No effects on behaviour or	Parameters investigated are sensitive to but not	May indic ate a speci
48	not diagn ostic of,	Appearan ce [Not in list]	minnow	94 (post hatch	Days	Uptake from water	No effect	mg/ L wat er	No effect	In the study report it is stated that "No abnormal appearance" was observed. No further information is provided.	appearance.	diagnostic of EATS, and cannot be assigned to a	fic moda lity, but

											on data brokerine it was the restriction of any control of properties that the restriction of the restrictio	S.8	
46	EAT S	Behaviou r [Not in list]	Mallard duck	23	week s	Oral	No effect	pp m	No effect	No abnormal behavioural reactions noted which could be attributed to the treatment	" Cinginal Gior Capital	specific modality. These data cannot by	not diagn ostic of
47				30 (post hatch	Days	Uptake from water		mg/ L wat er	Decrea se	Dose dependent effect	Elygig Ling Light Lag	themselves provide (or support) evidence of adversity.	EAT S
48		Body weight (fish)	Fathead minnow	94 (post hatch	Days	Uptake from water	0.68	mg/ L wat er	No effect*	*12.7% reduction in males was	whole of brobles in a straight of brokers in the state of the brokers in the state of the brokers in a straight of the brokers in a	adversity.	
46		Body weight (bird)	Mallard duck	23	week s	Oral		pp m	No effect	No effects on bird weight.	Decreased fish length and weight observed at doses of 0.68 mg a.s./L and above in one study. Decrease		
47		Length	Fathead	30 (post hatch	Days	Uptake from water	0.68	mg/ L wat er	Decrea se	Dose dependent effect	embryo length observed at 0.8 mg a.s./L and above. In neither of the fish studies effects on growth was statistically significant at 0.6 mg a.s./L or below.		
48		(fish)	minnow	94 (post hatch	Days	Uptake from water	Solid In	mg/ L wat er	No effect	No effects in males, females or combined. The highest dose tested was 0.6 mg/L.	No effects in Mallards.		
501		Larval length	Zebrafish (Danio rerio) 1	4	Days	Notake from water	11.1.6 P.	ing L wai	Decreal	Significantly (p < 0.05) decreased body length at 1.6 mg a.s./L and above (dose dependent response).			
501		Morphol ogical abnormal ities	Zebrafish (Danio rerio)	P 4 1	Days	i itom	0.8 of 10.8	mg/ L wat er	Increas e	Significantly (p < 0.05) increased malformations (including pericardial edema, yolk-sac edema, axial malformation, tail malformation and spinal curvature) in embryos at concentrations of 0.8 mg/L and above (dose dependent response).			
		7	rerio)	ight is	SULL SULL	S				345			

										Impaired (0%) hatching at the highest dose (3.3 mg a.s./L) in the ELS. In neither of the fish studies effects on hatching was observed at lower doses.
47		Fathead	4 to 5 (11)	Days	Uptake from water	3.3	mg/ L wat er	Decrea se	Impaired hatching at highest dose	"Lo idy of log is a like ore
48	Hatching success	minnow	4	Days	Uptake from water		mg/ L wat er	No effect	No effect (the highest dose tested was 0.6 mg a.s./L.)	Impaired (0%) hatching at the highest dose (3.3 mg a.s./L) in the ELS. In neither of the fish studies effects on hatching was observed at lower doses.
50 ¹		Zebrafish (Danio rerio) ¹	4	Days	Uptake from water	0.8	mg/ L wat er	Decrea se	Significantly reduced hatching rate at 0.8 mg/L and above, in ordose dependent manner.	Effects on hatchability also observed for Mallards at the top
46	Hatchabil ity	Mallard duck	23	week s	Oral	1000	pp m	Decrea se	73 % of the eggs hatched at top dose compared to 86% in the control.	West.
46	Cracked eggs							31016		
46	Egg productio n					, 6	KSP 409	ing 900	No effect No effect No effect	
46	Eggshell thickness		22	,	0.1	oeity //	pp	11, 6	No effect	No effects were observed on eggs,
46	Viable embryos	Mallard duck	23	week	Oral	1000	Om	No effect	No effect	embryos or ducklings of Mallard duck (other than hatchability, see above) or embryos of Mallards up to the top dose (1000 ppm).
46	Viability ducklings [Not in list]		ime		Ostiles.	Silon, is	10°	olovijoji Olovijoji	No effect on % viability of 14-day old ducklings at any test concentration	
46	Eggs set [Not in list]	This to	900 (11/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/	SUA GRU				no effects on eggs set at any test concentration	
	9	Mallard duck	ind its	SULLIN					346	

											e Subjected sug.	50	
46		Embryos [Not in list]								No effect on no. of or % live 17-day embryos at any test concentration	The Holy of Good Holy Holy	ROIS	
501		survival of embryos	Zebrafish (Danio rerio) ¹	4	Days	Uptake from water	0.8	mg/ L wat er	Decrea se	In the study, survival of embryos and larvae have been merged, and is significantly decreased at the lowest dose tested in a dose dependent manner. Absolute decrease is not reported but seem from the figure to be >10%.	Decreased survival of Zebra fish embryos/larvae at the lowest dose tested (0,8 mg a.s./L)		
501	unkn own	[Not in list]	Zebrafish (Danio rerio) ¹	4	Days	Uptake from water	1.6	mg/ L wat er	Decrea se	Significantly reduced embryo heartbeat rate at 1,6 mg/L and above in a dose dependent manner	of of this		
47		Survival (fish)	Fathead minnow	30 (post hatch	Days	Uptake from water	3.3	mg/ L wat er	Decrea se	Post-hatch survival could not be assessed at the top dose (3.3. mg a.s./L), as none of the eggs hatched. Post-hatch survival was not significantly reduced at the second highest dose (1.5 mg a.s./L).	In the ELS hatchability was 0% at the top dose (3.3. mg a.s./L), and thus survival was also 0%. 3.3 mg a.s./L is thus above the MTC (at least for eggs/embryos).	The dose 3.3 mg a.s./L is probably	
48	Syste	Survival (fish)	Fathead minnow	30 (post hatch	Days	Uptake from water	10 6	mg/ L wat er	No effect	highest dose (1.5 mg a.s./L).		above the MTC for fish (at least for fish eggs).	Syste
48	mic toxici ty	Survival (fish)	Fathead minnow	60 (post hatch	Days	Uptake from water	So. Ch.	mg/ L wat er	X . X	No effects on survival up to the top	No effects on survival (top-dose thus below MTC).	No other effects on systemic toxicity were	mic toxic ity
48		Survival (fish)	Fathead minnow	94 (post hatch	Dāys	Uptake from water	Sign its	mg/ L	No effect	dose (0.6 mg a.s./L)		observed at the tested doses in fish or in	
46		Mortality	Mallard duck	23.1	week	Oral	SULO	pp m	No effect		No effects on mortality or food consumption.	mammals.	
		(Mallard duck	loris loris	SUIT!	\$ 20.		•		347	<u>.</u>		. 1

46	[Not in list]	Mallard duck	23	week s	Oral	pp m	No effect	No effects on food consumption in any test treatment.	iditot propereditation
								·	16 60 10 1 11 1

This is an open literature study regarded as supportive by RMS. The main reasons why it is considered supportive is the lack of analytical verification of the test substance and uncertainty on whether the study fulfills the validity crieria. RMS is still of the opinion that the results of the study may provide valuable information to be included in a Work-the 1D-Perteria. For further details, see Volume 3 – B-9.22.11, R-CA 8.22.103. and the document of the control of the control of the document of the control of the contr analytical year to be included to be included by the difficulty of the property of the propert ¹ This is an open literature study regarded as supportive by RMS. The main reasons why it is considered supportive is the lack of analytical verification of the test substance and uncertainty on whether

2.10.3.2.2.1 Assessment of the integrated lines of evidence and weight of evidence for T-mediated adversity and endocrine activity

Table 181: WoE for EAS-mediated adversity

- Overall conclusion: No consistent EAS-mediated adversity, but not sufficiently investigated.
- The most relevant study is the fish sexual development study (FSDT; study ID 48), investigating effects during the developmental part of the fish life cycle. EAS-mediated parameter (sex-ratio) were investigated and gave no evidence of adversity up to the top dose of 0.6 mg a.s./L.
- Sensitive to, but not diagnostic of EATS parameters have been investigated in the FSDT and also
 in a fish early life stage toxicity test (ELS; study ID 47) with Fathead minnow (30 days) and an
 open literature study (Study ID 50) on embryonic development og Zebrafish (4 days),
 summarised below.
- Survival of Zebrafish embryos/larvae were decreased at 0.8 mg a.s./L and above. Whereas no
 effects on survival was observed in Fathead minnows, except at the top dose of 3.3 mg a.s./L (0%
 hatched, see below)
- In Zebrafish hatching was significantly reduced at 0.8 mg a.s./L and above, whereas no effects on hatching success was observed up to 1.5 mg a.s./L in Fathead minnows. However, 0 % hatching was observed in Fathead minnows (in the ELS) at the top dose (3.3 mg a.s./L).
- Reduced Zebrafish larval length was observed at 1.6 mg/L and above, whereas reduced weight and length in 30-day old Fathead minnow larvae were observed at 0.68 mg a.s./L and above. No statistically significant effects on weight/length were observed up to the top dose of 0.6 mg a.s./L in the FSTD, however, a non-statistically significant weight reduction (-12.7%) in male fish was observed at the top dose of 0.6 mg a.s./L.
- From the available data, Zebrafish embryos seem to be more sensitive than Fathead minnows, with regard to survival and hatching success. Also, male fish may be more sensitive than female fish with regard to effects on length (observed in Fathead minnows).
- The FSDT (study ID 48) only provides data on endocrine activity and adversity during the developmental part of the fish life cycle. More evidence is needed to investigate adverse effects on reproduction (fertility/fecundity) and on gonad histopathology, which has not been (sufficiently) investigated in the available studies. A FLCTT have been initiated but the final report is not yet finalised.

Table 182: WoE for EAS-mediated endocrine activity

- Overall conclusion: Indication of endocrine activity in vitro evidence of inhibition of steroidogenesis, ER- and AR-antagonism, as well as in vivo reduction in plasme VTG.
- Several *in vitro* assays were positive, providing evidence of ER and AR mediated antagonistic activity:
 - ToxCast ER bioactivity (agonism: neg- and antagonism: pos+)

- ToxCast AR bioactivity (agonism: neg- and antagonism: pos+)
- Open literature study: Inhibition of testosterone-induced AR activation
- Several in vitro assays were positive, providing evidence of inhibition of steroidogenic activity:
 - ToxCast Steroidogenesis activity (inhibition of aromatase)
 - Open literature studies (inhibition of aromatase)
 - OECD 456 (inhibition of testosterone and estradiol synthesis)
- In vivo data with fathead minnow (Study ID 48) indicates a dose dependent reduction in VTG (males and females), however, only statistically significant at the top dose of 0.6 mg a.s./L.

In vitro mechanistic data provides evidence of effects on steroidogenesis (aromatase inhibition). As well as AR and ER mediated antagonistic activity. Further, the FSDT (study ID 48) provide evidence of endocrine activity *in vivo* indicating that that penconazole has potential endocrine disruptive properties *in vivo*. Plasma vitellogenin (VTG) levels in fathead minnow were significantly reduced in a dose-dependent manner, however, only statistically significant at the highest dose tested (0.60 mg a.s./L). The effects were observed in both male and female fish.

2.10.3.2.3 Initial analysis of the evidence and identification of relevant scenario for the ED assessment of EAS-modalities

Table 183: Selection of relevant scenario

Adversity based on EAS-mediated parameters	Positive mechanistic OECD CF level 2/3 Test	Scenario	Next step of the assessment	Scenario selected
No (sufficiently	Yes/No	lac	Conclude: ED criteria not met because there is not	
investigated)	0,10	11. 10.	"EAS-mediated" adversity	
Yes (sufficiently	Yes/No	1b	Perform MoA analysis	
investigated)	104 7. 0/	1/3; "0/4		
No (not sufficiently	Yes	2a (i)	Perform MoA analysis (additional information may	
investigated)		1 ×5 .ve	be needed for the analysis)	X
No (not sufficiently	No (sufficiently	2a (ii)	Conclude: ED criteria not met because no EAS-	
investigated)	investigated)	y Will	mediated endocrine activity observed	
No (not sufficiently	No (not	2a (iii)	Generate missing level 2 and 3 information.	
investigated)	sufficiently	b, X	Alternatively, generate missing "EATS-mediated"	
(B) (15 (C)	investigated)		parameters. Depending on the outcome move to	
11, 81, 60	101, 40,		corresponding scenario	
Yes (not sufficiently	Yes/No	2b	Perform MoA analysis	
investigated)	100			

2,10.3,2.4 MoA analysis for EAS-modalities

2.10.3.2.4.1 Postulate MoA

Mammals as non-target organisms

Mammals as non-target organisms will but further assessed when a conclusion has been reached in the assessment of the EAS-modality for humans, please see **Section 2.10.2.2.**

Non-target organisms other than mammals

The MoA suggested by RMS for penconazole follows the AOP25 (included at the <u>AOP-wiki</u>). A graphical presentation is given below (Figure 2), and a description of the KE and supporting evidence for penconazole is presented in the table below.

Figure 2. Graphical presentation of AOP25. Source: https://aopwiki.org/aops/25

Table 184: Description of the postulated MoA (Aromatase inhibition leading to reproductive dysfunction)

We, Vis	Description ^{ab}	Supporting Evidence
Pochily Meily	Pulgerit	
MIE	Aromatase inhibitor	Overall positive evidence for aromatase (CYP19) inhibition, based on
10 15 NA 12 N	0	ToxCast and open literature studies. This is also supported by in vitro
Sidnit entires	<i>y</i>	mechanistic data (steroidogenesis assay) which indicates that penconazole inhibits the production of estradiol and testosterone.
KE1	Reduced E2 synthesis in	In vitro mechanistic data (steroidogenesis assay) indicates that
of iso	Granulosa cells	penconazole can inhibit the production of estradiol (and testosterone) <i>in vitro</i> .
KE2	Reduction in circulation plasma E2 concentration	No direct evidence of reduced circulating E2 concentrations
KE3	Reduced VTG syntheses (transcription and translation) in liver	No direct evidence (see below)
KE4	Reduced circulation of	Reduction of blood plasma vitellogenin levels (determined with an
	plasma VTG	ELISA) was observed in a dose dependent manner in the FSDT (study

	Description ^{ab}	Supporting Evidence
		ID 48), however, only statistically significant at the top dose of 0.6 mg a.s./L.
KE5	Reduced oocyte growth/development due to reduced VTG accumulation in oocytes	No available evidence
AO (individual)	Reduced female cumulative fecundity and spawning	No available evidence. Effects on reproduction (fecundity/fertility) need to be further investigated to assess adversity in fish exposed to penconazole.
AO (population)	Decreased population trajectory	· dr. of block

^a For further details see the APO-wiki: https://aopwiki.org/aops/25

2.10.3.2.4.2 Further information to be generated to postulate MoA

The available data is not sufficient to support the postulated MoA (AOP25) and generation of further information is needed, especially to further investigate adversity. A FSDT (Level 4 study) was available investigating EAS-mediated parameters for activity (VTG) and adversity (sex ratio and gonad histopathology) *in vivo*. However, the study only provides data on endocrine activity and adversity during the *developmental part of the fish life cycle*. According to the AOP-wiki, AOP25 are relevant for reproductively mature adults (and applies to females only). As toxicity to reproductive mature adults were not investigated in the FSDT, further data should be generated to assess the postulated AOP further. The OECD conceptual framework (OECD 150) provides guidance on how and when further data should be generated (Table C.3.4 Fish Sexual Development Test (FSDT)). RMS has identified Scenario C as the relevant scenario as:

- In vitro mechanistic data provides evidence of effects on steroidogenesis (aromatase inhibition). As well as AR and ER mediated antagonistic activity.
- The FSDT (study ID 48) gave evidence of endocrine activity *in vivo* indicating that that penconazole has potential endocrine disruptive properties *in vivo*. Plasma vitellogenin (VTG) levels in fathead minnow were significantly reduced in a dose-dependent manner, however, only statistically significant at the highest dose tested (0.60 mg a.s./L). The effects were observed in both male and female fish.
- No effects on apical endpoints in the FSDT

According to Scenario C one should consider performing a fish life cycle toxicity test (Level 5 in the OECD conceptual framework), to provide further data on reproduction. It is noted that for substances which are expected to be more toxic to reproduction than sexual development, such a test may be more responsive than a FSDT. Thus, a Level 5 study is needed to conclude on EAS-mediated adversity.

In vitro mechanistic data providing evidence for effects on endocrine activity (inhibition of steroidogenesis) and the FSDT (study ID 48) were available when RMS and the applicant discussed the ED-testing strategy (during the presubmission period of penconazole). As aromatase inhibition leading to reproductive dysfunction is a proposed AOP for some triazoles, RMS strongly recommended the applicant to also investigate the reproductive effects of penconazole and to proceed to Level 5 in the OECD conceptual framework, such as a Medaka Extended One Generation Reproductive Study (OECD 240) or a fish life cycle toxicity test (FLCTT). RMS also sought guidance and advice from coRMS DE and EFSA during the pre-submission period and took their advice into account.

The applicant proposed doing a FLCTT with Fathead minnow following the OECD Draft Proposal for Fish Two-Generation Test Guideline (2002) and Draft OPPTS 850.1500 Test Guideline. As the previously conducted Fish Sexual Development Test (FSDT) was conducted with Fathead minnows, the test concentrations which were already set in the FSDT could be used, and a new range finding test would not be necessary (which would be needed for Medaka).

RMS provided the following recommendations to the applicant:

If the FLCTT is performed, preferably, the same parameters as for the MEOGRT should be

^b NB! The KER as in the graphical presentation at the AOPwiki have been used, as far as we can see the figure is not coherent with the "Summary of the AOP" on the AOP-wiki (sequence of KEs).

measured.

- Also, liver histopathology should be evaluated, as it is known that the liver is one of the target
 organs for penconazole. If altered VTG levels are apparent it should be possible to exclude, or in
 the opposite case, to demonstrate if histopathological alterations in the liver caused the changed
 VTG concentrations.
- As the reproductive performance of Fathead minnow can vary considerably it is considered crucial to ensure that the statistical power is sufficient to detect possible reproductive effects.

The following is stated by the applicant (in *italics*) on the expected outcome of the study, the choice of test-species and study protocol:

This study will provide data on potential population relevant effects (e.g., survival, development, growth and reproduction) for the determination of a No-Observed-Effect Concentration (NOEC); however, the main aims of the study are to establish:

- a) The reproducibility of the apparent effect on plasma VTG concentrations of exposure to 0.6 mg/L penconazole, from embryo up to sexual maturation, observed in the existing FSDT (York 2012; File No. CGA071818_10278).
- b) Whether such an effect correlates with adverse effects (relevant at population level), namely sexual differentiation (i.e. change in sex ratio, not observed in the FSDT), and reproduction (i.e. fecundity, fertility, not measured in the FSDT)

Fathead minnow are an ideal test species due to their ease of handling and their ability to be reared and bred under laboratory conditions. They are also a recommended test species due to their known sensitivity to a variety of toxicants and the extensive existing data for this common fish species.

The protocol was developed using the following guidance documents: "User's Guide for Conducting Chronic Toxicity Tests with Fathead Minnows" (Benoit, 1981³⁸); the "Standard Evaluation Procedure for Fish Life-Cycle Toxicity Tests" issued by the Hazard Evaluation Division of EPA's Office of Pesticide Programs (Rexrode and Armitage, 1986³⁹) and "Biological Field and Laboratory Methods for Measuring the Quality of Surface Waters and Effluents" (EPA-670/4-73-001⁴⁰). The latter document is cited as an acceptable protocol in the Office of Chemical Safety and Pollution Prevention (OCSPP) 850.1500 draft guideline for fish life-cycle tests. Additional endpoints to evaluate potential endocrine activity will be based on the Organization for Economic Co-operation and Development (OECD) 229⁴¹ and 234⁴² guidance documents, with further reference to the ECHA-EFSA Guidance for the Identification of endocrine disrupters in the context of Regulations (EU) No 528/2012 and (EC) No 1107/2009.

The protocol describes an in vivo bioassay where newly fertilized embryos (first generation, F_0) will be exposed to penconazole technical (purity: 97.4%). These embryos will be hatched and reared to adulthood, with endpoints reported for hatching success, time to hatch, larval survival and growth. Once the F_0 generation is sexually mature, spawning groups will be formed where the impacts of the test chemical on expression of secondary sexual characteristics, plasma vitellogenin levels, reproduction and tissue histopathology will be assessed. During the F_0 reproductive phase, embryos will be collected and reared to approximately 28-days post hatch to assess embryonic and larval/juvenile development of the F_1 (second) generation.

To investigate the effects of endocrine disrupting properties, a **fish life-cycle toxicity test** has been initiated. Whilst this study is still in progress, the applicant has provided a brief evaluation of the biological results obtained so far

³⁸ Benoit, D.A. 1981. User's Guide for Conducting Chronic Toxicity Tests with Fathead Minnows (*Pimephales promelas*). EPA-600/8-81/011.

³⁹ Rexrode, M. and T.M. Armitage. 1986. Standard Evaluation Procedure; Fish Life-Cycle Toxicity Tests. Hazard Evaluation Division, Office of Pesticide Programs. Washington, D.C. 20460. EPA 540/9-86-137. July, 1986.

⁴⁰U.S. EPA. 1973. Biological Field and Laboratory Methods for Measuring the Quality of Surface Waters and Effluents. EPA-670/4-73-001. U.S. Environmental Protection Agency, Washington, D.C.

⁴¹ OECD. 2009. Fish Short Term Reproduction Assay. OECD Guideline for the Testing of Chemicals: Test No. 229. Paris, France. 40 pp.

⁴² OECD, 2011. Fish Sexual Development Test. Guideline #234. OECD Guidelines for the Testing of Chemicals. OECD, Paris, France.

(see Volume 3 - B.9.2.2.2 (AS)). As the study report is not yet available, RMS has not been able to verify the accuracy of the information provided and has thus not evaluated the results or included them in the current assessment of whether penconazole fulfils the ED-criteria. As penconazole is a pending application (according to Commission Implementing Regulation (EU) 2018/1659), RMS would propose that EFSA request the full study report during a Stop-Clock, in order to conclude on adversity of EAS-modalities.

2.10.3.2.4.3 Empirical support of the postulated MoA

Not applicable considering the limited data available.

2.10.3.2.4.4 Empirical support of the postulated MoA

Not applicable considering the limited data available.

2.10.3.2.4.5 Alternative MoA analysis

Decrease in VTG may also be caused by overt or systemic toxicity and non-endocrine (MoAs), such as hepatotoxicity. As penconazole is known to target the liver, this hypothesis also needs to be investigated in light of the results of the FLCTT.

2.10.3.2.5 Conclusion of the assessment of EAS-modality

There is evidence of endocrine activity, however, endocrine adversity has not been sufficiently investigated (Scenario 2a (i)). According to **Commission Implementing Regulation (EU) 2018/1659** Penconazole is considered a pending application (submission of the application for renewal (Art. 1 of the Reg. 844/2012) before 10th of November 2018, more specifically the administrative application for penconazole was recieved 31st of December 2016).

Commission implementing Regulation (EU) 2018/1659 further states: For such pending applications, it is possible that the information submitted by the applicant does not allow to conclude the assessment as regards whether the scientific criteria for the determination of endocrine disrupting properties set out in point 3.6.5 and point 3.8.2 of Annex II to Regulation (EC) No 1107/2009 are met or not and to conclude whether the ap-proval criteria set out in those points are met or not. Therefore, the European Food Safety Authority ('the Authority') should be able to request additional information from the applicant in order to conclude whether the approval criteria set out in those points are met or not.

As the FLCTT was not finalised during the submission of the Supplemental Dossier (30/06-2019), or the Top-Up submission in December 2019, RMS would propose that EFSA request the full study report during a Stop-Clock, in order to conclude on adversity of the EAS-modalities.

