Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 202-830-0 | CAS number: 100-21-0
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Additional information on environmental fate and behaviour
Administrative data
- Endpoint:
- additional information on environmental fate and behaviour
- Type of information:
- migrated information: read-across from supporting substance (structural analogue or surrogate)
- Adequacy of study:
- supporting study
- Reliability:
- 2 (reliable with restrictions)
- Rationale for reliability incl. deficiencies:
- other: Publication provides adequate experimental detail and the method employed was a precursor to the procedure adopted by the OECD as Guideline 311.
Cross-reference
- Reason / purpose for cross-reference:
- reference to same study
Data source
Reference
- Reference Type:
- publication
- Title:
- Unnamed
- Year:
- 1 989
Materials and methods
Test guideline
- Qualifier:
- equivalent or similar to guideline
- Guideline:
- other: OECD 311: Anaerobic biodegradability of organic compounds in digested sludge by measurement of gas production
- Principles of method if other than guideline:
- Incubation for 60 days under strictly anaerobic, methanogenic conditions at 35 degrees C in the presence of a diluted inoculum taken from a sludge digester. Measurements made at regular intervals of headspace pressure and converted to cumulative net gas (CO2 + CH4) production (NGP). Biodegardation was calculated by expressing blank-corrected NGP as a percentage of the theoretical gas yield for the compound under test.
- GLP compliance:
- no
- Type of study / information:
- Conservative screening assessment (high test substance concentration (50 mg C/L) with no other substrate feed, low sludge solids density (2-3 mg dry solids/L)) of the potential for phthalic acid to undergo ultimate degradation (mineralisation) under methanogenic conditions employed in the anaerobic digestion of wastewater treatment sludges. Anaerobic digestion typically precedes the disposal of wastewater treatment sludges on soil; compounds that show a high potential for mineralisation under the conditions of the test may be assumed to undergo complete degradation before digested sludges are applied to land. Phthalic acid (1,2-dicarboxylic acid) and terephthalic acid ( 1,4-dicarboxylic acid) are isomers and data relating to the anaerobic biodegradability of phthalic acid are expected to provide a reliable prediction of the behaviour of terephthalic acid under comparable test conditions.
Test material
- Reference substance name:
- Phthalic acid
- EC Number:
- 201-873-2
- EC Name:
- Phthalic acid
- Cas Number:
- 88-99-3
- IUPAC Name:
- phthalic acid
- Details on test material:
- No specific information, test compounds (including phthalic acid) were obtained from either Aldrich or BDH and were of the highest purity available.
Constituent 1
Results and discussion
Any other information on results incl. tables
The NGP obtained from triplicate vessels dosed with phthalic acid and incubated under methanogenic conditions (confirmed by GC analysis of headspace gas) was 135% +/- 7.5% of the theoretical yield. Phthalic acid was completely degraded within 4 weeks of incubation.
In the method applied by Battersby and Wilson to phthalic acid, the theoretical gas production (ThGP, based on an assumed ratio of CO2:CH4 formation) was calculated according to the Buswell equation, and by applying futher assumptions about the relative solubilities of the two gases in the aqueous test medium that may be influenced by test conditions. This applies particularly to CO2 in relation to pH. The inherent uncertainty of the reliability of these assumptions under the test conditions is discussed by Struijs and Stoltenkamp-Wouterse (1992): Anaerobic biodegradability: Results of a Dutch inter-laboratory excercise; RIVM report 719101 003. Nevertheless, the strong, positive NGP response >100% ThGP recorded for phthalic acid is indicative of extensive (complete) degradation.
Applicant's summary and conclusion
- Conclusions:
- Phthalic acid was completely mineralised (converted to CH4 and CO2) within 4 weeks in a screening test designed to assess the potential of organic compounds to undergo degradation under methanogenic conditions in digesting sludge. Based on its close structural similarity to phthalic acid, terephthalic acid will also undergo complete and rapid mineralisation under comparable conditions.
- Executive summary:
Phthalic acid was completely mineralised (converted to CH4 and CO2) within 4 weeks in a screening test designed to assess the potential of organic compounds to undergo degradation under methanogenic conditions in digesting sludge. Since the screening method employed conservative conditions (a high test substance concentration and no other substrate feed, combined with a very low inoculum density) the test may be considered to predict the fate of phthalic acid in wastewater sludge digesters under real operational conditions: it may be assumed that phthalic acid will undergo complete degradation during the full-scale digestion process. Consequently any phthalic acid that partitions to wastewater treatment sludge solids (either primary sludge and/or surplus activated sludge) may be expected to be completely degraded before the digested product becomes available for application to soil. Since terephthalic acid and phthalic acid are isomers, terephthalic acid may be expected to undergo a similarly high degree of anaerobic biodegradation during methanogenic sludge digestion. Terephthalic acid is also likely to be degraded anaerobically in water-logged soils or sediments.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.