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Additional information on the draft risk profile on long-chain perfluorocarboxylic acids 
(PFCAs), their salts and related compounds
2.1.2 Uses

Unintentional production of long-chain PFCAs

1. Long-chain (C9–C21) PFCAs and related compounds may be unintentionally produced during the 
manufacturing of per- and polyfluoroalkyl substances (PFASs), including those containing a carbon chain of less 
than nine carbon atoms.

2. The manufacture of ammonium perfluorononanoate (APFN) leads to a technical mixture of PFCAs; 
Prevedouros et al. (2006) described the homologue profile for commercial APFN to consist primarily of C9 PFCA 
(73.6%), C11 PFCA (20.0%) and C13 PFCA (5.0%).

3. During the manufacturing of the perfluorohexanoic acid- (C6 PFCA) based substances, the fraction 
containing mainly long-chain PFCAs (referred to as the C8-fraction) can include up to 30% C9–C14 PFCAs and 
related compounds (ECHA 2018b). The other fraction (the C6-fraction) has a reduced concentration of C9–C14 
PFCAs, in the low parts per million (ppm) range (ECHA 2018b). These fractions can be reworked or further 
processed to reduce the concentration of C9–C14 PFCAs in mixtures and articles placed on the market (ECHA 
2018b). C9–C14 PFCAs can also be an impurity produced during the manufacturing of perfluorooctanoic acid 
(PFOA, C8 PFCA) (i.e., up to 0.21% C9–C14 PFCAs) and PFOA-related compounds (i.e., 20 to 45% C9–C14 related 
compounds to long-chain PFCAs) (ECHA 2018b).

Composition of fluorinated starting materials

4. Based on the available commercial information, starting materials that may be used for the production of 
compounds related to long-chain PFCAs consist of fluorotelomer alchohol mixtures of fluorinated chain lengths 
ranging from 4 to 20 carbons (see Table 1). 

Table 1. Description of starting material used for the production of compounds related to long-chain PFCAs

Use Description of the starting material Reference

Fluorinated 
lubricant 
additives

“[…] suitable fluorinated alcohols […] may be selected from the 
following species:
• F(CF2)xCH2OH, wherein x is from 1 to about 20 […];
• H(CF2)xCH2OH, wherein x is from 1 to about 20 […];
• F(CF2CF2)xCH2CH2OH, wherein x is from 1 to about 10 […];
• F(CF2CF2)x(CH2CH2O)yOH, a telomer ethoxylate alcohol 

wherein x is from 1 to about 10 and y is from 1 to about 20 […]”

Beatty 2003

Fluorochemical 
oil and water 
repellents

Compositions of fluoroalcohols of formula F(CF2CF2)nCH2CH2OH:

Sherman et al. 2001



2.1.3 Releases to the environment

Table 2. Detection of long-chain PFCAs and their related compounds in environmental matrices and other matrices from impacted sites 
Matrix Country/ 

Region Year(s) Study site Type of location or 
samples Concentration Mean Reference

Wastewater treatment plants (WWTPs)
Sludge Switzerland 2011 WTTP 45 WWTPs C9 PFCA: 0.9-23 µg/kg of dry matter

C10 PFCA: 0.9-73  µg/kg of dry matter
Alder and von 
der Voet 2014

Wastewater United States 2005 WTTP 2 WWTPs C9 PFCA: 0.59-54 ng/L
C10 PFCA: <0.5-18 ng/L
C11 PFCA: <LOD-1.9 ng/L
C12 PFCA: <LOD

Loganathan et 
al. 2007

Sludge United States 2005 WTTP 2 WWTPs C9 PFCA: <2.5-67 ng/g dw
C10 PFCA: 12-201 ng/g dw
C11 PFCA: 5.9-37 ng/g dw
C12 PFCA: 7.2-48 ng/g dw

Loganathan et 
al. 2007

Wastewater 
(final effluent)

United States 2004 WWTP 1 WWTP C9 PFCA: 1.5-5.9 ng/L
C10 PFCA: 0.6-5.1 ng/L

C9 PFCA: 3.4 ng/L
C10 PFCA: 2.3 ng/L

Schultz et al. 
2006

Sludge
(digested)

United States 2004 WWTP 1 WWTP C9 PFCA: 9.2-10.3 ng/g dw
C10 PFCA: 5.4-6.4 ng/g dw
C11 PFCA: 5.9-8.4 ng/g dw
C12 PFCA: 3.6-4.2 ng/g dw

C9 PFCA: 9.9 ng/g dw
C10 PFCA: 5.9 ng/g dw
C11 PFCA: 6.8 ng/g dw
C12 PFCA: 3.8 ng/g dw
C13 PFCA: <3 ng/g dw

Schultz et al. 
2006

Biosolids United States 2020 Agricultural sites Class B biosolids samples 
collected from a 
wastewater reclamation 
facility

C9 PFCA: n.d.-2 µg/kg
C10 PFCA: 12-13 µg/kg
C11 PFCA: 1.8-2.4 µg/kg
C12 PFCA: 6.5-8 µg/kg
C13 PFCA: n.d.
C14 PFCA: n.d.-3.3

Pepper et al. 
2021

WWTP influent Mexico 2019 WWTP 1 WWTP C11 PFCA: 24.1 (±2.5)-35.2 (±2.4) ng/L Rodríguez-
Varela et al. 
2021

WWTP effluent Mexico 2019 WWTP 1 WWTP C11 PFCA: 25.5 (±1.8)-31.1 (±3.3) ng/L Rodríguez-
Varela et al. 
2021

Wastewater Mexico 2019 WWTP Irrigation canal receiving 
raw wastewater

C11 PFCA: 38.3 (±3.4)-76.8 (±1.4) ng/L Rodríguez-
Varela et al. 
2021

WWTP influent Denmark Not 
specified

WWTP 11 samples from 6 
municipal WWTPs

C9 PFCA: <0.8-8.4 ng/L
C10 PFCA: <1.6 ng/L

Bossi et al. 
2008

WWTP effluent Denmark Not 
specified

WWTP 11 samples from 6 
municipal WWTPs

C9 PFCA: <0.8-3.1 ng/L
C10 PFCA: <1.6-3.6 ng/L

Bossi et al. 
2008

Sludge Denmark Not 
specified

WWTP 7 municipal WWTPs C9 PFCA:  0.4-8.0 µg/kg dw
C10 PFCA: 1.2-32 µg/kg dw
C11 PFCA: 0.4-4.4 µg/kg dw

Bossi et al. 
2008

Effluent water Denmark Not 
specified

WWTP 7 samples from 4 industrial 
WWTPs from textile, large 
chemical and wood floor 
production industries, and 

C9 PFCA: <0.8-76.0 ng/L
C10 PFCA: <1.6-35.7 ng/L
C11 PFCA: <2.2-18.8 ng/L

Bossi et al. 
2008



Matrix Country/ 
Region Year(s) Study site Type of location or 

samples Concentration Mean Reference

a facility handling various 
waste products

Biosolids Australia Not 
specified

WWTP Samples from 19 WWTPs C9 PFCA: n.d.-4.9 ng/kg dw
C10 PFCA: <MRL-34 ng/kg dw
C11 PFCA: n.d.-3.0 ng/kg dw
C12 PFCA: <MRL-18 ng/kg dw
C13 PFCA: n.d.-1.8 ng/kg dw
C14 PFCA: <MRL-4.2 ng/kg dw
8:2 FTSA: n.d.-4.0 ng/kg dw
10:2 FTSA: n.d.-1.9 ng/kg dw
8:2 diPAP: n.d.-240 ng/kg dw

C9 PFCA: 0.90 (±1.1) ng/kg dw
C10 PFCA: 14 (±11.2) ng/kg dw
C11 PFCA: 0.60 (±0.8) ng/kg dw
C12 PFCA: 5.9 (±5.4) ng/kg dw
C13 PFCA: 0.5 (±0.5) ng/kg dw
C14 PFCA: 1.2 (±1.3) ng/kg dw
8:2 FTSA: 0.7 (±1.3) ng/kg dw
10:2 FTSA: 0.7 (±0.7) ng/kg dw
8:2 diPAP: 67 (±76) ng/kg dw

Moodie et al. 
2021

Air Canada 2009 WWTPs Air samples collected 
using sorbent-impregnated 
polyurethane foam (SIP) 
disk passive air samplers 
(PAS), deployed for 63 
days around a municipal 
WWTP

C9 PFCA: 0.88-4.84 pg/m3

C10 PFCA: 0.57-8.82 pg/m3

C11 PFCA: <0.04-5.83 pg/m3

C12 PFCA: <0.24-3.44 pg/m3

C14 PFCA: <0.28-1.43 pg/m3

8:2 FTOH: 144-10 309 pg/m3

10:2 FTOH: 70.4-1111 pg/m3

Ahrens et al. 
2011

Air Canada 2013-
2014

WWTPs Air samples collected 
using SIP disk PAS, 
installed at WWTPs

C9 PFCA: BDL-77.9 pg/m3

C10 PFCA: n.d.-84.2 pg/m3

C11 PFCA: n.d.-15.9 pg/m3

C12 PFCA: n.d.-101 pg/m3

C13 PFCA: n.d.-0.966 pg/m3

C14 PFCA: n.d.-5.13 pg/m3

8:2 FTOH: 12.3-1440 pg/m3

10:2 FTOH: 6-84.7 pg/m3

Shoeib et al. 
2016

Air China 2013 WWTPs Air samples collected 
collected using SIP disk 
PAS, installed at two 
WWTPs

C9 PFCA: 7.98-26.7 pg/m3

C10 PFCA: 2.34-17.0 pg/m3

C11 PFCA: 0.95-4.28 pg/m3

C12 PFCA: 0.47-3.21 pg/m3

8:2 FTOH: 46.1-122 pg/m3

10:2 FTOH: 7.49-39.2 pg/m3

Yao et al. 2016

WWTPs 
influent

Australia 2016 WWTPs 76 samples collected from 
76 municipal WWTPs

C9 PFCA: 1.6-3.3 ng/L
C10 PFCA: 2.0-6.3 ng/L
C11 PFCA: n.d.
C12 PFCA: n.d.
8:2 FTSA: 2.3-59 ng/L

C9 PFCA: 2.1 (±0.61) ng/L
C10 PFCA: 3.4 (±1.3) ng/L
C11 PFCA: n/a
C12 PFCA: n/a
8:2 FTSA: 15 (±14) ng/L

Nguyen et al. 
2022

Wastewater Austria Not 
specified

Not specified Number of samples 
analysed: C9 PFCA (5), C10 
PFCA (9)
C11 PFCA (10)
C12 PFCA (10)

C9 PFCA: n.d.-0.0018 µg/L
C10 PFCA: n.d.- 0.0024 µg/L
C11 PFCA: <LOQ
C12 PFCA: <LOQ

Austria Annex 
E information, 
2022

Sewage sludge Austria Not 
specified

Not specified 2 samples analyzed C9 PFCA: n.d.-0.77 µg/kg TM
C10 PFCA: 1.1-7.7 µg/kg TM
C11 PFCA: n.d.-2.1 µg/kg TM
C12 PFCA: 0.77-2.7 µg/kg TM

Austria Annex 
E information, 
2022

Sewage sludge 
compost

Austria Not 
specified

Not specified 2 samples analyzed C9 PFCA: 0.53-0.93 µg/kg TM
C10 PFCA: 1.9-3.4 µg/kg TM

Austria Annex 
E information, 



Matrix Country/ 
Region Year(s) Study site Type of location or 

samples Concentration Mean Reference

C11 PFCA: n.d.-3.7 µg/kg TM
C12 PFCA: 0.44-0.65 µg/kg TM

2022

WTTP influent Denmark 2011-
2016

WTTPs Data reported in response 
to HELCOM data call in.

C9 PFCA: 0.8-10 ng/L
C10 PFCA: 2-1100 ng/L
C11 PFCA: 2-56 ng/L

C9 PFCA: 2.5 ng/L (average)
C10 PFCA: 32 ng/L (average)
C11 PFCA: 8.5 ng/L (average)

HELCOM 
2022

WTTP effluent Denmark Not 
specified

WTTPs Data reported in response 
to HELCOM data call in.

C9 PFCA: 0.24-43 ng/L
C10 PFCA: 2-470 ng/L
C11 PFCA: 0.01-140 ng/L
C12 PFCA: 0.003-8.1 ng/L

C9 PFCA: 3.5 ng/L (average)
C10 PFCA: 12.2 ng/L (average)
C11 PFCA: 7.2 ng/L (average)
C12 PFCA: 1 ng/L (average)

HELCOM 
2022

Sluge Sweden 2004-
2015

WWTPs Data reported in response 
to HELCOM data call in.

C9 PFCA: 0.13-1.2 ng/g dw
C11 PFCA: 0.37-15 ng/g dw
C12 PFCA: 0.069-15 ng/g dw
C13 PFCA: 0.1-1.9 ng/g dw
C14 PFCA: 0.12-8 ng/g dw

C9 PFCA: 0.5 ng/g dw (average)
C11 PFCA: 2.4 ng/g dw (average)
C12 PFCA: 2.7 ng/g dw (average)
C13 PFCA: 0.5 ng/g dw (average)
C14 PFCA: 1 ng/g dw (average)
C15 PFCA: 0.5 ng/g dw (average)

HELCOM 
2022

Landfills, incineration plants
Leachate United States 2013-

2014
Landfills 18 landfills sites 10:2 FTCA: n.d.-0.3 µg/L

8:2 FTUCA: n.d.-0.02 µg/L

Note: C11 – C18 PFCAs also detected 
above the LOD in <20% of samples, but 
concentrations were not specified.

C9 PFCA: 0.005-0.1 µg/L
C10 PFCA: 0.003-0.1 µg/L
8:2 FTCA: 0.01-0.4 µg/L

Lang et al. 
2017

Leachate China 2015-
2017

Municipal solid wastes 
(MSW) incineration 
plants

3 MSW incineration plants C9 PFCA: n.d.
C10 PFCA: 0.362-1.26 ng/ml
C11 PFCA: 0.0894-0.142 ng/ml
C12 PFCA: 0.371-0.704 ng/ml
C13 PFCA: 0.138-0.156 ng/ml
C14 PFCA: 0.140-0.261 ng/ml
8:2 diPAP: 0.267-0.323 ng/L

Liu et al. 2021

Fly ash China 2015-
2017

Municipal solid wastes 
(MSW) incineration 
plants

3 MSW incineration plants C9 PFCA: 0.111-0.441 ng/g
C10 PFCA: 0.0218-0.0915 ng/g
C11 PFCA: n.d.-0.0195 ng/g
C12 PFCA: 0.0109-0.0158 ng/g
C13 PFCA: n.d.-0.0358 ng/g
C14 PFCA: 0.0311-0.0540 ng/g
8:2 diPAP: n.d.-0.120 ng/g

Liu et al. 2021

Bottom ash China 2015-
2017

Municipal solid wastes 
(MSW) incineration 
plants

3 MSW incineration plants C9 PFCA: 0.243-0.403 ng/g
C10 PFCA: 0.0298-0.0578 ng/g
C11 PFCA: 0.0165-0.0790 ng/g
C12 PFCA: 0.0944-0.121 ng/g
C13 PFCA: n.d.-0.0755 ng/g
C14 PFCA: n.d.-0.0263 ng/g
8:2 diPAP: 0.119-0.250 ng/g

Liu et al. 2021

Soil South Korea 2017 Landfills 8 soil samples collected 
from vacant lots in 
municipal and industrial 
landfill sites

C9 PFCA: n.d.-0.479 ng/g dw
C10 PFCA: 0.058-2.85 ng/g dw
C11 PFCA: n.d.-1.03 ng/g dw
C12 PFCA: n.d.-3.16 ng/g dw
C13 PFCA: n.d.-0.985 ng/g dw

C9 PFCA: 0.252 ng/g dw
C10 PFCA: 0.614 ng/g dw
C11 PFCA: 0.275 ng/g dw
C12 PFCA: 0.460 ng/g dw
C13 PFCA: 0.192 ng/g dw

Sim et al. 2021



Matrix Country/ 
Region Year(s) Study site Type of location or 

samples Concentration Mean Reference

C14 PFCA: n.d.-0.812 ng/g dw C14 PFCA: 0.162 ng/g dw
Leachate Canada 2010 Landfills 33 samples of leachate 

(flow-through or 
recirculated) from two 
municipal landfills 

C9 PFCA: 15(±1.4)-450(±80) ng/L
C10 PFCA: 109(±0.42)-1100(±140) ng/L
C11 PFCA: <3.0-120(±100) ng/L
C12 PFCA: <1.4-8.8(±0.75) ng/L
C14 PFCA: <1.5-5.1(±1.6) ng/L
8:2 FTCA: <8.6-5200(±30) ng/L
10:2 FTCA: <2.7-775(±530) ng/L
8:2 FTUCA: <2.9-2100(±6.0) ng/L
10:2 FTUCA: <1.7-430(±250) ng/L

Benskin et al. 
2012

Percolate Denmark Not 
specified

Landfills 3 samples from 2 landills C9 PFCA: <0.8 ng/L
C10 PFCA: <1.6 ng/L
C11 PFCA: <2.2 ng/L

Bossi et al. 
2008

Leachate Germany Not 
specified

Landfills Treated leachate from 22 
landfill sites

C9 PFCA: n.d.-80.06 ng/L
C10 PFCA: n.d.-55.09 ng/L
C11 PFCA: n.d.-2.98 ng/L
C12 PFCA: n.d.-2.45 ng/L
C13 PFCA: n.d.-0.62 ng/L
C14 PFCA: n.d.-0.39 ng//L
C15 PFCA: n.d.-0.42 ng/L
C16 PFCA: n.d.-1.91 ng/L
C17 PFCA: n.d.-1.04 ng/L
C18 PFCA: n.d.-2.96 ng/L

Busch et al. 
2010

Leachate Spain 2015 Landfills 6 samples from 4 
municipal solid waste 
landfill sites

C9 PFCA: <LOD
C10 PFCA: <LOD
C11 PFCA: <LOD
C12 PFCA: <LOD
C13 PFCA: <LOD
C14 PFCA: <LOD-68.4 ng//L

Fuertes et al. 
2017

Leachate Japan 2019-
2021

Landfills Industrial waste landfills C9 PFCA: 12-1200 ng/L
C10 PFCA: 14-18 ng/L
C11 PFCA: 13-120 ng/L
C12 PFCA: 5.4-8.3 ng/L
C13 PFCA: n.d.
C14 PFCA: n.d.
C16 PFCA: n.d.
C18 PFCA: n.d.

