RISK ASSESSMENT REPORT

ZINC PHOSPHATE

CAS-No.: 7779-90-0

EINECS-No.: 231-944-3

GENERAL NOTE

This document contains:

- part I Environment (pages 44)
- part II Human Health (pages 124)

RISK ASSESSMENT

ZINC PHOSPHATE

CAS-No.: 7779-90-0

EINECS-No.: 231-944-3

Final report, May 2008

PART 1 Environment

Rapporteur for the risk evaluation of zinc phosphate is the Ministry of Housing, Spatial Planning and the Environment (VROM) in consultation with the Ministry of Social Affairs and Employment (SZW) and the Ministry of Public Health, Welfare and Sport (VWS). Responsible for the risk evaluation and subsequently for the contents of this report is the rapporteur.

The scientific work on this report has been prepared by the Netherlands Organization for Applied Scientific Research (TNO) and the National Institute of Public Health and Environment (RIVM), by order of the rapporteur.

Contact point: Bureau Reach P.O. Box 1 3720 BA Bilthoven The Netherlands

R077_0805_env

PREFACE

For zinc metal (CAS No. 7440-66-6), zinc distearate (CAS No. 557-05-1 / 91051-01-3), zinc oxide (CAS No.1314-13-2), zinc chloride (CAS No.7646-85-7), zinc sulphate (CAS No.7733-02-0) and trizinc bis(orthophosphate) (CAS No.7779-90-0) risk assessments were carried out within the framework of EU Existing Chemicals Regulation 793/93. For each compound a separate report has been prepared. It should be noted, however, that the risk assessment on zinc metal contains specific sections (as well in the exposure part as in the effect part) that are relevant for the other zinc compounds as well. For these aspects, the reader is referred to the risk assessment report on zinc.

CONTENTS

0	OVER A	ALL CONCLUSIONS/RESULTS OF THE RISK ASSESSMENT	6
1	GENEI	RAL SUBSTANCE INFORMATION	9
	1.1 Ide	entification of the substance	9
	1.2 En	vironmental classification and labelling of zinc phosphate	10
	1.2.1	Introduction	10
	1.2.2	······································	10
	1.2.3	Conclusion	11
2	GENEI	RAL INFORMATION ON EXPOSURE	12
	2.1 Pr	oduction	12
	2.2 Us	e pattern	12
3	ENVIR	ONMENT	14
	3.1 Ge	neral introduction	14
	3.2 En	vironmental exposure	15
	3.2.1	Exposure scenarios	16
	3.2.1.1		16
	3.2.1.2	Local exposure assessment 1.2.1 General	18 18
		1.2.2 Production of zinc phosphate	18
		1.2.3 Formulation and processing of zinc phosphate in paints	26
	3.2.	1.2.4 Measured local data in the environment	29
	3.2.	1.2.5 Summary of results for the local exposure assessment	29
		fects assessment	30
	3.3.1	Aquatic and terrestrial compartment	30
		Atmosphere	31
	3.3.3	Secondary poisoning	31
		sk characterisation	32
	3.4.1	General	32
	3.4.2	Local risk characterisation	36
	3.4.2.1	1 1	36
		2.1.1 STP effluent2.1.2 Surface water (incl. sediment)	36 36
	3.4.2.2		30
	3.4.2.3	1	38
	3.4.2.4	1 1	38
	3.4.3	Regional risk characterisation	40

APPENDIX 3.4 BIOAVAILABILITY CORRECTIONS

42

4 REFERENCES

44

R077_0805_env

0 OVERALL CONCLUSIONS/RESULTS OF THE RISK ASSESSMENT

CAS No. 7779-90-0

EINECS No. 231-944-3

IUPAC Name Trizinc bis(ortho)phosphate

- () i) There is need for further information and/or testing
- (X) ii) There is at present no need for further information and/or testing and for risk reduction measures beyond those which are being applied already
- (X) iii) There is a need for limiting the risks; risk reduction measures which are already being applied shall be taken into account
- (X) iii*) A conclusion applied to local scenarios in which the local scenario merits conclusion (ii) but where (possibly) due to high regional background concentrations a local risk cannot be excluded.

LOCAL

Conclusion (ii) is drawn for all local scenarios, including secondary poisoning, except those listed below.

Conclusion iii) or iii*) is drawn for the specified scenarios, because:

STP

• the PEC_{STP} exceeds the PNEC_{add} for microorganisms in three processing scenarios listed in Table 3.4.10 (**conclusion iii**).

Surface water

• the Clocal_{add} in water exceeds the PNEC_{add} for surface water in a number of processing scenarios listed in Table 3.4.10 (**conclusion iii**).

Sediment

the Clocal_{add} / PNEC_{add} ratio is larger than 1 for a number of processing scenarios listed in Table 3.4.10 (conclusion iii). For the production sites and remaining processing scenarios listed in Table 3.4.10 the Clocal_{add} / PNEC_{add} ratio is <1, but a potential risk at local scale cannot be excluded due to the possible existence of high regional background concentrations (conclusion iii*).

Soil

• one processing scenario listed in Table 3.4.10 resulted in a PEC_{add} / PNEC_{add} ratio >1 (conclusion iii).

<u>REGIONAL</u> The regional risk characterisation is discussed in the RAR on Zinc Metal.

R077_0805_env

1 GENERAL SUBSTANCE INFORMATION

1.1 IDENTIFICATION OF THE SUBSTANCE

CAS-No.:	7779-90-0
EINECS-No.:	231-944-3
IUPAC name:	trizinc bis(orthophosphate)
Synonyms:	zinc phosphate; zinc orthophosphate; phosphoric acid-zinc salt
Molecular formula:	$Zn_3(PO_4)_2\cdot 2\text{-}4H_2O$
Structural formula:	$Zn_3(PO_4)_2\cdot 2\text{-}4H_2O$
Molecular weight:	458.14

Purity/impurities, additives

Purity:no dataImpurity:<0-4.5% zinc oxide, typical <100 ppm lead, <100 ppm cadmium</td>Additives:none

Physico-chemical properties

In table 1A the physico-chemical properties are summarized.

Property	Result	Comment
Physical state	solid, powder	
Melting point	900 °C	*
Boiling point	not applicable	****
Relative density	3.3 at 20 °C	**
Vapour pressure	not applicable	****
Surface tension	not applicable	****
Water solubility	very slightly soluble - insoluble	*
Solubility in other solvents	soluble in acids and NH_4OH ; insoluble in alcohol	***
Partition coefficient	no data	****
n-octanol/water(log value)		

Table 1A	Physico-chemical	properties of zinc phosphate
	i nysico-chenneai	properties of Zine phosphate

Property	Result	Comment
Flash point	not flammable	****
Flammability	not flammable	****
Autoflammability temperature	not applicable	****
Explosive properties	not explosive	****
Oxidizing properties	not oxidizing	****

* More than one apparently independent source. No methods are specified.

** Several values found in literature. The value presented is considered as most appropriate.

*** One source

**** Conclusion based on theoretical, and/or structural considerations.

These data are mainly derived from CRC Handbook of Chemistry and Physics (1995), Römpp Chemie Lexikon (1995), and company MSDS's. For an extended description see HEDSET.

Conclusion:

Data on boiling point and partition coefficient were not provided. In view of the nature of the substance determination of these parameters is considered to be irrelevant. Vapour pressure and surface tension are reported to be not applicable. This is correct based on theoretical considerations. Information on flammability, explosive properties and oxidizing properties is not available. However, on theoretical considerations the compound is concluded to be not flammable, not explosive and not oxidizing. All other required physico-chemical data were submitted. None of these data is based on test results, substantiated with reports. However, the data are considered as sufficiently reliable to fulfil the Annex VIIA requirements.

1.2 ENVIRONMENTAL CLASSIFICATION AND LABELLING OF ZINC PHOSPHATE

1.2.1 Introduction

For a general introduction on the classification and labelling of metals, the reader is referred to sections 1.2.1 and 1.2.2 of the risk assessment report on zinc metal.

1.2.2 Test results water solubility and aquatic toxicity

The results of Heubach (1996) indicate a water solubility of ± 10 , ± 100 and >1000 mg dissolved Zn/l at pH 8, 7 and 6, respectively. These summarised results of the Heubach-study (1996) will be used for classification.

There are no short-term toxicity data available for zinc phosphate. The water solubility of zinc phosphate will be related to the L(E)C50-values of zinc chloride or zinc sulphate for classification. This classification approach is described in the testing strategy document (ECBI/61/95-Add 51-Rev. 4) and summarised in the diagram 1.1/2 in section 1.2.2 of the risk assessment report on zinc metal (RAR Zinc metal). The L(E)C50 values of the soluble zinc salts are presented in Table 1.2 (section 1.3.2.2) of the zinc metal report. The selected values for *Daphnia magna, Oncorhynchus mykiss* and *Selenastrum capricornutum* are a 48-hour EC50 of 0.07 mg/l, a 96-hour LC50 of 0.14 mg/l and a 72-hour EC50 of 0.14 mg/l, respectively.

1.2.3 Conclusion

The water solubility of zinc phosphate exceeds the lowest L(E)C50 values for *Daphnia magna*, algae and fish. Zinc phosphate has thus been classified with N R50-R53. This classification for zinc phosphate has been included in Annex I of the EU-Directive 67/548/EC, see below.

Classification and labelling (human health, environment and physico-chemical)

Annex 1 of Directive 67/548/EEC contains a list of harmonised classifications and labellings for substances or groups of substances, which are legally binding within the EU. For zinc phosphate the current Annex 1 classification and labelling (29th ATP, 2004) is as follows:

Classification N; R50-53

Labelling N; R50/53 S60-61

2 GENERAL INFORMATION ON EXPOSURE

2.1 PRODUCTION

The zinc phosphate production sites in the European Union with a volume of more than 1000 t/y are presented in Table 2.1.1.

Table 2.1.1Production sites of zinc phosphate (>1000 t/y) in the EU (information from
industry.)

Company ¹⁾	Location
SNCZ L' Anticorrosion	Bouchain, France
Dr. Hans Heubach GmbH & co. KG	Langelsheim, Germany
Waardals Kjemiske Fabrikker AS	Bergen, Norway
James M. Brown Ltd. Staffs	Stoke on Trent, Staffs, UK
Trident Alloys Ltd	Bloxwich, Walsall, UK

1) One of the companies has a production volume of < 1000t/y and takes part in the RAR voluntary

The total mean production volume of zinc phosphate in the EU is about 22,000 t/y (information from industry). There is no detailed information available about the imported and exported volume of zinc phosphate in the EU.

Production process

Zinc phosphate is produced in a discontinuous batch process by reacting an aqueous slurry of zinc oxide with phosphoric acid in a closed reaction vessel. When the reaction is complete, water is removed from the aqueous zinc phosphate slurry by a filtration step followed by a drying step. The dry material is then ground by various encapsulated milling equipments and transported through an almost closed system to bulk storage silos and packaging stations.

2.2 USE PATTERN

Table 2.2.1 shows the industrial and use category of zinc phosphate. The only known usage of zinc phosphate is as an active inorganic anticorrosive pigment in primers and paints for corrosion protection of metal substrates. The substance is used, when possible, as a non-toxic substitute for lead and chromium(VI) containing anticorrosives (Industrial Annex VII A). The use category of zinc phosphate can be characterised as non dispersive and use resulting in inclusion into or onto matrix.

Industrial category	EC no.	Use category	EC no
Paints, lacquers and varnishes industry	14	Corrosion inhibitors	14

Table 2.2.1Industrial and use categories of zinc phosphate in the EU (Information from
industry.)

3 ENVIRONMENT

3.1 GENERAL INTRODUCTION

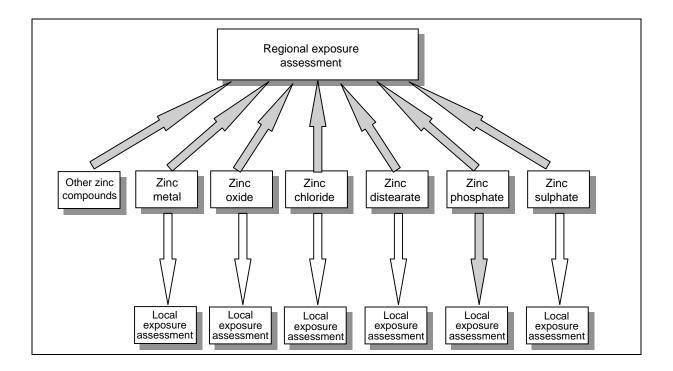
The presence of zinc in the environment due to natural processes (resulting in a natural background concentration of zinc in all environmental compartments, incl. organisms), the chemical processes that will affect the speciation of zinc in the environment, and the fact that zinc is an essential element have implications for the environmental exposure and effect assessment of zinc and thus for the risk characterisation of zinc.

Since the Technical Guidance Document (TGD) does not provide detailed information on how to deal with (essential) elements that have a natural background concentration in the environment, such as zinc, the "added risk approach" (according to Struijs et al., 1997 and Crommentuijn et al., 1997) has been used in this risk assessment report on zinc. In this approach both the "Predicted Environmental Concentration" (PEC) and the "Predicted No Effect Concentration" (PNEC) are determined on the basis of the added amount of zinc, resulting in an "added Predicted Environmental Concentration" (PEC_{add}) and "added Predicted No Effect Concentration" (PNEC_{add}), respectively. The use of the added risk approach (a method that in principle can be used for all naturally occurring substances) implies that only the anthropogenic amount of a substance, i.e. the amount added to the natural background concentration, is considered to be relevant for the effect assessment of that substance. Thus, a possible contribution of the natural background concentration to toxic effects is ignored.

In the present environmental exposure assessment (section 3.2), the use of the added risk approach implies that the PEC_{add} values have been calculated from zinc emissions due to anthropogenic activities. Thus, the PEC_{add} is the anthropogenic part of the zinc concentration in the environment. By focusing only on the anthropogenic part of zinc, the problem of the great variety of natural background concentrations of zinc over the different geographic regions is eliminated. Of course it is realised that comparison of the PEC_{add} with measured environmental concentrations must take into account that the latter values comprise the natural background concentration (Cb) and the anthropogenic part.

In the environmental effect assessment (section 3.3), the use of the added risk approach implies that the $PNEC_{add}$ has been derived from toxicity data that are based on the added zinc concentration in the tests. Thus, the $PNEC_{add}$ is the maximum permissible addition to the background concentration. From the background concentration (Cb) and the $PNEC_{add}$, the PNEC can be calculated: $PNEC = Cb + PNEC_{add}$.

Finally, in the environmental risk characterisation (section 3.4), the use of the added risk approach implies the evaluation of the PEC_{add} / $PNEC_{add}$ ratios. In case measured environmental concentrations are used in the risk characterisation, either the background concentration has to be subtracted from the measured environmental concentration (resulting in a "PEC_{add} / PNEC_{add}" ratio) <u>or</u> the background concentration has to be added to the PNEC_{add} (resulting in a traditional "PEC / PNEC" ratio).


R077_0805_env

3.2 ENVIRONMENTAL EXPOSURE

General information about zinc is available in many publications, e.g. the 'Integrated Criteria Document Zinc' (Cleven et al., 1993) and the 'Environmental Health Criteria for Zinc' (WHO, 1996). In the present series of risk assessment reports on zinc only a summary of the available information is given. In the sections 3.2.2, 3.2.3 and 3.2.4 of the zinc metal RAR, general characteristics are described which are relevant for the release and fate of zinc in the environment. It must be noted that it is very difficult to define the exact form of zinc once emitted by the zinc phosphate industry. Hence, for pragmatically reasons in this document emissions and environmental concentrations are expressed as zinc and not as e.g. zinc phosphate, unless otherwise mentioned.

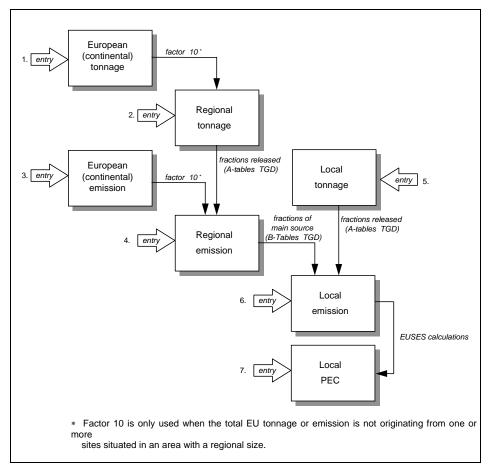
Section 3.2.1 presents the added Predicted Environmental Concentrations ((PE)C_{add}s) for several exposure scenarios. The (PE)C_{add}s are derived from either modelling or measured exposure data. The local exposure assessment for the production and use of zinc phosphate is presented in section 3.2.1.2. This local exposure assessment is focused on the emissions of industrial point sources. A regional exposure assessment is described in section 3.2.5.3 (zinc metal RAR). The regional exposure assessment includes the industrial and diffuse emissions of all current EU priority zinc compounds. In case of diffuse emissions it is not possible to distinguish between emissions from current EU priority zinc compounds and non-EU priority list zinc compounds. The diffuse emissions may thus also comprise emissions from other zinc compounds the reader is referred to those separate reports.

A general description about the release and fate of zinc (sections 3.2.2, 3.2.3 and 3.2.4) and the regional exposure assessment (section 3.2.5.3) is only presented in the zinc metal report, but it is applicable to the exposure assessment of all current EU priority zinc compounds.

Figure 3.2.1 Theoretical outline for the regional and local exposure assessment for zinc phosphate (and other zinc compounds).

3.2.1 Exposure scenarios

3.2.1.1 General


The objective of this exposure assessment is to determine the emissions, pathways and rates of movement and the transformation of zinc phosphate in order to estimate the added environmental concentration (PEC_{add}) for the different environmental predicted compartments. The EU-Technical Guidance document (TGD, 1996) and the European Union System for the Evaluation of Substances (EUSES 1.0) are used as a guideline to achieve this objective. The entry for estimating the environmental concentrations is, when available, the submitted information from industry, including monitoring data, and/or information gathered from other sources. Deviations from the TGD are mentioned in the text. For modelling the behaviour of zinc in the environment the octanol-water partitioning coefficient (Kow) and the water solubility are not appropriate. Measured Kp values are used instead for soil, sediment and suspended matter (TGD (Ap. VIII), 1996). See sections 3.2.2 and 3.2.3 (zinc metal report) for more information about the used Kp values. The vapour pressure has been fixed on a low value of 1.10⁻¹⁰ Pa and the biotic and abiotic degradation rates have been minimised (TGD (Ap. VIII), 1996).

In the local exposure assessment the agricultural soil concentrations are calculated accounting for accumulation for 10 consecutive years. One should realise that this TGD defined period of 10 years is of lesser relevance to metals than to most organic chemicals. For zinc no steady state will be reached within 10 years. Unless stated otherwise, the input sources to the agricultural soil compartments are the application of sludge and the airborne deposition. For zinc the only removal or output from the agricultural soil compartment is by leaching to deeper soil layers. It is emphasised that other input or output sources, e.g. the use of manure or the crop offtake, are not taken into account for zinc in the <u>local</u> scenarios In the regional exposure assessment steady state agricultural soil concentration are calculated, accounting for the input sources leeching to deeper soil layers and offtake via crops. The reason that factors like manure input and removal via crops have been applied in the regional calculations and not in the local modelling is pragmatic: there are reliable, average estimates available for these parameters at a regional level.

The mentioned concentrations $((PE)C_{add})$ in surface water are mostly expressed as dissolved zinc concentrations. In the exposure scenarios the concentrations effluent water are expressed as total zinc concentrations. Only in the risk characterisation the total effluent concentrations are converted to dissolved effluent concentrations. The concentrations in sediment and soil are initially expressed on a wet weight (wwt) basis. Only when it is explicitly mentioned concentrations are dry weight (dwt) based.

Depending on the information submitted to the rapporteur, the (PE)C calculations start at a different level. The different levels are presented in the flowchart of Figure 3.2.2. A generic

scenario is used when no specific industrial emission information is available. In that case the EU (production) tonnage is the starting point for calculating the (PE)C (entry 1). When a regional tonnage or an EU emission is available, which can be possible for the formulating and processing stages, the starting point is subsequently entry 2 or entry 3. With a regional tonnage regional emissions can be derived by multiplying it with the appropriate release fractions (A-Tables, TGD, 1996). An EU emission can be divided by 10 to derive a regional emission. The use (and justification) of the so-called 10% rule in the emission estimation is explained in the paragraphs concerning the use categories of zinc phosphate. Also a submitted regional emission can be an entry for the (PE)C calculation (entry 4). With this regional emission a local emission can be derived by multiplying it with the appropriate fraction of main source (B-Tables, TGD, 1996). With a local tonnage (entry 5) also local emissions can be derived by multiplying it with the appropriate release fractions (A-Tables, TGD, 1996). A site specific scenario can be used when local emissions are submitted by the industry (entry 6). The risk characterisation, i.e. the comparison of the PEC with the corresponding PNEC, should be based on the most realistic exposure information. For this, the calculated local PEC values are compared with measured local concentrations, if available(entry 7). In the next sections reference is made to Figure 3.2.2 for a better understanding of the procedures followed and entry points of the exposure assessment.

Figure 3.2.2 Flowchart for calculating the (PE)C: the entry for the calculations depends on the submitted information.

As stated in section 2.1.1 of the RAR on zinc metal the environmental releases from waste, including mining waste, are <u>not</u> taken into account in the current risk assessment. The

Rapporteur recognises that those releases can be significant, but the general instrumentation is currently lacking on how to deal with this type of emissions (mostly landfills).

3.2.1.2 Local exposure assessment

3.2.1.2.1 General

The local environmental exposure assessment of zinc phosphate is based on the industrial releases of zinc during the following life cycle stages:

- 1. Production of zinc phosphate
- 2. Formulation and processing of zinc phosphate in paints

For all production plants site specific emission scenarios are used for calculating the predicted environmental concentrations ((PE)C_{add}) in the various compartments. This because industry submitted location-specific aquatic, atmospheric and waste emission rates (Table 3.2.1). For the formulation and processing stage both site specific and a generic scenario are used for calculating the (PE)C_{add}s. Generic scenarios are only used if data are missing from either the industry or other sources in order to carry out a representative local exposure assessment.

It is emphasised that all calculated local C_{add} and PEC_{add} values are expressed as zinc, not as zinc phosphate.

3.2.1.2.2 Production of zinc phosphate

For all production plants site specific emission scenarios are used for calculating the added predicted environmental concentrations ((PE)C_{add}) in the various compartments (entry 6, Figure 3.2.2). One production plant has a production volume of < 1000 t/y and takes part in the RAR voluntary. The emissions per annum submitted to the rapporteur are corrected for the number of production days. For the zinc phosphate producers it is assumed that they produce 300 days per annum. Production tonnages, aquatic, atmospheric and waste emissions submitted by the zinc phosphate producing companies in the EU are presented in Table 3.2.1. With this information emission factors (emission / production) are calculated which are presented in Table 3.2.2. Table 3.2.2 illustrates that the difference between the calculated emission factors of the various companies is not more than about one order of magnitude. Additional aquatic information submitted by the zinc phosphate producing companies is presented in Table 3.2.3. This additional information is used for calculating the (PE)C_{add} values for surface water.

No.	Company name ¹⁾	Mean production Tonnage (t/y)	Emission to air (kg Zn/y)	Emission to water (kg Zn/y)	Emission waste (kg waste/y)
1	А	6,000	375	157 ⁶⁾	4)
2	В	6,000	30	16 ^{5) 6)}	4)
3	С	3,000	71	12 ²⁾	4)
4	D	6,000	70	0.75 6)	4)
5	Е	<1,000 3)	5	0.5 2)	4)
	Total	22,000			

Table 3.2.1Aquatic, atmospheric and waste emission rates of the zinc phosphate
producing industry in the EU (information from industry).

1) actual company name not available, only the emissions of companies

2) indirect discharge into sewer, as pre-treated waste water emission to a municipal STP

3) tonnage not available, this company has a production volume of < 1000 t/y and takes part in the RAR voluntary

4) nil to waste, all solids are recovered or recycled, the fraction recovered or recycled is unknown

5) based on the submitted emission of 0.053 kg/d and 300 production days per year

6) emission to surface water

<i>Table 3.2.2</i>	Emission factors (emission / production) for the zinc phosphate producing
	companies in the EU (calculated from Table 3.2.1).

No.	Company name	Emission factor air (kg Zn/y / kg Zn/y)	Emission factor water (kg Zn/y / kg Zn/y)	Emission factor waste (kg waste/y / kg Zn/y)
1	Α	6.25.10-5	2.62.10-5	0 1)
2	В	5.00.10-6	2.65.10-6	0 1)
3	С	2.37.10-5	$4.0.10^{-6}$	0 1)
4	D	1.17.10-5	1.25.10-7	0 1)
5	Е	5.00.10-6	5.0.10-7	0 1)

¹⁾

nil to waste, all solids are recovered or recycled

Company name	Emission amount to effluent water	Effluent discharge rate	Measured concentration effluent local plant	Flow rate or type of receiving water	Calculated dilution factor
	(kg/d)	(m ³ /day)	(mg/l)	(m ³ /day)	(-)
А	0.523	390	1.341	432,000	1,109
В	0.053	66	0.803	172,800	2,619
С	0.04 1)	71 ²⁾	0.577	to STP	10 4)
D	0.0025	5	0.5	2,592 ³⁾	520
Е	0.00167 1)	0.32 2)	5	to STP	10 4)

Table 3.2.3Additional aquatic information for zinc phosphate producing plants in the EU
(information from industry).

1) indirect emission to sewer, emission as pre-treated waste water of municipal STP

 discharge rate to sewer calculated from a rate of 8 m³/month and an emission period of 300 days/y; discharge rate of the municipal STP is unknown (default 2000 m³/d)

ocean, flow rate calculated from streamrate of 3 cm/sec and stream dimensions of 10 m width / 0.1 m depth

4) default (TGD, 1996)

<u>Air</u>

For all zinc phosphate producers in the EU the site-specific emission data is used for calculating the C_{add} values in air (entry 6, Figure 3.2.2).

From the daily amounts released to air the EUSES model calculates local annual average atmospheric C_{add} values at a distance of 100 meters from a point source. The emission amounts during emission periods and the calculated local annual average concentrations of zinc in air are presented in Table 3.2.4. The range of calculated local C_{add} values in air is **0.0038 - 0.29 µg/m³**.

<u>Water</u>

The five production plants use a fully process integrated on-site waste water treatment before discharging their waste water to a river, ocean or municipal sewer. Three production companies submitted more information about the on-site treatment of their waste water. The waste water treatment of company A is specifically designed for zinc phosphate. The waste water treatment consists of a chemical and physical precipitation of the zinc-hydroxy carbonate, followed by a filtration process. The precipitate of zinc hydroxy-carbonate is completely re-used on line for the zinc phosphate production. The treatment used by company B consists of a filtration step, an addition of calcium chloride (at 2-5% m/m contents), stirring and cooling, and adding of sodium carbonate until pH 8. Further cooling yields an effective co-precipitation of calcite, including zinc casserite and apatite, achieving an elimination rate of zinc from about 20 mg/l to a level of about 1-2 mg/l in waste water. The chemical precipitates of about 25 t/y are re-used and contain 0.5% to 10% of zinc. There is no sludge generated at this treatment process. Company C uses a sodium carbonate treatment of the zinc phosphate process water before discharging it to the sewer. The chemical precipitates of about 2-3 t/y are re-used and contain about 65% of zinc. Company D and E also use an on-site waste water treatment. Details of the treatment process are unknown for this sites. The pretreated effluent water of company E has a residual zinc content of about 5 mg/l and is discharged into the sewer. The zinc phosphate producers submitted efficiency rates of about 90-95% for their on-site waste water treatment processes. This additional information about the treatment processes and the efficiency rates is not directly used for the exposure assessment. This because all companies submitted effluent water emissions (Table 3.2.4), which are already treated by a WWTP.

The on-site treated waste water of the companies C and E is emitted to the sewer and additionally treated in a municipal STP. For the municipal STPs specific rates of removal of zinc will be applied to the life stages of zinc phosphate. For site E it is assumed that 74% of the total emission to waste water is directed to sewage sludge. For company C the submitted efficiency rate of 75% is used for the municipal STP (Figure 3.2.3).

For the formulation and processing stages (see next section) no information is available about the adsorbed fraction of zinc in waste water belonging to a particular process. Additionally, specific information is lacking about the treatment processes, which may have been useful to determine the adsorbed fraction of zinc. For these scenarios it is assumed that 74% of the total emission to waste water is directed to sewage sludge. The 74% removal rate is an average value, which is based on measured influent and effluent concentrations of municipal STPs (RIZA, 1999).

More information about zinc in sludge is presented further on in this section. Other information about the suspended and dissolved forms of zinc is presented in section 3.2.2.1 of the zinc metal RAR.

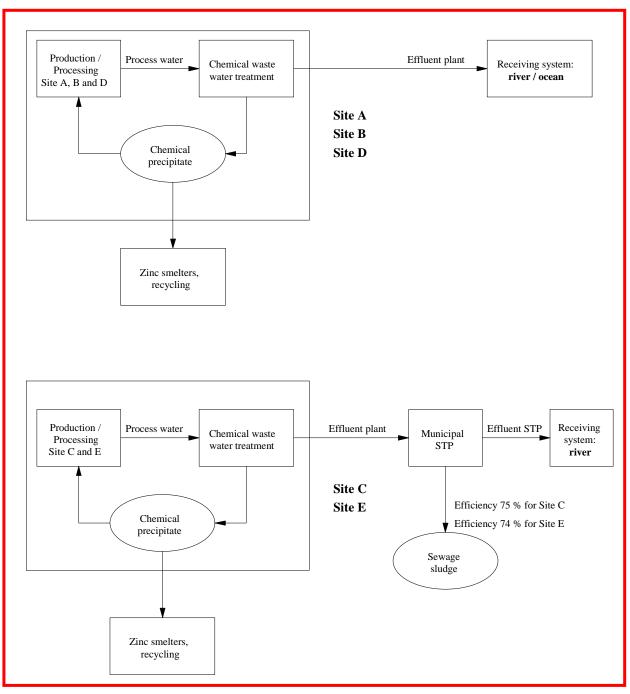


Figure 3.2.3 Distribution estimates of zinc in the various discharge models.

Sites A, B and D release their treated effluent water directly to the river (see Figure 3.2.3). For sites A, B and D the $Clocal_{effluent}$ is calculated from the submitted local effluent emission rates and local effluent discharge rates. For these companies the default size for the STP of 2000 m³/d is overwritten by the submitted effluent discharge rate (see Table 3.2.3). The concentration of zinc in the effluent of the local WWTPs of sites A, B and D is calculated with the equation:

 $Clocal_{effluent} = \frac{EMISSIONlocal_{effluent}}{EFFLUENTlocal_{WWTP}}$

Clocal_{effluent}:concentration in effluent water (kg/m³)EMISSIONlocal:local emission rate to waste water (kg/d)EFFLUENTlocal_{WWTP}: effluent discharge rate of local WWTP (m³/d)

The on-site treated waste water of the companies C and E is emitted to the sewer and additionally treated in a municipal STP (see Figure 3.2.3). For sites C and E the $Clocal_{influent}$ for the municipal STP is calculated from the submitted local pretreated emission rates and the municipal STP effluent discharge rates. For company C and E the default effluent discharge rate of 2000 m³/d is used. The submitted zinc removal efficiency rates of the municipal STPs are 75% for site C and 74% for site E. The concentration of zinc in the effluent of the municipal STPs of site C and E is calculated with the equations:

 $C local_{influent} = \frac{EMISSION local}{EFFLUENT local_{STP}}$

Clocal_influent:concentration in untreated waste water (kg/m^3) EMISSIONlocal:local emission rate to waste water (kg/d)EFFLUENTlocal_STP:effluent discharge rate of local STP (m^3/d)

 $Clocal_{effluent} = Clocal_{influent} \cdot Fstp_{water}$

Clocal _{effluent} :	concentration in effluent water (kg/m^3)
Clocal _{influent} :	concentration in untreated waste water (kg/m ³)
Fstp _{water} :	fraction of emission directed to water after treatment (-)

The default dilution factor of 10 can be overwritten for company A, B and D, because submitted effluent discharge rates of the local plants and the flow rate of the rivers or ocean are available (see Table 3.2.3):

 $D = \frac{EFFLUENTlocal + FLOW}{EFFLUENTlocal}$

D:dilution factorEFFLUENTlocal:effluent discharge rate of local plant (m^3/d) FLOW:flow rate of the river (m^3/d)

Subsequently, from the zinc concentrations in the local plant effluent the local concentration of the receiving surface water during the emission episode can be calculated with next equation. Dilution in the receiving surface water and sorption to suspended solids are taken into account.

$$C \quad _{add} \ local_{water} = \frac{C \ local_{effluent}}{(1 + K p_{susp} * C_{susp}) * D}$$

 C_{add} local_{water}: local concentration in water during emission episode (kg/m³)

- Kp_{susp}: solids-water partition coefficient of suspended matter. For zinc 110 m³/kg (see <u>Partition coefficients</u> in zinc metal RAR (Stortelder et al., 1989))
- $C_{susp:}$ concentration of suspended matter in river water (0.015 kg_{dwt}/m³, TGD)
- D: dilution factor (default = 10)

The calculated local concentrations of zinc in water are presented in Table 3.2.4. The range of calculated local C_{add} values (dissolved) in water is **8.18.10⁻³ – 0.457 µg/l**.

Sediment

The local concentrations in sediment (wet weight) during emission episodes can be estimated from the local C_{add} values in water, the suspended matter-water partition coefficient and the bulk density of suspended matter. The local concentrations in sediment are calculated according to the following equation:

$$C \quad {}_{add}local_{sed} = \frac{K_{susp-water}}{RHO_{susp}} * PEC_{add}local_{water}$$

where: $K_{susp-water} = Fwater_{susp} + Fsolid_{susp} * Kp_{susp} * RHOsolid$

Cadd localsed:	concentration in sediment during emission episode (kg/kg _{wwt})
K _{susp-water} :	suspended matter-water partition coefficient (calculated $2.75.10^4 \text{ m}^3/\text{m}^3$)
RHO _{susp:}	bulk density of suspended matter (1150 kg _{wwt} /m ³)
Fwater _{susp} :	fraction of water in suspended matter (0.9)
Fsolid _{susp} :	fraction of solids in suspended matter (0.1)
Kp _{susp} :	solids-water partition coefficient of suspended matter. For zinc 110
	m ³ /kg (see <u>Partition coefficients</u> zinc metal RAR (Stortelder et al., 1989))
RHOsolid:	density of solid phase (2500 kg/m ³)

The calculated local concentrations of zinc in sediment are presented in Table 3.2.4. The range of calculated local C_{add} values in sediment is **0.20-10.9 mg/kg**_{wwt}.

Table 3.2.4Summary of the local production tonnages, emission rates and calculated C_{add}
values.

No.	Company name ¹⁾	Production	Emission air	Emission effluent water ⁶⁾	C _{add} air	Conc. effluent WWTP or STP	C _{add} water	C _{add} sediment
		(t/y)	(kg Zn/d)	(kg Zn/d)	$(\mu g/m^3)$	(µg/l)	(µg/l)	(mg/kg _{wwt}
1	А	6,000	1.25	0.523	0.285	1,342 7)	0.457	10.9
2	В	6,000	0.100	0.053	0.0228	803 ⁷⁾	0.116	2.77
3	С	3,000	0.237	0.040 4)	0.0540	5.20 ⁵⁾	0.189	4.51

4	D	6,000	0.233	0.0025 3)	0.0533	500 ⁷⁾	0.363	8.68
5	Е	<1,000 ²⁾	0.0167	0.00167 ⁴⁾	0.00381	0.217 5)	8.18.10 ⁻³	0.196

1) actual company name not available, only the emissions of companies

2) tonnage not available, tonnage calculated with the submitted total tonnage

3) emission to the ocean, with a calculated dilution factor of 519 for calculating Cadd water and sediment

4) indirect discharge into sewer, emission as pre-treated waste water of municipal STP

5) calculated effluent concentration of municipal STP

6) effluent water in this column is meant as waste water discharged directly from plant

7) calculated effluent concentrations of industrial WWTP; chemical treatment

<u>Soil</u>

According to the TGD (1996) both the application of STP sludge on agricultural soil and the deposition from air should be taken into account for calculating the zinc levels in the terrestrial compartment. For zinc phosphate production companies no sludge is produced in the local on-site WWTP (information from industry). Company C and E emit their pre-treated waste to the sewer, which is connected with a municipal STP. The sludge of the municipal STP of company C is incinerated and disposed off to a controlled landfill. Hence, only for company E both the application of STP sludge on agricultural soil and the deposition from air are used for calculating the soil concentration. For all other companies only the emission to air, followed by a distribution and deposition model, is accounted for. The concentrations of zinc in agricultural soils calculated at a local scale are presented in Table 3.2.5. For production companies the range of calculated local C_{add} values in agricultural soil is **8.7.10⁻³ - 0.11 mg/kg**_{wwt}.

	agricultura	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
No.	Company name ¹⁾	Emission air (kg Zn/d)	Emission waste water (kg Zn/d)	C _{add} agricultural soil (mg/kg _{wwt})
1	А	1.25	Not relevant	0.108
2	В	0.100	Not relevant	8.66.10 ⁻³
3	С	0.237	Not relevant	2.05.10 ⁻²
4	D	0.233	Not relevant	2.02.10 ⁻²
5	Е	0.0167	1.67.10-3	2.97.10 ⁻²

Table 3.2.5 Summary of the local emission rates and calculated C_{add} values for agricultural soils

1) actual company name not available, only the emissions of companies

Sludge

In aSTP the adsorbed fraction is mainly removed by precipitation. The concentration in dry sewage sludge can be calculated according to the equation:

$$C_{sludge} = \frac{Fstp_{sludge} * Elocal_{water}}{SLUDGERATE}$$

where:
$$SLUDGERATE = \frac{2}{3} * SUSPCONC_{inf} * EFFLUENT_{STP} + SURPLUSsludge * Nlocal$$

C _{sludge} :	concentration in dry sewage sludge (kg/kgdwt)
Fstp _{sludge}	fraction directed to sludge by STP (0.74)
Elocal _{water} :	local emission rate to waste water during episode (kg/d)
SLUDGERATE	rate of sewage sludge production (calculated: 710 kg/d)
SUSPCONC _{inf} :	concentration of suspended matter in STP influent (0.45 kg/m^3)
EFFLUENT _{stp} :	effluent discharge rate of local STP (2000 m^3/d)
SURPLUSsludge	esludge per inhabitant equivalent (0.011 kg/d.eq)
Nlocal:	Number of inhabitants feeding local STP (10,000 eq)

The concentrations in dry sewage is only calculated for companies C and E, because no sludge is produced at the other sites. The calculated concentrations in dry sewage sludge are, respectively, 42.3 and 1.74 mg/kg_{dwt}

<u>Waste</u>

All zinc phosphate producing companies declared "nil to waste", because all solids are recovered or recycled in by zinc smelters.

3.2.1.2.3 Formulation and processing of zinc phosphate in paints

According to the industry zinc phosphate is only used in paints as a corrosion inhibitor. In the formulation stage zinc phosphate is mixed into the paint media. Exposure to zinc phosphate during this process can be possible during the emptying of the bags. In the processing stage the anticorrosive zinc phosphate containing paints are used in various processes. One major use is spray painting, e.g. in closed cabins or by automatic processes. The anticorrosive paint layer is subsequently coated with a normal paint for further protection or optical appearance.

No data were submitted on the releases of zinc phosphate to air for the formulation or processing in paints in the EU. The submitted local releases to water for five paint producing companies are presented in Table 3.2.6. Because some emission information (e.g. atmospheric compartment) for the formulation stage is lacking and there are no data for the processing stage, also a generic scenario is carried out. This scenario starts with the total EU production tonnage of 22,000 t/y for zinc phosphate, because the precise (corrected for import and export) tonnages for the formulation and processing of paints were not submitted (entry 1, Figure 3.2.2). The rapporteur is aware of the Emission Scenario Document on paints, lacquers and varnishes (IC-14), but essential information concerning the application field of the paint is lacking to use this document for the release estimations (formulation and processing). Now the A-tables in the TGD are used (IC-14). The total amount of zinc phosphate in paints is assumed to range to a maximum of 5%. According to that use percentage the tonnage for use of the B-tables (TGD, 1996) was adjusted and therefore also the used fraction of main source was revised from 1 to 0.6 (formulation) and from 0.15 to 0.1 (processing). For the formulation and processing of paints the EU tonnages is divided by 10 (10% rule) to obtain regional tonnages. With the regional tonnages regional emissions are obtained, when the release fractions are applied (A-tables, TGD 1996). For the generic scenarios the 10% rule is used,

because the industry submitted appropriate data on the number of processing sites and their geographic distribution.

With the regional emission values local values are calculated by multiplying them with the fraction of main source and with a correction factor for the number of processing days (B-tables, TGD, 1996). The regional tonnage for the life cycle stages is used as input to obtain the fraction of main source. With the local emission values local C_{add} values are calculated as described earlier in the production paragraph 3.2.1.2.2 (page 18).

For the soil compartment both the application of STP sludge on agricultural soil and the deposition from air are taken into account according to the TGD (1996). In the TGD (1996) it is assumed that the total sewage sludge load is applied on agricultural soil. For the sludge part the daily waste water release is the input for calculating the C_{add} .

The waste water releases are calculated from the submitted effluent water releases in which it is assumed that zinc is removed in the STP for 74% (see section water paragraph 3.2.1.2.2). It is further assumed that the major part of zinc phosphate is covered by the use category corrosion inhibitor (category 14). Zinc phosphate containing paints are for 50% based on water and for the other 50% based on solvents (Industry information). The scenario used to obtain local C_{add} values for each compartment is described in paragraph 3.2.1.2.2 (page 18). Table 3.2.7 and Table 3.2.8 contain the input data and results of the local exposure assessment for formulation and processing of zinc phosphate in paints.

Paint	Emission outside air	Emission effluent water	Measured concentration	Effluent	River flow rate
	(kg/d)	(kg/d)	effluent water (mg/l)	discharge rate (m3/d)	(m3/d)
Plant 1 / A ¹⁾	0	?	?	?	?
Plant $2 / B^{2}$	negligible	0.018	0.04	300	300
Plant 3 / E ³⁾	-	-	0.1-0.2 4)	325	-
Plant 4 / D $^{2)}$? 6)	0.03	_	-	-
Plant C ²⁾	? 5)	-	<1	125	none?
Plant F ³⁾	-	0.002	0.1-0.2 4)	_	-

Table 3.2.6 Local emissions from some zinc phosphate based paint producing companies

1) Disposed through authorised waste collector for treatment and discharge

2) Direct release from plant to surface water via industrial treatment on-site

3) Release from plant to sewer and municipal STP via industrial treatment on-site

4) Indirect discharge into sewer, effluent water concentration is pre-treated waste water of municipal STP

5) Emission unknown, air emission through dust filter with 95% efficiency

6) Emission unknown, performance local exhaust ventilation and dust remover under evaluation

Table 3.2.7Input data and results for the local exposure assessment for zinc phosphate in
paints.

	Plant 2 / B	Plant 3 / E	Plant 4 / D	Plant C	Plant F
Local tonnage (t/y)	unknown	unknown	unknown	unknown	unknown
Industrial category / use category	14/14	14/14	14/14	14/14	14/14
Fraction released to air (A-tables TGD, 1996)	Not appl.	Not appl.	Not appl.	Not appl.	Not appl.
Fraction released to water (A-tables TGD)	Not appl.	Not appl.	Not appl.	Not appl.	Not appl.

Fraction of main source (B-tables TGD, 1996)	1	1	1	1	1
Number of days (not relevant for assessment)	300	300	300	300	300
Submitted local amount released to air (kg/d)	negligible	unknown	unknown	unknown	unknown
Submitted local amount to surface water (kg/d)	0.018	-	0.03	-	0.002
Submitted concentration in effluent water (µg/l)	40	200 1)	15 ²⁾	<1000	200 1)
Used dilution factor	1	10	10	10	10
	Results				
Conc. effluent STP (µg/l)	40	200	15	<1,000	200
C_{add} water (µg/l)	15.1	1.96	0.566	<37.7	1.96
C_{add} air, 100m (µg/m ³)	unknown	unknown	unknown	unknown	unknown
C _{add} sediment (mg/kg _{wwt})	361	46.9	13.5	<902	46.9
Cadd agricultural soil (mg/kgwwt)	Not calc.	Not calc.	Not calc.	Not calc.	Not calc.

Not appl. Not applicable

Not calc Not calculated, because no or very less information is available about the possibility of applicating local WWTP sludge on soil and because the emissions to air are unknown

 Max. value of range 100-200 μg/l; indirect emission to sewer, the concentration is the pre-treated waste water concentration of municipal STP

2) Calculated

Table 3.2.8Input data and results for the local exposure assessment for formulation and
processing of zinc phosphate in paints. Generic scenarios.

	formulation,	processing,	processing,
	generic scenario	generic scenario	generic scenario
		Solvent based	Water based
		paints	paints
Regional tonnage (t/y)	2,200	1,100 (50%)	1,100 (50%)
Industrial category / use category	14/14	14/14	14/14
Fraction released to air (A-tables TGD, 1996)	0.0025	0	0
Fraction released to water (A-tables TGD, 1996)	0.003	0.001	0.005
Maximum use level in end product (%)	5	5	5
Correction factor for tonnage for use of B-tables	20	20	20
Used tonnage for B-tables (B-tables TGD, 1996)	44,000 (25,000-	22,000 (5,000-	22,000 (5,000-
	50,000)	25,000)	25,000)
Fraction of main source (B-tables TGD, 1996)	0.6	0.1	0.1
Number of days	300	300	300
Calculated local amount released to air (kg/d)	11	0	0
Calculated local amount released to waste water (kg/d)	13.2	0.367	1.83
Size of STP (m^3/d)	2,000	2,000	2,000
Dilution factor	10	10	10
Re	esults		
Total conc. effluent STP (µg/l)	1,716	47.7	238
C _{add} water (µg/l)	64.8	1.80	9.00
C_{add} air, 100m (µg/m ³)	2.51	0	0
C _{add} sediment (mg/kg _{wwt})	1,548	43.0	215
Cadd agricultural soil (mg/kgwwt)	225	6.22	31.1

3.2.1.2.4 Measured local data in the environment

Some waste water/effluent concentrations are available for zinc phosphate producing or processing sites. These data were presented in the previous sections. No data on measured concentrations are available for the other environmental compartments.

3.2.1.2.5 Summary of results for the local exposure assessment

Company	Conc. effluent WWTP / STP (total)	C _{add} water episode (dissolved) (µg/l)	C _{add} sediment episode (mg/kg _{wwt})	C _{add} agricultural soil (mg/kg _{wwt})	C _{add} air (100m) (µg/m ³)
Production companies:	(µg/l)				
Company A	1,342	0.457	10.9	0.108	0.285
Company B	803	0.116	2.77	8.66.10 ⁻³	0.0228
Company C	5.20	0.189	4.51	$2.05.10^{-2}$	0.0540
Company D	500	0.363	8.68	$2.02.10^{-2}$	0.0533
Company E	0.217	$8.18.10^{-3}$	0.196	$2.97.10^{-2}$	0.00381
Use categories:					
Paint industry: plant 2 / B	40	15.1	361	not calc.	unknown
Paint industry: plant 3 / E	200	1.96	46.9	not calc.	unknown
Paint industry: plant 4 / D	15	0.566	13.5	not calc.	unknown
Paint industry: plant C	<1,000	<37.7	<902	not calc.	unknown
Paint industry: plant F	200	1.96	46.9	not calc.	unknown
Paint industry: formulation	1,716	64.8	1,548	225	2.51
Paint industry: processing (solvent borne)	47.7	1.8	43	6.22	0
Paint industry: processing (water borne)	238	9	215	31.1	0

not calc. Not calculated

1) No data submitted. For the exposure assessment of company 3 is referred to the zinc metal RAR.

3.3 EFFECTS ASSESSMENT

3.3.1 Aquatic and terrestrial compartment

Zinc phosphate is much less water soluble than zinc salts such as zinc sulphate and zinc chloride. Based on that, it can be predicted that the bioavailability and (hence) the toxicity of zinc phosphate will be lower than that of soluble zinc compounds. However, once emitted into the environment, zinc phosphate will (partly) dissociate into the zinc cation and the phosphate anion, especially in an acidic environment. The further speciation of zinc, which includes complexation, precipitation and sorption, depends on the environmental conditions. Therefore, emitted zinc phosphate as well as other emitted zinc species (e.g. zinc chloride) will contribute to the effect of the total amount of zinc in the environment, regardless of the original source or chemical form. For this reason the risk characterisation is based on zinc (regarding zinc as the causative factor for toxicity), not on zinc phosphate as such. Thus, in the local risk characterisation for zinc phosphate, the PNEC_{add} values for zinc (see Table 3.3.1) have been compared with the local PEC_{add} values which are also expressed as zinc, but derived from the local emissions due to the production or use of zinc phosphate. In the regional risk characterisation, which is not for zinc phosphate specifically but for zinc from "all" anthropogenic sources, the PNEC_{add} values for zinc have been compared with PEC_{add} values for zinc, the latter values derived from the sum of the regional emissions due to industrial and non-industrial sources, diffuse sources included (see also earlier in section 3.2 for further explanation). For the regional risk characterisation the reader is referred to the Risk Assessment Report on Zinc metal (RAR Zinc metal).

Based on the above, the derogation statements with respect to the missing ecotoxicity data for zinc phosphate were accepted (i.e., exemptions were given for the required ecotoxicity data in the base set for zinc phosphate) and no effort has been made to retrieve ecotoxicity data on zinc phosphate.

For a comprehensive overview of the aquatic and terrestrial toxicity of (soluble) zinc, see the Risk Assessment Report on Zinc metal and especially the Annexes of that report; the Annexes include detailed data on the ecotoxicity data bases for (soluble) zinc.

In the RAR Zinc metal, $PNEC_{add}$ values have been derived for <u>zinc</u>, on the basis of tests with soluble zinc salts (especially zinc sulphate or zinc chloride), using the "added risk approach" (see also earlier in section 3.1 of the present report for an explanation of the added risk approach). These $PNEC_{add}$ values for zinc are listed in Table 3.3.1 and used in the risk characterisation (see section 3.4).

Environmental compartment	PNEC _{add}	PNEC _{add} value, as Zn	Remark
Freshwater	PNEC _{add, aquatic}	7.8 µg/l	Dissolved zinc
$(Hardness \ge 24 \text{ mg/L}) (1)$		21 μg /l	Total zinc (2)
Freshwater	PNEC _{add, aquatic}	3.1 µg/l	Dissolved zinc
(Hardness < 24 mg/L) (1)	softwater		
Freshwater sediment	PNEC _{add, sediment}	49 mg/kg dwt	Dry weight of sediment (3)
		11 mg/kg wwt	Wet weight of sediment (3)
STP effluent	PNEC _{add, microorganisms}	52 μg/l	Dissolved zinc
Soil	PNEC _{add, terrestrial}	26 mg/kg dwt	Dry weight of soil (4)
		23 mg/kg wwt	Wet weight of soil (4)

Table 3.3.1PNEC_{add} values for zinc (from RAR Zinc metal)

(1) Total hardness (mg/l), as CaCO₃.

(2) Total-Zn concentration: calculated from the PNEC_{add, aquatic} of 7.8 μg/l for dissolved zinc, a C_{susp} of 15 mg/l (according to the TGD, 2003) and a Kp_{susp} of 110,000 l/kg.

(3) For the dry to wet weight normalisation of the PNEC_{add, sediment} it is assumed that wet sediment contains 10% solids (density 2500 kg/m³) and 90% water (density 1000 kg/m³) by volume, i.e. 22% solids by weight. These properties are set equal to those of suspended matter, thus the PNEC_{add, suspended matter} equals the PNEC_{add, sediment} (according to the TGD, 2003).

(4) For the dry to wet weight normalisation of the PNEC_{add, terrestrial} it is assumed that wet soil contains 60% solids (density 2500 kg/m³) and 20% water (density 1000 kg/m³) by volume, i.e. 88% solids by weight.

3.3.2 Atmosphere

There are no data to derive an ecotoxicological PNEC_(add) for the air compartment.

3.3.3 Secondary poisoning

Based on data on bioaccumulation of zinc in animals and on biomagnification (i.e. accumulation and transfer through the food chain), secondary poisoning is considered to be not relevant in the effect assessment of zinc, see further the RAR Zinc metal.

