Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Administrative data

Endpoint:
vapour pressure
Type of information:
experimental study
Adequacy of study:
key study
Study period:
Experimental starting date: 03 October 2016 Experimental completion date: 05 October 2016
Reliability:
1 (reliable without restriction)
Rationale for reliability incl. deficiencies:
guideline study

Data source

Reference
Reference Type:
study report
Title:
Unnamed
Year:
2017
Report date:
2017

Materials and methods

Test guidelineopen allclose all
Qualifier:
according to guideline
Guideline:
EU Method A.4 (Vapour Pressure)
Deviations:
no
Qualifier:
according to guideline
Guideline:
OECD Guideline 104 (Vapour Pressure Curve)
Deviations:
no
GLP compliance:
yes
Type of method:
effusion method: vapour pressure balance

Test material

Constituent 1
Chemical structure
Reference substance name:
2-ethoxy-4-(hydroxymethyl)phenol
EC Number:
674-192-5
Cas Number:
4912-58-7
Molecular formula:
C9H12O3
IUPAC Name:
2-ethoxy-4-(hydroxymethyl)phenol
Test material form:
solid: particulate/powder
Specific details on test material used for the study:
Information as provided by the Sponsor. The Certificate of Analysis provided by the Sponsor is presented as Annex 1 (Please see Attachment Section of this Summary).

Identification: EVA
Common name: ETHYLVANILLYL ALCOHOL, White Vanilla
CAS Number: 4912-58-7
CAS Name: Benzenemethanol, 3-ethoxy-4-hydroxy-
Chemical Name: 2- Ethoxy-4-9hydroxymethyl)phenol
Appearance/Physical state: Pale yellow powder
Batch: 4K0001
Purity: 100%
Expiry date: 31 December 2017
Storage conditions: Room temperature in the dark

Results and discussion

Vapour pressure
Key result
Temp.:
25 °C
Vapour pressure:
0.003 Pa

Any other information on results incl. tables

Results

Recorded temperatures, mass differences and the resulting calculated values of vapor pressure are shown in the following tables:

Run 1

Table 1 – Vapor Pressure Data

Temperature (ºC)

Temperature (K)

Reciprocal Temperature (K-1)

Mass Difference (µg)

Mass Difference (kg)

Vapor Pressure (Pa)

Log10Vp

45

318.15

0.003143171

57.51

5.751E-08

0.079838614

-1.097787011

46

319.15

0.003133323

68.22

6.822E-08

0.094706838

-1.023618664

47

320.15

0.003123536

80.87

8.087E-08

0.112268279

-0.949742936

48

321.15

0.003113810

94.49

9.449E-08

0.131176328

-0.882144530

49

322.15

0.003104144

113.07

1.131E-07

0.156970128

-0.804182987

50

323.15

0.003094538

131.47

1.315E-07

0.182514042

-0.738703716

51

324.15

0.003084992

152.33

1.523E-07

0.211473067

-0.674744937

52

325.15

0.003075504

180.22

1.802E-07

0.250191532

-0.601727393

53

326.15

0.003066074

209.04

2.090E-07

0.290201076

-0.537300982

54

327.15

0.003056702

243.87

2.439E-07

0.338554039

-0.470372000

55

328.15

0.003047387

282.69

2.827E-07

0.392446145

-0.406219933

A plot of Log10(vapor pressure (Pa)) versus reciprocal temperature (1/T(K)) for Run 1
gives the following statistical data using an unweighted least squares treatment.

Slope:

-7.21 x 103

Standard error in slope:

37.1

 

Intercept:

21.6

Standard error in intercept:

0.115

The results obtained indicate the following vapor pressure relationship:

Log10(Vp (Pa)) = -7.21 x 103/temp(K) + 21.6

The above yields a vapor pressure (Pa) at 298.15 K with a common logarithm of -2.61.

Run 2

Table 2 – Vapor Pressure Data

Temperature (ºC)

Temperature (K)

Reciprocal Temperature (K-1)

Mass Difference (µg)

Mass Difference (kg)

Vapor Pressure (Pa)

Log10Vp

45

318.15

0.003143171

59.93

5.993E-08

0.083198194

-1.079886101

46

319.15

0.003133323

69.52

6.952E-08

0.096511571

-1.015420615

47

320.15

0.003123536

81.05

8.105E-08

0.112518165

-0.948777360

48

321.15

0.003113810

96.85

9.685E-08

0.134452613

-0.871430754

49

322.15

0.003104144

112.41

1.124E-07

0.156053879

-0.806725431

50

323.15

0.003094538

133.21

1.332E-07

0.184929608

-0.732993550

51

324.15

0.003084992

155.19

1.552E-07

0.215443479

-0.666666646

52

325.15

0.003075504

183.81

1.838E-07

0.255175372

-0.593161244

53

326.15

0.003066074

213.85

2.139E-07

0.296878588

-0.527421124

54

327.15

0.003056702

247.68

2.477E-07

0.343843295

-0.463639440

55

328.15

0.003047387

286.72

2.867E-07

0.398040817

-0.400072391

A plot of Log10(vapor pressure (Pa)) versus reciprocal temperature (1/T(K)) for Run 2
gives the following statistical data using an unweighted least squares treatment.

