Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Toxicological information

Genetic toxicity: in vitro

Currently viewing:

Administrative data

Endpoint:
in vitro gene mutation study in bacteria
Remarks:
Type of genotoxicity: gene mutation
Type of information:
(Q)SAR
Adequacy of study:
key study
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
results derived from a valid (Q)SAR model and falling into its applicability domain, with limited documentation / justification
Justification for type of information:
Data is from OECD QSAR Toolbox version 3.3 and the supporting QMRF report has been attached

Data source

Reference
Reference Type:
other: Predicted data
Title:
[R]: Negative; Estimation for Gene mutation for CAS 618-03-1
Author:
Sustainability Support Services (Europe) AB
Year:
2017
Bibliographic source:
OECD QSAR Toolbox version 3.3, 2017

Materials and methods

Test guideline
Qualifier:
according to guideline
Guideline:
other: Refer below principle
Principles of method if other than guideline:
Prediction is done using OECD QSAR Toolbox version 3.3, 2017
GLP compliance:
not specified
Type of assay:
bacterial reverse mutation assay

Test material

Constituent 1
Chemical structure
Reference substance name:
2-aminotoluene-4-sulphonic acid
EC Number:
210-540-0
EC Name:
2-aminotoluene-4-sulphonic acid
Cas Number:
618-03-1
Molecular formula:
C7H9NO3S
IUPAC Name:
3-amino-4-methylbenzene-1-sulfonic acid
Test material form:
solid
Details on test material:
- Name of test material (IUPAC name): 2-aminotoluene-4-sulphonic acid
- Molecular formula: C7H9NO3S
- Molecular weight: 187.218 g/mol
- Smiles notation: O=S(=O)(O)c1ccc(c(N)c1)C
- InChl: 1S/C7H9NO3S/c1-5-2-3-6(4-7(5)8)12(9,10)11/h2-4H,8H2,1H3,(H,9,10,11)
- Substance type: Organic
- Physical state: Solid powder (white to pinkish white)
Specific details on test material used for the study:
- Name of test material (IUPAC name): 2-aminotoluene-4-sulphonic acid
- Molecular formula: C7H9NO3S
- Molecular weight: 187.218 g/mol
- Smiles notation: O=S(=O)(O)c1ccc(c(N)c1)C
- InChl: 1S/C7H9NO3S/c1-5-2-3-6(4-7(5)8)12(9,10)11/h2-4H,8H2,1H3,(H,9,10,11)
- Substance type: Organic

Method

Target gene:
Histidine
Species / strain
Species / strain / cell type:
S. typhimurium TA 1535, TA 1537, TA 98, TA 100 and TA 102
Details on mammalian cell type (if applicable):
Not applicable
Additional strain / cell type characteristics:
not specified
Cytokinesis block (if used):
No data
Metabolic activation:
with
Metabolic activation system:
S9 metabolic activation system
Test concentrations with justification for top dose:
No data
Vehicle / solvent:
No data
Controls
Untreated negative controls:
not specified
Negative solvent / vehicle controls:
not specified
True negative controls:
not specified
Positive controls:
not specified
Positive control substance:
not specified
Details on test system and experimental conditions:
No data
Rationale for test conditions:
No data
Evaluation criteria:
Prediction is done considerng a dose dependent increase in the number of revertants/plate
Statistics:
No data

Results and discussion

Test results
Species / strain:
S. typhimurium, other: TA 1535, TA 1537, TA 98, TA 100 and TA 102
Metabolic activation:
not specified
Genotoxicity:
negative
Cytotoxicity / choice of top concentrations:
not specified
Vehicle controls validity:
not specified
Untreated negative controls validity:
not specified
Positive controls validity:
not specified
Additional information on results:
No data
Remarks on result:
no mutagenic potential (based on QSAR/QSPR prediction)

Any other information on results incl. tables

The prediction was based on dataset comprised from the following descriptors: "Gene mutation"
Estimation method: Takes highest mode value from the 10 nearest neighbours
Domain  logical expression:Result: In Domain

(((((("a" or "b" or "c" or "d" )  and "e" )  and ("f" and ( not "g") )  )  and ("h" and ( not "i") )  )  and "j" )  and ("k" and "l" )  )

