Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 210-540-0 | CAS number: 618-03-1
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Key value for chemical safety assessment
Genetic toxicity in vitro
Description of key information
Based on the prediction done using the OECD QSAR toolbox version 3.3 with log kow as the primary descriptor and considering the five closest read across substances, gene mutation was predicted for 2-aminotoluene-4-sulphonic acid. The study assumed the use of Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 with S9 metabolic activation system. 2-aminotoluene-4-sulphonic acid was predicted to not induce gene mutation in Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 in the presence of S9 metabolic activation system and hence, according to the prediction made, it is not likely to classify as a gene mutant in vitro.
Based on the predicted result it can be concluded that the substance is considered to not toxic as per the criteria mentioned in CLP regulation.
Link to relevant study records
- Endpoint:
- in vitro gene mutation study in bacteria
- Remarks:
- Type of genotoxicity: gene mutation
- Type of information:
- (Q)SAR
- Adequacy of study:
- key study
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- results derived from a valid (Q)SAR model and falling into its applicability domain, with limited documentation / justification
- Justification for type of information:
- Data is from OECD QSAR Toolbox version 3.3 and the supporting QMRF report has been attached
- Qualifier:
- according to guideline
- Guideline:
- other: Refer below principle
- Principles of method if other than guideline:
- Prediction is done using OECD QSAR Toolbox version 3.3, 2017
- GLP compliance:
- not specified
- Type of assay:
- bacterial reverse mutation assay
- Specific details on test material used for the study:
- - Name of test material (IUPAC name): 2-aminotoluene-4-sulphonic acid
- Molecular formula: C7H9NO3S
- Molecular weight: 187.218 g/mol
- Smiles notation: O=S(=O)(O)c1ccc(c(N)c1)C
- InChl: 1S/C7H9NO3S/c1-5-2-3-6(4-7(5)8)12(9,10)11/h2-4H,8H2,1H3,(H,9,10,11)
- Substance type: Organic - Target gene:
- Histidine
- Species / strain / cell type:
- S. typhimurium TA 1535, TA 1537, TA 98, TA 100 and TA 102
- Details on mammalian cell type (if applicable):
- Not applicable
- Additional strain / cell type characteristics:
- not specified
- Cytokinesis block (if used):
- No data
- Metabolic activation:
- with
- Metabolic activation system:
- S9 metabolic activation system
- Test concentrations with justification for top dose:
- No data
- Vehicle / solvent:
- No data
- Untreated negative controls:
- not specified
- Negative solvent / vehicle controls:
- not specified
- True negative controls:
- not specified
- Positive controls:
- not specified
- Positive control substance:
- not specified
- Details on test system and experimental conditions:
- No data
- Rationale for test conditions:
- No data
- Evaluation criteria:
- Prediction is done considerng a dose dependent increase in the number of revertants/plate
- Statistics:
- No data
- Species / strain:
- S. typhimurium, other: TA 1535, TA 1537, TA 98, TA 100 and TA 102
- Metabolic activation:
- not specified
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- not specified
- Vehicle controls validity:
- not specified
- Untreated negative controls validity:
- not specified
- Positive controls validity:
- not specified
- Additional information on results:
- No data
- Remarks on result:
- no mutagenic potential (based on QSAR/QSPR prediction)
- Conclusions:
- 2-aminotoluene-4-sulphonic acid was predicted to not induce gene mutation in Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 in the presence of S9 metabolic activation system and hence, according to the prediction made, it is not likely to classify as a gene mutant in vitro.
- Executive summary:
Based on the prediction done using the OECD QSAR toolbox version 3.3 with log kow as the primary descriptor and considering the five closest read across substances, gene mutation was predicted for 2-aminotoluene-4-sulphonic acid. The study assumed the use of Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 with S9 metabolic activation system. 2-aminotoluene-4-sulphonic acid was predicted to not induce gene mutation in Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 in the presence of S9 metabolic activation system and hence, according to the prediction made, it is not likely to classify as a gene mutant in vitro.
Based on the predicted result it can be concluded that the substance is considered to not toxic as per the criteria mentioned in CLP regulation.
