Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 256-692-1 | CAS number: 50662-99-2
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Key value for chemical safety assessment
Genetic toxicity in vitro
Description of key information
Based on the prediction done using the OECD QSAR toolbox version 3.4 with log kow as the primary descriptor and considering the five closest read across substances, gene mutation was predicted for Cibacron Brilliant Yellow 3G-P. The study assumed the use of Salmonella typhimurium strainsTA 1535, TA 1537, TA 98, TA 100 and TA 102 with and without S9 metabolic activation system. Cibacron Brilliant Yellow 3G-P was predicted to not induce gene mutation in Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 in the presence and absence of S9 metabolic activation system and hence, according to the prediction made, is not likely to classify as a gene mutant in vitro.
Based on the predicted result it can be concluded that the substance is considered to not toxic as per the criteria mentioned in CLP regulation.
Link to relevant study records
- Endpoint:
- in vitro gene mutation study in bacteria
- Remarks:
- Type of genotoxicity: gene mutation
- Type of information:
- (Q)SAR
- Adequacy of study:
- weight of evidence
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- results derived from a valid (Q)SAR model and falling into its applicability domain, with limited documentation / justification
- Justification for type of information:
- Data is from prediction database and the supporting QMRF report has been attached
- Qualifier:
- according to guideline
- Guideline:
- other: Refer below principle
- Principles of method if other than guideline:
- Prediction is done using OECD QSAR Toolbox version 3.3, 2017
- GLP compliance:
- not specified
- Type of assay:
- bacterial reverse mutation assay
- Specific details on test material used for the study:
- - Name of the test material: Cibacron Brilliant Yellow 3G-P
- IUPAC name: trisodium 2,5-dichloro-4-(4-{[5-({4-chloro-6-[(4-sulfonatophenyl)amino]-1,3,5-triazin-2-yl}amino)-2-sulfonatophenyl]diazenyl}-3-methyl- 5-oxo-4,5-dihydro-1H-pyrazol-1-yl)benzenesulfonate
- Molecular formula: C25H18Cl3N9O10S3.3Na
- Molecular Weight: 872.974 g/mol
- Substance type: Organic
- Smiles: c1(\N=N\c2c(n(c3cc(c(S([O-])(=O)=O)cc3Cl)Cl)nc2C)O)cc(ccc1S(=O)(=O)[O-])Nc1nc(nc(n1)Cl)Nc1ccc(cc1)S(=O)(=O)[O-].[Na+].[Na+].[Na+] - Target gene:
- Histidine
- Species / strain / cell type:
- S. typhimurium TA 1535, TA 1537, TA 98, TA 100 and TA 102
- Details on mammalian cell type (if applicable):
- Not applicable
- Additional strain / cell type characteristics:
- not specified
- Cytokinesis block (if used):
- No data
- Metabolic activation:
- with
- Metabolic activation system:
- S metabolic activation system
- Test concentrations with justification for top dose:
- No data
- Vehicle / solvent:
- No data
- Untreated negative controls:
- not specified
- Negative solvent / vehicle controls:
- not specified
- True negative controls:
- not specified
- Positive controls:
- not specified
- Positive control substance:
- not specified
- Details on test system and experimental conditions:
- No data
- Rationale for test conditions:
- No data
- Evaluation criteria:
- Prediction was done considering a dose dependent increase in the number of revertants
- Statistics:
- No data
- Species / strain:
- S. typhimurium, other: TA 1535, TA 1537, TA 98, TA 100 and TA 102
- Metabolic activation:
- with
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- not specified
- Vehicle controls validity:
- not specified
- Untreated negative controls validity:
- not specified
- Positive controls validity:
- not specified
- Additional information on results:
- No data
- Conclusions:
- Cibacron Brilliant Yellow 3G-P was predicted to not induce gene mutation in Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 in the presence of S9 metabolic activation system and hence, according to the prediction made, is not likely to classify as a gene mutant in vitro.
