Registration Dossier
Registration Dossier
Data platform availability banner - registered substances factsheets
Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.
The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.
Diss Factsheets
Use of this information is subject to copyright laws and may require the permission of the owner of the information, as described in the ECHA Legal Notice.
EC number: 248-370-4 | CAS number: 27253-29-8
- Life Cycle description
- Uses advised against
- Endpoint summary
- Appearance / physical state / colour
- Melting point / freezing point
- Boiling point
- Density
- Particle size distribution (Granulometry)
- Vapour pressure
- Partition coefficient
- Water solubility
- Solubility in organic solvents / fat solubility
- Surface tension
- Flash point
- Auto flammability
- Flammability
- Explosiveness
- Oxidising properties
- Oxidation reduction potential
- Stability in organic solvents and identity of relevant degradation products
- Storage stability and reactivity towards container material
- Stability: thermal, sunlight, metals
- pH
- Dissociation constant
- Viscosity
- Additional physico-chemical information
- Additional physico-chemical properties of nanomaterials
- Nanomaterial agglomeration / aggregation
- Nanomaterial crystalline phase
- Nanomaterial crystallite and grain size
- Nanomaterial aspect ratio / shape
- Nanomaterial specific surface area
- Nanomaterial Zeta potential
- Nanomaterial surface chemistry
- Nanomaterial dustiness
- Nanomaterial porosity
- Nanomaterial pour density
- Nanomaterial photocatalytic activity
- Nanomaterial radical formation potential
- Nanomaterial catalytic activity
- Endpoint summary
- Stability
- Biodegradation
- Bioaccumulation
- Transport and distribution
- Environmental data
- Additional information on environmental fate and behaviour
- Ecotoxicological Summary
- Aquatic toxicity
- Endpoint summary
- Short-term toxicity to fish
- Long-term toxicity to fish
- Short-term toxicity to aquatic invertebrates
- Long-term toxicity to aquatic invertebrates
- Toxicity to aquatic algae and cyanobacteria
- Toxicity to aquatic plants other than algae
- Toxicity to microorganisms
- Endocrine disrupter testing in aquatic vertebrates – in vivo
- Toxicity to other aquatic organisms
- Sediment toxicity
- Terrestrial toxicity
- Biological effects monitoring
- Biotransformation and kinetics
- Additional ecotoxological information
- Toxicological Summary
- Toxicokinetics, metabolism and distribution
- Acute Toxicity
- Irritation / corrosion
- Sensitisation
- Repeated dose toxicity
- Genetic toxicity
- Carcinogenicity
- Toxicity to reproduction
- Specific investigations
- Exposure related observations in humans
- Toxic effects on livestock and pets
- Additional toxicological data
Endpoint summary
Administrative data
Key value for chemical safety assessment
Additional information
- all available proprietary studies from the Metal carboxylates REACH Consortium (MCRC)
- detailed literature searches in online databases
- screening of human health review articles
- rigorous quality and reliability screening according to Klimisch criteria, where those criteria apply
Introductionto read-across matrix
A comprehensive data gap analysis was conducted for the entire substance portfolio of the Metal carboxylates REACH Consortium (MCRC), covering 10 metal carboxylates in total. This literature screening effort included:
During the literature search and data gap analysis it became obvious that the overall database on substance-specific human health hazard data for the metal carboxylates is too scant to cover all REACH endpoints. Therefore, the remaining data gaps had to be covered by either experimental testing or read-across from similar substances.
Selected endpoints for the human health hazard assessment are addressed by read-across, using a combination of data on the organic acid counterion and the metal (or one of its readily soluble salts). This way forward is acceptable, since metal carboxylates dissociate to the organic anion and the metal cation upon dissolution in aqueous media. No indications of complexation or masking of the metal ion through the organic acid were apparent during the water solubility tests (please refer to the water solubility data in section of the IUCLID and chapter of the CSR). Once the individual constituents of the metal carboxylate become bioavailable (i.e. in the acidic environment in the gastric passage or after phagocytosis by pulmonary macrophages), the “overall” toxicity of the dissociated metal carboxylate can be described by the toxicity of the “individual” constituents. Since synergistic effects are not expected for this group of metal carboxylates, the human health hazard assessment consists of an individual assessment of the metal cation and the organic anion.
The hazard information of the individual constituents was obtained from existing REACH registration dossiers via a license-to-use obtained by the lead registrant. These registration dossiers were submitted to ECHA in 2010 as full registration dossiers, and are thus considered to contain relevant and reliable information for all human health endpoints. All lead-registrant dossiers were checked for completeness and accepted by ECHA, i.e. a registration number was assigned.
