Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 203-921-8 | CAS number: 111-92-2
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Toxicity to microorganisms
Administrative data
Link to relevant study record(s)
Description of key information
The inhibition of the degradation activity of activated sludge is not anticipated when introduced in appropriate low concentrations.
Key value for chemical safety assessment
- EC50 for microorganisms:
- 195.8 mg/L
- EC10 or NOEC for microorganisms:
- 149.5 mg/L
Additional information
To investigate the effects of dibutylamine (CAS 111 -92 -2) towards microorganisms, as a key study, a growth inhibition test with the test organism Pseudomonas putida was conducted according to DIN 38412, part 8. The 17 -h EC10 was determined to be 149.5 mg/L (nominal), the 17 -h EC50 was 195.8 mg/L (nominal, BASF AG, 1988, report no.: 9/0013/88).
In a short-term respiration test according to ISO 8192, using industrial activated sludge as inoculum, an 30 -min EC20 of > 1995 mg/L was determined (BASF AG, 1984, report no.: 84/686). It is commonly assumed that a single species test like the Pseudomonas test (DIN 38412, part 8) is more sensitive than the test using activated sludge (OECD 209). The deduction of the PNEC for microorganisms also considers this by assuming a lower assessment factor for Pseudomonas tests compared to short-term respiration tests. Therefore, the Pseudomonas test supports the results derived from the short-term respiration test.
In conclusion, the inhibition of the degradation activity of activated sludge is not anticipated when dibutylamine is introduced in appropriate low concentrations.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.