Domain logical expression index: "a"

Referential boundary: The target chemical should be classified as Anilines (Acute toxicity) by US-EPA New Chemical Categories

Domain logical expression index: "b"

Referential boundary: The target chemical should be classified as Moderate binder, NH2 group by Estrogen Receptor Binding

Domain logical expression index: "c"

Referential boundary: The target chemical should be classified as Acid moiety OR Anilines (Hindered) by Aquatic toxicity classification by ECOSAR ONLY

Domain logical expression index: "d"

Referential boundary: The target chemical should be classified as Radical OR Radical >> Radical mechanism via ROS formation (indirect) OR Radical >> Radical mechanism via ROS formation (indirect) >> Single-Ring Substituted Primary Aromatic Amines OR SN1 OR SN1 >> Nucleophilic attack after metabolic nitrenium ion formation OR SN1 >> Nucleophilic attack after metabolic nitrenium ion formation >> Single-Ring Substituted Primary Aromatic Amines by DNA binding by OASIS v.1.3 ONLY

Domain logical expression index: "e"

Referential boundary: The target chemical should be classified as Radical AND Radical >> Radical mechanism via ROS formation (indirect) AND Radical >> Radical mechanism via ROS formation (indirect) >> Single-Ring Substituted Primary Aromatic Amines AND SN1 AND SN1 >> Nucleophilic attack after metabolic nitrenium ion formation AND SN1 >> Nucleophilic attack after metabolic nitrenium ion formation >> Single-Ring Substituted Primary Aromatic Amines by DNA binding by OASIS v.1.3 ONLY

Domain logical expression index: "f"

Referential boundary: The target chemical should be classified as No alert found by DNA binding by OECD

Domain logical expression index: "g"

Referential boundary: The target chemical should be classified as Michael addition OR Michael addition >> P450 Mediated Activation to Quinones and Quinone-type Chemicals OR Michael addition >> P450 Mediated Activation to Quinones and Quinone-type Chemicals >> Alkyl phenols OR Michael addition >> P450 Mediated Activation to Quinones and Quinone-type Chemicals >> Hydroquinones OR SN1 OR SN1 >> Nitrenium Ion formation OR SN1 >> Nitrenium Ion formation >> Primary aromatic amine OR SN1 >> Nitrenium Ion formation >> Tertiary aromatic amine by DNA binding by OECD

Domain logical expression index: "h"

Referential boundary: The target chemical should be classified as No alert found by Protein binding by OASIS v1.3

Domain logical expression index: "i"

Referential boundary: The target chemical should be classified as Acylation OR Acylation >> Ester aminolysis OR Acylation >> Ester aminolysis >> Amides by Protein binding by OASIS v1.3

Domain logical expression index: "j"

Referential boundary: The target chemical should be classified as Class 5 (Not possible to classify according to these rules) by Acute aquatic toxicity classification by Verhaar (Modified) ONLY

Domain logical expression index: "k"

Parametric boundary:The target chemical should have a value of log Kow which is >= -2.06

Domain logical expression index: "l"

Parametric boundary:The target chemical should have a value of log Kow which is <= 1.8

Applicant's summary and conclusion

Conclusions:
2-aminotoluene-4-sulphonic acid was predicted to not induce gene mutation in Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 in the presence of S9 metabolic activation system and hence, according to the prediction made, it is not likely to classify as a gene mutant in vitro.
Executive summary:

Based on the prediction done using the OECD QSAR toolbox version 3.3 with log kow as the primary descriptor and considering the five closest read across substances, gene mutation was predicted for 2-aminotoluene-4-sulphonic acid. The study assumed the use of Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 with S9 metabolic activation system. 2-aminotoluene-4-sulphonic acid was predicted to not induce gene mutation in Salmonella typhimurium strains TA 1535, TA 1537, TA 98, TA 100 and TA 102 in the presence of S9 metabolic activation system and hence, according to the prediction made, it is not likely to classify as a gene mutant in vitro.

Based on the predicted result it can be concluded that the substance is considered to not toxic as per the criteria mentioned in CLP regulation.