Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: - | CAS number: -
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Key value for chemical safety assessment
Genetic toxicity in vitro
Link to relevant study records
- Endpoint:
- in vitro gene mutation study in bacteria
- Type of information:
- read-across based on grouping of substances (category approach)
- Adequacy of study:
- key study
- Reliability:
- 2 (reliable with restrictions)
- Justification for type of information:
- Currently, do data on toxicokinetics/metabolism is available for this category. Based on structural features (e.g. sterical hindrance) it is however assumed, that ester cleavage would not be fast and complete, especially since the substances contain up to 6 ester functions, which are in addition sterically shielded. Therefore, it seems more reasonable to base the category hypothesis on structural similarity.
In addition, it is not clear yet, whether the strength of the effects vary in a predictable manner, or if no relevant variations occur. However, there are variations in structure (number of ester bonds and consequently number of free -SH groups) and physicochemical properties (especially water solubility and log Kow). It is assumed that these variations will also be reflected by variations in effect levels. Therefore, scenario 4 is the working hypothesis for the time being.
More data points within the category are needed to further strengthen the category hypothesis. The scenario selection will be re-evaluated after the studies are finished.
This currently selected scenario covers the category approach for which the read-across hypothesis is based on structural similarity. For the REACH information requirement under consideration, the property investigated in studies conducted with different source substances is used to predict the property that would be observed in a study with the target substance if it were to be conducted. Similar properties are observed for the different source substances; this may include absence of effects for every member of the category.
There are expected to be differences in strength of the effects forming a regular pattern. The prediction will be based on a worst-case approach. The read-across is a category approach based on the hypothesis that the substances in this category share structural similarities with common functional groups. This approach serves to use existing data on acute toxicity, repeated-dose toxicity, and reproductive toxicity endpoints for substances in this category.
The hypothesis corresponds to Scenario 4 of the RAAF. The substances GDMP, TMPMP, PETMP, and Di-PETMP are esters of a common acid, 3-mercaptopropionic acid (3-MPA). The key functionality of the substances within this category is the presence of free SH-groups. It is hypothesised that the strength of effects correlates with the number of SH-groups. In addition, differences in bioavailability are expected to influence the strength of effects.
For details, please refer to the category document attached to Iuclid section 13. - Reason / purpose for cross-reference:
- read-across: supporting information
- Reason / purpose for cross-reference:
- read-across source
- Reason / purpose for cross-reference:
- read-across source
- Key result
- Species / strain:
- E. coli WP2
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Key result
- Species / strain:
- S. typhimurium TA 1535
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Key result
- Species / strain:
- S. typhimurium TA 1537
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Key result
- Species / strain:
- S. typhimurium TA 98
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Key result
- Species / strain:
- S. typhimurium TA 100
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Key result
- Species / strain:
- S. typhimurium TA 102
- Metabolic activation:
- with and without
- Genotoxicity:
- negative
- Cytotoxicity / choice of top concentrations:
- no cytotoxicity
- Vehicle controls validity:
- valid
- Untreated negative controls validity:
- valid
- Positive controls validity:
- valid
- Conclusions:
- GDMP and PETMP showed a no signs of genotoxicity in an bacterial reverse mutation assay. Based on the category approach Di-PETMP is considered to be non genotoxic.
Reference
Endpoint conclusion
- Endpoint conclusion:
- no adverse effect observed (negative)
Genetic toxicity in vivo
Endpoint conclusion
- Endpoint conclusion:
- no study available
Additional information
The substances GDMP, TMPMP, PETMP, and Di-PETMP are esters of a common acid, 3-mercaptopropionic acid (3-MPA). All category members share the same mercaptopropionic acid moiety with two to 6 free SH group per MPA unit. The MPA unit with free SH is a prerequisite for this category. A justification for read-across is attached to Iuclid section 13.
Bacterial reverse mutation assay
Negative Ames tests are available for GDMP and PETMP.
GDMP was examined for iits mutagenic potential in Salmonella typhimurium strains TA 98, TA 100, TA 1535, TA 1537 and TA 1538 and Escherichia coli WP2 uvr A in two independent experiments, each carried out without and with metabolic activation. The first experiment was carried out as a plate incorporation test and the second as a preincubation test.
Cytotoxicity was noted at the top concentration of 5000 μg GDMP/plate. No mutagenic effect (no increase in revertant colony numbers as compared with control counts) was observed for GDMP, tested up to a cytotoxic concentration of 5000 μg/plate, in the Salmonella typhimurium and in the Escherichia coli test strains in two independent experiments without and with metabolic activation, respectively (plate incorporation and preincubation test).
The genotoxic potential of the test item PETMP was assessed in a Bacterial reverse mutation assay according to OECD Guideline 471 and EU method B13/14. Salmonella typhimurium strains TA1535, TA1537, TA102, TA98 and TA100 were treated with solutions of the test material using the Ames plate incorporation method at five dose levels, in triplicate, both with and without the addition of a rat liver homogenate metabolising system.
The test material caused no visible reduction in the growth of the bacterial background lawn at any dose level. The test material was, therefore, tested up to the maximum recommended dose level of 5000 µg/plate. A white, cloudy precipitate was observed at 5000 µg/plate, this did not prevent the scoring of revertant colonies.
No significant increases in the frequency of revertant colonies were recorded for any of the bacterial strains, with any dose of the test material, either with or without metabolic activation.
The test material was considered to be non-mutagenic under the conditions of this test.
Conclusion
The entirety of available genotoxicity data in combination with the absence of structural alerts for genotoxicity in this category will be used to strengthen the weight of the evidence for non-genotoxicity.
Justification for classification or non-classification
Based on the category approach, no positive result in an in vitro study was observed. Therefore no in vivo study on the substance was triggered and the GHS classification criteria are not fulfilled.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.