3.4 RISK CHARACTERISATION

3.4.1 General

The use of the added risk approach implies that in the risk characterisation the added Predicted Environmental Concentrations (PEC_{add}'s) in the various environmental compartments are compared with the corresponding added Predicted No Effect Concentrations (PNEC_{add}'s). In section 3.2.1.2 local concentrations are calculated for STP, soil, water, sediment and air. Except for the PEC_{STP}, these local concentrations have to be corrected for the regional background (PEC_{add} regional), according to the TGD equation $PEClocal_{add} = Clocal_{add} + PECregional_{add}$. The regional exposure assessment, including regional monitoring data is described in the RAR on zinc metal. In case measured environmental concentrations are used in the risk characterisation, either the natural background concentration has to be subtracted from the measured environmental concentration (resulting in a "PECadd / PNECadd" ratio) or the natural background concentration has to be added to the PNEC_{add} (resulting in a traditional "PEC / PNEC" ratio). Finally, a correction for bioavailability is carried out in the risk characterisation stage. For those scenarios where the uncorrected PEC values would yield a PEC/PNEC ratio above 1, a (possible) bioavailability correction is made for surface water, sediment and soil (see sections 3.3.2.1.1, 3.3.2.2.1 and 3.3.3.1.1 of zinc metal RAR). Final conclusions of the risk assessment are based on the corresponding 'corrected' PEC/PNEC ratios.

The reader is referred back to section 3.1 for more background information on the use of the added risk approach.

For air, the average measured concentration in the Netherlands of 0.04 μ g/m³ is chosen as regional background. (The natural background component in the value of 0.04 μ g/m³ is assumed to be negligible). Preference is given to this measured value as it is the result of a valid, representative monitoring programme. Besides, this figure is within the same order of magnitude as the calculated PEC_{add}'s at regional scale (0.006 μ g/m³ for the NL-region and 0.01 for the EU-region). For soil, following the TGD, the PEC regional in natural soil has to be added as background to the local concentration. The calculated value of 0.5 mg/kg wwt is used as regional background in the current risk assessment. For water PEC_{add}'s regional (dissolved) of 6.7 μ g/l or 8.8 μ g/l could be chosen as background values. These concentrations are derived from the measured average 90th percentile value of 41 μ g/l¹(total) for regional waters in the Netherlands in 1997, corrected for, respectively, 3 and 12 μ g/l natural background. Preference is given to these measured values as they are the result of valid, representative monitoring programmes. The figure for the Netherlands is supported by data from the large EU-survey (Denzer et al., 1998) in which a average 90-percentile value of 59.2 µg/l (total) is reported for the EU during the period 1994-1998. (Shortcomings of the Denzer et al. database are discussed in section 3.2.5.3.4 of the zinc metal RAR. Although only considered as 'indicative' in the current risk assessment, the 90P value for total zinc from

¹ Natural background value of 3 and 12 μ g/l are subtracted from this value and, subsequently, the total figures are re-calculated to a dissolved zinc concentration (41-3 = 38 μ g/l divided by 4.3 results in 8.8 μ g/l; 41-12 = 29 μ g/l divided by 4.3 results in 6.7 μ g/l)

Denzer <u>et al.</u> does give some overall EU picture that is useful for comparison purposes as described above). For comparison: the <u>calculated</u> PECregional_{add} values (dissolved) amounts to 4.5 μ g/l (12.2 μ g/l total) for the NL-region and 6.2 μ g/l (16.8 μ g/l total) for the EU-region. The PECs sediment are calculated from the PEC water (PEClocal_{add} = Clocal_{add} + PECregional_{add}) via the equilibrium partitioning method.

For water and sediment, in the current local risk characterisation <u>initially</u> only the Clocal_{add} values (thus without the regional PEC_{add}) will be compared with the PNEC_{add} . At first the local aquatic risk characterisation thus focuses on the contribution of point sources to the potential risks, thereby neglecting the contribution of diffuse sources. If the regional PEC_{add} would have been added for sediment, all local scenarios would have resulted in $\text{PEC}_{add}/\text{PNEC}_{add}$ ratios larger than 1. This because the regional PEC_{add} already exceeds the PNEC_{add} of 11 mg/kg wwt. This holds for both calculated and measured sediment concentrations. For this reason for <u>sediment</u> all scenarios with a $\text{Clocal}_{add}/\text{PNEC}_{add}$ ratio between 0 and 1 a **conclusion iii*** will be drawn, indicating that due to (possibly) high added regional background concentrations a risk for sediment at local scale cannot be excluded. It has to be noted that this conclusion would not be influenced by applying the generic sediment bioavailability correction factor of 0.5.

The situation is somewhat less pronounced for the surface water compartment. With a PNEC_{add} of 7.8 µg/l the regional PEC_{add}/PNEC_{add} would lie between 0.8 (PEC_{add} of 6.7 µg/l) and 1.1 (PEC_{add} of 8.8 µg/l). When using an (arbitrary) average bioavailability correction factor of 0.6^2 these ratios would become, respectively 0.5 and 0.7. As a result of this, it is decided that for Clocal_{add}/PNEC_{add} ratios between 0.5^3 and 1 a **conclusion iii*** will be drawn, indicating that due to (possibly) high (added) regional background concentrations a local risk for water cannot be excluded. For scenarios with a surface water Clocal_{add}/PNEC_{add} ratio < 0.5 the local contribution to the (added) regional background is assumed to be negligible (**conclusion ii**).

For those scenarios in which the involved process type does intrinsically not result in water emissions a **conclusion ii**) is drawn for water and sediment.

It is important to note that the above-mentioned distinction between a (normal) conclusion iii) and a conclusion iii*) is not only made because of transparency, but also because the regional background is due to a variety of zinc compounds (and thus not only the zinc compound specifically addressed in the local risk characterisation).

In section 3.4.2 of the zinc metal RAR a general reflection is given on the uncertainties in the zinc risk assessments.

 $^{^2}$ See Table 3.4.67 in RAR on Zinc Metal. Average of realistic worst case and average BioF for average NL data.

³ A Clocal_{add}/PNEC_{add} of between 0.5 and 1 should theoretically also be corrected for bioavailability. This would give ratios between 0.3 and 0.6 when using the correction factor of 0.6. Such ratios could just raise the overall $PEC_{add}/PNEC_{add}$ ratio, thus including the regional background, to levels above one.

Table 3.4.9	The local (PE) C_{add} values and (PE) C_{add} / PNE C_{add} ratios used in the local risk characterisation of zinc phosphate.
	The (PE) C_{add} / PNE C_{add} ratios for water, soil and sediment are based on <u>no correction</u> for bioavailability.

Company	PEC effluent WWTP/ST P (dissolved)	Cadd water (dissolved)	Cadd sediment	PEC agricultural soil		Cadd/PNEC water	Cadd/PNEC sediment	PEC/PNEC agr. soil
	(ug/l)	(ug/l)	(mg/kgwwt)	(mg/kgwwt)				
Production companies:								
Company A	312	0.457	10.9	0.608	not appl. ¹⁾	0.06	1.1	0.03
Company B	187	0.116	2.77	0.509	not appl. ¹⁾	0.01	0.3	0.02
Company C	1	0.189	4.51	0.521	0.02	0.02	0.4	0.02
Company D	116	0.363	8.68	0.520	not appl. ¹⁾	0.05	0.8	0.02
Company E	0.050	8.18.10 ⁻³	0.196	0.530	0.001	0.001	0.01	0.02
Use categories:								
Paint industry: plant 2 / B	9	15.1	361	not calc.	0.18	1.9	35	not calc.
Paint industry: plant 3 / E	46.5	1.96	46.9	not calc.	0.89	0.25	4.5	not calc.
Paint industry: plant 4 / D	3.5	0.566	13.5	not calc.	0.07	0.07	1.3	not calc.
Paint industry: plant C	233	37.7	902	not calc.	4.5	4.8	87	not calc.
Paint industry: plant F	47	1.96	46.9	not calc.	0.89	0.25	4.5	not calc.
Paint industry: formulation	399	64.8	1,548	225.5	7.7	8.3	149	9.4
Paint industry: processing (solvent borne)	11	1.8	43	6.72	0.21	0.23	4.2	0.28
Paint industry: processing (water borne)	55	9	215	31.6	1.1	1.2	21	1.3

1) Not applicable: only chemical treatment in industrial WWTP.

3.4.2 Local risk characterisation

The local (PE)C_{add} values and the corresponding (PE)C_{add} / PNEC_{add} ratios are listed in Table 3.4.9. It is emphasised that these C_{add} and PEC_{add} values and the (PE)C_{add} / PNEC_{add} ratios are not corrected for bioavailability (first step in bioavailability decision trees in sections 3.3.2.1.1, 3.3.2.2.1 and 3.3.3.1.1 of zinc metal RAR). The applied bioavailability correction methods are summarised in Appendix 3.4 at the end of this Chapter. Subsequent corrections for the bioavailability of zinc in water, sediment and soil (if allowed) are discussed in the sections below.

Table 3.4.10 finally presents the overall results of the local risk characterisation after the various bioavailability correction steps (if relevant). Bioavailability correction is only carried out in case the uncorrected (PE)C_{add} / PNEC_{add} ratio exceeds one. In addition, no bioavailability correction is done for the PEC STP.

3.4.2.1 Aquatic compartment

3.4.2.1.1 STP effluent

STP effluent

The PECs STP (total) as calculated in paragraph 3.2.1.2 for the various scenarios have been re-calculated to dissolved values. This because the $PNEC_{add}$ of 52 µg/l for microorganisms is expressed as a dissolved zinc concentration.

Production

The PEC_{STP} does not exceed the $PNEC_{add}$ for microorganisms at two production sites (no. C and E) of zinc phosphate (**conclusion ii**). The PECs are based on site-specific emission data in combination with a site-specific effluent flow rate. The remaining production sites all have a chemical treatment installation.

Use categories

The PEC_{STP} for the formulation and processing sites of zinc phosphate exceeds the $PNEC_{add}$ for microorganisms in two scenarios (plant C and paint formulation) (**conclusion iii**). In contrast with the production scenarios (see above), also a generic scenario has been used for the formulation of zinc phosphate. This due to a lack of (sufficient) site-specific data (atmospheric emission data in particular).

3.4.2.1.2 Surface water (incl. sediment)

Production

<u>Surface water.</u> For all production sites the $Clocal_{add}/PNEC_{add}$ ratio is < 1. These scenarios are based on site-specific release data. As all $Clocal_{add}/PNEC_{add}$ ratios are <0.5 a **conclusion ii**) is felt to be most appropriate for these production scenarios.

<u>Sediment.</u> Without correction for bioavailability the $\text{Clocal}_{add}/\text{PNEC}_{add}$ ratio is (slightly) larger than 1 for production sites A and D. For all production sites the Clocal_{add} in sediment is below the PNECadd in sediment of 11 mg/kg wwt after correction with the generic bioavailability factor of 0.5 (Clocal_{add} multiplied with 0.5). A **conclusion iii*** is drawn for these sites as local risks due to high regional background concentrations cannot be excluded.

Use categories

Surface water. The Clocal_{add} in water for the processing sites of zinc phosphate exceeds the PNEC_{add} for surface water in four scenarios (plant 2/B, C 'paint formulation' and 'paint processing'). As relevant data are lacking to perform a correction for bioavailability for surface water (BLM), no additional correction can be carried out for these scenarios. This implies that the original surface water risk characterisation ratios from Table 3.4.9 remain unchanged (conclusion iii). In contrast with the production scenarios (see above), also a generic scenario has been used for the formulation of zinc phosphate. This due to a lack of (sufficient) site-specific data (atmospheric emission data in particular). The $Clocal_{add}/PNEC_{add}$ ratio is < 0.5 for the remaining scenarios (conclusion ii).

<u>Sediment</u>. For sediment the $Clocal_{add}/PNEC_{add}$ ratio is larger than 1 for all scenarios. As relevant data are lacking to perform a site-specific correction for bioavailability in sediment (SEM/AVS method), only the generic sediment bioavailability correction factor of 0.5 can be applied these scenarios. This implies that the original sediment $Clocal_{add}$ s from Table 3.4.9 are multiplied with a factor 0.5. After this correction the $Clocal_{add}/PNEC_{add}$ remains above 1 for these scenarios except for plant 4/D (**conclusion iii**).

The corrected $Clocal_{add}/PNEC_{add}$ ratio is <1 for plant 4/D, but due to the possibly high regional background concentration a potential risk at local scale cannot be excluded (conclusion iii*).

3.4.2.2 Terrestrial compartment

Production

For all production sites of zinc phosphate, the $PEC_{add}/PNEC_{add}$ ratios for soil are <1 (conclusion ii).

Use categories

Two generic use category scenarios ('paint formulation' and 'paint processing water borne') resulted in $PEC_{add}/PNEC_{add}$ ratios >1. As relevant data are lacking to perform a site-specific correction for bioavailability in soil (soil type characteristics), only the generic soil correction factor of 3 (R_{L-F} : ageing aspects) can be applied these scenarios. This implies that the original terrestrial PEC_{add} s from Table 3.4.9 are divided by a factor 3. After this correction the $PEC_{add}/PNEC_{add}$ soil remains above 1 for the scenario 'paint formulation' (**conclusion iii**). **Conclusion ii**) holds for the scenario 'paint processing water-borne and solvent borne'.

3.4.2.3 Atmospheric compartment

A quantitative risk characterisation for exposure of organisms to airborne zinc is not possible. This because there are no useful data on the effects of airborne zinc on environmental organisms and thus no PNEC for air could be derived.

The PECs in air will be used for the risk assessment of man indirectly exposed via the environment (see Human Health part of the RAR).

3.4.2.4 Secondary poisoning

Not relevant.

		Uncorrected				Corrected	
Company	PEC/PNEC STP	Cadd/PNEC water	Cadd/PNEC sediment	PEC/PNEC agr. soil	Cadd/PNEC sediment	PEC/PNEC agr. soil	
Production companies:							
Company A	not appl. ¹⁾	0.06	1.1	0.03	0.5		
Company B	not appl. ¹⁾	0.01	0.3	0.02			
Company C	0.02	0.02	0.4	0.02			
Company D	not appl. ¹⁾	0.05	0.8	0.02	0.4		
Company E	0.001	0.001	0.01	0.02			
Use categories:							
Paint industry: plant 2 / B	0.18	1.9	35	not calc.	17	not calc.	
Paint industry: plant 3 / E	0.89	0.25	4.5	not calc.	2.2	not calc.	
Paint industry: plant 4 / D	0.07	0.07	1.3	not calc.	0.6	not calc.	
Paint industry: plant C	4.5	4.8	87	not calc.	43	not calc.	
Paint industry: plant F	0.89	0.25	4.5	not calc.	2.3	not calc.	
Paint industry: formulation	7.7	8.3	149	9.4	75	3.1	
Paint industry: processing (solvent borne)	0.21	0.23	4.2	0.28	2.1		
Paint industry: processing (water borne)	1.1	1.2	21	1.3	11	0.44	

Table 3.4.10 Summary of the uncorrected and corrected local (PE)C_{add} / PNEC_{add} ratios of the local risk characterisation of zinc phosphate.

1) Not applicable: only chemical treatment in industrial WWTP.

3.4.3 Regional risk characterisation

See RAR on zinc metal.

R077_0805_env

APPENDIX 3.4 BIOAVAILABILITY CORRECTIONS

In the <u>first</u> step of the risk characterisation, the local added Predicted Environmental Concentrations (PEClocal_{add}s) in the various environmental compartments are compared with the corresponding added Predicted No Effect Concentrations (PNEC_{add}s). In case this yields a PEC_{add} / PNEC_{add} ratio above 1, the risk characterisation includes (if possible) a <u>second</u> step in which a bioavailability correction is made, see the table below for a summary of the bioavailability correction methods applied and see RAR Zinc metal sections 3.3.2.1.1 (water), 3.3.2.2.1 (sediment) and 3.3.3.1.1 (soil) for a comprehensive explanation of the derivation and application of these bioavailability correction methods⁴. In all cases the bioavailability corrected PEC_{add} / PNEC_{add} ratio it makes no difference whether the correction is applied to the PEC_{add}.

- For <u>water</u> there is only a site-specific bioavailability correction, i.e. a bioavailability correction is only applied in case there are reliable site-specific data on the abiotic water characteristics that are needed to apply the BLM models. Bioavailability factors are being derived for two scenarios of abiotic conditions. One scenario refers to an average setting and the second one to a 'realistic worst case' setting. The highest bioavailability factor (BioF_{water}) is subsequently used in the risk characterisation by multiplying the original (PE)C_{add} with this BioF_{water}. If a site has a discharge to seawater, no bioavailability correction is performed, as the BLM models were developed for freshwaters.
- For <u>sediment</u> the bioavailability correction is either site-specific (preference) or generic.
- For <u>soil</u> the bioavailability correction starts with the application of the generic lab-tofield correction factor (R_{L-F}) and if the corrected PEC_{add} / $PNEC_{add}$ ratio still is >1, then a further, site-specific bioavailability correction is applied.

Final conclusions of the risk assessment are based on the corresponding 'corrected' PEC_{add} / $PNEC_{add}$ ratios.

Compartment	Added Predicted Environmental Concentration (PEC _{add})					
	Bioavailability correction					
	(generic)	(site-specific or region-specific)				
Water	None	Biotic Ligand Models (BLMs)				
		for algae, Daphnia and fish (a)				
Sediment	Factor of 2 (b)	Acid Volatile Sulphide (AVS) method (c)				
Soil	Factor of 3 (d)	Regression lines				
	(R _{L-F})	for invertebrates, plants and microbial				
	processes (e)					

(a) Water – BLMs: Based on the relationship between toxicity of zinc and water characteristics,
 e.g. pH, dissolved organic carbon (DOC) and hardness (see RAR Zinc metal Section 3.3.2.1.1 for further explanation).

⁽b) The PEC_{add} (or measured concentration) for zinc in sediment is divided by a generic, AVS-related correction factor of 2 to obtain the bioavailable concentration of zinc (note that in the original description of this method in section 3.3.2.2.1 of the RAR Zinc metal it is stated that the PEC_{add} is multiplied with a factor of 0.5). The corrected PEC_{add} is subsequently used in the assessment of the $PEC_{add} / PNEC_{add}$ ratio.

⁽c) Sediment – AVS method: Based on the inverse relationship between toxicity of zinc and AVS content in sediment (see RAR Zinc metal Section 3.3.2.2.1 for further explanation).

⁴ No bioavailability correction is done for the PEC_{STP}

This method is also described as the SEM/AVS-method, as also the toxicity of other metals, i.e. Cd, Cu, Ni, Hg and Pb, referred to as Simultaneously Extracted Metals (SEM) is reduced by AVS.

- (d) The PEC_{add} (or measured concentration) for zinc in soil is divided by a generic, ageing-related lab-to-field correction factor (R_{L-F}) of 3 to obtain the bioavailable concentration of zinc. The corrected PEC_{add} is subsequently used in the assessment of the PEC_{add} / PNEC_{add} ratio.
- (e) Soil Regression lines: Based on the relationship between toxicity of zinc and soil characteristics, e.g. pH and cation exchange capacity (CEC) (see RAR Zinc metal Section 3.3.3.1.1 for further explanation).

4 REFERENCES

REFERENCES EXPOSURE ASSESSMENT

The reference list applies to zinc and the five zinc compounds and is presented in the zinc metal RAR.

Institute for Health and Consumer Protection

European Chemicals Bureau

Existing Substances

European Union Risk Assessment Report

CAS No: 7779-90-0

EINECS No: 231-944-3

trizinc bis(orthophosphate)

$Zn_3(PO_4)_2 \cdot 2-4H_2O$

47

European Union Risk Assessment Report trizinc bis(orthophosphate)

2nd Priority List

Volume: 47

EUROPEAN COMMISSION DIRECTORATE-GENERAL Joint Research Centre

EUR 21172 EN

European Union Risk Assessment Report

TRIZINC BIS(ORTHOPHOSPHATE)

Part II – Human Health

CAS No: 7779-90-0 EINECS No: 231-944-3

RISK ASSESSMENT

LEGAL NOTICE

Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of the following information

A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa Server (http://europa.eu.int).

Cataloguing data can be found at the end of this publication Luxembourg: Office for Official Publications of the European Communities, 2004

© European Communities, 2004 Reproduction is authorised provided the source is acknowledged. *Printed in Italy*

TRIZINC BIS(ORTHOPHOSPHATE)

Part II – Human Health

CAS No: 7779-90-0

EINECS No: 231-944-3

RISK ASSESSMENT

Final Report, 2004

This document has been prepared by the Ministry of Housing, Spatial Planning and the Environment (VROM) in consultation with the Ministry of Social Affairs and Employment (SZW) and the Ministry of Public Health, Welfare and Sport (VWS), on behalf of the European Union.

The scientific work on this report has been prepared by the Netherlands Organisation for Applied Scientific Research (TNO) and the National Institute for Public Health and the Environment (RIVM), by order of the rapporteur.

Contact point:

Chemical Substances Bureau P.O. Box 1 3720 BA Bilthoven The Netherlands

Date of Last Literature Search:	2003
Review of report by MS Technical Experts finalised:	2001
Final report:	2004

Foreword

We are pleased to present this Risk Assessment Report which is the result of in-depth work carried out by experts in one Member State, working in co-operation with their counterparts in the other Member States, the Commission Services, Industry and public interest groups.

The Risk Assessment was carried out in accordance with Council Regulation (EEC) 793/93¹ on the evaluation and control of the risks of "existing" substances. "Existing" substances are chemical substances in use within the European Community before September 1981 and listed in the European Inventory of Existing Commercial Chemical Substances. Regulation 793/93 provides a systematic framework for the evaluation of the risks to human health and the environment of these substances if they are produced or imported into the Community in volumes above 10 tonnes per year.

There are four overall stages in the Regulation for reducing the risks: data collection, priority setting, risk assessment and risk reduction. Data provided by Industry are used by Member States and the Commission services to determine the priority of the substances which need to be assessed. For each substance on a priority list, a Member State volunteers to act as "Rapporteur", undertaking the in-depth Risk Assessment and recommending a strategy to limit the risks of exposure to the substance, if necessary.

The methods for carrying out an in-depth Risk Assessment at Community level are laid down in Commission Regulation (EC) 1488/94², which is supported by a technical guidance document³. Normally, the "Rapporteur" and individual companies producing, importing and/or using the chemicals work closely together to develop a draft Risk Assessment Report, which is then presented at a Meeting of Member State technical experts for endorsement. The Risk Assessment Report is then peer-reviewed by the Scientific Committee on Toxicity, Ecotoxicity and the Environment (CSTEE) which gives its opinion to the European Commission on the quality of the risk assessment.

If a Risk Assessment Report concludes that measures to reduce the risks of exposure to the substances are needed, beyond any measures which may already be in place, the next step in the process is for the "Rapporteur" to develop a proposal for a strategy to limit those risks.

The Risk Assessment Report is also presented to the Organisation for Economic Co-operation and Development as a contribution to the Chapter 19, Agenda 21 goals for evaluating chemicals, agreed at the United Nations Conference on Environment and Development, held in Rio de Janeiro in 1992.

This Risk Assessment improves our knowledge about the risks to human health and the environment from exposure to chemicals. We hope you will agree that the results of this in-depth study and intensive co-operation will make a worthwhile contribution to the Community objective of reducing the overall risks from exposure to chemicals.

BH - Summe

Barry Mc Sweeney / Director-General DG Joint Research Centre

Catlene

Catherine Day Director-General DG Environment

¹ O.J. No L 084, 05/04/199 p.0001 – 0075

² O.J. No L 161, 29/06/1994 p. 0003 – 0011

³ Technical Guidance Document, Part I – V, ISBN 92-827-801 [1234]

OVERALL RESULTS OF THE RISK ASSESSMENT

CAS No:	7779-90-0
EINECS No:	231-944-3
IUPAC Name:	trizinc bis(orthophosphate)
Synonyms:	zinc phosphate; zinc orthophosphate; phosphoric acid-zinc salt

Human health (toxicity)

Workers

Conclusion (ii) There is at present no need for further information and/or testing and for risk reduction measures beyond those which are being applied already.

The information available gives no reasons for concern for adverse health effects due to exposure to zinc phosphate at the workplace.

Consumers

Conclusion (ii) There is at present no need for further information and/or testing and for risk reduction measures beyond those which are being applied already.

Humans exposed via the environment

Conclusion (ii) There is at present no need for further information and/or testing and for risk reduction measures beyond those which are being applied already.

Human health (physico-chemical properties)

Conclusion (ii) There is at present no need for further information and/or testing and for risk reduction measures beyond those which are being applied already.

0

CONTENTS

1	GE	NERA	L SUBST	FANCE IN	FORMATION	. 5
	1.1	IDEN	NTIFICA	TION OF	THE SUBSTANCE	. 5
	1.2	PUR	ITY/IMF	URITIES	, ADDITIVES	. 5
	1.3	PHY	SICO-CI	HEMICAI	PROPERTIES	. 5
	1.4	CLA	SSIFICA	TION		. 6
2	GE	NERA	L INFOI	RMATION	ON EXPOSURE	. 7
3	EN	VIRO	NMENT.			. 8
4	TTTT					0
4						
	4.1				DXICITY)	
		4.1.1			ent	
					iscussion	
			4.1.1.2		onal exposure	
					Scenario 1: Production of zinc phosphate	
					Scenario 2: Production of paint	
					Scenario 3: Use of paint	
					r exposure	
			4.1.1.4		exposed via the environment	
					General exposure	
			- 00	4.1.1.4.2	Local exposure	. 26
		4.1.2			:: Hazard identification and Dose (concentration) - response (effect)	
					on	
			4.1.2.2		netics, metabolism and distribution	
					Absorption	
					Distribution	
					Metabolism	
					Excretion	
					Homeostasis	
					Conclusion on toxicokinetics, metabolism and distribution	
					icity	
					ty	
					ion	
			4.1.2.7		dose toxicity	
					Studies in animals	
					Studies in humans	
			4120		Conclusion on repeated dose toxicity	
			4.1.2.8		city	
				4.1.2.8.1	In vitro studies	. 61
					In vivo studies	
			4120		Conclusion on mutagenicity	
			4.1.2.9		enicity	. 63
					Studies in animals	
					Studies in humans	
				4.1.2.9.3	Conclusion on carcinogenicity	. 65

			4.1.2.10 Toxicity for reproduction	. 65
			4.1.2.10.1 Studies in animals	. 65
			4.1.2.10.2 Studies in humans	. 70
			4.1.2.10.3 Conclusion on toxicity for reproduction	. 71
			4.1.2.11 Interaction with other chemicals	. 72
			4.1.2.12 Biological function and recommended levels	
		4.1.3		
			4.1.3.1 General aspects	
			4.1.3.2 Workers	
			4.1.3.2.1 Acute toxicity	
			4.1.3.2.2 Irritation	
			4.1.3.2.3 Corrosivity	
			4.1.3.2.4 Sensitisation	
			4.1.3.2.5 Repeated dose toxicity	
			4.1.3.2.6 Mutagenicity	
			4.1.3.2.7 Carcinogenicity	
			4.1.3.2.8 Toxicity for reproduction.	
			4.1.3.2.9 Occupational Exposure Limits.	
			4.1.3.3 Consumers	
			4.1.3.5 Consumers	
			4.1.3.3.2 Repeated dose toxicity	
			4.1.3.3.3 Mutagenicity/Carcinogenicity/Toxicity for reproduction	
			4.1.3.4 Humans exposed via the environment	
			4.1.3.4.1 Repeated dose toxicity4.1.3.4.2 Mutagenicity/Carcinogenicity/Toxicity for reproduction	
	4.2		IAN HEALTH (PHYSICO-CHEMICAL PROPERTIES)	
			Exposure assessment	
		4.2.2	Effects assessment: Hazard identification	
			4.2.2.1 Explosivity	
			4.2.2.2 Flammability	
			4.2.2.3 Oxidising potential	
		4.2.3	Risk characterisation	. 87
5	RES	SULTS	S	. 88
-				
	5.1	ENVI	IRONMENT	. 88
	5.2	HUM	IAN HEALTH	. 88
		5.2.1		
		0.2.1	5.2.1.1 Workers	
			5.2.1.2 Consumers	
			5.2.1.3 Humans exposed via the environment	
		522	Human health (physico-chemical properties)	
		0.2.2		. 07
6	REI	FEREN	NCES	. 90
A	BBRI	EVIAT	TIONS	. 107
Aj	ppeno		Internal NOAEL and minimal MOS calculation based on the NOAEL from the repeated dose study in the rat.	. 112
			repeated dose study in the fut	. 114

TABLES

Table 1.1	Physico-chemical properties of zinc phosphate	5
Table 4.1	Exposure to zinc phosphate containing dust during production	11
Table 4.2	Results of the measurement of zinc exposure levels (mg zinc) in plants producing zinc oxide	
	and/or zinc dust	12
Table 4.3	Task specific dermal exposures to zinc measured in zinc powder (oxide and dust) production	
	facilities	13
Table 4.4	Exposure to Zn or dust in several industries during the use of ZnO	15
Table 4.5	Exposure to total dust in the production of paint	15
Table 4.6	Conclusions of the occupational exposure assessment	22
Table 4.7	Deposition fractions for oral breathers and for oronasal augmenters, using a polydisperse particle	
	distribution	32
Table 4.8	Estimation of inhalation absorption percentage for soluble zinc compounds and for less	
	soluble/insoluble zinc compounds	34
Table 4.9	Dermal absorption of Zn (% of dose) through pig skin in vitro within 72 hours	37
Table 4.10	Repeated dose toxicity	46
Table 4.11	Genotoxicity data	59
Table 4.12	Developmental toxicity data	67
	Occupational risk assessment of zinc phosphate for repeated dose toxicity after dermal and inhalation	1
	exposure (systemic effects)	83
Table 4.14	Consumer exposure estimates	85
Table 4.15	Internal exposure levels via water and air at local scale	86
	Overview of conclusions with respect to occupational risk characterisation	88
	Assessment factors applied for the calculation of the minimal MOS	112

GENERAL SUBSTANCE INFORMATION

1.1 IDENTIFICATION OF THE SUBSTANCE

1

CAS No:	7779-90-0
EINECS No:	231-944-3
IUPAC Name:	trizinc bis(orthophosphate)
Synonyms:	zinc phosphate; zinc orthophosphate; phosphoric acid-zinc salt
Molecular formula:	$Zn_3(PO_4)_2 \cdot 2-4H_2O$
Structural formula:	$Zn_3(PO_4)_2 \cdot 2-4H_2O$
Molecular weight:	458.14

1.2 PURITY/IMPURITIES, ADDITIVES

Purity:no dataImpurity:< 0-4.5% zinc oxide, typical < 100 ppm lead, < 100 ppm cadmium</td>Additives:none

1.3 PHYSICO-CHEMICAL PROPERTIES

In Table 1.1 the physico-chemical properties are summarised.

Property	Result	Comment
Physical state	solid, powder	
Melting point	900°C	*
Boiling point	not applicable	****
Relative density	3.3 at 20⁰C	**
Vapour pressure	not applicable	****
Surface tension	not applicable	****
Water solubility	very slightly soluble - insoluble	*
Solubilty in other solvents	soluble in acids and NH₄OH; insoluble in alcohol	***
Partition coefficient n-octanol/water(log value)	no data	***
Flash point	not flammable	****
Flammability	not flammable	****
Autoflammability temperature	not applicable	****
Explosive properties	not explosive	****
Oxidising properties	not oxidising	****

Table 1.1 Physico-chemical properties of zinc phosphate

* More than one apparently independent source. No methods are specified.

** Several values found in literature. The value presented is considered as most appropriate.

*** One source

**** Conclusion based on theoretical, and/or structural considerations.

5

These data are mainly derived from CRC Handbook of Chemistry and Physics (1995), Römpp Chemie Lexikon (1995), and company MSDS's. For an extended description see hedset.

Conclusion

Data on boiling point and partition coefficient were not provided. In view of the nature of the substance determination of these parameters is considered to be irrelevant. Vapour pressure and surface tension are reported to be not applicable. This is correct based on theoretical considerations. Information on flammability, explosive properties and oxidising properties is not available. However, on theoretical considerations the compound is concluded to be not flammable, not explosive and not oxidising. All other required physico-chemical data were submitted. None of these data is based on test results, substantiated with reports. However, the data are considered as sufficiently reliable to fulfil the Annex VIIA requirements.

1.4 CLASSIFICATION

Current classification according to Annex I:

No classification for Human Health.

Decision of the CMR Working Group:

At the September 2002 meeting, it was agreed not to classify zinc phosphate for physical chemical properties and health effects.

GENERAL INFORMATION ON EXPOSURE

(will be added later)

2

ENVIRONMENT

(will be added later)

4 HUMAN HEALTH

4.1 HUMAN HEALTH (TOXICITY)

4.1.1 Exposure assessment

4.1.1.1 General discussion

Zinc phosphate is used as an active corrosion inhibitor in anti-corrosive primers and paints on metal substrates.

Occupational limit values

No occupational limit values for zinc phosphate have been established.

4.1.1.2 Occupational exposure

Zinc phosphate is produced in a discontinuous batch process by reaction of an aqueous slurry of zinc oxide with phosphoric acid in a closed reaction vessel. When the reaction is complete, water is removed from the aqueous zinc phosphate slurry by a filtration step followed by a drying step. The dry material is then ground by various encapsulated milling equipment and transported through an almost closed system to bulk storage silos and packaging stations.

The following data are used for occupational exposure assessment:

- physico-chemical data, physical appearance and vapour pressure,
- data regarding the production process and use pattern of the products and amount of the zinc compound in the product,
- exposure data from the hedset,
- measured data for a compounds or analogues,
- results from exposure models (EASE-model).

The exposure is assessed using the available information on substance, processes and work tasks. More detailed information on these parameters may lead to a more accurate exposure assessment.

In this part of the assessment, external (potential) exposure is assessed using relevant models and other available methods in accordance with the Technical Guidance Document (TGD) and agreements made at official Meetings of Competent Authorities. Internal dose depends on external exposure and the percentage of the substance that is absorbed (either through the skin or through the respiratory system).

The exposure is assessed without taking account of the possible influence of personal protective equipment (PPE). If the assessment as based on potential exposure indicates that risks are to be expected, the use of personal protective equipment may be one of the methods to decrease actual risks, although other methods (technical and organisational) are to be preferred. This is in fact obligatory following harmonised European legislation.

Knowledge of effectivity of PPE in practical situations is very limited. Furthermore, the effectivity is largely dependent on site-specific aspects of management, procedures and training of workers. A reasonably effective use of proper PPE for skin exposure may reduce the external exposure with 85%. For respiratory protection the efficiency depends largely on the type of protection used. Without specific information, a tentative reduction efficiency of 90% may be assumed, equivalent to the assigned protection factors for supplied air respirators with a half mask in negative pressure mode (NIOSH, 1987). Better protection devices will lead to higher protection. Imperfect use of the respiratory protection will lower the practical protection factor compared to the assigned factor. These estimations of reduction are not generally applicable "reasonable worst-case" estimations, but indicative values based on very limited data. They will not be used directly in the exposure and risk assessment. Furthermore, the reduction of external exposure does not necessarily reflect the reduction of absorbed dose. It has to be noted, that the use of PPE can result in a relatively increased absorption through the skin (effect of occlusion), even if the skin exposure is decreased. This effect is very substance-specific. Therefore, in risk assessment it is not possible to use default factors for reduction of exposure as a result of the use of PPE.

In some specific situations the model estimates with normal assumptions for input parameters in the assessed exposure scenarios are expected not to lead to a reasonable assessment of exposure. For situations with high risk of direct acute effects, such as manual handling of corrosive substances and hot materials, or possible inhalation exposure of substances with severe acute effects on the respiratory tract, the total level of containment given by all exposure control measures is assumed to be higher than for similar scenarios with other substances. For estimating a single day exposure an extra protection is assumed, reducing exposure with 90%. The extra protection can be reached by a combination of technical and organisational control measures and personal protective equipment. If the extra protection is reached (mainly) by using personal protective equipment, this is an unwanted situation that should be changed by further technical and organisational control measures.

The estimate of repeated dermal exposure depends on the knowledge of a "maximum non-corrosive concentration". If such a concentration can be estimated, this concentration will be used in estimating repeated dermal exposure. Otherwise the estimate for single day exposure will be used.

The main result of the estimations is the so-called reasonable worst-case estimate. This value intends to estimate the exposure level in a reasonable worst-case situation, i.e. in a situation with exposures in the higher ranges of the full distribution of exposure levels, but below the extremes reached. If a large number of data is available, a 90th percentile is generally used as an estimator of the reasonable worst-case value. If limited data sets are available (e.g. only measurements from one site or only small numbers of measurements or measurements with very little detail on tasks, working conditions, etc.) often the highest measured value is taken or the results of modelling are preferred or a conservative intermediate value is chosen to account for the weaknesses in the different data sets.

From the uses of zinc phosphate the following scenarios for exposure will be discussed, because they are expected to lead to the highest exposure levels:

- Scenario 1: Production of zinc phosphate,
- Scenario 2: Production of paint,
- Scenario 3: Use of paint.

4.1.1.2.1 Scenario 1: Production of zinc phosphate

Zinc phosphate is produced in a discontinuous batch process by reacting an aqueous slurry of zinc oxide with phosphoric acid in a closed reaction vessel. When the reaction is complete, water is removed from the aqueous zinc phosphate slurry by a filtration step followed by a drying step. The dry material is then ground by various encapsulated milling equipments and transported through an almost closed system to bulk storage silos and packaging stations.

Exposure to zinc can occur during raw material feeding (to zinc oxide, mostly from big bags), in the production area during filtration, drying and grinding (inert dust containing zinc oxide and zinc phosphate) and at the packing station (zinc phosphate).

Measured data

Exposure to zinc phosphate containing dust during production has been submitted by 4 of the 5 companies (**Table 4.1**, Industry, 1997, 1999).

Total dust (mg/m³) (range) and average	Zn (Zn/m ³) (range) and average	Reference
(-), 0.8	(-), 0.25	Company A (1997)
(0.4-1.6), 0.9	(0.1-0.7), 0.3	Company B (1997)
(0.5-1.1), 0.8	(0.2-0.5), 0.35	Company C (1997)
(-), 4.7 (-), 2.6 (respirable)	(-), 2.0 *) (-), 1.1 (respirable)*	Company E (1997)
(0.45-2.51), 1.0 (0.44-0.91), 0.68 (0.48- 1.21), 0.86	(0.14- 1.81), 0.67 (0.04-0.15), 0.1 (0.08-0.21), 0.16	Company B (1999) raw material feeding (ZnO) production packaging (zinc phosphate)

 Table 4.1
 Exposure to zinc phosphate containing dust during production (Industry, 1997)

Calculated from the worst-case assumption, that total dust is 100% zinc phosphate with a zinc content of 42.8%

From these data the following exposure estimates for total dust were derived by the leading company: 8-hour TWA: 1.8 mg/m³, worst-case 8-hour TWA: 4.7 mg/m³ and a short-term value of 9.4 mg/m³ (twice the worst-case 8-hour TWA), (Industry, 1997). This corresponds to zinc concentrations of: 8-hour TWA 0.74 mg Zn/m³, worst-case 8-hour TWA 2.0 mg/m³ and a short-term value of 4.0 mg/m³ (twice the worst-case 8-hour TWA).

Hughson and Cherrie (2001) studied dermal exposure to zinc in a number of facilities producing zinc compounds. The measurement method was repeated wet wiping of the skin at a number of places considered representative of the skin area. The recovery of the method was found to be around 100%. The study was done in two surveys. In Survey 1, the sampling for hands was done by wet wipes from the back of the hand only. In Survey 2, the palm of the hand was sampled too. Furthermore, in Survey 2, the sample for the chest was placed further from the 'V' of the neck, because this sample was intended to represent exposure underneath clothing. The measured values, expressed as $\mu g \operatorname{zinc/cm}^2$, were recalculated into mass of zinc by multiplication with the area for which a sample was considered representative (see **Table 4.2**).

In Survey 1 a zinc oxide production plant was studied. In Survey 2 two plants producing zinc dust and zinc oxide and one plant producing zinc oxide only were studied. Hughson and Cherrie

(2001) cluster the results in results for tasks with intermittent direct handling and results for tasks with extensive direct handling. This is done for comparison with EASE. In this risk assessment report the results are, however, clustered per job or task name, with all workers performing a task called "packing", "blending", "pelletising" or "classifying" in the group "high exposure task" and all others in the group "low exposure task". The division in tasks could only be made for plants B and D in the second survey, since the workers in the plant in the first survey and those in plant A in the second survey only had more general tasks (e.g. "operator"). For plants A and B also a clustering of zinc and zinc oxide workers is made.

Results are summarised in Table 4.2.

 Table 4.2
 Results of the measurement of zinc exposure levels (mg zinc) in plants producing zinc oxide and/or zinc dust (Hughson and Cherrie, 2001)

Result	N	Minimum	Maximum	GM	GSD	Remarks	
Survey 1 hands and forearms	15	41.3	587.2	158.6	2.6	zinc oxide plant; for one worker the value for whole body was equal to the value for hands and forearms because of missing samples	
Survey 1 whole body	15	57,8	722,1	251,9	2.2		
Survey 2 hands and forearms	10	141	1,005	513	1.8	all workers plant A	
	6	232	1,005			zinc oxide workers plant A	
	4	141	812			zinc dust workers plant A	
Survey 2 whole body	10	160	1,125	637	1.7	all workers plant A	
	6	569	1,125			zinc oxide workers plant A	
	4	160	822			zinc dust workers plant A	
Survey 2 hands and forearms	8	315	2,216	906	2.2	all workers plant B, except a worker with a missing sample for the forearm	
	2	315	340			furnace operators plant B	
	2	4,448	2,216			zinc oxide high exposure (packing) plant B	
	4	901	1,911			zinc dust high exposure plant B	
Survey 2 whole body	7	413	2,682	1,094	2.2	all workers plant B, except two workers with missing samples	
	2	413	520			furnace operators plant B	
	2	553	2,378			zinc oxide high exposure (packing) plant B	
	3	1,118	2,682			zinc dust high exposure plant B	
Survey 2 hands and forearms	11	121	2,157	472	2.8	all workers plant D	
	6	121	401			plant D low exposure group	
	5	419	2,157			plant D high exposure group	
Survey 2 whole body	11	135	2,369	541	2.7	all workers plant D	
	6	135	565			plant D low exposure group	
	5	439	2,369			Plant D high exposure group	

In general, the exposure was mostly to hands and forearms. However, some workers had considerable exposure of the head/face, neck and/or chest as well.

Task specific exposures were measured 6 times. The results are mentioned in Table 4.3.

Job description	Facility	Dermal exposure (µg zinc/cm²) on hands and forearms
Manual IBC emptying	А	202
Manual IBC emptying	A	319
ZnO packing – 25 kg sacks	В	389
IBC changeover	D	130
ZnO packing – 25 kg sacks	D	49
ZnO packing – 25 kg sacks	D	27

Table 4.3 Task specific dermal exposures to zinc measured in zinc powder (oxide and dust) production facilities

Conclusions

Inhalation exposure

Measured data are available, but details are only mentioned for company B. However, because the data from 4 out of 5 companies appear to agree mostly, the values derived by industry will be used for the risk assessment (as zinc phosphate): 8-hour TWA: 1.8 mg/m³ (used as a typical value), a worst-case 8-hour TWA: 4.7 mg/m³ and a short-term value of 9.4 mg/m³ (twice the worst-case 8-hour TWA). These values are all expressed as zinc phosphate. For recalculation into values expressed as zinc, it is assumed that the substance is all in the bishydrate form.

The following uncertainties should be considered in the evaluation of the MOS. The measured data are very scarce and limited in detail of accompanying information. It is therefore uncertain whether they represent a reasonable picture of the full exposure distribution.

Dermal exposure

For dermal exposure, no data have been submitted. The results for dermal exposure of Hughson and Cherry (2001) are thought to be relevant. It is assumed that the dustiness of zinc phosphate is similar to or slightly higher than that of zinc oxide, although data comparing both substances in one set of measurements are presently lacking and that small differences in dustiness do not have a significant influence on dermal exposure levels. Because of the less proper method for sampling in the first survey, the data from the second survey will be used to draw conclusions on dermal exposure.

The tasks within the factories studied clearly lead to different exposure levels. Therefore the exposure levels were clustered in levels for "high" and "low" exposure tasks. "High exposure tasks" are packing, classifying, blending and pelletising. "Low exposure tasks" are furnace operation, warehouse operation and general operator. For both these clusters of tasks dermal exposure levels will be concluded. Zinc oxide and zinc dust have different particle sizes and different dustiness. The results of the measurements however do not show clear differences between workers in zinc oxide and zinc dust sections of the plants A and B. Therefore, the assessment for dermal exposure in the production of both zinc oxide and zinc dust will be based on the combined results of zinc oxide and zinc dust workers. Six of the eleven "high-exposure

group" workers in plants B and D have dermal exposure levels to zinc of hands and forearms between 1,750 and 2,250 mg zinc. A reasonable worst-case value for hands and forearms is therefore estimated as 2,000 mg zinc. Six of the ten "high exposure group" workers (with full sets of samples) in plants B and D had whole body dermal exposure levels between 1,950 and 2,700 mg zinc. The highest value was found for a worker that had exceptionally high exposure values for head/face and neck. Discarding this outlier, the highest five whole body dermal exposure values in the high-exposure group are between 1,950 and 2,400 mg zinc. A reasonable worst-case value of 2,200 mg zinc (2,740 mg expressed as zinc oxide) is therefore chosen for whole body exposure for the "high-exposure group". Typical exposure levels for the "high-exposure group" are estimated by values close to the GM of exposure levels for this group, i.e 1,200 mg zinc (hands and forearms) and 1,300 mg zinc (whole body, excluding the outlier with very high values for other body parts) (1,620 mg expressed as zinc oxide).

For the "low-exposure group", the reasonable worst-case dermal exposure level for hand and forearms is estimated as approximately 700 mg zinc, a value in the middle of the range of the highest 8 values (of 18 in total). The reasonable worst-case dermal whole body exposure level is similarly estimated as 850 mg zinc. Typical values are estimated as values close to the GM of exposure levels for this group, i.e. 350 mg zinc for hands and forearms and 450 mg zinc for the whole body.

It is assumed that activities of the high-exposure groups (packing, pelletising, blending) also occur similarly in the production of zinc phosphate and that exposure levels to the full powdered product are comparable. Because there are no measured data for zinc phosphate, only an assessment based on the high-exposure group of the zinc powder producing facilities will be made. The results expressed as zinc oxide are also used as values for zinc phosphate (i.e. 100 mg zinc oxide would equal 100 mg zinc phosphate). The following conclusions are reached for dermal exposure in the production of zinc phosphate:

- reasonable worst case: 2,740 mg zinc phosphate; this is approximately 390 mg zinc,
- typical case: 1,620 mg zinc phosphate; this is approximately 230 mg zinc.

The following uncertainties should be considered in the evaluation of the MOS. Measured dermal exposure data are for the production of zinc powders and not zinc phosphate. The assumption that the processes and tasks are sufficiently similar to use these data leads to uncertainty. The dustiness of zinc phosphate may be slightly higher than that of zinc oxide, but data do not allow a direct comparison. If zinc phosphate is dustier, this may indicate a slight underestimation of levels by using zinc oxide data. However, the measured data for zinc oxide and for the substantially dustier zinc dust are very similar. Therefore the influence of dustiness on dermal exposure is probably too small to be of relevance in this case.

4.1.1.2.2 Scenario 2: Production of paint

Zinc phosphate is used as an active anti-corrosive pigment in primers and paints. The total amount of zinc phosphate in paints is assumed to range to a maximum of 5% of the paint. The possible use of zinc phosphate in other industries is supposed to be similar to the manufacture of paint because the process consists mainly of mixing zinc phosphate with other substances to form an intermediate or end product, though the amount of zinc used is probably less and estimated to be not more than 5%. Manufacture of paint in this scenario may serve as a reasonable worst case.

Measured data

There are no measured data for zinc phosphate during the manufacture of paint. Measured data for zinc oxide or dust during the handling of zinc oxide in the manufacture of rubber, ceramics, ferrites and paint have been gathered by industry. In the tire industry data from 27 plants were compiled to a so-called "median plant". Exposure of workers is mentioned to be up to 50% of the working time and exposure levels of ZnO are reported to be 0.5 mg/m³. A "median plant" has also been constructed from 14 plants who have answered questions for the general rubber industry. Exposure is reported for up to 30% of working time with total dust levels of 5.9 mg/m³ and ZnO concentration of 1.5 mg/m³. The data from several industries are presented in **Table 4.4** (Industry, 1999).

Industry	n	Duration	Exposure levels (mg/m³)*	References and remarks	
Frits, enamals and ceramic pigments	212	n.g.	206 values < 0.8		
Ferrites	n.g.	n.g.	< 0.1	no details presented	
Ferrites (specific company)	n.g.	n.g.	0.18-0.92	ZnO delivered in big bags exposure levels measured in several parts of the plant	
Catalysts	n.g.	8 hours	0.1-2 0.5 (typical)	(at plant opperations and bag unloading)	
Catalysts (specific company)	108	180-510 min	0.001-6.13 0.16 (GM) 6.8 (GSD)	90^{th} percentile calculated from GM and GSD as 1.9 mg/m 3	
Ceramics (one specific company)	n.g.	8 hours	1-7 (dust) with 10-14% ZnO	ZnO loaded from bulk transport to bulk storage	
Feedstuff additives	n.g.	8 hours	< 5	no details presented	

 Table 4.4
 Exposure to Zn or dust in several industries during the use of ZnO (Industry 1999)

* Exposure levels generally expressed as amount of Zn/m³

Data provided by the paint industry are presented in Table 4.5.

Table 4.5	Exposure to total dust in the production of paint	(CEPE 1998)
-----------	---	-------------

Set	Situation	n	Duration of sampling (min)	Results (mg/m³)	Exposure calculated over 8 hours (mg/m³)
A	Emptying ZnO form big bags into dispensers	3	22-33	2.6-4.9	0.17-0.28
В	Loading powders from 25 kg bags into dispensers	19	< 30	n.g.	0.01-1.5, average 0.29
С	Loading powders from big bags into dispensers	12	< 30	n.g.	0.01-1.34, average 0.27
D	Bag disposal	n.g.	n.g.	average 1.04 maximum 2.2	n.g.

n.g. = not given

These results are for total dust. The ZnO content in the dust is unknown.

In a recent study on the exposure to inhalable dust during loading of powders into mixers in 10 different facilities both exposure during loading and full-shift exposure were measured (Marguart et al., 1999a). All mixers were equipped with LEV, that was observed to function properly in all but one situations. A variety of powders were loaded (not including ZnO), generally from 25 kg bags, but in some cases also from big bags or drums. Exposure levels of inhalable dust averaged over all loading tasks of one worker ranged from 1.9 to 27.6 mg/m³. Duration of total loading tasks varied from 20 to 222 minutes and the amount of powder loaded by one worker during the shift from 330 to 11,369 kg. Full-shift exposure levels to inhalable dust measured ranged from 0.8 to 12.1 mg/m³. Measurements related to ZnO from other industries where ZnO is mixed into products (e.g. rubber, ceramics, surfactants) are reported as medians over 8 hours of < 0.1-1.5 mg/m³ and ranges over up to 8 hours of < 0.2-6 mg/m³ with short-term exposure levels in one facility during loading of 2.5-5 mg/m³ (CEPE, 1998). Industry submitted data that show that zinc phosphate (one product) is substantially less dusty than one product of calcium carbonate (Mikhart M40) with dust levels as measured with the Heubach dustmeter of 8-11 mg/100 g for zinc phosphate and 182-197 mg/100 g for calcium carbonate. Data submitted by the ZnO producers report a dust production of 200-350 mg/100 g for the same calcium carbonate product.

The exposure mainly takes place when the compound is added as a solid. For bag filling and bag dumping "reasonable worst-case" estimates in the presence of LEV with limited effectiveness were deduced of 1.8 and 10 mg/m^3 (respirable and total dust concentrations during bag filling) and 10 mg/m^3 (total dust concentration during bag dumping (Lansink et al., 1996a)).

Dermal exposure data for zinc oxide production are also available. Hughson and Cherrie (2001) carried out measurements in a wide range of zinc production facilities. Five different factories were surveyed in the categories zinc refinery, manufacture of zinc products (including zinc oxide, zinc dust and zinc powder), and galvanising. One company produced zinc oxide only, two other factories produced zinc products, one of which was zinc oxide. The two other companies produced zinc powder products. Exposure was determined in μ g zinc per cm². In the three factories that are assumed to be relevant for this scenario (A, B and D), packing activities were selected during the production of zinc oxide. The mentioned job descriptions were zinc dust packing or zinc oxide packing or just packing. Measured concentrations on the hands and forearms ranged from 206-1,092 μ g/cm². Measurements on calcium carbonate in the paint industry (Lansink et al., 1996b) show that manual dumping of bags leads to higher exposure levels than handling closed bags, manual weighing and discarding of emptied bags. Exposure levels for calcium carbonate in that study were 123-4,214 mg. The 90th percentile for manual dumping was 3,000 mg/day (n = 19 for manual dumping).