Reference
The
prediction was based on dataset comprised from the following
descriptors: "Gene mutation"
Estimation method: Takes highest mode value from the 10 nearest
neighbours
Domain logical expression:Result: In Domain
(((((("a"
or "b" or "c" or "d" )
and "e" )
and ("f"
and (
not "g")
)
)
and ("h"
and (
not "i")
)
)
and "j" )
and ("k"
and "l" )
)
Domain
logical expression index: "a"
Referential
boundary: The
target chemical should be classified as Anilines (Acute toxicity) by
US-EPA New Chemical Categories
Domain
logical expression index: "b"
Referential
boundary: The
target chemical should be classified as Moderate binder, NH2 group by
Estrogen Receptor Binding
Domain
logical expression index: "c"
Referential
boundary: The
target chemical should be classified as Acid moiety OR Anilines
(Hindered) by Aquatic toxicity classification by ECOSAR ONLY
Domain
logical expression index: "d"
Referential
boundary: The
target chemical should be classified as Radical OR Radical >> Radical
mechanism via ROS formation (indirect) OR Radical >> Radical mechanism
via ROS formation (indirect) >> Single-Ring Substituted Primary Aromatic
Amines OR SN1 OR SN1 >> Nucleophilic attack after metabolic nitrenium
ion formation OR SN1 >> Nucleophilic attack after metabolic nitrenium
ion formation >> Single-Ring Substituted Primary Aromatic Amines by DNA
binding by OASIS v.1.3 ONLY
Domain
logical expression index: "e"
Referential
boundary: The
target chemical should be classified as Radical AND Radical >> Radical
mechanism via ROS formation (indirect) AND Radical >> Radical mechanism
via ROS formation (indirect) >> Single-Ring Substituted Primary Aromatic
Amines AND SN1 AND SN1 >> Nucleophilic attack after metabolic nitrenium
ion formation AND SN1 >> Nucleophilic attack after metabolic nitrenium
ion formation >> Single-Ring Substituted Primary Aromatic Amines by DNA
binding by OASIS v.1.3 ONLY
Domain
logical expression index: "f"
Referential
boundary: The
target chemical should be classified as No alert found by DNA binding by
OECD
Domain
logical expression index: "g"
Referential
boundary: The
target chemical should be classified as Michael addition OR Michael
addition >> P450 Mediated Activation to Quinones and Quinone-type
Chemicals OR Michael addition >> P450 Mediated Activation to Quinones
and Quinone-type Chemicals >> Alkyl phenols OR Michael addition >> P450
Mediated Activation to Quinones and Quinone-type Chemicals >>
Hydroquinones OR SN1 OR SN1 >> Nitrenium Ion formation OR SN1 >>
Nitrenium Ion formation >> Primary aromatic amine OR SN1 >> Nitrenium
Ion formation >> Tertiary aromatic amine by DNA binding by OECD
Domain
logical expression index: "h"
Referential
boundary: The
target chemical should be classified as No alert found by Protein
binding by OASIS v1.3
Domain
logical expression index: "i"
Referential
boundary: The
target chemical should be classified as Acylation OR Acylation >> Ester
aminolysis OR Acylation >> Ester aminolysis >> Amides by Protein binding
by OASIS v1.3
Domain
logical expression index: "j"
Referential
boundary: The
target chemical should be classified as Class 5 (Not possible to
classify according to these rules) by Acute aquatic toxicity
classification by Verhaar (Modified) ONLY
Domain
logical expression index: "k"
Parametric
boundary:The
target chemical should have a value of log Kow which is >= -2.06
Domain
logical expression index: "l"
Parametric
boundary:The
target chemical should have a value of log Kow which is <= 1.8
Endpoint conclusion
- Endpoint conclusion:
- no adverse effect observed (negative)
Genetic toxicity in vivo
Endpoint conclusion
- Endpoint conclusion:
- no study available
Additional information
Gene mutation in vitro:
Prediction model based estimation and data from read across chemicals have been reviewed to determine the mutagenic nature of 2-aminotoluene-4-sulphonic acid. The studies are as summarized below:
Based on the prediction done using the OECD QSAR toolbox version 3.3 with log kow as the primary descriptor and considering the five closest read across substances, gene mutation was predicted for 2-aminotoluene-4-sulphonic acid. The study assumed the use of Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 with and without S9 metabolic activation system. 2-aminotoluene-4-sulphonic acid was predicted to not induce gene mutation in Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 in the presence and absence of S9 metabolic activation system and hence, according to the prediction made, it is not likely to classify as a gene mutant in vitro.
Based on the prediction done using the OECD QSAR toolbox version 3.3 with log kow as the primary descriptor and considering the five closest read across substances, chromosomal aberration was predicted for 2-aminotoluene-4-sulphonic acid. The study assumed the use of Chinese hamster ovary (CHO) cell line with and without S9 metabolic activation system. 2-aminotoluene-4-sulphonic acid was predicted to not induce chromosomal aberrations in Chinese hamster ovary (CHO) cell line in the presence and absence of S9 metabolic activation system and hence, according to the prediction made, it is not likely to classify as a gene mutant in vitro.
