Registration Dossier

Data platform availability banner - registered substances factsheets

Please be aware that this old REACH registration data factsheet is no longer maintained; it remains frozen as of 19th May 2023.

The new ECHA CHEM database has been released by ECHA, and it now contains all REACH registration data. There are more details on the transition of ECHA's published data to ECHA CHEM here.

Diss Factsheets

Environmental fate & pathways

Biodegradation in soil

Currently viewing:

Administrative data

Link to relevant study record(s)

Referenceopen allclose all

Endpoint:
biodegradation in soil: simulation testing
Remarks:
Prediction of degradation products using CATALOGIC 301 C v .09.13
Type of information:
(Q)SAR
Adequacy of study:
key study
Study period:
2021
Reliability:
2 (reliable with restrictions)
Rationale for reliability incl. deficiencies:
results derived from a valid (Q)SAR model and falling into its applicability domain, with adequate and reliable documentation / justification
Justification for type of information:
1. SOFTWARE
OASIS Catalogic v5.11.19

2. MODEL (incl. version number)
CATALOGIC 301C v.09.13

3. SMILES OR OTHER IDENTIFIERS USED AS INPUT FOR THE MODEL
See section 'Test Material'.

4. SCIENTIFIC VALIDITY OF THE (Q)SAR MODEL
See attached QMRF.

5. APPLICABILITY DOMAIN
See attached QPRF.

6. ADEQUACY OF THE RESULT
- The model is scientifically valid (see attached QMRF).
- The model estimates the biodegradability of a substance Screening information on the ready biodegradability is required for substances manufactured or imported in quantities of 1 t/y or more. Depending on the results, further information may be required for substances manufactured or imported in quantities of 100 t/y or more (simulation testing on ultimate degradation in surface water/soil/sediment). Column 2 of REACH Annex VII provides exemptions for conducting the study. It does not need to be conducted if the substance is inorganic. According to column 2 of REACH Annex IX, testing is not required if the substance is highly insoluble in water, or the substance is readily biodegradable.
- See attached QPRF for reliability assessment.
Principles of method if other than guideline:
Estimation of ready biodegradation and degradation products using OASIS Catalogic v5.11.19 BOD 28 days MITI (301 C v .09.13).
GLP compliance:
no
Test type:
other: QSAR
Oxygen conditions:
aerobic
Remarks on result:
other: The applied QSAR model was used to predict the identity and quantity of the degradation products of the substance.
Transformation products:
yes

-Concomitant predictions:


Not ready degradable


Primary Half Life = 9.24 days


Ultimae Half Life = 3m 27d


 


- Predicted value (model result): O2 -consumption (BOD) = 0.15 ± 0.0172


 


Predicted metabolites:


 


Table: QSAR prediction for CAS 2855-13-2 (3-aminomethyl-3,5,5-trimethylcyclohexylamine (IPDA) using CATALOGIC 301 C v .09.13 - June, 2016; metabolites with a quantity > 0. 1 % parent after 28 d are highlighted by bold type; metabolite no: according to (Q)SAR model Catalogic v09.13)












































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































No



Metabolite


no



Smiles



Level



Transformation no



Transformation name



Quantity (%)



 Log Kow



BOD prediction % 80D (28 d)



1



13



CC1(C)CC(N)CC(C)(C(O )=O}C1



2



66



Aldehyde Oxidation



14,82



-1,06



9



2



Parent



CC1(C)CC(N)CC(C)(CN)C1



0



 



 



