Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 205-599-4 | CAS number: 143-33-9
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Toxicity to other aquatic organisms
Administrative data
Link to relevant study record(s)
Description of key information
Experimental data were reviewed by U. Hommen at the Fraunhofer Institute for Molecular Biology and Applied Ecology (IME). The report is a weight of evidence approach to an extensive body of literature on acute toxicity of aquatic organisms to cyanides, including 43 species (28 freshwater and 15 marine species) from eight major taxonomic groups; and an extensive body of literature on chronic toxicity of aquatic organisms to cyanides, including 13 species (eight freshwater and five marine species) from five major taxonomic groups. The report uses a methodology for species sensitivity distribution consistent with EU guidance (Technical Guidance Document for Deriving Environmental Quality Standards), from which an acute HC5 and a chronic HC5 were derived. In addition, acute aquatic toxicity of sodium cyanide was determined in three species of frog (Rana berlandieri, R. pipiens and Xenopus laevis), in three separate studies by Naddy (2005).
Additional information
The acute HC5 value of 15.8 ug/L value served as the point of departure for the derivation of the PNECaquatic for intermittent releases for both freshwater and saltwater species. The species sensitivity distribution (SSD) for acute aquatic toxicity developed by Hommen (2011) is similar to the SSD derived by the ECETOC Joint Assessment of Commodity Chemicals (2007). The SSD by Hommen includes more recent guideline studies on acute aquatic toxicity. The acute HC5 reported by Hommen for all aquatic species (15.8 ug/L) is substantially lower than the 96-h LC50 values (410.1 ug/L, 192 ug/L and 254.3 ug/L) in three species of frog (Rana berlandieri, R. pipiens and Xenopus laevis) in three separate studies by Naddy (2005).
Potassium cyanide and sodium cyanide can be considered as a chemical category, along with hydrogen cyanide (HCN) and acetone cyanohydrin (ACH, also known as 2-hydroxy-2-methylpropanenitrile), based on structural similarity, similar physico-chemical properties and common breakdown/metabolic products in physical and biological systems. Particular attention is paid to the dissociation constant of HCN. In the vast majority of environmental and physiologic conditions, the cyanide salts will dissolve in water to form hydrogen cyanide. The physico-chemical hazards and toxicity result from the activity of this common proximal toxicant, HCN. Support for this category approach is provided in examination of acute and chronic toxicity by oral, dermal, ocular and intraperitoneal administration of various forms of cyanide and in aquatic and terrestrial compartments of the environment, which provide consistent and comparable values when expressed as mmol/kg bw. An ECETOC Task Force, in the 2007 ECETOC Joint Assessment of Commodity Chemicals ( JACC ) Report No. 53, “Cyanides of Hydrogen, Sodium and Potassium, and Acetone Cyanohydrin (CAS No. 74-90-8, 143-33-9, 151-50-8 and 75-86-5)” supports the development of this chemical category. Hydrogen cyanide (Index No.006-006-00-X) and salts of hydrogen cyanide (Index No.006-007-00-5) are both listed in Annex VI, Table 3.1 of Regulation (EC) No. 1272/2008, entry 006-007-00-5, and are restricted in comparable ways taking into account physical characteristics. Thus, the assignment of potassium cyanide and sodium cyanide to a chemical category does not result in a less protective regulatory status.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.