Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 201-234-8 | CAS number: 79-92-5
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Repeated dose toxicity: oral
Administrative data
- Endpoint:
- short-term repeated dose toxicity: oral
- Type of information:
- experimental study
- Adequacy of study:
- key study
- Study period:
- From 10.01.1991 to 02.05.1991
- Reliability:
- 1 (reliable without restriction)
- Rationale for reliability incl. deficiencies:
- other: Test method according to OECD guideline 407 and GLP.
Data source
Reference
- Reference Type:
- study report
- Title:
- Unnamed
- Year:
- 1 991
- Report date:
- 1991
Materials and methods
Test guideline
- Qualifier:
- according to guideline
- Guideline:
- OECD Guideline 407 (Repeated Dose 28-Day Oral Toxicity Study in Rodents)
- Deviations:
- no
- GLP compliance:
- yes
- Limit test:
- no
Test material
- Reference substance name:
- Camphene
- EC Number:
- 201-234-8
- EC Name:
- Camphene
- Cas Number:
- 79-92-5
- Molecular formula:
- C10H16
- IUPAC Name:
- 2,2-dimethyl-3-methylidenebicyclo[2.2.1]heptane
- Details on test material:
- - Name of test material (as cited in study report): Camphen techn. rein
- Physical state: colorless, clear, vaseline-similar
- Analytical purity: 78.0%
- Purity test date: 28.09.1990
- Lot/batch No.: 54/90
- Stability under storage conditions: 12 months at room temperature
- Storage condition of test material: In the dark at room temperature
- Stability under test conditions: Guaranteed for four hours
Constituent 1
Test animals
- Species:
- rat
- Strain:
- Wistar
- Sex:
- male/female
- Details on test animals or test system and environmental conditions:
- TEST ANIMALS
- Source: Hoechst AG, Box reason SPF breeding
- Age at study initiation: Approximately 6 weeks
- Housing: In air-conditioned spaces, in Makrolon cages (type 4) on granulate softwood, in groups of 5 animals.
- Diet (e.g. ad libitum): Rat diet Altromin 1324 (Altromin GmbH, Lage / Lippe), ad libitum, except the time in which the animals were in metabolism cages
- Water (e.g. ad libitum): Tap water in plastic bottles, ad libitum, except the time in which the animals were in metabolism cages
- Acclimation period: At least 5 days
ENVIRONMENTAL CONDITIONS
- Temperature (°C): 22 ± 3 ºC
- Humidity (%): 50 ± 20 %
- Photoperiod: 12 hrs dark / 12 hrs light
IN-LIFE DATES: From: 10.01.1991 To: 07.02.1991
Administration / exposure
- Route of administration:
- oral: gavage
- Vehicle:
- other: Sesame oil
- Details on oral exposure:
- PREPARATION OF DOSING SOLUTIONS:
Dosing solutions were prepared daily, immediately before the administration. The test material was homogeneously dispersed using a magnetic stirrer.
Volume administered: 5 mL/kg bw
VEHICLE
Oleum Sesami, Ph. Eur III, Fa Mainland, Pharmazeutische Fabrik GmbH, Ffm. - Analytical verification of doses or concentrations:
- yes
- Duration of treatment / exposure:
- 28 Days
- Frequency of treatment:
- Daily
Doses / concentrationsopen allclose all
- Remarks:
- Doses / Concentrations:
62.5 mg/kg bw/day (1.25 % w/v)
Basis:
actual ingested
- Remarks:
- Doses / Concentrations:
250 mg/kg bw/day (5 % w/v)
Basis:
actual ingested
- Remarks:
- Doses / Concentrations:
1000 mg/kg bw/day (20 % w/v)
Basis:
actual ingested
- No. of animals per sex per dose:
- 5 male and 5 female rats per group.
- Control animals:
- yes, concurrent vehicle
- Details on study design:
- - Rationale for animal assignment (if not random): Randomization: Animals in cages randomisation = 946/90 and 947/90
Cages in the rack randomisation = 949/90
Examinations
- Observations and examinations performed and frequency:
- In all experimental groups, the behavior and general health of animals were observed twice daily during the experiment, once a day on weekends and holidays. Every week neurological disturbances, clouding of the ocular media, adverse effects on oral mucosa and tooth development disorders were studied.
The body weight was determined at the beginning of the experiment and twice a week.
Food consumption was determined twice a week and w ater consumption, once a week.
At the end of the experiment, the bllod count was investigated without prior food deprivation in all male and female animals. The blood was taken from the retro-orbital venous plexus. The following hematological parameters were determined: erythrocyte count, hemoglobin, hematocrit, MCV, MCH, MCHC, WBC, platelet count, differential count, reticulocyte count, Heinz'sche inner body, clotting time.
The urine tests were performed on all male and female animals and took place overnight from day 26 to 27 of the experimental period. The following parameters were determined: Appearance, color, pH, hemoglobin, protein, glucose, ketone body, bilirubin, urobilinogen, density and sediment. - Sacrifice and pathology:
- GROSS PATHOLOGY: Yes
HISTOPATHOLOGY: Yes - Other examinations:
- At the end of the study, animals were macroscopically examined. Alterations in organs were recorded, organs were weighed and their relative weights calculated. Histological preparations from the main organs were examined for microscopic changes. Chemical analysis were performed. The following parameters were analyzed: sodium, potassium, anorg. Phosphorus, uric acid, total and direct bilirubin, creatinine, serum glucose, urea nitrogen (BUN), calcium, chloride, AST (GOT), ALT (GPT), alkaline phosphatase (AP), gamma-glutamyl transferase (GGT), total protein, albumin.