2.10.4 Conclusion on the ED assessment

Overall, there are evidence for penconazole inducing endocrine mediated activity for both the T- and the EAS-modalities. There is no consistent evidence of EATS-mediated adversity, however in the opinion of RMS, this may not have been sufficiently investigated. Further data is thus needed in order to conclude on whether penconazole fulfils the ED-criteria, and RMS propose the following studies to be generated:

Table 185: RMS proposal for further testing

Modality	Proposal for further testing	Timeline
Humans and mammal	s as non-target organisms	
T-modality	First priority is to perform a study to following 407/408 and 416. Further investigations on the proposed MoA may be necessary. Please see section 2.10.2.1.4.2 for details.	Studies should be initiated if it is concluded by EFSA that adversity is not sufficiently investigated.
EAS-modality	As recommended for investigation of the T-modality a study following the OECD 416 is recommended to investigate the EAS modality. Please see section 2.10.2.2.4.2 for details.	Studies should be initiated if it is concluded by EFSA that adversity is not sufficiently investigated.
Non-target organisms	other than mammals	

T-modality	AMA (OECD 231) or XETA (OECD 248) depending on the outcome of the assessment for humans and mammals as non-target organisms.	Preferably, to be initiated when a conclusion has been reached for the T-modality for mammals as non-target organisms. However, as the available maximal time frame for stop-the-clock may not be enough to first conclude on the ED assessment of humans and mammals as non-target organisms, datasets may be complemented in parallel. This should be left open for the applicant to decide.
EAS-modality	Fish life cycle toxicity test (study has been initiated, but reporting was not finalised before delivery of the Top-up submission in December 2019).	should be left open for the applicant to decide. Final report to be requested by EFSA during stop-the-clock
access hights of this do and use of this do	Fish life cycle toxicity test (study has been initiated, but reporting was not finalised before delivery of the Top-up submission in December 2019).	teorization of this documents of the owner.

2.11 PROPOSED HARMONISED CLASSIFICATION AND LABELLING ACCORDING TO THE CLP CRITERIA [SECTIONS 1-6 OF THE CLH REPORT]

2.11.1 Identity of the substance [section 1 of the CLH report]

2.11.1.1 Name and other identifiers of the substance

Table 186: Substance identity and information related to molecular and structural formula of the substance

Name(s) in the IUPAC nomenclature or other international chemical name(s)	Penconazole (ISO); 1-[2-(2,4-dichlorophenyl)pentyl]-1H-1,2,4-triazole
Other names (usual name, trade name, abbreviation)	CGA71818 Penconazole
ISO common name (if available and appropriate)	Penconazole
EC number (if available and appropriate)	266-275-6
EC name (if available and appropriate)	1-[2-(2,4-dichlorophenyl)pentyl]-1 H -1,2,4-triazole
CAS number (if available)	66246-88-6
Other identity code (if available)	4460 (2) (10) (1) (1)
Molecular formula	C ₁₃ H ₁₅ Cl ₂ N ₃
Structural formula Structural formula	CH ₃
SMILES notation (if available)	Clc2ccc(C(CCC)Cn1cncn1)c(Cl)c2
Molecular weight or molecular weight range	284.2 g/mol
Information on optical activity and typical ratio of (stereo) isomers (if applicable and appropriate)	Racemate comprising equal amounts of (R)- and (S)-penconazole.
Degree of purity (%) (if relevant for the entry in Annex VI)	≥ 95%

2.11.1.2 Composition of the substance

 Table 187:
 Constituents (non-confidential information)

Constituent (Name and numerical identifier)	Concentration range (% w/w minimum and maximum in multi-constituent substances)	Current CLH in Annex VI Table 3.1 (CLP)	Current self- classification and labelling (CLP)
Penconazole, CAS no. 66246-88-6	Min. 95%	Acute tox. 4 – H302	See ECHA C&L Inventory ¹
C/15 no. 00240 00 0		Repr. 2 – H361d	inventory of the control of the cont
		Aquatic Acute 1 – H400	(10, 113, 110, 16,
		Aquatic chronic 1 – H410	110,100, 160, 10, 1

https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/105155

 Table 188:
 Impurities (non-confidential information) if relevant for the classification of the substance

Impurity (Name and numerical identifier)	Concentration range (% w/w minimum and maximum)	Current CLH in Annex VI Table 3.1 (CLP)	Current self- classification and labelling (CLP)	The impurity contributes to the classification and labelling
		Not relevant	26. 3/11 MO 26	

Table 189: Additives (non-confidential information) if relevant for the classification of the substance

Not relevant Not relevant Not relevant Not relevant	Additive (Name and numerical identifier)	Function	Concentration range (% w/w minimum and maximum)	Current CLH in Annex VI Table 3.1 (CLP)	Current self- classification and labelling (CLP)	The additive contributes to the classification and labelling
30 current is under the perior its be provided in the perior of the perior in the peri	, Š	The En Ising His Bridge His Bridg	Not re	Elevant		
	document is in	de Stiestion is	COLLOR			

Test substances (non- confidential information)Identific ation of test substance	Purity	Impurities and additives (identity, %, classification available)	Other information	The study(ies) in which the test substance is used
Penconazole technical	98.7%			K-CA 5.1.1/05
Batch: FL-840833				K-CA 5.1.1/06 K-CA 5.1.1/07
				K-CA 5.1.1/07 K-CA 5.2.5/01
				K-CA 5.3.2/03
				K-CA 5.3.2/05
				K-CA 5.6.1/04
				K-CA 5.6.2/03
				K-CA 5.1.1/00 K-CA 5.1.1/07 K-CA 5.2.5/01 K-CA 5.3.2/03 K-CA 5.3.2/05 K-CA 5.6.1/04 K-CA 5.6.2/03 K-CA 5.6.2/06 K-CA 8.1.1.1/01 K-CA 8.1.1.1/02 K-CA 8.1.1.2/01 K-CA 8.1.1.3/01 K-CA 8.2.5.1/01 K-CA 8.2.5.1/01
Penconazole technical	87.3%			K-CA 8.1.1.1/01 K-CA 8.1.1.1/02 K-CA 8.1.1.2/01 K-CA 8.1.1.3/01 K-CA 8.2.5.1/01 K-CA 8.2.5.1/01 K-CA 8.2.2.1/01
Batch : FL 830634				K-CA 8.1.1.1/02 K-CA 8.1.1.2/01
				K-CA 8 1 1 3/01
				K-CA 8.2.5.1/01
			. 47	K-CA 8.2.5.1/01
			:.00	K-CA 8.2.2.1/01
Penconazole technical	>99%		95. 1/1/16	K-CA 5.1.1/08
Batch: P2			401 40 .	(3),000,00
Penconazole technical	99.5%	.(30 SCL 296	K-CA 5.1.1/09
Batch: AMS 204/102		ijo		DII O MI.
Penconazole technical	99.3%	90,70	3 60, 6	K-CA 5.1.2/01
Batch: AMS 204/3		418 24	usy glor	K-CA 5.2.7/01
Penconazole technical	88.4%	or o	20 35	K-CA 5.2.1/01
Batch: P.2+3		Shael Jille	no Mis Elis	K-CA 5.2.1/02
		(1)11, 40co 9116	OS, "ILL	K-CA 5.2.1/03
	,0	30:15 010 11	Sign	K-CA 5.2.1/04
C	STY CO	1/11 101/11	ioli	K-CA 5.2.2/01
.08		(6, 01, 40, 79	,	K-CA 5.2.4/01
Plan	Sy ill	Will Mile SI		K-CA 5.6.2/01
is not det s	"NO"	ill its item		K-CA 8.1.1.1/04
	71, 9112	Je, Lip,		K-CA 8.1.1.2/03
is not the fly	10° C	0, 00,		K-CA 8.1.1.2/04
Penconazole technical Batch : EN 603012	96.1%	OS ,		K-CA 5.2.3/01
Batch : EN 603012	90.1%			K-CA 5.2.6/01
July 16 16 TO				K-CA 5.3.1/02
100 H. 11. 314, 114.				K-CA 5.4.1/02
"S" "M" 400				K-CA 5.4.1/05
in chinis				K-CA 5.4.1/06
Joe Hill.				K-CA 5.4.2/01
S 0,				K-CA 5.4.2/01 K-CA 8.2.5.3/01
150				K-CA 8.8/01

I			Τ	<u> </u>	
	Penconazole technical	91.7%			K-CA 5.3.1/01
	Batch: P. 11-14				K-CA 5.3.2/01
					K-CA 5.3.2/02
					K-CA 5.3.2/04
					K-CA 5.3.3/01
					K-CA 5.4.1/01
					K-CA 5.4.1/07
					K-CA 5.5/01
					K-CA 5.5/01 K-CA 5.5/03 K-CA 5.6.1/01 K-CA 5.6.2/04
					K-CA 5.6.1/01 K-CA 5.6.2/04
					6. 70: 6.
	Penconazole technical	96.2%			K-CA 5.3.1/02
	Batch: op. 3-23.01.90				K-CA 8.2.4.1/01
	Penconazole technical	97.7%			K-CA 5.3.1/02 K-CA 8.2.4.1/01 K-CA 5.3.2/06 K-CA 5.5/02 K-CA 8.2.6.1/01
	Batch: WS007001	91.170			K-CA 5.5/02
	Datcii . W5007001				K-CA 8.2.6.1/01
	Penconazole technical	100.15			K-CA 5,4.1/03
	Batch: 0704	%		ijing	K-CA 5.4.1/04
	Penconazole technical	99.86%		10, 46	K-CA 8.2.6.1/03a
	Batch: 0701			10, 10	in series
	Penconazole technical	97.4%	. 20	30 -180, 140,	K-CA 5.8.3/03
	Batch: SSH4D030	<i>91.</i> 4 /0	dio	enp, II n. I	KCA 8.2.3/03
			01000	2 40. 6	
	D 1 1 1 1	07.60/	Shardis provided and children with the children without the children with t	(3) 9/0	K-CA 6.5.1.1701
	Penconazole technical	97.6%	Silv. Word	31, 310,	KCA 6.1/04
	Batch: WRS 1270/1		CA on me	101, Lies !!	5
			1 HUG COLYTIC	Sell "No	
		o'\	2000 300 300	SYS	
		e. Kr.	0 His 66 " IL	:10/0	
		O. 4/1,	6, 4, 40, 4	7,	
	0,0	M. W.	" Itilo ville ou		
	THE EL	in Sill	(10° x5° x0°		
	ot in the	14, 418	" ioli ioli		
	10,90, 6	0,0	$o^{(1)}$ $o^{(1)}$		
	Penconazole technical	99 15	-e.Q.		K-CA 8.2.1/05
	Batch : P 401013	01	Ó.		
	Penconazole technical	specific			K-CA 8.2.2.3/01
90		activity			
This of	90 01 81 00	0.26			
7. 20	11/2 1/1/2 OF	μCi/mg			
(85° /1'	10,116,111,				
30,06	cecy of				
600	3,50				
0,	Batch : NV-X111-58				
D					

2.11.2 Proposed harmonized classification and labelling

2.11.2.1 Proposed harmonised classification and labelling according to the CLP criteria

Table 190: Proposed harmonised classification and labelling according to the CLP criteria

2.11.2	2.1 Propos	monized classificate ed harmonised classificate ed harmonised classif	ssification o	and labelli			eria	o intellection	ingrenting	Specific	
	Index No	International Chemical Identification	EC No	CAS No	Classifica Hazard Class and Category Code(s)	Hazard statement Code(s)	Pictogram, Signal Word Code(s)	Labelling Hazard statement Code(s)	Suppl. Hazard statement Code(s)	Specific Conc. Limits, M-factors	Notes
Current Annex VI entry	613-317- 00-X	Penconazole (ISO); 1-[2-(2,4- dichlorophenyl)pe ntyl]-1 <i>H</i> -1,2,4- triazole	266-275-6	66246-88-	Acute tox. 4 Repr. 2 Aquatic acute 1 Aquatic chronic 1	H302 H361d H400 H410	GHS07 GHS08 GHS09 Wng	H302 H361d H410		M = 1 M = 1	
Dossier submitters proposal	613-317- 00-X	Penconazole (ISO); 1-[2-(2,4-dichlorophenyl)pe ntyl]-1 <i>H</i> -1,2,4-triazole	266-275-6	66246-88-	Retain: Acute tox. 4 Repr. 2 Aquatic acute 1 Aquatic chronic 1 Add: STOT RE 2	Retain: H302 H361d H400 H410 Add: H373 (liver)	Retain: GHS07 GHS08 GHS09 Wng	Retain: H302 H361d H410 Add: H373 (liver)		Oral ATE: 971 mg/kg bw M = 1 M = 1	
Resulting Annex VI entry if agreed by	613-317- 00-X	Penconazole (ISO);	266-275-6	66246-88-	Acute tox. 4 Repr. 2	H302 H361d	GHS07 GHS08	H302 H361d		Oral ATE: 971 mg/kg bw	

						10; 11; 10° 00° 4;	
RAC and COM	1-[2-(2,4-		STOT RE 2	H373 (liver)		H373 (liver)	
	ntyl]-1 <i>H</i> -1,2,4-		Aquatic acute 1	H400	GHS09	M = 1	
	triazole		Aquatic enronic 1	H410	wng	M=1	
	This document is a cost of the contract of the cost of	ot the property field of the state of the property of the property of the state of	SA and is provided and in the provided and is provided and is provided and in the prov	ed joi di joi joi joi joi joi joi joi joi joi jo	Chilletics of the child of the	H373 (liver) M = 1 M = 1	
	Co.gns		361				
	• •						

2.11.2.2 Additional hazard statements / labelling

Table 191: Reason for not proposing harmonised classification and status under CLH public consultation

Hazard class	Reason for no classification	Within the scope of CLH public consultation
Explosives	Data conclusive but not sufficient for classification	Yes Wic w
Flammable gases (including chemically unstable gases)	Hazard class not applicable	No No Property
Oxidising gases	Hazard class not applicable	No ilo la tio t
Gases under pressure	Hazard class not applicable	No the less than the
Flammable liquids	Hazard class not applicable	No Contraction
Flammable solids	Data conclusive but not sufficient for classification	Yes
Self-reactive substances	Data conclusive but not sufficient for classification	Yeshio
Pyrophoric liquids	Hazard class not applicable	No No
Pyrophoric solids	Data conclusive but not sufficient for classification	Yes
Self-heating substances	Data conclusive but not sufficient for classification	Yes
Substances which in contact with water emit flammable gases	Data conclusive but not sufficient for classification	Yes
Oxidising liquids	Hazard class not applicable	No
Oxidising solids	Data conclusive but not sufficient for classification	Yes
Organic peroxides	Hazard class not applicable	No
Corrosive to metals	Data conclusive but not sufficient for classification	Yes
Acute toxicity via oral route	Harmonised classification proposed	Yes
Acute toxicity via dermal route	Data conclusive but not sufficient for classification	Yes
Acute toxicity via inhalation route	Data conclusive but not sufficient for classification	Yes
Skin corrosion/irritation	Data conclusive but not sufficient for classification	Yes
Serious eye damage/eye irritation	Data conclusive but not sufficient for classification	Yes
Respiratory sensitisation	Data lacking	No
Skin sensitisation	Data conclusive but not sufficient for classification	Yes
Germ cell mutagenicity	Data conclusive but not sufficient for classification	Yes
Carcinogenicity	Data inconclusive	Yes
Reproductive toxicity	Harmonised classification proposed	Yes
Specific target organ toxicity-single exposure	Data conclusive but not sufficient for classification	Yes
Specific target organ toxicity-repeated exposure	Harmonised classification proposed	Yes
Aspiration hazard	Hazard class not applicable	No
<u> </u>		i.

Hazard class	Reason for no classification	Within the scope of CLH public consultation
Hazardous to the aquatic environment	Harmonised classification proposed	Yes
Hazardous to the ozone layer	Data conclusive but not sufficient for classification	Yes

2.11.3 History of the previous classification and labelling

A harmonised classification and labelling for penconazole has been adopted by the ECHA Committee for Risk Assessment (RAC) on 11th of July 2012 (ECHA/RAC/CLH-O-000002679-61-01/F). All the human health hazard classes (except respiratory sensitisation, aspiration hazard and adverse effects on or via lactation as well as endocrine disruption properties) were reviewed by the ECHA RAC. The classification for health and environmental hazard are as follows:

Repr. 2, H361d Acute Tox., 4 H302 Aquatic Acute 1, H400, M=1 Aquatic Chronic 1, H410, M=1

Penconazole was approved for use as an agricultural fungicide under Council Directive 91/414/EEC in 2010, with Germany as Rapporteur Member State. It is approved for use under Regulation (EC) 1107/2009 and is being reviewed for the renewal of approval under the AIR(IV) renewal programme with Norway as the RMS.

Physical hazards

Previous human health hazard assessment of physicochemical properties of penconazole concluded: "Penconazole (technical): is not explosive in the sense of EEC method A14; is not highly flammable in the sense of EEC method A10; has no oxidising properties in the sense of EEC method A17" (CLH Report; November 2010).

Health hazards

From the previous assessment and conclusion on penconazole: Based on the results of the acute oral LD_{50} in rabbits and rats, Penconazole is considered 'harmful if swallowed' and should be classified as Acute tox. 4-H302 according to the Regulation (EC) 1272/2008 (CLP Regulation) and Xn; R22 according to the Directive 91/414/EEC (DSD).

Regarding developmental toxicity, effects were seen on several variables. Post-implementation loss in the form of early resorptions was seen in all developmental studies at the top dose. In one study, the effect was clear and statistically significant, but associated with considerable maternal toxicity. In the other studies, the effect was about two-fold and neither consistently above historical controls nor statistically significant, and also here slight to more marked maternal toxicity was observed. However, as the effects were consistently seen in all the studies they could not be disregarded as chance findings. Pup weight was decreased postnatally in both rat multigeneration studies at the high dose. Incomplete/absent ossification occurred in two rat and one rabbit studies, and supernumerary cervical ribs in one rat study, all in the presence of slight to considerable maternal toxicity. These variations or delays in development may not warrant classification on their own, especially when associated with maternal toxicity, but here they are regarded to add to the WoE. Finally, and most important, severe malformations were seen in one study in rabbits: these were three cases of microphtalmia, two in combination with internal hydrocephalus. This effect cannot be disregarded. Other severe malformations seen in the rat and rabbit studies were single cases, not consistent and within historical controls, and do thus not contribute to the WoE. Overall, there are several effects on development seen and although these may each not all warrant classification on their own, the WoE of all the effects combined makes classification warranted. Overall, adverse effects on development are seen in the studies. The effects are not pronounced and consistent in the different studies. However, it would be inappropriate to not classify, as there are effects seen in several studies and it has not been shown that these are irrelevant for humans. It should be noted that this is a borderline case for classification. As no evidence from humans is available, classification in Repr. 1A is not possible. The data are not sufficiently conclusive to place the substance in Repr. 1B. Classification for developmental toxicity as Repr. 2 - H361d according to the Regulation (EC) 1272/2008 (CLP Regulation) and Repr. Cat. 3; R63 according to the Directive 91/414/EEC (DSD) is therefore warranted.

Regarding repeated dose toxicity, the reported liver changes can be considered as only adaptive responses to the increased metabolic load. Although some liver changes at 16.9/16.7 (M/F) mg/kg bw/day (500 ppm) in dog studies could be considered as severe, they appear as isolated cases: necrosis in 1 male out of 4 in the 90-day study and also fibrosis in 1 male out of 4 when the study was prolonged to 1-year. A similar interpretation can be made for the hepatic degeneration observed in one rat 90-day study at 72 mg/kg bw/d (1000 ppm). Although the effective dose

levels in both dogs and rats are within the $10 < C \le 100$ mg/kg body weight/day range, RAC's conclusion was that a classification for specific target organ toxicity is not required under the CLP Regulation or DSD.

Regarding carcinogenicity, three carcinogenicity bioassays have been performed with Penconazole. In two of these studies, one in rats and one in mice, the highest dose was 300 ppm (equals 15.3 mg/kg bw/d (M) and 16.6 mg/kg bw/d (F) and 40.8 mg/kg bw/d (M) and 35.7 mg/kg bw/d (F) for rats and mice, respectively). No adverse findings, including tumours, were seen in these studies. However, as no toxicity was seen at the top dose, it was concluded that the doses were too low and the studies can only be considered supportive. In the third study in mice, a top dose of 1500 ppm, equal to 178 mg/kg bw/d (M) and 222 mg/kg bw/d (F), was used. This dose caused clear toxic effects but no tumours. The negative result of the latter study together with the supportive studies in mice and rats indicates no carcinogenic potential of Penconazole. Therefore, classification for carcinogenicity is not required.

Environmental hazards

For the environmental classification there was general agreement during the previous review that penconazole should be classified as Acute Category 1 (M-factor 1) and Chronic Category 1 (M-factor 1) (ECHA, 2012).

Degradability

In the RAC opinion for penconazole (2012) penconazole was not found to be readily biodegradable, according to the OECD Guideline No. 301B, because no degradation occurred during 28 days whereas >70% degradation within 28 days is required to achieve this criterion.

In the RAC opinion for penconazole (2012) penconazolewas found to dissipated primarily by partitioning to the sediment in water/sediment systems, with single first order DT50 of 1.9-3.4 days where it subsequently degraded (whole system pseudo first order DT50 505 up to >706 days) forming the major metabolite CGA 179944 that was present in the water phase (max. 17.3 % of AR after 365 days) and only accounted for a maximum of 4.8% of AR in the sediment. In aerobic laboratory soil degradation studies the overall geometric mean DT50 value of Penconazole was 117 days (SFO, 20 °C, pF2). In field soil dissipation studies DT50 values of Penconazole were in the between 67 d - 115 days (SFO). In the field, Penconazole can exhibit slow primary degradation but not ultimate mineralisation. As a result of the field and laboratory studies, Penconazole is considered as not rapidly degradable.

In the current evaluation additional studies have been submitted assessing degradability in water/sediment and soil. New kinetic assessment, resulting in different DT50-values, have been provided for the sake of renewal.

Bioaccumulation

In the RAC opinion for penconazole (2012)⁴³, the BCF was established to be 320, based on the available bioaccumulation study by (1984d). RMS has re-evaluated the study and have regarded the study as not reliable (See Volume 3 (AS) B.9.2.2.3), due to several deficiencies. In the current evaluation against the CLP-criteria, the logPow have thus been when evaluating the potential for bioaccumulation. (See Volume 1, Section 2.9.2.1).

Ecotoxicity

In the RAC opinion for penconazole (2012), the endpoint derived from a study with *Lemna gibba* (14-day $EC_{50} = 0.19 \text{ mg/l}$ based on frond numbers) provided the lowest acute endpoint and was thus the endpoint used to support the harmonised classification: Acute category 1. RMS has re-evaluated the Lemna-study and have regarded the study as not reliable (See Volume 3 (AS) B.9.2.7), due to several deficiencies.

In the RAC opinion for penconazole (2012), the endpoint derived from a study with *Daphnia magna* (21-day NOEC = 0.069 mg/l) provided the lowest chronic endpoint and was thus the endpoint used to support the harmonised classification: Chronic category 1. After the current review, this study is still regarded reliable for hazard classification, however, the endpoint has been set to *Daphnia magna* 21-day NOEC \leq 0.069 mg/l, as there are some uncertainties in the applied statistics.

Please see Section 2.9.2 for an overview of the available data and Section 2.9.2.4 for RMS comparison with the CLP-criteria.

⁴³ Committee for Risk Assessment Opinion proposing harmonised classification and labelling at EU level of Penconazole. ECHA/RAC/CLH-O-000002679-61-01/F

2.11.4 Identified uses

Penconazole is an agricultural fungicide which is used by foliar application to control a wide range of diseases in fruits and vegetables.

Please see 1.5 for the full details on identified uses.

2.11.5 Data sources

The data was submitted in the context of renewal of pesticide active substances under Regulation no. 1107/2009 concerning the placing of plant protection products on the market. The data was evaluated in the Renewal Assessment Report (RAR) Vol. 1-4.

2.12 RELEVANCE OF METABOLITES IN GROUNDWATER

The potential relevance of metabolites of penconazole has been assessed with respect to the current guidance for relevance in groundwater (Sanco/221/2000-rev.10, 25 February 2003).

2.12.1 STEP 1: Exclusion of degradation products of no concern

2.12.2 STEP 2: Quantification of potential groundwater contamination

Preliminary evaluation shows that metabolites CGA179944 and CGA142856 exceed the concentration of $0.1~\mu g/L$, except for use in cucmber with application rate of 35 g penconazole/ha x 1. CGA142856 is also predicted to exceed the concentration of $0.75~\mu g/L$. However, new groundwater modelling should be provided using updated endpoints. For current modelling and estimated concentrations in groundwater see Volume 3 CP B.8 of the dRAR.

2.12.3 STEP 3: Hazard assessment – identification of relevant metabolites

2.12.3.1 STEP 3, Stage 1: screening for biological activity

The available biological screening data for CGA179944 and CGA142856 demonstrate that when compared to parent penconazole the biological (fungicidal) activity is greatly reduced. Therefore, it can be concluded that these metabolites do not retain the fungicidal activity of parent penconazole and can be considered non-relevant from the perspective of biological activity.

2.12.3.2 STEP 3, Stage 2: screening for genotoxicity

CGA179944

CGA179944 was not mutagenic in the gene mutation assays (Ames test and mouse lymphoma cell L5178Y assay). It gave a positive result in the chromosome aberration test; but in the confirmatory *in vivo* micronucleus test the outcome was negative, see Table 3.3.2-1 below.