C9 PFCA: 500 (±350) ng/L
C10 PFCA: 16 (±3.0) ng/L
C11 PFCA: 86 (±48) ng/L
C12 PFCA: 6.8 (±2.0) ng/L

Kameoka et al. 
2021

Leachate Japan 2019-
2021

Landfills Municipal solid waste 
landfills

C9 PFCA: 4.2-12 ng/L
C10 PFCA: 18 ng/L
C11 PFCA: 8.7-9.1 ng/L
C12 PFCA: n.d.
C13 PFCA: n.d.
C14 PFCA: n.d.
C16 PFCA: n.d.
C18 PFCA: 110 ng/L

C9 PFCA: 7.2 (±3.4) ng/L
C10 PFCA: 18 ng/L
C11 PFCA: 8.9 (±0.23) ng/L
C18 PFCA: 110 (±0.058) ng/L

Kameoka et al. 
2021

Air Canada 2009 Landfils Air samples collected 
using SIP disk PAS, 
deployed for 55 days at 2 

C9 PFCA: 0.97-15.8 pg/m3

C10 PFCA: 0.84-18.9 pg/m3

C11 PFCA: <0.04-17.4 pg/m3

Ahrens et al. 
2011



Matrix Country/ 
Region Year(s) Study site Type of location or 

samples Concentration Mean Reference

municipal solid waste 
landfill sites

C12 PFCA: 0.71-17.4 pg/m3

C14 PFCA: <0.28-4.30 pg/m3

8:2 FTOH: 223-17 381 pg/m3

10:2 FTOH: 125-2151 pg/m3

Air
(gas-phase)

Germany 2009 Landfills Air samples collected from 
two landfills 

8:2 FTOH: 17.6-433.6 pg/m3

10:2 FTOH: 5.7-92.7 pg/m3

12:2 FTOH: 2.3-38.0 pg/m3

8:2 FTA: 0.2-12.6 pg/m3

10:2 FTA: n.d.-7.3 pg/m3

Weinberg et al. 
2011

Air
(particle-phase)

Germany 2009 Landfills Air samples collected from 
two landfills 

C9 PFCA: n.d.-0.7 pg/m3

C10 PFCA: n.d.-0.8 pg/m3

C11 PFCA: n.d.-0.8 pg/m3

C12 PFCA: n.d.-0.3 pg/m3

Weinberg et al. 
2011

Military bases, airports
Groundwater United States 1942-

1990
Military bases 4 archived groundwater 

samples
C9 PFCA: 40-390 ng/L
C10 PFCA: <LOD-17 ng/L
C11 PFCA: <LOD-<3.1 ng/L
C12 PFCA: <LOD
C13 PFCA: <LOD
C14 PFCA: <LOD

Backe et al. 
2013

Groundwater United States 1950-
1993

Military bases 8 archived groundwater 
samples

C9 PFCA: <LOD-680 ng/L
C10 PFCA: <3.1-19 ng/L
C11 PFCA: <LOD-5.2 ng/L
C12 PFCA: <LOD-<3.4 ng/L
C13 PFCA: <LOD
C14 PFCA: <LOD

Backe et al. 
2013

Surface soil Canada 2016-
2017

Airports Soil samples from aqueous 
film-forming foam 
(AFFF)-impacted sites of 
four airports

C9 PFCA: n.d.-13.8 µg/kg dw
C10 PFCA: n.d.-15.8 µg/kg dw
C11 PFCA: n.d.-8.3 µg/kg dw
C12 PFCA: n.d.-9.0 µg/kg dw
C13 PFCA: n.d.-1.1 µg/kg dw
C14 PFCA: n.d.-1.3 µg/kg dw
C16 PFCA: n.d.-0.2 µg/kg dw
8:3 FTCA: n.d.-1.2 µg/kg dw
9:3 FTCA: n.d.-9.9 µg/kg dw
11:3 FTCA: n.d.-1.8 µg/kg dw
8:2 FTUA: n.d.-0.5 µg/kg dw
8:2 FTSA: n.d.-1684.4 µg/kg dw
10:2 FTSA: n.d.-46.9 µg/kg dw
12:2 FTSA: n.d.
14:2 FTSA: n.d.-13.9 µg/kg dw

Liu et al. 2022

Subsurface soil Canada 2016-
2017

Airports Subsurface soil samples 
from aqueous film-forming 
foam (AFFF)-impacted 
sites of four airports

C9 PFCA: n.d.-2.2 µg/kg dw
C10 PFCA: n.d.-0.9 µg/kg dw
C11 PFCA: n.d.-0.3 µg/kg dw
C12 PFCA: n.d.
C13 PFCA: n.d.
C14 PFCA: n.d.
C16 PFCA: n.d.

Liu et al. 2022



Matrix Country/ 
Region Year(s) Study site Type of location or 

samples Concentration Mean Reference

8:3 FTCA: n.d.
9:3 FTCA: n.d.
11:3 FTCA: n.d.
8:2 FTUA: n.d.-0.2 µg/kg dw
8:2 FTSA: n.d.-56.4 µg/kg dw
10:2 FTSA: n.d.-0.5 µg/kg dw
12:2 FTSA: n.d.
14:2 FTSA: n.d.

Groundwater Canada 2016-
2017

Airports Groundwater samples from 
aqueous film-forming foam 
(AFFF)-impacted sites of 
four airports

C9 PFCA: n.d.-2.0 µg/L
C10 PFCA: n.d.-0.5 µg/L
C11 PFCA: n.d.-0.2 µg/L
C12 PFCA: n.d.
C13 PFCA: n.d.
C14 PFCA: n.d.
C16 PFCA: n.d.
8:2 FTUA: n.d.
10:2 FTUA: n.d.
8:2 FTSA: n.d.-230.0 µg/L
10:2 FTSA: n.d.-0.5 µg/L

Liu et al. 2022

Land application of biosolids, agricultural sites
Well water United States 2009 Farms 21 farms with historical 

land application of 
fluorochemical industry 
impacted biosolids

C9 PFCA: <LOD-25.7 ng/L
C10 PFCA: <LOD

Lindstrom et al. 
2011

Surface water United States 2009 Farms 21 farms with historical 
land application of 
fluorochemical industry 
impacted biosolids

C9 PFCA: <LOD-285.6 ng/L
C10 PFCA: <LOD-838.2 ng/L

Lindstrom et al. 
2011

Soil United States 2020 Agricultural sites 72 soil samples collected at 
various depths

C9 PFCA: n.d.-0.61 µg/kg
C10 PFCA: n.d.-4.1 µg/kg
C11 PFCA: n.d.-0.41 µg/kg
C12 PFCA: n.d.- 0.48 µg/kg
C13 PFCA: n.d.
C14 PFCA: n.d.- 0.16 µg/kg

Pepper et al. 
2021

Groundwater United States 2020 Agricultural sites Samples collected from 
nine irrigation wells 
associated with the 
agricultural sites

C9 PFCA: n.d.-3.4 ng/L
C10 PFCA: n.d.-19 ng/L

Pepper et al. 
2021

Soil South Korea 2017 Farmland 4 soil samples collected 
from farmlands

C9 PFCA: 0.69-0.379 ng/g dw
C10 PFCA: 0.164-0.300 ng/g dw
C11 PFCA: n.d.-0.491 ng/g dw
C12 PFCA: 0.059-0.150 ng/g dw
C13 PFCA: n.d.-0.172 ng/g dw
C14 PFCA: n.d

C9 PFCA: 0.281 ng/g dw
C10 PFCA: 0.241 ng/g dw
C11 PFCA: 0.279 ng/g dw
C12 PFCA: 0.103 ng/g dw
C13 PFCA: 0.081 ng/g dw
C14 PFCA: n.d

Sim et al. 2021

Soil United States 2015 Agricultural site 34 surface soil samples 
from agricultural feedstock 
station with history of land 
application of biosolids 

C9 PFCA: 5.1 µg/kg (average)
C10 PFCA: 26 µg/kg (average)
C11 PFCA: 3.0 µg/kg (average)
C12 PFCA: 6.2 µg/kg (average)

Johnson 2022



Matrix Country/ 
Region Year(s) Study site Type of location or 

samples Concentration Mean Reference

since mid-1990s
Ski areas
Snow United States 2020 Skiing area Snow samples after cross-

country ski races
C9 PFCA: n.d.-211 ng/L
C10 PFCA: 1.87-1180 ng/L
C11 PFCA: n.d.-606 ng/L
C12 PFCA: 3.74-1800 ng/L
C13 PFCA: 2.38-1000 ng/L
C14 PFCA: 12.9-4210 ng/L
8:2 FTSA: n.d.-7.2 ng/L

Carlson and 
Tupper 2020

Soil United States 2020 Skiing area Soil samples collected after 
snowmelt in a skiing area

C9 PFCA: n.d.
C10 PFCA: n.d.-1.75 ng/g dw
C11 PFCA: n.d.
C12 PFCA: n.d.-2.82 ng/g dw
C13 PFCA: n.d.-3.61 ng/g dw
C14 PFCA: 1.97-3.91 ng/g dw
8:2 FTSA: n.d.

Carlson and 
Tupper 2020

Soil Norway 2017-
2018

Skiing area 5 soil samples collected 
after snowmelt in a skiing 
area

C9 PFCA: <LOQ-0.602 ng/g dw
C10 PFCA: <LOQ-1.96 ng/g dw
C11 PFCA: <LOQ-0.294 ng/g dw
C12 PFCA: <LOQ-0.401 ng/g dw
C13 PFCA: <LOQ-0.203 ng/g dw
C14 PFCA: <LOQ-0.138 ng/g dw

C9 PFCA: 0.179 (±0.177) ng/g dw
C10 PFCA: 0.417 (±0.632) ng/g dw
C11 PFCA: 0.134 (±0.112) ng/g dw
C12 PFCA: 0.159 (±0.139) ng/g dw
C13 PFCA: 0.090 (±0.067) ng/g dw
C14 PFCA: 0.122 (±0.140) ng/g dw

Grønnestad et 
al. 2019

Snow Sweden 2010 Skiing area Snow samples collected 
after a ski competition

C9 PFCA: n.d.-19.6 ng/L
C10 PFCA: n.d.-17.2 ng/L
C11 PFCA: n.d.-12.8 ng/L
C12 PFCA: n.d.-21.8 ng/L
C13 PFCA: n.d.-22.0 ng/L
C14 PFCA: n.d.-57.9 ng/L
C15 PFCA: n.d.-16.8 ng/L
C16 PFCA: n.d.-108 ng/L
C17 PFCA: n.d.-55.9 ng/L
C18 PFCA: n.d.-786 ng/L
C19 PFCA: n.d.-60.6 ng/L
C20 PFCA: n.d.-113 ng/L
C21 PFCA: n.d.

Plassman and 
Berger 2013

Soil Sweden 2010 Skiing area Soil samples collected after 
snowmelt in a skiing area

C9 PFCA: n.d.-1.15 ng/g dw
C10 PFCA: n.d.-3.38 ng/g dw
C11 PFCA: n.d.-1.82 ng/g dw
C12 PFCA: n.d.-2.48 ng/g dw
C13 PFCA: n.d.-1.43 ng/g dw
C14 PFCA: n.d.-2.28 ng/g dw
C15 PFCA: n.d.-0.623 ng/g dw
C16 PFCA: n.d.-0.709 ng/g dw
C17 PFCA: n.d.-0.307 ng/g dw
C18 PFCA: n.d.-1.89 ng/g dw
C19 PFCA: n.d.-0.141 ng/g dw
C20 PFCA: n.d.-0.175 ng/g dw
C21 PFCA: n.d.-0.021 ng/g dw

Plassman and 
Berger 2013



Matrix Country/ 
Region Year(s) Study site Type of location or 

samples Concentration Mean Reference

Industrial and urban areas
River water India 2014 Ganges River 14 samples collected in 

nine locations, including in 
industrialized areas

C9 PFCA: <MQL-0.19 ng/L
C10 PFCA: <MQL-0.19 ng/L
C11 PFCA: <MQL
C12 PFCA: <MQL-0.05 ng/L
C13 PFCA: <MQL-0.03 ng/L
C14 PFCA: <MQL

Sharma et al. 
2016

Groundwater 
water

India 2014 Ganges River bank 14 samples collected from 
wells in the vicinity of the 
Ganges River bank

C9 PFCA: <MQL-0.22 ng/L
C10 PFCA: <MQL-0.10 ng/L
C11 PFCA: <MQL
C12 PFCA: <MQL-0.05 ng/L
C13 PFCA: <MQL-0.02 ng/L
C14 PFCA: <MQL

Sharma et al. 
2016

Surface 
sediment

China Not 
specified

Plain river network of 
Changshu (Tasin 
Basin)

17 sampling sites located 
in residential, agricultural 
and industrial areas

C9 PFCA: 0.99-9.65 ng/g dw
C10 PFCA: 1.33-24.99 ng/g dw
C11 PFCA: 0.99-15.67 ng/g dw
C12 PFCA: 0.27-18.32 ng/g dw
C13 PFCA: <3.25-25.91 ng/g dw
C14 PFCA: <0.20-11.97 ng/g dw

C9 PFCA: 4.71 ng/g dw
C10 PFCA: 7.11 ng/g dw
C11 PFCA: 4.86 ng/g dw
C12 PFCA: 6.86 ng/g dw
C13 PFCA: 8.44 ng/g dw
C14 PFCA: 4.33 ng/g dw

Li and Hua 
2021

Suspended 
particles

China Not 
specified

Plain river network of 
Changshu (Tasin 
Basin)

17 sampling sites located 
in residential, agricultural 
and industrial areas

C9 PFCA: 3.26-178.37 ng/g dw
C10 PFCA: 3.60-30.40 ng/g dw
C11 PFCA: 1.79-85.35 ng/g dw
C12 PFCA: 3.42-159.01 ng/g dw
C13 PFCA: 3.96-85.69 ng/g dw
C14 PFCA: 1.99-42.57 ng/g dw

C9 PFCA: 20.05 ng/g dw
C10 PFCA: 13.58 ng/g dw
C11 PFCA: 25.10 ng/g dw
C12 PFCA: 29.97 ng/g dw
C13 PFCA: 23.49 ng/g dw
C14 PFCA: 16.64 ng/g dw

Li and Hua 
2021

Dissolved phase China Not 
specified

Plain river network of 
Changshu (Tasin 
Basin)

17 sampling sites located 
in residential, agricultural 
and industrial areas

C9 PFCA: 0.54-48.83 ng/L
C10 PFCA: 2.88-264.30 ng/L
C11 PFCA: 0.18-221.87 ng/L
C12 PFCA: 0.44-12.85 ng/L
C13 PFCA: <0.47-8.56 ng/L
C14 PFCA: <0.23-5.08 ng/L

C9 PFCA: 18.69 ng/L
C10 PFCA: 35.57 ng/L
C11 PFCA: 57.66 ng/L
C12 PFCA: 5.04 ng/L
C13 PFCA: 3.56 ng/L
C14 PFCA: 1.90 ng/L

Li and Hua 
2021

Colloidal phase China Not 
specified

Plain river network of 
Changshu (Tasin 
Basin)

17 sampling sites located 
in residential, agricultural 
and industrial areas

C9 PFCA: <0.21-44.36 ng/L
C10 PFCA: 0.44-258.46 ng/L
C11 PFCA: 0.12-210.38 ng/L
C12 PFCA: 0.26-10.88 ng/L
C13 PFCA: <0.24-8.18 ng/L
C14 PFCA: <0.15-4.65 ng/L

C9 PFCA: 15.72 ng/L
C10 PFCA: 40.25 ng/L
C11 PFCA: 55.09 ng/L
C12 PFCA: 3.84 ng/L
C13 PFCA: 2.70 ng/L
C14 PFCA: 1.77 ng/L

Li and Hua 
2021

Soluble phase China Not 
specified

Plain river network of 
Changshu (Tasin 
Basin)

17 sampling sites located 
in residential, agricultural 
and industrial areas

C9 PFCA: <0.21-20.67 ng/L
C10 PFCA: 0.96-26.81 ng/L
C11 PFCA: 0.06-46.43 ng/L
C12 PFCA: 0.18-4.98 ng/L
C13 PFCA: <0.06-5.33 ng/L
C14 PFCA: <0.08-1.02 ng/L

C9 PFCA: 7.47 ng/L
C10 PFCA: 7.57 ng/L
C11 PFCA: 11.82 ng/L
C12 PFCA: 1.62 ng/L
C13 PFCA: 1.27 ng/L
C14 PFCA: 0.55 ng/L

Li and Hua 
2021

Rain China 2016 Fluorochemical 
manufacturing parks 
(FMPs) in Fuxin

94 multimedia samples 
collected in the area 
surrounding two FMPs

C9 PFCA: n.d.-13 ng/L
C10 PFCA: 0.57-22 ng/L
C11 PFCA: n.d.-2.1 ng/L
C12 PFCA: 0.37-1.7 ng/L
8:2 FTUCA: n.d.-3.0 ng/L

Chen et al. 
2018



Matrix Country/ 
Region Year(s) Study site Type of location or 

samples Concentration Mean Reference

Shallow 
groundwater

China 2016 Fluorochemical 
manufacturing parks 
(FMPs) in Fuxin

94 multimedia samples 
collected in the area 
surrounding two FMPs

C9 PFCA: n.d.-3.7 ng/L
C10 PFCA: n.d-3.9 ng/L
C11 PFCA: n.d
C12 PFCA: n.d.
8:2 FTUCA: n.d

Chen et al. 
2018

Surface 
reservoir and 
river water

China 2016 Fluorochemical 
manufacturing parks 
(FMPs) in Fuxin

94 multimedia samples 
collected in the area 
surrounding two FMPs

C9 PFCA: n.d.-32 ng/L
C10 PFCA: n.d.-86 ng/L
C11 PFCA: n.d.-51 ng/L
C12 PFCA: n.d.-14 ng/L
8:2 FTUCA: n.d.-0.46 ng/L

Chen et al. 
2018

Surface 
sediment

China 2016 Fluorochemical 
manufacturing parks 
(FMPs) in Fuxin

94 multimedia samples 
collected in the area 
surrounding two FMPs

C9 PFCA: n.d.-0.43 ng/g
C10 PFCA: n.d.-0.77 ng/g
C11 PFCA: n.d.-9.3 ng/g
C12 PFCA: n.d.-0.92 ng/g
8:2 FTUCA: n.d.-0.24 ng/g

Chen et al. 
2018

Soil China 2016 Fluorochemical 
manufacturing parks 
(FMPs) in Fuxin

94 multimedia samples 
collected in the area 
surrounding two FMPs

C9 PFCA: 0.066-9.9 ng/g
C10 PFCA: 0.046-50 ng/g
C11 PFCA: 0.022.-12 ng/g
C12 PFCA: n.d.-42 ng/g
8:2 FTUCA: n.d.-2.7 ng/g

Chen et al. 
2018

Outdoor settled 
dust

China 2016 Fluorochemical 
manufacturing parks 
(FMPs) in Fuxin

94 multimedia samples 
collected in the area 
surrounding two FMPs

C9 PFCA: n.d.-160 ng/g
C10 PFCA: n.d.-160 ng/g
C11 PFCA: n.d.-96 ng/g
C12 PFCA: n.d.-100 ng/g
8:2 FTUCA: n.d.-32 ng/g

Chen et al. 
2018

Leaves China 2016 Fluorochemical 
manufacturing parks 
(FMPs) in Fuxin

94 multimedia samples 
collected in the area 
surrounding two FMPs

C9 PFCA: n.d.-220 ng/g
C10 PFCA: n.d.
C11 PFCA: n.d.
C12 PFCA: n.d.-56 ng/g
8:2 FTUCA: n.d.