12,23



1,90



15



3



66



CC(C)(CC(C)(C)C(O)=O)C(O)=O



7



66



Aldehyde Oxidation



7,011



1,48



0



4



68



CC(C)(CC(C)(CC(O)=O)C(O)=O)C(O)=O



7



66



Aldehyde oxidation



10,56



0,73



0



5



57



CC(C)(C)CC(C)(CO)C(O)=O



6



346



Decarboxylation



6,41



1,84



1



6



35



CC/C)/CC/C)/CC/0)=0)CN)C/0)=0



4



66



Aldehvde Oxidation



5,713



-2,70



7



7



33



CC/C)/CC/O)=OlCC/C)/CN)C/0)=0



4



66



Aldehvde Oxidation



5,713



-2,70



22



8



46



CC(C)(CC(C)(C)CN)C(O)=O



5



346



Decarboxylation



4,54



-1,37



8



9



45



CC{C){C)CC{C){CN)C{O)=O



5



346



Decarboxylation



4,54



-1,37



22



10



107



CC(C)(C)C(O)=O



14



319



Decarboxylation



4,097



1,45



0



11



47



CC(C)(CC(O)=O)CC(C)(CO)C(0)=O



5



309



Ester hydrolysis



3,519



0,51



1



12



12



CC1(C)CC(C)(CN)CC( =O) OC1



2



184



Bayer-Villiger oxidation



2,192



0,95



13



13



11



CC1(C)CC(=O)OCC(C)(CN)C1



2



184



Bayer-Villiger oxidation



2,192



0,95



17



14



74



CC/Cl/CC/Cl/CO)C/Ol=OlC/O)=O



8



487



Methvl arouo oxidation



2,06



0,01



0



15



25



CC1(C(O)=O)CC(N)CC(C)(CN)C1



3



66



Aldehyde Oxidation



1,751



-2,54



18



16



38



CC1(C)CC( C)(C(O)=O)CC( =O)OC1



4



184



Bayer-Villiqer oxidation



1,37



1,18



8



17



37



CC1(C)CC(=O) OCC(C)(C(O)=O)C1



4



184



Bayer-Villiqer oxidation



1,37



1,18



5



18



73



CC{CC{C){C)C)C{O)=O



8



216



Decarboxylation



1,082



2,85



20



19



26



CC1(C)CC(N)CC(CN)(C(O)=O)C1



3



66



Aldehyde Oxidation



0,8757



-2,54



25



20



85



CC(=CC(C)(C)C)C(0)=0



10



315



Beta-oxidation



0,8469



2,76



29



21



90



CC(C(O)C(C)(C)C)C(O)=O



11



310



Beta-oxidation



0,7361



1,31



27



22



102



CC/C/=O)C/C)/C)C)C/O)=O



13



71



Keto-enol tautomerism



0,6399



0,80



41



23



77



CC(CC(O)=O)(CC(C)(CN)C(O)=O)C(O)=O



8



66



Aldehyde oxidation



0,4864



-3,94



36



24



60



CC(CC(O)=O)(CC{C)(CO)C(O)=O)CN



6



309



Ester hydrolysis



0,4158



-4,17



8



25



76



CC(CC(O)=O)(CC(C)(CO)C(O)=O)C(O)=O



8



487



Methyl group oxidation



0,3756



-0,73



0



26



112



CC/=C/O)C/C)(O)CC(O)=O)C/O)=O



16



315



Beta-oxidation



0,3542



-1,00



89



27



70



CC(C)(CC(C)(CO)C(O)=O)CN



7



346



Decarboxylation



0,3304



-2,83



7



28



105



CC(C)(C)CCC(O)=O



13



319



Decarboxylation



0,2703



2,43



32



29



104



CC(CC(C)(O)CC(O)=O)C(O)=O



13



216



Decarboxylation



0,2699



-0,44



66



30



79



CC(C)(CC(CC(O)=O)(CN)C(O)=O)C(O)=O



8



66



Aldehyde oxidation



0,2432



-3,94



25



31



61



CC(C)(CC(O)=O)CC(CN)(CO)C(O)=O



6



309



Ester hydrolysis



0,2079



-4,17



31



32



106



CC(C)(CC(=O)CC(O)=O)C(O)=O



13



340



Decarboxylation



0,1833



-0,95



28



33



71



CC(C)(C)CC(CN)(CO)C(0)=0



7



