Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Environmental fate & pathways

Endpoint summary

Administrative data

Description of key information

Hydrolysis

On the basis of the experimental studies of the structurally and functionally similar read across chemical and applying the weight of evidence approach, the hydrolysis half-life value of the test chemical can be expected to be > 5 days at pH 4, 7 and 9 & at a temperature of 50⁰C, respectively or > 1 years at pH 7 & at a temperature of 20⁰C, respectively.

Additional information

Hydrolysis

Data available for the structurally and functionally similar read across chemicals has been reviewed to determine the half-life of the test chemical. The studies are as mentioned below:

 

The half-life of the test chemical was determined at different pH range. The study was performed according to OECD Guideline 111 (Hydrolysis as a Function of pH) at a temperature of 50°C. The average percentage recovery of the test chemical after 5 days was determined to be 99.0, 99.5 and 98.7% at pH 4, 7 and 9, respectively. As no hydrolysis of test item was observed for a period of 5 days, the half-lives was determined to be > 5 days at pH 4, 7 and 9 & at a temperature of 50⁰C, respectively. Based on the half-life values, it is concluded that the test substance is not hydrolysable.

 

In an another study, the half-life of the test chemical was determined at pH 7.0. The study was performed at a temperature of 50°C. The only functional group present is the amide group, which hydrolyzes slowly at neutral pH. The half-life value of the test chemical was determined to be > 1 years at pH 7 & at a temperature of 20⁰C, respectively. Based on the half-life value, it is concluded that test chemical is not hydrolysable.

 

On the basis of the experimental studies of the structurally and functionally similar read across chemical and applying the weight of evidence approach, the hydrolysis half-life value of the test chemical can be expected to be > 5 days at pH 4, 7 and 9 & at a temperature of 50⁰C, respectively or > 1 years at pH 7 & at a temperature of 20⁰C, respectively.