- Executive summary:
Based on the prediction done using the OECD QSAR toolbox version 3.4 with log kow as the primary descriptor and considering the five closest read across substances, gene mutation was predicted for Cibacron Brilliant Yellow 3G-P. The study assumed the use of Salmonella typhimurium strainsTA 1535, TA 1537, TA 98, TA 100 and TA 102 with S9 metabolic activation system. Cibacron Brilliant Yellow 3G-P was predicted to not induce gene mutation in Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 in the presence of S9 metabolic activation system and hence, according to the prediction made, is not likely to classify as a gene mutant in vitro.
Based on the predicted result it can be concluded that the substance is considered to not toxic as per the criteria mentioned in CLP regulation.
Reference
The
prediction was based on dataset comprised from the following
descriptors: "Gene mutation"
Estimation method: Takes highest mode value from the 6 nearest neighbours
Domain logical expression:Result: In Domain
((((((((("a"
or "b" or "c" or "d" )
and ("e"
and (
not "f")
)
)
and "g" )
and "h" )
and "i" )
and ("j"
and (
not "k")
)
)
and ("l"
and (
not "m")
)
)
and ("n"
and (
not "o")
)
)
and ("p"
and "q" )
)
Domain
logical expression index: "a"
Referential
boundary: The
target chemical should be classified as Substituted Triazines (Acute
toxicity) by US-EPA New Chemical Categories
Domain
logical expression index: "b"
Referential
boundary: The
target chemical should be classified as SN1 OR SN1 >> Nitrenium Ion
formation OR SN1 >> Nitrenium Ion formation >> Aromatic azo OR SN1 >>
Nitrenium Ion formation >> Unsaturated heterocyclic azo by DNA binding
by OECD ONLY
Domain
logical expression index: "c"
Referential
boundary: The
target chemical should be classified as Schiff base formation OR Schiff
base formation >> Pyrazolones and Pyrazolidinones derivatives OR Schiff
base formation >> Pyrazolones and Pyrazolidinones derivatives >>
Pyrazolones and Pyrazolidinones OR SNAr OR SNAr >> Nucleophilic
aromatic substitution on activated aryl and heteroaryl compounds OR SNAr
>> Nucleophilic aromatic substitution on activated aryl and heteroaryl
compounds >> Activated aryl and heteroaryl compounds by Protein binding
by OASIS v1.3 ONLY
Domain
logical expression index: "d"
Referential
boundary: The
target chemical should be classified as Acylation OR Acylation >> Direct
Acylation Involving a Leaving group OR Acylation >> Direct Acylation
Involving a Leaving group >> Acetates OR SN2 OR SN2 >> SN2 reaction at
sp3 carbon atom OR SN2 >> SN2 reaction at sp3 carbon atom >> Alkyl diazo
OR SNAr OR SNAr >> Nucleophilic aromatic substitution OR SNAr >>
Nucleophilic aromatic substitution >> Halo-triazines by Protein binding
by OECD ONLY
Domain
logical expression index: "e"
Referential
boundary: The
target chemical should be classified as No alert found by DNA binding by
OASIS v.1.3
Domain
logical expression index: "f"
Referential
boundary: The
target chemical should be classified as AN2 OR AN2 >> Michael-type
addition, quinoid structures OR AN2 >> Michael-type addition, quinoid
structures >> Flavonoids OR AN2 >> Michael-type addition, quinoid
structures >> Quinones OR AN2 >> Carbamoylation after isocyanate
formation OR AN2 >> Carbamoylation after isocyanate formation >>
N-Hydroxylamines OR AN2 >> Michael-type addition on alpha,
beta-unsaturated carbonyl compounds OR AN2 >> Michael-type addition on
alpha, beta-unsaturated carbonyl compounds >> Four- and Five-Membered
Lactones OR AN2 >> Schiff base formation OR AN2 >> Schiff base formation
