Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: - | CAS number: -
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Description of key information
Based on read across from PETMP, Di-PETMP is considered not irritating to skin.
Based on read-across from PETMP, Di-PETMP is considered not irritating to eyes.
Key value for chemical safety assessment
Skin irritation / corrosion
Link to relevant study records
- Endpoint:
- skin irritation: in vivo
- Type of information:
- read-across from supporting substance (structural analogue or surrogate)
- Adequacy of study:
- key study
- Justification for type of information:
- Currently, do data on toxicokinetics/metabolism is available for this category. Based on structural features (e.g. sterical hindrance) it is however assumed, that ester cleavage would not be fast and complete, especially since the substances contain up to 6 ester functions, which are in addition sterically shielded. Therefore, it seems more reasonable to base the category hypothesis on structural similarity.
In addition, it is not clear yet, whether the strength of the effects vary in a predictable manner, or if no relevant variations occur. However, there are variations in structure (number of ester bonds and consequently number of free -SH groups) and physicochemical properties (especially water solubility and log Kow). It is assumed that these variations will also be reflected by variations in effect levels. Therefore, scenario 4 is the working hypothesis for the time being.
More data points within the category are needed to further strengthen the category hypothesis (refer to Data matrix toxicity endpoints (systemic effects)). The scenario selection will be re-evaluated after the studies are finished.
This currently selected scenario covers the category approach for which the read-across hypothesis is based on structural similarity. For the REACH information requirement under consideration, the property investigated in studies conducted with different source substances is used to predict the property that would be observed in a study with the target substance if it were to be conducted. Similar properties are observed for the different source substances; this may include absence of effects for every member of the category.
There are expected to be differences in strength of the effects forming a regular pattern. The prediction will be based on a worst-case approach. The read-across is a category approach based on the hypothesis that the substances in this category share structural similarities with common functional groups. This approach serves to use existing data on acute toxicity, repeated-dose toxicity, and reproductive toxicity endpoints for substances in this category.
The hypothesis corresponds to Scenario 4 of the RAAF. The substances GDMP, TMPMP, PETMP, and Di-PETMP are esters of a common acid, 3-mercaptopropionic acid (3-MPA). The key functionality of the substances within this category is the presence of free SH-groups. It is hypothesised that the strength of effects correlates with the number of SH-groups. In addition, differences in bioavailability are expected to influence the strength of effects.
For details, please refer to the category document attached to Iuclid section 13. - Reason / purpose for cross-reference:
- read-across: supporting information
- Reason / purpose for cross-reference:
- read-across source
- Species:
- rabbit
- Irritation parameter:
- erythema score
- Basis:
- mean
- Remarks:
- 3 animals
- Time point:
- 24/48/72 h
- Score:
- 0
- Max. score:
- 3
- Irritation parameter:
- edema score
- Basis:
- mean
- Remarks:
- 3 animals
- Time point:
- 24/48/72 h
- Score:
- 0
- Max. score:
- 4
- Interpretation of results:
- GHS criteria not met
- Conclusions:
- Based on QSAR prediction and read-across from PETMP, Di-PETMP is considered not irritating to skin.
Reference
Endpoint conclusion
- Endpoint conclusion:
- no adverse effect observed (not irritating)
Eye irritation
Link to relevant study records
- Endpoint:
- eye irritation: in vivo
- Type of information:
- read-across from supporting substance (structural analogue or surrogate)
- Adequacy of study:
- key study
- Justification for type of information:
- Currently, do data on toxicokinetics/metabolism is available for this category. Based on structural features (e.g. sterical hindrance) it is however assumed, that ester cleavage would not be fast and complete, especially since the substances contain up to 6 ester functions, which are in addition sterically shielded. Therefore, it seems more reasonable to base the category hypothesis on structural similarity.
In addition, it is not clear yet, whether the strength of the effects vary in a predictable manner, or if no relevant variations occur. However, there are variations in structure (number of ester bonds and consequently number of free -SH groups) and physicochemical properties (especially water solubility and log Kow). It is assumed that these variations will also be reflected by variations in effect levels. Therefore, scenario 4 is the working hypothesis for the time being.
More data points within the category are needed to further strengthen the category hypothesis (refer to Data matrix toxicity endpoints (systemic effects)). The scenario selection will be re-evaluated after the studies are finished.
This currently selected scenario covers the category approach for which the read-across hypothesis is based on structural similarity. For the REACH information requirement under consideration, the property investigated in studies conducted with different source substances is used to predict the property that would be observed in a study with the target substance if it were to be conducted. Similar properties are observed for the different source substances; this may include absence of effects for every member of the category.
There are expected to be differences in strength of the effects forming a regular pattern. The prediction will be based on a worst-case approach. The read-across is a category approach based on the hypothesis that the substances in this category share structural similarities with common functional groups. This approach serves to use existing data on acute toxicity, repeated-dose toxicity, and reproductive toxicity endpoints for substances in this category.
The hypothesis corresponds to Scenario 4 of the RAAF. The substances GDMP, TMPMP, PETMP, and Di-PETMP are esters of a common acid, 3-mercaptopropionic acid (3-MPA). The key functionality of the substances within this category is the presence of free SH-groups. It is hypothesised that the strength of effects correlates with the number of SH-groups. In addition, differences in bioavailability are expected to influence the strength of effects.
For details, please refer to the category document attached to Iuclid section 13. - Reason / purpose for cross-reference:
- read-across: supporting information
- Reason / purpose for cross-reference:
- read-across source
- GLP compliance:
- yes
- Species:
- rabbit
- Strain:
- New Zealand White
- Number of animals or in vitro replicates:
- 1+2
- Irritation parameter:
- cornea opacity score
- Basis:
- mean
- Time point:
- 24/48/72 h
- Score:
- 0
- Max. score:
- 4
- Irritation parameter:
- iris score
- Basis:
- mean
- Time point:
- 24/48/72 h
- Score:
- 0
- Max. score:
- 2
- Irritation parameter:
- conjunctivae score
- Basis:
- mean
- Time point:
- 24/48/72 h
- Score:
- 0
- Max. score:
- 3
- Irritation parameter:
- chemosis score
- Basis:
- mean
- Time point:
- 24/48/72 h
- Score:
- 0
- Max. score:
- 4
- Irritant / corrosive response data:
- Only very slight conjunctival reactions, including very slight chemosis (grade 1), very slight redness of the conjunctiva (grade 1) and clear discharge, were observed in all animals on day 1.
No other ocular reactions were observed during the study. Mean scores calculated for each animal over 24, 48 and 72 hours were 0.0, 0.0 and 0.0 for chemosis, redness of the conjunctiva, iris lesions and corneal opacity. - Interpretation of results:
- GHS criteria not met
- Conclusions:
- Based on read-across from PETMP, Di-PETMP is considered not irritating to eyes
Reference
Endpoint conclusion
- Endpoint conclusion:
- no adverse effect observed (not irritating)
Respiratory irritation
Endpoint conclusion
- Endpoint conclusion:
- no study available
Additional information
PETMP was not irritating to skin in an in-vivo test in rabbits according to OECD 404. This result is expected to be representative for the other category members due to the structural similarity.
Justification for classification or non-classification
Based on read across from PETMP, Di-PETMP is considered not irritating to skin and not irritating to eyes.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.