Zinc neodecanoate is the zinc metal salt of neodecanoic acid, which readily dissociates to the corresponding divalent zinc cation and neodecanoic acid anions. The zinc cation and the neodecanoic acid anion are considered to represent the overall toxicity of the zinc neodecanoate in a manner proportionate to the free acid and the metal (represented by one of its readily soluble salts). Based on the above information, unrestricted read-across is considered feasible and justified.
Introduction to the neoacids hazard assessment
The carboxylic acids “neodecanoic acid” and “fatty acid C9 to C13 neo” are considered similar in their toxicological profile and are therefore grouped together. Both neoacids originate from the same production process in which a branched olefin is reacted with carbon monoxide and water at elevated temperature and pressure in th1e presence of an acid as catalytic component. The dossiers for neodecanoic acid and fatty acid C9 to C13 neo contain human health hazard information on both substances indicating that the toxicological profile is similar. This approach was also used and accepted in the US EPA HPV programme, even for a wider range of neo-acid substances (US EPA, April 2009: http://www.epa.gov/chemrtk/pubs/summaries/neoc528/c13335tc.htm).
Based on the above information “neodecanoic acid” and “fatty acid C9 to C13 neo” will be assessed for their hazardous properties, using the same dataset for both substances.
Although the term „constituent“ within the REACH context is defined as substance (also being part of a mixture), the term constituent within this hazard assessment is meant to describe either part of the metal carboxylate salt, i.e. anion or cation.
Genetic toxicity
No genetic toxicity study with zinc neodecanoate is available, thus the genetic toxicity will be addressed with existing data on the dissociation products as detailed in the table below.
Table: Summary of genetic toxicity data of the zinc neodecanoate and the individual constituents.
| (slightly soluble) zinc substances | Neodecanoic acid | Zinc neodecanoate |
In vitro gene mutation in bacteria | negative (weight of evidence) | negative | negative |
In vitro cytogenicity in mammalian cells or in vitro micronucleus test | negative | negative | |
In vitro gene mutation study in mammalian cells | no data | negative | |
In vivo cytogenicity | no data | negative |
Zinc
The overall weight of the evidence from the existing in vitro and in vivo genotoxicity assays suggests that zinc compounds do not have biologically relevant genotoxic activity. This conclusion is in line with those achieved by other regulatory reviews of the genotoxicity of zinc compounds (WHO, 2001; SCF, 2003; EU RAR, 2008, MAK, 2009). Hence, no classification and labelling for mutagenicity is required.
Neodecanoic acid
Neodecanoic acid is not mutagenic in vitro in bacterial mutation assays (with and without metabolic activation) and was not clastogenic in a cytogenetic assay. Although a test on in vitro gene mutation in mammalian cells is not provided, the bacterial reverse mutation test covering the same endpoint did not show any sign of mutagenic potential with an without metabolic activation. This data suggests that neodecanoic acid is not genotoxic in vitro and likely not genotoxic in vivo.
Zinc neodecanoate
Zinc neodecanoate is not expected to be genotoxic, since the two constituents zinc and neodecanoic acid have not shown a genotoxic potential in a range of in vitro test systems. Thus, zinc neodecanoate is not to be classified according to regulation (EC) 1272/2008 as genetic toxicant. Further testing is not required. For further information on the toxicity of the individual constituents, please refer to the relevant sections in the IUCLID and CSR.
Justification for selection of genetic toxicity endpoint
Read-across information.
Short description of key information:
Zinc neodecanoate is not expected to be genotoxic.
Endpoint Conclusion: No adverse effect observed (negative)
Justification for classification or non-classification
Zinc neodecanoate is not expected to be genotoxic, since the two constituents zinc and neodecanoic acid have not shown gene mutation potential in a range of in vitro test systems. Thus, zinc neodecanoate is not to be classified according to regulation (EC) 1272/2008 as genetic toxicant.
Furthermore, zinc neodecanoate has not to be classified according toDirective 67/548 EC as genetic toxicant.
Information on Registered Substances comes from registration dossiers which have been assigned a registration number. The assignment of a registration number does however not guarantee that the information in the dossier is correct or that the dossier is compliant with Regulation (EC) No 1907/2006 (the REACH Regulation). This information has not been reviewed or verified by the Agency or any other authority. The content is subject to change without prior notice.
Reproduction or further distribution of this information may be subject to copyright protection. Use of the information without obtaining the permission from the owner(s) of the respective information might violate the rights of the owner.