Chen et al. 
2018

Air China 2016 Fluorochemical 
manufacturing parks 
(FMPs) in Fuxin

94 multimedia samples 
collected in the area 
surrounding two FMPs

C9 PFCA: 9.9-370 pg/m3

C10 PFCA: n.d.-650 pg/m3

C11 PFCA: n.d.-220 pg/m3

C12 PFCA: n.d.-120 pg/m3

8:2 FTUCA: 7.9-340 pg/m3

Chen et al. 
2018

Air China 2014 Textile manufacturing 
plant located in the 
Yangtze River Delta

34 multimedia samples 
collected in four 
workshops

C9 PFCA: 44-49 pg/m3

C10 PFCA: 99-114 pg/m3

C11 PFCA: 24-27 pg/m3

C12 PFCA: n.d.-7 pg/m3

C13 PFCA: n.d.
C14 PFCA: n.d.
8:2 FTOH: 9.7-23.0 pg/m3

10:2 FTOH: 2.6-2.7 pg/m3

Heydebreck et 
al. 2016

WWTP effluent China 2014 Textile manufacturing 
plant located in the 
Yangtze River Delta

34 multimedia samples 
collected in four 
workshops

C9 PFCA: 255.7-279.7 ng/L
C10 PFCA: 723.9-911.9 ng/L
C11 PFCA: 40.6-47.0 ng/L
C12 PFCA: 0.65-0.74 ng/L
C13 PFCA: n.d.

Heydebreck et 
al. 2016



Matrix Country/ 
Region Year(s) Study site Type of location or 

samples Concentration Mean Reference

C14 PFCA: n.d.
8:2 FTUCA: 628.0-742.0 ng/L
10:2 FTUCA: 41.6-52.0 ng/L

WWTP effluent 
– suspended 
particulate 
matter

China 2014 Textile manufacturing 
plant located in the 
Yangtze River Delta

34 multimedia samples 
collected in four 
workshops

C9 PFCA: 15.7-18.2 ng/L
C10 PFCA: 144.3-153.0 ng/L
C11 PFCA: 17.6-18.4 ng/L
C12 PFCA: 0.93-1.03 ng/L
C13 PFCA: 1.86-1.96 ng/L
C14 PFCA: 0.32-0.36 ng/L
8:2 FTUCA: 37.6-48.4 ng/L
10:2 FTUCA: 37.0-40.0 ng/L

Heydebreck et 
al. 2016

River China 2014 Textile manufacturing 
plant located in the 
Yangtze River Delta

34 multimedia samples 
collected in four 
workshops

C9 PFCA: 2.56-2.96 ng/L
C10 PFCA: 3.06-3.82 ng/L
C11 PFCA: 2.68-3.20 ng/L
C12 PFCA: 0.15-0.20 ng/L
C13 PFCA: n.d.
C14 PFCA: n.d.
8:2 FTUCA: n.d.
10:2 FTUCA: n.d.

Heydebreck et 
al. 2016

River  – 
suspended 
particulate 
matter

China 2014 Textile manufacturing 
plant located in the 
Yangtze River Delta

34 multimedia samples 
collected in four 
workshops

C9 PFCA: 0.49-0.60 ng/L
C10 PFCA: 1.35-1.86 ng/L
C11 PFCA: 2.90-3.68 ng/L
C12 PFCA: 0.96-1.14 ng/L
C13 PFCA: 1.43-1.64 ng/L
C14 PFCA: 0.56-0.82 ng/L
8:2 FTUCA: n.d.
10:2 FTUCA: n.d.

Heydebreck et 
al. 2016

Water South Korea 2010-
2012

Nakdong River 3 sampling sites in a river 
located in a highly 
industrialized area

C9 PFCA: 0.83-4.49 ng/L
C10 PFCA: 0.53-4.80 ng/L
C11 PFCA: 0.28-1.13 ng/L
C12 PFCA: 0.13-0.33 ng/L

C9 PFCA: 2.32 ng/L
C10 PFCA: 2.13 ng/L
C11 PFCA: 0.59 ng/L
C12 PFCA: 0.20 ng/L

Lam et al. 2014

Water South Korea 2010-
2012

Yeongsan River 3 sampling sites in a river 
located in a highly 
industrialized area

C9 PFCA: 0.54-1.08 ng/L
C10 PFCA: 0.14-1.10 ng/L
C11 PFCA: 0.13-0.73 ng/L
C12 PFCA: 0.10-0.31 ng/L

C9 PFCA: 0.85 ng/L
C10 PFCA: 0.64 ng/L
C11 PFCA: 0.41 ng/L
C12 PFCA: 0.21 ng/L

Lam et al. 2014

Sediment South Korea 2010-
2012

Nakdong River 3 sampling sites in a river 
located in a highly 
industrialized area

C9 PFCA: n.d.-0.03 ng/g dw
C10 PFCA: 0.02-0.07 ng/g dw
C11 PFCA: 0.03-0.08 ng/g dw
C12 PFCA: 0.07-0.08 ng/g dw

C9 PFCA: 0.01 ng/g dw
C10 PFCA: 0.05 ng/g dw
C11 PFCA: 0.06 ng/g dw
C12 PFCA: 0.08 ng/g dw

Lam et al. 2014

Sediment South Korea 2010-
2012

Yeongsan River 3 sampling sites in a river 
located in a highly 
industrialized area

C9 PFCA: 0.09-0.15 ng/g dw
C10 PFCA: 0.03-0.04 ng/g dw
C11 PFCA: 0.02-0.04 ng/g dw
C12 PFCA: 0.06-0.08 ng/g dw

C9 PFCA: 0.12 ng/g dw
C10 PFCA: 0.03 ng/g dw
C11 PFCA: 0.03 ng/g dw
C12 PFCA: 0.07 ng/g dw

Lam et al. 2014

Soil South Korea 2017 Industrial complexes 
(chemical, textile, 
electronics and metal)

33 soil samples collected 
from industrial complexes 
from major industrial areas

C9 PFCA: n.d.-1.52 ng/g dw
C10 PFCA: 0.086-1.73 ng/g dw
C11 PFCA: n.d.-1.06 ng/g dw
C12 PFCA: n.d.-2.10 ng/g dw
C13 PFCA: n.d.-0.952 ng/g dw

C9 PFCA: 0.387 ng/g dw
C10 PFCA: 0.553 ng/g dw
C11 PFCA: 0.382 ng/g dw
C12 PFCA: 0.435 ng/g dw
C13 PFCA: 0.167 ng/g dw

Sim et al. 2021



Matrix Country/ 
Region Year(s) Study site Type of location or 

samples Concentration Mean Reference

C14 PFCA: n.d.-0.977 ng/g dw C14 PFCA: 0.130 ng/g dw
Suspended 
particulate 
matter

Germany 2005-
2019

River Mulde located 
downstream of a large 
industrial park

Samples from riverine 
sampling sites of the 
Greman Environmental 
Specimen Bank collected 
between 2005 and 2019

C9 PFCA: 0.056-0.647 µg/kg dw
C10 PFCA: 0.809-3.492 µg/kg dw
C11 PFCA: 0.136-1.804 µg/kg dw
C12 PFCA: <0.05-2.319 µg/kg dw
C13 PFCA: <LOQ
C14 PFCA: <LOQ
C15 PFCA: <LOQ
C16 PFCA: <LOQ
8:2 diPAP: 2,537-44,418 µg/kg dw
8:2 FTCA: <LOQ

Göckener et al. 
2022

Water Japan 2010 Rivers located in the 
Hyogo prefecture

Samples from 41 rivers, 
including a site 
downstream of a 
perfluorinated compounds 
production facility

C9 PFCA: <0.5-39 ng/L
C10 PFCA: <0.5-47 ng/L
C11 PFCA: <0.5-39 ng/L
C12 PFCA: <0.5-4.1 ng/L

Takemine et al. 
2014

Water Japan 2011 Samondogawa River Sample from a location 
downstream of a 
perfluorinated compounds 
production facility

C9 PFCA: 12 ng/L
C10 PFCA: 3.5 ng/L
C11 PFCA: <1.5 ng/L
C12 PFCA: <0.5 ng/L

Takemine et al. 
2014

Water Japan 2012 Samondogawa River Sample from a location 
downstream of a 
perfluorinated compounds 
production facility

C9 PFCA: 8.1 ng/L
C10 PFCA: 2.7 ng/L
C11 PFCA: <0.5 ng/L
C12 PFCA: <0.5 ng/L

Takemine et al. 
2014

Water China 2021 Taihu Lake 32 water samples collected 
at various locations, 
including in proximity to 
industrial areas

C9 PFCA: 7.75-63.8 ng/L
C10 PFCA: 4.55-118 ng/L

C9 PFCA: 15.9 (±11.4) ng/L
C10 PFCA: 17.7 (±22.6) ng/L

Yu et al. 2022

Air China 2013 Tianjin City Air samples collected 
collected using SIP disk 
PAS, installed at various 
sites, including in urban 
areas

C9 PFCA: 8.57-23.7 pg/m3

C10 PFCA: 1.47-7.67 pg/m3

C11 PFCA: 1.13-3.23 pg/m3

C12 PFCA: 0.31-2.11 pg/m3

8:2 FTOH: 43.9-89.9 pg/m3

10:2 FTOH: 14.1-39.8 pg/m3

Yao et al. 2016

Wastewater China Not 
specified

Electroplating 
industrial parks

23 water samples collected 
in production workshops 
and treatment units

C9 PFCA: 2.4-714.5 ng/L
C10 PFCA: 2.95-364.5 ng/L
C11 PFCA: concentration not specified

Jiawei et al. 
2019

Sediment Norway 2018-
2019

PFASs-coated paper 
products factory

Sediment samples 
collected downstream of 
the factory

C9 PFCA: 6.9 (±6.6) µg/kg dw
C10 PFCA: 69.4 (±66.2) µg/kg dw
C11 PFCA: 19.9 (±18.5) µg/kg dw
C12 PFCA: 21.0 (±18.3) µg/kg dw
C13 PFCA: 3.2 (±2.4) µg/kg dw
C14 PFCA: 23.3 (±20.1) µg/kg dw
C15 PFCA: 1.5 (±1.1) µg/kg dw
C16 PFCA: 2.8 (±2.3) µg/kg dw
8:2 FTSA: 253 (±212) µg/kg dw
10:2 FTSA: 472 (±269) µg/kg dw
12:2 FTSA: 370 (±182) µg/kg dw

Langberg et al. 
2020



Matrix Country/ 
Region Year(s) Study site Type of location or 

samples Concentration Mean Reference

14:2 FTSA: 106 (±68.2) µg/kg dw
Industrial 
WWTPs 
influent

South Korea 2018-
2019

Industrial complex 
containing 77 
industrial plants 
producing ceramics, 
electronic equipment, 
electroplated metals, 
polymers, textiles, and 
other items

79 samples from influent 
wastewater

C9 PFCA: n.d.-13.8 ng/L
C10 PFCA: n.d.-<LOQ ng/L
C11 PFCA: n.d.-14.7 ng/L
C12 PFCA: n.d.-26.0 ng/L
C13 PFCA: n.d.-15.2 ng/L
8:2 FTSA: n.d.-2.35 ng/L

C9 PFCA: 13.5 ng/L
C10 PFCA: < LOQ 
C11 PFCA: 14.7 ng/L
C12 PFCA: 26.0 ng/L
C13 PFCA: 15.2 ng/L
8:2 FTSA: 2.35 ng/L

Kim et al. 2021

Industrial 
WWTPs 
effluent

South Korea 2018-
2019

Industrial complex 
containing 77 
industrial plants 
producing ceramics, 
electronic equipment, 
electroplated metals, 
polymers, textiles, and 
other items

66 samples from effluent 
wastewater

C9 PFCA: n.d.-20.9 ng/L
C10 PFCA: n.d.-9.5 ng/L
C11 PFCA: n.d.-<LOQ
C12 PFCA: n.d.-40.2 ng/L
8:2 FTSA: n.d.-9.3 ng/L

C9 PFCA: 14.5 ng/L
C10 PFCA: 8.9 ng/L 
C11 PFCA: <LOQ
C12 PFCA: 35.0 ng/L
8:2 FTSA: 9.3 ng/L

Kim et al. 2021

Municipal 
WWTP influent

South Korea 2018-
2019

Municipal WWTPs 
receiving treated 
wastewater from an 
industrial complex

Sanples from two 
municipal WWTPs plants

C9 PFCA: <LOQ ng/L
C10 PFCA: n.d.
C11 PFCA: n.d.
C12 PFCA: <LOQ
C13 PFCA: n.d.
8:2 FTSA: n.d.

Kim et al. 2021

Municipal 
WWTP effluent

South Korea 2018-
2019

Municipal WWTPs 
receiving treated 
wastewater from an 
industrial complex

Sanples from two 
municipal WWTPs plants

C9 PFCA: n.d.- 7.86 ng/L
C10 PFCA: n.d.-<LOQ
C11 PFCA: n.d.
C12 PFCA: n.d.
C13 PFCA: n.d.
8:2 FTSA: n.d.

Kim et al. 2021

Abbreviations: n.d., not detected; LOD, limit of detection; dw, dry weight; diPAP, polyfluoroalkyl phosphoric acid diesters; FTA, fluorotelomer acrylate; FTCA, fluorotelomer 
carboxylic acids; FTUCA, fluorotelomer unsaturated carboxylates; FTOH, fluorotelomer alcohols; FTSA, fluorotelomer sulfonate; MQL, method quantification limit; MRL, 
method reporting limit; PFCA, perfluorocarboxylic acid.

Table 3. Estimated global cumulative emissions of C4–C14 PFCA homologues (1951–2030) from quantified sources in tonnes* (Wang et al. 2014)



* Numbers in brackets indicate the percentage of emissions from direct sources. The percentage of emissions from indirect sources can be calculated as 100% 
minus these percentages. N.A. – not applicable.



Figure 1. Relative contributions of each source to estimated total global emissions from all quantified sources for individual C4–C14 PFCA homologues in 
1951–2002 (pre-phase-out) and 2003–2015 (transition after phase-out) (Wang et al. 2014)



2.2.1 Persistence

5. Examples of conditions considered not environmentally relevant include a study where 30–35% photolysis 
was observed for C10 PFCA at high altitudes (2500 m and 4200 m) when exposed to solar irradiation for 106 d 
(Taniyasu et al. 2013) and a study where C9–C18 PFCAs underwent 38% defluorination in river water using 
electrooxidation (Barisci and Suri 2020).

2.2.3 Bioaccumulation

6. The unique characteristics and physicochemical properties of long-chain PFCAs are relevant to the potential 
for bioaccumulation. Long-chain PFCAs are non-volatile substances with combined properties of ionization, 
lipophobicity, hydrophobicity, and hydrophilicity over different portions of the molecule. The carboxylate functional 
group attached to the perfluorinated chain also imparts polarity to the molecule. Due to these properties, the 
hydrophobic and lipophilic interactions between long-chain PFCAs and the substrate are not the main mechanisms 
that govern their bioaccumulation, which is unlike most organic chemicals (Hekster et al. 2002). Hydrophobicity is 
unlikely to be the main driving force for partitioning to tissues, as the lipophobic tendencies oppose this partitioning 
process; instead, electrostatic interactions may be more important (Hekster et al. 2002).

7. Octanol-water partitioning coefficient (log Kow) values are used to describe the partitioning from water to 
lipids and are also traditionally used as an indicator for bioaccumulation. Modelled log Kow values are available but 
empirical log Kow values are not available for long-chain PFCAs. However, meaningful log Kow values cannot be 
reliably measured or modelled for surface-active and ionizing substances such as long-chain PFCAs. Wang et al. 
(2011) modelled log Kow values for the neutral form of C9–C14 PFCAs with log Kow values that ranged from 5.9 to 
8.9 and which represent high bioaccumulation potential. However, Wang et al. (2011) cautioned that these values 
have high and unquantifiable uncertainties due to the modelling estimates being highly dependent on the chosen 
conformation of the neutral and anionic forms. Recent studies point to an acid dissociation constant (pKa) between 0 
and 1 for PFCAs suggesting that long-chain PFCAs are almost completely ionized at environmental pH values and 
thus, the neutral form is unlikely to be present in the environment (Wang et al. 2011; Ng and Hungerbuhler 2014). 
Rather, long-chain PFCAs tend to migrate to the interface of the organic (lipid) and aqueous phases rather than 
partition between the two phases (Houde et al. 2006b; OECD 2002). Some portions of the perfluorinated molecule 
can interact with phospholipids (Armitage et al. 2012; Dassuncao et al. 2019; Droge et al. 2019) but most studies 
show that, at the organismal level, protein-rich tissues (i.e., yolk, liver, and blood), rather than lipids, are the primary 
repositories for long-chain PFCAs. The transport of these substances into cells results in binding to fatty acid-
binding proteins and lipoproteins/albumin, and then sequestering into protein-rich tissues (Jones et al. 2003; Bischel 
et al. 2010; Woodcroft et al. 2010; Bischel et al. 2011; Ng and Hungerbuhler 2013; Cheng and Ng 2018; Zhong et 
al. 2019). On this basis, it is inappropriate to use log Kow as a descriptor for bioaccumulation and for predictive 
purposes (e.g., bioaccumulation models) for long-chain PFCAs (OECD 2002; Conder et al. 2008). Instead, empirical 
bioaccumulation data, rather than modelled data, is more relevant.

