Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 264-885-7 | CAS number: 64417-98-7
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Description of key information
Additional information
The available information on bioaccumulation of zirconium in the aquatic and terrestrial food chain was studied in algae and higher terrestrial plants, respectively, yielding the following conclusions:
- Although no data are available on other aquatic organisms besides algae and cyanobacteria, it can be concluded that zirconium has no potential to bioconcentrate/bioaccumulate in the aquatic food chain. A rapid uptake of zirconium from the medium was observed as well as a rapid desorption. The BCF values obtained for cyanobacteria and microalgae were very low, the highest value being 0.064 L/kg ww.
- Based on a study on the transfer of zirconium from soil to plants, it could further be concluded that there is no potential for bioaccumulation of zirconium in the terrestrial food chain, as all BSAF values were well below 1.
The available information on bioaccumulation of yttrium in the aquatic and terrestrial food chain yielded the following conclusions:
- BCF/BAF values for aquatic plants, aquatic invertebrates and fish were 992.7, 27.36 to 1482.6 and 1.3 to 54 L/kg ww, respectively. As for other rare earth elements, bioaccumulation seems to become less substantial when ascending the food chain, indicating no potential for biomagnification (as confirmed by data from a microcosm study). A key BAF value of 4.65 L/kg ww was calculated for fish. Based on the available data, the potential of yttrium for bioconcentration/bioaccumulation is concluded to be very low.
- Based on information from review publications on rare earth elements in terrestrial plants, it can be concluded that there is no potential for bioaccumulation of yttrium in the terrestrial food chain, as all reported BSAF values were well below 1.
Because based on the low water solubility of yttrium zirconium oxide, the release of yttrium and zirconium in the environment, and hence their bioavailability, is expected to be very limited, it can be concluded - taking into account the available data on bioaccumulation in aquatic and terrestrial organisms - that no bioaccumulation of yttrium or zirconium from yttrium zirconium oxide is to be expected in the terrestrial environment and only limited bioaccumulation may occur in the aquatic environment, levelling out when ascending the food chain.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.