>> Dicarbonyl compounds OR AN2 >> Schiff base formation >> Halofuranones
OR AN2 >> Schiff base formation by aldehyde formed after metabolic
activation OR AN2 >> Schiff base formation by aldehyde formed after
metabolic activation >> Geminal Polyhaloalkane Derivatives OR AN2 >>
Shiff base formation after aldehyde release OR AN2 >> Shiff base
formation after aldehyde release >> Specific Acetate Esters OR AN2 >>
Shiff base formation for aldehydes OR AN2 >> Shiff base formation for
aldehydes >> Geminal Polyhaloalkane Derivatives OR AN2 >> Thioacylation
via nucleophilic addition after cysteine-mediated thioketene formation
OR AN2 >> Thioacylation via nucleophilic addition after
cysteine-mediated thioketene formation >> Haloalkenes with
Electron-Withdrawing Groups OR Non-covalent interaction OR Non-covalent
interaction >> DNA intercalation OR Non-covalent interaction >> DNA
intercalation >> Acridone, Thioxanthone, Xanthone and Phenazine
Derivatives OR Non-covalent interaction >> DNA intercalation >>
Coumarins OR Non-covalent interaction >> DNA intercalation >> DNA
Intercalators with Carboxamide Side Chain OR Non-covalent interaction >>
DNA intercalation >> Fused-Ring Nitroaromatics OR Non-covalent
interaction >> DNA intercalation >> Fused-Ring Primary Aromatic Amines
OR Non-covalent interaction >> DNA intercalation >> Quinones OR
Non-specific OR Non-specific >> Incorporation into DNA/RNA, due to
structural analogy with nucleoside bases OR Non-specific >>
Incorporation into DNA/RNA, due to structural analogy with nucleoside
bases >> Specific Imine and Thione Derivatives OR Radical OR Radical
>> Generation of ROS by glutathione depletion (indirect) OR Radical >>
Generation of ROS by glutathione depletion (indirect) >> Haloalkanes
Containing Heteroatom OR Radical >> Radical mechanism by ROS formation
OR Radical >> Radical mechanism by ROS formation (indirect) or direct
radical attack on DNA OR Radical >> Radical mechanism by ROS formation
(indirect) or direct radical attack on DNA >> Organic Peroxy Compounds
OR Radical >> Radical mechanism by ROS formation >> Acridone,
Thioxanthone, Xanthone and Phenazine Derivatives OR Radical >> Radical
mechanism by ROS formation >> Polynitroarenes OR Radical >> Radical
mechanism via ROS formation (indirect) OR Radical >> Radical mechanism
via ROS formation (indirect) >> C-Nitroso Compounds OR Radical >>
Radical mechanism via ROS formation (indirect) >> Conjugated Nitro
Compounds OR Radical >> Radical mechanism via ROS formation (indirect)
>> Coumarins OR Radical >> Radical mechanism via ROS formation
(indirect) >> Flavonoids OR Radical >> Radical mechanism via ROS
formation (indirect) >> Fused-Ring Nitroaromatics OR Radical >> Radical
mechanism via ROS formation (indirect) >> Fused-Ring Primary Aromatic
Amines OR Radical >> Radical mechanism via ROS formation (indirect) >>
Geminal Polyhaloalkane Derivatives OR Radical >> Radical mechanism via
ROS formation (indirect) >> Hydrazine Derivatives OR Radical >> Radical
mechanism via ROS formation (indirect) >> N-Hydroxylamines OR Radical >>
Radical mechanism via ROS formation (indirect) >> Nitro Azoarenes OR
Radical >> Radical mechanism via ROS formation (indirect) >>
Nitroaniline Derivatives OR Radical >> Radical mechanism via ROS
formation (indirect) >> Nitroarenes with Other Active Groups OR Radical
>> Radical mechanism via ROS formation (indirect) >> Nitrophenols,
Nitrophenyl Ethers and Nitrobenzoic Acids OR Radical >> Radical
mechanism via ROS formation (indirect) >> p-Aminobiphenyl Analogs OR
Radical >> Radical mechanism via ROS formation (indirect) >>