Slope:

-7.18 x 103

Standard error in slope:

36.1

 

Intercept:

21.5

Standard error in intercept:

0.112

The results obtained indicate the following vapor pressure relationship:

Log10(Vp (Pa)) = -7.18 x 103/temp(K) + 21.5

The above yields a vapor pressure (Pa) at 298.15 K with a common logarithm of -2.60.

Run 3

Table 3 – Vapor Pressure Data

Temperature (ºC)

Temperature (K)

Reciprocal Temperature (K-1)

Mass Difference (µg)

Mass Difference (kg)

Vapor Pressure (Pa)

Log10Vp

45

318.15

0.003143171

60.17

6.017E-08

0.083531375

-1.078150367

46

319.15

0.003133323

69.95

6.995E-08

0.097108521

-1.012742660

47

320.15

0.003123536

81.35

8.135E-08

0.112934642

-0.947172821

48

321.15

0.003113810

95.55

9.555E-08

0.132647880

-0.877299687

49

322.15

0.003104144

113.32

1.133E-07

0.157317192

-0.803223813

50

323.15

0.003094538

134.09

1.341E-07

0.186151274

-0.730133988

51

324.15

0.003084992

156.32

1.563E-07

0.217012209

-0.663515832

52

325.15

0.003075504

184.79

1.848E-07

0.256535863

-0.590851913

53

326.15

0.003066074

210.83

2.108E-07

0.292686054

-0.533597970

54

327.15

0.003056702

247.51

2.475E-07

0.343607292

-0.463937629

55

328.15

0.003047387

286.42

2.864E-07

0.397624340

-0.400527038

A plot of Log10(vapor pressure (Pa)) versus reciprocal temperature (1/T(K)) for Run 3
gives the following statistical data using an unweighted least squares treatment.

Slope:

-7.15 x 103

Standard error in slope:

43.4

 

Intercept:

21.4

Standard error in intercept:

0.134

The results obtained indicate the following vapor pressure relationship:

Log10(Vp (Pa)) = -7.15 x 103/temp(K) + 21.4

The above yields a vapor pressure (Pa) at 298.15 K with a common logarithm of -2.59.

Run 4

Table 4 – Vapor Pressure Data

Temperature (ºC)

Temperature (K)

Reciprocal Temperature (K-1)

Mass Difference (µg)

Mass Difference (kg)

Vapor Pressure (Pa)

Log10Vp

45

318.15

0.003143171

59.66

5.966E-08

0.082823365

-1.081847130

46

319.15

0.003133323

69.98

6.998E-08

0.097150169

-1.012556441

47

320.15

0.003123536

82.65

8.265E-08

0.114739375

-0.940287521

48

321.15

0.003113810

97.73

9.773E-08

0.135674278

-0.867502480

49

322.15

0.003104144

114.02

1.140E-07

0.158288972

-0.800549342

50

323.15

0.003094538

132.87

1.329E-07

0.184457601

-0.734103444

51

324.15

0.003084992

155.64

1.556E-07

0.216068195

-0.665409157

52

325.15

0.003075504

178.12

1.781E-07

0.247276194

-0.606817692

53

326.15

0.003066074

212.53

2.125E-07

0.295046090

-0.530110137

54

327.15

0.003056702

247.73

2.477E-07

0.343912708

-0.463551776

55

328.15

0.003047387

286.12

2.861E-07

0.397207864

-0.400982162

A plot of Log10(vapor pressure (Pa)) versus reciprocal temperature (1/T(K)) for Run 4
gives the following statistical data using an unweighted least squares treatment.

Slope:

-7.11 x 103

Standard error in slope:

33.2

 

Intercept:

21.3

Standard error in intercept:

0.103

The results obtained indicate the following vapor pressure relationship:

Log10(Vp (Pa)) = -7.11 x 103/temp(K) + 21.3

The above yields a vapor pressure (Pa) at 298.15 K with a common logarithm of -2.58.