346



Decarboxylation



0,1652



-2,83



32



34



50



CC1{CN)CC{=O)OCC{C){C{O)=O)C1



5



184



Bayer-Villiaer oxidation



0,1618



-3,49



11



35



49



CC1/C/Ol=OlCC/=OlOCC/Cl/CNlC1



5



184



Baver-Villiaer oxidation



0,1618



-3,49



28



36



110



CC/C)/CO)C/O)=O



15



487



Methvl arouo oxidation



0,157



-0,02



0



37



101



CC(C)CC(CC(O)=O)C(O)=O



12



216



Decarboxylation



0,135



1,06



72



38



9



CC1(C)CC(N)C(=O )OC(C)(CN)C1



1



747



Bayer-Villiger oxidation



0,1068



-0,60



17



39



8



CC1 (C )CC( C)( CN)CC( N)C( =0)01



1



747



Bayer-Villiger oxidation



0,1068



-0,60



14



40



44



CC(C)(CC(=O)CC(C){O)C=O)C(O)=O



4



357



Oxidative deamination and N-dealkylation



0,0988



-1,21



34



41



41



CC(C)(O)CC(=O)CC{C){C=O)C{0)=0



4



357



Oxidative deamination and N-dealkylation



0,0988



-1,21



68



42



21



CC(C)(CC(N)CC(C)(O)CN)C(O)=O



2



309



Ester hydrolvsis



0,09499



-3,89



23



43



18



CC(C)(O)CC( N)CC(C)(CN)C(O)=O



2



309



Ester hydrolvsis



0,09499



-3,89



39



44



100



CC(C)(CC(O)(CC(O)=O)C(O)=O)C(O)=O



12



164



Beta-oxidation



0,08658



-0,61



25



45



52



CC1(C)CC{CN){C/O)=O)CC/=O)OC1



5



184



Bayer-Villiaer oxidation



0,08092



-3,49



31



46



51



CC1(C)CC(=O)OCC(CN)(C(O)=O)C1



5



184



Bayer-Villiaer oxidation



0,08092



-3,49



29



47



86



CC(CC(C)(CO)C(O)=O)(CO)C(O)=O



10



487



Methyl ciroup oxidation



0,07865



-1,04



0



48



91



CC(CC(C)(CC(O)=O)C(O)=O)C(O)=O



11



216



Decarboxylation



0,07059



0,28



34



49



64



CC(C)(C)CC(C)(O)C=O



6



357



Oxidative deamination and N-dealkylation



0,06711



1,09



25



50



63



CC(C)(O)CC(C)(C)C=O



6



357



Oxidative deamination and N-dealkylation



0,06711



1,09



8



51



109



CC(=CC(C)(O)CC(O)=O)C(O)=O



14



164



Beta-oxidation



0,0613



-0,53



70



52



32



CC( C)( CC(=O) CC(C)(0)CN)C( 0)=0



3



356



Oxidative deamination and N-dealkylation



0,05934



-4,39



23



53



29



CC( C)( O)CC( =O)CC(C)( CN)C( 0)=0



3



356



Oxidative deamination and N-dealkylation



0,05934



-4,39



45



54



1



CC1(C)CC(=O)CC(C)(CN)C1



1



762



Oxidative deamination and N-dealkylation



0,05626



1,40



28



55



111



CC(C(O)C(C)(O)CC(O)=O)C(O)=O



15



310



Beta-oxidation



0,05328



-1,57



74



56



43



CC(Cl{CC{O)=O)CC{Cl{O)CN



4



123



Decarboxvlation



0,05073



-2,83



20



57



42



CC(C)(O)CC(C)(CC(O)=O)CN



4



123



Decarboxylation



0,05073



-2,83



12



58



54



CC(C){C)CC(C)(O)CN



5



346



Decarboxylation



0,04031



1,11



18



59



53



CC(C)(O)CC(C)(C)CN



5



346



Decarboxylation



0,04031



1,11



13



60



10



CC1(C)CC(N)CC(C)(CN)OC1=O



1



747



Bayer-Villiger oxidation



0,0316



-0,60



25



61



7



CC1(C)CC(N)CC(C)(CN)C(=0)01



1



747