p-Substituted Mononitrobenzenes OR Radical >> Radical mechanism via ROS
formation (indirect) >> Quinones OR Radical >> Radical mechanism via ROS
formation (indirect) >> Single-Ring Substituted Primary Aromatic Amines
OR Radical >> Radical mechanism via ROS formation (indirect) >> Specific
Imine and Thione Derivatives OR SN1 OR SN1 >> Alkylation after
metabolically formed carbenium ion species OR SN1 >> Alkylation after
metabolically formed carbenium ion species >> Polycyclic Aromatic
Hydrocarbon Derivatives OR SN1 >> DNA bases alkylation by carbenium ion
formed OR SN1 >> DNA bases alkylation by carbenium ion formed >>
Diazoalkanes OR SN1 >> Nucleophilic attack after carbenium ion formation
OR SN1 >> Nucleophilic attack after carbenium ion formation >> N-Nitroso
Compounds OR SN1 >> Nucleophilic attack after carbenium ion formation >>
Pyrrolizidine Derivatives OR SN1 >> Nucleophilic attack after carbenium
ion formation >> Specific Acetate Esters OR SN1 >> Nucleophilic attack
after diazonium or carbenium ion formation OR SN1 >> Nucleophilic attack
after diazonium or carbenium ion formation >> Nitroarenes with Other
Active Groups OR SN1 >> Nucleophilic attack after metabolic nitrenium
ion formation OR SN1 >> Nucleophilic attack after metabolic nitrenium
ion formation >> Fused-Ring Primary Aromatic Amines OR SN1 >>
Nucleophilic attack after metabolic nitrenium ion formation >>
N-Hydroxylamines OR SN1 >> Nucleophilic attack after metabolic nitrenium
ion formation >> p-Aminobiphenyl Analogs OR SN1 >> Nucleophilic attack
after metabolic nitrenium ion formation >> Single-Ring Substituted
Primary Aromatic Amines OR SN1 >> Nucleophilic attack after nitrenium
and/or carbenium ion formation OR SN1 >> Nucleophilic attack after
nitrenium and/or carbenium ion formation >> N-Nitroso Compounds OR SN1
>> Nucleophilic attack after reduction and nitrenium ion formation OR
SN1 >> Nucleophilic attack after reduction and nitrenium ion formation
>> Conjugated Nitro Compounds OR SN1 >> Nucleophilic attack after
reduction and nitrenium ion formation >> Fused-Ring Nitroaromatics OR
SN1 >> Nucleophilic attack after reduction and nitrenium ion formation
>> Nitro Azoarenes OR SN1 >> Nucleophilic attack after reduction and
nitrenium ion formation >> Nitroaniline Derivatives OR SN1 >>
Nucleophilic attack after reduction and nitrenium ion formation >>
Nitroarenes with Other Active Groups OR SN1 >> Nucleophilic attack after
reduction and nitrenium ion formation >> Nitrobiphenyls and Bridged
Nitrobiphenyls OR SN1 >> Nucleophilic attack after reduction and
nitrenium ion formation >> Nitrophenols, Nitrophenyl Ethers and
Nitrobenzoic Acids OR SN1 >> Nucleophilic attack after reduction and
nitrenium ion formation >> Polynitroarenes OR SN1 >> Nucleophilic attack
after reduction and nitrenium ion formation >> p-Substituted
Mononitrobenzenes OR SN1 >> Nucleophilic substitution after
glutathione-induced nitrenium ion formation OR SN1 >> Nucleophilic
substitution after glutathione-induced nitrenium ion formation >>
C-Nitroso Compounds OR SN1 >> Nucleophilic substitution on diazonium
ions OR SN1 >> Nucleophilic substitution on diazonium ions >> Specific
Imine and Thione Derivatives OR SN2 OR SN2 >> Acylation OR SN2 >>
Acylation >> Specific Acetate Esters OR SN2 >> Acylation involving a
leaving group OR SN2 >> Acylation involving a leaving group >> Geminal
Polyhaloalkane Derivatives OR SN2 >> Acylation involving a leaving group
after metabolic activation OR SN2 >> Acylation involving a leaving group
