Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 604-162-9 | CAS number: 13977-65-6
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Sediment toxicity
Administrative data
Link to relevant study record(s)
Description of key information
No data available
Key value for chemical safety assessment
Additional information
Potassium phosphonate is an inorganic salt, completely dissociated in water
Potassium is a natural component of water, sediment and soil and The K content of argillaceous sediments and shale is primarily a function of the clay mineral content, commonly illite in shale units. No concern about potassium ion is raised for sediments.
Potassium uptake by Hydrilla verticillata (L.f.) Royle from sediment versus overlying water was evaluated in relation to the K demands incurred by this species during an 8-week period of growth. The investigation was conducted on a heterogeneous assemblage of sediments and in two solutions differing fundamentally in the presence (2.3 mg l−1) and absence of K (Barko, 1982).
Both biomass production and shoot morphology in Hydrilla varied significantly between solutions and among sediments. In contrast to N and P, which were readily mobilized from most sediments, K was mobilized from all sediments to only a minor extent by this species. Mobilization of K was proportional to interstitial water K concentration; yet on at least four of the six sediments examined, K supplied from sediments was insufficient to support the maximal growth of Hydrilla. The open water rather than the sediment appears to be the primary source of K supply to this species and perhaps to most other submersed freshwater macrophytes (Barko, 1982).
No further information is available on the behaviour of phosphonate in sediments, even it can be assumed that it will enter in the cycle of phosphorous, being slowly oxidized to phosphate. No concern based on all results of toxicity on microorganisms, macroorganisms at several trophic levels is raised for sediments as a consequence. The environmental exposure assessment will be performed with the equilibrium partitioning method.
Barko John W.,Influence of potassium source (sediment vs. open water) and sediment composition on the growth and nutrition of a submersed freshwater macrophyte (Hydrilla verticillata) (L.f.) Royle),Aquatic Botany, Volume 12, 1982, Pages 157–172
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.