The measurement method used (gloves) may have resulted in overestimation of exposure levels.

Models

Inhalation exposure to dust for dumping of powders is calculated with the EASE model (TGD, 1996) as $2-5 \text{ mg/m}^3$ assuming aerosol formation during dry manipulation and the presence of LEV.

Dermal exposure for dry manipulation of the substance (non-dispersive use, LEV present and extensive use) was calculated as 1-5 mg/cm²/day. When the palms of both hands are exposed (surface area 420 cm²) dermal exposure is 420-2,100 mg/day.

Conclusions

CHAPTER 4. HUMAN HEALTH

Inhalation exposure

Several sets of data are available that are considered relevant for the production of paints containing zinc phosphate. The data presented by various users of zinc oxide are variable in detail. Some appear to relate to "typical exposures" and some other sets are more detailed and also present the full range for the facility measured. The data from the paint industry appear to relate to one facility producing anti-fouling paints and are partly related to ZnO and partly to powders in general. In general, undetailed information is presented by industry sectors, while detailed information is available from single companies. Where detailed data are available, they are not all fully consistent with the summarised industry sector data. It is therefore very difficult to assess the representativeness of the data for the full industry sectors. The data from Marquart et al. (1999) were all measured for other substances than zinc phosphate and included both coarse granular substances and fine powders, often within one measurement. This study shows that there is remarkable variation in exposure levels, at least partly due to differences in powders handled. The study also shows, that exposure is not negligible during other activities than loading (e.g. manual weighing and other handling of powders). Based on the literature survey by Lansink et al. (1996a) and the study by Marquart et al. (1999) it can be concluded that exposure levels can be as high as 20 mg/m³ during manual handling of large amounts of dusty powders and up to 10 mg/m³ for an 8-hour shift. Measurements related to another zinc compound (ZnO) are reported as medians over 8 hours of $< 0.1-1.5 \text{ mg/m}^3$ and ranges over up to 8 hours of $< 0.2-6 \text{ mg/m}^3$ with short-term exposure levels in one facility during loading of 2.5-5 mg/m³. The model EASE presents 2-5 mg/m^3 as the exposure level for manual handling of powders with LEV. The dustiness of zinc phosphate is assumed to be comparable to that of zinc oxide. The zinc oxide estimates can therefore be used for zinc phosphate as well. It is concluded that reasonable worst-case exposure levels during loading of zinc phosphate from bags (up to 4 hours per day) is comparable to the levels estimated for zinc oxide in the same scenario and may be up to 5 mg/m³ and that the reasonable worst-case full-shift exposure level is up to 2.5 mg/m³. Shortterm exposure levels (e.g. 15 minutes) are expected to be up to 10 mg/m^3 . For a typical value for inhalation exposure the value of 1 mg/m^3 is used, taken from the median values mentioned by industry for ZnO. All these values are expressed as mg zinc phosphate/m³.

Dermal exposure

Two sets of data are available for situations that are somehow analogous to the situation to be assessed. The data by Hughson and Cherrie (2001) are for a zinc compound, but for a process that is different from the assessed process. The data on calcium carbonate from Lansink et al. (1996b) are for another substance, but for the process to be assessed. A difference between the studies is, that the data from Hughson and Cherrie are for a full shift, while the data from Lansink et al. are for one batch of paint. The data on calcium carbonate could therefore underestimate full shift exposure levels. It is not known how many batches of paint are made per day using zinc phosphate, but a number of batches above two is not expected. On the other hand, calcium carbonate may have a different dustiness than zinc phosphate and this may lead to overestimation of exposure to zinc phosphate by the calcium carbonate data if zinc phosphate is substantially less dusty. A comparison of dermal exposure in the production of zinc oxide and zinc dust (that is of substantially lower dustiness than zinc oxide) does not show clear differences due to dustiness. The measurement method of Lansink et al. (1996b) – cotton gloves - may have led to an overestimation of the true exposure levels because powder may adhere better to cotton than to bare skin. A comparison on the basis of the measured values shows that

the estimates of reasonable worst case based on Hughson and Cherrie (2001) and Lansink et al. (1996b) are comparable: 2,740 mg zinc oxide for high exposure tasks in the production of zinc oxide or zinc dust and 3,000 mg calcium carbonate for dumping into mixers. The typical value is lower for dumping of calcium carbonate: 900 mg versus 1,300 mg zinc (i.e. 1,620 mg zinc oxide) for high-exposure tasks in the production of zinc oxide or zinc dust. No information is available to show what possible bias in measurement method, process, number of batches or substance characteristics is more influential. Therefore, the most conservative of the two available analogous 90th percentiles is taken forward to the risk characterisation: 3,000 mg zinc phosphate/day (i.e. 430 mg zinc/day). Similarly, the most conservative of the two available typical values is taken forward to the risk characterisation: 1,620 mg zinc phosphate/day (i.e. 230 mg zinc/day).

The uncertainties that should be considered in the evaluation of the MOS are largely mentioned above. Although the repeated sampling by wet wipes may also overestimate exposure levels (due to the prevention of a possible "sloping effect"), this is not likely to be very important in this case, since the total level of contamination per cm² is still clearly below values that were considered to represent the maximum adherence of powders to the skin by SAIC (1996). The value of 3,000 mg is 1.5 mg/cm² for a 2,000 cm² surface area, while SAIC concludes that the maximum adherence of powders is approximately 10 mg/cm², based on literature studies. The process of dumping powders from bags is considered to lead to higher dermal exposure than the filling of bags, due to the higher powder/air interaction in dumping and possible direct contact of the flow of powder with the skin. The reasonable worst-case and typical values may therefore be underestimated by the values taken forward to risk characterisation.

The frequency of exposure is estimated to be up to 200 days per year.

4.1.1.2.3 Scenario 3: Use of paint

The worst-case exposure to zinc phosphate, using zinc containing products is represented by the use of paint applied as a spray. No measured inhalation or dermal exposure data for zinc phosphate in paints are available. An alternative approach is used based on exposure to other substances (De Pater et al., 1998). Several literature sources have been studied regarding exposure levels for solid substances (or very low vapour pressure liquids) during spray painting. From these sources two general approaches have been derived for estimation of exposure levels.

1) $E_s = 50 \cdot C_s / 75$

where: E_s = the estimated exposure level for the notified substance;

- 50 = the estimated reasonable worst-case exposure level "total dust";
- f_s = the percentage of notified substance in total solids of the paint;
- 75 = the reasonable worst-case percentage of "total solids" in paints.

General assumptions in this approach are:

- measured "total dust" consists of only non-volatile compounds,
- the ratio substance/total dust = ratio substance/solids in paint.

A further assumption regarding the percentage of total solids in the specific paint may be necessary.

2) $E_s = 10 \cdot C_s/30$

where: E_s = the estimated exposure level for the notified substance; C_s = the percentage of the notified substance in total paint; 30 = the percentage of polyisocyanates in total paint; 10 = the estimated reasonable worst-case exposure level for polyisocyanates.

General assumptions in this approach are:

- both the notified substance and the polyisocyanates are non-volatile,
- the ratio substance/polyisocyanates in paint mists equals the ratio substance/polyisocyanates in total paint. A comparison by cross-referencing of both approaches shows more or less similar results. Due to the somewhat better overall quality of the data set for polyisocyanates, the approach based on measurements for these compounds was considered to be most reliable.

An equation for a typical combination of percentage of polyisocyanates and typical exposure levels was derived from the same data and was $E_s = 1 \cdot f_s/10$.

Calculations for this substance:

• the percentage of zinc phosphate in paints is assumed to be up to 5%. The 8-hour TWA is calculated as $E_s = 10 \cdot 5/30 = 1.7 \text{ mg/m}^3$ (reasonable worst-case) and the short-term exposure as twice this level = 3.4 mg/m³. The typical exposure level is calculated as $E_s = 1 \cdot 2/10 = 0.2 \text{ mg/m}^3$, with a value of 2% taken for a typical percentage of zinc phosphate in paints.

For dermal exposure the results of measurements done for spray coating of containers with anticorrosive paints can be used in the analogy approach. Lansink et al. (1998) measured potential dermal exposure levels of professional painters in the off-shore industry, using the airless spray painting technique to paint a container. The outside of a container was painted in total 21 times and the inside only 5 times. Twelve painters participated. The paint was specially mixed to contain no pigment, but a small percentage of fluorescent tracer. The amount of tracer on the skin and coverall was determined after spraying using a fluorescent imaging and data analysis system. After approximately 10 minutes of spraying, a 90th percentile of 22 µg of tracer was found on hands and face. Linearly extrapolating from the percentage of tracer (0.0074%) and the duration of painting (10 minutes) up to the full substance (100%) and 3 hours of painting, the total potential exposure to paint after 3 hours is estimated to be 5,350 mg for hands and face. With a surface area of approximately 1,300 cm², this is approximately 4.1 mg/cm²/day (Marquart et al., 1999b). Using these measurements to conclude on the exposure to zinc phosphate (5% in paint), the estimated reasonable worst-case exposure to zinc phosphate in paint spraying is $0.05 \cdot 4.1 = 0.2 \text{ mg/cm}^2/\text{day} \cdot 1,300 \text{ cm}^2$ is approximately 260 mg/day (equal to 111 mg Zn/day).

Models

Spraying of paint may lead to inhalation and dermal exposure. EASE is however considered unsuitable for estimating inhalation exposure due to spray coating. The option of "aerosol formation" in the estimation of exposure to liquids is aimed at accounting for the increased evaporation due to fine dispersion of liquids in the air. The spraying of paint is also clearly not "dry manipulation of solids" and can hardly be considered a "low dust technique".

The dermal exposure is estimated as extensive contact, wide-dispersive use and direct handling of the substance. With an exposed surface of $1,300 \text{ cm}^2$ (both hands and forearms) and a

calculated exposure of 5-15 mg/cm²/day the result is 6,500-19,500 mg/day. With a maximum of 5% zinc phosphate of the paint exposure is calculated to be up to $0.05 \cdot 19,500 = 975$ mg/day.

Conclusions

Inhalation exposure

For the use of paints containing zinc phosphate the calculations on the basis of the analogy will be used for inhalation exposure, as the EASE model in this case overestimates exposure. For inhalation exposure during spray coating the calculated value of 1.7 mg/m³ is taken as a reasonable worst-case value for inhalation exposure with a short-term exposure of 3.4 mg/m³ (expert judgement). Although spray coating may be done in some cases up to 7 hours per day, it is assumed that the combination of such a long duration of exposure with the reasonable worst-case exposure levels is highly unlikely. Therefore, the reasonable worst-case full-shift exposure level is calculated with a duration of spray painting of 4 hours to be 0.9 mg/m³. The typical 8-hour TWA exposure level is estimated based on the same data and approach as 0.2 mg/m³. These estimates are all expressed as zinc phosphate bishydrate.

The following uncertainties should be considered in the evaluation of the MOS. The measured data reported in literature are not accompanied by detailed information on percentage of substance, amount used and other determinants of exposure. The model used is therefore a rather crude model. It was constructed to be relatively conservative, though comparison of the model results with measured data on "total dust" in spray coating suggests that higher levels are possible. However, this indicates that the estimated levels are not highly unlikely. The percentage of zinc phosphate used is also chosen as a reasonable worst-case. If paints with substantially higher or lower percentages are used, the estimate may under- or overestimate exposure levels.

Dermal exposure

Dermal exposure is estimated from the analogy approach to be 260 mg/day. The substantial potential exposure to other parts of the skin than hands and face is in this case disregarded, since these parts will be covered by at least two layers of clothing (normal working clothing and coverall).

The use of PPE (coveralls, gloves and respirators) is common in the spraying of paint. However, it is known that PPE is not always worn consistently. In a study by Preller et al. (1998) RPE was not worn during 9% of the total spray painting time of 25 workers (no details presented on distribution over workers). In 5 car body repair shops workers did not wear either RPE or gloves during 3-38% of the spray painting activities (De Pater et al., 1998). A proper regime of storage, replacement and maintenance of PPE is necessary for a proper effect of PPE. Such a regime is not expected to be in place in many spray painting facilities. Therefore, the use of PPE is not accounted for in the exposure assessment.

The following uncertainties should be considered in the evaluation of the MOS. The dermal exposure data were gathered in an experimental study. However, they were gathered in facilities that would be expected to use the relevant types of paint. Due to the study method, there is a substantial extrapolation from the measured results to the estimate, both in duration of spraying and in the percentage of substance. This leads to substantial uncertainty regarding the estimate of exposure.

The total duration of exposure is estimated to be up to 7 hours per day, with a frequency of up to 200 days per year. However, since exposure to the reasonable worst-case exposure level is not expected during the maximum exposure duration, the full shift exposure level is calculated based on 4 hours.

Short-term peaks are assumed to occur during up to 15 minutes.

Scenario	Activity	Frequency (days/year)	Duration (hours/day)	Inhalation exposure as zinc phosphate / (zinc)			Skin exposure as zinc phosphate / (zinc) ‡* (mg/day)		
				Reasonable worst-case (mg/m³) ‡	Method	Typical exposure (mg/m³)‡	Method	Reasonable worst- case	Typical
1) Production of zinc phosphate	full shift short term	100-200 100-200	6-8 0.25	4.7 (0.7) 9.4 (1.5)	measured	1.8 (0.3)	analogy	2,740 (390)	1,620 (230)
2) Production of paint	dumping full shift short term	100-200 100-200 100-200	2-4 8 0.25	5 (0.8) 2.5 (0.4) 10 (1.5)	analogy calculated expert	1 (0.2)	EASE/ calculated	3,000 (430)	1,620 (230)
3) Use of paints containing zinc phosphate	spray painting full shift	100-200 100-200	2-4 8	1.7 (0.3) 0.9 (0.1)	analogy calculated	0.2 (0.03) n.e.	analogy	260 (37)	n.e.
	short term	100-200	0.25	3.4 (0.5)	expert/analogy				

EASE = calculation with the EASE model

Expert = expert judgement

Analogy = based upon measured data for other substances in similar use situations

Calculated = calculated based on 4 hours of exposure at the exposure level at the specific activity and negligible exposure during the remainder of the 8-hour shift

n.e. = not estimated

‡ Data without parenthesis are expressed in mg zinc phosphate /m³, data between parenthesis are expressed in mg zinc; recalculation is done by dividing through the molar weight of zinc phosphate (422.1) and multiplying with the molar weight of zinc (65.38).

* Primarily based on measured data for production of zinc oxide, except for the estimate for use of paints that is based on measurements of a non-volatile marker substance in paint spraying containers in the off-shore industry, extrapolated to 3 hours of painting, assuming 5% of zinc phosphate in the paint

4.1.1.3 Consumer exposure

Two countries gave some information on the consumer products containing zinc phosphate, but without quantitative data or more specific uses. According to the Danish Product Register (1996) zinc phosphate is used in paint, laquers and varnishes, corrosion inhibitors, and surface treatment. In Sweden zinc phosphate appears to be used in fillers, paints (also anti-corrosive paints), lacquers, and varnishes. In these products the percentage of zinc phosphate ranges from 0 to 20%.

Apparently zinc phosphate is used in several consumer products, but no details on concentration and specific use pattern were given, which makes it difficult to predict consumer exposure. Furthermore, the total daily exposure to zinc can be higher by the use of consumer products containing other zinc compounds. Zinc compounds are also known to be used in dietary supplements, which consumers can buy over the counter.

More specified information was found for zinc compounds used in the product categories paint, cosmetics and drugstore products (VVVF, 1996; Natuur en Milieu, 1984; Annema, 1988; Rundervoort, 1992; KNMP, 1996). The default-values for paint, cosmetics and drugstore products are according to the TGD (1996) or, where no defaults are available, according to the Factsheets "verf" (paint) (Bremmer and van Veen, 2000) and "cosmetica" (cosmetics) (Bremmer et al., 2001). These factsheets are developed in order to refine the CONSEXPO program. The calculations are in accordance with the TGD (1996). For the separate use scenarios, based on the default-values found, the assumption is made that there is no uptake through inhalation when using these products and that the dermal absorption of the zinc compounds from any of the consumer products considered will be 2% for zinc solutions/suspensions and 0.2% for zinc dust/powder (see also Section 4.1.2.2.6).

<u>Remarks</u>

The section below is identical for all six zinc compounds evaluated under EU Regulation 793/93. Specific information is available for five of the six zinc compounds under evaluation (zinc phosphate, zinc distearate, zinc oxide, zinc chloride and zinc sulphate), as well as for some other zinc compounds not under evaluation. The latter information has also been included, because consumers (knowingly or unknowingly) at the same time can be exposed to several zinc-containing products, and irrespective of the original zinc compounds in these products, exposure will ultimately be to Zn^{2+} .

Paint

- Anti-corrosive primer containing 30% zinc phosphate, Assuming a frequency of 0.5 events/year with a dermal exposure of 2.7 g (paintbrush) or 10.8 g (spraying; roughly estimated as 4 · paintbrush) primer/event, the maximum exposure will be 1.62 g zinc phosphate/year ≈ 2.25 mg Zn²⁺/day. With a dermal absorption of 2% the uptake is estimated to be 0.045 mg Zn²⁺/day.
- Impregnating agent containing 40% zinc naphthenate. Assuming a frequency of 0.5 events/year with a dermal exposure of 2.7 g impregnating agent/event, the exposure will be 0.54 g zinc naphthenate/year ≈ 0.44 mg Zn²⁺/day (percentage of zinc in zinc naphthenate is estimated at 30%). With a dermal absorption of 2% the uptake is estimated to be 0.0088 mg Zn²⁺/day.

Cosmetics

- Eye shadow containing 10% zinc distearate (it mainly concerns glossy, emulsion-like eye shadows). By an application of 10 mg/event for 3 times/day, the exposure to eye shadow is 30 mg/day, which contains 3 mg zinc distearate ≈ 0.31 mg Zn²⁺/day. Assuming a dermal absorption of 2% the uptake is estimated to be 0.0062 mg Zn²⁺/day.
- Sunscreen containing 10% zinc oxide (refers to a protection factor 20-25!). By an application of 9 g sunscreen/event, 3 events/day during 18 days/year the exposure will be 1,332 mg sunscreen/day, being 107 mg Zn^{2+}/day . Assuming a dermal absorption of 2% the uptake is estimated to be 2.14 mg Zn^{2+}/day .
- Deodorant containing 10-20% large organic zinc compounds, but apparently no ZnO. The dermal exposure is 3 g or 0.5g/event by using a spray or a roll-on, respectively. In both cases the use is once a day. Maximum dermal exposure to deodorant is 3,000 mg/day \approx 300 mg zinc compounds/day \approx 30 mg Zn²⁺/day (percentage of zinc in these zinc compounds is estimated at 10%). Assuming a dermal absorption of 2% the uptake is estimated to be 0.6 mg Zn²⁺/day.
- Dandruff shampoo containing 5% zinc compounds such as zinc pyrithione and zinc omadine (5% is estimated based on other active components in dandruff shampoos). By a usage of 12 g shampoo/event for 4 times/week, the dermal exposure to shampoo will be 6,800 mg/day with a content of 340 mg zinc compounds. Assuming that 10% of these compounds consist of zinc and that the dermal absorption is 2%, the uptake via the use of dandruff shampoo will be 0.68 mg Zn²⁺/day.

Drugstore products

- "Baby care" ointment containing 15% zinc oxide for the irritated skin (intensive ointment) or 5% zinc oxide for protective treatment when changing diapers. The assumption was made that the usage will be 50 g of the intensive ointment/year, leading to a dermal exposure of 7.5 g ZnO/year ≈ 16.5 mg Zn²⁺/day. Assuming a dermal absorption of 2% the uptake is estimated to be 0.33 mg Zn²⁺/day.
- Gargle containing 6.88 mg zinc chloride/ml. Assuming a use of 10 g gargle/event (\approx 10 ml/event), 4 times/day for 4 weeks/year, the exposure during these 4 weeks will be 1,120 g gargle/year \approx 3.1 g gargle/day, which is \approx 10 mg Zn²⁺/day. Assuming that almost nothing will be swallowed, there is only buccal uptake via the mucous membranes. As the contact time is very short, the uptake is assumed to be very limited. Hence, with an arbitrary absorption value of 2% the uptake is estimated to be 0.2 mg Zn²⁺/day.
- Eye drops containing 0.25% zinc sulphate (2.5 mg/ml). The assumption was made that the usage will be 2 eye drops (0.025 ml/drop)/event, 6 times/day during 4 weeks/year, leading to an exposure of 8.4 ml eye drops/year \approx 23 mg eye drops/day \approx 0.058 mg zinc sulphate/day \approx 0.023 mg Zn²⁺/day. Assuming an absorption of 2% the uptake is estimated to be 0.00046 mg Zn²⁺/day.
- Zinc oil containing 60% ZnO, which is merely used medically for the treatment of skin disorders. The assumption was made that the usage will be 100 g/year, leading to an exposure of 60 g ZnO/year ≈ 0.131 g Zn²⁺/day. Assuming a dermal absorption of 2% the uptake is estimated to be 2.62 mg Zn²⁺/day.

Remark: It is noted that with skin disorders uptake might be higher than 2%. However, how much more is not known. Besides, it is not expected that the possible higher amount absorbed will disturb the homeostatic balance (see also Section 4.1.2.2.5).

• Dietary supplements containing zinc. Results from a recent report on the food intake of the general population in the Netherlands (Hulshof et al., 1998) indicate that approximately 10% of the population uses dietary supplements, which amongst others can contain zinc. As it is not known how much zinc-containing dietary supplements are used and in what frequency, it is difficult to estimate the exposure to zinc from dietary supplements from this report.

A dietary survey in the UK showed that < 1-3% of the participants in different age groups took zinc supplements, providing median zinc intakes of 0.3-3.4 mg/day. However, the contribution of this supplemental zinc intake to the population average zinc intakes from food and supplements combined was negligible (EVM, 1999).

Conclusion

The compound specific exposure estimates for the different zinc compounds are taken across to the risk characterisation. However, the total daily exposure to zinc can be higher since several zinc compounds are used in consumer products. Not all of these products are used regularly or at the same time (see above). It is assumed that dandruff shampoo, deodorant, eye shadow, and possibly baby care ointment will be used on a regular basis (more than once a week), resulting in a cumulative uptake of approximately 1.6 mg Zn^{2+}/day . Therefore this value will be also be taken across to the risk characterisation, as this is a more realistic calculation of the daily consumer exposure to zinc.

4.1.1.4 Humans exposed via the environment

It should be noted that in this section the zinc cation is discussed, not the salt from which it originates.

4.1.1.4.1 General exposure

The most important exposure to zinc for the general population is by the ingestion of foods. Especially meat and meat products, milk and milk products, bread and starchy foods contribute to the dietary zinc intake. The average dietary intake of zinc by adults in nine European countries was reported to be 9.1-12.3 mg/day. Only for adult males in Germany and Italy a higher daily dietary intake of 14-15 mg/day was reported (Van Dokkum, 1995). These figures are confirmed for the Netherlands in a recent report on the food intake of the general population (Hulshof et al., 1998): the average daily intake of zinc is 9.4 mg with a minimum of 0.6 mg and a maximum of 39 mg. The 95th percentile value is 15.4 mg (P₅ = 4.7, P₁₀ = 5.5, median = 9.0, P₉₀ =1 3.8). The intake figures are based on a random group of 6,250 persons.

The differences in zinc intake vary due to source and variety of the food.

An epidemiological study has been carried out by Kreis (1992) in which the health effects of cadmium (and zinc) were investigated in a contaminated area in the southern part of the Netherlands (Kempenland). A population sample aged 30-69, with a residence of at least 15 years in a rural village in Kempenland (NL) was compared with a control population of an unpolluted area. About 75% of the inhabitants of both areas consumed at least half of their

vegetables from local gardens. The plasma concentration of zinc did not differ between the exposed (n = 299) and the reference population (n = 295) after adjustment for age and gender. The author concluded that, in contrast to cadmium, zinc exposure probably did not differ between the two villages.

In the section on measured regional data in the environment in the risk assessment report on zinc metal, national monitoring data are presented for groundwater, surface water and air. In the following a compilation of these data is given. Via the National Soil Monitoring Network maximum zinc concentrations in upper groundwater of 1.1 mg/l (cattle farms) and 3.1 mg/l (forest locations) have been reported in the Netherlands. Recent zinc concentrations in large surface water in the Netherlands are found to be all below 0.1 mg/l. Recent atmospheric zinc concentrations in the Netherlands are below 0.1 μ g/m³ (annual averages). Higher concentrations, up to 14 μ g/m³, were reported for Belgium (older data).

Under normal conditions, drinking water and ambient air are minor sources of zinc intake. Cleven et al. (1993) estimated the intake by drinking water and ambient air to be < 0.01 mg/day and 0.0007 mg/day, respectively. The monitoring data above indicate somewhat higher intakes, but it is to be noted that nowadays in the EU upper groundwater and large surface water are not directly representative for drinking water. In the Netherlands, monitoring of zinc in drinking water is ceased (at water companies) or about to be ceased (at pumpstations) (personal communication by RIVM-LWD, 1999).

Conclusion

The recent average dietary intake of zinc is around 10 mg/day. This value is taken across to the risk characterisation. Compared to this intake via food, intake via drinking water and ambient air is considered negligible.

4.1.1.4.2 Local exposure

Estimated local zinc concentrations in water and air around industrial facilities

In surface water maximum local zinc concentrations (PEC_{add}s) of 1.23 μ g/l and 175 μ g/l (total zinc) have been estimated for the production and processing of zinc phosphate, respectively (see Section on local exposure assessment in the environmental part).

Maximum atmospheric zinc concentrations (PEC_{add}s) are 0.285 μ g/m³ and 2.51 μ g/m³, for production and processing, respectively (see Section on local exposure assessment in the environmental part).

Conclusion

The PEC_{add}s mentioned above are taken across to the risk characterisation.

4.1.2 Effects assessment: Hazard identification and Dose (concentration) - response (effect) assessment

4.1.2.1 Introduction

Basic assumptions

Large parts of the hazard section are identical in the risk assessment reports on the six zinc compounds now under review under EU Regulation 793/93. This because of the basic assumption that the zinc cation (as measure for dissolved zinc species) is the determining factor for systemic toxicity.

It is realised that for zinc (and other metal) compounds it would be important to define the actual or bioavailable concentration which is important for toxicity, both in laboratory animals and in humans. Due to several physico-chemical processes, zinc will exist in different chemical forms, some of which are more bioavailable than others. It is thus realised that the bioavailability is affected by various physico-chemical parameters (ionic behaviour, solubility, pH, alkalinity etc.). Although there is some information on the solubility of the six zinc compounds (they are soluble in water (sulphate, chloride) or in diluted acids (phosphate, distearate and oxide) and elemental zinc is attacked by HCl to yield Zn^{2+} (Windholz et al., 1983), adequate information is lacking how to quantitatively determine or estimate the bioavailable fraction of all the different zinc compounds in either laboratory animals or humans. Therefore, it is assumed that all zinc compounds (including metallic zinc) are changed (at least in part) to the ionic species (cf. TGD for environmental risk assessment for metals and metal compounds), and all toxicity data (independent of the tested compound) were used and expressed as the zinc cation.

With respect to local effects, it is not always possible to use data from all zinc compounds. Hence, for local effects only data from the specific zinc compound were used, or, where there were derogations, data from zinc compounds with more or less the same solubility characteristics.

A problem might arise for the route-to-route extrapolation for inhalation and dermal exposure, since the differences in physico-chemical properties of the zinc compounds can change the toxicokinetics (absorption) and subsequently the toxic effects. Although it is possible to predict the systemic effects after inhalation or dermal exposure from oral toxicity data of the zinc compound itself or other zinc compounds, this is only justifiable after careful consideration of all available data to establish adequate extrapolation factors.

Furthermore it is assumed that the influence of the background intake levels of zinc cations in animal studies will be the same for humans.

Database

A lot of information was provided by industry. Much additional data on zinc and zinc compounds have been published, some of which is referred to in good quality reviews by ATSDR (1994) and Walsh et al. (1994). By using these reviews plus (where relevant) the primary literature, it is felt that in the risk assessment reports most of the essential data to establish possible hazards/risk of zinc for human health have been covered. As not for all studies mentioned in the risk assessment reports the primary literature has been checked, some studies have been described in less detail than others. In the text of the risk assessment reports,

information cited from reviews is marked by a (r) after the reference. This information is not included in the hedset.

4.1.2.2 Toxicokinetics, metabolism and distribution

No data were provided on the toxicokinetics of zinc phosphate. Data on other zinc compounds have been used, as the basic assumption is made that after intake all zinc compounds (including metallic zinc) are changed (at least in part) to the ionic species and that it is this zinc cation that is the determining factor for the biological activities of the zinc compounds (see Section 4.1.2.1).

4.1.2.2.1 Absorption

Oral

Studies in animals

Furchner and Richmond (1962) added zinc acetate to the diet of Sprague-Dawley rats (9/group) to reach concentrations of Zn of 58 (no zinc acetate added; normal concentration in "control" feed), 117, 175, 293, 410 or 664 mg/kg via the feed, corresponding to ca. 3, 6, 9, 14.5, 20.5 or 33 mg Zn/kg bw. After 28 days the unfasted animals were dosed with 1.2 μ Ci of ⁶⁵ZnCl₂ (ca. 0.15 ng). Whole-body radioactivity was determined at various time points up to 11 days post dosing using a whole-body gamma counter.

In the group which received the non-supplemented diet (i.e. 58 mg Zn/kg feed) ca. 20% of the administered radioactivity was retained at 24 h post dosing which gradually decreased to about 9% at day 11. The amount of radioactivity retained at 24 h post dosing declined with increasing dietary zinc levels to about 13% for the group with the highest dietary zinc. In this group after 11 days only ca. 2.3% of the administered radioactivity was left. The data indicated that low dietary zinc results in increased zinc retention and that at higher dietary zinc levels absorption of zinc is reduced.

After a pre-exposure period of 7 days, male Wistar rats, kept on a semi-synthetic diet, were dosed orally with 86-130 μ g ⁶⁵Zn as ZnCl₂ (n = 15), ZnCO₃ (n = 15) or Zn₅(OH)₈Cl₂·H₂O (n = 20) added to a test meal. It was assumed that during the first 5 days post dosing non-absorbed zinc was excreted via the faeces. Absorption of labelled Zn²⁺ was calculated from *in vivo* whole-body gamma counting results over the period 5-14 days post-dosing. The uptake was calculated to be 40, 45 or 48% for Zn₅(OH)₈Cl₂·H₂O, ZnCl₂ and ZnCO₃, respectively (Galvez-Morros et al., 1992).

Studies in humans

A wide range in absorption (8-80%) is observed in humans, probably due to the amount and type of food eaten (Hunt et al., 1991(*r*); Reinhold et al., 1991(*r*); Sandstrom and Sandberg, 1992(*r*)). Persons with adequate nutritional levels of Zn^{2+} absorb approximately 20-30% of all ingested Zn^{2+} . Those who are zinc-deficient absorb greater proportions of administered Zn^{2+} (Johnson et al., 1988(*r*); Spencer et al., 1985(*r*)), while in persons with excessive zinc intake gastrointestinal uptake can be less (Babcock et al., 1982).

 Zn^{2+} absorption in the gastrointestinal tract occurs throughout the entire small intestine with the highest rate in the jejunum and the rate of total absorption appears to be concentration dependent (Lee et al., 1989(*r*)).

The Zn^{2+} absorption process in the intestines includes both passive diffusion and a carrier-mediated process (Tacnet et al., 1990(*r*)). At low zinc concentrations a cysteine-rich intestinal protein (CRIP) is involved in this process. This protein binds Zn^{2+} entering the intestinal cells from the lumen but this process appears to be saturable. Metallothionein, a metal binding protein (also rich in cystein), may be involved at higher zinc concentrations (Gunshin et al., 1991(*r*); Hempe and Cousins, 1992(*r*); Sturniolo et al., 1991(*r*)). Zinc cations can induce metallothionein production in intestinal mucosa cells (Richards and Cousins, 1975(*r*)).

Payton et al. (1982) determined the intestinal absorption following single oral administration of 65 [Zn]-chloride to 6 groups of 5 healthy adult volunteers by comparison of whole body radioactivity counting and faecal excretion data. The individuals fasted overnight prior to dosing. Approximately 55% of the administered 65 [Zn]-chloride was absorbed at doses of 18, 45 and 90 µmol (~ 1.2, 2.9 or 5.8 mg) of zinc. The absorption was reduced with increasing dose, indicating that zinc absorption is saturable. At test dose levels of 180, 450 and 900 µmol (~ 11.6, 29 or 58 mg of Zn), only 51, 40 and 25% of the 65 Zn was absorbed, respectively. Additional studies in 15 in human volunteers with various intestinal diseases indicated that absorption of Zn occurred mainly in the proximal parts of the intestine.

From this study it appears that in healthy persons with intake levels differing by a factor of 10, uptake levels vary maximally by a factor of two.

The absorption of orally administered ⁶⁵Zn was studied in 50 patients with taste and smell dysfunction. The study was conducted in three phases. Prior to the start of the study 10 patients were admitted to a metabolic ward and put on a fixed daily diet containing 8-13 mg Zn. In the first phase all patients were studied for 21 days after receiving a single oral dose of 3-18 μ Ci of ⁶⁵Zn (~ 0.4 to 1.2 ng zinc) as ZnCl₂ after an overnight fast. In the second phase, which started after 21 days and continued for 290 to 440 (mean 336) days, all 50 patients received placebo. To study the effect of additional zinc intake on elimination of previously sequestered radioactivity, in the third phase of the study 14 patients continued on placebo while 36 received ZnSO₄ (100 mg Zn²⁺/day) for 112 to 440 (mean 307) days. Phases two and three were a controlled clinical trial of the effects of zinc on retention of the ⁶⁵Zn tracer. The results of phase two and three are described in Section 4.1.2.2.4.

Total body retention and activity in plasma and red cells were measured for all patients throughout the study. It was estimated that for the ten in-patients ca. 55% of the administered radioactivity was absorbed while for the whole group of 50 patients the absorption was approximately 60 percent (Aamodt et al., 1982).

<u>Remark</u>: From the study description it is not clear whether the radioactivity was administered as pure radioactive zinc chloride or whether is was diluted with unlabelled zinc chloride. As the authors stated that "patients were given 3 to 18 μ Ci carrier free ⁶⁵Zn" for the calculation of the dose of ⁶⁵Zn in terms of nanogram zinc, it has been assumed that all zinc administered was in fact ⁶⁵Zn.

The absorption of zinc from soluble zinc acetate, zinc sulphate, zinc aminoate, zinc methionine and insoluble zinc oxide was compared in ten human volunteers who were dosed orally with 50 mg Zn in various forms separated by two weeks intervals. Bioavailability of zinc from the various forms was compared on the basis of plasma zinc levels and area under the plasma curve analysis.

Plasma peak levels were observed after about 2.5 h for all forms, but maximal plasma Zn concentration amounted to 221 and 225 μ g/dl for the acetate and the sulphate form while the peak plasma level for Zn from the oxide was only 159 μ g/dl. When AUC values for the different zinc forms were compared, it appeared that the bioavailability of zinc oxide was about 60% of the bioavailability of the soluble forms. Information on absolute bioavailability was not obtained (Prasad et al., 1993).

Nève et al. (1991) reported an absorption half-life of 0.4 hours when 45 mg Zn^{2+} as zinc sulphate was administered once in gelatine capsules to 10 healthy young men. Serum concentrations were measured frequently during a total investigation time of 8 hours. A mean maximum concentration of 8.2 µmol $Zn^{2+}/1$ serum was found after 2.3 hours (t_{max}). There is evidence of an enteral recirculation, the first rebound effect appeared after 1.4 hours during the absorption phase before t_{max} was reached, and exhibited mean reabsorption rates of 70% of the dose given. The subsequent ones (max. of 5) appeared at regular intervals of 1.2 hours with a decrease of the quantity reabsorbed.

Factors that influence the gastrointestinal absorption of zinc cations include ligands (for example a decreased Zn^{2+} absorption may occur by intake of plant proteins, such as soy and phytate (Sandstrom and Sandberg, 1992(*r*)), by intake of alcohol (Antonson and Vanderhoff, 1983(*r*)) or use of EDTA (Solomons et al., 1979(*r*); Spencer et al., 1966(*r*))), or other trace elements in the diet (Solomons, 1988(*r*)). Also the zinc status of the body, the endogenous zinc secretion into the intestinal lumen via epithelial cells, bile and pancreatic secretion, and the intracellular transport have an influence on the Zn²⁺ absorption in the gastrointestinal tract (Cunnane, 1988(*r*); Flanagan et al., 1983(*r*)). The mechanism by which zinc is transferred to or across the mucosal surface of the microvilli is not known (Cousins, 1989(*r*)).

Inhalation

Studies in animals

Rates or percentages of absorption of zinc cations after inhalation are not available, but there are some studies on Zn^{2+} retention in the lung.

Pistorius et al. (1976) exposed male and female rats to 15 mg ZnO dust/m³ (particle size < 1 μ m) for 4 hours/day, 5 days/week during 1 day or for 2, 4 or 8 weeks. Animals were killed 24 hours after the last exposure and the zinc content of the lungs, liver, kidneys, tibia and femur was measured. After 1 day of exposure the total zinc content of the lung in males and females was about 46 and 49 μ g, respectively. In lung, liver, kidney and bone only minimal differences in tissue zinc content were seen during the experiment. As tissue zinc levels in non-treated animals were not studied, it is not clear whether tissue zinc comes from the experimental or from dietary exposure. However, as the pulmonary zinc level did not rise throughout the study it can be assumed that pulmonary deposition is very low and/or that pulmonary clearance is very high.

After exposure to 4.3 mg (rat), 6.0 mg (rabbit), 11.3 mg (guinea pig) mg ZnO (aerosol)/m³ for 2-3 hours, the pulmonary retention in rats, rabbits and guinea pigs was 11.5%, 4.7% and 19.8%, respectively. The aerosol had a very small mass median diameter of 0.17 μ m (Gordon et al., 1992).

In a time course experiment male Wistar rats (3/group) received a single intratracheal instillation of 0.4 ml ZnO suspension (ZnO particles $< 2 \mu m$, but they appeared to form aggregates of 10-20 particles) at a dose of 100 $\mu g Zn^{2+}/rat$ and the rats were killed 1/3, 1, 2, 3, 5, 7, 14 and 21 days after administration. In a dose-response experiment 0.4 ml ZnO suspension (ZnO

particles < 2 μ m, but they appeared to form aggregates of 10-20 particles) was instilled in the lungs of male Wistar rats (3/group) at doses of 20, 50, 100, 200, 500 and 1,000 μ g Zn²⁺/rat. The rats were killed after 2 days. Control animals were included in the experiments.

In the time course experiment a significantly increased lung wet weight 1 day after instillation and remaining throughout the time course was seen. Only a limited portion of Zn could be retrieved in the BronchoAlveolar Lavage Fluid (BALF). No measurable amount of exogenous Zn was observed after 5 days. The half-life of ZnO instilled in the lung was calculated to be 14 hours.

In the dose-response experiment the lung wet weight increased with dose of ZnO 2 days after instillation. The results indicated that the rat lung was able to clear ZnO particles up to a dose of 50 μ g Zn²⁺/rat at least within two days. No measurable accumulation of Zn was observed in the liver and kidneys even at a dose of 1,000 μ g Zn²⁺/rat (Hirano et al., 1989).

In a study from Oberdörster et al. (1980) the lung clearance rate of zinc aerosols was determined in male Wistar rats (8/group) 0, 2, 4, 8 and 24 hours after exposure to ZnO aerosol at a concentration of 12.8 mg/m³ (mean aerodynamic diameter of 1 μ m) for 17 hours. The ZnO aerosol was created by pyrolysis of a micronised Zn-acetate aerosol at 500°C. 8 Animals were kept in clean air and served as controls. The lungs and trachea of the animals were removed and their zinc content was determined by flame photometry. In comparison with the controls, the lungs of exposed rats were increased in weight (presumably because of oedema), which increase was significant at 8 hours and even more pronounced at 24 hours. The zinc content in the trachea was not uniform but was above control values except after 24 hours. The zinc content in the lungs decreased monoexponential and was 7% of the initial burden after 24 hours. According to the short half-life of 6.3 hours found in this study for the pulmonary zinc content, a fast dissolution of the particles must occur, as the alveolar clearance of an inert Fe₂O₃ aerosol occurred with a half-life of about 34 h. It is not clear whether the clearance of Zn from the lungs is affected by the pathological condition of the lungs.

Studies in humans

Elevated zinc concentrations in blood and urine (Hamdi et al., 1969; Trevisan et al., 1982(r)) of persons occupationally exposed to zinc oxide fumes suggest that there is some pulmonary absorption, but no quantitative human data are available.

Other

Data were provided on the particle size distribution of zinc aerosol in three different industry sectors, i.e. the galvanising sector (three plants, 4 samples each), the brass casting sector (two plants, 3 and 4 samples respectively) and the zinc oxide production sector (one plant, 10 samples), by using personal cascade impactors with cut-off diameters of 0.52, 0.93, 1.55, 3.5, 6.0 and 21.3 μ m, and a final filter diameter of 0.3 μ m (Groat et al., 1999). These data served as input for the Multiple Path Particle Deposition Model (MPPDep version V1.11; Freijer et al., 1999) in order to estimate the airway deposition (in head, tracheobronchial and pulmonary region) for workers, by using:

- the human five lobar lung model,
- a polydisperse particle distribution (i.e. this distribution contains a wide range of particle sizes), by taking the mean size distribution of the 10 samples for zinc oxide production (MMAD 15.2 μ m, GSD 4.0). Using this MMAD and GSD for the total polydisperse distribution is preferred above treating the polydisperse particles on individual impactor

stages (with given cut-off diameters) as being monodisperse particles, also because the maximum particle size in the MPPDep model (20 μ m) is lower than the largest size fraction of the cascade impactor (21.3 μ m),

- both the oral breathing and the oronasal (normal augmenter) mode, but not the nasal breathing mode. The latter is considered to present an underestimate because 1) many people are oronasal or oral breathers, independent of their activities, 2) people with a cold will not normally breath nasally, and 3) with heavy excercise, short-term deep oral breathing will occur, resulting in increased deep pulmonary deposition,
- the possibility of inhalability adjustment for the oronasal augmenter. Inhalability is defined as that fraction of particles in an aerosol that can enter the nose or mouth upon inhalation. It must be noted that inhalability is different from respirability, which term relates to the deposition of particles after making their entrance inside the airways. If "inhalability adjustment" is "off", the calculations start by assuming that the airflow is in line with the direction of the nasal entrance. However, in reality this will not be the case because the airflow has to make turns to enter the nose. This results in losses that are larger with increasing particle size. Ménache et al. (1995) have described the relations between exposure concentration and concentration at the entrance of the airways for laboratory animals and humans,
- a tidal volume and breathing frequency corresponding to the default breathing rate of 10 m³ for an 8-hour shift (1,100 ml and 20 breaths/min, respectively). This breathing rate is more representative for light exercise activities than for more moderate or heavy exercise activities (EPA, 1997), which can be expected to take place in the zinc industry (see Section 4.1.1.2). Therefore, also a non-default tidal volume and breathing frequency corresponding to a breathing rate of 19 m³ for an 8-hour shift have been taken (1,700 ml and 23 breaths/min, respectively, based on a breathing volume of 40 l/min for moderate exercise activities (EPA, 1997)). It must be noted that at a minute volume < 35.3 l/min for normal augmenters breathing is only through the nose, while at a minute volume \geq 35.3 ml/min there is combined nose and mouth breathing. For oral breathers, breathing is always only through the mouth, independent of the minute volume used.

Results of the MPPDep modelling are given in **Table 4.7**. It must be noted that the MPPDep only models deposition, not clearance and retention.

	Inhalability	Tidal	Breaths/min	Deposition region				
		volume (ml)		Head	Tracheo-bronchial	Pulmonary	Total	
Oral	off	1,100 1,700	20 23	0.638 0.676	0.071 0.100	0.139 0.101	0.848 0.877	
Oronasal	off	1,100 1,700	20 23	0.927 0.804	0.011 0.064	0.021 0.064	0.960 0.932	
Oronasal	on	1,100 1,700	20 23	0.519 0.585	0.011 0.063	0.021 0.064	0.551 0.713	

Table 4.7Deposition fractions for oral breathers and for oronasal augmenters, using a polydisperse particle distribution
(MMAD 15.2 μm, GSD 4.0)

From **Table 4.7** it can be seen that for oral as well as for oronasal breathers the largest part of the deposition takes place in the head region, irrespective of the breathing rate. When inhalability adjustment is "on" head region deposition is somewhat reduced. However, the following is to be

noted. As stated above, the corrections for inhalability of particles is based on relationships derived by Ménache et al. (1995). For humans this is based on experiments with only 4 healthy adult volunteers. The experiments are thus too limited to conclude for sure that this correction is valid for all human subjects and all situations (children, elderly, exercise activity, etc). It is therefore fair to estimate the deposition without inhalability adjustment to get an idea of a worst-case situation. The situation with inhalability adjustment "on" will not be taken further into account.

The fate and uptake of deposited particles depends on the clearance mechanisms present in the different parts of the airway. In the head region, most material will be cleared rapidly, either by expulsion (not the case for oral breathers) or by translocation to the gastrointestinal tract (half-time 10 min). A small fraction will be subjected to more prolonged retention, which can result in direct local absorption. More or less the same is true for the tracheobronchial region, where the largest part of the deposited material will be cleared to the pharynx (mainly by mucociliary clearance (half-time 100 min)) followed by clearance to the gastrointestinal tract, and only a small fraction will be retained (ICRP, 1994). Higher uptake rates may be assumed for the pulmonary region than for the head and tracheobronchial region.

Once translocated to the gastrointestinal tract, uptake will be in accordance with oral uptake kinetics. Hence, for that part of the material deposited in head and tracheobronchial region that is cleared to the gastrointestinal tract, the oral absorption figures (20% for soluble zinc compounds and 12% for less soluble/insoluble zinc compounds, see Section 4.1.2.2.6) can be taken. However, there are no data available on zinc to estimate the part that is cleared to the gastrointestinal tract and the part that is absorbed locally in the different airway regions. With respect to the latter though, there are some data available for radionuclides. After instillation of small volumes (2-3 µl for rats, 10 µl for hamsters, 0.3 ml for dogs) of solutions or suspensions of radionuclides into each region of the respiratory tract, retention and absorption into blood was measured. For the more soluble chemical forms (a.o. citrate and nitrate) absorption values of 4.8-17.6% in the nasopharynx, 12.5-48% in the tracheobronchial region and up to 100% in the pulmonary region were found. For the more insoluble chemical forms (i.e. oxide) retention and absorption in the nasopharynx and tracheobronchial region was negliglible (ICRP, 1994). There are no data on how the solubility of the different chemical forms of the radionuclides compares to the solubility of the soluble zinc compounds. Although the applicability of the radionuclide figures to the zinc compounds is not quite clear, it is probably a reasonable worst-case to take the upper values found (i.e. 20, 50 and 100% in head, trachebronchial and pulmonary region, respectively) for local absorption of soluble zinc compounds. For the less soluble/insoluble zinc compounds it is probably safe to assume negligible absorption for the head and tracheobronchial region and 100% absorption for the pulmonary region. This is supported by the findings in the study by Oberdörster et al. (1980), where the dissolution half-time of 1 µm diameter zinc oxide particles in the deep lung was approximately 6 hours. Given that the clearance to the gastrointestinal tract occurs within a time frame of minutes (10-100 min in head and tracheobronchial region), there will be no significant dissolution in these areas. Besides, most of the particles in these areas will have a diameter >1 μ m, thus dissolution half-times for these larger particles will be longer.

	Soluble zinc compounds	Less soluble/insoluble zinc
	(chloride and sulphate)	compounds
		(metal, oxide, phosphate, disteareate)
fraction absorbed in	20% head	0% head
airway region	50% tracheobronchial	0% tracheobronchial
	100% pulmonary	100% pulmonary
fraction cleared to g.i.	80% head · 20%	100% head · 12%
tract, followed by oral	50%tracheobronchial · 20%	100% tracheobronchial · 12%
uptake kinetics	0% pulmonary	0% pulmonary

Based on the above information, inhalation absorption was estimated by assuming the following:

The result of applying these assumptions to the deposition fractions given in Table 4.7 is given in **Table 4.8**.

 Table 4.8
 Estimation of inhalation absorption percentage for soluble zinc compounds and for less soluble/insoluble zinc compounds

	Inhalability	Tidal volume (ml)	Breaths/min	Soluble zinc compounds (chloride and sulphate)	Less soluble/insoluble zinc compounds (metal, oxide, phosphate, disteareate)
Oral	off	1,100 1,700	20 23	41.1 40.4	22.4 19.4
Oronasal	off	1,100 1,700	20 23	36.1 39.2	13.4 16.8

Inhalation absorption for the soluble zinc compounds (zinc chloride and zinc sulphate) is at maximum 40%, while for the less soluble/insoluble zinc compounds (zinc metal, zinc oxide, zinc phosphate and zinc distearate) inhalation absorption is at maximum 20%. These figures will be taken forward to the risk characterisation as a reasonable worst-case, because these figures are thought to cover existing differences between the different zinc industry sectors with respect to type of exercise activities (and thus breathing rate) and particle size distribution.

Dermal

Studies in animals

Skog and Wahlberg (1964) estimated the percutaneous uptake of 65 [Zn]-chloride by the dorsal skin of the guinea pig by monitoring the decline of radioactivity emitted by 65 [Zn]-chloride in at least 10 trials for each concentration tested ranging from 0.8 to 4.87 M ZnCl₂ (pH 1.8-6.1). It appeared that the loss of radioactivity after 5 hours was less than 1% except for the trials with the lowest pH where it might have been between 1 and 2%. The study gives too little details to be used for risk assessment.

ZnO, zinc omadine, zinc sulphate and zinc undecylenate (131 μ Ci/mole of ⁶⁵Zn²⁺) were used for topical application on shaved skin on the back of rabbits. Each application consisted of 2.5 mg Zn-compound containing 5 μ Ci ⁶⁵Zn²⁺. Two animals received one application on four skin areas left of the spine, while the four skin areas on the right side received two applications, the second

one 24 hours after the first one. The rabbits were killed 6 and 24 hours after the second application. One rabbit served as control animal.

No significant differences were found in the amount and location of ${}^{65}Zn^{2+}$ in skin treated with 4 different zinc compounds. High concentrations of ${}^{65}Zn^{2+}$ were observed in the cortical and cutical zones of the hair shaft, being the highest in the keratogenous zone. Accumulation of ${}^{65}Zn^{2+}$ in epidermis was very low but heavy in the subdermal muscle layer. Since no different rates of absorption and concentrations of zinc compounds with different oil/water solubility, pH, and molecular weight were seen, it was suggested that the major mode of ${}^{65}Zn^{2+}$ uptake in skin is by diffusion through the hair follicles due to the heavy localization of ${}^{65}Zn^{2+}$ primarily in the hair shaft and hair follicles. According to Kapur et al. (1974) this emphasizes that chemical differences in the compounds may not play a very important role in the skin uptake of ${}^{65}Zn^{2+}$. No data were given on systemic absorption.

The dermal absorption of ${}^{65}Zn^{2+}$ from ZnCl₂ and ZnO was studied by applying the zinc preparations under occlusion on the shaven, but intact skin on the back of male Sprague-Dawley rats (Hallmans and Lidén, 1979). The zinc absorption, being the ration between ${}^{65}Zn$ -activity in the carcass, liver and gastrointestinal tract, and the ${}^{65}Zn$ -activity in carcass, liver, gastrointestinal tract, skin and bandage, was reported to range from 1.6 to 6.1%. It should be noted that the higher percentages (3.6 to 6.1%) were achieved after application of ZnCl₂ in acidic solution (pH = 1). Less acidic solutions with ZnCl₂ or with ZnO resulted in a dermal absorption of less than 2%. In this study only the absorption into the body, excluding the skin, was determined. No data were available as to the effect of zinc chloride solutions with pH = 1 on dermal integrity.

Topical application of zinc chloride in an oil vehicle to pregnant Sprague-Dawley rats which were fed a zinc-deficient diet for 24 hours increased the plasma concentration of zinc cations to normal or slightly above normal levels (Keen and Hurley, 1977). The absorbed fraction was not determined so it can be concluded that dermal absorption is possible but no quantification can be given.

Agren et al. (1991) showed that application of zinc oxide dressings (containing 250 μ g Zn²⁺/cm²) to rats for 48 hours with full-thickness skin excision resulted in a 12% delivery of zinc ions from the dressing to each wound, while application of zinc sulphate dressings (containing 66 μ g Zn²⁺/cm²) resulted in a 65% delivery of ions to each wound. The data suggest that the application of zinc oxide resulted in sustained delivery of zinc ions causing constant wound tissue zinc cation levels due to its slow dissociation rate, while the more water soluble zinc sulphate delivers zinc ions more rapidly to the wound fluid with subsequent rapid transferral into the blood.

