Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 220-169-6 | CAS number: 2650-30-8
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Genetic toxicity: in vitro
Administrative data
- Endpoint:
- in vitro gene mutation study in bacteria
- Type of information:
- experimental study
- Adequacy of study:
- key study
- Study period:
- 2016
- Reliability:
- 1 (reliable without restriction)
- Rationale for reliability incl. deficiencies:
- guideline study
Data source
Reference
- Reference Type:
- study report
- Title:
- Unnamed
- Year:
- 2 016
Materials and methods
Test guidelineopen allclose all
- Qualifier:
- according to guideline
- Guideline:
- OECD Guideline 471 (Bacterial Reverse Mutation Assay)
- Deviations:
- no
- Qualifier:
- equivalent or similar to guideline
- Guideline:
- EU Method B.13/14 (Mutagenicity - Reverse Mutation Test Using Bacteria)
- Deviations:
- no
- GLP compliance:
- yes (incl. QA statement)
- Type of assay:
- bacterial reverse mutation assay
Test material
- Reference substance name:
- Potassium 3,5,5-trimethylhexanoate
- EC Number:
- 299-890-3
- EC Name:
- Potassium 3,5,5-trimethylhexanoate
- Cas Number:
- 93918-10-6
- Molecular formula:
- C9H18O2.K
- IUPAC Name:
- potassium 3,5,5-trimethylhexanoate
- Test material form:
- solid: crystalline
- Details on test material:
- Name: Potassium 3,5,5-trimethylhexanoate
CAS No.: 93918-10-6
Batch No.: PURS151015
Purity: 99.4%
Physical State: solid
Colour: white
Molecular Weight: 196.33 g/mol
Storage Conditions: room temperature
Re-certification Date: 14 October 2016
Constituent 1
- Specific details on test material used for the study:
- Name: Potassium 3,5,5-trimethylhexanoate
CAS No.: 93918-10-6
Batch No.: PURS151015
Purity: 99.4%
Physical State: solid
Colour: white
Molecular Weight: 196.33 g/mol
Storage Conditions: room temperature
Re-certification Date: 14 October 2016
Method
- Target gene:
- The Salmonella typhimurium histidine (his) reversion system measures his- → his+ reversions. The S. typhimurium strains are constructed to differentiate between base pair (TA 100, TA 1535, TA 102) and frameshift (TA 98, TA 1537) mutations.
Species / strain
- Species / strain / cell type:
- S. typhimurium TA 1535, TA 1537, TA 98, TA 100 and TA 102
- Additional strain / cell type characteristics:
- not applicable
- Metabolic activation:
- with and without
- Metabolic activation system:
- Mammalian Microsomal Fraction S9 Mix
- Test concentrations with justification for top dose:
- The toxicity of the test item was determined with tester strains TA 98 and TA 100 in a pre-experiment. Eight concentrations were tested for toxicity and induction of mutations with three plates each. The experimental conditions in this pre-experiment were the same as described below for the main experiment I (plate incorporation test). Toxicity may be detected by a clearing or rather diminution of the background lawn or a reduction in the number of revertants down to a mutation factor of approximately ≤ 0.5 in relation to the solvent control. The test item was tested in the pre-experiment with the following concentrations:
3.16, 10.0, 31.6, 100, 316, 1000, 2500 and 5000 µg/plate
The test item concentrations to be applied in the main experiments were chosen according to the results of the pre-experiment (see chapter 12.1.1 Pre-Experiment). 5000 µg/plate was selected as the maximum concentration. The concentration range covered two logarithmic decades. Two independent experiments were performed with the following concentrations:
31.6, 100, 316, 1000, 2500 and 5000 µg/plate
As the results of the pre-experiment were in accordance with the criteria described above, these were reported as a part of the main experiment I. - Vehicle / solvent:
- Aqua destillata (purified water)
Controls
- Untreated negative controls:
- yes
- Negative solvent / vehicle controls:
- yes
- True negative controls:
- not specified
- Positive controls:
- yes
- Positive control substance:
- sodium azide
- methylmethanesulfonate
- other: 1. 4-NOPD; 4-nitro-o-phenylene-diamine 2. 2-AA; 2-aminoanthracene
- Details on test system and experimental conditions:
- Five strains of S. typhimurium with the following characteristics were used:
TA 98: his D 3052; rfa-; uvrB-; R-factor: frame shift mutations
TA 100: his G 46; rfa-; uvrB-; R-factor: base-pair substitutions
TA 1535: his G 46; rfa-; uvrB-: base-pair substitutions
TA 1537: his C 3076; rfa-; uvrB-: frame shift mutations
TA 102: his G 428 (pAQ1); rfa-; R-factor: base-pair substitutions
Tester strains TA 98, TA 1535 and TA 102 were obtained from MOLTOX, INC., NC 28607, USA. Tester strains TA 100 and TA 1537 were obtained from Xenometrix AG, Switzerland. They were stored as stock cultures in ampoules with nutrient broth (OXOID) supplemented with DMSO (approx. 8% v/v) over liquid nitrogen.