8. Both bioconcentration and bioaccumulation empirical data are available for some long-chain PFCAs. 
Laboratory-derived bioconcentration factors (BCF, L/kg) and bioaccumulation factors (BAF, L/kg) have been 
reported (up to C18 PFCA) in three freshwater fish species (i.e., zebrafish (Danio rerio), common carp (Cyprinus 
carpio L.) and rainbow trout (Oncorhynchus mykiss)) and one green mussel species (Perna viridis) and for saltwater 
species blackrock fish (Sebastes schlegeli). Zebrafish embryos exposed to 1 mg/L C9 PFCA for 144 hours post-
fertilization had BCFs that ranged from 582 to 638 (Menger et al. 2020). Steady-state whole-body BCFs in adult 
zebrafish ranged from 1202 (C9 PFCA) to 257 039 (C14 PFCA) and steady-state liver BCFs ranged from 1514 (C9 
PFCA) to 363 078 (C14 PFCA) (Chen et al. 2016). In common carp, whole body BCFs were determined for C11 
PFCA (2300 – 3700), C12 PFCA (10 000 – 16 000), C13 PFCA (16 000 – 17 000), C16 PFCA (4700 – 4800) and C18 
PFCA (320 – 430) (Inoue et al. 2012). For juvenile rainbow trout, steady-state whole-body and liver BCFs were 
determined for C10–C14 PFCAs after 12 d of exposure followed by 33 d of depuration (Martin et al. 2003b). Steady-
state whole-body BCFs ranged from 450 (C10 PFCA) to 23 000 (C14 PFCA). Steady-state liver BCF values ranged 
from 1100 (C10 PFCA) to 30 000 (C14 PFCA). Steady-state carcass BAFs for C10–C13 PFCAs ranged from 0.04 to 
1.0 in juvenile rainbow trout after 34 d exposure followed by a 41 d depuration period (Martin et al. 2003a). For 
market-size rainbow trout, the BAF for C9 PFCA was < 0.4 after a 28 d exposure followed by a 28 d depuration 
period (Goeritz et al. 2013). For the green mussel, BAFs were determined for C9 and C10 PFCAs after 56 d exposure 
at 1 µg  L and 10 µg  L (Liu et al. 2011a). BAFs for green mussel ranged from 109 to 144 (C9 PFCA) and 464 to 
838 (C10 PFCA). Serum and BCFs for blackrock fish (Sebastes schlegeli) ranged from 4321 to 5239 and 667 to 811 
(C10), respectively, and 13 553 to 16 370 and 1070 to 1345 (C11), respectively (Jeon et al. 2010). In summary, 



laboratory BCF/BAF values were variable depending on the species and age of the test organism. BCF and BAF 
values generally increased from C9 PFCA (<0.4 – 1514) to C14 PFCA (17 000 – 363 078) and then decreased for C16 
to C18 PFCAs (20 – 4800).

9. Field-derived BCFs and BAFs in freshwater and marine aquatic organisms have been reported up to C15 
PFCA. For example, whole-body BAFs were determined in 4-year old lake trout (Salvelinus namaycush) (Great 
Lakes, Canada) for C9 PFCA (1259 – 6309) and C10 PFCA (5011 – 19 952) (Furdui et al. 2007). BAFs in European 
chub (Leuciscus cephalus) (Orge River, France) had liver BAFs from 79 (C9 PFCA) to 501 187 L/kg (C12 PFCA) 
and plasma BAFs from 631 (C9 PFCA) to 5 011 872 L/kg (C12 PFCA) (Labadie and Chevreuil 2011). BAFs were 
determined for common carp collected from a drainage canal near a sewage treatment plant outfall (Tokyo, Japan) 
with liver BAFs that ranged from 69 (C9 PFCA) to > 26 000 (C13 PFCA) and kidney BAFs that ranged from 2600 
(C9 PFCA) to > 40 000 (C13 PFCA) (Murakami et al. 2011). BAFs were reported for common carp, tilapia (Tilapia 
aurea), snakehead (Ophicephalus argus), and catfish (Clarias fuscus) from the Pearl River Delta (China) (Pan et al. 
2014). Across all species, liver BAFs for C9–C11 PFCAs ranged from 501 to 100 000 with increasing BAF from C9 
to C11. This is consistent with other studies that observed that bioaccumulation increases with fluorinated carbon 
chain length (Conder et al. 2008). Whole body BCFs for European perch (Perca fluviatilis) from Lake Halmsjön 
(Sweden) ranged from 42 to 54 L/kg (C9 PFCA) and 140 to 220 L/kg (C10 PFCA) (Ahrens et al. 2015). Whole-body 
BAFs were determined in Chinese icefish (Neosalanx tangkahkeii taihuensis), a top predator in Lake Chaohu 
(China) where values ranged from 93 (C13 PFCA) to 2041 L/kg (C9 PFCA) (Pan et al. 2019). At Baiyangdian Lake 
(China), BAFs were measured in five freshwater fish species (grass carp (Ctenopharyngodon idellus), goldfish 
(Carassius auratus), common carp, silver carp (Hypophthalmichthys molitrix), and northern snakehead (Channa 
argus)). Across species, BAFs were 3.9 to 1892 (C9 PFCA), 45 to 8672 (C10 PFCA), 26 to 30 475 (C11 PFCA), and 
91 to 9874 mL/g ww (C12 PFCA) (Liu et al. 2019a). C9 PFCA BCFs were estimated in female crabs (species 
unknown, collected from South Korean fish markets) with BCF values of 440 in legs, 660 in eggs, 879 in body, and 
1040 in offal (Choi et al. 2020). BAFs were determined for eel (Anguilla Anguilla; collected from 21 rivers, lakes 
and canals in the Netherlands) for C9 PFCA (105 to 1380 L/kg ww) and C10 PFCA (331 to 5623 L/kg ww) (Kwadijk 
et al. 2010). BAFs were determined for a variety of fish, crab, and snail species in Baiyangdian Lake (China) (Zhou 
et al. 2012). Across all species, BAFs were determined for C9 PFCA (59 to 60 L/kg ww), C10 PFCA (1230 to 69 183 
L/kg ww) and C11 PFCA (589 to 7762 L/kg ww). BAFs were determined in a variety of copepod, mysid, and shrimp 
species from a macrotidal estuary in Aquitaine (France) (Munoz et al. 2019).  Across all species, BAFs were 
determined for C9–C11 PFCA (631 to 12 589 L/kg ww). BCFs were reported in various fish, crab, gastropod, and 
bivalve species collected along the western coast of Korea (Naile et al. 2013). Across all species, whole-body BCFs 
for C9–C11 PFCAs ranged from 7 to 269 L/kg ww. BAFs were determined for plankton species in Taihu Lake 
(China) that ranged from 462 (C10 PFCA) to 17788 L/kg ww (C12 PFCA) (Fang et al. 2014). BAFs were determined 
for herring (Clupea sp.) and sprat (Sprattus sp.) collected from the Baltic Sea where BAFs for herring ranged from > 
224 (C15 PFCA) to 218 776 L/kg ww (C11 PFCA) and, for sprat, BAFs ranged from > 59 (C15 PFCA) to 158 489 
L/kg ww (C11 PFCA) (Gebbink et al. 2016). BAFs were determined for various shrimp, snail, and fish species in 
Lake Chaohu (China) that ranged from 118 (C9 PFCA) to 12 370 L/g (C11 PFCA) (Liu et al. 2019b). In summary, 
field-derived BCFs and BAFs were variable depending on the species and ranged from 3.9 (C9 PFCA) to 5 011 872 
(C12 PFCA). Field-derived BCFs and BAFs also generally increased from C9 PFCA to C14 PFCA and then declined 
at C15 PFCA (> 59 – 224).

10.  Field biomagnification or trophic magnification studies on long-chain PFCAs (up to C16 PFCA) that focused 
on multiple fish species and/or top predator species (i.e., birds or terrestrial/marine mammals) show higher 
biomagnification potential. Biomagnification factor (BMF) and trophic magnification factor (TMF) values above 
one are considered bioaccumulative. For example, a marine food web (Liaodong Bay, China) with black-tailed gulls 
(Larus crassirostris) as the top predator species had TMFs that ranged from 1.78 to 4.88 for C9–C14 PFCAs, based 
on whole body concentration estimates using muscle and liver data (Zhang et al. 2015). A eutrophic freshwater food 
web (Taihu Lake, China) with egrets and carnivorous fish as the top predator species had TMFs that ranged from 2.1 
to 3.7 for C9–C12 PFCAs (Xu et al. 2014). The Orge River (France) foodweb with eight freshwater fish species as 
top predators but with varying feeding behaviours (e.g., benthic, bentho-pelagic, omnivorous, carnivorous) had 
BMFs that ranged from 0.3 to 25.2 and TMFs that ranged from 1.5 to 3.0 (Simonnet-Laprade et al. 2019a). Five 
riverine foodwebs (France) with chub (Squalius cephalus) and common barbel (Barbus barbus) as top predator 
species had TMFs that ranged from 0.9 to 14.9 for C9–C14 PFCAs (Simonnet-Laprade et al. 2019b). A marine food 
web in the western Canadian Arctic with ringed seal (Phoca hispida) and beluga whales (Delphinapterus leucas) as 
top predator species had TMFs for C9–C11 PFCAs that ranged from 3.8 to 19.8 (Tomy et al. 2009). In other food 
webs, TMFs ranged from 1.00 to 8.29 for C9–C13 PFCAs in the Lake Ontario (Canada) freshwater food web, in the 



Lake Taihu (China) freshwater food web, in the Hudson Bay (Canadian Arctic) marine food web, and in the 
subtropical food web of the Mai Po Marshes Nature Reserve (Hong Kong) (Martin et al. 2004b; Kelly et al. 2009; 
Loi et al. 2013; Fang et al. 2014). In East Greenland, mean BMFs for C9–C16 PFCAs were above one for the top 
predator species, polar bear (Ursus maritimus) consuming ringed seal (Pusa hispida). Mean BMFs ranged from 1 to 
10 for ringed seal blubber to polar bear liver for C9–C16 PFCAs and mean BMFs ranged from 100 to 10 000 for 
ringed seal liver to polar bear liver for C9–C13 PFCAs (Boisvert et al. 2019). In the Canadian Arctic, geometric mean 
BMFs calculated for ringed seal liver to polar bear liver for C9–C15 PFCAs ranged from 2.2 (C13 PFCA) to 56 (C9 
PFCA) (Butt et al. 2008). A western Canadian Arctic food web with seal as the top predator species had BMFs for 
C10–C12 PFCAs that ranged from 0.8 to 3.1 (Powley et al. 2008). From the Yukon, Northwest Territories, and 
Nunavut (Canada), BMFs and TMFs were determined for two barren ground caribou (Rangifer tarandus 
groenlandicus) herds with wolf (Canis lupus) as the top predator species (Müller et al. 2011). Whole-body 
caribou/wolf BMFs for C9–C13 PFCAs ranged from 0.8 to 5.4 and whole-body caribou/wolf TMFs ranged from 1.9 
to 2.9. BMFs were determined for the bottlenose dolphin (Tursiops truncatus) food web at Charleston (South 
Carolina, USA) and Sarasota Bay (Florida, USA) (Houde et al. 2006a). In the Charleston food web, BMFs and 
TMFs for C9–C11 PFCAs ranged from 0.1 to 8.8. In Sarasota Bay food web, BMFs for C12 PFCA ranged from 0.1 to 
2.0. The Barents Sea (Svalbard) ice edge food web with predator species such as black guillemot (Cepphus grylle) 
and glaucous gull (Larus hyperboreus) had C9 PFCA BMFs that ranged from 8.76 to 11.6 (Haukås et al. 2007). Lake 
trout (Salvelinus namaycush), as top predator species in Lake Ontario (Canada), had adjusted whole-body BMFs 
(i.e., a diet-weighted BMF that accounted for the abundance of each of three forage fish species in the lake trout 
diet) that ranged from 1.6 to 3.4 for C9–C14 PFCAs (Martin et al. 2004b). A temperate macrotidal estuary foodweb 
(Gironde Estuary, France) with seabass (i.e., common seabass, Dicentrarchus labrax; spotted seabass, 
Dicentrarchus punctatus) and meagre (Argyrosomus regius) as top predator species had TMF values that ranged 
from 0.88 to 1.3 for C9–C14 PFCAs (Munoz et al. 2017b). In summary, TMF values ranged from 0.3 to 19.8 and 
BMF values ranged from 0.1 to 25.2 with top predator species (e.g., black-tailed gulls, egrets, carnivorous fish, 
ringed seal, beluga whales, polar bears and wolves) having values consistently above 1. Where some studies found 
that BMF/TMFs decreased with increasing chain length (e.g., Zhang et al. 2015, Munoz et al. 2017b, Boisvert et al. 
2019), other studies found that TMF increased with chain length (e.g., Tomy et al. 2009, Simonnet-Laprade et al. 
2019b).

2.2.4 Potential for long-range environmental transport

Table 4. Environmental concentrations of long-chain PFCAs and their related compounds in locations distant 
from sources

Location Compartment / Species Concentration Reference
Arctic
North Atlantic and 
Canadian 
Archipelago

Air 8:2 FTOH: 5.8-26 pg/m3

10:2 FTOH: 1.9-17 pg/m3
Shoeib et al. 2006

Canadian and 
Norwegian Arctic

Air 8:2 FTOH: <0.065-21 pg/m3

10:2 FTOH: <0.015-8.7 pg/m3

C9–C18 PFCA: <0.0063-0.77 pg/m3

Wong et al. 2018

Japan Sea to the 
Arctic Ocean

Gas-phase

Particle-phase

FTOH (10:2, 12:2 and 10:2): 1.8-47 
pg/m3;
0.1 – 2.5 pg/m3

Cai et al. 2012a

Livingston Island 
(Antarctica)

Snow C9–C14 PFCA: n.d.-0.04 ng/L Casal et al. 2017

Lake Hazen 
(Nunavut, Canada)

Snowpack C9–C14 PFCA: < 0.002-3.1 ng/L MacInnis et al. 2019

Oceans
Atlantic, Indian and 
Pacific Oceans

Depth of 20 – 160 m C9 PFCA: n.d.-1.15 ng/L
C10 PFCA: n.d.-2.19 ng/L

Gonzalez-Gaya et al. 
2019

Greenland Sea and 
East Atlantic Ocean

Surface water C9 PFCA: <0.012-0.039 ng/L
C10 PFCA: <0.021 ng/L
C11 PFCA: n.d.-<0.013 ng/L
C12 PFCA: <0.025 ng/L

Zhao et al. 2012

South Shetland 
Islands (Maritime 
Antarctica)

Coastal surface seawater C16 PFCA: <0.007.5-0.0082 ng/L Cai et al. 2012b

Livingston Island Seawater C9–C14 PFCA: n.d.-0.11 ng/L Casal et al. 2017



(Antarctica)
Biota
East Greenland Polar bear – liver;

blood;
brain;
muscle;
adipose tissue

C15 PFCA: 0.73-0.89 ng/g ww;
1.22-1.48 ng/g ww;
9.9-10.9 ng/g ww;
0.58-0.72 ng/g ww;
0.5-0.64 ng/g ww

Greaves et al. 2012

Polar bear – liver C16 PFCA: 0.1-0.2 ng/g ww
C18 PFCA: 0.2-0.4 ng/g ww

East Greenland

Ringed seal (Phoca hispida) – 
liver

C16 PFCA: n.d.-0.2 ww
C18 PFCA: 0.1-0.5 ng/g ww

Boisvert et al. 2019

Caribou (Rangifer tarandus 
groenlandicus) – liver

C9–C13 PFCA: < 0.5-3.20 ng/g wwYukon (Canada)

Wolf (Canis lupus) – liver C9–C13 PFCA: 0.19-7.79 ng/g ww

Katz et al. 2009; Müller et 
al. 2011

East and South 
Greenland

Reindeer – liver C9–C13 PFCA: n.d.-2.06 ng/g ww

East and South 
Greenland

Muskox – liver C9–C13 PFCA: 0.21-5.25 ng/g ww

Bossi et al. 2015

Antarctica Weddell seal (Leptonychotes 
weddellii) – liver

C9–C12 PFCA: < 0.01-0.23 ng/g ww Routti et al. 2015

Adelie penguin (Pygoscelis 
adeliae) – eggs;
blood;
muscle

C9–C12 PFCA: < 0.1-2.5 ng/g ww;
< 0.5 ng/ml;
< 1.4 ng/g ww

Antarctica

Gentoo penguin (Pygoscelis 
papua) – eggs;
muscle

C9–C12 PFCA: 0.1-0.5 ng/g ww;
n.d.-0.34 ng/g ww

Schiavone et al. 2009; 
Tao et al. 2006; Bengtson 
Nash et al. 2010; Llorca et 
al. 2012

Canada C9–C13 PFCA: <0.008-5.25 ng/g ww
Greenland C9–C13 PFCA: <0.01-35.25 ng/g ww
Norway C9–C13 PFCA: <0.4-1.83 ng/g ww
Sweden

Caribou and reindeer 
(Rangifer tarandus) – liver

C9–C13 PFCA: <0.17-3.30 ng/g ww

Roos et al. 2021

n.d. = not detected

2.3.1 Environmental monitoring data

Environmental concentrations of long-chain PFCAs

11. Worldwide concentrations of long-chain PFCAs are illustrated in Figure 2 below. Reported concentrations of 
long-chain PFCAs in biota (bird, fish, invertebrate, mammal, plant, reptile), separated by continent, are illustrated in 
Figure 3. The list of references used to generate these figures is provided in the Appendix to this document. The 
detailed reported environmental concentrations of long-chain PFCAs are provided in 
UNEP/POPS/POPRC.18/INF/z.



Figure 2. World-wide concentrations of long-chain PFCAs (C9–C21) in different environmental compartments, by chain 
length. Tukey box plots are interpreted as follows: the numbers above the bars indicate the number of data points and the lower 
and upper hinges (edges) of the box represent the first and third quantiles (Q1 and Q3), which are the 25th and 75th percentiles, 
respectively, while the black horizontal line within the box represents the second quantile, or the 50th percentile (median). The 
distance between the 25th and 75th percentile is called the interquartile range (IQR). The lower whisker represents the lowest data 
that are within the Q1 – 1.5 x IQR threshold, and the upper whisker represents the highest data that are within the Q3 + 1.5 x IQR 
threshold. Data exceeding these thresholds appear as circles. However, if the minimum and maximum are within these thresholds, 
they represent the lower and upper whiskers and no outliers are present.



Figure 3. World-wide map representing the concentrations of long-chain PFCAs (C9–C21) in biota (bird, fish, invertebrate, mammal, plant, reptile, fungi), separated by 
continent. All measurements are reported in ng/mL or ng/g.



