Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 431-480-3 | CAS number: -
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Eye irritation
Administrative data
- Endpoint:
- eye irritation: in vitro / ex vivo
- Type of information:
- experimental study
- Adequacy of study:
- key study
- Study period:
- 15 Jan 18 - 28 Jan 18
- Reliability:
- 1 (reliable without restriction)
- Rationale for reliability incl. deficiencies:
- guideline study
Data source
Reference
- Reference Type:
- study report
- Title:
- Unnamed
- Year:
- 2 018
- Report date:
- 2018
Materials and methods
Test guideline
- Qualifier:
- according to guideline
- Guideline:
- OECD Guideline 437 (Bovine Corneal Opacity and Permeability Test Method for Identifying i) Chemicals Inducing Serious Eye Damage and ii) Chemicals Not Requiring Classification for Eye Irritation or Serious Eye Damage)
- Version / remarks:
- adopted October 09, 2017
- Deviations:
- no
- GLP compliance:
- yes
Test material
- Test material form:
- solid: particulate/powder
Constituent 1
Test animals / tissue source
- Species:
- other: Bovine eyes
- Strain:
- other: Bovine eyes from young cattle will be obtained from the slaughterhouse (Vitelco,’s Hertogenbosch, The Netherlands),
- Details on test animals or tissues and environmental conditions:
- TEST SYSTEM
- Source: Bovine eyes from young cattle will be obtained from the slaughterhouse (Vitelco,’s Hertogenbosch, The Netherlands), where the eyes will be excised by a slaughterhouse employee as soon as possible after slaughter.
ENVIRONMENTAL CONDITIONS
Transport Eyes will be collected and transported in physiological saline in a suitable container under cooled conditions.
Test system
- Vehicle:
- unchanged (no vehicle)
- Controls:
- yes, concurrent positive control
- yes, concurrent negative control
- Amount / concentration applied:
- TEST MATERIAL
- Amount(s) applied (volume or weight with unit):The non-surfactant solid test item is applied as a 20% (w/v) solution or suspension or neat in case no workable suspension can be obtained
- Concentration (if solution): 20% (w/v)
VEHICLE
no vehicle - Duration of treatment / exposure:
- 4 h
- Duration of post- treatment incubation (in vitro):
- The opacity of the corneas will be determined directly after treatment and the permeability of the corneas will be determined after a 90 minutes incubation period with sodium fluorescein.
- Number of animals or in vitro replicates:
- Three corneas will be selected at random for each treatment group
- Details on study design:
- SELECTION AND PREPARATION OF CORNEAS
Source: Bovine eyes from young cattle were obtained from the slaughterhouse (Vitelco, 's Hertogenbosch, The Netherlands), where the eyes were excised by a slaughterhouse employee as soon as possible after slaughter.
Transport: Eyes were collected and transported in physiological saline in a suitable container under cooled conditions.
QUALITY CHECK OF THE ISOLATED CORNEAS
The eyes were checked for unacceptable defects, such as opacity, scratches, pigmentation and neovascularization by removing them from the physiological saline and holding them in the light. Those exhibiting defects were discarded.
The isolated corneas were stored in a petri dish with cMEM (Earle’s Minimum Essential Medium (Life Technologies, Bleiswijk, The Netherlands) containing 1% (v/v) L-glutamine (Life Technologies) and 1% (v/v) Fetal Bovine Serum (Life Technologies)). The isolated corneas were mounted in a corneal holder (one cornea per holder) of BASF (Ludwigshafen, Germany) with the endothelial side against the O-ring of the posterior half of the holder. The anterior half of the holder was positioned on top of the cornea and tightened with screws. The compartments of the corneal holder were filled with cMEM of 32 +/- 1°C. The corneas were incubated for the minimum of 1 hour at 32 +/- 1°C.
NUMBER OF REPLICATES
Three corneas will be selected at random for each treatment group.
NEGATIVE CONTROL USED
A negative control, physiological saline (Eurovet Animal Health, Bladel, The Netherlands) was included to detect non-specific changes in the test system and to provide a baseline for the assay endpoints.
