Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Administrative data

Workers - Hazard via inhalation route

Systemic effects

Long term exposure
Hazard assessment conclusion:
DNEL (Derived No Effect Level)
Value:
23.5 mg/m³
Most sensitive endpoint:
repeated dose toxicity
Route of original study:
Oral
DNEL related information
DNEL derivation method:
ECHA REACH Guidance
Overall assessment factor (AF):
75
Dose descriptor starting point:
NOAEL
Value:
1 000 mg/kg bw/day
Modified dose descriptor starting point:
NOAEC
Value:
1 762.2 mg/m³
Explanation for the modification of the dose descriptor starting point:
NOAEC (inhalation) = NOAEL (oral) * 1/0.38 m3/kg/d * 6.7 m3 (8h) / 10 m3 (8h) = 1763.2 mg/ m3.
AF for dose response relationship:
1
Justification:
In accordance with ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: Characterisation of dose [concentration]-response for human health, for the dose-response relationship, consideration should be given to the uncertainties in the dose descriptor (NOAEL, benchmark dose…) as the surrogate for the true no-adverse-effect-level (NAEL). In this case the starting point for the DNEL calculation is a NOAEC, derived from a study which is of good quality and without uncertainties. Therefore the default assessment factor, as a standard procedure, is 1.
AF for differences in duration of exposure:
6
Justification:
In accordance with ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: Characterisation of dose [concentration]-response for human health, a factor allowing for differences in the experimental exposure duration and the duration of exposure for the worker and scenario under consideration needs to be considered taking into account that a) in general the experimental NOAEL will decrease with increasing exposure times and b) other and more serious adverse effects may appear with increasing exposure times. Consequently, to end up with the most conservative DNEL for repeated dose toxicity, chronic exposure is the ‘worst case’. So, as only a sub-acute toxicity study is available, default assessment factor of 6 is to be applied, as a standard procedure.
AF for interspecies differences (allometric scaling):
1
Justification:
In accordance with ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: Characterisation of dose [concentration]-response for human health, as long as route-to-route extrapolation is not needed, allometric scaling should not be applied in cases where doses in experimental animal studies are expressed as concentrations (e.g. in mg/m3 air, ppm in diet, or mg/L in the drinking water) as these are assumed to be already scaled according to the allometric principle, since ventilation rate and food intake directly depend on the basal metabolic rate. In this case the NOAEC is expressed as concentration (mg/m3), therefore a factor for allometric scaling is not needed.
AF for other interspecies differences:
2.5
Justification:
In accordance with ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: If no substance-specific data are available, the standard procedure for threshold effects would be, as a default, to correct for differences in metabolic rate (allometric scaling) and to apply an additional factor of 2.5 for other interspecies differences, i.e. toxicokinetic differences not related to metabolic rate (small part) and toxicodynamic differences (larger part).
AF for intraspecies differences:
5
Justification:
In accordance with ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: If the dose descriptor (e.g. N(L)OAEL, benchmark dose, etc.) has been derived from an animal study, animal intraspecies variation/differences has already to some extent been accounted for in that dose descriptor. Ideally therefore, the intraspecies factor should reflect the additional interspecies variability, i.e. the difference between variability in the human population and variability in the animal population. For workers, as standard procedure for threshold effects a default assessment factor of 5 is to be used, based on the fact that this sub population does not cover the very young, the very old, and the very ill.
AF for the quality of the whole database:
1
Justification:
In accordance with ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: Characterisation of dose [concentration]-response for human health, the evaluation of the total toxicological database should include an assessment whether the available information as a whole meets the tonnage driven data requirements necessary to fulfil the REACH requirements, or whether there are data gaps (completeness of the database). Furthermore, the hazard data should be assessed for the reliability and consistency across different studies and endpoints and taking into account the quality of the testing method, size and power of the study design, biological plausibility, dose-response relationships and statistical association (adequacy of the database). When taking into account the standard information requirements and the completeness and consistency of the database the default assessment factor of 1, to be applied for good/standard quality of the database, is recommended.
AF for remaining uncertainties:
1
Justification:
No remaining uncertainties
Acute/short term exposure
Hazard assessment conclusion:
no hazard identified
DNEL related information

Local effects

Long term exposure
Hazard assessment conclusion:
no hazard identified
Acute/short term exposure
Hazard assessment conclusion:
no hazard identified
DNEL related information