Clinical signs within the mouse micronucleus test reveal systemic exposure to CGA179944.

Table 3.3.2-1: Summary of Genotoxicity data on CGA179944

Study	Test Object	Concentration	Results
Ames test Sokolowski 2015, CGA1749944_10005	S.typhimurium TA1535, TA1537, TA98 TA100 and E.coli WP2, WP2 uvrA	3-5000 µg/plate (+/-S9)	Negative (+/-S9)
Chromosome aberration test Pritchard 2002, CGA179944_10040	Human lymphocytes	-S9: 5-8 mM (3 h) +S9: 7-9 mM (3 h)	Positive (+/-S9)

Gene mutation in mammalian cells 2002, CGA179944_10041	Mouse lymphoma cells L5178Y	-S9: 0.1-1.5 mM (3 h) -S9: 0.1-1.0 mM (24 h) +S9: 0.1-2.5 mM (3 h)	Negative (+/-S9)
In vivo micronucleus test 2003, CGA179944_10042	Mouse bone marrow	375, 750 and 1500 mg/kg bw	Negative

CGA179944 is therefore considered not to be genotoxic in vivo.

CGA142856 (triazole acetic acid, TAA)

CGA142856 was negative in the available *in vitro* gene mutation and chromosome aberration assays, see Table 3.3.2-2 below.

Table 3.3.2-2: Summary of Genotoxicity data on CGA142856

Study	Test Object	Concentration	Results
Ames test Deparade 1984, CGA142856/0003	S.typhimurium TA1535, TA1537, TA98 TA100	20-5120 μg/plate (+/-S9)	Negative (+/-S9)
Chromosome aberration test Pritchard 2002, CGA142856/0017	Human lymphocytes	+/-S9: 2.5-10 mM (3 h) -S9: 2.5-10 mM (20 h)	Negative (+/-S9)
Gene mutation in mammalian cells CGA142856/0018	Mouse lymphoma cells L5178Y	+/-S9: 0.63-10 mM (3 h) -S9: 0.63-10 mM (24 h)	• Negative (+/-S9)

2.12.3.3 STEP 3, Stage 3: screening for toxicity
179944 CGA142856 is therefore considered not to be genotoxic.

CGA179944

The parent penconazole is classified as Cat 2 for developmental toxicity (H361d) based on a weight of evidence approach using information from available rat and rabbit reproductive and developmental toxicity studies. To investigate whether CGA179944 would result in similar developmental effects or not, the metabolite was tested in developmental toxicity studies in rat and rabbits.

Table 3.3.3-1: Toxicity data on CGA179944

Study JI S 110 8	Species	Dose level	Result
Developmental toxicity (feeding) – range finder 2017a, CGA179944_10020	rat	0, 1000, 3000, 10000 ppm corresponding to 0, 85, 258, 813 mg/kg bw/day	Maternal: transiently ↓ bw gain and food consumption at 10000 ppm Developmental: no treatment-related findings
Developmental toxicity (feeding) 2017b, CGA179944_10021	rat	0, 1000, 3000, 10000 ppm corresponding to 84, 250, 796 mg/kg bw/day	Maternal: transiently ↓ bw gain at 10000 ppm, marked ↓ bw gain during GD 6-20 when corrected for gravid uterus Developmental: Number of intrauterine deaths and postimplantation loss ↑ at 3000 and 10000, minor abnormalities and variant finding ↑ at 3000 and 10000 Maternal/developmental NOAEL 84 mg/kg bw/day

Developmental toxicity (gavage) – range finder 2017c, CGA179944_10024	rabbit	0, 100, 300, 600 mg/kg bw/day	Maternal: ↓ bw gain and food consumption at 600 mg/kg Developmental: no treatment-related findings
Developmental toxicity (gavage) 2018, CGA179944_10027	rabbit	0, 100, 300, 600 mg/kg bw/day	Maternal: mortality and ↓ bw gain and food consumption at 600 mg/kg Developmental: Slight ↑ in intrauterine deaths and ↓ mean foetal weight at 600 mg/kg. ↑ incomplete interventricular septum and different variations (also at 300 mg/kg) at 600 mg/kg Maternal NOAEL: 300 mg/kg bw/day Developmental NOAEL: 100 mg/kg bw/day

CGA179944 did reveal relevant developmental findings and a classification for developmental toxicity is considered required. Comparison of the maternal findings seen in the studies with CGA179944 to the respective studies with the parent indicate a comparable toxic potential of CGA179944 as compared to penconazole.

CGA179944 is therefore considered 'relevant'.

Table 3.3.3-2: Comparison of the toxicity profile of CGA179944 with penconazole

Study	CGA179944	Penconazole°
Rat developmental toxicity	Maternal NOAEL: 84 mg/kg bw/day	Maternal NOAEL: 100 mg/kg bw/day
	Developmental NOAEL: 84 mg/kg bw/day	Developmental NOAEL: 100 mg/kg bw/day
Rabbit developmental toxicity	Maternal NOAEL: 300 mg/kg bw/day	Maternal NOAEL: 75 mg/kg bw/day
	Developmental NOAEL: 100 mg/kg bw/day	Developmental NOAEL: 50 mg/kg bw/day
Point mutation assay	Negative	Negative
Chromosome aberration assay	Positive	Negative
Mammalian cell gene mutation	Negative	Negative
In vivo rodent micronucleus assay	Negative	Negative

 $^{^{\}circ}$ relevant NOAELs based on two available studies each in rats and rabbits

CGA142856

The recent EU evaluation resulted in an ADI and ARfD of 1 mg/kg bw/day for CGA142856 (TAA) based on the NOAELs of 100 mg/kg bw/day of the available reproductive toxicity (rat) and developmental toxicity (rabbit) study.

2.12.4 STEP 4: Exposure assessment – threshold of concern approach

Exposure assessment is not necessary for CGA179944 as this metabolite is proposed to be considered as a relevant.

2.12.5 STEP 5: Refined risk assessment

Refined risk assessment is not necessary for CGA179944 as this metabolite is proposed to be considered as a relevant.

2.12.6 Overall conclusion

Based on the above evaluation, it can be concluded that the metabolite CGA142856 is not relevant according to the "Guidance document on the assessment of the relevance of metabolites in groundwater of substances regulated under Council Directive 91/414/EEC. (SANCO/221/2000 -rev.10- final. 25 February 2003)". CGA179944 is however proposed to be considered as relevant.

Penconazole technical material is a racemate comprising equal amounts of the (R)- and (S)- enantiomer

2.13.2 Methods of analysis

Not differentiated in the analytical methods

2.13.3 Mammalian toxicity

Not differentiated in the assessment.

2.13.4 Operator, Worker, Bystander and Resident exposure

Not differentiated in the assessment.

2.13.5 Residues and Consumer risk assessment

Not differentiated in the assessment

Just such and and connection and his single of the single January Comercial States of the States of th Published literature Wang et al, 2014 (CGA0718181_10706), found no change in the stereoisomer ratio for parent in crops belonging to the fruit and fruiting veg metabolism group (cucumbers and tomatoes). A similar pattern was seen in published literature Zhang et al, 2019 (CGA071818_10694) for grapes produced in the Tianjin region of China. Whereas Zhang et al, 2019 (CGA071818_10694) indicated that (-)-penconazole dissipated/degraded slightly faster in grapes produced than (+)-penconazole in the Jinhua region of China.

Based on the published literature Zhang, 2019 (CGA071818_10694), which analysed the rate loss of penconazole enantiomers in two soils, it can be concluded that in a system demonstrating a high level of biotic mediated loss of penconazole, which was assumed to be via degradation, there was no significant change in the ratio of the two and use of this document or its top, prohibited and use of this document or its top, prohibited and use of this document or its top, prohibited and use of this document or its top, prohibited and use of this document or its top, prohibited and use of this document or its top, prohibited and use of this document or its top and use of the contract of the consequently are document or its content of the or the document or its content or enantiomers of penconazole in one of the soils. In the other soil, a very moderate change in the ratio was observed, although it should be noted that the isomeric ratio at zero time was not 1:1 which casts doubt on any change in ratio

access highten the wind by the state of the

2.14 RESIDUE DEFINITIONS

2.14.1 Definition of residues for exposure/risk assessment

wide subject inder a redulation data protection redundation data protection data prote Food of plant origin: Sum of penconazole and free and conjugated CGA132465, CGA190503 and CGA127841, 2.14.2 Definition of residues for monitoring

Food of plant origin: Penconazole (sum of all constituent isomers)

Food of animal origin: Not required.

ioil: Penconazole and CGA71019 (1,2,4-Triazole)
roundwater: Penconazole, CGA170^

rface water: Pencono
imen* plect outplishing and and any commercial explicit air

expressed as penconazole

.cs for monitoring
..a: Penconazole (sum of all constituent isomers)
.. animal origin: Not required.
Soil: Penconazole and CGA71019 (1,2,4-Triazole)
Groundwater: Penconazole, CGA179944 and CGA71019 (1,2,4-Triazole)
Surface water: Penconazole
'ediment: Penconazole
'r: Penconazole
'ty fluids and tissuest Penconazole

LESS HIJULIANIS OF HILL AND ANTIPES.

COUNTRY OF THE PARTIES OF THE PROPERTY OF THE PROPERTY OF THE PARTIES OF THE PROPERTY OF THE PARTIES OF THE PAR Jonse due nity any publication, its contents of the orthogonal use of this document of its contents of the orthogonal use of this document of the orthogonal use of the access to the definition of the state of the

Level 3, which is the state of the state of

3. PROPOSED DECISION WITH RESPECT TO THE APPLICATION

3.1

Pencon		lume 1 – Le		19/10 21 8:
3.	PROPOSED DECISION WITH RESPECT TO THE APPLEA BACKGROUND TO THE PROPOSED DECISION Proposal on acceptability against the decision making crite	LICATION	<u>N</u>	idition of the state of the sta
3.1	BACKGROUND TO THE PROPOSED DECISION			The legit tech extrine
3.1.1	Proposal on acceptability against the decision making crite	eria – Artic	le 4 and	annex II of regulation (EC) No 1107/2009
	3.1.1.1 Article 4			" Of the A continu
		Yes	No	11, 21, 40, 4 90°
i)	It is considered that Article 4 of Regulation (EC) No 1107/2009 is complied with. Specifically the RMS considers that authorisation in at least one Member State is expected to be possible for at least one plant protection product containing the active substance for at least one of the representative uses.	disploying	ed join	For the areas where it is possible to conclude (see exceptions below), it is considered that Article 4 of Regulation (EC) No 1107/2009 is complied with for penconazole for at least one representative use (see point 3.1.1.3, Restrictions on approval, below). A final decision regarding Article 4 is currently not possible, as more data are needed to reach a conclusion on the ED-assessment. Thus, a conclusion has not yet been reached for criteria 3.6.5 and 3.8.2 in Annex II (to Regulation (EC) 1107/2009). See further information under point 3.1.1.2, below.
		11 78C	100	Colow
	3.1.1.2 Submission of further information	10, JU, O	الله الت	
		Yes	No	
i)	It is considered that a complete dossier has been submitted	1x 10- c	X	See ii), immediately below.
ii)	It is considered that in the absence of a full dossier the active substance may be approved even though certain information is still to be submitted because: (a) the data requirements have been amended or refined after the	Siplied of		The dossier is not considered complete, and a regulatory decision can currently not be made as: In the ED-assessment (see Section 2.10 Endocrine disrupting properties) RMS have concluded that endocrine activity has been observed and that further information is needed to conclude on the endocrine disrupting properties of penconazole. The missing data is regarded critical for the decision of approval, as it is needed to complete the ED-assessment and to
	(b) the information is considered to be confirmatory in nature, as required to increase confidence in the decision.	371		

decide whether the approval criteria (point 3.6,5 and 3.8.2 in Annex II to Regulation (EC) 1077.2009) is Juffilled or not. The ED criteria were implantent after the application for renewal was received. According to Commission Implementing Regulation (EU) 2018/1659 Perconazole is considered a pending application, as the application for renewal according to Art-1 of the Reg. 344-2012) was received before 10% of November 2018. More specifically the administrative application for premayal according to Art-1 of the Reg. 344-2012 was received before 10% of November 2018. More specifically the administrative application for premayal according to Art-1 of the Reg. 344-2012 was received before 10% of November 2018. More specifically the administrative application for premayal according to Art-1 of the Reg. 344-2012 was received before 10% of November 2018. More specifically the administrative application for premayal applications, information may be requested by EFSA during EFSA stop-clock, When information may be requested to Finalise the EID-assessment have been provided, the dossier may be regarded as complete. MAS proposal for which studies should be requested is listed under point 3.1.4. Point 3.(4 also lists other data gaps identified by RMS The putter and maximum content of certain impurities are confidential information – data are provided separately (Vol. 4) by the Penconazole Task force members. Based on the evaluation of the available data, RMS has identified a relevant metabolite, CGA179944, considered to exceed the permitted level in groundwater (Col. 1gg.) for all uses in the GAP except the 1 x 35 g a.s./ha in cuember CGA179944, considered to exceed the permitted level in groundwater (Col. 1gg.) for all uses in the GAP except the 1 x 35 g a.s./ha in cuember CGA179944, considered to exceed the permitted level in groundwater (Col. 1gg.) for all uses in the GAP except the 1 x 35 g a.s./ha in cuember CGA179944, considered to exceed the permitted level in groundwater (Col. 1gg.) for all uses in the GAP ex				2 O W W
The ED criteria were implemented after the application for renewal was received. According to Commission Implementing Regulation (EU) 2018/1659 Penconazole is considered a pending application, as the application for renewal (according to Art-1 of the Reg. 844/2012) was received before 10% of November 2018. More specifically the administrative application for pencionally was received the 31% of December 2016. For pending applications, information may be requested by EFSA during EFSA stop-clock. When information may be requested by EFSA during EFSA stop-clock. When information may be requested by EFSA during EFSA stop-clock. When information may be requested is listed under point 3.1.4. Point 3.7.4 also lists other data gaps identified by RMS It is considered that in line with Article 6 of Regulation (EC) Not 1107/2009 approval should be subject to conditions and restrictions. The painty of the active substance shall be minimum 950 g/kg The nature and maximum content of certain impurities are confidential information – data are provided separately (Vol. 4) by the Penconazole Task force members. Based on the evaluation of the available data, RMS has identified a relevant metabolite, CGA179944, considered to exceed the permitted level in groundwater (>0.1 µg/L) for all uses in the GAP except the 1 x 35 g a.s./ha in cuenther. CGA179944 shows similar developmental toxicity compared with penconazole, and RMS proposes the same classification, as "Suspected of damaging the unborn childs, H361d. 3.1.1.4 Criteria for the approval of an active substance Dossier Yes No It is considered the dossier confains the information needed to exace the permitted level in groundwater (>0.1 µg/L) for all uses in the GAP except the 1 x 35 g a.s./ha in cuenther. CGA179944, shows similar developmental toxicity compared with penconazole, and RMS proposes the same classification, as "Suspected of damaging the unborn childs, H361d. 3.1.1.4 Criteria for the approval of an active substance. It is considered the dossier confains the				decide whether the approval criteria (point 3.6.5 and 3.8.2 in Annex II to
The ED criteria were implemented after the application for renewal was received. According to Commission Implementing Regulation (EU) 2018/1659 Penconazole is considered a pending application, as the application for renewal (according to Art-1 of the Reg. 844/2012) was received before 10% of November 2018. More specifically the administrative application for pencionally was received the 31% of December 2016. For pending applications, information may be requested by EFSA during EFSA stop-clock. When information may be requested by EFSA during EFSA stop-clock. When information may be requested by EFSA during EFSA stop-clock. When information may be requested is listed under point 3.1.4. Point 3.7.4 also lists other data gaps identified by RMS It is considered that in line with Article 6 of Regulation (EC) Not 1107/2009 approval should be subject to conditions and restrictions. The painty of the active substance shall be minimum 950 g/kg The nature and maximum content of certain impurities are confidential information – data are provided separately (Vol. 4) by the Penconazole Task force members. Based on the evaluation of the available data, RMS has identified a relevant metabolite, CGA179944, considered to exceed the permitted level in groundwater (>0.1 µg/L) for all uses in the GAP except the 1 x 35 g a.s./ha in cuenther. CGA179944 shows similar developmental toxicity compared with penconazole, and RMS proposes the same classification, as "Suspected of damaging the unborn childs, H361d. 3.1.1.4 Criteria for the approval of an active substance Dossier Yes No It is considered the dossier confains the information needed to exace the permitted level in groundwater (>0.1 µg/L) for all uses in the GAP except the 1 x 35 g a.s./ha in cuenther. CGA179944, shows similar developmental toxicity compared with penconazole, and RMS proposes the same classification, as "Suspected of damaging the unborn childs, H361d. 3.1.1.4 Criteria for the approval of an active substance. It is considered the dossier confains the				Regulation (EC) 1107/2009) is fulfilled or not.
received. According to Commission Implementing Regulation (EU) 2018/1659 Penconazole is considered a pending application, as the application for renewal (according to Art-1 of the Reg. 844/2012) was received before 10% of November 2018. More specifically the administrative application for penconazole was received the 31st of December 2016. For pending applications, information may be requested by EFSA during EFSA stop-clock, When information may be requested by EFSA during EFSA stop-clock, When information may be requested by EFSA during EFSA stop-clock, When information may be requested by EFSA during EFSA stop-clock, When information may be requested by EFSA during EFSA stop-clock, When information may be requested by EFSA during EFSA stop-clock, When information may be requested by EFSA during EFSA stop-clock, When information may be requested by RMS 3.1.1.3 Restrictions on approval Yes No It is considered that in line with Article 6 of Regulation (EC) No 1107/2009 approval should be subject to conditions and restrictions. Based on the evaluation of the available data, RMS has identified a relevant metabolite, CGA179944, considered to exceed the permitted level in groundwater (-0.1 µg/L) for all uses in the GAP except the 1 x 35 g a.s./has in groundwater (-0.1 µg/L) for all uses in the GAP except the 1 x 35 g a.s./has in groundwater (-0.1 µg/L) for all uses in the GAP except the 1 x 35 g a.s./has in groundwater (-0.1 µg/L) for all uses in the GAP except the 1 x 35 g a.s./has information and restrictions. 3.1.1.4 Criteria for the approval of an active substance Dossier Yes No It is considered the dossier contains the information needed to establish, where 'relevant, 'Acceptable Deairy Intake (ADI), Acceptable Operator Exposure Level (AOEL) and Acute Reference				(19,70,40,40,00)
According to Commission Implementing Regulation (EU) 2018/1659 Penconazole is considered a pending application, as the application for renewal (according to Art-1 of the Reg. 844/2012) was received before 10 th of November 2018. More specifically the administrative application for penconazole was received the 31 th of December 2016. For pending applications, information needed to finalise the ED-assessment have been provided, the dossier may be regarded as complete. **RMS proposal for which studies should be requested by RMS** **All Point 3.1.4 Point 3.1.4 also lists other data gaps identified by RMS** **All Point 3.1.4 Point 3.1.4 also lists other data gaps identified by RMS** **All Point 3.1.4 Point 3.1.4 also lists other data gaps identified by RMS** **All Point 3.1.4 Point 3.1.4 also lists other data gaps identified by RMS** **The nature and maximum content of certain impurities are confidential information of the available data, RMS has identified a relevant metabolite, CGA179944, considered to exceed the permitted level in groundwater (>0.1 µg/L) for all uses in the GAP except the 1 x 35 g a.s./has in considered the dossier ontains the information needed to assign the unborn childs. H361d. **3.1.1.4 Criteria for the approval of an active substance** **Dossier** **Yes** No It is considered the dossier contains the information needed to establish, where 'relevant, 'Acceptable Deairy lanks (ADI), Acceptable Operator Exposure Level (AOFI.) and Acute Reference** **Yes** No It is considered the dossier contains the information needed to establish, where 'relevant, 'Acceptable Deairy lanks (ADI), Acceptable Operator Exposure Level (AOFI.) and Acute Reference**				
Penconazole is considered a pending application, as the application for renewal (according to Art. 1 of the Reg. 844/2012) was received before 10% of November 2018. More specifically the administrative application for penconazole was received the 31% of December 2016. For pending applications, information may be requested by EFSA during EFSA stopclock, When information may be regarded as complete. RMS proposal for which studies should be requested is listed under point 3.1.4. Point 3.1.4 also lists other data gaps identified by RMS 1107/2009 approval should be subject to conditions and restrictions. The nature and maximum content of certain impurities are confidential information of data are provided separately (Vol. 4) by the Penconazole Task force members. Based on the evaluation of the available data, RMS has identified a relevant metabolite, CGA179944, considered to exceed the permitted level in groundwater (<0.1 µg/L) for all uses in the GAP except the 1 x 35 g a.s./ha in cuember. CGA179944 shows similar developmental toxicity compared with penconazole, and RMS proposes the same classification, as "Suspected of damaging the unborn child», H361d. 3.1.1.4 Criteria for the approval of an active substance Dossier Yes No It is considered the dossier contains the information needed to except the 1 x 35 g a.s./ha in cuember. CGA179944 shows similar developmental toxicity compared with penconazole, and RMS proposes the same classification, as "Suspected of damaging the unborn child», H361d. 3.1.1.4 Criteria for the approval of an active substance Dossier Yes No It is considered the dossier contains the information needed to except the 1 x 35 g a.s./ha in cuember. CGA179944, considered the dossier contains the information needed to exceed the permitted level in groundwater (<0.1 µg/L) for all uses in the GAP except the 1 x 35 g a.s./ha in cuember. CGA179944 shows similar developmental toxicity compared with penconazole, and RMS proposes the same classification, as "Suspected of damaging the unborn child				received.
Penconazole is considered a pending application, as the application for renewal (according to Art. 1 of the Reg. 844/2012) was received before 10% of November 2016. More specifically the administrative application for penconazole was received the 31% of December 2016. For pending applications, information may be requested by EFSA during EFSA stop-clock, When information may be requested by EFSA during EFSA stop-clock, When information may be regarded as complete. RMS proposal for which studies should be requested is listed under point 3.1.4. Point 3.1.4 also lists other data gaps identified by RMS 1107/2009 approval should be subject to conditions and restrictions. The nature and maximum content of certain impurities are confidential information of data are provided separately (Vol. 4) by the Penconazole Task force members. Based on the evaluation of the available data, RMS has identified a relevant metabolite, CGA179944, considered to exceed the permitted level in groundwater (×0.1 µg/L) for all uses in the GAP except the 1 x 35 g a.s./ha in cuember. CGA179944 shows similar developmental toxicity compared with penconazole, and RMS proposes the same classification, as "Suspected of damaging the unborn childs, H361d. 3.1.1.4 Criteria for the approval of an active substance Dossier Yes No It is considered the dossier contains the information needed to establish, where relevant, Acceptable Operator Expositer Level (AOEL), and Acceptable Operator Expositer Level (AOEL) and Acceptable Operator Exposit				at the second of
renewal (according to Art -1 of the Reg. 844/2012) was received before 10% of November 2018. More specifically the administrative application for penconazole was received the 31" of December 2016. For pending applications, information needed to finalise the ED-assessment have been provided, the dossier may be regarded as complete. RMS proposal for which studies should be requested is listed under point 3.1.4. Point 3.1.4 also lists other data gaps identified by RMS 3.1.1.3 Restrictions on approval Yes No It is considered that in line with Article 6 of Regulation (EC) No X 1107/2009 approval should be subject to conditions and restrictions. Based on the evaluation of the available data, RMS has identified a relevant metabolite, CGA179944, considered to exceed the permitted level in groundwater (>0.1 µg/1.) for all uses in the GAP except the 1 x 35 g a.s./ha in cuember. CGA179944, considered to exceed the permitted level in groundwater (>0.1 µg/1.) for all uses in the GAP except the 1 x 35 g a.s./ha in cuember. CGA179944, considered to exceed the permitted level in groundwater (>0.1 µg/1.) for all uses in the GAP except the 1 x 35 g a.s./ha in cuember. CGA179944, whose similar developmental toxicity compared with penconazole, and RMS proposes the same classification, as "Suspected of damaging the unborn child», H361d. 3.1.1.4 Criteria for the approval of an active substance Dossier Yes No It is considered the dossier contains the information needed to extablish, where relevant, exceptable Daily Intake (ADI), Acceptable Operator Exposure Level (AOEL), and Active Reference				
It is considered the dossier contains, the information needed to SX and the substance shall be minimum 950 g/kg It is considered the dossier contains, the information needed to X x establish, where relevant, Acceptable Operator Exposure Level (AODL), and Acute Reference				
for penconazole was received the 31st of December 2016. For pending applications, information may be requested by EFSA during EFSA stop-clock, When information needed to finalise the ED-assessment have been provided, the dossier may be regarded as complete. RMS proposal for which studies should be requested is listed under point 3.14. Point 3.14 also lists other data gaps identified by RMS 3.1.1.3 Restrictions on approval Yes No It is considered that in line with Article 6 of Regulation (EC) No 1107/2009 approval should be subject to conditions and restrictions. Based on the evaluation of the available data, RMS has identified a relevant metabolite, CGA179944, considered to exceed the permitted level in groundwater (-0.1 µg.1) for all uses in the GAP except the 1x 35 g a.s./ha in cucmber. CGA179944 shows similar developmental toxicity compared with penconazole, and RMS proposes the same classification, as "Suspected of damaging the unborn child», H361d. 3.1.1.4 Criteria for the approval of an active substance Dossier Yes No It is considered the dossier contains the information needed to X establish, where relevant, Acceptable Operator Exposure Level (AOEL) and Acute Reference				
applications, information may be requested by EFSA during EFSA stop-clock. When information needed to finalise the ED-assessment have been provided, the dessier may be regarded as complete. RMS proposal for which studies should be requested is listed under point 3.1.4. Point 3.1.4 also lists other data gaps identified by RMS The putity of the active substance shall be minimum 950 g/kg The nature and maximum content of certain impurities are confidential information – data are provided separately (Vol. 4) by the Penconazole Task force members. Based on the evaluation of the available data, RMS has identified a relevant metabolite, CGA179944, considered to exceed the permitted level in groundwater (>0.1 µg/L) for all uses in the GAP except the 1 x 35 g a.s./ha in cuember. CGA179944 shows similar developmental toxicity compared with penconazole, and RMS proposes the same classification, as "Suspected of damaging the unborn child», H361d. 3.1.1.4 Criteria for the approval of an active substance Dossier Yes No It is considered the dossier contains the information needed to X establish, where relevant, Acceptable Daily Intake (ADI), Acceptable Operator Exposure Level (AOEL) and Acute Reference				10 th of November 2018. More specifically the administrative application
clock, When information needed to finalise the ED-assessment have been provided, the dossier may be regarded as complete. RMS proposal for which studies should be requested is listed under point 3.1.4. Point 3.1.4 also lists other data gaps identified by RMS 3.1.1.3 Restrictions on approval It is considered that in line with Article 6 of Regulation (EC). No 1107/2009 approval should be subject to conditions and restrictions. The nature and maximum content of certain impurities are confidential information – data are provided separately (Vol. 4) by the Penconazole Task force members. Based on the evaluation of the available data, RMS has identified a relevant metabolite, CGA179944, considered to exceed the permitted level in groundwater (>0.1 µg/L) for all uses in the GAP except the 1 x 35 g a.s./ha in cuember. CGA179944 shows similar developmental toxicity compared with penconazole, and RMS proposes the same classification, as "Suspected of damaging the unborn child», H361d. 3.1.1.4 Criteria for the approval of an active substance Dossier Yes No It is considered the dossier contains, the information needed to establish, where relevant, Acceptable Operator Exposure Level (AQEL), and Acute Reference			*,	for penconazole was received the 31st of December 2016. For pending
Salary S			, 0	applications, information may be requested by EFSA during EFSA stop-
Provided, the dossier may be regarded as complete. RMS proposal for which studies should be requested is listed under point 3.1.4. Point 3.1.4 also lists other data gaps identified by RMS			(0)	clock. When information needed to finalise the ED-assessment have been
RMS proposal for which studies should be requested is listed under point 3.1.1. Point 3.1.4 also lists other data gaps identified by RMS 3.1.1.3 Restrictions on approval It is considered that in line with Article 6 of Regulation (EC) No 1107/2009 approval should be subject to conditions and restrictions. The purity of the active substance shall be minimum 950 g/kg The nature and maximum content of certain impurities are confidential information – data are provided separately (Vol. 4) by the Penconazole Task force members. Based on the evaluation of the available data, RMS has identified a relevant metabolite, CGA179944, considered to exceed the permitted level in groundwater (>0.1 µg/L) for all uses in the GAP except the 1 x 35 g a.s./ha in cuember. CGA179944 shows similar developmental toxicity compared with penconazole, and RMS proposes the same classification, as "Suspected of damaging the unborn child», H361d. 3.1.1.4 Criteria for the approval of an active substance Dossier Yes No It is considered the dossier contains the information needed to establish, where relevant, Acceptable Daily Intake (ADI), Acceptable Operator Exposure Level (AOEL) and Acute Reference			9, cc	provided, the dossier may be regarded as complete.
3.1.1.3 Restrictions on approval It is considered that in line with Article 6 of Regulation (EC) No 1107/2009 approval should be subject to conditions and restrictions. The purity of the active substance shall be minimum 950 g/kg The nature and maximum content of certain impurities are confidential information – data are provided separately (Vol. 4) by the Penconazole Task force members. Based on the evaluation of the available data, RMS has identified a relevant metabolite, CGA179944, considered to exceed the permitted level in groundwater (>0.1 µg/L) for all uses in the GAP except the 1 x 35 g a.s./na in cucmber. CGA179944 shows similar developmental toxicity compared with penconazole, and RMS proposes the same classification, as "Suspected of damaging the unborn child», H361d. 3.1.1.4 Criteria for the approval of an active substance Dossier Yes No It is considered the dossier contains the information needed to establish, where relevant, Acceptable Daily Intake (ADI), Acceptable Operator Exposure Level (AOEL) and Acute Reference		5):	60.00	The Physical Alexander
It is considered that in line with Article 6 of Regulation (EC) No 1107/2009 approval should be subject to conditions and restrictions. The purity of the active substance shall be minimum 950 g/kg The purity of the active substance shall be minimum 950 g/kg The nature and maximum content of certain impurities are confidential information – data are provided separately (Vol. 4) by the Penconazole Task force members. Based on the evaluation of the available data, RMS has identified a relevant metabolite, CGA179944, considered to exceed the permitted level in groundwater (>0.1 µg/L) for all uses in the GAP except the 1 x 35 g a.s./ha in cucmber. CGA179944 shows similar developmental toxicity compared with penconazole, and RMS proposes the same classification, as "Suspected of damaging the unborn child», H361d. 3.1.1.4 Criteria for the approval of an active substance Dossier Yes No It is considered the dossier contains the information needed to establish, where relevant, Acceptable Daily Intake (ADI), Acceptable Operator Exposure Level (AOEL) and Acute Reference		,04	SUL	
The purity of the active substance shall be minimum 950 g/kg The nature and maximum content of certain impurities are confidential information — data are provided separately (Vol. 4) by the Penconazole Task force members. Based on the evaluation of the available data, RMS has identified a relevant metabolite, CGA179944, considered to exceed the permitted level in groundwater (>0.1 µg/L) for all uses in the GAP except the 1 x 35 g a.s./ha in cucmber. CGA179944 shows similar developmental toxicity compared with penconazole, and RMS proposes the same classification, as "Suspected of damaging the unborn child», H361d. 3.1.1.4 Criteria for the approval of an active substance Dossier Yes No It is considered the dossier contains the information needed to establish, where relevant, Acceptable Daily Intake (ADI), Acceptable Operator Exposure Level (AOEL) and Acute Reference		0100	5 1,40	3.1.4. Point 3.1.4 also lists other data gaps identified by RMS
3.1.1.4 Criteria for the approval of an active substance Dossier Yes No It is considered the dossier contains the information needed to establish, where relevant, Acceptable Daily Intake (ADI), Acceptable Operator Exposure Level (AOEL) and Acute Reference	3.1.1.3 Restrictions on approval	1.18.70	500	10,0,9,
3.1.1.4 Criteria for the approval of an active substance Dossier Yes No It is considered the dossier contains the information needed to establish, where relevant, Acceptable Daily Intake (ADI), Acceptable Operator Exposure Level (AOEL) and Acute Reference		Yes	No	(0) (5)
3.1.1.4 Criteria for the approval of an active substance Dossier Yes No It is considered the dossier contains the information needed to establish, where relevant, Acceptable Daily Intake (ADI), Acceptable Operator Exposure Level (AOEL) and Acute Reference	It is considered that in line with Article 6 of Regulation (EC) No	X	100	The purity of the active substance shall be minimum 950 g/kg
3.1.1.4 Criteria for the approval of an active substance Dossier Yes No It is considered the dossier contains the information needed to establish, where relevant, Acceptable Daily Intake (ADI), Acceptable Operator Exposure Level (AOEL) and Acute Reference	1107/2009 approval should be subject to conditions and	(B) " (1/1) " (110 111	
3.1.1.4 Criteria for the approval of an active substance Dossier Yes No It is considered the dossier contains the information needed to establish, where relevant, Acceptable Daily Intake (ADI), Acceptable Operator Exposure Level (AOEL) and Acute Reference	restrictions.	700,90	00,	The nature and maximum content of certain impurities are confidential
3.1.1.4 Criteria for the approval of an active substance Dossier Yes No It is considered the dossier contains the information needed to establish, where relevant, Acceptable Daily Intake (ADI), Acceptable Operator Exposure Level (AOEL) and Acute Reference	0, 0, 0	0, 10,	e Xe	information – data are provided separately (Vol. 4) by the Penconazole
3.1.1.4 Criteria for the approval of an active substance Dossier Yes No It is considered the dossier contains the information needed to establish, where relevant, Acceptable Daily Intake (ADI), Acceptable Operator Exposure Level (AOEL) and Acute Reference	Mr. 00 CH.	100 XX	:.0	Task force members.
3.1.1.4 Criteria for the approval of an active substance Dossier Yes No It is considered the dossier contains the information needed to establish, where relevant, Acceptable Daily Intake (ADI), Acceptable Operator Exposure Level (AOEL) and Acute Reference	00, 11,000	1, 00,	11,	
3.1.1.4 Criteria for the approval of an active substance Dossier Yes No It is considered the dossier contains the information needed to establish, where relevant, Acceptable Daily Intake (ADI), Acceptable Operator Exposure Level (AOEL) and Acute Reference	(O) 1. O() ii)	, iffe of).	Based on the evaluation of the available data, RMS has identified a relevant
3.1.1.4 Criteria for the approval of an active substance Dossier Yes No It is considered the dossier contains the information needed to establish, where relevant, Acceptable Daily Intake (ADI), Acceptable Operator Exposure Level (AOEL) and Acute Reference	6, 12, 14, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19	4. 9.0		metabolite, CGA179944, considered to exceed the permitted level in
3.1.1.4 Criteria for the approval of an active substance Dossier Yes No It is considered the dossier contains the information needed to establish, where relevant, Acceptable Daily Intake (ADI), Acceptable Operator Exposure Level (AOEL) and Acute Reference		9 . 100		groundwater (>0.1 μ g/L) for all uses in the GAP except the 1 x 35 g a.s./ha
3.1.1.4 Criteria for the approval of an active substance Dossier Yes No It is considered the dossier contains the information needed to establish, where relevant, Acceptable Daily Intake (ADI), Acceptable Operator Exposure Level (AOEL) and Acute Reference	of the life ties.	10,		in cucmber. CGA179944 shows similar developmental toxicity compared
3.1.1.4 Criteria for the approval of an active substance Dossier Yes No It is considered the dossier contains the information needed to establish, where relevant, Acceptable Daily Intake (ADI), Acceptable Operator Exposure Level (AOEL) and Acute Reference	18 18 18 18 18 18 18 18 18 18 18 18 18 1	<i>y</i> .		with penconazole, and RMS proposes the same classification, as
Yes No It is considered the dossier contains the information needed to establish, where relevant, Acceptable Daily Intake (ADI), Acceptable Operator Exposure Level (AOEL) and Acute Reference				"Suspected of damaging the unborn child», H361d.
Yes No It is considered the dossier contains the information needed to establish, where relevant, Acceptable Daily Intake (ADI), Acceptable Operator Exposure Level (AOEL) and Acute Reference	3.1.1.4 Criteria for the approval of an active substance			
It is considered the dossier contains the information needed to establish, where relevant, Acceptable Daily Intake (ADI), Acceptable Operator Exposure Level (AOEL) and Acute Reference	Dossier		1	
establish, where relevant, Acceptable Daily Intake (ADI), Acceptable Operator Exposure Level (AOEL) and Acute Reference	100 11/1 110 100 11/1		No	
Acceptable Operator Exposure Level (AOEL) and Acute Reference		X		
Dose (ARfD).				
	Dose (ARfD).			