POSITIVE CONTROL USED
The positive control was a 20% (w/v) Imidazole solution prepared in physiological saline. ( Imidazole - Identification number RS120 - CAS Number 288-32-4 - C3H4N2 - MW 68.08)
APPLICATION DOSE AND EXPOSURE TIME
After the incubation period, the medium was removed from both compartments and replaced with fresh cMEM. Opacity determinations were performed on each of the corneas using an opacitometer (BASF-OP3.0, BASF, Ludwigshafen, Germany). The opacity of each cornea was read against a cMEM filled chamber, and the initial opacity reading thus determined was recorded. Corneas that had an initial opacity reading higher than 7 were not used. Three corneas were selected at random for each treatment group.
TREATMENT METHOD: [closed chamber / open chamber]
The medium from the anterior compartment was removed and 750 µl of the negative control and 20% (w/v) Imidazole solution (positive control) were introduced onto the epithelium of the cornea.
test item was weighed in a bottle and applied directly on the corneas in such a way that the cornea was completely covered (317.1 to 332.9 mg).
The holder was slightly rotated, with the corneas maintained in a horizontal position, to ensure uniform distribution of the solutions over the entire cornea. Corneas were incubated in a horizontal position for 240 +/- 10 minutes at 32 +/- 1°C. After the incubation the solutions and the test compound were removed and the epithelium was washed at least three times with MEM with phenol red (Earle’s Minimum Essential Medium Life Technologies). Possible pH effects of the test item on the corneas were recorded. Each cornea was inspected visually for dissimilar opacity patterns. The medium in the posterior compartment was removed and both compartments were refilled with fresh cMEM and the opacity determinations were performed.
POST-INCUBATION PERIOD: yes/no. If YES please specify duration
REMOVAL OF TEST SUBSTANCE
- Number of washing steps after exposure period:
- POST-EXPOSURE INCUBATION:
METHODS FOR MEASURED ENDPOINTS:
- Corneal opacity measurement:
The opacity of a cornea was measured by the diminution of light passing through the cornea.
The light was measured as illuminance (I = luminous flux per area, unit: lux) by a light meter.
The opacity value (measured with the device OP-KIT) was calculated according to:
opacity =I0/I− 0.9894/0.0251
With I0 the empirically determined illuminance through a cornea holder but with windows and medium, and I the measured illuminance through a holder with cornea.
The change in opacity for each individual cornea (including the negative control) was calculated by subtracting the initial opacity reading from the final post-treatment reading.
The corrected opacity for each treated cornea with the test item or positive control was calculated by subtracting the average change in opacity of the negative control corneas from the change in opacity of each test item or positive control treated cornea.
The mean opacity value of each treatment group was calculated by averaging the corrected opacity values of the treated corneas for each treatment group.
- Application of Sodium Fluorescein
Following the final opacity measurement, permeability of the cornea to Na-fluorescein (Sigma-Aldrich, Germany) was evaluated.
The medium of both compartments (anterior compartment first) was removed. The posterior compartment was refilled with fresh cMEM. The anterior compartment was filled with 1 mL of 5 mg Na fluorescein/mL cMEM solution (Sigma-Aldrich Chemie GmbH, Germany). The holders were slightly rotated, with the corneas maintained in a horizontal position, to ensure uniform distribution of the sodium-fluorescein solution over the entire cornea. Corneas were incubated in a horizontal position for 90 +/- 5 minutes at 32 +/- 1°C
- Permeability Determinations
After the incubation period, the medium in the posterior compartment of each holder was removed and placed into a sampling tube labelled according to holder number. 360 µl of the medium from each sampling tube was transferred to a 96-well plate. The optical density at 490 nm (OD490) of each sampling tube was measured in triplicate using a microplate reader (TECAN Infinite® M200 Pro Plate Reader). Any OD490 that was 1.500 or higher was diluted to bring the OD490 into the acceptable range (linearity up to OD490 of 1.500 was verified
before the start of the experiment). OD490 values of less than 1.500 were used in the permeability calculation.