Studies in humans

There are no quantitative data which indicate that zinc (cations) can be absorbed through the intact skin, but absorption was reported through damaged or burned skin (EHC, 1996).

An increase in serum Zn^{2+} levels was observed in 8 patients suffering from second and third degree burns, who were treated with adhesive zinc tape (ca. 7.5 g ZnO/100 g dry weight). The maximum value (up to 28.3 µmol/litre) was reached within 3-18 days during treatment. It is noted that the absorption through intact skin cannot be assessed based on this study with burn patients (Hallmans, 1977).

The systemic absorption from topical application of 40% zinc oxide ointment (with petrolatum) was investigated by Derry et al. (1983) in healthy subjects and in patients receiving Total

Parenteral Nutrition (TPN) for a minimum of 3 days prior to the start of the experiment. TPN is known to result in zinc deficiency (mean decrease 6.6 μ g/dl/week), and the longer the period of TPN without zinc supplementation, the greater the decrease in serum zinc concentration.

<u>Healthy volunteers</u>: In a controlled, cross-over study (on two separate days, one week apart) 6 healthy subjects received a topical application of 100 g of the 40% zinc oxide ointment or 60 g of control ointment (100% white petrolatum base) to the chest, upper legs and lower legs (exposed skin area: not specified; occlusion: not specified) for 3 hours. Each subject fasted for 12 hours before treatment started (only water *ad libitum*). During the study no food or water was consumed. Blood samples were taken after the 12 hour-fast (baseline value), and at 1, 2 and 3 hours after the start of the topical application. Mean serum Zn^{2+} concentrations at these time points were 107.3, 116.1, 105.3 and 112.6 µg/dl for the zinc ointment and 115.2, 103.5, 105.5 and 110.5 for the control ointment, respectively. Normal serum zinc concentrations were considered to be in the range of 68 to 136 µg/dl. An increase in serum zinc over the baseline value was observed throughout the treatment. Overall, there was a mean serum Zn^{2+} increase of 8.8 µg/dl over baseline 1 hour after application. This represented an 8.2% rise in serum zinc, which however was not statistically significant.

<u>Patients</u>: 6 Patients received (under occlusion) a topical application of 15 g of the 40% zinc oxide ointment onto the upper legs ($10 \cdot 15$ cm) once daily for 8 consecutive days. Blood samples were taken before treatment (baseline value), at 4, 6 and 8 days (just prior to application), and at day 10. The mean baseline level of the patients (88.6 µg/dl) differed significantly from the mean baseline level of the healthy subjects. The mean zinc concentration in the 3 patients that completed the study remained relatively stable over the 10-day period (78-93 µg/dl).

It can be concluded that topical applications of 40% zinc oxide ointment did not result in a significant increase in serum zinc concentration in healthy human subjects over a 3-hour period nor in TPN-patients over 10 days.

<u>Remark</u>: It is theorized by the authors that after topical application zinc is locally absorbed and stored in the hair follicles where it is relatively unavailable for immediate systemic absorption in subjects with normal serum zinc concentrations. In subjects that are hypozincemic, there is absorption from the storage depot at a rate sufficient to prevent a decline in serum zinc concentration. It is agreed with the authors that the 3-hour sampling time in normal subjects may have been of insufficient length to allow for appreciable systemic absorption from the storage depot.

When ZnO-mediated occlusive dressings (25% w/w; 4.5 cm) were applied to the lower arm of 10 healthy volunteers for 48 hours it appeared that the mean release rate of zinc to normal skin was 5 µg/cm²/hour. After treatment of 5 other volunteers with the ZnO dressings for 48 hours the zinc content was significantly increased in the epidermis and the accumulated blister fluid (as a model for percutaneous absorption suction blisters were used). It should be noted, however, that the zinc penetration was enhanced during the formation of blisters, indicating that the barrier function was impaired (Agren, 1990).

In another study of Agren (1991) five human volunteers were exposed to different occlusive ZnO dressings (with hydrocolloid vehicle or gum rosin). After 48 hours, suction blisters on treated skin were raised and Zn^{2+} concentration in blister fluid was determined. Furthermore the Zn^{2+} concentration in the stratum corneum (10 successive tape strippings) was determined. The absorbed amount cannot be determined from the data presented but it appeared that the vehicle is an important factor for Zn^{2+} penetration.

In vitro studies

Pirot et al. (1996a) studied the dermal absorption of zinc 2-pyrrolidone 5-carboxylate, ZnO and ZnSO₄ (16 mg formulation/cm²; 0.02-5.62% Zn²⁺) in different formulations (3 emulsions and 2 ointments) using human abdominal skin. The receptor medium was 0.9% NaCl. After application for 72 hours, the skin was washed and stripped twice. The percutaneous absorption was determined as a percentage of the applied dose found in receptor medium and cutaneous bioavailability. It never exceeded 2%. The percentages for zinc from ointments containing ZnO and ZnSO₄ were 0.36% and 0.34%, respectively. The percutaneous absorption of zinc from the emulsion containing zinc 2-pyrrolidone 5-carboxylate was 1.60% of the applied dose. Furthermore, the experiment showed a vehicle effect on absorption.

Pirot et al. (1996b) studied the dermal absorption of $ZnSO_4$ and $ZnCl_2$ (20 mg formulation/cm²) in petrolatum and hydrophilic gels using human breast or abdominal skin. The receptor medium was isotonic saline. After application for 72 hours, the skin was washed and the epidermis was removed from the dermis. The result of the study was that the absorption was low, whatever vehicle was used.

The use of the data generated by Pirot et al. (1996a, 1996b) is limited because in these studies:

- the integrity of the membranes was not assessed,
- it is not clear whether or not the skin was occluded,
- cutaneous bioavailability might be underestimated in the first study due to double stripping,
- in the second study, absorption is based on Zn in fresh dermis and receptor fluid, the fresh epidermis is not included.

Industry initiated an *in vitro* testing programme on two representative zinc compounds (zinc oxide and zinc sulphate) for percutaneous absorption (Grötsch, 1999). In this study, a solution of ZnSO₄ monohydrate and a suspension of ZnO, each at a concentration of 40 mg/ml in water, were tested for cutaneous penetration and absorption through pig skin *in vitro*. Skin preparations measuring 1 mm in thickness with stratum corneum, stratum germinativum and blood-vessel-containing parts of the dermis were obtained from pigs using a modified dermatome.

In two independent experiments for each compound seven skin preparations were mounted in Teflon flow-through diffusion chambers which were continuously rinsed with physiological receptor fluid (0.9% NaCl in aqua bidest with antibiotics). After an integrity check using the marker substance caffeine, each of the test formulations were applied to six skins at a dose of 1 mg/cm^2 for 8 hours without occlusion, and subsequently washed off with a neutral shampoo. After 0, 2, 4, 6, 8, 16, 24, 40, 48, 64 and 72 hours, the cutaneous permeation was determined by quantifying zinc with atomic absorption spectroscopic analysis (detection limit: 10 ng/ml) in the receptor fluid. The experiment was stopped at 72 hours. Furthermore, zinc was analysed in the skin preparations and the rinsing fluids. In addition, blanks were measured in an unloaded control chamber. Results are summarised in **Table 4.9**.

	ZnSO4	ZnO
Receptor fluid	0.3%	0.03%
Horny layer	1.3%	12.3%
Residual skin	0%	2.6%
Potentially absorbed dose	1.6%	14.9%

 Table 4.9
 Dermal absorption of Zn (% of dose) through pig skin in vitro within 72 hours
 a)

a) Corrected for background levels of zinc in receptor fluid and skin

Total recoveries of applied zinc in both experiments ranged from 82.0 to 109.6%. The results of analysis of the receptor fluid used and of the blank chambers without topical application of zinc compounds indicated that both the receptor fluid and porcine skin contain an intrinsic level of zinc. The amounts of zinc detected in receptor fluid and different layers of the skin were therefore corrected for background levels.

The authors concluded that dermal penetration of zinc was below 1% based on the cumulative amount recovered from the receptor fluid at 72 hours. However, the amount retained in the skin should be regarded as being absorbed because it may become available at a later stage. Hence, the rapporteur concludes that the dermal absorption of zinc from a solution of zinc sulphate monohydrate and a suspension of zinc oxide in this *in vitro* system may amount to 1.6% and 14.9%, respectively.

4.1.2.2.2 Distribution

Inhalation

No data available.

Dermal

No data available.

Oral

Studies in animals

The highest levels of radioactivity were found in the small intestine followed by the kidney, liver and large intestine six hours after a single oral administration of 0.1 μ Ci of 65 Zn²⁺ as zinc chloride to Wistar rats. Smaller amounts were found in the lungs and spleen. 14 Days after the administration, highest levels of radioactivity could be found in the hair, testicles, liver and large intestines (Kossakowski and Grosicki, 1983(*r*)).

Organs with high zinc concentrations (ranging from 20 to 60 mg/kg fresh weight) are liver, gut, kidney, skin, lung, brain, heart and pancreas (Bentley and Grubb, 1991(r); He et al., 1991(r); Llobet et al., 1988). High concentrations of zinc were also detected in the retina and in sperm (Bentley and Grubb, 1991(r)).

Studies in humans

After absorption from the gastrointestinal tract, Zn^{2+} is bound in plasma primarily to albumin and then transported to the liver and subsequently throughout the body.

The normal plasma zinc concentration is ca. 1 mg/l, the total zinc content of the human body (70 kg) is in the range of 1.5-2 g (ATSDR, 1994).

Zinc is found in all tissues and tissue fluids and it is a cofactor in over 200 enzyme systems. In humans, the major part of total body zinc is found in muscle and bone, approximately 60% and 30%, respectively (Wastney et al., 1986(r)). Under normal conditions, the highest zinc concentrations/kg tissue are found in bone, hair and prostate (Cleven et al., 1993).

The distribution of zinc in humans appears to some degree to be influenced by age. The zinc concentrations increase in the liver, pancreas and prostate and decrease in the uterus and aorta with age. Levels in kidneys and heart peak at approximately 40-50 years of age and then decline. Levels in the aorta decline after 30 years of age (Schroeder et al., 1967(r)).

Other routes

The tissue uptake of ${}^{65}Zn^{2+}$ (as zinc chloride) was determined in adult male Wistar rats after intraperitoneal injection of 15 μ Ci ${}^{65}Zn^{2+}$. The liver displayed the greatest uptake for zinc ions, followed by the kidney, pancreas, spleen, ileum, lung, heart, bone, testis, blood cells, muscle and brain. Additional data on Zn^{2+} uptake by the brain indicate that the blood brain barrier is minimally permeable to zinc cations (Pullen et al., 1990(*r*)).

Eight hours following intravenous administration of 65 [Zn]-chloride to rabbits, tissue levels were highest in the liver, intestine and kidney with levels being $\geq 10\%/g$ in tissue (Lorber et al., 1970(r)).

4.1.2.2.3 Metabolism

Zinc is mostly bound to organic ligands rather than free in solution as a cation (Gordon et al., 1981). Zinc is found in diffusible and non-diffusible forms in the blood and about 66% of the diffusible form of zinc in the plasma is freely exchangeable and loosely bound to albumin (Cousins, 1985(*r*)). A small amount of the nondiffusible form of zinc is tightly bound to α_2 .macroglobulin in the plasma and is not freely exchangeable with other zinc ligands. Zinc is incorporated into and dissociated from α_2 -macroglobulin only in the liver (Henkin, 1974(*r*)).

4.1.2.2.4 Excretion

Inhalation

No data available.

Dermal

No data available.

<u>Oral</u>

Studies in animals

After a single oral dose of 86–130 μ g of ⁶⁵Zn as ZnCl₂, ZnCO₃ or Zn₅(OH)₈Cl₂·H₂O, male rats eliminated ⁶⁵Zn from the body with a rate of about 1.7% of the absorbed dose during day 5 to 14 post dosing as determined from stool, urinary and *in vivo* whole-body gamma counting results. In male rats who received 25 mg ZnCO₃/kg feed or 100 mg Zn₅(OH)₈Cl₂·H₂O/kg feed for 14 days, the radioactivity from a subcutaneous dose of 37 kBq of ⁶⁵ZnCl₂ disappeared from the body with a rate of approximately 1% during the period 5 to 14 days post dosing (Galvez-Morros et al., 1992).

Studies in humans

In humans the fecal zinc consists of unabsorbed dietary zinc and endogenous zinc from bile, pancreatic juice and other secretions. About 70-80% of the ingested amount of zinc is excreted via feces (5 to 10 mg/day depending upon the dietary zinc concentration) (Spencer et al., 1976(r); Venugopal and Lucky, 1978; Reinhold et al., 1991(r); Wastney et al., 1986(r)). In humans about 10% of the zinc amount consumed is lost via urine (appr. 200 to 600 µg zinc/day). The urinary zinc excretion appears to be sensitive to alterations in the zinc status (Babcock et al., 1982; Aamodt et al., 1982; see below).

Minor routes of zinc excretion are saliva, hair loss, mothermilk, and sweat. In tropical climates about 2-3 mg Zn^{2+}/day may be lost in sweat (Venugopal and Lucky, 1978; Rivlin, 1983(*r*); Prasad et al., 1963(*r*); Rossowka and Nakamoto, 1992(*r*); Henkin et al., 1975(*r*)).

In humans with no excessive intake of zinc, the body burden half-time of absorbed radio-labelled zinc has been observed to range from 162 to 500 days. After parenteral administration of 65 Zn²⁺, half-times ranged from 100 to 500 days (Elinder, 1986).

Payton et al. (1982) determined body retention of Zn at 7-10 days after oral administration of 92 μ mol of ⁶⁵Zn (as ZnCl₂) to 16 healthy adult human volunteers. It could be demonstrated that about 10% of the initially absorbed amount of Zn was excreted during the first 10 days post dosing. In thirty other volunteers dosed with 18 to 900 μ moles of ⁶⁵Zn the following elimination data for the 10 to 60 days post dosing period were obtained:

Dose group (µmoles; (mg))	Excretion rate (% of remaining Zn per day)	Biological half-live (days)
18 (1.2)	0.44	157
45 (2.9)	0.62	111
90 (5.8)	0.37	186
180 (11.6)	0.49	141
450 (29)	0.37	186
900 (58)	0.74 ^a	93

a) Significantly different from the 18 $\mu moles$ group

The excretion rates for the 18 to 450 μ moles dose groups were not different, but after the 900 μ mole dose elimination was significantly increased.

The effects of additional oral zinc on excretion of orally administered ⁶⁵Zn were studied in 50 patients with taste and smell dysfunction. The study was conducted in three phases. In the first phase all patients were studied for 21 days after receiving a single oral dose of 3-18 μ Ci of ⁶⁵Zn (~ 0.4 to 1.2 ng zinc) as ZnCl₂ after an overnight fast. In the second phase, which started after 21 days and continued for 290 to 440 (mean 336) days, all 50 patients received placebo. To study the effect of additional zinc intake on elimination of previously sequestered radioactivity, in the third phase of the study 14 patients continued on placebo while 36 received ZnSO₄ (100 mg Zn²⁺/day) for 112 to 440 (mean 307) days. Phases two and three were a controlled clinical trial of the effects of zinc on retention of the ⁶⁵Zn tracer. The results from the first phase of the study are described in Section 4.1.2.2.1.

Total body retention and activity in plasma and red cells were measured for all patients throughout the study. About one-third of the absorbed radioactivity was eliminated from the

body with a half-life of ca. 19 days, while after about 100 days post dosing the remainder of the absorbed dose was eliminated with a biological half-life of 380 days (i.e phase two of the study). During the third phase patients receiving ZnSO₄ showed an accelerated loss of total body ⁶⁵Zn (T_{1/2} ca. 230 days) which was significantly different (P > 0.001) from half-life values during placebo treatment. Accelerated loss of ⁶⁵Zn from the thigh was apparent immediately while that from the liver began after a mean delay of 107 days. There was no apparent effect of zinc on loss of mean ⁶⁵Zn activity from red blood cells (Aamodt et al., 1982).

<u>Remark</u>: From the study description it is not clear whether the radioactivity was administered as pure radioactive zinc chloride or whether is was diluted with unlabelled zinc chloride. As the authors stated that "patients were given 3 to 18 μ Ci carrier free ⁶⁵Zn" for the calculation of the dose of ⁶⁵Zn in terms of nanogram zinc, it has been assumed that all zinc administered was in fact ⁶⁵Zn.

In ten patients from the Aamodt et al. 1982 study (see above) kinetics of ⁶⁵Zn were studied in more detail by Babcock et al. (1982). These patients received a fixed diet containing 8-13 mg Zn per day for 4 to 7 days before and after the single ⁶⁵Zn dose, followed by 290-440 (mean 336) days of non-restricted diet, followed by an intake of an additional 100 mg/day of non-radioactive zinc ion (as ZnSO4) over the next 112-440 days (mean 307). The overall kinetic parameters of these 10 patients did not differ from those of the other patients (Aamodt et al., 1982).

The authors further submitted retention-time curve data for whole body, plasma, red blood cells, liver and thigh to a multi-compartment kinetic model. From this model analysis it could be demonstrated that the increase in elimination of Zn during the third phase of the study by Aamodt et al. (1982) can be ascribed entirely to the change in two model parameters: reduction in absorption in the gastrointestinal tract (5-fold: from 43% absorption in the beginning of the study to 9% during the period in which patients were dosed with ZnSO₄) and to an increase in the urinary elimination rate (about 2-fold upon administration of ZnSO₄ during phase three of the study). Michaelis-Menten type saturation mechanisms were adequate to explain the observed parameter changes. These changes also accounted for the observed mean plasma zinc mass increase of only 37% above pre-load levels in face of an 11-fold increase in zinc intake (viz. from ca. 10 mg/day to ca. 110 mg/d) (Babcock et al., 1982).

<u>Remark</u>: From this model study it was estimated that the total body Zn contents of these 10 patients at the beginning of the study was 1.4 g. Babcock et al. (1982) indicated that normally the body contents of zinc is in the range of 2.1 to 2.5 g. This may indicate that the patients studied by Babcock et al. (1982) and possibly by Aamodt et al. (1982) were somewhat deficient in total body Zn.

4.1.2.2.5 Homeostasis

Within certain limits, mammals can maintain the total body zinc and the physiologically required levels of zinc in the various tissues constant, both at low and high dietary zinc intakes. The sites of regulation of zinc metabolism are: absorption of Zn^{2+} from the gastrointestinal tract, excretion of zinc in urine, exchange of zinc with erythrocytes, release of zinc from tissue, and secretion of zinc into the gastrointestinal tract. Regulation of gastrointestinal absorption and gastrointestinal secretion probably contributes the most to zinc homeostasis. In spite of the mechanism for whole body zinc homeostasis a regular exogenous supply of zinc is necessary to sustain the physiological requirements because of the limited exchange of zinc between tissues (Cleven et al., 1993).

It is hypothesised by Hempe and Cousins (1992(r)) that Zn^{2+} entering the luminal cells is associated with CRIP, a diffusible intracellular zinc carrier, and that a small amount is bound to metallothionein; however, as the luminal Zn2+ concentration increases, the proportion of cytosolic Zn2+ associated with CRIP is decreased and zinc binding to metallothionein increased. CRIP binds 40% of radiolabelled Zn2+ entering the intestinal cells of rats when zinc concentration is low; but only 14% when the concentration is high (Hempe and Cousins, 1992(*r*)).

Zinc is initially concentrated in the liver after ingestion, and is subsequently distributed throughout the body. When plasma zinc levels are high, liver metallothionein synthesis is stimulated, which facilitates the retention of zinc by hepatocytes (Richards and Cousins, 1975(r)).

4.1.2.2.6 Conclusion on toxicokinetics, metabolism and distribution

No data were provided on the toxicokinetics of zinc phosphate. Data on other zinc compounds have been used, as the basic assumption is made that after intake all zinc compounds (including metallic zinc) are changed (at least in part) to the ionic species and that it is this zinc cation that is the determining factor for the biological activities of the zinc compounds.

Within certain limits, the total body zinc as well as the physiologically required levels of zinc in the various tissues can be maintained, both at low and high dietary zinc intake. Regulation of gastrointestinal absorption and gastrointestinal secretion probably contributes the most to zinc homeostasis. In spite of this a regular exogenous supply of zinc is necessary to sustain the physiological requirements because of the limited exchange of zinc between tissues.

The Zn^{2+} absorption process in the intestines includes both passive diffusion and a carrier-mediated process. The absorption can be influenced by several factors such as ligands in the diet and the zinc status.

Persons with adequate nutritional levels absorb 20-30% and animals 40-50%. However, persons that are Zn-deficient absorb more, while persons with excessive Zn intake absorb less. For risk assessment, for the more soluble zinc compounds (chloride, sulphate) the lower bound of the absorption range at adequate nutritional levels is taken (i.e. 20%). For zinc oxide it has been shown that bioavailability is about 60% of that for soluble zinc salts, corresponding to 12-18%. For zinc metal, zinc phosphate and zinc distearate no bioavailability data were present. As these forms have limited solubility in diluted acids (stomach) comparable to zinc oxide, for the less soluble zinc compounds (oxide, phosphate, distearate, metal) an oral absorption value of 12% will be taken for risk assessment.

In situations of exposure excess (e.g. in case of high dermal or inhalation exposure at the workplace) the oral uptake of zinc compounds will probably be less than the values taken for risk assessment (20% and 12%). However, as this reduction in uptake is not quantifiable, also for excess exposure situations the same oral absorption values will be applied. Some justification for this approach can be found in the observation that for intake levels differing by a factor of 10, uptake levels vary maximally by a factor of two.

Quantitative data on the absorption of zinc following inhalation exposure (especially relevant in occupational settings) are not available. Some animal data suggest that pulmonary absorption is possible. In animal studies on zinc oxide retention in the lungs half-life values of 14 and 6.3 hours were reported for dissolution. As the absorption of inhaled zinc depends on the particle size and the deposition of these particles, data were provided on the particle size distribution of zinc aerosol in three different industry sectors. When analysing the particle size distribution data

with a multiple path particle deposition (MPPDep) model, it appeared that for zinc aerosols the largest part of the deposition takes place in the head region and much less in the tracheobronchial and pulmonary region. Although most of the material deposited in the head and tracheobronchial region is rapidly translocated to the gastrointestinal tract, a part will also be absorbed locally. Based on data for local absorption of radionuclides in the different airway regions, it is assumed that local absorption for the soluble zinc compounds will amount to 20, 50 and 100% of the material deposited in head, tracheobronchial and pulmonary region, respectively. For the less soluble/insoluble zinc compounds negligible absorption is assumed for head and tracheobronchial region and 100% absorption for the pulmonary region. The remaining part of the material deposited in the different airway regions will be cleared to the gastrointestinal tract where it will follow oral uptake kinetics, hence the oral absorption figures can be applied. Applying the above-mentioned assumptions to the deposition fractions as determined by the MPPDep model, inhalation absorption for the soluble zinc compounds (zinc chloride and zinc sulphate) is at maximum 40%, while for the less soluble/insoluble zinc compounds (zinc metal, zinc oxide, zinc phosphate and zinc distearate) inhalation absorption is at maximum 20%. These figures will be taken forward to the risk characterisation as a reasonable worst-case, because these figures are thought to cover existing differences between the different zinc industry sectors with respect to type of exercise activities (and thus breathing rate) and particle size distribution.

Adequate quantitative data on the absorption of zinc following dermal exposure (relevant in both occupational and consumer settings) are not available. The human data presented are not considered valid, mainly since either wounded skin was investigated, or suction blisters were raised, impairing the intactness of the skin. Dermal absorption through the intact skin seems to be small (< 2%), based on the results of the *in vivo* animals studies as well as the *in vitro* studies, but unfortunately shortcomings were noted in all *in vivo* studies and none of these studies can be used quantitatively. As for the *in vitro* studies, it is clear that the % in receptor medium generally gives an underestimation of the % systemically available in *in vivo* studies. Therefore, the amount detected in the skin should be included as being absorbed by default. This "potentially absorbed dose" more closely resembles the dose becoming systemically available *in vivo*.

Zinc bound to or in the skin may become systemically available at a later stage. This can be concluded from results in TPN patients, in which an expected decrease in serum zinc levels with time was counteracted by dermal absorption of zinc to result in steady serum zinc levels. Unfortunately, only 3 of the 6 patients completed the 10-day study period. There are no adequate human data available to evaluate the release of zinc from normal skin following single or repeated dermal exposure, as either blood was sampled for a too short period of time (3 hours; Derry et al., 1983) or the skin was damaged (Agren, 1990, 1991; Hallmans, 1977). Therefore, it can be concluded that following single or repeated dermal exposure zinc can be taken up by the skin, whereas the relevance of this skin depot cannot be judged based on the available data. For example, it is not studied how a large artificial zinc depot in the skin will affect the uptake or homeostasis of other essential ions (e.g. Cu). However, the total database available indicates that skin-bound zinc may not become systemically available in a way that it results in high peak levels of zinc in serum, but rather in a more gradual way. Given the efficient homeostatic mechanisms of mammals to maintain the total body zinc and the physiologically required levels of zinc in the various tissues constant, the anticipated slow release of zinc from the skin is not expected to disturb the homeostatic zinc balance of the body. By expert judgement, based on the aforementioned considerations, the default for dermal absorption of solutions or suspensions of zinc or zinc compounds is therefore chosen to be 2%. Based on the physical appearance, for dust exposure to zinc or zinc compounds a 10-fold lower default value of 0.2% is chosen in the risk assessment.

Zinc is distributed to all tissues and tissue fluids and it is a cofactor in over 200 enzyme systems.

Zinc is primarily excreted via feces, but can also be excreted via urine, saliva, hair loss, sweat and mothermilk.

4.1.2.3 Acute toxicity

A derogation was accepted for acute toxicity by inhalation: because the (systemic) toxicity of zinc salts is dependent on the bioavailability of the zinc cation as the biologically relevant constituent, acute toxicity data from other zinc compounds, especially the slight soluble/insoluble ones (zinc metal, zinc oxide or zinc distearate), could be used for zinc phosphate. Zinc metal, zinc oxide as well as zinc distearate were of low acute toxicity after inhalatory exposure to animals (see the risk assessment reports on zinc metal, zinc oxide and zinc distearate).

Studies in animals

With zinc phosphate $(Zn_3(PO_4)_2 \cdot 2-4 H_2O)$ an oral limit test according to OECD guidelines has been submitted with Wistar rats. No mortality occurred and no signs of toxicity were observed. The LD50 is > 5,000 mg zinc phosphate/kg bw. Further details are not available (Klein and Glaser, 1989, in IUCLID database).

Acute inhalation and dermal studies are not available.

Studies in humans

There are no human data on acute toxicity.

Conclusion on acute toxicity

Zinc phosphate has low acute oral toxicity. Studies via the inhalation or dermal route are not available. However, based on the accepted derogation and the fact that zinc metal, zinc oxide and zinc distearate are of low acute toxicity after inhalation, it may also be concluded that zinc phosphate is likely to have low acute toxicity after inhalation. Therefore it is concluded that the substance need not to be classified on the basis of its acute toxicity according to EC criteria.

4.1.2.4 Irritation

<u>Skin</u>

Data on skin irritation for animals and humans for zinc phosphate are not available. This is a base-set requirement, however, a derogation was accepted that given the physico-chemical properties, zinc phosphate would likely cause comparable effects to other slightly soluble zinc compounds (zinc oxide or zinc distearate, but for the latter also a derogation was requested and accepted) when tested for skin irritation, and that therefore skin irritation studies with zinc oxide would be acceptable for zinc phosphate. Zinc oxide was not irritating to the skin of animals and humans (see risk assessment report on zinc oxide).

Respiratory tract

There are no data on irritating effects after inhalation exposure. As zinc oxide did not show any signs of upper airway irritation (see risk assessment report on zinc oxide), no upper airway irritation potential is anticipated for zinc phosphate.

Eye

In a well-performed eye irritation study, conducted according to Directive 92/69/EEC B.5 and OECD guideline 405, 100 mg of zinc phosphate was administered into the conjunctival sac of the left eye of three male New Zealand White rabbits. The right eye remained untreated and served as control. The eyes (unrinsed) were examined at 1, 24, 48 and 72 hours after administration.

Very slight irritation of the conjunctivae (grade 1) was seen as redness (mean scores over 24-72 hours 0, 0.7 and 0.3) and chemosis (mean scores 0, 0.3 and 0.3), which persisted up to 48 hours at the latest. No conjunctival discharge and no iris and corneal lesions were observed (Mirbeau et al., 1999).

Conclusion on irritation

Data on skin and respiratory tract irritation are not available for zinc phosphate. However, based on the accepted derogation and the fact that zinc oxide is neither a skin nor respiratory tract irritant, it is consequently concluded that zinc phosphate is not likely to be irritating to the skin or respiratory tract.

Based on the eye irritation data with zinc phosphate, it can be concluded that zinc phosphate is not irritating to the eyes. Hence, according to EU criteria zinc phosphate does not have to be classified/labelled for irritating properties.

4.1.2.5 Corrosivity

Based on data available for zinc oxide it is concluded that zinc phosphate is not likely to be corrosive to the skin (see Section 4.1.2.4). Zinc phosphate is not corrosive to the eyes (see Section 4.1.2.4).

4.1.2.6 Sensitisation

Studies to assess the skin sensitising potential of zinc phosphate are not available. This is a base-set requirement, however, a derogation was accepted that given the physico-chemical properties, zinc phosphate would likely cause comparable effects to other slightly soluble zinc compounds (zinc oxide or zinc distearate, but for the latter also a derogation was requested and accepted) when tested for skin sensitisation, and that therefore skin sensitisation studies with zinc oxide would be acceptable for zinc phosphate. Zinc oxide was not a skin sensitiser in studies with guinea pigs. This was corroborated with human evidence (see risk assessment report on zinc oxide).

Conclusion on sensitisation

Data on skin sensitisation are not available for zinc phosphate. However, based on the accepted derogation and the fact that zinc oxide is not a skin sensitiser, it is consequently concluded that

zinc phosphate is not likely to be skin sensitising, and therefore does not need to be classified/labelled.

No data are available on the potential for respiratory sensitisation.

4.1.2.7 Repeated dose toxicity

4.1.2.7.1 Studies in animals

No data were provided on the repeated dose toxicity of zinc phosphate. Data on other zinc compounds have been used, as the basic assumption is made that after intake all zinc compounds (including metallic zinc) are changed (at least in part) to the ionic species and that it is this zinc cation that is the determining factor for the biological activities of the zinc compounds (see Section 4.1.2.1).

The section is divided in two subsections. Under "Relevant studies for risk assessment" more or less guideline repeated dose studies were evaluated that allowed the establishment of a N(L)OAEL. The subsection "Additional studies" comprises studies with animals other than standard laboratory animals, special investigations into specific parameters, limitedly reported studies etc.

Relevant studies for risk assessment

See Table 4.10.

Repeated dose toxicity	Species	Protocol	Results	mg Zn²+/ kg bw	Reference
Oral	mouse	other, but comparable with guideline study: 300 to 30,000 mg ZnSO4 · 7 H ₂ O /kg feed daily via diet for 13 weeks	NOAEL 3,000 mg/kg feed At 30,000 mg/kg feed: heamatological and biochemical effects were observed. Gross pathology and histopathology showed changes in kidney, thyroid, gastrointestinal tract and pancreas	NOAEL: 104 LOAEL: 1,107	Maita et al. (1981)
	rat	other, but comparable with guideline study: 300 to 30,000 mg ZnSO ₄ · 7 H ₂ O/kg feed daily via diet for 13 weeks	NOAEL 3,000 mg/kg feed At 30,000 mg/kg feed: hematologic effects and pancreatic damage	NOAEL: 53.5 LOAEL: 564	Maita et al. (1981)
	rat	according to OECD 408: up to 1% Zn-mono glycerolate via diet (~ 31.52 to 758.73 mg/kg bw) for 13 weeks	NOAEL 31.52 mg/kg bw At 0.2% (≈ 127.52 mg/kg bw): effects on pancreas, spleen and clinical chemical parameters	NOAEL: 13.26 LOAEL: 53.65	Edwards and Buckley (1995)

Table 4.10 Repeated dose toxicity

Oral exposure

• Zinc sulphate

ICR mice (12/sex/group) were given daily doses of 300, 3,000 or 30,000 mg ZnSO₄·7 H₂O/kg feed (equivalent to 42.7/46.4, 458/479 and 4,927/4,878 mg/kg bw for males/females, respectively) during 13 weeks. A control group was included. At the highest dose level 4 males and 1 female were found dead or killed in extremis. Histological findings of these animals revealed impairment of the urinary tract and regressive changes in the exocrine gland of the pancreas. Only the high dose animals showed moderately lower haematocrit (males: from 42% in controls to 29% in high dose animals; females: from 44% in controls to 31% in high dose animals) and haemoglobin concentrations (males and females: 14 to 10 g/dl). The leucocyte counts of high dose males were moderately decreased (lymphocytes 70 to 60%; monocytes 5.3 to 4.9%). Total protein, glucose and cholesterol were reduced and alkaline phosphatase and urea nitrogen were increased in high dose animals. High dose females showed reduced ALAT and increased calcium levels, ASAT was increased in high dose males. Absolute and relative (in parentheses) thyroid weights of males were increased from 3.3 mg (0.007%) in control animals to 4.2 mg (0.0011%) in the highest dose group. Kidney weights of females were also increased from 0.42 g (0.93%) in controls to 0.53 g (1.62%) at the highest dose. Gross pathology and histopathology showed changes in kidneys, thyroids, pancreas (degeneration/necrosis of acinar cells, clarification of nucleoli), gastrointestinal tract, and spleen. No effects were found on the reproductive organs (i.e. ovaries, testes, accessory sex organs). The NOAEL in this study is 458 and 479 mg ZnSO₄ · 7 H₂O/kg bw for males and females, respectively (≈ 104 mg Zn²⁺/kg bw) (Maita et al., 1981).

Wistar rats (12/sex/group) were given daily doses of 300, 3,000 or 30,000 mg ZnSO₄·7 H₂O/kg feed (equivalent to 23.2/24.5, 234/243, and 2,514/2,486 mg/kg bw for males/females, respectively) during 13 weeks. A control group was included. At the highest dose level a moderate reduction in leucocyte counts was seen in both sexes (males: from $7.3 \cdot 10^3$ /mm³ in controls to $4.7 \cdot 10^3$ /mm³ in high dose animals; females: from $4.5 \cdot 10^3$ /mm³ in controls to $3.3 \cdot 10^3$ /mm³ in high dose animals). Compared to controls, males also showed slightly decreased haematocrit (42 to 40%), decreased total protein (5.2 to 4.4 g/dl) and cholesterol values (96 to 62 mg/dl). Absolute and relative (in parentheses) liver weights were decreased in the high dose males (from 16.1 g (3.55%) in controls to 11.9 g (3.20%) at the highest dose). Absolute kidney weights were decreased in high dose males (2.29 g vs. 2.93 g in controls). Histopathology showed pancreatic damage (degeneration, necrosis of acinar cells, clarification of centroacinar cells and interstitial fibrosis) in high dose animals. No effects were found on the reproductive organs (i.e. ovaries, testes, accessory sex organs). The NOAEL is 234 and 243 mg ZnSO₄·7 H₂O/kg bw for males and females, respectively (≈ 53.5 mg Zn²⁺/kg bw) (Maita et al., 1981).

• Zinc monoglycerolate

Groups of 20 male and 20 female Sprague-Dawley rats were fed zinc monoglycerolate at dietary levels of 0, 0.05 or 0.2% (equal to 0, 31.52 or 127.52 mg/kg for males and 0, 35.78 or 145.91 mg/kg bw for females, respectively) for a period of 13 weeks in a study performed according to OECD 408. A similar group was fed 1% (equal to 719 and 805 mg/kg bw/day for males and females, respectively) of zinc monoglycerolate up to day 58 of the study when a deterioration in their clinical condition (poor physical health and reduced food intake) necessitated reducing the dietary level to 0.5% (equal to 632 and 759 mg/kg bw/day for males and females, respectively). However, as no improvement occurred these rats were killed on humane grounds on day 64 of the study. These rats developed hypocupremia manifested as a hypochromic microcytic regenerative type anaemia (low haemoglobin and haematocrit,

decreased MCV and MCH, and increased MCHC, red blood cell and reticulocyte count). Enlargement of the mesenteric lymph nodes and slight pitting of the surface of the kidneys were noted. Severe pancreatic degeneration and pathological changes in the spleen, kidneys, incisors, eyes and bones were observed. The testes of all males showed hypoplasia of the seminiferous tubules to a varying degree and in addition the prostate and seminal vesicles showed hypoplasia. In all but one female the uterus was hypoplastic.

All other rats survived to the end of the 13 weeks treatment. At a dietary level of 0.2% increases in plasma ALAT, alkaline phosphatase and creatine kinase were observed in males and in plasma creatine kinase in females. Total plasma cholesterol was reduced in both males and females. The changes were statistically significant but small in absolute terms. No changes in haematological parameters were seen at 0.05 and 0.2%. A dose-related reduction in the quantity of abdominal fat was noted in male rats at 0.05 and 0.2%. Enlargement of the mesenteric lymph nodes was apparent in 6 out of 20 rats fed 0.2% and in one male fed 0.05%. Microscopic examination showed a reduction in the number of trabeculae in the metaphysis of the tibia of 5 male and 3 female rats fed 0.2%, 4 males and 1 female had a similar reduction in the metaphysis of the femur. Pancreatic cell necrosis was seen in both sexes at 0.2% and a slight, but statistically not significant increase could be noted at 0.05% (3 males and 1 female). This pancreatic cell necrosis was seen also in 1 control male. A reduction in the number of pigmentated macrophages in the red pulp of the spleen was observed in both sexes at 0.2% and a marginal reduction was also seen in males at 0.05%. In the animals given 0.05 and 0.2% no effects were found on the reproductive organs.

Since the pancreatic cell necrosis, being without statistical significance at 0.05%, was also apparent in 1 control male and because the reduction in pigmented macrophages in the spleen was only marginal at 0.05% without any haematological changes the dose level of 0.05%, is considered as a NOAEL. This dose level is equal to 31.52 or 35.78 mg zinc monoglycerolate/kg bw for males and females, respectively, so the NOAEL in this study is 31.52 mg/kg bw (≈ 13.26 mg Zn²⁺/kg bw) (Edwards and Buckley, 1995).

Inhalation exposure

No proper inhalation toxicity data are available.

Dermal exposure

No dermal toxicity data are available.

Additional studies

Oral exposure

• Zinc sulphate

A group of 150 C3H mice was given daily doses of 0.5 g ZnSO₄ (unspecified)/l drinking ($\approx 100 \text{ mg ZnSO}_4/\text{kg bw/day}$; $\approx 22.6 \text{ mg Zn}^{2+}/\text{kg bw}$ in case heptahydrate was used) water for 1 year. A 2-month post observation period and a control group were included. At monthly intervals 5 control and 5 test animals were investigated for plasma zinc, glucose and insulin, and for zinc in skin, liver and spleen. Histology, histochemistry and microscopy were performed on adrenals and pancreas, and on adenohypophysis only microscopy. The animals remained healthy throughout the study. Hypertrophy of the adrenal glands (cellular enlargement) and hypertrophy and vacuolisation of pancreatic islets and fasciculata cells in adrenal cortex from month

3 onwards. Changes indicating hyperactivity in the anterior pituitary were noted, such as increased cell size of all cell types in the pituitary. All the other parameters remained the same during the study. The study was undertaken to further investigate the effects of supplemental zinc on endocrine glands and correlate these effects with any change in body zinc levels produced (Aughey et al., 1977).

Mink (3/sex/group) were given diets supplemented with 0, 500, 1,000 or 1,500 mg/kg feed zinc sulphate for 144 days. Zinc concentrations in liver, pancreas and kidney increased with increasing zinc content in the diet. No histological lesions were found in these organs (Aulerich et al. 1991(r)).

• Zinc chloride

Wistar rats (2 months, 16 males and 14 females) were given 0.12 mg Zn^{2+}/ml drinking water (equivalent to 12 mg Zn^{2+}/kg bw; 25 mg $ZnCl_2/kg$ bw) for 4 consecutive weeks. A control group was included. The body weights of exposed males and food and water intakes of both exposed sexes decreased. A statistically significant decrease in Hb level (85% of control value) and erythrocyte count was reported in the peripheral blood of treated rats. An increased leucocyte count, due to increased lymphocyte numbers was noted in treated males. No inhibition of erythropoiesis in the bone marrow was found. No more details were given in this limited study performed to investigate the effect of simultaneous oral administration of zinc and vanadium and therefore it cannot be used for risk assessment (Zaporowska and Wasilewski, 1992).

• Zinc oxide

Special studies were conducted to examine the morphological and histoenzymatic changes of the brain. Twelve Wistar rats were given daily doses of 100 mg ZnO (ca. 600 mg ZnO/kg bw \approx 480 mg Zn²⁺/kg bw) intragastrically for 10 consecutive days. A control group was included. After 10 days the rats were sacrificed and the brains were examined for morphological and histoenzymatic changes.

Morphological changes included degenerative changes of neurocytes, accompanied with moderate proliferation of the oligodendroglia and glial proliferation in the white matter. Furthermore endothelial oedema was observed in the small arterial and capillary walls. Histoenzymatic changes included decreased activities of ACP (acid phosphatase), ATPase (adenosinetriphosphatase), AChE (acetylcholinec esterase), and BChE (Butyrylthiocholine esterase). The activities of TTPase (thiamine pyrophophatase) and NSE (non specific esterase) were increased. No details on quantitative aspects of enzymatic changes were given. No change was seen in the alkaline phosphatase. The authors indicated that observed morphological and histoenzymatic changes were unspecific, undistinctive and most likely reversible (Kozik et al., 1980). Examination of the neurosecretory function of the hypothalamus and the hypophysis in these animals showed an increased neurosecretion in cells of the supraoptic and paraventricular nucleus of the hypothalamus along with a declined neurosecretion in the hypophysis and an enhanced release of antidiuretic hormone in the neurohypophysis (Kozik et al., 1981). It is not clear whether these observations represent an adverse effect of zinc on the brain or whether they are secundary to changes somewhere else in the body.

Four groups of ferrets (3-5/group) were given 0, 500, 1,500 or 3,000 mg zinc oxide/kg feed (equivalent to be 0, 81.3, 243.8 or 487.5 mg ZnO/kg bw, respectively. At the highest dose level (487.5 mg ZnO/kg bw) all animals (3) were killed in extremis within 13 days. Macroscopic examination showed pale mucous membranes, dark coloured fluid in the stomach, blood in the intestines, orange coloured liver and enlarged kidneys showing diffuse necrosis, haemorrhages in

the intestine and a severe macrocytic hypochromic anaemia. Histology showed nephrosis and extramedullary haematopoesis in the spleen. At the mid dose level of 243.8 mg ZnO/kg bw the animals (4) were killed on day 7, 14 and 21 (1/2 in extremis) showing poor condition. Macroscopy showed pale livers with fatty infiltration and enlarged kidneys. Histology was comparable with the highest dose group. The heamogram showed macrocytic hypochromic anaemia, increased reticulocytes and leucocytosis.

At the lowest dose level (81.3 mg ZnO/kg bw) the animals (3) were killed on day 48, 138 and 191, respectively. No clinical signs of toxicity or pathological changes were seen, apart from an extramedullary heamatopoesis in the spleen (Straube et al., 1980).

Ellis et al. (1984) conducted a 14-day and a 49-day feeding study in 3 different breeds of sheep that were receiving feed containing 31 mg Zn^{2+}/kg feed. The sheep received additional amounts of Zn^{2+} (from ZnO) at dose levels of 261 and 731 (14 day study) or 731 and 1,431 mg Zn^{2+}/kg feed (49-day study). No effects were seen after 261 mg Zn^{2+}/kg feed. In all other groups pancreatic lesions were seen.

Administration of 240 mg Zinc (as ZnO)/kg bw for 3 times/week during 4 weeks to 42 castrated sheep resulted in an increased incidence of pancreatic lesions (Smith and Embling, 1993(*r*)).

Inhalation exposure

• Zinc oxide

Male Hartley guinea pigs were exposed to 0, 2.3, 5.9 or 12.1 mg/m³ of ZnO (as ultrafine particles with an average diameter of 0.05 μ m) 3 hours a day for 1, 2 or 3 consecutive nose only exposures. Three animals from each group were examined after each exposure period, were sacrificed and lung tissues were microscopically examined, and the pulmonary lavage fluid was also examined.

Exposure to 12.1 mg/m³ increased the number of nucleated cells in lavage fluid. Exposures to 5.9 and 12.1 mg ZnO/m³ were associated with increased protein, neutrophils, and activities betaglucuronidase, acid phosphatase, alkaline phosphatase, lactate dehydrogenase, and angiotensinconverting enzyme. The increases were dose dependent and were detectable after the second exposure, and generally increased after the third exposure. Significant morphologic damage characterized by centriacinar inflammation in the lung was seen at 5.9 and 12.1 mg/m³. Minimal changes in neutrophils and activities of lactate dehydrogenase and alkaline phosphatase were seen in the pulmonary fluid at the lowest dose level of 2.3 mg/m³ after 3 exposures but no morphologic changes were observed at this dose level. Based on these results 2.3 mg ZnO/m³ is considered as a marginal LOAEL in this study (Conner et al., 1988).

Male Hartley guinea pigs were exposed to 6 mg/m³ of ultrafine ZnO (average diameter of 0.05 μ m) for 3 hours a day for 1 to 5 days by nose only exposure. A control group was included. After each exposure 3 animals were sacrificed and lung tissues were microscopically examined. After first, second and third exposure 3 additional animals were sacrificed and their pulmonary lavage fluid was examined. ZnO-exposure increased the total cell count, neutrophils, protein and the enzyme activities of angiotensin converting enzymes, Acid phosphatase, alkaline phosphatase, and β -glucoronidase. Furthermore a dose-related centriacinar inflammation was seen after second exposure (Conner et al., 1986).

Male Hartley guinea pigs were exposed to 0, 2.7 or 7 mg ultrafine (0.05 μ m in diameter) ZnO/m³ 3 hours a day for 5 days. Lung function measurements were performed every day after exposure in 5-8 animals. After the last exposure the animals were sacrificed. At the highest exposure level

a gradual decrease in total lung capacity (18%) and vital capacity (22%) was seen during the exposure period. At day 4 the carbon monoxide diffusing capacity dropped to below 30% of the control level. Wet lung weights were increased with 29%, indicating the presence of edema. Exposures up to 2.7 mg ZnO/m³ did not alter any parameters measured (Lam et al., 1988).

Male Hartley guinea pigs (73) were exposed (nose only) 3 hours a day for 6 days to 5 mg ZnO/m^3 (0.05 µm in diameter). A group of 53 animals served as control group. Lung function tests (in 38 animals) were performed and the respiratory tract of the animals was morphologically examined 1, 24, 48 and 72 hours after the last exposure. Furthermore epithelial permeability (5 animals at 1 and 24 hours) and DNA synthesis in epithelial cells (5 animals at 24, 48 and 72 hours) were determined.

Vital and functional residual capacity, alveolar volume and carbon monoxide diffusing capacity were all decreased and did not return to normal values 72 hours after the last exposure. Lung weights were elevated due to inflammation, still present at 72 hours after last exposure (Lam et al., 1985).

240 Female Wistar rats (80/group) were exposed by inhalation to 15 mg ZnO/m^3 for 1 hour, 4 hours or 8 hours a day for 5 days a week. 20 Animals/group were sacrificed after 14, 28, 56, and 84 days and their lungs were examined for zinc content.

It appeared that the highest daily exposure time resulted in the highest dry lung weights, independent of the duration of the experiment, while the zinc content remained almost constant. The absolute and relative (relative to dried weights of lung tissue) zinc content in the lungs was influenced by the duration of the experiment. After 84 days of exposure the zinc content was significantly higher compared to 14 days exposure, independent of the duration of the daily exposure (Dinslage-Schlünz and Rosmanith, 1976).

4.1.2.7.2 Studies in humans

All relevant oral human data concerning metallic zinc and zinc compounds are reported in this section.

Dietary levels were not measured in all of the studies reported here. According to a Total Diet Study performed by the US Food and Drug Administration (FDA) over the period 1982 to 1986, adult males (25-35 years of age) consumed an average of 16.4 mg Zn^{2+}/day . Adult females (25-30 years of age) consumed an average of 9.72 mg Zn^{2+}/day (Pennington, 1989).

Zinc sulphate

In a double blind cross-over trial 47 healthy volunteers (26 females and 21 men) ingested zinc sulphate capsules containing 220 mg zinc sulphate, three times a day with each meal (resulting in a total daily dose of 150 mg Zn^{2+} i.e. ≈ 2.1 and 2.5 mg Zn^{2+} /kg bw /day for males and females, respectively) for six weeks. Plasma zinc and copper levels, plasma cholesterol, plasma low-density-lipoprotein (LDL) and high-density-lipoprotein (HDL) cholesterol, serum ceruloplasmin and erythrocyte superoxide dismutase (ESOD) were determined. In 84% of the women and 18% of the men symptoms were reported which included headaches, nausea, vomiting, loss of appetite and abdominal cramps. The study authors reported that the gastric discomfort went together with lower body weights and taking the capsules with small meals (breakfast or morning tea) or no food. Plasma zinc levels rose significantly in both men and women (36% and 57%, respectively). Plasma copper levels did not change significantly. Total plasma cholesterol

and HDL were unchanged in both sexes. In females the LDL cholesterol decreased significantly from 2.38 to 2.17 mmol/l. In females a decrease was also found in serum ceruloplasmin (13% reduction) and in ESOD (ca.20% reduction) (Samman and Roberts, 1987, 1988).

Hooper et al. (1980) examined the effect of oral zinc administration on human lipoprotein values. Twelve healthy adult men were given oral doses of 440 mg zinc sulphate/day (≈ 2.3 mg Zn²⁺/kg bw/day in the form of two zinc sulphate capsules containing 220 mg zinc sulphate (80 mg elemental zinc per capsule resulting in a total daily dose of 160 mg Zn²⁺), each capsule to be eaten with a main meal for 35 days. Fasting lipid levels were determined on a weekly basis and continued two weeks after zinc supplementation stopped, with a final determination at 16 weeks after start of the experiment. HDL cholesterol levels were decreased by 25% at the 7th week, but had returned to baseline levels at 16 weeks. Total serum cholesterol, triglyceride and LDL cholesterol levels were not changed.

<u>Remark</u>: There is a discrepancy between the dosimetric data in the Samman and Roberts study (1987/1988) as compared to the Hooper et al. study (1980). In the first study, a daily dose of 660 mg zinc sulphate was declared to be equivalent to a dose of 150 mg Zn^{2+} per day, while in the second study a daily dose of 440 mg zinc sulphate was stated to have resulted in a daily dose of 160 mg Zn^{2+} . This discrepancy can only be explained by assuming that in the Samman and Roberts study zinc sulphate was administered in the form of the heptahydrate, while in the Hooper et al. study the monohydrate has been used. As this is not clearly stated in either of the two studies, the dosimetric data which are presented here are the same as those given in the respective publications.

Chandra (1984) examined the effect of zinc on immune response and serum lipoproteins. Zinc sulphate was administered twice daily to 11 adult men for a total (extra) intake of 300 mg elemental zinc/day ($\approx 4.3 \text{ mg } \text{Zn}^{2+}/\text{kg}$ bw/day). Dietary zinc intake amounted to ca. 11 mg/person/day. None of the subjects showed evidence of any untoward side-effects. There was a significant increase in serum zinc levels and reduction in lymphocyte stimulating response to PHA after 4 and 6 weeks of treatment. A slight increase in LDL was observed together with a significant reduced level of HDL cholesterol.

In two studies the side-effects of zinc administration as a medication in the treatment chronic leg ulcers was investigated:

- in a double-blind trial, 13 humans received 200 mg zinc sulphate (\pm 135 mg Zn²⁺) three times a day for 18 weeks, while 14 humans received a placebo. No signs of nephrotoxicity associated with the zinc treatment were reported, but the study was not sufficiently documented to fully appreciate the relevance of its result (Hallbook and Lanner, 1972),
- in a study from Greaves and Skillen (1970) no indications for heamatotoxicity, hepatotoxicity or nephrotoxicity, as determined by several clinical biochemical and haematological parameters, were seen in 18 humans after administration of 220 mg zinc sulphate (\pm 150 mg Zn²⁺) 3 times a day for 16-26 weeks.

Zinc gluconate

In a 12-week double blind study Black et al. (1988) administered zinc gluconate tablets to 2 groups of healthy male volunteers for 12 weeks at doses equivalent to 50 or 75 mg zinc/kg bw/day (≈ 0.71 and 1.1 mg Zn²⁺/kg bw/day). A control group received a placebo tablet. No changes in serum cholesterol, triglyceride, and LDL and very-low-density-lipoprotein (VLDL) cholesterol levels were observed.