	It is considered that the dossier contains the information necessary to carry out a risk assessment and for enforcement purposes (relevant for substances for which one or more representative uses includes use on feed or food crops or leads indirectly to residues in food or feed). In particular it is considered that the dossier: (a) permits any residue of concern to be defined; (b) reliably predicts the residues in food and feed, including succeeding crops (c) reliably predicts, where relevant, the corresponding residue level reflecting the effects of processing and/or mixing; (d) permits a maximum residue level to be defined and to be determined by appropriate methods in general use for the commodity and, where appropriate, for products of animal origin where the commodity or parts of it is fed to animals; (e) permits, where relevant, concentration or dilution factors due to processing and/or mixing to be defined.	X X JOS OF THE STATE OF THE STA		The residue definition for monitoring in plants is proposed to be parent penconazole, only. The residue definition for risk assessment in plants is proposed to be the sum of penconazole + CGA132465 + CGA190503 + CGA127841, and the conjugates of the metabolites, expressed as penconazole (fruit and fruiting vegetables, only). The residue definition for risk assessment in processed plant commodities (fruit and fruiting vegetables, only) is proposed to be the same as for unprocessed plant commodities. The qualitative nature of the residues in rotated crops is similar to and consistent with the pathways found in the representative primary crops. The dietary burden triggering the submission of livestock metabolism studies is >0.004 mg/kg bw/d for the active substances falling under Regulation (EU) No 283/2013. Calculated dietary burden calculations for feed-related representative crops (apple, only) are below the trigger in Regulation (EU) No 283/2013 (>0.004 mg/kg bw/d) for ruminants, and zero for poultry, pigs and fish. Therefore, residue definitions for monitoring and risk assessment in animal commodities are not required. The study on residue levels in honey did not provide enough data to determine a maximum residue level for penconazole. The results of the TMDI and IEDI calculations indicate that there is no unacceptable chronic risk to human health from the consumption of commodities treated with penconazole according to the uses considered. The results of the IESTI calculation indicate that there is no unacceptable acute risk to human health from the consumption of commodities treated with penconazole according to the uses considered.
	It is considered that the dossier submitted is sufficient to permit, where relevant, an estimate of the fate and distribution of the active substance in the environment, and its impact on non-target species.	X KINO SU		All intended uses
Efficacy	1 -01 -1 - 110 His Hell	ilo.		
	· 6/290 / 20, col (c	Yes	No	
	It is considered that it has been established for one or more representative uses that the plant protection product, consequent on application consistent with good plant protection practice and having regard to realistic conditions of use is sufficiently effective.	X		See level 2 (section 2.3).
Relevan	ice of metabolites			
	1/1/2 02 01 1/2 0Cc	Yes	No	
	It is considered that the documentation submitted is sufficient to permit the establishment of the toxicological, ecotoxicological or environmental relevance of metabolites.	X		All intended uses

Composition	Yes	No	4/2 10 10 10 10 10 10 10 10 10 10 10 10 10
It is considered that the specification defines the minimum degree	;	X	Specification for Syngenta sources:
of purity, the identity and maximum content of impurities and where relevant, of isomers/diastereo-isomers and additives, and the content of impurities of toxicological, ecotoxicological or environmental concern within acceptable limits.	:	, ot o	The (eco)toxicological relevance of one impurity remains open/are not finalised. Specification for Ascenzas source: RMS has not received the necessary information in this AIR submission to evaluate (eco)toxicological relevance of eventual impurities in the technical material, nor to perform an equivalence assessment against the current and proposed reference specifications. The technical specification for Ascenza's source remains unconcluded.
It is considered that the specification is in compliance with the relevant Food and Agriculture Organisation specification, where such specification exists.		ediolec	Not relevant; Such FAO specification for penconazole does not exist.
It is considered for reasons of protection of human or animal health or the environment, stricter specifications than that provided for by the FAO specification should be adopted		Les Il	Not relevant; Such FAO specification for penconazole does not exist.
Methods of analysis	or of the	100	55.01
,5	Yes	No	Q ₁
It is considered that the methods of analysis of the active substance safener or synergist as manufactured and of determination of impurities of toxicological, ecotoxicological or environmental concern or which are present in quantities greater than 1 g/kg in the active substance, safener or synergist as manufactured, have been validated and shown to be sufficiently specific, correctly calibrated accurate and precise.	is require	d indiate	Syngenta and Ascenza sources: Validated analytical methods in line with data requirements and guidelines have been used in the generation of data used in the risk assessment.
It is considered that the methods of residue analysis for the active substance and relevant metabolites in plant, animal and environmental matrices and drinking water, as appropriate, shall have been validated and shown to be sufficiently sensitive with respect to the levels of concern.			Validation of the analytical method in line with current data requirements and guidelines have not been provided for all methods used for the generation of data to be used in the risk assessment. Sufficient information and/or data are, however, available to conclude on the acceptability of the analytical method and/or reliability of the generated data used in the risk assessment. Please refer to Level $2-2.5.1$.
It is confirmed that the evaluation has been carried out in accordance with the uniform principles for evaluation and authorisation of plant protection products referred to in Article 29(6) of Regulation 1107/2009. Impact on human health	1		

pact on human health - ADI, AOEL, ARfD			
PHOT OIL MAINTAIN HOUSEN 122, 12 222, 1222	Yes	No	1/2 10 1 10 10 10 10 10 10 10 10 10 10 10 1
It is confirmed that (where relevant) an ADI, AOEL and ARfD can be established with an appropriate safety margin of at least 100 taking into account the type and severity of effects and the vulnerability of specific groups of the population.	X	٠	In line with the previous evaluation (DAR, 2007), the ADI is based on the NOAEL (3 mg/kg bw/day) from the 90 days/1 year toxicity study in dogs. From a comparison of NOAELS/LOAELs potentially relevant for setting an ADI, i.e. those from short-term, long-term and reproduction toxicity studies, it was concluded that the species most sensitive to repeated administration of penconazole was the dog, with the most relevant NOAEL of ca. 3 mg/kg bw/day, being derived from the combined 90-day/1-year oral gavage study on the basis of reduced body weight development and hepatotoxicity at about 17 mg/kg bw/day and above. With respect to safety factors, it was previously (DAR, 2007) decided to use a default value of 100 (accounting for potential interspecies as well as for intraspecies variation), resulting in an ADI of 0.03 mg/kg bw/day. During this re-assessment, an extra safety factor of 2 is proposed to be applied, to account for the extrapolation from sub-chronic to chronic studies. Notably, the histopathological findings in the combined 90-day/1-year oral gavage study indicate a time-dependent increase in the number of animals with inflammation with fibrosis in the liver. In addition, more severe effects in the liver are seen at lower penconazole levels after 1 year compared with 90 days. In total, three chronic/long term studies were conducted (two in mice and one in rats). However, in line with the previous evaluation (DAR, 2007), it was concluded that the tested doses in two of these studies were too low and that the studies could only be considered supportive, as no toxicity was seen at the top dose. In the third long-term study in mice, a NOAEL of 21.7 mg/kg bw/day was derived, based on reduced body weight development and an increase in liver weight associated with an increase in hepatocyte vacuolisation at the highest dose tested. Notably, a NOAEL of 69 mg/kg bw/day was derived for a 90-Day Preliminary Carcinogenicity Study In Mice, based on reduced body weight development and an increase in liver weight assoc

access to documents under the documents of the documents Consequently any publication, i.e., i.e., in distribution, reproduction and a sound use of this direction, i.e., i copyrights of third parties. Furthermore, this document in a copyrights of third parties. Furthermore, the copyrights of third parties. and use of this document of its contents without the Berniss

ADI = NOAEL 90-day/1-year, dog/SF = (3 mg/kg bw/day)/200 = 0.015mg/kg bw/day.

During the previous evaluation (DAR, 2007), the setting of an ARfD for penconazole was considered unnecessary, based on an evaluation in accordance with recommendations of the WHO published in 2004 (JMPR, 2004. Guidance for the derivation of an acute reference dose, pesticide residues in food-2004, Report of the JMPR, FAO Plant Production and Protection Paper, 178).

During the current evaluation, an ARfD of 50 mg/kg bw/day is proposed, based on the NOAEL from a developmental toxicity study in rabbit. With respect to uncertainty factors, it is proposed to use a default value of 100, accounting for potential interspecies as well as for intraspecies variation. Based on the comparative intravenous (iv) vs. oral data, the oral absorption of penconazole can be assumed to be practically complete, and no additional correction factor is proposed.

The proposed ARfD was calculated as follows:

ARfD = NOAEL dev. Tox rabbit /SF = (50 mg/kg bw/day)/100 = 0.5mg/kg bw/day

In line with the previous evaluation (DAR, 2007), the AOEL is based on the NOAEL (3 mg/kg bw/d) from the 90 days/1 year toxicity study in dogs. From a comparison of potentially relevant NOAELs/LOAELs for shortterm and reproduction toxicity, the combined 90-d/1-yr study in dogs was chosen as being the most relevant one for the setting of the systemic AOEL (AOEL-S).

With respect to safety factors, it is, in line with the previous evaluation (DAR, 2007), decided to use a default value of 100, accounting for potential interspecies as well as for intraspecies variation. Based on the comparative intravenous (iv) vs. oral data, the oral absorption of penconazole can be assumed to be practically complete, and no additional correction factor is proposed.