Gene mutation toxicity was predicted for 2-aminotoluene-4-sulphonic acid using the battery approach from Danish QSAR database (2017). The study assumed the use of Salmonella typhimurium bacteria in the Ames test. The end point for gene mutation has been modeled in the Danish QSAR using the three software systems Leadscope, CASE Ultra and SciQSAR. Based on predictions from these three systems, a fourth and overall battery prediction is made. The battery prediction is made using the so called Battery algorithm. With the battery approach it is in many cases possible to reduce “noise” from the individual model estimates and thereby improve accuracy and/or broaden the applicability domain. Gene mutation toxicity study as predicted by Danish QSAR for 2-aminotoluene-4-sulphonic acid is negative and hence the chemical is predicted to not classify as a gene mutant in vitro.
The predicted data is further supported by data from read across chemical.
The read across chemical 2-Amino- 1 -phenol-4-sulfonic acid (RA CAS no 98 -37 -3; IUPAC name: 3-amino-4-hydroxybenzenesulfonic acid) was studied by Zeiger et al (Environmental and Molecular Mutagenesis, 1988) to for its ability to induce mutations in strains of Salmonella typhimurium. The test was performed in a preincubation assay and the test chemical was dissolved in DMSO as the solvent and tested at concentration of 0, 33, 100, 333, 1000 or 2000 µg/plate using Salmonella typhimurium TA100, TA1535, TA97 and TA98 in the presence and absence of rat and hamster liver S9 metabolic activation system. Concurrent solvent and negative control chemicals were included in the study. 3-amino-4-hydroxybenzenesulphonic is not mutagenic to the Salmonella typhimurium strains TA100, TA1535, TA97 and TA98 in the presence and absence of rat and hamster liver S9 metabolic activation system.
Zeiger et al (Environmental and Molecular Mutagenesis, 1988) also studied the mutagenic activity of another 60 -70% structuraly similar read across chemical. m-Amino benzenesulfonic acid (RA CAS no 121 -47 -1; IUPAC name: 3-Aminobenzene sulphonic acid) was studied for its ability to induce mutations in strains of Salmonella typhimurium. The test compound was dissolved in DMSO and was tested at concentration of 0, 33, 100, 333, 1000 or 3333 µg/plate using Salmonella typhimurium TA100, TA1535, TA97 and TA98 in the presence and absence of 10 % and 30 % rat and hamster liver S9 metabolic activation system. Preincubation assay was performed with a preicubation for 20 mins. The plates were observed for histidine independence after 2 days incubation period. Concurrent solvent and positive controls were included in the study. m-Amino benzene sulfonic acidis not mutagenic to theSalmonella typhimurium TA100, TA1535, TA97 and TA98 in the presence and absence of rat and hamster liver S9 metabolic activation system and hence it is not likely to classify as a gene mutant in vitro.
Gene toxicity in vitro study was performed by Garner and Nutman (Mutation Research, 1977) on the Salmonella typhimurium TA1538 strain for the 50 -60% structrally and functionally simlar read across chemical 4-Amino-1-naphthalene sulphonic acid (RA CAS no 84 -86 -6). 4-Amino-1-naphthalene sulphonic acid was dissolved in DMSO and used at a concentration of 0, 50 and 100 µg/ plate in the presence and absence of S9 metabolic activation system. The plates were incubated for 48 hrs. Concurrent solvent and positive control chemicals were included in the study. All assays were performed in duplicate and the numbers of revertants on test plates greater than 30 was classified as being significantly mutagenic. The given test material 4-Amino-1-naphthalene sulphonic acid failed to induce mutation in Salmonella typhimurium TA1538 strain with and without S9 metabolic activation system and hence is not likely to classify as a gene mutant in vitro.
Based on the data available for the target chemical and its read across, 2-aminotoluene-4-sulphonic acid does not exhibit gene mutation in vitro. Hence the test chemical is not likely to classify as a gene mutant in vitro.
Justification for classification or non-classification
Based on the data available for the target chemical and its read across, 2-aminotoluene-4-sulphonic acid (CAS no 618 -03 -1) does not exhibit gene mutation in vitro. Hence the test chemical is not likely to classify as a gene mutant in vitro.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.