Workers - Hazard via dermal route

Systemic effects

Long term exposure
Hazard assessment conclusion:
DNEL (Derived No Effect Level)
Value:
33.33 mg/kg bw/day
Most sensitive endpoint:
repeated dose toxicity
Route of original study:
Oral
DNEL related information
DNEL derivation method:
ECHA REACH Guidance
Overall assessment factor (AF):
300
Dose descriptor starting point:
NOAEL
Value:
1 000 mg/kg bw/day
Modified dose descriptor starting point:
NOAEL
Value:
10 000 mg/kg bw/day
Explanation for the modification of the dose descriptor starting point:
10 % dermal absorption is expected due to a molecular weight > 500 g/mol and a logPow >4 (factor = 0.1)
AF for dose response relationship:
1
Justification:
In accordance with ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: Characterisation of dose [concentration]-response for human health, for the dose-response relationship, consideration should be given to the uncertainties in the dose descriptor (NOAEL, benchmark dose…) as the surrogate for the true no-adverse-effect-level (NAEL). In this case the starting point for the DNEL calculation is a NOAEC, derived from a study which is of good quality and without uncertainties. Therefore the default assessment factor, as a standard procedure, is 1.
AF for differences in duration of exposure:
6
Justification:
In accordance with ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: Characterisation of dose [concentration]-response for human health, a factor allowing for differences in the experimental exposure duration and the duration of exposure for the worker and scenario under consideration needs to be considered taking into account that a) in general the experimental NOAEL will decrease with increasing exposure times and b) other and more serious adverse effects may appear with increasing exposure times. Consequently, to end up with the most conservative DNEL for repeated dose toxicity, chronic exposure is the ‘worst case’. As only a subacute study is available, the default assessment factor of 6 is to be applied, as a standard procedure.
AF for interspecies differences (allometric scaling):
4
Justification:
In accordance with ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: Characterisation of dose [concentration]-response for human health, allometric scaling extrapolates doses according to an overall assumption that equitoxic doses (when expressed in mg/kg bw/day) scale with body weight to the power of 0.250. This results in a default allometric scaling factor for the rat when compared with humans, namely 4.
AF for other interspecies differences:
2.5
Justification:
In accordance with ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: If no substance-specific data are available, the standard procedure for threshold effects would be, as a default, to correct for differences in metabolic rate (allometric scaling) and to apply an additional factor of 2.5 for other interspecies differences, i.e. toxicokinetic differences not related to metabolic rate (small part) and toxicodynamic differences (larger part).
AF for intraspecies differences:
5
Justification:
In accordance with ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: If the dose descriptor (e.g. N(L)OAEL, benchmark dose, etc.) has been derived from an animal study, animal intraspecies variation/differences has already to some extent been accounted for in that dose descriptor. Ideally therefore, the intraspecies factor should reflect the additional interspecies variability, i.e. the difference between variability in the human population and variability in the animal population. For workers, as standard procedure for threshold effects a default assessment factor of 5 is to be used, based on the fact that this sub population does not cover the very young, the very old, and the very ill.
AF for the quality of the whole database:
1
Justification:
In accordance with ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: Characterisation of dose [concentration]-response for human health, the evaluation of the total toxicological database should include an assessment whether the available information as a whole meets the tonnage driven data requirements necessary to fulfil the REACH requirements, or whether there are data gaps (completeness of the database). Furthermore, the hazard data should be assessed for the reliability and consistency across different studies and endpoints and taking into account the quality of the testing method, size and power of the study design, biological plausibility, dose-response relationships and statistical association (adequacy of the database). When taking into account the standard information requirements and the completeness and consistency of the database the default assessment factor of 1, to be applied for good/standard quality of the database, is recommended.
AF for remaining uncertainties:
1
Justification:
No remaining uncertainties
Acute/short term exposure
Hazard assessment conclusion:
no hazard identified
DNEL related information

Local effects

Long term exposure
Hazard assessment conclusion:
no hazard identified
Acute/short term exposure
Hazard assessment conclusion:
no hazard identified

Workers - Hazard for the eyes

Local effects

Hazard assessment conclusion:
no hazard identified

Additional information - workers

Based on all the available data, the test substance is not subject to classification and labeling requirements under current EU regulations (Directive 67/548/EEC and Regulation (EC) No.1272/2008). No systemic effects have been observed in rodent studies after short-term and long-term exposure to the test substance in doses up to 2000 mg/kg bw. Additionally, no inhalative peak exposures are occur for this low volatile substance. Thus, according to Chapter R.8 of the ECHA guidance on information requirements and chemical safety assessment (2008) the systemic DNEL derived for long-term exposure was considered sufficient to ensure the safety of human workers. Test article-related systemic effects were also not reported in a subacute oral gavage study in rats. Thus, DNEL – systemic effects for long-term exposure can be derived based on the NOAEL from the subacute repeated oral dose study, set as greater or equal to the highest dose of 1000 mg/kg bw/d (RCC Ltd., 2000). It is emphasized that the calculated DNEL is higher than the general exposure limit for inhalable dust. This limit may be defined differently in various national legislations.