The proposed AOEL was calculated as follows:

AOEL-S = NOAEL 90-day/1-year, dog/SF = (3 mg/kg bw/day)/100 =0.03 mg/kg bw/day

An EU-wide harmonised approach for the derivation of the AAOEL is still pending. However, based on the Commission Guidance Document

			SANTE-108322015 rev. 1.7, 24 January 2017, the ARfD is suggested as a value for the AAOEL. The proposed AAOEL was calculated as follows: AAOEL = NOAEL dev. Tox rabbit /SF = (50 mg/kg bw/day)/100 = 0.5
			mg/kg bw/day
Impact on human health – proposed genotoxicity classification		ı	C' W TO TO TO
	Yes	No	1/6 32 1/2, 1/1, 1/6,
It is considered that, on the basis of assessment of higher tier genotoxicity testing carried out in accordance with the data requirements and other available data and information, including a review of the scientific literature, reviewed by the Authority, the substance SHOULD BE classified or proposed for classification, in accordance with the provisions of Regulation (EC) No 1272/2008, as mutagen category 1A or 1B.	disployid	X ed to a control of the control of	Penconazole did not reveal any genotoxic potential in all available <i>in vitro</i> studies. All tests were considered acceptable by RMS except for one out of four Ames tests, the chromosome aberration assay and an unscheduled DNA synthesis test, which were considered supplementary. The negative Ames tests and the <i>in vitro</i> HPRT mammalian cell gene mutation test confirm that penconazole does not induce gene mutations in bacterial cells and in mammalian cells. An <i>in vitro</i> micronucleus test was not available during the completeness check, but was later done with technical penconazole spiked for several impurities. In addition to the <i>in vitro</i> micronucleus test, an Ames test and an <i>in vitro</i> HPRT mammalian cell gene mutation test were done with the same spiked batch of penconazole: the Ames test was negative, while the <i>in vitro</i> HPRT test was considered to be equivocal (more details are provided in Volume 4). The <i>in vitro</i> micronucleus test confirms the absence of both aneugenic and clastogenic potential for penconazole and the negative result for clastogenicity in the supplementary chromosomal aberration assay. The <i>in vivo</i> micronucleus study is supportive only due to too few cells analysed; thus, it is not possible to conclude that penconazole is clearly negative regarding structural or numerical chromosome aberrations <i>in vivo</i> . As the phototoxicity test revealed no phototoxic potential of penconazole, a photomutagenicity test is not required, in accordance with EFSA technical report 2016 (Outcome of the pesticides peer review meeting on general recurring issues in mammalian toxicology, EFSA Supporting publication 2016:EN-1074). Taken together, it is not possible to conclude whether Penconazole is considered not genotoxic, due to the supplementary <i>in vivo</i> micronucleus study provided. A re-analysis of the <i>in vivo</i> study would provide a better basis to draw a conclusion.
Impact on human health - proposed carcinogenicity classification			
111 20 25 11 40	Yes	No	
i) It is considered that, on the basis of assessment of the carcinogenicity testing carried out in accordance with the data		X	Three carcinogenicity bioassays have been performed with Penconazole.

	requirements for the active substances, safener or synergist and other available data and information, including a review of the scientific literature, reviewed by the Authority, the substance SHOULD BE classified or proposed for classification, in accordance with the provisions of Regulation (EC) No 1272/2008, as carcinogen category 1A or 1B.	oroid		In two of these studies, one in mice and one in rats, no adverse findings, including tumours, were seen. However, as no toxicity was seen at the top dose, it was previously concluded (DAR, 2007) that the tested doses were too low and that the studies could only be considered supportive. In rats, the only dose-related finding of potential toxicological relevance that attained statistical significance was a slight increase in absolute and relative liver weight in females of the mid- and high-dose groups. However, these findings lacked a biochemical or histopathological correlate and were therefore not considered adverse. In the third study in mice, a higher top dose was used. This dose caused toxic effects but no tumours. The body weight development was reduced and an increase in liver weight was associated with an increase in hepatocyte vacuolisation. In RMS's opinion, it should be rediscussed to what extent these three available long-term studies are sufficient to exclude a carcinogenic potential of penconazole, and whether additional testing of long-term toxicity and carcinogenesis at higher doses in rats may be needed.
ii)	Linked to above classification proposal. It is considered that exposure of humans to the active substance, safener or synergist in a plant protection product, under realistic proposed conditions of use, is negligible, that is, the product is used in closed systems or in other conditions excluding contact with humans and where residues of the active substance, safener or synergist concerned on food and feed do not exceed the default value set in accordance with Article 18(1)(b) of Regulation (EC) No 396/2005.	oring of a significant of the si		toxicity and carcinogenesis at higher doses in rats may be needed.
Impa	ct on human health – proposed reproductive toxicity classification	300		
	100 H3: 114; V3 H1,	Yes	No	
i)	It is considered that, on the basis of assessment of the reproductive toxicity testing carried out in accordance with the data requirements for the active substances, safeners or synergists and other available data and information, including a review of the scientific literature, reviewed by the Authority, the substance SHOULD BE classified or proposed for classification, in accordance with the provisions of Regulation (EC) No 1272/2008, as toxic for reproduction category 1A or 1B.	X		Several findings from all four studies were related to developmental effects. Increases in post-implantation loss were seen in both rat studies and in the second rabbit study. In the first rat study, an increase in dead foetuses were seen at 450 mg/kg bw/day. Reduced foetal weights were reported in both rat studies. In the second rabbit study, two foetuses were dead, and the number of live foetuses per litter were reduced. An increase in runt foetuses were reported in the second rat study. Skeletal findings were reported in both rat studies, mainly increases in incomplete ossification and occurrence of extra ribs. However, the individual skeletal findings contributing to these increases were not reproducible within the

				, 9° 0° ill' :0' °
			0.	same study nor between the two studies except for some indications for delayed ossification. In the first rabbit study, the incidences of internal hydrocephalus slightly exceeded available HCD. This was not seen in the second study. In addition, three foetuses in the first study had microphtalmia (within the range of HCD), including two which also had hydrocephalus. In the second rabbit study, foetuses with hyoid body and/or arches unossified and reduced ossification of the skull were observed and exceeded available HCD ranges. Taken together, several of these findings contribute to the need for classification. Since the data are from animal studies only and are not sufficiently convincing to classify in category 1b, classification in category 2 is warranted.
ii)	Linked to above classification proposal. It is considered that exposure of humans to the active substance, safener or synergist in a plant protection product, under realistic proposed conditions of use, is negligible, that is, the product is used in closed systems or in other conditions excluding contact with humans and where residues of the active substance, safener or synergist concerned on food and feed do not exceed the default value set in accordance with Article 18(1)(b) of Regulation (EC) No 396/2005.	or of the state of		For further details, see Section 2.6.6.2
Impac	ct on human health – proposed endocrine disrupting properties cla	ssification	10 1916	
		320 X	No	
i)	It is considered that the substance SHOULD BE identified as having endocrine disrupting properties in accordance with the provisions of point 3.6.5 in Annex II of Regulation (EC) No 1107/2009	1, 400		The available dataset was indicative of T-mediated activity: Uridine diphosphate [UDP]-glucuronyl transferase was increased in rat and mouse hepatocytes. There was no consistent evidence of T-mediated adversity: Increased thyroid weight and incidences of minimal hypertrophy of the follicle epithelium was observed in one study (short term 28 day) in one species (rat) and were considered adverse. However, these findings were not confirmed in other studies. Although there were no consistent effects on T-mediated adversity and activity, RMS is of the opinion that these parameters have not been sufficiently investigated. The available dataset was positive for EAS-mediated activity. There was evidence of AR and ER mediated activity (antagonism) and effects (inhibition) on steroidogenesis activity in vitro. There was no consistent evidence of EAS-mediated adversity: Testicular toxicity was observed in

			Ö	the 90-day study and in the 1-year dog study receiving top dose (cellular debris in epididymis (90 days), reduced spermatogenesis and reduced testis weight (90 days and 1-year) and tubular atrophy (1-year)). These effects were observed above the MTD (90 days) and around the MTD (1-year). EAS parameters were also examined in other studies at different dose levels and of different durations in rats and mice by oral administration of the substance and no adversity was observed. However, RMS is of the opinion that EAS-adversity has not been sufficiently investigated. In summary, as the endocrine disrupting properties of penconazole have not been sufficiently investigated, a firm conclusion regarding the endocrine disruption potential of penconazole cannot be drawn.
ii)	Linked to above identification proposal.		10%	10 1 2 10 10
	It is considered that exposure of humans to the active substance, safener or synergist in a plant protection product, under realistic proposed conditions of use, is negligible, that is, the product is used in closed systems or in other conditions excluding contact with humans and where residues of the active substance, safener or synergist concerned on food and feed do not exceed the default value set in accordance with Article 18(1)(b) of Regulation (EC) No 396/2005.	dis providence of the contraction of the contractio		been sufficiently investigated, a firm conclusion regarding the endocrine disruption potential of penconazole cannot be drawn.
Fate a	nd behaviour in the environment	90,000	28.0	
	30 30 31	13 100 6	1. 7.0.	
Persis	tent organic pollutant (POP)	10 11	Jio.	
		Yes	No	
	It is considered that the active substance FULFILS the criteria of a persistent organic pollutant (POP) as laid out in Regulation 1107/2009 Annex II Section 3.7.1.	Ripited of	X	Persistence Penconazole is considered to be persistent as it fulfils the persistence criteria in Regulation 1107/2009 Annex II Section 3.7.1. See discussion in Vol. 1 Level 2, section 2.8.1 and 2.8.2 and Vol. 3 CA B.8, section B.8.5. Bioaccumulative The available study on bioaccumulation is not regarded reliable by RMS. A decision regarding the bioaccumulative potential can thus not be reached. See further information in Level 2, Section 2.9.2.1. Potential for long-range transport

				* Y .O
Persistent, bioaccumulative and toxic	e substance (PRT)			Reliable data to conclude on bioaccumulation is currently not available, however, the potential for long-range transport is not fulfilled. Penconazole does thus not fulfil the criteria for a POP-substance.
1 ci sistent, bioaccumulative and toxic	· · · · · · · · · · · · · · · · · · ·	vc 1	No	7, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10
It is considered that the active spersistent, bioaccumulative and in Regulation 1107/2009 Anne	substance FULFILS the criteria of a d toxic (PBT) substance as laid out		No (X)*	Persistence Penconazole is considered to be persistent as it fulfils the persistence criteria in Regulation 1107/2009 Annex II Section 3.7.1. See discussion in Vol. 1 Level 2, section 2.8.1 and 2.8.2 and Vol. 3 CA B.8, section B.8.5. Bioaccumulative The available study on bioaccumulation is not regarded reliable by RMS. A decision regarding the bioaccumulative potential can thus not be reached. See further information in Level 2, Section 2.9.2.1. Toxic - the long-term no-observed effect concentration for marine or freshwater organisms is (currently) not less than 0.01 mg/l. From laboratory studies on the toxicity of penconazole to aquatic organisms the preliminary long-term NOEC for daphnia is ≤ 0.069 mg a.s./L. However, the study is regarded as supportive, due to uncertainty regarding the applied statistics. The applicant has informed RMS that the Penconazole Task Force intend to conduct a new study according to OECD TG 211, which fully complies with current guidance, with the data ready to be delivered on request by Q2 2022. See further information in Level 2, Section 2.9.2.3.5. - the substance is not classified as carcinogenic (category 1A or 1B) or mutagenic (category 1A or 1B); however, the substance is toxic for reproduction (category 2) pursuant to
This to the	arin's doc			Regulation (EC) No 1272/2008 - There is also evidence of chronic toxicity, as identified by the

				classification as STOT RE 2 pursuant to Regulation (EC) No
				1272/2008.
				113 119 45 16
				Thus, penconazole fulfils the criteria of a toxic substance.
				As two of the PBT-criteria (P and T) are considered fulfilled for
				penconazole, the substance may be regarded as a candidate-of-substitution.
				*Penconazole does not fulfil the criteria for a PBT-substance, however,
				reliable data to conclude on bioaccumulation is currently not available.
				in bollowing
Verv r	ersistent and very bioaccumulative substance (vPvB).		, 0	Control of the second of the s
<i>J</i> 1	•	Yes	No	10 1, 5, 10, 31
	It is considered that the active substance FULFILS the criteria of a		(X)*	Very persistent
	a very persistent and very bioaccumulative substance (vPvB) as laid	5,;		Penconazole is considered to be very persistent as it fulfils the persistence
	out in Regulation 1107/2009 Annex II Section 3.7.3.	,04,	37.0	criteria in Regulation 1107/2009 Annex II Section 3.7.1. See discussion in
	out in Regulation 1107/2009 Aimex II Section 5.7.5.	0, 0	5 1,40	Vol. 1 Level 2, section 2.8.1 and 2.8.2 and Vol. 3 CA B.8, section B.8.5.
		1.18,70	500	10,0,0,
	(6 60,	11. 50	Very bioaccumulative
		X11 -05	· 0	The available study on bioaccumulation is not regarded reliable by RMS.
	SK.	Ol, My	i_0 ω	A decision regarding the bioaccumulative potential can thus not be reached.
		, 200 77,	0/1	See further information in Level 2, Section 2.9.2.1.
		30,00	0, 8 x0	2000 101 1110 111 111 111 11 11 11 11 11
		00 4	10/00	*Penconazole does not fulfil the criteria for a vPvB-substance, however,
	Sign of the	10,11,	110.	reliable data to conclude on bioaccumulation is currently not available.
	It is considered that the active substance FULFILS the criteria of a a very persistent and very bioaccumulative substance (vPvB) as laid out in Regulation 1107/2009 Annex II Section 3.7.3.	SULLING STATE	5	remadic data to conclude on bioaccumulation is currently not available.
Ecotox	icology	Millo St.		
	TO TO TO THE PARTY OF THE PARTY	Yes	No	
i	It is considered that the risk assessment demonstrates risks to be	X		The surface water and soil modelling presented in volume 3CP is the
	acceptable in accordance with the criteria laid down in the uniform			original modelling submitted by the applicant, and it has not been updated
	principles for evaluation and authorisation of plant protection			with the new endpoints/other issues that have been decided by RMS/co-
	products referred to in Article 29(6) under realistic proposed			RMS (please refer to table XX for a comparison of original and new
				endpoints relevant for modelling). In the opinion of the RMS the modelling
1	conditions of use of a plant protection product containing the active			needs an update, but we will leave the final decision up to the MS and EFSA
	substance, safener or synergist. The RMS is content that the			during/after the peer review.
	assessment takes into account the severity of effects, the uncertainty			during, alter the poor review.
1	of the data, and the number of organism groups which the active			The acute and long-term risk to birds and mammals is acceptable at the
	substance, safener or synergist is expected to affect adversely by the			screening level for all proposed uses. Likewise, the available data indicate
	intended use.			screening level for an proposed uses. Likewise, the available data indicate

Coss to documents under the law the document may be sultanticle that the document may be sultantically the document may be sufficiently the document may

Wights of third parties. Lither in ore this document in a priority of the prio

acceptable risk via the consumption of drinking water and through secondary poisoning for both birds and mammals.

For aquatic organisms, the Tier 1 RACsw, acute of 5.6 μg a.s./L is lower than the FOCUS Step 1 PEC_{sw}-values (which ranged from 3.6 to 15.4 µg a.s./L), for three of four representative use scenarios indicating an unacceptable risk at these three representative uses at FOCUS step 1. The Tier 1 RACsw.chronic of 3.2 µg a.s./L are lower than the FOCUS Step 1 PECswvalues (which ranged from 3.6 to 15.4 µg a.s./L), indicating an unacceptable risk at FOCUS step 1 for all four representative use scenarios. However, both the chronic and acute Tier 1 RACs are greater than the FOCUS Step 2 PEC_{SW}-values (which ranged from 0.3 to 2.2 µg a.s./L) thereby indicating an acceptable risk to aquatic organisms from penconazole following all proposed uses of A6209G. For all proposed use patterns, the Tier 1 RAC_{SED. ch} of 2520 µg a.s./kg is above the Step 1 PEC_{SED} values (which ranged from 65 to 277 µg a.s./kg), indicating an acceptable risk to sediment dwelling organisms following the proposed uses of 20 Softhis document or the stripling of the boundary of the stripling of t A6209G. The risk assessment for aquatic species and the metabolites were acceptable at FOCUS Step 1 for all the applied representative uses. Thus, an acceptable risk to aquatic organisms following the proposed uses of A6209G have been identified. No higher tier refinements are required.

The risk for bees is considered to be acceptable following all the representative uses of A6209G. For details, see *iv* further down.

of this document of its content, without the permitant The off-field risk to non-target arthropods other than bees is acceptable at the first tier. The in-field risk to T.Pyri is unacceptable for alle proposed uses at the first tier and a tier 2 risk assessment has been conducted. The tier 2 risk assessment shows acceptable risk for all uses, except from the highest dose rate in cucumbers. With this dose the reproductive risk is considered unresolved.

For earthworms and soil macro-organisms, all the TER values for penconazole and the relevant metabolites are well above the relevant triggers, indicating acceptable long-term risk for all the representative uses of A6209G.

For soil nitrogen transformation, < 25% deviation from control after 28 days was observed for penconazole (in A6209G) and relevant soil

	It is considered that the substance SHOULD BE identified as		metabolites, at doses relevant for the representative uses. Thus, acceptable risk on soil nitrogen transformation is expected after exposure of penconazole or the penconazole metabolites. Two screening studies with the representative formulation A6209G (Topas 100 EC) and higher plants have been submitted, these are both regarded as supportive. According to the Terrestrial guidance document, endpoints measured in most screening studies cannot be interpreted as a NOEC-value covering germination and biomass production. However, it is assumed that the available information usually allows the use of a conservative approach, assuming, for example, that when an untreated control has been run in parallel, any effect accounting for at least 50 % reduction in biomass production could be identified in a visual inspection. In the current screening study, no phytotoxic effects above 50% was detected at an application rate of 200 g a.s./ha covering the worst-case GAP (including accumulation). According to these data, acceptable risk may be anticipated for the representative uses. However, this study is regarded as « supportive only », due to e.g. non-GLP and lack of analytical verification of the test substance. RMS is of the opinion that a new valid study should be provided in order to conclude on the risk for terrestrial plants. The applicant has indicated that studies with the formulation Duoro (10% EC formulation) can be submitted during EFSA-stop-clock, and that syngent intend to conduct two new studies with A6209G and NTTP, which may be available Q3 2022. In the risk assessment for biological methods for sewage treatment the EC20 of 82.1 mg a.s./L _{nom} is 5335 times greater than the worst-case FOCUS step 1 initial PEC _{sw} of 0.01537 mg/l (cucumber, bbch 51-89, 3 x 50 g a.s./ha). Dilution prior to reaching sewage treatment facilities may also be expected to reduce the risk further. These results suggest limited risk to sewage treatment facilities.
ii	It is considered that the substance SHOULD BE identified as having endocrine disrupting properties that may cause adverse effects on non-target organisms in accordance with the provisions of point 3.8.2 in Annex II of Regulation (EC) No 1107/2009.		There is evidence of endocrine activity (E, A, S and T) however, endocrine adversity has not been sufficiently investigated (Scenario 2a (i) in EFSA/ECHA guidance). Therefore, further data should be generated before a conclusion could be drawn. According to Commission Implementing Regulation (EU) 2018/1659 Penconazole is considered a pending application (submission of the application for renewal (Art. 1 of the Reg.

		150100		844/2012) before 10 th of November 2018, more specifically the administrative application was 31 st of December 2016). To conclude on adversity, further information is needed: - Fish life cycle toxicity test has been initiated by the applicant, but reporting was not finalised before delivery of the Top-up submission in December 2019. Study will address potential adverse effects on the EAS-modality for non-target organisms other than mammals. - AMA (OECD 231) or XETA (OECD 248) is needed to finalise the assessment of the T-modality for non-target organisms other than mammals. For mammals as non-target organisms: please see Level 3 Impact on human health – proposed endocrine disrupting properties classification i), above. Please see Volume 1, Level 2.10, for further details.
iii	Linked to the consideration of the endocrine properties immediately above. It is considered that the exposure of non-target organisms to the active substance in a plant protection product under realistic proposed conditions of use is negligible.	XIIIO OU SOCIOLIA	Sion in Single	Not applicable
iv	plant protection products containing this active substance, safener or synergist:	Killing and		Studies have been submitted and evaluated, investigating the chronic toxicity of Penconazole (in preparation A6209G) to adult honeybees and honeybee larvae, in line with the data requirements. Further, acute toxicity studies with bumble bees and penconazole have been submitted and evaluated.
	will result in a negligible exposure of honeybees, or has no unacceptable acute or chronic effects on colony survival and development, taking into account effects on honeybee larvae and honeybee behaviour.			The risk assessment for honey bees and bumble bees has been performed according to the EFSA Bee guidance (EFSA Journal 2013;11(7):3295). The acute risk to adult honey bees and bumble bees, and the chronic risk to honey bee larvae from penconazole are acceptable at the screening level for all proposed uses of A6209G. The chronic risk to adult honey bees for the proposed post flowering uses (BBCH \geq 70) in pome, vines and cucumber from penconazole and the formulation A6209G is acceptable at tier 1. The chronic risk to adult honey bees from penconazole for the proposed uses in

				vines (BBCH 10-69) and cucumber (BBCH 50-69) is considered acceptable according to a refined risk assessment.
				There are no studies on the residues of metabolites in pollen or nectar. The metabolites considered to be relevant (CGA71019 and CGA132465) were identified based on plant metabolisms and rotational crop studies, and toxicity reported for other organism groups/QSAR. The risk for the relevant metabolites is assessed, assuming 10 times higher toxicity of the metabolites compared to penconazole.
	LES P. O.	dis provid		The acute risk to adult honey bees and the chronic risk to honey bee larvae from the relevant metabolites are acceptable at the screening level for all proposed uses of A6209G. For CGA71019 the chronic risk to adult honey bees for all the proposed uses of A6209G is considered acceptable at tier 1. For CGA132465, the chronic risk to adult honey bees for the proposed post flowering uses (BBCH \geq 70) uses in cucumber is considered acceptable at tier 1. The chronic risk to adult honey bees from CGA132465 for the proposed post flowering uses (BBCH \geq 70) uses in pome and wine is considered acceptable according to the refined risk assessment. The chronic risk to adult honey bees for the proposed uses in vine (BBCH 10-69) and cucumber (BBCH 50-69) is considered acceptable based on a weight of evidence approach.
Residu	e definition	30,00	0, X x0	
		Yes	No	
	It is considered that, where relevant, a residue definition can be	X	110	For monitoring: Penconazole only
	established for the purposes of risk assessment and for enforcement purposes.	X OIL)	For risk assessment: Sum of penconazole and free and conjugated CGA132465, CGA190503 and CGA127841, expressed as penconazole
Fate at	nd behaviour concerning groundwater	.x0'		
I ute us	au benavious concessing groundwater	Yes	No	
	It is considered that it has been established for one or more representative uses, that consequently after application of the plant protection product consistent with realistic conditions on use, the)	110	To be completed with updated calculations, for current calculations see Volume 3 CP B.8 of the dRAR
	predicted concentration of the active substance or of metabolites, degradation or reaction products in groundwater complies with the respective criteria of the uniform principles for evaluation and			The groundwater modelling presented in volume 3CP is the original modelling submitted by the applicant, and it has not been updated with the new endpoints/other issues that have been decided by RMS/co-RMS (please refer to table 96 for a comparison of original and new endpoints
	authorisation of plant protection products referred to in Article 29(6) of Regulation 1107/2009.			relevant for modelling). In the opinion of the RMS the groundwater modelling needs an update, but we will leave the final decision up to the MS and EFSA during/after the peer review.

	Penconazole	Volume 1 – Level 3	19/10 x4 0.0.
-			" Post difficient
			Preliminary evaluation shows that metabolites CGA179944 and CGA142856 exceed the concentration of 0.1 μ g/L, except for use in cucmber with application rate of 35 g penconazole/ha x 1. CGA142856 is also predicted to exceed the concentration of 0.75 μ g/L

Proposal – Candidate for substitution

				cucmber with application rate of 35 g penconazole/ha x 1. CGA142856 is also predicted to exceed the concentration of 0.75 µg/L
3.1.2	Proposal – Candidate for substitution		40	also predicted to exceed the concentration of 0.75 µg/L
Cand	idate for substitution	Yes	No	30 right Stranger
	It is considered that the active substance shall be approved as a candida for substitution	201.	3).	11 11 10 0 V
	It is considered that the active substance shall be approved as a candidator substitution	SCHOOL SC		meets two of the criteria to be considered as a PBT substance (P and T).
	Collaboration	387		

3.1.3 Proposal – Low risk active substance

risk active substances			Section of the		
	Yes	No	" to "talle profit dial may		
It is considered that the active substance shall be considered of low risk.		X	diving the state of state of the state of th		
If the active substance is not a micro-organism, in particular it is considered that:			ining is sulfat allie		
(a) the substance should NOT be classified or proposed for classification in accordance to Regulation (EC) No 1272/2008 as any of the following:	۲.	,ed , ci	Strole a hod a for a strong a		
— carcinogenic category 1A, 1B or 2,	,0 ¹ / ₁	SUP	all out to one		
— carchiogenic category 1A, 1B or 2, — mutagenic category 1A, 1B or 2, — toxic to reproduction category 1A, 1B or 2, — skin sensitiser category 1, — serious damage to eye category 1, — respiratory sensitiser category 1, — acute toxicity category 1, 2 or 3, — specific Target Organ Toxicant, category 1 or 2,	6,0	8 3	L'OL L'ANTERES		
— toxic to reproduction category 1A, 1B or 2,	to	4,00	(0, 0, 20,		
 skin sensitiser category 1, serious damage to eye category 1, respiratory sensitiser category 1, acute toxicity category 1, 2 or 3, specific Target Organ Toxicant, category 1 or 2, 	11,00	-03	EST MILL		
— serious damage to eye category 1,	ILLO	10, "			
— respiratory sensitiser category 1,	90	00)	"ille		
— acute toxicity category 1, 2 or 3,	310° 1	0			
— specific Target Organ Toxicant, category 1 or 2,	4 11 0	iloli			
 specific Target Organ Toxicant, category 1 of 2, toxic to aquatic life of acute and chronic category 1 on the basis of appropriate standard tests, explosive, skin corrosive, category 1A, 1B or 1C; 	300	5			
— explosive,	S _O .				
— skill collosive, category IA, IB of IC,					
(b) it has not been identified as priority substance under Directive 2000/60/EC;					
(c) it is not deemed to be an endocrine disruptor in accordance to Annex II of Regulation (EC) No 1107/2009;					
(d) it has no neurotoxic or immunotoxic effects;					
(e) it is not persistent (half-life in soil is more than 60 days) or its bioconcentration factor is lower than 100.					
(f) it is a semiochemical and verifies points (a) to (d).					

Paragraph (e) doesn't apply to naturally occurring active substances.

assess to adough the lighter training the light of the li Contents of third adjustication, destroyed by the adjustic of the content of the Constituted the stocking of the contents of the contents of the stocking of th and use of this localment or its are the first interest of the country of the cou If the active substance is a micro-organism, in particular it is considered that at strain level the micro-organism has not demonstrated multiple resistance to anti-microbials used in human or veterinary medicine.

If the active substance is a baculovirus, in particular it has not demonstrated adverse effects on non-target insects.