- Statistics:
- Body weight, hematological and clinical tests, and organ weights (absolute and relative) were statistically compared with the control group.
The analysis were carried out using a program package for evaluation of toxicological tests, according to the Standard Operating Procedure (Department of Pharmaceutical Research).
Results and discussion
Results of examinations
- Clinical signs:
- effects observed, treatment-related
- Mortality:
- mortality observed, treatment-related
- Body weight and weight changes:
- no effects observed
- Food consumption and compound intake (if feeding study):
- no effects observed
- Food efficiency:
- not examined
- Water consumption and compound intake (if drinking water study):
- no effects observed
- Ophthalmological findings:
- no effects observed
- Haematological findings:
- no effects observed
- Clinical biochemistry findings:
- effects observed, treatment-related
- Urinalysis findings:
- no effects observed
- Behaviour (functional findings):
- no effects observed
- Organ weight findings including organ / body weight ratios:
- effects observed, treatment-related
- Gross pathological findings:
- effects observed, treatment-related
- Histopathological findings: non-neoplastic:
- effects observed, treatment-related
- Histopathological findings: neoplastic:
- no effects observed
- Details on results:
- The highest dose group (1000 mg/kg bw) showed an increased salivation. Behaviour and general health from other treated groups were not significantly different from control group. The body weight and food- and water-consumption were not affected by the administration of the test substance.
Haematological tests revealed no evidence of compound-related toxicity. In male animals from the highest dose group, clinical chemistry tests revealed an increase in urea nitrogen levels and a decrease in phosphorus levels. The urine was normal and showed no evidence of compound-related toxicity.
In male and female animals from the highest dose group, absolute and relative liver weights were increased.
Macroscopic examinations showed spotted kidneys in two male animals from the lowest dose group (62.5 mg / kg bw). In 3 mid-dose male animals and in all males from the highest dose group, colourless kidneys were observed. Animals from the highest dose group showed an increased vacuolization of the hepatocytes. Female animals from dose groups of 62.5 and 250 mg / kg bw did not show toxic effects. In all dose groups of male rats deposits of the test substance in the epithelium of the proximal renal tubules associated with necrosis of single cells have been observed. These effects seem to be specific for male rats and contingent upon alpha-2 microglobinemia. The renal toxic effects found in all dose levels groups in male rats are
interpreted as uniquely specific for male rats, and as having no relevance for other animal species and humans.
Based on the results of this study, the "'no observed effect level" (NOEL) for female rats was 250 mg / kg bw. For male rats, the NOEL could not be determined (it was lower than 63.5 mg/kg bw/day).
Effect levels
open allclose all
- Dose descriptor:
- NOEL
- Effect level:
- 250 mg/kg bw/day (actual dose received)
- Sex:
- female
- Basis for effect level:
- other: overall effects
- Dose descriptor:
- NOEL
- Effect level:
- < 62.5 mg/kg bw/day (actual dose received)
- Sex:
- male
- Basis for effect level:
- other: renal toxic effects
Target system / organ toxicity
- Critical effects observed:
- not specified
Any other information on results incl. tables
For female rats the NOEL was 250 mg / kg bw/day. For male rats, the NOEL could not be determined (it was lower than 62.5 mg/kg bw/day).
Applicant's summary and conclusion
- Conclusions:
- For female rats the NOEL was 250 mg / kg bw/day. For male rats, the NOEL could not be determined (it was lower than 62.5 mg/kg bw/day).
- Executive summary:
Camphene was daily administered to SPF Wistar rats (male and female) for 28 days at doses of 0, 62.5, 250 and 1000 mg / kg bw/day by gavage. Test method was according to OECD guideline 407. In all experimental groups, behaviour and general health were daily examined. The body weight and food consumption were determined twice a week, water consumption was determined once a week. Haematological and clinical tests, and urinalysis were also carried out. At the end of the study, animals were macroscopically examined. Alterations in organs were determined, organs were weighed and their relative weights calculated. Histologicalpreparations from the main organs were examined for microscopic changes. Body weight, haematological and clinical tests, and organ weights (absolute and relative) were statistically compared with the control group.
The highest dose group (1000 mg/kg bw/day) showed an increased salivation. Behaviour and general health from other treated groups were not significantly different from control group. The body weight and food- and water-consumption were not affected by the administration of the test substance.
Haematological tests revealed no evidence of compound-related toxicity. In male animals from the highest dose group, clinical chemistry tests revealed an increase in urea nitrogen levels and a decrease in phosphorus levels. The urine was normal and showed no evidence of compound-related toxicity.
In male and female animals from the highest dose group, absolute and relative liver weights were increased.Macroscopic examinations showed spotted kidneys in two male animals from the lowest dose group (62.5 mg / kg bw/day). In 3 mid-dose male animals and in all males from the highest dose group, colourless kidneys were observed. Animals from the highest dose group showed an increased vacuolization of the hepatocytes. Female animals from dose groups of 62.5 and 250 mg / kg bw/day did not show toxic effects. In all dose groups of male rats deposits of the test substance in the epithelium of the proximal renal tubules associated with necrosis of single cells have been observed. These effects seem to be specific for male rats and contingent upon alpha-2 microglobinemia. The renal toxic effects found in all dose levels groups in male rats are interpreted as uniquely specific for male rats, and as having no relevance for other animal species and humans.
Based on the results of this study, for female rats the NOEL was 250 mg / kg bw/day. For male rats, the NOEL could not be determined (it was lower than 62.5 mg/kg bw/day).
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.