General Population - Hazard via inhalation route

Systemic effects

Long term exposure
Hazard assessment conclusion:
DNEL (Derived No Effect Level)
Value:
5.8 mg/m³
Most sensitive endpoint:
repeated dose toxicity
Route of original study:
Oral
DNEL related information
DNEL derivation method:
ECHA REACH Guidance
Overall assessment factor (AF):
150
Dose descriptor starting point:
NOAEL
Value:
1 000 mg/kg bw/day
Modified dose descriptor starting point:
NOAEC
Value:
869.6 mg/m³
Explanation for the modification of the dose descriptor starting point:

To account for potential systemic effects, the subacute oral toxicity study is used. NOAEC (inhalation) = NOAEL (oral) / 1.15 m3/kg bw (24 h) = 869.6 mg/m3.

AF for dose response relationship:
1
Justification:
In accordance with ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: Characterisation of dose [concentration]-response for human health, for the dose-response relationship, consideration should be given to the uncertainties in the dose descriptor (NOAEL, benchmark dose…) as the surrogate for the true no-adverse-effect-level (NAEL). In this case the starting point for the DNEL calculation is a NOAEC, derived from a study which is of good quality and without uncertainties. Therefore the default assessment factor, as a standard procedure, is 1.
AF for differences in duration of exposure:
6
Justification:
In accordance with ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: Characterisation of dose [concentration]-response for human health, a factor allowing for differences in the experimental exposure duration and the duration of exposure for the worker and scenario under consideration needs to be considered taking into account that a) in general the experimental NOAEL will decrease with increasing exposure times and b) other and more serious adverse effects may appear with increasing exposure times. Consequently, to end up with the most conservative DNEL for repeated dose toxicity, chronic exposure is the ‘worst case’. So, as only a sub-acute toxicity study is available, default assessment factor of 6 is to be applied, as a standard procedure.
AF for interspecies differences (allometric scaling):
1
Justification:
In accordance with ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: Characterisation of dose [concentration]-response for human health, as long as route-to-route extrapolation is not needed, allometric scaling should not be applied in cases where doses in experimental animal studies are expressed as concentrations (e.g. in mg/m3 air, ppm in diet, or mg/L in the drinking water) as these are assumed to be already scaled according to the allometric principle, since ventilation rate and food intake directly depend on the basal metabolic rate. In this case the NOAEC is expressed as concentration (mg/m3), therefore a factor for allometric scaling is not needed.
AF for other interspecies differences:
2.5
Justification:
In accordance with ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: If no substance-specific data are available, the standard procedure for threshold effects would be, as a default, to correct for differences in metabolic rate (allometric scaling) and to apply an additional factor of 2.5 for other interspecies differences, i.e. toxicokinetic differences not related to metabolic rate (small part) and toxicodynamic differences (larger part).
AF for intraspecies differences:
10
Justification:
In accordance with ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: If the dose descriptor (e.g. N(L)OAEL, benchmark dose, etc.) has been derived from an animal study, animal intraspecies variation/differences has already to some extent been accounted for in that dose descriptor. Ideally therefore, the intraspecies factor should reflect the additional interspecies variability, i.e. the difference between variability in the human population and variability in the animal population. For the general population, as standard procedure for threshold effects a default assessment factor of 10 is to be used, based on the fact that this sub population cover the very young, the very old, and the very ill.
AF for the quality of the whole database:
1
Justification:
In accordance with ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: Characterisation of dose [concentration]-response for human health, the evaluation of the total toxicological database should include an assessment whether the available information as a whole meets the tonnage driven data requirements necessary to fulfil the REACH requirements, or whether there are data gaps (completeness of the database). Furthermore, the hazard data should be assessed for the reliability and consistency across different studies and endpoints and taking into account the quality of the testing method, size and power of the study design, biological plausibility, dose-response relationships and statistical association (adequacy of the database). When taking into account the standard information requirements and the completeness and consistency of the database the default assessment factor of 1, to be applied for good/standard quality of the database, is recommended.
AF for remaining uncertainties:
1
Justification:
No remaining uncertainties
Acute/short term exposure
Hazard assessment conclusion:
no hazard identified
DNEL related information