3.1.4 List of studies to be generated, still ongoing or available but not peer reviewed

Data gap	Relevance in relation to representative use(s)	Study status		
		No confirmation that study available or ongoing.	Study on-going and anticipated date of completion	Study available but not peer-reviewed
3.1.4.1 Identity of the active substance		01, 09, 10i, 11i	, tilling	
Ascenza's source for TM: The submitted 5-batch analysis are not within the timeframe required by the regulation (5 years from the time of submission).	No relevance	Lay to fee gring and	Anticipated completion May 2022	
Ascenza's source for TM: Insufficient information is provided for the evaluation of (eco)toxicological relevance of eventual impurities in this AIR submission, nor to perform an equivalence assessment against the current and proposed reference	ties of the active substance and phys	ical, chemical and tech		
3.1.4.2 Physical and chemical proper	ties of the active substance and phys	ical, chemical and tech	nical properties of the f	formulation
CA B.2.7: Study reports for the determination of the partition coefficient (n-octanol/water) for three of the metabolites included in the residue definition are either lacking information on the batches used for studies (CGA179944 and CGA71019), or the study report entirely (CGA91305).	olosa, wol nigo night suc	X		
go chi, third b	"Well,			
3.1.4.3 Data on uses and efficacy	9	1	1	1
ESES JUSTUSTINES				

Data gap	Relevance in relation to representative use(s)	Study status		
		No confirmation that study available or ongoing.	Study on-going and anticipated date of completion	Study available but not peer-reviewed
		101, 210 10	21/2 400	
3.1.4.4 Data on handling, storage, tra	unsport, packaging and labelling	on to this this	, M	
	24	of the latter of	0.	
	aide di	ole This on the		
3.1.4.5 Methods of analysis	.50000	1,016 July 112		
Methods for post control and monitoring purposes: The Task Force has not provided analytical methods for metabolites CGA71019 (1,2,4-Triazole), included in the residue definitions for soil and groundwater, as well as penconazole-OH, included in the residue definition for bodily fluids and tissues.	olobeity lie goring vitte of graphic being the goring of the bound of	and sion XIs of the artificial XIS of the ar		
	Stoft M. Wolf Till Mills Sug			
3.1.4.6 Toxicology and metabolism	E) He istill the constitution			
Genotoxicity study with metabolite CGA179944: <i>In vitro</i> mammalian cell gene mutation (OECD 490). Due to lack of colony sizing, and the equivocal result of the existing study, a novel study should be provided.	Meli of its of Prolitical	X		
To investigate EAS-adversity a study following the OECD TG 416 (latest version) should be		X		

Data gap	Relevance in relation to representative use(s)	Study status		kat kote
		No confirmation that study available or ongoing.	Study on-going and anticipated date of completion	Study available but not peer-reviewed
conducted, with investigation of the following parameters: anogenital distance (AGD), nipple retention, mammary gland histopathology and hormone measurements. A complete dataset from a Level 5 study would fully address the concern arising from the positive outcome of the Level 2 studies, which would be sufficient to conclude whether the ED criteria are met or not.	property of the document in the distribution in the distribution in the distribution in the day of the distribution in the din	of diving the sing and sing and sing and sing and sing a sing and sing a sing and si	of this do	
The first step should be to investigate T-adversity in a study following the OECD TG 407/408 and OECD TG 416 (latest version).	LES A STORT THE OF THE STOR	Rissio idits		
To investigate whether liver enzyme induction is responsible for the effects seen on thyroid histopathology and weight and to determine whether the effect is likely to be human relevant or not, studies on the following will be needed:	olobelish we strip to the of the of			
1) A specifically designed in vivo toxicity study should be considered to measure TSH, T3 and T4 and, where possible, additional data on liver enzyme induction (e.g. measurement of UDPGT) should be included.	El Lithe distribution in the Strain of the Strain of the Prohibites			
2) Comparative studies of enzyme activity induced by the test substance in liver in vitro systems should be measured in both the relevant test species (e.g. rat, mouse and dog) and humans.	Ment			

Data gap	Relevance in relation to representative use(s)	Study status		not of
		No confirmation that study available or ongoing.	Study on-going and anticipated date of completion	Study available but not peer-reviewed
3) The presence of other possible thyroid-disrupting modes of action such as interference with TH synthesis should also be excluded, e.g. by evaluating in vitro the potential for inhibition of the sodium–iodide symporter (NIS) and thyroid peroxidase (TPO).	Detty he de this tebriffe of	Source of the state of the stat	of this do	
If changes in circulating THs are observed and human relevance cannot be clearly excluded as a result of these assays, a thyroid assessment study conducted in the foetus and pup.	and is ployide sil	Andor Of the life of		
3.1.4.7 Residue data	Charles As	ries ild		
Effect on the residue level in pollen and bee products – setting of MRL	Stop Strip its to be strip its	X		
C	Stop M. Thought high supplement			
3.1.4.8 Environmental fate and behave	viour in Still Assistance			
No acceptable field dissipation studies on the active substance. As the soil DT50 values for penconazole are greater than 60 days in laboratory	piour illestifications in the contraction is the contraction in the co	X		
studies, field studies are considered required in accordance with Commission Regulation (EU) No 283/2013.	nuevi o.			
According to the data requirements of the commission regulation (EU) No 283/2013, soil accumulation studies shall provide estimates of the		X		

Data gap	Relevance in relation to representative use(s)	Study status		Koti Oto
		No confirmation that study available or ongoing.	Study on-going and anticipated date of completion	Study available but not peer-reviewed
time required for dissipation of 50 % and 90 % (DisT50 field and DisT90 field). It is not possible to fulfil this data requirement by model calculations. Single yearly residue analysis at various times does not allow for kinetic evaluations. This data requirement is not filled.	. 48d 51	of diving the still and still the still and still a still and still a still and still and still a still and still a st	of this good	
The modelling presented in volume 3CP and LoEP is the original modelling submitted by the applicant, and it has not been updated with the new endpoints (degradation and sorption) that have been suggested by RMS/co-RMS (please refer to table 96 for a comparison of original and new endpoints relevant for modelling). In the opinion of the RMS the modelling needs an update, but we will leave the final decision up to the MS and EFSA during/after the peer review	Relevant for all representative uses	and of the its of the street o		
If deemed necessary by MS/EFSA the following adjustments should also be made for the new modelling:	En ithe liegiphing right of our			
 PECsoil using geometric mean DT50 PECgw using "spring cereals" as a surrogate crop for cucumber (based on co-RMS commenting table, comment 59) 	Sication its be brown			
- PECsw Steps 1-2 calculations covering the entire application period. See RMS's grey commenting box in Vol. 3CP B.8, under section B.8,5 for an overview of	Tue,			

Penconazole

Data gap	Relevance in relation to representative use(s)	Study status		kate tote
		No confirmation that study available or ongoing.	Study on-going and anticipated date of completion	Study available but not peer-reviewed
the additional modelling that should be provided. - Any new calculations provided for metabolite CGA91305 should be conducted using the correct molecular weight of 258.1 g/mol.	sided to	iect rigerievillane	ST HOS	
The potential effects of water treatment processes should be considered a data gap if deemed necessary.	and in not not not not not not not not not no	X dor Porting its		
3.1.4.9 Ecotoxicology	Sk Well Michilo.	IIIII III		
A Fish full life cycle study to address the ED-criteria for adversity.	Singlion its of brought of the broken of the bound of the bound of the broken of the b		X (Study has been initiated, but reporting was not finalised before delivery of the Top-up submission in December 2019. Final report can be requested by EFSA during stop-the-clock.)	
A valid GLP study to address data requirement 8.2.2.3 Bioconcentration in fish, in European commission (EU) 283/2013.	Ment	X		
A valid GLP study with technical penconazole and <i>D. magna</i> to address data requirement 8.2.4.1 Acute		X		

Data gap	Relevance in relation to representative use(s)	Study status		
		No confirmation that study available or ongoing.	1, 0, 11,	Study available but not peer-reviewed
toxicity to <i>Daphnia magna</i> , in European commission (EU) 283/2013		(Not to RMS knowledge).	ord do	
The applicant acknowledges that the existing Daphnia chronic exposure study (CGA71818/0080) addressing data requirement 9.2.5.1 Long-term and chronic toxicity to aquatic invertebrates, has some limitations according to today's standards.	Andis plovided to	and of the street of the or of the o	(The Penconazole Task Force intend to conduct a new study according to OECD TG 211, which fully complies with current guidance, with the data ready to be delivered on request by Q2 2022.)	
A valid GLP study with CGA142856 (triazole acetic acid) and green algae to address data requirement 8.2.6.1 Effects on growth of green algae, in European commission (EU) 283/2013.	property he do this tebrified and in spirited	Unknown. However, during the completeness check RMS requested that the applicant provided a study to derive the missing EC ₂₀ -value, in order to address the data requirement. RMS received the following response: The Task Force are therefore proposing to conduct a new study to fulfil the current validity criteria for the study and		

Data gap	Relevance in relation to representative use(s)	Study status		
		No confirmation that study available or ongoing.	Study on-going and anticipated date of completion	Study available but not peer-reviewed
	, ded	provide all required ECx values where possible. RMS do not know whether the study have been or are planned to be initiated.)	of this do	
Even though data requirement 8.2.7 Effects on aquatic macrophytes in European commission (EU) 283/2013 do not apply to fungicides, the available data indicates that technical penconazole may be toxic to <i>Lemna gibba</i> . EFSA should therefore consider whether a study should be provided	Shand is ploud so	Mills of the its of		
A valid GLP study(ies) on non-target terrestrial plants and technical penconazole/the representative formulation is needed to address the data requirements 8.6. Effects on terrestrial non-target higher plants and 10.6. Effects on terrestrial non-target higher plants, in European commission (EU) 283/2013 and European commission (EU) 284/2013, respectively	Property Chelicolitics of the design of the design of the document of the document of the document of the document of the design		X (Two studies according to OECD TG 208 and 227 are available to the Penconazole Task Force for the penconazole 10% EC formulation, DOURO. Both studies are available for submission during the EFSA-stop-clock if requested by EFSA during peer review. Syngenta also intends	

Data gap	Relevance in relation to representative use(s)		heigiote	
		No confirmation that study available or ongoing.	Study on-going and anticipated date of completion	Study available but not peer-reviewed
	And is provided to the doctor of the doctor	and sion wise on and and and and and and and and and an	studies with the formulated product (A6209G; penconazole 100 g/L EC) in full accordance with current guidance (OECD TG 208 and 227). However, these data are unlikely to be available before Q3 2022.)	
There are no studies on the residue levels of metabolites in nectar or pollen, nor any effect studies on honey bees and relevant metabolites available. Therefore, the data requirement regarding metabolites might be considered as not fulfilled. EFSA should considered if this constitutes a data gap and if additional data is required, or if the approach suggested for addressing the risk of metabolites according to the EFSA Bee GD (2013) as presented in Volume 3 - B.9 (PPP) , section B.9.6.1.3 is sufficient	Stoberty of Electric Strip of the Story of Electric Strip of the Strip	ON THE THE		
access hights of this do	intent of its per			
Co. grants	398			

3.1.5 Issues that could not be finalised

An issue is listed as an issue that could not be finalised where there is not enough information available to perform an assessment, even at the lowest tier level, for the representative uses in line with the Uniform Principles, as laid out in Commission Regulation (EU) No 546/2011, and where the issue is of such importance that it could, when finalised, become a concern (which would also be listed as a critical area of concern if it is of relevance to all representative uses).

	, (1), (2)
Area of the risk assessment that could not be finalised on the basis of the available data	Relevance in relation to representative use(s)
Genotoxic potential of penconazole: The <i>in vivo</i> micronucleus study is supportive only due to too few cells analysed; thus, it is not possible to conclude that penconazole is clearly negative regarding structural or numerical chromosome aberrations <i>in vivo</i> . A re-analysis of the <i>in vivo</i> study would provide a better basis to draw a conclusion.	Relevant for all representative uses
The endocrine disrupting potential of penconazole could not be finalised due to lack of sufficient information.	Relevant for all representative uses
The bioconcentration factor (BCF) for penconazole could not be determined, as the available study is regarded as not reliable by RMS. Thus, the assessment of the approval criteria in Annex II (3.7.1 – POP, 3.7.2 -PBT, 3.7.3 vPvB) could not be finalised.	Relevant for all representative uses
The risk assessment to non-target terrestrial plants, as no valid GLP study/studies fulfilling the data requirements is/are available.	Relevant for all representative uses

3.1.6 Critical areas of concern

An issue is listed as a critical area of concern:

(a) where the substance does not satisfy the criteria set out in points 3.6.3, 3.6.4, 3.6.5 or 3.8.2 of Annex II of Regulation (EC) No 1107/2009 and the applicant has not provided detailed evidence that the active substance is necessary to control a serious danger to plant health which cannot be contained by other available means including non-chemical methods, taking into account risk mitigation measures to ensure that exposure of humans and the environment is minimised, or

(b) where there is enough information available to perform an assessment for the representative uses in line with the Uniform Principles, as laid out in Commission Regulation (EU) 546/2011, and where this assessment does not permit to conclude that for at least one of the representative uses it may be expected that a plant protection product containing the active substance will not have any harmful effect on human or animal health or on groundwater or any unacceptable influence on the environment.

An issue is also listed as a critical area of concern where the assessment at a higher tier level could not be finalised due to a lack of information, and where the assessment performed at the lower tier level does not permit to conclude that for at least one of the representative uses it may be expected that a plant protection product containing the active substance will not have any harmful effect on human or animal health or on groundwater or any unacceptable influence on the environment.

Critical area of concern identified	Relevance in relation to representative use
Based on the evaluation of the available data, RMS has identified a relevant metabolite, CGA179944, considered to exceed the permitted level in groundwater (>0.1 µg/L). CGA179944 shows similar developmental toxicity compared with penconazole, and RMS proposes the same classification, as "Suspected of damaging the unborn child», H361d.	Relevant for all representative uses except 1x g a.s./ha in cucumber
The endocrine disrupting potential of penconazole could not be finalised due to lack of sufficient information	Relevant for all representative uses
8	O COLOR OF SURVEY OF SURVEY SU
conide s	OR THE WASHINGTON
Mis Ash Mis	of flor of the fits
1.7 Overview table of the concerns identified for ea	ach representative use considered
a particular condition proposed to be taken into account to maluated as being effective, then 'risk identified' is not indicate	ed in this table.)
1.7 Overview table of the concerns identified for early a particular condition proposed to be taken into account to make a particular as being effective, then 'risk identified' is not indicated.	

Overview table of the concerns identified for each representative use considered

Representative us	e	Pome fruit BBCH 71–89 2 x 40 g a.s./ha	Grapes, table and wine BBCH 13-85 2 x 30 g a.s./ha	Cucumber BBCH 51-89 3 x 50 g a.s./ha	Cucumber BBCH 51-89 1 x 35 g a.s./ha
	Risk identified	None	None	None	None
Operator risk	Assessment not finalised				to opera
	Risk identified	None	None	None	None
Worker risk	Assessment not finalised			C. TO INTO	Soldier St. Co.
	Risk identified	None	None	None	None
Bystander risk	Assessment not finalised		iding	Lie en sugar,	112
	Risk identified	None*	None*	None*	None
Consumer risk	Assessment not finalised	:6910	to english of	of the ties on	
Risk to wild non target	Risk identified	None	None	None	None
terrestrial vertebrates	Assessment not finalised	ELS, IUG, CALL	The Street He		
Risk to wild non target	Risk identified	None	None	None	None
terrestrial organisms other than vertebrates	Assessment not finalised	Stild Le Xi lited	X ¹	X ^{1, 2}	X ¹
Distance of the office of	Risk identified	None	None	None	None
Risk to aquatic organisms	Assessment not finalised				
Groundwater exposure active	Legal parametric value breached				
substance	Assessment not finalised	X^3	X^3	X ³	X^3
Groundwater exposure metabolites	Legal parametric value breached				

	Parametric value of $10\mu g/L^{(a)}$ breached				
	Assessment not finalised	X^3	X^3	X ³	X ³
Comments/Remai	rks				0,00,00

The superscript numbers in this table relate to the numbered points indicated within chapter 3.1.5 and 3.1.6. Where there is no superscript number, see level 2 for more explanation.

Area(s) where expert consultation is considered necessary 3.1.8

It is recommended to organise a consultation of experts on the following parts of the assessment report:

Area(s) where expert consultation is considered necessary	Justification THE STATE OF THE
Long-term carcinogenicity studies Bioconcentration factor	EFSA previously concluded (EFSA, 2008) that penconazole had no
Bioconcentration factor	One bioaccumulation study with the bluegill sunfish, <i>Lepomis macrochirus</i> , is available, and a maximum whole fish bioconcentration factor (BCF) of 320 was derived. In the study TOC was not measured during the test. Organic matter content, quantified as total organic carbon (TOC) and dissolved organic carbon (DOC) can have a significant effect on the amount of freely dissolved test substance during flow-through fish tests, especially for highly lipophilic substances. A metabolism study with a 7-day semi static exposure was available, and during this part of the study partitioning of penconazole between the aqueous and organic phase in water was investigated. The results show that 85-98% of ¹⁴ C-residues were extracted from the organic phase. Sorption of the test substance to organic matter may reduce its bioavailability and therewith result in an underestimation of the BCF ⁴⁴ . In total, this brings uncertainty about the accuracy of calculated BCF.

⁴⁴ OECD (2017). Guidance Document on Aspects of OECD TG 305 on Fish Bioaccumulation. ENV/JM/MONO(2017)16

402

⁽a): Value for non relevant metabolites prescribed in SANCO/221/2000-rev 10-final, European Commission, 2003

¹ Non-target-terrestrial plants

² Non-target arthropods other than bees

³ Updated modelling required

^{*} As the metabolite CGA179944 is proposed to be classified with H361d and exceeds the permitted level of 0.1 µg/ml in groundwater, consumer risk has been identified in relation to drinking water

	In addition, there was a lack of lipid and growth measurements which prevented normalisation of the BCF, and the calculation of the BCF was not done according to the guideline. The BCF was instead calculated based on the mean maximum concentration in fish and the concentration in fish was highest at the start of the exposure period. RMS asked coRMS DE for their opinion regarding the validity of the study, and received the following comment (excerpt): () In our opinion, this study should not be considered valid. The relation of the BCF to the high concentration at the beginning might be conservative, but might also be due to the fact that the test substance was not completely bioavailable in the further course of the study. Consequently, there is a high uncertainty attributed to the BCF. (). RMS thus consider the study not valid, and recommend a new valid study is conducted to conclude on the BCF. As this is a vertebrate study involving a large number of fish, the reliability of the study and the need to conduct a new study should be discussed during peer review.
pH dependent sorption	There are indications that the soil adsorption of penconazole and metabolites is pH dependent. This issue was not concluded.
Harsh extraction	A method described as "harsh" extraction was used in some of the studies assessing the rout and rate of degradation in soil. The residues of penconazole and its metabolites that were detected in the harsh extracts were included when performing the kinetic fitting. RMS consulted the co-RMS regarding the definition of a harsh extraction and whether to include the harsh extracts in the overall data who suggested that including the values from harsh extraction is more conservative and can be considered as acceptable in this case, but that this issue should be discussed in an expert meeting. Please refer to RMS's evaluation in 3CA B.8 of: - Glänzel, 1999 - Scacchi and Pizzingrilli, 2000 - Scacchi and Pizzingrilli, 2003 - Mainolfi and Colombini, 2019
Version of AppDate Risk assessment for non-target	Different versions of AppDate can give very different application dates/window. Based on suggestion from co-RMS, which version of AppDate is valid for EU risk assessment at present should be discussed in an expert meeting. Refer to discussion in 3CP B.8, section B.8.5.
Risk assessment for non-target arthropods other than bees Ecotoxicological endpoints	It is considered that the in-field risk for <i>T.Pyri</i> still is unresolved for the highest dose in cucumber. The new study with <i>T.Pyri</i> indicates acceptable risk for all other uses when assuming that this rate-response study supersede the old study with only one dose level. Both studies are considered acceptable by the RMS. The relevance of the old study for the risk assessment should be discussed during peer review.
Ecotoxicological endpoints from metabolites that are common for several active substances.	For some of the metabolites (e.g., CGA71019 and CGA91305) that are common for several active substances, "new" studies have been submitted that have not previously been evaluated in the DAR/RAR of the active substance under re-evaluation, but have previously been evaluated in the DAR/RAR of another active substance (e.g., Metconazole and propiconazole).
	We have noticed that different endpoints from the same metabolite studies have been used in the DAR/RAR of other active substances. In the current

evaluation RMS also suggest other endpoints for some of the metabolites than previously agreed in LoEP's for other active substances.

RMS suggest that the final selection of the agreed endpoint from these studies should be further considered by EFSA, and/or discussed with other MS at an expert meeting since it might lead to discrepancy with endpoints previously listed for these metabolites in the LoEP for other active substances.

Please see RMS's evaluation of the following studies in Volume 3 B.9 (CA):

- K-CA 8.2.1/06
- K-CA 8.4.2.1/02
- K-CA 8.4.2.1/07

3.1.9 Critical issues on which the Co RMS did not agree with the assessment by the RMS

Points on which the co-rapporteur Member State did not agree with the assessment by the rapporteur member state. Only the points relevant for the decision making process should be listed.

Issue on which Co-RMS disagrees with RMS	Opinion of Co-RMS	Opinion of RMS
	udie by he wildow	
	ELS Sure Little City Och The L	
Selto C	10 1/1/2 10 1/1/2 Jillies	
ine propare	Holdio with and	
Tis Index Find	Controllib	

3.2 PROPOSED DECISION

3.3 RATIONAL FOR THE CONDITIONS AND RESTRICTIONS TO BE ASSOCIATED WITH THE APPROVAL OR AUTHORISATION(S), AS APPROPRIATE

3.4 APPENDICES

3.4.1 GUIDANCE DOCUMENTS USED IN THIS ASSESSEMENT

General

Commission Regulation (EU) No 283/2013 of 1 March 2013 setting out the data requirements for active substances, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market.

Commission Regulation (EU) No 284/2013 of 1 March 2013 setting out the data requirements for plant protection products, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market

Section identity, physical chemical and analytical methods

- Commission working document SANCO/825/00 rev. 8.1 (November 2010). Guidance document on pesticide residue analytical methods.
- Commission working document SANCO/3029/99 rev. 4 (July 2000). Residues: Guidance for generating and reporting methods of analysis in support of pre-registration data requirements for Annex II (part A, Section 4) and Annex III (part A, Section 5) of Directive 91/414.
- Commission working document SANCO/3030/99 rev. 4 (July 2000). Technical Material and Preparations: Guidance for generating and reporting methods of analysis in support of pre- and post-registration data requirements for Annex II (part A, Section 4) and Annex III (part A, Section 5) of Directive 91/414.
- Commission working document SANCO/10597/2003 rev. 10.1 (July 2012). Guidance document on the assessment of the equivalence of technical materials of substances regulated under Regulation (EC) No 1107/2009.

Section Data on application and efficacy

Section Toxicology

EFSA (2014), Guidance on the assessment of exposure of operators, workers, residents and bystanders in risk assessment for plant protection products, EFSA Journal 2014;12(10):3874

EFSA (2017) Guidance on dermal absorption, EFSA Journal 2017;15(6):4873

ECHA/EFSA ED guidance document, EFSA Journal 2018;16(6):5311

EFSA "Technical report on the outcome of the pesticides peer review meeting on general recurring issues in mammalian toxicology" (EFSA supporting publication 2020:EN-1837, doi:10.2903/sp.efsa.2020.EN-1837)

Section Residue and consumer risk assessment

OECD MRL CALCULATOR: STATISTICAL WHITE PAPER ENV/JM/MONO(2011)3

Guidelines - Maximum Residue levels page of the Europa.eu website in 2017 (pesticides_mrl_guidelines_animal_model_2017.xls)

SANCO 7525/VI/95 Rev. 10.3 GUIDANCE DOCUMENT Guidelines on comparability, extrapolation, group tolerances and data requirements for setting MRLs (2017)

OECD (2016) GUIDANCE DOCUMENT ON CROP FIELD TRIALS SECOND EDITION Series on Pesticides - No. 66 Series on Testing & Assessment - No. 164

Guidance on the establishment of the residue definition for dietary risk assessment EFSA Panel on Plant Protection Products and their Residues (PPR) EFSA Journal 2016;14(12):4549

OECD (2008). Guidance document on magnitude of pesticide residues in processed commodities. Environment, Health and Safety Publications. Series on Testing and Assessment No. 96.