In a 10-week single blind oral study by Yadrick et al. (1989) 9 healthy female volunteers were given 50 mg Zn²⁺ (as zinc gluconate)/day (≈ 0.83 mg Zn²⁺/kg bw/day) and 9 other healthy female volunteers were given 50 mg Zn²⁺ (as zinc gluconate)/day plus 50 mg Fe²⁺ (as ferrous sulphate monohydrate) in two daily doses via their diet to investigate the effect of zinc supplementation on iron, copper and zinc status. The subjects (assumed mean body weight of 60 kg) served as their own controls. In both groups the erythrocyte superoxide dismutase (ESOD) activity was significantly reduced with 47% after 10 weeks. In the zinc supplemented group, after 10 weeks significant decreases in haematocrit (by 4%) and serum ferritin levels (with 23%) were seen, whereas the haemoglobin levels were unchanged. In the zinc + iron supplemented group, serum ferritin levels were significantly increased (by 25%), whereas the haematocrit and haemoglobin levels were unchanged. The ceruloplasmin concentration, another indicator for copper status besides ESOD, was not altered in both groups, but the serum zinc concentration was significantly increased. The NOAEL in this study is less than 0.83 mg Zn²⁺/kg bw.

A significant decrease of 15% in ESOD activity was reported by Fischer et al. (1984) who administered 50 mg Zn^{2+} (as zinc gluconate)/day (≈ 0.71 mg Zn^{2+} /kg bw) divided in two daily doses to 13 healthy young men (assumed mean body weight of 70 kg) for 6 weeks in a double-blind study design. The other two indices of copper status, i.e. ceruloplasmin activity and plasma copper levels were not changed compared to the controls at 2, 4 or 6 weeks, but the serum zinc levels were significantly increased from 2 weeks of supplementation onwards. Serum zinc showed a significant inverse correlation with ESOD activity at 6 weeks.

The study of Yadrick et al. (1989) as well as the study of Fischer et al. (1984) showed several limitations such as:

- the short duration of the studies and the small number of subjects,
- the absence of a placebo-controlled group in the Yadrick study. However, all subjects served as their own controls,
- the lack of information on the dietary levels of zinc (and iron and copper); the diets were not controlled,
- the absence of physical or medical examination.

Over the course of the past several years, industry has been sponsoring a series of human volunteer studies in conjunction with the Grand Forks Human Nutrition Research Center of the US Department of Agriculture. These studies, recently completed, have been evaluating impacts of moderate zinc deficiency and moderate zinc excess as a function of intake levels for mineral nutrients such as copper. This because extremely high amounts of zinc have been shown to interfere with the uptake and metabolism of copper, and it was questioned if moderately high intakes of zinc would also be antagonistic to copper metabolism. The studies are anticipated to demonstrate the fashion in which subtle biochemical alterations associated with zinc deficiency and excess will vary as a function of copper status, and to evaluate exposure biomarkers with potential applications for monitoring zinc status. The results of two of these studies are now available for public circulation (see studies by Davis et al. and Milne et al. below).

In a controlled metabolic-unit study by Davis et al. (2000), various indicators of zinc status were measured in 25 healthy postmenopausal women (mean age 64.9 years) to evaluate the usefulness of these indicators as a marker for the functional assessment of zinc status in humans. The subjects were kept under close supervision for 200 days, divided into two 90-day dietary periods, each preceded by a 10-day equilibration period. The subjects received a daily diet with a total energy content of 8.4 MJ (or 2,000 kcal). In the equilibration periods the subjects received a diet

containing 2 mg copper/day and 9 mg zinc/day. For the 90-day dietary periods the subjects were randomly divided into two groups, one group (n = 12) was fed a low copper diet (1 mg Cu/day) and the other group (n = 13) a high copper diet (3 mg Cu/day). In the first 90-day dietary period both groups received no zinc supplement (low zinc; 3 mg Zn/day), while in the second 90-day dietary period both groups received a zinc supplement of 50 mg per day (high zinc; 53 mg Zn/day). Zinc was supplemented as zinc gluconate and copper as cupric sulphate. Blood samples were taken (after overnight fasting for 12 hours) during each of the equilibration periods and one to twice monthly during the dietary periods, and analysed for various zinc-status indicators.

Zinc concentrations in erythrocytes and erythrocyte membranes, plasma and erythrocyte membrane alkaline phosphatase activities, and erythrocyte membrane 5'nucleotidase activity did not change statistically significantly with the different dietary treatments.

Zinc supplementation significantly increased plasma zinc concentrations and activities of mononuclear 5'nucleotidase and extracellular superoxide dismutase (P < 0.0001). For all three indicators the effect of zinc supplementation was dependent on the copper intake although this was not statistically significant for plasma zinc. In case of mononuclear 5'nucleotidase activity, the difference caused by zinc supplementation was apparent when subjects were fed high dietary copper (92% change) but not when they were fed low dietary copper (5% change). The effects for plasma zinc and for extracellular superoxide dismutase activity were more apparent when subjects were fed low dietary copper (35 vs. 22% and 21 vs. 8% change, respectively). Independent of copper intake, zinc supplementation caused relatively small increases in free thyroxine (7-8%) and triiodothyronine (7-9%) concentrations, platelet zinc concentations (10-13%) and bone specific alkaline phosphatase activity (18%) (0.002 < P < 0.08). The levels of the affected indicators were elevated from the equilibration values at all dietary treatments, with the exception of extracellular superoxide dismutase activity at low copper/low zinc, mononuclear 5'nucleotidase activity at low copper/low zinc, low copper/high zinc and high copper/low zinc, and thyroxine and triiodothyronine concentrations at all dietary treatments. Plasma zinc concentrations were within the normal range for healthy adults (10.7-18.4 µmol/L) throughout the low zinc period, but during zinc supplementation 8 out of 23 subjects had plasma zinc concentrations > 18.4 μ mol/L.

Decreased activities upon zinc supplementation were found for plasma 5'nucleotidase activity (P < 0.0001), thyroid stimulating hormone concentrations (P < 0.07) and erythrocyte superoxide dismutase activity (ESOD; not statistically significant). For these three indicators the decrease was somewhat more apparent when fed high dietary copper (28 vs. 29%, 5 vs. 9%, and 3 vs. 5%, respectively). However, for plasma 5'nucleotidase and ESOD the levels at high dietary copper were higher than at low dietary copper (only at high copper/low zinc the levels were elevated from equilibration values). For thyroid stimulating hormone the levels were depressed from equilibration values at all dietary treatments. Limited data suggested that zinc supplementation in combination with low dietary copper depresses amyloid precursor protein expression in platelets (Davis et al., 2000).

<u>Remark</u>: Data from two volunteers fed low copper diets were not included: they had to be supplemented with dietary copper because of significant changes in their electrocardiograms.

In the same dietary experiment as described by Davis et al. (2000; see above), also other parameters (i.e. copper-status and iron-status indicators) were investigated to study the effect of moderately excessive and deficient intakes of zinc on copper metabolism and utilization in humans fed low and luxuriant amounts of copper (Milne et al., 2001). For that purpose, urine and faeces were collected during the last 78 days of each 90-day dietary period and copper and zinc

were determined (in faeces in 6-day composite samples). Once weekly blood was sampled (after overnight fasting for 12 hours), and blood samples were analysed for various copper-status and iron-status indicators.

Women fed low copper were in negative copper balance. Zinc intake (low or high) did not alter this. Women fed high copper were put into negative copper balance by low zinc. Upon transition to high zinc, women fed high copper came into positive copper balance, which apparently was the result of a lower amount of dietary copper lost in the faeces; urinary copper was not affected.

The zinc balance reflected dietary zinc intake (more positive with increased zinc intake) and was not significantly affected by copper intake.

Copper status indicators were variably affected by dietary treatment. The concentrations of serum ceruloplasmin (enzymatically determined), HDL and VLDL cholesterol, triglycerides and red blood cell zinc did not change statistically significantly with the different dietary treatments.

Independent of zinc intake, plasma copper concentrations were significantly lower on low dietary copper than on high dietary copper (P < 0.07). Although plasma copper concentrations were depressed from equilibration values at all dietary treatments, the depression was less for high than for low dietary copper (P < 0.03).

Independent of copper intake, zinc supplementation caused increases in the concentrations of serum ceruloplasmin (immunochemically determined; 4-8%, P < 0.05) and plasma zinc (19-32%, P < 0.0001) and in platelet cytochrome c oxidase activity (on a platelet number basis; 19-27%, P < 0.0007), and decreases in the concentrations of red blood cell copper (8-16%, P < 0.0008) and whole blood glutathione (8-12%, P < 0.009) and in the activities of specific ceruloplasmin (defined as the ratio between enzymatic and immunoreactive ceruloplasmin; 8-11%, P < 0.0003) and erythrocyte glutathione peroxidase (11-15%, P < 0.002). The levels of these indicators were elevated from equilibration values at all dietary treatments, with the exception of serum immunoreactive ceruloplasmin concentration (reduced at all dietary treatments), platelet cytochrome c oxidase activity (reduced at high copper/low zinc), specific ceruloplasmin activity and whole blood glutathione concentration (essentially at equilibration value at low copper/low zinc and reduced at low copper/high zinc).

Zinc supplementation significantly decreased ESOD activity (5-7%, P < 0.03) as well as the concentrations of total cholesterol (3-4%, P < 0.005) and LDL cholesterol (2-6%, P < 0.003), but not by much. The effect on ESOD was dependent on copper intake (P < 0.0001): compared to equilibration values, ESOD activity decreased on low copper but increased on high copper. Total cholesterol and LDL cholesterol concentrations were significantly higher on low dietary copper than on high dietary copper (P < 0.02 and P < 0.03, respectively). This suggests a dependency on copper intake, but it should be noted that women fed low copper had higher equilibration values for both indicators than women fed high copper.

The authors state that measured indicators of iron status (serum iron, haemoglobin, haematocrit and percent transferrin saturation) were unaffected by dietary treatment (no data presented), with the exception of haemoglobin, which was lower on high zinc than on low zinc in both the low and high copper groups. The drop in haemoglobin occurred especially during the last month of zinc supplementation, possibly due to the frequent blood sampling. <u>Remark</u>: Data from another two volunteers (one on a low copper diet and one on a high copper diet) were not included, because they were using an adhesive containing extremely high amounts of zinc for their false teeth.

Remarks on the Grand Forks study, reported by Davis et al. (2000) and Milne et al. (2001):

- 1. From personal communication with the authors it appears that for ESOD activity the initial equilibration values varied markedly between individuals, and that for women who were assigned to the low copper group ESOD activity was substantially higher than for those assigned to the high copper group. This implicates that for this indicator, the assignment of the subjects to the two groups was suboptimal, which might also be the case for other indicators.
- 2. The frequent blood sampling (an average of no more than 235 ml per month was drawn) might have compromised the physiology of the subjects (as was suggested for haemoglobin).
- 3. The subjects served as their own controls: values upon both treatments (i.e. low and high zinc administration) were compared with values upon first equilibration. However, as the second treatment is not independent of the first treatment, the study design is not optimal.

In the human studies described above, the effects of high or moderately high dietary zinc on several indicators known to be associated with copper status have been investigated. These indicators included plasma zinc and copper concentrations, cholesterol and lipoprotein cholesterol concentrations, and several enzym activities (e.g. ESOD and ceruloplasmin). Effects of zinc on the latter are thought to precede changes in plasma and tissue levels of the elements, given the primary role of zinc as a component of different enzymes. In humans supplemented with zinc, plasma zinc concentration was elevated, while plasma copper concentration was not affected. In the earlier studies by Samman and Roberts (1987/1988), Yadrick et al. (1989) and Fischer et al. (1984) reductions in ESOD activity were found upon zinc supplementation. This was thought to be associated with copper deficiency, as was the reduction in ceruloplasmin activity found by Samman and Roberts (1987/1988). In the more recent and more sophisticated studies by Davis et al. (2000) and Milne et al. (2001), however, only very small reductions in ESOD activity were observed that did not correlate with changes in copper balance. The clinical significance of this ESOD reduction can be doubted, because the findings in these studies on more specific copper deprivation signs (decreased serum ceruloplasmin and platelet cytochrome c oxidase) indicate that sub-optimal intake of zinc was more effective than a moderately high intake of zinc in inducing changes associated with a decreased copper status in postmenopausal women. It might also be that the small decrease in ESOD activity with high zinc intake was not caused by an interference with copper metabolism, but was more reflective of reduced oxidative stress given the serum glutathione and erythrocyte glutathione peroxidase findings. However, one can only conclude from the Grand Forks studies (Davis et al., 2000; Milne et al., 2001) that very subtle changes were induced by the different dietary treatments.

From various studies (e.g. Fischer et al., 1990; Barnett and King, 1995; Verhagen et al., 1996 and Puscas et al., 1999) it can be concluded that ESOD activities in healthy human volunteers may show a coefficient of variation of at least 10 to 20%. Although it is impossible to compare the absolute ESOD activities as reported by these authors to those from the Grand Forks studies, due to methodological differences, the relative changes in activities as reported by Davis et al. (2000) and Milne et al. (2001) can be compared to the coefficient of variation of ESOD activity, showing that the changes found in the Grand Forks studies are within the range of natural variation. In addition, Fischer et al. (1990) have demonstrated that in a large group of male and female human volunteers of different ages, ceruloplasmin and serum copper levels were highly

correlated, but that no correlation between serum copper concentration and ESOD could be established. ESOD activity was independent of sex, age, pre-post menopausal status, estrogen use (including that in post-menopausal women), smoking or drinking habits, or level of physical exercise.

The general function of ESOD, also within red blood cells, is to catalyze the dismutation of superoxide anion radicals to hydrogen peroxide and oxygen, thus preventing damage of cell constituents and structures by this radical intermediate generated during the oxygen transport function. Concentrations of superoxide anion radicals are in the order of 0.01–0.001 nmol/l under non-pathological conditions. Hydrogen peroxide, on the other hand, is destroyed by catalase being present in high amounts within erythrocytes resulting in concentrations between 1 and 100 nmol/l. According to our knowledge there are only few measured data available showing a direct relationship between changes of intracellular concentrations of free radicals and tissue damage.

Assuming that there is a considerable reduction of the ESOD activity then higher concentration of superoxide radical anions should occur in red blood cells which may lead to destructive effects. Such effects should be detectable, e.g. by changes in haematological parameters (e.g. increased hemolysis, decreased number of erythrocytes, increase in reticulocytes). However, such findings have not been observed in any study. In the Grand Forks studies (Milne et al., 2001) hematocrit, serum iron, and transferrin saturation were unaffected by a dose of 50 mg Zn^{2+}/day leading to a 3-7% reduction of ESOD activity. Yadrick et al. (1989) reported a 47% decrease of ESOD activity after giving 50 mg Zn^{2+}/day over 10 weeks. However, this decrease of ESOD is accompanied by a small decrease in hematocit value.

The subtle changes in clinical-biochemical parameters, as reported in the Grand Forks studies, are hardly indicative for zinc induced perturbations of the copper homeostasis. These biochemical changes do not lead to detectable deterioration of red blood cell functioning. Therefore, these changes are also of marginal biological significance, if any. Hence, it is concluded that in women supplemented with zinc, a dose of 50 mg Zn^{2+}/day is a NOAEL.

4.1.2.7.3 Conclusion on repeated dose toxicity

No data were provided on the repeated dose toxicity of zinc phosphate. Data on other zinc compounds have been used, based on the assumption that after intake the biological activities of the zinc compounds are determined by the zinc cation.

Studies in animals

No repeated dose toxicity studies after dermal exposure are available in animals.

After inhalation exposure mainly studies of short duration (3-6 days) are available. In a 3-day inhalation study with guinea pigs a concentration of 2.3 mg ultrafine ZnO/m^3 (3 hours/day) was a marginal LOAEL, showing changes in neutrophils and activities of lactate dehydrogenase and alkaline phosphatase in the pulmonary fluid. At higher concentrations increased protein concentration, neutrophils, and enzyme activities in lung lavage fluids were seen, together with significant centriacinar inflammation of the pulmonary tissue. A dose of 2.7 mg ultrafine ZnO/m^3 (3 hours/day for 5 days) did not alter the lung function parameters in guinea pigs but at 7 mg ultrafine ZnO/m^3 (3 hours/day for 5 days) or at 5 mg ultrafine ZnO/m^3 (3 hours/day for 6 days) a gradual decrease in total lung capacity, vital capacity and reduction of the carbon monoxide diffusing capacity were seen in combination with inflammatory changes and edema.

The relevance of the findings in studies with ultra-fine zinc oxide fumes is unclear with respect to commercial grade zinc oxide, as the latter is of much larger particle size and can have different toxicological characteristics.

In two oral 13-week studies with zinc sulphate (one with rats and one with mice) and an oral 13-week study with zinc monoglycerolate in rats, the lowest oral NOAEL was found in the study with zinc monoglycerolate. This overall NOAEL is 31.52 mg zinc monoglycerolate/kg bw (\approx 13.26 mg Zn²⁺/kg bw). At higher doses the most important effects the rats developed were hypocupremia, and significant changes in the pancreas (focal acinar degeneration and necrosis) and the spleen (decreased number of pigmented macrophages). It should be noted that in the studies with zinc sulphate mice and rats could be maintained up to 13 weeks on a diet containing 30,000 mg ZnSO₄·7 H₂O/kg feed (equivalent to 6794 mg Zn²⁺/kg feed), while in the 13-week study with zinc monoglycerolate with rats 1.0% zinc monoglycerolate in the diet (equivalent to 4,420 mg Zn²⁺/kg feed) was so detrimental that animals had to be killed on humane grounds after 9 weeks.

Studies in humans

Upon supplementing men and women with 150 mg Zn^{2+}/day (as zinc sulphate capsules), women appeared to be more sensitive than men to the effects of high zinc intake: clinical signs such as headache, nausea and gastric discomfort were more frequent among women, and women but not men had decreased activities of serum ceruloplasmin and ESOD. In some earlier oral studies in which humans were supplemented with moderately high amounts of zinc (50 mg Zn^{2+}/day), a reduction in ESOD activity was also observed and again women appeared to be more sensitive to this effect. Hence, a reduction in ESOD was thought to be a sensitive indicator of copper status. However, in more recent and more sophisticated studies using the same dose level, ESOD was only marginally reduced (without a correlation with changes in copper balance), while findings on more specific copper deprivation signs (decreased serum ceruloplasmin and platelet cytochrome c oxidase) indicated that a sub-optimal intake of zinc was more effective than a moderately high intake of zinc in inducing changes associated with a decreased copper status in postmenopausal women. Given this, and degree of the observed ESOD reduction in comparison to the natural variability in its activity, the zinc-induced decrease in ESOD activity is considered to have marginal biological significance, if any, also because it may not have been caused by an interference with copper metabolism.

Overall, it is concluded from studies in which humans were supplemented with zinc (as zinc gluconate), that women are more sensitive to the effects of high zinc intake and that a dose of 50 mg Zn^{2+}/day is a NOAEL. At the LOAEL of 150 mg Zn^{2+}/day , clinical signs and indications for disturbance of copper homeostasis have been observed. The human oral NOAEL of 50 mg Zn^{2+}/day (0.83 mg/kg bw/day) will be taken across to the risk characterisation.

4.1.2.8 Mutagenicity

No data were provided on the genotoxicity of zinc phosphate. Data on other zinc compounds have been used, as the basic assumption is made that after intake all zinc compounds (including metallic zinc) are changed (at least in part) to the ionic species and that it is this zinc cation that is the determining factor for the biological activities of the zinc compounds (see Section 4.1.2.1).

The tests that are considered useful for the assessment of the genotoxicity of Zn^{2+} are summarized in **Table 4.11**.

Table 4.11 Genotoxicity data

Genetic toxicity	Species	Protocol	Results	Form	Reference
In vitro studies					
Bacterial test (gene mutation)	S. typhimurium (4 strains)	Ames test; 1,000–5,000 µg/plate	negative	oxide	Crebelli et al. (1985) *
Bacterial test (gene mutation)	S. typhimurium (3 strains)	Ames test	negative	oxide	Litton Bionetics (1976) *
Bacterial test (gene mutation)	S. typhimurium (5 strains)	Ames test: with and without m.a.; 5 doses, up to 3,600 µg/plate	negative	sulphate	Gocke et al. (1981)
Bacterial test (gene mutation)	S. typhimurium (1 strain)	other: without m.a.; up to 3,000 nM/plate	negative	sulphate	Marzin and Vo Phi (1985) *
Bacterial test (gene mutation)	S. typhimurium (4 strains)	unknown	negative	chloride	Kada et al. (1980) <i>(r)</i>
Bacterial test (gene mutation)	S. typhimurium	Ames test: with and without m.a.	negative	distearate	Litton bionetics (1977)(r)
Bacterial test (gene mutation)			negative	monoglycerolate	Jones and Gant (1994) **
mutation test (strain WP2s prophage of McCarr 1981); col		other: induction of λ prophage (adaptation of McCarroll et al., 1981); conc. 3,200 μmol/l; m.a. unknown	ambiguous (two-fold increase of λ prophage induction)	chloride	Rossman et al. (1984)
Eukaryotic assay (gene mutation)			weakly positive (no details given)	sulphate	Singh (1983) *
Eukaryotic assay (gene mutation)	Eukaryotic assay S. cerevisiae unknown: m.a.		negative	sulphate	Siebert et al. (1970) *
Eukaryotic assay (gene mutation)	S. cerevisiae	unknown	negative	distearate	Litton Bionetics (1977)(r)
Eukaryotic assay (gene mutation)	mouse lymphoma cells	unknown: with and without m.a.	positive	oxide	Cameron (1991)(r)
Eukaryotic assay (gene mutation) mouse lymphoma cells according to OECD guideline No. 476; without m.a. 1-15 µg/ml (toxic at 15 µg/ml) with m.a. 1-30 µg/ml (toxic at 30 µg/ml)		positive: without m.a. from 10 µg/ml with m.a. from 15 µg/ml	monoglycerolate	Adams and Kirkpatrick (1994) **	

Table 4.11 continued overleaf

Genetic toxicity	Species	Protocol	Results	Form	Reference
<i>In vitro</i> studies					
Eukaryotic assay (gene mutation)	mouse lymphoma cells	unknown: without m.a.	negative	chloride	Amacher and Paillet (1980)(r)
Cytogenetic assay (SCE's)	Syrian hamster embryo cells	unknown; m.a. unknown	ambiguous	oxide	Suzuki (1987) *
Cytogenetic assay	human embryonic lung cells:WI-38	unknown: without m.a.; 0.1, 1.0 and 10 µg/plate	negative	sulphate	Litton Bionetics (1974) *
Cytogenetic assay (chromosomal aberrations)	nal lymphocytes 0, 30 and 300 µM (3r		ambiguous	chloride	Deknudt and Deminatti (1978) *
Cytogenetic assay (chromosomal aberrations) human lymphocytes (MI 51%) without m		according to OECD guideline No. 473; cytotoxicity at 40 µg/ml (MI 51%), con. tested: without m.a. 5–20µg/ml, with m.a. 10–40 µg/ml	positive in the presence of m.a. at 30 and 40 µg/ml	monoglycerolate	Akhurst and Kitching (1994) **
(chromosomallymphocytes0, 20, anaberrations)200 μg/c		other: without m.a.; 0, 20, and 200 µg/culture (2,000 µg toxic)	negative	chloride	Deknudt (1982) *
synthesis embryo cells 0.2		unknown: without m.a.; 0.3, 1, 3, 10 and 30 µg/ml	positive ≥ 1 µg/ml	oxide	Suzuki (1987) *
Cell transformation assay	ormation Syrian hamster unknown: wi embryo cells 0, 1, 3 μg Zr		positive 1 and 3 µg/ml	oxide	Suzuki (1987) *
Cell transformation assay			negative	chloride	Di Paolo and Casto (1979)(r)
Cell transformation Syrian hamster ur assay embryo cells		unknown; 0-0.34 mM	equivocal	chloride	Casto et al. (1979)
Cell transformation assay	Syrian hamster embryo cells	unknown; 0-0.2 mM	equivocal	sulphate	Casto et al. (1979)
<i>In vivo</i> studies					
(chromosomal ca aberrations) Ca		other: 0.5% zinc in calcium-deficient (0.03% Ca) or standard diet (1.1% Ca) for 30 days	slightly positive in case of calcium deficient diet in the survivors (0.5% Zn with poor Ca- diet resulted in 50% mortality after 30 days)	chloride	Deknudt (1982) *
Cytogenetic assay (chromosomal aberrations)	mouse	other; single i.p. injections of 0, 7.5, 10 or 15 mg ZnCl ₂ /kg bw and repeated i.p. injections every other day of 2 and 3 mg ZnCl ₂ /kg bw for 8, 16 or 24 days.	single dose study: positive; repeated dose study: positive	chloride	Gupta et al. (1991)

Table 4.11 continued Genotoxicity data

Table 4.11 continued overleaf

Table 4.11 continued Genotoxicity data

Genetic toxicity	Species	Protocol	Results	Form	Reference
In vivo studies					
(chromosomal ii		other: 5 months inhalation of 0.1 to 0.5 mg/m ³	only slight increases of chromosomal aberrations were seen; primarily hyperdiploid cells were seen.	oxide	Voroshilin et al. (1978) *
Cytogenetic assay (chromosomal aberrations)	rat	other: 2.75, 27.5 or 275 mg/kg bw by gavage once or daily for 5 consecutive days	negative	sulphate	Litton Bionetics (1974)
Micronucleus	mouse	other: i.p. 28.8, 57.5 or 86.3 mg/kg bw at 0 and 24 hours	negative	sulphate	Gocke et al. (1981)
O 47 ar diu		other: resembling OECD guideline No. 474; 0.05%, 0.2%, and 1% in purified diet over a 13 week period	negative	monoglycerolate	Windebank et al. (1995) **
Host mediated assay	mouse	other: 2.75, 27.5 or 275 mg/kg bw by gavage once or daily for 5 consecutive days	weakly positive	sulphate	Litton Bionetics (1974)
Dominant lethal assay	rat	other: 2.75, 27.5 or 275 mg/kg bw by gavage once or daily for 5 consecutive days	negative	sulphate	Litton Bionetics (1974)
Drosophila SLRL test	drosophila melanogaster	other; 5 mM (in 5% saccharose) adult feeding method	negative	sulphate	Gocke et al. (1981)
Drosophila dominant lethal and SLRL test	drosophila melanogaster	unknown; 0.247 mg/ml adult feeding	negative	chloride	Carpenter and Ray (1969) *

m.a.: metabolic activation

* Although study or study documentation showed limitations (see hedset), the study is considered useful for the evaluation of the genotoxicity of zinc

** Studies on zinc monoglycerolate, submitted within the framework of the EEC Council Regulation

4.1.2.8.1 *In vitro* studies

Exposure to zinc compounds did not increase the mutation frequencies in the bacterial test systems (Gocke et al., 1981; Crebelli et al., 1985; Marzin and Vo Phi, 1985; Kada et al., 1980(*r*);

Litton Bionetics, 1976(r); Jones and Gant, 1994), except for one ambiguous result with zinc chloride reported by Rossman et al. (1984).

A weakly positive and two negative results were found in eukaryotic test systems using the yeast S. cerevisiae (Singh, 1983; Siebert et al., 1970, Litton Bionetics, 1977).

A negative result (Deknudt, 1982) and a positive result (Akhurst and Kitching, 1994) were found for chromosomal aberrations in human lymphocytes. A negative (Amacher and Paillet, 1980(r)) and two positive results (Cameron, 1991(r); Adams and Kirkpatrick, 1994) were reported in mouse lymphoma assays (gene mutations).

A negative (zinc chloride) as well as a positive (zinc oxide) result in a cell transformation assay using Syrian hamster embryo cells were reported by Di Paolo and Casto (1979(r)) and Suzuki (1987), respectively. Equivocal results in this assay were reported for zinc chloride and zinc sulphate, producing enhancement of cell transformation in 3/6 and 3/7 trials, respectively (Casto et al., 1979). Suzuki (1987) reported a positive UDS test and an ambiguous result with zinc oxide in an SCE test.

4.1.2.8.2 *In vivo* studies

Two reliable negative micronucleus tests were reported in mice (Gocke et al., 1981) and rats (Windebank et al., 1995).

Zinc chloride induced chromosomal aberrations in mouse bone marrow in case of an extreme calcium deficient diet. In this study C57Bl mice received during one month a normal (with 1.1% Ca) or poor calcium diet (0.03% Ca) in combination with 0.5% of zinc. After this month 50% of the animals given the poor calcium diet in combination with 0.5% zinc died. No information was given about the mortality in the other groups. Ten survivors of each group were sacrificed another month later and their bone marrow cells were studied on chromosome aberrations. In each group 500 metaphases were studied. Total cells damaged were 9 in controls with normal Ca, 10 in controls with low Ca, 14 in Zn-exposed with normal Ca, and 25 in Zn-exposed with low Ca diet (Deknudt, 1982).

Mice (5 per group) were given intraperitoneal injections of 7.5, 10 or 15 mg zinc chloride/kg bw/day. After treatment of the animals with colchicine bone marrow preparations were collected at 24 hours post dosing and 60 metaphases were studied per animal. At all doses an increase (dose-related) in chromosomal aberrations in bone marrow cells was observed as compared to the controls. Next to this, mice (5/group) were i.p. injected for 4, 8 or 12 times with 2 or 3 mg zinc chloride/kg bw every other day and the observed incidence of chromosomal aberrations was compared to the control group of the single dose study. Again an increase in incidence was found (after 4 injections only at the highest dose, at 8 and 12 injections at both doses), but the control group used is not entirely appropriate. The cauda epididymis of the animals in the single dose study were minced and sperm cells were examined. An increase in sperm head abnormalities was found, but further study details and criteria for interpretation were not provided (Gupta et al., 1991). The increase in chromosomal aberrations observed in the single dose study is considered reliable.

No chromosomal aberrations were induced when rats were given 2.75, 27.5 or 175 mg/kg bw zinc (as zinc sulphate) by gavage once or daily for 5 consecutive days (Litton Bionetics, 1974). Only a slight increase in chromosomal aberrations in rat bone marrow was reported by Voroshilin et al. (1978) after exposure to zinc oxide by inhalation. Female rats were subjected to

continuous inhalation of a zinc oxide aerosol in concentrations of 0.5 and 0.1 mg/m³ for 5 months. 200 Metaphases were studied and the total amount of cells damaged were 1.0% in controls, 4.5% in rats exposed to 0.1 mg/m³, and 6.5% in rats exposed to 0.5 mg/m³.

Zinc sulphate tested negative in a drosophila SLRL test (Gocke et al., 1981) and a dominant lethal assay in rats (Litton Bionetics, 1974). A drosophila dominant lethal and SLRL test with zinc chloride (Carpenter and Ray, 1969) was also negative.

A host-mediated assay with zinc sulphate appeared to be weakly positive (Litton Bionetics, 1974).

4.1.2.8.3 Conclusion on mutagenicity

No data were provided on the genotoxicity of zinc phosphate. Data on other zinc compounds have been used, based on the assumption that after intake the biological activities of the zinc compounds are determined by the zinc cation.

The available data indicate that the genotoxicity results vary widely. Conflicting results have been found, even in the same test systems. Overall, the results of the *in vitro* tests indicate that zinc has genotoxic potential *in vitro* based on positive results in mammalian test systems for gene mutations and chromosomal aberrations and on the positive *in vitro* UDS test.

In *vivo*, increases in chromosomal aberrations were found in calcium-deficient mice exposed via the diet as well as in mice with normal calcium status when dosed intraperitoneally. In mice also negative results were obtained and even at higher intraperitoneal dose levels. Rats tested negative for chromosomal aberrations after oral dosing, either via gavage or via the diet. The positive result for chromosomal aberrations *in vitro* is considered overruled by negative *in vivo* tests for this endpoint.

The positive sperm head abnormality test is considered sufficiently counter-balanced by two negative SLRL tests as well as two negative dominant lethal tests. Moreover, this sperm test is not adequately reported and without details on scoring criteria, interpretation of the observations is rather subjective. In addition, sperm head abnormalities are indicative rather than proof for genotoxicity.

Based on the available data there is insufficient ground to classify zinc as genotoxic. It should be noted that the potential to induce gene mutations was not adequately tested *in vivo*. However, there is no clear evidence from the available data that zinc is genotoxic *in vivo* and without a clear indication for carcinogenicity (see below) a guidance for further testing with respect to target tissue is not available.

4.1.2.9 Carcinogenicity

No adequate long-term carcinogenicity studies are available. All the information regarding the carcinogenic properties of zinc or zinc compounds is included in this section.

4.1.2.9.1 Studies in animals

Testicular teratomas were reported in early studies in poultry, birds and rats following repeated intratesticular injection of different zinc compounds, such as ZnCl₂ and ZnSO₄. No tumourogenic

effects have been found when zinc was administered by intramuscular or subcutaneous injection (Léonard et al., 1986).

In a limited older study the tumour incidences in Chester Beatty mice were studied after administration of 1,000 and 5,000 ppm zinc sulphate ($ZnSO_4 \cdot 7 H_2O$) in drinking water (equal to 4.4 and 22 g/l water; calculated to be 200 or 1,000 mg Zn^{2+}/kg bw) for 45-53 weeks. A control group was included, however concurrent controls were used after a number of animals died after an intercurrent disease (ectromelia). The starting number of animals per group was not given. Only 22-28 mice/group survived at the end of the exposure period. Observations were limited to 'thorough examinations once each week and more cursorily examinations each day', body weight measurements and at the end 'a thorough post-mortem examination' with a histological examination for lesions that were possibly neoplastic. Results were only given for incidence and types of tumours. The incidences of hepatoma, malignant lymphoma, and lung adenoma and the evidence of hyperplasia in the fore stomach epithelium were not different between exposed and control mice. No other tumours developed (Walters and Roe, 1965).

Although no direct carcinogenic actions of dietary zinc deficiency or supplementation are known, the growth rate or frequency of transplanted and chemically induced tumours is influenced by the zinc content in the diet. Both promoting and inhibiting actions have been reported depending on the experimental conditions. Experiments with rodents suggest that cancer growth is retarded by zinc deficiency and may be promoted by large amounts of zinc intake. These effects may be explained by the fact that zinc is needed in DNA synthesis and cell replication (Deknudt and Gerber, 1979; Léonard et al., 1986).

4.1.2.9.2 Studies in humans

A cohort study of 4,802 refinery workers in nine electrolytic zinc and copper refining plants (i.e. one zinc, one copper + zinc and seven copper refineries), who had been employed between 1,946 and 1,975, reported slightly reduced mortality in the 1,247 workers who had been exposed to "zinc" alone (978) or in combination with "copper" (269). Employees were incorporated in the study when they had worked in the electrolytic department for at least one year. Age adjusted Standardized Mortality Ratio's were calculated on the basis of comparison with the mortality rates for the entire US population for the year 1970. Of the 1,247 workers who were exposed to "zinc" (either alone or in combination with "copper"), 88 died before the end of the follow-up. For 12 of these, the cause of death could not be retrieved. 143 workers were lost to follow-up entirely. Cancer rates were only analysed for the entire cohort of refinery workers (i.e. all 4,802 participants). An association between cancer mortality and employment in zinc and/or copper refinery was not found. However, the study does not permit to draw a conclusion about any association between cancer mortality and zinc exposure, because cancer mortality for "zinc"-workers was not analysed separately from cancer mortality for "copper"-workers (Logue et al., 1982).

Neuberger and Hollowell (1982) studied an excess in lung cancer mortality associated with residence in an old-lead/zinc mining and smelting area in the US. The age- and sex-adjusted mortality rates were compared to state and national rates. The analysis determined that lung cancer mortality was elevated in the region. Quantification of inhabitant's exposure to zinc was not part of the study. The authors mentioned several possible causes for the increased lung cancer rates such as smoking habits, occupational exposure (e.g. in mining and associated activities) and residence. Ore contaminants were arsenic, cadmium, iron, sulphur, germanium and radioactivity. Tuberculosis and silicosis were commonly seen among the region's

inhabitants. From this study any conclusion on a possible association between exposure to environmental levels of lead or zinc and the increased lung cancer rate cannot be drawn.

Leitzmann et al. (2003) examined the association between supplemental zinc intake (level and duration) and prostate cancer among 46,974 US men participating in the Health Professionals Follow-Up Study. During 14 years of follow-up (from 1986 through 2000), 2,901 new cases of prostate cancer were ascertained, of which 434 cases were diagnosed as advanced cancer. Approximately 25% of the study population used zinc supplements (24% in amounts $\leq 100 \text{ mg/day}$, 1% in amounts > 100 mg/day). Supplemental zinc intake at doses of up to 100 mg/day was not associated with prostate cancer risk. However, compared with nonusers, users with an excessively high supplemental zinc intake (> 100 mg/day) had a relative risk of advanced prostate cancer of 2.29 (95% CI 1.06 to 4.95). Increasing the duration of supplemental zinc use was unrelated to the risk of total prostate cancer. However, for chronic users (> 10 years) the relative risk of advanced prostate cancer was 2.37 (95% CI 1.42 to 3.95). According to the authors residual confounding by supplemental calcium intake or some unmeasured correlate of zinc supplement use cannot be ruled out. They also indicate that strong evidence to support a specific mechanism for the association is lacking at present, and that further exploration for the possible role of chronic zinc oversupply in prostate carcinogenesis is needed.

4.1.2.9.3 Conclusion on carcinogenicity

The available data are limited. Zinc deficiency or supplementation may influence carcinogenesis, since promoting and inhibiting actions have been reported. However, there is no clear experimental or epidemiological evidence for a direct carcinogenic action of zinc or its compounds.

4.1.2.10 Toxicity for reproduction

No data were provided on the reproductive toxicity of zinc phosphate. Data on other zinc compounds have been used, as the basic assumption is made that after intake all zinc compounds (including metallic zinc) are changed (at least in part) to the ionic species and that it is this zinc cation that is the determining factor for the biological activities of the zinc compounds (see Section 4.1.2.1).

Zinc is necessary for normal growth and development (e.g. gene expression, metabolism of vitamins including folate, retinol) and therefore it is not surprisingly that a zinc deficiency can cause foetal damage as reported in animals (Walsh et al., 1994; ATSDR, 1994). Both human and animal data show that zinc deficiency will also lead to delayed sexual maturation and to impairment of reproductive capacity (WHO, 1996).

4.1.2.10.1 Studies in animals

Fertility

For zinc no 1- or 2-generation studies are available. However, one study is available in which some attention was paid to the effects of zinc on male fertility (Samanta and Pal, 1986), while in another study (Pal and Pal, 1987) effects on female fertility were studied. In addition, three repeated dose toxicity studies are available in which mice and rats were exposed for 13 weeks to

dietary zinc. In these three studies the effects of zinc on gonads and accessory sex organs were studied.

18 Male Charles-Foster rats were exposed via diet to 4,000 mg Zn^{2+} (as anhydrous zinc sulphate)/kg feed (about 200 mg Zn^{2+} /kg bw/day) for 30-32 days before mating. 15 Males served as controls. The males were mated individually with female rats of proven fertility and sacrificed the day after mating. There was a statistically significant difference between the number of control females that conceived (15/15) and the treated females (11/18). Zinc treatment resulted in significantly lower numbers of live birth. Increased zinc concentrations were found in the testes (not in the other reproductive organs examined) and sperm of treated males. The motility of the sperm was reduced, but the viability was unaffected (Samanta and Pal, 1986).

When 12 female Charles-Foster rats received via diet 4,000 mg Zn^{2+} (as anhydrous ZnSO₄)/kg feed (corresponding to 200 mg Zn^{2+} /kg bw/day) from day 1 until day 18 post coitum, only 5 females conceived versus 12 in the control group. The numbers of implantation sites per pregnant female and per mated female were both lower in the treated group. After administration of the same dose from day 21-26 prior to mating until sacrifice (day 18 post coitum), 14 out of 15 mated treated females conceived versus 10 out of 11 mated control females. No differences were seen between the groups in the numbers of implantation sites per mated or per pregnant female. According to the study authors the reduced fertility in the post-coitus-only-exposed group was the result of a disturbance of the implantation process. The pre- and postcoitus-exposed animals had the opportunity to adapt to high zinc intake, thus being able to avoid the effect. However, no further studies were done to substantiate this (Pal and Pal, 1987).

In mice and rats, zinc sulphate heptahydrate in dietary concentrations up to 30,000 mg/kg feed did not produce adverse effects on either male or female sex organs after 13 weeks of exposure. This dietary level was equal to ca. 1,100 mg or 565 mg Zn^{2+}/kg bw/day for mice and rats, respectively (Maita et al., 1981; see also Section 4.1.2.7.1).

In another study, male and female rats were exposed to zinc monoglycerolate up to 1% in the diet, equal to ca. 335 mg Zn^{2+}/kg bw/day for 58 days, after which the concentration in the feed was decreased for one week to 0.5%, equal to ca. 300 mg Zn^{2+}/kg bw/day. Subsequently, the animals had to be killed at day 64 because of poor health and compromised food consumption (note also the non-linearity in the Zn^{2+} -doses). The testes of all these males showed hypoplasia of the seminiferous tubules to a varying degree and in addition the prostate and seminal vesicles showed hypoplasia. In all but one female the uterus was hypoplastic. All other rats exposed to 0.05 or 0.2% (ca. 13 or 60 mg Zn^{2+}/kg bw/day, respectively) survived to the end of the 13 weeks treatment, without showing detrimental effects on sex organs (Edwards and Buckley, 1995; see also Section 4.1.2.7.1).

Developmental toxicity

Several developmental toxicity studies with zinc sulphate and zinc oxide are available. Four studies with zinc sulphate were performed at the Food and Drugs Research Labs, Inc. (1973, 1974) and were of a design comparable to the OECD 414 guideline. These studies are mentioned in **Table 4.12** and summarised in more detail below. However, in the reports it was not specified which form of zinc sulphate was used. For this reason the NOAELs in these studies are converted to two NOAELs for Zn^{2+} , one on the assumption that the anhydrate was used and one on the assumption that the heptahydrate was used.

Developmental toxicity	Species	Protocol	Result	mg Zn²+/ kg bw	Reference
Oral	mouse	females received daily doses of 0, 0.3, 1.4, 6.5 and 30 mg ZnSO ₄ (unspecified)/kg bw during days 6-15 of gestation	NOAEL 30 mg/kg bw (highest dose level tested): no discernible effects were seen on nidation, or maternal or foetal survival. No difference in number of abnormalities found in foetuses	NOAEL: anhydr: 12 hepta: 6.8	Food and Drugs Research Labs., Inc. (1973) *
	rat	females received daily doses of 0, 0.4, 2.0, 9.1 and 42.5 mg ZnSO ₄ (unspecified)/kg bw during days 6-15 of gestation	NOAEL 42.5 mg/kg bw (highest dose level tested): no discernible effects were seen on nidation, or maternal or foetal survival. No difference in number of abnormalities found in foetuses	NOAEL: anhydr: 17 hepta: 9.6	Food and Drugs Research Labs., Inc. (1973) *
	hamster	females received daily doses of 0, 0.9, 4.1, 19, and 88 mg ZnSO ₄ (unspecified)/kg bw during days 6-15 of gestation	NOAEL 88 mg/kg bw (highest dose level tested): no discernible effects were seen on nidation, or maternal or foetal survival. No difference in number of abnormalities found in foetuses	NOAEL: anhydr: 35.2 hepta: 19.9	Food and Drugs Research Labs., Inc. (1973) *
	rabbit	females received daily doses of 0, 0.6, 2.8, 13 and 60 mg ZnSO ₄ (unspecified)/kg bw during days 6-18 of gestation.	NOAEL 60 mg/kg bw: no discernible effects were seen on nidation, or maternal or foetal survival. No difference in number of abnormalities found in foetuses	NOAEL: anhydr: 24 hepta: 13.6	Food and Drugs Research Labs., Inc. (1974) *

Table 4.12 Developmental toxicity data

* Valid study, with restrictions. ZnSO₄ form is unspecified. The NOAEL, expressed as Zn cation, has been calculation for both anhydrateand heptahydrate forms.

Oral exposure

• Zinc sulphate

Female CD-1 mice (25-30 animals/group) received daily doses of 0.3, 1.4, 6.5 and 30 mg unspecified ZnSO₄/kg bw by gavage during days 6-15 of gestation. A control group was included. All animals were observed daily for appearance and behaviour with particular attention to food consumption and body weight. Body weights were recorded on day 0, 6, 11, 15 and 17 of gestation. The females were sacrificed at day 17. The urogenital tract of each animal was examined in detail. Between 21 and 23 females were pregnant at term in all groups. No clearly discernible effects on maternal survival, body weight gains, number of corpora lutea, implantations and resorptions were observed. The number of live litters, live and dead foetuses, the foetus weights and sex ratio were not affected by treatment. No difference in number or kind of abnormalities (in either soft or skeletal tissues) was found between exposed and control groups. It can be concluded that the administration of up to 30 mg/kg bw of unspecified zinc sulphate (≈ 12 mg or 6.8 mg Zn²⁺/kg bw, for anhydrate and heptahydrate, respectively) had no adverse effects on adult mice and their foetuses (Food and Drug Research Labs., Inc., 1973).

Female Wistar rats (25-28 animals/group) received daily doses 0.4, 2.0, 9.1 and 42.5 mg unspecified ZnSO₄/kg bw by gavage during days 6-15 of gestation. A control group was included. All animals were observed daily for appearance and behaviour with particular attention

to food consumption and body weight. Body weights were recorded on day 0, 6, 11, 15 and 20 of gestation. The females were sacrificed at day 20. The urogenital tract of each animal was examined in detail. At term 25 females were pregnant in all groups. No clearly discernible effects on maternal survival, body weight gains, number of corpora lutea, implantations and resorptions were observed. The number of live litters, live and dead foetuses, the foetus weights and sex ratio were not affected by treatment. No difference in number or kind of abnormalities (in either soft or skeletal tissues) was found between exposed and control groups. It can be concluded that the administration of up to 42.5 mg/kg bw of unspecified zinc sulphate (≈ 17 mg or 9.6 mg Zn²⁺/kg bw, for anhydrate and heptahydrate, respectively) had no adverse effects on adult rats and their foetuses (Food and Drug Research Labs., Inc., 1973).

Female hamsters (23-25 animals/group; outbred strain of golden hamster) received daily doses of 0.9, 4.1, 19 and 88 mg unspecified ZnSO₄/kg bw by gavage during days 6-10 of gestation. A control group was included. All animals were observed daily for appearance and behaviour with particular attention to food consumption and body weight. Body weights were recorded on day 0, 8, 10 and 14 of gestation. The females were sacrificed at day 14. The urogenital tract of each animal was examined in detail. Between 21 and 24 females were pregnant at term in all groups. No clearly discernible effects on maternal survival, body weight gains, number of corpora lutea, implantations and resorptions were observed. The number of live litters, live and dead foetuses, the foetus weights and sex ratio were not affected by treatment. No difference in number or kind of abnormalities (in either soft or skeletal tissues) was found between exposed and control groups. It can be concluded that the administration of up to 88 mg/kg bw of unspecified zinc sulphate (≈ 35.2 mg or 19.9 mg Zn²⁺/kg bw, for anhydrate and heptahydrate, respectively) had no adverse effects on adult hamsters and their foetuses (Food and Drug Research Labs., Inc., 1973).

Female Dutch rabbits (14-19 animals/group) received daily doses of 0.6, 2.8, 13 and 60 mg unspecified ZnSO₄/kg bw by gavage during days 6-18 of gestation. A control group was included. All animals were observed daily for appearance and behaviour with particular attention to food consumption and body weight. Body weights were recorded on day 0, 6, 12, 18 and 29 of gestation. The urogenital tract of each animal was examined in detail. The females were sacrificed at day 29. Between 10 and 12 females were pregnant at term in all groups. No clearly discernible effects on maternal survival, body weight gains, number of corpora lutea, implantations and resorptions were observed. The number of live litters, live and dead foetuses, the foetus weights and sex ratio were not affected by treatment. No difference in number or kind of abnormalities (in either soft or skeletal tissues) was found between exposed and control groups. It can be concluded that the administration of up to 60 mg/kg bw of unspecified zinc sulphate (\approx 24 mg or 13.6 mg Zn²⁺/kg bw, for anhydrate and heptahydrate, respectively) had no adverse effects on adult rabbits and their foetuses (Food and Drug Research Labs., Inc., 1974).

Female rats (13) received low protein (10%) diets containing 30 mg Zn^{2+} supplemented with 150 mg Zn^{2+}/kg feed (7.5 mg Zn^{2+}/kg bw) as 2% ZnSO₄ solution during days 1-18 of pregnancy. A control group (12 females) was included and received the same diet as the exposure group but without additional zinc. No further study details were given, but it was stated that two resorptions of a total number of 101 implantation sites were found in 2 (1 in each female) of the 12 control females. In 8 (at least 1 resorption each) of the 13 experimental females 11 resorptions out of 116 implantations sites were found. This difference was reported to be statistically significant (Kumar, 1976).

<u>Remark</u>: The low protein diet may have affected the physiology of the animals resulting in an increased sensitivity for zinc. As this cannot be further assessed, and because virtually no study details are available, the study is not taken into account.

12 Female Charles-Foster rats received via diet 4,000 mg Zn^{2+} (as anhydrous ZnSO₄)/kg feed (corresponding to 200 mg Zn^{2+} /kg bw) from day 1 until day 18 post coitum and 15 animals received the same diet from from day 21-26 prior to mating until sacrifice (day 18 post coitum). Control groups consisted of 12 and 11 animals, respectively. No stillbirths or malformed fetuses were recorded and there were no significant differences in the number of resorptions or the mean placental and fetal weights between the treated females and controls irrespective of the exposure regime (Pal and Pal, 1987).

Campbell and Mills (1979) examined the reproductive performance of Cheviot sheep (6/group) which received 30, 150 and 750 mg ZnSO₄ (unspecified)/kg feed during pregnancy until parturition. A control group was included. High-dose sheep showed decreased food consumption, food utilisation and reduced body weight gains. Blood copper levels, plasma ceruloplasmin and amine oxidase were statistically significantly decreased and plasma zinc levels were greatly increased. The reproductive performance was severely impaired at the highest dose level: Most of the lambs were non-viable, and showed high zinc levels in the livers (this was also seen in the mid-dose) and low copper concentrations. These lambs also showed discontinuous growth of long bones, which was not observed in the lower dose groups. Copper supplementation (2.5 and 10 mg) at the high dose level prevented the development of copper deficiency, but not the other effects such as lamb viability and food consumption/utilisation.

• Zinc oxide

In rats, the administration of 0.4% of Zn^{2+} as ZnO (corresponding to 200 mg Zn^{2+}/kg bw/day) via diet for 21 days prior to mating until day 15 of gestation resulted in resorption of all foetuses. Administration of 0.4% dietary Zn^{2+} from day 0 to day 15, 16, 18 or day 20 of gestation, but not prior to mating, resulted in decreased live fetal body weights and in 4-29% fetal resorptions. When the concentration of Zn^{2+} in the feed was reduced to 0.2% (corresponding to 100 mg Zn^{2+}/kg bw /day), starting 21 days prior to mating until day 15 of gestation no resorptions or effects on fetal body weights were observed. Treatment with dietary zinc did not result in external malformations, irrespective of dose level or treatment regimen. A dose-related significant increase in liver total zinc and liver zinc concentration and a significant decrease in the liver copper concentration was found in foetuses and mothers on all zinc regiments. No other information was given with respect to the health status of the mother animals. Although some of the animals were exposed from day 21 before mating up to study termination, no data were provided on possible consequences for female fertility. The study is too limited to derive an NOAEL for developmental toxicity (Schlicker and Cox, 1968).

Groups of Sprague-Dawley rats (10/group) were fed diets containing 2,000 or 5,000 mg ZnO/kg feed (calculated to be 150 or 375 mg ZnO/kg bw [\approx 120 or 300 mg Zn²⁺/kg bw/day]) from day 0 of gestation to day 14 of lactation, then mothers and remaining pups were killed. The control animals received a basal diet containg 9 mg Zn²⁺/kg feed.

Maternal weight, daily food intake, duration of gestation and the number of viable young/litter were not affected. No external malformations were seen.

Two females at 5,000 mg/kg feed had all stillborn litters containing oedematous pups. At 2,000 mg/kg feed 4 stillborn pups (not oedematous) were observed. Dry liver weights of pups (newborn and 14 days old) were decreased at 5,000 mg/kg feed. A dose-related increase in zinc

content and a dose-related decrease in iron content were observed. The livers of newborns of zinc treated dams, however, contained significantly more iron than the controls. This was not observed in the 14-day old pups. The copper levels in the liver were significantly lower only in the newborns of the 5,000 mg/kg level. After 14 days the copper concentrations were significantly lower in all treated pups (Ketcheson et al., 1969).