Bayer-Villiqer oxidation



0,0316



-0,60



44



62



6



CC1 (C)CC( C)( CN)CC( N)OC1=O



1



747



Bayer-Villiqer oxidation



0,0316



1,15



13



63



5



CC1(C)CC(N)OC(=O)C(C)(CN)C1



1



747



Bayer-Villiqer oxidation



0,0316



1,15



24



64



20



CC1(C)CC(=O)C(=O)OC(C)(CN)C1



2



356



Oxidative deamination and N-dealkylation



0,01975



0,93



24



65



19



CC1(C)CC( C)(CN)CC(=O)C(=0)01



2



356



Oxidative deamination and N-dealkylation



0,01975



0,93



16



66



81



CC(CC/CC/O)=O)/CO)C/O)=O)/CO)C/O)=O



9



488



Methvl arouo oxidation



0,01467



-1,49



0



67



80



CC(CC(O)=O)(CC(CO)(CO)C(O)=O)C(O)=O



9



488



Methyl ciroup oxidation



0,01467



-1,79



0



68



99



CC(C)(C)CC(C(O)=O)C(O)=O



12



66



Aldehyde oxidation



0,004702



1,03



37



69



97



CC(=CC(C)(CC(O)=O)C(O)=O)C(O)=O



12



315



Beta-oxidation



0,0004693



0,20



62



70



2



CC1(C)CC(N)CC(C)(C=O)C1



1



357



Oxidative deamination and N-dealkylation



0,000395



1,88



12



71



36



CC/C)/CC/C)/CC/O)=O)CN)C=O



4



93



Primarv hvdroxvl arouo oxidation



0,0001756



-2,37



10



72



34



CC/C)/CC/O)=OlCC/C)/CN)C=O



4



93



Primarv hvdroxvl arouo oxidation



0,0001756



-2,37



26



73



23



CC(C)(CC(C)(CC( O)=O)CN)CO



3



309



Ester hydrolvsis



0,0001756



-2,34



10



74



22



CC(C)(CC(O)=O)CC(C)(CN)CO



3



309



Ester hydrolvsis



0,0001756



-2,34



26



75



58



CC/Cl/CC/C)/CC/Ol=O)C/O)=O)C=O



6



93



Primarv hvdroxvl arouo oxidation



0,0001097



0,48



5



76



48



CC(C)(CC(C)(CC(O)=O)C(O)=O)CO



5



309



Ester hydrolvsis



0,0001097



0,51



5



77



56



CC(C)(CC(C)(C)C=O)C(O)=O



6



357



Oxidative deamination and N-dealkylation



0,00007558



1,81



5



78



55



CC(C)(C)CC(C)(C=O)C(0)=0



6



357



Oxidative deamination and N-dealkylation



0,00007558



1,81



30



79



96



CC/=C/O)C/C)/C)C)C/O)=O



12



315



Beta-oxidation



0,00004894



1,88



41



80



14



CC1/C=O)CC/N)CC/C)/CN)C1



2



93



Primarv hvdroxvl arouo oxidation



0,00004668



0,41



21



81



3



CC1(C O)CC( N)CC(C)( CN)C1



1



487



Methyl i:iroup oxidation



0,00004668



0,44



21



82



108



CCC/O)=O



14



319



Decarboxylation



0,00004254



0,58



100



83



15



CC1/C)CC/ N)CC/CN)/C=O)C1



2



93



Primarv hvdroxvl arouo oxidation



0,00002334



0,41



28



84



4



CC1(C)CC(N)CC(CN)(CO)C1



1



488



Methyl i:iroup oxidation



0,00002334



0,44



28



85



75



CC(C)(CC(C)(CO)C(O)=O)C=O



8



357



Oxidative deamination and N-dealkylation



0,00001591



0,35



5



86



69



CC(CC(O)=O){CC(C)(CN)C=O)C(O)=O



7



93



Primary hydroxvl arouo oxidation



0,00001296



-4,19



39



87



59



CC{CC(O)=O)(CC(C){CN)CO)C(O)=O



6



309



Ester hydrolvsis



0,00001296



-4,17



39



88



67



CC{Cl/CC/Cl/CO)C/O)=O)CO



7



487



Mettwl arouo oxidation



0,00001041