OECD (2018) GUIDANCE DOCUMENT ON RESIDUES IN ROTATIONAL CROPS Series on Pesticides No. 97 Series on Testing & Assessment No. 279

SANTE/11956/2016 rev. 9 (2018) Technical guidelines for determining the magnitude of pesticide residues in honey and setting Maximum Residue Levels in honey

Section fate and behaviour in environment

- DG SANCO (2012) Working Document on «Evidence Needed to Identify POP, PBT and vPvB Properties for Pesticides », Brussels 25.09.2012 – rev. 3
- ECHA (2017) Guidance on the Application of the CLP Criteria. Guidance to Regulation (EC) No 1272/2008 on classification, labelling and packaging (CLP) of substances and mixtures Version 5.0. July 2017.
- EFSA (2014) Guidance Document for evaluating laboratory and field dissipation studies to obtain DegT50 values of active substances of plant protection products and transformation products of these active substances in soil. EFSA Journal 2014; 12(5):3662.
- protection products and transformation products of these active substances in soil, EFSA Journal 2017;15(10):4982

 7) Outcome of the partial EFSA (2017) Guidance Document for predicting environmental concentrations of active substances of plant
- EFSA (2017) Outcome of the pesticides peer review meeting on the OECD 106 evaluators checklist. EFSA Supporting publication 2017:EN-1326
- European Commission (2003) Guidance Document on Assessment of the Relevance of Metabolites in Groundwater of Substances Regulated under Council Directive 91/414/EEC. SANCO/221/2000-rev. 10 - final, 25 February 2003
- FOCUS (2008) Pesticides in Air, SANCO/10553/2006 Rev. 2 June 2008
- FOCUS (2014) Generic guidance for Estimating Persistence and Degradation Kinetics from Environmental Fate Studies on Pesticides in EU Registration; FOCUS, version 1.1, 18 December 2014
- FOCUS (2014) Generic Guidance for Tier 1 FOCUS Ground Water Assessments; FOCUS, Version 2.2, May 2014 FOCUS (2015) Generic guidance for FOCUS surface water Scenarios; FOCUS, Version 1.4, May 2015

Section ecotoxicology

- Candolfi, M.P., Barrett, K.L., Campbell, P.J., Forster, R., Grandy, N., Huet, M-C., Lewis, G., Oomen, P.A., Schmuck, R., Vogt, H. (2000). 'Guidance Document on regulatory testing procedures for plant protection products with non-target arthropods' From the workshop, European Standard Characteristics of Non-target Arthropod Regulatory Testing (ESCORT 2) 21-23 March 2000.
- EFSA (2009). Guidance Document on Risk Assessment for Birds and Mammals. EFSA Journal 2009; 7(12):1438 EFSA (2013). Guidance on tiered risk assessment for plant protection products for aquatic organisms in edge-offield surface waters. EFSA Journal 2013;11(7):3290
- EFSA (2013, updated 04 July 2014).). Guidance Document on the risk assessment of plant protection products on J., Boi.
 J13:3295

 Document o
 10329/2002 rev 2 f.

 Lance for the identificatic
 J (EC) No 1107/2009. DOI:
 J) Guidance on the Application
 classification, labelling and pack bees (Apis mellifera, Bombus spp. and solitary bees). EFSA Journal 2013;11(7):3295, 268 pp., doi:
 - EU (2002). Guidance Document on Terrestrial Ecotoxicology Under Council Directive 91/414/EEC. SANCO/10329/2002 rev 2 final. 17 October 2002.
 - EFSA (2018) Guidance for the identification of endocrine disruptors in the context of Regulations (EU) No 528/2012 and (EC) No 1107/2009. DOI: https://doi.org/10.2903/j.efsa.2018.5311
 - ECHA (2017) Guidance on the Application of the CLP Criteria. Guidance to Regulation (EC) No 1272/2008 on classification, labelling and packaging (CLP) of substances and mixtures Version 5.0. July 2017.

3.4.2 METABOLITES OVERVIEW TABLE

						: 01, 01, 00, 00
Code Number (Synonyms)	(IUPAC	(IUPAC name /SMILES notation /InChiKey)		Compound found in xxx (level): (For each compartment the metabolite is detected in, a separate column should be included; level compound detected to be mentioned in brackets)		Structural formula
Penconazole CGA071818	Mol. Formula:	$C_{13}H_{15}Cl_2N_3$	Dietary Metabolism Studies ¹			
CGA71818	SMILES	CCCC(Cn1cncn1)c2ccc(Cl)cc2Cl	Commodity	%TRR	mg/kg	
CSAA061668 CAS: 66246-	IUPAC Name:	1-[2-(2,4-dichlorophenyl)pentyl]-1,2,4-triazole	Primary	Plant Metab	oolism	N N N
88-6 (- isomer): CSAC037637	InChiKey	WKBPZYKAUNRMKP- UHFFFAOYSA-N	¹⁴ C-Triazole label	studies	Weiles, M	
(+ isomer): CSAC037638			Tomato Fruit (7-day PHI)	218:60	0.013	N N
			Tomato Leaves (7-day PHI)	9.70	0.383	
			Tomato Fruit (40-day PHI)	12.6	0.004	
		10,00	Tomato Leaves (40-day PHI)	0 4.10	0.028	
		ochulus of the bolo of the district of the bolo of the	Tomato Fruit (40-day PHI, 5x rate)	6.6	0.024	
		not the following distri	Tomato Foliage (40-day PHI, 5x rate)	9.9	0.029	
		, 15 110 S. 1:01, CO	Apple Peel	21.9	0.080	
		off is affile car, it's	Apple Pulp	5.2	0.003	
		OCHURELLY DO PHOLITY OF	Apple Whole Fruit	11.6	0.012	
	This	9,400 (111, 314, 514,	Apple Tree Leaves	6.8	0.261	
	· cS	With the second	¹⁴ C-Phenyl label s	tudy		

Code Number (Synonyms)	(IUPAC name /SMILES notation /InChiKey)	(For each com detected in, a s included; level menti	Compound found in xxx (level): (For each compartment the metabolite is detected in, a separate column should be included; level compound detected to be mentioned in brackets)		Structural formula
		Tomato Fruit (7-day PHI)	15.1	0.005	S. Mata Molecut
		Tomato Leaves (7-day PHI)	8.1	0.220	COL O GOLL
		Tomato Fruit (40-day PHI)	7.2	0.001	od this
		Tomato Leaves (40-day PHI)	0.3	0.001-0	(, O'
		Confine	d Rotational	Crops	ONLOI.
		¹⁴ C-Triazole label	study	ON WE	07
		Wheat Tops, 50% mature (32-day PBI)	0.9	0.001	
		Wheat Fodder (32-day PBI)	cio ¹ 1.9ris	0.008	
	10,0	Wheat Fodder (126-day PBI)	0.30	0.005	
	This document is not the following the distriction its to	Winter Wheat Fodder (179- day PBI)	3.3	0.011	
	THE WELL STI	Wheat Grain (32-day PBI)	0.1	< 0.001	
	"is linder for or	Wheat Grain (126-day PBI)	<0.1	0.001	
	The Chie Cariblicativities to	Lettuce (32-day PBI)	2.8	< 0.001	
	e doct of this way in the	Radish Tops (32-day PBI)	7.1	0.005	
	This to the off the shock	Radish Tops (358-day PBI)	2.0	0.002	

Code Number (Synonyms)	(IUPAC name /SMILES notation /InChiKey)	(For each comp detected in, a s included; level	eparate colun	x (level): metabolite is nn should be etected to be sets)	Structural formula
		Radish Roots (32-day PBI)	6.9	0.006	S. Wata Kuller But I.
		Radish Roots (358-day PBI)	3.8	0.002	FOLL OF GOLDILL
		¹⁴ C-Phenyl label s	study	10 48 Mile	7 7 5
		Wheat Tops, 50% mature (32-day PBI)	6.1	Jel Villes	
		Wheat Fodder (32-day PBI)	3.0	0.003	on the second
		Wheat Fodder (126-day PBI)	0.3	<0.001	
		Lettuce (32-day PBI)	2.6	0.002	
		Radish Tops (32-day PBI)	11.7	0.004	
	0) 0	Radish Tops (126-day PBI)	3.0	< 0.001	
	This document is not the property of the control of	Radish Roots (32-day PBI)	27.2	0.004	
		He He	n Metabolisn	1	
	Oi Cirring dis	¹⁴ C-Phenyl label s		T	
	"is \ 110° s. \ 110° co	Excreta	3.7	NR	
	Control Richard Control His Control His Control	¹⁴ C-Triazole label Excreta	0.78	NR	
	Chi Well of Supplicit	Excleta	at Metabolisn		
	go ch this of the	¹⁴ C-Phenyl label s		•	
	This document is not the prolition its parties to document of its parties t	Faeces	24.3	NR	
	es idhtentinis	Urine	2.1	NR	
	Co. Misons City	Muscle	4.6	0.007	

Code Number (Synonyms)	(IUPAC name /SMILES notation /InChiKey)	Compound found in xxx (level): (For each compartment the metabolite is detected in, a separate column should be included; level compound detected to be mentioned in brackets)			Structural formula
		Fat	15.5	0.115	in to have the
		Liver	49.4	2.62	82, 90 W. We.
		Kidney	17.4	0.916	0470,00
		Milk	0.7	<0.001	200.500
		¹⁴ C-Triazole label			Co F. Hus
		Faeces	21	1.70	(, 0,
		-	mental Fate S	10	intel.
		Substrate	%AR	DAT	wh.
		NA (100% AR by	y definition at	study initiation)	
		R	at Metabolisn	y 0) 0,	
		Substrate	% dose	Dose (mg/kg) 25	
	access violities of this document of the access violities violities of the access violities of the access violities violitie	Faeces Control of Children of	in interest in the second		

CGA177279	Mol. Formula:	C ₁₃ H ₁₃ Cl ₂ N ₃ O ₂	Dietary	Metabolism S	tudies ¹	CI
	SMILES	OC(=O)CCC(Cn1cncn1)c2ccc(Cl)cc2Cl	Commodity	%TRR*	mg/kg	
	IUPAC Name:	4-(2,4-dichlorophenyl)-5-(1,2,4-triazol-1-yl)pentanoic acid	Н	en Metabolisn	n koči	S ILLE STORY OF THE STORY OF TH
	InChiKey	CDHPJFRPRRPCJK-UHFFFAOYSA-N	¹⁴ C-Phenyl label	study	in and	N N
			Excreta	21.6	O NR	N N
			¹⁴ C-Triazole labe		(09)	lo Filli
			Excreta	20,6	NR O	
				oat Metabolisi	n de servicion	MILES. HO O
			¹⁴ C-Phenyl label	20, 2/1), 101, 0,	HO O
			Urine	32.2	NR .	
			Faeces	13.5	ONR	
			Muscle	23.8	0.039	
		20	Fat Liver	24.3	0.179	
			Kidney	22.9	1.21	
		,40,9	Milk	7.9	0.008	
		" blobering the	R	at Metabolisn		
		0,0 M. 20	Substrate	% dose	Dose (mg/kg)	
			Urine	16	22.8	
	accesso	and use of this document of its of	o provido.			
			412			

						~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
CGA190503	Mol. Formula:	C ₁₃ H ₁₅ C ₁₂ N ₃ O	Dietary	Metabolism S	tudies ¹	CI
	SMILES	CCC(O)C(Cn1cncn1)c2ccc(Cl)cc2Cl	Commodity	%TRR*	mg/kg	
	IUPAC Name:	2-(2,4-dichlorophenyl)-1-(1,2,4-triazol-1-yl)pentan-3-ol	Primar	y Plant Metal	oolism	ОН
	InChiKey	ZJVGPMQNGDMHFS- UHFFFAOYSA-N	¹⁴ C-Triazole labe	l studies	in chick	ОН
			Tomato Fruit (7-day PHI)	4.3	0.003	OH OH
			Tomato Leaves (7-day PHI)	15.4	0.605	(,0)
			Tomato Fruit (40-day PHI)	3.3	0.001	ourst.
			Tomato Leaves (40-day PHI)	14.0	0.094	
			Apple Peel	<8.8	< 0.032	
			Apple Pulp	01.3	0.001	
			Apple whole Fruit	0.8	0.001	
		30.9	Apple Leaves	1.9	0.073	
		oli the	¹⁴ C-Phenyl label	study	I	
		Shippy Tho	Tomato Fruit (7-day PHI)	3.2	0.001	
		The property he distingthe distin	Tomato Leaves (7-day PHI)	16.4	0.444	
		is Indes dionies	Tomato Fruit (40-day PHI)	3.5	< 0.001	
1		THUS GUIS ON TOUR OF I	Tomato Leaves (40-day PHI)	10.8	0.046	
	access	Sold need the block of the bold of the block				
		andu	413			

						1
						10, 10, 60 Har. 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
CGA179944 CSAA168010	Mol. Formula:	C ₁₁ H ₉ Cl ₂ N ₃ O ₂	Dietary	Metabolism S	tudies ¹	CI
(M14360-acid)	SMILES	OC(=O)C(Cn1cncn1)c2ccc(Cl)cc2Cl	Commodity	%TRR*	mg/kg	
	IUPAC Name:	2-(2,4-dichlorophenyl)-3-(1,2,4-triazol-1-yl)propanoic acid	Pla	nt Metabolisi	n keçi	
	InChiKey	MFGQUIFCNUUDBI-UHFFFAOYSA-N	¹⁴ C-Triazole label	study		of or out the
			Apple Peel	0.5	0.002	\\
			Apple Whole Fruit	0.2	<0.001	HOO
			Apple Leaves	3.8	0.146	(e ¹
				ed Rotational	Crop S	OALO,
			¹⁴ C-Phenyl label	study	JID O	01/2
			Wheat Tops, 50% mature (32-day PBI)	2.8	Q0.001	
			Wheat fodder (32-day PBI)	1012.4	0.016	
		(0 ¹ 6)	Wheat fodder (126-day PBI)	6.60	0.019	
		document is not the property of the distribution its control of this document of the control of	Winter Wheat fodder (179-day PBI)	1.4	0.001	
		"The FIN THE LIST!	Wheat fodder (358-day PBI)	3.7	0.002	
		1.12 1.19 25 1.101 .00	Lettuce (32-day PBI)	1.3	<0.001	
		Ment is Darie lication its y	Radish tops (32-day PBI)	6.4	0.002	
		40 chilliping & britishis	Radish tops (126-day PBI)	6.7	<0.001	
	This	10 12 114 90 CD.	Radish roots (32-day PBI)	12.6	0.002	
		and of the broken of the broke	Lettuce (32-day PBI)	1.3	< 0.001	

				2/2 4/6. V
				o logical de la companya de la compa
	Environi	nental Fate S	tudies ²	TO OLO COSTILOR FOLO
	Substrate	%AR	DAT	(1) (1) (10) (10) (10)
	Aerobic soil	≤18.9	various	"6 "CL, OL, "IL
	Anaerobic	< 0.5	various	D. " " " " " " " " " " " " " " " " " " "
	Water sediment	<22.1	various	CHI TO LOS OF THE
	Ra	t Metabolism		23 905 WILLIUS.
	Substrate	% dose	Dose (mg/kg)	104 10, CD.
	Urine	6.2	25	1000
This document is not the property of the document of the poly of t	A and is provided and an analysis reproductive day. Provided and an analysis of the analysis o	Selving in the state of the sta	Sign of the state	and father of the state of the

						x 0 (0 , (0 , x 0 , 0)
Code Number (Synonyms)	(IUPAC	name /SMILES notation /InChiKey)	Compound found in xxx (level): (For each compartment the metabolite is detected in, a separate column should be included; level compound detected to be mentioned in brackets)		x (level): metabolite is nn should be etected to be tets)	Structural formula
CGA132465	Mol. Formula:	C ₁₃ H ₁₅ Cl ₂ N ₃ O	Dietary 1	Dietary Metabolism Studies ¹		CIDATE
	SMILES	CC(O)CC(Cn1cncn1)c2ccc(Cl)cc2Cl	Commodity	%TRR	mg/kg	6 9 10 I
	IUPAC Name:	4-(2,4-dichlorophenyl)-5-(1,2,4-triazol-1-yl)pentan-2-ol	Primar	y Plant Metal	olism	N N N
	InChiKey	PKABSUBVGQGJHT- UHFFFAOYSA-N	¹⁴ C-Triazole label	studies	Onio 180	
			Tomato Fruit (7-day PHI)	66,9	0.047	HO N
			Tomato Leaves (7-day PHI)	67.4	2.66	
			Tomato Fruit (40-day PHI)	552	0.016	l l
		. EK	Tomato Leaves (40-day PHI)	70.1	0.471	
		30 current is not the property of the of	Tomato Fruit (40-day PHI, 5x rate ³)	10.8 E	0.003	
		The broken welling	Tomato Leaves (40-day PHI, 5x rate ³)	0.8	0.048	
		Ot Strange dis	Apple Peel	17.6	0.064	
		"15, "10 22, "10 L, CO	Apple Pulp	12.3	0.008	
		Medite Odillicationits b	Apple whole Fruit	14.3	0.014	
		OCH, The Hy & On Suj	Apple Leaves	37.9	1.46	
		or och it. My The	¹⁴ C-Phenyl label s	study		
	This,	10 1/2 0/11/2 doc	Tomato Fruit (7-day PHI)	61.6	0.021	

Code Number (Synonyms)	(IUPAC name /SMILES notation /InChiKey)	Compound found in xxx (level): (For each compartment the metabolite is detected in, a separate column should be included; level compound detected to be mentioned in brackets)			Structural formula
		Tomato Leaves (7-day PHI)	64.0	1.73	Edding of the state of the stat
		Tomato Fruit (40-day PHI)	63.0	0.009	COLY COLCILL
		Tomato Leaves (40-day PHI)	59.9	0.254	nd inis
		Confine	ed Rotational	Crops O	. 0
		¹⁴ C-Phenyl label s	study	ge, chill	⟨ <u>`</u> `` ⟨`.
		Wheat Tops, 50% mature (32-day PBI)	520,2	0.005	onler.
		Wheat fodder (32-day PBI)	14.6	0.020	
		Wheat fodder (126-day PBI)	16.8	0.048	
	This document is not the property of the deciment of the decim	Winter Wheat fodder (179-day PBI)	3.2	0.003	
	Olobon, Mole	Lettuce (32-day PBI)	2.1	0.002	
	This document is not the property in any outness to the property of the proper	Radish Tops (32-day PBI)	17.7	0.006	
	6096 6000	Go	at Metabolisr	n	
	Als Jillies ations	¹⁴ C-Phenyl label s	study	r	
	The Lys Ost Pice of L	Urine	62.0	NR	
	Con the tig & On our	Faeces	61.4	NR	
	is of Joseph in any just	Muscle	63.9	0.104	
	1/11,00 x80,14, 40C2	Fat	44.5	0.328	
	es idhi entris	Liver	34.4	1.83	
	Co. 7(1,2/1), "A.	Kidney	55.5	2.93	

Code Number (Synonyms)	(IUPAC name /SMILES notation /InChiKey)	Compound found in xxx (level): (For each compartment the metabolite is detected in, a separate column should be included; level compound detected to be mentioned in brackets)			Structural formula
		Milk	83.2	0.087	EIL TO LOS VITY
		F	Rat Metabolisn	n elle	03, 90 W. W.
		Substrate	% dose	Dose (mg/kg)	101,700,
		urine	<2.54	22,8	
	(IUPAC name /SMILES notation /InChiKey) (IUPAC name /SMILES notation /InChiKey)	Shandis provided in a service of the control of the	de dioisi in and in a contraction and in a contract	older a hind a h	nerot.

	ľ					X 0 10 (0 - X/0 (0)
Code Number (Synonyms)	(IUPAC	name /SMILES notation /InChiKey)	Compound found in xxx (level): (For each compartment the metabolite is detected in, a separate column should be included; level compound detected to be mentioned in brackets)		x (level): metabolite is nn should be etected to be xets)	Structural formula CI CI
CGA127841	Mol. Formula:	C ₁₃ H ₁₅ Cl ₂ N ₃ O	Dietary Metabolism Studies ¹		tudies1	S CIDAL OFFICE CI
	SMILES	OCCCC(Cn1cncn1)c2ccc(Cl)cc2Cl	Commodity	%TRR	mg/kg	
	IUPAC Name:	4-(2,4-dichlorophenyl)-5-(1,2,4-triazol-1-yl)pentan-1-ol	Primar	y Plant Metal	oolism	N N N
	InChiKey	MJKJNWXUOARBPS- UHFFFAOYSA-N	¹⁴ C-Triazole labe	l studies	Onio 19 C	
			Tomato Fruit (40-day PHI)	2.2	0.001	onliet.
			Tomato Leaves (40-day PHI)	2.4	0.012	
			Apple Peel	0,3	0.001	
			Apple Pulp	0.6	<0.001	НО
			Apple whole Fruit	0.5	0.001	
		0,9	Apple Leaves	2.0	0.077	
		Sel the	¹⁴ C-Phenyl label	study	т.	
		Shopy inot	Tomato Fruit (7-day PHI)	1.7	0.001	
		of the Ellithe lists	Tomato Leaves (7-day PHI)	1.9	0.052	
		document is not the fill law interior its of the fill and cument or its of the fill law interior its of the fill and cument or	Tomato Fruit (40-day PHI)	2.3	<0.001	
		Church Ly ball plice of the	Tomato Leaves (40-day PHI)	1.6	0.007	
		30 CM, HILL 16 WE.	Н	en Metabolisn	1	
	Mis	90 of st. cn.	¹⁴ C-Triazole labe	l study		
	7, 6	Chis Hill Sol	Excreta	0.93	NR	
	653	110,110, 11/12	¹⁴ C-Phenyl label	study		

Code Number (Synonyms)	(IUPAC name /SMILES notation /InChiKey)	Compound found in xxx (level): (For each compartment the metabolite is detected in, a separate column should be included; level compound detected to be mentioned in brackets)			Structural formula
		Excreta	1.9	NR 💍	EIL TO LOS OF
		R	at Metabolism		93 90 Will "Up.
		Substrate	% dose	Dose (mg/kg)	0470,000
		urine	26.7	0.47	2003
		faeces	7.4	50.7	Co Hu
	(IUPAC name /SMILES notation /InChiKey) (IUPAC name /SMILES notation /InChiKey)	A and is provided and a supplied and a supplied and is provided and a supplied an	de die la	Robits its	

					, of Puro	Sel dilligion to	
Code Number (Synonyms)	(IUPAC	name /SMILES notation /InChiKey)	(For each com detected in, a included; leve	nd found in xxx (level): apartment the metabolite is separate column should be el compound detected to be ioned in brackets)	CI	tructural formula	
CGA177281	Mol. Formula:	C ₁₃ H ₁₃ Cl ₂ N ₃ O ₃	Dietary	Metabolism Studies ¹	CIO	CI	
	SMILES	OC(CC(Cn1cncn1)c2ccc(Cl)cc2Cl)C(= O)O	Commodity	1 70 LKK 1 1112/K2 . (7	() ()		
	IUPAC Name:	4-(2,4-dichlorophenyl)-2-hydroxy-5- (1,2,4-triazol-1-yl)pentanoic acid	Ge	oat Metabolism	ing string	N N	
	InChiKey	RWKKUBFWJSWIKO- UHFFFAOYSA-N	¹⁴ C-Phenyl label	study	onlet. Ho	Ĭ <u>"\ _</u>	_
			Urine Fat	0.9 NR 4.0 0.030	ONLE HO		-N
			Liver	1.5 0.082			
			Substrate	at Metabolism % dose Dose (mg/kg)	но	\ 0	
			urine	4.4 2 22.8			
	THIS SEES	and use of this any current of the solution of the solution of this any current of the solution of the solutio	Chilip and a second a second and a second and a second and a second and a second an	in diolar			
	8 65	and use or	421				

						of Property digitalion
Code Number (Synonyms)	(IUPAC	C name /SMILES notation /InChiKey)	mentioned in brackets)			Structural formula
CGA189659	Mol. Formula:	C ₁₁ H ₁₁ Cl ₂ N ₃ O	Dietary	Metabolism St	udies1	CI
	SMILES	OCC(Cn1cncn1)c2ccc(Cl)cc2Cl	Commodity	%TRR	mg/kg	60,34 X 200 X
	IUPAC Name:	2-(2,4-dichlorophenyl)-3-(1,2,4-triazol-1-yl)propan-1-ol	Prima	ry Plant Metab	olism	N N N
	InChiKey	QMUIPLNEIWEBJS-UHFFFAOYSA-N	¹⁴ C-Triazole labe	el study	01010	N N
			Apple Peel	6.10	0.022	N N
			Apple Pulp	31.2	0.001	но
			Apple Whole Fruit	3.0	0.003	
			Apple Leaves	13.8	0.530	
			Substrate	at Metabolism % dose	Dose (mg/kg)	
			Faeces	4.8	51.6	
	access access	document is not the Fill law into the fill and internation its of the Fill and internation its of the fill and outpent of outpent of the fill and outpent outpent of the fill and outpent outpen	Paeces C. Faeces	A VIII		
			422	,		

