Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 701-325-7 | CAS number: -
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Toxicity to terrestrial plants
Administrative data
Link to relevant study record(s)
Description of key information
No exposure, no effects of the high background levels
Key value for chemical safety assessment
Additional information
- Mizuno N, Yoshida H (1993) Effect of Exchangeable Aluminium on the Reduction of Potato Scab. DOI: 10.1007/BF00025094 Plant and Soil 155-156(1)505-8
- Prasad J & Singh RS (1988). Effect of Potassium and Iron on Yields and Phosphorus, Calcium and Magnesium Content of Paddy (Oryza sativa L.). Agric.Sci.Dig. 8(4):207-209.
- Singh V, Prakash O (1990). Effect of phosphorous and iron yield and their content uptake by wheat. Trans. Indian Soc desert Technol. 15 pp 63-67.
- Subrahmanyam K, Nair AK, Singh DV (1991). Evaluation of diammonium and polyphosphates as carriers of iron and zinc in Japanese mint ratoon-mungbean cropping sequence. J. Indian Soc. Soil Sci. 39(3):477-481.
According to the exposure scenario, no soil exposure is expected from the submission item.
Iron
The following section is taken from the SIAR for iron salts (SIDS Initial Assessment Report for SIAM 24, Paris, France, 17-20 April 2007), Section 4.2
Iron is an essential trace element for plant development being involved in chlorophyll formation, cell division and growth and as an oxygen carrier. Results reported by Singh et al (1990), for a study assigned reliability 2, show increased iron uptake and biomass production in wheat (Triticum sp.) at direct application rates of up to 10 ppm Fe added as ferrous sulfate (FeSO4.7H2O). At 20 ppm measured iron uptake and biomass were reduced, as were phosphorous levels. This is consistent with iron reducing the availability of phosphorous. Mizuno et al (1993) reported a 10% decrease in total biomass for a potato (Solanum tuberosum) crop at the very high ferrous sulfate (FeSO4) addition level of 800 kg/ha (290 kg Fe/ha). This test was carried out in an acidic soil, pH 4.6 – 5.0 which would significantly increase iron availability. It should also be noted that at this low pH toxic effects due to high aluminium levels are possible. The study has been assigned reliability 4. Yield of rice (Oryza sativa) was increased, in a reliability 2 study reported by Prasad & Singh (1988), by addition of Fe (as FeSO4.7H2O) at concentrations up to 12.5 ppm Fe. Yield was depressed at a concentration of 25 ppm (i.e. mg/kg) Fe.
In a reliability 2 study reported by Subrahmanyam et al (1991), the addition of Fe (as Fe2(SO4)3) to soil at 5 and 10 ppm increased plant height and biomass in Corn mint (Menthe arvensis) relative to those at a concentration of 2.8 ppm.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.