after metabolic activation >> Geminal Polyhaloalkane Derivatives OR SN2
>> Alkylation, direct acting epoxides and related OR SN2 >> Alkylation,
direct acting epoxides and related >> Epoxides and Aziridines OR SN2 >>
Alkylation, direct acting epoxides and related after P450-mediated
metabolic activation OR SN2 >> Alkylation, direct acting epoxides and
related after P450-mediated metabolic activation >> Haloalkenes with
Electron-Withdrawing Groups OR SN2 >> Alkylation, direct acting epoxides
and related after P450-mediated metabolic activation >> Polycyclic
Aromatic Hydrocarbon Derivatives OR SN2 >> Alkylation, nucleophilic
substitution at sp3-carbon atom OR SN2 >> Alkylation, nucleophilic
substitution at sp3-carbon atom >> Sulfonates and Sulfates OR SN2 >>
Alkylation, ring opening SN2 reaction OR SN2 >> Alkylation, ring opening
SN2 reaction >> Four- and Five-Membered Lactones OR SN2 >> Direct acting
epoxides formed after metabolic activation OR SN2 >> Direct acting
epoxides formed after metabolic activation >> Coumarins OR SN2 >> Direct
acting epoxides formed after metabolic activation >> Quinoline
Derivatives OR SN2 >> DNA alkylation OR SN2 >> DNA alkylation >>
Alkylphosphates, Alkylthiophosphates and Alkylphosphonates OR SN2 >> DNA
alkylation >> Vicinal Dihaloalkanes OR SN2 >> Internal SN2 reaction with
aziridinium and/or cyclic sulfonium ion formation (enzymatic) OR SN2 >>
Internal SN2 reaction with aziridinium and/or cyclic sulfonium ion
formation (enzymatic) >> Vicinal Dihaloalkanes OR SN2 >> Nucleophilic
substitution at sp3 Carbon atom OR SN2 >> Nucleophilic substitution at
sp3 Carbon atom >> Haloalkanes Containing Heteroatom OR SN2 >>
Nucleophilic substitution at sp3 Carbon atom >> Halofuranones OR SN2 >>
Nucleophilic substitution at sp3 Carbon atom >> Specific Acetate Esters
OR SN2 >> Nucleophilic substitution at sp3 carbon atom after thiol
(glutathione) conjugation OR SN2 >> Nucleophilic substitution at sp3
carbon atom after thiol (glutathione) conjugation >> Geminal
Polyhaloalkane Derivatives OR SN2 >> SN2 at an activated carbon atom OR
SN2 >> SN2 at an activated carbon atom >> Quinoline Derivatives OR SN2
>> SN2 at Nitrogen Atom OR SN2 >> SN2 at Nitrogen Atom >>
N-acetoxyamines OR SN2 >> SN2 attack on activated carbon Csp3 or Csp2 OR
SN2 >> SN2 attack on activated carbon Csp3 or Csp2 >> Nitroarenes with
Other Active Groups OR SN2 >> SN2 reaction at nitrogen-atom bound to a
good leaving group OR SN2 >> SN2 reaction at nitrogen-atom bound to a
good leaving group >> N-Acetoxyamines by DNA binding by OASIS v.1.3
Domain
logical expression index: "g"
Referential
boundary: The
target chemical should be classified as SN1 AND SN1 >> Nitrenium Ion
formation AND SN1 >> Nitrenium Ion formation >> Aromatic azo AND SN1 >>
Nitrenium Ion formation >> Unsaturated heterocyclic azo by DNA binding
by OECD ONLY
Domain
logical expression index: "h"
Referential
boundary: The
target chemical should be classified as Not bioavailable by Lipinski
Rule Oasis ONLY
Domain
logical expression index: "i"
Similarity
boundary:Target:
CC1C(N=Nc2cc(Nc3nc(Nc4ccc(S(=O)(=O)O{-}.[Na]{+})cc4)nc(Cl)n3)ccc2S(=O)(=O)O{-}.[Na]{+})C(=O)N(c2cc(Cl)c(S(=O)(=O)O{-}.[Na]{+})cc2Cl)N=1
Threshold=10%,
Dice(Atom centered fragments)
Atom type; Count H attached; Hybridization
Domain
logical expression index: "j"
Referential
boundary: The
target chemical should be classified as (!Undefined)Group All Lipid
Solubility < 0.01 g/kg AND Group All Melting Point > 200 C by Skin
irritation/corrosion Exclusion rules by BfR
Domain
logical expression index: "k"
Referential
boundary: The