0,78



5



89



82



CC(CC(O)=O)(CC(C)(C=O)C(O)=O)C(O)=O



9



357



Oxidative deamination and N-dealkylation



0,000008098



-0,76



54



90



65



CC{C){C)CC{C){C{O)=O)C{O)=O



7



66



Aldehyde oxidation



0,000007558



1,48



27



91



72



CC(C){CC{CC{O)=O){CN)C{O)=O)C=O



7



93



Primary hydroxvl ciroup oxidation



0,000006481



-4,19



29



92



62



CC(C)(CC(CC(O)=O)(CN)C(O)=O)CO



6



309



Ester hydrolysis



0,000006481



-4,17



29



93



103



CC(CC(O)=O)C=C/C)C/O)=O



13



216



Decarboxylation



0,000004688



0,98



71



94



84



CC(C)(CC(CC(O)=O)(C=O)C(O)=O)C(O)=O



9



357



Oxidative deamination and N-dealkylation



0,000004049



-0,76



37



95



93



CC(C)(C)CC(C=O)C(0)=0



11



93



Primary hydroxvl ciroup oxidation



0,00000275



1,36



40



96



88



CC(C)(C)CC(CO)C(O)=O



10



216



Decarboxylation



0,00000275



1,38



40



97



78



CC(C)(C)CC(CO)(C=O)C(0)=0



8



357



Oxidative deamination and N-dealkylation



0,00000275



0,35



44



98



94



CC(C)(CC(CC(O)=O)C/O)=O)C(0)=0



11



216



Decarboxylation



0,000002699



0,28



29



99



92



CC(CC(O)=O)CC(C)(C(O)=O)C(O)=O



11



216



Decarboxylation



0,000002699



0,28



62



100



28



CC(C)(CC(C)(CC=O)CN)C(O)=O



3



37



Oxidative deamination and N-dealkylation



0,000002531



-2,37



10



101



27



CC(C)(CC=O)CC( C)(CN)C(0)=0



3



37



Oxidative deamination and N-dealkylation



0,000002531



-2,37



26



102



17



CC/C)/CC/C)/CC/N)O) CN)C/ 0)=0



2



309



Ester hvdrolvsis



0,000002531



-3,89



10



103



16



CC/C)/CC/N)O)CC/C)/CN)C/O)=O



2



309



Ester hvdrolvsis



0,000002531



-3,89



26



104



31



CC( C)( CC(=O) C(O)=O)CC( C)( O)CN



3



309



Ester hydrolysis



0,000001581



-0,96



24



105



30



CC( C)( O)CC( C)( CC(=O)C(O)=O)CN



3



309



Ester hydrolysis



0,000001581



-0,96



16



106



83



CC(C)(C)CC(CO)(C(O)=O)C(0)=0



9



66



Aldehyde oxidation



0,000000275



0,01



42



107



98



CC(0)(CC(0)=O)CC(C)(C(0)=O)C(O)=O



12



164



Beta-oxidation



2,699E-07



-1,22



60



108



95



CC(C)CC(CC(O)=O)(C(O)=O)C(O)=O



11



216



Decarboxylation



0,000000135



0,28



56



109



24



CC1(C)CC(=O)CC( C)(C(O)=O)C1



3



356



Oxidative deamination and N-dealkylation



2,5E-09



1,63



10



110



87



CC/CC/O)=O)/CC/C\/C/O\=O)C/O)=O)C/O)=O



10



66



Aldehvde Oxidation



8E-10



-0,50



51



111



89



CC(C)(CC(CC(O)=O)(C(O)=O)C(O)=O)C(O)=O



10



66



Aldehyde oxidation



4E-10



-0,50



34



112



39



CC1(C(O)=O)CC(=O)CC(C)(CN)C1



4



356



Oxidative deamination and N-dealkylation



3E-10



-3,04



22



113



40



CC1(C)CC(=O)CC(CN)(C(O)=O)C1



4



356



Oxidative deamination and N-dealkylation



1E-10



-3,04



33



 


Conclusion:


Overall predicted metabolites: 112 metabolits


 


40 metabolites: quantity > 0.1%; thereof: 4 RBD and 40 log Kow <3.