All Salmonella strains contain mutations in the histidine operon, thereby imposing a requirement for histidine in the growth medium. They contain the deep rough (rfa) mutation, which deletes the polysaccharide side chain of the lipopolysaccharides of the bacterial cell surface. This increases cell permeability of larger substances. The other mutation is a deletion of the uvrB gene coding for a protein of the DNA nucleotide excision repair system resulting in an increased sensitivity in detecting many mutagens. This deletion also includes the nitrate reductase (chl) and biotin (bio) genes (bacteria require biotin for growth). The tester strains TA 98, TA 100 and TA 102 contain the R-factor plasmid, pkM101. These strains are reverted by a number of mutagens that are detected weakly or not at all with the non R-factor parent strains. pkM101 increases chemical and spontaneous mutagenesis by enhancing an error-prone DNA repair system which is normally present in these organisms. The properties of the S. typhimurium strains with regard to membrane permeability, ampicillin- and tetracycline-resistance as well as normal spontaneous mutation rates are checked regularly according to Ames et al.. In this way it is ensured that the experimental conditions set up by Ames are fulfilled. - Evaluation criteria:
- Evaluation of Mutagenicity
The Mutation Factor is calculated by dividing the mean value of the revertant counts by the mean values of the solvent control (the exact and not the rounded values are used for calculation).
A test item is considered as mutagenic if:
- a clear and dose-related increase in the number of revertants occurs and/or
- a biologically relevant positive response for at least one of the dose groups occurs
in at least one tester strain with or without metabolic activation.
A biologically relevant increase is described as follows:
- if in tester strains TA 98, TA 100 and TA 102 the number of reversions is at least twice as high
- if in tester strains TA 1535 and TA 1537 the number of reversions is at least three times higher
than the reversion rate of the solvent control.
A test is considered acceptable if for each strain:
- the bacteria demonstrate their typical responses to ampicillin (TA 98, TA 100, TA 102)
- the negative control plates (A. dest.) with and without S9 mix mean values of the spontaneous reversion frequency are within the historical control data range (2012 -2014).
- corresponding background growth on negative control, solvent control and test plates is observed
- the positive controls show a distinct enhancement of revertant rates over the control plate
- at least five different concentrations of each tester strain are analysable. - Statistics:
- According to OECD guidelines, the biological relevance of the results is the criterion for the interpretation of results, a statistical evaluation of the results is not regarded as necessary. A test item producing neither a dose related increase in the number of revertants nor a reproducible biologically relevant positive response at any of the dose groups is considered to be non-mutagenic in this system.
Results and discussion
Test resultsopen allclose all
- Key result
- Species / strain:
- S. typhimurium TA 98
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity nor precipitates, but tested up to recommended limit concentrations
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Key result
- Species / strain:
- S. typhimurium TA 100
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity nor precipitates, but tested up to recommended limit concentrations
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Key result
- Species / strain:
- S. typhimurium TA 1535
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity nor precipitates, but tested up to recommended limit concentrations
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Key result
- Species / strain:
- S. typhimurium TA 1537
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity nor precipitates, but tested up to recommended limit concentrations
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Key result
- Species / strain:
- S. typhimurium TA 102
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity nor precipitates, but tested up to recommended limit concentrations
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Species / strain:
- S. typhimurium TA 1537
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity nor precipitates, but tested up to recommended limit concentrations
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Remarks on result:
- other: Plate-incorporation Test
Any other information on results incl. tables
The test item Potassium 3,5,5-trimethylhexanoate was investigated for its potential to induce gene mutations according to the plate incorporation test (experiment I) and the pre-incubation test (experiment II) using Salmonella typhimurium strains TA 98, TA 100, TA 1535, TA 1537 and TA 102. In two independent experiments several concentrations of the test item were used. Each assay was conducted with and without metabolic activation. The concentrations, including the controls, were tested in triplicate. The following concentrations of the test item were prepared and used in the experiments:
31.6, 100, 316, 1000, 2500 and 5000 µg/plate
No precipitation of the test item was observed in any tester strain used in experiment I and II (with and without metabolic activation). No toxic effects of the test item were noted in any of the five tester strains used up to the highest dose group evaluated with and without metabolic activation in experiment I and II. The reduction in the number of revertants down to a mutation factor of ≤ 0.5 found in experiment I in tester strains TA 1535 and TA 1537 at a concentration of 1000 µg/plate (with metabolic activation) was regarded as not biologically relevant due to lack of a dose-response relationship.
No biologically relevant increases in revertant colony numbers of any of the five tester strains were observed following treatment with Potassium 3,5,5-trimethylhexanoate at any concentration level, neither in the presence nor absence of metabolic activation in experiment I and II. The reference mutagens induced a distinct increase of revertant colonies indicating the validity of the experiments.
Applicant's summary and conclusion
- Conclusions:
- Potassium 3,5,5-trimethylhexanoate is considered to be non-mutagenic in this bacterial reverse mutation assay.
- Executive summary:
In conclusion, it can be stated that during the described mutagenicity test and under the experimental conditions reported, Potassium 3,5,5-trimethylhexanoate did not cause gene mutations by base pair changes or frameshifts in the genome of the tester strains used. Therefore, Potassium 3,5,5-trimethylhexanoate is considered to be non-mutagenic in this bacterial reverse mutation assay.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.