Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 217-803-9 | CAS number: 1962-75-0
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Hydrolysis
Administrative data
Link to relevant study record(s)
Description of key information
Using the Arrhenius relationship, the hydrolysis rate constants were 2.66 x 10-7/sec, 1.39 x 10-7/sec, and 3.39 x 10-6/sec at pH 4, 7, and 9, respectively, and the estimated half-lives was 30.1 days, 57.8 days, and 2.37 days, respectively. For direct hydrolysis testing, the hydrolysis rate constants were 2.65 x 10 -7/sec, 1.17 x 10 -7/sec, and 2.96 x 10-6/sec at pH 4, 7, and 9, respectively, and the estimated half-lives were 30.2 days, 68.8 days, and 2.71 days, respectively.
Key value for chemical safety assessment
Additional information
The hydrolysis as a function of pH of Dibutyl terephthalate (CAS 1962-75-0) has been determined using a procedure designed to be compatible with Method 111 of the OECD Guidelines for Testing of Chemicals, 13 April2004. Results have been reported for the estimated half-life calculated using the Arrhenius relationship and for the measured half-life using data from hydrolysis testing performed directly at 25 °C. Using the Arrhenius relationship, the rate constants were 2.66 x 10-7/sec, 1.39 x 10-7/sec, and 3.39 x 10-6/sec at pH 4, 7, and 9, respectively, and the estimated half-lives was 30.1 days, 57.8 days, and 2.37 days, respectively. For direct hydrolysis testing, the rate constants were 2.65 x 10-7/sec, 1.17 x 10-7/sec, and 2.96 x 10-6/sec at pH 4, 7, and 9, respectively, and the estimated half-lives were 30.2 days, 68.8 days, and 2.71 days, respectively.
Predicted values for hydrolysis also were determined using QSAR-SPARC (SPARC Performs Automated Reasoning in Chemistry), version 4.5- SPARC uses computational algorithms based on fundamental chemical structure theory. Execution involves the classification of molecular structures and the selection and execution of the appropriate “mechanistic” model. Predicted values for
Log Hydrolysis second order rate constants in water were -13.88, -6.66, and -1.69 L/Mol-sec for neutral pH, acidic pH, and basic pH, respectively.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.