target chemical should be classified as (!Undefined)Group CNS Surface
Tension > 62 mN/m OR Group All log Kow < -3.1 OR Group CNS Melting Point
> 120 C OR Group CNS Melting Point > 50 C OR Group CNS Molecular Weight
> 620 g/mol by Skin irritation/corrosion Exclusion rules by BfR
Domain
logical expression index: "l"
Referential
boundary: The
target chemical should be classified as Not possible to classify
according to these rules by Keratinocyte gene expression
Domain
logical expression index: "m"
Referential
boundary: The
target chemical should be classified as High gene expression OR High
gene expression >> alpha,beta-Carbonyl compounds with polarized double
or triple bonds by Keratinocyte gene expression
Domain
logical expression index: "n"
Referential
boundary: The
target chemical should be classified as H-acceptor-path3-H-acceptor AND
Hydrazine by in vivo mutagenicity (Micronucleus) alerts by ISS
Domain
logical expression index: "o"
Referential
boundary: The
target chemical should be classified as Aromatic diazo by in vivo
mutagenicity (Micronucleus) alerts by ISS
Domain
logical expression index: "p"
Parametric
boundary:The
target chemical should have a value of log Kow which is >= -2.93
Domain
logical expression index: "q"
Parametric
boundary:The
target chemical should have a value of log Kow which is <= 4.27
Endpoint conclusion
- Endpoint conclusion:
- no adverse effect observed (negative)
Genetic toxicity in vivo
Endpoint conclusion
- Endpoint conclusion:
- no study available
Additional information
Gene mutation in vitro:
Prediction model based estimation for target chemical and data from read across chemical have been reviewed to determine the mutagenic nature of Cibacron Brilliant Yellow 3G-P (IUPAC name: trisodium 2,5-dichloro-4-(4-{[5-({4-chloro-6-[(4-sulfonatophenyl)amino]- 1,3,5-triazin-2-yl}amino)-2-sulfonatophenyl]diazenyl}- 3-methyl-5-oxo-4,5-dihydro-1H-pyrazol-1-yl)benzenesulfonate). The studies are summarized as below:
Based on the prediction done using the OECD QSAR toolbox version 3.4 with log kow as the primary descriptor and considering the five closest read across substances, gene mutation was predicted for Cibacron Brilliant Yellow 3G-P. The study assumed the use of Salmonella typhimurium strainsTA 1535, TA 1537, TA 98, TA 100 and TA 102 with and without S9 metabolic activation system. Cibacron Brilliant Yellow 3G-P was predicted to not induce gene mutation in Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 in the presence and absence of S9 metabolic activation system and hence, according to the prediction made, is not likely to classify as a gene mutant in vitro.
In another prediction done for the target chemical, Gene mutation toxicity was predicted for Cibacron Brilliant Yellow 3G-P using the battery approach from Danish QSAR database (2017). The study assumed the use of Salmonella typhimurium bacteria in the Ames test. The end point for gene mutation has been modeled in the Danish QSAR using the three software systems Leadscope, CASE Ultra and SciQSAR. Based on predictions from these three systems, a fourth and overall battery prediction is made. The battery prediction is made using the so called Battery algorithm. With the battery approach it is in many cases possible to reduce “noise” from the individual model estimates and thereby improve accuracy and/or broaden the applicability domain. Cibacron Brilliant Yellow 3G-P was assumed to not induce mutation in Salmonella typhimurium by the Ames assay performed and hencethe chemical is predictedto notclassify as a gene mutant in vitro.