2.3.2 Human exposure

Table 5. Concentrations of long-chain PFCAs in indoor air and dust (units are in ng/g unless otherwise specified) 
Long-chain PFCA concentrations in ng/g
Range (median), detection frequency %

Media Country/
Region

Year of 
sampling 
(Months)

Type of 
location (n) C9 C10 C11 C12 C13 C14 C15 Reference

Dust China/
Tianjin

2015
(June-Sept)

Private homes 
(n=18)

0.96-13.1 
(2.36),

100

n.d.-10.8 
(2.22),

94

0.51-4.14 
(1.91), 100 0.55-7.37 

(1.71), 100 NM NM NM Yao et al. 
2018

Dust China/
Tianjin

2015
(June-Sept) Hotels (n=11) n.d.-20.2 

(2.46), 91
n.d.-1.68 
(n.d.), 18

n.d.-0.82 
(n.d.), 9

n.d.-0.64 
(n.d.), 18 NM NM NM Yao et al. 

2018

Air China/
Tianjin

2015
(June-Sept)

Private homes 
(n=22)

n.d.-380 
pg/m3 (38.1 
pg/m3), 95

<MDL-57.6  
pg/m3 (13.4 
pg/m3), 100

n.d.-178 
pg/m3

(18.5 pg/m3), 
91

n.d.-20.1 
pg/m3 (6.54 
pg/m3), 91

NM NM NM Yao et al. 
2018

Air China/
Tianjin

2015
(June-Sept) Hotels (n=19)

n.d.-220  
pg/m3 (13.1 
pg/m3), 95

n.d.-110 
pg/m3 (12.2 
pg/m3), 79

n.d.-142 
pg/m3 (4.92 
pg/m3), 63

n.d.-20.1 
pg/m3 (5.28 
pg/m3), 84

NM NM NM Yao et al. 
2018

Dust USA/Boston, 
Massachusetts 2009 Offices (n=31) 10.9-639

(63.0)a, 94
5.30-492 

(46.5)a, 97
9.22-373 

(19.0)a, 52
6.56-481
(40)a, 87

8.67-768 
(21.6)a, 58

9.35-367 
(18.6)a, 71

NM Fraser et al. 
2013

Dust USA/Boston, 
Massachusetts 2009 Private homes 

(n=30)
6.21-1420
(10.9) a, 67

6.97-26.8 
(NR) , 43

10.8-39.4 
(NR) , 7

5.09-13.3 
(NR) , 23

10.3-10.3 
(NR) , 3

11.2-11.2 
(NR) , 3

NM Fraser et al. 
2013

Dust USA/Boston, MA 2009 Vehicles (n=12) 4.95-101
(14.7) a, 85

5.42-70.1 
(8.40) a, 69

5.24-6.30 
(NR) , 15

4.96-24.6 
(6.76) a, 77

n.d.-n.d.
(NR) , 0

14.3-14.3 
(NR), 8

NM Fraser et al. 
2013

Dust USA/Ohio & 
North Carolina 2000/01

Private homes 
(n=102) & 

daycares (n=10)

<DL-263
(7.99), 42.9

<DL-267
(6.65), 30.4

<DL-588 
(7.57), 36.6

<DL-520 
(7.78), 18.7 NM NM NM

Strynar and 
Lindstrom 
2008

Dust USA/
Wisconsin

2008
(Mar-Apr)

Private homes 
(n=39)

1.3–280 (12), 
100

ND-60 (5.7), 
72

ND-48 (3.1), 
87

ND-41 (5.0), 
95

ND-11 
(2.1), 92

ND-24 (3.7), 
97

NM Knobeloch et 
al. 2012

Dust Norway/
Oslo

2018 
(Feb-May)

Private homes 
(n=41)

3.9-92 (23), 
61

1.1-12 (4.1), 
24

n.d.-n.d. 
(NR), 0

1.4-78 (19), 
98

1.1-46 (6.8), 
95

1.1-35 (3.3), 
7

NM Haug et al. 
2011

Dust Norway/
Oslo

2016
(Oct) Hotel (n=2) <4-<8.3 

g/kg dw
<43-<90 
g/kg dw

<0.93-<2 
g/kg dw

<21-<45 
g/kg dw

<24-<51 
g/kg dw

<24-<51 
g/kg dw

NM Konieczny et 
al. 2017

Dust Norway/
Tromso

2007/08 
(Winter)

Private homes 
(n=7)

3.3-26.7
(7)

2-10.5
(7.5)

0.9-322 
(96.8)

0.2-3.0
(0.8) NM NM NM Huber et al. 

2011

Dust Norway/
Tromso

2007/08 
(Winter) Office (n=1) (10.6) (12.1) (1.4) (3.7) NM NM NM Huber et al. 

2011



Long-chain PFCA concentrations in ng/g
Range (median), detection frequency %

Media Country/
Region

Year of 
sampling 
(Months)

Type of 
location (n) C9 C10 C11 C12 C13 C14 C15 Reference

Dust Norway/
Tromso

2007/08 
(Winter)

Storage room in 
office building 

(n=1)b
(43.4) (22.4) (614) (<4.7) NM NM NM Huber et al. 

2011

Dust Norway/ 
Tromso 2015 Private homes 

(n=6) <0.05-20.9 <0.05-6.68 <0.05-6.81 <0.05-2.97 <0.05-1.74 <0.05-1.31 NM
Bohlin 
Nizzetto et al. 
2015

Dust Norway Not provided Private homes 
(n=7) n.d.-3, 71d n.d.-6, 57d n.d.-2, 43d n.d.-5, 57d n.d.-0.11, 

14 d n.d.-n.d., 0 d NM
Padilla-
Sanchez et al. 
2016

Dust Czech Republic 2013 (April-
Aug)

Private homes 
(n=16)

n.d.-11
(<MQL), 50

n.d.-17.1 
(<MQL), 31.3

n.d.-4.3 
(<IQL), 6.3

n.d.-13.1 
(0.5), 56.3

n.d.-3.5
(<IQL), 6.3

n.d.-14.8 
(<MQL), 

43.8

NM Karaskova et 
al. 2016

Dust Canada 2013 (April-
Aug)

Private homes 
(n=20)

<MQL-195 
(4.4), 95

0.9-86.2
(2.4), 100

n.d.-49.6 
(1.1), 60

n.d.-61.1 
(1.1), 75

n.d.-19.4
(<MQL), 29

<MQL-33.6 
(1.4), 65

NM Karaskova et 
al. 2016

Dust USA 2013 (April-
Aug)

Private homes 
(n=20)

1.1-62.9
(3.9), 100

0.4-64.0
(1.8), 100

n.d.-13.1 
(1.2), 60

n.d.-9.0
(0.6), 60

n.d.-2.1
(<MQL), 

15.0

<MQL-3.0 
(0.8), 50

NM Karaskova et 
al. 2016

Dust UK, Australia,  
Germany, USA 2004 Private homes 

(n=39)

<MQL-832 
(<MQL), 

25.6

<MQL-1965 
(<MQL), 38.5

<MQL-732 
(<MQL), 

20.5

<MQL-1048 
(<MQL), 

43.6
NM NM NM Kato et al. 

2009

Dust Canada 2007
Private homes 

of pregnant 
women (n=18)

1.4-220
(15), 100

1.7-250
(15),
100

<0.5-240 
(6.1), 100

1.4-160
(10), 100

<0.5-67
(2.4), 78

<0.5-24
(3.3), 94

NM Beesoon et al. 
2011

Air Canada/ 
Vancouver, BC 2007/08 Private homes 

(n=39)

<DL-2166 
pg/m3 (89 

pg/m3)e, 62

<DL-977 
pg/m3 (7.9 
pg/m3), 97

<DL-79 
pg/m3 (3.4 
pg/m3)e, 23

<DL-263 
pg/m3 (9.8 
pg/m3)e, 28

NM
<DL-3.7 

pg/m3 (0.16 
pg/m3)e, 5

NM Shoeib et al. 
2011

Dust Canada/ 
Vancouver, BC 2007/08 Private homes 

(n=132)
<DL-680 
(26)e, 70

<DL-251 
(8.4)e, 55

<DL-370 
(7.8)e, 49

<DL-301 
(6.3)e, 42 NM <DL-478 

(7.3)e, 39
NM Shoeib et al. 

2011

Dust USA Not provided
Childcare 
facilities 
(n=20)f

0.11-13
(1.7), 100

0.22-2.4 
(0.59), 100

0.05-3.0
(0.65), 100

0.26-3.1
(0.58), 100

n.d.-2.2
(0.31), 50

n.d.-4.4
(0.29), 85

NM Zheng et al. 
2020

Dust Catalania, Spain 2009 Private homes 
(n=10)g 0.4-37 0.75-41 0.30-15 <DL-17 0.047-25 <DL-6.7 NM

Ericson 
Jogsten et al. 
2012

Air Finland/Kuopio 2014/15
Children’s 
bedrooms 

(n=57)

0.95-16.5 
pg/m3 (2.41 
pg/m3), 100

1.27-20.6 
pg/m3 (4.21 
pg/m3), 100

<DL-8.24 
pg/m3 (0.75 
pg/m3), 98

<DL-5.65 
pg/m3 (0.84 
pg/m3), 96

<DL-2.22 
pg/m3 

(<DL), 21

<DL-1.79 
pg/m3 (0.33 
pg/m3), 63

<DL-1.06 
pg/m3 

(<DL), 7

Winkens et 
al. 2017



n.d. = non-detect; NR = not reported due to low percentage of detection (<50%); NM = not measured; MQL = method quantification limit; MDL = method detection limit; IQL = instrumental 
quantification limit; DL = detection limit
a Geometric mean 
b The storage room was being used to store highly contaminated PFAS samples, technical mixtures and chemicals for several years.
c The main production of the manufacturing plant included perfluoroalkyl sulfonic acid, perfluoroalkyl carboxylic acid, perfluorotertiary amine and their derivatives using the electro-chemical 
fluorination process. Dust samples were mainly collected from inside the plant (offices, storage rooms, raw material stock rooms, electrolysis and sulfonation workshops, and a laboratory building). 
Three samples were collect outside next to roads near the facility. 
d The detection frequency % was not explicitly provided by Padilla-Sanchez et al. (2016), and was calculated manually.
e Arithmetic mean
f C16 PFCA was also measured in this study, but was not detected in any dust sample.
g C18 PFCA was also measured in this study, but was not detected in any dust sample.

Table 6. Concentrations of long-chain PFCAs in drinking water at the tap
Tap water concentration in ng/L

range, detection frequency
Location Year N C9 C10 C11 C12 C13 C14 Reference

The Netherlands 2016 6 <0.03-0.28 <0.03-0.10 NM NM NM NM Gebbink et al. 2017
The Netherlands 2013-2014 37 <0.6 <0.6 <0.6 NM NM NM

Greece 2013-2014 43 <0.6 <0.6 <0.6 NM NM NM
Zafeiraki, et al. 2015

Sweden 2012-2014 30 <10 <10 <10 <10 NM NM Gyllenhammar et al. 2015
Germany Not provided 26 1.4, 4% <1 <1 <1 <1 NM Gellrich et al. 2013

Spain 2008 40 <0.15-58.21, 58% <0.12-10.00, 33% <0.07-4.23, 13% <0.04 <0.06 NM Ericson et al. 2009
Europe 2010 7 <MLQ-0.522 <MLQ-0.612 ND-<MLQ <MLQ NM NM Ullah et al. 2011

Canada, USA, Chile, 
Africa, Europe, Asia

2015-2016 59 median=0.15, 
max=4.5, 64%

median <0.030, 
max=1.0, 66% <0.010-1.6, 14% <0.010-

1.1, 12%
<0.010-0.94,

8%
<0.010-0.62, 

8% Kaboré et al. 2018

Canadaa 2012-2016 226 <0.5–1.2, 18% <0.5–0.63, 2% <1 <1 NM NM Kleywegt et al. 2020

Francea 2009 41 median <1, max=11, 
24% <1 NM NM NM NM Boiteux et al. 2012

Austriab 10 ND-0.85, 60% ND ND ND NM NM
Austria Annex E 
information 2022

LOQ = limit of quantification; MLQ = method limits of quantification; ND = not detected; NM = not measured
a Long-chain PFCAs were measured in treated water leaving the water treatment plant
b Long-chain PFCAs were measured in well water



Concentrations of long-chain PFCAs in food 

12. The diet has been suggested as a principal exposure route for long-chain PFCAs (Vestergren et al. 2012; 
Poothong et al. 2020) and a number of studies have investigated the presence of long-chain PFCAs in food items 
(see EFSA 2020 Annex A4; Table 7). However, due in part to methodological challenges associated with targeted 
analyses in varied and complex food matrices, the measurements of long-chain PFCAs often fall below of the limit 
of detection/quantification (LOD/LOQ).  For example, in the 2019-2021 analyses of regional and national food 
samples collected under the USA Total Diet Study, only 3 out of 532 samples had concentrations of long-chain 
PFCAs that were above the method detection limit. C9 PFCA was detected in a cod sample (233 ng/kg) and a frozen 
fish stick/patty (50 ng/kg) whereas C10 PFCA was detected in canned tuna (72 ng/kg)(FDA 2021). Similarly, 
concentrations of C9, C10 and C12 PFCAs were below the LOD for 31 different types of food (310 individual food 
samples) purchased from supermarkets in Dallas, Texas (USA) in 2009 (Schecter et al. 2010). In an analysis of 54 
food composites collected during Canadian Total Diet studies from 1992 to 2004, C10–C12 PFCAs were not detected 
in any food sample and C9 PFCA was detected only in beef steak at 4.5 ng/g, wet weight (Tittlemier et al. 2007). 
The European Food Safety Authority (EFSA) reported that 93.5% or more of their results for C9–C16 and C18 PFCA 
concentrations in foods were left-censored (i.e., below the LOQ or LOD) (EFSA 2020). Fish was the best studied of 
all food types and several long-chain PFCAs were present in fish at higher concentrations than in other food groups 
with upper bound mean concentrations ranging from 0.072 g/kg (C12 PFCA in halibut) to 5.85 g/kg (C13 PFCA in 
fish offal) (EFSA 2020). Relatively high values were also noted for edible offal from game animals, with upper 
bound mean concentrations ranging from 0.24 g/kg (C11 PFCA) to 9.87 g/kg (C9 PFCA) and a maximum 95th 
percentile concentration of 22 g/kg (C9 PFCA) (EFSA 2020). In addition, there is some indication that food contact 
materials (e.g., paper cups, paper trays, microwave popcorn bags) may be a source of exposure to long-chain PFCAs 
and their related products (Yuan et al. 2016; Granby and Tesdal Haland 2018). However, data on the migration of 
long-chain PFCAs into food is limited. EFSA has estimated the chronic dietary exposure to 17 PFASs (including 
C9–C14 PFCA) to be at the level of a few ng/kg bw/d (EFSA 2020). However, due to the left-censored nature of the 
data, the reliability of dietary intake estimates in general for long-chain PFCAs is considered to be low. 

13. The relationship between dietary exposure and body burden of long-chain PFCAs remains uncertain with few 
correlations having been observed. This may be due to limitations associated with estimating dietary exposure or 
because serum concentrations reflect longer term exposure while dietary intake estimates tend to reflect a shorter 
period of time. When considering the results of a food frequency questionnaire covering a longer time period (e.g., 
12 months vs 7 days or less), Haug et al. (2010a) found a significant association between estimated dietary intakes 
of C11 PFCA and body burden. Despite the absence of a consistent correlation between body burden and total dietary 
intake estimates of long-chain PFCAs, regular consumption of several dietary items (e.g., fish, eggs, meat, popcorn, 
junk food) has been associated with increases in internal levels of long-chain PFCAs (Averina et al. 2018; Tian et al. 
2018; Susmann et al. 2019; Zhou et al. 2019; Lin et al. 2020).



Table 7. Concentrations of long-chain PFCAs in food (see also Annex A4 of EFSA 2020)
Long-chain PFCA concentrations – Means or Ranges in pg/g

Food 
Category

Country/
Region (n)

Year of 
sampling Food Sample Type C9 C10 C11 C12 C13 C14 Reference

Fatty fish 5 4 36 10 41 3Netherlands 2009
Lean fish 77 48 177 56 229 24

Noorlander et al. 
2011

Sweden 1999 Fillets of fish, canned fish, shellfish 70 40 111 32 86 10 Gebbink et al. 
2015

Fish sticks <11 17 18 <13 NM NM
Canned mackerel <11 <31 19 <12 NM NM

Salmon 10 26 4.5 <12 NM NM
Cod 5.9 13 21 <7.5 NM NM

Norway/
Oslo

2008/09

Cod liver 14 39 230 <33 NM NM

Haug et al. 2010b

USA/Dallas
 (n=70)

2009 Salmon, tuna, catfish, tilapia, cod, sardines, 
fish sticks 

<LOD <LOD NM <LOD NM NM Schecter et al. 
2010

Marine fish <1 ng/g <2 ng/g <1 ng/g <0.8 ng/g NM <5Canada 2004
Freshwater fish <1 ng/g <2 ng/g <1 ng/g <0.9 ng/g NM <5

Canada 1998 Freshwater fish <1 ng/g <2 ng/g <2 ng/g <2 ng/g NM <2

Tittlemier et al. 
2007

Sweden 2010 Fillets of fish, canned fish, shellfish 72 92 316 72 123 12
Sweden 2005 Fillets of fish, canned fish, shellfish 90 79 214 54 113 8.6
Sweden 1999 Fillets of fish, canned fish, shellfish 90 44 130 36 68 9.8

Vestergren et al. 
2012

Fish

USA 2020/21 Tilapia, shrimp, salmon, catfish, cod <MDL-233 
ng/kga

<MDL NM NM NM NM FDA 2021

Crustaceans Netherlands 2009 Muscles, shrimp, crab 58 90 157 45 268 45 Noorlander et al. 
2011

Butter 2 6 <3 2 <19 <1
Cheese 7 8 <16 <11 <92 <5

Netherlands 2009

Milk <1 1 <0.5 <0.5 <0.5 <2

Noorlander et al. 
2011

Sweden 1999 Milk, cream, yogurt, cheese 0.5 <0.3 <1 <0.5 <0.2 <0.05 Gebbink et al. 
2015

Cheese 16 6.6 4.1 <15 NM NMNorway/
Oslo

2008/09 
Milk <2.1 4.0 <2.5 <2.4 NM NM Haug et al. 2010b

USA/Dallas 
(n=80)

2009 Butter, milk, cheese, ice cream, frozen 
yogurt, yogurt 

<LOD <LOD NM <LOD NM NM Schecter et al. 
2010

Sweden 2010 Milk, cream, yogurt, cheese <MDL <MDL <MDL <MDL <MDL <MDL
Sweden 2005 Milk, cream, yogurt, cheese <MDL 6.6 <MDL <MDL <MDL <MDL
Sweden 1999 Milk, cream, yogurt, cheese <MDL <MDL <MDL <MDL <MDL <MDL

Vestergren et al. 
2012

Dairy

USA 2020/21 Ice cream, milk shake, frozen yogurt, cheese, 
milk, cream

<MDL <MDL NM NM NM NM FDA 2021

Netherlands 2009 Chicken eggs 6 11 <19 <13 <107 <5 Noorlander et al. 
2011

Sweden 1999 Hen eggs 24 5.6 41 9.9 16 2.8 Gebbink et al. 
2015

Eggs

Netherlands 
(n=73)

2013/14 Domestic eggs <0.5-2.0 
ng/g ww 
(0.9 ng/g 
ww), 18 b

<0.5-3.0 
ng/g ww 
(0.9 ng/g 
ww), 32 b

<0.5-2.3 
ng/g ww 
(0.9 ng/g 
22), 21 b

NM NM NM
Zafeiraki et al. 
2016



Long-chain PFCA concentrations – Means or Ranges in pg/g
Food 

Category
Country/

Region (n)
Year of 

sampling Food Sample Type C9 C10 C11 C12 C13 C14 Reference

Netherlands 
(n=22)

2013/14 Commercial eggs <0.5-<0.5 
ng/g ww

<0.5-<0.5 
ng/g ww

<0.5-<0.5 
ng/g ww

NM NM NM Zafeiraki et al. 
2016

Greece 
(n=45)

2013/14 Domestic eggs <0.5-3.0 
ng/g ww 
(0.8 ng/g 
ww), 20 b

<0.5-8.0 
ng/g ww 
(0.9 ng/g 
ww), 36 b

<0.5-4.5 
ng/g ww 
(0.7 ng/g 
ww), 24 b

NM NM NM
Zafeiraki et al. 
2016

Greece 
(n=31)

2013/14 Commercial eggs <0.5-<0.5 
ng/g ww

<0.5-<0.5 
ng/g ww

<0.5-<0.5 
ng/g ww

NM NM NM Zafeiraki et al. 
2016

Norway/Oslo 2008/09 NP <7.4 12 9.9 <8.1 NM NM Haug et al. 2010b
USA/Dallas 

(n=10)
2009 NP <LOD <LOD NM <LOD NM NM Schecter et al. 

