Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 500-057-6 | CAS number: 27104-30-9
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Toxicity to aquatic algae and cyanobacteria
Administrative data
Link to relevant study record(s)
Description of key information
Desmodesmus subspicatus (freshwater): 72h-EC50 = 0.23 mg/L (growth) for THPC-urea (a.i.)
The read across substance THPS shows a comparable acute toxicity for algae:
Selenastrum capricornutum (Pseudokircherella subcapitata) (freshwater): EC 50 = 0.652 mg/l (growth); EC 50 = 0.204 mg/l (biomass);
NOEC = 0.063 mg/l (growth and biomass)
Skeletonema costatum (marine): EC 50 = 0.16 mg/l
Key value for chemical safety assessment
- EC50 for freshwater algae:
- 0.23 mg/L
- EC50 for marine water algae:
- 0.16 mg/L
- EC10 or NOEC for freshwater algae:
- 0.067 mg/L
Additional information
The technical product "Tetrakis(hydroxymethyl)phosphonium chloride, oligomeric reaction products with urea" (THPC-urea) is a condensate of THPC and urea. The functional group of the THPC is the OH group. The functional group of the urea is the amino group NH2. The condensation of THPC and urea does not change both functional groups.
The first read across approach between THPC and THPS is considered applicable, as the organic phosphonium cation, which is the responsible part for the toxicological effects, is the same for both salts. The different anions (chlorid and sulfat) have no great influence on the solubility (both very high), the vapour pressure (both extrem low), and the log Kow (both extrem low and negativ).
The second read-across approach between THPC and THPC-urea is based on the fact, that THPC is an impurity of the technical product THPC-urea. THPC is more reactive and more toxic than THPC-urea. A worst case scenario is created assuming that THPC-urea is completely reactive like THPC.
Furthermore, the oxidative degradation of THPC-urea, THPS and THPC results in the same main metabolite THPO, which is far less toxic than THPC-urea, THPS and THPC.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.