			1			10,10,10,10,10
Code Number (Synonyms)	(IUPAC	C name /SMILES notation /InChiKey)	(For each com detected in, a s included; leve	separate colur	x (level): metabolite is nn should be etected to be sets)	Structural formula
CGA131013 (triazole	Mol. Formula:	C5H8N4O2	Dietary	Metabolism S	tudies1	os date animen
alanine, TA)	SMILES	NC(Cn1cncn1)C(=O)O	Commodity	%TRR	mg/kg	10, 9 10c
	IUPAC Name:	2-amino-3-(1,2,4-triazol-1-yl)propanoic acid	Primar	y Plant Metal		HO
	InChiKey	XVWFTOJHOHJIMQ- UHFFFAOYSA-N	¹⁴ C-Triazole labe	l studies	Olive is c	
			Tomato Fruit (40-day PHI)	15.4	0.004	NH ₂
			Tomato Leaves (40-day PHI)	0.1	0.001	
			Apple Peel	2.5	0.009	
			Apple Pulp	36.6	0.024	
			Apple Whole Fruit	23.0	0.023	
		30, 9	Confin	ed Rotational	Crops	
		self the	¹⁴ C-Triazole labe	l study		
		Shoping in of	Wheat Grain (32-day PBI)	34.5	0.337	
		of the Ell Hine lists	Wheat Grain (126-day PBI)	57.4	1.888	
		Tis Indeed in the co	Wheat Grain (358-day PBI)	59.1	0.636	
		document is not the property of the document or its of the property of the pro	Winter Wheat Grain (179-day PBI)	61.3	0.256	
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	10 14; 40 cm	Wheat Tops, 50% mature (32-day PBI)	38.9	0.052	
	\$C. C. C.	document is not the fill law in the fill and its control of this and cument of the fill and	423			

Г					0, 4,0,0,0,0
Code Number (Synonyms)	(IUPAC name /SMILES notation /InChiKey)	Compound found in xxx (level): (For each compartment the metabolite is detected in, a separate column should be included; level compound detected to be mentioned in brackets)		x (level): metabolite is nn should be etected to be aets)	Structural formula
		Wheat Tops, 50% mature (126-day PBI)	58.1	0.120	S. M. Golding Chil.
		Wheat Tops, 50% mature (358-day PBI)	37.0	0.070	ion, the goes
		Winter Wheat Tops, 50% mature (179- day PBI)	42.0	0.035	Structural formula
		Wheat Fodder (32-day PBI)	3.5	C1010	On the second se
		Wheat Fodder (126-day PBI)	8,300	0.116	
		Wheat Fodder (358-day PBI)	1108.80113	0.037	
	This document is not the property the destriction its continuent of the destriction is the property of the destriction in the destriction is the property of the destriction in the destriction in the destriction is the destriction in the dest	Winter Wheat Fodder (179- day PBI)	4310	0.014	
	This document is not the property the distribution of the property of the prop	Lettuce (32-day PBI)	22.7	0.004	
	OF THE ENTINE WEST	Lettuce (126- day PBI)	9.1	0.007	
	orie index to our co	Lettuce (358- day PBI)	20.1	0.013	
	This good of the office of the following the contraction its contraction of the office	Radish Tops (32-day PBI)	45.0	0.034	
	is good this was chust,	Radish Tops (126-day PBI)	43.8	0.015	
	111, 10 1, 18 111, 900	Radish Tops (358-day PBI)	68.3	0.057	

Code Number (Synonyms)	(IUPAC name /SMILES notation /InChiKey)	(For each com detected in, a s included; level	d found in xxx partment the n separate colum l compound det ioned in bracke	(level): netabolite is n should be tected to be ets)	Structural formula
		Radish Roots (32-day PBI)	66.7	0.056	S Wata Miller Chit
		Radish Roots (126-day PBI)	86.7	0.027	FOLL A GOLCILL
		Radish Roots (358-day PBI)	76.0	0.036	ad itis
		Environ	mental Fate Stı	udies ²	
		Substrate	%AR	DAT	Ø, Ø.
		Aerobic soil	0.2	60 0	w"
	access higher this document of the organise of this document of this document of the organise of this document of the organise of this document of the organise of the organism of the organis	Environi Substrate Aerobic soil	Thornal and single sing		

						,0,0,0,0,0,
Code Number (Synonyms)	(IUPAC 1	name /SMILES notation /InChiKey)	Compound found in xxx (level): (For each compartment the metabolite is detected in, a separate column should be included; level compound detected to be mentioned in brackets)		x (level): metabolite is nn should be etected to be tets)	Structural formula HO N
CGA142856 (triazole acetic	Mol. Formula:	C ₄ H ₅ N ₃ O ₂	Dietary 1	Metabolism S	tudies ¹	HO MO
acid, triazolyl	SMILES	OC(=O)Cn1cncn1	Commodity	%TRR	mg/kg	O H N
acetic acid, TAA)	IUPAC Name:	2-(1,2,4-triazol-1-yl)acetic acid	Primar	y Plant Metab	olism	HOULD N N
	InChiKey	RXDBSQXFIWBJSR-UHFFFAOYSA-N	¹⁴ C-Triazole label	studies	Onio 19	
			Tomato Fruit (40-day PHI)	1:0	<0.001	onlei.
			Tomato Leaves (40-day PHI)	<0.1	<0.001	
			Apple Peel	0.4	<0.001	
			Apple Pulp	01.4	0.001	
			Apple Fruit	0.8	0.008	
		0 8	Apple Leaves	3.2	0.123	
		and the	Confine	d Rotational	Crops	
			¹⁴ C-Triazole label	study	T	
		10 SI ISM ING	Wheat Grain (32-day PBI)	22.7	0.222	
		log for Entitle distr	Wheat Grain (126-day PBI)	26.4	0.868	
		Entis Inches ation is	Wheat Grain (358-day PBI)	33.1	0.357	
	8	ocument is not the following to its of	Winter Wheat Grain (179-day PBI)	33.2	0.139	
	This is	ingis with singer	Wheat Tops, 50% mature (32-day PBI)	15.6	0.021	

Code Number (Synonyms)	(IUPAC name /SMILES notation /InChiKey)	(For each com detected in, a s included; level	d found in xxx partment the separate colun I compound do oned in brack	x (level): metabolite is nn should be etected to be ets)	Structural formula
		Wheat Tops, 50% mature (126-day PBI)	6.6	0.015	25 Interior Superior State Contraction of the
		Wheat Tops, 50% mature (358-day PBI)	30.0	0.057	ion, in good
		Winter Wheat Tops, 25% mature (358- day PBI)	2.2	0.004	
		Winter Wheat Tops, 50% mature (179- day PBI)	1087 dl	0.007	
		Wheat Fodder (32-day PBI)	1019.7 is	0.084	
	C. C	Wheat Fodder (126-day PBI)	20.8	0.290	
	ostil lo	Wheat Fodder (358-day PBI)	21.3	0.091	
	This document is not the property of the document of the document of the police of the document of the contract of the contrac	Winter Wheat Fodder (179- day PBI)	9.1	0.030	
	is up still on	Radish Tops (32-day PBI)	0.5	< 0.001	
	Meliticality of the California C	Radish Tops (358-day PBI)	0.8	< 0.001	
	40 chi while of bir bugg	Radish Roots (32-day PBI)	1.7	0.001	
	this go of stigen	Environ	mental Fate S	tudies ²	
	J'S' M'E MIN'S OF	Substrate	%AR	DAT	
	Cos 1410, 116, 41/12	Aerobic soil	≤12.5	various	

Penconazole

Volume 1 – Level 3

Code Number (Synonyms)	(IUPAC name /SMILES notation /InChiKey)	Compound (For each composite detected in, a some included; level mentions)	d found in xx partment the separate colun compound d oned in brack	x (level): metabolite is mn should be letected to be kets)	Structural formula
		Anaerobic soil	≤5.5	various	THE PROPERTY.
	(IUPAC name /SMILES notation /InChiKey)	and is provided and an arrival and an arrival and an array of the provided and array	Se dio cital di cital	Colonia indication in the colonia in	and any decominate of the state

						"O, "O, "O," O, "O, "O, "O, "O, "O, "O,
Code Number (Synonyms)	(IUPAC	name /SMILES notation /InChiKey)	(For each com detected in, a s included; level	separate colui	x (level): metabolite is nn should be etected to be sets)	Structural formula
CGA205369 (triazole lactic	Mol. Formula:	C ₅ H ₇ N ₃ O ₃	Dietary	Metabolism S	tudies1	HO
acid, TLA)	SMILES	OC(Cn1cncn1)C(=O)O	Commodity	%TRR	mg/kg	6,3,00
	IUPAC Name:	2-hydroxy-3-(1,2,4-triazol-1-yl)propanoic acid	Primar	y Plant Metal	oolism	HO N N
	InChiKey	KJRGHGWETVMENC- UHFFFAOYSA-N	¹⁴ C-Triazole label	studies	Onis 19	OH _N
			Tomato Fruit (40-day PHI)	2.3	0.001	ONLOL OH M
			Tomato Leaves (40-day PHI)	0.2	0.001	
			Apple Peel	5.0	0.018	
			Apple Pulp	7.7	0.005	
			Apple Fruit	6.7	0.007	
		, 6, 7	Apple Leaves	2.4	0.092	
		on this	14C-Triazole label	d Rotational	Crops	
		68 4. O	Wheat Grain	study		
		S S I ST SING	(32-day PBI)	0.6	0.006	
		Cot Hell Frithe light	Wheat Grain (126-day PBI)	<0.1	<0.001	
		Weltis Modes Figures	Wheat Tops, 50% mature (32-day PBI)	21.8	0.029	
	:5	ochuse it is logical of the broke it of its of the broke it is not the property of the broke it of its o	Wheat Tops, 50% mature (126-day PBI)	25.6	0.059	
	(K)	Social straight of the broke the bro	Wheat Tops, 50% mature (358-day PBI)	21.9	0.042	

Code Number (Synonyms)	(IUPAC name /SMILES notation /InChiKey)	(For each com detected in, a s included; level	Compound found in xxx (level): (For each compartment the metabolite is detected in, a separate column should be included; level compound detected to be mentioned in brackets)		Structural formula
		Winter Wheat Tops, 25% mature (179- day PBI)	33.7	0.058	Sing at a hugh but I
		Winter Wheat Tops, 50% mature (179- day PBI)	33.0	0.028	ad this
		Wheat Fodder (32-day PBI)	34.4	0.146	ENTET.
		Wheat Fodder (126-day PBI)	838.3	0.532	
		Wheat Fodder (358-day PBI)	51.9	0.222	
	, EK	Winter Wheat Fodder (179- day PBI)	62.5	0.210	
	15 10 0° 9	Lettuce (32-day PBI)	37.3	0.006	
	property more	Lettuce (126- day PBI)	76.1	0.055	
	Title Ellighed Still	Lettuce (358- day PBI)	67.7	0.042	
	is Index for soon	Radish Tops (32-day PBI)	7.0	0.005	
	This document is not the property of the distribution its to the publication its total and the publication is to the publication in the publication in the publication in the publication is the publication in the publi	Radish Tops (126-day PBI)	16.9	0.006	
	is 40°C of this was fruent	Radish Tops (358-day PBI)	6.4	0.005	
	This to this off, agos	Radish Roots (32-day PBI)	7.9	0.007	

Code Number (Synonyms)	(IUPAC name /SMILES notation /InChiKey)	Compoun (For each com detected in, a s included; leve menti	d found in xxx (level): partment the metabolite separate column should compound detected to oned in brackets)	s is be be Structural formula
		Radish Roots (358-day PBI)	5.7 0.003	ect silitata knownit
	(IUPAC name /SMILES notation /InChiKey) (IUPAC name /SMILES notation /InChiKey)	Se and is provided and a control of the control of the control of the control of the control of	Sed to divino the state of the	Schlädid and coloculi. Schlädid and coloculi. Schies owner.

Code Number (Synonyms)	(IUPAC	name /SMILES notation /InChiKey)	Compound found in xxx (level): (For each compartment the metabolite is detected in, a separate column should be included; level compound detected to be mentioned in brackets)		x (level): metabolite is nn should be etected to be sets)	Structural formula HN N N
CGA071019 CGA71019	Mol. Formula:	$C_2H_3N_3$	Dietary	Metabolism S	tudies1	Single one out N
(1,2,4-triazole,	SMILES	clnc[nH]n1	Commodity	%TRR	mg/kg	HN SOLEME HN
124-T, 1,2,4-T)	IUPAC Name:	1H-1,2,4-triazole	Confine	ed Rotational	Crops 5	<u> </u>
	InChiKey	NSPMIYGKQJPBQR-UHFFFAOYSA- N	¹⁴ C-Triazole labe	l study	(10) (85)	Contract of the second of the
			Wheat Grain (32-day PBI)	2.7.0	0.026	OMIGI.
			Wheat Grain (126-day PBI)	6 0.9	0.029	o_n ,
			Wheat Grain (358-day PBI)	1.2	0.013	
			Winter Wheat Grain (179-day PBI)	1.70	0.007	
		orth of the	Wheat Tops, 50% mature (32-day PBI)	4.4	0.006	
		the bloght their sti	Wheat Tops, 50% mature (126-day PBI)	1.7	0.004	
		document is not the full law. Indication its control of the full law. Indication its c	Winter Wheat Tops, 25% mature (179- day PBI)	2.9	0.005	
		Church in by Orphe Life	Wheat Fodder (32-day PBI)	6.1	0.026	
	, vis	of good in sugaring	Wheat Fodder (126-day PBI)	4.1	0.057	
	5	id is sith, at	Wheat Fodder (358-day PBI)	1.9	0.008	

Code Number (Synonyms)	(IUPAC name /SMILES notation /InChiKey)	(For each com detected in, a s included; level	separate colun	x (level): metabolite is nn should be etected to be etets)	Structural formula
		Winter Wheat Fodder (179- day PBI)	2.7	0.009	Structural formula
		Radish Tops (358-day PBI)	2.0	0.002	60,71,000
		Radish Roots (32-day PBI)	1.30		to tilli
		Environ	mental Fate S	tudies²	
		Substrate	%AR	DAT	Onliet.
		Aerobic soil	≤38.6	various	07
		Anaerobic soil	≤27.2	various	
		O R	at Metabolism	01,5	
		Substrate	% dose	Dose (mg/kg)	
		Faeces		22.8	
		urine	14.7	25	
	accopyrights of this document of the organic of the	CULTURE OF THE O			
	accopy section	433			

Code Number (Synonyms)	(IUPAC	name /SMILES notation /InChiKey)	(For each condetected in, a included; lev	nd found in xxx npartment the i separate colum el compound de tioned in brack	(level): metabolite is an should be etected to be ets)	Structural formula OH N N
CGA205373 Triazolyl	Mol. Formula:	C ₄ H ₅ N ₃ O ₃	Dietary	Metabolism St	tudies1	SILIVIA CULOHUI
glycolic acid	SMILES	OC(C(=O)O)n1cncn1	Commodity	%TRR	mg/kg	N N
	IUPAC Name:	2-hydroxy-2-(1,2,4-triazol-1-yl)acetic acid	Prima	ry Plant Metab	olism 5	N N
	InChiKey	AHMGWEOLNJUSQD- UHFFFAOYSA-N	¹⁴ C-Triazole lab	el study	(10) (05)	\
			Apple Peel	0.7	0.003	_
			Apple Fruit	0.3	<0.001	enel.
			Apple Leaves	6 0.3	0.012	
	access	and use of this document of the property of th	SA and inales of the state of t	ind violate		

Penconazole		Volume 1 – Level 3		iplic is sug
				el): No social properties in the social prope
Code Number (Synonyms)	(IUPAC name /SMILES notation /InChiKey)		Compound found in xxx (leve (For each compartment the metab detected in, a separate column sho included; level compound detected mentioned in brackets)	el): bolite is ould be ed to be
CGA091305 CGA91305	Mol. Formula: C ₁₀ H ₉ Cl ₂ N ₃ O		Primary Plant Metabolism ¹	CI CI
	SMILES	OC(Cn1cncn1)c2ccc(Cl)cc2Cl	¹⁴ C-Triazole label study	
	IUPAC Name:	1-(2,4-dichlorophenyl)-2-(1,2,4-triazol- 1-yl)ethanol	Apple Leaves 0.04	0.002 N
	InChiKey	XCWJBJOPHSVLGU- UHFFFAOYSA-N	Environmental Fate Studies	
			Substrate %AR 1	DAT OH _N
			Aerobic soil 7.5	120 . 5
			91391 400,91	
	This es	and use of this document of the parties of the parties of this and cument of the parties of the	Street in the land in late in the interior in	
	acces.	one use of the	435	

Code Number (Synonyms)	(IUPAC	C name /SMILES notation /InChiKey)	Compound found in xxx (level): (For each compartment the metabolite is detected in, a separate column should be included; level compound detected to be mentioned in brackets) Classical Columns Structural formula	
α, β-dihydroxy CGA071818	Mol. Formula: C ₁₃ H ₁₅ Cl ₂ N ₃ O ₂		Finnary Frant Wetabonsin	
α, β-dihydroxy CGA71818	SMILES	CC(O)C(O)C(Cn1cncn1)c2ccc(Cl)cc2Cl	14C-Triazole label study Apple Peel NO NO NO N	
CGA/1818	IUPAC Name:	4-(2,4-dichlorophenyl)-5-(1,2,4-triazol-1-yl)pentane-2,3-diol	14C-Triazole label study Apple Peel NQ NQ	
	InChiKey	NGQJXEKOEFWFHG-UHFFFAOYSA-N	Apple Peel NQ NQ Apple Pulp 0.9 0.001	7
			Apple Whole 0.5 0.001 HO	٧
			Apples Leaves 3.3 0.127 OH	
			1.6 7 00 91 00 01 01 01 01 01 01 01 01 01 01 01 01	
	zecese zecese	and use of this document of the sand use of this any ouncert of the sand of the sand of the sand use of the sa	Shariful Indiana and Solution of the Solution	
		Sold in	436	

Mol. Formula: SMILES IUPAC Name: InChiKey	C ₁₃ H ₁₅ Cl ₂ N ₃ O ₂ OCC(O)CC(Cn1cncn1)c2ccc(Cl)cc2Cl 4-(2,4-dichlorophenyl)-5-(1,2,4-triazol-1-yl)pentane-1,2-diol HEFAECYMSJUPOE-UHFFFAOYSA-N	Apple Pulp Apple Whole Fruit Apples Leaves	NQ	SCI MONTH HO.	eril CI
IUPAC Name: InChiKey	4-(2,4-dichlorophenyl)-5-(1,2,4-triazol-1-yl)pentane-1,2-diol HEFAECYMSJUPOE-UHFFFAOYSA-N	Apple Peel Apple Pulp Apple Whole Fruit Apples Leaves	NQ	ud style form	N N
Name: InChiKey	1-yl)pentane-1,2-diol HEFAECYMSJUPOE-UHFFFAOYSA-N	Apple Pulp Apple Whole Fruit	NQ N	ug string	N N
<u> </u>	N	Apple Whole Fruit	NQ NQ	Secondary HO	
		Fruit	04 9015	НО,	\ <u></u> \'
		Apples Leaves	0.4 0.015		
			0.015	O_{M_s}	Ť
		and is had	The state of the state of the		ОН
20000	ocument is not the property of book of the property of the pro	oct of the property of the pro	in diologic distribution of the second of th		
	access,	access hights of this document of the constraint of this document of this document of the constraint of t	access higher this document of the document of	This double this partition is be prolifted and the double this partition in the day of the double t	This document is not the publication its be prohibited and violate the little distribution its be prohibited and violate the document of its be prohibited and violate the little distribution its beautiful and violate distribution its beautiful and violate distribution its beautiful a

Code Number (Synonyms)	(IUPAC	name /SMILES notation /InChiKey)	(For each com detected in, a s included; leve	d found in xxx (level): partment the metabolite is separate column should be l compound detected to be ioned in brackets)	Structural formula
CGA091304 CGA91304	Mol. Formula: C ₁₀ H ₇ Cl ₂ N ₃ O		Primary Plant Metabolism ² C C		
00131501	SMILES	Clc1ccc(C(=O)Cn2cncn2)c(Cl)c1	¹⁴ C-Triazole label study		do de sin
	IUPAC Name:	1-(2,4-dichlorophenyl)-2-(1,2,4-triazol- 1-yl)ethanone	Apple Leaves	0.03 0.001	
	InChiKey	XOHMICFWUQPTNP- UHFFFAOYSA-N		dior it of a ting	N N N
	2000	Clc1ccc(C(=O)Cn2cncn2)c(Cl)c1 1-(2,4-dichlorophenyl)-2-(1,2,4-triazol-1-yl)ethanone XOHMICFWUQPTNP-UHFFFAOYSA-N	ochus och ut seg och u	ction of issil to the individual of the permission of the individual of the individu	

- ajugated manides (2.5%) ed metabous, (2.5% in to) (2.5% access to documents find rather translated for the state of the state
- abolites, in total for the different of the domesting of the definition of the defin De prohibited and violate the rights of its owner.

^{*} no need to include all metabolites found in rat in case not found in the other matrices.

** levels should be expressed as % of applied radioactivity (AR) or total radioactive residue (TRR) for environmental compartments and plant/animal residues, respectively NO - detected but not quantified NR - not reported NA - not applicable
PHI - post harvest interval (days after last application)
PBI - plant back interval (days after bare ground application)

1. Highest residue reported for the cited residue in the specified commodity. Sum of conjugated and unconjugated residues.

2. Highest level in %AR observed for the identified degradate from all studies.

3. 5x crop samples were not subjected to hydrolysis. As such the presented values only represent the unconjugated metabolites.

4. Measured as an unresolved mixture of CGA132465, SYN502203, SYN502204 and SYN502205 glucuronides (2.5% in total for all four glucuronides)

3.5 REFERENCE LIST

Section identity, physical chemical and analytical methods

CLH Report (2010); D9A1DF80 (europa.eu)

enconazole DAR, 2007
Penconazole addendum DAR, 2008

EFSA Scientific Report (2008) 175, 1-104 Conclusion on the peer review of penconazole
RAC Opinion proposing harmonised classification and labelling at EU level of Penconazole, 2012
European Commission: Peer review of the pesticide risk assessment for the triazole derivative metabolites of confirmatory data submitted, 29th June 2018
Triazole Derivative Metabolites: Addendum — Confirmatory Data; B.5 Methodorovicology & Metabolism, B.7 Residues, revised May 2016 and Februaries (Confirmatory Data) (Confirmatory

Commission Guidance Document SANTE-108322015 rev. 1.7, 24 January 2017

EFSA Journal 2014;12(10):3874

Section residue and consumer risk assessment

EFSA Scientific Report (2008) 175, 1-104 Conclusion on the peer review of penconazole.

EFSA Journal 2017;15(6):4853

EFSA Scientific Report (2016a) 14, 4571

Section 3.1.3; EFSA, 2015a https://ec.europa.eu/food/plant/pesticides/max_residue_levels/guidelines_en#council Scholz, 2018 (European database of processing factors for pesticides. EFSA supporting publication 2018: EN-1510.

OECD MRL CALCULATOR: STATISTICAL WHITE PAPER ENV/JM/MONO(2011)3

Maximum Residue levels page of the Europa.eu website 2017 (pesticides_mrl_guidelines_animal_model_2017.xls)

EFSA (European Food Safety Authority), 2017. Guidance document on the use of the EFSA Pesticide Residue Intake Model (EFSA PRIMo revision 3). EFSA Journal 2018;16(1):5147, 45 pp. doi:10.2903/j.efsa.2018.5147

EFSA Journal 2016;14(7):4553

EFSA Journal 2012;10(6):2769

Regulation (EC) No 2019/89

Section fate and behaviour in environment

CRD report (2013) "Triazole Derived Metabolite: 1,2,4-Triazole. Proposed revision to DT50. Summary, Scientific Evaluation and Assessment. July 2011, revised September 2011 (after comments from MS and EFSA) and further revised January 2013 (minor clarifications added post-commenting)"

Eva Cadkova et al. (2013) pKa constant determination of two triazole herbicides: Tebuconazole and Penconazole. Journal of Solution Chemistry, Springer Verlag (Germany), 2013, 42, pp.1075-1082.

Section ecotoxicology

ÉCHA (2012). Committee for Risk Assessment Opinion proposing harmonised classification and labelling at EU level of Penconazole. EC Number: 266-275-6. CAS Number: 66246-88-6. ECHA/RAC/CLH-O-0000002679-61-01/F

EFSA (2015). Technical report on the outcome of the pesticides peer review meeting on general recurring issues in ecotoxicology. EFSA supporting publication 2015:EN-924. 62 pp.

EFSA (2019). Technical report on the outcome of the Pesticides Peer Review Meeting on general recurring issues in ecotoxicology. EFSA supporting publication 2019:EN-1673. 117 pp. doi:10.2903/sp.efsa.2019.EN- 1673

The documents for the plant of the period of This actually life to the fire for the fire See of the first property of the control of the con