In another study for structurally and functionally similar read across chemical, Ishidate et al (Food and chemical toxicology, 1984) performed gene mutation toxicity study to determine the mutagenic nature of Food red 102 (RA CAS no 2611 -82 -7; IUPAC name: 1,3-Naphthalenedisulfonic acid, 7-hydroxy-8-((4-sulfo-1-naphthalenyl)azo)-, trisodium salt). The study was performed using S. typhimurium strains TA92, TA1535, TA100, TA1537, TA94 and TA98 with and without S9 metabolic activation system. The test was performed as per the preincubation assay at six different concentrations with 5 mg/plate being the maximum concentration. The chemical was dissolved in phosphate buffer. Preincubation was performed for 20 mins and the exposure duration was for 48 hrs. The result was considered positive if the number of colonies found was twice the number in the control (exposed to the appropriate solvent or untreated). Food red 102 failed to induce a doubling of revertant colonies over the control using S. typhimurium strains TA92, TA1535, TA100, TA1537, TA94 and TA98 in the presence and absence of S9 metabolic activation system and hence is not likely to classify as a gene mutant in vitro.
In the same study by Ishidate et al, Chromosomal aberration study was performed to determine the mutagenic nature of Food red 102 (RA CAS no 2611 -82 -7; IUPAC name:1,3-Naphthalenedisulfonic acid, 7-hydroxy-8-((4-sulfo-1-naphthalenyl)azo)-, trisodium salt). The cells were exposed to the test material at three different doses with 1 mg/mL being the maximum concentration for 24 and 48 hr. Colcemid (final concn 0.2µg/ml) was added to the culture 2 hr before cell harvesting. The cells were then trypsinized and suspended in a hypotonic KCI solution (0.075 M) for 13 min at room temperature. After centrifugation the cells were fixed with acetic acid-methanol (1:3, v/v) and spread on clean glass slides. After air-drying, the slides were stained with Giemsa solution for 12-15 min. A hundred well-spread metaphases were observed under the microscope. In the present studies, no metabolic activation systems were applied. The incidence of polyploid cells as well as of cells with structural chromosomal aberrations such as chromatid or chromosome gaps, breaks, exchanges, ring formations, fragmentations and others, was recorded on each culture plate. Untreated cells and solvent-treated cells served as negative controls, in which the incidence of aberrations was usually less than 3.0%. The results were considered to be negative if the incidence was less than 4.9%, equivocal if it was between 5.0 and 9.9%, and positive if it was more than 10.0%. Food red 102 did not induce chromosomal aberration in chinese hamster fibroblast cell line CHL and hence is not likely to classify as a gene mutant in vitro.
Zeiger et al performed gene mutation toxicity study for another structurally and functionally similar read across chemical. Salmonella/microsome test in the absence of exogenous metabolic activation and in the presence of liver S-9 from Aroclor-induced male Sprague-Dawley rats and Syrian hamsters was performed to evaluate the mutagenic nature of the test compound Direct Red 89 (RA CAS no 6358 -29 -8; IUPAC name: disodium 8-({4'-[(4-ethoxyphenyl)diazenyl]-3,3'-dimethylbiphenyl-4-yl}diazenyl)-7-hydroxynaphthalene-1,3-disulfonate) using S. typhimurium tester strains TA1535, TA97, TA98 and TA100. The study was performed as per the preincubation assay bu preicubation for 20 mins. The test compound was used at a dosage level of 0, 100, 333, 1000, 3333 or 10000 µg/plate in the preincubation assay of 48 hrs. Concurrent solvent and positive controls were also included in the study. Direct Red 39 failed to induce gene mutation in theS. typhimuriumtester strains TA1535, TA97, TA98 and TA100 in the presence and absence of S9 metabolic activation system and hence is negative for mutation in vitro.
Based on the information available for target chemical and its read across, Cibacron Brilliant Yellow 3G-P does not exhibit gene mutation in vitro. Hence the chemical is considered to not toxic as per the criteria mentioned in CLP regulation.
Justification for classification or non-classification
Based on the information available for target chemical and its read across, Cibacron Brilliant Yellow 3G-P (IUPAC name: trisodium 2,5-dichloro-4-(4-{[5-({4-chloro-6-[(4-sulfonatophenyl)amino]- 1,3,5-triazin-2-yl}amino)-2-sulfonatophenyl]diazenyl}- 3-methyl-5-oxo-4,5-dihydro-1H-pyrazol-1-yl)benzenesulfonate) does not exhibit gene mutation in vitro. Hence the chemical is considered to not toxic as per the criteria mentioned in CLP regulation.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.