Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 295-443-1 | CAS number: 92045-61-9 A complex combination of hydrocarbons obtained by distillation from the product of a naphtha steam cracking process and subsequent catalytic selective hydrogenation of gum formers. It consists of hydrocarbons having carbon numbers predominantly in the range of C4 through C12 and boiling in the range of approximately 30°C to 230°C (86°F to 446°F).
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Link to relevant study record(s)
Description of key information
Benzene is readily absorbed following inhalation or oral exposure. Although it is also readily absorbed from the skin, a significant amount evaporates from the skin
surface. Absorbed benzene is rapidly distributed throughout the body and tends to partition into fatty tissues. The liver serves an important function in benzene metabolism.
Key value for chemical safety assessment
- Bioaccumulation potential:
- no bioaccumulation potential
- Absorption rate - oral (%):
- 100
- Absorption rate - dermal (%):
- 0.1
- Absorption rate - inhalation (%):
- 50
Additional information
The toxicokinetics of benzene has been extensively studied and was recently reviewed by ATSDR (Toxicological profile for benzene, ATSDR, 2007). ATSDR concluded "Inhalation exposure is probably the major route of human exposure to benzene, although oral and dermal exposures are also important. Benzene is readily absorbed following inhalation or oral exposure. Although benzene is also readily absorbed from the skin, a significant amount of a dermal application evaporates from the skin surface. Absorbed benzene is rapidly distributed throughout the body and tends to partition into fatty tissues. The liver serves an important function in benzene metabolism, which results in the production of several reactive metabolites. Although it is widely accepted that benzene toxicity is dependent upon metabolism, no single benzene metabolite has been found to be the major source of benzene hematopoietic and leukaemogenic effects. At low exposure levels, benzene is rapidly metabolized and excreted predominantly as conjugated urinary metabolites. At higher exposure levels, metabolic pathways appear to become saturated and a large portion of an absorbed dose of benzene is excreted as parent compound in exhaled air. Benzene metabolism appears to be qualitatively similar among humans and various laboratory animal species. However, there are quantitative differences in the relative amounts of benzene metabolites”. The present analysis confirms the ATSDR statement. More specifically, human inhalation exposure is estimated to be approximately 50%, oral exposure assumed to be 100% (this value used for DN(M)EL calculations). Percutaneous absorption is estimated at 0.1% (Modjtahedi and Maibach, 2008) whereas a QSAR model determined a maximum value of 1.5% (Ten Berge, 2009).
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.