Local effects

Long term exposure
Hazard assessment conclusion:
no hazard identified
Acute/short term exposure
Hazard assessment conclusion:
no hazard identified
DNEL related information

General Population - Hazard via dermal route

Systemic effects

Long term exposure
Hazard assessment conclusion:
DNEL (Derived No Effect Level)
Value:
16.67 mg/kg bw/day
Most sensitive endpoint:
repeated dose toxicity
Route of original study:
Oral
DNEL related information
DNEL derivation method:
ECHA REACH Guidance
Overall assessment factor (AF):
60
Dose descriptor starting point:
NOAEL
Value:
1 000 mg/kg bw/day
Modified dose descriptor starting point:
NOAEL
Value:
10 000 mg/kg bw/day
Explanation for the modification of the dose descriptor starting point:
10 % dermal absorption is expected due to a molecular weight > 500 g/mol and a logPow >4 (factor = 0.1)
AF for dose response relationship:
1
Justification:
In accordance with ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: Characterisation of dose [concentration]-response for human health, for the dose-response relationship, consideration should be given to the uncertainties in the dose descriptor (NOAEL, benchmark dose…) as the surrogate for the true no-adverse-effect-level (NAEL). In this case the starting point for the DNEL calculation is a NOAEC, derived from a study which is of good quality and without uncertainties. Therefore the default assessment factor, as a standard procedure, is 1.
AF for differences in duration of exposure:
6
Justification:
In accordance with ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: Characterisation of dose [concentration]-response for human health, a factor allowing for differences in the experimental exposure duration and the duration of exposure for the worker and scenario under consideration needs to be considered taking into account that a) in general the experimental NOAEL will decrease with increasing exposure times and b) other and more serious adverse effects may appear with increasing exposure times. Consequently, to end up with the most conservative DNEL for repeated dose toxicity, chronic exposure is the ‘worst case’. As only a subacute study is available, the default assessment factor of 6 is to be applied, as a standard procedure.
AF for interspecies differences (allometric scaling):
4
Justification:
In accordance with ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: Characterisation of dose [concentration]-response for human health, allometric scaling extrapolates doses according to an overall assumption that equitoxic doses (when expressed in mg/kg bw/day) scale with body weight to the power of 0.250. This results in a default allometric scaling factor for the rat when compared with humans, namely 4.
AF for other interspecies differences:
2.5
Justification:
In accordance with ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: If no substance-specific data are available, the standard procedure for threshold effects would be, as a default, to correct for differences in metabolic rate (allometric scaling) and to apply an additional factor of 2.5 for other interspecies differences, i.e. toxicokinetic differences not related to metabolic rate (small part) and toxicodynamic differences (larger part).
AF for intraspecies differences:
10
Justification:
In accordance with ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: If the dose descriptor (e.g. N(L)OAEL, benchmark dose, etc.) has been derived from an animal study, animal intraspecies variation/differences has already to some extent been accounted for in that dose descriptor. Ideally therefore, the intraspecies factor should reflect the additional interspecies variability, i.e. the difference between variability in the human population and variability in the animal population. For general population, as standard procedure for threshold effects a default assessment factor of 10 is to be used, based on the fact that this sub population cover the very young, the very old, and the very ill.
AF for the quality of the whole database:
1
Justification:
In accordance with ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: Characterisation of dose [concentration]-response for human health, the evaluation of the total toxicological database should include an assessment whether the available information as a whole meets the tonnage driven data requirements necessary to fulfil the REACH requirements, or whether there are data gaps (completeness of the database). Furthermore, the hazard data should be assessed for the reliability and consistency across different studies and endpoints and taking into account the quality of the testing method, size and power of the study design, biological plausibility, dose-response relationships and statistical association (adequacy of the database). When taking into account the standard information requirements and the completeness and consistency of the database the default assessment factor of 1, to be applied for good/standard quality of the database, is recommended.
AF for remaining uncertainties:
1
Justification:
No remaining uncertainties
Acute/short term exposure
Hazard assessment conclusion:
no hazard identified
DNEL related information

Local effects

Long term exposure
Hazard assessment conclusion:
no hazard identified
Acute/short term exposure
Hazard assessment conclusion:
no hazard identified

