Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 202-908-4 | CAS number: 101-02-0
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Ecotoxicological Summary
Administrative data
Hazard for aquatic organisms
Freshwater
- Hazard assessment conclusion:
- no data available: testing technically not feasible
Marine water
- Hazard assessment conclusion:
- no data available: testing technically not feasible
STP
- Hazard assessment conclusion:
- no data available: testing technically not feasible
Sediment (freshwater)
- Hazard assessment conclusion:
- no data available: testing technically not feasible
Sediment (marine water)
- Hazard assessment conclusion:
- no data available: testing technically not feasible
Hazard for air
Air
- Hazard assessment conclusion:
- no hazard identified
Hazard for terrestrial organisms
Soil
- Hazard assessment conclusion:
- no data available: testing technically not feasible
Hazard for predators
Secondary poisoning
- Hazard assessment conclusion:
- no potential for bioaccumulation
Additional information
TPP hydrolyzes rapidly (0.5 -1 hr) half-life and therefore the CSA will evaluate its primary hydrolysis product - phenol.
Phenol PNECs
Upon hydrolysis, one mole of TPP produces three moles of phenol. As such, it is the primary hydrolysis product for TPP. Phenol is well studied and reviewed. There are established PNECs in the published risk assessment report (ECB 2006 Phenol Risk Assessment).
PNECaqua= 7.7 μg/l (ECB 2006 Phenol Risk Assessment)
PNECmicroorganism= 2.1 mg/l (ECB 2006 Phenol Risk Assessment)
PNECsoil= 136 μg/kg dry weight (ECB 2006 Phenol Risk Assessment)
PNECsediment =115.6 mg/kg dw (ECB 2006 Phenol Risk Assessment)
Phosphorous Acid
Phosphorous acid is also a hydrolysis product of TPP; one mole of TPP produces one mole of phosphorous acid. Since the element phosphorous is an essential plant nutrient and phosphorous acid and its salts have low relatively low plant, animal and human toxicity, it appears that phosphorous acid will not have a significant impact on the environmental assessment of TPP. As such, the environmental assessment has focused just on phenol.
Conclusion on classification
TPP was classified as R50 -53 in the existing harmonised classifications. However, due to its low water solubility and rapid hydrolysis, it appears that TPP poses no hazard to the environment. The hydrolysis products, phenol and phosphorous acid, are not classified as dangerous to the environment. The registrants intend to seek a review and change to the existing harmonised classifications for TPP for the environment.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.