All relevant predicted metabolites are neither PBT nor vP/vB


T: not assessed as no critical combination nRBD (~P/vP) plus log Kow >3 (~B/vB)

Endpoint:
biodegradation in soil: simulation testing
Data waiving:
exposure considerations
Justification for data waiving:
the study does not need to be conducted because direct and indirect exposure of soil is unlikely
Reason / purpose for cross-reference:
data waiving: supporting information

Description of key information

A simulation study according to OECD 303A revealed a biodegradation of 42% after 31 days in laboratory WWTP. No data are available on degradation rates in soil; therefore, the substance is regarded as P/vP from a precautionary point of view.


Degradation products were predicted using a QSAR model. 4 of 40 relevant degradation products are readily biodegradable.

Key value for chemical safety assessment

Additional information

QSAR-disclaimer:


In Article 13 of Regulation (EC) No 1907/2006, it is laid down that information on intrinsic properties of substances may be generated by means other than tests, provided that the conditions set out in Annex XI (of the same Regulation) are met.


According to Annex XI of Regulation (EC) No 1907/2006 (Q)SAR results can be used if (1) the scientific validity of the (Q)SAR model has been established, (2) the substance falls within the applicability domain of the (Q)SAR model, (3) the results are adequate for the purpose of classification and labelling and/or risk assessment and (4) adequate and reliable documentation of the applied method is provided.


For the assessment of the substance, (Q)SAR results were used for the prediction of potential degradation products. The criteria listed in Annex XI of Regulation (EC) No 1907/2006 are considered to be adequately fulfilled and therefore the endpoint(s) sufficiently covered and suitable for risk assessment.


Therefore, experimental simulation testing in soil is not provided.


 


Assessment:


A simulation study according to OECD 303A revealed a biodegradation of 42% after 31 days in laboratory WWTP.


According to REACH Annex IX, 9.2.1.3, column 1, a test on biodegradation in soil is only required for substances with a high potential for adsorption to soil. Since the test substance has a calculated log Koc of 2.97 at pH7 it is expected to have a low potential for adsorption to soil and sediment. According to a Mackay Level I model calculation, the main target compartment for isophorone diamine will be the hydrosphere (99.8 %), followed by sediment and soil with a percentage of just 0.08 % each. Therefore, no biodegradation test in soil is required.


The degradation products of IPDA are predicted via QSAR modelling of degradability and bioaccumulation for the PBT/vPvB assessment. None of the relevant degradation products has a high potential for adsorption to soil considering the calculated logKow.


Moreover, in accordance with Annex XI Section 3 and Annex IX 9.2.1.3, column 2, it is demonstrated in the risk assessment that the manufacture and all uses of the lifecycle of the substance do not pose an unacceptable risk for environmental compartments. In the chemical safety report operational conditions (OC) and risk mitigating measures (RMM) define how direct or indirect exposure into the environment is prevented and it is demonstrated that the risk characterization ratios (RCRs) of the chemical safety assessment are below 1 for all compartments (see Chemical Safety Report).


The degradation products of IPDA are predicted via QSAR modelling of degradability and bioaccumulation for the PBT/vPvB assessment. None of the relevant degradation products has a high potential for adsorption to soil considering the calculated logKow.


Moreover, in accordance with Annex XI Section 3 and Annex IX 9.2.1.4, column 2, it is demonstrated in the risk assessment that the manufacture and all uses of the lifecycle of the substance do not pose an unacceptable risk for environmental compartments. In the chemical safety report operational conditions (OC) and risk mitigating measures (RMM) define how direct or indirect exposure into the environment is prevented and it is demonstrated that the risk characterization ratios (RCRs) of the chemical safety assessment are below 1 for all compartments (see Chemical Safety Report).


 For the persistence assessment, the substance itself is assessed to be P/vP from a precautionary point of view. Potentially forming degradation products have been predicted using a valid QSAR model (CATALOGIC 301 C v .09.13). The substance is within the applicability domain of the model. The model predicted 112 degradation products, of which 40 can be regarded as relevant based on their predicted quantity (see the corresponded endpoint study record). These relevant degradation products were evaluated with regard to their biodegradability and bioaccumulation potential based on QSAR data. 4 substances were readily biodegradable. Significant accumulation is not to be expected for all relevant biodegradation products as their logKow <3. Thus, they are neither PBT, nor vPvB.