Bleavins et al. (1983) exposed groups of mink (11 females and 3 males/group) to basal diet (containing 20.2 mg Zn^{2+}/kg diet and 3.1 mg Zn^{2+}/kg diet) or to the diet supplemented with 1,000 mg ZnO/kg diet. No maternal effects were seen. All females on the basal diet produced offspring, 8/11 females of the Zn supplemented diet group had young. None of the animals (males, females and kits) were sacrificed, so they were only macroscopically examined. The kits were kept on the basal and supplemented diets. The body weight of male kits on the supplemented diet showed a significantly lower at 12 weeks of age. 8-Week old kits on the supplemented kits was reversible when the kits were placed on basal diet. Kits (3-4 weeks old) of females fed the Zn-supplemented diet showed effects consistent with copper deficiency, such as grey fur around eyes, ears, jaws and genitals together with hair loss and dermatosis in these areas.

Inhalation exposure

No inhalation toxicity data are available.

Dermal exposure

No dermal toxicity data are available.

Other routes

• Zinc chloride

Chang (1976) reported a study in which single i.p. injections of 12.5, 20.5 or 25 mg ZnCl₂/kg bw (6, 9.8 or 12 mg Zn²⁺) to CF-1 albino mice (7-15/group) on day 8, 9, 10 or 11 of gestation caused a significant dose-related increased incidence of skeletal anomalies without soft tissue anomalies. Toxic effects on mothers and foetuses were the greatest when ZnCl₂ was administered at 20.5 mg/kg bw on day 10 of pregnancy. When ZnCl₂ was given at 12.5 mg/kg bw on day 11 of gestation no effects on mothers or foetuses were observed. Because no more information was given, these results cannot be used for risk assessment.

4.1.2.10.2 Studies in humans

The majority of human studies are dealing with the association between low indices of maternal zinc status and the negative effects on pregnancy including neural tube defects in babies (Walsh et al., 1994).

Mukherjee et al. (1984) found a highly significant increase in pregnancy complications, including foetal distress and maternal infections, among women with low plasma zinc during the latter half of pregnancy. An association of low plasma zinc levels in early pregnancy and a greater likelihood of delivery of a low birth weight infant was observed by Neggers et al. (1990(r)). The earlier findings of Meadows et al. (1981(r)) reporting an association between low

maternal leukocyte and muscle zinc at term and low birth weight and of Cambell-Brown et al. (1985(r)) reporting an association between low zinc intakes in Hindu women and low birth weight.

There are no data available indicating that an excess of zinc can impair human pregnancy outcome.

Mahomed et al. (1989) performed a study in pregnant women to examine whether zinc supplementation during pregnancy improves maternal and foetal outcome. Pregnant women were randomly assigned to receive a zinc supplementation or placebo in a double blind trial. 494 Women (246 given zinc supplementation, 248 given placebo) were followed till the end of pregnancy. The zinc supplementation was administered in capsules containing 20 mg Zn^{2+} as zinc sulphate (0.3 mg Zn^{2+} /kg bw/day) once a day during two trimesters. There were no significant differences between the two groups with respect to complications of pregnancy (weight, weight gains, maternal bleeding and hypertension), complications of labour and delivery, gestational age, Apgar scores, neonatal abnormalities and birth.

Two human studies with other zinc compounds than the ones selected showed no effects on the newborns of mothers consuming 0.3 mg Zn^{2+} (as zinc citrate)/kg bw/day (Simmer et al., 1991(*r*)) or 0.06 mg Zn^{2+} (as zinc aspartate)/kg bw/day (Kynast and Saling, 1986) during the last two trimesters of pregnancy.

4.1.2.10.3 Conclusion on toxicity for reproduction

No data were provided on the reproductive toxicity of zinc phosphate. Data on other zinc compounds have been used, based on the assumption that after intake the biological activities of the zinc compounds are determined by the zinc cation.

For fertility no 1- or 2-generation or other applicable guideline studies are available.

When male rats were dosed with approximately about 200 mg Zn^{2+}/kg bw via the food for 30-32 days before mating, a statistically significant reduction in male reproductive performance was observed. This effect was attributed to a reduction in sperm motility. In females receiving 200 mg Zn^{2+}/kg bw, reduced conception was observed when they were dosed after mating, but not when they were dosed before and during pregnancy. It is not known whether the reduced sperm motility in males and the contradictory effects on conception in females are a direct effect of zinc on the sperm cells, embryos or uterine function, or whether they are the result of disturbances in other physiological functions. From a study by Schlicker and Cox (1968), it is known that this dose level (and even levels of 100 mg additional Zn^{2+}/kg bw/day) may result in impaired copper balance in females.

In repeated dose toxicity studies with zinc sulphate heptahydrate, no effects on the reproductive organs were seen at dose levels up to ca. 1,100 mg and 565 mg Zn^{2+}/kg bw/day for mice and rats, respectively. In a repeated dose toxicity study with zinc monoglycerolate hypoplasia of several sex organs was observed at doses of ca. 300 mg Zn^{2+}/kg bw/day, but not at 13 or 60 mg Zn^{2+}/kg bw/day. As these effects were only seen at dose levels which produced very severe general toxicity, it is impossible to conclude that these adverse effects are directly related to zinc. It should be noted that these studies are not designed to detect effects on sperm cell motility.

Developmental toxicity studies, according to a study design similar to OECD 414, with mice, rats, hamsters and rabbits were described with unspecified zinc sulphate. These studies do not permit the derivation of a proper NOAEL because neither reproductive nor developmental or maternal effects were observed, not even at the highest dose tested. When it is assumed (worst-case) that the heptahydrate was administered from the study with hamsters it can be calculated that the NOAEL for both maternal effects and effects on the offspring is at least 19.9 mg Zn²⁺/kg bw/day. In other (non-guideline) studies, higher dose levels (up to 200 Zn²⁺/kg bw/day) have been reported to result in resorptions and retarded foetal growth, but not in external malformations. No resorptions and growth retardation were seen at 100 mg Zn²⁺/kg bw/day but as the study was too limited, this dose level cannot be taken as an NOAEL for developmental toxicity, either. Besides, at both 100 and 200 mg Zn²⁺/kg bw/day changes in maternal and fetal copper status were observed. In absence of better information a NOAEL of > 19.9 mg Zn²⁺/kg bw/day for developmental toxicity in animals is adopted.

In studies with pregnant women receiving additional 0.3 mg Zn^{2+}/kg bw/day (as zinc sulphate or citrate) during the last 6 months of pregnancy, no reproductive or developmental effects were observed. Clear evidence of zinc toxicity in human pregnancy has not been reported but this may be due to the fact that very high exposures to zinc in human pregnancy are unusual. In contrast, zinc deficiency during pregnancy can cause a variety of adverse effects on the foetus or may result in reduced fertility or delayed sexual maturation in animals as well as in humans (Walsh et al., 1994; ATSDR, 1994; WHO, 1996).

Hence, with respect to effects on reproduction, zinc deficiency is known to result in impairment of fertility and of foetal development. In humans additional zinc up to 0.3 mg Zn^{2+}/kg bw/day during pregnancy did not result in adverse effects. Available data in animals on zinc excess indicate that adverse effects on fertility and foetal development may occur at dose levels of 200 mg Zn^{2+}/kg bw/day, in conjunction with other effects such as perturbation of parental and foetal copper homeostasis. In humans a small disturbance (if any) of normal physiology, presumably indicative for copper deficiency, has been demonstrated at zinc excess of 50 and 150 mg Zn^{2+}/kg bw/day) resulted in clinical signs. As the margin between the dose at which in humans clinical signs are manifest and the dose at which in animals reproductive effects have been reported is so high (viz. 80), it is considered unlikely that in humans reproductive effects will occur at exposure levels at which clinical signs are not manifest. Therefore, neither fertility nor developmental toxicity are considered end points of concern for humans. Based on the available information there is no reason to classify metallic zinc nor any of the zinc compounds considered for reproductive toxicity.

4.1.2.11 Interaction with other chemicals

Zinc can interact with other trace elements, such as cadmium, iron, calcium and especially copper, resulting in toxicity which is usually due to depletion of these elements, leading to nutritional deficiencies. Metallothionein is involved in the interaction between zinc and other metals such as copper.

Both copper and zinc appear to bind to the same metallothionein protein, but copper has a higher affinity for it than zinc and displaces the zinc that is attached to the metallothionein (Ogiso et al., 1979(r); Wapnir and Balkman, 1991(r)). A number of factors influence the effect of dietary zinc on copper metabolism, including the amount of copper and zinc in the diet, the zinc-to-copper

ratio, age of the individual, and the duration of exposure to high zinc levels (Johnson and Flagg, 1986(r)).

Prasad et al. (1978(r)) and Porter et al. (1977(r)) reported that chronic, elevated intake of zinc of 100 mg or more per day induced copper deficiency in humans. Yadrick et al. (1989) and Fischer et al. (1984) observed an altered copper balance in humans at doses of 50 mg zinc/day. However, in more recent studies in which the copper status was closely monitored (Davis et al., 2000; Milne et al., 2001) the daily oral intake of 50 mg Zn²⁺ appeared to enhance rather than impair copper retention in humans.

Normally the influence of iron on zinc absorption may not be significant. Under unusual conditions, however, if large iron supplements are ingested in the absence of food, it is likely that iron could impair the zinc absorption. This is supported by a number of clinical studies (Solomons, 1988(r)).

Yadrick et al. (1989) studied the effect of 50 mg daily doses of supplemental zinc or 50 mg zinc together with 50 mg iron during 10 weeks in women. The results suggested that supplemental zinc at a level of 50 mg/day impaired both the iron and copper status. Simultaneous iron supplementation protected the iron status. However, in more recent studies in which the iron status was closely monitored (Davis et al., 2000; Milne et al., 2001) the daily oral intake of of 50 mg Zn^{2+} did not affect indicators of iron status in humans.

Exposure to cadmium may cause changes in the distribution of zinc, with accumulation of zinc in the liver and kidney. This accumulation may result in a deficiency in other organs. Harford and Sarkar (1991(r)) stated that simultaneous administration of cadmium and zinc results in induction of metallothionein in an additive manner.

A high zinc intake is also associated with a decreased intestinal calcium absorption, leading to decreased calcium status in the body (Yamaguchi et al., 1983(r); Spencer et al., 1992(r)).

Conclusion on interaction with other chemicals

Zinc can interact with other trace elements, especially copper, resulting in toxicity which is usually due to depletion of these elements, leading to nutritional deficiencies. In some older studies, it has been suggested that supplemental zinc at a level of 50 mg/day impaired both the iron and copper status, but these effects were not observed in more recent interaction studies. At least part of the interaction between zinc and other metals such as copper may be related to the effect of zinc on metallothionein.

4.1.2.12 Biological function and recommended levels

Zinc is an essential element for humans and animals and it is required for the optimum function of over 200 enzymes. These enzymes include those required for normal acid, protein, and membrane metabolism, as well as cell growth and division. Zinc also plays a role in the regulation of DNA and RNA synthesis (Vallee and Auld, 1990(r); South and Summers, 1990(r); Berg, 1990(r)). Zinc is also a required element for the optimum activity of growth hormone and the normal exocrine and endocrine function of the pancreas (Lee et al., 1990(r)).

A zinc deficiency in the diet has been associated with loss of appetite, decreased sense of smell and taste, impaired immune function, poor wound healing and dermatitis. It can also lead to retarded growth and hypogonadism with impaired reproductive capacity. An increased incidence of congenital malformations in infants has also been associated with a zinc deficiency in the mothers (Cotran et al., 1989(*r*); Elinder, 1986; Sandstead, 1981(*r*)).

The symptoms of zinc deficiency in children may be different from that of adults. In chronic zinc deficiency, anorexia, diarrhoea, irritability, and short stature may be predominant in children while in adults taste and smell malfunction, hypogonadism, and poor wound healing may appear as early signs. The main symptoms observed during an experimental zinc deficiency in male volunteers were loss of body weight and testicular hypofunction (Prasad, 1983).

The following daily zinc levels are recommended by NAS/NRC (1989(r)):

Infants (0-1 year)		5 mg/day
Children (1-10 years)		10 mg/day
Males $(11-51^+ \text{ years})$		15 mg/day
Females $(11-51^+ \text{ years})$		12 mg/day
Pregnant women		15 mg/day
During lactation	(first 6 months)	19 mg/day
	(next 6 months)	16 mg/day

Other authorities such as the EU (1993) or the Voedingsraad (1992) recommended somewhat lower daily levels of 9-10 mg/day and 7-9 mg/day for males and females, respectively.

Conclusion on biological function and recommended levels

Zinc is an essential element required for the function of a large number of enzymes. It plays a role in DNA and RNA synthesis and many other processes in the body. A zinc deficiency in the diet can lead to notable health effects. Recommended daily zinc levels range from 5 mg/day for infants to 19 mg/day for women during lactation.

4.1.3 Risk characterisation

4.1.3.1 General aspects

The human population may be exposed to zinc phosphate at the workplace, from uses of consumer products and indirectly via the environment (see Sections 4.1.1.2, 4.1.1.3, and 4.1.1.4).

Large parts of the hazard section are identical in the risk assessment reports on the six zinc compounds now under review under EU Regulation 793/93. This is because of the basic assumption that the zinc cation (as measure for dissolved zinc species) is the determining factor for systemic toxicity.

It is realised that for zinc (and other metal) compounds it would be important to define the actual or bioavailable concentration which is important for toxicity, both in laboratory animals and in humans. Due to several physico-chemical processes, zinc will exist in different chemical forms, some of which are more bioavailable than others. It is thus realised that the bioavailability is affected by various physico-chemical parameters (ionic behaviour, solubility, pH, alkalinity etc.). Although there is some information on the solubility of the six zinc compounds, adequate information is lacking how to quantitatively determine or estimate the bioavailable fraction of all the different zinc compounds in either laboratory animals or humans. Therefore, it is assumed that all zinc compounds (including metallic zinc) are changed (at least in part) to the ionic species, and all toxicity data (independent of the tested compound) were used and expressed as the zinc cation.

With respect to local effects, it is not always possible to use data from all zinc compounds. Hence, for local effects only data from the specific zinc compound were used, or, where there were derogations, data from zinc compounds with more or less the same solubility characteristics.

A problem might arise for the route-to-route extrapolation for inhalation and dermal exposure, since the differences in physico-chemical properties of the zinc compounds can change the toxicokinetics (absorption) and subsequently the toxic effects. Although it is possible to predict the systemic effects after inhalation or dermal exposure from oral toxicity data of the zinc compound itself or other zinc compounds, this is only justifiable after careful consideration of all available data to establish adequate extrapolation factors.

Furthermore it is assumed that the influence of the background intake levels of zinc cations in animal studies will be the same for humans.

No data were provided on the toxicokinetics of zinc phosphate. Data on other zinc compounds have been used, as the basic assumption is made that after intake all zinc compounds (including metallic zinc) are changed (at least in part) to the ionic species and that it is this zinc cation that is the determining factor for the biological activities of the zinc compounds.

Within certain limits, the total body zinc as well as the physiologically required levels of zinc in the various tissues can be maintained, both at low and high dietary zinc intake. Regulation of gastrointestinal absorption and gastrointestinal secretion probably contributes the most to zinc homeostasis. In spite of this a regular exogenous supply of zinc is necessary to sustain the physiological requirements because of the limited exchange of zinc between tissues.

The Zn^{2+} absorption process in the intestines includes both passive diffusion and a carriermediated process. The absorption can be influenced by several factors such as ligands in the diet and the zinc status. Persons with adequate nutritional levels absorb 20-30% and animals 40-50%. However, persons that are Zn deficient absorb more, while persons with excessive Zn intake absorb less. For risk assessment, for the more soluble zinc compounds (chloride, sulphate) the lower bound of the absorption range at adequate nutritional levels is taken (i.e. 20%). For zinc oxide it has been shown that bioavailability is about 60% of that for soluble zinc salts, corresponding to 12-18%. For zinc metal, zinc phosphate and zinc distearate no bioavailability data were present. As these forms have limited solubility in diluted acids (stomach) comparable to zinc oxide, for the less soluble zinc compounds (oxide, phosphate, distearate, metal) an oral absorption value of 12% will be taken for risk assessment. In situations of exposure excess (e.g. in case of high dermal or inhalation exposure at the workplace) the oral uptake of zinc compounds will probably be less than the values taken for risk assessment (20% and 12%). However, as this reduction in uptake is not quantifiable, also for excess exposure situations the same oral absorption values will be applied. Some justification for this approach can be found in the observation that for intake levels differing by a factor of 10, uptake levels vary maximally by a factor of two.

Quantitative data on the absorption of zinc following inhalation exposure (especially relevant in occupational settings) are not available. Some animal data suggest that pulmonary absorption is possible. In animal studies on zinc oxide retention in the lungs half-life values of 14 and 6.3 hours were reported for dissolution. As the absorption of inhaled zinc depends on the particle size and the deposition of these particles, data were provided on the particle size distribution of zinc aerosol in three different industry sectors. When analysing the particle size distribution data with a multiple path particle deposition (MPPDep) model, it appeared that for zinc aerosols the largest part of the deposition takes place in the head region and much less in the tracheobronchial and pulmonary region. Although most of the material deposited in the head and tracheobronchial region is rapidly translocated to the gastrointestinal tract, a part will also be absorbed locally. Based on data for local absorption of radionuclides in the different airway regions, it is assumed that local absorption for the soluble zinc compounds will amount to 20, 50 and 100% of the material deposited in head, tracheobronchial and pulmonary region, respectively. For the less soluble/insoluble zinc compounds negligible absorption is assumed for head and tracheobronchial region and 100% absorption for the pulmonary region. The remaining part of the material deposited in the different airway regions will be cleared to the gastrointestinal tract where it will follow oral uptake kinetics, hence the oral absorption figures can be applied. Applying the above-mentioned assumptions to the deposition fractions as determined by the MPPDep model, inhalation absorption for the soluble zinc compounds (zinc chloride and zinc sulphate) is at maximum 40%, while for the less soluble/insoluble zinc compounds (zinc metal, zinc oxide, zinc phosphate and zinc distearate) inhalation absorption is at maximum 20%. These figures will be taken forward to the risk characterisation as a reasonable worst-case, because these figures are thought to cover existing differences between the different zinc industry sectors with respect to type of exercise activities (and thus breathing rate) and particle size distribution.

Adequate quantitative data on the absorption of zinc following dermal exposure (relevant in both occupational and consumer settings) are not available. The human data presented are not considered valid, mainly since either wounded skin was investigated, or suction blisters were raised, impairing the intactness of the skin. Dermal absorption through the intact skin seems to be small (< 2%), based on the results of the *in vivo* animals studies as well as the *in vitro* studies, but unfortunately shortcomings were noted in all *in vivo* studies and none of these studies can be used quantitatively. As for the *in vitro* studies, it is clear that the % in receptor medium generally gives an underestimation of the % systemically available in *in vivo* studies. Therefore, the

amount detected in the skin should be included as being absorbed by default. This "potentially absorbed dose" more closely resembles the dose becoming systemically available *in vivo*.

Zinc bound to or in the skin may become systemically available at a later stage. This can be concluded from results in TPN patients, in which an expected decrease in serum zinc levels with time was counteracted by dermal absorption of zinc to result in steady serum zinc levels. Unfortunately, only 3 of the 6 patients completed the 10-day study period. There are no adequate human data available to evaluate the release of zinc from normal skin following single or repeated dermal exposure, as either blood was sampled for a too short period of time (3 hours; Derry et al., 1983) or the skin was damaged (Agren, 1990, 1991; Hallmans, 1977). Therefore, it can be concluded that following single or repeated dermal exposure zinc can be taken up by the skin, whereas the relevance of this skin depot cannot be judged based on the available data. For example, it is not studied how a large artificial zinc depot in the skin will affect the uptake or homeostasis of other essential ions (e.g. Cu). However, the total database available indicates that skin-bound zinc may not become systemically available in a way that it results in high peak levels of zinc in serum, but rather in a more gradual way. Given the efficient homeostatic mechanisms of mammals to maintain the total body zinc and the physiologically required levels of zinc in the various tissues constant, the anticipated slow release of zinc from the skin is not expected to disturb the homeostatic zinc balance of the body. By expert judgement, based on the aforementioned considerations, the default for dermal absorption of solutions or suspensions of zinc or zinc compounds is therefore chosen to be 2%. Based on the physical appearance, for dust exposure to zinc or zinc compounds a 10-fold lower default value of 0.2% is chosen in the risk assessment.

Zinc is distributed to all tissues and tissue fluids and it is a cofactor in over 200 enzyme systems.

Zinc is primarily excreted via feces, but can also be excreted via urine, saliva, hair loss, sweat and mothermilk.

Zinc phosphate has low acute oral toxicity. Zinc phosphate is not irritating to the eyes. Data on acute toxicity after inhalation or dermal exposure, on skin irritation and on skin sensitisation are not available for zinc phosphate. However, based on the accepted derogation and the fact that zinc oxide and zinc distearate are neither acutely toxic after inhalation nor skin irritants or skin sensitisers, it is consequently concluded that zinc phosphate is not likely to be acutely toxic after inhalation, nor skin irritating or skin sensitising.

No data were provided on the repeated dose toxicity of zinc phosphate. Data on other zinc compounds have been used, based on the assumption that after intake the biological activities of the zinc compounds are determined by the zinc cation.

No repeated dose toxicity studies after dermal exposure are available in animals.

After inhalation exposure mainly studies of short duration (3-6 days) are available. In a 3-day inhalation study with guinea pigs a concentration of 2.3 mg ultrafine ZnO/m³ (3 hours/day) was a marginal LOAEL, showing changes in neutrophils and activities of lactate dehydrogenase and alkaline phosphatase in the pulmonary fluid. At higher concentrations increased protein concentration, neutrophils, and enzyme activities in lung lavage fluids were seen, together with significant centriacinar inflammation of the pulmonary tissue. A dose of 2.7 mg ultrafine ZnO/m³ (3 hours/day for 5 days) did not alter the lung function parameters in guinea pigs but at 7 mg ultrafine ZnO/m³ (3 hours/day for 5 days) or at 5 mg ultrafine ZnO/m³ (3 hours/day for 6 days) a gradual decrease in total lung capacity, vital capacity and reduction of the carbon monoxide diffusing capacity were seen in combination with inflammatory changes and edema. The relevance of the findings in studies with ultra-fine zinc oxide fumes is unclear with respect

to commercial grade zinc oxide, as the latter is of much larger particle size and can have different toxicological characteristics.

In two oral 13-week studies with zinc sulphate (one with rats and one with mice) and an oral 13-week study with zinc monoglycerolate in rats, the lowest oral NOAEL was found in the study with zinc monoglycerolate. This overall NOAEL is 31.52 mg zinc monoglycerolate/kg bw ($\approx 13.26 \text{ mg Zn}^{2+}$ /kg bw). At higher doses the most important effects the rats developed were hypocupremia, and significant changes in the pancreas (focal acinar degeneration and necrosis) and the spleen (decreased number of pigmented macrophages). It should be noted that in the studies with zinc sulphate mice and rats could be maintained up to 13 weeks on a diet containing 30,000 mg ZnSO4.7 H2O/kg feed (equivalent to 6,794 mg Zn2+/kg feed), while in the 13-week study with zinc monoglycerolate with rats 1.0% zinc monoglycerolate in the diet (equivalent to 4,420 mg Zn2+/kg feed) was so detrimental that animals had to be killed on humane grounds after 9 weeks.

Upon supplementing men and women with 150 mg Zn^{2+}/day (as zinc sulphate capsules), women appeared to be more sensitive than men to the effects of high zinc intake: clinical signs such as headache, nausea and gastric discomfort were more frequent among women, and women but not men had decreased activities of serum ceruloplasmin and erythrocyte superoxide dismutase (ESOD). In some earlier oral studies in which humans were supplemented with moderately high amounts of zinc (50 mg Zn^{2+}/day), a reduction in ESOD activity was also observed and again women appeared to be more sensitive to this effect. Hence, a reduction in ESOD was thought to be a sensitive indicator of copper status. However, in more recent and more sophisticated studies using the same dose level, ESOD was only marginally reduced (without a correlation with changes in copper balance), while findings on more specific copper deprivation signs (decreased serum ceruloplasmin and platelet cytochrome c oxidase) indicated that a sub-optimal intake of zinc was more effective than a moderately high intake of zinc in inducing changes associated with a decreased copper status in postmenopausal women. Given this, and degree of the observed ESOD reduction in comparison to the natural variability in its activity, the zinc induced decrease in ESOD activity is considered to have marginal biological significance, if any, also because it may not have been caused by an interference with copper metabolism.

Overall, it is concluded from studies in which humans were supplemented with zinc (as zinc gluconate), that women are more sensitive to the effects of high zinc intake and that a dose of 50 mg Zn^{2+}/day is a NOAEL. At the LOAEL of 150 mg Zn^{2+}/day , clinical signs and indications for disturbance of copper homeostasis have been observed. The human oral NOAEL of 50 mg Zn^{2+}/day (0.83 mg/kg bw/day) will be taken across to the risk characterisation.

No data were provided on the genotoxicity of zinc phosphate. Data on other zinc compounds have been used, based on the assumption that after intake the biological activities of the zinc compounds are determined by the zinc cation. The available data indicate that the genotoxicity results vary widely. Conflicting results have been found, even in the same test systems. Overall, the results of the *in vitro* tests indicate that zinc has genotoxic potential *in vitro* based on positive results in mammalian test systems for gene mutations and chromosomal aberrations and on the positive *in vitro* UDS test. The positive result for chromosomal aberrations *in vitro* is considered overruled by negative *in vivo* tests for this endpoint. The positive sperm head abnormality test is considered sufficiently counter-balanced by two negative SLRL tests as well as two negative dominant lethal tests.

Based on the available data there is insufficient ground to classify zinc as genotoxic. It should be noted that the potential to induce gene mutations was not adequately tested *in vivo*. However, there is no clear evidence from the available data that zinc is genotoxic *in vivo* and without a clear

indication for carcinogenicity (see below) guidance for further testing with respect to target tissue is not available.

The limited data available indicate that zinc deficiency or supplementation may influence carcinogenesis, since promoting and inhibiting actions have been reported. However, there is no clear experimental or epidemiological evidence for a direct carcinogenic action of zinc or its compounds.

No data were provided on the reproductive toxicity of zinc phosphate. Data on other zinc compounds have been used, based on the assumption that after intake the biological activities of the zinc compounds are determined by the zinc cation.

For fertility no 1- or 2-generation or other applicable guideline studies are available.

When male rats were dosed with approximately about 200 mg Zn^{2+}/kg bw via the food for 30-32 days before mating, a statistically significant reduction in male reproductive performance was observed. This effect was attributed to a reduction in sperm motility. In females receiving 200 mg Zn^{2+}/kg bw, reduced conception was observed when they were dosed after mating, but not when they were dosed before and during pregnancy. It is not known whether the reduced sperm motility in males and the contradictory effects on conception in females are a direct effect of zinc on the sperm cells, embryos or uterine function, or whether they are the result of disturbances in other physiological functions. From a study by Schlicker and Cox (1968), it is known that this dose level (and even levels of 100 mg additional Zn^{2+}/kg bw/day) may result in impaired copper balance in females.

In repeated dose toxicity studies with zinc sulphate heptahydrate, no effects on the reproductive organs were seen at dose levels up to ca. 1,100 mg and 565 mg Zn^{2+}/kg bw/day for mice and rats, respectively. In a repeated dose toxicity study with zinc monoglycerolate hypoplasia of several sex organs was observed at doses of ca. 300 mg Zn^{2+}/kg bw/day, but not at 13 or 60 mg Zn^{2+}/kg bw/day. As these effects were only seen at dose levels which produced very severe general toxicity, it is impossible to conclude that these adverse effects are directly related to zinc. It should be noted that these studies are not designed to detect effects on sperm cell motility.

Developmental toxicity studies, according to a study design similar to OECD 414, with mice, rats, hamsters and rabbits were described with unspecified zinc sulphate. These studies do not permit the derivation of a proper NOAEL because neither reproductive nor developmental or maternal effects were observed, not even at the highest dose tested. When it is assumed (worst-case) that the heptahydrate was administered from the study with hamsters it can be calculated that the NOAEL for both maternal effects and effects on the offspring is at least 19.9 mg Zn²⁺/kg bw/day. In other (non-guideline) studies, higher dose levels (up to 200 Zn²⁺/kg bw/day) have been reported to result in resorptions and retarded foetal growth, but not in external malformations. No resorptions and growth retardation were seen at 100 mg Zn²⁺/kg bw/day but as the study was too limited, this dose level cannot be taken as an NOAEL for developmental toxicity, either. Besides, at both 100 and 200 mg Zn²⁺/kg bw/day changes in maternal and fetal copper status were observed. In absence of better information a NOAEL of > 19.9 mg Zn²⁺/kg bw/day for developmental toxicity in animals is adopted.

In studies with pregnant women receiving additional 0.3 mg Zn^{2+}/kg bw/day (as zinc sulphate or citrate) during the last 6 months of pregnancy, no reproductive or developmental effects were observed. Clear evidence of zinc toxicity in human pregnancy has not been reported but this may be due to the fact that very high exposures to zinc in human pregnancy are unusual. In contrast, zinc deficiency during pregnancy can cause a variety of adverse effects on the foetus or may

result in reduced fertility or delayed sexual maturation in animals as well as in humans (Walsh et al., 1994; ATSDR, 1994; WHO, 1996).

Hence, with respect to effects on reproduction, zinc deficiency is known to result in impairment of fertility and of foetal development. In humans additional zinc up to 0.3 mg Zn^{2+}/kg bw/day during pregnancy did not result in adverse effects. Available data in animals on zinc excess indicate that adverse effects on fertility and foetal development may occur at dose levels of 200 mg Zn^{2+}/kg bw/day, in conjunction with other effects such as perturbation of parental and foetal copper homeostasis. In humans a small disturbance (if any) of normal physiology, presumably indicative for copper deficiency, has been demonstrated at zinc excess of 50 and 150 mg Zn^{2+}/kg bw/day) resulted in clinical signs. As the margin between the dose at which in humans clinical signs are manifest and the dose at which in animals reproductive effects have been reported is so high (viz. 80), it is considered unlikely that in humans reproductive effects will occur at exposure levels at which clinical signs are not manifest. Therefore, neither fertility nor developmental toxicity are considered end-points of concern for humans.

Zinc can interact with other trace elements, especially copper, resulting in toxicity which is usually due to depletion of these elements, leading to nutritional deficiencies. In some older studies, it has been suggested that supplemental zinc at a level of 50 mg/day impaired both the iron and copper status, but these effects were not observed in more recent interaction studies. At least part of the interaction between zinc and other metals such as copper may be related to the effect of zinc on metallothionein.

Zinc is an essential element required for the function of a large number of enzymes. It plays a role in DNA and RNA synthesis and many other processes in the body. A zinc deficiency in the diet can lead to notable health effects. Recommended daily zinc levels range from 5 mg/day for infants to 19 mg/day for women during lactation.

For the risk characterisation, an overall oral NOAEL of 50 mg Zn^{2+}/day (0.83 mg/kg bw/day) is set on the human volunteer study by Grand Forks (Davis et al. 2000; Milne et al., 2001). Given that this study was with women (the most sensitive population in zinc supplementation studies), and that in women clinical signs begin to appear only at a dose three times this NOAEL, a minimal MOS of 1 is considered sufficient when comparing the human NOAEL with the exposure levels for workers/consumers/general population.

<u>Note</u>: In the absence of useful dermal and inhalation toxicity studies, in the risk characterisation no distinction is made for systemic exposure to zinc via oral, dermal or inhalation exposure. For inhalation exposure this seems reasonable, given that the majority of the inhaled zinc is cleared via the gastro-intestinal tract. It is not entirely clear whether this route-to-route extrapolation, using the oral NOAEL as starting point, is also justified for dermal exposure. This because it is not certain whether the effects of zinc on copper homeostasis at higher doses are only the result of a local interference of zinc with the regulation of copper absorption or that also systemic factors are involved. For a worst-case approach it will be assumed that it is possible to evaluate the systemic effects after dermal exposure to zinc based on the oral NOAEL.

Previously, other organisations have evaluated the toxicity data of zinc, also taking into account that zinc is an essential element. In these evaluations the information generated in the Grand Forks study has not been considered, because this study is of more recent date. For sake of completeness the opinions of these organisations are given below.

In 1982, the WHO set a provisional maximum tolerable daily intake for zinc at 0.3-1.0 mg/kg bw (basis not quite clear). Later on, several scientific committees have based their recommendation for a maximum daily intake (EU, 1993; Gezondheidsraad, 1998) or oral reference dose (US EPA, 1992) on the study in humans by Yadrick et al. (1989). This study was also taken into account by WHO in 1996. Because the dose of 50 mg Zn^{2+} was additional to the amount of zinc that was already in the normal diet (approximately 10 mg Zn^{2+}/dav), the US EPA (1992) recalculated the LOAEL to be approximately 60 mg/day (1 mg/kg bw/day). By using an uncertainty factor of 3 (based on a minimal LOAEL from a moderate-duration study of the most sensitive humans and consideration of a substance that is an essential dietary nutrient) they set an oral reference dose of 0.3 mg/kg bw/day for zinc and zinc compounds. The EU (1993) stated that as "short-term intakes of about 50 mg zinc daily interfered with the metabolism of both iron and copper (Yadrick et al., 1989) it would be unwise to exceed a daily zinc intake of 30 mg in adults". The Dutch Health Council (Gezondheidsraad, 1998) followed this recommendation. The WHO (1996) stated that "interactions with other nutrients influencing their absorption and utilization have been detected biochemically at total zinc intakes as low as 60 mg/day when zinc was given in the form of a supplement to a diet that, it is reasonable to assume, already provided 10 mg of zinc/day". In order "to ensure that very few individuals in a population have an intake of zinc of 60 mg or higher, the Expert Consultation recommended that the adult population mean intake should not exceed 45 mg if a 20% variation in intake is assumed" (WHO, 1996).

4.1.3.2 Workers

Assuming that oral exposure is prevented by personal hygienic measures, the risk characterisation for workers is limited to the dermal and inhalation routes of exposure.

4.1.3.2.1 Acute toxicity

No acute inhalation or dermal studies with zinc phosphate are available. However, it is accepted that the acute inhalation toxicity study with zinc distearate may be used for zinc phosphate. The LC50 of zinc distearate (> 200 g/m³ (1 hour) equal to > 20 g Zn²⁺/m³) observed from the acute inhalation toxicity study, is compared with the anticipated short-term occupational exposure levels (0.5-1.5 mg Zn²⁺/m³, see **Table 4.6**). The MOS values are evaluated taking into account inter- and intraspecies differences, dose-response curve and severity of the effects. There are no reasons to deviate from the default values for the first two aspects (factor 3 for both, see Hakkert et al., 1996). Assessment factors for the two last factors cannot be derived, but it is noted that the MOS values are calculated for a severe effect (lethality). It is expected that other toxic effects after acute exposure might occur at lower concentrations than the lethal concentrations. Given the calculated MOS values (> 10,000), it is expected that zinc phosphate is of no risk for acute toxicity after inhalation: **conclusion (ii)**.

As the oral toxicity study with zinc phosphate reveals an LD50 > 5,000 mg/kg bw and dermal absorption for zinc phosphate is expected to be low, there is no concern with respect to acute toxicity after dermal exposure: **conclusion (ii)**.

4.1.3.2.2 Irritation

<u>Skin</u>

No skin irritation study with zinc phosphate is available. However, a derogation was accepted that given the physico-chemical properties, zinc phosphate would likely cause comparable effects to other slightly soluble zinc compounds like zinc oxide (see Section 4.1.2.4). From skin irritation data on zinc oxide it was concluded that zinc oxide was not skin irritating (see risk assessment report on zinc oxide). Consequently, it is concluded that zinc phosphate is of no concern with regard to acute skin irritation: **conclusion (ii)**.

Eye

Exposure to the eyes is possible via dust or "mist". Based on a well performed eye-irritation study it can be concluded that zinc phosphate is not irritating to the eyes. Therefore, **conclusion (ii)** is applicable.

Respiratory tract

No information is available on respiratory irritation after single exposure.

4.1.3.2.3 Corrosivity

No data are available for zinc phosphate on skin corrosivity. Given the results from the skin irritation studies with zinc oxide, it is concluded that zinc phosphate is of no concern for workers with regard to corrosivity conclusion (ii). Zinc phosphate is not corrosive to the eyes: **conclusion (ii)**.

4.1.3.2.4 Sensitisation

No dermal sensitisation studies with zinc phosphate are available. However, a derogation was accepted that given the physico-chemical properties, zinc phosphate would likely cause comparable effects to other slightly soluble zinc compounds like zinc oxide (see Section 4.1.2.5). From animal data and human experience it can be concluded that zinc oxide is of no concern for workers with respect to sensitisation (see risk assessment report on zinc oxide). Consequently, it is concluded that zinc phosphate is of no concern with regard to sensitisation: **conclusion (ii)**.

There are neither data from human experience nor other data with respect to possible respiratory sensitisation.

4.1.3.2.5 Repeated dose toxicity

Because there are no dermal and respiratory repeated dose toxicity studies available, risk characterisation for local skin and respiratory effects after repeated exposure to zinc phosphate cannot be described and it is unknown whether local or systemic effects of $Zn_3(PO_4)_2$ are critical. Risk characterisation is limited to the systemic effects of the Zn^{2+} -ion.

The NOAEL of 50 mg Zn^{2+}/day derived from a 10-week oral study in human volunteers is used as a starting point for the risk characterisation for repeated dose toxicity. This NOAEL of 50 mg

 Zn^{2+}/day results in an internal NOAEL of 10 mg Zn^{2+}/day by correction for oral absorption (20%; worst case, because of the homeostasis the relative absorption will be smaller by excess of Zn^{2+} -intake (see Section 4.1.2.1.6)). The occupational health risk due to the $Zn_3(PO_4)_2$ exposure is determined by comparing the internal NOAEL of 10 mg Zn^{2+}/day with the internal occupational exposure.

The dermal and respiratory exposure levels of $Zn_3(PO_4)_2$ for the occupational scenario (see Section 4.1.1.2 and **Table 4.6**) are estimated. The reasonable worst-case levels are used as a starting point in determining the internal exposure level due to occupational exposure, by correction for dermal and inhalation absorption, respectively. As zinc phosphate has a low-water solubility, 20% respiratory absorption is chosen. For dermal absorption 2% is taken into account for exposure to zinc phosphate via solutions/suspensions (Scenario 3), and 0.2% for exposure to zinc phosphate as dust (Scenarios 1 and 2).

The MOSs between the internal NOAEL and the internal occupational exposure estimates are mentioned in **Table 4.13**. The MOSs are evaluated by comparison with the minimal MOS. Since the NOAEL that is used as a starting point is derived from a study with human volunteers, a minimal MOS of 1 is considered appropriate (see Section 4.1.3.1). There is concern when the calculated MOS is significantly lower than the minimal MOS.

	Risk characterisation for dermal and inhalation exposure							
Scenario/ subscenario [#]	Estimated external dermal exposure in mg Zn ²⁺ /day (between brackets internal exposure in mg Zn ²⁺ /day) ^{a)}	MOS ♭)	Estimated external inhalation exposure in mg Zn ²⁺ /m ³ (between brackets internal exposure in mg Zn ²⁺ /day) ^c)	MOS ♭)				
1: Production of zinc phosphate	390 (0.8)	13	0.7 (1.4)	7.1				
2:Prduction of paint	430 (0.9)	11	0.4 (0.8)	13				
3: Ue of paint	37 (0.7)	14	0.1 (0.2)	50				

 Table 4.13
 Occupational risk assessment of zinc phosphate for repeated dose toxicity after dermal and inhalation exposure (systemic effects)

The risk assessment for repeated exposure is only based on full shift exposure levels. It is noted that possible higher risks resulting from daily performance of these activities associated with higher short term exposures, are not accounted for

 Estimated internal dermal exposure to Zn²⁺ used for calculating the risk, assuming a dermal absorption of 2% for solutions/suspensions (scenario 3) and 0.2% for dust (scenario 1 and 2)

b) MOS values based on comparison of the internal NOAEL of 10 mg Zn²⁺/day with the internal exposure

c) Estimated internal inhalation exposure to Zn²⁺ used for calculating the risk, assuming a respiratory absorption of 20%, a respiratory volume of 10 m³ for a worker/day

Given the calculated MOS values for dermal and inhalation exposure as mentioned in Table 4.13, it is concluded that, based upon the present information, health risks due to occupational dermal and inhalation exposure are not likely to occur: **conclusion (ii)**.

The risk characterisation for systemic effects is made with several assumptions:

- the internal values are calculated with worst-case assumptions for percentages absorption,
- it is assumed that other factors influencing route-specificity are not of importance. In case of Zn^{2+} , metabolism does not play a role, which favours this assumption,

- the human study was not performed with $Zn_3(PO_4)_2$, so it is assumed that the effects are due to Zn^{2+} ,
- the background intake of zinc in the experimental situation (human) and in workers are comparable,
- the background intake via food is considered to be comparable in the different EU countries.
- physiological role of Zn^{2+} is comparable between species.

The NOAEL was derived from the human volunteer study, in which a restricted amount of parameters was used. As the toxicity study with rats showed more specific adverse effects (pancreas), the results from this toxicity study are used for comparison. Starting with the NOAEL of 31.52 mg zinc monoglycerolate/kg bw/day (corresponding with 13.3 mg Zn^{2+}/kg bw/day and 93 mg $Zn_3(PO_4)_2 \cdot 4H_2O/kg$ bw/day) from the 13-week study with rats, results in an internal NOAEL of 5.3 mg Zn^{2+}/kg bw/d or 372 mg Zn^{2+}/day for a 70 kg worker (see Appendix A). The calculated MOSs range from 413-531 and 266-1,860 for dermal and inhalation exposure, respectively. Comparing these values with the minimal MOS of 360, and noting that this approach will be far too conservative for the essential nutrient zinc, it is concluded that risk characterisation based on the human study is adequate to protect also against adverse effects as observed in animal studies.

Combined exposure

The assessment of the risk after combined exposure (i.e., the risk due to the internal exposure resulting from both the dermal and the inhalation exposure) can only be made with the assumption that both dermal and inhalation exposure contribute to the internal exposure every working day. The total internal occupational exposure of 0.9-2.2 mg Zn^{2+}/day (see **Table 4.13**) compared to the internal NOAEL of 10 mg Zn^{2+}/day results in a MOS of 4.5-11. Therefore, it is concluded that based upon the present information health risks due to combined exposure are not likely to occur: **conclusion (ii)**.

4.1.3.2.6 Mutagenicity

Given the results from the mutagenicity studies, it is concluded that zinc phosphate is of no concern for workers with regard to mutagenicity: **conclusion (ii)**.

4.1.3.2.7 Carcinogenicity

There are no adequate carcinogenicity studies available. At the moment, there is no reason to require a carcinogenicity study: **conclusion (ii)**.

4.1.3.2.8 Toxicity for reproduction

There are no indications that Zn^{2+} caused adverse effects on fertility based on the results from the oral repeated dose toxicity study in rats with zinc monoglycerolate: **conclusion (ii)**. Furthermore, there are no indications that Zn^{2+} is of concern for developmental effects based on the results of developmental toxicity studies in different species (mice, rats, hamsters and rabbits) and several studies in which pregnant women were exposed to soluble zinc compounds: **conclusion (ii)**.

4.1.3.2.9 Occupational Exposure Limits

The health risk assessment for inhalation exposure does not give reasons to establish occupational exposure limit values.

4.1.3.3 Consumers

Table 4.14	Consumer exposure estimates
------------	-----------------------------

	Internal exposure (compound specific)	Internal exposure (not compound specific)
Zinc metal	negligible	
Zinc oxide	2.5 mg Zn²+/day (5.1 including medically used zinc oil)	
Zinc chloride	0.2 mg Zn²+/day	
Zinc sulphate	0.00046 mg Zn²+/day	
Zinc phosphate	0.045 mg Zn²+/day	
Zinc distearate	0.0062 mg Zn²+/day	
Personal care products used regularly		1.6 mg Zn²⁺/day

Only data on the use of zinc phosphate in paint are available. For this use, a consumer exposure of 0.045 mg zinc/day was calculated.

4.1.3.3.1 Acute toxicity/Irritation/Corrosivity/Sensitisation

Given the data available, it is concluded that zinc phosphate is of no concern for consumers with respect to acute toxicity, skin, eye and respiratory tract irritation, corrosivity and skin sensitisation: **conclusion (ii)**.

4.1.3.3.2 Repeated dose toxicity

Starting point for the risk characterisation for systemic effects is the human oral NOAEL of 50 mg zinc/day. Assuming 20% absorption, this NOAEL corresponds to an internal dose of 10 mg zinc/day. The MOS between this (internal) NOAEL and the internal exposure by the use of paint (0.045 mg/day) is 220.

However, consumer products containing zinc phosphate are probably not used regularly. Besides, consumers can also be exposed to other zinc compounds in consumer products, some of which may be used on a regular basis (more than once a week). The use of regularly used products (dandruff shampoo, deodorant, eye shadow, and possibly baby care ointment) results in a cumulative (internal) exposure of approximately 1.6 mg zinc/day (see Section 4.1.1.3 and **Table 4.14**). Comparing the (internal) NOAEL with this more realistic exposure, a MOS of 6.25 can be calculated.

These MOSs are considered sufficient (see Section 4.1.3.1), and it can be concluded that there is no concern for consumers, neither for zinc phosphate nor for regularly used zinc compounds taken together: **conclusion (ii)**.

4.1.3.3.3 Mutagenicity/Carcinogenicity/Toxicity for reproduction

Given the results from the mutagenicity studies, it is concluded that zinc phosphate is of no concern for consumers with regard to mutagenicity: **conclusion (ii)**.

As there is no experimental or epidemiological evidence for carcinogenicity, there is no concern for carcinogenicity: **conclusion (ii)**.

Given the data available, it is concluded that zinc phosphate is of no concern for reproductive toxicity: **conclusion (ii)**.

4.1.3.4 Humans exposed via the environment

4.1.3.4.1 Repeated dose toxicity

General exposure

For zinc, the ingestion of foods appears to be the most important exposure route for the general population, compared to which the intake by drinking water and ambient air is negligible. Recently, the average dietary intake of zinc is reported to be around 10 mg/day with a minimum of 0.6 mg and a maximum 39 mg. Both the reported average intake and the maximum intake are well below the human oral NOAEL of 50 mg/day and also well below the upper limit of safe intake as recommended by WHO (45 mg/day; 1996). Hence, it can be concluded that there is no concern for the general population exposed indirectly to zinc via the environment: **conclusion (ii)**.

Local exposure

Starting point for the risk characterisation for systemic effects are the local PEC_{add}s in air and water as presented in Section 4.1.1.4.2 and the human oral NOAEL of 50 mg zinc/day. Assuming 20% absorption, this NOAEL corresponds to an internal dose of 10 mg zinc/day. The local PEC_{add}s in air and water are converted to internal doses by correction for inhalatory and oral absorption (20% and 12%, respectively), and by assuming a breathing volume of 20 m³/day and a drinking water consumption of 2 l/day (see **Table 4.15**).

	PEC _{add} -water (in μg/l)	Internal exposure (in mg zinc/day)	PEC _{add} -air (in μg/m³)	Internal exposure (in mg zinc/day)
Production	1.23	0.00030	0.285	0.0011
Processing	175	0.042	2.51	0.010

Table 4.15 Internal exposure levels via water and air at local	scale
--	-------

Comparing the (internal) NOAEL with the internal exposures, MOSs are in the range 238-33,333. These MOSs are considered sufficient (see Section 4.1.3.1), and it can be concluded that there is no concern for human health: **conclusion (ii)**. Moreover, it must be noted that the internal exposures via water are overestimates. They are based on untreated surface water, which nowadays in the EU is not directly representative for drinking water.

4.1.3.4.2 Mutagenicity/Carcinogenicity/Toxicity for reproduction

General and Local exposure

Given the results from the mutagenicity studies, it is concluded that zinc phosphate is of no concern with regard to mutagenicity for the general population exposed indirectly to zinc via the environment: **conclusion (ii)**.

As there is no experimental or epidemiological evidence for carcinogenicity, there is no concer for carcinogenicity: **conclusion (ii)**.

Given the data available, it is concluded that zinc phosphate is of no concern for reproductive toxicity: **conclusion (ii)**.

4.2 HUMAN HEALTH (PHYSICO-CHEMICAL PROPERTIES)

4.2.1 Exposure assessment

n.a.

4.2.2 Effects assessment: Hazard identification

4.2.2.1 Explosivity

Test data on explosive properties are not available. However, on theoretical considerations the substance is concluded not to be explosive.

4.2.2.2 Flammability

Test data on flammable properties are not available. However, on theoretical considerations the substance is concluded not to be flammable.

4.2.2.3 Oxidising potential

Test data on oxidising properties are not available. However, on theoretical considerations the substance is concluded not to be oxidising.

4.2.3 Risk characterisation

Given the physico-chemical data, zinc phosphate is considered not to form a risk with respect to explosive, flammable and oxidising properties: **conclusion (ii)**.

5 **RESULTS**

5.1 ENVIRONMENT

n.a.

5.2 HUMAN HEALTH

5.2.1 Human health (toxicity)

5.2.1.1 Workers

Conclusion (ii) There is at present no need for further information and/or testing and for risk reduction measures beyond those which are being applied already.

The information available gives no reasons for concern for adverse health effects due to zinc phosphate exposure at the workplace.

End point	Conclusions valid for the occupational scenarios						
	Scenario 1		Scenario 2		Scen	ario 3	
	MOS	Conclusion	MOS	Conclusion	MOS	Conclusion	
Acute toxicity							
- dermal - inhalation	n.a. > 10,000	ii ii	n.a. > 10,000	ii ii	n.a. > 10,000	ii ii	
Irritation and corrosivity, single exposure							
- dermal	n.a.	ii	n.a.	ii	n.a.	ii	
- inhalation	n.a.	ii	n.a.	ii	n.a.	ii	
- eyes	n.a.	ii	n.a.	ii	n.a.	ii	
Sensitisation							
- dermal	n.a.	ii	n.a.	ii	n.a.	ii	
- inhalation	n.a.	ii	n.a.	ii	n.a.	ii	
Repeated dose toxicity, systemic effects							
- dermal	13	ii	11	ii	14	ii	
- inhalation	7.1	ii	13	ii	50	ii	
- combined	4.5	ii	5.9	ii	11	ii	
Mutagenicity	n.a.	ii	n.a.	ii	n.a.	ii	
Carcinogenicity	n.a.	ii	n.a.	ii	n.a.	ii	

Table 5.1 Overview of conclusions with respect to occupational risk characterisation

Table 5.1 continued overleaf

End point	Conclusions valid for the occupational scenarios					
	Sce	Scenario 1		Scenario 2		ario 3
	MOS	Conclusion	MOS	Conclusion	MOS	Conclusion
Toxicity for reproduction						
Fertility	n.a.	ii	n.a.	ii	n.a.	ii
Developmental effects						
- dermal	n.a.	ii	n.a.	ii	n.a.	ii
- inhalation	n.a.	ii	n.a.	ii	n.a.	ii
- combined	n.a.	ii	n.a.	ii	n.a.	ü

Table 5.1 continued Overview of conclusions with respect to occupational risk characterisation

n.a not applicable

5.2.1.2 Consumers

Conclusion (ii) There is at present no need for further information and/or testing and for risk reduction measures beyond those which are being applied already.

5.2.1.3 Humans exposed via the environment

Conclusion (ii) There is at present no need for further information and/or testing and for risk reduction measures beyond those which are being applied already.

5.2.2 Human health (physico-chemical properties)

Conclusion (ii) There is at present no need for further information and/or testing and for risk reduction measures beyond those which are being applied already

Given the physico-chemical data, zinc phosphate is considered not to form a risk with respect to explosive, flammable and oxidising properties.

6 **REFERENCES**

The reference list applies to zinc and the five zinc compounds.

Aamodt RL, Rumble WF, Babcock AK, Foster DM and Henkin RI (1982). Effects of oral zinc loading on zinc metabolism in humans – I. Experimental studies, Metabolism **31**, 326-334.

ACGIH (1991). American Conference of Governmental Industrial Hygienists Inc., Documentation of the threshold limit values and biological exposure indices, 6th edition.

Adams K and Kirkpatrick D (1994). Zinc Monoglycerolate, Mammalian Cell Mutation Assay. Confidential Report. Unilever Study KM930593. Huntington Research Centre, Huntington, England.

Addy M, Mahdavi SA and Loyn T (1995). Dietary staining *in vitro* by mouth rinses as a comparative measure of antiseptic activity and predictor of staining *in vivo*. J. Dent. **23**, 95-99.