The mean OD490 for each treatment was calculated using cMEM corrected OD490 values. If a dilution has been performed, the OD490 of each reading of the positive control and the test item was corrected for the mean negative control OD490 before the dilution factor was applied to the reading.
ACCEPTABILITY CRITERIA
The assay is considered acceptable if:
* The positive control gives an in vitro irritancy score that falls within two standard deviations of the current historical mean.
* The negative control responses should result in opacity and permeability values that are less than the upper limits of the laboratory historical range.
All results presented in the tables of the report are calculated using values as per the raw data rounding procedure and may not be exactly reproduced from the individual data presented.
SCORING SYSTEM: In Vitro Irritancy Score (IVIS) - INTERPRETATION
The mean opacity and mean permeability values (OD490) were used for each treatment group to calculate an in vitro score:
In vitro irritancy score (IVIS) = mean opacity value + (15 x mean OD490 value)
Additionally the opacity and permeability values were evaluated independently to determine whether the test item induced irritation through only one of the two endpoints.
The IVIS cut-off values for identifying the test items as inducing serious eye damage (UN GHS Category 1) and test items not requiring classification for eye irritation or serious eye damage (UN GHS No Category) are given hereafter:
In vitro score range UN GHS
<= 3 No Category
> 3; ≤ 55 No prediction can be made
>55 Category 1
Results and discussion
In vitro
Results
- Irritation parameter:
- cornea opacity score
- Run / experiment:
- Main test
- Value:
- <= 3
- Vehicle controls validity:
- not applicable
- Negative controls validity:
- valid
- Positive controls validity:
- valid
- Remarks on result:
- no indication of irritation
Any other information on results incl. tables
Table 1 | Summary of Opacity, Permeability and In Vitro Scores | ||
Treatment | Mean Opacity | Mean Permeability | Mean In vitro Irritation Score (1, 2) |
Negative control | -0,8 | 0,018 | -0,5 |
Positive control | 141 | 2,523 | 179 |
Tets item | -1,0 | 0,006 | -0,9 |
1 Calculated using the negative control mean opacity and mean permeability values for the positive control and test item. | |||
2 In vitro irritancy score (IVIS) = mean opacity value + (15 x mean OD490 value). |
Applicant's summary and conclusion
- Interpretation of results:
- GHS criteria not met
- Conclusions:
- not irritating for eyes
- Executive summary:
The objective of this study was to evaluate the eye hazard potential of test item as measured by its ability to induce opacity and increase permeability in an isolated bovine cornea using the Bovine Corneal Opacity and Permeability test (BCOP test).
This report describes the potency of chemicals to induce serious eye damage using isolated bovine corneas. The eye damage of test item was tested through topical application for approximately 240 minutes.
The study procedures described in this report were based on the most recent OECD guideline. Batch 17J31PR252A of test item was a slight yellow powder with a purity of 98%. Since no workable suspension in physiological saline could be obtained, the test item was used as delivered and added pure on top of the corneas. The negative control responses for opacity and permeability were less than the upper limits of the laboratory historical range indicating that the negative control did not induce irritancy on the corneas. The mean in vitro irritancy score of the positive control (20% (w/v) Imidazole) was 179 and within two standard deviations of the current historical positive control mean. It was therefore concluded that the test conditions were adequate and that the test system functioned properly.
Test item did not induce ocular irritation through both endpoints, resulting in a mean in vitro irritancy score of -0.9 after 4 hours of treatment.
In conclusion, since Test iteminduced an IVIS ≤ 3, no classification is required for eye irritation or serious eye damage.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.
Although ECHA is providing a lot of online material in your language, part of this page is only in English. More about ECHA’s multilingual practice.
Welcome to the ECHA website. This site is not fully supported in Internet Explorer 7 (and earlier versions). Please upgrade your Internet Explorer to a newer version.
the-echa-website-uses-cookies
find-out-more-on how-we-use-cookies