Run 5

Table 5 – Vapor Pressure Data

Temperature (ºC)

Temperature (K)

Reciprocal Temperature (K-1)

Mass Difference (µg)

Mass Difference (kg)

Vapor Pressure (Pa)

Log10Vp

45

318.15

0.003143171

60.03

6.003E-08

0.083337020

-1.079162035

46

319.15

0.003133323

70.86

7.086E-08

0.098371834

-1.007129231

47

320.15

0.003123536

81.25

8.125E-08

0.112795816

-0.947707009

48

321.15

0.003113810

95.46

9.546E-08

0.132522937

-0.877708949

49

322.15

0.003104144

112.51

1.125E-07

0.156192705

-0.806339254

50

323.15

0.003094538

133.22

1.332E-07

0.184943491

-0.732960949

51

324.15

0.003084992

156.68

1.567E-07

0.217511981

-0.662516816

52

325.15

0.003075504

181.15

1.812E-07

0.251482610

-0.599492040

53

326.15

0.003066074

209.20

2.092E-07

0.290423197

-0.536968699

54

327.15

0.003056702

243.80

2.438E-07

0.338456861

-0.470496677

55

328.15

0.003047387

284.61

2.846E-07

0.395111597

-0.403280223

A plot of Log10(vapor pressure (Pa)) versus reciprocal temperature (1/T(K)) for Run 5
gives the following statistical data using an unweighted least squares treatment.

Slope:

-7.08 x 103

Standard error in slope:

40.0

 

Intercept:

21.2

Standard error in intercept:

0.124

The results obtained indicate the following vapor pressure relationship:

Log10(Vp (Pa)) = -7.08 x 103/temp(K) + 21.2

The above yields a vapor pressure (Pa) at 298.15 K with a common logarithm of -2.57.

Run 6

Table 6 – Vapor Pressure Data

Temperature (ºC)

Temperature (K)

Reciprocal Temperature (K-1)

Mass Difference (µg)

Mass Difference (kg)

Vapor Pressure (Pa)

Log10Vp

45

318.15

0.003143171

71.81

7.181E-08

0.099690678

-1.001345452

46

319.15

0.003133323

70.12

7.012E-08

0.097344525

-1.011688471

47

320.15

0.003123536

82.20

8.220E-08

0.114114660

-0.942658561

48

321.15

0.003113810

96.29

9.629E-08

0.133675189

-0.873949192

49

322.15

0.003104144

111.77

1.118E-07

0.155165395

-0.809205128

50

323.15

0.003094538

132.69

1.327E-07

0.184207715

-0.734692185

51

324.15

0.003084992

154.77

1.548E-07

0.214860412

-0.667843596

52

325.15

0.003075504

181.31

1.813E-07

0.251704731

-0.599108621

53

326.15

0.003066074

212.27

2.123E-07

0.294685143

-0.530641759

54

327.15

0.003056702

245.97

2.460E-07

0.341469377

-0.466648238

55

328.15

0.003047387

287.40

2.874E-07

0.398984831

-0.399043615

A plot of Log10(vapor pressure (Pa)) versus reciprocal temperature (1/T(K)) for Run 6
gives the following statistical data using an unweighted least squares treatment.

Slope:

-6.75 x 103

Standard error in slope:

225

 

Intercept:

20.2

Standard error in intercept:

0.697

The results obtained indicate the following vapor pressure relationship:

Log10(Vp (Pa)) = -6.75 x 103/temp(K) + 20.2

The above yields a vapor pressure (Pa) at 298.15 K with a common logarithm of -2.48.

Please see the Attachment Section of this Summary for the Graphs of Log10Vapor Pressure vs Reciprocal Temperature Runs 1 - 6.

Summary of Results

The values of vapor pressure at 25 °C extrapolated from each graph are summarized in the following table:

Table 7            Summary of Vapor Pressure Data

Run

Log10[Vp(25 ºC)]

1

-2.61

2

-2.60

3

-2.59

4

-2.58

5

-2.57

6

-2.48

Mean

-2.57

Vapor Pressure

2.67 x 10-3Pa

The test item did not change in appearance under the conditions used in the determination.

The results may represent rounded-off values obtained by calculations based on the exact raw data.

Applicant's summary and conclusion

Conclusions:
The vapor pressure of the test item has been determined to be 0.0027 Pa at 25 ºC.
Executive summary:

The determination was carried out using a procedure designed to be compatible with Method A.4 Vapour Pressure of Commission Regulation (EC) No 440/2008 of 30 May 2008 and Method 104 of the OECD Guidelines for Testing of Chemicals, 23 March 2006.

Conclusion

The vapor pressure of the test item has been determined to be 0.0027 Pa at 25 ºC.