Agren MS (1990). Percutaneous absorption of zinc from zinc oxide applied topically to intact skin in man. Dermatologica **180**, 36-39.

Agren MS (1991). Influence of two vehicles for zinc oxide on zinc absorption through intact skin and wounds. Acta Derm. Venereol. **71**, 153-156.

Agren MS, Krusell M and Franzen L (1991). Release and absorption of zinc from zinc oxide and zinc sulfate in open wounds. Acta Derm. Venereol. **71**, 330-333.

Akhurst LC and Kitching JD (1994). Zinc Monoglycerolate: Metaphase Chromosome Analysis of Human Lymphocytes Cultured *In Vitro*. Confidential Report. Unilever Study KC930592. Huntington Research Centre, Huntington, England.

Amacher DI and Paillet SC (1980). Induction of trifluorothymidine-resistant mutants by metal ions in L5178Y/TK^{+/-} cells. Mutat. Res. **78**, 279-288. [Cited from ATSDR, 1994]

Amdur MO, Mc Carthy JF and Gill MW (1982). Respiratory response of guinea pigs to zinc oxide fume. Am. Ind. Hyg. Assoc. J. **43**, 887-889.

Ameille J, Brechot JM, Brochard P, Capron F and Dore MF (1992). Occupational hypersensitivity pneumonitis in a smelter exposed to zinc fumes. Chest. **101**, 862-863.

Annema JA (1988). Mooi is anders. Natuur en Milieu, Utrecht. [In Dutch].

Antonson DL and Vanderhoff A (1983). Effect of chronic ethanol ingestion on zinc absorption in rat small intestine. Dig. Dis. Sci. **28**, 604-608. [Cited from Walsh et al., 1994].

Arbejdstilsynet (1992). Grænseværdier for stoffer og materialer. Copenhage, Danmark, Arbejdstilsynet

Armbruster (2000). Final report on the dustiness testing of powdery substances (zinc/zinc compounds) on behalf of EBRC Consulting GmbH, Hannover. (ProTec B-Nr 1270 31 14 2000).

Arts MHE (1996). Acute (4-hour) Inhalation Toxicity Study with Zinc Powder in Rats. TNO-Report V96.734. TNO, Zeist, The Netherlands.

ATSDR (1994). Toxicological profile for zinc (update). Agency for Toxic Substances and Disease Registry, Atlanta.

Aughey E, Grant L, Furman BL and Dryden WF (1977). The effects of oral zinc supplementation in the mouse. J. Comp. Pathol. 87, 1-14.

Aulerich RJ, Bursian SJ, Poppenga RH, Braselton WE and Mullaney TP (1991). Toleration of high concentrations of dietary zinc by mink. J. Vet. Diagn. Invest. **3**, 232-237. [Cited from ATSDR, 1994]

Avon products (1976). Submission of data by CTFA. Unpublished safety data on the Lithium Stearate group. Biological Evaluation Summary Report. Zinc stearate. [cited from CIR, 1982]

Babcock AK, Henkin RI, Aamodt RL, Foster DM and Berman M (1982). Effects of oral zinc loading on zinc metabolism in humans. II: *In vivo* kinetics. Metabolism **31**, 335-347.

BAM (1986). BAM Report 4-1446/86. Bundesanstalt für Materialprüfung, Berlin, Germany.

BAM (1989b). BAM Report 1832/89 4-617. Bundesanstalt für Materialprüfung, Berlin, Germany.

BAM (1991). BAM Report 4.02/881/91. Bundesanstalt für Materialprüfung, Berlin, Germany.

BAM (1997). BAM Report II.2/399/97. Bundesanstalt für Materialprüfung, Berlin, Germany.

Barceloux DG (1999). Zinc. J. Toxicol. Clin. Toxicol. 37, 279-292.

Barnett YA and King CM (1995). An investigation of antioxidant status, DNA repair capacity and mutation as a function of age in humans. Mutat. Res. **338**, 115-128.

Bentley PJ and Grubb BR (1991). Experimental dietary hyperzincemia tissue disposition of excess zinc rabbits. Trace Elem. Med. **8**, 202-207. [Cited from ATSDR, 1994].

Berg JW (1990). Zinc finger domains, hypotheses and current knowledge. Annu. Rev. Biophys. Biophys. Chem. **19**, 405-421. [Cited from Walsh et al., 1994].

BIBRA (1989). Toxicity Profile on zinc stearate. British Industrial Biological Research Association, Great Britain.

Biffi E (1989). Acute oral toxicity of zinc stearate. Centro di analisi and ricerche Biologiche (Biolab SGS srl), Milano. [in Italian]

Black MR, Medeiros DM, Brunett E and Welke R (1988). Zinc supplements and serum lipids in young adult white males. Am. J. Clin. Nutr. 47, 970-975.

Blanc P, Wong H, Bernstein MS and Boushey HA (1991). An experimental human model of metal fume fever. Ann. Intern. Med. **114**, 930-936.

Blanc PD, Boushey HA, Wong H, Wintermeyer SF and Bernstein MS (1993). Cytokines in metal fume fever. Am. Rev. Respir. Dis. 147, 134-138.

Bleavins MR, Aulerich RJ, Hochstein JR, Hornshaw TC and Napolitano AC (1983). Effects of excessive dietary zinc on the intrauterine and postnatal development of mink. J. Nutr. **113**, 2360-2367.

Boulware RT, Southhard GL and Yankell SL (1985). Sanguinaria extract, a new agent for the control of volatile sulfur compounds in the oral cavity. J. Soc. Cosmet. Chem. **36**, 297-302.

Brandao-Neto J, Vieira JGH, Shuhama T, Russo EMK, Piesco RV and Curi PR (1990). Interrelationships of zinc with glucose and insulin metabolism in humans. Biol. Trace Elem. Res. 24, 73-82.

Bremmer HJ and van Veen MP (2000). Factsheet verf. Ten behoeve van de schatting van de risico's voor de consument. RIVM publication 612810010, Bilthoven, The Netherlands. [In Dutch].

Bremmer HJ, Prud'homme de Lodder LCH and van Veen MP (2001). Factsheet cosmetica. Ten behoeve van de schatting van de risico's voor de consument (concept). RIVM, Bilthoven, The Netherlands. [In Dutch].

Brouwer DH, Hoogendoorn L, Bos PMJ, Boogaard PJ and van Hemmen JJ (1998). Proposal for the assessment of quantitative dermal exposure limits in occupational environments. Part II. Feasibility study for application in an exposure scenario for MDA. Occup. Environ. Med. **55**, 805-811.

Brouwer DH, Kroese R and van Hemmen JJ (1999). Transfer of contaminants from surface to hands: experimental assessment of linearity of the exposure process, adherence to the skin, and area exposed during fixed pressure and repeated contact with surfaces contaminated with a powder. Appl. Occup. Environ. Hyg. **14**: 231-239.

Brown RFR, Marrs TC, Rice P and Masek LC (1990). The histopathology of rat lung following exposure to zinc oxide/hexachloroethane smoke or instillation with zinc chloride followed by treatment with 70% oxygen. Environ Health Perspect **85**, 81-87.

Burkhanov AI (1978). Comparative evaluation of the toxicity of metals following single and repeated administration. Zdravookhr. Kaz. 9, 18-21. [in Russian]

Cameron TP (1991). Short-term test program sponsored by the division of cancer etiology, NCI. [Cited in CCRIS].

Campbell JK and Mills CF (1979). The toxicity of zinc to pregnant sheep. Environ. Res. 20, 1-13.

Campbell-Brown M, Ward R, Haines A, North W, Abraham R and McFadyen I (1985). Zinc and copper in Asian pregnancies – is there evidence for a nutritional deficiency? Br. J Obstet. Gyneacol. **92**, 875-885. [Cited from Walsh et al., 1994].

Carpenter JM and Ray JH (1969). The effect of ⁶⁵zinc chloride on the production of mutations in *Drosophila* melanogaster. Am. Zool. 9, 1121.

Casto BC, Meyers J and Di Paolo JA (1979). Enhancement of viral transformation for evaluation of the carcinogenic or mutagenic potential of inorganic metal salts. Cancer Res. **39**, 193-198.

CCRIS. NCI's Chemical Carcinogenesis Research Information System.

CEPE (1998). Existing Substances Regulation 793/93/EEC. Data submission for zinc oxide. Exposure data sheet for zinc oxide users. Compilation of answers received by CEPE until 1998-11-30.

CEPE (1999). Answers to CEPE questionnaire on risk assessment of zinc stearate.

Chandra RK (1984). Excessive intake of zinc impairs immune responses. JAMA 252, 1443-1446.

Chang CH (1976). Modification of DNA, RNA and ATP synthesis in liver and spleen by $ZnCl_2$, 1,10-phenanthroline and the zinc complex of 1,10-phenanthroline; teratogenic effects of these agents in mice. Diss. Abstr. Int. B, **6103-**B.

Chobanian SJ (1981). Accidental ingestion of liquid zinc chloride: local and systemic effects. Ann. Emerg. Med. 10, 91-93.

CIR (1982). Cosmetic Ingredient Review: Final Report of the Safety Assessment of Lithium Stearate, Aluminum Distearate, Aluminum Tristearate, Ammonium Stearate, Calcium Stearate, Magnesium Stearate, Potassium Stearate, Sodium Stearate, and Zinc stearate. J. Am. Coll. Toxicol. **1**, 143-177.

Cleven RFMJ, Janus JA, Annema JA and Slooff W (1993). Integrated Criteria Document Zinc. RIVM Report No. 710401028, Bilthoven, The Netherlands.

Company A-AN. Confidential Reports.

Conner MW, Flood WH, Rogers AE and Amdur MO (1986). Pulmonary damage in guinea pigs caused by inhaled ultra fine zinc oxide, evaluation by light and electron microscopy and analysis of pulmonary lavage fluid. Microbeam Analysis **21**, 589-590.

Conner MW, Flood WH and Rogers AE (1988). Lung injury in guinea pigs caused by multiple exposures to ultra fine zinc oxide. Changes in pulmonary lavage fluid. J. Toxicol. Environ. Health **25**, 57-69.

Cotran RS, Kumar V and Robbins SL (1989). Robbins pathologic basis of disease. 4th ed. Philadelphia, PA. WB Saunders Company, 461. [Cited from ATSDR, 1994].

Courtois Ph, Guillard O, Pouyollon M, Piriou A and Warnet J-M (1978). Comparison of the acute toxicity and the ulcer inducing power of zinc sulphate and pantothenate carried out in animals. Toxicol. Eur. Res. **1**, 371-373.

Cousins RJ (1985). Absorption, transport, and hepatic metabolism of copper and zinc, special reference to metallothionein and ceruplasmin. Physiol. Rev. 65, 238-309. [Cited from ATSDR, 1994].

Cousins RJ (1989). Theoretical and practical aspects of zinc uptake and absorption. Adv. Exp. Med. Biol. **249**, 3-12. [Cited from Walsh et al., 1994].

CRC (1995). Handbook of Chemistry and Physics, 75th edition.

Crebelli R, Paoletti A, Falcone E, Aquilina G, Fabri G and Carere A (1985). Mutagenicity studies in a tyre plant, *In vitro* activity of workers' urinary concentrates and raw materials. Br. J. Ind. Med. **42**, 481-487.

Cullumbine H (1957). The toxicity of screening smokes. J. Roy. Army. Med. Corps 103, 109-122. [cited from Schenker et al., 1981]

Cunnane CS (1988). Zinc, clinical and biochemical significance. CRC Press, Boca Raton, Fl, 69-78. [Cited from Walsh et al., 1994].

Danish Product Register (1996).

Davis CD, Milne DB and Nielsen FH (2000). Changes in dietary zinc and copper affect zinc- status indicators of postmenopausal women, notably, extracellular superoxide dismutase and amyloid precursor proteins. Am. J. Clin. Nutr. **71**, 781-788.

Deknudt G (1982). Clastogenic effects of zinc in mammals. CR Soc. Biol. 176, 563-567. [In French].

Deknudt G and Deminatti M (1978). Chromosome studies in human lymphocytes after *in vitro* exposure to metal salts. Toxicology **10**, 67-75.

Deknudt G and Gerber GB (1979). Chromosomal aberrations in bone-marrow cells of mice given a normal or a calcium-deficient diet supplemented with various heavy metals. Mutat. Res. **68**, 163-168.

Derry JE, McLean WM and Freeman JB (1983). A study of the percutaneous absorption from topically applied zinc oxide ointment. J. Parenter. Enteral. Nutr. 7, 131-135.

Deutsche Forschungsgemeinschaft (DFG): Senatskommission zur Prüfung gesundheitsschädlicher Arbeitsstoffe. MAKund BAT-Werte-Liste (1997). Maximale Arbeitsplatzkonzentrationen und biologische Arbeitsstofftoleranzwerte. Weinheim, FRG.

Deutsche Montan Technologie GmbH (2000). Final Report on the Dust Testing of powdery substances (zinc/zinc compounds) on behalf of EBRC Consulting GmbH, Hannover.

Dinslage-Schlünz A and Rosmanith J (1976). The zinc elimination from the rat lung after repeated zinc oxide inhalation. Beitr. Silikose-Forsch. (Pneumokon) 28, 80-89. [In German].

Di Paolo JA and Casto BC (1979). Quantitative studies of *in vitro* morphological transformation of Syrian hamster cells by inorganic metal salts. Cancer Res. **39**, 1008-1013. [Cited from EHC, 1996].

Domingo JL, Llobet JM, Paternain JL and Corbella J (1988). Acute zinc intoxication: comparison of the antidotal efficacy of several chelating agents. Vet. Hum. Toxicol. **30**, 224-228.

Dost AA, Redman D and Cox G (2000). Exposure to rubber fume and rubber process dust in the general rubber goods, tyre manufacturing and retread industries. Ann. Occup. Hyg. **44**, 329-342.

Dufresne A, Perrault C, Roy J, Lauzon J, Michaud D and Baril M (1988). Characterization of ambient air contaminants from hot-dip galvanizing plants. Ann. Occup. Hyg. **32**, 179-189.

Edwards K and Buckley P (1995). Study Report Zinc Monoglycerolate, 13-week Feeding Study in Rats. Confidential Report FT930588. Environmental Safety Laboratory, Unilever Research, Bedford, England.

EBRC (2000). Occupational Inhalation Exposure in the Zinc Oxide Producing Industry. Database Revision. 2nd Draft Report, February 2000. EBRC, Hannover, Germany.

EBRC (2001a). Occupational Inhalation Exposure in the Zinc Oxide Producing Industry. Database Revision. Final Report, February 2000. EBRC, Hannover, Germany.

EBRC (2001b). Occupational Inhalation Exposure During Zinc Chloride Production (Bagging and Drumming) Operations. EBRC April 2001, Hannover, Germany.

EBRC (2001c). Short-Term Occupational Inhalation Exposure During Zinc Chloride Production (Bagging and Drumming) Operations. EBRC April 2001, Hannover, Germany.

EBRC (2001d). Occupational Inhalation Exposure (Short-Term Exposures) During Hot-Dip Galvanising. EBRC April 2001, Hannover, Germany.

EBRC (2001e). Evaluation of Workplace Exposure Data During Continuous Hot-Dip galvanising and continuous Electro galvanizing . EBRC April 2001, Hannover, Germany.

EBRC (2001f). Evaluation of Workplace Exposure Data in the European Brass Casting Industry. Preliminary Report EBRC Consulting GmbH, Hannover, Germany.

EBRC (2001g). Occupational Inhalation Exposure During Zinc Sulphate Production. EBRC Consulting GmbH, Hannover, 30.0802001.

EBRC (2001h). Occupational Inhalation Exposure. Database Revision, Zinc Metal Production (Hydro-metallurgic Process). EBRC April 2001, Hannover, Germany.

EBRC (2001k). Occupational Inhalation Exposure. Database Revision, Zinc Metal Production (Pyrometallurgic Process). EBRC April 2001, Hannover, Germany.

EBRC (2001m). Occupational Inhalation Exposure Zinc Dust Production. EBRC April 2001, Hannover, Germany.

EBRC (2001n). Occupational Inhalation Exposure Zinc Powder Production. EBRC April 2001, Hannover, Germany.

EGGA (1999a). Submission to Rapporteur in Response to Draft Risk Assessment Reports for Zinc and other Zinc Compounds. EGGA.

EGGA (1999b). Revised pages of the submission by EGGA.

EGGA (2000). Final report. Statistical evaluation of workplace exposure data in the galvanising industry for zinc oxide, zinc chloride and total zinc.

EHC (1996). Environmental Health Criteria for zinc (draft). IPCS-WHO, Geneva.

Elinder CG (1986). Zinc. In: Handbook on the Toxicology of Metals. Friberg L, Nordberg GF, Vouk VB and Kessler E (eds.), Elsevier, Volume 2, 664-679.

Ellis TM, Masters HG and Mayberry C (1984). Examination of the susceptibility of different breeds of sheep to zinc intoxication. Aust. Vet. J. **61**, 296-298.

EPA (1997). Exposure Factors Handbook. Volume 1 – General Factors. Update to Exposure Factors Handbook EPA/600/8-89/043 – May 1989. EPA, Office of Research and Development, National Center for Environmental Assessment, U.S. Environmental Protection Agency, Washington DC, EPA/600/P-95/002Fa – August 1997.

EC (1993). Reports of the Scientific Committee for Food. Nutrient and Energy Intakes for the European Community, Thirty-First Series, Opinion Expressed on 11-12-1992, Directorate-General Industry; Chapter 26 - Zinc.

EC (1996). Technical Guidance Document on Risk Assessment in support of Commission Directive 93/67/EEC on Risk assessment for new notified substances and Commission Regulation (EC) 1488/94 on Risk assessment for existing substances. Parts 1-4. European Commission (EC), Office for Official Publications of the EC, Luxembourg.

Eurofer (2000). Continuous and electro-galvanising emissions of and exposure to zinc.

Eurometaux (2000), letter to Mrs. E. Fassold, ECB, dated 20 October 2000.

European Commission (1994). Wetenschappelijk comite voor menselijke voeding. Zink. In: Voedings- en energieopnames voor de Europese Gemeenschap, verslag nr. 31, advies 11.12.1992, Directoraat-generaal Industrie; 26.

Evans EH (1945). Casualties following exposure to zinc chloride smoke. Lancet ii, 368-370.

EVM (1999). Review of zinc. UK Food Standards Agency's Expert Group on Vitamins and Minerals. Document EVM/99/18/P.

Fenske RA, Birnbaum SG, Mether M and Soto R (1989). Methods for assessing fieldworkers hand exposure to pesticides during peach harvesting. Bull. Environ. Contam. Toxicol. **43**, 805-813.

Ferry JJ (1966). Communication to TLV Committe from the General Electric Co., Schenedectady, NY. [cited from ACGIH, 1991].

Ferry JJ (1974). Letter to the National Institute for Occupational Safety and Health from the General Electric Co., Schenedectady, NY. [cited from ACGIH, 1991].

Fischer PWF, Giroux A and L'Abbé MR (1984). Effect of zinc supplementation on copper status in adult man. Am. J. Clin. Nutr. **40**, 743-746.

Fischer PWF, L'Abbé MR and Giroux A (1990). Effects of age, smoking, drinking, exercise and estrogen use on indices of copper status in healthy adults. Nutr. Res. **10**, 1081-1090.

Flanagan PR, Haist J and Valberg LS (1983). Zinc absorption, intraluminal zinc and intestinal metallothionein levels in zinc-deficient and zinc-repleted rodents. J. Nutr. **113**, 962-972. [Cited from Walsh et al., 1994].

Food and Drug Research Labs., Inc. (1973). Teratologic evaluation of FDA 71-49 (zinc sulfate). PB-221 805.

Food and Drug Research Labs., Inc. (1974). Teratologic evaluation of compound FDA 71-49. Zinc sulfate in rabbits. PB-267 191.

Freijer JI, Cassee FR, Subramaniam R, Asgharian B, Miller FJ, van Bree L and Rombout PJA (1999). Multiple Path Particle Deposition Model (MPPDep version 1.11) – A model for human and rat airway particle deposition. RIVM publication 650010019, Bilthoven, The Netherlands.

Furchner JE and Richmond CR (1962). Effect on dietary zinc on the absorption of orally administered Zn⁶⁵. Health Phys. **8**, 35-40.

Galvez-Morros M, Garcia-Martinez O, Wright AJA, and Southon S (1992). Bioavailability in the rat of zinc and iron from the basic salts Zn₅(OH)₈Cl₂.H₂O, Fe(OH)SO₄ and Fe₄(OH)₁₁NO₃.2H₂O. Food Chem. **43**, 377-381.

Gezondheidsraad (Health Council of the Netherlands) (1998). Committee Risk assessment for substances. Zinc. Publication nr. 1997/34. Rijswijk, The Netherlands.

Gilliard C. (1999). Letter to the Chemical Substances Bureau (Bilthoven, the Netherlands) on solubility of zinc stearate, dated May 28, 1999.

Gocke E, King MT, Eckhardt K and Wild D (1981). Mutagenicity of cosmetics ingredients licensed by the European Communities. Mutat. Res. 90, 91-109.

Gordon EF, Gordon RC and Passal DB (1981). Zinc metabolism: Basic, clinical, and behavioral aspects. J. Pediatr. **99**, 341-349.

Gordon T, Chen LC, Fine JM, Schlesinger RB, Su WY, Kimmel TA and Amdur MO (1992). Pulmonary effecs of inhaled zinc oxide in human subjects, guinea-pigs, rats, and rabbits. Am. Ind. Hyg. Assoc. J. **53**, 503-509.

Greaves MW and Skillen AW (1970). Effects of long-continued ingestion of zinc sulphate in patients with venous leg ulceration. Lancet.**II**, 889-891.

Groat S, Searl A, Kenny LC, Howe A and Chung K (1999). Preliminary Investigation into the Size Distribution of Zinc Aerosol in the Galvanising, Brass Casting and Zinc Oxide Production Industries. Research Project Report for ILZRO Program ZEH-4.

Grötsch (1999). Final Report. Cutaneous Permeation of Zinc Oxide and Zinc Sulphate Through Pig Skin *In Vitro*. Study Nrs. 02073979/02073989. Labor L+S AG, Bad Bocklet, Germany.

Gunshin H, Noguchi T and Naito H (1991). Effect of calcium on the zinc uptake by brush-border membrane vesicles isolated form the rat small intestine. Agric. Biol. Chem. **35**, 2813-2816. [Cited from ATSDR, 1994].

Gupta T, Talukder G and Sharma A (1991). Cytotoxicity of zinc chloride in mice *in vivo*. Biol. Trace Elem. Res. **30**, 95-101.

Hakkert BC, Stevenson H, Bos PMJ and van Hemmen JJ (1996). Methods for the Establishment of Health-Based Recommended Occupational Exposure Limits for Existing Substances. TNO-Report V96.463. TNO, Zeist, The Netherlands.

Hallbook T and Lanner E (1972). Serum-zinc and healing of venous leg ulcers. Lancet.II, 780-782.

Hallmans G (1977). Treatment of burns with zinc-tape. A study of local absorption of zinc in humans. Scand. J. Plast. Reconstr. Surg. **11**, 155-161.

Hallmans G and Lidén S (1979). Penetration of ⁶⁵Zn through the skin of rats. Acta Dermatovener (Stockholm) **59**, 105-112.

Hamdi EA (1969). Chronic exposure to zinc of furnace operators in a brass foundry. Brit. J. Ind. Med. 26, 126-134.

Hänig G and Ulbrich K-H (1979). ZnO - Produkt zwischen Pigmentchemie und Hüttenwesen. Erzmetall **32**, 140-146.

Harding HE (1958). Some inquiries into the toxicology of zinc stearate. Brit. J. Ind. Med. 15, 130-132.

Harford C and Sarkar B (1991). Induction of metallothionein by simultaneous administration of cadmium (II) and zinc (II). Biochem. Biophys. Res. Commun. 177, 224-228. [Cited from ATSDR, 1994].

Harrison RM, Williams CR and O'Neill IK (1981). Characterization of airborne heavy metals within a primary zinc-lead smelting works. Environ. Sci. Technol. **15**, 1197-1204.

He LS, Yan XS and Wu DC (1991). Age-dependent variation of zinc-65 metabolism in LACA mice. Int. J. Radiat. Biol. **60**, 907-916. [Cited from ATSDR, 1994].

HEDSET (1996). Existing Substances Regulation. Data submission for zinc. Exposure data sheet for zinc use(r)s.

Hempe JM and Cousins RJ (1992). Cysteine-rich intestinal protein and intestinal metallothionein. An inverse relationship as a conceptual model for zinc absorption in rats. J. Nutr. **122**, 89-95. [Cited from ATSDR, 1994].

Henkin RI (1974). Metal-albumin, amino acid interactions: Chemical and physiological interrelationships. In: Chemical and Physiological Inter Relationships in Protein-Metal Interactions Friedman M (ed.). Plenum Press, New York, NY, 299-328.

Henkin RI, Mueller CW and Wolf RO (1975). Estimation of zinc concentration of parotid saliva by flameless atomic absorption spectrophotometry in normal subjects and in patients with idiopathic hypogeusia. J. Lab. Clin. Med. **86**, 175-180. [Cited from ATSDR, 1994].

Heubach (1991). Dr. Hans Heubach GmbH and Co.KG. Normungsvorhaben "Staubungsmessgerät".

Heydon JL and Kagan AN (1990). Metal fume fever. N. Z. Med. J. 103, 52.

Hirano S, Higo S, Tsukamoto N, Kobayashi E and Suzuki KT (1989). Pulmonary clearance and toxicity of zinc oxide instilled into the rat lung. Arch. Toxicol. **63**, 336-342.

Hjortsø E, Qvist J, Bud MI, Thomsen JL, Andersen JB, Wiberg-Jørgensen F, Jensen NK, Jones R, Reid LM and Zapol WM (1988). ARDS after accidental inhalation of zinc chloride smoke. Intensive Care Med. 14, 17-24.

Homma S, Jones R, Qvist J, Zapol WM and Reid L (1992). Pulmonary vascular lesions in the adult respiratory distress syndrome caused by inhalation of zinc chloride smoke: a morphometric study. Hum. Pathol. 23, 45-50.

Hooper PL, Visconti L, Garry PJ and Johnson GE (1980). Zinc lowers high-density lipoprotein-cholesterol levels. JAMA 244, 1960-1961.

Houle RE and Grant WM (1973). Zinc chloride keratopathy and cataracts. Am. J. Ophthalmol. 75, 992-996.

HSDB (1998). Health and Safety Database 1998, through January 1998.

HSE (1998). Health and Safety Executive. Occupational exposure limits 1998. Sudbury, England: HSE Books.

HSE Health and Safety Executive (2000). HSE data zinc compounds. Data submitted by EBRC.

HSL Health and Safety Laboratory (2001). A survey of welding fume from stainless steel welding. IR/ECO/99/12. HSL Sheffield, England.

Hughson GW and Cherrie JW (1999). Does the EASE model reliably predict dermal exposure to zinc? IOM (Edinburgh), ILZRO (Research Triangle Park).

Hughson GW and Cherrie JW (2000). Validation of the EASE Model in Relation to Dermal Zinc Exposures. Abbreviated draft-31/10/00. IOM (Edinburgh), ILZRO (Research Triangle Park).

Hughson GW and Cherrie JW (2001). Validation of the EASE model in relation to Dermal Zinc Exposures. IOM (Edinburgh), ILZRO (Research Triangle Park).

Hulshof KFAM, Kistemaker C and Bouman M (1998). De Inname van Energie en Voedingsstoffen door Nederlandse Bevolkingsgroepen – Voedselconsumptiepeiling 1997-1998. Rapport V98.805, TNO Voeding, Zeist, The Netherlands. [In Dutch]

Hunt JR, Lykken GI and Mullen LK (1991). Moderate and high amounts of protein from casein enhance human absorption of zinc from whole wheat or white rolls. Nutr. Res. **11**, 413-418. [Cited from ATSDR, 1994].

ICRP (1994). Annals of the ICRP (International Commission on Radiological Protection). Human Respiratory tract model for radiological protection. ICRP Publication 66. Pergamon/Elsevier Science, UK, USA, Japan.

Ikarashi Y, Tsuchiya T and Nakamura A (1992). Detection of contact sensitivity of metal salts using the murine local lymph node assay. Toxicol. Lett. **62**, 53-61.

Industry (1996). Exposure assessment during Zn Alloy die-casting.

Industry (1998a). Industry comments on the pre-draft risk assessment report on zinc. Provisional industry comments file of 04-12-1998.

Industry (1998b). Dr Hans Heubach GmbH and Co. KG. Industry comments on the first official draft RAR for zinc phosphate by the Lead Company. d.d. 04-12-98.

Industry (1999a). EBRC Consulting GmbH - final Industry Comment (12-03-99).

Industry (1999b). Data submissions on down stream use of ZnO in several industrial sector, 1999.

Industry (1999c). ZnO used in the tire industry. IM9074, 12-Apr-99.

Industry (1999d). Zinc sulphate. Final Industry Comment, Appendix 1, February 1999.

Industry (1999e). Dr Hans Heubach GmbH and Co. KG. Appendix 1. Detailed description of the zinc phosphate manufacturing process including occupational exposure sources and measurements. Letter d.d. 13-3-1999.

Industry (1999f). Zinc sulphate. Final Industry Comment, Appendix 4. Particle size distributions for commercial grade zinc sulphate, February 1999.

Industry (2000). Zinc industry comments on the non-flammability of zinc powder, text submitted to the NL rapporteur on 31st. March 2000.

Industry (2002). Zinc industry position document 6-5-2002 with annexes 1, 2a, 2b, and 3.

Johnson FA and Stonehill RB (1961). Chemical pneumonitis from inhalation of zinc chloride. Dis. Chest. 40, 619-624.

Johnson MA and Flagg EW (1986). Effects of sucrose and cornstarch on the development of copper deficiency in rats fed high levels of zinc. Nutr. Res. 6, 1307-1319. [Cited from ATSDR, 1994].

Johnson PE, Hunt JR and Ralston NV (1988). The effect of past and current dietary Zn intake on Zn absorption and endogenous excretion in the rat. J. Nutr. **118**, 1205-1209. [Cited from ATSDR, 1994].

Jones E and Gant RA (1994). Zinc Monoglycerolate. Bacterial Mutation Assay. Confidential Report. Unilever Study KA930591. Huntington Research Centre, Huntington, England.

Kada T, Hirano K and Shirasu Y (1980). Screening of environmental chemical mutagens by the REC-Assay System with *Bacillus subtilis*. Chem. Mutagen. **6**, 149-173. [Cited from EHC, 1996].

Kanda F, Yagi E, Fukuda M, Nakajima K, Ohta T and Nakata O (1989). Development of a novel hybrid powder formulated to quench body odour. J. Soc. Cosmet. Chem. **40**, 335-346.

Kapur SP, Bhussry BR, Rao S and Harmuth-Hoene E (1974). Percutaneous uptake of zinc in rabbit skin (37927). Proc. Soc. Exp. Biol. Med. **145**, 932-937.

Karlsson N, Cassel G, Fängmark I and Bergman F (1986). A comparative study of the acute inhalation toxicity of smoke from TiO₂-hexachloroethane and Zn-hexachloroethane pyrotechnic mixtures. Arch. Toxicol. **59**,160-166.

Keen CL and Hurley LS (1977). Zinc absorption through skin: correction of zinc deficiency in the rat. Am. J. Clin. Nutr. **30**, 528-530.

Kelleher P, Pacheco K and Newman LS (2000). Inorganic dust pneumonias, the metal-related parenchymal disorders. Environ. Health Perspect **108** (suppl), 685-695.

Ketcheson MR, Barron GP and Cox DH (1969). Relationship of maternal dietary zinc during gestation and lactation to development and zinc, iron, and copper content of the postnatal rat. J. Nutr. **98**, 303-311.

Klein W and Glaser U (1989). Acute Toxicity of Zinc Phosphate. Study by Fraunhofer-Institut für Umweltchemie und Ökotoxikologie, Schmallenberg, Germany. [Cited in IUCLID datasheet for trizinc diorthophosphate; composed by ECB February, 2000].

Kimber I and Weisberger C (1989). A murine local lymph node assay for the identification of contact allergens. Arch. Toxicol. **63**, 274-282.

Kimber I, Hilton J and Botham PA (1990). Identification of contact allergens using the murine local lymph node assay: comparisons with the Buehler occluded patch test in guinea pigs. J. Appl. Toxicol. **10**, 173-180.

Kirk-Othmer (1982a). Encyclopaedia of Chemical Technology, 3 rd. Ed., Vol. 10 and 24, John Wiley and Sons, New York.

Kirk-Othmer (1982b). Encyclopaedia of Chemical Technology, 3 rd. Ed., Vol. 10, 16 and 24, John Wiley and Sons, New York.

Kirk-Othmer (1982c). Encyclopaedia of Chemical Technology, 3rd. Ed., Vol. 3 and 24, John Wiley and Sons, New York.

Kirk-Othmer (1982d). Encyclopaedia of Chemical Technology, 3rd. Ed., Vol. 7, 8, 16, 20 and 24, John Wiley and Sons, New York.

Klimisch HJ, Hildebrand B and Freisberg KO (1982). Acute inhalation toxicity study (LC50, 4 hours, rat) with zinc oxide containing manganese II. BASF Aktiengesellschaft, Abteilung Toxikologie, Ludwigshafen.

KNMP (1996). Informatorium Medicamentorum. Koninklijke Nederlandse Maatschappij ter bevordering der Pharmacie, Geneesmiddel Informatie Centrum, Den Haag. [In Dutch].

Kossakowski S and Grosicki A (1983). Effect of mercuric chloride upon zinc distribution in the rat. Bull. Vet. Inst. Pulawy. **26**, 67-76. [Cited from Morrisey Donohue J et al., 1994].

Kozik MB, Maziarz L and Godlewski A (1980). Morphological and histochemical changes occurring in the brain of rats fed large doses of zinc oxide. Folia Histochem. Cytochem. **18**, 201-206.

Kozik MB, Gramza G and Pietrzak M (1981). Neurosecretion of the hypothalamo-hypophyseal system after intragastric administration of zinc oxide. Folia Histochem. Cytochem. **19**, 115-122.

Kreis IA (1992). Health Effects of Cadmium Contamination in Kempenland. PhD Thesis.

Kromhout H, Swuste P and Boleij JSM (1994). Empirical modelling of chemical exposure in the rubber manufacturing industry. Ann. Occup. Hyg. **38**, 3-22.

Kumar S (1976). Effect of zinc supplementation on rats during pregnancy. Nutr. Rep. Int. 13, 33-36.

Kuschner WG, D'Alessandro A, Wintermeyer SF, Wong H, Boushey HA and Blanc PD (1995). Pulmonary responses to purified zinc oxide fume. J. Investig. Med .43, 371-378.

Kynast G and Saling E (1986). Effect of oral zinc application during pregnancy. Gynecol. Obstet. Invest. 21, 117-123.

Lam HF, Peisch R and Amdur MO (1982). Changes in lung volumes and diffusing capacity in guinea pigs exposed to a combination of sulphur dioxide and sub micron zinc oxide mixed in a humidified furnace. Toxicol. Appl. Pharmacol. **66**, 427-433.

Lam HF, Conner MW, Rogers AE, Fitzgerald S and Amdur MO (1985). Functional and morphologic changes in the lungs of guinea pigs exposed to freshly generated ultra fine zinc oxide. Toxicol. Appl. Pharmacol. **78**, 29-38.

Lam HF, Chen LC, Ainsworth D, Peoples S and Amdur MO (1988). Pulmonary function of guinea pigs exposed to freshly generated ultra fine zinc oxide with and without spike concentrations. Am. Ind. Hyg. Assoc. J. **49**, 333-341.

Langham Brown JJ (1988). Zinc fume fever. Br. J. Radiol. 61, 327-329.

Lansdown ABG (1991). Interspecies variations in response to topical application of selected zinc compounds. Food Chem. Toxicol. **29**, 57-64.

Lansink CJM, Beelen MSC, Marquart J and van Hemmen JJ (1996a). Skin Exposure to Calcium Carbonate in the Paint Industry. Preliminary Modelling of Skin Exposure Levels to Powders Based on Field Data. TNO-Report V 96.064. TNO Nutrition and Food Research Institute, Zeist, The Netherlands.

Lansink CJM, Marquart J and van Hemmen JJ (1996b). Standard Scenario for the Handling of Powdered Agents. TNO Report V 96.065. TNO Nutrition and Food Research Institute, Zeist, The Netherlands.

Lansink CJM, van Hengstum C and Brouwer DH (1998). Dermal Exposure Due to Airless Spray Painting - a Semi-Experimental Study During Spray Painting of a Container. TNO Report V97.1057.

Lee HH, Prasad AS, Brewer GJ and Owyang C (1989). Zinc absorption in human small intestine. Am. J. Physiol. **256**, G87-G91. [Cited from Walsh et al., 1994].

Lee HH, Hill GM, Sikha VKNM, Brewer GJ, Prasad AS and Owyang C (1990). Pancreaticobiliary secretion of zinc and copper in normal persons and patients with Wilson's disease. J. Lab. Clin. Med. **116**, 283-288. [Cited from Walsh et al., 1994].

Leitzmann MF, Stampfer MJ, Wu K, Colditz GA, Willett WC, Giovannucci EL (2003). Zinc supplement use and risk of prostate cancer. J. Natl. Cancer Inst. **95**, 1004-1007.

Léonard A, Gerber GB and Léonard F (1986). Mutagenicity, carcinogenicity and teratogenicity of zinc. Mutat. Res. **168**, 343-353.

Lewis RJ, (1992). Sax's Dangerous Properties of Industrial Materials. 8th edition. Van Nostrand Reinhold, New York, NY, 3538-3539.

Litton Bionetics Inc. (1974). Mutagenic evaluation of compound FDA 71-49. Zinc sulfate. PB-245 451.

Litton Bionetics Inc. (1976). Mutagenic evaluation of compound FDA 75-14.001314-13-2. Zinc oxide USP.

Litton Bionetics Inc. (1977). Mutagenicity evaluations of FDA 75-72 Zinc stearate. PB-279 265. [Cited from BIBRA, 1989].

Llobet JM, Domingo JL, Colomina MT, Mayayo E and Corbella J. (1988). Subchronic oral toxicity of zinc in rats. Bull. Environ. Contam. Toxicol. **41**, 36-43.

Lloyd GA and Bell GJ (1976). The exposure of agricultural workers to pesticides used in granular form. Ann. Occup. Hyg. **10**, 97-104.

Logue JN, Koontz MD and Hattwick MAW (1982). A historical prospective mortality study of workers in copper and zinc refineries. J. Occup. Med. 24, 398-408.

Lorber SA, Gold FM, Maglione AA and Rubenfeld S (1970). 69m Zn-chloride - a new scanning agent, a study of its dosimetry and biological fate. J. Nucl. Med. **11**, 699-703. [Cited from Morrisey Donohue J et al., 1994].

Lorke D (1983). A new approach to practical acute toxicity testing. Arch. Toxicol. 54, 275-287.

Löser E (1972). Acute toxicity of anorganic pigments. Bayer Institut für Toxikologie, Wuppertal-Elberfeld. [in German].

Löser E (1977). Acute oral toxicity and skin and eye irritation studies. Bayer Institut für Toxikologie, Wuppertal-Elberfeld. [in German].

Macaulay MB and Mant AK (1964). Smoke-bomb poisoning. A fatal case following the inhalation of zinc chloride smoke. J. R. Army Med. Corps **110**, 27-32.

Mahomed K, James DK, Golding J and McCabe R (1989). Zinc supplementation during pregnancy. A double blind randomised controlled trial. Br. Med. J. **299**, 826-830.

Maita K, Hirano M, Mitsumori K, Takahashi K and Shirasu Y (1981). Subacute toxicity studies with zinc sulfate in mice and rats. J. Pest. Sci. 6, 327-336.

Malo JL, Malo J, Cartier A and Dolovich J (1990). Acute lung reaction due to zinc inhalation. Eur. Respir. J. **3**, 111-114.

Malten KE and Kuiper JP (1974). Allergie cutanée de contact dans 100 cas d'ulcères varieux. Phlébologie 27, 417-420. [in French].

Marquart H, Brouwer DH, van Hemmen JJ (1999b). Updated Dermal Exposure Model. TNO Report V98.1216.

Marquart H, Lansink CJM, Engel R and van Hemmen JJ (1999a). Effectiveness of Local Exhaust Ventilation During Dumping of Powders from Bags. TNO Report V99.267.

Marquart H, Smid T, Heederik D and Visschers M (1989). Lung function of welders of zinc-coated mild steel: Cross-sectional analysis and changes over five consecutive work shifts. Am. J. Ind. Med. **16**, 289-296.

Marzin DR and Vo Phi H (1985). Study of the mutagenicity of metal derivatives with *Salmonella typhimurium* TA102. Mutat. Res. **155**, 49-51.

Matarese SL and Matthews JI (1986). Zinc chloride (smoke bomb) inhalational lung injury. Chest 89, 308-309.

McCarroll NE, Piper CE, Keech BH (1981). An E.Coli microsuspension assay for the detection of DNA damage induced by direct-acting agents and promutagens. Environ. Mutagen. 3, 429-444 (cited from Rossman et al., 1084).

McKinney PE, Brent J and Kulig K (1994). Acute zinc chloride ingestion in a child: local and systemic effects. Ann. Emerg. Med. 23, 1383-1387.

McKinney PE, Brent J and Kulig K (1995). Zinc chloride ingestion in a child: exocrine pancreatic insufficiency. Ann. Emerg. Med. 25, 562.

Meadows NJ, Ruse W, Smith MF, Day J, Keeling PW, Scopes JW, THompson RP and Bloxam DL (1981). Zinc and small babies. Lancet II, 1135-1137. [Cited from Walsh et al., 1994].

Ménache MG, Miller FJ and Raabe OG (1995). Particle inhalability curves for humans and small laboratory animals. Ann. Occup. Hyg. **39**, 317-328.

Merck Index (1989). The Merck Index. An Encyclopaedia of Chemicals, Drugs and Biologicals, 11th Edition, Eds. Budavari S et al., Merck & Co., Rahway, NJ, US.

Milliken JA, Waugh D and Kadish ME (1963). Acute interstitial pulmonary fibrosis caused by a smoke bomb. Can. Med. Ass. J. **88**, 36-39.

Milne DB, Davis CD and Nielsen FH (2001). Low dietary zinc alters indices of copper function and status in postmenopausal women. Nutr. 17, 701-708.

Mirbeau T, Guillaumat PPO and Pelcot C (1999). Acute eye irritation in rabbits (phosphate de zinc PZ20). CIT Study no. 17755 TAL. Centre International de Toxicologie.

Moore R (1978). Bleeding gastric erosion after oral zinc sulfate. Br. Med. J. 1, 754.

Morrisey Donohue J, Gordon L, Kirman C, Roberts WC and Abernathy C (1994). Zinc chloride and other zinc compounds. In: Hartley WR, Roberts WC and Commons BJ (eds). Drinking water health advisory: Munitions II, 249-305.

Mueller EJ and Seger DL (1985). Metal fume fever - a review. J. Emerg. Med. 2, 271-274.

Mukherjee MD, Sandstead HH, Ratnaparkhi MV, Johnson LK, Milne DB and Stelling HP (1984). Maternal zinc, iron, folic acid, and protein nutriture and outcome of human pregnancy. Am. J. Clin. Nutr. **40**, 496-507. [Cited from Walsh et al., 1994].

Murphy JV (1970). Intoxication following ingestion of elemental zinc. JAMA 212, 2119-2120. [Cited from ATSDR, 1994].

NAS/NRC (1989). Recommended dietary allowances. National Academy of Sciences/National Research Council. Washington, DC. National Academy Press, 10th ed., 195-246. [Cited from ATSDR, 1994].

National Board of Occupational Safety and Health (1993). Occupational exposure limit values. Solna, Sweden.

Natuur en Milieu (1984). Verven en lijmen, gevaren voor mens en milieu. Natuur en Milieu, Utrecht. [In Dutch].

Neggers YH, Cutter GR, Acton RT, Alvarez JO, Bonner JL, Goldenberg RL, Go R and Roseman JM (1990). A positive association between maternal serum zinc concentration and birth weight. Am. J. Clin. Nutr. **51**, 678-684. [Cited from Walsh et al., 1994].

Neuberger JS and Hollowell JG (1982). Lung cancer excess in an abandoned lead-zinc mining and smelting area. Sci. Total Environ. **25**, 287-294.

Nève J, Hanocq M, Peretz A, Abi Khalil F, Pelen F, Famaey JP and Fontaine J (1991). Pharmacokinetic study of orally administered zinc in humans. Evidence for an enteral re-circulation. Eur. J. Drug Metab. Pharmacokinet. **16**, 315-323.

NIOSH (1975). Criteria for a Recommended Standard. Occupational Exposure to Zinc Oxide. US Department of Health, Education and Welfare, Public Health Service, Center for Disease Control, National Institute for Occupational Safety and Health, Washington.

NIOSH (1987). Guide to industrial respiratory protection OHHS. Publication no 87-116.

Oberdörster G, Hochrainer D and Ma RH (1980). Zinc oxide aerosols: Generation, lung clearance and effects on lung clearance. J. Aerosol Sci. Med. Fed. Biomed. Influence Aerosol Conf 7th, 132-137.

Ogiso T, Ogawa N and Miura T (1979). Inhibitory effect of high dietary zinc on copper absorption in rats, II. Binding of copper and zinc to cytosol proteins in the intestinal mucosa. Chem. Pharm. Bull. (Tokyo) **27**, 515-521. [Cited from ATSDR, 1994].

O'Neill IK, Harrison RM and Williams CR (1982). Characterization of airborne particulate in a zinc-lead smelter, potential importance of gastro-intestinal absorption. Trans. Instit. Min. Metall. Sect. C: Mineral Process Extr. Metall. **91**, C84-C90.

Occupational Safety and Health Administration, OSHA (1989). U.S. Department of Labor.

Pal N and Pal B (1987). Zinc feeding and conception in the rats. Int. J. Vitam. Nutr. Res. 57, 437-440.

Pare CMB and Sandler M (1954). Smoke-bomb pneumonitis: description of a case. J. R. Med. Corps 100, 320-322.

De Pater AJ, Marquart J and Burgers AW (1998). Beheersmaatregelen in Autoschadeherstelbedrijven, een onderzoek naar de stand der techniek op het gebied van beheersmaatregelen met betrekking tot de blootstelling aan organische oplosmidden. (Control measures in car body repair shops, a study of the state of the art in the control of exposure to organic solvents). VUGA ('s Gravenhage).

De Pater AJ and Marquart J (1999). Inhalation Exposure to Non-Volatile Compounds During Spray Painting, TNO Report V98.1340.

Patty's Industrial Hygiene and Toxicology (1981). Clayton GD and Clayton FE (eds.), John Wiley and Sons Inc.

Payton KB, Flanagan PR, Stinson EA, Chodirker DP, Chamberlain MJ and Valberg LS (1982). Technique for determination of human zinc absorption from measurement of radioactivity in a fecal sample or the body. Gastroenterol. **83**, 1264-1270.

Penick SB and CO (1977). Submission of data by CTFA. Unpublished safety data on the Lithium Stearate group. Consumer Product Testing Co., Inc. Final Report Zinc Stearate. [cited from CIR, 1982].

Pennington JAT, Young BE and Wilson DB (1989). Nutritional elements in U.S. diets, results from the Total Diet Study, 1982 to 1986. J. Am. Diet Assoc. **89**, 659-664.

Pirot F, Millet J, Kalia YN and Humbert P (1996a). *In vitro* study of percutaneous absorption, cutaneous bioavailability and bioequivalence of zinc and copper from five topical formulations. Skin Pharmacol. 9, 259-269.

Pirot F, Panisset F, Agache P, Humbert P (1996b). Simultaneous absorption of copper and zinc through human skin *in vitro*. Skin Pharmacol. **9**, 43-52.

Pistorius D, Rosmanith J and Breining H (1976). Intake and distribution of zinc in rat organisms after zinc oxide inhalation in male and female animals. Beitr Silikose Forsch (Pneumokon) **28**, 92-101. [In German].

Porter KG, McMaster D, Elmes ME and Love AHG (1977). Anemia and low serum-copper during zinc therapy. Lancet II, 774. [Cited from Walsh et al., 1994].

Prasad AS (1983). Experimental zinc deficiency in humans. An overview of original studies **In**: Nutritional Bioavailability of Zinc, Inglett GE (ed.) ACS Symposium Series **210**, American Chemical Society, Washington DC, 1-14.

Prasad AS, Beck FWJ and Nowak J (1993). Comparison of absorption of five zinc preparations in humans using oral zinc tolerance test. J. Trace. Elem. Exp. Med. 6, 109-115.

Prasad AS, Brewer GJ, Schoomaker E and Rabbani P (1978). Hypocupremia induced by zinc therapy in adults. JAMA **240**, 2166-2168. [Cited from Walsh et al., 1994].

Prasad AS, Schulert AR, Sandstead HH, Miale A Jr and Farid Z (1963). Zinc, iron, and nitrogen content of sweat in normal and deficient subjects. J. Lab. Clin. Med. **62**, 84-89. [Cited from ATSDR, 1994].

Preller EA, Van Amelsfort M, De Pater AJ, Matulessy JH and Leenheers LH (1998). Exposure to Organic Solvents During Treatment of Metal Objects. TNO Report V97.681.

Prinsen MK (1996). Acute Oral Toxicity Study (limit study) with Zinc Powder in Rats. TNO-Report V96.515. TNO, Zeist, The Netherlands.

Pullen RGL, Franklin PA and Hall GH (1990). ⁶⁵Zinc uptake from blood into brain and other tissues in the rat. Neurochem. Res. **15**, 1003-1008. [Cited in Morrissey Donohue J et al., 1994].

Puscas I, Baican M, Coltãu M, Puscas C and Domuta G (1999). Erythrocyte superoxide dismutase activity in patients with digest cancer, adjuvant diagnosis test. Cancer Lett. **143**, 95-98.

Reinhold JG, Faradji B, Abadi P and Ismail-Beigi F (1991). Decreased absorption of calcium, magnesium, and phosphorous by humans due to increased fiber and phosphorous consumption as wheat bread. Nutr. Rev. **49**, 204-206. [Cited from ATSDR, 1994].

Remijn B, Koster P, Houthuijs D, Boleij J, Willems H, Brunekreef B, Biersteker K and van Loveren C (1982). Zinc chloride, zinc oxide, hydrochloric acid exposure and dental erosion in a zinc galvanizing plant in the Netherlands. Ann. Occup. Hyg. **25**, 299-307.

Rentel KH, Gmehling J and Lehmann E (1991). Stoffbelastungen in der Gummiindustrie. BAuA (Dortmund) GA 39.

Richards RJ, Atkins J, Marrs TC, Brown RF and Masek L (1989). The biochemical and pathological changes produced by the intratracheal instillation of certain components of zinc-hexachloroethane smoke. Toxicology **54**, 79-88. [cited from EHC, 1996].

Richards MP and Cousins RJ (1975). Mammalian zinc homeostasis: requirement for RNA and metallothionein synthesis. Biochem. Biophys. Res. Comm. 64, 1215-1223. [Cited from Walsh et al., 1994].

Rivlin RS (1983). Misuse of hair analysis for nutritional assessment. Am. J. Med. 75, 489-493. [Cited from ATSDR, 1994].

RIVM-LWD (1999). Personal Communication.

Römpp (1995). Chemie Lexikon.

Rossman TG, Molina M and Meyer LW (1984). The genetic toxicology of metal compounds, I. Induction of lambda prophage in *E.coli* WP2_s (lambda). Environ. Mutagen. **6**, 59-69.

Rossowka MJ and Nakamoto T (1992). Caffeine decreases zinc and metallothionein levels in heart of newborn and adult rats. Pediatr. Res. **32**, 330-332. [Cited from ATSDR, 1994].

RTECS Registry of Toxic Effects on Chemical Substances (1991).

Rundervoort GJ (1992). Zonnefilters in cosmetica. Chemische feitelijkheden, Aktuele chemische encyclopedie nr. 088, Koninklijke Nederlandse Chemische Vereniging, Den Haag. [In Dutch].

Sackner MA, Dougherty RL, Chapman GA, Cipley J, Perez D, Kwoka M, Reinhart M, Brito M and Schreck R (1981). Effects of brief and intermediate exposures to sulfate submicron aerosols and sulfate injections on cardiopulmonary function of dogs and tracheal mucous velocity of sheep. J. Toxicol. Environ. Health 7, 951-972.

SAIC (1996). Occupational Dermal Exposure Assessment. - A Review of Methodologies and Field Data. Final Report. Chemical Engineering Branch, Economics, Exposure and Technology Division, Office of Pollution Prevention and Toxics. US EPA (Washington, DC).