2010
Sweden 2010 Hen eggs <MDL 3.3 <MDL <MDL <MDL <MDL
Sweden 2005 Hen eggs 5.6 4.9 3.3 <MDL <MDL <MDL
Sweden 1999 Hen eggs 22 15 3.8 10 14 <MDL

Vestergren et al. 
2012

USA 2020/21 Hard boiled <MDL <MDL NM NM NM NM FDA 2021
Pork 2 2 <4 <3 <23 <1
Beef 4 6 2 <2 <14 <0.7

Netherlands 2009

Chicken/poultry 1 <1 <3 <2 <17 <0.8

Noorlander et al. 
2011

Sweden 1999 Beef, pork, lamb, poultry, cured, sausage 6.7 <0.3 9.1 12.3 <0.2 7.1 Gebbink et al. 
2015

Pork 5.5 16 <8.2 <8.0 NM NM
Beef 15 23 <6.4 <6.2 NM NM

Norway/
Oslo

2008/09 

Chicken 6.8 <23 13 <9.2 NM NM
Haug et al. 2010b

USA/Dallas 
(n=80)

2009 Beef, pork, chicken/poultry, sausage, canned 
chili 

<LOD <LOD NM <LOD NM NM Schecter et al. 
2010

Beef steak 4.5 ng/g <2 ng/g <1 ng/g <1 ng/g NM <3
Roast beef <1 ng/g <2 ng/g <2 ng/g <1 ng/g NM <3

Ground beef <1 ng/g <4 ng/g <1 ng/g <1 ng/g NM <3

Canada 2004

Luncheon meat, cold cuts <1 ng/g <2 ng/g <1 ng/g <1 ng/g NM <3

Tittlemier et al. 
2007

Sweden 2010 Beef, pork, lamb, poultry, cured, sausage 5.8 6.3 2.5 1.1 <MDL <MDL
Sweden 2005 Beef, pork, lamb, poultry, cured, sausage 9.2 6.4 7.8 2.1 3.8 <MDL
Sweden 1999 Beef, pork, lamb, poultry, cured, sausage 7.1 5.2 4.8 1.9 <MDL <MDL

Vestergren et al. 
2012

Meat

USA 2020/21 Beef, pork, lamb, poultry, salami <MDL <MDL NM NM NM NM FDA 2021
Netherlands 2009 Cake, almond paste, biscuits, pie 1 1 <1 <0.7 <6 <0.3 Noorlander et al. 

2011
Sweden 1999 Biscuits, buns, cakes 1.2 <0.3 <1 <0.5 <0.2 <0.05 Gebbink et al. 

2015
Sweden 2010 Biscuits, buns, cakes <MDL 2.5 <MDL <MDL <MDL <MDL
Sweden 2005 Biscuits, buns, cakes <MDL 2.9 1.5 <MDL <MDL <MDL
Sweden 1999 Biscuits, buns, cakes <MDL 2.0 1.0 1.6 <MDL <MDL

Vestergren et al. 
2012

Pastries/ 
Baked Goods

USA 2020/21 Biscuits, cake, muffin, cinnamon roll <MDL <MDL NM NM NM NM FDA 2021
Netherlands 2009 Fruits & vegetablesc 1 2 <2 <2 <14 <0.7 Noorlander et al. 

2011
Fruits/

Vegetables
Sweden 1999 Vegetables (fresh, frozen, and canned) <0.3 <0.3 <1 <0.5 <0.2 <0.05 Gebbink et al. 

2015



Long-chain PFCA concentrations – Means or Ranges in pg/g
Food 

Category
Country/

Region (n)
Year of 

sampling Food Sample Type C9 C10 C11 C12 C13 C14 Reference

Sweden 1999 Fruits (fresh, frozen, and canned) 0.6 <0.3 <1 <0.5 <0.2 <0.05 Gebbink et al. 
2015

Sweden 1999 Potatoes (fresh, French-fries, crisps) <0.3 <0.3 <1 <0.5 <0.2 <0.05 Gebbink et al. 
2015

Lettuce <1.0 0.78 <1.3 1.3 NM NM
Carrot <2.1 <1.4 <2.5 <2.4 NM NM

Norway/Oslo 2008/09 

Potato <4.1 3.0 2.2 <4.8 NM NM
Haug et al. 2010b

Sweden 2010 Vegetables (fresh, frozen, and canned) <MDL 2.5 <MDL <MDL <MDL <MDL
Sweden 2005 Vegetables (fresh, frozen, and canned) <MDL <MDL <MDL <MDL <MDL <MDL
Sweden 1999 Vegetables (fresh, frozen, and canned) <MDL 3.1 <MDL 1.6 <MDL <MDL
Sweden 2010 Fruits (fresh, frozen, and canned) <MDL 2.4 <MDL <MDL <MDL <MDL
Sweden 2005 Fruits (fresh, frozen, and canned) <MDL <MDL <MDL <MDL <MDL <MDL
Sweden 1999 Fruits (fresh, frozen, and canned) 1.9 1.8 <MDL <MDL <MDL <MDL
Sweden 2010 Potatoes (fresh, French-fries, crisps) <MDL 2.6 <MDL <MDL <MDL <MDL
Sweden 2005 Potatoes (fresh, French-fries, crisps) <MDL <MDL <MDL <MDL <MDL <MDL
Sweden 1999 Potatoes (fresh, French-fries, crisps) <MDL 1.7 <MDL <MDL <MDL <MDL

Vestergren et al. 
2012

Fruits & vegetables <MDL <MDL NM NM NM NMUSA 2020/21
Potatoes (boiled, baked, Fresh-fries) <MDL <MDL NM NM NM NM FDA 2021

Vegetable oil <0.1 <0.6 <2 <1 <11 <0.6Netherlands 2009
Industrial oil <0.3 2 <3 <2 <16 <0.8

Noorlander et al. 
2011

Sweden 1999 Butter, margarine, cooking oil, mayo 3.7 <0.3 1.2 <0.5 <0.2 <0.05 Gebbink et al. 
2015

Norway/Oslo 2008/09 Margarine <13 <8.6 <16 <16 NM NM Haug et al. 2010b
USA/Dallas 

(n=70)
2009 Olive oil, canola oil, margarine, cereal, 

apples, potatoes, peanut butter 
<LOD <LOD NM <LOD NM NM Schecter et al. 

2010
Sweden 2010 Butter, margarine, cooking oil, mayo <MDL <MDL 5.8 <MDL <MDL <MDL
Sweden 2005 Butter, margarine, cooking oil, mayo <MDL <MDL <MDL <MDL <MDL <MDL

Fats/
Vegetable-
based foods 

Sweden 1999 Butter, margarine, cooking oil, mayo <MDL 3.8 <MDL <MDL <MDL <MDL

Vestergren et al. 
2012

Netherlands 2009 Flour 15 9 4 4 <9 <0.4 Noorlander et al. 
2011

Sweden 1999 Flour, grain, corn flakes, pasta, bread <0.3 <0.3 <1 <0.5 <0.2 0.3 Gebbink et al. 
2015

Norway/Oslo 2008/09 Bread 9.5 17 <15 <15 NM NM Haug et al. 2010b
Pizza <1 <1 <1 <1 NM <1Canada 1998

Microwave popcorn <1 ng/g <1 ng/g <0.9 ng/g <1 ng/g NM <1 ng/g
Tittlemier et al. 
2007

Sweden 2010 Flour, grain, corn flakes, pasta, bread <MDL <MDL <MDL <MDL <MDL <MDL
Sweden 2005 Flour, grain, corn flakes, pasta, bread <MDL <MDL <MDL <MDL <MDL <MDL
Sweden 1999 Flour, grain, corn flakes, pasta, bread <MDL <MDL <MDL <MDL <MDL <MDL

Vestergren et al. 
2012

Grains/
Cereals 

USA 2020/21 Breads, rice, cereal, pizza <MDL <MDL NM NM NM NM FDA 2021
Sweden 1999 Sugar, chocolate, candy, sauces <0.3 <0.3 <1 <0.5 <0.2 <0.05 Gebbink et al. 

2015
Norway/Oslo 2008/09 Strawberry jam 3.7 8.70 <13 <13 NM NM Haug et al. 2010b

Sweden 2010 Sugar, chocolate, candy, sauces <MDL 2.0 <MDL <MDL <MDL <MDL

Sugar/
Sweets/
Sauces

Sweden 2005 Sugar, chocolate, candy, sauces <MDL 2.0 1.1 <MDL <MDL <MDL
Vestergren et al. 
2012



Long-chain PFCA concentrations – Means or Ranges in pg/g
Food 

Category
Country/

Region (n)
Year of 

sampling Food Sample Type C9 C10 C11 C12 C13 C14 Reference

Sweden 1999 Sugar, chocolate, candy, sauces <MDL 1.7 <MDL <MDL <MDL <MDL
USA 2020/21 Barbeque sauce <MDL <MDL NM NM NM NM FDA 2021

Sweden 1999 Soft drinks, mineral water, beer 0.5 <0.3 <1 <0.5 <0.2 <0.05 Gebbink et al. 
2015

Sweden 2010 Soft drinks, mineral water, beer <MDL 1.0 <MDL <MDL <MDL <MDL
Sweden 2005 Soft drinks, mineral water, beer <MDL <MDL <MDL <MDL <MDL <MDL

Soft drinks

Sweden 1999 Soft drinks, mineral water, beer <MDL <MDL <MDL <MDL <MDL <MDL

Vestergren et al. 
2012

NM = not measured; NP = not provided; LOD = limit of detection; MDL = method detection limit
a The detectable value of PFNA (233 ng/kg) was found in cod, and was the only detectable value.
b Range (median), detection frequency
c Apple, orange, grape, banana, potato, onion, carrot, beat, chicory, leak, tomato, cucumber, paprika, mushroom, cauliflower, broccoli, cabbage, brussel sprouts, spinach, endive, lettuce, beans

Concentrations of long-chain PFCAs in humans

Table 8. Concentrations of long-chain PFCAs in human milk
Human milk concentration in pg/mL

mean (range), % detection
Location (n) Year C9 C10 C11 C12 C13 C14 Reference

Czech Republic 
(n=232) 2017 7 (<3-29), 98.7 NM NM NM NM NM Černá et al. 2020

France (n=48) 2007 (< LOD-64), 2 < LOQ < LOQ < LOQ NM NM Antignac et al. 
2013

France (n=30) 2010 < LOQ < LOQ < LOQ < LOQ NM NM Kadar et al. 2011
France (n=61) 2010-2013 < LOQ < LOQ < LOQ NM NM NM Cariou et al. 2015

Spain (n=10) 2007 < LOQ < LOQ < LOQ < LOQ < LOQ NM Kärrman et al. 
2010

Spain (n=20) 2008 < LOQ 666, (< LOQ-
1095), 10 NM < LOQ NM NM Llorca et al. 2010

Spain (n=10) 2012 4 (2-21), 30 43 (1.4-306), 70 88 (18-370), 60 ND ND NDa Lorenzo et al. 2016

Spain  (n=67) 2014 41 (15-70), 6 24 (< LOQ-34), 4 29 (16-57), 10 21 (16-26), 3 NM NM Motas Guzman et 
al. 2016

Sweden (n=12) 2004 17 (< 0.005–0.020), 17b < LOQ < LOQ NM NM NM Kärrman et al. 
2007

Ireland (n=92) Not provided 26 (<10-100), 69 NM NM NM NM NM Abdallah et al. 
2020

USA (n=45) 2004 7.26 (<5.2-18.4), 64 (< 7.72-11.1), 9 (<4.99-8.84), 7 (<4.40-9.74), 2 NM NM Tao et al. 2008a

USA (n=50) 2019 5.98c (2.00-36.3), 100 7.40c (<0.80-697), 
94

4.43c (<0.20-
18.0), 84

5.26c (<1.0-374), 
94

3.16c (<1.2-313), 
78

<15c (<15-409), 
18 Zheng et al. 2021

China (n=19) 2004 (6.3-62), 100 (3.8-15), 100 (9.1-56), 100 NM NM NM So et al. 2006

China (n=30) 2008-2009 15.3 (<10-47), 70.0 <15 (<15-29), 
13.3

16.0 (<10-47),  
56.7

<10 (<10-25), 
10.0

<10 (<10-43),  
23.3 NM Fujii et al. 2012

China (n=1237) 2007 9.9 (6-76), 100 (<1.44–63), 87.5 (<1.30-196), 83 NM NM NM Liu et al. 2010
China (n=50) 2009 26 (5-95), 100 20 (< 1–70), 78 26 (< 1–70), 72 <LOQ <LOQ NM Liu et al. 2011b
China (n=174) 2018, 2019 12 (<LOD-115), 55 12 (<LOD-138), 13 (<LOD-92), 84 (<LOD-11), 0.57 <LOQ <LOQ Jin et al. 2020



Human milk concentration in pg/mL
mean (range), % detection

Location (n) Year C9 C10 C11 C12 C13 C14 Reference
67

Japan (n=30) 2010 32.1 (<10-72), 90.0 21.3 (<15–65), 
66.7

36.6 (<10-100), 
93.3

<10 (<10-29), 
16.7

15.2(<10-91),  
33.3 NM Fujii et al. 2012

Japan (n=24) 1999 (<8.82-23.9), 13 < LOQ < LOQ < LOQ NM NM Tao et al. 2008b

Korea (n=30) 2010 14.7 (10-41), 66.7 <15 (<15-19), 
13.3

19.6 (<10-51),  
73.3

<10 (<10-41), 
13.3 11.7 (<10-43),  50 NM Fujii et al. 2012

Korea (n=293)d Beginning 
2011 19.4 (<10-127), 63 0.88 (<10-58.1), 

3.1
23.7 (<10-119), 

86
1.57 (<10-129), 

4.1
0.70 (<10-52.1), 

2.4
0.38 (<10-82.6), 

0.7 Lee et al. 2018

Malaysia (n=13) 2003 (<8.82-14.9), 8 < LOQ < LOQ < LOQ NM NM Tao et al. 2008b

Phillipines (n=24) 2000, 2004 (<8.82-25.0), 17 < LOQ < LOQ < LOQ NM NM Tao et al. 2008b

Indonesia (n=20) 2001 (<8.82-135), 5 < LOQ < LOQ < LOQ NM NM Tao et al. 2008b
Vietnam (n=40) 2000-2001 (<8.82-10.9), 5 < LOQ < LOQ < LOQ NM NM Tao et al. 2008b

Cambodia (n=24) 2000 (<8.82-12.3), 13 < LOQ < LOQ < LOQ NM NM Tao et al. 2008b

India (n=34) 2002, 2004, 
2005 <8.82 < LOQ < LOQ < LOQ NM NM Tao et al. 2008b

LOD = limit of detection; LOQ = limit of quantification; ND = not detected; NM = not measured
a One measurement for C14 was below the LOQ. C16 and C18 PFCAs were also measured in this study.  All values for C16 were non-detects and all values for C18 were non-detects except for one which 
was below the LOQ.
b The detection frequency % was not explicitly provided but was calculated manually.
c Median
d C16 and C18 PFCAs were also measured in this study with the mean (range), % detection as follows: C16 = 0.43 (<10-96.4), 0.7; C18 = 0.27 (<10-54.2), 0.7

Table 9. Concentrations of long-chain PFCAs in plasma or serum as detected in larger scale biomonitoring programs
Long-chain PFCA concentrations in ng/mL

Geometric mean (range), detection frequency %
Country/
Region

Year of 
sampling Population (n) C9 C10 C11 C12 C13 C14 Reference

Canada 2009–2011 CHMS, 12-79yrs (1524) 0.82, 99.4 0.20, 79.3 0.12, 59.3 NM NM NM Health Canada 2021

Canada 2016–2017 CHMS  12-79yrs (1497) 0.51, 98.8 0.18, 91.4 NC, 38.5 NM NM NM Health Canada 2021