General Population - Hazard via oral route

Systemic effects

Long term exposure
Hazard assessment conclusion:
DNEL (Derived No Effect Level)
Value:
1.67 mg/kg bw/day
Most sensitive endpoint:
repeated dose toxicity
Route of original study:
Oral
DNEL related information
DNEL derivation method:
ECHA REACH Guidance
Overall assessment factor (AF):
600
Dose descriptor starting point:
NOAEL
Value:
1 000 mg/kg bw/day
AF for dose response relationship:
1
Justification:
In accordance with ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: Characterisation of dose [concentration]-response for human health, for the dose-response relationship, consideration should be given to the uncertainties in the dose descriptor (NOAEL, benchmark dose…) as the surrogate for the true no-adverse-effect-level (NAEL). In this case the starting point for the DNEL calculation is a NOAEC, derived from a study which is of good quality and without uncertainties. Therefore the default assessment factor, as a standard procedure, is 1.
AF for differences in duration of exposure:
6
Justification:
In accordance with ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: Characterisation of dose [concentration]-response for human health, a factor allowing for differences in the experimental exposure duration and the duration of exposure for the worker and scenario under consideration needs to be considered taking into account that a) in general the experimental NOAEL will decrease with increasing exposure times and b) other and more serious adverse effects may appear with increasing exposure times. Consequently, to end up with the most conservative DNEL for repeated dose toxicity, chronic exposure is the ‘worst case’. As only a subacute study is available, the default assessment factor of 6 is to be applied, as a standard procedure.
AF for interspecies differences (allometric scaling):
4
Justification:
In accordance with ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: Characterisation of dose [concentration]-response for human health, allometric scaling extrapolates doses according to an overall assumption that equitoxic doses (when expressed in mg/kg bw/day) scale with body weight to the power of 0.250. This results in a default allometric scaling factor for the rat when compared with humans, namely 4.
AF for other interspecies differences:
2.5
Justification:
In accordance with ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: If no substance-specific data are available, the standard procedure for threshold effects would be, as a default, to correct for differences in metabolic rate (allometric scaling) and to apply an additional factor of 2.5 for other interspecies differences, i.e. toxicokinetic differences not related to metabolic rate (small part) and toxicodynamic differences (larger part).
AF for intraspecies differences:
10
Justification:
In accordance with ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: If the dose descriptor (e.g. N(L)OAEL, benchmark dose, etc.) has been derived from an animal study, animal intraspecies variation/differences has already to some extent been accounted for in that dose descriptor. Ideally therefore, the intraspecies factor should reflect the additional interspecies variability, i.e. the difference between variability in the human population and variability in the animal population. For general population, as standard procedure for threshold effects a default assessment factor of 10 is to be used, based on the fact that this sub population cover the very young, the very old, and the very ill.
AF for the quality of the whole database:
1
Justification:
In accordance with ECHA Guidance on information requirements and chemical safety assessment – Chapter 8: Characterisation of dose [concentration]-response for human health, the evaluation of the total toxicological database should include an assessment whether the available information as a whole meets the tonnage driven data requirements necessary to fulfil the REACH requirements, or whether there are data gaps (completeness of the database). Furthermore, the hazard data should be assessed for the reliability and consistency across different studies and endpoints and taking into account the quality of the testing method, size and power of the study design, biological plausibility, dose-response relationships and statistical association (adequacy of the database). When taking into account the standard information requirements and the completeness and consistency of the database the default assessment factor of 1, to be applied for good/standard quality of the database, is recommended.
AF for remaining uncertainties:
1
Justification:
No remaining uncertainties
Acute/short term exposure
Hazard assessment conclusion:
no hazard identified
DNEL related information

General Population - Hazard for the eyes

Local effects

Hazard assessment conclusion:
no hazard identified

Additional information - General Population

Based on all the available data, the test substance is not subject to classification and labeling requirements under current EU regulations (Directive 67/548/EEC and Regulation (EC) No.1272/2008). No systemic effects have been observed in rodent studies after short-term and long-term exposure to the test substance in doses up to 2000 mg/kg bw. Additionally, no inhalative peak exposures were expected for this low volatile substance. Thus, according to Chapter R8 of the ECHA guidance on information requirements and chemical safety assessment (2008) the systemic DNEL derived for long-term exposure was considered sufficient to ensure the safety of human general population. Test article-related systemic effects were also not reported in a subacute oral gavage study in rats. Thus, DNEL – systemic effects for long-term exposure can be derived based on the NOAEL from the subacute repeated oral dose study, set as greater or equal to the highest dose of 1000 mg/kg bw/d (RCC Ltd., 2000).