Samanta K and Pal B (1986). Zinc feeding and fertility of male rats. Int. J. Vitam. Nutr. Res. 56, 105-107.

Samman S and Roberts DCK (1987). The effect of zinc supplements on plasma zinc and copper levels and the reported symptoms in healthy volunteers. Med. J. Australia **146**, 246-249.

Samman S and Roberts DCK (1988). The effect of zinc supplements on lipoproteins and copper status. Atherosclerosis **70**, 247-252.

Sanders A (2001a). "Zinc sulphate hexahydrate tech. Grillowflow" (CAS no 13986-24-8) acute oral toxicity in the rat- acute toxic class method. SPL project no 1353/030. Safepharm Laboratories Ltd, Derby UK.

Sanders A (2001b). "Zinc sulphate heptahydrate USP." (CAS no 7446-20-0) Acute oral toxicity in the rat - acute toxic class method. SPL project no 1353/031. Safepharm Laboratories Ltd, Derby UK.

Sandstead HH (1981). Zinc in human nutrition. In: Disorders of Mineral Metabolism. Bronner F, Coburn JW (eds.), Academic Press, New York, NY, 94-159. [Cited from ATSDR, 1994].

Sandstrom B and Sandberg AS (1992). Inhibitory effects of isolated inositol phosphates on zinc absorption in humans. J. Trace Elem. Electrolytes Health Dis. 6, 99-103. [Cited from ATSDR, 1994].

Sax I (1984). Dangerous Properties of Industrial Materials. 6th edition. Van Nostrand Reinhold, New York, NY.

Schenker MB, Speizer FE and Taylor JO (1981). Acute upper respiratory symptoms resulting from exposure to zinc chloride aerosol. Environ. Res. **25**, 317-324.

Schlicker SA and Cox DH (1968). Maternal dietary zinc, and development and zinc, iron, and copper content of the rat fetus. J. Nutr. **95**, 287-294.

Schroeder HA, Nason AP and Tipton IH (1967). Essential trace metals in man: Zinc. Relation to environmental cadmium. J. Chronic Dis. **20**, 179-210. [Cited from ATSDR, 1994].

Semenzato A, Dall'Aglio C, Boscarini GM, Ongaro A, Bettero A, Sangalli ME and Brunetta F (1994). Preliminary Communication. Chemico-physical and functional properties of inorganic sunscreens in cosmetic products. Int. J. Cosm. Sci. **16**, 247-255.

Shumskaya NI, Mel'nikova VV, Zhilenko VN and Berezhnova LI (1986). Hygienic assessment of zinc ions in rubber extracts in contact with food products. Gig. Sanit. **4**, 89-90. [in Russian]

Siebert D, Zimmermann FK and Lemperle E (1970). Genetic effects of fungicides. Mutat. Res. 10, 533-543.

Simmer L, Lort-Phillips L, James C and THompson RP (1991). A double-blind trial of zinc supplementation in pregnancy. Eur. J. Clin. Nutr. 45, 139-144. [Cited from ATSDR, 1994].

Singh I (1983). Induction of reverse mutation and mitotic gene conversion by some metal compounds in *Saccharomyces cerevisiae*. Mutat. Res. **117**, 149-152.

Skog E and Wahlberg JE (1964). A comparative investigation of the percutaneous absorption of metal compounds in the guinea pig by means of the radioactive isotopes: ⁵¹Cr, ⁵⁸Co, ⁶⁵Zn, ¹¹⁰mAg, ¹¹⁵mCd, ²⁰³Hg. J. Invest. Dermatol. **43**, 187-192.

Skornik WA and Brain JD (1983). Relative toxicity of inhaled metal sulfate salts for pulmonary macrophages. Am. Rev. Resp. Dis. **128**, 297-303.

Smith BL and Embling PP(1993). Sequential changes in the development of the pancreatic lesion of zinc toxicosis in sheep. Vet. Pathol. **30**, 242-247. [Cited from EHC, 1996].

Söderberg TA, Elmros T, Gref R and Hallmans G (1990). Inhibitory effect of zinc oxide on contact allergy due to colophony. Contact Dermatitis **23**, 346-351.

Solomons NW (1988). The iron:zinc interaction in the human intestine. Does it exist? An affirmative view. In: Essential and Toxic Trace Elements in Human Health and Disease. Prasad AS (ed.), Alan R Liss, New York, 509-518. [Cited from Walsh et al., 1994].

Solomons NW, Jacob RA, Pineda O and Viteri FE (1979). Studies on the bioavailability of zinc in man. II Absorption of zinc from organic and inorganic sources. J. Lab. Clin. Med. **94**, 335-343. [Cited from Walsh et al., 1994].

South TL and Summers MF (1990). Zinc fingers. Adv. Inorg. Biochem. 8, 199-248. [Cited from Walsh et al., 1994].

Spear T, Werner M, Bootland J, Harbour A, Murray E, Rossi R and Vincent J (1997). Comparison of methods for personal sampling of inhalable and total lead and cadmium- containing aerosols in a primary lead smelter. Am. Ind. Hyg. Assoc. J. **58**, 893-899.

Spear T, Werner M, Bootland J, Murray E, Ramachandran G and Vincent J (1998). Assessment of particle size distributions of health-relevant aerosol exposures of primary lead smelter workers. Ann. Occup. Hyg. **42**(2), 73-80.

Spencer H, Rosoff B, Lewin I and Samachson J (1966). Studies of zinc-65 metabolism in man. In: Zinc Metabolism. Prasad AS (ed.), Springfield, Illinois. Charles C Thomas, 339-362. [Cited from Walsh et al., 1994].

Spencer H, Kramer L and Osis D (1985). Zinc metabolism in man. J. Environ. Pathol. Toxicol. Oncol. 5, 265-278. [Cited from ATSDR, 1994].

Spencer H, Norris C and Osis D (1992). Further studies of the effect of zinc on intestinal absorption of calcium in man. J. Am. Coll. Nutr. **11**, 561-566. [Cited from ATSDR, 1994].

Spencer H, Osis D, Kramer L and Norris C (1976). Intake, excretion, and retention of zinc in man. In: Trace Elements in Human Health and Disease. Prasad AS (ed.) Vol. 1, Zinc and copper. New York, NY. Academic Press, 345-361. [Cited from Walsh et al., 1994].

Straube EF, Schuster NH and Sinclair AJ (1980). Zinc toxicity in the ferret. J. Comp. Pathol. 90, 355-361.

Sturniolo GC, Montino MC, Rossetto L, Martin A, D'Inca R, D'Odorico A and Naccarato R (1991). Inhibition of gastric acid secretion reduces zinc absorption in man. J. Am. Coll. Nutr. **10**, 372-375. [Cited from ATSDR, 1994].

Suzuki H (1987). Assessment of the carcinogenic hazard of 6 substances used in dental practices. (II) Morphological transformation, DNA damage, and sister chromatid exchanges in cultured Syrian hamster embryo

cells induced by formocresol, iodoform, zinc oxide, chloroform, chloramphenicol, tetracycline hydrochloride. Shigaku 74, 1385-1403. [In Japanese].

SZW (1997). Ministerie van Sociale Zaken en Werkgelegenheid. Nationale MAC-lijst 1997-1998. The Hague, The Netherlands.

Tacnet F, Watkins DW and Ripoche P (1990). Studies of zinc transport into brush-border membrane vesicles isolated from pig small intestine. Biochem. Biophys. Acta **1024**, 323-330. [Cited from Walsh et al., 1994].

Tarasenko NY, Shabalina LP and Spiridonova VS (1976). Comparative toxicity of metal stearates. Int. Arch. Occup. Environ Health **37**, 179-192.

Thijssen J (1978). Eye irritation study with zinc oxide. Bayer Institut für Toxikologie, Wuppertal-Elberfeld. [in German].

Trevisan A, Buzzo A and Gori GP (1982). Biological indicators in occupational exposure to low concentrations of zinc. Med. Lavoro **6**, 614-618. [Cited from EHC, 1996].

Ueda A, Harada K, Ueda T and Nomura S (1984). Experimental study on the pathological changes in lung tissue caused by zinc stearate dust. Ind. Health **22**, 243-253.

Ullmann's Encyklopädie der Technischen Chemie (1983).

Union Miniere (1992). Certificate regarding the harmless character of UM zinc dust and powder, dated 1 December 1992.

US EPA (1992). Integrated Risk Information System (IRIS). Zinc and Zinc Compound. US Environmental Protection Agency (EPA), Record Updated 1992.

Vallee BL and Auld DS (1990). Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry **29**, 5647-5659. [Cited from Walsh et al., 1994].

Van Dokkum (1995). The intake of selected minerals and trace elements in European countries. Nutr. Res. Rev. 8, 271-302.

Van Huygevoort AHBM (1999a). Acute Eye Irritation/Corrosion Study with Zinc Oxide in the Rabbit. Project 254352. NOTOX B.V., 's-Hertogenbosch, The Netherlands.

Van Huygevoort AHBM (1999b1). Assessment of Contact Hypersensitivity to Zinc Oxide in the Albino Guinea Pig (Maximisation-Test). Project 254339. NOTOX B.V., 's-Hertogenbosch, The Netherlands.

Van Huygevoort AHBM (1999b2). Assessment of Contact Hypersensitivity to Zinc Oxide in the Albino Guinea Pig (Maximisation-Test). (An extension of NOTOX Project 254339). Project 261214. NOTOX B.V., 's-Hertogenbosch, The Netherlands.

Van Huygevoort AHBM (1999c). Assessment of Acute Dermal Toxicity with Zinc Sulphate Heptahydrate in the Rat. Project 254385. NOTOX B.V., 's-Hertogenbosch, The Netherlands.

Van Huygevoort AHBM (1999d). Primary Skin Irritation/corrosion Study with Zinc Sulphate Heptahydrate in the Rabbit (4-Hour Semi-Occlusive Application). Project 254374. NOTOX B.V., 's-Hertogenbosch, The Netherlands.

Van Huygevoort AHBM (1999e). Acute Eye Irritation/corrosion Study with Zinc Sulphate Heptahydrate in the Rabbit. Project 254341. NOTOX B.V., 's-Hertogenbosch, The Netherlands.

Van Huygevoort AHBM (1999f). Assessment of Contact Hypersensitivity to Zinc Sulphate Heptahydrate in the Albino Guinea Pig (Maximisation-Test). Project 254328. NOTOX B.V., 's-Hertogenbosch, The Netherlands.

Van Huygevoort AHBM (1999g). Acute Eye Irritation/Corrosion Study with Zinc Dust in the Rabbit. Project 254363. NOTOX B.V., 's-Hertogenbosch, The Netherlands.

Van Huygevoort AHBM (1999h). Acute Eye Irritation/Corrosion Study with Zinc Powder in the Rabbit. Project 255072. NOTOX B.V., 's-Hertogenbosch, The Netherlands.

Van Huygevoort AHBM (1999i). Assessment of Contact Hypersensitivity to Zincweiß Pharma A in the Albino Guinea Pig (Maximisation-Test). Project 263429. NOTOX B.V., 's-Hertogenbosch, The Netherlands.

Venugopal B and Lucky TD (1978). Metal Toxicity in Mammals 2, Chemical Toxicity of Metals and Metalloids. Plenum Press, New York and London, 68-75.

Verhagen H, Rauma AL, Törrönen, De Vogel N, Bruintjes-Rozier GCDM, Dreve MA, Bogaards JJP and Mykkänen (1996). Effect of a vegan diet on biomarkers of chemoprevention in females. Hum. Exp. Toxicol. **15**, 821-825.

Verma DK and Shaw DS (1991). An evaluation of airborne nickel, zinc and lead exposure at hot dip galvanizing plants. Am. Ind. Hyg. Assoc. J. **52**, 511-515.

Vermeulen R, de Hartog J, Swuste P and Kromhout H (2001). Trends in exposure to inhalable particulate and dermal contamination in the rubber manufacturing industry, effectiveness of control measures implemented over a nine year period. Ann. Occup. Hyg. **44**, 343-354.

Voedingsraad (1992). Commissie Voedingsnormen. Nederlandse voedingsnormen 1989. Den Haag, Voorlichtingsbureau voor de Voeding. [In Dutch].

Vogelmeier C, König G, Bencze K and Fruhmann G (1987). Pulmonary involvement in zinc fume fever. Chest. 92, 946-948.

Voroshilin SI, Plotko EG, Fink TV and Nikiforova VY (1978). Cytogenetic action of inorganic compounds of tungsten, zinc, cadmium and cobalt on human and animal somatic cells. Tsitol. Genet. **12**, 241-243. [In Russian].

VVVF (1996). Grondstoffenverbruik 1994 in de Nederlandse verf- en drukinktindustrie. Vereniging van Verf- en drukinktfabrikanten, Leiden. [In Dutch].

Wagner RH and Hermes H (1987). Exposition der Gärtner während und nach der Applikation von Dichlorvos, Methamidophos, sowie Aldicarb in Gewächshausanlagen. Z. Gesamte Hyg. **33**, Heft 5.

Wal van der JF (1990). Exposure of welders to fumes and gases in Dutch industries: summary of results. Ann. Occup. Hyg. **34**, 45-54.

Walsh CT, Sandstead HH, Prasad AS, Newberne PM and Fraker PJ (1994). Zinc: Health effects and research priorities for the 1990s. Environ. Health Perspect **102**, 5-46.

Walters M and Roe FJC (1965). A study of the effects of zinc and tin administered orally to mice over a prolonged period. Food Cosmet. Toxicol. **3**, 271-276.

Wapnir RA and Balkman C (1991). Inhibition of copper absorption by zinc: Effect of histidine. Biol. Trace Elem. Res. **29**, 193-202. [Cited from ATSDR, 1994].

Wastney ME, Aamodt RL, Rumble WF and Henkin RI (1986). Kinetic analysis of zinc metabolism and its regulation in normal humans. Am. J. Physiol. **251**, R398-R408. [Cited from ATSDR, 1994].

Wheeler J, Baldwin P, Sams C and Saleem A (1999c). Validation of 'EASE' model with particular reference to dermal exposure. Submitted.

Wheeler J and Sams C (1999a). Lead exposure in the crystal industry. HSL (Sheffield) IR/A/99/01.

Wheeler J, Sams C and Baldwin P (1999b). Sources of lead exposure in the battery industry. HSL (Sheffield) IR/A/99/02.

WHO (1982). Toxicological evaluations of certain food additives. Joint FAO/WHO Expert Committee on Food Additives (JECFA). WHO Food Additives Series no. 17, Geneva.

WHO (1996). Zinc. In: Trace Elements in Human Nutrition and Health. WHO, Geneva, Chapter 5.

Windebank S, Fedyk J and Henderson L (1995). Study Report Zinc Monoglycerolate, Micronucleus Study in Rat Bone Marrow. Confidential Report MN940183. Environmental Safety Laboratory, Unilever Research, Bedford, England.

Wolfe HR, Armstrong JF and Durham WF (1974). Exposure to mosquito control workers to fenthion. Mosquito News, September 1974.

Windholz M, Budavari S, Blumetti RF and Otterbein ES (1983). The Merck Index, an encyclopedia of chemicals, drugs and biologicals, 10th edition.

Yadrick MK, Kenney MA and Winterfeldt EA (1989). Iron, copper, and zinc status, response to supplementation with zinc or zinc and iron in adult females. Am. J. Clin. Nutr. **49**, 145-150.

Yamaguchi M, Takahashi K and Okada S (1983). Zinc-induced hypocalcemia and bone resorption in rats. Toxicol. Appl. Pharmacol. **67**, 224-228. [Cited from ATSDR, 1994].

Zaporowska H and Wasilewski W (1992). Combined effect of vanadium and zinc on certain selected haematological indices in rats. Comp. Biochem. Physiol. **103C**, 143-147.

ZOPA (1998a). Comments of ZOPA. Draft RAR zinc oxide. December 1998.

ZOPA (1998b). Comments of ZOPA. Draft RAR zinc oxide. Annex VIII A. Evaluation of emission data for ZnO producers. December 1998.

ZOPA (1998d). Comments of ZOPA. Draft RAR zinc oxide. Annex XIII. Data on workers exposure in paint industry. December 1998

ZOPA (1998e). Comments of ZOPA. Draft RAR zinc oxide. Annex VIIIb. Evaluation of emission data for users of zinc oxide. December 1998.

ABBREVIATIONS

ADI	Acceptable Daily Intake				
AF	Assessment Factor				
ASTM	American Society for Testing and Materials				
ATP	Adaptation to Technical Progress				
AUC	Area Under The Curve				
В	Bioaccumulation				
BBA	Biologische Bundesanstalt für Land- und Forstwirtschaft				
BCF	Bioconcentration Factor				
BMC	Benchmark Concentration				
BMD	Benchmark Dose				
BMF	Biomagnification Factor				
BOD	Biochemical Oxygen Demand				
bw	body weight / Bw, bw				
С	Corrosive (Symbols and indications of danger for dangerous substances and preparations according to Annex II of Directive $67/548/EEC$)				
CA	Chromosome Aberration				
CA	Competent Authority				
CAS	Chemical Abstract Services				
CEC	Commission of the European Communities				
CEN	European Standards Organisation / European Committee for Normalisation				
CEPE	European Committee for Paints and Inks				
CMR	Carcinogenic, Mutagenic and toxic to Reproduction				
CNS	Central Nervous System				
COD	Chemical Oxygen Demand				
CSTEE	Scientific Committee for Toxicity, Ecotoxicity and the Environment (DG SANCO)				
CT ₅₀	Clearance Time, elimination or depuration expressed as half-life				
d.wt	dry weight / dw				
dfi	daily food intake				
DG	Directorate General				
DIN	Deutsche Industrie Norm (German norm)				
DNA	DeoxyriboNucleic Acid				
DOC	Dissolved Organic Carbon				
DT50	Degradation half-life or period required for 50 percent dissipation / degradation				
DT90	Period required for 90 percent dissipation / degradation				
Е	Explosive (Symbols and indications of danger for dangerous substances and preparations according to Annex II of Directive 67/548/EEC)				

EbCS0Effect Concentration measured as 50% reduction in biomass growth in algae testsECEuropean CommunitiesEC10Effect Concentration measured as 10% effectECS0median Effect ConcentrationECB1European Centre for Ecotoxicology and Toxicology of ChemicalsECT0CEuropean Centre for the Validation of Alternative MethodsEDCEndocrine Disrupting ChemicalEDCEuropean Economic CommunitiesEINECSEuropean Inventory of Existing Commercial Chemical SubstancesEINTCSEuropean Inventory of Existing Commercial Chemical SubstancesENEuropean Inventory of Existing Commercial Chemical SubstancesEINTCSEuropean Union Agency (USA)ErCSEffect Concentration measured as 50% reduction in growth rate in algae testsESDEffect Concentration measured as 50% reduction of Substances [software tool in support of the Technical Guidance Document on risk assessment]F(+)Furopean Union System for the Evaluation of Substances [software tool in support of the Technical Guidance Document on risk assessment]FLSFish Early Life StagefccOrganic carbon factor (comparisation of the United NationsFLSFish Early Life StagefclGood Laboratory PracticeHELOCMHeinki Commission -Baltic Marine Environment Protection of existing substances)HFLCHigh P	EASE	Estimation and Assessment of Substance Exposure Physico-chemical properties [Model]		
EC10EC4 Concentration measured as 10% effectEC50median Effect ConcentrationECBEuropean Chemicals BureauECFTOCEuropean Centre for Ecotoxicology and Toxicology of ChemicalsECVAMEuropean Centre for the Validation of Alternative MethodsEDCEndocrine Disrupting ChemicalECCEuropean Centre for the Validation of Alternative MethodsEDCEndocrine Disrupting ChemicalEECEuropean Inventory of Existing Commercial Chemical SubstancesELINCSEuropean Inventory of Existing Commercial Chemical SubstancesELINCSEuropean NormEPAEnvironmental Protection Agency (USA)ETC50Effect Concentration measured as 50% reduction in growth rate in algae testsESDEuropean UnionEUSESEuropean UnionEUSESEuropean Union System for the Evaluation of Substances [software tool in support of the Technical Guidance Document on risk assessment]F(+)(Highly) flammable (Symbols and indications of danger for dangerous substances and the Technical Guidance Document or risk assessment]FLSGood and Agriculture Organisation of the United NationsFELSFish Early Life StagefocOrganic carbon factor (compartment depending)GLPGood Laboratory PracticeHEDXOHHigh Preduction Volume Chemical (> 1000 ta)LARCHigh Preduction Volume Chemical Safety<	EbC50			
ECS0nedian Effect ConcentrationECBEuropean Chemicals BureauECETOCEuropean Centre for Ecotoxicology and Toxicology of ChemicalsECVAMEuropean Centre for the Validation of Alternative MethodsEDCEndocrine Disrupting ChemicalEDCEuropean Economic CommunitiesEINECSEuropean Inventory of Existing Commercial Chemical SubstancesELINCSEuropean Inventory of Existing Commercial Chemical SubstancesENEuropean Ist of New Chemical SubstancesENEuropean Ist of New Chemical SubstancesENEuropean NormE7AEnvironmental Protection Agency (USA)ErCS0Effect Concentration measured as 50% reduction in growth rate in algae testsESDEuropean Union System for the Evaluation of Substances [software tool in support of the Technical Guidance Document on risk assessment]F(+)(Highly) flammable (Symbols and indications of danger for dangerous substances and preparations according to Annex II of Directive 67/548/EEC)FAOFod and Agriculture Organisation of the United NationsFLSGood I aboratory PracticeGLPAGood I aboratory PracticeHELCOMHelsinki Commission-Baltic Marine Environment Protection of existing substances)HELCOMHigh Production Volume Chemical (>1000 t/a)HELCOMInternational Agency for Research on CancerICQInternational Agency for Research on CancerICQInternational Labour OrganisationHELCOMInternational Labour OrganisationHELCOMInternational Agency for Research on Cancer <td>EC</td> <td colspan="3"></td>	EC			
ECBEuropean Chemicals BureauECETOCEuropean Centre for Ecotoxicology and Toxicology of ChemicalsECVAMEuropean Centre for the Validation of Alternative MethodsEDCEndocrine Disrupting ChemicalEDCEuropean Economic CommunitiesEINECSEuropean Inventory of Existing Commercial Chemical SubstancesELINCSEuropean List of New Chemical SubstancesENEuropean Inventory of Existing Commercial Chemical SubstancesENEuropean NormEPAEnvironmental Protection Agency (USA)ErCS0Effect Concentration measured as 50% reduction in growth rate in algae testsESDEuropean UnionEUSESEuropean Union System for the Evaluation of Substances [software tool in support of preparations according to Annex II of Directive 67/548/EEC)FAOFod and Agriculture Organisation of the United NationsFELSFish Early Life StagefocOrganic carbon factor (compartment depending)GLPAHigh Production Volume Chemical (> 1000 t/a)HELCOMHigh Production Volume Chemical (> 1000 t/a)FLPCHigh Production Volume Chemical (> 1000 t/a)ICXInternational Agency for Research on CancerICXInternational Labour OrganisationFLOInternational Labour OrganisationFLOInternational Concentration or median Inhibitory ConcentrationICXInternational Agency for Research on CancerICXInternational Labour OrganisationFLICXInternational Labour OrganisationICXInternational Concentration or medi	EC10	Effect Concentration measured as 10% effect		
ECETOCEuropean Centre for Ecotoxicology and Toxicology of ChemicalsECVAMEuropean Centre for the Validation of Alternative MethodsEDCEndocrine Disrupting ChemicalEDCEuropean Economic CommunitiesEINECSEuropean Inventory of Existing Commercial Chemical SubstancesELINCSEuropean List of New Chemical SubstancesENEuropean List of New Chemical SubstancesENEuropean NormEPAEnvironmental Protection Agency (USA)ErC50Effect Concentration measured as 50% reduction in growth rate in algae testsESDEmission Scenario DocumentEUEuropean UnionEUSESEuropean Union System for the Evaluation of Substances [software tool in support of the Technical Guidance Document on risk assessment]F(+)(Highly) flammable (Symbols and indications of danger for dangerous substances and preparations according to Annex II of Directive 67/54%/EEC)FAOFood and Agriculture Organisation of the United NationsFELSFish Early Life StagefocOrganic carbon factor (compartment depending)GLPGood Laboratory PracticeHELCOMHelsinki Commission -Baltic Marine Environment Protection CommissionHPLCHigh Production Volume Chemical > 1000 t/a)IARCInternational Agency for Research on CancerICIndustrial CategoryICSOInternational Labour OrganisationILOInternational Labour OrganisationILOInternational Labour OrganisationILOInternational Information Standardisation <trr>ILO</trr>	EC50	median Effect Concentration		
ECVAMEuropean Centre for the Validation of Alternative MethodsEDCEndocrine Disrupting ChemicalEDCEuropean Economic CommunitiesEINECSEuropean Inventory of Existing Commercial Chemical SubstancesEINECSEuropean List of New Chemical SubstancesENEuropean NormEPAEnvironmental Protection Agency (USA)ErC50Effect Concentration measured as 50% reduction in growth rate in algae testsESDEnsision Scenario DocumentEUEuropean UnionEUSESEuropean UnionEVSESEuropean Union System for the Evaluation of Substances [software tool in support of the Technical Guidance Document on risk assessment]F(+)(Highly) flammable (Symbols and indications of danger for dangerous substances and perparations according to Annex II of Directive 67/548/EEC)FAOFood and Agriculture Organisation of the United NationsFELSFish Early Life StagefocOrganic carbon factor (compartment depending)GLPGood Laboratory PracticeHELCOMHelsinki Commission -Baltic Marine Environment Protection CommissionHPLCHigh Pressure Liquid ChromatographyHPVCHigh Production Volume Chemical >1000 t/a)IARCInternational Agency for Research on CancerICIndustrial CategoryICSOInternational Labour OrganisationILOInternational Labour OrganisationILOInternational Labour OrganisationILOInternational Companisation for StandardisationILOInternational Organisation for Standard	ECB	European Chemicals Bureau		
EDCindexine Disrupting ChemicalECCEuropean Economic CommunitiesEINECSEuropean Inventory of Existing Commercial Chemical SubstancesELINCSEuropean List of New Chemical SubstancesENEuropean NormEPAEnvironmental Protection Agency (USA)ErCS0Effect Concentration measured as 50% reduction in growth rate in algae testsESDEnvironmental Protection Agency (USA)EUEuropean UnionEUEuropean UnionEUSESEuropean Union System for the Evaluation of Substances [software tool in support of the Technical Guidance Document on risk assessment]F(+)(Highly) flammable (Symbols and indications of danger for dangerous substances and preparations according to Annex II of Directive 67/548/EEC)FAOFood and Agriculture Organisation of the United NationsFELSFish Early Life StagefocOrganic carbon factor (compartment depending)GLPGool Laboratory PracticeHELCOMHelsinki Commission -Baltic Marine Environment Protection CommissionHPLCHigh Pressure Liquid ChromatographyHPVCHigh Production Volume Chemical (>1000 Va)LRRInternational Agency for Research on CancerICIndustrial CategoryICS3International Labour OrganisationHCD4International Labour OrganisationHCD5International Labour OrganisationICAInternational Labour OrganisationICAInternational Concentration or median Inhibitory ConcentrationICS4International Organisation for Standardis	ECETOC	European Centre for Ecotoxicology and Toxicology of Chemicals		
EECEuropean Economic CommunitiesEINECSEuropean Inventory of Existing Commercial Chemical SubstancesELINCSEuropean List of New Chemical SubstancesENEuropean NormPAEnvironmental Protection Agency (USA)ErC50Effect Concentration measured as 50% reduction in growth rate in algae testsESDEmission Scenario DocumentEUEuropean UnionEUSESEuropean UnionF(+)(Highly) flammable (Symbols and indications of danger for dangerous substances and preparations according to Annex II of Directive 67/548/EEC)FAOFood and Agriculture Organisation of the United NationsFELSFish Early Life StagefocOrganic carbon factor (compartment depending)GLPGood Laboratory PracticeHELCOMHigh Pressure Liquid ChromatographyHPLCHigh Production Volume Chemical (>1000 Va)LRRCInternational Agency for Research on CancerICIndustrial CategoryICS0International Labour OrganisationHLOInternational Labour OrganisationICS0International Labour OrganisationICS0International Labour OrganisationICS0International Labour OrganisationICS0International Concentration or median Inhibitory ConcentrationICS0International Concentration or median Inhibitory EncentrationICGInternational Labour OrganisationICOInternational Concentration or median Inhibitory EncentrationICOInternational Concentration or median Inhibitory Encentration<	ECVAM	European Centre for the Validation of Alternative Methods		
EINECSEuropean Inventory of Existing Commercial Chemical SubstancesELINCSEuropean List of New Chemical SubstancesENEuropean NormEPAEnvironmental Protection Agency (USA)ErC50Effect Concentration measured as 50% reduction in growth rate in algae testsESDEmission Scenario DocumentEUEuropean UnionEUSESEuropean Union System for the Evaluation of Substances [software tool in support of the Technical Guidance Document on risk assessment]F(+)(Highly) flammable (Symbols and indications of danger for dangerous substances and preparations according to Annex II of Directive 67/548/EEC)FAOFood and Agriculture Organisation of the United NationsFELSFish Early Life StagefocOrganic carbon factor (compartment depending)GLPGood Laboratory PracticeHELCOMHelsinki Commission -Baltic Marine Environment Protection CommissionHPLCHigh Pressure Liquid ChromatographyHPVCHigh Production Volume Chemical (> 1000 t/a)IARCInternational Agency for Research on CancerICIndustrial CategoryICSOInternational Labour OrganisationHOSInternational Labour OrganisationILOInternational Programme on Chemical SafetyISOInternational Organisation For StandardisationILOInternational Organisation Information Database (existing substances)	EDC	Endocrine Disrupting Chemical		
LINCSEuropean List of New Chemical SubstancesENEuropean NormEPAEnvironmental Protection Agency (USA)ErC50Effect Concentration measured as 50% reduction in growth rate in algae testsESDEmission Scenario DocumentEUEuropean UnionEUSESEuropean Union System for the Evaluation of Substances [software tool in support of the Technical Guidance Document on risk assessment]F(+)(Highly) flammable (Symbols and indications of danger for dangerous substances and preparations according to Annex II of Directive 67/548/EEC)FAOFood and Agriculture Organisation of the United NationsFELSFish Early Life StagefocOrganic carbon factor (compartment depending)GLPGood Laboratory PracticeHEDSETEC/OECD Harmonised Electronic Data Set (for data collection of existing substances)HPLCHigh Pressure Liquid ChromatographyHPVCHigh Production Volume Chemical (> 1000 t/a)IARCInternational Agency for Research on CancerICIndustrial CategoryICS0International Labour OrganisationHDCInternational Labour OrganisationILOInternational Programme on Chemical SafetyISOInternational Organisation for StandardisationILOCLIDInternational Organisation for Standardisation	EEC	European Economic Communities		
ENEvoENEnvironmental Protection Agency (USA)ErC50Effect Concentration measured as 50% reduction in growth rate in algae testsESDEmission Scenario DocumentEUEuropean UnionEUSESEuropean Union System for the Evaluation of Substances [software tool in support of the Technical Guidance Document on risk assessment]F(+)(Highly) flammable (Symbols and indications of danger for dangerous substances and preparations according to Annex II of Directive 67/548/EEC)FAOFood and Agriculture Organisation of the United NationsFELSFish Early Life StagefocOrganic carbon factor (compartment depending)GLPGood Laboratory PracticeHELCOMHelsinki Commission -Baltic Marine Environment Protection of existing substances)HPLCHigh Production Volume Chemical ≥ 1000 t/a)HPVCInternational Agency for Research on CancerICInternational Labour OrganisationHCSInternational Labour OrganisationICSInternational Labour OrganisationICSInternational Programme on Chemical SafetyICSInternational Information for StandardisationICLIDInternational Organisation for Standardisation	EINECS	European Inventory of Existing Commercial Chemical Substances		
EPAEnvironmental Protection Agency (USA)ErC50Effect Concentration measured as 50% reduction in growth rate in algae testsESDEmission Scenario DocumentEUEuropean UnionEUSESEuropean Union System for the Evaluation of Substances [software tool in support of the Technical Guidance Document on risk assessment]F(+)(Highly) flammable (Symbols and indications of danger for dangerous substances and preparations according to Annex II of Directive 67/548/EEC)FAOFood and Agriculture Organisation of the United NationsFELSFish Early Life StagefocOrganic carbon factor (compartment depending)GLPGood Laboratory PracticeHEDSETEC/OECD Harmonised Electronic Data Set (for data collection of existing substances)HPLCHigh Pressure Liquid ChromatographyHPVCHigh Production Volume Chemical > 1000 t/a)IARCInternational Agency for Research on CancerICIndustrial CategoryICS0International Labour OrganisationIPCSInternational Labour OrganisationIPCSInternational Labour OrganisationIPCLIDInternational Organisation for Standardisation	ELINCS	European List of New Chemical Substances		
ErC50Effect Concentration measured as 50% reduction in growth rate in algae testsESDEmission Scenario DocumentEUEuropean UnionEUSESEuropean Union System for the Evaluation of Substances [software tool in support of the Technical Guidance Document on risk assessment]F(+)(Highly) flammable (Symbols and indications of danger for dangerous substances and preparations according to Annex II of Directive 67/548/EEC)FAOFood and Agriculture Organisation of the United NationsFELSFish Early Life StagefocOrganic carbon factor (compartment depending)GLPGood Laboratory PracticeHEDSETEC/OECD Harmonised Electronic Data Set (for data collection of existing substances)HPLCHigh Pressure Liquid ChromatographyHPVCHigh Production Volume Chemical (> 1000 t/a)LARCInternational Agency for Research on CancerICIndustrial CategoryIC50International Labour OrganisationIPCSInternational Programme on Chemical SafetyISOInternational Organisation for StandardisationICLIDInternational Organisation for Standardisation	EN	European Norm		
ESDEmission Scenario DocumentEUEuropean UnionEUSESEuropean Union System for the Evaluation of Substances [software tool in support of the Technical Guidance Document on risk assessment]F(+)(Highly) flammable (Symbols and indications of danger for dangerous substances and preparations according to Annex II of Directive 67/548/EEC)FAOFood and Agriculture Organisation of the United NationsFELSFish Early Life StagefocOrganic carbon factor (compartment depending)GLPGood Laboratory PracticeHEDSETEC/OECD Harmonised Electronic Data Set (for data collection of existing substances)HELCOMHelsinki Commission -Baltic Marine Environment Protection CommissionHPLCHigh Pressure Liquid ChromatographyHPVCHigh Production Volume Chemical (>1000 t/a)IARCInternational Agency for Research on CancerICIndustrial CategoryIC50International Labour OrganisationIPCSInternational Labour OrganisationIPCSInternational Programme on Chemical SafetyISOInternational Organisation for StandardisationINCLIDInternational Uniform Chemical Information Database (existing substances)	EPA	Environmental Protection Agency (USA)		
EUEuropean UnionEUSESEuropean Union System for the Evaluation of Substances [software tool in support of the Technical Guidance Document on risk assessment]F(+)(Highly) flammable (Symbols and indications of danger for dangerous substances and preparations according to Annex II of Directive 67/548/EEC)FAOFood and Agriculture Organisation of the United NationsFELSFish Early Life StagefocOrganic carbon factor (compartment depending)GLPGood Laboratory PracticeHEDSETEC/OECD Harmonised Electronic Data Set (for data collection of existing substances)HELCOMHigh Pressure Liquid ChromatographyHPVCHigh Production Volume Chemical (> 1000 t/a)IARCInternational Agency for Research on CancerICS0median Immobilisation Concentration or median Inhibitory ConcentrationILOInternational Labour OrganisationIPCSInternational Programme on Chemical SafetyISOInternational Programme on Chemical SafetyICLDWInternational Organisation for Standardisation	ErC50	Effect Concentration measured as 50% reduction in growth rate in algae tests		
EUSESEuropean Union System for the Evaluation of Substances [software tool in support of the Technical Guidance Document on risk assessment]F(+)(Highly) flammable (Symbols and indications of danger for dangerous substances and preparations according to Annex II of Directive 67/548/EEC)FAOFood and Agriculture Organisation of the United NationsFELSFish Early Life StagefocOrganic carbon factor (compartment depending)GLPGood Laboratory PracticeHEDSETEC/OECD Harmonised Electronic Data Set (for data collection of existing substances)HELCOMHelsinki Commission -Baltic Marine Environment Protection CommissionHPLCHigh Pressure Liquid ChromatographyHPVCHigh Production Volume Chemical (> 1000 t/a)IARCInternational Agency for Research on CancerICIndustrial CategoryICS0International Labour OrganisationIPCSInternational Programme on Chemical SafetyISOInternational Organisation for StandardisationILCLIDInternational Uniform Chemical Information Database (existing substances)	ESD	Emission Scenario Document		
International Guidance Document on risk assessment]International Guidance Document on risk assessment]F(+)(Highly) flammable (Symbols and indications of danger for dangerous substances and preparations according to Annex II of Directive 67/548/EEC)FAOFood and Agriculture Organisation of the United NationsFELSFish Early Life StagefocOrganic carbon factor (compartment depending)GLPGood Laboratory PracticeHEDSETEC/OECD Harmonised Electronic Data Set (for data collection of existing substances)HELCOMHelsinki Commission -Baltic Marine Environment Protection CommissionHPLCHigh Pressure Liquid ChromatographyHPVCHigh Production Volume Chemical (> 1000 t/a)IARCInternational Agency for Research on CancerICIndustrial CategoryICS0median Immobilisation Concentration or median Inhibitory ConcentrationIPCSInternational Programme on Chemical SafetyISOInternational Organisation for StandardisationILOInternational Organisation for Standardisation	EU	European Union		
Preparations according to Annex II of Directive 67/548/EEC)FAOFood and Agriculture Organisation of the United NationsFELSFish Early Life StagefocOrganic carbon factor (compartment depending)GLPGood Laboratory PracticeHEDSETEC/OECD Harmonised Electronic Data Set (for data collection of existing substances)HELCOMHelsinki Commission -Baltic Marine Environment Protection CommissionHPLCHigh Pressure Liquid ChromatographyHPVCHigh Production Volume Chemical (> 1000 t/a)IARCInternational Agency for Research on CancerICIndustrial CategoryICS0median Immobilisation Concentration or median Inhibitory ConcentrationIPCSInternational Labour OrganisationISOInternational Organisation for StandardisationINCLIDInternational Organisation for Standardisation	EUSES			
FELSFish Early Life StagefocOrganic carbon factor (compartment depending)GLPGood Laboratory PracticeHEDSETEC/OECD Harmonised Electronic Data Set (for data collection of existing substances)HELCOMHelsinki Commission -Baltic Marine Environment Protection CommissionHPLCHigh Pressure Liquid ChromatographyHPVCHigh Production Volume Chemical (> 1000 t/a)IARCInternational Agency for Research on CancerICIndustrial CategoryIC50median Immobilisation Concentration or median Inhibitory ConcentrationIPCSInternational Labour OrganisationISOInternational Organisation for StandardisationIUCLIDInternational Organisation for Standardisation	F(+)			
focOrganic carbon factor (compartment depending)GLPGood Laboratory PracticeHEDSETEC/OECD Harmonised Electronic Data Set (for data collection of existing substances)HELCOMHelsinki Commission -Baltic Marine Environment Protection CommissionHPLCHigh Pressure Liquid ChromatographyHPVCHigh Production Volume Chemical (> 1000 t/a)IARCInternational Agency for Research on CancerICIndustrial CategoryIC50median Immobilisation Concentration or median Inhibitory ConcentrationILOInternational Labour OrganisationIPCSInternational Organisation for StandardisationISOInternational Organisation for StandardisationIUCLIDInternational Uniform Chemical Information Database (existing substances)	FAO	Food and Agriculture Organisation of the United Nations		
GLPGood Laboratory PracticeHEDSETEC/OECD Harmonised Electronic Data Set (for data collection of existing substances)HELCOMHelsinki Commission -Baltic Marine Environment Protection CommissionHPLCHigh Pressure Liquid ChromatographyHPVCHigh Production Volume Chemical (> 1000 t/a)IARCInternational Agency for Research on CancerICIndustrial CategoryIC50median Immobilisation Concentration or median Inhibitory ConcentrationILOInternational Labour OrganisationIPCSInternational Programme on Chemical SafetyISOInternational Organisation for StandardisationIUCLIDInternational Uniform Chemical Information Database (existing substances)	FELS	Fish Early Life Stage		
HEDSETEC/OECD Harmonised Electronic Data Set (for data collection of existing substances)HELCOMHelsinki Commission -Baltic Marine Environment Protection CommissionHPLCHigh Pressure Liquid ChromatographyHPVCHigh Production Volume Chemical (> 1000 t/a)IARCInternational Agency for Research on CancerICIndustrial CategoryIC50median Immobilisation Concentration or median Inhibitory ConcentrationILOInternational Labour OrganisationIPCSInternational Programme on Chemical SafetyISOInternational Organisation for StandardisationIUCLIDInternational Uniform Chemical Information Database (existing substances)	foc	Organic carbon factor (compartment depending)		
HELCOMHelsinki Commission -Baltic Marine Environment Protection CommissionHPLCHigh Pressure Liquid ChromatographyHPVCHigh Production Volume Chemical (> 1000 t/a)IARCInternational Agency for Research on CancerICIndustrial CategoryIC50median Immobilisation Concentration or median Inhibitory ConcentrationILOInternational Labour OrganisationIPCSInternational Programme on Chemical SafetyISOInternational Organisation for StandardisationIUCLIDInternational Uniform Chemical Information Database (existing substances)	GLP	Good Laboratory Practice		
HPLCHigh Pressure Liquid ChromatographyHPVCHigh Production Volume Chemical (> 1000 t/a)IARCInternational Agency for Research on CancerICIndustrial CategoryIC50median Immobilisation Concentration or median Inhibitory ConcentrationILOInternational Labour OrganisationIPCSInternational Programme on Chemical SafetyISOInternational Organisation for StandardisationIUCLIDInternational Uniform Chemical Information Database (existing substances)	HEDSET	EC/OECD Harmonised Electronic Data Set (for data collection of existing substances)		
HPVCHigh Production Volume Chemical (> 1000 t/a)IARCInternational Agency for Research on CancerICIndustrial CategoryIC50median Immobilisation Concentration or median Inhibitory ConcentrationILOInternational Labour OrganisationIPCSInternational Programme on Chemical SafetyISOInternational Organisation for StandardisationIUCLIDInternational Uniform Chemical Information Database (existing substances)	HELCOM	Helsinki Commission -Baltic Marine Environment Protection Commission		
IARCInternational Agency for Research on CancerICIndustrial CategoryIC50median Immobilisation Concentration or median Inhibitory ConcentrationILOInternational Labour OrganisationIPCSInternational Programme on Chemical SafetyISOInternational Organisation for StandardisationIUCLIDInternational Uniform Chemical Information Database (existing substances)	HPLC	High Pressure Liquid Chromatography		
ICIndustrial CategoryIC50median Immobilisation Concentration or median Inhibitory ConcentrationILOInternational Labour OrganisationIPCSInternational Programme on Chemical SafetyISOInternational Organisation for StandardisationIUCLIDInternational Uniform Chemical Information Database (existing substances)	HPVC	High Production Volume Chemical (> 1000 t/a)		
IC50median Immobilisation Concentration or median Inhibitory ConcentrationILOInternational Labour OrganisationIPCSInternational Programme on Chemical SafetyISOInternational Organisation for StandardisationIUCLIDInternational Uniform Chemical Information Database (existing substances)	IARC	International Agency for Research on Cancer		
ILOInternational Labour OrganisationIPCSInternational Programme on Chemical SafetyISOInternational Organisation for StandardisationIUCLIDInternational Uniform Chemical Information Database (existing substances)	IC	Industrial Category		
IPCSInternational Programme on Chemical SafetyISOInternational Organisation for StandardisationIUCLIDInternational Uniform Chemical Information Database (existing substances)	IC50	median Immobilisation Concentration or median Inhibitory Concentration		
ISOInternational Organisation for StandardisationIUCLIDInternational Uniform Chemical Information Database (existing substances)	ILO	International Labour Organisation		
IUCLID International Uniform Chemical Information Database (existing substances)	IPCS	International Programme on Chemical Safety		
	ISO	International Organisation for Standardisation		
IUPAC International Union for Pure and Applied Chemistry	IUCLID	International Uniform Chemical Information Database (existing substances)		
	IUPAC	International Union for Pure and Applied Chemistry		
JEFCA Joint FAO/WHO Expert Committee on Food Additives	IEFCA	Joint FAO/WHO Expert Committee on Food Additives		

JMPR	Joint FAO/WHO Meeting on Pesticide Residues
Koc	organic carbon normalised distribution coefficient
Kow	octanol/water partition coefficient
Кр	solids-water partition coefficient
L(E)C50	median Lethal (Effect) Concentration
LAEL	Lowest Adverse Effect Level
LC50	median Lethal Concentration
LD50	median Lethal Dose
LEV	Local Exhaust Ventilation
LLNA	Local Lymph Node Assay
LOAEL	Lowest Observed Adverse Effect Level
LOEC	Lowest Observed Effect Concentration
LOED	Lowest Observed Effect Dose
LOEL	Lowest Observed Effect Level
MAC	Maximum Allowable Concentration
MATC	Maximum Acceptable Toxic Concentration
MC	Main Category
MITI	Ministry of International Trade and Industry, Japan
MOE	Margin of Exposure
MOS	Margin of Safety
MW	Molecular Weight
Ν	Dangerous for the environment (Symbols and indications of danger for dangerous substances and preparations according to Annex II of Directive 67/548/EEC
NAEL	No Adverse Effect Level
NOAEL	No Observed Adverse Effect Level
NOEL	No Observed Effect Level
NOEC	No Observed Effect Concentration
NTP	National Toxicology Program (USA)
0	Oxidizing (Symbols and indications of danger for dangerous substances and preparations according to Annex III of Directive 67/548/EEC)
OC	Organic Carbon content
OECD	Organisation for Economic Cooperation and Development
OEL	Occupational Exposure Limit
OJ	Official Journal
OSPAR	Oslo and Paris Convention for the protection of the marine environment of the Northeast Atlantic
Р	Persistent
PBT	Persistent, Bioaccumulative and Toxic

PBPK	Physiologically Based PharmacoKinetic modelling
PBTK	Physiologically Based ToxicoKinetic modelling
PEC	Predicted Environmental Concentration
pН	logarithm (to the base 10) (of the hydrogen ion concentration $\{H^+\}$
рКа	logarithm (to the base 10) of the acid dissociation constant
pKb	logarithm (to the base 10) of the base dissociation constant
PNEC	Predicted No Effect Concentration
РОР	Persistent Organic Pollutant
PPE	Personal Protective Equipment
QSAR	(Quantitative) Structure-Activity Relationship
R phrases	Risk phrases according to Annex III of Directive 67/548/EEC
RAR	Risk Assessment Report
RC	Risk Characterisation
RfC	Reference Concentration
RfD	Reference Dose
RNA	RiboNucleic Acid
RPE	Respiratory Protective Equipment
RWC	Reasonable Worst Case
S phrases	Safety phrases according to Annex IV of Directive 67/548/EEC
SAR	Structure-Activity Relationships
SBR	Standardised birth ratio
SCE	Sister Chromatic Exchange
SDS	Safety Data Sheet
SETAC	Society of Environmental Toxicology And Chemistry
SNIF	Summary Notification Interchange Format (new substances)
SSD	Species Sensitivity Distribution
STP	Sewage Treatment Plant
T(+)	(Very) Toxic (Symbols and indications of danger for dangerous substances and preparations according to Annex III of Directive 67/548/EEC)
TDI	Tolerable Daily Intake
TG	Test Guideline
TGD	Technical Guidance Document
TNsG	Technical Notes for Guidance (for Biocides)
TNO	The Netherlands Organisation for Applied Scientific Research
ThOD	Theoritical Oxygen Demand
UC	Use Category
UDS	Unscheduled DNA Synthesis

UN	United Nations
UNEP	United Nations Environment Programme
US EPA	Environmental Protection Agency, USA
UV	Ultraviolet Region of Spectrum
UVCB	Unknown or Variable composition, Complex reaction products of Biological material
vB	very Bioaccumulative
VOC	Volatile Organic Compound
vP	very Persistent
vPvB	very Persistent and very Bioaccumulative
v/v	volume per volume ratio
w/w	weight per weight ratio
WHO	World Health Organization
WWTP	Waste Water Treatment Plant
Xn	Harmful (Symbols and indications of danger for dangerous substances and preparations according to Annex II of Directive 67/548/EEC)
Xi	Irritant (Symbols and indications of danger for dangerous substances and preparations according to Annex II of Directive 67/548/EEC)

Appendix A Internal NOAEL and minimal MOS calculation based on the NOAEL from the repeated dose study in the rat

Toxicological starting-point for the calculation of the internal NOAEL for systemic effects of Zn^{2+} due to $Zn_3(PO_4)_2$ exposure is the NOAEL of 31.52 mg zinc monoglycerolate/kg bw/day (corresponding with 13.3 mg Zn^{2+} /kg bw/day and 93 mg $Zn_3(PO_4)_2 \cdot 4H_2O$ /kg bw/day) from the 13-week study with rats. For oral absorption a value of 40% is used for the rat study (worst-case estimations) (see Section 4.1.2.1.6), resulting in an internal NOAEL of 5.3 mg Zn^{2+} /kg bw/d or 372 mg Zn^{2+} /day for a 70-kg worker.

The risk characterisation for systemic effects is made with several assumptions:

- the internal NOAEL is calculated with worst-case assumptions for oral absorption,
- it is assumed that other factors influencing route-specificity are not of importance. In case of Zn^{2+} , metabolism does not play a role, which favours this assumption,
- the study was not performed with $Zn_3(PO_4)_2$, so it is assumed that the effects are due to Zn^{2+} ,
- the background intake and requirement of zinc in the experimental situation (rats) and in workers are assumed to be comparable,
- the physiological role of zinc is comparable between rat and man.

Dermal and inhalation exposure

Given the estimated frequency of exposure (100-200 d/year), chronic exposure is assumed for risk characterisation.

The assessment factors applicable for the calculation of the minimal MOS are mentioned in **Table A.1**.

Aspect	Assessment factors applied on oral NOAEL
Interspecies differences	4 · 3 ^a)
Intraspecies differences	3
Differences between experimental conditions and exposure pattern of the worker	10
Type of critical effect	1
Dose-response curve	1
Confidence of the database	1 b)
Overall	360

Table Δ 1	Assessment factors appl	ied for the calculation	of the minimal MOS
Table A.T	Assessment lactors appr		

a) Extrapolation based on differences in caloric demands, together with a factor 3 for remaining uncertainties.

b) Database exists of the available toxicological studies with zinc and zinc compounds.

The minimal MOS amounts to 360 when the 13-week oral toxicity study in rats with zinc monoglycerolate is taken as a starting point for the risk characterisation for repeated dose toxicity.

European Commission

EUR 21172 EN European Union Risk Assessment Report Trizinc bis(orthophosphate), Volume 47

Editors: S.J. Munn, R. Allanou, K. Aschberger, F. Berthault, J. de Bruijn, C. Musset, S. O'Connor, S. Pakalin, A. Paya-Perez, G. Pellegrini, S. Scheer, B. Schwarz-Schulz, S. Vegro.

Luxembourg: Office for Official Publications of the European Communities

2004 – VIII pp., 114 pp. – 17.0 x 24.0 cm

Environment and quality of life series

The report provides the comprehensive risk assessment of human health part of the substance trizinc bis(orthophosphate). It has been prepared by the Netherlands in the frame of Council Regulation (EEC) No. 793/93 on the evaluation and control of the risks of existing substances, following the principles for assessment of the risks to humans and the environment, laid down in Commission Regulation (EC) No. 1488/94.

The evaluation considers the emissions and the resulting exposure to the environment and the human populations in all life cycle steps. Following the exposure assessment, the environmental risk characterisation for each protection goal in the aquatic, terrestrial and atmospheric compartment has been determined. For human health the scenarios for occupational exposure, consumer exposure and humans exposed via the environment have been examined and the possible risks have been identified.

The human health risk assessment for trizinc bis(orthophosphate) concludes that there is no concern for workers, consumers and humans exposed via the environment.

The mission of the JRC is to provide customer-driven scientific and technical support for the conception, development, implementation and monitoring of EU policies. As a service of the European Commission, the JRC functions as a reference centre of science and technology for the Union. Close to the policy-making process, it serves the common interest of the Member States, while being independent of special interests, private or national.

European Commission – Joint Research Centre Institute for Health and Consumer Protection European Chemicals Bureau (ECB)

European Union Risk Assessment Report

trizinc bis(orthophosphate)

CAS No: 7779-90-0 EINECS No: 231-944-3

Series: 2nd Priority List Volume: 47