Canada 2018-2019 CHMS  12-79yrs (1457) 0.44, 98.4 0.12, 69.0 NC, 39.0 NM NM NM Health Canada 2021
USA 2011-2012 NHANES, 12-19yrs (344) 0.680 0.146 NC NM NM NM CDC 2021
USA 2013-2014 NHANES, 12-19yrs (402) 0.500 0.136 NC NM NM NM CDC 2021
USA 2015-2016 NHANES, 12-19yrs (353) 0.500 NC NC NM NM NM CDC 2021
USA 2017-2018 NHANES, 12-19yrs (313) 0.400 0.153 NC NM NM NM CDC 2021
USA 2011-2012 NHANES, 20+yrs (1560) 0.890 0.209 0.146 NM NM NM CDC 2021
USA 2013-2014 NHANES, 20+yrs (1766) 0.700 0.193 NC NM NM NM CDC 2021
USA 2015-2016 NHANES, 20+yrs (1640) 0.600 0.160 NC NM NM NM CDC 2021
USA 2017-2018 NHANES, 20+yrs (1616) 0.400 0.199 0.129 NM NM NM CDC 2021
USA 2000-2001 Red cross blood donors (645) 0.56 0.16 NC NC NM NM Olsen et al. 2017
USA 2006 Red cross blood donors (600) 0.96 0.34 NC NC NM NM Olsen et al. 2017
USA 2010 Red cross blood donors (600) 0.83 0.27 NC NC NM NM Olsen et al. 2017



Long-chain PFCA concentrations in ng/mL
Geometric mean (range), detection frequency %

Country/
Region

Year of 
sampling Population (n) C9 C10 C11 C12 C13 C14 Reference

USA 2015 Red cross blood donors (616) 0.43 0.15 NC NC NM NM Olsen et al. 2017
USA/ New Hampshire 2015–2016 All ages (1,578) 0.73,  85.2 0.22, 42.1 0.19, 30.0 0.08, 4.7 NM NM NH DHHS 2016

USA/ Ohio 2005-2007 Girls, 6-8yrs (353) 1.4, 99.9 0.3, 75.8 NM NM NM NM Pinney et al. 2014
USA/ California 2007-2009 Girls, 6-8yrs (351) 1.7, 100 0.3, 78.7 NM NM NM NM Pinney et al. 2014

USA/ Massachusetts 2007-2010 Girls, 6-10yrs (653) 1.7, 99.5 0.3, 88.2 NM NM NM NM Harris et al. 2017

9 European Countries 1979-2015 - (<LOD-38.6) (<LOD-11.2) (<LOD-24.9) (<LOD-6.5) (<LOD-0.90) (<LOD-
0.43)

ECHA 2018a (see 
Appendix I for details)

Sweden 2016-2017 Riksmaten Adolescents 
(1098)

0.382a b 
(<LOD-2.80)

0.162 
(<LOD-1.35)

0.097 
(<LOD-1.01)

<LOD 
(<LOD-
0.182)

<LOD 
(<LOD-
0.168)

(<LOD-
0.136) Nystrom et al. 2022

Sweden 2017 Adolescents 17-21yrs (197) 0.41 (0.10-
1.56), 100

0.21 (0.07-
0.87), 100

0.14 (0.01-
0.66), 100

0.02 (<LOD-
0.09), 88 NM NM Norén et al. 2019

Sweden 2017-2019 First time mothers (110) 0.5 (0.13-
1.59), 100

0.5 (<0.082-
1.10), 94

0.5 (<0.082-
0.46), 86 <LOQ (<0.082-

0.14), 8 <LOQ Gyllenhammar et al. 
2020

Germany 2014-2017 Children 3-17yrs (997-1108)
<LOQ 

(<LOQ-3.54), 
10

<LOQ 
(<LOQ-3.00), 

10

<LOQ 
(<LOQ-0.78), 

1

<LOQ 
(<LOQ-0.96), 

0
NM NM Duffek et al. 2020

France 2014-2016 Adults (744) 0.80, 99.5 0.34, 89.2 0.17, 99.5 NC, 22.3 NM NM Fillol et al. 2021
France 2014-2016 Children (249) 0.61, 99.6 0.24, 71.1 0.12, 95.6 NC, 8.0 NM NM Fillol et al. 2021

Belgium Various Newborns (269) 0.20 (<LOQ-
1.39), 89.6

NM NM NM NM NM Colles et al. 2020

Belgium Various Adults (205) 0.86 (0.18-
7.70), 100

NM NM NM NM NM Colles et al. 2020

Greenland 2010-2015 Pregnant women (499) 1.15a (0.21–
7.87), 100

0.71a (0.12–
7.84), 99.9

1.42a (0.08–
18.2), 99.7 NA NA NM Hjermitslev et al. 2020

Korea/
Siheung 2008 >12 yrs (633) 2.09a (1.49-

2.74), 100
0.91a (0.58-
1.45), 100

1.75a (1.11-
4.58), 100

0.92a (0.21-
1.13), 76.3

0.39a (1.27-
0.57), 99.7

Detection 
<7.4% Ji et al. 2012

Korea/ Seoul and 
Gyeonggi 2012-2014 KorEHS-C 3-18 yrs (150) 0.939, 100 0.0501, 79.3 0.545, 98.7 <LOQ NC, 32.7 <LOQ Kang et al. 2018

Korea/ Seoul 2006-2015 HASSC
Adults (786)

2.03 (<LOD-
12.64)

1.29 (<LOD-
5.36)

1.83 (<LOD-
9.80)

0.36 (<LOD-
2.87)

0.59 (<LOD-
3.41)

0.15 
(<LOD-

7.69)
Seo et al. 2018

Japan 2009-2010 JECS
Mothers (339)

1.8a (0.39-11) 
100

0.59a 
(<LCMRL-
3.1), 99.7

1.5a 
(<LCMRL-

5.3), 100

0.17a 
(<LCMRL-
0.76), 79.6

0.38a 
(<LCMRL-
1.6), 98.8

<LCMR
L Nakayama et al. 2020

Japan 2003-2012 Hokkaido Study
Mothers (2689) 1.54 0.51 1.43 0.17 0.33 <MDL Ait Bamai et al. 2020

Australia 2016-2017 1-4yrs (400) 0.52, 100 0.26, 100 <LOQ <LOQ <LOQ <LOQ Toms et al. 2019
Australia 2016-2017 5-15yrs (400) 0.38, 100 0.24, 100 <LOQ <LOQ <LOQ <LOQ Toms et al. 2019
Australia 2016-2017 16-30yrs (400) 0.46, 100 0.26, 100 <LOQ <LOQ <LOQ <LOQ Toms et al. 2019
Australia 2016-2017 31-45yrs (400) 0.46, 100 0.25, 100 <LOQ <LOQ <LOQ <LOQ Toms et al. 2019
Australia 2016-2017 46-60yrs (400) 0.47, 100 0.27, 100 <LOQ <LOQ <LOQ <LOQ Toms et al. 2019



Long-chain PFCA concentrations in ng/mL
Geometric mean (range), detection frequency %

Country/
Region

Year of 
sampling Population (n) C9 C10 C11 C12 C13 C14 Reference

Australia 2016-2017 >60yrs (400) 0.56, 100 0.27, 100 <LOQ <LOQ <LOQ <LOQ Toms et al. 2019
CHMS = Canadian Health Measures Survey; HASSC = Health Assessment Study of Seoul Citizens; JECS= Japan Environment and Children's Study
KorEHS-C = Korea Environmental Health Survey in Children and Adolescents; LCMRL = lowest concentration minimum reporting level
LOD = limit of detection; LOQ = limit of quantification; NA = data not available; NC = not calculated (the proportion of results below the detection limit was too high to provide a valid result); 
NHANES = National Health and Nutrition Examination Survey; NM = not measured
a Median
b Concentrations for all long-chain PFCAs in this study were measured in ng/g (as opposed to ng/mL).  C15, C16 and C18 PFCAs measured in this study were detected in less than 2% of samples and had a 
range of values of <LOD-0.359 ng/g; <LOD-1.482ng/g and <LOD-8.520 ng/g, respectively.
c Concentrations for all long-chain PFCAs in this study were measured in ng/g (as opposed to ng/mL). C15, C16 and C18 PFCAs were measured in this study but were all below the LOQ.



2.4 Hazard assessment for endpoints of concern 

14. Laboratory toxicity studies assessing endpoints such as growth, reproduction, and lethality include the 
following studies. For C9–C12 PFCAs, the 48h median effective concentration (EC50) values for a pelagic 
cladoceran (Daphnia magna) and a benthic cladoceran (Chydorus sphaericus) ranged from 12.4 to 181 mg/L with 
the benthic cladoceran showing greater sensitivity (Ding et al. 2012). Vitellogenin induction occurred in juvenile 
rainbow trout after dietary exposure to C9–C11 PFCAs at 250 ppm (Benninghoff et al. 2011). However, in male 
medaka (Oryzias latipes) exposed to C9 PFCA (464 mg/L) or C10 PFCA (51 or 514 mg/L) induction of 
vitellogenesis was not observed (Ishibashi et al. 2008c). C10 PFCA had a 96h median lethal concentration (LC50_ of 
32 mg/L for rainbow trout, a 48h LC50  > 100 mg/L for Daphnia magna, and a 72h EC50 of 10.6 mg/L for green 
algae (Pseudokirchneriella subcapitata) whereas C9 PFCA had acute toxicity values > 100 mg/L for both Daphnia 
and algae (Hoke et al. 2012). For C9 PFCA, 72h EC50 values for green algae (Chlorella vulgaris), diatom 
(Skeletonema marinoi) and the blue-green algae (Geitlerinema amphibium) ranged from 125 to 473 mg/L (Latala et 
al. 2009). The 48-hour EC50 (based on acute lethality) for C9 PFCA for the soil-dwelling nematode (Caenorhabditis 
elegans) was 306.3 mg/L (Tominaga et al. 2004). However, multi-generation effects were seen at 0.000464 mg/L 
(C9 PFCA) which induced a 70% decline in nematode fecundity by the fourth generation (Tominaga et al. 2004). C12 
and C14 PFCAs inhibited algal (Scenedesmus obliquus) growth rate in a concentration-dependent manner (i.e., 
inhibition increased with increasing exposure concentration) and with an increase in cell membrane permeability 
(Liu et al. 2008a). African clawed frog (Xenopus laevis) embryos exposure to 10 uM to 2 mM of C9–C11 PFCAs 
resulted in retardation of development, growth inhibition, and multiple edemas, with each PFCA having unique 
effects on development and teratogenesis at different points in time (Kim et al. 2013).

15. Additional laboratory toxicity studies assessing exposure include the following studies. Rainbow trout fry 
were fed 200 ppm C10 PFCA or 1000 ppm C9 PFCA for 6 months to determine the impact on hepatic tumorigenesis. 
Results show that C9 and C10 PFCAs can promote liver cancer, and that the mechanism of promotion may be similar 
to that of 17ß-estradiol (Benninghoff et al. 2012). C9 PFCA at 0.93 mg/L resulted in altered responses in locomotion 
and gene expression in embryo-larval zebrafish as well as biochemical and behavioural changes in young adult 
zebrafish exposed embryonically (Jantzen et al. 2016a,b). Zebrafish larvae exposure to C10 PFCA (0.01 – 10 mg/L) 
or C13 PFCA (0.01 – 10 mg/L) can modulate the production of the sex steroid hormone and related gene 
transcription of the hypothalamic-pituitary-gonad axis (Jo et al. 2014). Green mussels exposed to C9 PFCA (0.1 – 
1000 µg/L) or C10 PFCA (0.1 – 1000 µg/L) for 7 d showed reduced immune function, but this effect was reversible 
(Liu and Gin 2018). Genotoxicity was observed in green mussels for C9 PFCA (EC50 values: 144 – 265 µg/L) and 
C10 PFCA (EC50 values: 73 – 84 µg/L) (Liu et al. 2014a). One-day old male chickens exposed to C10 PFCA (0.1 
and 1.0 mg/kg body weight, three times a week for three weeks) had no adverse effects on body weight, organ 
indexes, blood clinical parameters or organ histopathology (Yeung et al. 2009).

16. As mentioned in the risk profile, field-based wildlife studies are difficult to interpret due to the exposure of 
mixtures of other PFASs and other contaminants. For example, a mixture of PFASs (perfluorohexane sulfonic acid 
(PFHxS), perfluorooctane sulfonic acid (PFOS), PFOA, and C9 – C14 PFCAs) was associated with the disruption of 
thyroid hormone homeostasis in polar bears (Ursus maritimus) from the Barents Sea (Bourgeon et al. 2017). 
However, these polar bears also had concentrations of organochlorine compounds, including polychlorinated 
biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), phenolic compounds, as well as other PFASs that may 
also have contributed to the effect observed. Liu et al. (2018a) analyzed pooled polar bear serum from the Hudson 
Bay and Beaufort Sea subpopulations in the Canadian Arctic and found PCB metabolites, perfluorinated sulfonates, 
and other polychlorinated compounds. Knudsen et al. (2007) measured insecticides (e.g., mirex), PFASs, 
hexachlorocyclohexanes, toxaphenes, dioxins, furans, PCBs, brominated compounds, endosulfans, and mercury in 
northern fulmars (Fulmarus glacialis) from the Barents Sea. Gao et al. (2020b) measured 3108 substances (388 
contaminants and 2720 metabolites) in wild crucian carp (Carassius auratus) from Taihu Lake (China). Further, 
field-based wildlife studies have shown statistical correlations with observed effects for long-chain PFCA mixtures. 
For example, total PFASs (includes PFOS, PFOA, PFHxS, perfluorooctanesulfonamides (PFOSA), and C9–C13 
PFCAs) concentrations in liver (114 – 3052 ng/g ww) may be associated with liver lesions in East Greenland polar 
bears (Sonne et al. 2008). Correlations were found for the ∑PFCA concentrations in the brain at 88 ng/g ww 
(includes C6–C8 PFCAs, C12 and C13 PFCAs) with neurochemical transmitter systems and brain-specific 
bioaccumulation in the East Greenland polar bears. However, results were inconclusive as to whether observed 
alterations in neurochemical signaling were having negative effects (Eggers Pedersen et al. 2015). C8–C14 PFCAs 
and PFOS at plasma concentrations of  0.03 – 29.7 ng/L ww were associated with reduced hatching and breeding 
success in adult chick-rearing black-legged kittiwakes (Rissa tridactyla) (Tartu et al. 2014). Positive correlations 

http://chm.pops.int/TheConvention/ThePOPs/AllPOPs/tabid/2509/Default.aspx#LiveContent[PFOS-PFOSF]


were found for PFCAs in plasma at 3.6 – 35.5 ng/g ww (includes PFOA, C9–C14 PFCAs) with thyroid hormone 
concentrations in the northern fulmar and the black-legged kittiwake chicks that may result in developmental effects 
in young birds (Nøst et al. 2012). Concentrations of the ƩPFCAs (includes C8–C15 PFCAs) in plasma (at 0.0002 
mg/ml for ƩPFCAs) were associated with altered immune parameters in bottlenose dolphins (Tursiops truncatus) 
that may affect immune, hematopoietic, kidney and liver function (Fair et al. 2013). Nakayama et al. (2008) studied 
the common cormorant, a fish-eating bird that is the top predator in the Lake Biwa (Japan) ecosystem. C9 PFCA 
liver concentrations (< 0.005 – 0.043 µg/g-ww) were related to gene expression. Significant positive relationships 
were shown between C9 PFCA and glutathione peroxidase 1 (enzyme in the antioxidant system) and heterogenous 
nuclear ribonucleoprotein U (RNA processing). Sun et al. (2020) studied the effects between the ƩPFCAs and body 
condition of peregrine falcon nestlings and found that the body condition of peregrine falcon nestlings were 
significantly and negatively associated with higher ƩPFCA burdens.

17. There is evidence from acute and intermediate oral laboratory studies in rats and mice that the liver is a 
sensitive target of C9–C12 PFCAs toxicity (ATSDR 2021). For example, rats and mice experienced increased relative 
liver weights, increased hepatic triglycerides and total cholesterol, and altered expression of genes related to lipid 
metabolism when exposed to 1 mg/kg bw/d of C9 PFCA for 14 days. In addition, at 5 mg/kg bw/d, substantial lipid 
accumulation in the liver and disrupted hepatic glucose metabolism were noted (Fang et al. 2012a, 2012b, 2012c; 
Wang et al. 2015). Increased liver weights, and hepatocellular hypertrophy, degeneration, and necrosis were 
observed in rats exposed for 90 days to a mixture of PFASs (about 74% of which was C9 PFCA). The no-observed 
effect levels (NOELs) were 0.025 mg/kg bw/d for males and 0.125 mg/kg bw/d for females (Mertens et al. 2010). 
Hepatocyte necrosis and hepatomegaly were observed in rats treated with 0.5 mg/kg bw/d of C10 PFCA for 28 days 
(Frawley et al. 2018). Exposure to C11 PFCA for 42 days resulted in increased liver weights in male rats at 0.3 
mg/kg bw/day and in females at 1.0 mg/kg bw/day, and centrilobular hepatocellular hypertrophy was observed in 
both males and females at 1.0 mg/kg bw/day (Takahashi et al. 2014). Increased liver weights and hepatotoxicity 
(liver hypertrophy, necrosis, and inflammatory cholestasis) were noted in rats exposed for 42 days to 0.5 and 2.5 
mg/kg bw/d of C12 PFCA respectively (Kato et al. 2015). Exposure to C12 PFCA induced hepatic steatosis in rats 
exposed to 0.2 mg/kg bw/d for 110 days. Accompanying gene expression studies provided supporting evidence that 
these liver effects likely occurred as a result of perturbations to fatty acid uptake, lipogenesis, and fatty acid 
oxidation (Ding et al. 2009). The result of a recent meta-analysis indicates that exposure of rodents to C9 PFCA is 
consistently associated with elevated ALT, steatosis, and hepatocellular hypertrophy (Costello et al. 2022).

18. The effects of long-chain PFCAs on the liver is believed to be mediated in part by peroxisome proliferator-
activated receptor alpha (PPARα) activation which affects lipid homeostasis by altering the expression of genes 
involved in fatty acid uptake, activation, and oxidation (Cheng and Klaassen 2008a, 2008b; Maher et al. 2008; Liu et 
al. 2016; Zhang et al. 2018). However, studies in PPARα-null mice dosed with 10 mg/kg bw/d of C9 PFCA for 10 
days also found increases in liver weight, steatosis, and increases in liver triglyceride levels (Das et al. 2017). This 
suggests that mechanisms other than PPARα activation are also involved.

19. There are indications that exposure to C9–C11 PFCAs can result in effects on the immune system. In a series 
of studies examining the immunotoxicity of C9 PFCA, rats and mice were exposed to 1, 3 or 5 mg/kg bw/d for 14 
days (Fang et al. 2008; Fang et al. 2009; Fang et al. 2010). Decreased thymus and/or spleen weights were observed 
in rats and mice typically at ≥3 mg/kg/day. Atrophy of the lymphoid organs were noted and effects on innate 
immune cell homeostasis were observed in mice as evidenced by decreased percentages of F4/80+ and CD49b+ 
cells in the spleen of all treated groups and decreases in CD11c+ cells in the 3 and 5 mg/kg bw/d groups (Fang et al. 
2008). Thymocyte apopotosis was observed in rats at 5 mg/kg bw/d, likely due to increased serum cortisol and 
decreased expression of Bcl-2 (which regulates cell death). Increases in pro-inflammatory cytokines were observed 
at ≥3 mg/kg/day (Fang et al. 2009). C9-induced apoptosis was observed in rat splenocytes and the production of pro-
inflammatory and anti-inflammatory cytokines was significantly increased and decreased respectively at 5 mg/kg 
bw/d (Fang et al. 2010). C9 PFCA also caused marked splenic and thymic atrophy and an altered balance of immune 
cell populations in the spleen and thymus of mice 14 days after administration of a single i.p. dose of 0.1 mmol/kg-
bw (Rockwell et al. 2013). A follow-up study showed that a single high dose of C9 PFCA still had effects on the 
immune system 28 days later (Rockwell et al. 2017). In a 28-day study, rats were exposed 0.125–0.5 mg/kg/d and 
mice were exposed to 0.3125–5.0 mg/kg/week C10 PFCA. A reduction in immune cell populations in the spleen of 
mice was observed at ≥1.25 mg/kg bw/week. However, exposure to C10 PFCA had little effect on humoral- and cell-
mediated immunity, developing hematopoietic cells in the bone marrow, or host resistance to influenza virus in 
either rats or mice (Frawley et al. 2018). Although exposure of rats to 0-25 mg/kg/day C9 and C10 PFCA for 28 days 
also resulted in thymic atrophy and decreased spleen and thymus weights, these changes were attributed to stress 



(NTP 2019). Non-obese diabetic mice were exposed during gestation, lactation and early life to C11 PFCA in 
drinking water (3, 30 and 300 g/L) to determine the effect on the early stages of diabetes development (an 
autoimmune disorder). Exposure to C11 PFCA was associated with accelerated development of pancreatic insulitis, 
decreased peritoneal macrophage phagocytosis and altered splenocyte cytokine secretion, but it did not increase the 
incidence of diabetes (Bodin et al. 2016). 

20. No clear mode of action for the immunotoxic effects of PFASs (including long-chain PFCAs) has been 
established. Suppressed adaptive immunity may arise from the interaction of PFASs with PPARα which alters 
cytokine secretion. However, other PPAR-independent mechanisms are also likely involved including the inhibition 
of NFkB activation, which directly suppresses cytokine production by immune cells (Corsini et al. 2012; Dewitt et 
al. 2015). Other possible immune toxicity mechanisms include AIM2 inflammasome activation, gene dysregulation, 
and signal pathway disorders (Liang et al. 2021).

21. Several long-chain PFCAs (C9–C12, C14 and C18) have been studied for reproductive toxicity in rodents. 
Effects observed include altered reproductive organ weight, histological changes in reproductive tissues, altered 
reproductive hormone level and impaired reproductive functions. For example, exposure of male rats and mice to 5 
mg/kg bw/d of C9 PFCA for 14 days resulted in decreased serum testosterone levels, increased serum estradiol 
levels, atrophy of the seminiferous tubules, large vacuoles between the Sertoli cells and spermatogonia in the testes, 
and alterations in spermatogenesis and testosterone production (Feng et al. 2009, 2010; Singh and Singh 2019a, 
2019b). Short term exposure of male rats to C14 resulted in delays in Leydig cell regeneration, reduced serum 
testosterone level, down-regulated steroidogenic gene/protein expression and lower AKT1 and ERK1/2 
phosphorylation (Zhang et al. 2021). In a longer 90-day study, degenerative changes in the seminiferous tubules and 
adverse effects on sperm parameters and serum levels of testosterone were observed in male mice administered 0.5 
mg/kg bw/d of C9 PFCA. A significant decrease in litter size was also noted when unexposed females were mated 
with males treated with 0.5 mg/kg bw/d of C9 PFCA (Singh and Singh 2018). Multiple histopathologic findings in 
the testis were noted in rats exposed to 2.5 mg/kg bw/d of C10 PFCA for 28 days (NTP 2019). No significant 
reproductive findings were noted for rats exposed to C11 or C14 PFCAs in reproductive and development toxicity 
assays (Takahashi et al. 2014; Hirata-Koizumi et al. 2015). Decreased spermatid and spermatozoa counts in males, 
as well as a continuous dioestrus in unmated females was observed in rats dosed with 2.5 mg/kg bw/d of C12 PFCA 
for 42 days. In pregnant females dosed with 2.5 mg/kg bw/d, hemorrhages were observed at the implantation sites 
and only one female delivered live pups (Kato et al. 2015). Decreased serum testosterone levels were observed in 
rats treated with 0.2 mg/kg bw/d C12 PFCA for 110 days (Shi et al. 2009). Reduced implantation numbers, reduced 
total number of born pups and number of live pups occurred only at much higher exposures (1,000 mg/kg bw/d) to 
C18 PFCA in rats (Hirata-Koizumi et al. 2012).

22. Developmental effects related to long-chain PFCA exposure (C9–C12, C14, C18) include postnatal mortality, 
reduced body weight, and developmental delays (eye opening and onset of puberty). For example, surviving pups 
(20% survival at weaning) born to dams exposed to 5 mg/kg bw/d of C9 PFCA during gestational day (GD) 1-17 
experienced decreased postnatal growth and a dose-dependent delay in developmental landmarks (eye opening, 
preputial separation and vaginal opening) (Das et al. 2015). Delays in eye opening and decreased in pup body 
weight gain were also observed in offspring of mice dosed at 2 mg/kg bw/d C9 PFCA on GDs 1–18. Notably, these 
effects were not observed in transgenic mice whose PPARα was functionally knocked out, suggesting this nuclear 
receptor is involved in mediating C9 PFCA-induced developmental toxicity (Wolf et al. 2010). Decreases in fetal 
body weight were observed at 1 mg/kg bw/d in the offspring of mice exposed to C10 PFCA (Harris and Birnbaum 
1989) and C11 PFCA (Takahasi et al. 2014). In rats exposed to 2.5 mg/kg bw/d of C12 PFCA, only 1 of the 12 dams 
delivered live pups and decreases in pup body weight gain were noted (Kato et al. 2015). Inhibition of postnatal 
body weight gain in pups was observed in the offspring of rats exposed to 10 mg/kg bw/d of C14 PFCA (Hirata-
Koizumi et al. 2015). 

23. Short-term studies performed in rats show that oral (gavage) exposure to C9, C10 and C14 PFCAs can effect 
the thyroid. Rats exposed up to 25 mg/kg bw/d of C9 or C10 PFCA for 28 days experienced altered thyroid weight 
and altered thyroid hormone levels (NTP 2019). Levels of T3 and T4 hormones increased 2- and 4-fold in female 
mice 30 days after being exposed to a single doses of 20 to 80 mg/kg of C10 PFCA (Harris et al. 1989). Follicular 
cell hypertrophy was noted in the thyroid of male rats exposed to ≥ 3 mg/kg bw/d C14 for 42 days (Hirata-Koizumi 
et al. 2015).

24. Several epidemiological studies evaluated hepatic endpoints and noted associations between exposure to C9–
C14 PFCAs and increased levels of serum lipid levels and clinical biomarkers of liver function. Associations were 



strongest for C9 and C10 PFCA whereas studies regarding C11–C14 PFCAs were either too few in number or the 
results were too inconsistent to determine if they also had an effect on serum lipid levels. In its overall analysis of 
the data, EFSA has concluded that epidemiological studies provide clear evidence for an association between 
exposure to C9 PFCA and increased serum levels of cholesterol (EFSA 2020). Similarly, the Agency for Toxic 
Substances and Disease Registry (ATSDR) has indicated that the preponderance of the evidence is suggestive of a 
link between serum levels of C9 and C10 PFCA and increased serum lipid levels, particularly for total cholesterol and 
LDL cholesterol (ATSDR 2021). The results of a prospective cohort study from the Faroe Islands, published after 
these reviews, support their findings. Serum concentrations of C9 and C10 PFCA were measured in 490 children at 
birth, infancy and childhood. Serum levels at ages five and nine were positively associated with lipid concentrations 
at age nine (Blomberg et al. 2021). Notably, cholesterol concentrations in childhood are a risk factor for adult 
cardiovascular disease (Daniels and Greer 2008). 

25. Associations between exposure to long-chain PFCAs (C9–C14) and immunological outcomes, including 
incidence of infectious diseases, efficacy of vaccinations, asthma and allergic diseases, and immune marker levels 
(e.g., serum cytokine levels, antibody levels) have been investigated in several epidemiological studies. In humans, 
the strongest evidence of immunotoxicity comes from investigations into antibody response to vaccines (see Table 
10). In its evaluation of the data, ATSDR indicates that there is suggestive evidence of a link between serum C10 
PFCA levels and decreased antibody responses to vaccines (ATSDR 2021). This is based largely on studies 
examining decreased antibody response to diphtheria and tetanus vaccines in children (Grandjean et al. 2012, 2017) 
and decreased response to diphtheria vaccines in adults (Kielsen et al. 2016). In a systematic review of the literature, 
Kirk et al. (2018) also concluded there was evidence of a negative association between C10 PFCA and diphtheria 
antibody levels after vaccination of children or adults. The evidence was considered to be “limited” because some of 
the studies were on the same cohort in the Faroe Islands, making it difficult to assess the consistency of evidence 
across populations. Since this systematic review, the results of a study in West African children (with substantially 
different lifestyles and exposure profiles), were published. The study found a doubling of serum C10 PFCA 
concentrations in vaccinated children to be associated with 25% lower measles antibody concentrations 
(Timmerman et al. 2020). In addition, another study in children from Greenland noted that for every 1 ng/g increase 
in C10 PFCA, the odds of not having protective levels of diphtheria antibodies were increased by 5.08 times (95 % 
CI: 1.32–19.51) (Timmerman et al. 2022). With respect to other long-chain PFCAs, one study noted reduced 
diphtheria and tetanus antibody levels in adults in relation to serum concentrations of C11 and C12 PFCA (unadjusted 
for potential confounders) (Kielsen et al. 2016). Another study noted reduced diphtheria antibody levels in children 
in relation to serum concentrations of C11 PFCA (Timmermann et al. 2022). In regards to C9 PFCA, the data were 
mixed with some studies showing associations with a reduced antibody response to vaccines and others not 
(Grandjean et al. 2012; Granum et al. 2013; Kielsen et al. 2016; Stein et al. 2016a. 2016b; Grandjean et al. 2017; 
Timmerman et al. 2020, 2022).

Table 10. Associations of long-chain PFCAs and antibody levels after vaccination

Type of Study Study 
Population N

Association 
with Antibody 

Response
PFCA Positive, Negative, or No Association with 

Antibody Response Reference

C9

Negative associations between diphtheria antibody 
levels and serum C9 levels (adjusted for confounders).
Weak negative association for tetanus antibody 
levels.

C10

Negative associations between diphtheria antibody 
levels and serum C10 levels (adjusted for 
confounders).
Weak negative association for tetanus antibody 
levels.

Cohort 
(INUENDO and 

IVAAQ) 
Children 314 diphtheria and 

tetanus

C11

Negative associations between diphtheria antibody 
levels and serum C11 levels (adjusted for 
confounders).
Weak negative association for tetanus antibody 
levels.

Timmermann 
et al. 2022

C9

Significant negative association between measles 
antibodies and serum C9 levels at 9-month visit after 
inclusion (adjusted analyses). Non-significant 
negative association at 2-year visit.

Randomized 
controlled trial

Children 
(inclusion, 9 
months and 

2 years)

237 measles

C10
Significant negative association between measles 
antibodies and serum C10 levels at 9-month visit after 

Timmermann 
et al. 2020



inclusion (adjusted analyses). Non-significant 
negative association at 2-year visit.

C11

Significant negative association between measles 
antibodies and serum C11 levels at 9-month visit after 
inclusion (adjusted analyses). Non-significant 
negative association at 2-year visit.

C9
No association for antibody levels at age 13 and C9 
levels at age 7 or 13.

Birth Cohort
Children
(7 and 13 
year old)

516 diphtheria and 
tetanus C10

Negative association between diphtheria or tetanus 
antibody levels at age 13 and serum C10 levels at age 
7.

Grandjean et 
al. 2017

C9

Significant negative association between C9 and 
diphtheria antibodies levels at age 5.
No associations between maternal or child C9 levels 
and tetanus antibody levels at ages 5 or 7.Birth Cohort Mother-child 

pairs 587 diphtheria and 
tetanus

C10

Negative association between C10 levels and tetanus 
antibody levels at ages 5 and 7.
No association between C10 and diphtheria antibody 
levels at ages 5 or 7.

Grandjean et 
al. 2012

Birth Cohort Mother-child 
pairs 56

measles, 
rubella, tetanus, 

and
Haemophilus 

influenza type b

C9

Negative association between maternal serum C9 and 
rubella antibody levels in children of three years.
Positive association between maternal C9 and the 
number of episodes of common cold for the children.

Granum et al. 
2013

C9

Negative associations between diphtheria antibody 
levels and serum C9 levels.
No association for tetanus antibody levels.

C10

Negative associations between diphtheria antibody 
levels and serum C10 levels.
No association for tetanus antibody levels.

C11

Negative associations between serum C11 (not 
adjusted for potential confounders) and diphtheria 
and tetanus antibody levels.

Cross-sectional Adults 12 diphtheria and 
tetanus

C12

Negative associations between serum C12 levels (not 
adjusted for potential confounders) and diphtheria 
and tetanus antibody levels.

Kielsen et al. 
2016

Cross-sectional 
(NHANES 

1999-2000 and 
2003-2004)

Adolescents 1191
Measles, 

mumps, and 
rubella

C9

No associations between recent C9 serum levels and 
measles, mumps, or rubella antibody titers. Stein et al. 

2016a

Cohort Adults 78 Influenza 
(FluMist) C9

No associations between C9 levels and response to 
influenza vaccine.

Stein et al. 
2016b

26. Several epidemiological studies evaluated possible associations between exposure to long-chain PFCAs (C9–
C14) and reproductive outcomes. Overall, there were only a small number of studies for each long-chain PFCA and 
for each endpoint. A number of epidemiological studies showed either equivocal, null, or potentially protective 
outcomes. However, several other studies showed positive associations. For example, associations were observed 
between alterations in reproductive hormones levels in women and adolescents and exposure to C9–C12 PFCAs 
(Joensen et al. 2013; Tsai et al. 2015; Lopez-Espinosa et al. 2016; Zhou et al. 2016, 2017; Heffernan et al. 2018). 
Some associations were also found between serum C9 and C10 PFCAs and sperm parameters (e.g., head length, 
percentage of sperm with coiled tails) (Buck Louis et al. 2015). In addition, altered female reproductive health (i.e., 
miscarriage, increased risk of polycystic ovarian syndrome, decreased blastocyst conversion rate) was linked with 
C9–C12 PFCAs (Jensen et al. 2015; McCoy et al. 2017; Wang et al. 2019). There is suggestive evidence of 
associations between exposure to C9 PFCA and issues related to endometriosis, earlier menopause and hysterectomy 
(Louis et al. 2012; Taylor et al. 2014). However, in terms of the earlier menopause, it’s possible that reverse 
causation could be a factor (i.e., earlier menopause leads to increased PFASs levels, due to decreased elimination 
through menstruation). 

27. In some studies, reduced birth weight has been associated with exposure to some long-chain PFCAs (Kwon 
et al. 2016; Lind et al. 2017; Starling et al. 2017; Cao et al. 2018; Gyllenhammar et al. 2018; Shoaff et al. 2018; 
Wikstrom et al. 2019). For example, median cord blood concentrations of C9 (0.2 ng/mL), C10 (0.1 ng/mL) and C11 
(0.3 ng/mL) PFCAs were inversely associated with birth weight in 268 infants that were part of the Ewha Birth and 
Growth Cohort in South Korea. In the same study, no associations were found for C12 (0.1 ng/mL) and C13 (0.4 



ng/mL) PFCAs (Kwon et al. 2016). In the Taiwan Maternal and Infant Cohort Study of 233 maternal-infant pairs, 
inverse associations were noted between median maternal serum concentrations (taken during third trimester) of C9 
(1.6 ng/mL), C10 (0.4 ng/mL), C11 (3.4 ng/mL), and C12 (0.4 ng/mL) PFCAs and birth weight among female infants. 
(Wang et al. 2016). In other studies, associations have been observed between C9–C11 and C13 PFCAs and 
reproductive outcomes (shorter anogenital distance, altered hormonal levels, and altered onset of puberty) in infants 
and children (Lind et al., 2016, 2017; Ernst et al. 2019; Tian et al. 2019; Yao et al. 2019; Jensen et al. 2020).  In 
addition, associations have been noted between C9–C10 PFCAs and altered bone development (i.e. size, mass, length, 
and bone density health) in children (Buck Louis et al. 2018; Jeddy et al. 2018; Khalil et al. 2018; Cluett et al. 2019). 
Associations have also been detected between prenatal or child serum levels of C9–C12 PFCAs and neurobehavioral 
and neuropsychological endpoints (i.e. increased attention deficit hyperactivity disorder (ADHD), hyperactivity, risk 
of personal-social difficulties, and poor executive functions) (Lien et al. 2016; Oulhote et al. 2016; Høyer et al. 
2018; Vuong et al., 2018a, 2018b; Niu et al., 2019) as well as cognitive dysfunction (Weng et al. 2020).

28. Concern about the endocrine disrupting properties of PFASs has led to research into the effects on thyroid 
outcomes, including thyroid hormone levels in infants (in umbilical cord blood, maternal blood and infant blood), 
children, adults and pregnant women, and thyroid diseases in infants. One study found an association between infant 
serum concentrations of C9–C11 PFCAs and an increased incidence of congenital hypothyroidism (Kim et al. 2016). 
In a systematic review of thyroid outcomes in children and pregnant women a positive association was found 
between levels of thyroid stimulating hormone (TSH) and C9 PFCA levels in boys ≥ 11 years old (Ballesteros et al. 
2017). Various associations were also found between levels of TSH, triiodothyronine (T3), or thyroxine (T4), 
thyroglobulin, and thyroid peroxidase antibodies in adults, pregnant women, children and infants and levels of C9–
C14 PFCAs  (e.g., Ballesteros et al. 2017; Aimuzi et al. 2019; Itoh et al. 2019; Coperchini et al. 2021; ATSDR 2021). 
However, the associations were not always consistent across studies and a number of investigations identified no 
associations with effects on the thyroid (ATSDR 2021).
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